Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 32,872 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
(*  
    Author:      René Thiemann 
                 Akihisa Yamada
    License:     BSD
*)
section \<open>Real Roots\<close>

text \<open>This theory contains an algorithm to determine the set of real roots of a 
  rational polynomial. For polynomials with real coefficients, we refer to
  the AFP entry "Factor-Algebraic-Polynomial".\<close>

theory Real_Roots
imports 
  Real_Algebraic_Numbers
begin

hide_const (open) UnivPoly.coeff
hide_const (open) Module.smult

text \<open>Division of integers, rounding to the upper value.\<close>
definition div_ceiling :: "int \<Rightarrow> int \<Rightarrow> int" where
  "div_ceiling x y = (let q = x div y in if q * y = x then q else q + 1)" 

definition root_bound :: "int poly \<Rightarrow> rat" where 
  "root_bound p \<equiv> let 
     n = degree p;
     m = 1 + div_ceiling (max_list_non_empty (map (\<lambda>i. abs (coeff p i)) [0..<n])) 
          (abs (lead_coeff p))
     \<comment> \<open>round to the next higher number \<open>2^n\<close>, so that bisection will\<close>
     \<comment> \<open>stay on integers for as long as possible\<close>
   in of_int (2 ^ (log_ceiling 2 m))"
  
partial_function (tailrec) roots_of_2_main :: 
  "int poly \<Rightarrow> root_info \<Rightarrow> (rat \<Rightarrow> rat \<Rightarrow> nat) \<Rightarrow> (rat \<times> rat)list \<Rightarrow> real_alg_2 list \<Rightarrow> real_alg_2 list" where
  [code]: "roots_of_2_main p ri cr lrs rais = (case lrs of Nil \<Rightarrow> rais
  | (l,r) # lrs \<Rightarrow> let c = cr l r in 
    if c = 0 then roots_of_2_main p ri cr lrs rais
    else if c = 1 then roots_of_2_main p ri cr lrs (real_alg_2'' ri p l r # rais)
    else let m = (l + r) / 2 in roots_of_2_main p ri cr ((m,r) # (l,m) # lrs) rais)"
  
definition roots_of_2_irr :: "int poly \<Rightarrow> real_alg_2 list" where
  "roots_of_2_irr p = (if degree p = 1
    then [Rational (Rat.Fract (- coeff p 0) (coeff p 1)) ] else 
    let ri = root_info p;
        cr = root_info.l_r ri;
        B = root_bound p
      in (roots_of_2_main p ri cr [(-B,B)] []))"
  
lemma root_imp_deg_nonzero: assumes "p \<noteq> 0" "poly p x = 0"
  shows "degree p \<noteq> 0" 
proof
  assume "degree p = 0" 
  from degree0_coeffs[OF this] assms show False by auto
qed
  
lemma cauchy_root_bound: fixes x :: "'a :: real_normed_field"
  assumes x: "poly p x = 0" and p: "p \<noteq> 0" 
  shows "norm x \<le> 1 + max_list_non_empty (map (\<lambda> i. norm (coeff p i)) [0 ..< degree p]) 
    / norm (lead_coeff p)" (is "_ \<le> _ + ?max / ?nlc")
proof -
  let ?n = "degree p" 
  let ?p = "coeff p" 
  let ?lc = "lead_coeff p" 
  define ml where "ml = ?max / ?nlc" 
  from p have lc: "?lc \<noteq> 0" by auto
  hence nlc: "norm ?lc > 0" by auto
  from root_imp_deg_nonzero[OF p x] have *: "0 \<in> set [0 ..< degree p]" by auto
  have "0 \<le> norm (?p 0)" by simp
  also have "\<dots> \<le> ?max" 
    by (rule max_list_non_empty, insert *, auto)
  finally have max0: "?max \<ge> 0" .
  with nlc have ml0: "ml \<ge> 0" unfolding ml_def by auto
  hence easy: "norm x \<le> 1 \<Longrightarrow> ?thesis" unfolding ml_def[symmetric] by auto
  show ?thesis
  proof (cases "norm x \<le> 1")
    case True
    thus ?thesis using easy by auto
  next
    case False
    hence nx: "norm x > 1" by simp 
    hence x0: "x \<noteq> 0" by auto
    hence xn0: "0 < norm x ^ ?n" by auto
    from x[unfolded poly_altdef] have "x ^ ?n * ?lc = x ^ ?n * ?lc - (\<Sum>i\<le>?n. x ^ i * ?p i)" 
      unfolding poly_altdef by (simp add: ac_simps)    
    also have "(\<Sum>i\<le>?n. x ^ i * ?p i) = x ^ ?n * ?lc + (\<Sum>i < ?n. x ^ i * ?p i)" 
      by (subst sum.remove[of _ ?n], auto intro: sum.cong)
    finally have "x ^ ?n * ?lc = - (\<Sum>i < ?n. x ^ i * ?p i)" by simp
    with lc have "x ^ ?n = - (\<Sum>i < ?n. x ^ i * ?p i) / ?lc" by (simp add: field_simps)
    from arg_cong[OF this, of norm]
    have "norm x ^ ?n = norm ((\<Sum>i < ?n. x ^ i * ?p i) / ?lc)" unfolding norm_power by simp
    also have "(\<Sum>i < ?n. x ^ i * ?p i) / ?lc = (\<Sum>i < ?n. x ^ i * ?p i / ?lc)" 
      by (rule sum_divide_distrib)
    also have "norm \<dots> \<le> (\<Sum>i < ?n. norm (x ^ i * (?p i / ?lc)))" 
      by (simp add: field_simps, rule norm_sum)
    also have "\<dots> = (\<Sum>i < ?n. norm x ^ i * norm (?p i / ?lc))" 
      unfolding norm_mult norm_power ..
    also have "\<dots> \<le> (\<Sum>i < ?n. norm x ^ i * ml)" 
    proof (rule sum_mono)
      fix i
      assume "i \<in> {..<?n}" 
      hence i: "i < ?n" by simp
      show "norm x ^ i * norm (?p i / ?lc) \<le> norm x ^ i * ml" 
      proof (rule mult_left_mono)
        show "0 \<le> norm x ^ i" using nx by auto
        show "norm (?p i / ?lc) \<le> ml" unfolding norm_divide ml_def
          by (rule divide_right_mono[OF max_list_non_empty], insert nlc i, auto)
      qed
    qed
    also have "\<dots> = ml * (\<Sum>i < ?n. norm x ^ i)" 
      unfolding sum_distrib_right[symmetric] by simp
    also have "(\<Sum>i < ?n. norm x ^ i) = (norm x ^ ?n - 1) / (norm x - 1)" 
      by (rule geometric_sum, insert nx, auto)
    finally have "norm x ^ ?n \<le> ml * (norm x ^ ?n - 1) / (norm x - 1)" by simp        
    from mult_left_mono[OF this, of "norm x - 1"]
    have "(norm x - 1) * (norm x ^ ?n) \<le> ml * (norm x ^ ?n - 1)" using nx by auto
    also have "\<dots> = (ml * (1 - 1 / (norm x ^ ?n))) * norm x ^ ?n" 
      using nx False x0 by (simp add: field_simps)
    finally have "(norm x - 1) * (norm x ^ ?n) \<le> (ml * (1 - 1 / (norm x ^ ?n))) * norm x ^ ?n" .
    from mult_right_le_imp_le[OF this xn0]
    have "norm x - 1 \<le> ml * (1 - 1 / (norm x ^ ?n))" by simp
    hence "norm x \<le> 1 + ml - ml / (norm x ^ ?n)" by (simp add: field_simps)
    also have "\<dots> \<le> 1 + ml" using ml0 xn0 by auto
    finally show ?thesis unfolding ml_def .
  qed
qed
      
lemma div_le_div_ceiling: "x div y \<le> div_ceiling x y" 
  unfolding div_ceiling_def Let_def by auto
    
lemma div_ceiling: assumes q: "q \<noteq> 0"  
  shows "(of_int x :: 'a :: floor_ceiling) / of_int q \<le> of_int (div_ceiling x q)" 
proof (cases "q dvd x")
  case True
  then obtain k where xqk: "x = q * k" unfolding dvd_def by auto
  hence id: "div_ceiling x q = k" unfolding div_ceiling_def Let_def using q by auto
  show ?thesis unfolding id unfolding xqk using q by simp
next
  case False
  {
    assume "x div q * q = x" 
    hence "x = q * (x div q)" by (simp add: ac_simps)
    hence "q dvd x" unfolding dvd_def by auto
    with False have False by simp
  }
  hence id: "div_ceiling x q = x div q + 1" 
    unfolding div_ceiling_def Let_def using q by auto
  show ?thesis unfolding id
    by (metis floor_divide_of_int_eq le_less add1_zle_eq floor_less_iff)
qed
  
lemma max_list_non_empty_map: assumes hom: "\<And> x y. max (f x) (f y) = f (max x y)"  
  shows "xs \<noteq> [] \<Longrightarrow> max_list_non_empty (map f xs) = f (max_list_non_empty xs)" 
  by (induct xs rule: max_list_non_empty.induct, auto simp: hom)

lemma root_bound: assumes "root_bound p = B" and deg: "degree p > 0"
  shows "ipoly p (x :: real) = 0 \<Longrightarrow> norm x \<le> of_rat B" "B \<ge> 0" 
proof -
  let ?r = real_of_rat
  let ?i = real_of_int
  let ?p = "real_of_int_poly p"
  define n where "n = degree p"
  let ?lc = "coeff p n" 
  let ?list = "map (\<lambda>i. abs (coeff p i)) [0..<n]" 
  let ?list' = "(map (\<lambda>i. ?i (abs ((coeff p i)))) [0..<n])" 
  define m where "m = max_list_non_empty ?list"
  define m_up where "m_up = 1 + div_ceiling m (abs ?lc)"
  define C where "C = rat_of_int (2^(log_ceiling 2 m_up))"
  from deg have p0: "p \<noteq> 0" by auto
  from p0 have alc0: "abs ?lc \<noteq> 0" unfolding n_def by auto
  from deg have mem: "abs (coeff p 0) \<in> set ?list" unfolding n_def by auto
  from max_list_non_empty[OF this, folded m_def]    
  have m0: "m \<ge> 0" by auto
  have "div_ceiling m (abs ?lc) \<ge> 0" 
    by (rule order_trans[OF _ div_le_div_ceiling[of m "abs ?lc"]], subst
    pos_imp_zdiv_nonneg_iff, insert p0 m0, auto simp: n_def)
  hence mup: "m_up \<ge> 1" unfolding m_up_def by auto
  have "m_up \<le> 2 ^ (log_ceiling 2 m_up)" using  mup log_ceiling_sound(1) by auto
  hence Cmup: "C \<ge> of_int m_up" unfolding C_def by linarith
  with mup have C: "C \<ge> 1" by auto      
  from assms(1)[unfolded root_bound_def Let_def]
  have B: "C = of_rat B" unfolding C_def m_up_def n_def m_def by auto
  note dc = div_le_div_ceiling[of m "abs ?lc"] 
  with C show "B \<ge> 0" unfolding B by auto
  assume "ipoly p x = 0" 
  hence rt: "poly ?p x = 0" by simp
  from root_imp_deg_nonzero[OF _ this] p0 have n0: "n \<noteq> 0" unfolding n_def by auto
  from cauchy_root_bound[OF rt] p0
  have "norm x \<le> 1 + max_list_non_empty ?list' / ?i (abs ?lc)" 
    by (simp add: n_def)
  also have "?list' = map ?i ?list" by simp
  also have "max_list_non_empty \<dots> = ?i m" unfolding m_def
    by (rule max_list_non_empty_map, insert mem, auto)
  also have "1 + m / ?i (abs ?lc) \<le> ?i m_up" 
    unfolding m_up_def using div_ceiling[OF alc0, of m] by auto
  also have "\<dots> \<le> ?r C" using Cmup using of_rat_less_eq by force
  finally have "norm x \<le> ?r C" .
  thus "norm x \<le> ?r B" unfolding B by simp
qed
  
fun pairwise_disjoint :: "'a set list \<Rightarrow> bool" where
  "pairwise_disjoint [] = True" 
| "pairwise_disjoint (x # xs) = ((x \<inter> (\<Union> y \<in> set xs. y) = {}) \<and> pairwise_disjoint xs)" 

lemma roots_of_2_irr: assumes pc: "poly_cond p" and deg: "degree p > 0"
  shows "real_of_2 ` set (roots_of_2_irr p) = {x. ipoly p x = 0}" (is ?one)
    "Ball (set (roots_of_2_irr p)) invariant_2" (is ?two)
    "distinct (map real_of_2 (roots_of_2_irr p))" (is ?three)
proof -
  note d = roots_of_2_irr_def
  from poly_condD[OF pc] have mon: "lead_coeff p > 0" and irr: "irreducible p" by auto
  let ?norm = "real_alg_2'"
  have "?one \<and> ?two \<and> ?three"
  proof (cases "degree p = 1")
    case True
    define c where "c = coeff p 0"
    define d where "d = coeff p 1" 
    from True have rr: "roots_of_2_irr p = [Rational (Rat.Fract (- c) (d))]" unfolding d d_def c_def by auto
    from degree1_coeffs[OF True] have p: "p = [:c,d:]" and d: "d \<noteq> 0" unfolding c_def d_def by auto
    have *: "real_of_int c + x * real_of_int d = 0 \<Longrightarrow> x = - (real_of_int c / real_of_int d)" for x
      using d by (simp add: field_simps)
    show ?thesis unfolding rr using d * unfolding p using of_rat_1[of "Rat.Fract (- c) (d)"]
      by (auto simp: Fract_of_int_quotient hom_distribs)
  next
    case False
    let ?r = real_of_rat
    let ?rp = "map_poly ?r"
    let ?rr = "set (roots_of_2_irr p)"
    define ri where "ri = root_info p"
    define cr where "cr = root_info.l_r ri"
    define bnds where "bnds = [(-root_bound p, root_bound p)]"
    define empty where "empty = (Nil :: real_alg_2 list)"
    have empty: "Ball (set empty) invariant_2 \<and> distinct (map real_of_2 empty)" unfolding empty_def by auto
    from mon have p: "p \<noteq> 0" by auto
    from root_info[OF irr deg] have ri: "root_info_cond ri p" unfolding ri_def .    
    from False 
    have rr: "roots_of_2_irr p = roots_of_2_main p ri cr bnds empty"
      unfolding d ri_def cr_def Let_def bnds_def empty_def by auto
    note root_bound = root_bound[OF refl deg]
    from root_bound(2)
    have bnds: "\<And> l r. (l,r) \<in> set bnds \<Longrightarrow> l \<le> r" unfolding bnds_def by auto
    have "ipoly p x = 0 \<Longrightarrow> ?r (- root_bound p) \<le> x \<and> x \<le> ?r (root_bound p)" for x
      using root_bound(1)[of x] by (auto simp: hom_distribs)
    hence rts: "{x. ipoly p x = 0} 
      = real_of_2 ` set empty \<union> {x. \<exists> l r. root_cond (p,l,r) x \<and> (l,r) \<in> set bnds}" 
      unfolding empty_def bnds_def by (force simp: root_cond_def)
    define rts where "rts lr = Collect (root_cond (p,lr))" for lr 
    have disj: "pairwise_disjoint (real_of_2 ` set empty # map rts bnds)" 
      unfolding empty_def bnds_def by auto
    from deg False have deg1: "degree p > 1" by auto
    define delta where "delta = ipoly_root_delta p"
    note delta = ipoly_root_delta[OF p, folded delta_def]
    define rel' where "rel' = ({(x, y). 0 \<le> y \<and> delta_gt delta x y})^-1"
    define mm where "mm = (\<lambda>bnds. mset (map (\<lambda> (l,r). ?r r - ?r l) bnds))"
    define rel where "rel = inv_image (mult1 rel') mm"
    have wf: "wf rel" unfolding rel_def rel'_def
      by (rule wf_inv_image[OF wf_mult1[OF SN_imp_wf[OF delta_gt_SN[OF delta(1)]]]])
    let ?main = "roots_of_2_main p ri cr"    
    have "real_of_2 ` set (?main bnds empty) =
      real_of_2 ` set empty \<union>
      {x. \<exists>l r. root_cond (p, l, r) x \<and> (l, r) \<in> set bnds} \<and>
      Ball (set (?main bnds empty)) invariant_2 \<and> distinct (map real_of_2 (?main bnds empty))" (is "?one' \<and> ?two' \<and> ?three'")
      using empty bnds disj
    proof (induct bnds arbitrary: empty rule: wf_induct[OF wf])
      case (1 lrss rais)
      note rais = 1(2)[rule_format]
      note lrs = 1(3)
      note disj = 1(4)
      note IH = 1(1)[rule_format]
      note simp = roots_of_2_main.simps[of p ri cr lrss rais]
      show ?case
      proof (cases lrss)
        case Nil
        with rais show ?thesis unfolding simp by auto
      next
        case (Cons lr lrs)
        obtain l r where lr': "lr = (l,r)" by force
        {
          fix lr'
          assume lt: "\<And> l' r'. (l',r') \<in> set lr' \<Longrightarrow> 
            l' \<le> r' \<and> delta_gt delta (?r r - ?r l) (?r r' - ?r l')"
          have l: "mm (lr' @ lrs) = mm lrs + mm lr'" unfolding mm_def by (auto simp: ac_simps)
          have r: "mm lrss = mm lrs + {# ?r r - ?r l #}" unfolding Cons lr' rel_def mm_def
            by auto
          have "(mm (lr' @ lrs), mm lrss) \<in> mult1 rel'" unfolding l r mult1_def
          proof (rule, unfold split, intro exI conjI, unfold add_mset_add_single[symmetric], rule refl, rule refl, intro allI impI)
            fix d
            assume "d \<in># mm lr'"
            then obtain l' r' where d: "d = ?r r' - ?r l'" and lr': "(l',r') \<in> set lr'"
              unfolding mm_def in_multiset_in_set by auto
            from lt[OF lr']
            show "(d, ?r r - ?r l) \<in> rel'"  unfolding d rel'_def 
              by (auto simp: of_rat_less_eq)
          qed
          hence "(lr' @ lrs, lrss) \<in> rel" unfolding rel_def by auto
        } note rel = this
        from rel[of Nil] have easy_rel: "(lrs,lrss) \<in> rel" by auto
        define c where "c = cr l r"
        from simp Cons lr' have simp: "?main lrss rais = 
          (if c = 0 then ?main lrs rais else if c = 1 then 
             ?main lrs (real_alg_2' ri p l r # rais)
               else let m = (l + r) / 2 in ?main ((m, r) # (l, m) # lrs) rais)"
          unfolding c_def simp Cons lr' using real_alg_2''[OF False] by auto
        note lrs = lrs[unfolded Cons lr']        
        from lrs have lr: "l \<le> r" by auto
        from root_info_condD(1)[OF ri lr, folded cr_def] 
        have c: "c = card {x. root_cond (p,l,r) x}" unfolding c_def by auto
        let ?rt = "\<lambda> lrs. {x. \<exists>l r. root_cond (p, l, r) x \<and> (l, r) \<in> set lrs}"
        have rts: "?rt lrss = ?rt lrs \<union> {x. root_cond (p,l,r) x}" (is "?rt1 = ?rt2 \<union> ?rt3")
          unfolding Cons lr' by auto
        show ?thesis 
        proof (cases "c = 0")
          case True          
          with simp have simp: "?main lrss rais = ?main lrs rais" by simp
          from disj have disj: "pairwise_disjoint (real_of_2 ` set rais # map rts lrs)" 
            unfolding Cons by auto
          from finite_ipoly_roots[OF p] True[unfolded c] have empty: "?rt3 = {}"
            unfolding root_cond_def[abs_def] split by simp
          with rts have rts: "?rt1 = ?rt2" by auto
          show ?thesis unfolding simp rts 
            by (rule IH[OF easy_rel rais lrs disj], auto)
        next
          case False
          show ?thesis
          proof (cases "c = 1")
            case True
            let ?rai = "real_alg_2' ri p l r"
            from True simp have simp: "?main lrss rais = ?main lrs (?rai # rais)" by auto
            from card_1_Collect_ex1[OF c[symmetric, unfolded True]] 
            have ur: "unique_root (p,l,r)"  .            
            from real_alg_2'[OF ur pc ri]
            have rai: "invariant_2 ?rai" "real_of_2 ?rai = the_unique_root (p, l, r)" by auto
            with rais have rais: "\<And> x. x \<in> set (?rai # rais) \<Longrightarrow> invariant_2 x" 
              and dist: "distinct (map real_of_2 rais)" by auto
            have rt3: "?rt3 = {real_of_2 ?rai}" 
              using ur rai by (auto intro: the_unique_root_eqI theI')            
            have "real_of_2 ` set (roots_of_2_main p ri cr lrs (?rai # rais)) =
              real_of_2 ` set (?rai # rais) \<union> ?rt2 \<and>
              Ball (set (roots_of_2_main p ri cr lrs (?rai # rais))) invariant_2 \<and>
              distinct (map real_of_2 (roots_of_2_main p ri cr lrs (?rai # rais)))"
              (is "?one \<and> ?two \<and> ?three")
            proof (rule IH[OF easy_rel, of "?rai # rais", OF conjI lrs])
              show "Ball (set (real_alg_2' ri p l r # rais)) invariant_2" using rais by auto
              have "real_of_2 (real_alg_2' ri p l r) \<notin> set (map real_of_2 rais)"
                using disj rt3 unfolding Cons lr' rts_def by auto
              thus "distinct (map real_of_2 (real_alg_2' ri p l r # rais))" using dist by auto
              show "pairwise_disjoint (real_of_2 ` set (real_alg_2' ri p l r # rais) # map rts lrs)"
                using disj rt3 unfolding Cons lr' rts_def by auto
            qed auto
            hence ?one ?two ?three by blast+
            show ?thesis unfolding simp rts rt3 
              by (rule conjI[OF _ conjI[OF \<open>?two\<close> \<open>?three\<close>]], unfold \<open>?one\<close>, auto)
          next
            case False
            let ?m = "(l+r)/2"
            let ?lrs = "[(?m,r),(l,?m)] @ lrs"
            from False \<open>c \<noteq> 0\<close> have simp: "?main lrss rais = ?main ?lrs rais"
              unfolding simp by (auto simp: Let_def)
            from False \<open>c \<noteq> 0\<close> have "c \<ge> 2" by auto
            from delta(2)[OF this[unfolded c]] have delta: "delta \<le> ?r (r - l) / 4" by auto
            have lrs: "\<And> l r. (l,r) \<in> set ?lrs \<Longrightarrow> l \<le> r"
              using lr lrs by (fastforce simp: field_simps)
            have "?r ?m \<in> \<rat>" unfolding Rats_def by blast
            with poly_cond_degree_gt_1[OF pc deg1, of "?r ?m"]
            have disj1: "?r ?m \<notin> rts lr" for lr unfolding rts_def root_cond_def by auto
            have disj2: "rts (?m, r) \<inter> rts (l, ?m) = {}" using disj1[of "(l,?m)"] disj1[of "(?m,r)"] 
              unfolding rts_def root_cond_def by auto
            have disj3: "(rts (l,?m) \<union> rts (?m,r)) = rts (l,r)"
              unfolding rts_def root_cond_def by (auto simp: hom_distribs)
            have disj4: "real_of_2 ` set rais \<inter> rts (l,r) = {}" using disj unfolding Cons lr' by auto
            have disj: "pairwise_disjoint (real_of_2 ` set rais # map rts ([(?m, r), (l, ?m)] @ lrs))" 
              using disj disj2 disj3 disj4 by (auto simp: Cons lr')
            have "(?lrs,lrss) \<in> rel"
            proof (rule rel, intro conjI)
              fix l' r'
              assume mem: "(l', r') \<in> set [(?m,r),(l,?m)]"
              from mem lr show "l' \<le> r'" by auto
              from mem have diff: "?r r' - ?r l' = (?r r - ?r l) / 2" by auto 
               (metis eq_diff_eq minus_diff_eq mult_2_right of_rat_add of_rat_diff,
                metis of_rat_add of_rat_mult of_rat_numeral_eq)
              show "delta_gt delta (?r r - ?r l) (?r r' - ?r l')" unfolding diff
                delta_gt_def by (rule order.trans[OF delta], insert lr, 
                auto simp: field_simps of_rat_diff of_rat_less_eq)
            qed
            note IH = IH[OF this, of rais, OF rais lrs disj]
            have "real_of_2 ` set (?main ?lrs rais) =
              real_of_2 ` set rais \<union> ?rt ?lrs \<and>
              Ball (set (?main ?lrs rais)) invariant_2 \<and> distinct (map real_of_2 (?main ?lrs rais))"
              (is "?one \<and> ?two")
              by (rule IH)
            hence ?one ?two by blast+
            have cong: "\<And> a b c. b = c \<Longrightarrow> a \<union> b = a \<union> c" by auto
            have id: "?rt ?lrs = ?rt lrs \<union> ?rt [(?m,r),(l,?m)]" by auto
            show ?thesis unfolding rts simp \<open>?one\<close> id
            proof (rule conjI[OF cong[OF cong] conjI])
              have "\<And> x. root_cond (p,l,r) x = (root_cond (p,l,?m) x \<or> root_cond (p,?m,r) x)"
                unfolding root_cond_def by (auto simp:hom_distribs)
              hence id: "Collect (root_cond (p,l,r)) = {x. (root_cond (p,l,?m) x \<or> root_cond (p,?m,r) x)}" 
                by auto
              show "?rt [(?m,r),(l,?m)] = Collect (root_cond (p,l,r))" unfolding id list.simps by blast
              show "\<forall> a \<in> set (?main ?lrs rais). invariant_2 a" using \<open>?two\<close> by auto
              show "distinct (map real_of_2 (?main ?lrs rais))" using \<open>?two\<close> by auto
            qed
          qed
        qed
      qed
    qed
    hence idd: "?one'" and cond: ?two' ?three' by blast+
    define res where "res = roots_of_2_main p ri cr bnds empty"
    have e: "set empty = {}" unfolding empty_def by auto
    from idd[folded res_def] e have idd: "real_of_2 ` set res = {} \<union> {x. \<exists>l r. root_cond (p, l, r) x \<and> (l, r) \<in> set bnds}"
      by auto
    show ?thesis
      unfolding rr unfolding rts id e norm_def using cond 
      unfolding res_def[symmetric] image_empty e idd[symmetric] by auto
  qed
  thus ?one ?two ?three by blast+
qed
 
definition roots_of_2 :: "int poly \<Rightarrow> real_alg_2 list" where
  "roots_of_2 p = concat (map roots_of_2_irr 
     (factors_of_int_poly p))"
    
lemma roots_of_2:
  shows "p \<noteq> 0 \<Longrightarrow> real_of_2 ` set (roots_of_2 p) = {x. ipoly p x = 0}"
    "Ball (set (roots_of_2 p)) invariant_2"
    "distinct (map real_of_2 (roots_of_2 p))" 
proof -
  let ?rr = "roots_of_2 p"
  note d = roots_of_2_def
  note frp1 = factors_of_int_poly
  {
    fix q r
    assume "q \<in> set ?rr"
    then obtain s where 
      s: "s \<in> set (factors_of_int_poly p)" and
      q: "q \<in> set (roots_of_2_irr s)"
      unfolding d by auto
    from frp1(1)[OF refl s] have "poly_cond s" "degree s > 0" by (auto simp: poly_cond_def)
    from roots_of_2_irr[OF this] q
    have "invariant_2 q" by auto
  }
  thus "Ball (set ?rr) invariant_2" by auto
  {  
    assume p: "p \<noteq> 0" 
    have "real_of_2 ` set ?rr = (\<Union> ((\<lambda> p. real_of_2 ` set (roots_of_2_irr p)) ` 
      (set (factors_of_int_poly p))))"
      (is "_ = ?rrr")
      unfolding d set_concat set_map by auto
    also have "\<dots> = {x. ipoly p x = 0}"
    proof -
      {
        fix x
        assume "x \<in> ?rrr"
        then obtain q s where 
          s: "s \<in> set (factors_of_int_poly p)" and
          q: "q \<in> set (roots_of_2_irr s)" and
          x: "x = real_of_2 q" by auto
        from frp1(1)[OF refl s] have s0: "s \<noteq> 0" and pt: "poly_cond s" "degree s > 0"
          by (auto simp: poly_cond_def)
        from roots_of_2_irr[OF pt] q have rt: "ipoly s x = 0" unfolding x by auto
        from frp1(2)[OF refl p, of x] rt s have rt: "ipoly p x = 0" by auto
      }
      moreover
      {
        fix x :: real
        assume rt: "ipoly p x = 0"
        from rt frp1(2)[OF refl p, of x] obtain s where s: "s \<in> set (factors_of_int_poly p)" 
          and rt: "ipoly s x = 0" by auto
        from frp1(1)[OF refl s] have s0: "s \<noteq> 0" and ty: "poly_cond s" "degree s > 0"
          by (auto simp: poly_cond_def)
        from roots_of_2_irr(1)[OF ty] rt obtain q where 
          q: "q \<in> set (roots_of_2_irr s)" and
          x: "x = real_of_2 q" by blast
        have "x \<in> ?rrr" unfolding x using q s by auto
      }
      ultimately show ?thesis by auto
    qed
    finally show "real_of_2 ` set ?rr = {x. ipoly p x = 0}" by auto
  }
  show "distinct (map real_of_2 (roots_of_2 p))"
  proof (cases "p = 0")
    case True
    from factors_of_int_poly_const[of 0] True show ?thesis unfolding roots_of_2_def by auto
  next
    case p: False
    note frp1 = frp1[OF refl]
    let ?fp = "factors_of_int_poly p" 
    let ?cc = "concat (map roots_of_2_irr ?fp)" 
    show ?thesis unfolding roots_of_2_def distinct_conv_nth length_map
    proof (intro allI impI notI)
      fix i j
      assume ij: "i < length ?cc" "j < length ?cc" "i \<noteq> j" and id: "map real_of_2 ?cc ! i = map real_of_2 ?cc ! j"       
      from ij id have id: "real_of_2 (?cc ! i) = real_of_2 (?cc ! j)" by auto
      from nth_concat_diff[OF ij, unfolded length_map] obtain j1 k1 j2 k2 where 
        *: "(j1,k1) \<noteq> (j2,k2)"
        "j1 < length ?fp" "j2 < length ?fp" and
        "k1 < length (map roots_of_2_irr ?fp ! j1)"
        "k2 < length (map roots_of_2_irr ?fp ! j2)"
        "?cc ! i = map roots_of_2_irr ?fp ! j1 ! k1" 
        "?cc ! j = map roots_of_2_irr ?fp ! j2 ! k2" by blast
      hence **: "k1 < length (roots_of_2_irr (?fp ! j1))" 
        "k2 < length (roots_of_2_irr (?fp ! j2))" 
        "?cc ! i = roots_of_2_irr (?fp ! j1) ! k1"
        "?cc ! j = roots_of_2_irr (?fp ! j2) ! k2"
        by auto
      from * have mem: "?fp ! j1 \<in> set ?fp" "?fp ! j2 \<in> set ?fp" by auto
      from frp1(1)[OF mem(1)] frp1(1)[OF mem(2)]
      have pc1: "poly_cond (?fp ! j1)" "degree (?fp ! j1) > 0" and pc10: "?fp ! j1 \<noteq> 0" 
        and pc2: "poly_cond (?fp ! j2)" "degree (?fp ! j2) > 0" 
        by (auto simp: poly_cond_def)
      show False
      proof (cases "j1 = j2")
        case True
        with * have neq: "k1 \<noteq> k2" by auto
        from **[unfolded True] id *
        have "map real_of_2 (roots_of_2_irr (?fp ! j2)) ! k1 = real_of_2 (?cc ! j)" 
          "map real_of_2 (roots_of_2_irr (?fp ! j2)) ! k1 = real_of_2 (?cc ! j)"
          by auto
        hence "\<not> distinct (map real_of_2 (roots_of_2_irr (?fp ! j2)))" 
          unfolding distinct_conv_nth using * ** True by auto
        with roots_of_2_irr(3)[OF pc2] show False by auto
      next
        case neq: False
        with frp1(4)[of p] * have neq: "?fp ! j1 \<noteq> ?fp ! j2" unfolding distinct_conv_nth by auto
        let ?x = "real_of_2 (?cc ! i)" 
        define x where "x = ?x" 
        from ** have "x \<in> real_of_2 ` set (roots_of_2_irr (?fp ! j1))" unfolding x_def by auto
        with roots_of_2_irr(1)[OF pc1] have x1: "ipoly (?fp ! j1) x = 0" by auto
        from ** id have "x \<in> real_of_2 ` set (roots_of_2_irr (?fp ! j2))" unfolding x_def
          by (metis image_eqI nth_mem)
        with roots_of_2_irr(1)[OF pc2] have x2: "ipoly (?fp ! j2) x = 0" by auto
        have "ipoly p x = 0" using x1 mem unfolding roots_of_2_def by (metis frp1(2) p)
        from frp1(3)[OF p this] x1 x2 neq mem show False by blast
      qed
    qed
  qed
qed      

lift_definition roots_of_3 :: "int poly \<Rightarrow> real_alg_3 list" is roots_of_2
  by (insert roots_of_2, auto simp: list_all_iff)

lemma roots_of_3: 
  shows "p \<noteq> 0 \<Longrightarrow> real_of_3 ` set (roots_of_3 p) = {x. ipoly p x = 0}"
    "distinct (map real_of_3 (roots_of_3 p))" 
proof -
  show "p \<noteq> 0 \<Longrightarrow> real_of_3 ` set (roots_of_3 p) = {x. ipoly p x = 0}"
    by (transfer; intro roots_of_2, auto)
  show "distinct (map real_of_3 (roots_of_3 p))" 
    by (transfer; insert roots_of_2, auto)
qed

lift_definition roots_of_real_alg :: "int poly \<Rightarrow> real_alg list" is roots_of_3 . 

lemma roots_of_real_alg: 
  "p \<noteq> 0 \<Longrightarrow> real_of ` set (roots_of_real_alg p) = {x. ipoly p x = 0}" 
  "distinct (map real_of (roots_of_real_alg p))"
proof -
  show "p \<noteq> 0 \<Longrightarrow> real_of ` set (roots_of_real_alg p) = {x. ipoly p x = 0}"
    by (transfer', insert roots_of_3, auto)
  show "distinct (map real_of (roots_of_real_alg p))"      
    by (transfer, insert roots_of_3(2), auto)
qed

text \<open>It follows an implementation for @{const roots_of_3}, 
  since the current definition does not provide a code equation.\<close>
context
begin
private typedef real_alg_2_list = "{xs. Ball (set xs) invariant_2}" by (intro exI[of _ Nil], auto)

setup_lifting type_definition_real_alg_2_list

private lift_definition roots_of_2_list :: "int poly \<Rightarrow> real_alg_2_list" is roots_of_2
  by (insert roots_of_2, auto)
private lift_definition real_alg_2_list_nil :: "real_alg_2_list \<Rightarrow> bool" is "\<lambda> xs. case xs of Nil \<Rightarrow> True | _ \<Rightarrow> False" .

private fun real_alg_2_list_hd_intern :: "real_alg_2 list \<Rightarrow> real_alg_2" where
  "real_alg_2_list_hd_intern (Cons x xs) = x"
| "real_alg_2_list_hd_intern Nil = of_rat_2 0"

private lift_definition real_alg_2_list_hd :: "real_alg_2_list \<Rightarrow> real_alg_3" is real_alg_2_list_hd_intern
proof (goal_cases)
  case (1 xs)
  thus ?case using of_rat_2[of 0] by (cases xs, auto)
qed

private lift_definition real_alg_2_list_tl :: "real_alg_2_list \<Rightarrow> real_alg_2_list" is tl 
proof (goal_cases)
  case (1 xs)
  thus ?case by (cases xs, auto)
qed

private lift_definition real_alg_2_list_length :: "real_alg_2_list \<Rightarrow> nat" is length .

private lemma real_alg_2_list_length[simp]: "\<not> real_alg_2_list_nil xs \<Longrightarrow> real_alg_2_list_length (real_alg_2_list_tl xs) < real_alg_2_list_length xs"
  by (transfer, auto split: list.splits)

private function real_alg_2_list_convert :: "real_alg_2_list \<Rightarrow> real_alg_3 list" where
  "real_alg_2_list_convert xs = (if real_alg_2_list_nil xs then [] else real_alg_2_list_hd xs 
    # real_alg_2_list_convert (real_alg_2_list_tl xs))" by pat_completeness auto

termination by (relation "measure real_alg_2_list_length", auto)

private definition roots_of_3_impl :: "int poly \<Rightarrow> real_alg_3 list" where
  "roots_of_3_impl p = real_alg_2_list_convert (roots_of_2_list p)"

private lift_definition real_alg_2_list_convert_id :: "real_alg_2_list \<Rightarrow> real_alg_3 list" is id
  by (auto simp: list_all_iff)

lemma real_alg_2_list_convert: "real_alg_2_list_convert xs = real_alg_2_list_convert_id xs"
proof (induct xs rule: wf_induct[OF wf_measure[of real_alg_2_list_length], rule_format])
  case (1 xs)
  show ?case
  proof (cases "real_alg_2_list_nil xs")
    case True
    hence "real_alg_2_list_convert xs = []" by auto
    also have "[] = real_alg_2_list_convert_id xs" using True
      by (transfer', auto split: list.splits)
    finally show ?thesis .
  next
    case False
    hence "real_alg_2_list_convert xs = real_alg_2_list_hd xs # real_alg_2_list_convert (real_alg_2_list_tl xs)" by simp
    also have "real_alg_2_list_convert (real_alg_2_list_tl xs) = real_alg_2_list_convert_id (real_alg_2_list_tl xs)"
      by (rule 1, insert False, simp)
    also have "real_alg_2_list_hd xs # \<dots> = real_alg_2_list_convert_id xs" using False
      by (transfer', auto split: list.splits)
    finally show ?thesis .
  qed
qed

lemma roots_of_3_code[code]: "roots_of_3 p = roots_of_3_impl p" 
  unfolding roots_of_3_impl_def real_alg_2_list_convert
  by (transfer, simp)
end

definition real_roots_of_int_poly :: "int poly \<Rightarrow> real list" where
  "real_roots_of_int_poly p = map real_of (roots_of_real_alg p)"

definition real_roots_of_rat_poly :: "rat poly \<Rightarrow> real list" where
  "real_roots_of_rat_poly p = map real_of (roots_of_real_alg (snd (rat_to_int_poly p)))"

abbreviation rpoly :: "rat poly \<Rightarrow> 'a :: field_char_0 \<Rightarrow> 'a"
where "rpoly f \<equiv> poly (map_poly of_rat f)"

lemma real_roots_of_int_poly: "p \<noteq> 0 \<Longrightarrow> set (real_roots_of_int_poly p) = {x. ipoly p x = 0}" 
  "distinct (real_roots_of_int_poly p)" 
  unfolding real_roots_of_int_poly_def using roots_of_real_alg[of p] by auto

lemma real_roots_of_rat_poly: "p \<noteq> 0 \<Longrightarrow> set (real_roots_of_rat_poly p) = {x. rpoly p x = 0}" 
  "distinct (real_roots_of_rat_poly p)"
proof -
  obtain c q where cq: "rat_to_int_poly p = (c,q)" by force
  from rat_to_int_poly[OF this]
  have pq: "p = smult (inverse (of_int c)) (of_int_poly q)" 
    and c: "c \<noteq> 0" by auto
  have id: "{x. rpoly p x = (0 :: real)} = {x. ipoly q x = 0}" 
    unfolding pq by (simp add: c of_rat_of_int_poly hom_distribs)
  show "distinct (real_roots_of_rat_poly p)" unfolding real_roots_of_rat_poly_def cq snd_conv 
    using roots_of_real_alg(2)[of q] .
  assume "p \<noteq> 0" 
  with pq c have q: "q \<noteq> 0" by auto
  show "set (real_roots_of_rat_poly p) = {x. rpoly p x = 0}" unfolding id
    unfolding real_roots_of_rat_poly_def cq snd_conv using roots_of_real_alg(1)[OF q]
    by auto
qed

end