Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 21,419 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
section \<open>CCW for Nonaligned Points in the Plane\<close>
theory Counterclockwise_2D_Strict
imports
Counterclockwise_Vector
Affine_Arithmetic_Auxiliarities
begin
text \<open>\label{sec:counterclockwise2d}\<close>
subsection \<open>Determinant\<close>
type_synonym point = "real*real"
fun det3::"point \<Rightarrow> point \<Rightarrow> point \<Rightarrow> real" where "det3 (xp, yp) (xq, yq) (xr, yr) =
xp * yq + yp * xr + xq * yr - yq * xr - yp * xq - xp * yr"
lemma det3_def':
"det3 p q r = fst p * snd q + snd p * fst r + fst q * snd r -
snd q * fst r - snd p * fst q - fst p * snd r"
by (cases p q r rule: prod.exhaust[case_product prod.exhaust[case_product prod.exhaust]]) auto
lemma det3_eq_det: "det3 (xa, ya) (xb, yb) (xc, yc) =
det (vector [vector [xa, ya, 1], vector [xb, yb, 1], vector [xc, yc, 1]]::real^3^3)"
unfolding Determinants.det_def UNIV_3
by (auto simp: sum_over_permutations_insert
vector_3 sign_swap_id permutation_swap_id sign_compose)
declare det3.simps[simp del]
lemma det3_self23[simp]: "det3 a b b = 0"
and det3_self12[simp]: "det3 b b a = 0"
by (auto simp: det3_def')
lemma
coll_ex_scaling:
assumes "b \<noteq> c"
assumes d: "det3 a b c = 0"
shows "\<exists>r. a = b + r *\<^sub>R (c - b)"
proof -
from assms have "fst b \<noteq> fst c \<or> snd b \<noteq> snd c" by (auto simp: prod_eq_iff)
thus ?thesis
proof
assume neq: "fst b \<noteq> fst c"
with d have "snd a = ((fst a - fst b) * snd c + (fst c - fst a) * snd b) / (fst c - fst b)"
by (auto simp: det3_def' field_simps)
hence "snd a = ((fst a - fst b)/ (fst c - fst b)) * snd c +
((fst c - fst a)/ (fst c - fst b)) * snd b"
by (simp add: add_divide_distrib)
hence "snd a = snd b + (fst a - fst b) * snd c / (fst c - fst b) +
((fst c - fst a) - (fst c - fst b)) * snd b / (fst c - fst b)"
using neq
by (simp add: field_simps)
hence "snd a = snd b + ((fst a - fst b) * snd c + (- fst a + fst b) * snd b) / (fst c - fst b)"
unfolding add_divide_distrib
by (simp add: algebra_simps)
also
have "(fst a - fst b) * snd c + (- fst a + fst b) * snd b = (fst a - fst b) * (snd c - snd b)"
by (simp add: algebra_simps)
finally have "snd a = snd b + (fst a - fst b) / (fst c - fst b) * (snd c - snd b)"
by simp
moreover
hence "fst a = fst b + (fst a - fst b) / (fst c - fst b) * (fst c - fst b)"
using neq by simp
ultimately have "a = b + ((fst a - fst b) / (fst c - fst b)) *\<^sub>R (c - b)"
by (auto simp: prod_eq_iff)
thus ?thesis by blast
next
assume neq: "snd b \<noteq> snd c"
with d have "fst a = ((snd a - snd b) * fst c + (snd c - snd a) * fst b) / (snd c - snd b)"
by (auto simp: det3_def' field_simps)
hence "fst a = ((snd a - snd b)/ (snd c - snd b)) * fst c +
((snd c - snd a)/ (snd c - snd b)) * fst b"
by (simp add: add_divide_distrib)
hence "fst a = fst b + (snd a - snd b) * fst c / (snd c - snd b) +
((snd c - snd a) - (snd c - snd b)) * fst b / (snd c - snd b)"
using neq
by (simp add: field_simps)
hence "fst a = fst b + ((snd a - snd b) * fst c + (- snd a + snd b) * fst b) / (snd c - snd b)"
unfolding add_divide_distrib
by (simp add: algebra_simps)
also
have "(snd a - snd b) * fst c + (- snd a + snd b) * fst b = (snd a - snd b) * (fst c - fst b)"
by (simp add: algebra_simps)
finally have "fst a = fst b + (snd a - snd b) / (snd c - snd b) * (fst c - fst b)"
by simp
moreover
hence "snd a = snd b + (snd a - snd b) / (snd c - snd b) * (snd c - snd b)"
using neq by simp
ultimately have "a = b + ((snd a - snd b) / (snd c - snd b)) *\<^sub>R (c - b)"
by (auto simp: prod_eq_iff)
thus ?thesis by blast
qed
qed
lemma cramer: "\<not>det3 s t q = 0 \<Longrightarrow>
(det3 t p r) = ((det3 t q r) * (det3 s t p) + (det3 t p q) * (det3 s t r))/(det3 s t q)"
by (auto simp: det3_def' field_simps)
lemma convex_comb_dets:
assumes "det3 p q r > 0"
shows "s = (det3 s q r / det3 p q r) *\<^sub>R p + (det3 p s r / det3 p q r) *\<^sub>R q +
(det3 p q s / det3 p q r) *\<^sub>R r"
(is "?lhs = ?rhs")
proof -
from assms have "det3 p q r *\<^sub>R ?lhs = det3 p q r *\<^sub>R ?rhs"
by (simp add: field_simps prod_eq_iff scaleR_add_right) (simp add: algebra_simps det3_def')
thus ?thesis using assms by simp
qed
lemma four_points_aligned:
assumes c: "det3 t p q = 0" "det3 t q r = 0"
assumes distinct: "distinct5 t s p q r"
shows "det3 t r p = 0" "det3 p q r = 0"
proof -
from distinct have d: "p \<noteq> q" "q \<noteq> r" by (auto)
from coll_ex_scaling[OF d(1) c(1)] obtain s1 where s1: "t = p + s1 *\<^sub>R (q - p)" by auto
from coll_ex_scaling[OF d(2) c(2)] obtain s2 where s2: "t = q + s2 *\<^sub>R (r - q)" by auto
from distinct s1 have ne: "1 - s1 \<noteq> 0" by auto
from s1 s2 have "(1 - s1) *\<^sub>R p = (1 - s1 - s2) *\<^sub>R q + s2 *\<^sub>R r"
by (simp add: algebra_simps)
hence "(1 - s1) *\<^sub>R p /\<^sub>R (1 - s1)= ((1 - s1 - s2) *\<^sub>R q + s2 *\<^sub>R r) /\<^sub>R (1 - s1)"
by simp
with ne have p: "p = ((1 - s1 - s2) / (1 - s1)) *\<^sub>R q + (s2 / (1 - s1)) *\<^sub>R r"
using ne
by (simp add: prod_eq_iff inverse_eq_divide add_divide_distrib)
define k1 where "k1 = (1 - s1 - s2) / (1 - s1)"
define k2 where "k2 = s2 / (1 - s1)"
have "det3 t r p = det3 0 (k1 *\<^sub>R q + (k2 - 1) *\<^sub>R r)
(k1 *\<^sub>R q + (k2 - 1) *\<^sub>R r + (- s1 * (k1 - 1)) *\<^sub>R q - (s1 * k2) *\<^sub>R r)"
unfolding s1 p k1_def[symmetric] k2_def[symmetric]
by (simp add: algebra_simps det3_def')
also have "- s1 * (k1 - 1) = s1 * k2"
using ne by (auto simp: k1_def field_simps k2_def)
also
have "1 - k1 = k2"
using ne
by (auto simp: k2_def k1_def field_simps)
have k21: "k2 - 1 = -k1"
using ne
by (auto simp: k2_def k1_def field_simps)
finally have "det3 t r p = det3 0 (k1 *\<^sub>R (q - r)) ((k1 + (s1 * k2)) *\<^sub>R (q - r))"
by (auto simp: algebra_simps)
also have "\<dots> = 0"
by (simp add: algebra_simps det3_def')
finally show "det3 t r p = 0" .
have "det3 p q r = det3 (k1 *\<^sub>R q + k2 *\<^sub>R r) q r"
unfolding p k1_def[symmetric] k2_def[symmetric] ..
also have "\<dots> = det3 0 (r - q) (k1 *\<^sub>R q + (-k1) *\<^sub>R r)"
unfolding k21[symmetric]
by (auto simp: algebra_simps det3_def')
also have "\<dots> = det3 0 (r - q) (-k1 *\<^sub>R (r - q))"
by (auto simp: det3_def' algebra_simps)
also have "\<dots> = 0"
by (auto simp: det3_def')
finally show "det3 p q r = 0" .
qed
lemma det_identity:
"det3 t p q * det3 t s r + det3 t q r * det3 t s p + det3 t r p * det3 t s q = 0"
by (auto simp: det3_def' algebra_simps)
lemma det3_eq_zeroI:
assumes "p = q + x *\<^sub>R (t - q)"
shows "det3 q t p = 0"
unfolding assms
by (auto simp: det3_def' algebra_simps)
lemma det3_rotate: "det3 a b c = det3 c a b"
by (auto simp: det3_def')
lemma det3_switch: "det3 a b c = - det3 a c b"
by (auto simp: det3_def')
lemma det3_switch': "det3 a b c = - det3 b a c"
by (auto simp: det3_def')
lemma det3_pos_transitive_coll:
"det3 t s p > 0 \<Longrightarrow> det3 t s r \<ge> 0 \<Longrightarrow> det3 t p q \<ge> 0 \<Longrightarrow>
det3 t q r > 0 \<Longrightarrow> det3 t s q = 0 \<Longrightarrow> det3 t p r > 0"
using det_identity[of t p q s r]
by (metis add.commute add_less_same_cancel1 det3_switch det3_switch' less_eq_real_def
less_not_sym monoid_add_class.add.left_neutral mult_pos_pos mult_zero_left mult_zero_right)
lemma det3_pos_transitive:
"det3 t s p > 0 \<Longrightarrow> det3 t s q \<ge> 0 \<Longrightarrow> det3 t s r \<ge> 0 \<Longrightarrow> det3 t p q \<ge> 0 \<Longrightarrow>
det3 t q r > 0 \<Longrightarrow> det3 t p r > 0"
apply (cases "det3 t s q \<noteq> 0")
using cramer[of q t s p r]
apply (force simp: det3_rotate[of q t p] det3_rotate[of p q t] det3_switch[of t p s]
det3_switch'[of q t r] det3_rotate[of q t s] det3_rotate[of s q t]
intro!: divide_pos_pos add_nonneg_pos)
apply (metis det3_pos_transitive_coll)
done
lemma det3_zero_translate_plus[simp]: "det3 (a + x) (b + x) (c + x) = 0 \<longleftrightarrow> det3 a b c = 0"
by (auto simp: algebra_simps det3_def')
lemma det3_zero_translate_plus'[simp]: "det3 (a) (a + b) (a + c) = 0 \<longleftrightarrow> det3 0 b c = 0"
by (auto simp: algebra_simps det3_def')
lemma
det30_zero_scaleR1:
"0 < e \<Longrightarrow> det3 0 xr P = 0 \<Longrightarrow> det3 0 (e *\<^sub>R xr) P = 0"
by (auto simp: zero_prod_def algebra_simps det3_def')
lemma det3_same[simp]: "det3 a x x = 0"
by (auto simp: det3_def')
lemma
det30_zero_scaleR2:
"0 < e \<Longrightarrow> det3 0 P xr = 0 \<Longrightarrow> det3 0 P (e *\<^sub>R xr) = 0"
by (auto simp: zero_prod_def algebra_simps det3_def')
lemma det3_eq_zero: "e \<noteq> 0 \<Longrightarrow> det3 0 xr (e *\<^sub>R Q) = 0 \<longleftrightarrow> det3 0 xr Q = 0"
by (auto simp: det3_def')
lemma det30_plus_scaled3[simp]: "det3 0 a (b + x *\<^sub>R a) = 0 \<longleftrightarrow> det3 0 a b = 0"
by (auto simp: det3_def' algebra_simps)
lemma det30_plus_scaled2[simp]:
shows "det3 0 (a + x *\<^sub>R a) b = 0 \<longleftrightarrow> (if x = -1 then True else det3 0 a b = 0)"
(is "?lhs = ?rhs")
proof
assume "det3 0 (a + x *\<^sub>R a) b = 0"
hence "fst a * snd b * (1 + x) = fst b * snd a * (1 + x)"
by (simp add: algebra_simps det3_def')
thus ?rhs
by (auto simp add: det3_def')
qed (auto simp: det3_def' algebra_simps split: if_split_asm)
lemma det30_uminus2[simp]: "det3 0 (-a) (b) = 0 \<longleftrightarrow> det3 0 a b = 0"
and det30_uminus3[simp]: "det3 0 a (-b) = 0 \<longleftrightarrow> det3 0 a b = 0"
by (auto simp: det3_def' algebra_simps)
lemma det30_minus_scaled3[simp]: "det3 0 a (b - x *\<^sub>R a) = 0 \<longleftrightarrow> det3 0 a b = 0"
using det30_plus_scaled3[of a b "-x"] by simp
lemma det30_scaled_minus3[simp]: "det3 0 a (e *\<^sub>R a - b) = 0 \<longleftrightarrow> det3 0 a b = 0"
using det30_plus_scaled3[of a "-b" e]
by (simp add: algebra_simps)
lemma det30_minus_scaled2[simp]:
"det3 0 (a - x *\<^sub>R a) b = 0 \<longleftrightarrow> (if x = 1 then True else det3 0 a b = 0)"
using det30_plus_scaled2[of a "-x" b] by simp
lemma det3_nonneg_scaleR1:
"0 < e \<Longrightarrow> det3 0 xr P \<ge> 0 \<Longrightarrow> det3 0 (e*\<^sub>Rxr) P \<ge> 0"
by (auto simp add: det3_def' algebra_simps)
lemma det3_nonneg_scaleR1_eq:
"0 < e \<Longrightarrow> det3 0 (e*\<^sub>Rxr) P \<ge> 0 \<longleftrightarrow> det3 0 xr P \<ge> 0"
by (auto simp add: det3_def' algebra_simps)
lemma det3_translate_origin: "NO_MATCH 0 p \<Longrightarrow> det3 p q r = det3 0 (q - p) (r - p)"
by (auto simp: det3_def' algebra_simps)
lemma det3_nonneg_scaleR_segment2:
assumes "det3 x y z \<ge> 0"
assumes "a > 0"
shows "det3 x ((1 - a) *\<^sub>R x + a *\<^sub>R y) z \<ge> 0"
proof -
from assms have "0 \<le> det3 0 (a *\<^sub>R (y - x)) (z - x)"
by (intro det3_nonneg_scaleR1) (simp_all add: det3_translate_origin)
thus ?thesis
by (simp add: algebra_simps det3_translate_origin)
qed
lemma det3_nonneg_scaleR_segment1:
assumes "det3 x y z \<ge> 0"
assumes "0 \<le> a" "a < 1"
shows "det3 ((1 - a) *\<^sub>R x + a *\<^sub>R y) y z \<ge> 0"
proof -
from assms have "det3 0 ((1 - a) *\<^sub>R (y - x)) (z - x + (- a) *\<^sub>R (y - x)) \<ge> 0"
by (subst det3_nonneg_scaleR1_eq) (auto simp add: det3_def' algebra_simps)
thus ?thesis
by (auto simp: algebra_simps det3_translate_origin)
qed
subsection \<open>Strict CCW Predicate\<close>
definition "ccw' p q r \<longleftrightarrow> 0 < det3 p q r"
interpretation ccw': ccw_vector_space ccw'
by unfold_locales (auto simp: ccw'_def det3_def' algebra_simps)
interpretation ccw': linorder_list0 "ccw' x" for x .
lemma ccw'_contra: "ccw' t r q \<Longrightarrow> ccw' t q r = False"
by (auto simp: ccw'_def det3_def' algebra_simps)
lemma not_ccw'_eq: "\<not> ccw' t p s \<longleftrightarrow> ccw' t s p \<or> det3 t s p = 0"
by (auto simp: ccw'_def det3_def' algebra_simps)
lemma neq_left_right_of: "ccw' a b c \<Longrightarrow> ccw' a c d \<Longrightarrow> b \<noteq> d"
by (auto simp: ccw'_def det3_def' algebra_simps)
lemma ccw'_subst_collinear:
assumes "det3 t r s = 0"
assumes "s \<noteq> t"
assumes "ccw' t r p"
shows "ccw' t s p \<or> ccw' t p s"
proof cases
assume "r \<noteq> s"
from assms have "det3 r s t = 0"
by (auto simp: algebra_simps det3_def')
from coll_ex_scaling[OF assms(2) this]
obtain x where s: "r = s + x *\<^sub>R (t - s)" by auto
from assms(3)[simplified ccw'_def s]
have "0 < det3 0 (s + x *\<^sub>R (t - s) - t) (p - t)"
by (auto simp: algebra_simps det3_def')
also have "s + x *\<^sub>R (t - s) - t = (1 - x) *\<^sub>R (s - t)"
by (simp add: algebra_simps)
finally have ccw': "ccw' 0 ((1 - x) *\<^sub>R (s - t)) (p - t)"
by (simp add: ccw'_def)
hence "x \<noteq> 1" by (auto simp add: det3_def' ccw'_def)
{
assume "x < 1"
hence ?thesis using ccw'
by (auto simp: not_ccw'_eq ccw'.translate_origin)
} moreover {
assume "x > 1"
hence ?thesis using ccw'
by (auto simp: not_ccw'_eq ccw'.translate_origin)
} ultimately show ?thesis using \<open>x \<noteq> 1\<close> by arith
qed (insert assms, simp)
lemma ccw'_sorted_scaleR: "ccw'.sortedP 0 xs \<Longrightarrow> r > 0 \<Longrightarrow> ccw'.sortedP 0 (map ((*\<^sub>R) r) xs)"
by (induct xs) (auto intro!: ccw'.sortedP.Cons elim!: ccw'.sortedP_Cons simp del: scaleR_Pair)
subsection \<open>Collinearity\<close>
abbreviation "coll a b c \<equiv> det3 a b c = 0"
lemma coll_zero[intro, simp]: "coll 0 z 0"
by (auto simp: det3_def')
lemma coll_zero1[intro, simp]: "coll 0 0 z"
by (auto simp: det3_def')
lemma coll_self[intro, simp]: "coll 0 z z"
by (auto simp: )
lemma ccw'_not_coll:
"ccw' a b c \<Longrightarrow> \<not>coll a b c"
"ccw' a b c \<Longrightarrow> \<not>coll a c b"
"ccw' a b c \<Longrightarrow> \<not>coll b a c"
"ccw' a b c \<Longrightarrow> \<not>coll b c a"
"ccw' a b c \<Longrightarrow> \<not>coll c a b"
"ccw' a b c \<Longrightarrow> \<not>coll c b a"
by (auto simp: det3_def' ccw'_def algebra_simps)
lemma coll_add: "coll 0 x y \<Longrightarrow> coll 0 x z \<Longrightarrow> coll 0 x (y + z)"
by (auto simp: det3_def' algebra_simps)
lemma coll_scaleR_left_eq[simp]: "coll 0 (r *\<^sub>R x) y \<longleftrightarrow> r = 0 \<or> coll 0 x y"
by (auto simp: det3_def' algebra_simps)
lemma coll_scaleR_right_eq[simp]: "coll 0 y (r *\<^sub>R x) \<longleftrightarrow> r = 0 \<or> coll 0 y x"
by (auto simp: det3_def' algebra_simps)
lemma coll_scaleR: "coll 0 x y \<Longrightarrow> coll 0 (r *\<^sub>R x) y"
by (auto simp: det3_def' algebra_simps)
lemma coll_sum_list: "(\<And>y. y \<in> set ys \<Longrightarrow> coll 0 x y) \<Longrightarrow> coll 0 x (sum_list ys)"
by (induct ys) (auto intro!: coll_add)
lemma scaleR_left_normalize:
fixes a ::real and b c::"'a::real_vector"
shows "a *\<^sub>R b = c \<longleftrightarrow> (if a = 0 then c = 0 else b = c /\<^sub>R a)"
by (auto simp: field_simps)
lemma coll_scale_pair: "coll 0 (a, b) (c, d) \<Longrightarrow> (a, b) \<noteq> 0 \<Longrightarrow> (\<exists>x. (c, d) = x *\<^sub>R (a, b))"
by (auto intro: exI[where x="c/a"] exI[where x="d/b"] simp: det3_def' field_simps prod_eq_iff)
lemma coll_scale: "coll 0 r q \<Longrightarrow> r \<noteq> 0 \<Longrightarrow> (\<exists>x. q = x *\<^sub>R r)"
using coll_scale_pair[of "fst r" "snd r" "fst q" "snd q"]
by simp
lemma coll_add_trans:
assumes "coll 0 x (y + z)"
assumes "coll 0 y z"
assumes "x \<noteq> 0"
assumes "y \<noteq> 0"
assumes "z \<noteq> 0"
assumes "y + z \<noteq> 0"
shows "coll 0 x z"
proof (cases "snd z = 0")
case True
hence "snd y = 0"
using assms
by (cases z) (auto simp add: zero_prod_def det3_def')
with True assms have "snd x = 0"
by (cases y, cases z) (auto simp add: zero_prod_def det3_def')
from \<open>snd x = 0\<close> \<open>snd y = 0\<close> \<open>snd z = 0\<close>
show ?thesis
by (auto simp add: zero_prod_def det3_def')
next
case False
note z = False
hence "snd y \<noteq> 0"
using assms
by (cases y) (auto simp add: zero_prod_def det3_def')
with False assms have "snd x \<noteq> 0"
apply (cases x)
apply (cases y)
apply (cases z)
apply (auto simp add: zero_prod_def det3_def')
apply (metis mult.commute mult_eq_0_iff ring_class.ring_distribs(1))
done
with False assms \<open>snd y \<noteq> 0\<close> have yz: "snd (y + z) \<noteq> 0"
by (cases x; cases y; cases z) (auto simp add: det3_def' zero_prod_def)
from coll_scale[OF assms(1) assms(3)] coll_scale[OF assms(2) assms(4)]
obtain r s where rs: "y + z = r *\<^sub>R x" "z = s *\<^sub>R y"
by auto
with z have "s \<noteq> 0"
by (cases x; cases y; cases z) (auto simp: zero_prod_def)
with rs z yz have "r \<noteq> 0"
by (cases x; cases y; cases z) (auto simp: zero_prod_def)
from \<open>s \<noteq> 0\<close> rs have "y = r *\<^sub>R x - z" "y = z /\<^sub>R s"
by (auto simp: inverse_eq_divide algebra_simps)
hence "r *\<^sub>R x - z = z /\<^sub>R s" by simp
hence "r *\<^sub>R x = (1 + inverse s) *\<^sub>R z"
by (auto simp: inverse_eq_divide algebra_simps)
hence "x = (inverse r * (1 + inverse s)) *\<^sub>R z"
using \<open>r \<noteq> 0\<close> \<open>s \<noteq> 0\<close>
by (auto simp: field_simps scaleR_left_normalize)
from this
show ?thesis
by (auto intro: coll_scaleR)
qed
lemma coll_commute: "coll 0 a b \<longleftrightarrow> coll 0 b a"
by (metis det3_rotate det3_switch' diff_0 diff_self)
lemma coll_add_cancel: "coll 0 a (a + b) \<Longrightarrow> coll 0 a b"
by (cases a, cases b) (auto simp: det3_def' algebra_simps)
lemma coll_trans:
"coll 0 a b \<Longrightarrow> coll 0 a c \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> coll 0 b c"
by (metis coll_scale coll_scaleR)
lemma sum_list_posI:
fixes xs::"'a::ordered_comm_monoid_add list"
shows "(\<And>x. x \<in> set xs \<Longrightarrow> x > 0) \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> sum_list xs > 0"
proof (induct xs)
case (Cons x xs)
thus ?case
by (cases "xs = []") (auto intro!: add_pos_pos)
qed simp
lemma nonzero_fstI[intro, simp]: "fst x \<noteq> 0 \<Longrightarrow> x \<noteq> 0"
and nonzero_sndI[intro, simp]: "snd x \<noteq> 0 \<Longrightarrow> x \<noteq> 0"
by auto
lemma coll_sum_list_trans:
"xs \<noteq> [] \<Longrightarrow> coll 0 a (sum_list xs) \<Longrightarrow> (\<And>x. x \<in> set xs \<Longrightarrow> coll 0 x y) \<Longrightarrow>
(\<And>x. x \<in> set xs \<Longrightarrow> coll 0 x (sum_list xs)) \<Longrightarrow>
(\<And>x. x \<in> set xs \<Longrightarrow> snd x > 0) \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> coll 0 a y"
proof (induct xs rule: list_nonempty_induct)
case (single x)
from single(1) single(2)[of x] single(4)[of x] have "coll 0 x a" "coll 0 x y" "x \<noteq> 0"
by (auto simp: coll_commute)
thus ?case by (rule coll_trans)
next
case (cons x xs)
from cons(5)[of x] \<open>a \<noteq> 0\<close> cons(6)[of x]
have *: "coll 0 x (sum_list xs)" "a \<noteq> 0" "x \<noteq> 0" by (force simp add: coll_add_cancel)+
have "0 < snd (sum_list (x#xs))"
unfolding snd_sum_list
by (rule sum_list_posI) (auto intro!: add_pos_pos cons simp: snd_sum_list)
hence "x + sum_list xs \<noteq> 0" by simp
from coll_add_trans[OF cons(3)[simplified] * _ this]
have cH: "coll 0 a (sum_list xs)"
by (cases "sum_list xs = 0") auto
from cons(4) have cy: "(\<And>x. x \<in> set xs \<Longrightarrow> coll 0 x y)" by simp
{
fix y assume "y \<in> set xs"
hence "snd (sum_list xs) > 0"
unfolding snd_sum_list
by (intro sum_list_posI) (auto intro!: add_pos_pos cons simp: snd_sum_list)
hence "sum_list xs \<noteq> 0" by simp
from cons(5)[of x] have "coll 0 x (sum_list xs)"
by (simp add: coll_add_cancel)
from cons(5)[of y]
have "coll 0 y (sum_list xs)"
using \<open>y \<in> set xs\<close> cons(6)[of y] \<open>x + sum_list xs \<noteq> 0\<close>
apply (cases "y = x")
subgoal by (force simp add: coll_add_cancel)
subgoal by (force simp: dest!: coll_add_trans[OF _ *(1) _ *(3)])
done
} note cl = this
show ?case
by (rule cons(2)[OF cH cy cl cons(6) \<open>a \<noteq> 0\<close>]) auto
qed
lemma sum_list_coll_ex_scale:
assumes coll: "\<And>x. x \<in> set xs \<Longrightarrow> coll 0 z x"
assumes nz: "z \<noteq> 0"
shows "\<exists>r. sum_list xs = r *\<^sub>R z"
proof -
{
fix i assume i: "i < length xs"
hence nth: "xs ! i \<in> set xs" by simp
note coll_scale[OF coll[OF nth] \<open>z \<noteq> 0\<close>]
} then obtain r where r: "\<And>i. i < length xs \<Longrightarrow> r i *\<^sub>R z = xs ! i"
by metis
have "xs = map ((!) xs) [0..<length xs]" by (simp add: map_nth)
also have "\<dots> = map (\<lambda>i. r i *\<^sub>R z) [0..<length xs]"
by (auto simp: r)
also have "sum_list \<dots> = (\<Sum>i\<leftarrow>[0..<length xs]. r i) *\<^sub>R z"
by (simp add: sum_list_sum_nth scaleR_sum_left)
finally show ?thesis ..
qed
lemma sum_list_filter_coll_ex_scale: "z \<noteq> 0 \<Longrightarrow> \<exists>r. sum_list (filter (coll 0 z) zs) = r *\<^sub>R z"
by (rule sum_list_coll_ex_scale) simp
end
|