Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 13,450 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
theory SASP_Checker
imports SASP_Semantics
"HOL-Library.Code_Target_Nat"
begin
section \<open>An Executable Checker for Multi-Valued Planning Problem Solutions\<close>
subsection \<open>Auxiliary Lemmas\<close>
lemma map_of_leI:
assumes "distinct (map fst l)"
assumes "\<And>k v. (k,v)\<in>set l \<Longrightarrow> m k = Some v"
shows "map_of l \<subseteq>\<^sub>m m"
using assms
by (metis (no_types, opaque_lifting) domIff map_le_def map_of_SomeD not_Some_eq)
lemma [simp]: "fst \<circ> (\<lambda>(a, b, c, d). (f a b c d, g a b c d)) = (\<lambda>(a,b,c,d). f a b c d)"
by auto
lemma map_mp: "m\<subseteq>\<^sub>mm' \<Longrightarrow> m k = Some v \<Longrightarrow> m' k = Some v"
by (auto simp: map_le_def dom_def)
lemma map_add_map_of_fold:
fixes ps and m :: "'a \<rightharpoonup> 'b"
assumes "distinct (map fst ps)"
shows "m ++ map_of ps = fold (\<lambda>(k, v) m. m(k \<mapsto> v)) ps m"
proof -
have X1: "fold (\<lambda>(k, v) m. m(k \<mapsto> v)) ps m(a \<mapsto> b)
= fold (\<lambda>(k, v) m. m(k \<mapsto> v)) ps (m(a \<mapsto> b))"
if "a \<notin> fst ` set ps"
for a b ps and m :: "'a \<rightharpoonup> 'b"
using that
by (induction ps arbitrary: m) (auto simp: fun_upd_twist)
show ?thesis
using assms
by (induction ps arbitrary: m) (auto simp: X1)
qed
subsection \<open>Well-formedness Check\<close>
lemmas wf_code_thms =
ast_problem.astDom_def ast_problem.astI_def ast_problem.astG_def ast_problem.ast\<delta>_def
ast_problem.numVars_def ast_problem.numVals_def
ast_problem.wf_partial_state_def ast_problem.wf_operator_def ast_problem.well_formed_def
declare wf_code_thms[code]
export_code ast_problem.well_formed in SML
subsection \<open>Execution\<close>
definition match_pre :: "ast_precond \<Rightarrow> state \<Rightarrow> bool" where
"match_pre \<equiv> \<lambda>(x,v) s. s x = Some v"
definition match_pres :: "ast_precond list \<Rightarrow> state \<Rightarrow> bool" where
"match_pres pres s \<equiv> \<forall>pre\<in>set pres. match_pre pre s"
definition match_implicit_pres :: "ast_effect list \<Rightarrow> state \<Rightarrow> bool" where
"match_implicit_pres effs s \<equiv> \<forall>(_,x,vp,_)\<in>set effs.
(case vp of None \<Rightarrow> True | Some v \<Rightarrow> s x = Some v)"
definition enabled_opr' :: "ast_operator \<Rightarrow> state \<Rightarrow> bool" where
"enabled_opr' \<equiv> \<lambda>(name,pres,effs,cost) s. match_pres pres s \<and> match_implicit_pres effs s"
definition eff_enabled' :: "state \<Rightarrow> ast_effect \<Rightarrow> bool" where
"eff_enabled' s \<equiv> \<lambda>(pres,_,_,_). match_pres pres s"
definition "execute_opr' \<equiv> \<lambda>(name,_,effs,_) s.
let effs = filter (eff_enabled' s) effs
in fold (\<lambda>(_,x,_,v) s. s(x\<mapsto>v)) effs s
"
definition lookup_operator' :: "ast_problem \<Rightarrow> name \<rightharpoonup> ast_operator"
where "lookup_operator' \<equiv> \<lambda>(D,I,G,\<delta>) name. find (\<lambda>(n,_,_,_). n=name) \<delta>"
definition enabled' :: "ast_problem \<Rightarrow> name \<Rightarrow> state \<Rightarrow> bool" where
"enabled' problem name s \<equiv>
case lookup_operator' problem name of
Some \<pi> \<Rightarrow> enabled_opr' \<pi> s
| None \<Rightarrow> False"
definition execute' :: "ast_problem \<Rightarrow> name \<Rightarrow> state \<Rightarrow> state" where
"execute' problem name s \<equiv>
case lookup_operator' problem name of
Some \<pi> \<Rightarrow> execute_opr' \<pi> s
| None \<Rightarrow> undefined"
context wf_ast_problem begin
lemma match_pres_correct:
assumes D: "distinct (map fst pres)"
assumes "s\<in>valid_states"
shows "match_pres pres s \<longleftrightarrow> s\<in>subsuming_states (map_of pres)"
proof -
have "match_pres pres s \<longleftrightarrow> map_of pres \<subseteq>\<^sub>m s"
unfolding match_pres_def match_pre_def
apply (auto split: prod.splits)
using map_le_def map_of_SomeD apply fastforce
by (metis (full_types) D domIff map_le_def map_of_eq_Some_iff option.simps(3))
with assms show ?thesis
unfolding subsuming_states_def
by auto
qed
lemma match_implicit_pres_correct:
assumes D: "distinct (map (\<lambda>(_, v, _, _). v) effs)"
assumes "s\<in>valid_states"
shows "match_implicit_pres effs s \<longleftrightarrow> s\<in>subsuming_states (map_of (implicit_pres effs))"
proof -
from assms show ?thesis
unfolding subsuming_states_def
unfolding match_implicit_pres_def implicit_pres_def
apply (auto
split: prod.splits option.splits
simp: distinct_map_filter
intro!: map_of_leI)
apply (force simp: distinct_map_filter split: prod.split elim: map_mp)
done
qed
lemma enabled_opr'_correct:
assumes V: "s\<in>valid_states"
assumes "lookup_operator name = Some \<pi>"
shows "enabled_opr' \<pi> s \<longleftrightarrow> enabled name s"
using lookup_operator_wf[OF assms(2)] assms
unfolding enabled_opr'_def enabled_def wf_operator_def
by (auto
simp: match_pres_correct[OF _ V] match_implicit_pres_correct[OF _ V]
simp: wf_partial_state_def
split: option.split
)
lemma eff_enabled'_correct:
assumes V: "s\<in>valid_states"
assumes "case eff of (pres,_,_,_) \<Rightarrow> wf_partial_state pres"
shows "eff_enabled' s eff \<longleftrightarrow> eff_enabled s eff"
using assms
unfolding eff_enabled'_def eff_enabled_def wf_partial_state_def
by (auto simp: match_pres_correct)
lemma execute_opr'_correct:
assumes V: "s\<in>valid_states"
assumes LO: "lookup_operator name = Some \<pi>"
shows "execute_opr' \<pi> s = execute name s"
proof (cases \<pi>)
case [simp]: (fields name pres effs)
have [simp]: "filter (eff_enabled' s) effs = filter (eff_enabled s) effs"
apply (rule filter_cong[OF refl])
apply (rule eff_enabled'_correct[OF V])
using lookup_operator_wf[OF LO]
unfolding wf_operator_def by auto
have X1: "distinct (map fst (map (\<lambda>(_, x, _, y). (x, y)) (filter (eff_enabled s) effs)))"
using lookup_operator_wf[OF LO]
unfolding wf_operator_def
by (auto simp: distinct_map_filter)
term "filter (eff_enabled s) effs"
have [simp]:
"fold (\<lambda>(_, x, _, v) s. s(x \<mapsto> v)) l s =
fold (\<lambda>(k, v) m. m(k \<mapsto> v)) (map (\<lambda>(_, x, _, y). (x, y)) l) s"
for l :: "ast_effect list"
by (induction l arbitrary: s) auto
show ?thesis
unfolding execute_opr'_def execute_def using LO
by (auto simp: map_add_map_of_fold[OF X1])
qed
lemma lookup_operator'_correct:
"lookup_operator' problem name = lookup_operator name"
unfolding lookup_operator'_def lookup_operator_def
unfolding ast\<delta>_def
by (auto split: prod.split)
lemma enabled'_correct:
assumes V: "s\<in>valid_states"
shows "enabled' problem name s = enabled name s"
unfolding enabled'_def
using enabled_opr'_correct[OF V]
by (auto split: option.splits simp: enabled_def lookup_operator'_correct)
lemma execute'_correct:
assumes V: "s\<in>valid_states"
assumes "enabled name s" (* Intentionally put this here, also we could resolve non-enabled case by reflexivity (undefined=undefined) *)
shows "execute' problem name s = execute name s"
unfolding execute'_def
using execute_opr'_correct[OF V] \<open>enabled name s\<close>
by (auto split: option.splits simp: enabled_def lookup_operator'_correct)
end
context ast_problem
begin
fun simulate_plan :: "plan \<Rightarrow> state \<rightharpoonup> state" where
"simulate_plan [] s = Some s"
| "simulate_plan (\<pi>#\<pi>s) s = (
if enabled \<pi> s then
let s' = execute \<pi> s in
simulate_plan \<pi>s s'
else
None
)"
lemma simulate_plan_correct: "simulate_plan \<pi>s s = Some s' \<longleftrightarrow> path_to s \<pi>s s'"
by (induction s \<pi>s s' rule: path_to.induct) auto
definition check_plan :: "plan \<Rightarrow> bool" where
"check_plan \<pi>s = (
case simulate_plan \<pi>s I of
None \<Rightarrow> False
| Some s' \<Rightarrow> s' \<in> G)"
lemma check_plan_correct: "check_plan \<pi>s \<longleftrightarrow> valid_plan \<pi>s"
unfolding check_plan_def valid_plan_def
by (auto split: option.split simp: simulate_plan_correct[symmetric])
end
fun simulate_plan' :: "ast_problem \<Rightarrow> plan \<Rightarrow> state \<rightharpoonup> state" where
"simulate_plan' problem [] s = Some s"
| "simulate_plan' problem (\<pi>#\<pi>s) s = (
if enabled' problem \<pi> s then
let s = execute' problem \<pi> s in
simulate_plan' problem \<pi>s s
else
None
)"
text \<open>Avoiding duplicate lookup.\<close>
(*[code] *)
lemma simulate_plan'_code[code]:
"simulate_plan' problem [] s = Some s"
"simulate_plan' problem (\<pi>#\<pi>s) s = (
case lookup_operator' problem \<pi> of
None \<Rightarrow> None
| Some \<pi> \<Rightarrow>
if enabled_opr' \<pi> s then
simulate_plan' problem \<pi>s (execute_opr' \<pi> s)
else None
)"
by (auto simp: enabled'_def execute'_def split: option.split)
definition initial_state' :: "ast_problem \<Rightarrow> state" where
"initial_state' problem \<equiv> let astI = ast_problem.astI problem in (
\<lambda>v. if v<length astI then Some (astI!v) else None
)"
definition check_plan' :: "ast_problem \<Rightarrow> plan \<Rightarrow> bool" where
"check_plan' problem \<pi>s = (
case simulate_plan' problem \<pi>s (initial_state' problem) of
None \<Rightarrow> False
| Some s' \<Rightarrow> match_pres (ast_problem.astG problem) s')"
context wf_ast_problem
begin
lemma simulate_plan'_correct:
assumes "s\<in>valid_states"
shows "simulate_plan' problem \<pi>s s = simulate_plan \<pi>s s"
using assms
apply (induction \<pi>s s rule: simulate_plan.induct)
apply (auto simp: enabled'_correct execute'_correct execute_preserves_valid)
done
lemma simulate_plan'_correct_paper: (* For presentation in paper.
Summarizing intermediate refinement step. *)
assumes "s\<in>valid_states"
shows "simulate_plan' problem \<pi>s s = Some s'
\<longleftrightarrow> path_to s \<pi>s s'"
using simulate_plan'_correct[OF assms] simulate_plan_correct by simp
lemma initial_state'_correct:
"initial_state' problem = I"
unfolding initial_state'_def I_def by (auto simp: Let_def)
lemma check_plan'_correct:
"check_plan' problem \<pi>s = check_plan \<pi>s"
proof -
have D: "distinct (map fst astG)" using wf_goal unfolding wf_partial_state_def by auto
have S'V: "s'\<in>valid_states" if "simulate_plan \<pi>s I = Some s'" for s'
using that by (auto simp: simulate_plan_correct path_to_pres_valid[OF I_valid])
show ?thesis
unfolding check_plan'_def check_plan_def
by (auto
split: option.splits
simp: initial_state'_correct simulate_plan'_correct[OF I_valid]
simp: match_pres_correct[OF D S'V] G_def
)
qed
end
(* Overall checker *)
definition verify_plan :: "ast_problem \<Rightarrow> plan \<Rightarrow> String.literal + unit" where
"verify_plan problem \<pi>s = (
if ast_problem.well_formed problem then
if check_plan' problem \<pi>s then Inr () else Inl (STR ''Invalid plan'')
else Inl (STR ''Problem not well formed'')
)"
lemma verify_plan_correct:
"verify_plan problem \<pi>s = Inr ()
\<longleftrightarrow> ast_problem.well_formed problem \<and> ast_problem.valid_plan problem \<pi>s"
proof -
{
assume "ast_problem.well_formed problem"
then interpret wf_ast_problem by unfold_locales
from check_plan'_correct check_plan_correct
have "check_plan' problem \<pi>s = valid_plan \<pi>s" by simp
}
then show ?thesis
unfolding verify_plan_def
by auto
qed
definition nat_opt_of_integer :: "integer \<Rightarrow> nat option" where
"nat_opt_of_integer i = (if (i \<ge> 0) then Some (nat_of_integer i) else None)"
(*Export functions, which includes constructors*)
export_code verify_plan nat_of_integer integer_of_nat nat_opt_of_integer Inl Inr String.explode String.implode
in SML
module_name SASP_Checker_Exported
file "code/SASP_Checker_Exported.sml"
end
|