Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 19,409 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
section \<open>Soundness theorem for the STRIPS semantics\<close>
text \<open>We prove the soundness theorem according to ~\cite{lifschitz1987semantics}.\<close>
theory Lifschitz_Consistency
imports PDDL_STRIPS_Semantics
begin
text \<open>States are modeled as valuations of our underlying predicate logic.\<close>
type_synonym state = "(predicate\<times>object list) valuation"
context ast_domain begin
text \<open>An action is a partial function from states to states. \<close>
type_synonym action = "state \<rightharpoonup> state"
text \<open>The Isabelle/HOL formula @{prop \<open>f s = Some s'\<close>} means
that \<open>f\<close> is applicable in state \<open>s\<close>, and the result is \<open>s'\<close>. \<close>
text \<open>Definition B (i)--(iv) in Lifschitz's paper~\cite{lifschitz1987semantics}\<close>
fun is_NegPredAtom where
"is_NegPredAtom (Not x) = is_predAtom x" | "is_NegPredAtom _ = False"
definition "close_eq s = (\<lambda>predAtm p xs \<Rightarrow> s (p,xs) | Eq a b \<Rightarrow> a=b)"
lemma close_eq_predAtm[simp]: "close_eq s (predAtm p xs) \<longleftrightarrow> s (p,xs)"
by (auto simp: close_eq_def)
lemma close_eq_Eq[simp]: "close_eq s (Eq a b) \<longleftrightarrow> a=b"
by (auto simp: close_eq_def)
abbreviation entail_eq :: "state \<Rightarrow> object atom formula \<Rightarrow> bool" (infix "\<Turnstile>\<^sub>=" 55)
where "entail_eq s f \<equiv> close_eq s \<Turnstile> f"
fun sound_opr :: "ground_action \<Rightarrow> action \<Rightarrow> bool" where
"sound_opr (Ground_Action pre (Effect add del)) f \<longleftrightarrow>
(\<forall>s. s \<Turnstile>\<^sub>= pre \<longrightarrow>
(\<exists>s'. f s = Some s' \<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set del \<and> s \<Turnstile>\<^sub>= atm \<longrightarrow> s' \<Turnstile>\<^sub>= atm)
\<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set add \<and> s \<Turnstile>\<^sub>= Not atm \<longrightarrow> s' \<Turnstile>\<^sub>= Not atm)
\<and> (\<forall>fmla. fmla \<in> set add \<longrightarrow> s' \<Turnstile>\<^sub>= fmla)
\<and> (\<forall>fmla. fmla \<in> set del \<and> fmla \<notin> set add \<longrightarrow> s' \<Turnstile>\<^sub>= (Not fmla))
))
\<and> (\<forall>fmla\<in>set add. is_predAtom fmla)"
lemma sound_opr_alt:
"sound_opr opr f =
((\<forall>s. s \<Turnstile>\<^sub>= (precondition opr) \<longrightarrow>
(\<exists>s'. f s = (Some s')
\<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set(dels (effect opr)) \<and> s \<Turnstile>\<^sub>= atm \<longrightarrow> s' \<Turnstile>\<^sub>= atm)
\<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set (adds (effect opr)) \<and> s \<Turnstile>\<^sub>= Not atm \<longrightarrow> s' \<Turnstile>\<^sub>= Not atm)
\<and> (\<forall>atm. atm \<in> set(adds (effect opr)) \<longrightarrow> s' \<Turnstile>\<^sub>= atm)
\<and> (\<forall>fmla. fmla \<in> set (dels (effect opr)) \<and> fmla \<notin> set(adds (effect opr)) \<longrightarrow> s' \<Turnstile>\<^sub>= (Not fmla))
\<and> (\<forall>a b. s \<Turnstile>\<^sub>= Atom (Eq a b) \<longrightarrow> s' \<Turnstile>\<^sub>= Atom (Eq a b))
\<and> (\<forall>a b. s \<Turnstile>\<^sub>= Not (Atom (Eq a b)) \<longrightarrow> s' \<Turnstile>\<^sub>= Not (Atom (Eq a b)))
))
\<and> (\<forall>fmla\<in>set(adds (effect opr)). is_predAtom fmla))"
by (cases "(opr,f)" rule: sound_opr.cases) auto
text \<open>Definition B (v)--(vii) in Lifschitz's paper~\cite{lifschitz1987semantics}\<close>
definition sound_system
:: "ground_action set
\<Rightarrow> world_model
\<Rightarrow> state
\<Rightarrow> (ground_action \<Rightarrow> action)
\<Rightarrow> bool"
where
"sound_system \<Sigma> M\<^sub>0 s\<^sub>0 f \<longleftrightarrow>
((\<forall>fmla\<in>close_world M\<^sub>0. s\<^sub>0 \<Turnstile>\<^sub>= fmla)
\<and> wm_basic M\<^sub>0
\<and> (\<forall>\<alpha>\<in>\<Sigma>. sound_opr \<alpha> (f \<alpha>)))"
text \<open>Composing two actions\<close>
definition compose_action :: "action \<Rightarrow> action \<Rightarrow> action" where
"compose_action f1 f2 x = (case f2 x of Some y \<Rightarrow> f1 y | None \<Rightarrow> None)"
text \<open>Composing a list of actions\<close>
definition compose_actions :: "action list \<Rightarrow> action" where
"compose_actions fs \<equiv> fold compose_action fs Some"
text \<open>Composing a list of actions satisfies some natural lemmas: \<close>
lemma compose_actions_Nil[simp]:
"compose_actions [] = Some" unfolding compose_actions_def by auto
lemma compose_actions_Cons[simp]:
"f s = Some s' \<Longrightarrow> compose_actions (f#fs) s = compose_actions fs s'"
proof -
interpret monoid_add compose_action Some
apply unfold_locales
unfolding compose_action_def
by (auto split: option.split)
assume "f s = Some s'"
then show ?thesis
unfolding compose_actions_def
by (simp add: compose_action_def fold_plus_sum_list_rev)
qed
text \<open>Soundness Theorem in Lifschitz's paper~\cite{lifschitz1987semantics}.\<close>
theorem STRIPS_sema_sound:
assumes "sound_system \<Sigma> M\<^sub>0 s\<^sub>0 f"
\<comment> \<open>For a sound system \<open>\<Sigma>\<close>\<close>
assumes "set \<alpha>s \<subseteq> \<Sigma>"
\<comment> \<open>And a plan \<open>\<alpha>s\<close>\<close>
assumes "ground_action_path M\<^sub>0 \<alpha>s M'"
\<comment> \<open>Which is accepted by the system, yielding result \<open>M'\<close>
(called \<open>R(\<alpha>s)\<close> in Lifschitz's paper~\cite{lifschitz1987semantics}.)\<close>
obtains s'
\<comment> \<open>We have that \<open>f(\<alpha>s)\<close> is applicable
in initial state, yielding state \<open>s'\<close> (called \<open>f\<^sub>\<alpha>\<^sub>s(s\<^sub>0)\<close> in Lifschitz's paper~\cite{lifschitz1987semantics}.)\<close>
where "compose_actions (map f \<alpha>s) s\<^sub>0 = Some s'"
\<comment> \<open>The result world model \<open>M'\<close> is satisfied in state \<open>s'\<close>\<close>
and "\<forall>fmla\<in>close_world M'. s' \<Turnstile>\<^sub>= fmla"
proof -
have "(valuation M' \<Turnstile> fmla)" if "wm_basic M'" "fmla\<in>M'" for fmla
using that apply (induction fmla)
by (auto simp: valuation_def wm_basic_def split: atom.split)
have "\<exists>s'. compose_actions (map f \<alpha>s) s\<^sub>0 = Some s' \<and> (\<forall>fmla\<in>close_world M'. s' \<Turnstile>\<^sub>= fmla)"
using assms
proof(induction \<alpha>s arbitrary: s\<^sub>0 M\<^sub>0 )
case Nil
then show ?case by (auto simp add: close_world_def compose_action_def sound_system_def)
next
case ass: (Cons \<alpha> \<alpha>s)
then obtain pre add del where a: "\<alpha> = Ground_Action pre (Effect add del)"
using ground_action.exhaust ast_effect.exhaust by metis
let ?M\<^sub>1 = "execute_ground_action \<alpha> M\<^sub>0"
have "close_world M\<^sub>0 \<TTurnstile> precondition \<alpha>"
using ass(4)
by auto
moreover have s0_ent_cwM0: "\<forall>fmla\<in>(close_world M\<^sub>0). close_eq s\<^sub>0 \<Turnstile> fmla"
using ass(2)
unfolding sound_system_def
by auto
ultimately have s0_ent_alpha_precond: "close_eq s\<^sub>0 \<Turnstile> precondition \<alpha>"
unfolding entailment_def
by auto
then obtain s\<^sub>1 where s1: "(f \<alpha>) s\<^sub>0 = Some s\<^sub>1"
"(\<forall>atm. is_predAtom atm \<longrightarrow> atm \<notin> set(dels (effect \<alpha>))
\<longrightarrow> close_eq s\<^sub>0 \<Turnstile> atm
\<longrightarrow> close_eq s\<^sub>1 \<Turnstile> atm)"
"(\<forall>fmla. fmla \<in> set(adds (effect \<alpha>))
\<longrightarrow> close_eq s\<^sub>1 \<Turnstile> fmla)"
"(\<forall>atm. is_predAtom atm \<and> atm \<notin> set (adds (effect \<alpha>)) \<and> close_eq s\<^sub>0 \<Turnstile> Not atm \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> Not atm)"
"(\<forall>fmla. fmla \<in> set (dels (effect \<alpha>)) \<and> fmla \<notin> set(adds (effect \<alpha>)) \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> (Not fmla))"
"(\<forall>a b. close_eq s\<^sub>0 \<Turnstile> Atom (Eq a b) \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> Atom (Eq a b))"
"(\<forall>a b. close_eq s\<^sub>0 \<Turnstile> Not (Atom (Eq a b)) \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> Not (Atom (Eq a b)))"
using ass(2-4)
unfolding sound_system_def sound_opr_alt by force
have "close_eq s\<^sub>1 \<Turnstile> fmla" if "fmla\<in>close_world ?M\<^sub>1" for fmla
using ass(2)
using that s1 s0_ent_cwM0
unfolding sound_system_def execute_ground_action_def wm_basic_def
apply (auto simp: in_close_world_conv)
subgoal
by (metis (no_types, lifting) DiffE UnE a apply_effect.simps ground_action.sel(2) ast_effect.sel(1) ast_effect.sel(2) close_world_extensive subsetCE)
subgoal
by (metis Diff_iff Un_iff a ground_action.sel(2) ast_domain.apply_effect.simps ast_domain.close_eq_predAtm ast_effect.sel(1) ast_effect.sel(2) formula_semantics.simps(1) formula_semantics.simps(3) in_close_world_conv is_predAtom.simps(1))
done
moreover have "(\<forall>atm. fmla \<noteq> formula.Atom atm) \<longrightarrow> s \<Turnstile> fmla" if "fmla\<in>?M\<^sub>1" for fmla s
proof-
have alpha: "(\<forall>s.\<forall>fmla\<in>set(adds (effect \<alpha>)). \<not> is_predAtom fmla \<longrightarrow> s \<Turnstile> fmla)"
using ass(2,3)
unfolding sound_system_def ast_domain.sound_opr_alt
by auto
then show ?thesis
using that
unfolding a execute_ground_action_def
using ass.prems(1)[unfolded sound_system_def]
by(cases fmla; fastforce simp: wm_basic_def)
qed
moreover have "(\<forall>opr\<in>\<Sigma>. sound_opr opr (f opr))"
using ass(2) unfolding sound_system_def
by (auto simp add:)
moreover have "wm_basic ?M\<^sub>1"
using ass(2,3)
unfolding sound_system_def execute_ground_action_def
thm sound_opr.cases
apply (cases "(\<alpha>,f \<alpha>)" rule: sound_opr.cases)
apply (auto simp: wm_basic_def)
done
ultimately have "sound_system \<Sigma> ?M\<^sub>1 s\<^sub>1 f"
unfolding sound_system_def
by (auto simp: wm_basic_def)
from ass.IH[OF this] ass.prems obtain s' where
"compose_actions (map f \<alpha>s) s\<^sub>1 = Some s' \<and> (\<forall>a\<in>close_world M'. s' \<Turnstile>\<^sub>= a)"
by auto
thus ?case by (auto simp: s1(1))
qed
with that show ?thesis by blast
qed
text \<open>More compact notation of the soundness theorem.\<close>
theorem STRIPS_sema_sound_compact_version:
"sound_system \<Sigma> M\<^sub>0 s\<^sub>0 f \<Longrightarrow> set \<alpha>s \<subseteq> \<Sigma>
\<Longrightarrow> ground_action_path M\<^sub>0 \<alpha>s M'
\<Longrightarrow> \<exists>s'. compose_actions (map f \<alpha>s) s\<^sub>0 = Some s'
\<and> (\<forall>fmla\<in>close_world M'. s' \<Turnstile>\<^sub>= fmla)"
using STRIPS_sema_sound by metis
end \<comment> \<open>Context of \<open>ast_domain\<close>\<close>
subsection \<open>Soundness Theorem for PDDL\<close>
context wf_ast_problem begin
text \<open>Mapping world models to states\<close>
definition state_to_wm :: "state \<Rightarrow> world_model"
where "state_to_wm s = ({formula.Atom (predAtm p xs) | p xs. s (p,xs)})"
definition wm_to_state :: "world_model \<Rightarrow> state"
where "wm_to_state M = (\<lambda>(p,xs). (formula.Atom (predAtm p xs)) \<in> M)"
lemma wm_to_state_eq[simp]: "wm_to_state M (p, as) \<longleftrightarrow> Atom (predAtm p as) \<in> M"
by (auto simp: wm_to_state_def)
lemma wm_to_state_inv[simp]: "wm_to_state (state_to_wm s) = s"
by (auto simp: wm_to_state_def
state_to_wm_def image_def)
text \<open>Mapping AST action instances to actions\<close>
definition "pddl_opr_to_act g_opr s = (
let M = state_to_wm s in
if (wm_to_state (close_world M)) \<Turnstile>\<^sub>= (precondition g_opr) then
Some (wm_to_state (apply_effect (effect g_opr) M))
else
None)"
definition "close_eq_M M = (M \<inter> {Atom (predAtm p xs) | p xs. True }) \<union> {Atom (Eq a a) | a. True} \<union> {\<^bold>\<not>(Atom (Eq a b)) | a b. a\<noteq>b}"
lemma atom_in_wm_eq:
"s \<Turnstile>\<^sub>= (formula.Atom atm)
\<longleftrightarrow> ((formula.Atom atm) \<in> close_eq_M (state_to_wm s))"
by (auto simp: wm_to_state_def
state_to_wm_def image_def close_eq_M_def close_eq_def split: atom.splits)
lemma atom_in_wm_2_eq:
"close_eq (wm_to_state M) \<Turnstile> (formula.Atom atm)
\<longleftrightarrow> ((formula.Atom atm) \<in> close_eq_M M)"
by (auto simp: wm_to_state_def
state_to_wm_def image_def close_eq_def close_eq_M_def split:atom.splits)
lemma not_dels_preserved:
assumes "f \<notin> (set d)" " f \<in> M"
shows "f \<in> apply_effect (Effect a d) M"
using assms
by auto
lemma adds_satisfied:
assumes "f \<in> (set a)"
shows "f \<in> apply_effect (Effect a d) M"
using assms
by auto
lemma dels_unsatisfied:
assumes "f \<in> (set d)" "f \<notin> set a"
shows "f \<notin> apply_effect (Effect a d) M"
using assms
by auto
lemma dels_unsatisfied_2:
assumes "f \<in> set (dels eff)" "f \<notin> set (adds eff)"
shows "f \<notin> apply_effect eff M"
using assms
by (cases eff; auto)
lemma wf_fmla_atm_is_atom: "wf_fmla_atom objT f \<Longrightarrow> is_predAtom f"
by (cases f rule: wf_fmla_atom.cases) auto
lemma wf_act_adds_are_atoms:
assumes "wf_effect_inst effs" "ae \<in> set (adds effs)"
shows "is_predAtom ae"
using assms
by (cases effs) (auto simp: wf_fmla_atom_alt)
lemma wf_act_adds_dels_atoms:
assumes "wf_effect_inst effs" "ae \<in> set (dels effs)"
shows "is_predAtom ae"
using assms
by (cases effs) (auto simp: wf_fmla_atom_alt)
lemma to_state_close_from_state_eq[simp]: "wm_to_state (close_world (state_to_wm s)) = s"
by (auto simp: wm_to_state_def close_world_def
state_to_wm_def image_def)
lemma wf_eff_pddl_ground_act_is_sound_opr:
assumes "wf_effect_inst (effect g_opr)"
shows "sound_opr g_opr ((pddl_opr_to_act g_opr))"
unfolding sound_opr_alt
apply(cases g_opr; safe)
subgoal for pre eff s
apply (rule exI[where x="wm_to_state(apply_effect eff (state_to_wm s))"])
apply (auto simp: pddl_opr_to_act_def Let_def split:if_splits)
subgoal for atm
by (cases eff; cases atm; auto simp: close_eq_def wm_to_state_def state_to_wm_def split: atom.splits)
subgoal for atm
by (cases eff; cases atm; auto simp: close_eq_def wm_to_state_def state_to_wm_def split: atom.splits)
subgoal for atm
using assms
by (cases eff; cases atm; force simp: close_eq_def wm_to_state_def state_to_wm_def split: atom.splits)
subgoal for fmla
using assms
by (cases eff; cases fmla rule: wf_fmla_atom.cases; force simp: close_eq_def wm_to_state_def state_to_wm_def split: atom.splits)
done
subgoal for pre eff fmla
using assms
by (cases eff; cases fmla rule: wf_fmla_atom.cases; force)
done
lemma wf_eff_impt_wf_eff_inst: "wf_effect objT eff \<Longrightarrow> wf_effect_inst eff"
by (cases eff; auto simp add: wf_fmla_atom_alt)
lemma wf_pddl_ground_act_is_sound_opr:
assumes "wf_ground_action g_opr"
shows "sound_opr g_opr (pddl_opr_to_act g_opr)"
using wf_eff_impt_wf_eff_inst wf_eff_pddl_ground_act_is_sound_opr assms
by (cases g_opr; auto)
lemma wf_action_schema_sound_inst:
assumes "action_params_match act args" "wf_action_schema act"
shows "sound_opr
(instantiate_action_schema act args)
((pddl_opr_to_act (instantiate_action_schema act args)))"
using
wf_pddl_ground_act_is_sound_opr[
OF wf_instantiate_action_schema[OF assms]]
by blast
lemma wf_plan_act_is_sound:
assumes "wf_plan_action (PAction n args)"
shows "sound_opr
(instantiate_action_schema (the (resolve_action_schema n)) args)
((pddl_opr_to_act
(instantiate_action_schema (the (resolve_action_schema n)) args)))"
using assms
using wf_action_schema_sound_inst wf_eff_pddl_ground_act_is_sound_opr
by (auto split: option.splits)
lemma wf_plan_act_is_sound':
assumes "wf_plan_action \<pi>"
shows "sound_opr
(resolve_instantiate \<pi>)
((pddl_opr_to_act (resolve_instantiate \<pi>)))"
using assms wf_plan_act_is_sound
by (cases \<pi>; auto )
lemma wf_world_model_has_atoms: "f\<in>M \<Longrightarrow> wf_world_model M \<Longrightarrow> is_predAtom f"
using wf_fmla_atm_is_atom
unfolding wf_world_model_def
by auto
lemma wm_to_state_works_for_wf_wm_closed:
"wf_world_model M \<Longrightarrow> fmla\<in>close_world M \<Longrightarrow> close_eq (wm_to_state M) \<Turnstile> fmla"
apply (cases fmla rule: wf_fmla_atom.cases)
by (auto simp: wf_world_model_def close_eq_def wm_to_state_def close_world_def)
lemma wm_to_state_works_for_wf_wm: "wf_world_model M \<Longrightarrow> fmla\<in>M \<Longrightarrow> close_eq (wm_to_state M) \<Turnstile> fmla"
apply (cases fmla rule: wf_fmla_atom.cases)
by (auto simp: wf_world_model_def close_eq_def wm_to_state_def)
lemma wm_to_state_works_for_I_closed:
assumes "x \<in> close_world I"
shows "close_eq (wm_to_state I) \<Turnstile> x"
apply (rule wm_to_state_works_for_wf_wm_closed)
using assms wf_I by auto
lemma wf_wm_imp_basic: "wf_world_model M \<Longrightarrow> wm_basic M"
by (auto simp: wf_world_model_def wm_basic_def wf_fmla_atm_is_atom)
theorem wf_plan_sound_system:
assumes "\<forall>\<pi>\<in> set \<pi>s. wf_plan_action \<pi>"
shows "sound_system
(set (map resolve_instantiate \<pi>s))
I
(wm_to_state I)
((\<lambda>\<alpha>. pddl_opr_to_act \<alpha>))"
unfolding sound_system_def
proof(intro conjI ballI)
show "close_eq(wm_to_state I) \<Turnstile> x" if "x \<in> close_world I" for x
using that[unfolded in_close_world_conv]
wm_to_state_works_for_I_closed wm_to_state_works_for_wf_wm
by (auto simp: wf_I)
show "wm_basic I" using wf_wm_imp_basic[OF wf_I] .
show "sound_opr \<alpha> (pddl_opr_to_act \<alpha>)" if "\<alpha> \<in> set (map resolve_instantiate \<pi>s)" for \<alpha>
using that
using wf_plan_act_is_sound' assms
by auto
qed
theorem wf_plan_soundness_theorem:
assumes "plan_action_path I \<pi>s M"
defines "\<alpha>s \<equiv> map (pddl_opr_to_act \<circ> resolve_instantiate) \<pi>s"
defines "s\<^sub>0 \<equiv> wm_to_state I"
shows "\<exists>s'. compose_actions \<alpha>s s\<^sub>0 = Some s' \<and> (\<forall>\<phi>\<in>close_world M. s' \<Turnstile>\<^sub>= \<phi>)"
apply (rule STRIPS_sema_sound)
apply (rule wf_plan_sound_system)
using assms
unfolding plan_action_path_def
by (auto simp add: image_def)
end \<comment> \<open>Context of \<open>wf_ast_problem\<close>\<close>
end
|