Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 19,409 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
section \<open>Soundness theorem for the STRIPS semantics\<close>
text \<open>We prove the soundness theorem according to ~\cite{lifschitz1987semantics}.\<close>

theory Lifschitz_Consistency
imports PDDL_STRIPS_Semantics
begin


text \<open>States are modeled as valuations of our underlying predicate logic.\<close>
type_synonym state = "(predicate\<times>object list) valuation"

context ast_domain begin
  text \<open>An action is a partial function from states to states. \<close>
  type_synonym action = "state \<rightharpoonup> state"

  text \<open>The Isabelle/HOL formula @{prop \<open>f s = Some s'\<close>} means
    that \<open>f\<close> is applicable in state \<open>s\<close>, and the result is \<open>s'\<close>. \<close>

  text \<open>Definition B (i)--(iv) in Lifschitz's paper~\cite{lifschitz1987semantics}\<close>

  fun is_NegPredAtom where
    "is_NegPredAtom (Not x) = is_predAtom x" | "is_NegPredAtom _ = False"

  definition "close_eq s = (\<lambda>predAtm p xs \<Rightarrow> s (p,xs) | Eq a b \<Rightarrow> a=b)"

  lemma close_eq_predAtm[simp]: "close_eq s (predAtm p xs) \<longleftrightarrow> s (p,xs)"
    by (auto simp: close_eq_def)                    

  lemma close_eq_Eq[simp]: "close_eq s (Eq a b) \<longleftrightarrow> a=b"
    by (auto simp: close_eq_def)


  abbreviation entail_eq :: "state \<Rightarrow> object atom formula \<Rightarrow> bool" (infix "\<Turnstile>\<^sub>=" 55)
    where "entail_eq s f \<equiv> close_eq s \<Turnstile> f"


  fun sound_opr :: "ground_action \<Rightarrow> action \<Rightarrow> bool" where
    "sound_opr (Ground_Action pre (Effect add del)) f \<longleftrightarrow>
      (\<forall>s. s \<Turnstile>\<^sub>= pre \<longrightarrow>
        (\<exists>s'. f s = Some s' \<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set del \<and> s \<Turnstile>\<^sub>= atm \<longrightarrow> s' \<Turnstile>\<^sub>= atm)
              \<and>  (\<forall>atm. is_predAtom atm \<and> atm \<notin> set add \<and> s \<Turnstile>\<^sub>= Not atm \<longrightarrow> s' \<Turnstile>\<^sub>= Not atm)
              \<and> (\<forall>fmla. fmla \<in> set add \<longrightarrow> s' \<Turnstile>\<^sub>= fmla)
              \<and> (\<forall>fmla. fmla \<in> set del \<and> fmla \<notin> set add \<longrightarrow> s' \<Turnstile>\<^sub>= (Not fmla))
              ))
        \<and> (\<forall>fmla\<in>set add. is_predAtom fmla)"

  lemma sound_opr_alt:
    "sound_opr opr f =
      ((\<forall>s. s \<Turnstile>\<^sub>= (precondition opr) \<longrightarrow>
          (\<exists>s'. f s = (Some s')
                \<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set(dels (effect opr)) \<and> s \<Turnstile>\<^sub>= atm \<longrightarrow> s' \<Turnstile>\<^sub>= atm)
                \<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set (adds (effect opr)) \<and> s \<Turnstile>\<^sub>= Not atm \<longrightarrow> s' \<Turnstile>\<^sub>= Not atm)
                \<and> (\<forall>atm. atm \<in> set(adds (effect opr)) \<longrightarrow> s' \<Turnstile>\<^sub>= atm)
                \<and> (\<forall>fmla. fmla \<in> set (dels (effect opr)) \<and> fmla \<notin> set(adds (effect opr)) \<longrightarrow> s' \<Turnstile>\<^sub>= (Not fmla))
                \<and> (\<forall>a b. s \<Turnstile>\<^sub>= Atom (Eq a b) \<longrightarrow> s' \<Turnstile>\<^sub>= Atom (Eq a b))
                \<and> (\<forall>a b. s \<Turnstile>\<^sub>= Not (Atom (Eq a b)) \<longrightarrow> s' \<Turnstile>\<^sub>= Not (Atom (Eq a b)))
                ))
        \<and> (\<forall>fmla\<in>set(adds (effect opr)). is_predAtom fmla))"
    by (cases "(opr,f)" rule: sound_opr.cases) auto

  text \<open>Definition B (v)--(vii) in  Lifschitz's paper~\cite{lifschitz1987semantics}\<close>
definition sound_system
    :: "ground_action set
      \<Rightarrow> world_model
      \<Rightarrow> state
      \<Rightarrow> (ground_action \<Rightarrow> action)
      \<Rightarrow> bool"
    where
    "sound_system \<Sigma> M\<^sub>0 s\<^sub>0 f \<longleftrightarrow>
      ((\<forall>fmla\<in>close_world M\<^sub>0. s\<^sub>0  \<Turnstile>\<^sub>= fmla)
      \<and> wm_basic M\<^sub>0
      \<and> (\<forall>\<alpha>\<in>\<Sigma>. sound_opr \<alpha> (f \<alpha>)))"

  text \<open>Composing two actions\<close>
  definition compose_action :: "action \<Rightarrow> action \<Rightarrow> action" where
    "compose_action f1 f2 x = (case f2 x of Some y \<Rightarrow> f1 y | None \<Rightarrow> None)"

  text \<open>Composing a list of actions\<close>
  definition compose_actions :: "action list \<Rightarrow> action" where
    "compose_actions fs \<equiv> fold compose_action fs Some"

  text \<open>Composing a list of actions satisfies some natural lemmas: \<close>
  lemma compose_actions_Nil[simp]:
    "compose_actions [] = Some" unfolding compose_actions_def by auto

  lemma compose_actions_Cons[simp]:
    "f s = Some s' \<Longrightarrow> compose_actions (f#fs) s = compose_actions fs s'"
  proof -
    interpret monoid_add compose_action Some
      apply unfold_locales
      unfolding compose_action_def
      by (auto split: option.split)
    assume "f s = Some s'"
    then show ?thesis
      unfolding compose_actions_def
      by (simp add: compose_action_def fold_plus_sum_list_rev)
  qed

  text \<open>Soundness Theorem in Lifschitz's paper~\cite{lifschitz1987semantics}.\<close>
theorem STRIPS_sema_sound:
  assumes "sound_system \<Sigma> M\<^sub>0 s\<^sub>0 f"
    \<comment> \<open>For a sound system \<open>\<Sigma>\<close>\<close>
  assumes "set \<alpha>s \<subseteq> \<Sigma>"
    \<comment> \<open>And a plan \<open>\<alpha>s\<close>\<close>
  assumes "ground_action_path M\<^sub>0 \<alpha>s M'"
    \<comment> \<open>Which is accepted by the system, yielding result \<open>M'\<close>
          (called \<open>R(\<alpha>s)\<close> in Lifschitz's paper~\cite{lifschitz1987semantics}.)\<close>
  obtains s'
    \<comment> \<open>We have that \<open>f(\<alpha>s)\<close> is applicable
          in initial state, yielding state \<open>s'\<close> (called \<open>f\<^sub>\<alpha>\<^sub>s(s\<^sub>0)\<close> in Lifschitz's paper~\cite{lifschitz1987semantics}.)\<close>
  where "compose_actions (map f \<alpha>s) s\<^sub>0 = Some s'"
    \<comment> \<open>The result world model \<open>M'\<close> is satisfied in state \<open>s'\<close>\<close>
    and "\<forall>fmla\<in>close_world M'. s' \<Turnstile>\<^sub>= fmla"
proof -
  have "(valuation M' \<Turnstile> fmla)" if "wm_basic M'" "fmla\<in>M'" for fmla
    using that apply (induction fmla)
    by (auto simp: valuation_def wm_basic_def split: atom.split)
  have "\<exists>s'. compose_actions (map f \<alpha>s) s\<^sub>0 = Some s' \<and> (\<forall>fmla\<in>close_world M'. s' \<Turnstile>\<^sub>= fmla)"
    using assms
  proof(induction \<alpha>s arbitrary: s\<^sub>0 M\<^sub>0 )
    case Nil
    then show ?case by (auto simp add: close_world_def compose_action_def sound_system_def)
  next
    case ass: (Cons \<alpha> \<alpha>s)
    then obtain pre add del where a: "\<alpha> = Ground_Action pre (Effect add del)"
      using ground_action.exhaust ast_effect.exhaust by metis
    let ?M\<^sub>1 = "execute_ground_action \<alpha> M\<^sub>0"
    have "close_world M\<^sub>0 \<TTurnstile> precondition \<alpha>"
      using ass(4)
      by auto
    moreover have s0_ent_cwM0: "\<forall>fmla\<in>(close_world M\<^sub>0). close_eq s\<^sub>0 \<Turnstile> fmla"
      using ass(2)
      unfolding sound_system_def
      by auto
    ultimately have s0_ent_alpha_precond: "close_eq s\<^sub>0 \<Turnstile> precondition \<alpha>"
      unfolding entailment_def
      by auto
    then obtain s\<^sub>1 where s1: "(f \<alpha>) s\<^sub>0 = Some s\<^sub>1"
      "(\<forall>atm. is_predAtom atm \<longrightarrow> atm \<notin> set(dels (effect \<alpha>))
                                            \<longrightarrow> close_eq s\<^sub>0 \<Turnstile> atm
                                            \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> atm)"
      "(\<forall>fmla. fmla \<in> set(adds (effect \<alpha>))
                                            \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> fmla)"
      "(\<forall>atm. is_predAtom atm \<and> atm \<notin> set (adds (effect \<alpha>)) \<and> close_eq s\<^sub>0 \<Turnstile> Not atm \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> Not atm)"
      "(\<forall>fmla. fmla \<in> set (dels (effect \<alpha>)) \<and> fmla \<notin> set(adds (effect \<alpha>)) \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> (Not fmla))"
      "(\<forall>a b. close_eq s\<^sub>0 \<Turnstile> Atom (Eq a b) \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> Atom (Eq a b))"
      "(\<forall>a b. close_eq s\<^sub>0 \<Turnstile> Not (Atom (Eq a b)) \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> Not (Atom (Eq a b)))"
      using ass(2-4)
      unfolding sound_system_def sound_opr_alt by force
    have "close_eq s\<^sub>1 \<Turnstile> fmla" if "fmla\<in>close_world ?M\<^sub>1" for fmla
      using ass(2)
      using that s1 s0_ent_cwM0
      unfolding sound_system_def execute_ground_action_def wm_basic_def
      apply (auto simp: in_close_world_conv)
      subgoal
        by (metis (no_types, lifting) DiffE UnE a apply_effect.simps ground_action.sel(2) ast_effect.sel(1) ast_effect.sel(2) close_world_extensive subsetCE)
      subgoal
        by (metis Diff_iff Un_iff a ground_action.sel(2) ast_domain.apply_effect.simps ast_domain.close_eq_predAtm ast_effect.sel(1) ast_effect.sel(2) formula_semantics.simps(1) formula_semantics.simps(3) in_close_world_conv is_predAtom.simps(1))
      done
    moreover have "(\<forall>atm. fmla \<noteq> formula.Atom atm) \<longrightarrow> s \<Turnstile> fmla" if "fmla\<in>?M\<^sub>1" for fmla s
    proof-
      have alpha: "(\<forall>s.\<forall>fmla\<in>set(adds (effect \<alpha>)). \<not> is_predAtom fmla \<longrightarrow> s \<Turnstile> fmla)"
        using ass(2,3)
        unfolding sound_system_def ast_domain.sound_opr_alt
        by auto
      then show ?thesis
        using that
        unfolding a execute_ground_action_def
        using ass.prems(1)[unfolded sound_system_def]
        by(cases fmla; fastforce simp: wm_basic_def)

    qed
    moreover have "(\<forall>opr\<in>\<Sigma>. sound_opr opr (f opr))"
      using ass(2) unfolding sound_system_def
      by (auto simp add:)
    moreover have "wm_basic ?M\<^sub>1"
      using ass(2,3)
      unfolding sound_system_def execute_ground_action_def
      thm sound_opr.cases
      apply (cases "(\<alpha>,f \<alpha>)" rule: sound_opr.cases)
      apply (auto simp: wm_basic_def)
      done
    ultimately have "sound_system \<Sigma> ?M\<^sub>1 s\<^sub>1 f"
      unfolding sound_system_def
      by (auto simp: wm_basic_def)
    from ass.IH[OF this] ass.prems obtain s' where
      "compose_actions (map f \<alpha>s) s\<^sub>1 = Some s' \<and> (\<forall>a\<in>close_world M'. s' \<Turnstile>\<^sub>= a)"
      by auto
    thus ?case by (auto simp: s1(1))
  qed
  with that show ?thesis by blast
qed

  text \<open>More compact notation of the soundness theorem.\<close>
  theorem STRIPS_sema_sound_compact_version:
    "sound_system \<Sigma> M\<^sub>0 s\<^sub>0 f \<Longrightarrow> set \<alpha>s \<subseteq> \<Sigma>
    \<Longrightarrow> ground_action_path M\<^sub>0 \<alpha>s M'
    \<Longrightarrow> \<exists>s'. compose_actions (map f \<alpha>s) s\<^sub>0 = Some s'
          \<and> (\<forall>fmla\<in>close_world M'. s' \<Turnstile>\<^sub>= fmla)"
    using STRIPS_sema_sound by metis

end \<comment> \<open>Context of \<open>ast_domain\<close>\<close>

subsection \<open>Soundness Theorem for PDDL\<close>

context wf_ast_problem begin

  text \<open>Mapping world models to states\<close>
  definition state_to_wm :: "state \<Rightarrow> world_model"
    where "state_to_wm s = ({formula.Atom (predAtm p xs) | p xs. s (p,xs)})"
  definition wm_to_state :: "world_model \<Rightarrow> state"
    where "wm_to_state M = (\<lambda>(p,xs). (formula.Atom (predAtm p xs)) \<in> M)"


  lemma wm_to_state_eq[simp]: "wm_to_state M (p, as) \<longleftrightarrow> Atom (predAtm p as) \<in> M"
    by (auto simp: wm_to_state_def)




  lemma wm_to_state_inv[simp]: "wm_to_state (state_to_wm s) = s"
    by (auto simp: wm_to_state_def
      state_to_wm_def image_def)

  text \<open>Mapping AST action instances to actions\<close>
  definition "pddl_opr_to_act g_opr s = (
    let M = state_to_wm s in
    if (wm_to_state (close_world M)) \<Turnstile>\<^sub>= (precondition g_opr) then
      Some (wm_to_state (apply_effect (effect g_opr) M))
    else
      None)"

definition "close_eq_M M = (M \<inter> {Atom (predAtm p xs) | p xs. True }) \<union> {Atom (Eq a a) | a. True} \<union> {\<^bold>\<not>(Atom (Eq a b)) | a b. a\<noteq>b}"

  lemma atom_in_wm_eq:
    "s \<Turnstile>\<^sub>= (formula.Atom atm)
      \<longleftrightarrow> ((formula.Atom atm) \<in> close_eq_M (state_to_wm s))"
    by (auto simp: wm_to_state_def
      state_to_wm_def image_def close_eq_M_def close_eq_def split: atom.splits)

lemma atom_in_wm_2_eq:
    "close_eq (wm_to_state M) \<Turnstile> (formula.Atom atm)
      \<longleftrightarrow> ((formula.Atom atm) \<in> close_eq_M M)"
    by (auto simp: wm_to_state_def
      state_to_wm_def image_def close_eq_def close_eq_M_def split:atom.splits)

  lemma not_dels_preserved:
    assumes "f \<notin> (set d)" " f \<in> M"
    shows "f \<in> apply_effect (Effect a d) M"
    using assms
    by auto

  lemma adds_satisfied:
    assumes "f \<in> (set a)"
    shows "f \<in> apply_effect (Effect a d) M"
    using assms
    by auto

  lemma dels_unsatisfied:
    assumes "f \<in> (set d)" "f \<notin> set a"
    shows "f \<notin> apply_effect (Effect a d) M"
    using assms
    by auto

  lemma dels_unsatisfied_2:
    assumes "f \<in> set (dels eff)" "f \<notin> set (adds eff)"
    shows "f \<notin> apply_effect eff M"
    using assms
    by (cases eff; auto)

  lemma wf_fmla_atm_is_atom: "wf_fmla_atom objT f \<Longrightarrow> is_predAtom f"
    by (cases f rule: wf_fmla_atom.cases) auto

  lemma wf_act_adds_are_atoms:
    assumes "wf_effect_inst effs" "ae \<in> set (adds effs)"
    shows "is_predAtom ae"
    using assms
    by (cases effs) (auto simp: wf_fmla_atom_alt)

  lemma wf_act_adds_dels_atoms:
    assumes "wf_effect_inst effs" "ae \<in> set (dels effs)"
    shows "is_predAtom ae"
    using assms
    by (cases effs) (auto simp: wf_fmla_atom_alt)

  lemma to_state_close_from_state_eq[simp]: "wm_to_state (close_world (state_to_wm s)) = s"
    by (auto simp: wm_to_state_def close_world_def
      state_to_wm_def image_def)



lemma wf_eff_pddl_ground_act_is_sound_opr:
  assumes "wf_effect_inst (effect g_opr)"
  shows "sound_opr g_opr ((pddl_opr_to_act g_opr))"
  unfolding sound_opr_alt
  apply(cases g_opr; safe)
  subgoal for pre eff s
    apply (rule exI[where x="wm_to_state(apply_effect eff (state_to_wm s))"])
    apply (auto simp: pddl_opr_to_act_def Let_def split:if_splits)
    subgoal for atm
      by (cases eff; cases atm; auto simp: close_eq_def wm_to_state_def state_to_wm_def split: atom.splits)
    subgoal for atm
      by (cases eff; cases atm; auto simp: close_eq_def wm_to_state_def state_to_wm_def split: atom.splits)
    subgoal for atm
      using assms
      by (cases eff; cases atm; force simp: close_eq_def wm_to_state_def state_to_wm_def split: atom.splits)
    subgoal for fmla
      using assms
      by (cases eff; cases fmla rule: wf_fmla_atom.cases; force simp: close_eq_def wm_to_state_def state_to_wm_def split: atom.splits)
    done
  subgoal for pre eff fmla
    using assms
    by (cases eff; cases fmla rule: wf_fmla_atom.cases; force)
  done



  lemma wf_eff_impt_wf_eff_inst: "wf_effect objT eff \<Longrightarrow> wf_effect_inst eff"
    by (cases eff; auto simp add: wf_fmla_atom_alt)

  lemma wf_pddl_ground_act_is_sound_opr:
    assumes "wf_ground_action g_opr"
    shows "sound_opr g_opr (pddl_opr_to_act g_opr)"
    using wf_eff_impt_wf_eff_inst wf_eff_pddl_ground_act_is_sound_opr assms
    by (cases g_opr; auto)

  lemma wf_action_schema_sound_inst:
    assumes "action_params_match act args" "wf_action_schema act"
    shows "sound_opr
      (instantiate_action_schema act args)
      ((pddl_opr_to_act (instantiate_action_schema act args)))"
    using
      wf_pddl_ground_act_is_sound_opr[
        OF wf_instantiate_action_schema[OF assms]]
      by blast

  lemma wf_plan_act_is_sound:
    assumes "wf_plan_action (PAction n args)"
    shows "sound_opr
      (instantiate_action_schema (the (resolve_action_schema n)) args)
      ((pddl_opr_to_act
        (instantiate_action_schema (the (resolve_action_schema n)) args)))"
    using assms
    using wf_action_schema_sound_inst wf_eff_pddl_ground_act_is_sound_opr
    by (auto split: option.splits)

  lemma wf_plan_act_is_sound':
    assumes "wf_plan_action \<pi>"
    shows "sound_opr
      (resolve_instantiate \<pi>)
      ((pddl_opr_to_act (resolve_instantiate \<pi>)))"
    using assms wf_plan_act_is_sound
    by (cases \<pi>; auto )

  lemma wf_world_model_has_atoms: "f\<in>M \<Longrightarrow> wf_world_model M \<Longrightarrow> is_predAtom f"
    using wf_fmla_atm_is_atom
    unfolding wf_world_model_def
    by auto

  lemma wm_to_state_works_for_wf_wm_closed:
    "wf_world_model M \<Longrightarrow> fmla\<in>close_world M \<Longrightarrow> close_eq (wm_to_state M) \<Turnstile> fmla"
    apply (cases fmla rule: wf_fmla_atom.cases)
    by (auto simp: wf_world_model_def close_eq_def wm_to_state_def close_world_def)

  lemma wm_to_state_works_for_wf_wm: "wf_world_model M \<Longrightarrow> fmla\<in>M \<Longrightarrow> close_eq (wm_to_state M) \<Turnstile> fmla"
    apply (cases fmla rule: wf_fmla_atom.cases)
    by (auto simp: wf_world_model_def close_eq_def wm_to_state_def)



  lemma wm_to_state_works_for_I_closed:
    assumes "x \<in> close_world I"
    shows "close_eq (wm_to_state I) \<Turnstile> x"
    apply (rule wm_to_state_works_for_wf_wm_closed)
    using assms wf_I by auto


  lemma wf_wm_imp_basic: "wf_world_model M \<Longrightarrow> wm_basic M"
    by (auto simp: wf_world_model_def wm_basic_def wf_fmla_atm_is_atom)

theorem wf_plan_sound_system:
  assumes "\<forall>\<pi>\<in> set \<pi>s. wf_plan_action \<pi>"
  shows "sound_system
      (set (map resolve_instantiate \<pi>s))
      I
      (wm_to_state I)
      ((\<lambda>\<alpha>. pddl_opr_to_act \<alpha>))"
  unfolding sound_system_def
proof(intro conjI ballI)
  show "close_eq(wm_to_state I) \<Turnstile> x" if "x \<in> close_world I" for x
    using that[unfolded in_close_world_conv]
      wm_to_state_works_for_I_closed wm_to_state_works_for_wf_wm
    by (auto simp: wf_I)

  show "wm_basic I" using wf_wm_imp_basic[OF wf_I] .

  show "sound_opr \<alpha> (pddl_opr_to_act \<alpha>)" if "\<alpha> \<in> set (map resolve_instantiate \<pi>s)" for \<alpha>
    using that
    using wf_plan_act_is_sound' assms
    by auto
qed

theorem wf_plan_soundness_theorem:
    assumes "plan_action_path I \<pi>s M"
    defines "\<alpha>s \<equiv> map (pddl_opr_to_act \<circ> resolve_instantiate) \<pi>s"
    defines "s\<^sub>0 \<equiv> wm_to_state I"
    shows "\<exists>s'. compose_actions \<alpha>s s\<^sub>0 = Some s' \<and> (\<forall>\<phi>\<in>close_world M. s' \<Turnstile>\<^sub>= \<phi>)"
    apply (rule STRIPS_sema_sound)
    apply (rule wf_plan_sound_system)
    using assms
    unfolding plan_action_path_def
    by (auto simp add: image_def)

end \<comment> \<open>Context of \<open>wf_ast_problem\<close>\<close>

end