Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 23,883 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
theory Canton_Transaction_Tree imports
Inclusion_Proof_Construction
begin
section \<open>Canton's hierarchical transaction trees\<close>
typedecl view_data
typedecl view_metadata
typedecl common_metadata
typedecl participant_metadata
datatype view = View view_metadata view_data (subviews: "view list")
datatype transaction = Transaction common_metadata participant_metadata (views: "view list")
subsection \<open>Views as authenticated data structures\<close>
type_synonym view_metadata\<^sub>h = "view_metadata blindable\<^sub>h"
type_synonym view_data\<^sub>h = "view_data blindable\<^sub>h"
datatype view\<^sub>h = View\<^sub>h "((view_metadata\<^sub>h \<times>\<^sub>h view_data\<^sub>h) \<times>\<^sub>h view\<^sub>h list\<^sub>h) blindable\<^sub>h"
type_synonym view_metadata\<^sub>m = "(view_metadata, view_metadata) blindable\<^sub>m"
type_synonym view_data\<^sub>m = "(view_data, view_data) blindable\<^sub>m"
datatype view\<^sub>m = View\<^sub>m
"((view_metadata\<^sub>m \<times>\<^sub>m view_data\<^sub>m) \<times>\<^sub>m view\<^sub>m list\<^sub>m,
(view_metadata\<^sub>h \<times>\<^sub>h view_data\<^sub>h) \<times>\<^sub>h view\<^sub>h list\<^sub>h) blindable\<^sub>m"
abbreviation (input) hash_view_data :: "(view_data\<^sub>m, view_data\<^sub>h) hash" where
"hash_view_data \<equiv> hash_blindable id"
abbreviation (input) blinding_of_view_data :: "view_data\<^sub>m blinding_of" where
"blinding_of_view_data \<equiv> blinding_of_blindable id (=)"
abbreviation (input) merge_view_data :: "view_data\<^sub>m merge" where
"merge_view_data \<equiv> merge_blindable id merge_discrete"
lemma merkle_view_data:
"merkle_interface hash_view_data blinding_of_view_data merge_view_data"
by unfold_locales
abbreviation (input) hash_view_metadata :: "(view_metadata\<^sub>m, view_metadata\<^sub>h) hash" where
"hash_view_metadata \<equiv> hash_blindable id"
abbreviation (input) blinding_of_view_metadata :: "view_metadata\<^sub>m blinding_of" where
"blinding_of_view_metadata \<equiv> blinding_of_blindable id (=)"
abbreviation (input) merge_view_metadata :: "view_metadata\<^sub>m merge" where
"merge_view_metadata \<equiv> merge_blindable id merge_discrete"
lemma merkle_view_metadata:
"merkle_interface hash_view_metadata blinding_of_view_metadata merge_view_metadata"
by unfold_locales
type_synonym view_content = "view_metadata \<times> view_data"
type_synonym view_content\<^sub>h = "view_metadata\<^sub>h \<times>\<^sub>h view_data\<^sub>h"
type_synonym view_content\<^sub>m = "view_metadata\<^sub>m \<times>\<^sub>m view_data\<^sub>m"
locale view_merkle begin
type_synonym view\<^sub>h' = "view_content\<^sub>h rose_tree\<^sub>h"
primrec from_view\<^sub>h :: "view\<^sub>h \<Rightarrow> view\<^sub>h'" where
"from_view\<^sub>h (View\<^sub>h x) = Tree\<^sub>h (map_blindable\<^sub>h (map_prod id (map from_view\<^sub>h)) x)"
primrec to_view\<^sub>h :: "view\<^sub>h' \<Rightarrow> view\<^sub>h" where
"to_view\<^sub>h (Tree\<^sub>h x) = View\<^sub>h (map_blindable\<^sub>h (map_prod id (map to_view\<^sub>h)) x)"
lemma from_to_view\<^sub>h [simp]: "from_view\<^sub>h (to_view\<^sub>h x) = x"
apply(induction x)
apply(simp add: blindable\<^sub>h.map_comp o_def prod.map_comp)
apply(simp cong: blindable\<^sub>h.map_cong prod.map_cong list.map_cong add: blindable\<^sub>h.map_id[unfolded id_def])
done
lemma to_from_view\<^sub>h [simp]: "to_view\<^sub>h (from_view\<^sub>h x) = x"
apply(induction x)
apply(simp add: blindable\<^sub>h.map_comp o_def prod.map_comp)
apply(simp cong: blindable\<^sub>h.map_cong prod.map_cong list.map_cong add: blindable\<^sub>h.map_id[unfolded id_def])
done
lemma iso_view\<^sub>h: "type_definition from_view\<^sub>h to_view\<^sub>h UNIV"
by unfold_locales simp_all
setup_lifting iso_view\<^sub>h
lemma cr_view\<^sub>h_Grp: "cr_view\<^sub>h = Grp UNIV to_view\<^sub>h"
by(simp add: cr_view\<^sub>h_def Grp_def fun_eq_iff)(transfer, auto)
lemma View\<^sub>h_transfer [transfer_rule]: includes lifting_syntax shows
"(rel_blindable\<^sub>h (rel_prod (=) (list_all2 pcr_view\<^sub>h)) ===> pcr_view\<^sub>h) Tree\<^sub>h View\<^sub>h"
by(simp add: rel_fun_def view\<^sub>h.pcr_cr_eq cr_view\<^sub>h_Grp list.rel_Grp eq_alt prod.rel_Grp blindable\<^sub>h.rel_Grp)
(simp add: Grp_def)
type_synonym view\<^sub>m' = "(view_content\<^sub>m, view_content\<^sub>h) rose_tree\<^sub>m"
primrec from_view\<^sub>m :: "view\<^sub>m \<Rightarrow> view\<^sub>m'" where
"from_view\<^sub>m (View\<^sub>m x) = Tree\<^sub>m (map_blindable\<^sub>m (map_prod id (map from_view\<^sub>m)) (map_prod id (map from_view\<^sub>h)) x)"
primrec to_view\<^sub>m :: "view\<^sub>m' \<Rightarrow> view\<^sub>m" where
"to_view\<^sub>m (Tree\<^sub>m x) = View\<^sub>m (map_blindable\<^sub>m (map_prod id (map to_view\<^sub>m)) (map_prod id (map to_view\<^sub>h)) x)"
lemma from_to_view\<^sub>m [simp]: "from_view\<^sub>m (to_view\<^sub>m x) = x"
apply(induction x)
apply(simp add: blindable\<^sub>m.map_comp o_def prod.map_comp)
apply(simp cong: blindable\<^sub>m.map_cong prod.map_cong list.map_cong add: blindable\<^sub>m.map_id[unfolded id_def])
done
lemma to_from_view\<^sub>m [simp]: "to_view\<^sub>m (from_view\<^sub>m x) = x"
apply(induction x)
apply(simp add: blindable\<^sub>m.map_comp o_def prod.map_comp)
apply(simp cong: blindable\<^sub>m.map_cong prod.map_cong list.map_cong add: blindable\<^sub>m.map_id[unfolded id_def])
done
lemma iso_view\<^sub>m: "type_definition from_view\<^sub>m to_view\<^sub>m UNIV"
by unfold_locales simp_all
setup_lifting iso_view\<^sub>m
lemma cr_view\<^sub>m_Grp: "cr_view\<^sub>m = Grp UNIV to_view\<^sub>m"
by(simp add: cr_view\<^sub>m_def Grp_def fun_eq_iff)(transfer, auto)
lemma View\<^sub>m_transfer [transfer_rule]: includes lifting_syntax shows
"(rel_blindable\<^sub>m (rel_prod (=) (list_all2 pcr_view\<^sub>m)) (rel_prod (=) (list_all2 pcr_view\<^sub>h)) ===> pcr_view\<^sub>m) Tree\<^sub>m View\<^sub>m"
by(simp add: rel_fun_def view\<^sub>h.pcr_cr_eq view\<^sub>m.pcr_cr_eq cr_view\<^sub>h_Grp cr_view\<^sub>m_Grp list.rel_Grp eq_alt prod.rel_Grp blindable\<^sub>m.rel_Grp)
(simp add: Grp_def)
end
code_datatype View\<^sub>h
code_datatype View\<^sub>m
context begin
interpretation view_merkle .
abbreviation (input) hash_view_content :: "(view_content\<^sub>m, view_content\<^sub>h) hash" where
"hash_view_content \<equiv> hash_prod hash_view_metadata hash_view_data"
abbreviation (input) blinding_of_view_content :: "view_content\<^sub>m blinding_of" where
"blinding_of_view_content \<equiv> blinding_of_prod blinding_of_view_metadata blinding_of_view_data"
abbreviation (input) merge_view_content :: "view_content\<^sub>m merge" where
"merge_view_content \<equiv> merge_prod merge_view_metadata merge_view_data"
lift_definition hash_view :: "(view\<^sub>m, view\<^sub>h) hash" is
"hash_tree hash_view_content" .
lift_definition blinding_of_view :: "view\<^sub>m blinding_of" is
"blinding_of_tree hash_view_content blinding_of_view_content" .
lift_definition merge_view :: "view\<^sub>m merge" is
"merge_tree hash_view_content merge_view_content" .
lemma merkle_view [locale_witness]: "merkle_interface hash_view blinding_of_view merge_view"
by transfer unfold_locales
lemma hash_view_simps [simp]:
"hash_view (View\<^sub>m x) =
View\<^sub>h (hash_blindable (hash_prod hash_view_content (hash_list hash_view)) x)"
by transfer(simp add: hash_rt_F\<^sub>m_def prod.map_comp hash_blindable_def blindable\<^sub>m.map_id)
lemma blinding_of_view_iff [simp]:
"blinding_of_view (View\<^sub>m x) (View\<^sub>m y) \<longleftrightarrow>
blinding_of_blindable (hash_prod hash_view_content (hash_list hash_view))
(blinding_of_prod blinding_of_view_content (blinding_of_list blinding_of_view)) x y"
by transfer simp
lemma blinding_of_view_induct [consumes 1, induct pred: blinding_of_view]:
assumes "blinding_of_view x y"
and "\<And>x y. blinding_of_blindable (hash_prod hash_view_content (hash_list hash_view))
(blinding_of_prod blinding_of_view_content (blinding_of_list (\<lambda>x y. blinding_of_view x y \<and> P x y))) x y
\<Longrightarrow> P (View\<^sub>m x) (View\<^sub>m y)"
shows "P x y"
using assms by transfer(rule blinding_of_tree.induct)
lemma merge_view_simps [simp]:
"merge_view (View\<^sub>m x) (View\<^sub>m y) =
map_option View\<^sub>m (merge_rt_F\<^sub>m hash_view_content merge_view_content hash_view merge_view x y)"
by transfer simp
end
subsection \<open>Transaction trees as authenticated data structures\<close>
type_synonym common_metadata\<^sub>h = "common_metadata blindable\<^sub>h"
type_synonym common_metadata\<^sub>m = "(common_metadata, common_metadata) blindable\<^sub>m"
type_synonym participant_metadata\<^sub>h = "participant_metadata blindable\<^sub>h"
type_synonym participant_metadata\<^sub>m = "(participant_metadata, participant_metadata) blindable\<^sub>m"
datatype transaction\<^sub>h = Transaction\<^sub>h
(the_Transaction\<^sub>h: "((common_metadata\<^sub>h \<times>\<^sub>h participant_metadata\<^sub>h) \<times>\<^sub>h view\<^sub>h list\<^sub>h) blindable\<^sub>h")
datatype transaction\<^sub>m = Transaction\<^sub>m
(the_Transaction\<^sub>m: "((common_metadata\<^sub>m \<times>\<^sub>m participant_metadata\<^sub>m) \<times>\<^sub>m view\<^sub>m list\<^sub>m,
(common_metadata\<^sub>h \<times>\<^sub>h participant_metadata\<^sub>h) \<times>\<^sub>h view\<^sub>h list\<^sub>h) blindable\<^sub>m")
abbreviation (input) hash_common_metadata :: "(common_metadata\<^sub>m, common_metadata\<^sub>h) hash" where
"hash_common_metadata \<equiv> hash_blindable id"
abbreviation (input) blinding_of_common_metadata :: "common_metadata\<^sub>m blinding_of" where
"blinding_of_common_metadata \<equiv> blinding_of_blindable id (=)"
abbreviation (input) merge_common_metadata :: "common_metadata\<^sub>m merge" where
"merge_common_metadata \<equiv> merge_blindable id merge_discrete"
abbreviation (input) hash_participant_metadata :: "(participant_metadata\<^sub>m, participant_metadata\<^sub>h) hash" where
"hash_participant_metadata \<equiv> hash_blindable id"
abbreviation (input) blinding_of_participant_metadata :: "participant_metadata\<^sub>m blinding_of" where
"blinding_of_participant_metadata \<equiv> blinding_of_blindable id (=)"
abbreviation (input) merge_participant_metadata :: "participant_metadata\<^sub>m merge" where
"merge_participant_metadata \<equiv> merge_blindable id merge_discrete"
locale transaction_merkle begin
lemma iso_transaction\<^sub>h: "type_definition the_Transaction\<^sub>h Transaction\<^sub>h UNIV"
by unfold_locales simp_all
setup_lifting iso_transaction\<^sub>h
lemma Transaction\<^sub>h_transfer [transfer_rule]: includes lifting_syntax shows
"((=) ===> pcr_transaction\<^sub>h) id Transaction\<^sub>h"
by(simp add: transaction\<^sub>h.pcr_cr_eq cr_transaction\<^sub>h_def rel_fun_def)
lemma iso_transaction\<^sub>m: "type_definition the_Transaction\<^sub>m Transaction\<^sub>m UNIV"
by unfold_locales simp_all
setup_lifting iso_transaction\<^sub>m
lemma Transaction\<^sub>m_transfer [transfer_rule]: includes lifting_syntax shows
"((=) ===> pcr_transaction\<^sub>m) id Transaction\<^sub>m"
by(simp add: transaction\<^sub>m.pcr_cr_eq cr_transaction\<^sub>m_def rel_fun_def)
end
code_datatype Transaction\<^sub>h
code_datatype Transaction\<^sub>m
context begin
interpretation transaction_merkle .
lift_definition hash_transaction :: "(transaction\<^sub>m, transaction\<^sub>h) hash" is
"hash_blindable (hash_prod (hash_prod hash_common_metadata hash_participant_metadata) (hash_list hash_view))" .
lift_definition blinding_of_transaction :: "transaction\<^sub>m blinding_of" is
"blinding_of_blindable
(hash_prod (hash_prod hash_common_metadata hash_participant_metadata) (hash_list hash_view))
(blinding_of_prod (blinding_of_prod blinding_of_common_metadata blinding_of_participant_metadata) (blinding_of_list blinding_of_view))" .
lift_definition merge_transaction :: "transaction\<^sub>m merge" is
"merge_blindable
(hash_prod (hash_prod hash_common_metadata hash_participant_metadata) (hash_list hash_view))
(merge_prod (merge_prod merge_common_metadata merge_participant_metadata) (merge_list merge_view))" .
lemma merkle_transaction [locale_witness]:
"merkle_interface hash_transaction blinding_of_transaction merge_transaction"
by transfer unfold_locales
lemmas hash_transaction_simps [simp] = hash_transaction.abs_eq
lemmas blinding_of_transaction_iff [simp] = blinding_of_transaction.abs_eq
lemmas merge_transaction_simps [simp] = merge_transaction.abs_eq
end
interpretation transaction:
merkle_interface hash_transaction blinding_of_transaction merge_transaction
by(rule merkle_transaction)
subsection \<open>
Constructing authenticated data structures for views
\<close>
context view_merkle begin
type_synonym view' = "(view_metadata \<times> view_data) rose_tree"
primrec from_view :: "view \<Rightarrow> view'" where
"from_view (View vm vd vs) = Tree ((vm, vd), map from_view vs)"
primrec to_view :: "view' \<Rightarrow> view" where
"to_view (Tree x) = View (fst (fst x)) (snd (fst x)) (snd (map_prod id (map to_view) x))"
lemma from_to_view [simp]: "from_view (to_view x) = x"
by(induction x)(clarsimp cong: map_cong)
lemma to_from_view [simp]: "to_view (from_view x) = x"
by(induction x)(clarsimp cong: map_cong)
lemma iso_view: "type_definition from_view to_view UNIV"
by unfold_locales simp_all
setup_lifting iso_view
definition View' :: "(view_metadata \<times> view_data) \<times> view list \<Rightarrow> view" where
"View' = (\<lambda>((vm, vd), vs). View vm vd vs)"
lemma View_View': "View = (\<lambda>vm vd vs. View' ((vm, vd), vs))"
by(simp add: View'_def)
lemma cr_view_Grp: "cr_view = Grp UNIV to_view"
by(simp add: cr_view_def Grp_def fun_eq_iff)(transfer, auto)
lemma View'_transfer [transfer_rule]: includes lifting_syntax shows
"(rel_prod (=) (list_all2 pcr_view) ===> pcr_view) Tree View'"
by(simp add: view.pcr_cr_eq cr_view_Grp eq_alt prod.rel_Grp rose_tree.rel_Grp list.rel_Grp)
(auto simp add: Grp_def View'_def)
end
code_datatype View
context begin
interpretation view_merkle .
abbreviation embed_view_content :: "view_metadata \<times> view_data \<Rightarrow> view_metadata\<^sub>m \<times> view_data\<^sub>m" where
"embed_view_content \<equiv> map_prod Unblinded Unblinded"
lift_definition embed_view :: "view \<Rightarrow> view\<^sub>m" is "embed_source_tree embed_view_content" .
lemma embed_view_simps [simp]:
"embed_view (View vm vd vs) = View\<^sub>m (Unblinded ((Unblinded vm, Unblinded vd), map embed_view vs))"
unfolding View_View' by transfer simp
end
context transaction_merkle begin
primrec the_Transaction :: "transaction \<Rightarrow> (common_metadata \<times> participant_metadata) \<times> view list" where
"the_Transaction (Transaction cm pm views) = ((cm, pm), views)" for views
definition Transaction' :: "(common_metadata \<times> participant_metadata) \<times> view list \<Rightarrow> transaction" where
"Transaction' = (\<lambda>((cm, pm), views). Transaction cm pm views)"
lemma Transaction_Transaction': "Transaction = (\<lambda>cm pm views. Transaction' ((cm, pm), views))"
by(simp add: Transaction'_def)
lemma the_Transaction_inverse [simp]: "Transaction' (the_Transaction x) = x"
by(cases x)(simp add: Transaction'_def)
lemma Transaction'_inverse [simp]: "the_Transaction (Transaction' x) = x"
by(simp add: Transaction'_def split_def)
lemma iso_transaction: "type_definition the_Transaction Transaction' UNIV"
by unfold_locales simp_all
setup_lifting iso_transaction
lemma Transaction'_transfer [transfer_rule]: includes lifting_syntax shows
"((=) ===> pcr_transaction) id Transaction'"
by(simp add: transaction.pcr_cr_eq cr_transaction_def rel_fun_def)
end
code_datatype Transaction
context begin
interpretation transaction_merkle .
lift_definition embed_transaction :: "transaction \<Rightarrow> transaction\<^sub>m" is
"Unblinded \<circ> map_prod (map_prod Unblinded Unblinded) (map embed_view)" .
lemma embed_transaction_simps [simp]:
"embed_transaction (Transaction cm pm views) =
Transaction\<^sub>m (Unblinded ((Unblinded cm, Unblinded pm), map embed_view views))"
for views unfolding Transaction_Transaction' by transfer simp
end
subsubsection \<open>Inclusion proof for the mediator\<close>
primrec mediator_view :: "view \<Rightarrow> view\<^sub>m" where
"mediator_view (View vm vd vs) =
View\<^sub>m (Unblinded ((Unblinded vm, Blinded (Content vd)), map mediator_view vs))"
primrec mediator_transaction_tree :: "transaction \<Rightarrow> transaction\<^sub>m" where
"mediator_transaction_tree (Transaction cm pm views) =
Transaction\<^sub>m (Unblinded ((Unblinded cm, Blinded (Content pm)), map mediator_view views))"
for views
lemma blinding_of_mediator_view [simp]: "blinding_of_view (mediator_view view) (embed_view view)"
by(induction view)(auto simp add: list.rel_map intro!: list.rel_refl_strong)
lemma blinding_of_mediator_transaction_tree:
"blinding_of_transaction (mediator_transaction_tree tt) (embed_transaction tt)"
by(cases tt)(auto simp add: list.rel_map intro: list.rel_refl_strong)
subsubsection \<open>Inclusion proofs for participants\<close>
text \<open>Next, we define a function for producing all transaction views from a given view,
and prove its properties.\<close>
type_synonym view_path_elem = "(view_metadata \<times> view_data) blindable \<times> view list \<times> view list"
type_synonym view_path = "view_path_elem list"
type_synonym view_zipper = "view_path \<times> view"
type_synonym view_path_elem\<^sub>m = "(view_metadata\<^sub>m \<times>\<^sub>m view_data\<^sub>m) \<times> view\<^sub>m list\<^sub>m \<times> view\<^sub>m list\<^sub>m"
type_synonym view_path\<^sub>m = "view_path_elem\<^sub>m list"
type_synonym view_zipper\<^sub>m = "view_path\<^sub>m \<times> view\<^sub>m"
context begin
interpretation view_merkle .
lift_definition zipper_of_view :: "view \<Rightarrow> view_zipper" is zipper_of_tree .
lift_definition view_of_zipper :: "view_zipper \<Rightarrow> view" is tree_of_zipper .
lift_definition zipper_of_view\<^sub>m :: "view\<^sub>m \<Rightarrow> view_zipper\<^sub>m" is zipper_of_tree\<^sub>m .
lift_definition view_of_zipper\<^sub>m :: "view_zipper\<^sub>m \<Rightarrow> view\<^sub>m" is tree_of_zipper\<^sub>m .
lemma view_of_zipper\<^sub>m_Nil [simp]: "view_of_zipper\<^sub>m ([], t) = t"
by transfer simp
lift_definition blind_view_path_elem :: "view_path_elem \<Rightarrow> view_path_elem\<^sub>m" is
"blind_path_elem embed_view_content hash_view_content" .
lift_definition blind_view_path :: "view_path \<Rightarrow> view_path\<^sub>m" is
"blind_path embed_view_content hash_view_content" .
lift_definition embed_view_path_elem :: "view_path_elem \<Rightarrow> view_path_elem\<^sub>m" is
"embed_path_elem embed_view_content" .
lift_definition embed_view_path :: "view_path \<Rightarrow> view_path\<^sub>m" is
"embed_path embed_view_content" .
lift_definition hash_view_path_elem :: "view_path_elem\<^sub>m \<Rightarrow> (view_content\<^sub>h \<times> view\<^sub>h list \<times> view\<^sub>h list)" is
"hash_path_elem hash_view_content" .
lift_definition zippers_view :: "view_zipper \<Rightarrow> view_zipper\<^sub>m list" is
"zippers_rose_tree embed_view_content hash_view_content" .
lemma embed_view_path_Nil [simp]: "embed_view_path [] = []"
by transfer(simp add: embed_path_def)
lemma zippers_view_same_hash:
assumes "z \<in> set (zippers_view (p, t))"
shows "hash_view (view_of_zipper\<^sub>m z) = hash_view (view_of_zipper\<^sub>m (embed_view_path p, embed_view t))"
using assms by transfer(rule zippers_rose_tree_same_hash')
lemma zippers_view_blinding_of:
assumes "z \<in> set (zippers_view (p, t))"
shows "blinding_of_view (view_of_zipper\<^sub>m z) (view_of_zipper\<^sub>m (blind_view_path p, embed_view t))"
using assms by transfer(rule zippers_rose_tree_blinding_of, unfold_locales)
end
primrec blind_view :: "view \<Rightarrow> view\<^sub>m" where
"blind_view (View vm vd subviews) =
View\<^sub>m (Blinded (Content ((Content vm, Content vd), map (hash_view \<circ> embed_view) subviews)))"
for subviews
lemma hash_blind_view: "hash_view (blind_view view) = hash_view (embed_view view)"
by(cases view) simp
primrec blind_transaction :: "transaction \<Rightarrow> transaction\<^sub>m" where
"blind_transaction (Transaction cm pm views) =
Transaction\<^sub>m (Blinded (Content ((Content cm, Content pm), map (hash_view \<circ> blind_view) views)))"
for views
lemma hash_blind_transaction:
"hash_transaction (blind_transaction transaction) = hash_transaction (embed_transaction transaction)"
by(cases transaction)(simp add: hash_blind_view)
typedecl participant
consts recipients :: "view_metadata \<Rightarrow> participant list"
fun view_recipients :: "view\<^sub>m \<Rightarrow> participant set" where
"view_recipients (View\<^sub>m (Unblinded ((Unblinded vm, vd), subviews))) = set (recipients vm)" for subviews
| "view_recipients _ = {}" \<comment> \<open>Sane default case\<close>
context fixes participant :: participant begin
definition view_trees_for :: "view \<Rightarrow> view\<^sub>m list" where
"view_trees_for view =
map view_of_zipper\<^sub>m
(filter (\<lambda>(_, t). participant \<in> view_recipients t)
(zippers_view ([], view)))"
primrec transaction_views_for :: "transaction \<Rightarrow> transaction\<^sub>m list" where
"transaction_views_for (Transaction cm pm views) =
map (\<lambda>view\<^sub>m. Transaction\<^sub>m (Unblinded ((Unblinded cm, Unblinded pm), view\<^sub>m)))
(concat (map (\<lambda>(l, v, r). map (\<lambda>v\<^sub>m. map blind_view l @ [v\<^sub>m] @ map blind_view r) (view_trees_for v)) (splits views)))"
for views
lemma view_trees_for_same_hash:
"vt \<in> set (view_trees_for view) \<Longrightarrow> hash_view vt = hash_view (embed_view view)"
by(auto simp add: view_trees_for_def dest: zippers_view_same_hash)
lemma transaction_views_for_same_hash:
"t\<^sub>m \<in> set (transaction_views_for t) \<Longrightarrow> hash_transaction t\<^sub>m = hash_transaction (embed_transaction t)"
by(cases t)(clarsimp simp add: splits_iff hash_blind_view view_trees_for_same_hash)
definition transaction_projection_for :: "transaction \<Rightarrow> transaction\<^sub>m" where
"transaction_projection_for t =
(let tvs = transaction_views_for t
in if tvs = [] then blind_transaction t else the (transaction.Merge (set tvs)))"
lemma transaction_projection_for_same_hash:
"hash_transaction (transaction_projection_for t) = hash_transaction (embed_transaction t)"
proof(cases "transaction_views_for t = []")
case True thus ?thesis by(simp add: transaction_projection_for_def Let_def hash_blind_transaction)
next
case False
then have "transaction.Merge (set (transaction_views_for t)) \<noteq> None"
by(intro transaction.Merge_defined)(auto simp add: transaction_views_for_same_hash)
with False show ?thesis
apply(clarsimp simp add: transaction_projection_for_def neq_Nil_conv simp del: transaction.Merge_insert)
apply(drule transaction.Merge_hash[symmetric], blast)
apply(auto intro: transaction_views_for_same_hash)
done
qed
lemma transaction_projection_for_upper:
assumes "t\<^sub>m \<in> set (transaction_views_for t)"
shows "blinding_of_transaction t\<^sub>m (transaction_projection_for t)"
proof -
from assms have "transaction.Merge (set (transaction_views_for t)) \<noteq> None"
by(intro transaction.Merge_defined)(auto simp add: transaction_views_for_same_hash)
with assms show ?thesis
by(auto simp add: transaction_projection_for_def Let_def dest: transaction.Merge_upper)
qed
end
end |