File size: 66,511 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
:: Analytical Metric Affine Spaces and Planes
::  by Henryk Oryszczyszyn and Krzysztof Pra\.zmowski

environ

 vocabularies NUMBERS, RLVECT_1, REAL_1, RELAT_1, ARYTM_3, ARYTM_1, CARD_1,
      SUPINF_2, ANALOAF, DIRAF, ZFMISC_1, STRUCT_0, SUBSET_1, XBOOLE_0,
      SYMSP_1, INCSP_1, AFF_1, ANALMETR;
 notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, DOMAIN_1, ORDINAL1, XXREAL_0,
      XCMPLX_0, XREAL_0, REAL_1, NUMBERS, STRUCT_0, DIRAF, RELSET_1, RLVECT_1,
      AFF_1, ANALOAF;
 constructors DOMAIN_1, XXREAL_0, REAL_1, MEMBERED, AFF_1;
 registrations SUBSET_1, RELSET_1, XXREAL_0, STRUCT_0, ANALOAF, DIRAF, XREAL_0,
      ORDINAL1;
 requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
 definitions STRUCT_0;
 equalities RLVECT_1;
 theorems RLVECT_1, RELAT_1, AFF_1, FUNCSDOM, DIRAF, ANALOAF, TARSKI, XCMPLX_0,
      XCMPLX_1, XREAL_1, XTUPLE_0;
 schemes RELSET_1, SUBSET_1;

begin

reserve V for RealLinearSpace;
reserve u,u1,u2,v,v1,v2,w,w1,y for VECTOR of V;
reserve a,a1,a2,b,b1,b2,c1,c2 for Real;
reserve x,z for set;

Lm1: v1 = b1*w + b2*y & v2 = c1*w + c2*y implies v1 + v2 = (b1 + c1)*w + (b2 +
c2)*y & v1 - v2 = (b1 - c1)*w + (b2 - c2)*y
proof
  assume
A1: v1 = b1*w + b2*y & v2 = c1*w + c2*y;
  hence v1 + v2 = ((b1*w + b2*y) + c1*w) + c2*y by RLVECT_1:def 3
    .= ((b1*w + c1*w) + b2*y) + c2*y by RLVECT_1:def 3
    .= ((b1 + c1)*w + b2*y) + c2*y by RLVECT_1:def 6
    .= (b1 + c1)*w + (b2*y + c2*y) by RLVECT_1:def 3
    .= (b1 + c1)*w + (b2 + c2)*y by RLVECT_1:def 6;
  thus v1 - v2 = (b1*w + b2*y)+(-(c1*w) + -(c2*y)) by A1,RLVECT_1:31
    .= (b1*w + b2*y)+(c1*(-w) + -(c2*y)) by RLVECT_1:25
    .= (b1*w + b2*y)+(c1*(-w) + c2*(-y)) by RLVECT_1:25
    .= (b1*w + b2*y)+((-c1)*w + c2*(-y)) by RLVECT_1:24
    .= (b1*w + b2*y)+((-c1)*w + (-c2)*y) by RLVECT_1:24
    .= ((b1*w + b2*y) + (-c1)*w) + (-c2)*y by RLVECT_1:def 3
    .= ((b1*w + (-c1)*w) + b2*y) + (-c2)*y by RLVECT_1:def 3
    .= ((b1 + (-c1))*w + b2*y) + (-c2)*y by RLVECT_1:def 6
    .= (b1 + (-c1))*w + (b2*y + (-c2)*y) by RLVECT_1:def 3
    .= (b1 - c1)*w + (b2 + (-c2))*y by RLVECT_1:def 6
    .= (b1 - c1)*w + (b2 - c2)*y;
end;

Lm2: for w,y holds 0*w + 0*y = 0.V
proof
  let w,y;
  thus 0*w + 0*y = 0.V + 0*y by RLVECT_1:10
    .=0.V + 0.V by RLVECT_1:10
    .= 0.V by RLVECT_1:4;
end;

Lm3: v = b1*w + b2*y implies a*v = (a*b1)*w + (a*b2)*y
proof
  assume v= b1*w + b2*y;
  hence a*v = a*(b1*w) + a*(b2*y) by RLVECT_1:def 5
    .= (a*b1)*w + a*(b2*y) by RLVECT_1:def 7
    .= (a*b1)*w + (a*b2)*y by RLVECT_1:def 7;
end;

definition
  let V;
  let w,y;
  pred Gen w,y means
  :Def1:
  (for u ex a1,a2 st u = a1*w + a2*y) &
  for a1,a2 st a1*w + a2*y = 0.V holds a1=0 & a2=0;
end;

definition
  let V;
  let u,v,w,y;
  pred u,v are_Ort_wrt w,y means
  :Def2:
  ex a1,a2,b1,b2 st u = a1*w + a2*y & v = b1*w + b2*y & a1*b1 + a2*b2 = 0;
end;

Lm4: Gen w,y & a1*w + a2*y = b1*w + b2*y implies a1=b1 & a2=b2
proof
  assume that
A1: Gen w,y and
A2: a1*w+a2*y=b1*w+b2*y;
  0.V = (a1*w+a2*y)-(b1*w+b2*y) by A2,RLVECT_1:15
    .= (a1-b1)*w+(a2-b2)*y by Lm1;
  then -b1 + a1 =0 & -b2 + a2 = 0 by A1;
  hence thesis;
end;

theorem Th1:
  for w,y st Gen w,y holds (u,v are_Ort_wrt w,y iff for a1,a2,b1,b2
  st u = a1*w + a2*y & v = b1*w + b2*y holds a1*b1 + a2*b2 = 0 )
proof
  let w,y such that
A1: Gen w,y;
  hereby
    assume u,v are_Ort_wrt w,y;
    then consider a1,a2,b1,b2 such that
A2: u = a1*w + a2*y and
A3: v = b1*w + b2*y and
A4: a1*b1 + a2*b2 = 0;
    let a19,a29,b19,b29 be Real;
    assume that
A5: u = a19*w + a29*y and
A6: v = b19*w + b29*y;
A7: b1=b19 by A1,A3,A6,Lm4;
    a1=a19 & a2=a29 by A1,A2,A5,Lm4;
    hence 0 = a19*b19 + a29*b29 by A1,A3,A4,A6,A7,Lm4;
  end;
  consider a1,a2 such that
A8: u = a1*w + a2*y by A1;
  consider b1,b2 such that
A9: v = b1*w + b2*y by A1;
  assume
  for a1,a2,b1,b2 st u = a1*w + a2*y & v = b1*w + b2*y holds a1*b1 + a2*b2 = 0;
  then a1*b1 + a2*b2 = 0 by A8,A9;
  hence thesis by A8,A9;
end;

Lm5: Gen w,y implies w<>0.V & y<>0.V
proof
  assume
A1: Gen w,y;
  thus w<>0.V
  proof
    assume w=0.V;
    then 0.V = 1*w by RLVECT_1:def 8
      .= 1*w + 0.V by RLVECT_1:4
      .= 1*w + 0*y by RLVECT_1:10;
    hence contradiction by A1;
  end;
  thus y<>0.V
  proof
    assume y=0.V;
    then 0.V = 1*y by RLVECT_1:def 8
      .= 0.V + 1*y by RLVECT_1:4
      .= 0*w + 1*y by RLVECT_1:10;
    hence contradiction by A1;
  end;
end;

theorem
  w,y are_Ort_wrt w,y
proof
A1: y = 0.V + y by RLVECT_1:4
    .= 0.V + 1*y by RLVECT_1:def 8
    .= 0*w + 1*y by RLVECT_1:10;
A2: 1*0 + 0*1 = 0;
  w = w + 0.V by RLVECT_1:4
    .= 1*w + 0.V by RLVECT_1:def 8
    .= 1*w + 0*y by RLVECT_1:10;
  hence thesis by A1,A2;
end;

theorem Th3:
  ex V st ex w,y st Gen w,y by Def1,FUNCSDOM:23;

theorem
  u,v are_Ort_wrt w,y implies v,u are_Ort_wrt w,y;

theorem Th5:
  Gen w,y implies for u,v holds u,0.V are_Ort_wrt w,y & 0.V,v are_Ort_wrt w,y
proof
  assume
A1: Gen w,y;
  let u,v;
  consider a1,a2 such that
A2: u = a1*w + a2*y by A1;
  consider b1,b2 such that
A3: v = b1*w + b2*y by A1;
A4: 0.V = 0.V + 0.V by RLVECT_1:4
    .= 0*w + 0.V by RLVECT_1:10
    .= 0*w + 0*y by RLVECT_1:10;
  a1*0 + a2*0 = 0;
  hence u,0.V are_Ort_wrt w,y by A2,A4;
  0*b1 + 0*b2 = 0;
  hence thesis by A3,A4;
end;

theorem Th6:
  u,v are_Ort_wrt w,y implies a*u,b*v are_Ort_wrt w,y
proof
  assume u,v are_Ort_wrt w,y;
  then consider a1,a2,b1,b2 such that
A1: u = a1*w + a2*y and
A2: v = b1*w + b2*y and
A3: a1*b1 + a2*b2 = 0;
A4: b*v = b*(b1*w) + b*(b2*y) by A2,RLVECT_1:def 5
    .= (b*b1)*w + b*(b2*y) by RLVECT_1:def 7
    .= (b*b1)*w + (b*b2)*y by RLVECT_1:def 7;
A5: (a*a1)*(b*b1) + (a*a2)*(b*b2) = b*a*(a1*b1 + a2*b2) .= 0 by A3;
  a*u = a*(a1*w) + a*(a2*y) by A1,RLVECT_1:def 5
    .= (a*a1)*w + a*(a2*y) by RLVECT_1:def 7
    .= (a*a1)*w + (a*a2)*y by RLVECT_1:def 7;
  hence thesis by A4,A5;
end;

theorem Th7:
  u,v are_Ort_wrt w,y implies a*u,v are_Ort_wrt w,y & u,b*v are_Ort_wrt w,y
proof
A1: v = 1*v & u = 1*u by RLVECT_1:def 8;
  assume u,v are_Ort_wrt w,y;
  hence thesis by A1,Th6;
end;

theorem Th8:
  Gen w,y implies for u ex v st u,v are_Ort_wrt w,y & v<>0.V
proof
  assume
A1: Gen w,y;
  let u;
  consider a1,a2 such that
A2: u = a1*w + a2*y by A1;
A3: now
    set v = a2*w + (-a1)*y;
    assume
A4: u<>0.V;
    take v;
    a1*a2 + a2*(-a1) = 0;
    hence u,v are_Ort_wrt w,y by A2;
    v<>0.V
    proof
      assume v=0.V;
      then a2 = 0 & -a1 = 0 by A1;
      then u = 0*w + 0.V by A2,RLVECT_1:10
        .= 0*w by RLVECT_1:4
        .= 0.V by RLVECT_1:10;
      hence contradiction by A4;
    end;
    hence v<>0.V;
  end;
  now
    assume
A5: u = 0.V;
    take v=w;
    thus u,v are_Ort_wrt w,y by A1,A5,Th5;
    thus v<>0.V by A1,Lm5;
  end;
  hence thesis by A3;
end;

theorem Th9:
  Gen w,y & v,u1 are_Ort_wrt w,y & v,u2 are_Ort_wrt w,y & v<>0.V
  implies ex a,b st a*u1 = b*u2 & (a<>0 or b<>0)
proof
  assume that
A1: Gen w,y and
A2: v,u1 are_Ort_wrt w,y and
A3: v,u2 are_Ort_wrt w,y and
A4: v<>0.V;
  consider a1,a2,b1,b2 such that
A5: v = a1*w + a2*y and
A6: u1 = b1*w + b2*y and
A7: a1*b1 + a2*b2 = 0 by A2;
  consider a19,a29,c1,c2 being Real such that
A8: v = a19*w + a29*y and
A9: u2 = c1*w + c2*y and
A10: a19*c1 + a29*c2 = 0 by A3;
A11: a2 = a29 by A1,A5,A8,Lm4;
A12: a1 = a19 by A1,A5,A8,Lm4;
A13: now
    assume
A14: a1=0;
    then
A15: a2<>0 by A4,A5,Lm2;
    then c2 = 0 by A10,A12,A11,A14,XCMPLX_1:6;
    then u2 = c1*w + 0.V by A9,RLVECT_1:10;
    then
A16: u2 = c1*w by RLVECT_1:4;
    b2 = 0 by A7,A14,A15,XCMPLX_1:6;
    then
A17: u1 = b1*w + 0.V by A6,RLVECT_1:10;
    then
A18: u1 = b1*w by RLVECT_1:4;
A19: now
      assume b1=0;
      then 1*u1 = 0*w by A18,RLVECT_1:def 8
        .= 0.V by RLVECT_1:10
        .= 0*u2 by RLVECT_1:10;
      hence thesis;
    end;
    c1*u1 = c1*(b1*w) by A17,RLVECT_1:4
      .= (b1*c1)*w by RLVECT_1:def 7
      .= b1*u2 by A16,RLVECT_1:def 7;
    hence thesis by A19;
  end;
  now
A20: c2*(((-a2)*b2)*a1") = b2*(((-a2)*c2)*a1");
    assume
A21: a1<>0;
A22: b1 = 1*b1 .= (a1*a1")*b1 by A21,XCMPLX_0:def 7
      .= (a1*b1)*a1"
      .= ((-a2)*b2)*a1" by A7;
A23: c1 = 1*c1 .= (a1*a1")*c1 by A21,XCMPLX_0:def 7
      .= (a1*c1)*a1"
      .= ((-a2)*c2)*a1" by A1,A5,A8,A10,A11,Lm4;
    then
A24: b2*u2 = (b2*(((-a2)*c2)*a1"))*w + (b2*c2)*y by A9,Lm3;
A25: now
      assume
A26:  c2<>0 or b2<>0;
      take a=c2,b=b2;
      thus a*u1 = b*u2 & (a<>0 or b<>0) by A6,A22,A24,A20,A26,Lm3;
    end;
    now
      assume b2=0 & c2=0;
      then 1*u1 = 1*u2 by A6,A9,A22,A23;
      hence thesis;
    end;
    hence thesis by A25;
  end;
  hence thesis by A13;
end;

theorem Th10:
  Gen w,y & u,v1 are_Ort_wrt w,y & u,v2 are_Ort_wrt w,y implies u,
  v1+v2 are_Ort_wrt w,y & u,v1-v2 are_Ort_wrt w,y
proof
  assume that
A1: Gen w,y and
A2: u,v1 are_Ort_wrt w,y and
A3: u,v2 are_Ort_wrt w,y;
  consider a1,a2,b1,b2 such that
A4: u = a1*w + a2*y and
A5: v1 = b1*w + b2*y and
A6: a1*b1 + a2*b2 = 0 by A2;
  consider a19,a29,c1,c2 being Real such that
A7: u = a19*w + a29*y and
A8: v2 = c1*w + c2*y and
A9: a19*c1 + a29*c2 = 0 by A3;
A10: a1 = a19 & a2 = a29 by A1,A4,A7,Lm4;
  then
A11: a1*(b1+c1) + a2*(b2+c2) = 0 by A6,A9;
A12: a1*(b1-c1) + a2*(b2-c2) = 0 by A6,A9,A10;
  v1 + v2 = (b1 + c1)*w + (b2 + c2)*y by A5,A8,Lm1;
  hence u,v1+v2 are_Ort_wrt w,y by A4,A11;
  v1 - v2 = (b1 - c1)*w + (b2 - c2)*y by A5,A8,Lm1;
  hence thesis by A4,A12;
end;

theorem Th11:
  Gen w,y & u,u are_Ort_wrt w,y implies u = 0.V
proof
A1: now
    let a such that
A2: a<>0;
    0 < a implies 0 < a*a by XREAL_1:129;
    hence 0 < a*a by A2,XREAL_1:130;
  end;
  assume that
A3: Gen w,y and
A4: u,u are_Ort_wrt w,y;
  consider a1,a2,b1,b2 such that
A5: u = a1*w + a2*y and
A6: u = b1*w + b2*y and
A7: a1*b1 + a2*b2 = 0 by A4;
A8: a1=b1 & a2=b2 by A3,A5,A6,Lm4;
A9: a2 = 0
  proof
    assume a2<>0;
    then 0 < a2*a2 by A1;
    hence contradiction by A7,A8,XREAL_1:29,63;
  end;
  a1 = 0
  proof
    assume a1<>0;
    then 0 < a1*a1 by A1;
    hence contradiction by A7,A8,XREAL_1:29,63;
  end;
  hence u = 0*w + 0.V by A5,A9,RLVECT_1:10
    .= 0*w by RLVECT_1:4
    .= 0.V by RLVECT_1:10;
end;

theorem Th12:
  Gen w,y & u,u1-u2 are_Ort_wrt w,y & u1,u2-u are_Ort_wrt w,y
  implies u2,u-u1 are_Ort_wrt w,y
proof
  assume that
A1: Gen w,y and
A2: u,u1-u2 are_Ort_wrt w,y and
A3: u1,u2-u are_Ort_wrt w,y;
  consider a1,a2 such that
A4: u = a1*w + a2*y by A1;
  consider c1,c2 such that
A5: u2 = c1*w + c2*y by A1;
  consider b1,b2 such that
A6: u1 = b1*w + b2*y by A1;
A7: u-u1 = (a1-b1)*w + (a2-b2)*y by A4,A6,Lm1;
  u2-u = (c1-a1)*w + (c2-a2)*y by A4,A5,Lm1;
  then
A8: b1*(c1-a1) + b2*(c2-a2) = 0 by A1,A3,A6,Th1;
  u1-u2 = (b1-c1)*w + (b2-c2)*y by A6,A5,Lm1;
  then a1*(b1-c1) + a2*(b2-c2) = 0 by A1,A2,A4,Th1;
  then 0 = c1*(a1-b1) + c2*(a2-b2) by A8;
  hence thesis by A5,A7;
end;

theorem Th13:
  Gen w,y & u <> 0.V implies ex a st v - a*u,u are_Ort_wrt w,y
proof
  assume that
A1: Gen w,y and
A2: u <> 0.V;
  consider a1,a2 such that
A3: u = a1*w + a2*y by A1;
  consider b1,b2 such that
A4: v = b1*w + b2*y by A1;
  set a = (b1*a1 + b2*a2)*(a1*a1 + a2*a2)";
  a*u = (a*a1)*w + (a*a2)*y by A3,Lm3;
  then
A5: v - a*u = (b1-a*a1)*w + (b2-a*a2)*y by A4,Lm1;
A6: (b1-a*a1)*a1 + (b2-a*a2)*a2 = (a1*b1 + a2*b2) + (-1)*(a1*(a*a1) + a2*(a
  *a2));
A7: a1*a1 + a2*a2 <> 0 by A1,A2,Th11,A3,Def2;
  (-1)*(a1*(a*a1) + a2*(a*a2)) = (-1)*((b1*a1 + b2*a2)*((a1*a1 + a2*a2)"*
  (a1*a1 + a2*a2)))
    .= (-1)*((b1*a1 + b2*a2)*1) by A7,XCMPLX_0:def 7
    .= -(a1*b1 + a2*b2);
  then v - a*u,u are_Ort_wrt w,y by A3,A5,A6;
  hence thesis;
end;

theorem Th14:
  (u,v // u1,v1 or u,v // v1,u1) iff ex a,b st a*(v-u) = b*(v1-u1)
  & (a<>0 or b<>0)
proof
A1: now
    let w,y,w1,y1 be VECTOR of V;
    given a,b such that
A2: a*(y-w) = b*(y1-w1) & a=0 and
A3: b<>0;
    0.V = b*(y1-w1) by A2,RLVECT_1:10;
    then y1-w1 = 0.V by A3,RLVECT_1:11;
    then y1 = w1 by RLVECT_1:21;
    hence w,y // w1,y1 by ANALOAF:9;
  end;
A4: now
    let w,y,w1,y1 be VECTOR of V;
    given a,b such that
A5: a*(y-w) = b*(y1-w1) and
A6: 0<a and
A7: b<0;
A8: a*(y-w) = b*(-(w1-y1)) by A5,RLVECT_1:33
      .= (-b)*(w1-y1) by RLVECT_1:24;
    0<-b by A7,XREAL_1:58;
    hence w,y // y1,w1 by A6,A8,ANALOAF:def 1;
  end;
A9: now
    given a,b such that
A10: a*(v-u) = b*(v1-u1) and
A11: a<>0 or b<>0;
A12: now
A13:  now
        assume a<0 & b<0;
        then
A14:    0< -a & 0< -b by XREAL_1:58;
        (-a)*(u-v) = a*(-(u-v)) by RLVECT_1:24
          .= b*(v1-u1) by A10,RLVECT_1:33
          .= b*(-(u1-v1)) by RLVECT_1:33
          .= (-b)*(u1-v1) by RLVECT_1:24;
        then v,u // v1,u1 by A14,ANALOAF:def 1;
        hence u,v // u1,v1 or u,v // v1,u1 by ANALOAF:12;
      end;
A15:  now
        assume a<0 & 0<b;
        then u1,v1 // v,u by A4,A10;
        then v,u // u1, v1 by ANALOAF:12;
        hence u,v // u1,v1 or u,v // v1,u1 by ANALOAF:12;
      end;
      assume
A16:  a<>0 & b<>0;
      0<a & b<0 implies ( u,v // u1,v1 or u,v // v1,u1) by A4,A10;
      hence u,v // u1,v1 or u,v // v1,u1 by A10,A16,A15,A13,ANALOAF:def 1;
    end;
    now
      assume b=0;
      then u1,v1 // u,v by A1,A10,A11;
      hence u,v // u1,v1 or u,v // v1,u1 by ANALOAF:12;
    end;
    hence u,v // u1,v1 or u,v // v1,u1 by A1,A10,A12;
  end;
A17: now
    let w,y,w1,y1 be VECTOR of V such that
A18: w,y // w1,y1;
A19: now
      assume w=y;
      then 1*(y-w) = 0.V by RLVECT_1:10,15
        .= 0*(y1-w1) by RLVECT_1:10;
      hence ex a,b st a*(y-w) = b*(y1-w1) & (a<>0 or b<>0);
    end;
A20: now
      assume w1=y1;
      then 1*(y1-w1) = 0.V by RLVECT_1:10,15
        .= 0*(y-w) by RLVECT_1:10;
      hence ex a,b st a*(y-w) = b*(y1-w1) & (a<>0 or b<>0);
    end;
    (ex a,b st 0<a & 0<b & a*(y-w)=b*(y1-w1)) implies ex a,b st a*(y-w) =
    b*(y1-w1) & (a<>0 or b<>0);
    hence ex a,b st a*(y-w) = b*(y1-w1) & (a<>0 or b<>0) by A18,A19,A20,
ANALOAF:def 1;
  end;
  now
    assume u,v // v1,u1;
    then consider a,b such that
A21: a*(v-u) = b*(u1-v1) and
A22: a<>0 or b<>0 by A17;
A23: a<>0 or -b<>0 by A22;
    (-b)*(v1-u1) = b*(-(v1-u1)) by RLVECT_1:24
      .= a*(v-u) by A21,RLVECT_1:33;
    hence ex a,b st a*(v-u) = b*(v1-u1) & (a<>0 or b<>0 ) by A23;
  end;
  hence thesis by A17,A9;
end;

theorem Th15:
  [[u,v],[u1,v1]] in lambda(DirPar(V)) iff ex a,b st a*(v-u) = b*(
  v1-u1) & (a<>0 or b<>0)
proof
  [[u,v],[u1,v1]] in lambda(DirPar(V)) iff [[u,v],[u1,v1]] in DirPar(V) or
  [[u,v],[v1,u1]] in DirPar(V) by DIRAF:def 1;
  then
  [[u,v],[u1,v1]] in lambda(DirPar(V)) iff (u,v // u1,v1 or u,v // v1,u1)
  by ANALOAF:22;
  hence thesis by Th14;
end;

definition
  let V;
  let u,u1,v,v1,w,y;
  pred u,u1,v,v1 are_Ort_wrt w,y means

  u1-u,v1-v are_Ort_wrt w,y;
end;

definition
  let V;
  let w,y;
  func Orthogonality(V,w,y) -> Relation of [:the carrier of V,the carrier of V
  :] means
  :Def4:
for x,z being object
    holds [x,z] in it iff ex u,u1,v,v1 st x=[u,u1] & z=[v,v1] & u,u1,v,v1
  are_Ort_wrt w,y;
  existence
  proof
    defpred P[object, object] means
ex u,u1,v,v1 st $1=[u,u1] & $2=[v,v1] & u,u1,v,
    v1 are_Ort_wrt w,y;
    set VV = [:the carrier of V,the carrier of V:];
    consider P being Relation of VV,VV such that
A1: for x,z being object holds [x,z] in P iff x in VV & z in VV & P[x,z] from
    RELSET_1:sch 1;
    take P;
    let x,z be object;
    thus [x,z] in P implies ex u,u1,v,v1 st x=[u,u1] & z=[v,v1] & u,u1,v,v1
    are_Ort_wrt w,y by A1;
    assume ex u,u1,v,v1 st x=[u,u1] & z=[v,v1] & u,u1,v,v1 are_Ort_wrt w,y;
    hence thesis by A1;
  end;
  uniqueness
  proof
    let P,Q be Relation of [:the carrier of V,the carrier of V:] such that
A2: for x,z being object holds
     [x,z] in P iff ex u,u1,v,v1 st x=[u,u1] & z=[v,v1] & u,u1,v,v1
    are_Ort_wrt w,y and
A3:  for x,z being object holds
     [x,z] in Q iff ex u,u1,v,v1 st x=[u,u1] & z=[v,v1] & u,u1,v,v1
    are_Ort_wrt w,y;
    for x,z being object holds [x,z] in P iff [x,z] in Q
    proof
      let x,z be object;
      [x,z] in P iff ex u,u1,v,v1 st x=[u,u1] & z=[v,v1] & u,u1,v,v1
      are_Ort_wrt w,y by A2;
      hence thesis by A3;
    end;
    hence thesis by RELAT_1:def 2;
  end;
end;

reserve p,p1,q,q1 for Element of Lambda(OASpace(V));

theorem Th16:
  the carrier of Lambda(OASpace(V)) = the carrier of V
proof
  Lambda(OASpace(V)) = AffinStruct(#the carrier of OASpace(V), lambda(the
CONGR of OASpace(V))#) & OASpace(V) = AffinStruct (#the carrier of V, DirPar(V)
  #) by ANALOAF:def 4,DIRAF:def 2;
  hence thesis;
end;

theorem Th17:
  the CONGR of Lambda(OASpace(V)) = lambda(DirPar(V))
proof
  Lambda(OASpace(V)) = AffinStruct(#the carrier of OASpace(V), lambda(the
CONGR of OASpace(V))#) & OASpace(V) = AffinStruct (#the carrier of V, DirPar(V)
  #) by ANALOAF:def 4,DIRAF:def 2;
  hence thesis;
end;

theorem
  p=u & q=v & p1=u1 & q1=v1 implies (p,q // p1,q1 iff ex a,b st a*(v-u)
  = b*(v1-u1) & (a<>0 or b<>0) )
proof
  assume
A1: p=u & q=v & p1=u1 & q1=v1;
  hereby
    assume p,q // p1,q1;
    then [[p,q],[p1,q1]] in the CONGR of Lambda(OASpace(V)) by ANALOAF:def 2;
    then [[u,v],[u1,v1]] in lambda(DirPar(V)) by A1,Th17;
    hence ex a,b st a*(v-u) = b*(v1-u1) & (a<>0 or b<>0) by Th15;
  end;
  given a,b such that
A2: a*(v-u) = b*(v1-u1) &( a<>0 or b<>0);
  [[u,v],[u1,v1]] in lambda(DirPar(V)) by A2,Th15;
  then [[p,q],[p1,q1]] in the CONGR of Lambda(OASpace(V)) by A1,Th17;
  hence thesis by ANALOAF:def 2;
end;

definition
  struct(1-sorted) OrtStr (# carrier -> set,
      orthogonality -> Relation of [:the carrier,the carrier:] #);
end;

definition
  struct(AffinStruct,OrtStr) ParOrtStr (# carrier -> set,
   CONGR, orthogonality -> Relation of [:the carrier,the carrier:] #);
end;

registration
  cluster non empty for ParOrtStr;
  existence
  proof
    set A = the non empty set,C = the Relation of [:A,A:];
    take ParOrtStr (#A,C,C#);
    thus the carrier of ParOrtStr (#A,C,C#) is non empty;
  end;
end;

registration
  cluster non empty for OrtStr;
  existence
  proof
    set A = the non empty set,C = the Relation of [:A,A:];
    take OrtStr (#A,C#);
    thus the carrier of OrtStr (#A,C#) is non empty;
  end;
end;

reserve POS for non empty ParOrtStr;

definition
  let POS be OrtStr;
  let a,b,c,d be Element of POS;

  pred a,b _|_ c,d means

  [[a,b],[c,d]] in the orthogonality of POS;
end;

definition
  let V,w,y;
  func AMSpace(V,w,y) -> strict ParOrtStr equals
  ParOrtStr(#the carrier of V,
    lambda(DirPar(V)),Orthogonality(V,w,y)#);
  correctness;
end;

registration
  let V,w,y;
  cluster AMSpace(V,w,y) -> non empty;
  coherence;
end;

theorem
  the carrier of AMSpace(V,w,y) = the carrier of V & the CONGR of
  AMSpace(V,w,y) = lambda(DirPar(V)) & the orthogonality of AMSpace(V,w,y) =
  Orthogonality(V,w,y);

definition
::$CD
end;

registration
  let POS;
  cluster the AffinStruct of POS -> non empty;
  coherence;
end;

theorem Th20:
  the AffinStruct of AMSpace(V,w,y) = Lambda(OASpace(V))
proof
  set Y = OASpace(V);
  the carrier of Lambda(Y) = the carrier of V by Th16;
  hence thesis by Th17;
end;

reserve p,p1,p2,q,q1,r,r1,r2 for Element of AMSpace(V,w,y);

theorem Th21:
  p=u & p1=u1 & q=v & q1=v1 implies (p,q _|_ p1,q1 iff u,v,u1,v1
  are_Ort_wrt w,y)
proof
  assume
A1: p=u & p1=u1 & q=v & q1=v1;
  hereby
    assume p,q _|_ p1,q1;
    then consider u9,v9,u19,v19 being VECTOR of V such that
A2: [u,v] = [u9,v9] and
A3: [u1,v1] = [u19,v19] and
A4: u9,v9,u19,v19 are_Ort_wrt w,y by A1,Def4;
A5: u1=u19 by A3,XTUPLE_0:1;
    u=u9 & v=v9 by A2,XTUPLE_0:1;
    hence u,v,u1,v1 are_Ort_wrt w,y by A3,A4,A5,XTUPLE_0:1;
  end;
  assume u,v,u1,v1 are_Ort_wrt w,y;
  hence thesis by A1,Def4;
end;

theorem Th22:
  p=u & q=v & p1=u1 & q1=v1 implies (p,q // p1,q1 iff ex a,b st a*
  (v-u) = b*(v1-u1) & (a<>0 or b<>0) )
proof
  assume
A1: p=u & q=v & p1=u1 & q1=v1;
  hereby
    assume p,q // p1,q1;
    then [[p,q],[p1,q1]] in the CONGR of AMSpace(V,w,y) by ANALOAF:def 2;
    hence ex a,b st a*(v-u) = b*(v1-u1) & (a<>0 or b<>0) by A1,Th15;
  end;
  given a,b such that
A2: a*(v-u) = b*(v1-u1) &( a<>0 or b<>0);
  [[u,v],[u1,v1]] in lambda(DirPar(V)) by A2,Th15;
  hence thesis by A1,ANALOAF:def 2;
end;

theorem Th23:
  p,q _|_ p1,q1 implies p1,q1 _|_ p,q
proof
  reconsider u=p,v=q,u1=p1,v1=q1 as Element of V;
  assume p,q _|_ p1,q1;
  then u,v,u1,v1 are_Ort_wrt w,y by Th21;
  then v-u,v1-u1 are_Ort_wrt w,y;
  then v1-u1,v-u are_Ort_wrt w,y;
  then u1,v1,u,v are_Ort_wrt w,y;
  hence thesis by Th21;
end;

theorem Th24:
  p,q _|_ p1,q1 implies p,q _|_ q1,p1
proof
  reconsider u=p,v=q,u1=p1,v1=q1 as Element of V;
  assume p,q _|_ p1,q1;
  then u,v,u1,v1 are_Ort_wrt w,y by Th21;
  then v-u,v1-u1 are_Ort_wrt w,y;
  then
A1: v-u,(-1)*(v1-u1) are_Ort_wrt w,y by Th7;
  (-1)*(v1-u1) = -(v1-u1) by RLVECT_1:16
    .= u1-v1 by RLVECT_1:33;
  then u,v,v1,u1 are_Ort_wrt w,y by A1;
  hence thesis by Th21;
end;

theorem Th25:
  Gen w,y implies for p,q,r holds p,q _|_ r,r
proof
  assume
A1: Gen w,y;
  let p,q,r;
  reconsider u=p,v=q,u1=r as Element of V;
  u1-u1 = 0.V by RLVECT_1:15;
  then v-u,u1-u1 are_Ort_wrt w,y by A1,Th5;
  then u,v,u1,u1 are_Ort_wrt w,y;
  hence thesis by Th21;
end;

theorem Th26:
  p,p1 _|_ q,q1 & p,p1 // r,r1 implies p=p1 or q,q1 _|_ r,r1
proof
  assume that
A1: p,p1 _|_ q,q1 and
A2: p,p1 // r,r1;
  reconsider u=p,v=p1,u1=q,v1=q1,u2=r,v2=r1 as Element of V;
  consider a,b such that
A3: a*(v-u) = b*(v2-u2) and
A4: a<>0 or b<>0 by A2,Th22;
  assume
A5: p<>p1;
  b<>0
  proof
    assume
A6: b=0;
    then a*(v-u) = 0.V by A3,RLVECT_1:10;
    then v-u = 0.V by A4,A6,RLVECT_1:11;
    hence contradiction by A5,RLVECT_1:21;
  end;
  then
A7: v2-u2 = b"*(a*(v-u)) by A3,ANALOAF:5
    .= (b"*a)*(v-u) by RLVECT_1:def 7;
  u,v,u1,v1 are_Ort_wrt w,y by A1,Th21;
  then v-u,v1-u1 are_Ort_wrt w,y;
  then v2-u2,v1-u1 are_Ort_wrt w,y by A7,Th7;
  then v1-u1,v2-u2 are_Ort_wrt w, y;
  then u1,v1,u2,v2 are_Ort_wrt w,y;
  hence thesis by Th21;
end;

theorem Th27:
  Gen w,y implies for p,q,r ex r1 st p,q _|_ r,r1 & r<>r1
proof
  assume
A1: Gen w,y;
  let p,q,r;
  reconsider u=p,v=q,u1=r as Element of V;
  consider v2 such that
A2: v-u,v2 are_Ort_wrt w,y and
A3: v2<>0.V by A1,Th8;
  set v1 = u1+v2;
  reconsider r1=v1 as Element of AMSpace(V,w,y);
A4: v1-u1 = v2+(u1-u1) by RLVECT_1:def 3
    .= v2+0.V by RLVECT_1:15
    .= v2 by RLVECT_1:4;
  then u,v,u1,v1 are_Ort_wrt w,y by A2;
  then
A5: p,q _|_ r,r1 by Th21;
  r<>r1 by A3,A4,RLVECT_1:15;
  hence thesis by A5;
end;

theorem Th28:
  Gen w,y & p,p1 _|_ q,q1 & p,p1 _|_ r,r1 implies p=p1 or q,q1 // r,r1
proof
  assume that
A1: Gen w,y and
A2: p,p1 _|_ q,q1 and
A3: p,p1 _|_ r,r1;
  reconsider u=p,v=p1,u1=q,v1=q1,u2=r,v2=r1 as Element of V;
  u,v,u2,v2 are_Ort_wrt w,y by A3,Th21;
  then
A4: v-u,v2-u2 are_Ort_wrt w,y;
  assume p<>p1;
  then
A5: v-u <> 0.V by RLVECT_1:21;
  u,v,u1,v1 are_Ort_wrt w,y by A2,Th21;
  then v-u,v1-u1 are_Ort_wrt w,y;
  then ex a,b st a*(v1-u1) = b*(v2-u2) & (a<>0 or b<>0) by A1,A4,A5,Th9;
  hence thesis by Th22;
end;

theorem Th29:
  Gen w,y & p,q _|_ r,r1 & p,q _|_ r,r2 implies p,q _|_ r1,r2
proof
  assume that
A1: Gen w,y and
A2: p,q _|_ r,r1 and
A3: p,q _|_ r,r2;
  reconsider u=p,v=q,w1=r,v1=r1,v2=r2 as Element of V;
  u,v,w1,v2 are_Ort_wrt w,y by A3,Th21;
  then
A4: v-u,v2-w1 are_Ort_wrt w,y;
A5: (v2-w1)-(v1-w1) = v2-((v1-w1)+w1) by RLVECT_1:27
    .= v2-(v1-(w1-w1)) by RLVECT_1:29
    .= v2-(v1-0.V) by RLVECT_1:15
    .= v2-v1 by RLVECT_1:13;
  u,v,w1,v1 are_Ort_wrt w,y by A2,Th21;
  then v-u,v1-w1 are_Ort_wrt w,y;
  then v-u,(v2-w1)-(v1-w1) are_Ort_wrt w,y by A1,A4,Th10;
  then u,v,v1,v2 are_Ort_wrt w,y by A5;
  hence thesis by Th21;
end;

theorem Th30:
  Gen w,y & p,q _|_ p,q implies p = q
proof
  assume that
A1: Gen w,y and
A2: p,q _|_ p,q;
  reconsider u=p,v=q as Element of V;
  u,v,u,v are_Ort_wrt w,y by A2,Th21;
  then v-u,v-u are_Ort_wrt w,y;
  then v-u = 0.V by A1,Th11;
  hence thesis by RLVECT_1:21;
end;

theorem
  Gen w,y & p,q _|_ p1,p2 & p1,q _|_ p2,p implies p2,q _|_ p,p1
proof
  assume that
A1: Gen w,y and
A2: p,q _|_ p1,p2 and
A3: p1,q _|_ p2,p;
  reconsider u=p,v=q,u1=p1,u2=p2 as Element of V;
  u,v,u1,u2 are_Ort_wrt w,y by A2,Th21;
  then
A4: v-u,u2-u1 are_Ort_wrt w,y;
  u1,v,u2,u are_Ort_wrt w,y by A3,Th21;
  then
A5: v-u1,u-u2 are_Ort_wrt w,y;
A6: now
    let u,v,w;
    thus (u-v)-(u-w) = (w-u) + (u-v) by RLVECT_1:33
      .= w-v by ANALOAF:1;
  end;
  then
A7: (v-u)-(v-u1)=u1-u;
  (v-u1)-(v-u2)=u2-u1 & (v-u2)-(v-u)=u-u2 by A6;
  then v-u2,(v-u)-(v-u1) are_Ort_wrt w,y by A1,A4,A5,Th12;
  then u2,v,u,u1 are_Ort_wrt w,y by A7;
  hence thesis by Th21;
end;

theorem Th32:
  Gen w,y & p<>p1 implies for q ex q1 st p,p1 // p,q1 & p,p1 _|_ q1,q
proof
  assume that
A1: Gen w,y and
A2: p<>p1;
  let q;
  reconsider u=p,v=q,u1=p1 as Element of V;
  u1-u <> 0.V by A2,RLVECT_1:21;
  then consider a such that
A3: (v-u) - a*(u1-u),u1-u are_Ort_wrt w,y by A1,Th13;
  set v1 = u + a*(u1-u);
  reconsider q1=v1 as Element of AMSpace(V,w,y);
  v-v1 = (v-u)- a*(u1-u) by RLVECT_1:27;
  then u1-u,v-v1 are_Ort_wrt w,y by A3;
  then u,u1,v1,v are_Ort_wrt w,y;
  then
A4: p,p1 _|_ q1,q by Th21;
  a*(u1-u) = a*(u1-u)+0.V by RLVECT_1:4
    .= a*(u1-u)+(u-u) by RLVECT_1:15
    .= v1-u by RLVECT_1:def 3
    .= 1*(v1-u) by RLVECT_1:def 8;
  then p,p1 // p,q1 by Th22;
  hence thesis by A4;
end;

consider V0 being RealLinearSpace such that
Lm6: ex w,y being VECTOR of V0 st Gen w,y by Th3;
consider w0,y0 being VECTOR of V0 such that
Lm7: Gen w0,y0 by Lm6;

Lm8: now
  set X = AffinStruct(#the carrier of AMSpace(V0,w0,y0), the CONGR of AMSpace(
    V0,w0,y0)#);
A1: X = Lambda(OASpace(V0)) by Th20;
  for a,b being Real st a*w0 + b*y0 = 0.V0 holds a=0 & b=0 by Lm7;
  then OASpace(V0) is OAffinSpace by ANALOAF:26;
  hence
  AffinStruct(#the carrier of AMSpace(V0,w0,y0), the CONGR of AMSpace(V0,
w0,y0)#) is AffinSpace & (for a,b,c,d,p,q,r,s being Element of AMSpace(V0,w0,y0
) holds (a,b _|_ a,b implies a=b) & a,b _|_ c,c & (a,b _|_ c,d implies a,b _|_
d,c & c,d _|_ a,b) & (a,b _|_ p,q & a,b // r,s implies p,q _|_ r,s or a=b) & (a
  ,b _|_ p,q & a,b _|_ p,s implies a,b _|_ q,s)) & (for a,b,c being Element of
AMSpace(V0,w0,y0) st a<>b ex x being Element of AMSpace(V0,w0,y0) st a,b // a,x
  & a,b _|_ x,c) & for a,b,c being Element of AMSpace(V0,w0,y0) ex x being
  Element of AMSpace(V0,w0,y0) st a,b _|_ c,x & c <>x by A1,Lm7,Th23,Th24,Th25
,Th26,Th27,Th29,Th30,Th32,DIRAF:41;
end;

definition
  let IT be non empty ParOrtStr;
  attr IT is OrtAfSp-like means
  :Def7:
  AffinStruct(#the carrier of IT,the
CONGR of IT#) is AffinSpace & (for a,b,c,d,p,q,r,s being Element of IT holds (a
,b _|_ a,b implies a=b) & a,b _|_ c,c & (a,b _|_ c,d implies a,b _|_ d,c & c,d
_|_ a,b) & (a,b _|_ p,q & a,b // r,s implies p,q _|_ r,s or a=b) & (a,b _|_ p,q
& a,b _|_ p,s implies a,b _|_ q,s)) & (for a,b,c being Element of IT st a<>b ex
x being Element of IT st a,b // a,x & a,b _|_ x,c) & for a,b,c being Element of
  IT ex x being Element of IT st a,b _|_ c,x & c <>x;
end;

registration
  cluster strict OrtAfSp-like for non empty ParOrtStr;
  existence by Def7,Lm8;
end;

definition
  mode OrtAfSp is OrtAfSp-like non empty ParOrtStr;
end;

theorem
  Gen w,y implies AMSpace(V,w,y) is OrtAfSp
proof
  set POS = AMSpace(V,w,y);
  set X = AffinStruct(#the carrier of POS,the CONGR of POS#);
  assume
A1: Gen w,y;
  then
A2: for a,b,c be Element of POS holds ex x being Element of POS st a,b _|_ c
  ,x & c <>x by Th27;
A3: X = Lambda(OASpace(V)) by Th20;
  for a,b being Real st a*w + b*y = 0.V holds a=0 & b=0 by A1;
  then OASpace(V) is OAffinSpace by ANALOAF:26;
  then
A4: X is AffinSpace by A3,DIRAF:41;
  ( for a,b,c,d,p,q,r,s be Element of POS holds (a,b _|_ a,b implies a=b)
& a,b _|_ c,c & (a,b _|_ c,d implies a,b _|_ d,c & c,d _|_ a,b) & (a,b _|_ p,q
& a,b // r,s implies p,q _|_ r,s or a=b) & (a,b _|_ p,q & a,b _|_ p,s implies a
,b _|_ q,s))& for a,b,c be Element of POS holds a<>b implies ex x being Element
  of POS st a,b // a,x & a,b _|_ x,c by A1,Th23,Th24,Th25,Th26,Th29,Th30,Th32;
  hence thesis by A2,A4,Def7;
end;

consider V0 being RealLinearSpace such that
Lm9: ex w,y being VECTOR of V0 st Gen w,y by Th3;
consider w0,y0 being VECTOR of V0 such that
Lm10: Gen w0,y0 by Lm9;

Lm11: now
  set X = AffinStruct(#the carrier of AMSpace(V0,w0,y0), the CONGR of AMSpace(
    V0,w0,y0)#);
A1: X = Lambda(OASpace(V0)) by Th20;
  ( for a,b being Real st a*w0 + b*y0 = 0.V0 holds a=0 & b=0)& for w1
  being VECTOR of V0 ex a,b being Real st w1 = a*w0+b*y0 by Lm10;
  then OASpace(V0) is OAffinPlane by ANALOAF:28;
  hence
  AffinStruct(#the carrier of AMSpace(V0,w0,y0), the CONGR of AMSpace(V0,
w0,y0)#) is AffinPlane & (for a,b,c,d,p,q,r,s being Element of AMSpace(V0,w0,y0
) holds (a,b _|_ a,b implies a=b) & a,b _|_ c,c & (a,b _|_ c,d implies a,b _|_
d,c & c,d _|_ a,b) & (a,b _|_ p,q & a,b // r,s implies p,q _|_ r,s or a=b) & (a
,b _|_ p,q & a,b _|_ r,s implies p,q // r,s or a=b)) & for a,b,c being Element
of AMSpace(V0,w0,y0) ex x being Element of AMSpace(V0,w0,y0) st a,b _|_ c,x & c
  <>x by A1,Lm10,Th23,Th24,Th25,Th26,Th27,Th28,Th30,DIRAF:45;
end;

definition
  let IT be non empty ParOrtStr;
  attr IT is OrtAfPl-like means
  :Def8:
  AffinStruct(#the carrier of IT,the
CONGR of IT#) is AffinPlane & (for a,b,c,d,p,q,r,s being Element of IT holds (a
,b _|_ a,b implies a=b) & a,b _|_ c,c & (a,b _|_ c,d implies a,b _|_ d,c & c,d
_|_ a,b) & (a,b _|_ p,q & a,b // r,s implies p,q _|_ r,s or a=b) & (a,b _|_ p,q
& a,b _|_ r,s implies p,q // r,s or a=b)) & for a,b,c being Element of IT ex x
  being Element of IT st a,b _|_ c,x & c <>x;
end;

registration
  cluster strict OrtAfPl-like for non empty ParOrtStr;
  existence by Def8,Lm11;
end;

definition
  mode OrtAfPl is OrtAfPl-like non empty ParOrtStr;
end;

theorem
  Gen w,y implies AMSpace(V,w,y) is OrtAfPl
proof
  set POS = AMSpace(V,w,y);
  set X = AffinStruct(#the carrier of POS,the CONGR of POS#);
A1: X = Lambda(OASpace(V)) by Th20;
  assume
A2: Gen w,y;
  then
  ( for a,b being Real st a*w + b*y = 0.V holds a=0 & b=0)&
  for w1 ex a,b being Real st w1 = a*w+b*y;
  then OASpace(V) is OAffinPlane by ANALOAF:28;
  then
A3: X is AffinPlane by A1,DIRAF:45;
  ( for a,b,c,d,p,q,r,s be Element of POS holds (a,b _|_ a,b implies a=b)
& a,b _|_ c,c & (a,b _|_ c,d implies a,b _|_ d,c & c,d _|_ a,b) & (a,b _|_ p,q
& a,b // r,s implies p,q _|_ r,s or a=b) & (a,b _|_ p,q & a,b _|_ r,s implies p
,q // r,s or a=b))& for a,b,c be Element of POS holds ex x being Element of POS
  st a,b _|_ c,x & c <>x by A2,Th23,Th24,Th25,Th26,Th27,Th28,Th30;
  hence thesis by A3,Def8;
end;

theorem
  for x being set holds (x is Element of POS iff
    x is Element of the AffinStruct of POS);

theorem Th36:
  for a,b,c,d being Element of POS, a9,b9,c9,d9 being Element of
  the AffinStruct of POS st a=a9& b=b9 & c = c9 & d=d9
   holds (a,b // c,d iff a9,b9 // c9,d9)
proof
  set AF = the AffinStruct of POS;
  let a,b,c,d be Element of POS, a9,b9,c9,d9 be Element of the AffinStruct of
  POS such that
A1: a=a9 & b=b9 & c = c9 & d=d9;
  hereby
    assume a,b // c,d;
    then [[a9,b9],[c9,d9]] in the CONGR of AF by A1,ANALOAF:def 2;
    hence a9,b9 // c9,d9 by ANALOAF:def 2;
  end;
  assume a9,b9 // c9,d9;
  then [[a,b],[c,d]] in the CONGR of POS by A1,ANALOAF:def 2;
  hence thesis by ANALOAF:def 2;
end;

registration
  let POS be OrtAfSp;
  cluster the AffinStruct of POS -> AffinSpace-like non trivial;
  correctness by Def7;
end;

registration
  let POS be OrtAfPl;
  cluster the AffinStruct of POS -> 2-dimensional AffinSpace-like non trivial;
  correctness by Def8;
end;

theorem Th37:
  for POS being OrtAfPl holds POS is OrtAfSp
proof
  let POS be OrtAfPl;
  for a,b,c,d,p,q,r,s being Element of POS holds (a,b _|_ p,q & a,b _|_ p,
  s implies a,b _|_ q,s)
  proof
    let a,b,c,d,p,q,r,s be Element of POS such that
A1: a,b _|_ p,q and
A2: a,b _|_ p,s;
A3: now
      reconsider p9=p,q9=q,s9=s as Element of the AffinStruct of POS;
      assume that
A4:   a<>b and
A5:   p<>q;
      p,q // p,s by A1,A2,A4,Def8;
      then p9,q9 // p9,s9 by Th36;
      then q9,p9 // q9,s9 by DIRAF:40;
      then p9,q9 // q9,s9 by AFF_1:4;
      then
A6:   p,q // q,s by Th36;
      p,q _|_ a,b by A1,Def8;
      hence thesis by A5,A6,Def8;
    end;
    now
      assume a=b;
      then q,s _|_ a,b by Def8;
      hence thesis by Def8;
    end;
    hence thesis by A2,A3;
  end;
  then
A7: for a,b,c,d,p,q,r,s be Element of POS holds (a,b _|_ a,b implies a=b) &
a,b _|_ c,c & (a,b _|_ c,d implies a,b _|_ d,c & c,d _|_ a,b) & (a,b _|_ p,q &
a,b // r,s implies p,q _|_ r,s or a=b) &( a,b _|_ p,q & a,b _|_ p,s implies a,b
  _|_ q,s) by Def8;
A8: for a,b,c being Element of POS st a<>b ex x being Element of POS st a,b
  // a,x & a,b _|_ x,c
  proof
    let a,b,c be Element of POS such that
A9: a<>b;
    consider y being Element of POS such that
A10: a,b _|_ c,y and
A11: c <>y by Def8;
    reconsider a9=a,b9=b,c9=c,y9=y as Element of the AffinStruct of POS;
    not a9,b9 // c9,y9
    proof
      assume not thesis;
      then a,b // c,y by Th36;
      then c,y _|_ c,y by A9,A10,Def8;
      hence contradiction by A11,Def8;
    end;
    then consider x9 being Element of the AffinStruct of POS such that
A12: LIN a9,b9,x9 and
A13: LIN c9,y9,x9 by AFF_1:60;
    reconsider x=x9 as Element of POS;
    c9,y9 // c9,x9 by A13,AFF_1:def 1;
    then
A14: c,y // c,x by Th36;
    c,y _|_ a,b by A10,Def8;
    then a,b _|_ c,x by A11,A14,Def8;
    then
A15: a,b _|_ x,c by Def8;
    a9,b9 // a9,x9 by A12,AFF_1:def 1;
    then a,b // a,x by Th36;
    hence thesis by A15;
  end;
  the AffinStruct of POS = AffinStruct(#the carrier of POS, the CONGR of POS#)
  & for a,b,c being Element of POS ex x being Element of POS st a,b _|_ c,x
  & c <>x by Def8;
  hence thesis by A8,A7,Def7;
end;

registration
  cluster OrtAfPl-like -> OrtAfSp-like for non empty ParOrtStr;
  coherence by Th37;
end;

theorem
  for POS being OrtAfSp st the AffinStruct of POS is AffinPlane
     holds POS is OrtAfPl
proof
  let POS be OrtAfSp such that
A1: the AffinStruct of POS is AffinPlane;
A2: now
    let a,b,c,d,p,q,r,s be Element of POS;
    thus (a,b _|_ a,b implies a=b) & a,b _|_ c,c & (a,b _|_ c,d implies a,b
_|_ d,c & c,d _|_ a,b) & (a,b _|_ p,q & a,b // r,s implies p,q _|_ r,s or a=b)
    by Def7;
    thus a,b _|_ p,q & a,b _|_ r,s implies p,q // r,s or a=b
    proof
      reconsider a9=a,b9=b,p9=p,q9=q,r9=r,s9=s as
      Element of the AffinStruct of POS;
      assume that
A3:   a,b _|_ p,q and
A4:   a,b _|_ r,s;
A5:   p,q _|_ a,b by A3,Def7;
A6:   r,s _|_ a,b by A4,Def7;
      assume
A7:   not thesis;
      then
A8:   not p9,q9 // r9,s9 by Th36;
      then
A9:   p9<>q9 by AFF_1:3;
      consider x9 being Element of the AffinStruct of POS such that
A10:  LIN p9,q9,x9 and
A11:  LIN r9,s9,x9 by A1,A8,AFF_1:60;
      reconsider x=x9 as Element of POS;
A12:  r9<>s9 by A8,AFF_1:3;
      LIN s9,r9,x9 by A11,AFF_1:6;
      then s9,r9 // s9,x9 by AFF_1:def 1;
      then
A13:  r9,s9 // x9,s9 by AFF_1:4;
      then r,s // x,s by Th36;
      then a,b _|_ x,s by A12,A6,Def7;
      then
A14:  x,s _|_ a,b by Def7;
      LIN q9,p9,x9 by A10,AFF_1:6;
      then q9,p9 // q9,x9 by AFF_1:def 1;
      then p9,q9 // x9,q9 by AFF_1:4;
      then p,q // x,q by Th36;
      then
A15:  a,b _|_ x,q by A9,A5,Def7;
A16:  now
        consider y9 being Element of the AffinStruct of POS such that
A17:    a9,b9 // q9,y9 & q9<>y9 by DIRAF:40;
        assume that
A18:    x<>q and
A19:    x<>s;
        not q9,y9 // x9,s9
        proof
          assume not thesis;
          then q9,y9 // r9,s9 by A13,A19,AFF_1:5;
          then r9,s9 // a9,b9 by A17,AFF_1:5;
          then r,s // a,b by Th36;
          then a,b _|_ a,b by A12,A6,Def7;
          hence contradiction by A7,Def7;
        end;
        then consider z9 being Element of the AffinStruct of POS such that
A20:    LIN q9,y9,z9 and
A21:    LIN x9,s9,z9 by A1,AFF_1:60;
        reconsider z=z9 as Element of POS;
        q9,y9 // q9,z9 by A20,AFF_1:def 1;
        then a9,b9 // q9,z9 by A17,AFF_1:5;
        then
A22:    a,b // q,z by Th36;
A23:    x9,s9 // x9,z9 by A21,AFF_1:def 1;
        then x,s // x,z by Th36;
        then a,b _|_ x,z by A14,A19,Def7;
        then a,b _|_ q,z by A15,Def7;
        then q,z _|_ q,z by A7,A22,Def7;
        then x9,s9 // x9,q9 by A23,Def7;
        then
A24:    LIN x9,s9,q9 by AFF_1:def 1;
        LIN x9,s9,x9 & LIN x9,q9,p9 by A10,AFF_1:6,7;
        then LIN x9,s9,p9 by A18,A24,AFF_1:11;
        then x9,s9 // p9,q9 by A24,AFF_1:10;
        then p9,q9 // r9,s9 by A13,A19,AFF_1:5;
        hence contradiction by A7,Th36;
      end;
      r9,s9 // r9,x9 by A11,AFF_1:def 1;
      then
A25:  r9,s9 // x9,r9 by AFF_1:4;
      then r,s // x,r by Th36;
      then a,b _|_ x,r by A12,A6,Def7;
      then
A26:  x,r _|_ a,b by Def7;
A27:  now
        consider y9 being Element of the AffinStruct of POS such that
A28:    a9,b9 // q9,y9 & q9<>y9 by DIRAF:40;
        assume that
A29:    x<>q and
A30:    x<>r;
        not q9,y9 // x9,r9
        proof
          assume not thesis;
          then q9,y9 // r9,s9 by A25,A30,AFF_1:5;
          then r9,s9 // a9,b9 by A28,AFF_1:5;
          then r,s // a,b by Th36;
          then a,b _|_ a,b by A12,A6,Def7;
          hence contradiction by A7,Def7;
        end;
        then consider z9 being Element of the AffinStruct of POS such that
A31:    LIN q9,y9,z9 and
A32:    LIN x9,r9,z9 by A1,AFF_1:60;
        reconsider z=z9 as Element of POS;
        q9,y9 // q9,z9 by A31,AFF_1:def 1;
        then a9,b9 // q9,z9 by A28,AFF_1:5;
        then
A33:    a,b // q,z by Th36;
A34:    x9,r9 // x9,z9 by A32,AFF_1:def 1;
        then x,r // x,z by Th36;
        then a,b _|_ x,z by A26,A30,Def7;
        then a,b _|_ q,z by A15,Def7;
        then q,z _|_ q,z by A7,A33,Def7;
        then x9,r9 // x9,q9 by A34,Def7;
        then
A35:    LIN x9,r9,q9 by AFF_1:def 1;
        LIN x9,r9,x9 & LIN x9,q9,p9 by A10,AFF_1:6,7;
        then LIN x9,r9,p9 by A29,A35,AFF_1:11;
        then x9,r9 // p9,q9 by A35,AFF_1:10;
        then p9,q9 // r9,s9 by A25,A30,AFF_1:5;
        hence contradiction by A7,Th36;
      end;
      p9,q9 // p9,x9 by A10,AFF_1:def 1;
      then p9,q9 // x9,p9 by AFF_1:4;
      then p,q // x,p by Th36;
      then
A36:  a,b _|_ x,p by A9,A5,Def7;
A37:  now
        consider y9 being Element of the AffinStruct of POS such that
A38:    a9,b9 // p9,y9 & p9<>y9 by DIRAF:40;
        assume that
A39:    x<>p and
A40:    x<>s;
        not p9,y9 // x9,s9
        proof
          assume not thesis;
          then p9,y9 // r9,s9 by A13,A40,AFF_1:5;
          then r9,s9 // a9,b9 by A38,AFF_1:5;
          then r,s // a,b by Th36;
          then a,b _|_ a,b by A12,A6,Def7;
          hence contradiction by A7,Def7;
        end;
        then consider z9 being Element of the AffinStruct of POS such that
A41:    LIN p9,y9,z9 and
A42:    LIN x9,s9,z9 by A1,AFF_1:60;
        reconsider z=z9 as Element of POS;
        p9,y9 // p9,z9 by A41,AFF_1:def 1;
        then a9,b9 // p9,z9 by A38,AFF_1:5;
        then
A43:    a,b // p,z by Th36;
A44:    x9,s9 // x9,z9 by A42,AFF_1:def 1;
        then x,s // x,z by Th36;
        then a,b _|_ x,z by A14,A40,Def7;
        then a,b _|_ p,z by A36,Def7;
        then p,z _|_ p,z by A7,A43,Def7;
        then x9,s9 // x9,p9 by A44,Def7;
        then
A45:    LIN x9,s9,p9 by AFF_1:def 1;
        LIN x9,s9,x9 & LIN x9,p9,q9 by A10,AFF_1:6,7;
        then LIN x9,s9,q9 by A39,A45,AFF_1:11;
        then x9,s9 // p9,q9 by A45,AFF_1:10;
        then p9,q9 // r9,s9 by A13,A40,AFF_1:5;
        hence contradiction by A7,Th36;
      end;
      now
        consider y9 being Element of the AffinStruct of POS such that
A46:    a9,b9 // p9,y9 & p9<>y9 by DIRAF:40;
        assume that
A47:    x<>p and
A48:    x<>r;
        not p9,y9 // x9,r9
        proof
          assume not thesis;
          then p9,y9 // r9,s9 by A25,A48,AFF_1:5;
          then r9,s9 // a9,b9 by A46,AFF_1:5;
          then r,s // a,b by Th36;
          then a,b _|_ a,b by A12,A6,Def7;
          hence contradiction by A7,Def7;
        end;
        then consider z9 being Element of the AffinStruct of POS such that
A49:    LIN p9,y9,z9 and
A50:    LIN x9,r9,z9 by A1,AFF_1:60;
        reconsider z=z9 as Element of POS;
        p9,y9 // p9,z9 by A49,AFF_1:def 1;
        then a9,b9 // p9,z9 by A46,AFF_1:5;
        then
A51:    a,b // p,z by Th36;
A52:    x9,r9 // x9,z9 by A50,AFF_1:def 1;
        then x,r // x,z by Th36;
        then a,b _|_ x,z by A26,A48,Def7;
        then a,b _|_ p,z by A36,Def7;
        then p,z _|_ p,z by A7,A51,Def7;
        then x9,r9 // x9,p9 by A52,Def7;
        then
A53:    LIN x9,r9,p9 by AFF_1:def 1;
        LIN x9,r9,x9 & LIN x9,p9,q9 by A10,AFF_1:6,7;
        then LIN x9,r9,q9 by A47,A53,AFF_1:11;
        then x9,r9 // p9,q9 by A53,AFF_1:10;
        then p9,q9 // r9,s9 by A25,A48,AFF_1:5;
        hence contradiction by A7,Th36;
      end;
      hence contradiction by A8,A37,A27,A16,AFF_1:3;
    end;
  end;
  for a,b,c being Element of POS ex x being Element of POS st a,b _|_ c,x
  & c <>x by Def7;
  hence thesis by A1,A2,Def8;
end;

theorem
  for POS being non empty ParOrtStr holds POS is OrtAfPl-like iff (ex a,
  b being Element of POS st a<>b) & for a,b,c,d,p,q,r,s being Element of POS
holds a,b // b,a & a,b // c,c & (a,b // p,q & a,b // r,s implies p,q // r,s or
a=b) & (a,b // a,c implies b,a // b,c) & (ex x being Element of POS st a,b // c
  ,x & a,c // b,x) & (ex x,y,z being Element of POS st not x,y // x,z ) & (ex x
  being Element of POS st a,b // c,x & c <>x) & (a,b // b,d & b<>a implies ex x
being Element of POS st c,b // b,x & c,a // d,x) & (a,b _|_ a,b implies a=b) &
a,b _|_ c,c & (a,b _|_ c,d implies a,b _|_ d,c & c,d _|_ a,b) & (a,b _|_ p,q &
a,b // r,s implies p,q _|_ r,s or a=b) & (a,b _|_ p,q & a,b _|_ r,s implies p,q
// r,s or a=b) & (ex x being Element of POS st a,b _|_ c,x & c <>x) & (not a,b
  // c,d implies ex x being Element of POS st a,b // a,x & c,d // c,x )
proof
  let POS be non empty ParOrtStr;
  set P = the AffinStruct of POS;
  hereby
    assume
A1: POS is OrtAfPl-like;
    then P is AffinPlane;
    hence ex x,y being Element of POS st x<>y by DIRAF:46;
    let a,b,c,d,p,q,r,s be Element of POS;
    reconsider a9=a,b9=b,c9=c,d9=d,p9=p,q9=q,r9=r,s9=s as Element of P;
    consider x9 being Element of P such that
A2: a9,b9 // c9,x9 & a9,c9 // b9,x9 by A1,DIRAF:46;
    a9,b9 // b9,a9 & a9,b9 // c9,c9 by A1,DIRAF:46;
    hence a,b // b,a & a,b // c,c by Th36;
    hereby
      assume a,b // p,q & a,b // r,s;
      then a9,b9 // p9,q9 & a9,b9 // r9,s9 by Th36;
      then p9,q9 // r9,s9 or a9=b9 by A1,DIRAF:46;
      hence p,q // r,s or a=b by Th36;
    end;
    hereby
      assume a,b // a,c;
      then a9,b9 // a9,c9 by Th36;
      then b9,a9 // b9,c9 by A1,DIRAF:46;
      hence b,a // b,c by Th36;
    end;
    reconsider x=x9 as Element of POS;
    consider x9,y9,z9 being Element of P such that
A3: not x9,y9 // x9,z9 by A1,DIRAF:46;
    a,b // c,x & a,c // b,x by A2,Th36;
    hence ex x being Element of POS st a,b // c,x & a,c // b,x;
    reconsider x=x9,y=y9,z=z9 as Element of POS;
    consider x9 being Element of P such that
A4: a9,b9 // c9,x9 and
A5: c9<>x9 by A1,DIRAF:46;
    not x,y // x,z by A3,Th36;
    hence ex x,y,z being Element of POS st not x,y // x,z;
    reconsider x=x9 as Element of POS;
    a,b // c,x by A4,Th36;
    hence ex x being Element of POS st a,b // c,x & c <>x by A5;
    hereby
      assume that
A6:   a,b // b,d and
A7:   b<>a;
      a9,b9 // b9,d9 by A6,Th36;
      then consider x9 being Element of P such that
A8:   c9,b9 // b9,x9 & c9,a9 // d9,x9 by A1,A7,DIRAF:46;
      reconsider x=x9 as Element of POS;
      c,b // b,x & c,a // d,x by A8,Th36;
      hence ex x being Element of POS st c,b // b,x & c,a // d,x;
    end;
    thus (a,b _|_ a,b implies a=b) & a,b _|_ c,c & (a,b _|_ c,d implies a,b
_|_ d,c & c,d _|_ a,b) & (a,b _|_ p,q & a,b // r,s implies p,q _|_ r,s or a=b)
& (a,b _|_ p,q & a,b _|_ r,s implies p,q // r,s or a=b) & ex x being Element of
    POS st a,b _|_ c,x & c <>x by A1;
    assume not a,b // c,d;
    then not a9,b9 // c9,d9 by Th36;
    then consider x9 being Element of P such that
A9: a9,b9 // a9,x9 & c9,d9 // c9,x9 by A1,DIRAF:46;
    reconsider x=x9 as Element of POS;
    a,b // a,x & c,d // c,x by A9,Th36;
    hence ex x being Element of POS st a,b // a,x & c,d // c,x;
  end;
  given a,b being Element of POS such that
A10: a<>b;
  assume
A11: for a,b,c,d,p,q,r,s being Element of POS holds a,b // b,a & a,b //
c,c & (a,b // p,q & a,b // r,s implies p,q // r,s or a=b) & (a,b // a,c implies
b,a // b,c) & (ex x being Element of POS st a,b // c,x & a,c // b,x) & (ex x,y,
z being Element of POS st not x,y // x,z ) & (ex x being Element of POS st a,b
  // c,x & c <>x) & (a,b // b,d & b<>a implies ex x being Element of POS st c,b
  // b,x & c,a // d,x) & (a,b _|_ a,b implies a=b) & a,b _|_ c,c & (a,b _|_ c,d
implies a,b _|_ d,c & c,d _|_ a,b) & (a,b _|_ p,q & a,b // r,s implies p,q _|_
  r,s or a=b) & (a,b _|_ p,q & a,b _|_ r,s implies p,q // r,s or a=b) & (ex x
  being Element of POS st a,b _|_ c,x & c <>x) & (not a,b // c,d implies ex x
  being Element of POS st a,b // a,x & c,d // c,x );
A12: now
    let x,y,z be Element of P;
    reconsider x9=x,y9=y,z9=z as Element of POS;
    consider t9 being Element of POS such that
A13: x9,z9 // y9,t9 and
A14: y9<>t9 by A11;
    reconsider t=t9 as Element of P;
    x,z // y,t by A13,Th36;
    hence ex t being Element of P st x,z // y,t & y<>t by A14;
  end;
A15: now
    let x,y,z,t,u,w be Element of P;
    reconsider a=x,b=y,c =z,d=t,e=u,f=w as Element of POS;
    a,b // b,a & a,b // c,c by A11;
    hence x,y // y,x & x,y // z,z by Th36;
    thus x<>y & x,y // z,t & x,y // u,w implies z,t // u,w
    proof
      assume that
A16:  x<>y and
A17:  x,y // z,t & x,y // u,w;
      a,b // c,d & a,b // e,f by A17,Th36;
      then c,d // e,f by A11,A16;
      hence thesis by Th36;
    end;
    thus x,y // x,z implies y,x // y,z
    proof
      assume x,y // x,z;
      then a,b // a, c by Th36;
      then b,a // b,c by A11;
      hence thesis by Th36;
    end;
  end;
A18: now
    let x,y,z,t be Element of P such that
A19: not x,y // z,t;
    reconsider x9=x,y9=y,z9=z,t9=t as Element of POS;
    not x9,y9 // z9,t9 by A19,Th36;
    then consider u9 being Element of POS such that
A20: x9,y9 // x9,u9 & z9,t9 // z9,u9 by A11;
    reconsider u=u9 as Element of P;
    x,y // x,u & z,t // z,u by A20,Th36;
    hence ex u being Element of P st x,y // x,u & z,t // z,u;
  end;
A21: now
    let x,y,z,t be Element of P such that
A22: z,x // x,t and
A23: x<>z;
    reconsider x9=x,y9=y,z9=z,t9=t as Element of POS;
    z9,x9 // x9,t9 by A22,Th36;
    then consider u9 being Element of POS such that
A24: y9,x9 // x9,u9 & y9,z9 // t9,u9 by A11,A23;
    reconsider u=u9 as Element of P;
    y,x // x,u & y,z // t,u by A24,Th36;
    hence ex u being Element of P st y,x // x,u & y,z // t,u;
  end;
A25: now
    let x,y,z be Element of P;
    reconsider x9=x,y9=y,z9=z as Element of POS;
    consider t9 being Element of POS such that
A26: x9,y9 // z9,t9 & x9,z9 // y9,t9 by A11;
    reconsider t=t9 as Element of P;
    x,y // z,t & x,z // y,t by A26,Th36;
    hence ex t being Element of P st x,y // z,t & x,z // y,t;
  end;
  ex x,y,z being Element of P st not x,y // x,z
  proof
    consider x,y,z being Element of POS such that
A27: not x,y // x,z by A11;
    reconsider x9=x,y9=y,z9=z as Element of P;
    not x9,y9 // x9,z9 by A27,Th36;
    hence thesis;
  end;
  hence
  AffinStruct(#the carrier of POS,the CONGR of POS#) is AffinPlane by A10,A15
,A12,A25,A21,A18,DIRAF:46;
  thus for a,b,c,d,p,q,r,s be Element of POS holds (a,b _|_ a,b implies a=b) &
a,b _|_ c,c & (a,b _|_ c,d implies a,b _|_ d,c & c,d _|_ a,b) & (a,b _|_ p,q &
a,b // r,s implies p,q _|_ r,s or a=b) & (a,b _|_ p,q & a,b _|_ r,s implies p,q
  // r,s or a=b) by A11;
  thus thesis by A11;
end;

reserve x,a,b,c,d,p,q,y for Element of POS;

definition
  let POS;
  let a,b,c;
  pred LIN a,b,c means

  a,b // a,c;
end;

definition
  let POS,a,b;
  func Line(a,b) -> Subset of POS means
  :Def10:
  for x being Element of POS holds x in it iff LIN a,b,x;
  existence
  proof
    defpred P[set] means for y st y = $1 holds LIN a,b,y;
    consider X being Subset of POS such that
A1: for x being set holds x in X iff x in the carrier of POS & P[x]
    from SUBSET_1:sch 1;
    take X;
    let x be Element of POS;
    thus x in X implies LIN a,b,x by A1;
    assume LIN a,b,x;
    then for y st y = x holds LIN a,b,y;
    hence thesis by A1;
  end;
  uniqueness
  proof
    let X1,X2 be Subset of POS such that
A2: for x holds x in X1 iff LIN a,b,x and
A3: for x holds x in X2 iff LIN a,b,x;
    for x being object holds x in X1 iff x in X2 by A2,A3;
    hence thesis by TARSKI:2;
  end;
end;

reserve A,K,M for Subset of POS;

definition
  let POS;
  let A;
  attr A is being_line means

  ex a,b st a<>b & A=Line(a,b);
end;

theorem Th40:
  for POS being OrtAfSp for a,b,c being Element of POS, a9,b9,c9
being Element of the AffinStruct of POS st a=a9& b=b9 & c = c9
  holds (LIN a,b,c iff LIN a9,b9,c9)
proof
  let POS be OrtAfSp;
  let a,b,c be Element of POS, a9,b9,c9 be Element of the AffinStruct of POS
   such that
A1: a=a9 & b=b9 & c = c9;
  hereby
    assume LIN a,b,c;
    then a,b // a,c;
    then a9,b9 // a9,c9 by A1,Th36;
    hence LIN a9,b9,c9 by AFF_1:def 1;
  end;
  assume LIN a9,b9,c9;
  then a9,b9 // a9,c9 by AFF_1:def 1;
  then a,b // a,c by A1,Th36;
  hence thesis;
end;

theorem Th41:
  for POS being OrtAfSp for a,b being Element of POS, a9,b9 being
  Element of the AffinStruct of POS st a=a9 & b=b9
   holds Line(a,b) = Line(a9,b9)
proof
  let POS be OrtAfSp;
  let a,b be Element of POS, a9,b9 be Element of the AffinStruct of POS
   such that
A1: a=a9 & b=b9;
  set X = Line(a,b), Y = Line(a9,b9);
  now
    let x1 be object;
A2: now
      assume
A3:   x1 in Y;
      then reconsider x9=x1 as Element of the AffinStruct of POS;
      reconsider x=x9 as Element of POS;
      LIN a9,b9,x9 by A3,AFF_1:def 2;
      then LIN a,b,x by A1,Th40;
      hence x1 in X by Def10;
    end;
    now
      assume
A4:   x1 in X;
      then reconsider x=x1 as Element of POS;
      reconsider x9=x as Element of the AffinStruct of POS;
      LIN a,b,x by A4,Def10;
      then LIN a9,b9,x9 by A1,Th40;
      hence x1 in Y by AFF_1:def 2;
    end;
    hence x1 in X iff x1 in Y by A2;
  end;
  hence thesis by TARSKI:2;
end;

theorem
  for X being set holds
   X is Subset of POS iff X is Subset of the AffinStruct of POS;

theorem Th43:
  for POS being OrtAfSp for X being Subset of POS, Y being Subset
  of the AffinStruct of POS st X=Y holds X is being_line iff Y is being_line
proof
  let POS be OrtAfSp;
  let X be Subset of the carrier of POS, Y be Subset of the AffinStruct of POS
   such that
A1: X=Y;
  hereby
    assume X is being_line;
    then consider a,b being Element of POS such that
A2: a<>b and
A3: X = Line(a,b);
    reconsider a9=a,b9=b as Element of the AffinStruct of POS;
    Y = Line(a9,b9) by A1,A3,Th41;
    hence Y is being_line by A2,AFF_1:def 3;
  end;
  assume Y is being_line;
  then consider a9,b9 being Element of the AffinStruct of POS such that
A4: a9<>b9 and
A5: Y = Line(a9,b9) by AFF_1:def 3;
  reconsider a=a9,b=b9 as Element of POS;
  X = Line(a,b) by A1,A5,Th41;
  hence thesis by A4;
end;

definition
  let POS;
  let a,b,K;
  pred a,b _|_ K means

  ex p,q st p<>q & K = Line(p,q) & a,b _|_ p,q;
end;

definition
  let POS;
  let K,M;
  pred K _|_ M means
  :Def13:
  ex p,q st p<>q & K = Line(p,q) & p,q _|_ M;
end;

definition
  let POS;
  let K,M;
  pred K // M means
  ex a,b,c,d st a<>b & c <>d & K = Line(a,b) & M = Line(c,d) & a,b // c,d;
end;

theorem Th44:
  (a,b _|_ K implies K is being_line) &
  (K _|_ M implies K is being_line & M is being_line )
proof
  for a,b,K st a,b _|_ K holds K is being_line;
  then K _|_ M implies K is being_line & M is being_line;
  hence thesis;
end;

theorem Th45:
  K _|_ M iff ex a,b,c,d st a<>b & c <>d & K = Line(a,b) & M =
  Line(c,d) & a,b _|_ c,d
proof
  hereby
    assume K _|_ M;
    then consider a,b such that
A1: a<>b & K = Line(a,b) and
A2: a,b _|_ M;
    ex c,d st c <>d & M = Line(c,d) & a,b _|_ c,d by A2;
    hence ex a,b,c,d st a<>b & c <>d & K = Line(a,b) & M = Line(c,d) & a,b _|_
    c,d by A1;
  end;
  given a,b,c,d such that
A3: a<>b and
A4: c <>d and
A5: K = Line(a,b) and
A6: M = Line(c,d) & a,b _|_ c,d;
  a,b _|_ M by A4,A6;
  hence thesis by A3,A5;
end;

theorem Th46:
  for POS being OrtAfSp for M,N being Subset of POS, M9,N9 being
  Subset of the AffinStruct of POS st M = M9 & N = N9
  holds M // N iff M9 // N9
proof
  let POS be OrtAfSp;
  let M,N be Subset of POS, M9,N9 be Subset of the AffinStruct of POS such that
A1: M = M9 & N = N9;
  hereby
    assume M // N;
    then consider a,b,c,d being Element of POS such that
A2: a<>b & c <>d and
A3: M = Line(a,b) & N = Line(c,d) and
A4: a,b // c,d;
    reconsider a9=a,b9=b,c9=c,d9=d as Element of the AffinStruct of POS;
A5: a9,b9 // c9,d9 by A4,Th36;
    M9=Line(a9,b9) & N9=Line(c9,d9) by A1,A3,Th41;
    hence M9 // N9 by A2,A5,AFF_1:37;
  end;
  assume M9 // N9;
  then consider a9,b9,c9,d9 being Element of the AffinStruct of POS such that
A6: a9<>b9 & c9<>d9 and
A7: a9,b9 // c9,d9 and
A8: M9 = Line(a9,b9) & N9 = Line(c9,d9) by AFF_1:37;
  reconsider a=a9,b=b9,c =c9,d=d9 as Element of POS;
A9: a,b // c,d by A7,Th36;
  M=Line(a,b) & N=Line(c,d) by A1,A8,Th41;
  hence thesis by A6,A9;
end;

reserve POS for OrtAfSp;
reserve A,K,M,N for Subset of POS;
reserve a,b,c,d,p,q,r,s for Element of POS;

theorem
  K is being_line implies a,a _|_ K
proof
  assume K is being_line;
  then consider p,q such that
A1: p<>q & K = Line(p,q);
  p,q _|_ a,a by Def7;
  then a,a _|_ p,q by Def7;
  hence thesis by A1;
end;

theorem
  a,b _|_ K & (a,b // c,d or c,d // a,b) & a<>b implies c,d _|_ K
proof
  assume that
A1: a,b _|_ K and
A2: a,b // c,d or c,d // a,b and
A3: a<>b;
  reconsider a9=a,b9=b,c9=c,d9=d as Element of the AffinStruct of POS;
  consider p,q such that
A4: p<>q & K = Line(p,q) and
A5: a,b _|_ p,q by A1;
  a9,b9 // c9,d9 or c9,d9 // a9,b9 by A2,Th36;
  then a9,b9 // c9,d9 by AFF_1:4;
  then a,b // c,d by Th36;
  then p,q _|_ c,d by A3,A5,Def7;
  then c,d _|_ p,q by Def7;
  hence thesis by A4;
end;

theorem
  a,b _|_ K implies b,a _|_ K
proof
  assume a,b _|_ K;
  then consider p,q such that
A1: p<>q & K = Line(p,q) and
A2: a,b _|_ p,q;
  p,q _|_ a,b by A2,Def7;
  then p,q _|_ b,a by Def7;
  then b,a _|_ p,q by Def7;
  hence thesis by A1;
end;

definition
  let POS;
  let K,M be Subset of POS;
  redefine pred K // M;
  symmetry
  proof
    let K,M be Subset of POS;
    assume K // M;
    then consider a,b,c,d such that
A1: a<>b & c <>d & K = Line(a,b) & M = Line(c,d) and
A2: a,b // c,d;
    reconsider a9=a,b9=b,c9=c,d9=d as Element of the AffinStruct of POS;
    a9,b9 // c9,d9 by A2,Th36;
    then c9,d9 // a9,b9 by AFF_1:4;
    then c,d // a,b by Th36;
    hence thesis by A1;
  end;
end;

theorem Th50:
  r,s _|_ K & K // M implies r,s _|_ M
proof
  assume that
A1: r,s _|_ K and
A2: K // M;
  consider p,q such that
A3: p<>q and
A4: K = Line(p,q) and
A5: r,s _|_ p,q by A1;
  consider a,b,c,d such that
A6: a<>b and
A7: c <>d and
A8: K = Line(a,b) and
A9: M = Line(c,d) and
A10: a,b // c,d by A2;
  reconsider p9=p,q9=q,a9=a,b9=b,c9=c,d9=d
    as Element of the AffinStruct of POS;
A11: K = Line(a9,b9) by A8,Th41;
A12: K = Line(p9,q9) by A4,Th41;
  then q9 in K by AFF_1:15;
  then
A13: LIN a9,b9,q9 by A11,AFF_1:def 2;
  p9 in K by A12,AFF_1:15;
  then LIN a9,b9,p9 by A11,AFF_1:def 2;
  then
A14: a9,b9 // p9,q9 by A13,AFF_1:10;
A15: p,q _|_ r,s by A5,Def7;
  a9,b9 // c9,d9 by A10,Th36;
  then p9,q9 // c9,d9 by A6,A14,AFF_1:5;
  then p,q // c,d by Th36;
  then r,s _|_ c,d by A3,A15,Def7;
  hence thesis by A7,A9;
end;

theorem Th51:
  a in K & b in K & a,b _|_ K implies a=b
proof
  assume that
A1: a in K and
A2: b in K and
A3: a,b _|_ K;
  consider p,q such that
A4: p<>q and
A5: K = Line(p,q) and
A6: a,b _|_ p,q by A3;
  reconsider a9=a,b9=b,p9=p,q9=q as Element of the AffinStruct of POS;
  set K9 = Line(p9,q9);
  b9 in K9 by A2,A5,Th41;
  then
A7: LIN p9,q9,b9 by AFF_1:def 2;
  a9 in K9 by A1,A5,Th41;
  then LIN p9,q9,a9 by AFF_1:def 2;
  then p9,q9 // a9,b9 by A7,AFF_1:10;
  then
A8: p,q // a,b by Th36;
  p,q _|_ a,b by A6,Def7;
  then a,b _|_ a,b by A4,A8,Def7;
  hence thesis by Def7;
end;

definition
  let POS;
  let K,M be Subset of POS;
  redefine pred K _|_ M;
  irreflexivity
  proof
    let K be Subset of POS;
    assume not thesis;
    then consider a,b such that
A1: a<>b and
A2: K = Line(a,b) and
A3: a,b _|_ K;
    reconsider a9=a,b9=b as Element of the AffinStruct of POS;
    K = Line(a9,b9) by A2,Th41;
    then a in K & b in K by AFF_1:15;
    hence contradiction by A1,A3,Th51;
  end;
  symmetry
  proof
    let K,M be Subset of POS;
    assume K _|_ M;
    then consider a,b,c,d such that
A4: a<>b & c <>d & K = Line(a,b) & M = Line(c,d) and
A5: a,b _|_ c,d by Th45;
    c,d _|_ a,b by A5,Def7;
    hence thesis by A4,Th45;
  end;
end;

theorem Th52:
  K _|_ M & K // N implies N _|_ M
proof
  assume that
A1: K _|_ M and
A2: K // N;
  consider r,s such that
A3: r<>s & M = Line(r,s) and
A4: r,s _|_ K by A1,Def13;
  r,s _|_ N by A2,A4,Th50;
  hence thesis by A3,Def13;
end;

theorem
  a in K & b in K & c,d _|_ K implies c,d _|_ a,b & a,b _|_ c,d
proof
  assume that
A1: a in K and
A2: b in K and
A3: c,d _|_ K;
  consider p,q such that
A4: p<>q and
A5: K = Line(p,q) and
A6: c,d _|_ p,q by A3;
  reconsider a9=a,b9=b, p9=p,q9=q as Element of the AffinStruct of POS;
  LIN p,q, b by A2,A5,Def10;
  then
A7: LIN p9,q9,b9 by Th40;
  LIN p,q,a by A1,A5,Def10;
  then LIN p9,q9,a9 by Th40;
  then p9,q9 // a9, b9 by A7,AFF_1:10;
  then
A8: p,q // a,b by Th36;
  p,q _|_ c,d by A6,Def7;
  hence c,d _|_ a,b by A4,A8,Def7;
  hence thesis by Def7;
end;

theorem Th54:
  a in K & b in K & a<>b & K is being_line implies K =Line(a,b)
proof
  assume that
A1: a in K & b in K & a<>b and
A2: K is being_line;
  reconsider a9=a,b9=b as Element of the AffinStruct of POS;
  reconsider K9=K as Subset of the AffinStruct of POS;
  K9 is being_line by A2,Th43;
  then K9 = Line(a9,b9) by A1,AFF_1:57;
  hence thesis by Th41;
end;

theorem
  a in K & b in K & a<>b & K is being_line & (a,b _|_ c,d or c,d _|_ a,b
  ) implies c,d _|_ K
proof
  assume that
A1: a in K & b in K and
A2: a<>b and
A3: K is being_line &( a,b _|_ c,d or c,d _|_ a,b);
  c,d _|_ a,b & K = Line(a,b) by A1,A2,A3,Def7,Th54;
  hence thesis by A2;
end;

theorem Th56:
  a in M & b in M & c in N & d in N & M _|_ N implies a,b _|_ c,d
proof
  assume that
A1: a in M and
A2: b in M and
A3: c in N and
A4: d in N and
A5: M _|_ N;
  consider p1,q1,p2,q2 being Element of POS such that
A6: p1<>q1 and
A7: p2<>q2 and
A8: M = Line(p1,q1) and
A9: N = Line(p2,q2) and
A10: p1,q1 _|_ p2,q2 by A5,Th45;
  reconsider a9=a,b9=b,c9=c,d9=d,p19=p1,q19=q1,p29=p2,q29=q2
    as Element of the AffinStruct of POS;
  LIN p1,q1,b by A2,A8,Def10;
  then
A11: LIN p19,q19,b9 by Th40;
  LIN p1,q1,a by A1,A8,Def10;
  then LIN p19,q19,a9 by Th40;
  then p19,q19 // a9,b9 by A11,AFF_1:10;
  then p1,q1 // a,b by Th36;
  then
A12: p2,q2 _|_ a,b by A6,A10,Def7;
  LIN p2,q2,d by A4,A9,Def10;
  then
A13: LIN p29,q29,d9 by Th40;
  LIN p2,q2,c by A3,A9,Def10;
  then LIN p29,q29,c9 by Th40;
  then p29,q29 // c9,d9 by A13,AFF_1:10;
  then p2,q2 // c,d by Th36;
  hence thesis by A7,A12,Def7;
end;

theorem
  p in M & p in N & a in M & b in N & a<>b & a in K & b in K & A _|_ M &
  A _|_ N & K is being_line implies A _|_ K
proof
  assume that
A1: p in M & p in N & a in M & b in N and
A2: a<>b and
A3: a in K & b in K and
A4: A _|_ M and
A5: A _|_ N and
A6: K is being_line;
  A is being_line by A4;
  then consider q,r such that
A7: q<>r and
A8: A = Line(q,r);
  reconsider q9=q,r9=r as Element of the AffinStruct of POS;
  Line(q,r) = Line(q9,r9) by Th41;
  then q in A & r in A by A8,AFF_1:15;
  then q,r _|_ p,a & q,r _|_ p,b by A1,A4,A5,Th56;
  then
A9: q,r _|_ a,b by Def7;
  K = Line(a,b) by A2,A3,A6,Th54;
  hence thesis by A2,A7,A8,A9,Th45;
end;

theorem Th58:
  b,c _|_ a,a & a,a _|_ b,c & b,c // a,a & a,a // b,c
proof
  reconsider a9=a,b9=b,c9=c as Element of the AffinStruct of POS;
  thus b,c _|_ a,a by Def7;
  hence a,a _|_ b,c by Def7;
  b9,c9 // a9,a9 & a9,a9 // b9,c9 by AFF_1:3;
  hence thesis by Th36;
end;

theorem Th59:
  a,b // c,d implies a,b // d,c & b,a // c,d & b,a // d,c & c,d //
  a,b & c,d // b,a & d,c // a,b & d,c // b,a
proof
  reconsider a9=a,b9=b,c9= c,d9=d as Element of the AffinStruct of POS;
  assume a,b // c,d;
  then
A1: a9,b9 // c9,d9 by Th36;
  then
A2: b9,a9 // d9,c9 & c9,d9 // a9,b9 by AFF_1:4;
A3: d9,c9 // b9,a9 by A1,AFF_1:4;
A4: c9,d9 // b9,a9 & d9,c9 // a9,b9 by A1,AFF_1:4;
  a9,b9 // d9,c9 & b9,a9 // c9,d9 by A1,AFF_1:4;
  hence thesis by A2,A4,A3,Th36;
end;

theorem
  p<>q & ( p,q // a,b & p,q // c,d or p,q // a,b & c,d // p,q or a,b //
  p,q & c,d // p,q or a,b // p,q & p,q // c,d ) implies a,b // c,d
proof
  assume that
A1: p<>q and
A2: p,q // a,b & p,q // c,d or p,q // a,b & c,d // p,q or a,b // p,q & c
  ,d // p,q or a,b // p,q & p,q // c,d;
  reconsider p9=p,q9=q,a9=a, b9=b,c9= c,d9=d
    as Element of the AffinStruct of POS;
  p9,q9 // a9,b9 & p9,q9 // c9,d9 or p9,q9 // a9,b9 & c9,d9 // p9,q9 or a9
  ,b9 // p9,q9 & c9,d9 // p9,q9 or a9,b9 // p9,q9 & p9,q9 // c9,d9 by A2,Th36;
  then a9,b9 // c9,d9 by A1,AFF_1:5;
  hence thesis by Th36;
end;

theorem Th61:
  a,b _|_ c,d implies a,b _|_ d,c & b,a _|_ c,d & b,a _|_ d,c & c,
  d _|_ a,b & c,d _|_ b,a & d,c _|_ a,b & d,c _|_ b,a
proof
  assume
A1: a,b _|_ c,d;
  then a,b _|_ d,c by Def7;
  then
A2: d,c _|_ a,b by Def7;
  then d,c _|_ b,a by Def7;
  then b,a _|_ d,c by Def7;
  then b,a _|_ c,d by Def7;
  hence thesis by A1,A2,Def7;
end;

theorem Th62:
  p<>q & ( p,q // a,b & p,q _|_ c,d or p,q // c,d & p,q _|_ a,b or
p,q // a,b & c,d _|_ p,q or p,q // c,d & a,b _|_ p,q or a,b // p,q & c,d _|_ p,
  q or c,d // p,q & a,b _|_ p,q or a,b // p,q & p,q _|_ c,d or c,d // p,q & p,q
  _|_ a,b ) implies a,b _|_ c,d
proof
  assume that
A1: p<>q and
A2: p,q // a,b & p,q _|_ c,d or p,q // c,d & p,q _|_ a,b or p,q // a,b &
c,d _|_ p,q or p,q // c,d & a,b _|_ p,q or a,b // p,q & c,d _|_ p,q or c,d // p
  ,q & a,b _|_ p,q or a,b // p,q & p,q _|_ c,d or c,d // p,q & p,q _|_ a,b;
A3: now
    assume p,q // a,b & p,q _|_ c,d or p,q // a,b & c,d _|_ p,q or a,b // p,q
    & c,d _|_ p,q or a,b // p,q & p,q _|_ c,d;
    then p,q // a,b & p,q _|_ c,d by Th59,Th61;
    then c,d _|_ a,b by A1,Def7;
    hence thesis by Th61;
  end;
  now
    assume p,q // c,d & p,q _|_ a,b or p,q // c,d & a,b _|_ p,q or c,d // p,
    q & a,b _|_ p,q or c,d // p,q & p,q _|_ a,b;
    then p,q // c,d & p,q _|_ a,b by Th59,Th61;
    hence thesis by A1,Def7;
  end;
  hence thesis by A2,A3;
end;

reserve POS for OrtAfPl;
reserve K,M,N for Subset of POS;
reserve x,a,b,c,d,p,q for Element of POS;

theorem Th63:
  p<>q & ( p,q _|_ a,b & p,q _|_ c,d or p,q _|_ a,b & c,d _|_ p,q
or a,b _|_ p,q & c,d _|_ p,q or a,b _|_ p,q & p,q _|_ c,d ) implies a,b // c,d
proof
  assume that
A1: p<>q and
A2: p,q _|_ a,b & p,q _|_ c,d or p,q _|_ a,b & c,d _|_ p,q or a,b _|_ p,
  q & c,d _|_ p,q or a,b _|_ p,q & p,q _|_ c,d;
  p,q _|_ a,b & p,q _|_ c,d by A2,Th61;
  hence thesis by A1,Def8;
end;

theorem
  a in M & b in M & a<>b & M is being_line & c in N & d in N & c <>d & N
  is being_line & a,b // c,d implies M // N
proof
  assume that
A1: a in M & b in M and
A2: a<>b and
A3: M is being_line & c in N & d in N and
A4: c <>d and
A5: N is being_line and
A6: a,b // c,d;
  M = Line(a,b) & N = Line(c,d) by A1,A2,A3,A4,A5,Th54;
  hence thesis by A2,A4,A6;
end;

theorem
  M _|_ K & N _|_ K implies M // N
proof
  assume that
A1: M _|_ K and
A2: N _|_ K;
  consider p1,q1,a,b being Element of POS such that
A3: p1<>q1 and
A4: a<>b and
A5: K = Line(p1,q1) and
A6: M = Line(a,b) and
A7: p1,q1 _|_ a,b by A1,Th45;
  consider p2,q2,c,d being Element of POS such that
A8: p2<>q2 and
A9: c <>d and
A10: K = Line(p2,q2) and
A11: N = Line(c,d) and
A12: p2,q2 _|_ c,d by A2,Th45;
  reconsider p19=p1,p29=p2,q19=q1,q29=q2 as Element of the AffinStruct of POS;
A13: Line(p19,q19) = Line(p2,q2) by A5,A10,Th41
    .= Line(p29,q29) by Th41;
  then q29 in Line(p19,q19) by AFF_1:15;
  then
A14: LIN p19,q19,q29 by AFF_1:def 2;
  p29 in Line(p19,q19) by A13,AFF_1:15;
  then LIN p19,q19,p29 by AFF_1:def 2;
  then p19,q19 // p29,q29 by A14,AFF_1:10;
  then p1,q1 // p2,q2 by Th36;
  then a,b _|_ p2,q2 by A3,A7,Th62;
  then a,b // c,d by A8,A12,Th63;
  hence thesis by A4,A6,A9,A11;
end;

theorem Th66:
  M _|_ N implies ex p st p in M & p in N
proof
  reconsider M9=M,N9=N as Subset of the AffinStruct of POS;
  assume
A1: M _|_ N;
  then M is being_line;
  then
A2: M9 is being_line by Th43;
  N is being_line by A1,Th44;
  then
A3: N9 is being_line by Th43;
  not M // N by A1,Th52;
  then not M9 // N9 by Th46;
  hence thesis by A2,A3,AFF_1:58;
end;

theorem Th67:
  a,b _|_ c,d implies ex p st LIN a,b,p & LIN c,d,p
proof
  reconsider a9=a,b9=b,c9=c,d9=d as Element of the AffinStruct of POS;
  assume
A1: a,b _|_ c,d;
A2: now
    set M = Line(a,b),N = Line(c,d);
    assume a<>b & c <>d;
    then M _|_ N by A1,Th45;
    then consider p such that
A3: p in M & p in N by Th66;
    LIN a,b,p & LIN c,d,p by A3,Def10;
    hence thesis;
  end;
  LIN a9,b9,a9 by AFF_1:7;
  then
A4: LIN a,b,a by Th40;
A5: now
    assume c =d;
    then c,d // c,a by Th58;
    then LIN c,d,a;
    hence thesis by A4;
  end;
  LIN c9,d9,c9 by AFF_1:7;
  then
A6: LIN c,d,c by Th40;
  now
    assume a=b;
    then a,b // a,c by Th58;
    then LIN a,b,c;
    hence thesis by A6;
  end;
  hence thesis by A5,A2;
end;

theorem
  a,b _|_ K implies ex p st LIN a,b,p & p in K
proof
  assume a,b _|_ K;
  then consider p,q such that
  p<>q and
A1: K = Line(p,q) and
A2: a,b _|_ p,q;
  consider c such that
A3: LIN a,b,c and
A4: LIN p,q,c by A2,Th67;
  c in K by A1,A4,Def10;
  hence thesis by A3;
end;

theorem Th69:
  ex x st a,x _|_ p,q & LIN p,q,x
proof
A1: now
    assume p<>q;
    then consider x such that
A2: p,q // p,x & p,q _|_ x,a by Def7;
    take x;
    thus a,x _|_ p,q & LIN p,q,x by A2,Th61;
  end;
  now
    assume
A3: p=q;
    take x=a;
    p,q // p,a by A3,Th58;
    hence a,x _|_ p,q & LIN p,q,x by Th58;
  end;
  hence thesis by A1;
end;

theorem
  K is being_line implies ex x st a,x _|_ K & x in K
proof
  assume K is being_line;
  then consider p,q such that
A1: p<>q and
A2: K = Line(p,q);
  consider x such that
A3: a,x _|_ p,q and
A4: LIN p,q,x by Th69;
  take x;
  thus a,x _|_ K by A1,A2,A3;
  thus thesis by A2,A4,Def10;
end;