Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,842 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
:: Fix Point Theorem for Compact Spaces
::  by Alicia de la Cruz

environ

 vocabularies NUMBERS, XBOOLE_0, METRIC_1, FUNCT_1, REAL_1, CARD_1, ARYTM_3,
      PRE_TOPC, XXREAL_0, RELAT_1, STRUCT_0, FUNCOP_1, PCOMPS_1, RCOMP_1,
      SUBSET_1, POWER, SETFAM_1, TARSKI, ARYTM_1, FINSET_1, ORDINAL1, SEQ_1,
      VALUED_1, ORDINAL2, SEQ_2, ALI2, NAT_1, ASYMPT_1;
 notations TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0,
      FINSET_1, SETFAM_1, RELAT_1, FUNCT_1, FUNCT_2, FUNCOP_1, STRUCT_0,
      METRIC_1, PRE_TOPC, POWER, COMPTS_1, PCOMPS_1, TOPS_2, VALUED_1, SEQ_1,
      SEQ_2, XXREAL_0, REAL_1, NAT_1;
 constructors SETFAM_1, FUNCOP_1, FINSET_1, XXREAL_0, REAL_1, NAT_1, SEQ_2,
      POWER, TOPS_2, COMPTS_1, PCOMPS_1, VALUED_1, PARTFUN1, BINOP_2, RVSUM_1,
      COMSEQ_2, SEQ_1, RELSET_1;
 registrations SUBSET_1, ORDINAL1, NUMBERS, XXREAL_0, MEMBERED, STRUCT_0,
      METRIC_1, PCOMPS_1, VALUED_1, FUNCT_2, XREAL_0, SEQ_1, SEQ_2, RELSET_1,
      FUNCOP_1;
 requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
 definitions TARSKI, TOPS_2, ORDINAL1, XBOOLE_0, FINSET_1;
 equalities XBOOLE_0, SUBSET_1, STRUCT_0;
 theorems METRIC_1, SUBSET_1, PCOMPS_1, COMPTS_1, POWER, SEQ_2, SEQ_4,
      SERIES_1, SETFAM_1, SEQ_1, PRE_TOPC, TOPS_1, FINSET_1, XREAL_1, XXREAL_0,
      XBOOLE_0, XREAL_0, FUNCT_1, FUNCT_2;
 schemes SUBSET_1, SEQ_1, DOMAIN_1, NAT_1;

begin

definition
  let M be non empty MetrSpace;
  let f be Function of M, M;
  attr f is contraction means
:Def1:
  ex L being Real st 0 < L & L < 1 &
   for x,y being Point of M holds dist(f.x,f.y) <= L * dist(x,y);
end;

registration
  let M be non empty MetrSpace;
  cluster constant -> contraction for Function of M,M;
  coherence
  proof
    let f be Function of M,M such that
A1: f is constant;
    take 1/2;
    thus 0<1/2 & 1/2<1;
    let z,y be Point of M;
    dom f = the carrier of M by FUNCT_2:def 1;
    then f.z = f.y by A1,FUNCT_1:def 10;
    then
A2: dist(f.z,f.y) = 0 by METRIC_1:1;
    dist(z,y)>=0 by METRIC_1:5;
    hence thesis by A2;
  end;
end;

registration
  let M be non empty MetrSpace;
  cluster constant for Function of M, M;
  existence
  proof
    M --> the Point of M is constant;
    hence thesis;
  end;
end;

definition
  let M be non empty MetrSpace;
  mode Contraction of M is contraction Function of M, M;
end;

::$N Banach fixed-point theorem
theorem
  for M being non empty MetrSpace
  for f being Contraction of M st TopSpaceMetr(M) is compact
  ex c being Point of M st f.c = c &
    for x being Point of M st f.x = x holds x = c
proof
  let M be non empty MetrSpace;
  let f be Contraction of M;
  set x0 = the Point of M;
  set a=dist(x0,f.x0);
  consider L being Real such that
A1: 0<L and
A2: L<1 and
A3: for x,y being Point of M holds dist(f.x,f.y)<=L*dist(x,y) by Def1;
  assume
A4: TopSpaceMetr(M) is compact;
  now
    deffunc F(Nat) = L to_power ($1+1);
    defpred P[set] means ex n being Nat st $1 = { x where x is
    Point of M : dist(x,f.x) <= a*L to_power n};
    assume a <> 0;
    consider F being Subset-Family of TopSpaceMetr(M) such that
A5: for B being Subset of TopSpaceMetr(M) holds B in F iff P[B] from
    SUBSET_1:sch 3;
    defpred P[Point of M] means dist($1,f.($1)) <= a*L to_power (0+1);
A6: F is closed
    proof
      let B be Subset of TopSpaceMetr(M);
A7:   TopSpaceMetr(M)=TopStruct (#the carrier of M,Family_open_set(M)#)
      by PCOMPS_1:def 5;
      then reconsider V = B` as Subset of M;
      assume B in F;
      then consider n being Nat such that
A8:   B= { x where x is Point of M : dist(x,f.x) <= a*L to_power n} by A5;
      for x being Point of M st x in V
       ex r being Real st r>0 & Ball(x,r) c= V
      proof
        let x be Point of M;
        assume x in V;
        then not x in B by XBOOLE_0:def 5;
        then dist(x,f.x)>a*L to_power n by A8;
        then
A9:     dist(x,f.x)-a*L to_power n>0 by XREAL_1:50;
        take r = (dist(x,f.x)-a*L to_power n)/2;
        thus r>0 by A9,XREAL_1:215;
        let z be object;
        assume
A10:    z in Ball(x,r);
        then reconsider y=z as Point of M;
        dist(x,y)<r by A10,METRIC_1:11;
        then 2*dist(x,y)<2*r by XREAL_1:68;
        then
A11:    dist(y,f.y) + 2*dist(x,y)< dist(y,f.y) + 2*r by XREAL_1:6;
        dist(x,y) + dist(y,f.y) >= dist(x,f.y) by METRIC_1:4;
        then
A12:    (dist(x,y) + dist(y,f.y)) + dist(f.y,f.x) >=
        dist(x,f.y) + dist(f.y,f.x) by XREAL_1:6;
        dist(f.y,f.x)<=L*dist(y,x) & L*dist(y,x)<=dist(y,x)
        by A2,A3,METRIC_1:5,XREAL_1:153;
        then dist(f.y,f.x)<=dist(y,x) by XXREAL_0:2;
        then dist(f.y,f.x)+dist(y,x) <= dist(y,x)+dist(y,x) by XREAL_1:6;
        then
A13:    dist(y,f.y) + (dist(y,x) + dist(f.y,f.x)) <= dist(y,f.y) + 2*dist
        (y,x) by XREAL_1:7;
        dist(x,f.y) + dist(f.y,f.x) >= dist(x,f.x) by METRIC_1:4;
        then dist(y,f.y)+dist(x,y)+dist(f.y,f.x)>=dist(x,f.x)
        by A12,XXREAL_0:2;
        then dist(y,f.y)+2*dist(x,y)>=dist(x,f.x) by A13,XXREAL_0:2;
        then
        dist(x,f.x)-2*r = a*L to_power n & dist(y,f.y)+2*r>dist(x,f.x)
        by A11,XXREAL_0:2;
        then
        not ex x being Point of M st y = x & dist(x,f.x)<= a*L to_power n
        by XREAL_1:19;
        then not y in B by A8;
        hence thesis by A7,SUBSET_1:29;
      end;
      then B` in Family_open_set(M) by PCOMPS_1:def 4;
      then B` is open by A7,PRE_TOPC:def 2;
      hence thesis by TOPS_1:3;
    end;
A14: TopSpaceMetr(M)=TopStruct (#the carrier of M,Family_open_set(M)#)
     by PCOMPS_1:def 5;
A15: {x where x is Point of M:P[x]}is Subset of M from DOMAIN_1:sch 7;
    F is centered
    proof
      thus F <> {} by A5,A14,A15;
      defpred P[Nat] means
      { x where x is Point of M : dist(x,f.x)
      <= a*L to_power $1}<>{};
      let G be set such that
A16:  G <> {} and
A17:  G c= F and
A18:  G is finite;
      G is c=-linear
      proof
        let B,C be set;
        assume that
A19:    B in G and
A20:    C in G;
        B in F by A17,A19;
        then consider n being Nat such that
A21:    B= { x where x is Point of M : dist(x,f.x) <= a*L to_power n} by A5;
        C in F by A17,A20;
        then consider m being Nat such that
A22:    C= { x where x is Point of M : dist(x,f.x) <= a*L to_power m} by A5;
A23:    for n,m being Nat st n<=m holds L to_power m <= L to_power n
        proof
          let n,m be Nat such that
A24:      n<=m;
          per cases by A24,XXREAL_0:1;
          suppose
            n<m;
            hence thesis by A1,A2,POWER:40;
          end;
          suppose
            n=m;
            hence thesis;
          end;
        end;
A25:    for n,m being Nat st n<=m holds a*L to_power m <= a*L
        to_power n
        proof
A26:      a>=0 by METRIC_1:5;
          let n,m be Nat;
          assume n<=m;
          hence thesis by A23,A26,XREAL_1:64;
        end;
        now
          per cases;
          case
A27:        n<=m;
            thus C c= B
            proof
              let y be object;
              assume y in C;
              then consider x being Point of M such that
A28:          y = x and
A29:          dist(x,f.x) <= a*L to_power m by A22;
              a*L to_power m <= a*L to_power n by A25,A27;
              then dist(x,f.x) <= a*L to_power n by A29,XXREAL_0:2;
              hence thesis by A21,A28;
            end;
          end;
          case
A30:        m<=n;
            thus B c= C
            proof
              let y be object;
              assume y in B;
              then consider x being Point of M such that
A31:          y = x and
A32:          dist(x,f.x) <= a*L to_power n by A21;
              a*L to_power n <= a*L to_power m by A25,A30;
              then dist(x,f.x) <= a*L to_power m by A32,XXREAL_0:2;
              hence thesis by A22,A31;
            end;
          end;
        end;
        hence B c= C or C c= B;
      end;
      then consider m being set such that
A33:  m in G and
A34:  for C being set st C in G holds m c= C by A16,A18,FINSET_1:11;
A35:  m c= meet G by A16,A34,SETFAM_1:5;
A36:  for k being Nat st P[k] holds P[k+1]
      proof
        let k be Nat;
        set z = the Element of { x where x is Point of M :
        dist(x,f.x) <= a*L to_power k};
A37:    L*(a*L to_power k)=a*(L*L to_power k)
          .=a*(L to_power k*L to_power 1) by POWER:25
          .= a*L to_power (k+1) by A1,POWER:27;
        assume { x where x is Point of M : dist(x,f.x) <= a*L to_power k}<> {};
        then z in { x where x is Point of M : dist(x,f.x) <= a*L to_power k};
        then consider y being Point of M such that
        y=z and
A38:    dist(y,f.y)<= a*L to_power k;
A39:    dist(f.y,f.(f.y)) <= L*dist(y,f.y) by A3;
        L*dist(y,f.y) <= L*(a*L to_power k) by A1,A38,XREAL_1:64;
        then dist(f.y,f.(f.y)) <= a*L to_power (k+1) by A37,A39,XXREAL_0:2;
        then
        f.y in { x where x is Point of M : dist(x,f.x) <= a*L to_power (k +1)};
        hence thesis;
      end;
      dist(x0,f.x0) = a*1 .= a*L to_power 0 by POWER:24;
      then x0 in { x where x is Point of M : dist(x,f.x) <= a*L to_power 0};
      then
A40:  P[0];
A41:  for k being Nat holds P[k] from NAT_1:sch 2(A40,A36);
      m in F by A17,A33;
      then m <> {} by A5,A41;
      hence thesis by A35;
    end;
    then meet F <> {} by A4,A6,COMPTS_1:4;
    then consider c9 being Point of TopSpaceMetr(M) such that
A42: c9 in meet F by SUBSET_1:4;
    reconsider c = c9 as Point of M by A14;
    reconsider dc = dist(c,f.c) as Element of REAL by XREAL_0:def 1;
    set r = seq_const dist(c,f.c);
    consider s9 being Real_Sequence such that
A43: for n being Nat holds s9.n= F(n) from SEQ_1:sch 1;
    set s = a (#) s9;
    lim s9=0 by A1,A2,A43,SERIES_1:1;
    then
A44: lim s = a*0 by A1,A2,A43,SEQ_2:8,SERIES_1:1
      .= 0;
A45: now
      let n be Nat;
      defpred P[Point of M] means dist($1,f.$1) <= a*L to_power (n+1);
      set B = { x where x is Point of M : P[x]};
      B is Subset of M from DOMAIN_1:sch 7;
      then B in F by A5,A14;
      then c in B by A42,SETFAM_1:def 1;
      then
A46:  ex x being Point of M st c = x & dist(x,f.x) <= a*L to_power ( n+1 );
      s.n = a*s9.n by SEQ_1:9
        .= a*L to_power (n+1) by A43;
      hence r.n <= s.n by A46,SEQ_1:57;
    end;
    s is convergent by A1,A2,A43,SEQ_2:7,SERIES_1:1;
    then
A47: lim r <= lim s by A45,SEQ_2:18;
    r.0=dist(c,f.c) by SEQ_1:57;
    then dist(c,f.c)<=0 by A44,A47,SEQ_4:25;
    then dist(c,f.c)=0 by METRIC_1:5;
    hence ex c being Point of M st dist(c,f.c) = 0;
  end;
  then consider c being Point of M such that
A48: dist(c,f.c) = 0;
  take c;
  thus
A49: f.c =c by A48,METRIC_1:2;
  let x be Point of M;
  assume
A50: f.x=x;
A51: dist(x,c)>=0 by METRIC_1:5;
  assume x<>c;
  then dist(x,c)<>0 by METRIC_1:2;
  then L*dist(x,c)<dist(x,c) by A2,A51,XREAL_1:157;
  hence contradiction by A3,A49,A50;
end;