Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 29,576 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
:: Directed Geometrical Bundles and Their Analytical Representation
::  by Grzegorz Lewandowski, Krzysztof Pra\.zmowski and Bo\.zena Lewandowska

environ

 vocabularies XBOOLE_0, ANALOAF, SUBSET_1, STRUCT_0, ZFMISC_1, TDGROUP, DIRAF,
      BINOP_1, FUNCT_1, ALGSTR_0, SUPINF_2, ARYTM_3, RLVECT_1, ARYTM_1,
      VECTSP_1, MCART_1, PBOOLE, RELAT_1, TARSKI, AFVECT0;
 notations TARSKI, ZFMISC_1, SUBSET_1, STRUCT_0, ALGSTR_0, ANALOAF, TDGROUP,
      FUNCT_1, FUNCT_2, XTUPLE_0, MCART_1, BINOP_1, RELAT_1, VECTSP_1,
      RLVECT_1;
 constructors BINOP_1, DOMAIN_1, TDGROUP, RELSET_1, XTUPLE_0;
 registrations XBOOLE_0, SUBSET_1, RELSET_1, STRUCT_0, VECTSP_1, TDGROUP,
      RELAT_1, XTUPLE_0;
 requirements SUBSET, BOOLE;
 definitions RLVECT_1, ALGSTR_0;
 equalities STRUCT_0, BINOP_1, ALGSTR_0;
 expansions STRUCT_0;
 theorems DOMAIN_1, TDGROUP, FUNCT_1, FUNCT_2, MCART_1, RELAT_1, TARSKI,
      RLVECT_1, ANALOAF, XBOOLE_0, VECTSP_1, STRUCT_0;
 schemes BINOP_1, FUNCT_2;

begin

definition
  let IT be non empty AffinStruct;
  attr IT is WeakAffVect-like means
  :Def1:
  (for a,b,c being Element of IT st a
,b // c,c holds a=b) & (for a,b,c,d,p,q being Element of IT st a,b // p,q & c,d
// p,q holds a,b // c,d) & (for a,b,c being Element of IT ex d being Element of
IT st a,b // c,d) & (for a,b,c,a9,b9,c9 being Element of IT st a,b // a9,b9 & a
  ,c // a9,c9 holds b,c // b9,c9) & (for a,c being Element of IT ex b being
  Element of IT st a,b // b,c) & for a,b,c,d being Element of IT st a,b // c,d
  holds a,c // b,d;
end;

registration
  cluster strict WeakAffVect-like for non trivial AffinStruct;
  existence
  proof
    set AFV = the strict AffVect;
    reconsider AS = AFV as non empty AffinStruct;
A1: ( for a,b,c being Element of AS ex d being Element of AS st a,b // c,d
)& for a,b,c,a9,b9,c9 being Element of AS st a,b // a9,b9 & a,c // a9,c9 holds
    b,c // b9,c9 by TDGROUP:16;
A2: ( for a,c being Element of AS ex b being Element of AS st a,b // b,c)&
for a,b,c,d being Element of AS st a,b // c,d holds a,c // b,d by TDGROUP:16;
    ( for a,b,c being Element of AS st a,b // c,c holds a=b)& for a,b,c,d,
p,q being Element of AS st a,b // p,q & c,d // p,q holds a, b // c,d by
TDGROUP:16;
    then AS is WeakAffVect-like by A1,A2;
    hence thesis;
  end;
end;

definition
  mode WeakAffVect is WeakAffVect-like non trivial AffinStruct;
end;

registration
  cluster AffVect-like -> WeakAffVect-like for non empty AffinStruct;
  coherence
  by TDGROUP:def 5;
end;

reserve AFV for WeakAffVect;
reserve a,b,c,d,e,f,a9,b9,c9,d9,f9,p,q,r,o,x99 for Element of AFV;

::
::          Properties of Relation of Congruence of Vectors
::

theorem Th1:
  a,b // a,b
proof
  ex d st a,b // b,d by Def1;
  hence thesis by Def1;
end;

theorem
  a,a // a,a by Th1;

theorem Th3:
  a,b // c,d implies c,d // a,b
proof
  assume
A1: a,b // c,d;
  c,d // c,d by Th1;
  hence thesis by A1,Def1;
end;

theorem Th4:
  a,b // a,c implies b = c
proof
  assume a,b // a,c;
  then a,a // b,c by Def1;
  then b,c // a,a by Th3;
  hence thesis by Def1;
end;

theorem Th5:
  a,b // c,d & a,b // c,d9 implies d = d9
proof
  assume a,b // c,d & a,b // c,d9;
  then c,d // a,b & c,d9 // a,b by Th3;
  then c,d // c,d9 by Def1;
  hence thesis by Th4;
end;

theorem Th6:
  for a,b holds a,a // b,b
proof
  let a,b;
  consider p such that
A1: a,a // b,p by Def1;
  b,p // a,a by A1,Th3;
  hence thesis by A1,Def1;
end;

theorem Th7:
  a,b // c,d implies b,a // d,c
proof
  assume
A1: a,b // c,d;
  a,a // c,c by Th6;
  hence thesis by A1,Def1;
end;

theorem
  a,b // c,d & a,c // b9,d implies b = b9
proof
  assume that
A1: a,b // c,d and
A2: a,c // b9,d;
  a,c // b,d by A1,Def1;
  then b,d // a,c by Th3;
  then
A3: d,b // c,a by Th7;
  b9,d // a,c by A2,Th3;
  then d,b9 // c,a by Th7;
  then d,b // d,b9 by A3,Def1;
  hence thesis by Th4;
end;

theorem
  b,c // b9,c9 & a,d // b,c & a,d9 // b9,c9 implies d = d9
proof
  assume that
A1: b,c // b9,c9 and
A2: a,d // b,c and
A3: a,d9 // b9,c9;
  b9,c9 // b,c by A1,Th3;
  then a,d // b9,c9 by A2,Def1;
  then a,d // a,d9 by A3,Def1;
  hence thesis by Th4;
end;

theorem
  a,b // a9,b9 & c,d // b,a & c,d9 // b9,a9 implies d = d9
proof
  assume that
A1: a,b // a9,b9 and
A2: c,d // b,a and
A3: c,d9 // b9,a9;
  a9,b9 // a,b by A1,Th3;
  then b9,a9 // b,a by Th7;
  then c,d // b9,a9 by A2,Def1;
  then c,d // c,d9 by A3,Def1;
  hence thesis by Th4;
end;

theorem
  a,b // a9,b9 & c,d // c9,d9 & b,f // c,d & b9,f9 // c9,d9 implies a,f
  // a9,f9
proof
  assume that
A1: a,b // a9,b9 and
A2: c,d // c9,d9 and
A3: b,f // c,d and
A4: b9,f9 // c9,d9;
  b9,f9 // c,d by A2,A4,Def1;
  then
A5: b,f // b9,f9 by A3,Def1;
  b,a // b9,a9 by A1,Th7;
  hence thesis by A5,Def1;
end;

theorem Th12:
  a,b // a9,b9 & a,c // c9,b9 implies b,c // c9,a9
proof
  assume that
A1: a,b // a9,b9 and
A2: a,c // c9,b9;
  consider d such that
A3: c9,b9 // a9,d by Def1;
  a9,d // c9,b9 by A3,Th3;
  then a,c // a9,d by A2,Def1;
  then
A4: b,c // b9,d by A1,Def1;
  c9,a9 // b9,d by A3,Def1;
  hence thesis by A4,Def1;
end;

::
::                  Relation of Maximal Distance
::

definition
  let AFV;
  let a,b;
  pred MDist a,b means

  a,b // b,a & a <> b;
  irreflexivity;
  symmetry by Th3;
end;

theorem
  ex a,b st a<>b & not MDist a,b
proof
  consider p,q such that
A1: p <> q by STRUCT_0:def 10;
  now
    consider r such that
A2: p,r // r,q by Def1;
A3: now
A4:   now
        assume MDist p,r;
        then
A5:     p,r // r,p;
        r,q // p,r by A2,Th3;
        then q,r // r,p by Th7;
        then p,r // q,r by A5,Def1;
        hence thesis by A1,Th4,Th7;
      end;
      assume p <> r;
      hence thesis by A4;
    end;
    now
      assume
A6:   p = r;
      then r,q // p,p by A2,Th3;
      hence thesis by A1,A6,Def1;
    end;
    hence thesis by A3;
  end;
  hence thesis;
end;

theorem
  MDist a,b & MDist a,c implies b = c or MDist b,c
proof
  assume that
A1: MDist a,b and
A2: MDist a,c;
A3: a,b // b,a by A1;
A4: a,c // c,a by A2;
  consider d such that
A5: c,a // b,d by Def1;
  b,d // c,a by A5,Th3;
  then a,c // b,d by A4,Def1;
  then
A6: b,c // a,d by A3,Def1;
  c,b // a,d by A5,Def1;
  then b,c // c,b by A6,Def1;
  hence thesis;
end;

theorem
  MDist a,b & a,b // c,d implies MDist c,d
proof
  assume that
A1: MDist a,b and
A2: a,b // c,d;
A3: a,b // b,a by A1;
A4: c,d // a,b by A2,Th3;
  then d,c // b,a by Th7;
  then d,c // a,b by A3,Def1;
  then c,d // d,c by A4,Def1;
  then c <> d implies thesis;
  hence thesis by A1,A2,Def1;
end;

::
::                        Midpoint Relation
::

definition
  let AFV;
  let a,b,c;
  pred Mid a,b,c means
  :Def3:
  a,b // b,c;
end;

theorem Th16:
  Mid a,b,c implies Mid c,b,a
proof
  assume Mid a,b,c;
  then a,b // b,c;
  then b,a // c,b by Th7;
  then c,b // b,a by Th3;
  hence thesis;
end;

theorem
  Mid a,b,b iff a = b
by Def1,Th6;

theorem Th18:
  Mid a,b,a iff a = b or MDist a,b
by Th6;

theorem Th19:
  ex b st Mid a,b,c
proof
  consider b such that
A1: a,b // b,c by Def1;
  Mid a,b,c by A1;
  hence thesis;
end;

theorem Th20:
  Mid a,b,c & Mid a,b9,c implies b =b9 or MDist b,b9
proof
  assume that
A1: Mid a,b,c and
A2: Mid a,b9,c;
A3: a,b // b,c by A1;
  consider d such that
A4: b9,c // b,d by Def1;
A5: b,d // b9,c by A4,Th3;
  then b,b9 // d,c by Def1;
  then
A6: b9,b // c,d by Th7;
  a,b9 // b9,c by A2;
  then a,b9 // b,d by A5,Def1;
  then b,b9 // c,d by A3,Def1;
  then b,b9 // b9,b by A6,Def1;
  hence thesis;
end;

theorem Th21:
  ex c st Mid a,b,c
proof
  consider c such that
A1: a,b // b,c by Def1;
  Mid a,b,c by A1;
  hence thesis;
end;

theorem Th22:
  Mid a,b,c & Mid a,b,c9 implies c = c9
proof
  assume that
A1: Mid a,b,c and
A2: Mid a,b,c9;
  a,b // b,c9 by A2;
  then
A3: b,c9 // a,b by Th3;
  a,b // b,c by A1;
  then b,c // a,b by Th3;
  then b,c // b,c9 by A3,Def1;
  hence thesis by Th4;
end;

theorem Th23:
  Mid a,b,c & MDist b,b9 implies Mid a,b9,c
proof
  assume that
A1: Mid a,b,c and
A2: MDist b,b9;
A3: b,b9 // b9,b by A2;
  a,b // b,c by A1;
  then
A4: b,a // c,b by Th7;
  consider d such that
A5: b9,b // c,d by Def1;
  c,d // b9,b by A5,Th3;
  then b,b9 // c,d by A3,Def1;
  then
A6: a,b9 // b,d by A4,Def1;
  b9,c // b,d by A5,Def1;
  then a,b9 // b9,c by A6,Def1;
  hence thesis;
end;

theorem Th24:
  Mid a,b,c & Mid a,b9,c9 & MDist b,b9 implies c = c9
proof
  assume that
A1: Mid a,b,c and
A2: Mid a,b9,c9 and
A3: MDist b,b9;
  Mid a,b9,c by A1,A3,Th23;
  hence thesis by A2,Th22;
end;

theorem Th25:
  Mid a,p,a9 & Mid b,p,b9 implies a,b // b9,a9
proof
  assume that
A1: Mid a,p,a9 and
A2: Mid b,p,b9;
  consider d such that
A3: b9,p // a9,d by Def1;
  a,p // p,a9 by A1;
  then
A4: p,a // a9,p by Th7;
  b,p // p,b9 by A2;
  then
A5: p,b // b9,p by Th7;
  a9,d // b9,p by A3,Th3;
  then p,b // a9,d by A5,Def1;
  then
A6: a,b // p,d by A4,Def1;
  b9,a9 // p,d by A3,Def1;
  hence thesis by A6,Def1;
end;

theorem
  Mid a,p,a9 & Mid b,q,b9 & MDist p,q implies a,b // b9,a9
proof
  assume that
A1: Mid a,p,a9 and
A2: Mid b,q,b9 and
A3: MDist p,q;
  Mid a,q,a9 by A1,A3,Th23;
  hence thesis by A2,Th25;
end;

::
::                         Point Symmetry
::

definition
  let AFV;
  let a,b;
  func PSym(a,b) -> Element of AFV means
  :Def4:
  Mid b,a,it;
  correctness by Th21,Th22;
end;

theorem
  PSym(p,a) = b iff a,p // p,b by Def3,Def4;

theorem Th28:
  PSym(p,a) = a iff a = p or MDist a,p
proof
A1: now
    assume a = p or MDist a,p;
    then Mid a,p,a by Th18;
    hence PSym(p,a) = a by Def4;
  end;
  now
    assume PSym(p,a) = a;
    then Mid a,p,a by Def4;
    hence a = p or MDist a,p;
  end;
  hence thesis by A1;
end;

theorem Th29:
  PSym(p,PSym(p,a)) = a
proof
  Mid a,p,PSym(p,a) by Def4;
  then Mid PSym(p,a),p,a by Th16;
  hence thesis by Def4;
end;

theorem Th30:
  PSym(p,a) = PSym(p,b) implies a = b
proof
  assume
A1: PSym(p,a) = PSym(p,b);
  PSym(p,PSym(p,a)) = a by Th29;
  hence thesis by A1,Th29;
end;

theorem
  ex a st PSym(p,a) = b
proof
  PSym(p,PSym(p,b)) = b by Th29;
  hence thesis;
end;

theorem Th32:
  a,b // PSym(p,b),PSym(p,a)
proof
  Mid a,p,PSym(p,a) & Mid b,p,PSym(p,b) by Def4;
  hence thesis by Th25;
end;

theorem Th33:
  a,b // c,d iff PSym(p,a),PSym(p,b) // PSym(p,c),PSym(p,d)
proof
A1: now
    assume
A2: PSym(p,a),PSym(p,b) // PSym(p,c),PSym(p,d);
    d,c // PSym(p,c),PSym(p,d) by Th32;
    then d,c // PSym(p,a),PSym(p,b) by A2,Def1;
    then
A3: c,d // PSym(p,b),PSym(p,a) by Th7;
    a,b // PSym(p,b),PSym(p,a) by Th32;
    hence a,b // c,d by A3,Def1;
  end;
  now
A4: PSym(p,b),PSym(p,a) // a,b by Th3,Th32;
    assume
A5: a,b // c,d;
    PSym(p,d),PSym(p,c) // c,d by Th3,Th32;
    then PSym(p,d),PSym(p,c) // a,b by A5,Def1;
    then PSym(p,b),PSym(p,a) // PSym(p,d),PSym(p,c) by A4,Def1;
    hence PSym(p,a),PSym(p,b) // PSym(p,c),PSym(p,d) by Th7;
  end;
  hence thesis by A1;
end;

theorem
  MDist a,b iff MDist PSym(p,a),PSym(p,b)
by Th30,Th33;

theorem Th35:
  Mid a,b,c iff Mid PSym(p,a),PSym(p,b),PSym(p,c)
by Th33;

theorem Th36:
  PSym(p,a) = PSym(q,a) iff p = q or MDist p,q
proof
A1: now
    assume
A2: MDist p,q;
    Mid a,p,PSym(p,a) & Mid a,q,PSym(q,a) by Def4;
    hence PSym(p,a) = PSym(q,a) by A2,Th24;
  end;
  now
    assume
A3: PSym(p,a) = PSym(q,a);
    Mid a,p,PSym(p,a) & Mid a,q,PSym(q,a) by Def4;
    hence p = q or MDist p,q by A3,Th20;
  end;
  hence thesis by A1;
end;

theorem Th37:
  PSym(q,PSym(p,PSym(q,a))) = PSym(PSym(q,p),a)
proof
  Mid PSym(q,a),p,PSym(p,PSym(q,a)) by Def4;
  then Mid PSym(q,PSym(q,a)),PSym(q,p),PSym(q,PSym(p,PSym(q,a))) by Th35;
  then PSym(q,PSym(p,PSym(q,a)))=PSym(PSym(q,p),PSym(q,PSym(q,a))) by Def4;
  hence thesis by Th29;
end;

theorem
  PSym(p,PSym(q,a)) = PSym(q,PSym(p,a)) iff p = q or MDist p,q or MDist
  q,PSym(p,q)
proof
A1: now
    assume PSym(p,PSym(q,a))=PSym(q,PSym(p,a));
    then PSym(p,PSym(q,PSym(p,a)))=PSym(q,a) by Th29;
    then PSym(PSym(p,q),a)=PSym(q,a) by Th37;
    then q=PSym(p,q) or MDist q,PSym(p,q) by Th36;
    then
A2: Mid q,p,q or MDist q,PSym(p,q) by Def4;
    hence p = q or MDist q,p or MDist q,PSym(p,q);
    thus p = q or MDist p,q or MDist q,PSym(p,q) by A2,Th18;
  end;
  now
    assume p = q or MDist p,q or MDist q,PSym(p,q);
    then Mid q,p,q or MDist q,PSym(p,q) by Th18;
    then PSym(PSym(p,q),a)=PSym(q,a) by Def4,Th36;
    then PSym(p,PSym(q,PSym(p,a)))=PSym(q,a) by Th37;
    hence PSym(p,PSym(q,a))=PSym(q,PSym(p,a)) by Th29;
  end;
  hence thesis by A1;
end;

theorem Th39:
  PSym(p,PSym(q,PSym(r,a))) = PSym(r,PSym(q,PSym(p,a)))
proof
  p,a // PSym(r,a),PSym(r,p) & PSym(q,PSym(r,p)),PSym(q,PSym(r,a)) //
  PSym(r,a ),PSym(r,p) by Th3,Th32;
  then
A1: p,a // PSym(q,PSym(r,p)),PSym(q,PSym(r,a)) by Def1;
  p,a // PSym(p,a),PSym(p,p) & PSym(q,PSym(p,p)),PSym(q,PSym(p,a)) //
  PSym(p,a ),PSym(p,p) by Th3,Th32;
  then
A2: p,a // PSym(q,PSym(p,p)),PSym(q,PSym(p,a)) by Def1;
  PSym(q,p),PSym(r,p) // PSym(r,PSym(r,p)),PSym(r,PSym(q,p)) by Th32;
  then PSym(q,p),PSym(r,p) // p,PSym(r,PSym(q,p)) by Th29;
  then
A3: p,PSym(r,PSym(q,p)) // PSym(q,p),PSym(r,p) by Th3;
  PSym(q,PSym(r,p)),p // PSym(q,p),PSym(q,PSym(q,PSym(r,p))) by Th32;
  then PSym(q,PSym(r,p)),p // PSym(q,p),PSym(r,p) by Th29;
  then PSym(q,PSym(r,p)),p // p,PSym(r,PSym(q,p)) by A3,Def1;
  then Mid PSym(q,PSym(r,p)),p,PSym(r,PSym(q,p));
  then PSym(p,PSym(q,PSym(r,p))) = PSym(r,PSym(q,p)) by Def4;
  then
A4: PSym(p,PSym(q,PSym(r,p))) = PSym(r,PSym(q,PSym(p,p))) by Th28;
  PSym(r,PSym(q,PSym(p,a))),PSym(r,PSym(q,PSym(p,p))) // PSym(q,PSym(p,p)
  ),PSym(q,PSym(p,a)) by Th3,Th32;
  then
A5: PSym(r,PSym(q,PSym(p,a))),PSym(r,PSym(q,PSym(p,p))) // p,a by A2,Def1;
  PSym(p,PSym(q,PSym(r,a))),PSym(p,PSym(q,PSym(r,p))) // PSym(q,PSym(r,p)
  ),PSym(q,PSym(r,a)) by Th3,Th32;
  then PSym(p,PSym(q,PSym(r,a))),PSym(p,PSym(q,PSym(r,p))) // p,a by A1,Def1;
  then PSym(p,PSym(q,PSym(r,a))),PSym(p,PSym(q,PSym(r,p))) // PSym(r,PSym(q,
  PSym(p,a))),PSym(p,PSym(q,PSym(r,p))) by A4,A5,Def1;
  hence thesis by Th4,Th7;
end;

theorem
  ex d st PSym(a,PSym(b,PSym(c,p))) = PSym(d,p)
proof
  consider e such that
A1: Mid a,e,c by Th19;
  consider d such that
A2: Mid b,e,d by Th21;
  c = PSym(e,a) by A1,Def4;
  then PSym(c,PSym(d,p)) = PSym(PSym(e,a),PSym(PSym(e,b),p)) by A2,Def4
    .= PSym(PSym(e,a),PSym(e,PSym(b,PSym(e,p)))) by Th37
    .= PSym(e,PSym(a,PSym(e,PSym(e,PSym(b,PSym(e,p)))))) by Th37
    .= PSym(e,PSym(a,PSym(b,PSym(e,p)))) by Th29
    .= PSym(e,PSym(e,PSym(b,PSym(a,p)))) by Th39
    .= PSym(b,PSym(a,p)) by Th29;
  then PSym(d,p) = PSym(c,PSym(b,PSym(a,p))) by Th29;
  hence thesis by Th39;
end;

theorem
  ex c st PSym(a,PSym(c,p)) = PSym(c,PSym(b,p))
proof
  consider c such that
A1: Mid a,c,b by Th19;
  PSym(b,p) = PSym(PSym(c,a),p) by A1,Def4
    .= PSym(c,PSym(a,(PSym(c,p)))) by Th37;
  then PSym(c,PSym(b,p)) = PSym(a,(PSym(c,p))) by Th29;
  hence thesis;
end;

::
::                     Addition on the carrier
::

definition
  let AFV,o;
  let a,b;
  func Padd(o,a,b) -> Element of AFV means
  :Def5:
  o,a // b,it;
  correctness by Def1,Th5;
end;

notation
  let AFV,o;
  let a;
  synonym Pcom(o,a) for PSym(o,a);
end;

Lm1: Pcom(o,a) = b iff a,o // o,b by Def4,Def3;

definition
  let AFV,o;

  func Padd(o) -> BinOp of the carrier of AFV means
  :Def6:
  for a,b holds it.(a ,b) = Padd(o,a,b);
  existence
  proof
    deffunc F(Element of AFV, Element of AFV) = Padd(o,$1,$2);
    consider O being BinOp of the carrier of AFV such that
A1: for a,b holds O.(a,b) = F(a,b) from BINOP_1:sch 4;
    take O;
    thus thesis by A1;
  end;
  uniqueness
  proof
    set X = the carrier of AFV;
    let o1,o2 be BinOp of the carrier of AFV such that
A2: for a,b holds o1.(a,b) = Padd(o,a,b) and
A3: for a,b holds o2.(a,b) = Padd(o,a,b);
    for x being Element of [:X,X:] holds o1.x = o2.x
    proof
      let x be Element of [:X,X:];
      consider x1,x2 being Element of X such that
A4:   x = [x1,x2] by DOMAIN_1:1;
      o1.x = o1.(x1,x2) by A4
        .= Padd(o,x1,x2) by A2
        .= o2.(x1,x2) by A3
        .= o2.x by A4;
      hence thesis;
    end;
    hence thesis by FUNCT_2:63;
  end;
end;

definition
  let AFV,o;
  func Pcom(o) -> UnOp of the carrier of AFV means
  :Def7:
  for a holds it.a = Pcom(o,a);
  existence
  proof
    deffunc F(Element of AFV) = Pcom(o,$1);
    consider O being UnOp of the carrier of AFV such that
A1: for a holds O.a = F(a) from FUNCT_2:sch 4;
    take O;
    thus thesis by A1;
  end;
  uniqueness
  proof
    set X = the carrier of AFV;
    let o1,o2 be UnOp of the carrier of AFV such that
A2: for a holds o1.a = Pcom(o,a) and
A3: for a holds o2.a = Pcom(o,a);
    for x being Element of X holds o1.x = o2.x
    proof
      let x be Element of X;
      o1.x = Pcom(o,x) by A2
        .= o2.x by A3;
      hence thesis;
    end;
    hence thesis by FUNCT_2:63;
  end;
end;

definition
  let AFV,o;
  func GroupVect(AFV,o) -> strict addLoopStr equals
  addLoopStr(#the carrier of
    AFV,Padd(o),o#);
  correctness;
end;

registration
  let AFV,o;
  cluster GroupVect(AFV,o) -> non empty;
  coherence;
end;

theorem
  the carrier of GroupVect(AFV,o) = the carrier of AFV & the addF of
  GroupVect(AFV,o) = Padd(o) & 0.GroupVect(AFV,o) = o;

reserve a,b,c for Element of GroupVect(AFV,o);

theorem
  for a,b being Element of GroupVect(AFV,o), a9,b9 being Element of AFV
  st a=a9 & b=b9 holds a + b = (Padd(o)).(a9,b9);

Lm2: a+b = b+a
proof
  reconsider a9=a,b9=b as Element of AFV;
  reconsider c9=(a+b) as Element of AFV;
  c9= Padd(o,a9,b9) by Def6;
  then o,a9 // b9,c9 by Def5;
  then o,b9 // a9,c9 by Def1;
  then c9 = Padd(o,b9,a9) by Def5
    .= b + a by Def6;
  hence thesis;
end;

Lm3: (a+b)+c = a+(b+c)
proof
  reconsider a9=a,b9=b,c9=c as Element of AFV;
  set p= b+c,q=a+b;
  reconsider p9=p,q9=q as Element of AFV;
  reconsider x9=(a+p) ,y9=(q+c) as Element of AFV;
  consider x99 such that
A1: x9,p9 // c9,x99 by Def1;
  x9= Padd(o,a9,p9) by Def6;
  then o,a9 // p9,x9 by Def5;
  then
A2: a9,o // x9,p9 by Th7;
  c9,x99 // x9,p9 by A1,Th3;
  then
A3: a9,o // c9,x99 by A2,Def1;
  q9= Padd(o,a9,b9) by Def6;
  then o,a9 // b9,q9 by Def5;
  then o,b9 // a9,q9 by Def1;
  then
A4: a9,q9 // o,b9 by Th3;
  p9= Padd(o,b9,c9) by Def6;
  then o,b9 // c9,p9 by Def5;
  then c9,p9 // o,b9 by Th3;
  then a9,q9 // c9,p9 by A4,Def1;
  then
A5: q9,o // p9,x99 by A3,Def1;
  x9,c9 // p9,x99 by A1,Def1;
  then q9,o // x9,c9 by A5,Def1;
  then o,q9 // c9,x9 by Th7;
  then
A6: c9,x9 // o,q9 by Th3;
  y9= Padd(o,q9,c9) by Def6;
  then o,q9 // c9,y9 by Def5;
  then c9,y9 // o,q9 by Th3;
  then c9,y9 // c9,x9 by A6,Def1;
  hence thesis by Th4;
end;

Lm4: a + (0.(GroupVect(AFV,o))) = a
proof
  reconsider a9=a as Element of AFV;
  reconsider x9=(a + (0.(GroupVect(AFV,o)))) as Element of AFV;
  x9= Padd(o,a9,o) by Def6;
  then o,a9 // o,x9 by Def5;
  hence thesis by Th4;
end;

Lm5: GroupVect(AFV,o) is Abelian add-associative right_zeroed
proof
  thus for a,b holds a+b = b+a by Lm2;
  thus for a,b,c holds (a+b)+c = a+(b+c) by Lm3;
  thus for a holds a + 0.GroupVect(AFV,o) = a by Lm4;
end;

Lm6: GroupVect(AFV,o) is right_complementable
proof
  let s be Element of GroupVect(AFV,o);
  reconsider s9 = s as Element of AFV;
  reconsider t = (Pcom(o)).s9 as Element of GroupVect(AFV,o);
  take t;
  Pcom(o,o) = o by Th28;
  then o,s9 // Pcom(o,s9),o by Th32;
  then
A1: Padd(o,s9,Pcom(o,s9)) = o by Def5;
  thus s + t = (Padd(o)).(s9,(Pcom(o,s9))) by Def7
    .= 0.GroupVect(AFV,o) by A1,Def6;
end;

registration
  let AFV,o;
  cluster GroupVect(AFV,o) -> Abelian add-associative right_zeroed
    right_complementable;
  coherence by Lm5,Lm6;
end;

theorem Th44:
  for a being Element of GroupVect(AFV,o), a9 being Element of AFV
  st a=a9 holds -a = (Pcom(o)).a9
proof
  let a be Element of GroupVect(AFV,o), a9 be Element of AFV;
  assume
A1: a=a9;
  reconsider aa = (Pcom(o)).a9 as Element of GroupVect(AFV,o);
  Pcom(o,o) = o & o,a9 // Pcom(o,a9),Pcom(o,o) by Th28,Th32;
  then
A2: Padd(o,a9,Pcom(o,a9)) = o by Def5;
  a + aa = (Padd(o)).(a,(Pcom(o,a9))) by Def7
    .= 0.GroupVect(AFV,o) by A1,A2,Def6;
  hence thesis by RLVECT_1:def 10;
end;

theorem
  0.GroupVect(AFV,o) = o;

reserve a,b for Element of GroupVect(AFV,o);

theorem Th46:
  for a ex b st b + b = a
proof
  let a;
  reconsider a99=a as Element of AFV;
  consider b9 being Element of AFV such that
A1: o,b9 // b9,a99 by Def1;
  reconsider b=b9 as Element of GroupVect(AFV,o);
  a99 = Padd(o,b9,b9) by A1,Def5
    .= b+b by Def6;
  hence thesis;
end;

registration
  let AFV,o;
  cluster GroupVect(AFV,o) -> Two_Divisible;
  coherence
  proof
    for a ex b st b + b = a by Th46;
    hence thesis by TDGROUP:def 1;
  end;
end;

::
::        Representation Theorem for Directed Geometrical Bundles
::

reserve AFV for AffVect,
  o for Element of AFV;

theorem Th47:
  for a being Element of GroupVect(AFV,o) st a + a = 0.(GroupVect(
  AFV,o)) holds a = 0.(GroupVect(AFV,o))
proof
  let a be Element of GroupVect(AFV,o) such that
A1: a + a = 0.(GroupVect(AFV,o));
  reconsider a99=a as Element of AFV;
  o = Padd(o,a99,a99) by A1,Def6;
  then
A2: o,a99 // a99,o by Def5;
  o,o // o,o by Th1;
  hence thesis by A2,TDGROUP:16;
end;

registration
  let AFV,o;
  cluster GroupVect(AFV,o) -> Fanoian;
  coherence
  proof
    for a being Element of GroupVect(AFV,o) st a + a = 0.(GroupVect(AFV,o)
    ) holds a = 0.(GroupVect(AFV,o)) by Th47;
    hence thesis by VECTSP_1:def 18;
  end;
end;

registration
  cluster strict non trivial for Uniquely_Two_Divisible_Group;
  existence
  proof
    set X = G_Real;
    X is non trivial by TDGROUP:6;
    hence thesis;
  end;
end;

definition
  mode Proper_Uniquely_Two_Divisible_Group is non trivial
    Uniquely_Two_Divisible_Group;
end;

theorem
  GroupVect(AFV,o) is Proper_Uniquely_Two_Divisible_Group;

registration
  let AFV,o;
  cluster GroupVect(AFV,o) -> non trivial;
  coherence;
end;

theorem Th49:
  for ADG being Proper_Uniquely_Two_Divisible_Group holds AV(ADG) is AffVect
proof
  let ADG be Proper_Uniquely_Two_Divisible_Group;
  ex a,b being Element of ADG st a<>b by STRUCT_0:def 10;
  hence thesis by TDGROUP:17;
end;

registration
  let ADG be Proper_Uniquely_Two_Divisible_Group;
  cluster AV(ADG) -> AffVect-like non trivial;
  coherence by Th49;
end;

theorem Th50:
  for AFV being strict AffVect holds for o being Element of AFV
  holds AFV = AV(GroupVect(AFV,o))
proof
  let AFV be strict AffVect;
  let o be Element of AFV;
  set X = GroupVect(AFV,o);
  now
    let x,y be object;
    set xy = [x,y];
A1: now
      set V = the carrier of AFV;
      assume
A2:   xy in the CONGR of AFV;
      set VV = [:V,V:];
      xy`2 = y;
      then
A3:   y in VV by A2,MCART_1:10;
      then
A4:   y = [y`1,y`2] by MCART_1:21;
      xy`1 = x;
      then
A5:   x in VV by A2,MCART_1:10;
      then reconsider
      x1 = x`1, x2 = x`2, y1 = y`1, y2 = y`2 as Element of AFV by A3,MCART_1:10
;
      reconsider x19 = x1, x29 = x2, y19 = y1, y29 = y2 as Element of X;
A6:   x = [x`1,x`2] by A5,MCART_1:21;
      then
A7:   x1,x2 // y1,y2 by A2,A4,ANALOAF:def 2;
      x19 # y29 = x29 # y19
      proof
        reconsider z1=x19#y29,z2=x29#y19 as Element of AFV;
        z1 = Padd(o,x1,y2) by Def6;
        then o,x1 // y2,z1 by Def5;
        then x1,o // z1,y2 by Th7;
        then
A8:     o,x2 // y1,z1 by A7,Th12;
        z2 = Padd(o,x2,y1) by Def6;
        hence thesis by A8,Def5;
      end;
      hence [x,y] in CONGRD(X) by A6,A4,TDGROUP:def 2;
    end;
    now
      set V = the carrier of X;
      assume
A9:   xy in CONGRD(X);
      set VV = [:V,V:];
      xy`2 = y;
      then
A10:  y in VV by A9,MCART_1:10;
      then
A11:  y = [y`1,y`2] by MCART_1:21;
      xy`1 = x;
      then
A12:  x in VV by A9,MCART_1:10;
      then reconsider
      x19 = x`1, x29 = x`2, y19 = y`1, y29 = y`2 as Element of X by A10,
MCART_1:10;
      set z19 = x19 # y29, z29 = x29 # y19;
      reconsider x1 = x19, x2 = x29, y1 = y19, y2 = y29 as Element of AFV;
      reconsider z1=z19,z2=z29 as Element of AFV;
A13:  z2 = Padd(o,x2,y1) by Def6;
      z1 = Padd(o,x1,y2) by Def6;
      then
A14:  o,x1 // y2,z1 by Def5;
A15:  x = [x`1,x`2] by A12,MCART_1:21;
      then z19=z29 by A9,A11,TDGROUP:def 2;
      then o,x2 // y1,z1 by A13,Def5;
      then x1,x2 // y1,y2 by A14,Th12;
      hence xy in the CONGR of AFV by A15,A11,ANALOAF:def 2;
    end;
    hence [x,y] in CONGRD(X) iff [x,y] in the CONGR of AFV by A1;
  end;
  then the carrier of AV(X) = the carrier of AFV & CONGRD(X) = the CONGR of
  AFV by RELAT_1:def 2,TDGROUP:4;
  hence thesis by TDGROUP:4;
end;

theorem
  for AS being strict AffinStruct holds (AS is AffVect iff ex ADG being
  Proper_Uniquely_Two_Divisible_Group st AS = AV(ADG) )
proof
  let AS be strict AffinStruct;
  now
    assume AS is AffVect;
    then reconsider AS9 = AS as AffVect;
    set o = the Element of AS9;
    take ADG = GroupVect(AS9,o);
    AS9 = AV(ADG) by Th50;
    hence ex ADG being Proper_Uniquely_Two_Divisible_Group st AS = AV(ADG);
  end;
  hence thesis;
end;

definition
  let X,Y be non empty addLoopStr;
  let f be Function of the carrier of X,the carrier of Y;
  pred f is_Iso_of X,Y means

  f is one-to-one & rng(f) = the carrier of
Y & for a,b being Element of X holds f.(a+b) = (f.a)+(f.b) & f.(0.X) = 0.Y & f.
  (-a) = -(f.a);
end;

definition
  let X,Y be non empty addLoopStr;
  pred X,Y are_Iso means

  ex f being Function of the carrier of X,the carrier of Y st f is_Iso_of X,Y;
end;

reserve ADG for Proper_Uniquely_Two_Divisible_Group;
reserve f for Function of the carrier of ADG,the carrier of ADG;

theorem Th52:
  for o9 being Element of ADG, o being Element of AV(ADG) st (for
x being Element of ADG holds f.x = o9+x) & o=o9 holds for a,b being Element of
ADG holds f.(a+b) =(Padd(o)).(f.a,f.b) & f.(0.ADG) = 0.(GroupVect(AV(ADG),o)) &
  f.(-a) = (Pcom(o)).(f.a)
proof
  let o9 be Element of ADG, o be Element of AV(ADG);
  assume that
A1: for x being Element of ADG holds f.x = o9+x and
A2: o=o9;
  let a,b be Element of ADG;
  set a9=f.a,b9=f.b;
A3: AV(ADG) = AffinStruct(#the carrier of ADG,CONGRD(ADG)#) by TDGROUP:def 3;
  then reconsider a99=a9,b99=b9 as Element of AV(ADG);
  thus f.(a+b) =(Padd(o)).((f.a),(f.b))
  proof
A4: ((Padd(o)).((f.a),(f.b))) = Padd(o,a99,b99) by Def6;
    then reconsider c99= (Padd(o)).((f.a),(f.b)) as Element of AV( ADG);
    reconsider c9=c99 as Element of ADG by A3;
    o,a99 // b99,c99 by A4,Def5;
    then [[o9,a9],[b9,c9]] in CONGRD(ADG) by A2,A3,ANALOAF:def 2;
    then
A5: o9+c9 = a9+b9 by TDGROUP:def 2;
    a9 = o9+a & b9 = o9+b by A1;
    then o9+c9 = (o9+((a+o9)+b)) by A5,RLVECT_1:def 3
      .= o9+(o9+(a+b)) by RLVECT_1:def 3;
    then c9 = o9+(a+b) by RLVECT_1:8
      .= f.(a+b) by A1;
    hence thesis;
  end;
  f.(0.ADG) = o9+(0.ADG) by A1
    .= 0.(GroupVect(AV(ADG),o)) by A2,RLVECT_1:4;
  hence f.(0.ADG) = 0.(GroupVect(AV(ADG),o));
  thus f.(-a) = (Pcom(o)).(f.a)
  proof
A6: ((Pcom(o)).(f.a)) = Pcom(o,a99) by Def7;
    then reconsider c99 = (Pcom(o)).(f.a) as Element of AV(ADG);
    reconsider c9=c99 as Element of ADG by A3;
    a99,o // o,c99 by A6,Lm1;
    then [[a9,o9],[o9,c9]] in CONGRD(ADG) by A2,A3,ANALOAF:def 2;
    then a9+c9 = o9+o9 by TDGROUP:def 2;
    then
A7: o9+o9 = (o9+a)+c9 by A1
      .= o9+(a+c9) by RLVECT_1:def 3;
    f.(-a) = o9+(-a) by A1
      .= (c9+a)+(-a) by A7,RLVECT_1:8
      .= c9+(a+(-a)) by RLVECT_1:def 3
      .= c9+(0.ADG) by RLVECT_1:5
      .= c9 by RLVECT_1:4;
    hence thesis;
  end;
end;

theorem Th53:
  for o9 being Element of ADG st (for b being Element of ADG holds
  f.b = o9+b) holds f is one-to-one
proof
  let o9 be Element of ADG such that
A1: for b being Element of ADG holds f.b = o9+b;
  now
    let x1,x2 be object such that
A2: x1 in dom(f) & x2 in dom(f) and
A3: f.x1 = f.x2;
    reconsider x19=x1,x29=x2 as Element of ADG by A2,FUNCT_2:def 1;
    o9+x29 = f.x19 by A1,A3
      .= o9+x19 by A1;
    hence x1=x2 by RLVECT_1:8;
  end;
  hence thesis by FUNCT_1:def 4;
end;

theorem Th54:
  for o9 being Element of ADG, o being Element of AV(ADG) st (for
  b being Element of ADG holds f.b = o9+b) holds rng(f) = the carrier of
  GroupVect(AV(ADG),o)
proof
  set X = the carrier of ADG;
A1: X = dom(f) by FUNCT_2:def 1;
  let o9 be Element of ADG, o be Element of AV(ADG) such that
A2: for b being Element of ADG holds f.b = o9+b;
  now
    let y be object;
    assume y in X;
    then reconsider y9=y as Element of X;
    set x9=y9-o9;
    f.x9 = o9+((-o9)+y9) by A2
      .= (o9+(-o9))+y9 by RLVECT_1:def 3
      .= y9+(0.ADG) by RLVECT_1:5
      .= y by RLVECT_1:4;
    hence y in rng(f) by A1,FUNCT_1:def 3;
  end;
  then
A3: X c= rng(f) by TARSKI:def 3;
  rng(f) c= X & X = the carrier of GroupVect(AV(ADG),o) by RELAT_1:def 19
,TDGROUP:4;
  hence thesis by A3,XBOOLE_0:def 10;
end;

theorem
  for ADG being Proper_Uniquely_Two_Divisible_Group, o9 being Element of
ADG, o being Element of AV(ADG) st o=o9 holds ADG,GroupVect(AV(ADG),o) are_Iso
proof
  let ADG be Proper_Uniquely_Two_Divisible_Group, o9 be Element of ADG, o be
  Element of AV(ADG) such that
A1: o=o9;
  set AS = AV(ADG);
  set X = the carrier of ADG,Z=GroupVect(AS,o);
  set T = the carrier of GroupVect(AS,o);
  deffunc F(Element of X) = o9+$1;
  consider g being UnOp of X such that
A2: for a being Element of X holds g.a = F(a) from FUNCT_2:sch 4;
  X = T by TDGROUP:4;
  then reconsider f = g as Function of X,T;
A3: now
    let a,b be Element of ADG;
    reconsider fa = f.a as Element of AV(ADG);
    thus f.(a+b) = (f.a)+(f.b) by A1,A2,Th52;
    thus f.(0.ADG) = 0.Z by A1,A2,Th52;
    thus f.(-a) = (Pcom(o)).fa by A1,A2,Th52
      .= -(f.a) by Th44;
  end;
  f is one-to-one & rng(f) = T by A2,Th53,Th54;
  then f is_Iso_of ADG,Z by A3;
  hence thesis;
end;