Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 29,576 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 |
:: Directed Geometrical Bundles and Their Analytical Representation
:: by Grzegorz Lewandowski, Krzysztof Pra\.zmowski and Bo\.zena Lewandowska
environ
vocabularies XBOOLE_0, ANALOAF, SUBSET_1, STRUCT_0, ZFMISC_1, TDGROUP, DIRAF,
BINOP_1, FUNCT_1, ALGSTR_0, SUPINF_2, ARYTM_3, RLVECT_1, ARYTM_1,
VECTSP_1, MCART_1, PBOOLE, RELAT_1, TARSKI, AFVECT0;
notations TARSKI, ZFMISC_1, SUBSET_1, STRUCT_0, ALGSTR_0, ANALOAF, TDGROUP,
FUNCT_1, FUNCT_2, XTUPLE_0, MCART_1, BINOP_1, RELAT_1, VECTSP_1,
RLVECT_1;
constructors BINOP_1, DOMAIN_1, TDGROUP, RELSET_1, XTUPLE_0;
registrations XBOOLE_0, SUBSET_1, RELSET_1, STRUCT_0, VECTSP_1, TDGROUP,
RELAT_1, XTUPLE_0;
requirements SUBSET, BOOLE;
definitions RLVECT_1, ALGSTR_0;
equalities STRUCT_0, BINOP_1, ALGSTR_0;
expansions STRUCT_0;
theorems DOMAIN_1, TDGROUP, FUNCT_1, FUNCT_2, MCART_1, RELAT_1, TARSKI,
RLVECT_1, ANALOAF, XBOOLE_0, VECTSP_1, STRUCT_0;
schemes BINOP_1, FUNCT_2;
begin
definition
let IT be non empty AffinStruct;
attr IT is WeakAffVect-like means
:Def1:
(for a,b,c being Element of IT st a
,b // c,c holds a=b) & (for a,b,c,d,p,q being Element of IT st a,b // p,q & c,d
// p,q holds a,b // c,d) & (for a,b,c being Element of IT ex d being Element of
IT st a,b // c,d) & (for a,b,c,a9,b9,c9 being Element of IT st a,b // a9,b9 & a
,c // a9,c9 holds b,c // b9,c9) & (for a,c being Element of IT ex b being
Element of IT st a,b // b,c) & for a,b,c,d being Element of IT st a,b // c,d
holds a,c // b,d;
end;
registration
cluster strict WeakAffVect-like for non trivial AffinStruct;
existence
proof
set AFV = the strict AffVect;
reconsider AS = AFV as non empty AffinStruct;
A1: ( for a,b,c being Element of AS ex d being Element of AS st a,b // c,d
)& for a,b,c,a9,b9,c9 being Element of AS st a,b // a9,b9 & a,c // a9,c9 holds
b,c // b9,c9 by TDGROUP:16;
A2: ( for a,c being Element of AS ex b being Element of AS st a,b // b,c)&
for a,b,c,d being Element of AS st a,b // c,d holds a,c // b,d by TDGROUP:16;
( for a,b,c being Element of AS st a,b // c,c holds a=b)& for a,b,c,d,
p,q being Element of AS st a,b // p,q & c,d // p,q holds a, b // c,d by
TDGROUP:16;
then AS is WeakAffVect-like by A1,A2;
hence thesis;
end;
end;
definition
mode WeakAffVect is WeakAffVect-like non trivial AffinStruct;
end;
registration
cluster AffVect-like -> WeakAffVect-like for non empty AffinStruct;
coherence
by TDGROUP:def 5;
end;
reserve AFV for WeakAffVect;
reserve a,b,c,d,e,f,a9,b9,c9,d9,f9,p,q,r,o,x99 for Element of AFV;
::
:: Properties of Relation of Congruence of Vectors
::
theorem Th1:
a,b // a,b
proof
ex d st a,b // b,d by Def1;
hence thesis by Def1;
end;
theorem
a,a // a,a by Th1;
theorem Th3:
a,b // c,d implies c,d // a,b
proof
assume
A1: a,b // c,d;
c,d // c,d by Th1;
hence thesis by A1,Def1;
end;
theorem Th4:
a,b // a,c implies b = c
proof
assume a,b // a,c;
then a,a // b,c by Def1;
then b,c // a,a by Th3;
hence thesis by Def1;
end;
theorem Th5:
a,b // c,d & a,b // c,d9 implies d = d9
proof
assume a,b // c,d & a,b // c,d9;
then c,d // a,b & c,d9 // a,b by Th3;
then c,d // c,d9 by Def1;
hence thesis by Th4;
end;
theorem Th6:
for a,b holds a,a // b,b
proof
let a,b;
consider p such that
A1: a,a // b,p by Def1;
b,p // a,a by A1,Th3;
hence thesis by A1,Def1;
end;
theorem Th7:
a,b // c,d implies b,a // d,c
proof
assume
A1: a,b // c,d;
a,a // c,c by Th6;
hence thesis by A1,Def1;
end;
theorem
a,b // c,d & a,c // b9,d implies b = b9
proof
assume that
A1: a,b // c,d and
A2: a,c // b9,d;
a,c // b,d by A1,Def1;
then b,d // a,c by Th3;
then
A3: d,b // c,a by Th7;
b9,d // a,c by A2,Th3;
then d,b9 // c,a by Th7;
then d,b // d,b9 by A3,Def1;
hence thesis by Th4;
end;
theorem
b,c // b9,c9 & a,d // b,c & a,d9 // b9,c9 implies d = d9
proof
assume that
A1: b,c // b9,c9 and
A2: a,d // b,c and
A3: a,d9 // b9,c9;
b9,c9 // b,c by A1,Th3;
then a,d // b9,c9 by A2,Def1;
then a,d // a,d9 by A3,Def1;
hence thesis by Th4;
end;
theorem
a,b // a9,b9 & c,d // b,a & c,d9 // b9,a9 implies d = d9
proof
assume that
A1: a,b // a9,b9 and
A2: c,d // b,a and
A3: c,d9 // b9,a9;
a9,b9 // a,b by A1,Th3;
then b9,a9 // b,a by Th7;
then c,d // b9,a9 by A2,Def1;
then c,d // c,d9 by A3,Def1;
hence thesis by Th4;
end;
theorem
a,b // a9,b9 & c,d // c9,d9 & b,f // c,d & b9,f9 // c9,d9 implies a,f
// a9,f9
proof
assume that
A1: a,b // a9,b9 and
A2: c,d // c9,d9 and
A3: b,f // c,d and
A4: b9,f9 // c9,d9;
b9,f9 // c,d by A2,A4,Def1;
then
A5: b,f // b9,f9 by A3,Def1;
b,a // b9,a9 by A1,Th7;
hence thesis by A5,Def1;
end;
theorem Th12:
a,b // a9,b9 & a,c // c9,b9 implies b,c // c9,a9
proof
assume that
A1: a,b // a9,b9 and
A2: a,c // c9,b9;
consider d such that
A3: c9,b9 // a9,d by Def1;
a9,d // c9,b9 by A3,Th3;
then a,c // a9,d by A2,Def1;
then
A4: b,c // b9,d by A1,Def1;
c9,a9 // b9,d by A3,Def1;
hence thesis by A4,Def1;
end;
::
:: Relation of Maximal Distance
::
definition
let AFV;
let a,b;
pred MDist a,b means
a,b // b,a & a <> b;
irreflexivity;
symmetry by Th3;
end;
theorem
ex a,b st a<>b & not MDist a,b
proof
consider p,q such that
A1: p <> q by STRUCT_0:def 10;
now
consider r such that
A2: p,r // r,q by Def1;
A3: now
A4: now
assume MDist p,r;
then
A5: p,r // r,p;
r,q // p,r by A2,Th3;
then q,r // r,p by Th7;
then p,r // q,r by A5,Def1;
hence thesis by A1,Th4,Th7;
end;
assume p <> r;
hence thesis by A4;
end;
now
assume
A6: p = r;
then r,q // p,p by A2,Th3;
hence thesis by A1,A6,Def1;
end;
hence thesis by A3;
end;
hence thesis;
end;
theorem
MDist a,b & MDist a,c implies b = c or MDist b,c
proof
assume that
A1: MDist a,b and
A2: MDist a,c;
A3: a,b // b,a by A1;
A4: a,c // c,a by A2;
consider d such that
A5: c,a // b,d by Def1;
b,d // c,a by A5,Th3;
then a,c // b,d by A4,Def1;
then
A6: b,c // a,d by A3,Def1;
c,b // a,d by A5,Def1;
then b,c // c,b by A6,Def1;
hence thesis;
end;
theorem
MDist a,b & a,b // c,d implies MDist c,d
proof
assume that
A1: MDist a,b and
A2: a,b // c,d;
A3: a,b // b,a by A1;
A4: c,d // a,b by A2,Th3;
then d,c // b,a by Th7;
then d,c // a,b by A3,Def1;
then c,d // d,c by A4,Def1;
then c <> d implies thesis;
hence thesis by A1,A2,Def1;
end;
::
:: Midpoint Relation
::
definition
let AFV;
let a,b,c;
pred Mid a,b,c means
:Def3:
a,b // b,c;
end;
theorem Th16:
Mid a,b,c implies Mid c,b,a
proof
assume Mid a,b,c;
then a,b // b,c;
then b,a // c,b by Th7;
then c,b // b,a by Th3;
hence thesis;
end;
theorem
Mid a,b,b iff a = b
by Def1,Th6;
theorem Th18:
Mid a,b,a iff a = b or MDist a,b
by Th6;
theorem Th19:
ex b st Mid a,b,c
proof
consider b such that
A1: a,b // b,c by Def1;
Mid a,b,c by A1;
hence thesis;
end;
theorem Th20:
Mid a,b,c & Mid a,b9,c implies b =b9 or MDist b,b9
proof
assume that
A1: Mid a,b,c and
A2: Mid a,b9,c;
A3: a,b // b,c by A1;
consider d such that
A4: b9,c // b,d by Def1;
A5: b,d // b9,c by A4,Th3;
then b,b9 // d,c by Def1;
then
A6: b9,b // c,d by Th7;
a,b9 // b9,c by A2;
then a,b9 // b,d by A5,Def1;
then b,b9 // c,d by A3,Def1;
then b,b9 // b9,b by A6,Def1;
hence thesis;
end;
theorem Th21:
ex c st Mid a,b,c
proof
consider c such that
A1: a,b // b,c by Def1;
Mid a,b,c by A1;
hence thesis;
end;
theorem Th22:
Mid a,b,c & Mid a,b,c9 implies c = c9
proof
assume that
A1: Mid a,b,c and
A2: Mid a,b,c9;
a,b // b,c9 by A2;
then
A3: b,c9 // a,b by Th3;
a,b // b,c by A1;
then b,c // a,b by Th3;
then b,c // b,c9 by A3,Def1;
hence thesis by Th4;
end;
theorem Th23:
Mid a,b,c & MDist b,b9 implies Mid a,b9,c
proof
assume that
A1: Mid a,b,c and
A2: MDist b,b9;
A3: b,b9 // b9,b by A2;
a,b // b,c by A1;
then
A4: b,a // c,b by Th7;
consider d such that
A5: b9,b // c,d by Def1;
c,d // b9,b by A5,Th3;
then b,b9 // c,d by A3,Def1;
then
A6: a,b9 // b,d by A4,Def1;
b9,c // b,d by A5,Def1;
then a,b9 // b9,c by A6,Def1;
hence thesis;
end;
theorem Th24:
Mid a,b,c & Mid a,b9,c9 & MDist b,b9 implies c = c9
proof
assume that
A1: Mid a,b,c and
A2: Mid a,b9,c9 and
A3: MDist b,b9;
Mid a,b9,c by A1,A3,Th23;
hence thesis by A2,Th22;
end;
theorem Th25:
Mid a,p,a9 & Mid b,p,b9 implies a,b // b9,a9
proof
assume that
A1: Mid a,p,a9 and
A2: Mid b,p,b9;
consider d such that
A3: b9,p // a9,d by Def1;
a,p // p,a9 by A1;
then
A4: p,a // a9,p by Th7;
b,p // p,b9 by A2;
then
A5: p,b // b9,p by Th7;
a9,d // b9,p by A3,Th3;
then p,b // a9,d by A5,Def1;
then
A6: a,b // p,d by A4,Def1;
b9,a9 // p,d by A3,Def1;
hence thesis by A6,Def1;
end;
theorem
Mid a,p,a9 & Mid b,q,b9 & MDist p,q implies a,b // b9,a9
proof
assume that
A1: Mid a,p,a9 and
A2: Mid b,q,b9 and
A3: MDist p,q;
Mid a,q,a9 by A1,A3,Th23;
hence thesis by A2,Th25;
end;
::
:: Point Symmetry
::
definition
let AFV;
let a,b;
func PSym(a,b) -> Element of AFV means
:Def4:
Mid b,a,it;
correctness by Th21,Th22;
end;
theorem
PSym(p,a) = b iff a,p // p,b by Def3,Def4;
theorem Th28:
PSym(p,a) = a iff a = p or MDist a,p
proof
A1: now
assume a = p or MDist a,p;
then Mid a,p,a by Th18;
hence PSym(p,a) = a by Def4;
end;
now
assume PSym(p,a) = a;
then Mid a,p,a by Def4;
hence a = p or MDist a,p;
end;
hence thesis by A1;
end;
theorem Th29:
PSym(p,PSym(p,a)) = a
proof
Mid a,p,PSym(p,a) by Def4;
then Mid PSym(p,a),p,a by Th16;
hence thesis by Def4;
end;
theorem Th30:
PSym(p,a) = PSym(p,b) implies a = b
proof
assume
A1: PSym(p,a) = PSym(p,b);
PSym(p,PSym(p,a)) = a by Th29;
hence thesis by A1,Th29;
end;
theorem
ex a st PSym(p,a) = b
proof
PSym(p,PSym(p,b)) = b by Th29;
hence thesis;
end;
theorem Th32:
a,b // PSym(p,b),PSym(p,a)
proof
Mid a,p,PSym(p,a) & Mid b,p,PSym(p,b) by Def4;
hence thesis by Th25;
end;
theorem Th33:
a,b // c,d iff PSym(p,a),PSym(p,b) // PSym(p,c),PSym(p,d)
proof
A1: now
assume
A2: PSym(p,a),PSym(p,b) // PSym(p,c),PSym(p,d);
d,c // PSym(p,c),PSym(p,d) by Th32;
then d,c // PSym(p,a),PSym(p,b) by A2,Def1;
then
A3: c,d // PSym(p,b),PSym(p,a) by Th7;
a,b // PSym(p,b),PSym(p,a) by Th32;
hence a,b // c,d by A3,Def1;
end;
now
A4: PSym(p,b),PSym(p,a) // a,b by Th3,Th32;
assume
A5: a,b // c,d;
PSym(p,d),PSym(p,c) // c,d by Th3,Th32;
then PSym(p,d),PSym(p,c) // a,b by A5,Def1;
then PSym(p,b),PSym(p,a) // PSym(p,d),PSym(p,c) by A4,Def1;
hence PSym(p,a),PSym(p,b) // PSym(p,c),PSym(p,d) by Th7;
end;
hence thesis by A1;
end;
theorem
MDist a,b iff MDist PSym(p,a),PSym(p,b)
by Th30,Th33;
theorem Th35:
Mid a,b,c iff Mid PSym(p,a),PSym(p,b),PSym(p,c)
by Th33;
theorem Th36:
PSym(p,a) = PSym(q,a) iff p = q or MDist p,q
proof
A1: now
assume
A2: MDist p,q;
Mid a,p,PSym(p,a) & Mid a,q,PSym(q,a) by Def4;
hence PSym(p,a) = PSym(q,a) by A2,Th24;
end;
now
assume
A3: PSym(p,a) = PSym(q,a);
Mid a,p,PSym(p,a) & Mid a,q,PSym(q,a) by Def4;
hence p = q or MDist p,q by A3,Th20;
end;
hence thesis by A1;
end;
theorem Th37:
PSym(q,PSym(p,PSym(q,a))) = PSym(PSym(q,p),a)
proof
Mid PSym(q,a),p,PSym(p,PSym(q,a)) by Def4;
then Mid PSym(q,PSym(q,a)),PSym(q,p),PSym(q,PSym(p,PSym(q,a))) by Th35;
then PSym(q,PSym(p,PSym(q,a)))=PSym(PSym(q,p),PSym(q,PSym(q,a))) by Def4;
hence thesis by Th29;
end;
theorem
PSym(p,PSym(q,a)) = PSym(q,PSym(p,a)) iff p = q or MDist p,q or MDist
q,PSym(p,q)
proof
A1: now
assume PSym(p,PSym(q,a))=PSym(q,PSym(p,a));
then PSym(p,PSym(q,PSym(p,a)))=PSym(q,a) by Th29;
then PSym(PSym(p,q),a)=PSym(q,a) by Th37;
then q=PSym(p,q) or MDist q,PSym(p,q) by Th36;
then
A2: Mid q,p,q or MDist q,PSym(p,q) by Def4;
hence p = q or MDist q,p or MDist q,PSym(p,q);
thus p = q or MDist p,q or MDist q,PSym(p,q) by A2,Th18;
end;
now
assume p = q or MDist p,q or MDist q,PSym(p,q);
then Mid q,p,q or MDist q,PSym(p,q) by Th18;
then PSym(PSym(p,q),a)=PSym(q,a) by Def4,Th36;
then PSym(p,PSym(q,PSym(p,a)))=PSym(q,a) by Th37;
hence PSym(p,PSym(q,a))=PSym(q,PSym(p,a)) by Th29;
end;
hence thesis by A1;
end;
theorem Th39:
PSym(p,PSym(q,PSym(r,a))) = PSym(r,PSym(q,PSym(p,a)))
proof
p,a // PSym(r,a),PSym(r,p) & PSym(q,PSym(r,p)),PSym(q,PSym(r,a)) //
PSym(r,a ),PSym(r,p) by Th3,Th32;
then
A1: p,a // PSym(q,PSym(r,p)),PSym(q,PSym(r,a)) by Def1;
p,a // PSym(p,a),PSym(p,p) & PSym(q,PSym(p,p)),PSym(q,PSym(p,a)) //
PSym(p,a ),PSym(p,p) by Th3,Th32;
then
A2: p,a // PSym(q,PSym(p,p)),PSym(q,PSym(p,a)) by Def1;
PSym(q,p),PSym(r,p) // PSym(r,PSym(r,p)),PSym(r,PSym(q,p)) by Th32;
then PSym(q,p),PSym(r,p) // p,PSym(r,PSym(q,p)) by Th29;
then
A3: p,PSym(r,PSym(q,p)) // PSym(q,p),PSym(r,p) by Th3;
PSym(q,PSym(r,p)),p // PSym(q,p),PSym(q,PSym(q,PSym(r,p))) by Th32;
then PSym(q,PSym(r,p)),p // PSym(q,p),PSym(r,p) by Th29;
then PSym(q,PSym(r,p)),p // p,PSym(r,PSym(q,p)) by A3,Def1;
then Mid PSym(q,PSym(r,p)),p,PSym(r,PSym(q,p));
then PSym(p,PSym(q,PSym(r,p))) = PSym(r,PSym(q,p)) by Def4;
then
A4: PSym(p,PSym(q,PSym(r,p))) = PSym(r,PSym(q,PSym(p,p))) by Th28;
PSym(r,PSym(q,PSym(p,a))),PSym(r,PSym(q,PSym(p,p))) // PSym(q,PSym(p,p)
),PSym(q,PSym(p,a)) by Th3,Th32;
then
A5: PSym(r,PSym(q,PSym(p,a))),PSym(r,PSym(q,PSym(p,p))) // p,a by A2,Def1;
PSym(p,PSym(q,PSym(r,a))),PSym(p,PSym(q,PSym(r,p))) // PSym(q,PSym(r,p)
),PSym(q,PSym(r,a)) by Th3,Th32;
then PSym(p,PSym(q,PSym(r,a))),PSym(p,PSym(q,PSym(r,p))) // p,a by A1,Def1;
then PSym(p,PSym(q,PSym(r,a))),PSym(p,PSym(q,PSym(r,p))) // PSym(r,PSym(q,
PSym(p,a))),PSym(p,PSym(q,PSym(r,p))) by A4,A5,Def1;
hence thesis by Th4,Th7;
end;
theorem
ex d st PSym(a,PSym(b,PSym(c,p))) = PSym(d,p)
proof
consider e such that
A1: Mid a,e,c by Th19;
consider d such that
A2: Mid b,e,d by Th21;
c = PSym(e,a) by A1,Def4;
then PSym(c,PSym(d,p)) = PSym(PSym(e,a),PSym(PSym(e,b),p)) by A2,Def4
.= PSym(PSym(e,a),PSym(e,PSym(b,PSym(e,p)))) by Th37
.= PSym(e,PSym(a,PSym(e,PSym(e,PSym(b,PSym(e,p)))))) by Th37
.= PSym(e,PSym(a,PSym(b,PSym(e,p)))) by Th29
.= PSym(e,PSym(e,PSym(b,PSym(a,p)))) by Th39
.= PSym(b,PSym(a,p)) by Th29;
then PSym(d,p) = PSym(c,PSym(b,PSym(a,p))) by Th29;
hence thesis by Th39;
end;
theorem
ex c st PSym(a,PSym(c,p)) = PSym(c,PSym(b,p))
proof
consider c such that
A1: Mid a,c,b by Th19;
PSym(b,p) = PSym(PSym(c,a),p) by A1,Def4
.= PSym(c,PSym(a,(PSym(c,p)))) by Th37;
then PSym(c,PSym(b,p)) = PSym(a,(PSym(c,p))) by Th29;
hence thesis;
end;
::
:: Addition on the carrier
::
definition
let AFV,o;
let a,b;
func Padd(o,a,b) -> Element of AFV means
:Def5:
o,a // b,it;
correctness by Def1,Th5;
end;
notation
let AFV,o;
let a;
synonym Pcom(o,a) for PSym(o,a);
end;
Lm1: Pcom(o,a) = b iff a,o // o,b by Def4,Def3;
definition
let AFV,o;
func Padd(o) -> BinOp of the carrier of AFV means
:Def6:
for a,b holds it.(a ,b) = Padd(o,a,b);
existence
proof
deffunc F(Element of AFV, Element of AFV) = Padd(o,$1,$2);
consider O being BinOp of the carrier of AFV such that
A1: for a,b holds O.(a,b) = F(a,b) from BINOP_1:sch 4;
take O;
thus thesis by A1;
end;
uniqueness
proof
set X = the carrier of AFV;
let o1,o2 be BinOp of the carrier of AFV such that
A2: for a,b holds o1.(a,b) = Padd(o,a,b) and
A3: for a,b holds o2.(a,b) = Padd(o,a,b);
for x being Element of [:X,X:] holds o1.x = o2.x
proof
let x be Element of [:X,X:];
consider x1,x2 being Element of X such that
A4: x = [x1,x2] by DOMAIN_1:1;
o1.x = o1.(x1,x2) by A4
.= Padd(o,x1,x2) by A2
.= o2.(x1,x2) by A3
.= o2.x by A4;
hence thesis;
end;
hence thesis by FUNCT_2:63;
end;
end;
definition
let AFV,o;
func Pcom(o) -> UnOp of the carrier of AFV means
:Def7:
for a holds it.a = Pcom(o,a);
existence
proof
deffunc F(Element of AFV) = Pcom(o,$1);
consider O being UnOp of the carrier of AFV such that
A1: for a holds O.a = F(a) from FUNCT_2:sch 4;
take O;
thus thesis by A1;
end;
uniqueness
proof
set X = the carrier of AFV;
let o1,o2 be UnOp of the carrier of AFV such that
A2: for a holds o1.a = Pcom(o,a) and
A3: for a holds o2.a = Pcom(o,a);
for x being Element of X holds o1.x = o2.x
proof
let x be Element of X;
o1.x = Pcom(o,x) by A2
.= o2.x by A3;
hence thesis;
end;
hence thesis by FUNCT_2:63;
end;
end;
definition
let AFV,o;
func GroupVect(AFV,o) -> strict addLoopStr equals
addLoopStr(#the carrier of
AFV,Padd(o),o#);
correctness;
end;
registration
let AFV,o;
cluster GroupVect(AFV,o) -> non empty;
coherence;
end;
theorem
the carrier of GroupVect(AFV,o) = the carrier of AFV & the addF of
GroupVect(AFV,o) = Padd(o) & 0.GroupVect(AFV,o) = o;
reserve a,b,c for Element of GroupVect(AFV,o);
theorem
for a,b being Element of GroupVect(AFV,o), a9,b9 being Element of AFV
st a=a9 & b=b9 holds a + b = (Padd(o)).(a9,b9);
Lm2: a+b = b+a
proof
reconsider a9=a,b9=b as Element of AFV;
reconsider c9=(a+b) as Element of AFV;
c9= Padd(o,a9,b9) by Def6;
then o,a9 // b9,c9 by Def5;
then o,b9 // a9,c9 by Def1;
then c9 = Padd(o,b9,a9) by Def5
.= b + a by Def6;
hence thesis;
end;
Lm3: (a+b)+c = a+(b+c)
proof
reconsider a9=a,b9=b,c9=c as Element of AFV;
set p= b+c,q=a+b;
reconsider p9=p,q9=q as Element of AFV;
reconsider x9=(a+p) ,y9=(q+c) as Element of AFV;
consider x99 such that
A1: x9,p9 // c9,x99 by Def1;
x9= Padd(o,a9,p9) by Def6;
then o,a9 // p9,x9 by Def5;
then
A2: a9,o // x9,p9 by Th7;
c9,x99 // x9,p9 by A1,Th3;
then
A3: a9,o // c9,x99 by A2,Def1;
q9= Padd(o,a9,b9) by Def6;
then o,a9 // b9,q9 by Def5;
then o,b9 // a9,q9 by Def1;
then
A4: a9,q9 // o,b9 by Th3;
p9= Padd(o,b9,c9) by Def6;
then o,b9 // c9,p9 by Def5;
then c9,p9 // o,b9 by Th3;
then a9,q9 // c9,p9 by A4,Def1;
then
A5: q9,o // p9,x99 by A3,Def1;
x9,c9 // p9,x99 by A1,Def1;
then q9,o // x9,c9 by A5,Def1;
then o,q9 // c9,x9 by Th7;
then
A6: c9,x9 // o,q9 by Th3;
y9= Padd(o,q9,c9) by Def6;
then o,q9 // c9,y9 by Def5;
then c9,y9 // o,q9 by Th3;
then c9,y9 // c9,x9 by A6,Def1;
hence thesis by Th4;
end;
Lm4: a + (0.(GroupVect(AFV,o))) = a
proof
reconsider a9=a as Element of AFV;
reconsider x9=(a + (0.(GroupVect(AFV,o)))) as Element of AFV;
x9= Padd(o,a9,o) by Def6;
then o,a9 // o,x9 by Def5;
hence thesis by Th4;
end;
Lm5: GroupVect(AFV,o) is Abelian add-associative right_zeroed
proof
thus for a,b holds a+b = b+a by Lm2;
thus for a,b,c holds (a+b)+c = a+(b+c) by Lm3;
thus for a holds a + 0.GroupVect(AFV,o) = a by Lm4;
end;
Lm6: GroupVect(AFV,o) is right_complementable
proof
let s be Element of GroupVect(AFV,o);
reconsider s9 = s as Element of AFV;
reconsider t = (Pcom(o)).s9 as Element of GroupVect(AFV,o);
take t;
Pcom(o,o) = o by Th28;
then o,s9 // Pcom(o,s9),o by Th32;
then
A1: Padd(o,s9,Pcom(o,s9)) = o by Def5;
thus s + t = (Padd(o)).(s9,(Pcom(o,s9))) by Def7
.= 0.GroupVect(AFV,o) by A1,Def6;
end;
registration
let AFV,o;
cluster GroupVect(AFV,o) -> Abelian add-associative right_zeroed
right_complementable;
coherence by Lm5,Lm6;
end;
theorem Th44:
for a being Element of GroupVect(AFV,o), a9 being Element of AFV
st a=a9 holds -a = (Pcom(o)).a9
proof
let a be Element of GroupVect(AFV,o), a9 be Element of AFV;
assume
A1: a=a9;
reconsider aa = (Pcom(o)).a9 as Element of GroupVect(AFV,o);
Pcom(o,o) = o & o,a9 // Pcom(o,a9),Pcom(o,o) by Th28,Th32;
then
A2: Padd(o,a9,Pcom(o,a9)) = o by Def5;
a + aa = (Padd(o)).(a,(Pcom(o,a9))) by Def7
.= 0.GroupVect(AFV,o) by A1,A2,Def6;
hence thesis by RLVECT_1:def 10;
end;
theorem
0.GroupVect(AFV,o) = o;
reserve a,b for Element of GroupVect(AFV,o);
theorem Th46:
for a ex b st b + b = a
proof
let a;
reconsider a99=a as Element of AFV;
consider b9 being Element of AFV such that
A1: o,b9 // b9,a99 by Def1;
reconsider b=b9 as Element of GroupVect(AFV,o);
a99 = Padd(o,b9,b9) by A1,Def5
.= b+b by Def6;
hence thesis;
end;
registration
let AFV,o;
cluster GroupVect(AFV,o) -> Two_Divisible;
coherence
proof
for a ex b st b + b = a by Th46;
hence thesis by TDGROUP:def 1;
end;
end;
::
:: Representation Theorem for Directed Geometrical Bundles
::
reserve AFV for AffVect,
o for Element of AFV;
theorem Th47:
for a being Element of GroupVect(AFV,o) st a + a = 0.(GroupVect(
AFV,o)) holds a = 0.(GroupVect(AFV,o))
proof
let a be Element of GroupVect(AFV,o) such that
A1: a + a = 0.(GroupVect(AFV,o));
reconsider a99=a as Element of AFV;
o = Padd(o,a99,a99) by A1,Def6;
then
A2: o,a99 // a99,o by Def5;
o,o // o,o by Th1;
hence thesis by A2,TDGROUP:16;
end;
registration
let AFV,o;
cluster GroupVect(AFV,o) -> Fanoian;
coherence
proof
for a being Element of GroupVect(AFV,o) st a + a = 0.(GroupVect(AFV,o)
) holds a = 0.(GroupVect(AFV,o)) by Th47;
hence thesis by VECTSP_1:def 18;
end;
end;
registration
cluster strict non trivial for Uniquely_Two_Divisible_Group;
existence
proof
set X = G_Real;
X is non trivial by TDGROUP:6;
hence thesis;
end;
end;
definition
mode Proper_Uniquely_Two_Divisible_Group is non trivial
Uniquely_Two_Divisible_Group;
end;
theorem
GroupVect(AFV,o) is Proper_Uniquely_Two_Divisible_Group;
registration
let AFV,o;
cluster GroupVect(AFV,o) -> non trivial;
coherence;
end;
theorem Th49:
for ADG being Proper_Uniquely_Two_Divisible_Group holds AV(ADG) is AffVect
proof
let ADG be Proper_Uniquely_Two_Divisible_Group;
ex a,b being Element of ADG st a<>b by STRUCT_0:def 10;
hence thesis by TDGROUP:17;
end;
registration
let ADG be Proper_Uniquely_Two_Divisible_Group;
cluster AV(ADG) -> AffVect-like non trivial;
coherence by Th49;
end;
theorem Th50:
for AFV being strict AffVect holds for o being Element of AFV
holds AFV = AV(GroupVect(AFV,o))
proof
let AFV be strict AffVect;
let o be Element of AFV;
set X = GroupVect(AFV,o);
now
let x,y be object;
set xy = [x,y];
A1: now
set V = the carrier of AFV;
assume
A2: xy in the CONGR of AFV;
set VV = [:V,V:];
xy`2 = y;
then
A3: y in VV by A2,MCART_1:10;
then
A4: y = [y`1,y`2] by MCART_1:21;
xy`1 = x;
then
A5: x in VV by A2,MCART_1:10;
then reconsider
x1 = x`1, x2 = x`2, y1 = y`1, y2 = y`2 as Element of AFV by A3,MCART_1:10
;
reconsider x19 = x1, x29 = x2, y19 = y1, y29 = y2 as Element of X;
A6: x = [x`1,x`2] by A5,MCART_1:21;
then
A7: x1,x2 // y1,y2 by A2,A4,ANALOAF:def 2;
x19 # y29 = x29 # y19
proof
reconsider z1=x19#y29,z2=x29#y19 as Element of AFV;
z1 = Padd(o,x1,y2) by Def6;
then o,x1 // y2,z1 by Def5;
then x1,o // z1,y2 by Th7;
then
A8: o,x2 // y1,z1 by A7,Th12;
z2 = Padd(o,x2,y1) by Def6;
hence thesis by A8,Def5;
end;
hence [x,y] in CONGRD(X) by A6,A4,TDGROUP:def 2;
end;
now
set V = the carrier of X;
assume
A9: xy in CONGRD(X);
set VV = [:V,V:];
xy`2 = y;
then
A10: y in VV by A9,MCART_1:10;
then
A11: y = [y`1,y`2] by MCART_1:21;
xy`1 = x;
then
A12: x in VV by A9,MCART_1:10;
then reconsider
x19 = x`1, x29 = x`2, y19 = y`1, y29 = y`2 as Element of X by A10,
MCART_1:10;
set z19 = x19 # y29, z29 = x29 # y19;
reconsider x1 = x19, x2 = x29, y1 = y19, y2 = y29 as Element of AFV;
reconsider z1=z19,z2=z29 as Element of AFV;
A13: z2 = Padd(o,x2,y1) by Def6;
z1 = Padd(o,x1,y2) by Def6;
then
A14: o,x1 // y2,z1 by Def5;
A15: x = [x`1,x`2] by A12,MCART_1:21;
then z19=z29 by A9,A11,TDGROUP:def 2;
then o,x2 // y1,z1 by A13,Def5;
then x1,x2 // y1,y2 by A14,Th12;
hence xy in the CONGR of AFV by A15,A11,ANALOAF:def 2;
end;
hence [x,y] in CONGRD(X) iff [x,y] in the CONGR of AFV by A1;
end;
then the carrier of AV(X) = the carrier of AFV & CONGRD(X) = the CONGR of
AFV by RELAT_1:def 2,TDGROUP:4;
hence thesis by TDGROUP:4;
end;
theorem
for AS being strict AffinStruct holds (AS is AffVect iff ex ADG being
Proper_Uniquely_Two_Divisible_Group st AS = AV(ADG) )
proof
let AS be strict AffinStruct;
now
assume AS is AffVect;
then reconsider AS9 = AS as AffVect;
set o = the Element of AS9;
take ADG = GroupVect(AS9,o);
AS9 = AV(ADG) by Th50;
hence ex ADG being Proper_Uniquely_Two_Divisible_Group st AS = AV(ADG);
end;
hence thesis;
end;
definition
let X,Y be non empty addLoopStr;
let f be Function of the carrier of X,the carrier of Y;
pred f is_Iso_of X,Y means
f is one-to-one & rng(f) = the carrier of
Y & for a,b being Element of X holds f.(a+b) = (f.a)+(f.b) & f.(0.X) = 0.Y & f.
(-a) = -(f.a);
end;
definition
let X,Y be non empty addLoopStr;
pred X,Y are_Iso means
ex f being Function of the carrier of X,the carrier of Y st f is_Iso_of X,Y;
end;
reserve ADG for Proper_Uniquely_Two_Divisible_Group;
reserve f for Function of the carrier of ADG,the carrier of ADG;
theorem Th52:
for o9 being Element of ADG, o being Element of AV(ADG) st (for
x being Element of ADG holds f.x = o9+x) & o=o9 holds for a,b being Element of
ADG holds f.(a+b) =(Padd(o)).(f.a,f.b) & f.(0.ADG) = 0.(GroupVect(AV(ADG),o)) &
f.(-a) = (Pcom(o)).(f.a)
proof
let o9 be Element of ADG, o be Element of AV(ADG);
assume that
A1: for x being Element of ADG holds f.x = o9+x and
A2: o=o9;
let a,b be Element of ADG;
set a9=f.a,b9=f.b;
A3: AV(ADG) = AffinStruct(#the carrier of ADG,CONGRD(ADG)#) by TDGROUP:def 3;
then reconsider a99=a9,b99=b9 as Element of AV(ADG);
thus f.(a+b) =(Padd(o)).((f.a),(f.b))
proof
A4: ((Padd(o)).((f.a),(f.b))) = Padd(o,a99,b99) by Def6;
then reconsider c99= (Padd(o)).((f.a),(f.b)) as Element of AV( ADG);
reconsider c9=c99 as Element of ADG by A3;
o,a99 // b99,c99 by A4,Def5;
then [[o9,a9],[b9,c9]] in CONGRD(ADG) by A2,A3,ANALOAF:def 2;
then
A5: o9+c9 = a9+b9 by TDGROUP:def 2;
a9 = o9+a & b9 = o9+b by A1;
then o9+c9 = (o9+((a+o9)+b)) by A5,RLVECT_1:def 3
.= o9+(o9+(a+b)) by RLVECT_1:def 3;
then c9 = o9+(a+b) by RLVECT_1:8
.= f.(a+b) by A1;
hence thesis;
end;
f.(0.ADG) = o9+(0.ADG) by A1
.= 0.(GroupVect(AV(ADG),o)) by A2,RLVECT_1:4;
hence f.(0.ADG) = 0.(GroupVect(AV(ADG),o));
thus f.(-a) = (Pcom(o)).(f.a)
proof
A6: ((Pcom(o)).(f.a)) = Pcom(o,a99) by Def7;
then reconsider c99 = (Pcom(o)).(f.a) as Element of AV(ADG);
reconsider c9=c99 as Element of ADG by A3;
a99,o // o,c99 by A6,Lm1;
then [[a9,o9],[o9,c9]] in CONGRD(ADG) by A2,A3,ANALOAF:def 2;
then a9+c9 = o9+o9 by TDGROUP:def 2;
then
A7: o9+o9 = (o9+a)+c9 by A1
.= o9+(a+c9) by RLVECT_1:def 3;
f.(-a) = o9+(-a) by A1
.= (c9+a)+(-a) by A7,RLVECT_1:8
.= c9+(a+(-a)) by RLVECT_1:def 3
.= c9+(0.ADG) by RLVECT_1:5
.= c9 by RLVECT_1:4;
hence thesis;
end;
end;
theorem Th53:
for o9 being Element of ADG st (for b being Element of ADG holds
f.b = o9+b) holds f is one-to-one
proof
let o9 be Element of ADG such that
A1: for b being Element of ADG holds f.b = o9+b;
now
let x1,x2 be object such that
A2: x1 in dom(f) & x2 in dom(f) and
A3: f.x1 = f.x2;
reconsider x19=x1,x29=x2 as Element of ADG by A2,FUNCT_2:def 1;
o9+x29 = f.x19 by A1,A3
.= o9+x19 by A1;
hence x1=x2 by RLVECT_1:8;
end;
hence thesis by FUNCT_1:def 4;
end;
theorem Th54:
for o9 being Element of ADG, o being Element of AV(ADG) st (for
b being Element of ADG holds f.b = o9+b) holds rng(f) = the carrier of
GroupVect(AV(ADG),o)
proof
set X = the carrier of ADG;
A1: X = dom(f) by FUNCT_2:def 1;
let o9 be Element of ADG, o be Element of AV(ADG) such that
A2: for b being Element of ADG holds f.b = o9+b;
now
let y be object;
assume y in X;
then reconsider y9=y as Element of X;
set x9=y9-o9;
f.x9 = o9+((-o9)+y9) by A2
.= (o9+(-o9))+y9 by RLVECT_1:def 3
.= y9+(0.ADG) by RLVECT_1:5
.= y by RLVECT_1:4;
hence y in rng(f) by A1,FUNCT_1:def 3;
end;
then
A3: X c= rng(f) by TARSKI:def 3;
rng(f) c= X & X = the carrier of GroupVect(AV(ADG),o) by RELAT_1:def 19
,TDGROUP:4;
hence thesis by A3,XBOOLE_0:def 10;
end;
theorem
for ADG being Proper_Uniquely_Two_Divisible_Group, o9 being Element of
ADG, o being Element of AV(ADG) st o=o9 holds ADG,GroupVect(AV(ADG),o) are_Iso
proof
let ADG be Proper_Uniquely_Two_Divisible_Group, o9 be Element of ADG, o be
Element of AV(ADG) such that
A1: o=o9;
set AS = AV(ADG);
set X = the carrier of ADG,Z=GroupVect(AS,o);
set T = the carrier of GroupVect(AS,o);
deffunc F(Element of X) = o9+$1;
consider g being UnOp of X such that
A2: for a being Element of X holds g.a = F(a) from FUNCT_2:sch 4;
X = T by TDGROUP:4;
then reconsider f = g as Function of X,T;
A3: now
let a,b be Element of ADG;
reconsider fa = f.a as Element of AV(ADG);
thus f.(a+b) = (f.a)+(f.b) by A1,A2,Th52;
thus f.(0.ADG) = 0.Z by A1,A2,Th52;
thus f.(-a) = (Pcom(o)).fa by A1,A2,Th52
.= -(f.a) by Th44;
end;
f is one-to-one & rng(f) = T by A2,Th53,Th54;
then f is_Iso_of ADG,Z by A3;
hence thesis;
end;
|