Dataset Viewer
Auto-converted to Parquet
text
stringlengths
36
36
gathered_data/scene0000_00/00000.pkl
gathered_data/scene0000_00/00001.pkl
gathered_data/scene0000_00/00002.pkl
gathered_data/scene0000_00/00003.pkl
gathered_data/scene0000_00/00006.pkl
gathered_data/scene0000_00/00007.pkl
gathered_data/scene0000_00/00008.pkl
gathered_data/scene0000_00/00009.pkl
gathered_data/scene0000_00/00010.pkl
gathered_data/scene0000_00/00011.pkl
gathered_data/scene0000_00/00013.pkl
gathered_data/scene0000_00/00014.pkl
gathered_data/scene0000_00/00015.pkl
gathered_data/scene0000_00/00016.pkl
gathered_data/scene0000_00/00017.pkl
gathered_data/scene0000_00/00019.pkl
gathered_data/scene0000_00/00021.pkl
gathered_data/scene0000_00/00022.pkl
gathered_data/scene0000_00/00023.pkl
gathered_data/scene0000_00/00024.pkl
gathered_data/scene0000_00/00025.pkl
gathered_data/scene0000_00/00026.pkl
gathered_data/scene0000_00/00027.pkl
gathered_data/scene0000_00/00028.pkl
gathered_data/scene0000_00/00029.pkl
gathered_data/scene0000_00/00030.pkl
gathered_data/scene0000_00/00031.pkl
gathered_data/scene0000_00/00032.pkl
gathered_data/scene0000_00/00034.pkl
gathered_data/scene0000_00/00036.pkl
gathered_data/scene0000_00/00037.pkl
gathered_data/scene0000_00/00038.pkl
gathered_data/scene0000_00/00039.pkl
gathered_data/scene0000_00/00040.pkl
gathered_data/scene0000_00/00042.pkl
gathered_data/scene0000_00/00043.pkl
gathered_data/scene0000_00/00045.pkl
gathered_data/scene0000_00/00046.pkl
gathered_data/scene0000_00/00047.pkl
gathered_data/scene0000_00/00049.pkl
gathered_data/scene0000_00/00051.pkl
gathered_data/scene0000_00/00052.pkl
gathered_data/scene0000_00/00054.pkl
gathered_data/scene0000_00/00055.pkl
gathered_data/scene0000_00/00057.pkl
gathered_data/scene0000_00/00058.pkl
gathered_data/scene0000_00/00062.pkl
gathered_data/scene0000_00/00064.pkl
gathered_data/scene0000_00/00065.pkl
gathered_data/scene0000_00/00066.pkl
gathered_data/scene0000_00/00067.pkl
gathered_data/scene0000_00/00068.pkl
gathered_data/scene0000_00/00069.pkl
gathered_data/scene0000_00/00071.pkl
gathered_data/scene0000_00/00075.pkl
gathered_data/scene0000_00/00077.pkl
gathered_data/scene0000_00/00078.pkl
gathered_data/scene0000_00/00081.pkl
gathered_data/scene0000_00/00083.pkl
gathered_data/scene0000_00/00085.pkl
gathered_data/scene0000_00/00086.pkl
gathered_data/scene0000_00/00088.pkl
gathered_data/scene0000_00/00089.pkl
gathered_data/scene0000_00/00090.pkl
gathered_data/scene0000_00/00091.pkl
gathered_data/scene0000_00/00092.pkl
gathered_data/scene0000_00/00093.pkl
gathered_data/scene0000_00/00096.pkl
gathered_data/scene0000_00/00098.pkl
gathered_data/scene0000_00/00099.pkl
gathered_data/scene0002_00/00000.pkl
gathered_data/scene0002_00/00001.pkl
gathered_data/scene0002_00/00002.pkl
gathered_data/scene0002_00/00003.pkl
gathered_data/scene0002_00/00006.pkl
gathered_data/scene0002_00/00007.pkl
gathered_data/scene0002_00/00008.pkl
gathered_data/scene0002_00/00009.pkl
gathered_data/scene0002_00/00010.pkl
gathered_data/scene0002_00/00011.pkl
gathered_data/scene0002_00/00013.pkl
gathered_data/scene0002_00/00014.pkl
gathered_data/scene0002_00/00015.pkl
gathered_data/scene0002_00/00016.pkl
gathered_data/scene0002_00/00017.pkl
gathered_data/scene0002_00/00019.pkl
gathered_data/scene0002_00/00021.pkl
gathered_data/scene0002_00/00022.pkl
gathered_data/scene0002_00/00023.pkl
gathered_data/scene0002_00/00024.pkl
gathered_data/scene0002_00/00025.pkl
gathered_data/scene0002_00/00026.pkl
gathered_data/scene0002_00/00027.pkl
gathered_data/scene0002_00/00028.pkl
gathered_data/scene0002_00/00029.pkl
gathered_data/scene0002_00/00030.pkl
gathered_data/scene0002_00/00031.pkl
gathered_data/scene0002_00/00032.pkl
gathered_data/scene0002_00/00034.pkl
gathered_data/scene0002_00/00036.pkl
End of preview. Expand in Data Studio

Preparing ISO

Datasets

We provide the OccScanNet dataset files here, but you should agree the term of use of ScanNet, CompleteScanNet dataset.

For a simplified way to prepare the dataset, you just download the preprocessed_data to ISO/data/occscannet as gathered_data and download the posed_images to ISO/data/scannet.

However, the complete dataset generating process is provided as followed:

OccScanNet

  1. Clone the official MMDetection3D repository.
git clone https://github.com/open-mmlab/mmdetection3d.git ISO_mm
  1. Swith to v1.3.0 version.
cd ISO_mm
git checkout v1.3.0
  1. Download the ScanNet dataset following instructions and place scans directory as ISO_mm/data/scannet/scans.

:bulb: Note

Recommend you create a posed_images directory at data disk and link the scans directory and posed_images directory to data/scannet, then run the following command.

  1. In this directory, extract RGB image with poses by running
python extract_posed_images.py --max-images-per-scene 100

:bulb: Note

Add --max-images-per-scene -1 to disable limiting number of images per scene. ScanNet scenes contain up to 5000+ frames per each. After extraction, all the .jpg images require 2 Tb disk space. The recommended 300 images per scene require less then 100 Gb. For example multi-view 3d detector ImVoxelNet samples 50 and 100 images per training and test scene.

Then obtained the following directory structure.

scannet
β”œβ”€β”€ meta_data
β”œβ”€β”€ posed_images
β”‚   β”œβ”€β”€ scenexxxx_xx
β”‚   β”‚   β”œβ”€β”€ xxxxxx.txt
β”‚   β”‚   β”œβ”€β”€ xxxxxx.jpg
β”‚   β”‚   β”œβ”€β”€ intrinsic.txt
β”œβ”€β”€ scans
β”œβ”€β”€ batch_load_scannet_data.py
β”œβ”€β”€ extract_posed_images.py
β”œβ”€β”€ load_scannet_data.py
β”œβ”€β”€ README.md
β”œβ”€β”€ scannet_utils.py
  1. Download original CompleteScanNet

The ground truth labels we used are from SCFusion. Ground truth is available at here.

The ground truth label should be placed as ISO_mm/data/completescannet/gt.

  1. Reformulate CompleteScanNet
python preprocess_gt.py

The resulted directory is ISO_mm/data/completescannet/preprocessed.

Now, we obtained the following directory structure.

completescannet
β”œβ”€β”€ gt
β”‚   β”œβ”€β”€ scenexxxx_xx.ply
β”œβ”€β”€ preprocessed
β”‚   β”œβ”€β”€ scenexxxx_xx.npy
β”œβ”€β”€ preprocess_gt.py
β”œβ”€β”€ visualization.py
  1. Create the OccScanNet

First, you should create a directories with name preprocessed_voxels and gathered_data in data disk and link them to the ISO_mm/data/occscannet.

python generate_gt.py

Now, we obtained the following directory structure.

occscannet
β”œβ”€β”€ preprocessed_voxels
β”œβ”€β”€ gathered_data
β”œβ”€β”€ generate_gt.py
β”œβ”€β”€ not_aligns.txt
β”œβ”€β”€ wrong_scenes.txt
β”œβ”€β”€ bad_scenes.txt
β”œβ”€β”€ used_scannames.txt

OccScanNet-mini

The scenes we used in OccScanNet-mini is reflected in the config file.

Downloads last month
167