File size: 19,170 Bytes
629a1cb 6e67df1 74419b7 d7bff41 74419b7 d7bff41 629a1cb 1bb0cad 33b283d 7867e46 d194365 33b283d 7867e46 3e95e21 7867e46 71bf691 6e67df1 920d881 6e67df1 0af0d2e 6e67df1 8ae77df 741423e 8ae77df 741423e 8ae77df 741423e 8ae77df 741423e 8ae77df 741423e 8ae77df 741423e 8ae77df 741423e 8ae77df 741423e 8ae77df 6e67df1 8ae77df 741423e 8ae77df a4fd65b 8ae77df a4fd65b 8ae77df a4fd65b 8ae77df a4fd65b 8ae77df 5c5d5e8 50919ce fecdbb6 d447f7f cf463ce 5c5d5e8 50919ce cf463ce 5c5d5e8 cf463ce 1bc3b00 cf463ce 5c5d5e8 1bc3b00 cf463ce d194365 5c5d5e8 cf463ce 5c5d5e8 1bc3b00 5c5d5e8 cf463ce 1bc3b00 fecdbb6 5c5d5e8 2c55a7b 5c5d5e8 fecdbb6 1bc3b00 4409d90 1bc3b00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
---
license: mit
language:
- en
task_categories:
- object-detection
- depth-estimation
- image-segmentation
tags:
- dataset
- aerial
- synthetic
- domain adaptation
- sim2real
---
<!-- <div align="center"> -->
# SkyScenes: A Synthetic Dataset for Aerial Scene Understanding
[Sahil Khose](https://sahilkhose.github.io/)\*, [Anisha Pal](https://anipal.github.io/)\*, [Aayushi Agarwal](https://www.linkedin.com/in/aayushiag/)\*, [Deepanshi](https://www.linkedin.com/in/deepanshi-d/)\*, [Judy Hoffman](https://faculty.cc.gatech.edu/~judy/), [Prithvijit Chattopadhyay](https://prithv1.xyz/)
<!-- </div> -->
[![HuggingFace Dataset](https://img.shields.io/badge/π€-HuggingFace%20Dataset-cyan.svg)](https://huggingface.co/datasets/hoffman-lab/SkyScenes)[![Project Page](https://img.shields.io/badge/Project-Website-orange)](https://hoffman-group.github.io/SkyScenes/)[![arXiv](https://img.shields.io/badge/arXiv-SkyScenes-b31b1b.svg)](https://arxiv.org/abs/2312.06719)
<img src="./assets/teaser.jpeg" width="100%"/>
## Dataset Summary
Real-world aerial scene understanding is limited by a lack of datasets that contain densely annotated images curated under a diverse set of conditions.
Due to inherent challenges in obtaining such images in controlled real-world settings,
we present SkyScenes, a synthetic dataset of densely annotated aerial images captured from Unmanned Aerial Vehicle (UAV) perspectives.
**SkyScenes** images are carefully curated from **CARLA** to comprehensively capture diversity across layout (urban and rural maps), weather conditions, times of day, pitch angles and altitudes with corresponding semantic, instance and depth annotations.
**SkyScenes** features **33,600** images in total, which are spread across 8 towns, 5 weather and daytime conditions and 12 height and pitch variations.
## π£ Announcement
SkyScenes has been accepted at [ECCV 2024](https://www.ecva.net/papers/eccv_2024/papers_ECCV/html/10113_ECCV_2024_paper.php)
<details>
<summary>Click to view the detailed list of all variations</summary>
- **Layout Variations(Total 8):**:
- Town01
- Town02
- Town03
- Town04
- Town05
- Town06
- Town07
- Town10HD
_Town07 features Rural Scenes, whereas the rest of the towns feature Urban scenes_
- **Weather & Daytime Variations(Total 5):**
- ClearNoon
- ClearSunset
- ClearNight
- CloudyNoon
- MidRainyNoon
- **Height and Pitch Variations of UAV Flight(Total 12):**
- Height = 15m, Pitch = 0Β°
- Height = 15m, Pitch = 45Β°
- Height = 15m, Pitch = 60Β°
- Height = 15m, Pitch = 90Β°
- Height = 35m, Pitch = 0Β°
- Height = 35m, Pitch = 45Β°
- Height = 35m, Pitch = 60Β°
- Height = 35m, Pitch = 90Β°
- Height = 60m, Pitch = 0Β°
- Height = 60m, Pitch = 45Β°
- Height = 60m, Pitch = 60Β°
- Height = 60m, Pitch = 90Β°
</details>
<details>
<summary>Click to view class definitions, color palette and class IDs for Semantic Segmentation</summary>
**SkyScenes** semantic segmentation labels span 28 classes which can be further collapsed to 20 classes.
| Class ID | Class ID (collapsed) | RGB Color Palette | Class Name | Definition |
|----------|--------------------|-------------------|------------------|----------------------------------------------------------------------------------------------------|
| 0 | -1 | <span style="color:rgb(0, 0, 0)"> (0, 0, 0) </span> | unlabeled | Elements/objects in the scene that have not been categorized |
| 1 | 2 | <span style="color:rgb(70, 70, 70)"> (70, 70, 70) </span> | building | Includes houses, skyscrapers, and the elements attached to them |
| 2 | 4 | <span style="color:rgb(190, 153, 153)"> (190, 153, 153) </span> | fence | Wood or wire assemblies that enclose an area of ground |
| 3 | -1 | <span style="color:rgb(55, 90, 80)"> (55, 90, 80) </span> | other | Uncategorized elements |
| 4 | 11 | <span style="color:rgb(220, 20, 60)"> (220, 20, 60) </span> | pedestrian | Humans that walk |
| 5 | 5 | <span style="color:rgb(153, 153, 153)"> (153, 153, 153) </span> | pole | Vertically oriented pole and its horizontal components if any |
| 6 | 16 | <span style="color:rgb(157, 234, 50)"> (157, 234, 50) </span> | roadline | Markings on road |
| 7 | 0 | <span style="color:rgb(128, 64, 128)"> (128, 64, 128) </span> | road | Lanes, streets, paved areas on which cars drive |
| 8 | 1 | <span style="color:rgb(244, 35, 232)"> (244, 35, 232) </span> | sidewalk | Parts of ground designated for pedestrians or cyclists |
| 9 | 8 | <span style="color:rgb(107, 142, 35)"> (107, 142, 35) </span> | vegetation | Trees, hedges, all kinds of vertical vegetation (ground-level vegetation is not included here) |
| 10 | 13 | <span style="color:rgb(0, 0, 142)"> (0, 0, 142) </span> | cars | Cars in scene |
| 11 | 3 | <span style="color:rgb(102, 102, 156)"> (102, 102, 156) </span> | wall | Individual standing walls, not part of buildings |
| 12 | 7 | <span style="color:rgb(220, 220, 0)"> (220, 220, 0) </span> | traffic sign | Signs installed by the state/city authority, usually for traffic regulation |
| 13 | 10 | <span style="color:rgb(70, 130, 180)"> (70, 130, 180) </span> | sky | Open sky, including clouds and sun |
| 14 | -1 | <span style="color:rgb(81, 0, 81)"> (81, 0, 81) </span> | ground | Any horizontal ground-level structures that do not match any other category |
| 15 | -1 | <span style="color:rgb(150, 100, 100)"> (150, 100, 100) </span> | bridge | The structure of the bridge |
| 16 | -1 | <span style="color:rgb(230, 150, 140)"> (230, 150, 140) </span> | railtrack | Rail tracks that are non-drivable by cars |
| 17 | -1 | <span style="color:rgb(180, 165, 180)"> (180, 165, 180) </span> | guardrail | Guard rails / crash barriers |
| 18 | 6 | <span style="color:rgb(250, 170, 30)"> (250, 170, 30) </span> | traffic light | Traffic light boxes without their poles |
| 19 | -1 | <span style="color:rgb(110, 190, 160)"> (110, 190, 160) </span> | static | Elements in the scene and props that are immovable |
| 20 | -1 | <span style="color:rgb(170, 120, 50)"> (170, 120, 50) </span> | dynamic | Elements whose position is susceptible to change over time |
| 21 | 19 | <span style="color:rgb(45, 60, 150)"> (45, 60, 150) </span> | water | Horizontal water surfaces |
| 22 | 9 | <span style="color:rgb(152, 251, 152)"> (152, 251, 152) </span> | terrain | Grass, ground-level vegetation, soil, or sand |
| 23 | 12 | <span style="color:rgb(255, 0, 0)"> (255, 0, 0) </span> | rider | Humans that ride/drive any kind of vehicle or mobility system |
| 24 | 18 | <span style="color:rgb(119, 11, 32)"> (119, 11, 32) </span> | bicycle | Bicycles in scenes |
| 25 | 17 | <span style="color:rgb(0, 0, 230)"> (0, 0, 230) </span> | motorcycle | Motorcycles in scene |
| 26 | 15 | <span style="color:rgb(0, 60, 100)"> (0, 60, 100) </span> | bus | Buses in scenes |
| 27 | 14 | <span style="color:rgb(0, 0, 70)"> (0, 0, 70) </span> | truck | Trucks in scenes |
|
</details>
## Dataset Structure
The dataset is organized in the following structure:
<!--<details>
<summary><strong>Images (RGB Images)</strong></summary>
- ***H_15_P_0***
- *ClearNoon*
- Town01.tar.gz
- Town02.tar.gz
- ...
- Town10HD.tar.gz
- *ClearSunset*
- Town01.tar.gz
- Town02.tar.gz
- ...
- Town10HD.tar.gz
- *ClearNight*
- Town01.tar.gz
- Town02.tar.gz
- ...
- Town10HD.tar.gz
- *CloudyNoon*
- Town01.tar.gz
- Town02.tar.gz
- ...
- Town10HD.tar.gz
- *MidRainyNoon*
- Town01.tar.gz
- Town02.tar.gz
- ...
- Town10HD.tar.gz
- ***H_15_P_45***
- ...
- ...
- ***H_60_P_90***
- ...
</details>
<details>
<summary><strong>Instance (Instance Segmentation Annotations)</strong></summary>
- ***H_35_P_45***
- *ClearNoon*
- Town01.tar.gz
- Town02.tar.gz
- ...
- Town10HD.tar.gz
</details>
<details>
<summary><strong>Segment (Semantic Segmentation Annotations)</strong></summary>
- ***H_15_P_0***
- *ClearNoon*
- Town01.tar.gz
- Town02.tar.gz
- ...
- Town10HD.tar.gz
- ***H_15_P_45***
- ...
- ...
- ***H_60_P_90***
</details>
<details>
<summary><strong>Depth (Depth Annotations)</strong></summary>
- ***H_35_P_45***
- *ClearNoon*
- Town01.tar.gz
- Town02.tar.gz
- ...
- Town10HD.tar.gz
</details>
-->
```
βββ Images (RGB Images)
β βββ H_15_P_0
β β βββ ClearNoon
β β β βββ Town01
β β β β βββ Town01.tar.gz
β β β βββ Town02
β β β β βββ Town02.tar.gz
β β β βββ ...
β β β βββ Town10HD
β β β βββ Town10HD.tar.gz
β β βββ ClearSunset
β β β βββ Town01
β β β β βββ Town01.tar.gz
β β β βββ Town02
β β β β βββ Town02.tar.gz
β β β βββ ...
β β β βββ Town10HD
β β β βββ Town10HD.tar.gz
β β βββ ClearNight
β β β βββ Town01
β β β β βββ Town01.tar.gz
β β β βββ Town02
β β β β βββ Town02.tar.gz
β β β βββ ...
β β β βββ Town10HD
β β β βββ Town10HD.tar.gz
β β βββ CloudyNoon
β β β βββ Town01
β β β β βββ Town01.tar.gz
β β β βββ Town02
β β β β βββ Town02.tar.gz
β β β βββ ...
β β β βββ Town10HD
β β β βββ Town10HD.tar.gz
β β βββ MidRainyNoon
β β βββ Town01
β β β βββ Town01.tar.gz
β β βββ Town02
β β β βββ Town02.tar.gz
β β βββ ...
β β βββ Town10HD
β β βββ Town10HD.tar.gz
β βββ H_15_P_45
β β βββ ...
β βββ ...
β βββ H_60_P_90
β βββ ...
βββ Instance (Instance Segmentation Annotations)
β βββ H_35_P_45
β β βββ ClearNoon
β β βββ Town01
β β β βββ Town01.tar.gz
β β βββ Town02
β β β βββ Town02.tar.gz
β β βββ ...
β β βββ Town10HD
β β βββ Town10HD.tar.gz
β βββ ...
βββ Segment (Semantic Segmentation Annotations)
β βββ H_15_P_0
β β βββ ClearNoon
β β β βββ Town01
β β β β βββ Town01.tar.gz
β β β βββ Town02
β β β β βββ Town02.tar.gz
β β β βββ ...
β β β βββ Town10HD
β β β βββ Town10HD.tar.gz
β β βββ H_15_P_45
β β β βββ ...
β β βββ ...
β β βββ H_60_P_90
β β βββ ...
β βββ ...
βββ Depth (Depth Annotations)
βββ H_35_P_45
β βββ ClearNoon
β βββ Town01
β β βββ Town01.tar.gz
β βββ Town02
β β βββ Town02.tar.gz
β βββ ...
β βββ Town10HD
β βββ Town10HD.tar.gz
βββ ...
```
**Note**: Since the same viewpoint is reproduced across each weather variation, hence ClearNoon annotations can be used for all images pertaining to the different weather variations.
## Dataset Download
The dataset can be downloaded using wget.
Since SkyScenes offers variations across different axes we enable different subsets for download that can aid in model sensitivity analysis across these axes.
### Download instructions: wget
**Example script for downloading different subsets of data using wget**
```bash
#!/bin/bash
#Change here to download a specific Height and Pitch Variation, for example - H_15_P_0
# HP=('H_15_P_45' 'H_15_P_60' 'H_15_P_90')
HP=('H_15_P_0' 'H_15_P_45' 'H_15_P_60' 'H_15_P_90' 'H_35_P_0' 'H_35_P_45' 'H_35_P_60' 'H_35_P_90' 'H_60_P_0' 'H_60_P_45' 'H_60_P_60' 'H_60_P_90')
#Change here to download a specific weather subset, for example - ClearNoon
#Note - For Segment, Instance and Depth annotations this field should only have ClearNoon variation
# weather=('ClearNoon' 'ClearNight')
weather=('ClearNoon' 'ClearNight' 'ClearSunset' 'CloudyNoon' 'MidRainyNoon')
#Change here to download a specific Town subset, for example - Town07
layout=('Town01' 'Town02' 'Town03' 'Town04' 'Town05' 'Town06' 'Town07' 'Town10HD')
#Change here for any specific annotation, for example - https://huggingface.co/datasets/hoffman-lab/SkyScenes/resolve/main/Segment
base_url=('https://huggingface.co/datasets/hoffman-lab/SkyScenes/resolve/main/Images')
#Change here for base download folder
base_download_folder='SkyScenes'
for hp in "${HP[@]}"; do
for w in "${weather[@]}"; do
for t in "${layout[@]}"; do
folder=$(echo "$base_url" | awk -F '/' '{print $(NF)}')
download_url="${base_url}/${hp}/${w}/${t}/${t}.tar.gz"
download_folder="${base_download_folder}/${folder}/${hp}/${w}/${t}"
mkdir -p "$download_folder"
echo "Downloading: $download_url"
wget -P "$download_folder" "$download_url"
done
done
done
```
<!-- ### Download instructions: [datasets](https://huggingface.co/docs/datasets/index)
<details>
<summary>Click to view all the available keys for downloading subsets of the data</summary>
* **Layout Variations**
- Rural
- Urban
* **Weather Variations**
- ClearNoon
- ClearNight (only images)
- ClearSunset (only images)
- CloudyNoon (only images)
- MidRainyNoon (only images)
* **Height Variations**
- H_15
- H_35
- H_60
* **Pitch Variations**
- P_0
- P_45
- P_60
- P_90
* **Height and Pitch Variations**
- H_15_P_0
- H_15_P_45
- H_15_P_60
- H_15_P_90
- H_35_P_0
- H_35_P_45
- H_35_P_60
- H_35_P_90
- H_60_P_0
- H_60_P_45
- H_60_P_60
- H_60_P_90
Full dataset key: full
**π‘Notes**:
- To download **images** append subset key with **images**, example - ```H_35_P_45 images```
- To download **semantic segmentation** maps append subset key with **semseg**, example - ```H_35_P_45 semseg```
- To download **instance segmentation** maps append subset key with **instance**, example - ```H_35_P_45 instance```
- To download **depth** maps append subset key with **depth**, example - ```H_35_P_45 depth```
</details>
**Example script for loading H_35_P_45 images**
```python
from datasets import load_dataset
dataset = load_dataset('hoffman-lab/SkyScenes',name="H_35_P_45 images")
```
**Example script for loading H_35_P_45 semantic segmentation maps**
```python
from datasets import load_dataset
dataset = load_dataset('hoffman-lab/SkyScenes',name="H_35_P_45 semseg")
```
**Example script for loading H_35_P_45 instance segmentation maps**
```python
from datasets import load_dataset
dataset = load_dataset('hoffman-lab/SkyScenes',name="H_35_P_45 instance")
```
**Example script for loading H_35_P_45 depth maps**
```python
from datasets import load_dataset
dataset = load_dataset('hoffman-lab/SkyScenes',name="H_35_P_45 depth")
```
### π‘ Notes
- To prevent issues when loading datasets using [datasets](https://huggingface.co/docs/datasets/index) library, it is recommended to avoid downloading subsets that contain overlapping directories. If there are any overlapping directories between the existing downloads and new ones, it's essential to clear the .cache directory of any such overlaps before proceeding with the new downloads. This step will ensure a clean and conflict-free environment for handling datasets. -->
## BibTex
If you find this work useful please like β€οΈ our dataset repo and cite π our paper. Thanks for your support!
```
@misc{khose2023skyscenes,
title={SkyScenes: A Synthetic Dataset for Aerial Scene Understanding},
author={Sahil Khose and Anisha Pal and Aayushi Agarwal and Deepanshi and Judy Hoffman and Prithvijit Chattopadhyay},
year={2023},
eprint={2312.06719},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
``` |