repo
stringclasses
885 values
file
stringclasses
741 values
content
stringlengths
4
215k
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import matplotlib.pyplot as plt import itertools from pprint import pprint import pickle import time import datetime # Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z) from qiskit.opflow import Zero, One, I, X, Y, Z from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter from qiskit.transpiler.passes import RemoveBarriers # Import QREM package from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter from qiskit.ignis.mitigation import expectation_value # Import mitiq for zne import mitiq # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits from qiskit.quantum_info import state_fidelity import sys import importlib sys.path.append("../utils/") import circuit_utils, zne_utils, tomography_utils, sgs_algorithm importlib.reload(circuit_utils) importlib.reload(zne_utils) importlib.reload(tomography_utils) importlib.reload(sgs_algorithm) from circuit_utils import * from zne_utils import * from tomography_utils import * from sgs_algorithm import * # Combine subcircuits into a single multiqubit gate representing a single trotter step num_qubits = 3 # The final time of the state evolution target_time = np.pi # Parameterize variable t to be evaluated at t=pi later dt = Parameter('t') # Convert custom quantum circuit into a gate trot_gate = trotter_gate(dt) # initial layout initial_layout = [5,3,1] # Number of trotter steps num_steps = 100 print("trotter step: ", num_steps) scale_factors = [1.0, 2.0, 3.0] # Initialize quantum circuit for 3 qubits qr = QuantumRegister(num_qubits, name="q") qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>) make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({dt: target_time / num_steps}) print("created qc") # Generate state tomography circuits to evaluate fidelity of simulation st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN === print("created st_qcs (length:", len(st_qcs), ")") # remove barriers st_qcs = [RemoveBarriers()(qc) for qc in st_qcs] print("removed barriers from st_qcs") # optimize circuit t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) print("created t3_st_qcs (length:", len(t3_st_qcs), ")") # zne wrapping zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = True) # Pauli Twirling print("created zne_qcs (length:", len(zne_qcs), ")") # optimization_level must be 0 # feed initial_layout here to see the picture of the circuits before casting the job t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout) print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")") t3_zne_qcs[-3].draw("mpl") # from qiskit.test.mock import FakeJakarta # backend = FakeJakarta() # backend = Aer.get_backend("qasm_simulator") IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') print("provider:", provider) backend = provider.get_backend("ibmq_jakarta") print(str(backend)) shots = 1 << 13 reps = 8 # unused jobs = [] for _ in range(reps): #! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0) print('Job ID', job.job_id()) jobs.append(job) # QREM qr = QuantumRegister(num_qubits, name="calq") meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') # we have to feed initial_layout to calibration matrix cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout) print('Job ID', cal_job.job_id()) meas_calibs[0].draw("mpl") dt_now = datetime.datetime.now() print(dt_now) filename = "job_ids_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl" print(filename) with open("jobs_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump({"jobs": jobs, "cal_job": cal_job}, f) with open(filename, "wb") as f: pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f) with open("properties_" + str(backend) + "_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump(backend.properties(), f) filename = "job_ids_ibmq_jakarta_100step_20220413_030821_.pkl" # change here with open(filename, "rb") as f: job_ids_dict = pickle.load(f) job_ids = job_ids_dict["job_ids"] cal_job_id = job_ids_dict["cal_job_id"] retrieved_jobs = [] for job_id in job_ids: retrieved_jobs.append(backend.retrieve_job(job_id)) retrieved_cal_job = backend.retrieve_job(cal_job_id) cal_results = retrieved_cal_job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!! fids = [] for job in retrieved_jobs: mit_results = meas_fitter.filter.apply(job.result()) zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors) rho = expvals_to_valid_rho(num_qubits, zne_expvals) fid = state_fidelity(rho, target_state) fids.append(fid) print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids))) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.quantum_info import SparsePauliOp H2_op = SparsePauliOp.from_list( [ ("II", -1.052373245772859), ("IZ", 0.39793742484318045), ("ZI", -0.39793742484318045), ("ZZ", -0.01128010425623538), ("XX", 0.18093119978423156), ] ) from qiskit.primitives import Estimator estimator = Estimator() import numpy as np from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B, SLSQP from qiskit.circuit.library import TwoLocal from qiskit.utils import algorithm_globals # we will iterate over these different optimizers optimizers = [COBYLA(maxiter=80), L_BFGS_B(maxiter=60), SLSQP(maxiter=60)] converge_counts = np.empty([len(optimizers)], dtype=object) converge_vals = np.empty([len(optimizers)], dtype=object) for i, optimizer in enumerate(optimizers): print("\rOptimizer: {} ".format(type(optimizer).__name__), end="") algorithm_globals.random_seed = 50 ansatz = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz") counts = [] values = [] def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) vqe = VQE(estimator, ansatz, optimizer, callback=store_intermediate_result) result = vqe.compute_minimum_eigenvalue(operator=H2_op) converge_counts[i] = np.asarray(counts) converge_vals[i] = np.asarray(values) print("\rOptimization complete "); import pylab pylab.rcParams["figure.figsize"] = (12, 8) for i, optimizer in enumerate(optimizers): pylab.plot(converge_counts[i], converge_vals[i], label=type(optimizer).__name__) pylab.xlabel("Eval count") pylab.ylabel("Energy") pylab.title("Energy convergence for various optimizers") pylab.legend(loc="upper right"); from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.opflow import PauliSumOp numpy_solver = NumPyMinimumEigensolver() result = numpy_solver.compute_minimum_eigenvalue(operator=PauliSumOp(H2_op)) ref_value = result.eigenvalue.real print(f"Reference value: {ref_value:.5f}") pylab.rcParams["figure.figsize"] = (12, 8) for i, optimizer in enumerate(optimizers): pylab.plot( converge_counts[i], abs(ref_value - converge_vals[i]), label=type(optimizer).__name__, ) pylab.xlabel("Eval count") pylab.ylabel("Energy difference from solution reference value") pylab.title("Energy convergence for various optimizers") pylab.yscale("log") pylab.legend(loc="upper right"); from qiskit.algorithms.gradients import FiniteDiffEstimatorGradient estimator = Estimator() gradient = FiniteDiffEstimatorGradient(estimator, epsilon=0.01) algorithm_globals.random_seed = 50 ansatz = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz") optimizer = SLSQP(maxiter=100) counts = [] values = [] def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) vqe = VQE( estimator, ansatz, optimizer, callback=store_intermediate_result, gradient=gradient ) result = vqe.compute_minimum_eigenvalue(operator=H2_op) print(f"Value using Gradient: {result.eigenvalue.real:.5f}") pylab.rcParams["figure.figsize"] = (12, 8) pylab.plot(counts, values, label=type(optimizer).__name__) pylab.xlabel("Eval count") pylab.ylabel("Energy") pylab.title("Energy convergence using Gradient") pylab.legend(loc="upper right"); print(result) cost_function_evals = result.cost_function_evals initial_pt = result.optimal_point estimator1 = Estimator() gradient1 = FiniteDiffEstimatorGradient(estimator, epsilon=0.01) ansatz1 = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz") optimizer1 = SLSQP(maxiter=1000) vqe1 = VQE( estimator1, ansatz1, optimizer1, gradient=gradient1, initial_point=initial_pt ) result1 = vqe1.compute_minimum_eigenvalue(operator=H2_op) print(result1) cost_function_evals1 = result1.cost_function_evals print() print( f"cost_function_evals is {cost_function_evals1} with initial point versus {cost_function_evals} without it." ) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/quantum-tokyo/qiskit-handson
quantum-tokyo
# 必要なライブラリのインポート from qiskit import IBMQ, BasicAer, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, execute import numpy as np # 描画ツールのインポート from qiskit.visualization import plot_histogram #qiskitのversion確認 import qiskit qiskit.__qiskit_version__ #入力用量子ビットの数を設定 n = 3 const_f = QuantumCircuit(n+1,n) #量子回路を準備(アンシラ用にn+1個の量子レジスタを準備) input = np.random.randint(2) #乱数生成にランダム関数をつかいます if input == 1: const_f.x(n) for i in range(n): const_f.measure(i, i) const_f.draw() const_f = QuantumCircuit(n+1,n) input = np.random.randint(2) #乱数生成にランダム関数をつかいます if input == 1: const_f.id(n) for i in range(n): const_f.measure(i, i) const_f.draw() #上記の図のとおり4量子ビット回路を用意してください。 #各入力用量子ビットを制御に、出力用量子ビットを標的としたCNOT回路を作成してください。 q = QuantumCircuit(4) # 4量子ビット回路を用意 q.cx(0,3) q.cx(1,3) q.cx(2,3) q.draw(output="mpl") # 回路を描画 # 上記回路にあるように入力|𝑞2𝑞1𝑞0⟩=|010⟩をつくって|𝑞3⟩の状態を確認してください。 q = QuantumCircuit(4) # 4量子ビット回路を用意 q.x(1) # Xゲートを1番目の量子ビットに操作します。 q.cx(0,3) q.cx(1,3) q.cx(2,3) q.barrier() # 回路をみやすくするためにバリアを配置 q.x(1) # 最後にXゲートで1番目の量子ビットを挟みます。 q.draw(output="mpl") # 回路を描画 balanced_f = QuantumCircuit(n+1,n) b_str = "101" for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_f.x(qubit) balanced_f.draw() balanced_f.barrier() #回路をみやすくするためにバリアを配置 for qubit in range(n): #入力用量子ビットにCNOTゲートを適用 balanced_f.cx(qubit, n) balanced_f.barrier() #回路をみやすくするためにバリアを配置 balanced_f.draw() for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_f.x(qubit) balanced_f.draw() #ドイチ・ジョザアルゴリズムに均等な関数を実装した回路を"balanced_dj"と名付ける balanced_dj = QuantumCircuit(n+1, n) #Step 1: 各量子ビットはもともと|0>に初期化されているため、最後のアンシラだけ|1>に balanced_dj.x(n) #Xゲートを最後のアンシラに適用 #Step 2: 全体にアダマールをかけて入力用量子ビットはすべて|+⟩ に、そして補助の量子ビットは|−⟩に for qubit in range(n): #全量子ビットにアダマールを適用 balanced_dj.h(qubit) #Step 3: オラクルUf |𝑥⟩|𝑦⟩↦|𝑥⟩|𝑓(𝑥)⊕𝑦⟩を適用 # 次ステップでUfを構築します #Step 4: 最後の補助量子ビットにアダマールを適用して回路を描画 balanced_dj.h(n) balanced_dj.draw() balanced_dj += balanced_f #均等な関数の追加 balanced_dj.draw() for qubit in range(n): balanced_dj.h(qubit) balanced_dj.barrier() for i in range(n): balanced_dj.measure(i, i) balanced_dj.draw() # 回路をシミュレーターに投げて結果を出力します simulator = Aer.get_backend('qasm_simulator') result = execute(balanced_dj, backend=simulator, shots=1).result() # 結果をヒストグラムでプロットします plot_histogram(result.get_counts(balanced_dj)) #IBM Q accountをロードししプロバイダを指定 IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') #一番空いているバックエンドを自動的に選択して実行 backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n+1) and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) #上記で特定したバックエンドを指定してジョブを実行します。 from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(balanced_dj, backend=backend, shots=shots, optimization_level=3) #プログラムの実行ステータスをモニターします。 job_monitor(job, interval = 2) #計算結果(results)を取得し、答え(answer)をプロットします。 results = job.result() answer = results.get_counts() # 結果をヒストグラムでプロットします plot_histogram(answer) #必要に応じてQiskitのライブラリ等のインポート # from qiskit import * # %matplotlib inline # from qiskit.tools.visualization import plot_histogram #適当なバイナリ文字列を設定 s = '0110001' #qcという名の量子回路を準備 qc = QuantumCircuit(6+1,6) qc.x(6) qc.h(6) qc.h(range(6)) qc.draw() # Step 1 s = '0110001' #$n+1$ 量子ビットと結果を格納する $n$個の古典レジスタを用意する。$n$は秘密の文字列の長さと同じ。 n = len(s) qc = QuantumCircuit(n+1,n) # Step 2 qc.x(n) #最後の量子ビットを|1⟩にする qc.barrier() #回路をみやすくするためにバリアを配置 # Step 3 qc.h(range(n+1)) #全体にHゲートを適用 qc.barrier() #回路をみやすくするためにバリアを配置 # Step 4 for ii, yesno in enumerate(reversed(s)): if yesno == '1': qc.cx(ii, n) qc.barrier() #回路をみやすくするためにバリアを配置 # Step 5 qc.h(range(n+1)) #全量子ビットに再びHを適用 qc.barrier() #回路をみやすくするためにバリアを配置 qc.measure(range(n), range(n)) # 0 から n-1までの入力n量子ビットを測定し古典レジスタに結果を格納 %matplotlib inline #回路図を描画 qc.draw(output='mpl') # 回路をシミュレーターに投げて結果を出力します simulator = Aer.get_backend('qasm_simulator') # shots=1で実施 result = execute(qc, backend=simulator, shots=1).result() # 結果をヒストグラムでプロットします from qiskit.visualization import plot_histogram plot_histogram(result.get_counts(qc)) # 必要似応じてIBM Q accountをロードししプロバイダを指定 # IBMQ.load_account() # provider = IBMQ.get_provider(hub='ibm-q') #一番空いているバックエンドを自動的に選択して実行 backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n+1) and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) #上記で特定したバックエンドを指定してジョブを実行します。 from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(qc, backend=backend, shots=shots, optimization_level=3) #プログラムの実行ステータスをモニターします。 job_monitor(job, interval = 2) #計算結果(results)を取得し、答え(answer)をプロットします。 results = job.result() answer = results.get_counts() # 結果をヒストグラムでプロットします plot_histogram(answer)
https://github.com/jvscursulim/qamp_fall22_project
jvscursulim
import time import os import copy import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import torchvision from torchvision import datasets, transforms from qiskit.circuit import QuantumCircuit, ParameterVector from qiskit.utils import QuantumInstance from qiskit.opflow import AerPauliExpectation from qiskit_aer import Aer from qiskit_machine_learning.neural_networks import CircuitQNN from qiskit_machine_learning.connectors import TorchConnector from qiskit.opflow.expectations import PauliExpectation from qiskit.opflow.primitive_ops import PauliOp from qiskit.quantum_info.operators import Pauli torch.manual_seed(42) np.random.seed(42) os.environ["OMP_NUM_THREADS"] = "1" n_qubits = 4 # Number of qubits step = 0.0004 # Learning rate batch_size = 4 # Number of samples for each training step num_epochs = 3 # Number of training epochs q_depth = 6 # Depth of the quantum circuit (number of variational layers) gamma_lr_scheduler = 0.1 # Learning rate reduction applied every 10 epochs. q_delta = 0.01 # Initial spread of random quantum weights start_time = time.time() # Start of the computation timer dev = QuantumInstance(backend=Aer.get_backend("statevector_simulator")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data_dir = "data/hymenoptera_data" data_transforms = { "train": transforms.Compose( [ # transforms.RandomResizedCrop(224), # uncomment for data augmentation # transforms.RandomHorizontalFlip(), # uncomment for data augmentation transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), # Normalize input channels using mean values and standard deviations of ImageNet. transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ), "val": transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ), } image_datasets = { x if x == "train" else "validation": datasets.ImageFolder( os.path.join(data_dir, x), data_transforms[x] ) for x in ["train", "val"] } dataset_sizes = {x: len(image_datasets[x]) for x in ["train", "validation"]} class_names = image_datasets["train"].classes # Initialize dataloader dataloaders = { x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ["train", "validation"] } # function to plot images def imshow(inp, title=None): """Display image from tensor.""" inp = inp.numpy().transpose((1, 2, 0)) # Inverse of the initial normalization operation. mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.imshow(inp) if title is not None: plt.title(title) # Get a batch of training data inputs, classes = next(iter(dataloaders["validation"])) # Make a grid from batch out = torchvision.utils.make_grid(inputs) imshow(out, title=[class_names[x] for x in classes]) dataloaders = { x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ["train", "validation"] } def quantum_net(size_input_features=4, size_weights=4): """ The variational quantum circuit. """ qc = QuantumCircuit(n_qubits) qc.h(qubit=[i for i in range(n_qubits)]) input_params = ParameterVector(name="input", length=size_input_features) for idx, param in enumerate(input_params): qc.ry(theta=param, qubit=idx) for k in range(q_depth): for i in range(0, n_qubits - 1, 2): qc.cx(control_qubit=i, target_qubit=i+1) for i in range(1, n_qubits - 1, 2): qc.cx(control_qubit=i, target_qubit=i+1) params = ParameterVector(name=f"q_weights_{k}", length=size_weights) for idx, param in enumerate(params): qc.ry(theta=param, qubit=idx) qnn = CircuitQNN(qc, qc.parameters[:4], qc.parameters[4:], input_gradients=True, quantum_instance=dev ) return qnn class DressedQuantumNet(nn.Module): """ Torch module implementing the *dressed* quantum net. """ def __init__(self, qnn): """ Definition of the *dressed* layout. """ super().__init__() self.pre_net = nn.Linear(512, n_qubits) self.qnn = TorchConnector(qnn) self.post_net = nn.Linear(16, 2) def forward(self, x): """ Defining how tensors are supposed to move through the *dressed* quantum net. """ x = self.pre_net(x) x = torch.tanh(x) * np.pi/2.0 x = self.qnn(x) x = self.post_net(x) return x model_hybrid = torchvision.models.resnet18(pretrained=True) for param in model_hybrid.parameters(): param.requires_grad = False # Notice that model_hybrid.fc is the last layer of ResNet18 model_hybrid.fc = DressedQuantumNet(qnn=quantum_net()) # Use CUDA or CPU according to the "device" object. model_hybrid = model_hybrid.to(device) criterion = nn.CrossEntropyLoss() optimizer_hybrid = optim.Adam(model_hybrid.fc.parameters(), lr=step) exp_lr_scheduler = lr_scheduler.StepLR( optimizer_hybrid, step_size=10, gamma=gamma_lr_scheduler ) def train_model(model, criterion, optimizer, scheduler, num_epochs): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 best_loss = 10000.0 # Large arbitrary number best_acc_train = 0.0 best_loss_train = 10000.0 # Large arbitrary number print("Training started:") for epoch in range(num_epochs): # Each epoch has a training and validation phase for phase in ["train", "validation"]: if phase == "train": # Set model to training mode model.train() else: # Set model to evaluate mode model.eval() running_loss = 0.0 running_corrects = 0 # Iterate over data. n_batches = dataset_sizes[phase] // batch_size it = 0 for inputs, labels in dataloaders[phase]: since_batch = time.time() batch_size_ = len(inputs) inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() # Track/compute gradient and make an optimization step only when training with torch.set_grad_enabled(phase == "train"): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == "train": loss.backward() optimizer.step() # Print iteration results running_loss += loss.item() * batch_size_ batch_corrects = torch.sum(preds == labels.data).item() running_corrects += batch_corrects print( "Phase: {} Epoch: {}/{} Iter: {}/{} Batch time: {:.4f}".format( phase, epoch + 1, num_epochs, it + 1, n_batches + 1, time.time() - since_batch, ), end="\r", flush=True, ) it += 1 # Print epoch results epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects / dataset_sizes[phase] print( "Phase: {} Epoch: {}/{} Loss: {:.4f} Acc: {:.4f} ".format( "train" if phase == "train" else "validation ", epoch + 1, num_epochs, epoch_loss, epoch_acc, ) ) # Check if this is the best model wrt previous epochs if phase == "validation" and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) if phase == "validation" and epoch_loss < best_loss: best_loss = epoch_loss if phase == "train" and epoch_acc > best_acc_train: best_acc_train = epoch_acc if phase == "train" and epoch_loss < best_loss_train: best_loss_train = epoch_loss # Update learning rate if phase == "train": scheduler.step() # Print final results model.load_state_dict(best_model_wts) time_elapsed = time.time() - since print( "Training completed in {:.0f}m {:.0f}s".format(time_elapsed // 60, time_elapsed % 60) ) print("Best test loss: {:.4f} | Best test accuracy: {:.4f}".format(best_loss, best_acc)) return model model_hybrid = train_model( model_hybrid, criterion, optimizer_hybrid, exp_lr_scheduler, num_epochs=num_epochs ) def visualize_model(model, num_images=6, fig_name="Predictions"): images_so_far = 0 _fig = plt.figure(fig_name) model.eval() with torch.no_grad(): for _i, (inputs, labels) in enumerate(dataloaders["validation"]): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) for j in range(inputs.size()[0]): images_so_far += 1 ax = plt.subplot(num_images // 2, 2, images_so_far) ax.axis("off") ax.set_title("[{}]".format(class_names[preds[j]])) imshow(inputs.cpu().data[j]) if images_so_far == num_images: return visualize_model(model_hybrid, num_images=batch_size) plt.show()
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
import math import numpy as np from qiskit import * nshots = 8192 qiskit.IBMQ.load_account() #provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') #device = provider.get_backend('ibmq_jakarta') provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibmq_bogota') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.tools.monitor import backend_overview, backend_monitor from qiskit.tools.visualization import plot_histogram qc = QuantumCircuit(5) th, ph, lb = 0.1, 0.2, 0.3; qc.u(th, ph, lb, [0]); qc.barrier() # qubit estate preparation qc.cx([0],[1]); qc.cx([1], [2]); qc.h([0, 1, 2]); qc.barrier() # encoding qc.z([0]); qc.barrier() # phase flip error qc.draw(output = 'mpl') qc.h([0, 1, 2]); qc.cx([0], [3]); qc.cx([1], [3]); qc.cx([1], [4]); qc.cx([2], [4]) qc.draw(output = 'mpl') def qc_ec_pf(th, ph, lb, j): qc = QuantumCircuit(5, name = 'EC_PF') qc.u(th, ph, lb, [0]) # qubit state preparation qc.barrier() qc.cx([0], [1]); qc.cx([1], [2]); qc.h([0, 1, 2]) # encoding qc.barrier() if j == 0 or j == 1 or j == 2: # error qc.z([j]) qc.barrier() qc.h([0, 1, 2]); qc.cx([0], [3]); qc.cx([1], [3]); qc.cx([1], [4]); qc.cx([2], [4]) # syndrome detection qc.barrier() qc.x([3]); qc.ccx([4], [3], [2]); qc.x([3]); qc.ccx([4], [3], [1]) # correction qc.x([4]); qc.ccx([4], [3], [0]); qc.x([4]) # correction qc.barrier() return qc th, ph, lb = math.pi, 0.0, 0.0; j = 2; qc_ec_pf_ = qc_ec_pf(th, ph, lb, j) qc_ec_pf_.draw(output = 'mpl') # Teste da funcionalidade do circuito para correção do phase flip qc = QuantumCircuit(5, 3); j = 2 # sets the error qc_ec_pf_ = qc_ec_pf(math.pi/2, 0.0, 0.0, j); qc.append(qc_ec_pf_, [0, 1, 2, 3, 4]) qc.measure([0, 1, 2], [0, 1, 2]); #qc.decompose().draw(output = 'mpl') job_sim = execute(qc, backend = simulator, shots = nshots) plot_histogram(job_sim.result().get_counts(qc)) job_exp = execute(qc, backend = device, shots = nshots) print(job_exp.job_id()); job_monitor(job_exp) plot_histogram(job_exp.result().get_counts(qc)) qc = QuantumCircuit(2, 1) th, ph, lb = math.pi, 0.0, 0.0; qc.u(th, ph, lb, [0]) # state preparation qc.barrier(); qc.cx([0], [1]); qc.h([0]); qc.barrier() qc.z([0]); qc.barrier() qc.h([0]); qc.cx([0], [1]); qc.cx([1], [0]) qc.measure([0], [0]) qc.draw(output = 'mpl') job = execute(qc, backend = simulator, shots = nshots) plot_histogram(job.result().get_counts(qc)) job = execute(qc, backend = device, shots = nshots); job_monitor(job) plot_histogram(job.result().get_counts(qc)) def qc_encoding_shor(): qc = QuantumCircuit(9, name = 'encoding') qc.cx([0], [3]); qc.cx([0], [6]) qc.h([0, 3, 6]) qc.cx([0], [1]); qc.cx([0], [2]); qc.cx([3], [4]) qc.cx([3], [5]); qc.cx([6], [7]); qc.cx([6], [8]) return qc qc_encoding_shor_ = qc_encoding_shor(); qc_encoding_shor_.draw(output = 'mpl') def qc_gen_bf(): qc = QuantumCircuit(9+6, name = 'BF') qc.decompose().draw(output = 'mpl') qc.cx([0], [9]); qc.cx([1], [9]); qc.cx([1], [10]); qc.cx([2], [10]) qc.barrier() qc.x([9]); qc.ccx([10], [9], [2]); qc.x([9]); qc.ccx([10], [9], [1]); qc.x([10]); qc.ccx([10], [9], [0]); qc.x([10]) qc.barrier() qc.cx([3], [11]); qc.cx([4], [11]); qc.cx([4], [12]); qc.cx([5], [12]) qc.barrier() qc.x([11]); qc.ccx([12], [11], [5]); qc.x([11]); qc.ccx([12], [11], [4]); qc.x([12]); qc.ccx([12], [11], [3]); qc.x([12]) qc.barrier() qc.cx([6], [13]); qc.cx([7], [13]); qc.cx([7], [14]); qc.cx([8], [14]) qc.barrier() qc.x([13]); qc.ccx([14], [13], [8]); qc.x([13]); qc.ccx([14], [13], [7]); qc.x([14]); qc.ccx([14], [13], [6]); qc.x([14]) return qc qc_gen_bf_ = qc_gen_bf(); qc_gen_bf_.draw(output = 'mpl') #qc.decompose().draw(output = 'mpl') def qc_gen_pf(): qc = QuantumCircuit(9+2, name = 'PF') qc.cx([0], [1]); qc.cx([0], [2]); qc.cx([3], [4]); qc.cx([3], [5]); qc.cx([6], [7]); qc.cx([6], [8]) # destrói o emaranhamento qc.h([0, 3, 6]) # destrói a coerência qc.cx([0], [9]); qc.cx([3], [9]); qc.cx([3], [10]); qc.cx([6], [10]) # medida de síndrome qc.barrier() qc.x([9]); qc.ccx([10], [9], [6]); qc.x([9]); qc.ccx([10], [9], [3]); qc.x([10]); qc.ccx([10], [9], [0]); qc.x([10]) # reversão do erro qc.barrier() qc.h([0, 3, 6]) # passa esses qubits para a base |+>,|-> qc.cx([0], [1]); qc.cx([0], [2]); qc.cx([3], [4]); qc.cx([3], [5]); qc.cx([6], [7]); qc.cx([6], [8]) # recria o emaranhamento return qc qc_gen_pf_ = qc_gen_pf(); qc_gen_pf_.draw(output = 'mpl') def qc_decoding_shor(): qc = QuantumCircuit(9, name = 'decoding') qc.cx([0], [2]); qc.cx([3], [5]); qc.cx([6], [8]) qc.cx([0], [1]); qc.cx([3], [4]); qc.cx([6], [7]) qc.h([0, 3, 6]) qc.cx([0], [3]); qc.cx([0], [6]) return qc qc_decoding_shor_ = qc_decoding_shor(); qc_decoding_shor_.draw(output = 'mpl') def qc_error(): qc = QuantumCircuit(9, name = 'error') qc.x([0]); qc.z([0]) #qc.z(4); qc.x([5]) qc.x([8]) return qc qc_error_ = qc_error(); qc_error_.draw(output = 'mpl') qc = QuantumCircuit(9+6+2, 1) qc.h([0]) # prepara o estado |1> qc.barrier() qc_encoding_shor_ = qc_encoding_shor(); qc.append(qc_encoding_shor_, [0,1,2,3,4,5,6,7,8]) qc.barrier() qc_error_ = qc_error(); qc.append(qc_error_, [0,1,2,3,4,5,6,7,8]) qc.barrier() qc_gen_bf_ = qc_gen_bf(); qc.append(qc_gen_bf_, [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]) qc.barrier() qc_gen_pf_ = qc_gen_pf(); qc.append(qc_gen_pf_, [0,1,2,3,4,5,6,7,8,15,16]) qc.barrier() qc_decoding_shor_ = qc_decoding_shor(); qc.append(qc_decoding_shor_, [0,1,2,3,4,5,6,7,8]) qc.barrier() qc.measure([0], 0) qc.draw(output = 'mpl') job = execute(qc, backend = simulator, shots = nshots) plot_histogram(job.result().get_counts(qc)) qc = QuantumCircuit(9) th, ph, lb = math.pi/2, 0.0, 0.0; qc.u(th, ph, lb, [0]) qc.barrier(); qc.x([0]); qc.z([0]); qc.barrier() # o erro qc.cx([0], [1]); qc.cx([0], [2]); qc.cx([3], [4]); qc.cx([3], [5]); qc.cx([6], [7]); qc.cx([6], [8]) qc.ccx([2], [1], [0]); qc.ccx([5], [4], [3]); qc.ccx([8], [7], [6]) qc.h([0, 3, 6]) qc.cx([0], [3]); qc.cx([0], [6]) qc.ccx([6], [3], [0]) qc.draw(output = 'mpl') qc = QuantumCircuit(3, 1) th, ph, lb = math.pi, 0.0, 0.0; qc.u(th, ph, lb, [1]) # state preparation qc.barrier(); qc.cx([1], [2]); qc.barrier() qc.x([1]); qc.z([1]); qc.barrier() qc.cx([1], [2]); qc.cx([2], [1]) qc.measure([1], [0]) qc.draw(output = 'mpl')
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """A wrapper class for the purposes of validating modifications to QuantumCircuit.data while maintaining the interface of a python list.""" from collections.abc import MutableSequence import qiskit._accelerate.circuit from .exceptions import CircuitError from .instruction import Instruction from .operation import Operation CircuitInstruction = qiskit._accelerate.circuit.CircuitInstruction class QuantumCircuitData(MutableSequence): """A wrapper class for the purposes of validating modifications to QuantumCircuit.data while maintaining the interface of a python list.""" def __init__(self, circuit): self._circuit = circuit def __getitem__(self, i): return self._circuit._data[i] def __setitem__(self, key, value): # For now (Terra 0.21), the `QuantumCircuit.data` setter is meant to perform validation, so # we do the same qubit checks that `QuantumCircuit.append` would do. if isinstance(value, CircuitInstruction): operation, qargs, cargs = value.operation, value.qubits, value.clbits else: # Handle the legacy 3-tuple format. operation, qargs, cargs = value value = self._resolve_legacy_value(operation, qargs, cargs) self._circuit._data[key] = value if isinstance(value.operation, Instruction): self._circuit._update_parameter_table(value.operation) def _resolve_legacy_value(self, operation, qargs, cargs) -> CircuitInstruction: """Resolve the old-style 3-tuple into the new :class:`CircuitInstruction` type.""" if not isinstance(operation, Operation) and hasattr(operation, "to_instruction"): operation = operation.to_instruction() if not isinstance(operation, Operation): raise CircuitError("object is not an Operation.") expanded_qargs = [self._circuit.qbit_argument_conversion(qarg) for qarg in qargs or []] expanded_cargs = [self._circuit.cbit_argument_conversion(carg) for carg in cargs or []] if isinstance(operation, Instruction): broadcast_args = list(operation.broadcast_arguments(expanded_qargs, expanded_cargs)) else: broadcast_args = list( Instruction.broadcast_arguments(operation, expanded_qargs, expanded_cargs) ) if len(broadcast_args) > 1: raise CircuitError( "QuantumCircuit.data modification does not support argument broadcasting." ) qargs, cargs = broadcast_args[0] self._circuit._check_dups(qargs) return CircuitInstruction(operation, tuple(qargs), tuple(cargs)) def insert(self, index, value): self._circuit._data.insert(index, CircuitInstruction(None, (), ())) try: self[index] = value except CircuitError: del self._circuit._data[index] raise def __iter__(self): return iter(self._circuit._data) def __delitem__(self, i): del self._circuit._data[i] def __len__(self): return len(self._circuit._data) def __cast(self, other): return list(other._circuit._data) if isinstance(other, QuantumCircuitData) else other def __repr__(self): return repr(list(self._circuit._data)) def __lt__(self, other): return list(self._circuit._data) < self.__cast(other) def __le__(self, other): return list(self._circuit._data) <= self.__cast(other) def __eq__(self, other): return self._circuit._data == self.__cast(other) def __gt__(self, other): return list(self._circuit._data) > self.__cast(other) def __ge__(self, other): return list(self._circuit._data) >= self.__cast(other) def __add__(self, other): return list(self._circuit._data) + self.__cast(other) def __radd__(self, other): return self.__cast(other) + list(self._circuit._data) def __mul__(self, n): return list(self._circuit._data) * n def __rmul__(self, n): return n * list(self._circuit._data) def sort(self, *args, **kwargs): """In-place stable sort. Accepts arguments of list.sort.""" data = list(self._circuit._data) data.sort(*args, **kwargs) self._circuit._data.clear() self._circuit._data.reserve(len(data)) self._circuit._data.extend(data) def copy(self): """Returns a shallow copy of instruction list.""" return list(self._circuit._data)
https://github.com/snow0369/qiskit_tutorial_2021_summerschool
snow0369
import numpy as np from qiskit.providers.aer import AerProvider from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.circuit import Parameter from qiskit.tools.visualization import plot_histogram import qiskit.providers.aer.noise as noise from qiskit.quantum_info import hellinger_fidelity qr = QuantumRegister(3) cr = ClassicalRegister(3) qc = QuantumCircuit(qr, cr) tau = Parameter('τ') qc.h(qr) qc.cx(qr[0], qr[1]) qc.cx(qr[1], qr[2]) qc.rz(-2 * tau, qr[2]) qc.cx(qr[1], qr[2]) qc.cx(qr[0], qr[1]) qc.h(qr) qc.draw('mpl') meas = QuantumCircuit(qr, cr) meas.measure(qr, cr) meas.draw('mpl') qasm_qc = qc.compose(meas) qasm_qc.draw('mpl') bind_qasm_qc = qasm_qc.bind_parameters({tau: np.pi/4}) qasm_backend = AerProvider().get_backend('qasm_simulator') job_qasm = qasm_backend.run(bind_qasm_qc, shots=4096) counts_qasm = job_qasm.result().get_counts() print(counts_qasm) plot_histogram(counts_qasm) # Error probabilities prob_1 = 0.001 # 1-qubit gate prob_2 = 0.01 # 2-qubit gate # Depolarizing quantum errors error_1 = noise.depolarizing_error(prob_1, num_qubits=1) error_2 = noise.depolarizing_error(prob_2, num_qubits=2) # Add errors to noise model noise_model = noise.NoiseModel() noise_model.add_all_qubit_quantum_error(error_1, ['h', 'rz']) noise_model.add_all_qubit_quantum_error(error_2, ['cx']) job_qasm_noisy = qasm_backend.run(bind_qasm_qc, shots=4096, noise_model=noise_model) counts_qasm_noisy = job_qasm_noisy.result().get_counts() print(counts_qasm_noisy) plot_histogram(counts_qasm_noisy) print(hellinger_fidelity(counts_qasm, counts_qasm_noisy)) qc.draw('mpl') bind_qc = qc.bind_parameters({tau: np.pi/4}) sv_backend = AerProvider().get_backend('statevector_simulator') job_sv = sv_backend.run(bind_qc) final_sv = job_sv.result().get_statevector() np.set_printoptions(suppress=True) print(final_sv) unitary_backend = AerProvider().get_backend('unitary_simulator') job_unitary = unitary_backend.run(bind_qc) unitary = job_unitary.result().get_unitary() print(unitary) for idx, x in np.ndenumerate(unitary): if abs(x) > 1e-7: print(f"{idx}, {x.real if abs(x.real) > 1e-7 else 0.0} {' + j'+ str(x.imag) if abs(x.imag) > 1e-7 else 0.0}")
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile from qiskit.visualization import plot_circuit_layout from qiskit.providers.fake_provider import FakeVigo backend = FakeVigo() ghz = QuantumCircuit(3, 3) ghz.h(0) ghz.cx(0,range(1,3)) ghz.barrier() ghz.measure(range(3), range(3)) new_circ_lv3 = transpile(ghz, backend=backend, optimization_level=3) plot_circuit_layout(new_circ_lv3, backend)
https://github.com/epelaaez/QuantumLibrary
epelaaez
#Assign these values as per your requirements. global min_qubits,max_qubits,skip_qubits,max_circuits,num_shots,Noise_Inclusion min_qubits=4 max_qubits=15 #reference files are upto 12 Qubits only skip_qubits=2 max_circuits=3 num_shots=4092 gate_counts_plots = True Noise_Inclusion = False saveplots = False Memory_utilization_plot = True Type_of_Simulator = "built_in" #Inputs are "built_in" or "FAKE" or "FAKEV2" backend_name = "FakeGuadalupeV2" #Can refer to the README files for the available backends #Change your Specification of Simulator in Declaring Backend Section #By Default : built_in -> qasm_simulator and FAKE -> FakeSantiago() and FAKEV2 -> FakeSantiagoV2() import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, transpile, execute from qiskit.opflow import PauliTrotterEvolution, Suzuki from qiskit.opflow.primitive_ops import PauliSumOp import time,os,json import matplotlib.pyplot as plt # Import from Qiskit Aer noise module from qiskit_aer.noise import (NoiseModel, QuantumError, ReadoutError,pauli_error, depolarizing_error, thermal_relaxation_error,reset_error) # Benchmark Name benchmark_name = "VQE Simulation" # Selection of basis gate set for transpilation # Note: selector 1 is a hardware agnostic gate set basis_selector = 1 basis_gates_array = [ [], ['rx', 'ry', 'rz', 'cx'], # a common basis set, default ['cx', 'rz', 'sx', 'x'], # IBM default basis set ['rx', 'ry', 'rxx'], # IonQ default basis set ['h', 'p', 'cx'], # another common basis set ['u', 'cx'] # general unitaries basis gates ] np.random.seed(0) def get_QV(backend): import json # Assuming backend.conf_filename is the filename and backend.dirname is the directory path conf_filename = backend.dirname + "/" + backend.conf_filename # Open the JSON file with open(conf_filename, 'r') as file: # Load the JSON data data = json.load(file) # Extract the quantum_volume parameter QV = data.get('quantum_volume', None) return QV def checkbackend(backend_name,Type_of_Simulator): if Type_of_Simulator == "built_in": available_backends = [] for i in Aer.backends(): available_backends.append(i.name) if backend_name in available_backends: platform = backend_name return platform else: print(f"incorrect backend name or backend not available. Using qasm_simulator by default !!!!") print(f"available backends are : {available_backends}") platform = "qasm_simulator" return platform elif Type_of_Simulator == "FAKE" or Type_of_Simulator == "FAKEV2": import qiskit.providers.fake_provider as fake_backends if hasattr(fake_backends,backend_name) is True: print(f"Backend {backend_name} is available for type {Type_of_Simulator}.") backend_class = getattr(fake_backends,backend_name) backend_instance = backend_class() return backend_instance else: print(f"Backend {backend_name} is not available or incorrect for type {Type_of_Simulator}. Executing with FakeSantiago!!!") if Type_of_Simulator == "FAKEV2": backend_class = getattr(fake_backends,"FakeSantiagoV2") else: backend_class = getattr(fake_backends,"FakeSantiago") backend_instance = backend_class() return backend_instance if Type_of_Simulator == "built_in": platform = checkbackend(backend_name,Type_of_Simulator) #By default using "Qasm Simulator" backend = Aer.get_backend(platform) QV_=None print(f"{platform} device is capable of running {backend.num_qubits}") print(f"backend version is {backend.backend_version}") elif Type_of_Simulator == "FAKE": basis_selector = 0 backend = checkbackend(backend_name,Type_of_Simulator) QV_ = get_QV(backend) platform = backend.properties().backend_name +"-"+ backend.properties().backend_version #Replace this string with the backend Provider's name as this is used for Plotting. max_qubits=backend.configuration().n_qubits print(f"{platform} device is capable of running {backend.configuration().n_qubits}") print(f"{platform} has QV={QV_}") if max_qubits > 30: print(f"Device is capable with max_qubits = {max_qubits}") max_qubit = 30 print(f"Using fake backend {platform} with max_qubits {max_qubits}") elif Type_of_Simulator == "FAKEV2": basis_selector = 0 if "V2" not in backend_name: backend_name = backend_name+"V2" backend = checkbackend(backend_name,Type_of_Simulator) QV_ = get_QV(backend) platform = backend.name +"-" +backend.backend_version max_qubits=backend.num_qubits print(f"{platform} device is capable of running {backend.num_qubits}") print(f"{platform} has QV={QV_}") if max_qubits > 30: print(f"Device is capable with max_qubits = {max_qubits}") max_qubit = 30 print(f"Using fake backend {platform} with max_qubits {max_qubits}") else: print("Enter valid Simulator.....") # saved circuits for display QC_ = None Hf_ = None CO_ = None ################### Circuit Definition ####################################### # Construct a Qiskit circuit for VQE Energy evaluation with UCCSD ansatz # param: n_spin_orbs - The number of spin orbitals. # return: return a Qiskit circuit for this VQE ansatz def VQEEnergy(n_spin_orbs, na, nb, circuit_id=0, method=1): # number of alpha spin orbitals norb_a = int(n_spin_orbs / 2) # construct the Hamiltonian qubit_op = ReadHamiltonian(n_spin_orbs) # allocate qubits num_qubits = n_spin_orbs qr = QuantumRegister(num_qubits) qc = QuantumCircuit(qr, name=f"vqe-ansatz({method})-{num_qubits}-{circuit_id}") # initialize the HF state Hf = HartreeFock(num_qubits, na, nb) qc.append(Hf, qr) # form the list of single and double excitations excitationList = [] for occ_a in range(na): for vir_a in range(na, norb_a): excitationList.append((occ_a, vir_a)) for occ_b in range(norb_a, norb_a+nb): for vir_b in range(norb_a+nb, n_spin_orbs): excitationList.append((occ_b, vir_b)) for occ_a in range(na): for vir_a in range(na, norb_a): for occ_b in range(norb_a, norb_a+nb): for vir_b in range(norb_a+nb, n_spin_orbs): excitationList.append((occ_a, vir_a, occ_b, vir_b)) # get cluster operators in Paulis pauli_list = readPauliExcitation(n_spin_orbs, circuit_id) # loop over the Pauli operators for index, PauliOp in enumerate(pauli_list): # get circuit for exp(-iP) cluster_qc = ClusterOperatorCircuit(PauliOp, excitationList[index]) # add to ansatz qc.append(cluster_qc, [i for i in range(cluster_qc.num_qubits)]) # method 1, only compute the last term in the Hamiltonian if method == 1: # last term in Hamiltonian qc_with_mea, is_diag = ExpectationCircuit(qc, qubit_op[1], num_qubits) # return the circuit return qc_with_mea # now we need to add the measurement parts to the circuit # circuit list qc_list = [] diag = [] off_diag = [] global normalization normalization = 0.0 # add the first non-identity term identity_qc = qc.copy() identity_qc.measure_all() qc_list.append(identity_qc) # add to circuit list diag.append(qubit_op[1]) normalization += abs(qubit_op[1].coeffs[0]) # add to normalization factor diag_coeff = abs(qubit_op[1].coeffs[0]) # add to coefficients of diagonal terms # loop over rest of terms for index, p in enumerate(qubit_op[2:]): # get the circuit with expectation measurements qc_with_mea, is_diag = ExpectationCircuit(qc, p, num_qubits) # accumulate normalization normalization += abs(p.coeffs[0]) # add to circuit list if non-diagonal if not is_diag: qc_list.append(qc_with_mea) else: diag_coeff += abs(p.coeffs[0]) # diagonal term if is_diag: diag.append(p) # off-diagonal term else: off_diag.append(p) # modify the name of diagonal circuit qc_list[0].name = qubit_op[1].primitive.to_list()[0][0] + " " + str(np.real(diag_coeff)) normalization /= len(qc_list) return qc_list # Function that constructs the circuit for a given cluster operator def ClusterOperatorCircuit(pauli_op, excitationIndex): # compute exp(-iP) exp_ip = pauli_op.exp_i() # Trotter approximation qc_op = PauliTrotterEvolution(trotter_mode=Suzuki(order=1, reps=1)).convert(exp_ip) # convert to circuit qc = qc_op.to_circuit(); qc.name = f'Cluster Op {excitationIndex}' global CO_ if CO_ == None or qc.num_qubits <= 4: if qc.num_qubits < 7: CO_ = qc # return this circuit return qc # Function that adds expectation measurements to the raw circuits def ExpectationCircuit(qc, pauli, nqubit, method=2): # copy the unrotated circuit raw_qc = qc.copy() # whether this term is diagonal is_diag = True # primitive Pauli string PauliString = pauli.primitive.to_list()[0][0] # coefficient coeff = pauli.coeffs[0] # basis rotation for i, p in enumerate(PauliString): target_qubit = nqubit - i - 1 if (p == "X"): is_diag = False raw_qc.h(target_qubit) elif (p == "Y"): raw_qc.sdg(target_qubit) raw_qc.h(target_qubit) is_diag = False # perform measurements raw_qc.measure_all() # name of this circuit raw_qc.name = PauliString + " " + str(np.real(coeff)) # save circuit global QC_ if QC_ == None or nqubit <= 4: if nqubit < 7: QC_ = raw_qc return raw_qc, is_diag # Function that implements the Hartree-Fock state def HartreeFock(norb, na, nb): # initialize the quantum circuit qc = QuantumCircuit(norb, name="Hf") # alpha electrons for ia in range(na): qc.x(ia) # beta electrons for ib in range(nb): qc.x(ib+int(norb/2)) # Save smaller circuit global Hf_ if Hf_ == None or norb <= 4: if norb < 7: Hf_ = qc # return the circuit return qc ################ Helper Functions # Function that converts a list of single and double excitation operators to Pauli operators def readPauliExcitation(norb, circuit_id=0): # load pre-computed data filename = os.path.join(f'ansatzes/{norb}_qubit_{circuit_id}.txt') with open(filename) as f: data = f.read() ansatz_dict = json.loads(data) # initialize Pauli list pauli_list = [] # current coefficients cur_coeff = 1e5 # current Pauli list cur_list = [] # loop over excitations for ext in ansatz_dict: if cur_coeff > 1e4: cur_coeff = ansatz_dict[ext] cur_list = [(ext, ansatz_dict[ext])] elif abs(abs(ansatz_dict[ext]) - abs(cur_coeff)) > 1e-4: pauli_list.append(PauliSumOp.from_list(cur_list)) cur_coeff = ansatz_dict[ext] cur_list = [(ext, ansatz_dict[ext])] else: cur_list.append((ext, ansatz_dict[ext])) # add the last term pauli_list.append(PauliSumOp.from_list(cur_list)) # return Pauli list return pauli_list # Get the Hamiltonian by reading in pre-computed file def ReadHamiltonian(nqubit): # load pre-computed data filename = os.path.join(f'Hamiltonians/{nqubit}_qubit.txt') with open(filename) as f: data = f.read() ham_dict = json.loads(data) # pauli list pauli_list = [] for p in ham_dict: pauli_list.append( (p, ham_dict[p]) ) # build Hamiltonian ham = PauliSumOp.from_list(pauli_list) # return Hamiltonian return ham # Create an empty noise model noise_parameters = NoiseModel() if Type_of_Simulator == "built_in": # Add depolarizing error to all single qubit gates with error rate 0.05% and to all two qubit gates with error rate 0.5% depol_one_qb_error = 0.05 depol_two_qb_error = 0.005 noise_parameters.add_all_qubit_quantum_error(depolarizing_error(depol_one_qb_error, 1), ['rx', 'ry', 'rz']) noise_parameters.add_all_qubit_quantum_error(depolarizing_error(depol_two_qb_error, 2), ['cx']) # Add amplitude damping error to all single qubit gates with error rate 0.0% and to all two qubit gates with error rate 0.0% amp_damp_one_qb_error = 0.0 amp_damp_two_qb_error = 0.0 noise_parameters.add_all_qubit_quantum_error(depolarizing_error(amp_damp_one_qb_error, 1), ['rx', 'ry', 'rz']) noise_parameters.add_all_qubit_quantum_error(depolarizing_error(amp_damp_two_qb_error, 2), ['cx']) # Add reset noise to all single qubit resets reset_to_zero_error = 0.005 reset_to_one_error = 0.005 noise_parameters.add_all_qubit_quantum_error(reset_error(reset_to_zero_error, reset_to_one_error),["reset"]) # Add readout error p0given1_error = 0.000 p1given0_error = 0.000 error_meas = ReadoutError([[1 - p1given0_error, p1given0_error], [p0given1_error, 1 - p0given1_error]]) noise_parameters.add_all_qubit_readout_error(error_meas) #print(noise_parameters) elif Type_of_Simulator == "FAKE"or"FAKEV2": noise_parameters = NoiseModel.from_backend(backend) #print(noise_parameters) ### Analysis methods to be expanded and eventually compiled into a separate analysis.py file import math, functools def hellinger_fidelity_with_expected(p, q): """ p: result distribution, may be passed as a counts distribution q: the expected distribution to be compared against References: `Hellinger Distance @ wikipedia <https://en.wikipedia.org/wiki/Hellinger_distance>`_ Qiskit Hellinger Fidelity Function """ p_sum = sum(p.values()) q_sum = sum(q.values()) if q_sum == 0: print("ERROR: polarization_fidelity(), expected distribution is invalid, all counts equal to 0") return 0 p_normed = {} for key, val in p.items(): p_normed[key] = val/p_sum # if p_sum != 0: # p_normed[key] = val/p_sum # else: # p_normed[key] = 0 q_normed = {} for key, val in q.items(): q_normed[key] = val/q_sum total = 0 for key, val in p_normed.items(): if key in q_normed.keys(): total += (np.sqrt(val) - np.sqrt(q_normed[key]))**2 del q_normed[key] else: total += val total += sum(q_normed.values()) # in some situations (error mitigation) this can go negative, use abs value if total < 0: print(f"WARNING: using absolute value in fidelity calculation") total = abs(total) dist = np.sqrt(total)/np.sqrt(2) fidelity = (1-dist**2)**2 return fidelity def polarization_fidelity(counts, correct_dist, thermal_dist=None): """ Combines Hellinger fidelity and polarization rescaling into fidelity calculation used in every benchmark counts: the measurement outcomes after `num_shots` algorithm runs correct_dist: the distribution we expect to get for the algorithm running perfectly thermal_dist: optional distribution to pass in distribution from a uniform superposition over all states. If `None`: generated as `uniform_dist` with the same qubits as in `counts` returns both polarization fidelity and the hellinger fidelity Polarization from: `https://arxiv.org/abs/2008.11294v1` """ num_measured_qubits = len(list(correct_dist.keys())[0]) #print(num_measured_qubits) counts = {k.zfill(num_measured_qubits): v for k, v in counts.items()} # calculate hellinger fidelity between measured expectation values and correct distribution hf_fidelity = hellinger_fidelity_with_expected(counts,correct_dist) # to limit cpu and memory utilization, skip noise correction if more than 16 measured qubits if num_measured_qubits > 16: return { 'fidelity':hf_fidelity, 'hf_fidelity':hf_fidelity } # if not provided, generate thermal dist based on number of qubits if thermal_dist == None: thermal_dist = uniform_dist(num_measured_qubits) # set our fidelity rescaling value as the hellinger fidelity for a depolarized state floor_fidelity = hellinger_fidelity_with_expected(thermal_dist, correct_dist) # rescale fidelity result so uniform superposition (random guessing) returns fidelity # rescaled to 0 to provide a better measure of success of the algorithm (polarization) new_floor_fidelity = 0 fidelity = rescale_fidelity(hf_fidelity, floor_fidelity, new_floor_fidelity) return { 'fidelity':fidelity, 'hf_fidelity':hf_fidelity } ## Uniform distribution function commonly used def rescale_fidelity(fidelity, floor_fidelity, new_floor_fidelity): """ Linearly rescales our fidelities to allow comparisons of fidelities across benchmarks fidelity: raw fidelity to rescale floor_fidelity: threshold fidelity which is equivalent to random guessing new_floor_fidelity: what we rescale the floor_fidelity to Ex, with floor_fidelity = 0.25, new_floor_fidelity = 0.0: 1 -> 1; 0.25 -> 0; 0.5 -> 0.3333; """ rescaled_fidelity = (1-new_floor_fidelity)/(1-floor_fidelity) * (fidelity - 1) + 1 # ensure fidelity is within bounds (0, 1) if rescaled_fidelity < 0: rescaled_fidelity = 0.0 if rescaled_fidelity > 1: rescaled_fidelity = 1.0 return rescaled_fidelity def uniform_dist(num_state_qubits): dist = {} for i in range(2**num_state_qubits): key = bin(i)[2:].zfill(num_state_qubits) dist[key] = 1/(2**num_state_qubits) return dist from matplotlib.patches import Rectangle import matplotlib.cm as cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap, Normalize from matplotlib.patches import Circle ############### Color Map functions # Create a selection of colormaps from which to choose; default to custom_spectral cmap_spectral = plt.get_cmap('Spectral') cmap_greys = plt.get_cmap('Greys') cmap_blues = plt.get_cmap('Blues') cmap_custom_spectral = None # the default colormap is the spectral map cmap = cmap_spectral cmap_orig = cmap_spectral # current cmap normalization function (default None) cmap_norm = None default_fade_low_fidelity_level = 0.16 default_fade_rate = 0.7 # Specify a normalization function here (default None) def set_custom_cmap_norm(vmin, vmax): global cmap_norm if vmin == vmax or (vmin == 0.0 and vmax == 1.0): print("... setting cmap norm to None") cmap_norm = None else: print(f"... setting cmap norm to [{vmin}, {vmax}]") cmap_norm = Normalize(vmin=vmin, vmax=vmax) # Remake the custom spectral colormap with user settings def set_custom_cmap_style( fade_low_fidelity_level=default_fade_low_fidelity_level, fade_rate=default_fade_rate): #print("... set custom map style") global cmap, cmap_custom_spectral, cmap_orig cmap_custom_spectral = create_custom_spectral_cmap( fade_low_fidelity_level=fade_low_fidelity_level, fade_rate=fade_rate) cmap = cmap_custom_spectral cmap_orig = cmap_custom_spectral # Create the custom spectral colormap from the base spectral def create_custom_spectral_cmap( fade_low_fidelity_level=default_fade_low_fidelity_level, fade_rate=default_fade_rate): # determine the breakpoint from the fade level num_colors = 100 breakpoint = round(fade_low_fidelity_level * num_colors) # get color list for spectral map spectral_colors = [cmap_spectral(v/num_colors) for v in range(num_colors)] #print(fade_rate) # create a list of colors to replace those below the breakpoint # and fill with "faded" color entries (in reverse) low_colors = [0] * breakpoint #for i in reversed(range(breakpoint)): for i in range(breakpoint): # x is index of low colors, normalized 0 -> 1 x = i / breakpoint # get color at this index bc = spectral_colors[i] r0 = bc[0] g0 = bc[1] b0 = bc[2] z0 = bc[3] r_delta = 0.92 - r0 #print(f"{x} {bc} {r_delta}") # compute saturation and greyness ratio sat_ratio = 1 - x #grey_ratio = 1 - x ''' attempt at a reflective gradient if i >= breakpoint/2: xf = 2*(x - 0.5) yf = pow(xf, 1/fade_rate)/2 grey_ratio = 1 - (yf + 0.5) else: xf = 2*(0.5 - x) yf = pow(xf, 1/fade_rate)/2 grey_ratio = 1 - (0.5 - yf) ''' grey_ratio = 1 - math.pow(x, 1/fade_rate) #print(f" {xf} {yf} ") #print(f" {sat_ratio} {grey_ratio}") r = r0 + r_delta * sat_ratio g_delta = r - g0 b_delta = r - b0 g = g0 + g_delta * grey_ratio b = b0 + b_delta * grey_ratio #print(f"{r} {g} {b}\n") low_colors[i] = (r,g,b,z0) #print(low_colors) # combine the faded low colors with the regular spectral cmap to make a custom version cmap_custom_spectral = ListedColormap(low_colors + spectral_colors[breakpoint:]) #spectral_colors = [cmap_custom_spectral(v/10) for v in range(10)] #for i in range(10): print(spectral_colors[i]) #print("") return cmap_custom_spectral # Make the custom spectral color map the default on module init set_custom_cmap_style() # Arrange the stored annotations optimally and add to plot def anno_volumetric_data(ax, depth_base=2, label='Depth', labelpos=(0.2, 0.7), labelrot=0, type=1, fill=True): # sort all arrays by the x point of the text (anno_offs) global x_anno_offs, y_anno_offs, anno_labels, x_annos, y_annos all_annos = sorted(zip(x_anno_offs, y_anno_offs, anno_labels, x_annos, y_annos)) x_anno_offs = [a for a,b,c,d,e in all_annos] y_anno_offs = [b for a,b,c,d,e in all_annos] anno_labels = [c for a,b,c,d,e in all_annos] x_annos = [d for a,b,c,d,e in all_annos] y_annos = [e for a,b,c,d,e in all_annos] #print(f"{x_anno_offs}") #print(f"{y_anno_offs}") #print(f"{anno_labels}") for i in range(len(anno_labels)): x_anno = x_annos[i] y_anno = y_annos[i] x_anno_off = x_anno_offs[i] y_anno_off = y_anno_offs[i] label = anno_labels[i] if i > 0: x_delta = abs(x_anno_off - x_anno_offs[i - 1]) y_delta = abs(y_anno_off - y_anno_offs[i - 1]) if y_delta < 0.7 and x_delta < 2: y_anno_off = y_anno_offs[i] = y_anno_offs[i - 1] - 0.6 #x_anno_off = x_anno_offs[i] = x_anno_offs[i - 1] + 0.1 ax.annotate(label, xy=(x_anno+0.0, y_anno+0.1), arrowprops=dict(facecolor='black', shrink=0.0, width=0.5, headwidth=4, headlength=5, edgecolor=(0.8,0.8,0.8)), xytext=(x_anno_off + labelpos[0], y_anno_off + labelpos[1]), rotation=labelrot, horizontalalignment='left', verticalalignment='baseline', color=(0.2,0.2,0.2), clip_on=True) if saveplots == True: plt.savefig("VolumetricPlotSample.jpg") # Plot one group of data for volumetric presentation def plot_volumetric_data(ax, w_data, d_data, f_data, depth_base=2, label='Depth', labelpos=(0.2, 0.7), labelrot=0, type=1, fill=True, w_max=18, do_label=False, do_border=True, x_size=1.0, y_size=1.0, zorder=1, offset_flag=False, max_depth=0, suppress_low_fidelity=False): # since data may come back out of order, save point at max y for annotation i_anno = 0 x_anno = 0 y_anno = 0 # plot data rectangles low_fidelity_count = True last_y = -1 k = 0 # determine y-axis dimension for one pixel to use for offset of bars that start at 0 (_, dy) = get_pixel_dims(ax) # do this loop in reverse to handle the case where earlier cells are overlapped by later cells for i in reversed(range(len(d_data))): x = depth_index(d_data[i], depth_base) y = float(w_data[i]) f = f_data[i] # each time we star a new row, reset the offset counter # DEVNOTE: this is highly specialized for the QA area plots, where there are 8 bars # that represent time starting from 0 secs. We offset by one pixel each and center the group if y != last_y: last_y = y; k = 3 # hardcoded for 8 cells, offset by 3 #print(f"{i = } {x = } {y = }") if max_depth > 0 and d_data[i] > max_depth: #print(f"... excessive depth (2), skipped; w={y} d={d_data[i]}") break; # reject cells with low fidelity if suppress_low_fidelity and f < suppress_low_fidelity_level: if low_fidelity_count: break else: low_fidelity_count = True # the only time this is False is when doing merged gradation plots if do_border == True: # this case is for an array of x_sizes, i.e. each box has different width if isinstance(x_size, list): # draw each of the cells, with no offset if not offset_flag: ax.add_patch(box_at(x, y, f, type=type, fill=fill, x_size=x_size[i], y_size=y_size, zorder=zorder)) # use an offset for y value, AND account for x and width to draw starting at 0 else: ax.add_patch(box_at((x/2 + x_size[i]/4), y + k*dy, f, type=type, fill=fill, x_size=x+ x_size[i]/2, y_size=y_size, zorder=zorder)) # this case is for only a single cell else: ax.add_patch(box_at(x, y, f, type=type, fill=fill, x_size=x_size, y_size=y_size)) # save the annotation point with the largest y value if y >= y_anno: x_anno = x y_anno = y i_anno = i # move the next bar down (if using offset) k -= 1 # if no data rectangles plotted, no need for a label if x_anno == 0 or y_anno == 0: return x_annos.append(x_anno) y_annos.append(y_anno) anno_dist = math.sqrt( (y_anno - 1)**2 + (x_anno - 1)**2 ) # adjust radius of annotation circle based on maximum width of apps anno_max = 10 if w_max > 10: anno_max = 14 if w_max > 14: anno_max = 18 scale = anno_max / anno_dist # offset of text from end of arrow if scale > 1: x_anno_off = scale * x_anno - x_anno - 0.5 y_anno_off = scale * y_anno - y_anno else: x_anno_off = 0.7 y_anno_off = 0.5 x_anno_off += x_anno y_anno_off += y_anno # print(f"... {xx} {yy} {anno_dist}") x_anno_offs.append(x_anno_off) y_anno_offs.append(y_anno_off) anno_labels.append(label) if do_label: ax.annotate(label, xy=(x_anno+labelpos[0], y_anno+labelpos[1]), rotation=labelrot, horizontalalignment='left', verticalalignment='bottom', color=(0.2,0.2,0.2)) x_annos = [] y_annos = [] x_anno_offs = [] y_anno_offs = [] anno_labels = [] # init arrays to hold annotation points for label spreading def vplot_anno_init (): global x_annos, y_annos, x_anno_offs, y_anno_offs, anno_labels x_annos = [] y_annos = [] x_anno_offs = [] y_anno_offs = [] anno_labels = [] # Number of ticks on volumetric depth axis max_depth_log = 22 # average transpile factor between base QV depth and our depth based on results from QV notebook QV_transpile_factor = 12.7 # format a number using K,M,B,T for large numbers, optionally rounding to 'digits' decimal places if num > 1 # (sign handling may be incorrect) def format_number(num, digits=0): if isinstance(num, str): num = float(num) num = float('{:.3g}'.format(abs(num))) sign = '' metric = {'T': 1000000000000, 'B': 1000000000, 'M': 1000000, 'K': 1000, '': 1} for index in metric: num_check = num / metric[index] if num_check >= 1: num = round(num_check, digits) sign = index break numstr = f"{str(num)}" if '.' in numstr: numstr = numstr.rstrip('0').rstrip('.') return f"{numstr}{sign}" # Return the color associated with the spcific value, using color map norm def get_color(value): # if there is a normalize function installed, scale the data if cmap_norm: value = float(cmap_norm(value)) if cmap == cmap_spectral: value = 0.05 + value*0.9 elif cmap == cmap_blues: value = 0.00 + value*1.0 else: value = 0.0 + value*0.95 return cmap(value) # Return the x and y equivalent to a single pixel for the given plot axis def get_pixel_dims(ax): # transform 0 -> 1 to pixel dimensions pixdims = ax.transData.transform([(0,1),(1,0)])-ax.transData.transform((0,0)) xpix = pixdims[1][0] ypix = pixdims[0][1] #determine x- and y-axis dimension for one pixel dx = (1 / xpix) dy = (1 / ypix) return (dx, dy) ############### Helper functions # return the base index for a circuit depth value # take the log in the depth base, and add 1 def depth_index(d, depth_base): if depth_base <= 1: return d if d == 0: return 0 return math.log(d, depth_base) + 1 # draw a box at x,y with various attributes def box_at(x, y, value, type=1, fill=True, x_size=1.0, y_size=1.0, alpha=1.0, zorder=1): value = min(value, 1.0) value = max(value, 0.0) fc = get_color(value) ec = (0.5,0.5,0.5) return Rectangle((x - (x_size/2), y - (y_size/2)), x_size, y_size, alpha=alpha, edgecolor = ec, facecolor = fc, fill=fill, lw=0.5*y_size, zorder=zorder) # draw a circle at x,y with various attributes def circle_at(x, y, value, type=1, fill=True): size = 1.0 value = min(value, 1.0) value = max(value, 0.0) fc = get_color(value) ec = (0.5,0.5,0.5) return Circle((x, y), size/2, alpha = 0.7, # DEVNOTE: changed to 0.7 from 0.5, to handle only one cell edgecolor = ec, facecolor = fc, fill=fill, lw=0.5) def box4_at(x, y, value, type=1, fill=True, alpha=1.0): size = 1.0 value = min(value, 1.0) value = max(value, 0.0) fc = get_color(value) ec = (0.3,0.3,0.3) ec = fc return Rectangle((x - size/8, y - size/2), size/4, size, alpha=alpha, edgecolor = ec, facecolor = fc, fill=fill, lw=0.1) # Draw a Quantum Volume rectangle with specified width and depth, and grey-scale value def qv_box_at(x, y, qv_width, qv_depth, value, depth_base): #print(f"{qv_width} {qv_depth} {depth_index(qv_depth, depth_base)}") return Rectangle((x - 0.5, y - 0.5), depth_index(qv_depth, depth_base), qv_width, edgecolor = (value,value,value), facecolor = (value,value,value), fill=True, lw=1) def bkg_box_at(x, y, value=0.9): size = 0.6 return Rectangle((x - size/2, y - size/2), size, size, edgecolor = (.75,.75,.75), facecolor = (value,value,value), fill=True, lw=0.5) def bkg_empty_box_at(x, y): size = 0.6 return Rectangle((x - size/2, y - size/2), size, size, edgecolor = (.75,.75,.75), facecolor = (1.0,1.0,1.0), fill=True, lw=0.5) # Plot the background for the volumetric analysis def plot_volumetric_background(max_qubits=11, QV=32, depth_base=2, suptitle=None, avail_qubits=0, colorbar_label="Avg Result Fidelity"): if suptitle == None: suptitle = f"Volumetric Positioning\nCircuit Dimensions and Fidelity Overlaid on Quantum Volume = {QV}" QV0 = QV qv_estimate = False est_str = "" if QV == 0: # QV = 0 indicates "do not draw QV background or label" QV = 2048 elif QV < 0: # QV < 0 indicates "add est. to label" QV = -QV qv_estimate = True est_str = " (est.)" if avail_qubits > 0 and max_qubits > avail_qubits: max_qubits = avail_qubits max_width = 13 if max_qubits > 11: max_width = 18 if max_qubits > 14: max_width = 20 if max_qubits > 16: max_width = 24 if max_qubits > 24: max_width = 33 #print(f"... {avail_qubits} {max_qubits} {max_width}") plot_width = 6.8 plot_height = 0.5 + plot_width * (max_width / max_depth_log) #print(f"... {plot_width} {plot_height}") # define matplotlib figure and axis; use constrained layout to fit colorbar to right fig, ax = plt.subplots(figsize=(plot_width, plot_height), constrained_layout=True) plt.suptitle(suptitle) plt.xlim(0, max_depth_log) plt.ylim(0, max_width) # circuit depth axis (x axis) xbasis = [x for x in range(1,max_depth_log)] xround = [depth_base**(x-1) for x in xbasis] xlabels = [format_number(x) for x in xround] ax.set_xlabel('Circuit Depth') ax.set_xticks(xbasis) plt.xticks(xbasis, xlabels, color='black', rotation=45, ha='right', va='top', rotation_mode="anchor") # other label options #plt.xticks(xbasis, xlabels, color='black', rotation=-60, ha='left') #plt.xticks(xbasis, xlabels, color='black', rotation=-45, ha='left', va='center', rotation_mode="anchor") # circuit width axis (y axis) ybasis = [y for y in range(1,max_width)] yround = [1,2,3,4,5,6,7,8,10,12,15] # not used now ylabels = [str(y) for y in yround] # not used now #ax.set_ylabel('Circuit Width (Number of Qubits)') ax.set_ylabel('Circuit Width') ax.set_yticks(ybasis) #create simple line plot (not used right now) #ax.plot([0, 10],[0, 10]) log2QV = math.log2(QV) QV_width = log2QV QV_depth = log2QV * QV_transpile_factor # show a quantum volume rectangle of QV = 64 e.g. (6 x 6) if QV0 != 0: ax.add_patch(qv_box_at(1, 1, QV_width, QV_depth, 0.87, depth_base)) else: ax.add_patch(qv_box_at(1, 1, QV_width, QV_depth, 0.91, depth_base)) # the untranspiled version is commented out - we do not show this by default # also show a quantum volume rectangle un-transpiled # ax.add_patch(qv_box_at(1, 1, QV_width, QV_width, 0.80, depth_base)) # show 2D array of volumetric cells based on this QV_transpiled # DEVNOTE: we use +1 only to make the visuals work; s/b without # Also, the second arg of the min( below seems incorrect, needs correction maxprod = (QV_width + 1) * (QV_depth + 1) for w in range(1, min(max_width, round(QV) + 1)): # don't show VB squares if width greater than known available qubits if avail_qubits != 0 and w > avail_qubits: continue i_success = 0 for d in xround: # polarization factor for low circuit widths maxtest = maxprod / ( 1 - 1 / (2**w) ) # if circuit would fail here, don't draw box if d > maxtest: continue if w * d > maxtest: continue # guess for how to capture how hardware decays with width, not entirely correct # # reduce maxtext by a factor of number of qubits > QV_width # # just an approximation to account for qubit distances # if w > QV_width: # over = w - QV_width # maxtest = maxtest / (1 + (over/QV_width)) # draw a box at this width and depth id = depth_index(d, depth_base) # show vb rectangles; if not showing QV, make all hollow (or less dark) if QV0 == 0: #ax.add_patch(bkg_empty_box_at(id, w)) ax.add_patch(bkg_box_at(id, w, 0.95)) else: ax.add_patch(bkg_box_at(id, w, 0.9)) # save index of last successful depth i_success += 1 # plot empty rectangle after others d = xround[i_success] id = depth_index(d, depth_base) ax.add_patch(bkg_empty_box_at(id, w)) # Add annotation showing quantum volume if QV0 != 0: t = ax.text(max_depth_log - 2.0, 1.5, f"QV{est_str}={QV}", size=12, horizontalalignment='right', verticalalignment='center', color=(0.2,0.2,0.2), bbox=dict(boxstyle="square,pad=0.3", fc=(.9,.9,.9), ec="grey", lw=1)) # add colorbar to right of plot plt.colorbar(cm.ScalarMappable(cmap=cmap), cax=None, ax=ax, shrink=0.6, label=colorbar_label, panchor=(0.0, 0.7)) return ax # Function to calculate circuit depth def calculate_circuit_depth(qc): # Calculate the depth of the circuit depth = qc.depth() return depth def calculate_transpiled_depth(qc,basis_selector): # use either the backend or one of the basis gate sets if basis_selector == 0: qc = transpile(qc, backend) else: basis_gates = basis_gates_array[basis_selector] qc = transpile(qc, basis_gates=basis_gates, seed_transpiler=0) transpiled_depth = qc.depth() return transpiled_depth,qc def plot_fidelity_data(fidelity_data, Hf_fidelity_data, title): avg_fidelity_means = [] avg_Hf_fidelity_means = [] avg_num_qubits_values = list(fidelity_data.keys()) # Calculate the average fidelity and Hamming fidelity for each unique number of qubits for num_qubits in avg_num_qubits_values: avg_fidelity = np.average(fidelity_data[num_qubits]) avg_fidelity_means.append(avg_fidelity) avg_Hf_fidelity = np.mean(Hf_fidelity_data[num_qubits]) avg_Hf_fidelity_means.append(avg_Hf_fidelity) return avg_fidelity_means,avg_Hf_fidelity_means list_of_gates = [] def list_of_standardgates(): import qiskit.circuit.library as lib from qiskit.circuit import Gate import inspect # List all the attributes of the library module gate_list = dir(lib) # Filter out non-gate classes (like functions, variables, etc.) gates = [gate for gate in gate_list if isinstance(getattr(lib, gate), type) and issubclass(getattr(lib, gate), Gate)] # Get method names from QuantumCircuit circuit_methods = inspect.getmembers(QuantumCircuit, inspect.isfunction) method_names = [name for name, _ in circuit_methods] # Map gate class names to method names gate_to_method = {} for gate in gates: gate_class = getattr(lib, gate) class_name = gate_class.__name__.replace('Gate', '').lower() # Normalize class name for method in method_names: if method == class_name or method == class_name.replace('cr', 'c-r'): gate_to_method[gate] = method break # Add common operations that are not strictly gates additional_operations = { 'Measure': 'measure', 'Barrier': 'barrier', } gate_to_method.update(additional_operations) for k,v in gate_to_method.items(): list_of_gates.append(v) def update_counts(gates,custom_gates): operations = {} for key, value in gates.items(): operations[key] = value for key, value in custom_gates.items(): if key in operations: operations[key] += value else: operations[key] = value return operations def get_gate_counts(gates,custom_gate_defs): result = gates.copy() # Iterate over the gate counts in the quantum circuit for gate, count in gates.items(): if gate in custom_gate_defs: custom_gate_ops = custom_gate_defs[gate] # Multiply custom gate operations by the count of the custom gate in the circuit for _ in range(count): result = update_counts(result, custom_gate_ops) # Remove the custom gate entry as we have expanded it del result[gate] return result dict_of_qc = dict() custom_gates_defs = dict() # Function to count operations recursively def count_operations(qc): dict_of_qc.clear() circuit_traverser(qc) operations = dict() operations = dict_of_qc[qc.name] del dict_of_qc[qc.name] # print("operations :",operations) # print("dict_of_qc :",dict_of_qc) for keys in operations.keys(): if keys not in list_of_gates: for k,v in dict_of_qc.items(): if k in operations.keys(): custom_gates_defs[k] = v operations=get_gate_counts(operations,custom_gates_defs) custom_gates_defs.clear() return operations def circuit_traverser(qc): dict_of_qc[qc.name]=dict(qc.count_ops()) for i in qc.data: if str(i.operation.name) not in list_of_gates: qc_1 = i.operation.definition circuit_traverser(qc_1) def get_memory(): import resource usage = resource.getrusage(resource.RUSAGE_SELF) max_mem = usage.ru_maxrss/1024 #in MB return max_mem def analyzer(qc,references,num_qubits): # total circuit name (pauli string + coefficient) total_name = qc.name # pauli string pauli_string = total_name.split()[0] # get the correct measurement if (len(total_name.split()) == 2): correct_dist = references[pauli_string] else: circuit_id = int(total_name.split()[2]) correct_dist = references[f"Qubits - {num_qubits} - {circuit_id}"] return correct_dist,total_name # Max qubits must be 12 since the referenced files only go to 12 qubits MAX_QUBITS = 12 method = 1 def run (min_qubits=min_qubits, max_qubits=max_qubits, skip_qubits=2, max_circuits=max_circuits, num_shots=num_shots): creation_times = [] elapsed_times = [] quantum_times = [] circuit_depths = [] transpiled_depths = [] fidelity_data = {} Hf_fidelity_data = {} numckts = [] mem_usage = [] algorithmic_1Q_gate_counts = [] algorithmic_2Q_gate_counts = [] transpiled_1Q_gate_counts = [] transpiled_2Q_gate_counts = [] print(f"{benchmark_name} Benchmark Program - {platform}") #defining all the standard gates supported by qiskit in a list if gate_counts_plots == True: list_of_standardgates() max_qubits = max(max_qubits, min_qubits) # max must be >= min # validate parameters (smallest circuit is 4 qubits and largest is 10 qubits) max_qubits = min(max_qubits, MAX_QUBITS) min_qubits = min(max(4, min_qubits), max_qubits) if min_qubits % 2 == 1: min_qubits += 1 # min_qubits must be even skip_qubits = max(1, skip_qubits) if method == 2: max_circuits = 1 if max_qubits < 4: print(f"Max number of qubits {max_qubits} is too low to run method {method} of VQE algorithm") return global max_ckts max_ckts = max_circuits global min_qbits,max_qbits,skp_qubits min_qbits = min_qubits max_qbits = max_qubits skp_qubits = skip_qubits print(f"min, max qubits = {min_qubits} {max_qubits}") # Execute Benchmark Program N times for multiple circuit sizes for input_size in range(min_qubits, max_qubits + 1, skip_qubits): # reset random seed np.random.seed(0) # determine the number of circuits to execute for this group num_circuits = min(3, max_circuits) num_qubits = input_size fidelity_data[num_qubits] = [] Hf_fidelity_data[num_qubits] = [] # decides number of electrons na = int(num_qubits/4) nb = int(num_qubits/4) # random seed np.random.seed(0) numckts.append(num_circuits) # create the circuit for given qubit size and simulation parameters, store time metric ts = time.time() # circuit list qc_list = [] # Method 1 (default) if method == 1: # loop over circuits for circuit_id in range(num_circuits): # construct circuit qc_single = VQEEnergy(num_qubits, na, nb, circuit_id, method) qc_single.name = qc_single.name + " " + str(circuit_id) # add to list qc_list.append(qc_single) # method 2 elif method == 2: # construct all circuits qc_list = VQEEnergy(num_qubits, na, nb, 0, method) print(qc_list) print(f"************\nExecuting [{len(qc_list)}] circuits with num_qubits = {num_qubits}") for qc in qc_list: print("*********************************************") #print(f"qc of {qc} qubits for qc_list value: {qc_list}") # get circuit id if method == 1: circuit_id = qc.name.split()[2] else: circuit_id = qc.name.split()[0] #creation time creation_time = time.time() - ts creation_times.append(creation_time) #print(qc) print(f"creation time = {creation_time*1000} ms") # Calculate gate count for the algorithmic circuit (excluding barriers and measurements) if gate_counts_plots == True: operations = count_operations(qc) n1q = 0; n2q = 0 if operations != None: for key, value in operations.items(): if key == "measure": continue if key == "barrier": continue if key.startswith("c") or key.startswith("mc"): n2q += value else: n1q += value print("operations: ",operations) algorithmic_1Q_gate_counts.append(n1q) algorithmic_2Q_gate_counts.append(n2q) # collapse the sub-circuit levels used in this benchmark (for qiskit) qc=qc.decompose() #print(qc) # Calculate circuit depth depth = calculate_circuit_depth(qc) circuit_depths.append(depth) # Calculate transpiled circuit depth transpiled_depth,qc = calculate_transpiled_depth(qc,basis_selector) transpiled_depths.append(transpiled_depth) #print(qc) print(f"Algorithmic Depth = {depth} and Normalized Depth = {transpiled_depth}") if gate_counts_plots == True: # Calculate gate count for the transpiled circuit (excluding barriers and measurements) tr_ops = qc.count_ops() #print("tr_ops = ",tr_ops) tr_n1q = 0; tr_n2q = 0 if tr_ops != None: for key, value in tr_ops.items(): if key == "measure": continue if key == "barrier": continue if key.startswith("c"): tr_n2q += value else: tr_n1q += value transpiled_1Q_gate_counts.append(tr_n1q) transpiled_2Q_gate_counts.append(tr_n2q) print(f"Algorithmic 1Q gates = {n1q} ,Algorithmic 2Q gates = {n2q}") print(f"Normalized 1Q gates = {tr_n1q} ,Normalized 2Q gates = {tr_n2q}") #execution if Type_of_Simulator == "built_in": #To check if Noise is required if Noise_Inclusion == True: noise_model = noise_parameters else: noise_model = None ts = time.time() job = execute(qc, backend, shots=num_shots, noise_model=noise_model) elif Type_of_Simulator == "FAKE" or Type_of_Simulator == "FAKEV2" : ts = time.time() job = backend.run(qc,shots=num_shots, noise_model=noise_parameters) #retrieving the result result = job.result() #print(result) #calculating elapsed time elapsed_time = time.time() - ts elapsed_times.append(elapsed_time) # Calculate quantum processing time quantum_time = result.time_taken quantum_times.append(quantum_time) print(f"Elapsed time = {elapsed_time*1000} ms and Quantum Time = {quantum_time*1000} ms") #counts in result object counts = result.get_counts() # load pre-computed data if len(qc.name.split()) == 2: filename = os.path.join(f'_common/precalculated_data_{num_qubits}_qubit.json') with open(filename) as f: references = json.load(f) else: filename = os.path.join(f'_common/precalculated_data_{num_qubits}_qubit_method2.json') with open(filename) as f: references = json.load(f) #Correct distribution to compare with counts correct_dist,total_name = analyzer(qc,references,num_qubits) #fidelity calculation comparision of counts and correct_dist fidelity_dict = polarization_fidelity(counts, correct_dist) print(fidelity_dict) # modify fidelity based on the coefficient if (len(total_name.split()) == 2): fidelity_dict *= ( abs(float(total_name.split()[1])) / normalization ) fidelity_data[num_qubits].append(fidelity_dict['fidelity']) Hf_fidelity_data[num_qubits].append(fidelity_dict['hf_fidelity']) #maximum memory utilization (if required) if Memory_utilization_plot == True: max_mem = get_memory() print(f"Maximum Memory Utilized: {max_mem} MB") mem_usage.append(max_mem) print("*********************************************") ########## # print a sample circuit print("Sample Circuit:"); print(QC_ if QC_ != None else " ... too large!") print("\nHartree Fock Generator 'Hf' ="); print(Hf_ if Hf_ != None else " ... too large!") print("\nCluster Operator Example 'Cluster Op' ="); print(CO_ if CO_ != None else " ... too large!") return (creation_times, elapsed_times, quantum_times, circuit_depths, transpiled_depths, fidelity_data, Hf_fidelity_data, numckts , algorithmic_1Q_gate_counts, algorithmic_2Q_gate_counts, transpiled_1Q_gate_counts, transpiled_2Q_gate_counts,mem_usage) # Execute the benchmark program, accumulate metrics, and calculate circuit depths (creation_times, elapsed_times, quantum_times, circuit_depths,transpiled_depths, fidelity_data, Hf_fidelity_data, numckts, algorithmic_1Q_gate_counts, algorithmic_2Q_gate_counts, transpiled_1Q_gate_counts, transpiled_2Q_gate_counts,mem_usage) = run() # Define the range of qubits for the x-axis num_qubits_range = range(min_qbits, max_qbits+1,skp_qubits) print("num_qubits_range =",num_qubits_range) # Calculate average creation time, elapsed time, quantum processing time, and circuit depth for each number of qubits avg_creation_times = [] avg_elapsed_times = [] avg_quantum_times = [] avg_circuit_depths = [] avg_transpiled_depths = [] avg_1Q_algorithmic_gate_counts = [] avg_2Q_algorithmic_gate_counts = [] avg_1Q_Transpiled_gate_counts = [] avg_2Q_Transpiled_gate_counts = [] max_memory = [] start = 0 for num in numckts: avg_creation_times.append(np.mean(creation_times[start:start+num])) avg_elapsed_times.append(np.mean(elapsed_times[start:start+num])) avg_quantum_times.append(np.mean(quantum_times[start:start+num])) avg_circuit_depths.append(np.mean(circuit_depths[start:start+num])) avg_transpiled_depths.append(np.mean(transpiled_depths[start:start+num])) if gate_counts_plots == True: avg_1Q_algorithmic_gate_counts.append(int(np.mean(algorithmic_1Q_gate_counts[start:start+num]))) avg_2Q_algorithmic_gate_counts.append(int(np.mean(algorithmic_2Q_gate_counts[start:start+num]))) avg_1Q_Transpiled_gate_counts.append(int(np.mean(transpiled_1Q_gate_counts[start:start+num]))) avg_2Q_Transpiled_gate_counts.append(int(np.mean(transpiled_2Q_gate_counts[start:start+num]))) if Memory_utilization_plot == True:max_memory.append(np.max(mem_usage[start:start+num])) start += num # Calculate the fidelity data avg_f, avg_Hf = plot_fidelity_data(fidelity_data, Hf_fidelity_data, "Fidelity Comparison") # Plot histograms for average creation time, average elapsed time, average quantum processing time, and average circuit depth versus the number of qubits # Add labels to the bars def autolabel(rects,ax,str='{:.3f}',va='top',text_color="black"): for rect in rects: height = rect.get_height() ax.annotate(str.format(height), # Formatting to two decimal places xy=(rect.get_x() + rect.get_width() / 2, height / 2), xytext=(0, 0), textcoords="offset points", ha='center', va=va,color=text_color,rotation=90) bar_width = 0.3 # Determine the number of subplots and their arrangement if Memory_utilization_plot and gate_counts_plots: fig, (ax1, ax2, ax3, ax4, ax5, ax6, ax7) = plt.subplots(7, 1, figsize=(18, 30)) # Plotting for both memory utilization and gate counts # ax1, ax2, ax3, ax4, ax5, ax6, ax7 are available elif Memory_utilization_plot: fig, (ax1, ax2, ax3, ax6, ax7) = plt.subplots(5, 1, figsize=(18, 30)) # Plotting for memory utilization only # ax1, ax2, ax3, ax6, ax7 are available elif gate_counts_plots: fig, (ax1, ax2, ax3, ax4, ax5, ax6) = plt.subplots(6, 1, figsize=(18, 30)) # Plotting for gate counts only # ax1, ax2, ax3, ax4, ax5, ax6 are available else: fig, (ax1, ax2, ax3, ax6) = plt.subplots(4, 1, figsize=(18, 30)) # Default plotting # ax1, ax2, ax3, ax6 are available fig.suptitle(f"General Benchmarks : {platform} - {benchmark_name}", fontsize=16) for i in range(len(avg_creation_times)): #converting seconds to milli seconds by multiplying 1000 avg_creation_times[i] *= 1000 ax1.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) x = ax1.bar(num_qubits_range, avg_creation_times, color='deepskyblue') autolabel(ax1.patches, ax1) ax1.set_xlabel('Number of Qubits') ax1.set_ylabel('Average Creation Time (ms)') ax1.set_title('Average Creation Time vs Number of Qubits',fontsize=14) ax2.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) for i in range(len(avg_elapsed_times)): #converting seconds to milli seconds by multiplying 1000 avg_elapsed_times[i] *= 1000 for i in range(len(avg_quantum_times)): #converting seconds to milli seconds by multiplying 1000 avg_quantum_times[i] *= 1000 Elapsed= ax2.bar(np.array(num_qubits_range) - bar_width / 2, avg_elapsed_times, width=bar_width, color='cyan', label='Elapsed Time') Quantum= ax2.bar(np.array(num_qubits_range) + bar_width / 2, avg_quantum_times,width=bar_width, color='deepskyblue',label ='Quantum Time') autolabel(Elapsed,ax2,str='{:.1f}') autolabel(Quantum,ax2,str='{:.1f}') ax2.set_xlabel('Number of Qubits') ax2.set_ylabel('Average Time (ms)') ax2.set_title('Average Time vs Number of Qubits') ax2.legend() ax3.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) Normalized = ax3.bar(np.array(num_qubits_range) - bar_width / 2, avg_transpiled_depths, color='cyan', label='Normalized Depth', width=bar_width) # Adjust width here Algorithmic = ax3.bar(np.array(num_qubits_range) + bar_width / 2,avg_circuit_depths, color='deepskyblue', label='Algorithmic Depth', width=bar_width) # Adjust width here autolabel(Normalized,ax3,str='{:.2f}') autolabel(Algorithmic,ax3,str='{:.2f}') ax3.set_xlabel('Number of Qubits') ax3.set_ylabel('Average Circuit Depth') ax3.set_title('Average Circuit Depth vs Number of Qubits') ax3.legend() if gate_counts_plots == True: ax4.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) Normalized_1Q_counts = ax4.bar(np.array(num_qubits_range) - bar_width / 2, avg_1Q_Transpiled_gate_counts, color='cyan', label='Normalized Gate Counts', width=bar_width) # Adjust width here Algorithmic_1Q_counts = ax4.bar(np.array(num_qubits_range) + bar_width / 2, avg_1Q_algorithmic_gate_counts, color='deepskyblue', label='Algorithmic Gate Counts', width=bar_width) # Adjust width here autolabel(Normalized_1Q_counts,ax4,str='{}') autolabel(Algorithmic_1Q_counts,ax4,str='{}') ax4.set_xlabel('Number of Qubits') ax4.set_ylabel('Average 1-Qubit Gate Counts') ax4.set_title('Average 1-Qubit Gate Counts vs Number of Qubits') ax4.legend() ax5.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) Normalized_2Q_counts = ax5.bar(np.array(num_qubits_range) - bar_width / 2, avg_2Q_Transpiled_gate_counts, color='cyan', label='Normalized Gate Counts', width=bar_width) # Adjust width here Algorithmic_2Q_counts = ax5.bar(np.array(num_qubits_range) + bar_width / 2, avg_2Q_algorithmic_gate_counts, color='deepskyblue', label='Algorithmic Gate Counts', width=bar_width) # Adjust width here autolabel(Normalized_2Q_counts,ax5,str='{}') autolabel(Algorithmic_2Q_counts,ax5,str='{}') ax5.set_xlabel('Number of Qubits') ax5.set_ylabel('Average 2-Qubit Gate Counts') ax5.set_title('Average 2-Qubit Gate Counts vs Number of Qubits') ax5.legend() ax6.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) Hellinger = ax6.bar(np.array(num_qubits_range) - bar_width / 2, avg_Hf, width=bar_width, label='Hellinger Fidelity',color='cyan') # Adjust width here Normalized = ax6.bar(np.array(num_qubits_range) + bar_width / 2, avg_f, width=bar_width, label='Normalized Fidelity', color='deepskyblue') # Adjust width here autolabel(Hellinger,ax6,str='{:.2f}') autolabel(Normalized,ax6,str='{:.2f}') ax6.set_xlabel('Number of Qubits') ax6.set_ylabel('Average Value') ax6.set_title("Fidelity Comparison") ax6.legend() if Memory_utilization_plot == True: ax7.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) x = ax7.bar(num_qubits_range, max_memory, color='turquoise', width=bar_width, label="Memory Utilizations") autolabel(ax7.patches, ax7) ax7.set_xlabel('Number of Qubits') ax7.set_ylabel('Maximum Memory Utilized (MB)') ax7.set_title('Memory Utilized vs Number of Qubits',fontsize=14) plt.tight_layout(rect=[0, 0, 1, 0.96]) if saveplots == True: plt.savefig("ParameterPlotsSample.jpg") plt.show() # Quantum Volume Plot Suptitle = f"Volumetric Positioning - {platform}" appname=benchmark_name if QV_ == None: QV=2048 else: QV=QV_ depth_base =2 ax = plot_volumetric_background(max_qubits=max_qbits, QV=QV,depth_base=depth_base, suptitle=Suptitle, colorbar_label="Avg Result Fidelity") w_data = num_qubits_range # determine width for circuit w_max = 0 for i in range(len(w_data)): y = float(w_data[i]) w_max = max(w_max, y) d_tr_data = avg_transpiled_depths f_data = avg_f plot_volumetric_data(ax, w_data, d_tr_data, f_data, depth_base, fill=True,label=appname, labelpos=(0.4, 0.6), labelrot=15, type=1, w_max=w_max) anno_volumetric_data(ax, depth_base,label=appname, labelpos=(0.4, 0.6), labelrot=15, type=1, fill=False)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/jonasmaziero/computacao_quantica_qiskit_sbf_2023
jonasmaziero
from sympy import Matrix, sqrt, init_printing; init_printing(use_unicode=True) ket0 = Matrix([[1],[0]]); ket1 = Matrix([[0],[1]]); from sympy.physics.quantum import TensorProduct as tp ket00 = tp(ket0,ket0); ket01 = tp(ket0,ket1); ket10 = tp(ket1,ket0); ket11 = tp(ket1,ket1) Psim = (ket01-ket10)/sqrt(2); Psim.T X = Matrix([[0,1],[1,0]]); Z = Matrix([[1,0],[0,-1]]); (tp(Z,Z)*Psim).T, (tp(X,X)*Psim).T A1 = Z; A2 = X; B1 = (Z+X)/sqrt(2); B2 = (Z-X)/sqrt(2); O = tp(A1,B1)+tp(A1,B2)+tp(A2,B1)-tp(A2,B2) O, sqrt(2)*(tp(Z,Z)+tp(X,X)) from qiskit import QuantumCircuit def qc_Psim(): # função que cria o circuito quantico para preparar o estado de Bell |Psi-> qc = QuantumCircuit(2, name=r'$|\Psi_-\rangle$') qc.x([0,1]) qc.h(0) qc.cx(0,1) #qc.z(0) #qc.x(1) return qc qc_Psim_ = qc_Psim() qc_Psim_.draw('mpl') import qiskit from qiskit.quantum_info import Statevector qc_Psim_ = qc_Psim() state = Statevector(qc_Psim_) qiskit.visualization.plot_state_city(state) from sympy import Matrix Psim = Matrix([[0],[1],[-1],[0]])/sqrt(2) #Psim from sympy.physics.quantum.dagger import Dagger rho_Psim = Psim*Dagger(Psim) rho_Psim qc = QuantumCircuit(2,2) qc_Psim_ = qc_Psim() qc.append(qc_Psim_,[0,1]) qc.measure([0,1],[0,1]) qc.draw('mpl') from qiskit import Aer, execute simulator = Aer.get_backend('qasm_simulator') nshots = 2**13 job = execute(qc, backend=simulator, shots=nshots) counts = job.result().get_counts() p00=0; p01=0; p10=0; p11=0 for j in (0,2): for k in (0,2): if '00' in counts: p00 = counts['00']/nshots if '01' in counts: p01 = counts['01']/nshots if '10' in counts: p10 = counts['10']/nshots if '11' in counts: p11 = counts['11']/nshots ZZ_avg = (p00+p11)-(p01+p10) ZZ_avg qc = QuantumCircuit(2,2) qc_Psim_ = qc_Psim() qc.append(qc_Psim_,[0,1]) qc.h([0,1]) qc.measure([0,1],[0,1]) qc.draw('mpl') from qiskit import Aer simulator = Aer.get_backend('qasm_simulator') nshots = 2**13 job = execute(qc, backend=simulator, shots=nshots) counts = job.result().get_counts() p00=0; p01=0; p10=0; p11=0 for j in (0,2): for k in (0,2): if '00' in counts: p00 = counts['00']/nshots if '01' in counts: p01 = counts['01']/nshots if '10' in counts: p10 = counts['10']/nshots if '11' in counts: p11 = counts['11']/nshots XX_avg = (p00+p11)-(p01+p10) XX_avg O_avg = sqrt(2)*(ZZ_avg + XX_avg) O_avg, float(O_avg) import qiskit qiskit.IBMQ.save_account('5a0140fc106f9f8ae43104d5751baf65c726195f8b45b1f42e161f0182b5fe79ca6dbb1405159301e1e44d40d680223ea572d9b8737205bfa6f90485f1f88123', overwrite = True) qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') device = provider.get_backend('ibm_nairobi') qc = QuantumCircuit(2,2); qc_Psim_ = qc_Psim(); qc.append(qc_Psim_,[0,1]); qc.measure([0,1],[0,1]) job = execute(qc, backend = device, shots = nshots); print(job.job_id()) device = provider.get_backend('ibm_nairobi'); job = device.retrieve_job('cmfbdw78vz2g008daj90') counts = job.result().get_counts() p00=0; p01=0; p10=0; p11=0 for j in (0,2): for k in (0,2): if '00' in counts: p00 = counts['00']/nshots if '01' in counts: p01 = counts['01']/nshots if '10' in counts: p10 = counts['10']/nshots if '11' in counts: p11 = counts['11']/nshots ZZ_avg_exp = (p00+p11)-(p01+p10); ZZ_avg_exp device = provider.get_backend('ibm_nairobi') qc = QuantumCircuit(2,2); qc_Psim_ = qc_Psim(); qc.append(qc_Psim_,[0,1]); qc.h([0,1]); qc.measure([0,1],[0,1]) job = execute(qc, backend = device, shots = nshots); jobid = job.job_id() print(jobid) device = provider.get_backend('ibm_nairobi'); job = device.retrieve_job('cmfbekafysfg008t2y4g') counts = job.result().get_counts() p00=0; p01=0; p10=0; p11=0 for j in (0,2): for k in (0,2): if '00' in counts: p00 = counts['00']/nshots if '01' in counts: p01 = counts['01']/nshots if '10' in counts: p10 = counts['10']/nshots if '11' in counts: p11 = counts['11']/nshots XX_avg_exp = (p00+p11)-(p01+p10); XX_avg_exp O_avg_exp = sqrt(2.)*(ZZ_avg_exp + XX_avg_exp) O_avg_exp import numpy as np import math th_max = math.pi/2; npt = 100; dth = th_max/npt; th = np.arange(0,th_max+dth,dth) Oteo = -math.sqrt(2)*(1+np.sin(th)) Odl = -2*np.ones(len(th)) from matplotlib import pyplot as plt plt.plot(th, Oteo, label = r'$\langle O\rangle_{\Psi}^{teo}$') plt.plot(th, Odl, label = 'LHV limit') plt.xlabel(r'$\theta$') plt.legend(); plt.show() # circuito quântico para preparação do estado Psi def qc_Psi(th): qc = QuantumCircuit(2) qc.u(th,0,0, 0) qc.cx(0,1) qc.z(0) qc.x(1) return qc import math th = math.pi/4 qc_Psi_ = qc_Psi(th) qc_Psi_.draw('mpl') # função para calcular as médias tipo <A\otimes B>, com A,B=+1,-1, dadas as probabilidades def ABavg(result, nshots): avg = 0 if '00' in result: avg += result['00'] if '01' in result: avg -= result['01'] if '10' in result: avg -= result['10'] if '11' in result: avg += result['11'] return avg/nshots # = (N(00)-N(01)-N(10)+N(11))/nshots th_max = math.pi/2; npe = 5; dth = th_max/npe; th = np.arange(0,th_max+dth,dth) Osim = np.zeros(len(th)) from qiskit import Aer, execute simulator = Aer.get_backend('qasm_simulator') nshots = 2**13 for j in range(0,len(th)): # mede ZZ qc = QuantumCircuit(2,2) qc_Psi_ = qc_Psi(th[j]); qc.append(qc_Psi_, [0,1]) qc.measure([0,1],[0,1]) job = execute(qc, backend=simulator, shots=nshots) result = job.result().get_counts() ZZavg = ABavg(result, nshots) # mede XX qc = QuantumCircuit(2,2) qc_Psi_ = qc_Psi(th[j]); qc.append(qc_Psi_, [0,1]) qc.h([0,1]) qc.measure([0,1],[0,1]) job = execute(qc, backend=simulator, shots=nshots) result = job.result().get_counts() XXavg = ABavg(result, nshots) # média de O Osim[j] = math.sqrt(2)*(ZZavg + XXavg) Osim import numpy as np; import math th_max = math.pi/2; dtht = th_max/npt; tht = np.arange(0,th_max+dtht,dtht) Oteo = -math.sqrt(2)*(1+np.sin(tht)); Odl = -2*np.ones(len(tht)) dth = th_max/npe; th = np.arange(0,th_max+dth,dth) from matplotlib import pyplot as plt plt.plot(tht, Oteo, label = r'$\langle O\rangle_{\Psi}^{teo}$') plt.plot(tht, Odl, label = 'LHV limit') plt.plot(th, Osim, '*', label = r'$\langle O\rangle_{\Psi}^{sim}$') plt.xlabel(r'$\theta$') plt.legend(); plt.show() import qiskit qiskit.IBMQ.save_account('45b1db3a3c2ecae609e6c98184250919ccd31c9ea24100440abe0821fe6312c2b05a67239806c5b0020754eb3072f924547adb621e1e3931200aee13583a776f', overwrite = True) qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') th_max = math.pi/2; dth = th_max/npe; th = np.arange(0,th_max+dth,dth) device = provider.get_backend('ibm_nairobi') nshots = 2**13 jobs_ids_ZZ = []; jobs_ids_XX = [] for j in range(0,len(th)): # mede ZZ qc = QuantumCircuit(2,2); qc_Psi_ = qc_Psi(th[j]); qc.append(qc_Psi_, [0,1]); qc.measure([0,1],[0,1]) job = execute(qc, backend=device, shots=nshots) print('ZZ',job.job_id()); jobs_ids_ZZ.append(job.job_id()) # mede XX qc = QuantumCircuit(2,2); qc_Psi_ = qc_Psi(th[j]); qc.append(qc_Psi_, [0,1]); qc.h([0,1]); qc.measure([0,1],[0,1]) job = execute(qc, backend=device, shots=nshots) print('XX',job.job_id()); jobs_ids_XX.append(job.job_id()) f = open("jobs_ids_ZZ.txt", "w"); f.write(str(jobs_ids_ZZ)); f.close() f = open("jobs_ids_XX.txt", "w"); f.write(str(jobs_ids_XX)); f.close() f = open("jobs_ids_ZZ.txt","r") list_ids_ZZ = f.read().replace("'","").replace(" ","").replace("[","").replace("]","").split(",") f.close() f = open("jobs_ids_XX.txt","r") list_ids_XX = f.read().replace("'","").replace(" ","").replace("[","").replace("]","").split(",") f.close() th_max = math.pi/2; dth = th_max/npe; th = np.arange(0,th_max+dth,dth) Oexp = np.zeros(len(th)) for j in range(0,len(th)): # média de ZZ job = device.retrieve_job(list_ids_ZZ[j]) result = job.result().get_counts() ZZavg = ABavg(result, nshots) # média de XX job = device.retrieve_job(list_ids_XX[j]) result = job.result().get_counts() XXavg = ABavg(result, nshots) # média de O Oexp[j] = math.sqrt(2)*(ZZavg + XXavg) Oexp import numpy as np; import math th_max = math.pi/2; dtht = th_max/npt; tht = np.arange(0,th_max+dtht,dtht) Oteo = -math.sqrt(2)*(1+np.sin(tht)); Odl = -2*np.ones(len(tht)) dth = th_max/npe; th = np.arange(0,th_max+dth,dth) from matplotlib import pyplot as plt plt.plot(tht, Oteo, label = r'$\langle O\rangle_{\Psi}^{teo}$') plt.plot(tht, Odl, label = 'LHV limit') plt.plot(th, Osim, '*', label = r'$\langle O\rangle_{\Psi}^{sim}$') plt.plot(th, Oexp, '*', label = r'$\langle O\rangle_{\Psi}^{exp}$') plt.xlabel(r'$\theta$'); plt.legend(); plt.show() def f_Oavg(O,psi): from sympy.physics.quantum.dagger import Dagger return Dagger(psi)*O*psi from sympy import Matrix, symbols, cos, sin, sqrt, simplify from sympy.physics.quantum import TensorProduct as tp Psim = Matrix([[0],[1],[-1],[0]])/sqrt(2) X = Matrix([[0,1],[1,0]]) Z = Matrix([[1,0],[0,-1]]) th = symbols('theta') A1B1 = tp(Z,cos(th)*Z+sin(th)*X) A1B1avg = f_Oavg(A1B1,Psim) A1B2 = tp(Z,(Z-X)/sqrt(2)) A1B2avg = f_Oavg(A1B2,Psim) A2B1 = tp(X,cos(th)*Z+sin(th)*X) A2B1avg = f_Oavg(A2B1,Psim) A2B2 = tp(X,(Z-X)/sqrt(2)) A2B2avg = f_Oavg(A2B2,Psim) Oavg = A1B1avg + A1B2avg + A2B1avg - A2B2avg A1B1avg, A1B2avg, A2B1avg, A2B2avg, simplify(Oavg) import numpy as np; import math th_max = math.pi/4; npt = 100; dth = th_max/npt; tht = np.arange(-th_max,th_max+dth,dth) Oteo = -math.sqrt(2)*(1+np.sin(tht+math.pi/4)) Odl = -2*np.ones(len(tht)) from matplotlib import pyplot as plt plt.plot(tht, Oteo, label = r'$\langle O\rangle_{\Psi}^{teo}$') plt.plot(tht, Odl, label = 'LHV limit') plt.xlabel(r'$\theta$') plt.legend(); plt.show() th_max = math.pi/4; npe = 4; dth = 2*th_max/npe; th = np.arange(-th_max,th_max+dth,dth); Osim = np.zeros(len(th)) from qiskit import *; simulator = Aer.get_backend('qasm_simulator'); nshots = 2**13 for j in range(0,len(th)): # mede <A1B1> qc = QuantumCircuit(2,2); qc_Psim_ = qc_Psim(); qc.append(qc_Psim_, [0,1]); qc.u(th[j],0,math.pi, 1); qc.measure([0,1],[0,1]) job = execute(qc, backend=simulator, shots=nshots); result = job.result().get_counts(); A1B1avg = ABavg(result, nshots) # mede <A1B2> qc = QuantumCircuit(2,2); qc_Psim_ = qc_Psim(); qc.append(qc_Psim_, [0,1]); qc.u(-math.pi/4,0,math.pi, 1); qc.measure([0,1],[0,1]) job = execute(qc, backend=simulator, shots=nshots); result = job.result().get_counts(); A1B2avg = ABavg(result, nshots) # mede <A2B1> qc = QuantumCircuit(2,2); qc_Psim_ = qc_Psim(); qc.append(qc_Psim_, [0,1]); qc.h(0); qc.u(th[j],0,math.pi, 1); qc.measure([0,1],[0,1]) job = execute(qc, backend=simulator, shots=nshots); result = job.result().get_counts(); A2B1avg = ABavg(result, nshots) # mede <A2B2> qc = QuantumCircuit(2,2); qc_Psim_ = qc_Psim(); qc.append(qc_Psim_, [0,1]); qc.h(0); qc.u(-math.pi/4,0,math.pi, 1); qc.measure([0,1],[0,1]) job = execute(qc, backend=simulator, shots=nshots); result = job.result().get_counts(); A2B2avg = ABavg(result, nshots) # média de O Osim[j] = A1B1avg + A1B2avg + A2B1avg - A2B2avg Osim import numpy as np; import math th_max = math.pi/4; dtht = 2*th_max/npt; tht = np.arange(-th_max,th_max+dtht,dtht) Oteo = -math.sqrt(2)*(1+np.sin(tht+math.pi/4)); Odl = -2*np.ones(len(tht)) dth = 2*th_max/npe; th = np.arange(-th_max,th_max+dth,dth) from matplotlib import pyplot as plt plt.plot(tht, Oteo, label = r'$\langle O\rangle_{\Psi}^{teo}$') plt.plot(tht, Odl, label = 'LHV limit') plt.plot(th, Osim, '*', label = r'$\langle O\rangle_{\Psi}^{sim}$') plt.xlabel(r'$\theta$') plt.legend(); plt.show() import qiskit qiskit.IBMQ.save_account('45b1db3a3c2ecae609e6c98184250919ccd31c9ea24100440abe0821fe6312c2b05a67239806c5b0020754eb3072f924547adb621e1e3931200aee13583a776f', overwrite = True) qiskit.IBMQ.load_account() #provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') provider = qiskit.IBMQ.get_provider(hub='ibm-q-research-2', group='federal-uni-sant-1', project='main') th_max = math.pi/4; npe = 4; dth = 2*th_max/npe; th = np.arange(-th_max,th_max+dth,dth) from qiskit import *; device = provider.get_backend('ibm_nairobi'); nshots = 2**13 jobs_ids_A1B1 = []; jobs_ids_A1B2 = []; jobs_ids_A2B1 = []; jobs_ids_A2B2 = [] for j in range(0,len(th)): # mede <A1B1> qc = QuantumCircuit(2,2); qc_Psim_ = qc_Psim(); qc.append(qc_Psim_, [0,1]); qc.u(th[j],0,math.pi, 1) qc.measure([0,1],[0,1]) job = execute(qc, backend=device, shots=nshots); print('A1B1:',job.job_id()); jobs_ids_A1B1.append(job.job_id()) # mede <A1B2> qc = QuantumCircuit(2,2); qc_Psim_ = qc_Psim(); qc.append(qc_Psim_, [0,1]); qc.u(-math.pi/4,0,math.pi, 1) qc.measure([0,1],[0,1]) job = execute(qc, backend=device, shots=nshots); print('A1B2:',job.job_id()); jobs_ids_A1B2.append(job.job_id()) # mede <A2B1> qc = QuantumCircuit(2,2); qc_Psim_ = qc_Psim(); qc.append(qc_Psim_, [0,1]); qc.h(0); qc.u(th[j],0,math.pi, 1) qc.measure([0,1],[0,1]) job = execute(qc, backend=device, shots=nshots); print('A2B1:',job.job_id()); jobs_ids_A2B1.append(job.job_id()) # mede <A2B2> qc = QuantumCircuit(2,2); qc_Psim_ = qc_Psim(); qc.append(qc_Psim_, [0,1]); qc.h(0); qc.u(-math.pi/4,0,math.pi, 1) qc.measure([0,1],[0,1]) job = execute(qc, backend=device, shots=nshots); print('A2B2:',job.job_id()); jobs_ids_A2B2.append(job.job_id()) f = open("jobs_ids_A1B1.txt", "w"); f.write(str(jobs_ids_A1B1)); f.close() f = open("jobs_ids_A1B2.txt", "w"); f.write(str(jobs_ids_A1B2)); f.close() f = open("jobs_ids_A2B1.txt", "w"); f.write(str(jobs_ids_A2B1)); f.close() f = open("jobs_ids_A2B2.txt", "w"); f.write(str(jobs_ids_A2B2)); f.close() device = provider.get_backend('ibm_nairobi') f = open("jobs_ids_A1B1.txt","r") list_ids_A1B1 = f.read().replace("'","").replace(" ","").replace("[","").replace("]","").split(","); f.close() f = open("jobs_ids_A1B2.txt","r") list_ids_A1B2 = f.read().replace("'","").replace(" ","").replace("[","").replace("]","").split(","); f.close() f = open("jobs_ids_A2B1.txt","r") list_ids_A2B1 = f.read().replace("'","").replace(" ","").replace("[","").replace("]","").split(","); f.close() f = open("jobs_ids_A2B2.txt","r") list_ids_A2B2 = f.read().replace("'","").replace(" ","").replace("[","").replace("]","").split(","); f.close() th_max = math.pi/4; dth = 2*th_max/npe; th = np.arange(-th_max,th_max+dth,dth); Oexp = np.zeros(len(th)) for j in range(0,len(th)): # média de A1B1 job = device.retrieve_job(list_ids_A1B1[j]); result = job.result().get_counts(); A1B1avg = ABavg(result, nshots) # média de A1B2 job = device.retrieve_job(list_ids_A1B2[j]); result = job.result().get_counts(); A1B2avg = ABavg(result, nshots) # média de A2B1 job = device.retrieve_job(list_ids_A2B1[j]); result = job.result().get_counts(); A2B1avg = ABavg(result, nshots) # média de A2B2 job = device.retrieve_job(list_ids_A2B2[j]); result = job.result().get_counts(); A2B2avg = ABavg(result, nshots) # média de O Oexp[j] = A1B1avg + A1B2avg + A2B1avg - A2B2avg Oexp import numpy as np; import math th_max = math.pi/4; dtht = 2*th_max/npt; tht = np.arange(-th_max,th_max+dtht,dtht) Oteo = -math.sqrt(2)*(1+np.sin(tht+math.pi/4)); Odl = -2*np.ones(len(tht)) dth = 2*th_max/npe; th = np.arange(-th_max,th_max+dth,dth) from matplotlib import pyplot as plt plt.plot(tht, Oteo, label = r'$\langle O\rangle_{\Psi}^{teo}$') plt.plot(tht, Odl, label = 'LHV limit') plt.plot(th, Osim, '*', label = r'$\langle O\rangle_{\Psi}^{sim}$') plt.plot(th, Oexp, '*', label = r'$\langle O\rangle_{\Psi}^{exp}$') plt.xlabel(r'$\theta$'); plt.legend(); plt.show()
https://github.com/alejomonbar/Quantum-Supply-Chain-Manager
alejomonbar
%load_ext autoreload %autoreload 2 # pip install pennylane import pennylane as qml from pennylane import numpy as np from pennylane.optimize import NesterovMomentumOptimizer import tensorflow as tf import pandas as pd import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from IPython.display import clear_output clear_output(wait=False) import os import tensorflow as tf data_train = pd.read_csv("dataset/fair_train.csv") X_train,y_train = data_train[data_train.columns[:16]].values, data_train[data_train.columns[16]].values data_test = pd.read_csv("dataset/classic_test.csv") X_test,y_test = data_test[data_test.columns[:16]].values, data_test[data_test.columns[16]].values (X_train.shape, y_train.shape),(X_test.shape, y_test.shape) dev = qml.device("default.qubit", wires=4) def block(weights, wires): qml.CNOT(wires=[wires[0],wires[1]]) qml.RY(weights[0], wires=wires[0]) qml.RY(weights[1], wires=wires[1]) n_wires = 4 n_block_wires = 2 n_params_block = 2 n_blocks = qml.TTN.get_n_blocks(range(n_wires),n_block_wires) n_blocks @qml.qnode(dev) def circuit(weights, x): qml.AmplitudeEmbedding(x, wires=[0,1,2,3],normalize=True,pad_with=True) for w in weights: qml.TTN(range(n_wires),n_block_wires,block, n_params_block, w) #print(w) #print(x) return qml.expval(qml.PauliZ(3)) def variational_classifier(weights, bias, x): return circuit(weights, x) + bias def square_loss(labels, predictions): loss = 0 for l, p in zip(labels, predictions): loss = loss + (l - p) ** 2 loss = loss / len(labels) return loss def accuracy(labels, predictions): loss = 0 for l, p in zip(labels, predictions): if abs(l - p) < 1e-5: loss = loss + 1 loss = loss / len(labels) return loss def cost(weights, bias, X, Y): #print(1) predictions = [variational_classifier(weights, bias, x) for x in X] return square_loss(Y, predictions) np.random.seed(0) num_layers = 1 weights_init = 2*np.pi * np.random.randn(num_layers,n_blocks, n_params_block, requires_grad=True) bias_init = np.array(0.0, requires_grad=True) print(weights_init, bias_init) print(qml.draw(circuit,expansion_strategy='device',wire_order=[0,1,2,3])(weights_init,np.asarray(X_train[0]))) for i in weights_init: print(i[0]) y_train = np.where(y_train < 1, -1, y_train) y_test = np.where(y_test < 1, -1, y_test) from sklearn.utils import shuffle X,y = shuffle(X_train, y_train, random_state=0) from sklearn.model_selection import train_test_split opt = NesterovMomentumOptimizer(0.4) batch_size = 32 num_data = len(y_train) num_train = 0.9 # train the variational classifier weights = weights_init bias = bias_init print() cost_g = [] acc_train = [] acc_test = [] plt.show() for it in range(50): X_train_70, X_test_30, y_train_70, y_test_30 =train_test_split(np.asarray(X), np.asarray(y), train_size=num_train, test_size=1.0-num_train, shuffle=True) # Update the weights by one optimizer step batch_index = np.random.randint(0, len(X_train_70), (batch_size,)) feats_train_batch = X_train_70[batch_index] Y_train_batch = y_train_70[batch_index] weights, bias, _, _ = opt.step(cost, weights, bias, feats_train_batch, Y_train_batch) # Compute predictions on train and validation set predictions_train = [np.sign(variational_classifier(weights, bias, f)) for f in X_train_70] predictions_val = [np.sign(variational_classifier(weights, bias, f)) for f in X_test_30] # Compute accuracy on train and validation set acc_tra = accuracy(y_train_70, predictions_train) acc_val = accuracy(y_test_30, predictions_val) cost_train = cost(weights, bias,X_train, y_train) cost_g.append(cost_train) acc_train.append(acc_tra) acc_test.append(acc_val) clear_output(wait=True) plt.plot(cost_g,label='cost') plt.plot(acc_train,label='acc_train') plt.plot(acc_test,label='acc_test') plt.legend(['cost','acc_train','acc_test']) plt.show() print( "Iter: {:5d} | Cost: {:0.7f} | Acc train: {:0.7f} | Acc validation: {:0.7f} " "".format(it + 1, cost_train, acc_tra, acc_val) ) print(weights) x_test = [] for x in X_test.tolist(): if sum(x) == 0: x[0]=1 x_test.append( x/ np.linalg.norm(x)) x_test[0] y_test_pred = [np.sign(variational_classifier(weights, bias, f)) for f in x_test] from sklearn.metrics import confusion_matrix, roc_curve, auc from sklearn.preprocessing import StandardScaler # demonstration of calculating metrics for a neural network model using sklearn from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score from sklearn.metrics import roc_auc_score accuracy = accuracy_score(y_test, y_test_pred) print('Accuracy: %f' % accuracy) #precision tp / (tp + fp) precision = precision_score(y_test, y_test_pred) print('Precision: %f' % precision) # recall: tp / (tp + fn) recall = recall_score(y_test, y_test_pred) print('Recall: %f' % recall) # f1: 2 tp / (2 tp + fp + fn) f1 = f1_score(y_test, y_test_pred) print('F1 score: %f' % f1) # kappa kappa = cohen_kappa_score(y_test, y_test_pred) print('Cohens kappa: %f' % kappa) # ROC AUC auc = roc_auc_score(y_test, y_test_pred) print('ROC AUC: %f' % auc) # confusion matrix test_matrix = confusion_matrix(y_test, y_test_pred) print(test_matrix) ax = sns.heatmap(test_matrix, annot=True, cmap='Blues', fmt='g') ax.set_title('Seaborn Confusion Matrix with labels\n\n'); ax.set_xlabel('\nPredicted Values') ax.set_ylabel('Actual Values '); ax.xaxis.set_ticklabels(['0','1']) ax.yaxis.set_ticklabels(['0','1']) ## Display the visualization of the Confusion Matrix. plt.show() y_pred_1 = [int(i) for i in y_pred ] y_pred_1 = ["{}\n".format(i) for i in y_pred_1] with open(r'ttn_1_layers.csv', 'w') as fp: fp.writelines(y_pred_1)
https://github.com/ardieb/QiskitPlayground
ardieb
from qiskit import * from qiskit.quantum_info import * from qiskit.visualization import * from qiskit.circuit.library import * import matplotlib.pyplot as plt import numpy as np import pandas as pd import itertools import collections import typing %matplotlib inline Array = np.ndarray def teleporter(phi: Array): assert phi.shape[0] == 2, "initialized state must have 2 entries (single qubit)" qr = QuantumRegister(3, 'q') crz = ClassicalRegister(1, 'crz') crx = ClassicalRegister(1, 'crx') circ = QuantumCircuit(qr, crz, crx) circ.reset(qr[1]) circ.reset(qr[2]) circ.h(qr[1]) circ.cx(qr[1], qr[2]) circ.initialize(phi, qr[0]) circ.barrier() circ.cx(qr[0], qr[1]) circ.h(qr[0]) circ.barrier() circ.measure(qr[1], crx) circ.measure(qr[0], crz) circ.barrier() circ.x(qr[2]).c_if(crx, 1) circ.z(qr[2]).c_if(crz, 1) return circ sv_simulator = Aer.get_backend('statevector_simulator') # Let's teleport the state 1/sqrt(2) [1, exp(i pi / 4)] phi = np.array([1/np.sqrt(2), 1/np.sqrt(2) * np.exp(1j * np.pi / 4)]) circ = teleporter(phi) display(circ.draw('mpl')) result = execute(circ, sv_simulator).result() display(plot_bloch_multivector(result.get_statevector(circ, decimals = 3))) def key_update(a: int, b: int, c: int, d: int): assert all(0 <= x <= 1 for x in [a,b,c,d]), "inputs must be an integer modulo 2" return {'H': f'{b}{a}', 'X': f'{a}{b}', 'Z': f'{a}{b}', 'S': f'{a}{a ^ b}', 'cX': f'{a}{b ^ d}{a ^ c}{d}'} df = [] for a in (0, 1): for b in (0, 1): for c in (0, 1): for d in (0, 1): update = key_update(a, b, c, d) update['abcd'] = f'{a}{b}{c}{d}' df.append(update) df = pd.DataFrame(df) df.set_index('abcd', inplace = True) print(df) # rho = 1/2 * np.array([[1,3], [3, 1]]) # tau = 0.8 qr = QuantumRegister(5, 'q') cr = ClassicalRegister(5, 'c') qpce = QuantumCircuit(qr, cr) # prepare the state theta1, theta2, alpha = 0.643, 2.498, 2.094 qpce.h(qr[3]) qpce.x(qr[3]) qpce.cu(theta1, 0, 0, 0, qr[3], qr[4]) qpce.x(qr[3]) qpce.cu(theta2, 0, 0, 0, qr[3], qr[4]) qpce.barrier() # phase estimation qpce.h(qr[1]) qpce.h(qr[2]) qpce.cu(-np.pi/2, -np.pi/2, np.pi/2, 0, qr[2], qr[3]) qpce.p(3*np.pi/4, qr[2]) qpce.cx(qr[1], qr[3]) qpce.swap(qr[1], qr[2]) qpce.h(qr[2]) qpce.cp(-np.pi/2, qr[1], qr[2]) qpce.h(qr[1]) qpce.barrier() # Controlled rotation qpce.cx(qr[1], qr[2]) qpce.cu(alpha, 0, 0, 0, qr[1], qr[0]) qpce.cu(alpha, 0, 0, 0, qr[2], qr[0]) qpce.cx(qr[1], qr[2]) qpce.barrier() # Inverse phase estimation qpce.h(qr[1]) qpce.cp(np.pi/2, qr[1], qr[2]) qpce.h(qr[2]) qpce.swap(qr[1], qr[2]) qpce.cx(qr[1], qr[3]) qpce.h(qr[1]) qpce.p(-3*np.pi/4, qr[2]) qpce.cu(-np.pi/2, -np.pi/2, np.pi/2, 0, qr[2], qr[3]) qpce.h(qr[2]) qpce.barrier() # Measurement qpce.measure(qr[0], cr[0]) qpce.measure(qr[1], cr[1]) qpce.measure(qr[2], cr[2]) qpce.measure(qr[3], cr[3]) qpce.measure(qr[4], cr[4]) qpce.draw('mpl') qasm_simulator = Aer.get_backend('qasm_simulator') result = execute(qpce, qasm_simulator, shots=2048).result() display(plot_histogram(result.get_counts())) # The operation is HTHT # a0, b0 = 1, 1 qr = QuantumRegister(5, 'q') cr = ClassicalRegister(5, 'c') qku = QuantumCircuit(qr, cr) # initialize qku.reset(qr[0]) qku.reset(qr[1]) qku.reset(qr[3]) qku.h(qr[0]) qku.h(qr[1]) qku.h(qr[3]) qku.x(qr[0]) qku.cx(qr[1], qr[2]) qku.cx(qr[3], qr[4]) qku.z(qr[0]) qku.t(qr[0]) qku.swap(qr[0], qr[1]) qku.h(qr[0]) qku.s(qr[1]) qku.t(qr[0]) qku.cx(qr[1], qr[2]) qku.h(qr[1]) qku.swap(qr[0], qr[3]) qku.h(qr[0]) qku.s(qr[3]) qku.cx(qr[3], qr[4]) qku.h(qr[3]) qku.barrier() qku.measure(qr[4], cr[4]) qku.measure(qr[3], cr[3]) qku.measure(qr[2], cr[2]) qku.measure(qr[1], cr[1]) qku.measure(qr[0], cr[0]) qku.draw('mpl') result = execute(qku, qasm_simulator, shots=2048).result() display(plot_histogram(result.get_counts(), figsize=(10,10))) # The operation is HTHT # a0, b0 = 0, 1 qr = QuantumRegister(5, 'q') cr = ClassicalRegister(5, 'c') qku = QuantumCircuit(qr, cr) # initialize qku.reset(qr[0]) qku.reset(qr[1]) qku.reset(qr[3]) qku.h(qr[0]) qku.h(qr[1]) qku.h(qr[3]) # qku.x(qr[0]) a = 0 qku.cx(qr[1], qr[2]) qku.cx(qr[3], qr[4]) qku.z(qr[0]) qku.t(qr[0]) qku.swap(qr[0], qr[1]) qku.h(qr[0]) qku.s(qr[1]) qku.t(qr[0]) qku.cx(qr[1], qr[2]) qku.h(qr[1]) qku.swap(qr[0], qr[3]) qku.h(qr[0]) qku.s(qr[3]) qku.cx(qr[3], qr[4]) qku.h(qr[3]) qku.barrier() #ra(2) qku.measure(qr[4], cr[4]) #rb(2) qku.measure(qr[3], cr[3]) #ra(1) qku.measure(qr[2], cr[2]) #rb(1) qku.measure(qr[1], cr[1]) #q0 qku.measure(qr[0], cr[0]) qku.draw('mpl') result = execute(qku, qasm_simulator, shots=2048).result() display(plot_histogram(result.get_counts(), figsize=(10,10))) # Select 4 measurements with high probability, here we choose > 0.05 import random sample = [] counts = list(result.get_counts().items()) total = sum(x for _, x in counts) while len(sample) < 4: state, count = counts[random.randint(0,len(counts)-1)] if count / total >= 0.05: sample.append(state) print(sample) a0, b0 = 0, 1 for state in sample: ra2, rb2, ra1, rb1, q0 = [int(c) for c in state] af = b0 ^ ra1 ^ rb1 ^ rb2 bf = a0 ^ b0 ^ rb1 ^ ra2 print(f'Measurements are {state}') print(f'Final decyption keys: {af}, {bf}') print(f'Final state measurement: {q0}') # here we find the opposite of the researchers result, where if af = 0 we measure q0 = 0 and if af = 1 we measure q0 = 1
https://github.com/hkhetawat/QArithmetic
hkhetawat
# Import the Qiskit SDK from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute, Aer from QArithmetic import square # Input N N = 3 a = QuantumRegister(N) b = QuantumRegister(2*N) cb = ClassicalRegister(2*N) qc = QuantumCircuit(a, b, cb) # Input # a = 111 = 7 qc.x(a[0]) qc.x(a[1]) qc.x(a[2]) square(qc, a, b) qc.measure(b, cb) backend_sim = Aer.get_backend('qasm_simulator') job_sim = execute(qc, backend_sim) result_sim = job_sim.result() print(result_sim.get_counts(qc))
https://github.com/quantastica/quantum-circuit
quantastica
operation ExportedQsharpCode() : Result { using(q_reg = Qubit[3]) { X(q_reg[0]); X(q_reg[1]); X(q_reg[2]); CCNOT(q_reg[0], q_reg[1], q_reg[2]); let r = M(q_reg[2]); ResetAll(q_reg); return r; } } %simulate ExportedQsharpCode
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from qiskit import QuantumCircuit, transpile from qiskit.providers.fake_provider import FakeAuckland backend = FakeAuckland() ghz = QuantumCircuit(15) ghz.h(0) ghz.cx(0, range(1, 15)) depths = [] for _ in range(100): depths.append( transpile( ghz, backend, layout_method='trivial' # Fixed layout mapped in circuit order ).depth() ) plt.figure(figsize=(8, 6)) plt.hist(depths, align='left', color='#AC557C') plt.xlabel('Depth', fontsize=14) plt.ylabel('Counts', fontsize=14);
https://github.com/Qottmann/Quantum-anomaly-detection
Qottmann
import sys sys.path.insert(1, '..') # sets the import path to the parent folder import time import datetime import numpy as np from matplotlib import pyplot as plt anti = -1 L = 5 num_trash = 2 name = "jakarta_execute" filename = '../data/jakarta_execute' # load data from simulation and experiment temp = np.load(filename + "_executed_-real-device-True.npz",allow_pickle=True) gx_list = temp["gx_list"] gz = 0 gz_list = [0] Qmag_sim = temp["Qmag_sim"] QZ_sim = temp["QZ_sim"] Qmag_device = temp["Qmag_device"] QZ_device = temp["QZ_device"] Qen_sim = temp["Qen_sim"] Sen = temp["Sen"] Smag = temp["Smag"] opt_params = temp["opt_params"] paramss = temp["paramss"]; valuess = temp["valuess"]; countss = temp["countss"] run1 = np.load(filename + "run1_device2.npz",allow_pickle=True) # alt: run1_device2 sim1 = np.load(filename + "run1_sim2.npz",allow_pickle=True) run2 = np.load(filename + "run2_device.npz",allow_pickle=True) # alt: _overnight sim2 = np.load(filename + "run2_sim.npz",allow_pickle=True) fig, axs = plt.subplots(nrows=2,figsize=(6,6),sharex=True,gridspec_kw={'height_ratios': [2, 2]}) ax = axs[0] cost_sim = sim1["cost"] ax.plot(gx_list, cost_sim,".:", label="cost noisy sim.") cost_device = run1["cost"] ax.plot(gx_list, cost_device,".:", label="cost ibmq_jakarta") ax.plot(gx_list, np.abs(Qmag_sim),"x--", label="$|\hat{S}|$ noisy sim.") ax.plot(gx_list, np.abs(Qmag_device),"x--", label="$|\hat{S}|$ ibmq_jakarta") ax.set_xscale("log") ax.plot(gx_list[0],cost_device[0], "X",markersize=20,alpha=0.4,color="magenta") ax = axs[1] cost_sim = sim2["cost"] ax.plot(gx_list, cost_sim,".:", label="cost noisy sim.") cost_device = run2["cost"] ax.plot(gx_list, cost_device,".:", label="cost ibmq_jakarta") ax.plot(gx_list, np.abs(Qmag_sim),"x--", label="$|\hat{S}|$ noisy sim.") ax.plot(gx_list, np.abs(Qmag_device),"x--", label="$|\hat{S}|$ ibmq_jakarta") ax.set_xscale("log") ax.plot(gx_list[-1],cost_device[-1],"X",markersize=16,alpha=0.4,color="magenta", label= "Training point") for ax in axs: ax.tick_params(labelsize=14) axs[1].legend() #ncol=5 axs[-1].set_xlabel("$g_x$", fontsize=14) plt.tight_layout() axs[0].text(0.01,0.9,"a", fontweight="bold", size=18, transform = axs[0].transAxes) axs[1].text(0.01,0.9,"b", fontweight="bold", size=18, transform = axs[1].transAxes) plt.savefig("../plots/" + name + "_mainplot.png", bbox_inches='tight') plt.savefig("../plots/" + name + "_mainplot.pdf", bbox_inches='tight') run1 = np.load(filename + "run1_device.npz",allow_pickle=True) # alt: run1_device2 sim1 = np.load(filename + "run1_sim.npz",allow_pickle=True) run2 = np.load(filename + "run2_device_overnight.npz",allow_pickle=True) # alt: run2_device_ sim2 = np.load(filename + "run2_sim.npz",allow_pickle=True) fig, axs = plt.subplots(nrows=2,figsize=(6,6),sharex=True,gridspec_kw={'height_ratios': [2, 2]}) ax = axs[0] cost_sim = sim1["cost"] ax.plot(gx_list, cost_sim,".:", label="cost noisy sim.") cost_device = run1["cost"] ax.plot(gx_list, cost_device,".:", label="cost ibmq_jakarta") ax.plot(gx_list, np.abs(Qmag_sim),"x--", label="$|\hat{S}|$ noisy sim.") ax.plot(gx_list, np.abs(Qmag_device),"x--", label="$|\hat{S}|$ ibmq_jakarta") ax.set_xscale("log") ax.plot(gx_list[0],cost_device[0], "X",markersize=20,alpha=0.4,color="magenta") ax = axs[1] cost_sim = sim2["cost"] ax.plot(gx_list, cost_sim,".:", label="cost noisy sim.") cost_device = run2["cost"] ax.plot(gx_list, cost_device,".:", label="cost ibmq_jakarta") ax.plot(gx_list, np.abs(Qmag_sim),"x--", label="$|\hat{S}|$ noisy sim.") ax.plot(gx_list, np.abs(Qmag_device),"x--", label="$|\hat{S}|$ ibmq_jakarta") ax.set_xscale("log") ax.plot(gx_list[-1],cost_device[-1],"X",markersize=20,alpha=0.4,color="magenta", label= "Training point") for ax in axs: ax.tick_params(labelsize=14) axs[1].legend() #ncol=5 axs[-1].set_xlabel("$g_x$", fontsize=14) plt.tight_layout() axs[0].text(0.01,0.9,"a", fontweight="bold", size=18, transform = axs[0].transAxes) axs[1].text(0.01,0.9,"b", fontweight="bold", size=18, transform = axs[1].transAxes) plt.savefig("../plots/" + name + "_mainplot_alt.png", bbox_inches='tight') plt.savefig("../plots/" + name + "_mainplot_alt.pdf", bbox_inches='tight')
https://github.com/AbeerVaishnav13/Quantum-Programs
AbeerVaishnav13
##The following statement imports Qiskit libraries in the notebook! import qiskit ##To create a Quantum Circuit with 1 qubit from qiskit import QuantumCircuit as qc cirq = qc(1) ##To plot the circuit using MatplotLib cirq.draw('mpl') #To make a state vector and see it from qiskit.quantum_info import Statevector sv = Statevector.from_label('0') sv #To see the specific Array data sv.data #To apply the new state vector over the constructed circuit new_sv = sv.evolve(cirq) new_sv #To check the State Fidelity from qiskit.quantum_info import state_fidelity state_fidelity(sv , new_sv) #To plot the Q-Sphere from qiskit.visualization import plot_state_qsphere plot_state_qsphere(new_sv.data) #Adding an X gate for qubit flip cirq1 = qc(1) cirq1.x(0) cirq1.draw('mpl') #Adding a hadamard gate to create a superposition cirq2 = qc(1) cirq2.h(0) cirq2.draw('mpl') #Adding a t gate cirq3 = qc(1) cirq3.t(0) cirq3.draw('mpl') #Adding a s gate cirq4 = qc(1) cirq4.s(0) cirq4.draw('mpl') #Creating a multi state vector |00> sv = Statevector.from_label('10010') plot_state_qsphere(sv.data) my_cirq = qc(3, 3) my_sv = Statevector.from_label('000') my_cirq.h(0) my_cirq.cx(0 , 1) my_cirq.cx(0 , 2) display(my_cirq.draw('mpl')) print(my_sv) new_my_sv = my_sv.evolve(my_cirq) print(new_my_sv) plot_state_qsphere(new_my_sv.data) ##Setting numer of shots and plotting the Histogram counts = new_my_sv.sample_counts(shots = 1000) from qiskit.visualization import * from matplotlib import style style.use('bmh') style.use('dark_background') plot_histogram(counts) plot_state_city(my_sv) my_cirq.measure([0,1], [0,1]) my_cirq.draw('mpl') from qiskit import * #SIMULATION simulator = Aer.get_backend('qasm_simulator') result = execute(my_cirq, simulator, shots=10000).result() count = result.get_counts(my_cirq) plot_histogram(count)
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test pulse builder with backendV2 context utilities.""" import numpy as np from qiskit import circuit, pulse from qiskit.pulse import builder, macros from qiskit.pulse.instructions import directives from qiskit.pulse.transforms import target_qobj_transform from qiskit.providers.fake_provider import FakeMumbaiV2 from qiskit.pulse import instructions from qiskit.test import QiskitTestCase class TestBuilderV2(QiskitTestCase): """Test the pulse builder context with backendV2.""" def setUp(self): super().setUp() self.backend = FakeMumbaiV2() def assertScheduleEqual(self, program, target): """Assert an error when two pulse programs are not equal. .. note:: Two programs are converted into standard execution format then compared. """ self.assertEqual(target_qobj_transform(program), target_qobj_transform(target)) class TestContextsV2(TestBuilderV2): """Test builder contexts.""" def test_transpiler_settings(self): """Test the transpiler settings context. Tests that two cx gates are optimized away with higher optimization level. """ twice_cx_qc = circuit.QuantumCircuit(2) twice_cx_qc.cx(0, 1) twice_cx_qc.cx(0, 1) with pulse.build(self.backend) as schedule: with pulse.transpiler_settings(optimization_level=0): builder.call(twice_cx_qc) self.assertNotEqual(len(schedule.instructions), 0) with pulse.build(self.backend) as schedule: with pulse.transpiler_settings(optimization_level=3): builder.call(twice_cx_qc) self.assertEqual(len(schedule.instructions), 0) def test_scheduler_settings(self): """Test the circuit scheduler settings context.""" inst_map = pulse.InstructionScheduleMap() d0 = pulse.DriveChannel(0) test_x_sched = pulse.Schedule() test_x_sched += instructions.Delay(10, d0) inst_map.add("x", (0,), test_x_sched) ref_sched = pulse.Schedule() ref_sched += pulse.instructions.Call(test_x_sched) x_qc = circuit.QuantumCircuit(2) x_qc.x(0) with pulse.build(backend=self.backend) as schedule: with pulse.transpiler_settings(basis_gates=["x"]): with pulse.circuit_scheduler_settings(inst_map=inst_map): builder.call(x_qc) self.assertScheduleEqual(schedule, ref_sched) def test_phase_compensated_frequency_offset(self): """Test that the phase offset context properly compensates for phase accumulation with backendV2.""" d0 = pulse.DriveChannel(0) with pulse.build(self.backend) as schedule: with pulse.frequency_offset(1e9, d0, compensate_phase=True): pulse.delay(10, d0) reference = pulse.Schedule() reference += instructions.ShiftFrequency(1e9, d0) reference += instructions.Delay(10, d0) reference += instructions.ShiftPhase( -2 * np.pi * ((1e9 * 10 * self.backend.target.dt) % 1), d0 ) reference += instructions.ShiftFrequency(-1e9, d0) self.assertScheduleEqual(schedule, reference) class TestChannelsV2(TestBuilderV2): """Test builder channels.""" def test_drive_channel(self): """Text context builder drive channel.""" with pulse.build(self.backend): self.assertEqual(pulse.drive_channel(0), pulse.DriveChannel(0)) def test_measure_channel(self): """Text context builder measure channel.""" with pulse.build(self.backend): self.assertEqual(pulse.measure_channel(0), pulse.MeasureChannel(0)) def test_acquire_channel(self): """Text context builder acquire channel.""" with pulse.build(self.backend): self.assertEqual(pulse.acquire_channel(0), pulse.AcquireChannel(0)) def test_control_channel(self): """Text context builder control channel.""" with pulse.build(self.backend): self.assertEqual(pulse.control_channels(0, 1)[0], pulse.ControlChannel(0)) class TestDirectivesV2(TestBuilderV2): """Test builder directives.""" def test_barrier_on_qubits(self): """Test barrier directive on qubits with backendV2. A part of qubits map of Mumbai 0 -- 1 -- 4 -- | | 2 """ with pulse.build(self.backend) as schedule: pulse.barrier(0, 1) reference = pulse.ScheduleBlock() reference += directives.RelativeBarrier( pulse.DriveChannel(0), pulse.DriveChannel(1), pulse.MeasureChannel(0), pulse.MeasureChannel(1), pulse.ControlChannel(0), pulse.ControlChannel(1), pulse.ControlChannel(2), pulse.ControlChannel(3), pulse.ControlChannel(4), pulse.ControlChannel(8), pulse.AcquireChannel(0), pulse.AcquireChannel(1), ) self.assertEqual(schedule, reference) class TestUtilitiesV2(TestBuilderV2): """Test builder utilities.""" def test_active_backend(self): """Test getting active builder backend.""" with pulse.build(self.backend): self.assertEqual(pulse.active_backend(), self.backend) def test_qubit_channels(self): """Test getting the qubit channels of the active builder's backend.""" with pulse.build(self.backend): qubit_channels = pulse.qubit_channels(0) self.assertEqual( qubit_channels, { pulse.DriveChannel(0), pulse.MeasureChannel(0), pulse.AcquireChannel(0), pulse.ControlChannel(0), pulse.ControlChannel(1), }, ) def test_active_transpiler_settings(self): """Test setting settings of active builder's transpiler.""" with pulse.build(self.backend): self.assertFalse(pulse.active_transpiler_settings()) with pulse.transpiler_settings(test_setting=1): self.assertEqual(pulse.active_transpiler_settings()["test_setting"], 1) def test_active_circuit_scheduler_settings(self): """Test setting settings of active builder's circuit scheduler.""" with pulse.build(self.backend): self.assertFalse(pulse.active_circuit_scheduler_settings()) with pulse.circuit_scheduler_settings(test_setting=1): self.assertEqual(pulse.active_circuit_scheduler_settings()["test_setting"], 1) def test_num_qubits(self): """Test builder utility to get number of qubits with backendV2.""" with pulse.build(self.backend): self.assertEqual(pulse.num_qubits(), 27) def test_samples_to_seconds(self): """Test samples to time with backendV2""" target = self.backend.target target.dt = 0.1 with pulse.build(self.backend): time = pulse.samples_to_seconds(100) self.assertTrue(isinstance(time, float)) self.assertEqual(pulse.samples_to_seconds(100), 10) def test_samples_to_seconds_array(self): """Test samples to time (array format) with backendV2.""" target = self.backend.target target.dt = 0.1 with pulse.build(self.backend): samples = np.array([100, 200, 300]) times = pulse.samples_to_seconds(samples) self.assertTrue(np.issubdtype(times.dtype, np.floating)) np.testing.assert_allclose(times, np.array([10, 20, 30])) def test_seconds_to_samples(self): """Test time to samples with backendV2""" target = self.backend.target target.dt = 0.1 with pulse.build(self.backend): samples = pulse.seconds_to_samples(10) self.assertTrue(isinstance(samples, int)) self.assertEqual(pulse.seconds_to_samples(10), 100) def test_seconds_to_samples_array(self): """Test time to samples (array format) with backendV2.""" target = self.backend.target target.dt = 0.1 with pulse.build(self.backend): times = np.array([10, 20, 30]) samples = pulse.seconds_to_samples(times) self.assertTrue(np.issubdtype(samples.dtype, np.integer)) np.testing.assert_allclose(pulse.seconds_to_samples(times), np.array([100, 200, 300])) class TestMacrosV2(TestBuilderV2): """Test builder macros with backendV2.""" def test_macro(self): """Test builder macro decorator.""" @pulse.macro def nested(a): pulse.play(pulse.Gaussian(100, a, 20), pulse.drive_channel(0)) return a * 2 @pulse.macro def test(): pulse.play(pulse.Constant(100, 1.0), pulse.drive_channel(0)) output = nested(0.5) return output with pulse.build(self.backend) as schedule: output = test() self.assertEqual(output, 0.5 * 2) reference = pulse.Schedule() reference += pulse.Play(pulse.Constant(100, 1.0), pulse.DriveChannel(0)) reference += pulse.Play(pulse.Gaussian(100, 0.5, 20), pulse.DriveChannel(0)) self.assertScheduleEqual(schedule, reference) def test_measure(self): """Test utility function - measure with backendV2.""" with pulse.build(self.backend) as schedule: reg = pulse.measure(0) self.assertEqual(reg, pulse.MemorySlot(0)) reference = macros.measure(qubits=[0], backend=self.backend, meas_map=self.backend.meas_map) self.assertScheduleEqual(schedule, reference) def test_measure_multi_qubits(self): """Test utility function - measure with multi qubits with backendV2.""" with pulse.build(self.backend) as schedule: regs = pulse.measure([0, 1]) self.assertListEqual(regs, [pulse.MemorySlot(0), pulse.MemorySlot(1)]) reference = macros.measure( qubits=[0, 1], backend=self.backend, meas_map=self.backend.meas_map ) self.assertScheduleEqual(schedule, reference) def test_measure_all(self): """Test utility function - measure with backendV2..""" with pulse.build(self.backend) as schedule: regs = pulse.measure_all() self.assertEqual(regs, [pulse.MemorySlot(i) for i in range(self.backend.num_qubits)]) reference = macros.measure_all(self.backend) self.assertScheduleEqual(schedule, reference) def test_delay_qubit(self): """Test delaying on a qubit macro.""" with pulse.build(self.backend) as schedule: pulse.delay_qubits(10, 0) d0 = pulse.DriveChannel(0) m0 = pulse.MeasureChannel(0) a0 = pulse.AcquireChannel(0) u0 = pulse.ControlChannel(0) u1 = pulse.ControlChannel(1) reference = pulse.Schedule() reference += instructions.Delay(10, d0) reference += instructions.Delay(10, m0) reference += instructions.Delay(10, a0) reference += instructions.Delay(10, u0) reference += instructions.Delay(10, u1) self.assertScheduleEqual(schedule, reference) def test_delay_qubits(self): """Test delaying on multiple qubits with backendV2 to make sure we don't insert delays twice.""" with pulse.build(self.backend) as schedule: pulse.delay_qubits(10, 0, 1) d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) m0 = pulse.MeasureChannel(0) m1 = pulse.MeasureChannel(1) a0 = pulse.AcquireChannel(0) a1 = pulse.AcquireChannel(1) u0 = pulse.ControlChannel(0) u1 = pulse.ControlChannel(1) u2 = pulse.ControlChannel(2) u3 = pulse.ControlChannel(3) u4 = pulse.ControlChannel(4) u8 = pulse.ControlChannel(8) reference = pulse.Schedule() reference += instructions.Delay(10, d0) reference += instructions.Delay(10, d1) reference += instructions.Delay(10, m0) reference += instructions.Delay(10, m1) reference += instructions.Delay(10, a0) reference += instructions.Delay(10, a1) reference += instructions.Delay(10, u0) reference += instructions.Delay(10, u1) reference += instructions.Delay(10, u2) reference += instructions.Delay(10, u3) reference += instructions.Delay(10, u4) reference += instructions.Delay(10, u8) self.assertScheduleEqual(schedule, reference)
https://github.com/Innanov/Qiskit-Global-Summer-School-2022
Innanov
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, assemble, Aer, IBMQ, execute from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector, plot_histogram from qiskit_textbook.problems import dj_problem_oracle def lab1_ex1(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE # # qc.x(0) return qc state = Statevector.from_instruction(lab1_ex1()) plot_bloch_multivector(state) from qc_grader import grade_lab1_ex1 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex1(lab1_ex1()) def lab1_ex2(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE # # qc.h(0) return qc state = Statevector.from_instruction(lab1_ex2()) plot_bloch_multivector(state) from qc_grader import grade_lab1_ex2 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex2(lab1_ex2()) def lab1_ex3(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE # # qc.x(0) qc.h(0) return qc state = Statevector.from_instruction(lab1_ex3()) plot_bloch_multivector(state) from qc_grader import grade_lab1_ex3 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex3(lab1_ex3()) def lab1_ex4(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE # # qc.h(0) qc.sdg(0) return qc state = Statevector.from_instruction(lab1_ex4()) plot_bloch_multivector(state) from qc_grader import grade_lab1_ex4 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex4(lab1_ex4()) def lab1_ex5(): qc = QuantumCircuit(2,2) # this time, we not only want two qubits, but also two classical bits for the measurement # # # FILL YOUR CODE IN HERE # # qc.h(0) qc.cx(0,1) qc.x(0) return qc qc = lab1_ex5() qc.draw() # we draw the circuit from qc_grader import grade_lab1_ex5 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex5(lab1_ex5()) qc.measure(0, 0) # we perform a measurement on qubit q_0 and store the information on the classical bit c_0 qc.measure(1, 1) # we perform a measurement on qubit q_1 and store the information on the classical bit c_1 backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend counts = execute(qc, backend, shots = 1000).result().get_counts() # we run the simulation and get the counts plot_histogram(counts) # let us plot a histogram to see the possible outcomes and corresponding probabilities def lab1_ex6(): # # # FILL YOUR CODE IN HERE # # qc = QuantumCircuit(3,3) qc.h(0) qc.cx(0,1) qc.cx(1,2) qc.y(1) return qc qc = lab1_ex6() qc.draw() # we draw the circuit from qc_grader import grade_lab1_ex6 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex6(lab1_ex6()) oraclenr = 4 # determines the oracle (can range from 1 to 5) oracle = dj_problem_oracle(oraclenr) # gives one out of 5 oracles oracle.name = "DJ-Oracle" def dj_classical(n, input_str): # build a quantum circuit with n qubits and 1 classical readout bit dj_circuit = QuantumCircuit(n+1,1) # Prepare the initial state corresponding to your input bit string for i in range(n): if input_str[i] == '1': dj_circuit.x(i) # append oracle dj_circuit.append(oracle, range(n+1)) # measure the fourth qubit dj_circuit.measure(n,0) return dj_circuit n = 4 # number of qubits input_str = '1111' dj_circuit = dj_classical(n, input_str) dj_circuit.draw() # draw the circuit input_str = '1111' dj_circuit = dj_classical(n, input_str) qasm_sim = Aer.get_backend('qasm_simulator') transpiled_dj_circuit = transpile(dj_circuit, qasm_sim) qobj = assemble(transpiled_dj_circuit, qasm_sim) results = qasm_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) def lab1_ex7(): min_nr_inputs = 2 max_nr_inputs = 9 return [min_nr_inputs, max_nr_inputs] from qc_grader import grade_lab1_ex7 # Note that the grading function is expecting a list of two integers grade_lab1_ex7(lab1_ex7()) n=4 def psi_0(n): qc = QuantumCircuit(n+1,n) # Build the state (|00000> - |10000>)/sqrt(2) # # # FILL YOUR CODE IN HERE # # qc.x(4) qc.h(4) return qc dj_circuit = psi_0(n) dj_circuit.draw() def psi_1(n): # obtain the |psi_0> = |00001> state qc = psi_0(n) # create the superposition state |psi_1> # # qc.h(0) qc.h(1) qc.h(2) qc.h(3) # # qc.barrier() return qc dj_circuit = psi_1(n) dj_circuit.draw() def psi_2(oracle,n): # circuit to obtain psi_1 qc = psi_1(n) # append the oracle qc.append(oracle, range(n+1)) return qc dj_circuit = psi_2(oracle, n) dj_circuit.draw() def lab1_ex8(oracle, n): # note that this exercise also depends on the code in the functions psi_0 (In [24]) and psi_1 (In [25]) qc = psi_2(oracle, n) # apply n-fold hadamard gate # # # FILL YOUR CODE IN HERE # # qc.h(0) qc.h(1) qc.h(2) qc.h(3) # add the measurement by connecting qubits to classical bits # # qc.measure(0,0) qc.measure(1,1) qc.measure(2,2) qc.measure(3,3) # # return qc dj_circuit = lab1_ex8(oracle, n) dj_circuit.draw() from qc_grader import grade_lab1_ex8 # Note that the grading function is expecting a quantum circuit with measurements grade_lab1_ex8(lab1_ex8(dj_problem_oracle(4),n)) qasm_sim = Aer.get_backend('qasm_simulator') transpiled_dj_circuit = transpile(dj_circuit, qasm_sim) qobj = assemble(transpiled_dj_circuit) results = qasm_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/EavCmr/QKD-E91
EavCmr
#!pip install qiskit from qiskit import QuantumCircuit, Aer, transpile, assemble, execute, IBMQ from qiskit.visualization import plot_histogram import numpy as np import random import math import warnings warnings.filterwarnings('ignore') # Determine the amount of entanglement between these bits using the CHSH value def entanglement_amount(alice_choices, alice_bits, bob_choices, bob_bits): # count the different measurement results # rows correspond to Alice and Bob's circuit choices: 00, 02, 20, 22 # NOTE: We do not consider circuits 1 or 3 for this test # columns correspond to Alice and Bob's qubit measurements: 00, 01, 10, and 11 circuits = {'00': 0, '02': 1, '20': 2, '22': 3} counts = [[0]*4 for i in range(4)] for i in range(len(alice_choices)): circuit = str(alice_choices[i]) + str(bob_choices[i]) state = int(alice_bits[i]) + 2*int(bob_bits[i]) if circuit in circuits: counts[circuits[circuit]][state] += 1 # expectation values calculated by # adding times Alice and Bob's bits agreed and # subtracting times Alice and Bob's bits disagreed expectations = [] for circuit in range(4): expectations += [counts[circuit][0] + counts[circuit][3] - counts[circuit][1] - counts[circuit][2]] total = sum(counts[circuit]) if total != 0: expectations[circuit] /= total # returning CHSH correlation return expectations[0] - expectations[1] + expectations[2] + expectations[3] print("Libraries Imported Successfully!") alice_bob_qubits = QuantumCircuit(2, 2) alice_bob_qubits.h(0) alice_bob_qubits.cx(0,1) alice_bob_qubits.x(0) alice_bob_qubits.z(0) alice_bob_qubits.draw() alice_option_1 = QuantumCircuit(1, 1) alice_option_1.rz(0,0) alice_option_1.h(0) alice_option_1.measure(0, 0) alice_option_2 = QuantumCircuit(1, 1) alice_option_2.rz(math.pi/4,0) # COMPLETE THIS LINE alice_option_2.h(0) alice_option_2.measure(0, 0) alice_option_3 = QuantumCircuit(1, 1) alice_option_3.rz(math.pi/2,0) # COMPLETE THIS LINE alice_option_3.h(0) alice_option_3.measure(0, 0) alice_options = [alice_option_1,alice_option_2,alice_option_3] # COMPLETE THIS LINE WITH THE OTHER OPTIONS alice_choice = random.randint(0, 2) alice_circuit = alice_options[alice_choice] alice_circuit.draw() alice_bob_qubits = alice_bob_qubits.compose(alice_circuit, qubits = [0] , clbits = [0]) alice_bob_qubits.draw() bob_option_1 = QuantumCircuit(1, 1) bob_option_1.rz(math.pi/4,0)# COMPLETE THIS LINE bob_option_1.h(0) # COMPLETE THIS LINE bob_option_1.measure(0, 0) bob_option_2 = QuantumCircuit(1, 1) bob_option_2.rz(math.pi/4,0)# COMPLETE THIS LINE bob_option_2.h(0) # COMPLETE THIS CODE bob_option_2.measure(0, 0) bob_option_3= QuantumCircuit(1, 1) # COMPLETE THIS CODE bob_option_3.rz(math.pi*3/4,0) bob_option_3.h(0) bob_option_3.measure(0, 0) bob_options = [bob_option_1,bob_option_2,bob_option_3]# COMPLETE THIS LINE bob_choice = random.randint(0, 2) bob_circuit = bob_options[bob_choice] bob_circuit.draw() alice_bob_qubits = alice_bob_qubits.compose(bob_circuit, qubits = [1], clbits = [1]) alice_bob_qubits.draw() backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1024) result = job.result() counts = result.get_counts() bits = random.choices(list(counts.keys()), weights = counts.values(), k = 1)[0] alice_bits = bits[0] bob_bits = bits[1] plot_histogram(counts) alice_key = [] alice_mismatched_choices = [] alice_mismatched_choice_bits = [] bob_key = [] bob_mismatched_choices = [] bob_mismatched_choice_bits = [] # MATCHING CHOICE if alice_options[alice_choice] == bob_options[bob_choice]: alice_key += [int(alice_bits[0])] bob_key += [1 - int(bob_bits[0])] # MISMATCHING CHOICE else: alice_mismatched_choices += [alice_choice] bob_mismatched_choices += [bob_choice] alice_mismatched_choice_bits += [alice_bits[0]] bob_mismatched_choice_bits += [bob_bits[0]] entanglement = entanglement_amount(alice_mismatched_choices, alice_mismatched_choice_bits, bob_mismatched_choices, bob_mismatched_choice_bits) print("Entanglement of Mismatched Choices: " + str(entanglement)) print("Alice's Key: " + str(alice_key)) print("Bob's Key: " + str(bob_key)) #======== # STEP 1 #======== alice_bob_qubits = QuantumCircuit(2, 2) alice_bob_qubits.h(0) alice_bob_qubits.cx(0,1) alice_bob_qubits.x(0) alice_bob_qubits.z(0) alice_bob_qubits.draw() #======== # STEP 2 #======== alice_choice = random.randint(0, 2) alice_circuit = alice_options[alice_choice] alice_circuit.draw() #======== # STEP 3 #======== alice_bob_qubits = alice_bob_qubits.compose(alice_circuit, qubits = [0], clbits = [0]) #======== # STEP 4 #======== bob_choice = random.randint(0, 2) bob_circuit = bob_options[bob_choice] #======== # STEP 5 #======== alice_bob_qubits = alice_bob_qubits.compose(bob_circuit, qubits = [1], clbits = [1]) #====================== # SIMULATE THE CIRCUIT #====================== backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1024) result = job.result() counts = result.get_counts() bits = random.choices(list(counts.keys()), weights = counts.values(), k = 1)[0] alice_bits = bits[0] bob_bits = bits[1] plot_histogram(counts) #======== # STEP 6 #======== alice_key = [] alice_mismatched_choices = [] alice_mismatched_choice_bits = [] bob_key = [] bob_mismatched_choices = [] bob_mismatched_choice_bits = [] # MATCHING CHOICE if alice_options[alice_choice] == bob_options[bob_choice]: alice_key += [int(alice_bits[0])] bob_key += [1 - int(bob_bits[0])] # MISMATCHING CHOICE else: alice_mismatched_choices += [alice_choice] bob_mismatched_choices += [bob_choice] alice_mismatched_choice_bits += [alice_bits[0]] bob_mismatched_choice_bits += [bob_bits[0]] entanglement = entanglement_amount(alice_mismatched_choices, alice_mismatched_choice_bits, bob_mismatched_choices, bob_mismatched_choice_bits) print("Entanglement of Mismatched Choices: " + str(entanglement)) print("Alice's Key: " + str(alice_key)) print("Bob's Key: " + str(bob_key)) n = 100 alice_bob_qubits = [] for i in range(n): alice_bob_qubits += [QuantumCircuit(2,2)] alice_bob_qubits[i].h(0) alice_bob_qubits[i].cx(0,1) alice_bob_qubits[i].x(0) alice_bob_qubits[i].z(0) alice_choices = [] alice_circuits = [] for i in range(n): alice_choices += [random.randint(0, 2)] alice_circuits += [alice_options[alice_choices[i]]] for i in range(100): alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [0] , clbits = [0]) bob_choices = [] bob_circuits = [] for i in range(n): bob_choices += [random.randint(0, 2)] bob_circuits += [bob_options[bob_choices[i]]] for i in range(100): alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [1] , clbits = [1]) backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1) result = job.result() counts = result.get_counts() alice_bits = [] bob_bits = [] for i in range(n): bits = list(counts[i].keys())[0] alice_bits += [bits[0]] bob_bits += [bits[1]] alice_key = [] alice_mismatched_choices = [] alice_mismatched_choice_bits = [] bob_key = [] bob_mismatched_choices = [] bob_mismatched_choice_bits = [] for i in range(n): # MATCHING CHOICE if alice_options[alice_choices[i]] == bob_options[bob_choices[i]]: alice_key += [int(alice_bits[i])] bob_key += [1 - int(bob_bits[i])] # MISMATCHING CHOICE else: alice_mismatched_choices += [alice_choices[i]] bob_mismatched_choices += [bob_choices[i]] # COMPLETE THIS LINE alice_mismatched_choice_bits += [alice_bits[i]] # COMPLETE THIS LINE bob_mismatched_choice_bits += [bob_bits[i]] # COMPLETE THIS LINE entanglement = entanglement_amount(alice_mismatched_choices, alice_mismatched_choice_bits, bob_mismatched_choices, bob_mismatched_choice_bits) print("Entanglement of Mismatched Choices: " + str(entanglement)) print("Alice's Key: " + str(alice_key)) print("Bob's Key: " + str(bob_key)) print("Key Length: " + str(len(bob_key))) print("Number of Disagreeing Key Bits: " + str(sum([alice_key[i] != bob_key[i] for i in range(len(alice_key))]))) #======== # STEP 1 #======== n = 100 #======== # STEP 2 #======== alice_bob_qubits = [] for i in range(n): alice_bob_qubits += [QuantumCircuit(2,2)] alice_bob_qubits[i].h(0) alice_bob_qubits[i].cx(0,1) alice_bob_qubits[i].x(0) alice_bob_qubits[i].z(0) #======== # STEP 3 #======== alice_choices = [] alice_circuits = [] for i in range(n): alice_choices += [random.randint(0, 2)] alice_circuits += alice_options[alice_choice] for i in range(100): alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [0] , clbits = [0]) #======== # STEP 4 #======== bob_choices = [] bob_circuits = [] for i in range(n): bob_choices += [random.randint(0, 2)] bob_circuits += bob_options[bob_choice] #======== # STEP 5 #======== for i in range(100): alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [1] , clbits = [1]) #====================== # SIMULATE THE CIRCUIT #====================== backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1) result = job.result() counts = result.get_counts() alice_bits = [] bob_bits = [] for i in range(n): bits = list(counts[i].keys())[0] alice_bits += [bits[0]] bob_bits += [bits[1]] #======== # STEP 6 #======== alice_key = [] alice_mismatched_choices = [] alice_mismatched_choice_bits = [] bob_key = [] bob_mismatched_choices = [] bob_mismatched_choice_bits = [] for i in range(n): # MATCHING CHOICE if alice_options[alice_choices[i]] == bob_options[bob_choices[i]]: alice_key += [int(alice_bits[i])] bob_key += [1 - int(bob_bits[i])] # MISMATCHING CHOICE else: alice_mismatched_choices += [alice_choices[i]] bob_mismatched_choices += [bob_choices[i]] alice_mismatched_choice_bits += [alice_bits[i]] bob_mismatched_choice_bits += [bob_bits[i]] entanglement = entanglement_amount(alice_mismatched_choices, alice_mismatched_choice_bits, bob_mismatched_choices, bob_mismatched_choice_bits) print("Entanglement of Mismatched Choices: " + str(entanglement)) print("Alice's Key: " + str(alice_key)) print("Bob's Key: " + str(bob_key)) print("Key Length: " + str(len(bob_key))) print("Number of Disagreeing Key Bits: " + str(sum([alice_key[i] != bob_key[i] for i in range(len(alice_key))]))) #======== # STEP 1 #======== n = 100 # COMPLETE THIS CODE WITH YOUR SOLUTION FROM PART 2 #================ # EVE INTERCEPTS! #================ for i in range(n): alice_bob_qubits[i].measure(0,0) backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1) result = job.result() counts = result.get_counts() eve_alice_bits = [] eve_bob_bits = [] for i in range(100):# COMPLETE THIS LINE # Looks at measurement results bits = list(counts[i].keys())[0] eve_alice_bits += [bits[0]] eve_bob_bits += [bits[1]] # Prepares new qubits for Alice and Bob alice_bob_qubits[i] = QuantumCircuit(2,2) # Makes sure they are in the same state she measured if eve_alice_bits[i] == 1: alice_bob_qubits[i] == 1 if eve_bob_bits[i] == 1: alice_bob_qubits[i] ==1 alice_choices = [] alice_circuits = [] for i in range(n): alice_choices += [random.randint(0, 2)] alice_circuits += alice_options[alice_choice] for i in range(100): alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [0] , clbits = [0]) #======== # STEP 4 #======== bob_choices = [] bob_circuits = [] for i in range(n): bob_choices += [random.randint(0, 2)] bob_circuits += bob_options[bob_choice] #======== # STEP 5 #======== for i in range(100): alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [1] , clbits = [1]) #====================== # SIMULATE THE CIRCUIT #====================== backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1) result = job.result() counts = result.get_counts() alice_bits = [] bob_bits = [] for i in range(n): bits = list(counts[i].keys())[0] alice_bits += [bits[0]] bob_bits += [bits[1]] #======== # STEP 6 #======== alice_key = [] alice_mismatched_choices = [] alice_mismatched_choice_bits = [] bob_key = [] bob_mismatched_choices = [] bob_mismatched_choice_bits = [] eve_key = [] eve_mismatched_choices = [] eve_mismatched_choice_bits = [] for i in range(n): # MATCHING CHOICE if alice_options[alice_choices[i]] == bob_options[bob_choices[i]]: alice_key += [int(alice_bits[i])] bob_key += [1 - int(bob_bits[i])] eve_key += [int(eve_bob_bits[i])] else: alice_mismatched_choices += [alice_choices[i]] bob_mismatched_choices += [bob_choices[i]] bob_mismatched_choices += [bob_choices[i]] alice_mismatched_choice_bits += [alice_bits[i]] bob_mismatched_choice_bits += [bob_bits[i]] entanglement = entanglement_amount(alice_mismatched_choices, alice_mismatched_choice_bits, bob_mismatched_choices, bob_mismatched_choice_bits) print("Entanglement of Mismatched Choices: " + str(entanglement)) print("Alice's Key: " + str(alice_key)) print("Bob's Key: " + str(bob_key)) print("Eve's Key: " + str(eve_key)) print("Key Length: " + str(len(bob_key))) print("Number of Disagreeing Key Bits between Alice and Bob: " + str(sum([alice_key[i] != bob_key[i] for i in range(len(alice_key))]))) print("Number of Disagreeing Key Bits between Alice and Eve: " + str(sum([alice_key[i] != eve_key[i] for i in range(len(alice_key))]))) print("Number of Disagreeing Key Bits between Bob and Eve: " + str(sum([bob_key[i] != eve_key[i] for i in range(len(alice_key))]))) n = 100 # COMPLETE THIS CODE WITH YOUR SOLUTION FROM PART 2 alice_bob_qubits = [] for i in range(n):# COMPLETE THIS LINE alice_bob_qubits += [QuantumCircuit(2,2)]# COMPLETE THIS LINE alice_bob_qubits[i].h(0) # COMPLETE THIS LINE alice_bob_qubits[i].cx(0,1) # COMPLETE THIS LINE alice_bob_qubits[i].x(0) # COMPLETE THIS LINE alice_bob_qubits[i].z(0) # COMPLETE THIS LINE #======== # STEP 3 #======== alice_choices = [] alice_circuits = [] for i in range(n): # COMPLETE THIS LINE alice_choices += [random.randint(0, 2)] alice_circuits += [alice_options[alice_choices[i]]] # COMPLETE THIS LINE for i in range(100): # COMPLETE THIS LINE alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [0] , clbits = [0])# COMPLETE THIS LINE #======== # STEP 4 #======== bob_choices = [] bob_circuits = [] for i in range(n): # COMPLETE THIS LINE bob_choices += [random.randint(0, 2)] bob_circuits += [bob_options[bob_choices[i]]]# COMPLETE THIS CODE #======== # STEP 5 #======== for i in range(100): alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [1] , clbits = [1])# COMPLETE THIS CODE #================ # EVE INTERCEPTS! #================ for i in range(n):# COMPLETE THIS LINE alice_bob_qubits[i].measure(0,0)# COMPLETE THIS LINE backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1) result = job.result() counts = result.get_counts() #================ #================ eve_alice_bits = [] eve_bob_bits = [] for i in range(100):# COMPLETE THIS LINE # Looks at measurement results bits = list(counts[i].keys())[0] eve_alice_bits += [bits[0]] eve_bob_bits += [bits[1]]# COMPLETE THIS LINE # Prepares new qubits for Alice and Bob alice_bob_qubits[i] = QuantumCircuit(2,2)# COMPLETE THIS LINE # Makes sure they are in the same state she measured if eve_alice_bits[i] == 1: alice_bob_qubits[i].measure(0,0)# COMPLETE THIS LINE if eve_bob_bits[i] == 1: alice_bob_qubits[i].measure(0,0) # COMPLETE THIS LINE #================ #================ alice_choices = [] alice_circuits = [] for i in range(n): # COMPLETE THIS LINE alice_choices += [random.randint(0, 2)] alice_circuits += [alice_options[alice_choices[i]]] # COMPLETE THIS LINE for i in range(100): # COMPLETE THIS LINE alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [0] , clbits = [0])# COMPLETE THIS LINE #======== # STEP 4 #======== bob_choices = [] bob_circuits = [] for i in range(n): # COMPLETE THIS LINE bob_choices += [random.randint(0, 2)] bob_circuits += [bob_options[bob_choices[i]]]# COMPLETE THIS CODE #======== # STEP 5 #======== for i in range(100): alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [1] , clbits = [1])# COMPLETE THIS CODE #====================== # SIMULATE THE CIRCUIT #====================== backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1) result = job.result() counts = result.get_counts() alice_bits = [] bob_bits = [] for i in range(n): bits = list(counts[i].keys())[0] alice_bits += [bits[0]] bob_bits += [bits[1]] #======== # STEP 6 #======== alice_key = [] alice_mismatched_choices = [] alice_mismatched_choice_bits = [] bob_key = [] bob_mismatched_choices = [] bob_mismatched_choice_bits = [] eve_key = [] eve_mismatched_choices = [] eve_mismatched_choice_bits = [] for i in range(n):# COMPLETE THIS LINE # MATCHING CHOICE if alice_options[alice_choices[i]] == bob_options[bob_choices[i]]: # COMPLETE THIS LINE alice_key += [int(alice_bits[i])] bob_key += [1 - int(bob_bits[i])]# COMPLETE THIS LINE eve_key += [int(eve_bob_bits[i])] # MISMATCHING CHOICE else: alice_mismatched_choices += [alice_choices[i]] bob_mismatched_choices += [bob_choices[i]] # COMPLETE THIS LINE alice_mismatched_choice_bits += [alice_bits[i]] # COMPLETE THIS LINE bob_mismatched_choice_bits += [bob_bits[i]] # COMPLETE THIS LINE# COMPLETE THIS CODE entanglement = entanglement_amount(alice_mismatched_choices, alice_mismatched_choice_bits, bob_mismatched_choices, bob_mismatched_choice_bits) print("Entanglement of Mismatched Choices: " + str(entanglement)) print("Alice's Key: " + str(alice_key)) print("Bob's Key: " + str(bob_key)) print("Eve's Key: " + str(eve_key)) print("Key Length: " + str(len(bob_key))) print("Number of Disagreeing Key Bits between Alice and Bob: " + str(sum([alice_key[i] != bob_key[i] for i in range(len(alice_key))]))) print("Number of Disagreeing Key Bits between Alice and Eve: " + str(sum([alice_key[i] != eve_key[i] for i in range(len(alice_key))]))) print("Number of Disagreeing Key Bits between Bob and Eve: " + str(sum([bob_key[i] != eve_key[i] for i in range(len(alice_key))])))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# You can set a color for all the bars. from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_state_paulivec qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) state = Statevector(qc) plot_state_paulivec(state, color='midnightblue', title="New PauliVec plot")
https://github.com/indian-institute-of-science-qc/qiskit-aakash
indian-institute-of-science-qc
# This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Quantum teleportation example. Note: if you have only cloned the Qiskit repository but not used `pip install`, the examples only work from the root directory. """ from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import BasicAer from qiskit import execute ############################################################### # Set the backend name and coupling map. ############################################################### coupling_map = [[0, 1], [0, 2], [1, 2], [3, 2], [3, 4], [4, 2]] backend = BasicAer.get_backend("qasm_simulator") ############################################################### # Make a quantum program for quantum teleportation. ############################################################### q = QuantumRegister(3, "q") c0 = ClassicalRegister(1, "c0") c1 = ClassicalRegister(1, "c1") c2 = ClassicalRegister(1, "c2") qc = QuantumCircuit(q, c0, c1, c2, name="teleport") # Prepare an initial state qc.u(0.3, 0.2, 0.1, q[0]) # Prepare a Bell pair qc.h(q[1]) qc.cx(q[1], q[2]) # Barrier following state preparation qc.barrier(q) # Measure in the Bell basis qc.cx(q[0], q[1]) qc.h(q[0]) qc.measure(q[0], c0[0]) qc.measure(q[1], c1[0]) # Apply a correction qc.barrier(q) qc.z(q[2]).c_if(c0, 1) qc.x(q[2]).c_if(c1, 1) qc.measure(q[2], c2[0]) ############################################################### # Execute. # Experiment does not support feedback, so we use the simulator ############################################################### # First version: not mapped initial_layout = {q[0]: 0, q[1]: 1, q[2]: 2} job = execute(qc, backend=backend, coupling_map=None, shots=1024, initial_layout=initial_layout) result = job.result() print(result.get_counts(qc)) # Second version: mapped to 2x8 array coupling graph job = execute( qc, backend=backend, coupling_map=coupling_map, shots=1024, initial_layout=initial_layout ) result = job.result() print(result.get_counts(qc)) # Both versions should give the same distribution
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
import unittest import hypothesis.strategies as st from hypothesis import given, settings, note import matplotlib.pyplot as plt import numpy as np import math import cirq from cirq.ops import H, X, I from numpy.random import randint import pandas as pd from fractions import Fraction from math import gcd # greatest common divisor """Function to compute the elements of Z_n.""" def multiplicative_group(n): """Returns the multiplicative group modulo n. Args: n: Modulus of the multiplicative group. """ print("multiplicative group") assert n > 1 group = [1] for x in range(2, n): if math.gcd(x, n) == 1: group.append(x) return group def qft_dagger_cirq(qc, qubits, n): for qubit in range(n//2): qc.append(cirq.SWAP(qubits[qubit], qubits[n-qubit-1])) for j in range(n): for m in range(j): qc.append((cirq.CZ**(-1/2**(j-m)))(qubits[m],qubits[j])) qc.append(cirq.H(qubits[j])) def general_modular_exp(a, N, power): mult_group = multiplicative_group(N) if a not in mult_group: raise ValueError("'a' must be in " + str(mult_group)) print(mult_group) general_modular_exp(7, 15, 2) def VBE_Adder(qubit_size, qubits): #outputs a + b #inverse outputs b - a (but in two's complement) #move to carry #qubits = cirq.LineQubit.range(3*qubit_size + 1) qc = cirq.Circuit() for i in range(qubit_size-1): qc.append(cirq.CCNOT(qubits[i], qubits[i+qubit_size], qubits[2+i+(2*qubit_size)])) #toffoli to second register qc.append(cirq.CCNOT(qubits[qubit_size-1], qubits[(2*qubit_size)-1], qubits[2*qubit_size])) #add a to b for i in range(qubit_size): qc.append(cirq.CNOT(qubits[i], qubits[i+qubit_size])) #second register carry and last b for i in range(qubit_size-1): qc.append(cirq.CCNOT(qubits[i+qubit_size], qubits[1+i+(2*qubit_size)], qubits[2+i+(2*qubit_size)])) qc.append(cirq.CCNOT(qubits[(2*qubit_size)-1], qubits[3*qubit_size], qubits[2*qubit_size])) qc.append(cirq.CNOT(qubits[3*qubit_size], qubits[(2*qubit_size)-1])) #adder overflow for i in range(qubit_size-1): qc.append(cirq.CCNOT(qubits[(2*qubit_size) - 2 - i], qubits[(3*qubit_size) - i - 1], qubits[(3*qubit_size) - i])) qc.append(cirq.CNOT(qubits[(qubit_size) - 2 - i], qubits[(2*qubit_size) - 2 - i])) qc.append(cirq.CCNOT(qubits[(qubit_size) - 2 - i], qubits[(2*qubit_size) - 2 - i], qubits[(3*qubit_size) - i])) qc.append(cirq.CNOT(qubits[(qubit_size) - 2 - i], qubits[(2*qubit_size) - 2 - i])) qc.append(cirq.CNOT(qubits[(3*qubit_size) - i - 1], qubits[(2*qubit_size) - 2 - i])) #print(qc.draw(output='text')) qc.name = "VBE ADDER" return qc #VBE_Adder(4) def Modular_adder(qubit_size, N, qubits): binN = bin(N)[2:].zfill(qubit_size)[::-1] #move to carry #qubits = cirq.LineQubit.range(4*qubit_size + 2) qc = cirq.Circuit() qc.append(VBE_Adder(qubit_size, qubits[0:3*qubit_size+1])) for i in range(qubit_size): qc.append(cirq.SWAP(qubits[i], qubits[i + 1 + 3*qubit_size])) qc.append(cirq.inverse(VBE_Adder(qubit_size, qubits[0:3*qubit_size+1]))) qc.append(cirq.X(qubits[2*qubit_size])) qc.append(cirq.CNOT(qubits[2*qubit_size], qubits[4*qubit_size+1])) qc.append(cirq.X(qubits[2*qubit_size])) for i in range(qubit_size): if binN[i] == "1": qc.append(cirq.CNOT(qubits[4*qubit_size + 1], qubits[i])) qc.append(VBE_Adder(qubit_size, qubits[0:3*qubit_size+1])) for i in range(qubit_size): if binN[i] == "1": qc.append(cirq.CNOT(qubits[4*qubit_size + 1], qubits[i])) for i in range(qubit_size): qc.append(cirq.SWAP(qubits[i], qubits[i + 1 + 3*qubit_size])) qc.append(cirq.inverse(VBE_Adder(qubit_size, qubits[0:3*qubit_size+1]))) qc.append(cirq.CNOT(qubits[2*qubit_size], qubits[4*qubit_size+1])) qc.append(VBE_Adder(qubit_size, qubits[0:3*qubit_size+1])) qc.name = "MODULAR ADDER" return qc #Modular_adder(4,11,qubits) # from IPython.core.display import display, HTML # display(HTML("<style>.container { width:60% !important; }</style>")) # size = 4 # N = 7 # qc = QuantumCircuit(4*size + 2) # # a = 3,2,1,0 # #qc.x(3) # qc.x(2) # qc.x(1) # qc.x(0) # # b = 8,7,6,5,4 # #qc.x(7) # qc.x(6) # qc.x(5) # qc.x(4) # # carry = 12,11,10,9 # # modulus N = 16,15,14,13 # binN = bin(N)[2:].zfill(size)[::-1] # for i in range(size): # if binN[i] == "1": # qc.x(3*size + 1 + i) # # temporary carry = 17 # print(qc) # qc.measure_all() # qc.append(Modular_adder(size,N), [i for i in range(4*size+2)]) # qc.measure_all() # backend = Aer.get_backend('aer_simulator') # job = execute(qc, backend, shots=1, memory=True) # readings = job.result().get_memory() # second_set = readings[0][0:4*size+2] # first_set = readings[0][(4*size)+3:(8*size)+6] # print(readings) # print(first_set) # print(second_set) # print('a = ' + str(first_set[3*size + 2: 4*size + 2])) # print('b = ' + str(first_set[2*size + 1: 3*size + 2])) # print('b out = ' + str(second_set[2*size + 1: 3*size + 2])) # #print('carry = ' + str(second_set[0:size])) def Modular_multiplier(qubit_size, N, a, qubits): qc = cirq.Circuit() for i in range(qubit_size): mod = bin(a*(2**i) % N)[2:].zfill(qubit_size)[::-1] for j in range(qubit_size): if mod[j] == "1": qc.append(cirq.CCNOT(qubits[0], qubits[i+1], qubits[qubit_size + 1 + j])) qc.append(Modular_adder(qubit_size, N, qubits[qubit_size + 1:(5*qubit_size+3)])) #can just repeat the above method, but this looks symmetric #the circuit diagram is more intuitive for j in range(qubit_size): if mod[::-1][j] == "1": qc.append(cirq.CCNOT(qubits[0], qubits[i+1], qubits[2*qubit_size - j])) #set x if control is false qc.append(cirq.X(qubits[0])) for i in range(qubit_size): qc.append(cirq.CCNOT(qubits[0], qubits[i+1], qubits[2*qubit_size + 1 + i])) qc.append(cirq.X(qubits[0])) qc.name = "MODULAR MULTIPLIER " + str(a) + "x mod " + str(N) #print(qc.inverse().draw(output='text')) return qc #Modular_multiplier(4, 15, 13) size = 2 N = 2 a = 1 qubits = cirq.LineQubit.range(5*size + 3) qc = cirq.Circuit() #control qubit qc.append(cirq.X(qubits[0])) # x = 4,3,2,1 #qc.append(cirq.X(qubits[4])) #qc.append(cirq.X(qubits[3])) #qc.append(cirq.X(qubits[2])) #qc.append(cirq.X(qubits[1])) # N = 21,20,19,18 binN = bin(N)[2:].zfill(size)[::-1] for i in range(size): if binN[i] == "1": qc.append(cirq.X(qubits[4*size + 2 + i])) # temporary carry = 17 #print(qc) qc.append(cirq.measure(*qubits[0:5*size+3], key='m1')) qc.append(Modular_multiplier(size, N, a, qubits[0:(5*size+3)])) #print(qc) qc.append(cirq.measure(*qubits[0:5*size+3], key='m2')) simulator = cirq.Simulator() results = simulator.run(qc , repetitions =1) first_set = np.array2string(results.measurements['m1'][0], separator='')[1:-1][::-1] second_set = np.array2string(results.measurements['m2'][0], separator='')[1:-1][::-1] print(first_set) print(second_set) print('x = ' + str(first_set[4*size + 2: 5*size + 2])) print('b = ' + str(first_set[2*size + 1: 3*size + 2])) print('b out = ' + str(second_set[2*size + 1: 3*size + 2])) #print('carry = ' + str(second_set[0:size])) def Modular_exponentiation(qubit_size, N, a, qubits): qc = cirq.Circuit() #need to set x to 1 qc.append(cirq.X(qubits[qubit_size+1])) for i in range(qubit_size): qc.append(cirq.CNOT(qubits[i],qubits[qubit_size])) qc.append(Modular_multiplier(qubit_size, N, a**(2**i)%N, qubits[qubit_size:(6*qubit_size+3)])) for j in range(qubit_size): qc.append(cirq.SWAP(qubits[qubit_size+1+j], qubits[3*qubit_size+1+j])) #we dont use A for this multiplier because we need the modular multiplicative inverse #print(a**(2**i)%N) #print(pow(a**(2**i)%N, -1, N)) qc.append(cirq.inverse(Modular_multiplier(qubit_size, N, pow(a**(2**i)%N, -1, N), qubits[qubit_size:(6*qubit_size+3)]))) qc.append(cirq.CNOT(qubits[i],qubits[qubit_size])) qc.name = "MODULAR EXPONENTIATION" #print(qc.draw(output='text')) return qc #qubits = cirq.LineQubit.range(6*3 + 3) #Modular_exponentiation(3, 7, 3,qubits) # qubit_size = 2 # N = 3 # a = 1 # qc = QuantumCircuit(6*qubit_size + 3) # # x = 3,2,1,0 # #qc.x(3) # qc.x(2) # #qc.x(1) # #qc.x(0) # # N = 21,20,19,18 # binN = bin(N)[2:].zfill(qubit_size)[::-1] # print(binN) # for i in range(qubit_size): # if binN[i] == "1": # qc.x(5*qubit_size + 2 + i) # #print(qc) # qc.measure_all() # qc.append(Modular_exponentiation(qubit_size, N, a), [i for i in range(6*qubit_size+3)]) # qc.measure_all() # #print(qc) # backend = Aer.get_backend('aer_simulator') # job = execute(qc, backend, shots=1, memory=True) # readings = job.result().get_memory()[0].split(' ') # second_set = readings[0] # first_set = readings[1] # print(first_set) # print(second_set) # first_set_exp = first_set[(5 * qubit_size) + 3 : (6 * qubit_size) + 3] # first_set_x = first_set[(4 * qubit_size) + 2 : (5 * qubit_size) + 2] # first_set_a = first_set[(3 * qubit_size) + 2 : (4 * qubit_size) + 2] # first_set_b = first_set[(2 * qubit_size) + 1 : (3 * qubit_size) + 2] # first_set_N = first_set[qubit_size + 1 : (2 * qubit_size) + 1] # second_set_exp = second_set[(5 * qubit_size) + 3 : (6 * qubit_size) + 3] # second_set_x = second_set[(4 * qubit_size) + 2 : (5 * qubit_size) + 2] # second_set_a = second_set[(3 * qubit_size) + 2 : (4 * qubit_size) + 2] # second_set_b = second_set[(2 * qubit_size) + 1 : (3 * qubit_size) + 2] # second_set_N = second_set[qubit_size + 1 : (2 * qubit_size) + 1] # print("A = " + str(a)) # print("exps 1 -> 2 = " + str(first_set_exp) + " -> " + str(second_set_exp)) # print("xs 1 -> 2 = " + str(first_set_x) + " -> " + str(second_set_x)) # print("as 1 -> 2 = " + str(first_set_a) + " -> " + str(second_set_a)) # print("bs 1 -> 2 = " + str(first_set_b) + " -> " + str(second_set_b)) # print("Ns 1 -> 2 = " + str(first_set_N) + " -> " + str(second_set_N)) # #print('carry = ' + str(second_set[0:size])) def run_shors(qubit_size, N, a, run_amt): qubits = cirq.LineQubit.range(6*qubit_size + 3) qc = cirq.Circuit() # N = 21,20,19,18 binN = bin(N)[2:].zfill(qubit_size)[::-1] for i in range(qubit_size): qc.append(cirq.H(qubits[i])) for i in range(qubit_size): if binN[i] == "1": qc.append(cirq.X(qubits[5*qubit_size + 2 + i])) qc.append(Modular_exponentiation(qubit_size, N, a, qubits[0:(6*qubit_size+3)])) qft_dagger_cirq(qc, qubits[:qubit_size], qubit_size) qc.append(cirq.measure(*qubits[:qubit_size])) #backend = Aer.get_backend('aer_simulator') #job = execute(qc, backend, shots=run_amt, memory=True) # return(job.result().get_memory()) simulator = cirq.Simulator() results = simulator.run(qc , repetitions =run_amt) #readings = np.array2string(results.measurements['m'][0], separator='')[1:-1][::-1] return results #print(run_shors(3,7,3,1)) #%timeit run_shors(10,26,7,20) # for loop at the bootom from qiskit textbook for postpro # https://qiskit.org/textbook/ch-algorithms/shor.html#:~:text=if%20phase%20!%3D%200,guess)%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20factor_found%20%3D%20True def shors_with_postpro(N, a, tries): factors = [] if not a < N: raise ValueError("a(%i) must be less than N(%i)"%(a,N)) common_denom = gcd(a,N) if not common_denom == 1: raise ValueError("a(%i) and N(%i) must be coprime but they have a gcd of (%i)"%(a, N, common_denom)) length_message = len(bin(N)[2:])*2 if length_message > 8: print(f"The length of the number you are trying to factor is large ({length_message}), it may fail or take a long time") res = run_shors(len(bin(N)[2:])*2, N, a, tries) for result in res: phase = (int(result,2)/(2**length_message)) frac = Fraction(phase).limit_denominator(N) r = frac.denominator print(r) #if phase != 0: # guesses = [gcd(a**(r//2)-1, N), gcd(a**(r//2)+1, N)] # for guess in guesses: # if guess not in [1,N] and (N % guess) == 0: # factors += [guess] # return factors shors_with_postpro(7, 3, 4) def twos_comp_to_int(binNum): binNum = int(binNum,2) ^ ((2**len(binNum))-1) binNum = bin(binNum + 1) return -int(binNum,2) @st.composite def draw_pair_of_ints(draw): size = draw(st.integers(min_value=1, max_value=6)) a = draw(st.integers(min_value=0, max_value=(2**size)-1)) b = draw(st.integers(min_value=0, max_value=(2**size)-1)) return(a, b, size) @st.composite def draw_shors_variables(draw): size = draw(st.integers(min_value=2, max_value=5)) mod = draw(st.integers(min_value=3, max_value=(2**size)-1)) a = draw(st.integers(min_value=2, max_value=mod-1)) return(a, mod, size) @st.composite def draw_pair_of_ints_and_mod(draw): size = draw(st.integers(min_value=2, max_value=4)) mod = draw(st.integers(min_value=2, max_value=(2**size)-1)) a = draw(st.integers(min_value=0, max_value=mod-1)) b = draw(st.integers(min_value=0, max_value=mod-1)) return(a, b, size, mod) # @given(draw_shors_variables()) # @settings(deadline=None) # def test_shors_with_postpro(vals): # a = vals[0] # N = vals[1] # size = vals[2] # for i in range(size): # try: # pow(a**(2**i)%N, -1, N) # except ValueError: # assert(not(math.gcd(a,N) == 1)) # if math.gcd(a,N) == 1: # factors = shors_with_postpro(N, a, 20) # for factor in factors: # print(f"N {N}, factor {factor}") # assert(N % factor == 0) # @given(draw_pair_of_ints_and_mod()) # @settings(deadline=None) # def test_modular_exponentiation(vals): # a = vals[0] # x = vals[1] # size = vals[2] # N = vals[3] # for i in range(size): # try: # pow(a**(2**i)%N, -1, N) # except ValueError: # assert(not(math.gcd(a,N) == 1)) # if math.gcd(a,N) == 1: # qubits = cirq.LineQubit.range(6*size + 3) # qc = cirq.Circuit() # binX = bin(x)[2:].zfill(size)[::-1] # binN = bin(N)[2:].zfill(size)[::-1] # print("size " + str(size)) # print("a " + str(a)) # print("x " + str(x)) # print("N " + str(N)) # print("\n") # # x = 3,2,1,0 # for i in range(size): # if binX[i] == "1": # qc.x(i) # for i in range(size): # if binN[i] == "1": # qc.x(5*size + 2 + i) # #print(qc) # qc.measure_all() # qc.append(Modular_exponentiation(size, N, a), [i for i in range(6*size+3)]) # qc.measure_all() # backend = Aer.get_backend('aer_simulator') # job = execute(qc, backend, shots=1, memory=True) # readings = job.result().get_memory()[0].split(' ') # second_set = readings[0] # first_set = readings[1] # print(first_set) # print(second_set) # first_set_exp = first_set[(5 * size) + 3 : (6 * size) + 3] # first_set_x = first_set[(4 * size) + 2 : (5 * size) + 2] # first_set_a = first_set[(3 * size) + 2 : (4 * size) + 2] # first_set_b = first_set[(2 * size) + 1 : (3 * size) + 2] # first_set_N = first_set[size + 1 : (2 * size) + 1] # second_set_exp = second_set[(5 * size) + 3 : (6 * size) + 3] # second_set_x = second_set[(4 * size) + 2 : (5 * size) + 2] # second_set_a = second_set[(3 * size) + 2 : (4 * size) + 2] # second_set_b = second_set[(2 * size) + 1 : (3 * size) + 2] # second_set_N = second_set[size + 1 : (2 * size) + 1] # print("A = " + str(a)) # print("exps 1 -> 2 = " + str(first_set_exp) + " -> " + str(second_set_exp)) # print("xs 1 -> 2 = " + str(first_set_x) + " -> " + str(second_set_x)) # print("as 1 -> 2 = " + str(first_set_a) + " -> " + str(second_set_a)) # print("bs 1 -> 2 = " + str(first_set_b) + " -> " + str(second_set_b)) # print("Ns 1 -> 2 = " + str(first_set_N) + " -> " + str(second_set_N)) # print(a) # print(x) # print(N) # print('\n\n') # assert((a ** x) % N == int(second_set_x, 2)) # @given(draw_pair_of_ints_and_mod(), st.booleans()) # @settings(deadline=None) # def test_modular_multiplier_then_inverse_returns_original_values(vals, control): # a = vals[0] # x = vals[1] # size = vals[2] # N = vals[3] # qubits = cirq.LineQubit.range(5*size + 3) # qc = cirq.Circuit() # binX = bin(x)[2:].zfill(size)[::-1] # binN = bin(N)[2:].zfill(size)[::-1] # print("size " + str(size)) # print("a " + str(a)) # print("x " + str(x)) # print("N " + str(N)) # print("control " + str(control)) # print("\n") # #control qubit # if control == True: # qc.x(0) # # x = 3,2,1,0 # for i in range(size): # if binX[i] == "1": # qc.x(i+1) # for i in range(size): # if binN[i] == "1": # qc.x(4*size + 2 + i) # print(qc) # qc.measure_all() # qc.append(Modular_multiplier(size, N, a), [i for i in range(5*size+3)]) # qc.append(Modular_multiplier(size, N, a).inverse(), [i for i in range(5*size+3)]) # qc.measure_all() # backend = Aer.get_backend('aer_simulator') # job = execute(qc, backend, shots=1, memory=True) # readings = job.result().get_memory() # second_set = readings[0][0:5*size+3] # first_set = readings[0][(5*size)+4:(10*size)+7] # print("readings " + str(readings)) # print("first set " + str(first_set)) # print("second set " + str(second_set)) # assert(first_set == second_set) @given(draw_pair_of_ints_and_mod(), st.booleans()) @settings(deadline=None) def test_modular_multiplier(vals, control): a = vals[0] x = vals[1] size = vals[2] N = vals[3] print(a) print(x) print(size) print(N) qubits = cirq.LineQubit.range(5*size + 3) qc = cirq.Circuit() binX = bin(x)[2:].zfill(size)[::-1] binN = bin(N)[2:].zfill(size)[::-1] #control qubit if control == True: qc.append(cirq.X(qubits[0])) # x = 3,2,1,0 for i in range(size): if binX[i] == "1": qc.append(cirq.X(qubits[i+1])) for i in range(size): if binN[i] == "1": qc.append(cirq.X(qubits[4*size + 2 + i])) qc.append(cirq.measure(*qubits[0:5*size + 3], key='m1')) qc.append(Modular_multiplier(size, N, a, qubits[0:(5*size+3)])) qc.append(cirq.measure(*qubits[0:5*size + 3], key='m2')) simulator = cirq.Simulator() results = simulator.run(qc , repetitions =1) first_set = np.array2string(results.measurements['m1'][0], separator='')[1:-1][::-1] second_set = np.array2string(results.measurements['m2'][0], separator='')[1:-1][::-1] print("f " + first_set) print('s ' + second_set) x = int(first_set[4*size + 2: 5*size + 2], 2) print(first_set[4*size + 2: 5*size + 2]) b = int(first_set[2*size + 1: 3*size + 2], 2) bout = int(second_set[2*size + 1: 3*size + 2], 2) print("control " + str(control)) print("size = " + str(size)) print('b = ' + str(b)) print('a = ' + str(a)) print('x = ' + str(x)) print("N = " + str(N)) print('b out = ' + str(bout)) print('\n\n') if (control == False): assert(bout == x) else: assert((a * x) % N == bout) @given(draw_pair_of_ints_and_mod()) @settings(deadline=None) def test_modular_adder(vals): a = vals[0] b = vals[1] size = vals[2] N = vals[3] qubits = cirq.LineQubit.range(4*size + 2) qc = cirq.Circuit() binA = bin(a)[2:].zfill(size)[::-1] binB = bin(b)[2:].zfill(size)[::-1] binN = bin(N)[2:].zfill(size)[::-1] print("size " + str(size)) print("a " + str(a)) print("b " + str(b)) print("N " + str(N)) print("\n") # a = 3,2,1,0 for i in range(size): if binA[i] == "1": qc.append(cirq.X(qubits[i])) # b = 8,7,6,5,4 for i in range(size): if binB[i] == "1": qc.append(cirq.X(qubits[i+size])) # carry = 12,11,10,9 # modulus N = 16,15,14,13 for i in range(size): if binN[i] == "1": qc.append(cirq.X(qubits[3*size + 1 + i])) # temporary carry = 17 #print(qc) qc.append(cirq.measure(*qubits[0:4*size+2], key='m1')) qc.append(Modular_adder(size,N, qubits[0:4*size+2])) qc.append(cirq.measure(*qubits[0:4*size+2], key='m2')) simulator = cirq.Simulator() results = simulator.run(qc , repetitions =1) first_set = np.array2string(results.measurements['m1'][0], separator='')[1:-1][::-1] second_set = np.array2string(results.measurements['m2'][0], separator='')[1:-1][::-1] a = int(first_set[3*size + 2: 4*size + 2], 2) b = int(first_set[2*size + 1: 3*size + 2], 2) bout = int(second_set[2*size + 1: 3*size + 2], 2) print('a = ' + str(a)) print('b = ' + str(b)) print('b out = ' + str(bout)) print('\n\n') assert((a+b)%N == bout) @given(draw_pair_of_ints()) @settings(deadline=None) def test_add_using_VBE_Adder(vals): a = vals[0] b = vals[1] size = vals[2] qubits = cirq.LineQubit.range(3*size + 1) qc = cirq.Circuit() binA = bin(a)[2:].zfill(size)[::-1] binB = bin(b)[2:].zfill(size)[::-1] print("size " + str(size)) print("a " + str(a)) print(binA) print("b " + str(b)) print(binB) # a = 3,2,1,0 for i in range(size): if binA[i] == "1": qc.append(cirq.X(qubits[i])) # b = 8,7,6,5,4 for i in range(size): if binB[i] == "1": qc.append(cirq.X(qubits[i+size])) # carry = 12,11,10,9 qc.append(cirq.measure(*qubits[0:3*size+1], key='m1')) qc.append(VBE_Adder(size, qubits[0:3*size+1])) qc.append(cirq.measure(*qubits[0:3*size+1], key='m2')) simulator = cirq.Simulator() results = simulator.run(qc , repetitions =1) first_set = np.array2string(results.measurements['m1'][0], separator='')[1:-1][::-1] second_set = np.array2string(results.measurements['m2'][0], separator='')[1:-1][::-1] a = int(first_set[2*size + 1: 3*size + 1],2) b = int(first_set[size: 2*size + 1],2) bout = int(second_set[size: 2*size + 1],2) carry = int(second_set[0: size],2) print('a = ' + str(a)) print('b = ' + str(b)) print('b out = ' + str(bout)) print('\n\n') assert(a+b == bout) assert(carry == 0) @given(draw_pair_of_ints()) @settings(deadline=None) def test_subtract_using_VBE_Adder_inverse(vals): a = vals[0] b = vals[1] size = vals[2] qubits = cirq.LineQubit.range(3*size + 1) qc = cirq.Circuit() binA = bin(a)[2:].zfill(size)[::-1] binB = bin(b)[2:].zfill(size)[::-1] print("size " + str(size)) print("a " + str(a)) print(binA) print("b " + str(b)) print(binB) # a = 3,2,1,0 for i in range(size): if binA[i] == "1": qc.append(cirq.X(qubits[i])) # b = 8,7,6,5,4 for i in range(size): if binB[i] == "1": qc.append(cirq.X(qubits[i+size])) # carry = 12,11,10,9 qc.append(cirq.measure(*qubits[0:3*size+1], key='m1')) qc.append(cirq.inverse(VBE_Adder(size,qubits[0:3*size+1]))) qc.append(cirq.measure(*qubits[0:3*size+1], key='m2')) simulator = cirq.Simulator() results = simulator.run(qc , repetitions =1) first_set = np.array2string(results.measurements['m1'][0], separator='')[1:-1][::-1] second_set = np.array2string(results.measurements['m2'][0], separator='')[1:-1][::-1] a = int(first_set[2*size + 1: 3*size + 1],2) b = int(first_set[size: 2*size + 1],2) if (b < a): bout = twos_comp_to_int(second_set[size: 2*size + 1]) else: bout = int(second_set[size: 2*size + 1],2) carry = int(second_set[0: size],2) print('a = ' + str(a)) print('b = ' + str(b)) print('b out = ' + str(bout)) print('\n\n') assert(b-a == bout) assert(carry == 0) if __name__ == '__main__': #test_shors_with_postpro() #test_modular_exponentiation() #test_modular_multiplier_then_inverse_returns_original_values() test_modular_multiplier() #test_modular_adder() #test_add_using_VBE_Adder() #test_subtract_using_VBE_Adder_inverse()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.algorithms import AmplificationProblem # the state we desire to find is '11' good_state = ['11'] # specify the oracle that marks the state '11' as a good solution oracle = QuantumCircuit(2) oracle.cz(0, 1) # define Grover's algorithm problem = AmplificationProblem(oracle, is_good_state=good_state) # now we can have a look at the Grover operator that is used in running the algorithm # (Algorithm circuits are wrapped in a gate to appear in composition as a block # so we have to decompose() the op to see it expanded into its component gates.) problem.grover_operator.decompose().draw(output='mpl') from qiskit.algorithms import Grover from qiskit.primitives import Sampler grover = Grover(sampler=Sampler()) result = grover.amplify(problem) print('Result type:', type(result)) print() print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement:', result.top_measurement) from qiskit.quantum_info import Statevector oracle = Statevector.from_label('11') problem = AmplificationProblem(oracle, is_good_state=['11']) grover = Grover(sampler=Sampler()) result = grover.amplify(problem) print('Result type:', type(result)) print() print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement:', result.top_measurement) problem.grover_operator.oracle.decompose().draw(output='mpl') from qiskit.circuit.library.phase_oracle import PhaseOracle from qiskit.exceptions import MissingOptionalLibraryError # `Oracle` (`PhaseOracle`) as the `oracle` argument expression = '(a & b)' try: oracle = PhaseOracle(expression) problem = AmplificationProblem(oracle) display(problem.grover_operator.oracle.decompose().draw(output='mpl')) except MissingOptionalLibraryError as ex: print(ex) import numpy as np # Specifying `state_preparation` # to prepare a superposition of |01>, |10>, and |11> oracle = QuantumCircuit(3) oracle.ccz(0, 1, 2) theta = 2 * np.arccos(1 / np.sqrt(3)) state_preparation = QuantumCircuit(3) state_preparation.ry(theta, 0) state_preparation.ch(0,1) state_preparation.x(1) state_preparation.h(2) # we only care about the first two bits being in state 1, thus add both possibilities for the last qubit problem = AmplificationProblem(oracle, state_preparation=state_preparation, is_good_state=['110', '111']) # state_preparation print('state preparation circuit:') problem.grover_operator.state_preparation.draw(output='mpl') grover = Grover(sampler=Sampler()) result = grover.amplify(problem) print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement:', result.top_measurement) oracle = QuantumCircuit(5) oracle.ccz(0, 1, 2) oracle.draw(output='mpl') from qiskit.circuit.library import GroverOperator grover_op = GroverOperator(oracle, insert_barriers=True) grover_op.decompose().draw(output='mpl') grover_op = GroverOperator(oracle, reflection_qubits=[0, 1, 2], insert_barriers=True) grover_op.decompose().draw(output='mpl') # a list of binary strings good state oracle = QuantumCircuit(2) oracle.cz(0, 1) good_state = ['11', '00'] problem = AmplificationProblem(oracle, is_good_state=good_state) print(problem.is_good_state('11')) # a list of integer good state oracle = QuantumCircuit(2) oracle.cz(0, 1) good_state = [0, 1] problem = AmplificationProblem(oracle, is_good_state=good_state) print(problem.is_good_state('11')) from qiskit.quantum_info import Statevector # `Statevector` good state oracle = QuantumCircuit(2) oracle.cz(0, 1) good_state = Statevector.from_label('11') problem = AmplificationProblem(oracle, is_good_state=good_state) print(problem.is_good_state('11')) # Callable good state def callable_good_state(bitstr): if bitstr == "11": return True return False oracle = QuantumCircuit(2) oracle.cz(0, 1) problem = AmplificationProblem(oracle, is_good_state=good_state) print(problem.is_good_state('11')) # integer iteration oracle = QuantumCircuit(2) oracle.cz(0, 1) problem = AmplificationProblem(oracle, is_good_state=['11']) grover = Grover(iterations=1) # list iteration oracle = QuantumCircuit(2) oracle.cz(0, 1) problem = AmplificationProblem(oracle, is_good_state=['11']) grover = Grover(iterations=[1, 2, 3]) # using sample_from_iterations oracle = QuantumCircuit(2) oracle.cz(0, 1) problem = AmplificationProblem(oracle, is_good_state=['11']) grover = Grover(iterations=[1, 2, 3], sample_from_iterations=True) iterations = Grover.optimal_num_iterations(num_solutions=1, num_qubits=8) iterations def to_DIAMACS_CNF_format(bit_rep): return [index+1 if val==1 else -1 * (index + 1) for index, val in enumerate(bit_rep)] oracle = QuantumCircuit(2) oracle.cz(0, 1) problem = AmplificationProblem(oracle, is_good_state=['11'], post_processing=to_DIAMACS_CNF_format) problem.post_processing([1, 0, 1]) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/Soumyo2121/Basic-Quantum-Algorithms
Soumyo2121
from qiskit import * from qiskit.visualization import plot_histogram qc = QuantumCircuit(3,3) qc.h(0) qc.cx(0,1) qc.cx(1,2) qc.measure([0,1,2],[0,1,2]) qc.draw('mpl') simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend = simulator, shots = 1024).result() plot_histogram(result.get_counts(qc)) from qiskit import IBMQ IBMQ.save_account('a9783f33a64e88d038689c3d3a67cb4235d7715268ca95f986cf1e3e514cd601c77d52d8d8cffda397c63ad4f4cd488a6e907452415bf854dd028ae21c78c927') IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') device = provider.get_backend('ibmqx2') job = execute(qc, backend = device, shots = 1024) print(job.job_id()) from qiskit.tools.monitor import job_monitor job_monitor(job) device_result = job.result() plot_histogram(device_result.get_counts(qc)) from qiskit.ignis.mitigation.measurement import (complete_meas_cal, CompleteMeasFitter) cal_circuits, state_labels = complete_meas_cal(qr = qc.qregs[0], circlabel = 'measerrormitigationcal') cal_circuits[2].draw('mpl') len(cal_circuits) cal_job = execute(cal_circuits, backend = device, shots = 1024, optimization_level = 0) print(cal_job.job_id()) job_monitor(cal_job) cal_results = cal_job.result() plot_histogram(cal_results.get_counts(cal_circuits[3])) meas_fitter = CompleteMeasFitter(cal_results, state_labels) meas_fitter.plot_calibration() meas_filter = meas_fitter.filter mitigated_result = meas_filter.apply(device_result) device_counts = device_result.get_counts(qc) mitigated_counts = mitigated_result.get_counts(qc) plot_histogram([device_counts,mitigated_counts], legend = ['device, noisy', 'device,mitigated']) circuit = QuantumCircuit(3,3) circuit.x(1) circuit.h(0) circuit.cx(0,1) circuit.cx(1,2) circuit.measure([0,1,2],[0,1,2]) circuit.draw('mpl') plot_histogram(execute(circuit, backend = simulator, shots = 1024).result().get_counts(circuit)) device_counts_1 = execute(circuit, backend = device,shots = 1024).result().get_counts(circuit) plot_histogram(device_counts_1) device_mitigated_counts_1 = meas_filter.apply(device_counts_1) plot_histogram(device_mitigated_counts_1)
https://github.com/bagmk/qiskit-quantum-state-classifier
bagmk
#!/usr/bin/env python # coding: utf-8 # In[ ]: import numpy as np import time import copy from qiskit import transpile def circuit_builder(Circuit, q_list, state_1, state_2): if state_1 == "GHZ": Circuit.h(q_list[0]) Circuit.cx(q_list[0],q_list[1]) Circuit.cx(q_list[1],q_list[2]) elif state_1[0] == "W": Circuit.x(q_list[2]) Circuit.ry(-0.955316618124509, q_list[1]) Circuit.cz(q_list[2],q_list[1]) Circuit.ry(0.955316618124509, q_list[1]) Circuit.ry(-np.pi/4, q_list[0]) Circuit.cz(q_list[1],q_list[0]) Circuit.ry(np.pi/4, q_list[0]) Circuit.cx(q_list[0],q_list[1]) Circuit.cx(q_list[0],q_list[2]) Circuit.cx(q_list[1],q_list[2]) if state_1[1:] == "bar": Circuit.x(q_list[0]) Circuit.x(q_list[1]) Circuit.x(q_list[2]) # common for Phi+ and Phi+ states: Circuit.h(q_list[3]) Circuit.cx(q_list[3],q_list[4]) if state_2 == "Psi+": Circuit.x(q_list[4]) return Circuit def add_barrier_and_measure(Circuit, q_list): Circuit.barrier() Circuit.measure(q_list,q_list) return Circuit def prepare_circuits(qubit_list,cqi_list, circ_ori, nb_trials, level, seed_trans, device, coupling_map, nb_id_gates=0, verbose=False): #version with a limit of trials start_time = time.strftime('%d/%m/%Y %H:%M:%S') print("Start at DMY: ",start_time) summary_dic = {} for cqi in cqi_list: circuit = copy.deepcopy(circ_ori[cqi]) if nb_id_gates > 0: circuit.barrier() for id_nb_id_gates in range(nb_id_gates): for index, value in enumerate(qubit_list): circuit.id(value) add_barrier_and_measure(circuit, qubit_list) summary = [] depth_list = [] count_run = 0 max_count_run = nb_trials * 3 break_flag = False for j in range(nb_trials): if seed_trans != None: seed_transpiler=seed_trans[j*len(cqi_list)+1] else: seed_transpiler = None new_depth = 0 while not break_flag and (new_depth == 0 or depth_list.count(new_depth) != 0): Q_state_opt_new = transpile(circuit, backend=device, coupling_map = coupling_map, seed_transpiler=seed_transpiler, optimization_level=level, initial_layout=qubit_list) new_depth = Q_state_opt_new.depth() if count_run == 0: to_insert = {"depth": new_depth, 'circuit':Q_state_opt_new} count_run += 1 if count_run == max_count_run: break_flag = True if not break_flag: depth_list.append(new_depth) summary.append({"depth": new_depth, 'circuit':Q_state_opt_new}) if break_flag: len_list = len(depth_list) for i_trial in range(nb_trials - len_list): summary.insert(0, to_insert) break time_exp = time.strftime('%d/%m/%Y %H:%M:%S') if verbose: print("%2i" % cqi,"DMY: ",time_exp) summary_dic[cqi] = summary end_time = time.strftime('%d/%m/%Y %H:%M:%S') print("Completed at DMY: ",end_time) return summary_dic
https://github.com/codigoscupom/QuantumAlgs
codigoscupom
import numpy as np from qiskit import * # Create a Quantum Circuit acting on a quantum register of three qubits circ = QuantumCircuit(3) # Add a H gate on qubit 0, putting this qubit in superposition. circ.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting # the qubits in a Bell state. circ.cx(0, 1) # Add a CX (CNOT) gate on control qubit 0 and target qubit 2, putting # the qubits in a GHZ state. circ.cx(0, 2) # circ.draw('mpl')
https://github.com/apcarrik/qiskit-dev
apcarrik
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from matplotlib import pyplot ### Drawing a Quantum Circuit # Build a quantum circuit circuit = QuantumCircuit(3,3) circuit.x(1) circuit.h(range(3)) circuit.cx(0,1) circuit.measure(range(3), range(3)) # Print ASCII art version of circuit diagram to stdout print(circuit) ### Alternative Renderers for Circuits # Create matplotlib circuit diagram circuit.draw('mpl') pyplot.show() # # Create matplotlib circuit diagram # circuit.draw('latex') # # TODO: this does not work - need to figure out why ### Customizing the Output # Draw a new circuit with barriers and more registers q_a = QuantumRegister(3, name='qa') q_b = QuantumRegister(5, name='qb') c_a = ClassicalRegister(3) c_b = ClassicalRegister(5) circuit = QuantumCircuit(q_a, q_b, c_a, c_b) circuit.x(q_a[1]) circuit.x(q_b[1]) circuit.x(q_b[2]) circuit.x(q_b[4]) circuit.barrier() circuit.h(q_a) circuit.barrier(q_a) circuit.h(q_b) circuit.cswap(q_b[0], q_b[1], q_b[2]) circuit.cswap(q_b[2], q_b[3], q_b[4]) circuit.cswap(q_b[3], q_b[4], q_b[0]) circuit.barrier(q_b) circuit.measure(q_a, c_a) circuit.measure(q_b, c_b) # Draw the circuit circuit.draw('mpl') pyplot.show() # Draw the circuit with reversed bit order circuit.draw('mpl', reverse_bits=True) pyplot.show() # Draw the circuit without barriers circuit.draw('mpl', plot_barriers=False) pyplot.show() ### Backend-specific Customizations # Set the line length to 80 for above circuit print(circuit) # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} circuit.draw('mpl', style=style) pyplot.show() # Scale the mpl output to 1/2 the normal size circuit.draw('mpl', scale=0.5) pyplot.show() ### Display using circuit_drawer() as function from qiskit.tools.visualization import circuit_drawer circuit_drawer(circuit, output='mpl', plot_barriers=False)
https://github.com/QC-Hub/Examples
QC-Hub
import matplotlib.pyplot as plt import numpy as np from math import pi from qiskit import QuantumCircuit ,QuantumRegister ,ClassicalRegister, execute from qiskit.tools.visualization import circuit_drawer from qiskit.quantum_info import state_fidelity from qiskit import BasicAer backend = BasicAer.get_backend('unitary_simulator') q = QuantumRegister(1) qc = QuantumCircuit(q) qc.u3(pi/2 ,pi/2 ,pi/2 ,q) qc.draw() job = execute(qc, backend) job.result().get_unitary(qc, decimals=3)
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
''' This program realises the quantum k-means algorithm ''' import numpy as np from qiskit import * from qiskit.tools.visualization import plot_histogram from matplotlib.pyplot import plot, draw, show circuit_name = 'k_means' backend = Aer.get_backend('qasm_simulator') theta_list = [0.01, 0.02, 0.03, 0.04, 0.05, 1.31, 1.32, 1.33, 1.34, 1.35] qr = QuantumRegister(5,'q') cr = ClassicalRegister(5, 'c') qc = QuantumCircuit(qr, cr, name=circuit_name) # define a loop to compute the distance between each pair of points for i in range(len(theta_list)-1): for j in range(1,len(theta_list)-i): # set the parameters theta about different points theta_1 = theta_list[i] theta_2 = theta_list[i+j] qc.h(qr[2]) qc.h(qr[1]) qc.h(qr[4]) qc.u3(theta_1, np.pi, np.pi, qr[1]) qc.u3(theta_2, np.pi, np.pi, qr[4]) qc.cswap(qr[2], qr[1], qr[4]) qc.h(qr[2]) qc.measure(qr[2], cr[2]) qc.reset(qr) job = execute(qc, backend=backend, shots=1024) result = job.result() print(result.get_counts()) print('theta_1: ', theta_1, '\t', 'theta_2: ', theta_2) plot_histogram(result.get_counts())
https://github.com/GyeonghunKim/2022-Feb-Qiskit-Metal-Study
GyeonghunKim
%load_ext autoreload %autoreload 2 import numpy as np import qiskit_metal as metal from qiskit_metal import designs, draw from qiskit_metal import MetalGUI, Dict, open_docs %metal_heading Welcome to Qiskit Metal Study! # To start qiskit-metal, you have to create instance of below two. # After runing this cell, metal gui will appear. design = designs.DesignPlanar() gui = MetalGUI(design) # If you delete all components in the current design, you can use delete_all_components method. design.delete_all_components() # To apply changes in design instance to your gui, you can use rebuild method in gui. gui.rebuild() # You can import templated qubit class from qiskit_metal.qlibrary.qubits. # For transmon pocket, from qiskit_metal.qlibrary.qubits.transmon_pocket import TransmonPocket # For most simplest case, you can create TransmonPocket instance with default options as below. # Methods for creating QComponent with options will be explained in the section 2.4 # Please ignore warnings here. These are caused by Shapely's future update, and would not make any troubles now. q1 = TransmonPocket(design, 'Q1') gui.rebuild() # If you call TransmonPocket instance, you can see the parameters of it. q1 # Above options are same with TransmonPocket's default option TransmonPocket.default_options # If you want to change parameters of Transmon qubit, # you can simply change the parameters in the q1.options as below q1.options.pos_x = '2.0 mm' # Note that if you don't input the unit here, default length unit is mm not um. q1.options.pos_y = '2.0 mm' q1.options.pad_height = '250 um' q1.options.pad_width = '300 um' # By rebuilding gui, you can check the parameters are changed. gui.rebuild() # In many cases, copying QComponents is very useful. # To copy single QComponent, you can use copy_qcomponent method for design instance. q2 = design.copy_qcomponent(q1, 'Q2') # If you want to change parameters for copyed object, you can do it with two different way. # First method is same with above explained changing parameters. q2.options.pos_x = '-2.0mm' gui.rebuild() # By runing below, you can automatly scale the gui. gui.autoscale() # Second method is giving options to the copy_qcomponent as below. q3 = design.copy_qcomponent(q1, 'Q3', dict(pos_x='-4.0mm')) # If you want to copy multiple qcomponent, you can use below method. newcopies = design.copy_multiple_qcomponents([q1, q2], ['Q3', 'Q4'], [dict(pos_y='-2.0mm'), dict(pos_y='-2.0mm')]) gui.rebuild() gui.autoscale() design.delete_all_components() gui.rebuild() # To create Transmon Qubit with option, the only thing you have to do is # creating dictionary of options and give it as a input when you create TransmonPocket instance. # You can give options directly, without create dictionary as variable, like below, # Adding connection pads also can be done by add "connection_pads" in your option dictionary as below. q1 = TransmonPocket(design, 'Q1', options = dict( pos_x='-1.5mm', pos_y='+0.0mm', pad_width = '425 um', pocket_height = '650um', connection_pads = dict( a = dict(loc_W=+1,loc_H=+1), # (low_W, low_H) = (1, 1) => First Quadrant b = dict(loc_W=-1,loc_H=+1, pad_height='30um'), # (low_W, low_H) = (-1, 1) => Second Quadrant c = dict(loc_W=+1,loc_H=-1, pad_width='200um'), # (low_W, low_H) = (1, -1) => Fourth Quadrant d = dict(loc_W=-1,loc_H=-1, pad_height='50um') # (low_W, low_H) = (-1, -1) => Third Quadrant ) # Note that connection_pads have two geometrical options pad_height and pad_weight. # You can modify those values from default, by add them in option as above. ) ) gui.rebuild() design.delete_all_components() gui.rebuild() # I prefer below method, which is very convenient for reusing the parameters. optionsQ = dict( pad_width = '425 um', pocket_height = '650um', connection_pads = dict( # Qbits defined to have 4 pins a = dict(loc_W=+1,loc_H=+1), b = dict(loc_W=-1,loc_H=+1, pad_height='30um'), c = dict(loc_W=+1,loc_H=-1, pad_width='200um'), d = dict(loc_W=-1,loc_H=-1, pad_height='50um') ) ) q1 = TransmonPocket(design, 'Q1', options = dict(pos_x='-1.5mm', pos_y='+0.0mm', **optionsQ)) q2 = TransmonPocket(design, 'Q2', options = dict(pos_x='+0.35mm', pos_y='+1.0mm', orientation = '90',**optionsQ)) q3 = TransmonPocket(design, 'Q3', options = dict(pos_x='2.0mm', pos_y='+0.0mm', **optionsQ)) gui.rebuild() gui.autoscale() gui.highlight_components(['Q1', 'Q2', 'Q3']) # This is to show the pins, so we can choose what to connect gui.rebuild() gui.autoscale() # You can import RouteMeander class as below from qiskit_metal.qlibrary.tlines.meandered import RouteMeander # Same with TransmonPocket, it also have its default options RouteMeander.get_template_options(design) # Connecting two TransmonPocket with RouteMinder is very easy. # It can be done by setting start_pin and end_pin in option as below ops=dict(fillet='90um') options = Dict( total_length= '8mm', # This parameter is key parameter for changing resonant frequency hfss_wire_bonds = True, pin_inputs=Dict( start_pin=Dict( component= 'Q1', # Start component Name pin= 'a'), # Start Pin in component end_pin=Dict( component= 'Q2', pin= 'b')), lead=Dict( start_straight='0mm', # How long go straight from the starting point end_straight='0.5mm'), # How long go straight to the end point meander=Dict( asymmetry='-1mm'), **ops # Remark that this syntax usually used for reusing options. ) cpw = RouteMeander(design, options=options) gui.rebuild() gui.autoscale() cpw.options.lead.start_straight='100um' gui.rebuild() gui.autoscale() cpw.options['fillet']='30um' gui.rebuild() gui.autoscale() from collections import OrderedDict jogs = OrderedDict() jogs[0] = ["L", '800um'] jogs[1] = ["L", '500um'] jogs[2] = ["R", '200um'] jogs[3] = ["R", '500um'] options = Dict( total_length= '14mm', pin_inputs=Dict( start_pin=Dict( component= 'Q1', pin= 'd'), end_pin=Dict( component= 'Q3', pin= 'd')), lead=Dict( start_straight='0.1mm', end_straight='0.1mm', start_jogged_extension=jogs, end_jogged_extension=jogs), meander=Dict( asymmetry='-1.2mm'), **ops ) try: cpw5.delete() except NameError: pass cpw5 = RouteMeander(design,options=options) gui.rebuild() gui.autoscale() # Before showing examples of anchors, I will reset design and add some new transmon pockets. design.delete_all_components() gui.rebuild() options = dict( pad_width = '425 um', pocket_height = '650um', connection_pads=dict( # pin connectors a = dict(loc_W=+1,loc_H=+1), b = dict(loc_W=-1,loc_H=+1, pad_height='30um'), c = dict(loc_W=+1,loc_H=-1, pad_width='200um'), d = dict(loc_W=-1,loc_H=-1, pad_height='50um') ) ) q0 = TransmonPocket(design, 'Q0', options = dict(pos_x='-1.0mm', pos_y='-1.0mm', **options)) q1 = TransmonPocket(design, 'Q1', options = dict(pos_x='1.0mm', pos_y='+0.0mm', **options)) gui.rebuild() gui.autoscale() # You can import RoutePathfinder as below from qiskit_metal.qlibrary.tlines.pathfinder import RoutePathfinder from collections import OrderedDict # You should add anchors in OrderedDict because the order in anchors are very important. anchors = OrderedDict() anchors[0] = np.array([-0.452, -0.555]) anchors[1] = np.array([-0.452, -1.5]) anchors[2] = np.array([0.048, -1.5]) options = {'pin_inputs': {'start_pin': {'component': 'Q0', 'pin': 'b'}, 'end_pin': {'component': 'Q1', 'pin': 'b'}}, 'lead': {'start_straight': '91um', 'end_straight': '95um'}, 'step_size': '0.25mm', 'anchors': anchors, **ops } qa = RoutePathfinder(design, 'line', options) gui.rebuild() gui.autoscale()
https://github.com/MuhammadMiqdadKhan/Improvement-of-Quantum-Circuits-Using-H-U-H-Sandwich-Technique-with-Diagonal-Matrix-Implementation
MuhammadMiqdadKhan
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * # Loading your IBM Q account(s) provider = IBMQ.load_account() import scipy from scipy.stats import unitary_group u = unitary_group.rvs(2) print(u) qc = QuantumCircuit(2) qc.iso(u, [0], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(2) import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (2): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(2) qc.diagonal(c2, [0]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(4) print(u) qc = QuantumCircuit(4) qc.iso(u, [0,1], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(4)/2 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (4): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(4) qc.diagonal(c2, [0, 1]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(8) print(u) qc = QuantumCircuit(4) qc.iso(u, [0, 1, 2], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(8)/3 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (8): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(4) qc.diagonal(c2, [0, 1, 2]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(16) print(u) qc = QuantumCircuit(4) qc.iso(u, [0, 1, 2, 3], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(16)/4 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (16): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(4) qc.diagonal(c2, [0, 1, 2, 3]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(32) print(u) qc = QuantumCircuit(8) qc.iso(u, [0, 1, 2, 3, 4], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(32)/5 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (32): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(8) qc.diagonal(c2, [0, 1, 2, 3, 4]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(64) print(u) qc = QuantumCircuit(8) qc.iso(u, [0, 1, 2, 3, 4, 5], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(64)/6 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (64): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(8) qc.diagonal(c2, [0, 1, 2, 3, 4, 5]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(128) print(u) qc = QuantumCircuit(8) qc.iso(u, [0, 1, 2, 3, 4, 5, 6], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(128)/7 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (128): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(8) qc.diagonal(c2, [0, 1, 2, 3, 4, 5, 6]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(256) print(u) qc = QuantumCircuit(8) qc.iso(u, [0, 1, 2, 3, 4, 5, 6, 7], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(256)/8 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (256): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(8) qc.diagonal(c2, [0, 1, 2, 3, 4, 5, 6, 7]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(512) print(u) qc = QuantumCircuit(16) qc.iso(u, [0, 1, 2, 3, 4, 5, 6, 7, 8], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(512)/9 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (512): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(16) qc.diagonal(c2, [0, 1, 2, 3, 4, 5, 6, 7, 8]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(1024) print(u) qc = QuantumCircuit(16) qc.iso(u, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(1024)/10 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (1024): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(16) qc.diagonal(c2, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import transpile from qiskit import QuantumCircuit from qiskit.providers.fake_provider import FakeVigoV2 backend = FakeVigoV2() qc = QuantumCircuit(2, 1) qc.h(0) qc.x(1) qc.cp(np.pi/4, 0, 1) qc.h(0) qc.measure([0], [0]) qc_basis = transpile(qc, backend) qc_basis.draw(output='mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.quantum_info import Operator from qiskit.transpiler.passes import UnitarySynthesis circuit = QuantumCircuit(1) circuit.rx(0.8, 0) unitary = Operator(circuit).data unitary_circ = QuantumCircuit(1) unitary_circ.unitary(unitary, [0]) synth = UnitarySynthesis(basis_gates=["h", "s"], method="sk") out = synth(unitary_circ) out.draw('mpl')
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test the TemplateOptimization pass.""" import unittest from test.python.quantum_info.operators.symplectic.test_clifford import random_clifford_circuit import numpy as np from qiskit import QuantumRegister, QuantumCircuit from qiskit.circuit import Parameter from qiskit.quantum_info import Operator from qiskit.circuit.library.templates.nct import template_nct_2a_2, template_nct_5a_3 from qiskit.circuit.library.templates.clifford import ( clifford_2_1, clifford_2_2, clifford_2_3, clifford_2_4, clifford_3_1, clifford_4_1, clifford_4_2, ) from qiskit.converters.circuit_to_dag import circuit_to_dag from qiskit.converters.circuit_to_dagdependency import circuit_to_dagdependency from qiskit.transpiler import PassManager from qiskit.transpiler.passes import TemplateOptimization from qiskit.transpiler.passes.calibration.rzx_templates import rzx_templates from qiskit.test import QiskitTestCase from qiskit.transpiler.exceptions import TranspilerError def _ry_to_rz_template_pass(parameter: Parameter = None, extra_costs=None): """Create a simple pass manager that runs a template optimisation with a single transformation. It turns ``RX(pi/2).RY(parameter).RX(-pi/2)`` into the equivalent virtual ``RZ`` rotation, where if ``parameter`` is given, it will be the instance used in the template.""" if parameter is None: parameter = Parameter("_ry_rz_template_inner") template = QuantumCircuit(1) template.rx(-np.pi / 2, 0) template.ry(parameter, 0) template.rx(np.pi / 2, 0) template.rz(-parameter, 0) # pylint: disable=invalid-unary-operand-type costs = {"rx": 16, "ry": 16, "rz": 0} if extra_costs is not None: costs.update(extra_costs) return PassManager(TemplateOptimization([template], user_cost_dict=costs)) class TestTemplateMatching(QiskitTestCase): """Test the TemplateOptimization pass.""" def test_pass_cx_cancellation_no_template_given(self): """ Check the cancellation of CX gates for the apply of the three basic template x-x, cx-cx. ccx-ccx. """ qr = QuantumRegister(3) circuit_in = QuantumCircuit(qr) circuit_in.h(qr[0]) circuit_in.h(qr[0]) circuit_in.cx(qr[0], qr[1]) circuit_in.cx(qr[0], qr[1]) circuit_in.cx(qr[0], qr[1]) circuit_in.cx(qr[0], qr[1]) circuit_in.cx(qr[1], qr[0]) circuit_in.cx(qr[1], qr[0]) pass_manager = PassManager() pass_manager.append(TemplateOptimization()) circuit_in_opt = pass_manager.run(circuit_in) circuit_out = QuantumCircuit(qr) circuit_out.h(qr[0]) circuit_out.h(qr[0]) self.assertEqual(circuit_in_opt, circuit_out) def test_pass_cx_cancellation_own_template(self): """ Check the cancellation of CX gates for the apply of a self made template cx-cx. """ qr = QuantumRegister(2, "qr") circuit_in = QuantumCircuit(qr) circuit_in.h(qr[0]) circuit_in.h(qr[0]) circuit_in.cx(qr[0], qr[1]) circuit_in.cx(qr[0], qr[1]) circuit_in.cx(qr[0], qr[1]) circuit_in.cx(qr[0], qr[1]) circuit_in.cx(qr[1], qr[0]) circuit_in.cx(qr[1], qr[0]) dag_in = circuit_to_dag(circuit_in) qrt = QuantumRegister(2, "qrc") qct = QuantumCircuit(qrt) qct.cx(0, 1) qct.cx(0, 1) template_list = [qct] pass_ = TemplateOptimization(template_list) dag_opt = pass_.run(dag_in) circuit_expected = QuantumCircuit(qr) circuit_expected.h(qr[0]) circuit_expected.h(qr[0]) dag_expected = circuit_to_dag(circuit_expected) self.assertEqual(dag_opt, dag_expected) def test_pass_cx_cancellation_template_from_library(self): """ Check the cancellation of CX gates for the apply of the library template cx-cx (2a_2). """ qr = QuantumRegister(2, "qr") circuit_in = QuantumCircuit(qr) circuit_in.h(qr[0]) circuit_in.h(qr[0]) circuit_in.cx(qr[0], qr[1]) circuit_in.cx(qr[0], qr[1]) circuit_in.cx(qr[0], qr[1]) circuit_in.cx(qr[0], qr[1]) circuit_in.cx(qr[1], qr[0]) circuit_in.cx(qr[1], qr[0]) dag_in = circuit_to_dag(circuit_in) template_list = [template_nct_2a_2()] pass_ = TemplateOptimization(template_list) dag_opt = pass_.run(dag_in) circuit_expected = QuantumCircuit(qr) circuit_expected.h(qr[0]) circuit_expected.h(qr[0]) dag_expected = circuit_to_dag(circuit_expected) self.assertEqual(dag_opt, dag_expected) def test_pass_template_nct_5a(self): """ Verify the result of template matching and substitution with the template 5a_3. q_0: ───────■─────────■────■── ┌─┴─┐ ┌─┴─┐ │ q_1: ──■──┤ X ├──■──┤ X ├──┼── ┌─┴─┐└───┘┌─┴─┐└───┘┌─┴─┐ q_2: ┤ X ├─────┤ X ├─────┤ X ├ └───┘ └───┘ └───┘ The circuit before optimization is: ┌───┐ ┌───┐ qr_0: ┤ X ├───────────────┤ X ├───── └─┬─┘ ┌───┐┌───┐└─┬─┘ qr_1: ──┼────■──┤ X ├┤ Z ├──┼────■── │ │ └─┬─┘└───┘ │ │ qr_2: ──┼────┼────■────■────■────┼── │ │ ┌───┐┌─┴─┐ │ │ qr_3: ──■────┼──┤ H ├┤ X ├──■────┼── │ ┌─┴─┐└───┘└───┘ ┌─┴─┐ qr_4: ──■──┤ X ├───────────────┤ X ├ └───┘ └───┘ The match is given by [0,1][1,2][2,7], after substitution the circuit becomes: ┌───┐ ┌───┐ qr_0: ┤ X ├───────────────┤ X ├ └─┬─┘ ┌───┐┌───┐└─┬─┘ qr_1: ──┼───────┤ X ├┤ Z ├──┼── │ └─┬─┘└───┘ │ qr_2: ──┼────■────■────■────■── │ │ ┌───┐┌─┴─┐ │ qr_3: ──■────┼──┤ H ├┤ X ├──■── │ ┌─┴─┐└───┘└───┘ qr_4: ──■──┤ X ├─────────────── └───┘ """ qr = QuantumRegister(5, "qr") circuit_in = QuantumCircuit(qr) circuit_in.ccx(qr[3], qr[4], qr[0]) circuit_in.cx(qr[1], qr[4]) circuit_in.cx(qr[2], qr[1]) circuit_in.h(qr[3]) circuit_in.z(qr[1]) circuit_in.cx(qr[2], qr[3]) circuit_in.ccx(qr[2], qr[3], qr[0]) circuit_in.cx(qr[1], qr[4]) dag_in = circuit_to_dag(circuit_in) template_list = [template_nct_5a_3()] pass_ = TemplateOptimization(template_list) dag_opt = pass_.run(dag_in) # note: cx(2, 1) commutes both with ccx(3, 4, 0) and with cx(2, 4), # so there is no real difference with the circuit drawn on the picture above. circuit_expected = QuantumCircuit(qr) circuit_expected.cx(qr[2], qr[1]) circuit_expected.ccx(qr[3], qr[4], qr[0]) circuit_expected.cx(qr[2], qr[4]) circuit_expected.z(qr[1]) circuit_expected.h(qr[3]) circuit_expected.cx(qr[2], qr[3]) circuit_expected.ccx(qr[2], qr[3], qr[0]) dag_expected = circuit_to_dag(circuit_expected) self.assertEqual(dag_opt, dag_expected) def test_pass_template_wrong_type(self): """ If a template is not equivalent to the identity, it raises an error. """ qr = QuantumRegister(2, "qr") circuit_in = QuantumCircuit(qr) circuit_in.h(qr[0]) circuit_in.h(qr[0]) circuit_in.cx(qr[0], qr[1]) circuit_in.cx(qr[0], qr[1]) circuit_in.cx(qr[0], qr[1]) circuit_in.cx(qr[0], qr[1]) circuit_in.cx(qr[1], qr[0]) circuit_in.cx(qr[1], qr[0]) dag_in = circuit_to_dag(circuit_in) qrt = QuantumRegister(2, "qrc") qct = QuantumCircuit(qrt) qct.cx(0, 1) qct.x(0) qct.h(1) template_list = [qct] pass_ = TemplateOptimization(template_list) self.assertRaises(TranspilerError, pass_.run, dag_in) def test_accept_dagdependency(self): """ Check that users can supply DAGDependency in the template list. """ circuit_in = QuantumCircuit(2) circuit_in.cnot(0, 1) circuit_in.cnot(0, 1) templates = [circuit_to_dagdependency(circuit_in)] pass_ = TemplateOptimization(template_list=templates) circuit_out = PassManager(pass_).run(circuit_in) # these are NOT equal if template optimization works self.assertNotEqual(circuit_in, circuit_out) # however these are equivalent if the operators are the same self.assertTrue(Operator(circuit_in).equiv(circuit_out)) def test_parametric_template(self): """ Check matching where template has parameters. ┌───────────┐ ┌────────┐ q_0: ┤ P(-1.0*β) ├──■────────────■──┤0 ├ ├───────────┤┌─┴─┐┌──────┐┌─┴─┐│ CU(2β)│ q_1: ┤ P(-1.0*β) ├┤ X ├┤ P(β) ├┤ X ├┤1 ├ └───────────┘└───┘└──────┘└───┘└────────┘ First test try match on ┌───────┐ q_0: ┤ P(-2) ├──■────────────■───────────────────────────── ├───────┤┌─┴─┐┌──────┐┌─┴─┐┌───────┐ q_1: ┤ P(-2) ├┤ X ├┤ P(2) ├┤ X ├┤ P(-3) ├──■────────────■── ├───────┤└───┘└──────┘└───┘└───────┘┌─┴─┐┌──────┐┌─┴─┐ q_2: ┤ P(-3) ├───────────────────────────┤ X ├┤ P(3) ├┤ X ├ └───────┘ └───┘└──────┘└───┘ Second test try match on ┌───────┐ q_0: ┤ P(-2) ├──■────────────■──────────────────────────── ├───────┤┌─┴─┐┌──────┐┌─┴─┐┌──────┐ q_1: ┤ P(-2) ├┤ X ├┤ P(2) ├┤ X ├┤ P(3) ├──■────────────■── └┬──────┤└───┘└──────┘└───┘└──────┘┌─┴─┐┌──────┐┌─┴─┐ q_2: ─┤ P(3) ├──────────────────────────┤ X ├┤ P(3) ├┤ X ├ └──────┘ └───┘└──────┘└───┘ """ beta = Parameter("β") template = QuantumCircuit(2) template.p(-beta, 0) template.p(-beta, 1) template.cx(0, 1) template.p(beta, 1) template.cx(0, 1) template.cu(0, 2.0 * beta, 0, 0, 0, 1) def count_cx(qc): """Counts the number of CX gates for testing.""" return qc.count_ops().get("cx", 0) circuit_in = QuantumCircuit(3) circuit_in.p(-2, 0) circuit_in.p(-2, 1) circuit_in.cx(0, 1) circuit_in.p(2, 1) circuit_in.cx(0, 1) circuit_in.p(-3, 1) circuit_in.p(-3, 2) circuit_in.cx(1, 2) circuit_in.p(3, 2) circuit_in.cx(1, 2) pass_ = TemplateOptimization( template_list=[template], user_cost_dict={"cx": 6, "p": 0, "cu": 8}, ) circuit_out = PassManager(pass_).run(circuit_in) np.testing.assert_almost_equal(Operator(circuit_out).data[3, 3], np.exp(-4.0j)) np.testing.assert_almost_equal(Operator(circuit_out).data[7, 7], np.exp(-10.0j)) self.assertEqual(count_cx(circuit_out), 0) # Two matches => no CX gates. np.testing.assert_almost_equal(Operator(circuit_in).data, Operator(circuit_out).data) circuit_in = QuantumCircuit(3) circuit_in.p(-2, 0) circuit_in.p(-2, 1) circuit_in.cx(0, 1) circuit_in.p(2, 1) circuit_in.cx(0, 1) circuit_in.p(3, 1) circuit_in.p(3, 2) circuit_in.cx(1, 2) circuit_in.p(3, 2) circuit_in.cx(1, 2) pass_ = TemplateOptimization( template_list=[template], user_cost_dict={"cx": 6, "p": 0, "cu": 8}, ) circuit_out = PassManager(pass_).run(circuit_in) # these are NOT equal if template optimization works self.assertNotEqual(circuit_in, circuit_out) # however these are equivalent if the operators are the same self.assertTrue(Operator(circuit_in).equiv(circuit_out)) def test_optimizer_does_not_replace_unbound_partial_match(self): """ Test that partial matches with parameters will not raise errors. This tests that if parameters are still in the temporary template after _attempt_bind then they will not be used. """ beta = Parameter("β") template = QuantumCircuit(2) template.cx(1, 0) template.cx(1, 0) template.p(beta, 1) template.cu(0, 0, 0, -beta, 0, 1) circuit_in = QuantumCircuit(2) circuit_in.cx(1, 0) circuit_in.cx(1, 0) pass_ = TemplateOptimization( template_list=[template], user_cost_dict={"cx": 6, "p": 0, "cu": 8}, ) circuit_out = PassManager(pass_).run(circuit_in) # The template optimisation should not have replaced anything, because # that would require it to leave dummy parameters in place without # binding them. self.assertEqual(circuit_in, circuit_out) def test_unbound_parameters_in_rzx_template(self): """ Test that rzx template ('zz2') functions correctly for a simple circuit with an unbound ParameterExpression. This uses the same Parameter (theta) as the template, so this also checks that template substitution handle this correctly. """ theta = Parameter("ϴ") circuit_in = QuantumCircuit(2) circuit_in.cx(0, 1) circuit_in.p(2 * theta, 1) circuit_in.cx(0, 1) pass_ = TemplateOptimization(**rzx_templates(["zz2"])) circuit_out = PassManager(pass_).run(circuit_in) # these are NOT equal if template optimization works self.assertNotEqual(circuit_in, circuit_out) # however these are equivalent if the operators are the same theta_set = 0.42 self.assertTrue( Operator(circuit_in.bind_parameters({theta: theta_set})).equiv( circuit_out.bind_parameters({theta: theta_set}) ) ) def test_two_parameter_template(self): """ Test a two-Parameter template based on rzx_templates(["zz3"]), ┌───┐┌───────┐┌───┐┌────────────┐» q_0: ──■─────────────■──┤ X ├┤ Rz(φ) ├┤ X ├┤ Rz(-1.0*φ) ├» ┌─┴─┐┌───────┐┌─┴─┐└─┬─┘└───────┘└─┬─┘└────────────┘» q_1: ┤ X ├┤ Rz(θ) ├┤ X ├──■─────────────■────────────────» └───┘└───────┘└───┘ « ┌─────────┐┌─────────┐┌─────────┐┌───────────┐┌──────────────┐» «q_0: ┤ Rz(π/2) ├┤ Rx(π/2) ├┤ Rz(π/2) ├┤ Rx(1.0*φ) ├┤1 ├» « └─────────┘└─────────┘└─────────┘└───────────┘│ Rzx(-1.0*φ) │» «q_1: ──────────────────────────────────────────────┤0 ├» « └──────────────┘» « ┌─────────┐ ┌─────────┐┌─────────┐ » «q_0: ─┤ Rz(π/2) ├──┤ Rx(π/2) ├┤ Rz(π/2) ├────────────────────────» « ┌┴─────────┴─┐├─────────┤├─────────┤┌─────────┐┌───────────┐» «q_1: ┤ Rz(-1.0*θ) ├┤ Rz(π/2) ├┤ Rx(π/2) ├┤ Rz(π/2) ├┤ Rx(1.0*θ) ├» « └────────────┘└─────────┘└─────────┘└─────────┘└───────────┘» « ┌──────────────┐ «q_0: ┤0 ├───────────────────────────────── « │ Rzx(-1.0*θ) │┌─────────┐┌─────────┐┌─────────┐ «q_1: ┤1 ├┤ Rz(π/2) ├┤ Rx(π/2) ├┤ Rz(π/2) ├ « └──────────────┘└─────────┘└─────────┘└─────────┘ correctly template matches into a unique circuit, but that it is equivalent to the input circuit when the Parameters are bound to floats and checked with Operator equivalence. """ theta = Parameter("θ") phi = Parameter("φ") template = QuantumCircuit(2) template.cx(0, 1) template.rz(theta, 1) template.cx(0, 1) template.cx(1, 0) template.rz(phi, 0) template.cx(1, 0) template.rz(-phi, 0) template.rz(np.pi / 2, 0) template.rx(np.pi / 2, 0) template.rz(np.pi / 2, 0) template.rx(phi, 0) template.rzx(-phi, 1, 0) template.rz(np.pi / 2, 0) template.rz(-theta, 1) template.rx(np.pi / 2, 0) template.rz(np.pi / 2, 1) template.rz(np.pi / 2, 0) template.rx(np.pi / 2, 1) template.rz(np.pi / 2, 1) template.rx(theta, 1) template.rzx(-theta, 0, 1) template.rz(np.pi / 2, 1) template.rx(np.pi / 2, 1) template.rz(np.pi / 2, 1) alpha = Parameter("$\\alpha$") beta = Parameter("$\\beta$") circuit_in = QuantumCircuit(2) circuit_in.cx(0, 1) circuit_in.rz(2 * alpha, 1) circuit_in.cx(0, 1) circuit_in.cx(1, 0) circuit_in.rz(3 * beta, 0) circuit_in.cx(1, 0) pass_ = TemplateOptimization( [template], user_cost_dict={"cx": 6, "rz": 0, "rx": 1, "rzx": 0}, ) circuit_out = PassManager(pass_).run(circuit_in) # these are NOT equal if template optimization works self.assertNotEqual(circuit_in, circuit_out) # however these are equivalent if the operators are the same alpha_set = 0.37 beta_set = 0.42 self.assertTrue( Operator(circuit_in.bind_parameters({alpha: alpha_set, beta: beta_set})).equiv( circuit_out.bind_parameters({alpha: alpha_set, beta: beta_set}) ) ) def test_exact_substitution_numeric_parameter(self): """Test that a template match produces the expected value for numeric parameters.""" circuit_in = QuantumCircuit(1) circuit_in.rx(-np.pi / 2, 0) circuit_in.ry(1.45, 0) circuit_in.rx(np.pi / 2, 0) circuit_out = _ry_to_rz_template_pass().run(circuit_in) expected = QuantumCircuit(1) expected.rz(1.45, 0) self.assertEqual(circuit_out, expected) def test_exact_substitution_symbolic_parameter(self): """Test that a template match produces the expected value for numeric parameters.""" a_circuit = Parameter("a") circuit_in = QuantumCircuit(1) circuit_in.h(0) circuit_in.rx(-np.pi / 2, 0) circuit_in.ry(a_circuit, 0) circuit_in.rx(np.pi / 2, 0) circuit_out = _ry_to_rz_template_pass(extra_costs={"h": 1}).run(circuit_in) expected = QuantumCircuit(1) expected.h(0) expected.rz(a_circuit, 0) self.assertEqual(circuit_out, expected) def test_naming_clash(self): """Test that the template matching works and correctly replaces a template if there is a naming clash between it and the circuit. This should include binding a partial match with a parameter.""" # Two instances of parameters with the same name---this is how naming clashes might occur. a_template = Parameter("a") a_circuit = Parameter("a") circuit_in = QuantumCircuit(1) circuit_in.h(0) circuit_in.rx(-np.pi / 2, 0) circuit_in.ry(a_circuit, 0) circuit_in.rx(np.pi / 2, 0) circuit_out = _ry_to_rz_template_pass(a_template, extra_costs={"h": 1}).run(circuit_in) expected = QuantumCircuit(1) expected.h(0) expected.rz(a_circuit, 0) self.assertEqual(circuit_out, expected) # Ensure that the bound parameter in the output is referentially the same as the one we put # in the input circuit.. self.assertEqual(len(circuit_out.parameters), 1) self.assertIs(circuit_in.parameters[0], a_circuit) self.assertIs(circuit_out.parameters[0], a_circuit) def test_naming_clash_in_expression(self): """Test that the template matching works and correctly replaces a template if there is a naming clash between it and the circuit. This should include binding a partial match with a parameter.""" a_template = Parameter("a") a_circuit = Parameter("a") circuit_in = QuantumCircuit(1) circuit_in.h(0) circuit_in.rx(-np.pi / 2, 0) circuit_in.ry(2 * a_circuit, 0) circuit_in.rx(np.pi / 2, 0) circuit_out = _ry_to_rz_template_pass(a_template, extra_costs={"h": 1}).run(circuit_in) expected = QuantumCircuit(1) expected.h(0) expected.rz(2 * a_circuit, 0) self.assertEqual(circuit_out, expected) # Ensure that the bound parameter in the output is referentially the same as the one we put # in the input circuit.. self.assertEqual(len(circuit_out.parameters), 1) self.assertIs(circuit_in.parameters[0], a_circuit) self.assertIs(circuit_out.parameters[0], a_circuit) def test_template_match_with_uninvolved_parameter(self): """Test that the template matching algorithm succeeds at matching a circuit that contains an unbound parameter that is not involved in the subcircuit that matches.""" b_circuit = Parameter("b") circuit_in = QuantumCircuit(2) circuit_in.rz(b_circuit, 0) circuit_in.rx(-np.pi / 2, 1) circuit_in.ry(1.45, 1) circuit_in.rx(np.pi / 2, 1) circuit_out = _ry_to_rz_template_pass().run(circuit_in) expected = QuantumCircuit(2) expected.rz(b_circuit, 0) expected.rz(1.45, 1) self.assertEqual(circuit_out, expected) def test_multiple_numeric_matches_same_template(self): """Test that the template matching will change both instances of a partial match within a longer circuit.""" circuit_in = QuantumCircuit(2) # Qubit 0 circuit_in.rx(-np.pi / 2, 0) circuit_in.ry(1.32, 0) circuit_in.rx(np.pi / 2, 0) # Qubit 1 circuit_in.rx(-np.pi / 2, 1) circuit_in.ry(2.54, 1) circuit_in.rx(np.pi / 2, 1) circuit_out = _ry_to_rz_template_pass().run(circuit_in) expected = QuantumCircuit(2) expected.rz(1.32, 0) expected.rz(2.54, 1) self.assertEqual(circuit_out, expected) def test_multiple_symbolic_matches_same_template(self): """Test that the template matching will change both instances of a partial match within a longer circuit.""" a, b = Parameter("a"), Parameter("b") circuit_in = QuantumCircuit(2) # Qubit 0 circuit_in.rx(-np.pi / 2, 0) circuit_in.ry(a, 0) circuit_in.rx(np.pi / 2, 0) # Qubit 1 circuit_in.rx(-np.pi / 2, 1) circuit_in.ry(b, 1) circuit_in.rx(np.pi / 2, 1) circuit_out = _ry_to_rz_template_pass().run(circuit_in) expected = QuantumCircuit(2) expected.rz(a, 0) expected.rz(b, 1) self.assertEqual(circuit_out, expected) def test_template_match_multiparameter(self): """Test that the template matching works on instructions that take more than one parameter.""" a = Parameter("a") b = Parameter("b") template = QuantumCircuit(1) template.u(0, a, b, 0) template.rz(-a - b, 0) circuit_in = QuantumCircuit(1) circuit_in.u(0, 1.23, 2.45, 0) pm = PassManager(TemplateOptimization([template], user_cost_dict={"u": 16, "rz": 0})) circuit_out = pm.run(circuit_in) expected = QuantumCircuit(1) expected.rz(1.23 + 2.45, 0) self.assertEqual(circuit_out, expected) def test_naming_clash_multiparameter(self): """Test that the naming clash prevention mechanism works with instructions that take multiple parameters.""" a_template = Parameter("a") b_template = Parameter("b") template = QuantumCircuit(1) template.u(0, a_template, b_template, 0) template.rz(-a_template - b_template, 0) a_circuit = Parameter("a") b_circuit = Parameter("b") circuit_in = QuantumCircuit(1) circuit_in.u(0, a_circuit, b_circuit, 0) pm = PassManager(TemplateOptimization([template], user_cost_dict={"u": 16, "rz": 0})) circuit_out = pm.run(circuit_in) expected = QuantumCircuit(1) expected.rz(a_circuit + b_circuit, 0) self.assertEqual(circuit_out, expected) def test_consecutive_templates_apply(self): """Test the scenario where one template optimization creates an opportunity for another template optimization. This is the original circuit: ┌───┐ q_0: ┤ X ├──■───X───────■─ └─┬─┘┌─┴─┐ │ ┌───┐ │ q_1: ──■──┤ X ├─X─┤ H ├─■─ └───┘ └───┘ The clifford_4_1 template allows to replace the two CNOTs followed by the SWAP by a single CNOT: q_0: ──■────────■─ ┌─┴─┐┌───┐ │ q_1: ┤ X ├┤ H ├─■─ └───┘└───┘ At these point, the clifford_4_2 template allows to replace the circuit by a single Hadamard gate: q_0: ───── ┌───┐ q_1: ┤ H ├ └───┘ The second optimization would not have been possible without the applying the first optimization. """ qc = QuantumCircuit(2) qc.cx(1, 0) qc.cx(0, 1) qc.swap(0, 1) qc.h(1) qc.cz(0, 1) qc_expected = QuantumCircuit(2) qc_expected.h(1) costs = {"h": 1, "cx": 2, "cz": 2, "swap": 3} # Check that consecutively applying both templates leads to the expected circuit. qc_opt = TemplateOptimization( template_list=[clifford_4_1(), clifford_4_2()], user_cost_dict=costs )(qc) self.assertEqual(qc_opt, qc_expected) # Also check that applying the second template by itself does not do anything. qc_non_opt = TemplateOptimization(template_list=[clifford_4_2()], user_cost_dict=costs)(qc) self.assertEqual(qc, qc_non_opt) def test_consecutive_templates_do_not_apply(self): """Test that applying one template optimization does not allow incorrectly applying other templates (which could happen if the DagDependency graph is not constructed correctly after the optimization). """ template_list = [ clifford_2_2(), clifford_2_3(), ] pm = PassManager(TemplateOptimization(template_list=template_list)) qc = QuantumCircuit(2) qc.cx(0, 1) qc.cx(0, 1) qc.h(0) qc.swap(0, 1) qc.h(0) qc_opt = pm.run(qc) self.assertTrue(Operator(qc) == Operator(qc_opt)) def test_clifford_templates(self): """Tests TemplateOptimization pass on several larger examples.""" template_list = [ clifford_2_1(), clifford_2_2(), clifford_2_3(), clifford_2_4(), clifford_3_1(), ] pm = PassManager(TemplateOptimization(template_list=template_list)) for seed in range(10): qc = random_clifford_circuit( num_qubits=5, num_gates=100, gates=["x", "y", "z", "h", "s", "sdg", "cx", "cz", "swap"], seed=seed, ) qc_opt = pm.run(qc) self.assertTrue(Operator(qc) == Operator(qc_opt)) if __name__ == "__main__": unittest.main()
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for DensityMatrix quantum state class.""" import logging import unittest import numpy as np from ddt import data, ddt from numpy.testing import assert_allclose from qiskit import QiskitError, QuantumCircuit, QuantumRegister from qiskit.circuit.library import QFT, HGate from qiskit.quantum_info.operators.operator import Operator from qiskit.quantum_info.operators.symplectic import Pauli, SparsePauliOp from qiskit.quantum_info.random import random_density_matrix, random_pauli, random_unitary from qiskit.quantum_info.states import DensityMatrix, Statevector from qiskit.test import QiskitTestCase from qiskit.utils import optionals logger = logging.getLogger(__name__) @ddt class TestDensityMatrix(QiskitTestCase): """Tests for DensityMatrix class.""" @classmethod def rand_vec(cls, n, normalize=False): """Return complex vector or statevector""" seed = np.random.randint(0, np.iinfo(np.int32).max) logger.debug("rand_vec default_rng seeded with seed=%s", seed) rng = np.random.default_rng(seed) vec = rng.random(n) + 1j * rng.random(n) if normalize: vec /= np.sqrt(np.dot(vec, np.conj(vec))) return vec @classmethod def rand_rho(cls, n): """Return random pure state density matrix""" rho = cls.rand_vec(n, normalize=True) return np.outer(rho, np.conjugate(rho)) def test_init_array_qubit(self): """Test subsystem initialization from N-qubit array.""" # Test automatic inference of qubit subsystems rho = self.rand_rho(8) for dims in [None, 8]: state = DensityMatrix(rho, dims=dims) assert_allclose(state.data, rho) self.assertEqual(state.dim, 8) self.assertEqual(state.dims(), (2, 2, 2)) self.assertEqual(state.num_qubits, 3) def test_init_array(self): """Test initialization from array.""" rho = self.rand_rho(3) state = DensityMatrix(rho) assert_allclose(state.data, rho) self.assertEqual(state.dim, 3) self.assertEqual(state.dims(), (3,)) self.assertIsNone(state.num_qubits) rho = self.rand_rho(2 * 3 * 4) state = DensityMatrix(rho, dims=[2, 3, 4]) assert_allclose(state.data, rho) self.assertEqual(state.dim, 2 * 3 * 4) self.assertEqual(state.dims(), (2, 3, 4)) self.assertIsNone(state.num_qubits) def test_init_array_except(self): """Test initialization exception from array.""" rho = self.rand_rho(4) self.assertRaises(QiskitError, DensityMatrix, rho, dims=[4, 2]) self.assertRaises(QiskitError, DensityMatrix, rho, dims=[2, 4]) self.assertRaises(QiskitError, DensityMatrix, rho, dims=5) def test_init_densitymatrix(self): """Test initialization from DensityMatrix.""" rho1 = DensityMatrix(self.rand_rho(4)) rho2 = DensityMatrix(rho1) self.assertEqual(rho1, rho2) def test_init_statevector(self): """Test initialization from DensityMatrix.""" vec = self.rand_vec(4) target = DensityMatrix(np.outer(vec, np.conjugate(vec))) rho = DensityMatrix(Statevector(vec)) self.assertEqual(rho, target) def test_init_circuit(self): """Test initialization from a circuit.""" # random unitaries u0 = random_unitary(2).data u1 = random_unitary(2).data # add to circuit qr = QuantumRegister(2) circ = QuantumCircuit(qr) circ.unitary(u0, [qr[0]]) circ.unitary(u1, [qr[1]]) target_vec = Statevector(np.kron(u1, u0).dot([1, 0, 0, 0])) target = DensityMatrix(target_vec) rho = DensityMatrix(circ) self.assertEqual(rho, target) # Test tensor product of 1-qubit gates circuit = QuantumCircuit(3) circuit.h(0) circuit.x(1) circuit.ry(np.pi / 2, 2) target = DensityMatrix.from_label("000").evolve(Operator(circuit)) rho = DensityMatrix(circuit) self.assertEqual(rho, target) # Test decomposition of Controlled-Phase gate lam = np.pi / 4 circuit = QuantumCircuit(2) circuit.h(0) circuit.h(1) circuit.cp(lam, 0, 1) target = DensityMatrix.from_label("00").evolve(Operator(circuit)) rho = DensityMatrix(circuit) self.assertEqual(rho, target) def test_from_circuit(self): """Test initialization from a circuit.""" # random unitaries u0 = random_unitary(2).data u1 = random_unitary(2).data # add to circuit qr = QuantumRegister(2) circ = QuantumCircuit(qr) circ.unitary(u0, [qr[0]]) circ.unitary(u1, [qr[1]]) # Test decomposition of controlled-H gate circuit = QuantumCircuit(2) circ.x(0) circuit.ch(0, 1) target = DensityMatrix.from_label("00").evolve(Operator(circuit)) rho = DensityMatrix.from_instruction(circuit) self.assertEqual(rho, target) # Test initialize instruction init = Statevector([1, 0, 0, 1j]) / np.sqrt(2) target = DensityMatrix(init) circuit = QuantumCircuit(2) circuit.initialize(init.data, [0, 1]) rho = DensityMatrix.from_instruction(circuit) self.assertEqual(rho, target) # Test reset instruction target = DensityMatrix([1, 0]) circuit = QuantumCircuit(1) circuit.h(0) circuit.reset(0) rho = DensityMatrix.from_instruction(circuit) self.assertEqual(rho, target) def test_from_instruction(self): """Test initialization from an instruction.""" target_vec = Statevector(np.dot(HGate().to_matrix(), [1, 0])) target = DensityMatrix(target_vec) rho = DensityMatrix.from_instruction(HGate()) self.assertEqual(rho, target) def test_from_label(self): """Test initialization from a label""" x_p = DensityMatrix(np.array([[0.5, 0.5], [0.5, 0.5]])) x_m = DensityMatrix(np.array([[0.5, -0.5], [-0.5, 0.5]])) y_p = DensityMatrix(np.array([[0.5, -0.5j], [0.5j, 0.5]])) y_m = DensityMatrix(np.array([[0.5, 0.5j], [-0.5j, 0.5]])) z_p = DensityMatrix(np.diag([1, 0])) z_m = DensityMatrix(np.diag([0, 1])) label = "0+r" target = z_p.tensor(x_p).tensor(y_p) self.assertEqual(target, DensityMatrix.from_label(label)) label = "-l1" target = x_m.tensor(y_m).tensor(z_m) self.assertEqual(target, DensityMatrix.from_label(label)) def test_equal(self): """Test __eq__ method""" for _ in range(10): rho = self.rand_rho(4) self.assertEqual(DensityMatrix(rho), DensityMatrix(rho.tolist())) def test_copy(self): """Test DensityMatrix copy method""" for _ in range(5): rho = self.rand_rho(4) orig = DensityMatrix(rho) cpy = orig.copy() cpy._data[0] += 1.0 self.assertFalse(cpy == orig) def test_is_valid(self): """Test is_valid method.""" state = DensityMatrix(np.eye(2)) self.assertFalse(state.is_valid()) for _ in range(10): state = DensityMatrix(self.rand_rho(4)) self.assertTrue(state.is_valid()) def test_to_operator(self): """Test to_operator method for returning projector.""" for _ in range(10): rho = self.rand_rho(4) target = Operator(rho) op = DensityMatrix(rho).to_operator() self.assertEqual(op, target) def test_evolve(self): """Test evolve method for operators.""" for _ in range(10): op = random_unitary(4) rho = self.rand_rho(4) target = DensityMatrix(np.dot(op.data, rho).dot(op.adjoint().data)) evolved = DensityMatrix(rho).evolve(op) self.assertEqual(target, evolved) def test_evolve_subsystem(self): """Test subsystem evolve method for operators.""" # Test evolving single-qubit of 3-qubit system for _ in range(5): rho = self.rand_rho(8) state = DensityMatrix(rho) op0 = random_unitary(2) op1 = random_unitary(2) op2 = random_unitary(2) # Test evolve on 1-qubit op = op0 op_full = Operator(np.eye(4)).tensor(op) target = DensityMatrix(np.dot(op_full.data, rho).dot(op_full.adjoint().data)) self.assertEqual(state.evolve(op, qargs=[0]), target) # Evolve on qubit 1 op_full = Operator(np.eye(2)).tensor(op).tensor(np.eye(2)) target = DensityMatrix(np.dot(op_full.data, rho).dot(op_full.adjoint().data)) self.assertEqual(state.evolve(op, qargs=[1]), target) # Evolve on qubit 2 op_full = op.tensor(np.eye(4)) target = DensityMatrix(np.dot(op_full.data, rho).dot(op_full.adjoint().data)) self.assertEqual(state.evolve(op, qargs=[2]), target) # Test evolve on 2-qubits op = op1.tensor(op0) # Evolve on qubits [0, 2] op_full = op1.tensor(np.eye(2)).tensor(op0) target = DensityMatrix(np.dot(op_full.data, rho).dot(op_full.adjoint().data)) self.assertEqual(state.evolve(op, qargs=[0, 2]), target) # Evolve on qubits [2, 0] op_full = op0.tensor(np.eye(2)).tensor(op1) target = DensityMatrix(np.dot(op_full.data, rho).dot(op_full.adjoint().data)) self.assertEqual(state.evolve(op, qargs=[2, 0]), target) # Test evolve on 3-qubits op = op2.tensor(op1).tensor(op0) # Evolve on qubits [0, 1, 2] op_full = op target = DensityMatrix(np.dot(op_full.data, rho).dot(op_full.adjoint().data)) self.assertEqual(state.evolve(op, qargs=[0, 1, 2]), target) # Evolve on qubits [2, 1, 0] op_full = op0.tensor(op1).tensor(op2) target = DensityMatrix(np.dot(op_full.data, rho).dot(op_full.adjoint().data)) self.assertEqual(state.evolve(op, qargs=[2, 1, 0]), target) def test_evolve_qudit_subsystems(self): """Test nested evolve calls on qudit subsystems.""" dims = (3, 4, 5) init = self.rand_rho(np.prod(dims)) ops = [random_unitary((dim,)) for dim in dims] state = DensityMatrix(init, dims) for i, op in enumerate(ops): state = state.evolve(op, [i]) target_op = np.eye(1) for op in ops: target_op = np.kron(op.data, target_op) target = DensityMatrix(np.dot(target_op, init).dot(target_op.conj().T), dims) self.assertEqual(state, target) def test_conjugate(self): """Test conjugate method.""" for _ in range(10): rho = self.rand_rho(4) target = DensityMatrix(np.conj(rho)) state = DensityMatrix(rho).conjugate() self.assertEqual(state, target) def test_expand(self): """Test expand method.""" for _ in range(10): rho0 = self.rand_rho(2) rho1 = self.rand_rho(3) target = np.kron(rho1, rho0) state = DensityMatrix(rho0).expand(DensityMatrix(rho1)) self.assertEqual(state.dim, 6) self.assertEqual(state.dims(), (2, 3)) assert_allclose(state.data, target) def test_tensor(self): """Test tensor method.""" for _ in range(10): rho0 = self.rand_rho(2) rho1 = self.rand_rho(3) target = np.kron(rho0, rho1) state = DensityMatrix(rho0).tensor(DensityMatrix(rho1)) self.assertEqual(state.dim, 6) self.assertEqual(state.dims(), (3, 2)) assert_allclose(state.data, target) def test_add(self): """Test add method.""" for _ in range(10): rho0 = self.rand_rho(4) rho1 = self.rand_rho(4) state0 = DensityMatrix(rho0) state1 = DensityMatrix(rho1) self.assertEqual(state0 + state1, DensityMatrix(rho0 + rho1)) def test_add_except(self): """Test add method raises exceptions.""" state1 = DensityMatrix(self.rand_rho(2)) state2 = DensityMatrix(self.rand_rho(3)) self.assertRaises(QiskitError, state1.__add__, state2) def test_subtract(self): """Test subtract method.""" for _ in range(10): rho0 = self.rand_rho(4) rho1 = self.rand_rho(4) state0 = DensityMatrix(rho0) state1 = DensityMatrix(rho1) self.assertEqual(state0 - state1, DensityMatrix(rho0 - rho1)) def test_multiply(self): """Test multiply method.""" for _ in range(10): rho = self.rand_rho(4) state = DensityMatrix(rho) val = np.random.rand() + 1j * np.random.rand() self.assertEqual(val * state, DensityMatrix(val * state)) def test_negate(self): """Test negate method""" for _ in range(10): rho = self.rand_rho(4) state = DensityMatrix(rho) self.assertEqual(-state, DensityMatrix(-1 * rho)) def test_to_dict(self): """Test to_dict method""" with self.subTest(msg="dims = (2, 2)"): rho = DensityMatrix(np.arange(1, 17).reshape(4, 4)) target = { "00|00": 1, "01|00": 2, "10|00": 3, "11|00": 4, "00|01": 5, "01|01": 6, "10|01": 7, "11|01": 8, "00|10": 9, "01|10": 10, "10|10": 11, "11|10": 12, "00|11": 13, "01|11": 14, "10|11": 15, "11|11": 16, } self.assertDictAlmostEqual(target, rho.to_dict()) with self.subTest(msg="dims = (2, 3)"): rho = DensityMatrix(np.diag(np.arange(1, 7)), dims=(2, 3)) target = {} for i in range(2): for j in range(3): key = "{1}{0}|{1}{0}".format(i, j) target[key] = 2 * j + i + 1 self.assertDictAlmostEqual(target, rho.to_dict()) with self.subTest(msg="dims = (2, 11)"): vec = DensityMatrix(np.diag(np.arange(1, 23)), dims=(2, 11)) target = {} for i in range(2): for j in range(11): key = "{1},{0}|{1},{0}".format(i, j) target[key] = 2 * j + i + 1 self.assertDictAlmostEqual(target, vec.to_dict()) def test_densitymatrix_to_statevector_pure(self): """Test converting a pure density matrix to statevector.""" state = 1 / np.sqrt(2) * (np.array([1, 0, 0, 0, 0, 0, 0, 1])) psi = Statevector(state) rho = DensityMatrix(psi) phi = rho.to_statevector() self.assertTrue(psi.equiv(phi)) def test_densitymatrix_to_statevector_mixed(self): """Test converting a pure density matrix to statevector.""" state_1 = 1 / np.sqrt(2) * (np.array([1, 0, 0, 0, 0, 0, 0, 1])) state_2 = 1 / np.sqrt(2) * (np.array([0, 0, 0, 0, 0, 0, 1, 1])) psi = 0.5 * (Statevector(state_1) + Statevector(state_2)) rho = DensityMatrix(psi) self.assertRaises(QiskitError, rho.to_statevector) def test_probabilities_product(self): """Test probabilities method for product state""" state = DensityMatrix.from_label("+0") # 2-qubit qargs with self.subTest(msg="P(None)"): probs = state.probabilities() target = np.array([0.5, 0, 0.5, 0]) self.assertTrue(np.allclose(probs, target)) with self.subTest(msg="P([0, 1])"): probs = state.probabilities([0, 1]) target = np.array([0.5, 0, 0.5, 0]) self.assertTrue(np.allclose(probs, target)) with self.subTest(msg="P([1, 0]"): probs = state.probabilities([1, 0]) target = np.array([0.5, 0.5, 0, 0]) self.assertTrue(np.allclose(probs, target)) # 1-qubit qargs with self.subTest(msg="P([0])"): probs = state.probabilities([0]) target = np.array([1, 0]) self.assertTrue(np.allclose(probs, target)) with self.subTest(msg="P([1])"): probs = state.probabilities([1]) target = np.array([0.5, 0.5]) self.assertTrue(np.allclose(probs, target)) def test_probabilities_ghz(self): """Test probabilities method for GHZ state""" psi = (Statevector.from_label("000") + Statevector.from_label("111")) / np.sqrt(2) state = DensityMatrix(psi) # 3-qubit qargs target = np.array([0.5, 0, 0, 0, 0, 0, 0, 0.5]) for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities(qargs) self.assertTrue(np.allclose(probs, target)) # 2-qubit qargs target = np.array([0.5, 0, 0, 0.5]) for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities(qargs) self.assertTrue(np.allclose(probs, target)) # 1-qubit qargs target = np.array([0.5, 0.5]) for qargs in [[0], [1], [2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities(qargs) self.assertTrue(np.allclose(probs, target)) def test_probabilities_w(self): """Test probabilities method with W state""" psi = ( Statevector.from_label("001") + Statevector.from_label("010") + Statevector.from_label("100") ) / np.sqrt(3) state = DensityMatrix(psi) # 3-qubit qargs target = np.array([0, 1 / 3, 1 / 3, 0, 1 / 3, 0, 0, 0]) for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities(qargs) self.assertTrue(np.allclose(probs, target)) # 2-qubit qargs target = np.array([1 / 3, 1 / 3, 1 / 3, 0]) for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities(qargs) self.assertTrue(np.allclose(probs, target)) # 1-qubit qargs target = np.array([2 / 3, 1 / 3]) for qargs in [[0], [1], [2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities(qargs) self.assertTrue(np.allclose(probs, target)) def test_probabilities_dict_product(self): """Test probabilities_dict method for product state""" state = DensityMatrix.from_label("+0") # 2-qubit qargs with self.subTest(msg="P(None)"): probs = state.probabilities_dict() target = {"00": 0.5, "10": 0.5} self.assertDictAlmostEqual(probs, target) with self.subTest(msg="P([0, 1])"): probs = state.probabilities_dict([0, 1]) target = {"00": 0.5, "10": 0.5} self.assertDictAlmostEqual(probs, target) with self.subTest(msg="P([1, 0]"): probs = state.probabilities_dict([1, 0]) target = {"00": 0.5, "01": 0.5} self.assertDictAlmostEqual(probs, target) # 1-qubit qargs with self.subTest(msg="P([0])"): probs = state.probabilities_dict([0]) target = {"0": 1} self.assertDictAlmostEqual(probs, target) with self.subTest(msg="P([1])"): probs = state.probabilities_dict([1]) target = {"0": 0.5, "1": 0.5} self.assertDictAlmostEqual(probs, target) def test_probabilities_dict_ghz(self): """Test probabilities_dict method for GHZ state""" psi = (Statevector.from_label("000") + Statevector.from_label("111")) / np.sqrt(2) state = DensityMatrix(psi) # 3-qubit qargs target = {"000": 0.5, "111": 0.5} for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities_dict(qargs) self.assertDictAlmostEqual(probs, target) # 2-qubit qargs target = {"00": 0.5, "11": 0.5} for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities_dict(qargs) self.assertDictAlmostEqual(probs, target) # 1-qubit qargs target = {"0": 0.5, "1": 0.5} for qargs in [[0], [1], [2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities_dict(qargs) self.assertDictAlmostEqual(probs, target) def test_probabilities_dict_w(self): """Test probabilities_dict method with W state""" psi = ( Statevector.from_label("001") + Statevector.from_label("010") + Statevector.from_label("100") ) / np.sqrt(3) state = DensityMatrix(psi) # 3-qubit qargs target = np.array([0, 1 / 3, 1 / 3, 0, 1 / 3, 0, 0, 0]) target = {"001": 1 / 3, "010": 1 / 3, "100": 1 / 3} for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities_dict(qargs) self.assertDictAlmostEqual(probs, target) # 2-qubit qargs target = {"00": 1 / 3, "01": 1 / 3, "10": 1 / 3} for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities_dict(qargs) self.assertDictAlmostEqual(probs, target) # 1-qubit qargs target = {"0": 2 / 3, "1": 1 / 3} for qargs in [[0], [1], [2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities_dict(qargs) self.assertDictAlmostEqual(probs, target) def test_sample_counts_ghz(self): """Test sample_counts method for GHZ state""" shots = 2000 threshold = 0.02 * shots state = DensityMatrix( (Statevector.from_label("000") + Statevector.from_label("111")) / np.sqrt(2) ) state.seed(100) # 3-qubit qargs target = {"000": shots / 2, "111": shots / 2} for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]: with self.subTest(msg=f"counts (qargs={qargs})"): counts = state.sample_counts(shots, qargs=qargs) self.assertDictAlmostEqual(counts, target, threshold) # 2-qubit qargs target = {"00": shots / 2, "11": shots / 2} for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]: with self.subTest(msg=f"counts (qargs={qargs})"): counts = state.sample_counts(shots, qargs=qargs) self.assertDictAlmostEqual(counts, target, threshold) # 1-qubit qargs target = {"0": shots / 2, "1": shots / 2} for qargs in [[0], [1], [2]]: with self.subTest(msg=f"counts (qargs={qargs})"): counts = state.sample_counts(shots, qargs=qargs) self.assertDictAlmostEqual(counts, target, threshold) def test_sample_counts_w(self): """Test sample_counts method for W state""" shots = 3000 threshold = 0.02 * shots state = DensityMatrix( ( Statevector.from_label("001") + Statevector.from_label("010") + Statevector.from_label("100") ) / np.sqrt(3) ) state.seed(100) target = {"001": shots / 3, "010": shots / 3, "100": shots / 3} for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]: with self.subTest(msg=f"P({qargs})"): counts = state.sample_counts(shots, qargs=qargs) self.assertDictAlmostEqual(counts, target, threshold) # 2-qubit qargs target = {"00": shots / 3, "01": shots / 3, "10": shots / 3} for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]: with self.subTest(msg=f"P({qargs})"): counts = state.sample_counts(shots, qargs=qargs) self.assertDictAlmostEqual(counts, target, threshold) # 1-qubit qargs target = {"0": 2 * shots / 3, "1": shots / 3} for qargs in [[0], [1], [2]]: with self.subTest(msg=f"P({qargs})"): counts = state.sample_counts(shots, qargs=qargs) self.assertDictAlmostEqual(counts, target, threshold) def test_probabilities_dict_unequal_dims(self): """Test probabilities_dict for a state with unequal subsystem dimensions.""" vec = np.zeros(60, dtype=float) vec[15:20] = np.ones(5) vec[40:46] = np.ones(6) state = DensityMatrix(vec / np.sqrt(11.0), dims=[3, 4, 5]) p = 1.0 / 11.0 self.assertDictEqual( state.probabilities_dict(), { s: p for s in [ "110", "111", "112", "120", "121", "311", "312", "320", "321", "322", "330", ] }, ) # differences due to rounding self.assertDictAlmostEqual( state.probabilities_dict(qargs=[0]), {"0": 4 * p, "1": 4 * p, "2": 3 * p}, delta=1e-10 ) self.assertDictAlmostEqual( state.probabilities_dict(qargs=[1]), {"1": 5 * p, "2": 5 * p, "3": p}, delta=1e-10 ) self.assertDictAlmostEqual( state.probabilities_dict(qargs=[2]), {"1": 5 * p, "3": 6 * p}, delta=1e-10 ) self.assertDictAlmostEqual( state.probabilities_dict(qargs=[0, 1]), {"10": p, "11": 2 * p, "12": 2 * p, "20": 2 * p, "21": 2 * p, "22": p, "30": p}, delta=1e-10, ) self.assertDictAlmostEqual( state.probabilities_dict(qargs=[1, 0]), {"01": p, "11": 2 * p, "21": 2 * p, "02": 2 * p, "12": 2 * p, "22": p, "03": p}, delta=1e-10, ) self.assertDictAlmostEqual( state.probabilities_dict(qargs=[0, 2]), {"10": 2 * p, "11": 2 * p, "12": p, "31": 2 * p, "32": 2 * p, "30": 2 * p}, delta=1e-10, ) def test_sample_counts_qutrit(self): """Test sample_counts method for qutrit state""" p = 0.3 shots = 1000 threshold = 0.03 * shots state = DensityMatrix(np.diag([p, 0, 1 - p])) state.seed(100) with self.subTest(msg="counts"): target = {"0": shots * p, "2": shots * (1 - p)} counts = state.sample_counts(shots=shots) self.assertDictAlmostEqual(counts, target, threshold) def test_sample_memory_ghz(self): """Test sample_memory method for GHZ state""" shots = 2000 state = DensityMatrix( (Statevector.from_label("000") + Statevector.from_label("111")) / np.sqrt(2) ) state.seed(100) # 3-qubit qargs target = {"000": shots / 2, "111": shots / 2} for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]: with self.subTest(msg=f"memory (qargs={qargs})"): memory = state.sample_memory(shots, qargs=qargs) self.assertEqual(len(memory), shots) self.assertEqual(set(memory), set(target)) # 2-qubit qargs target = {"00": shots / 2, "11": shots / 2} for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]: with self.subTest(msg=f"memory (qargs={qargs})"): memory = state.sample_memory(shots, qargs=qargs) self.assertEqual(len(memory), shots) self.assertEqual(set(memory), set(target)) # 1-qubit qargs target = {"0": shots / 2, "1": shots / 2} for qargs in [[0], [1], [2]]: with self.subTest(msg=f"memory (qargs={qargs})"): memory = state.sample_memory(shots, qargs=qargs) self.assertEqual(len(memory), shots) self.assertEqual(set(memory), set(target)) def test_sample_memory_w(self): """Test sample_memory method for W state""" shots = 3000 state = DensityMatrix( ( Statevector.from_label("001") + Statevector.from_label("010") + Statevector.from_label("100") ) / np.sqrt(3) ) state.seed(100) target = {"001": shots / 3, "010": shots / 3, "100": shots / 3} for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]: with self.subTest(msg=f"memory (qargs={qargs})"): memory = state.sample_memory(shots, qargs=qargs) self.assertEqual(len(memory), shots) self.assertEqual(set(memory), set(target)) # 2-qubit qargs target = {"00": shots / 3, "01": shots / 3, "10": shots / 3} for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]: with self.subTest(msg=f"memory (qargs={qargs})"): memory = state.sample_memory(shots, qargs=qargs) self.assertEqual(len(memory), shots) self.assertEqual(set(memory), set(target)) # 1-qubit qargs target = {"0": 2 * shots / 3, "1": shots / 3} for qargs in [[0], [1], [2]]: with self.subTest(msg=f"memory (qargs={qargs})"): memory = state.sample_memory(shots, qargs=qargs) self.assertEqual(len(memory), shots) self.assertEqual(set(memory), set(target)) def test_sample_memory_qutrit(self): """Test sample_memory method for qutrit state""" p = 0.3 shots = 1000 state = DensityMatrix(np.diag([p, 0, 1 - p])) state.seed(100) with self.subTest(msg="memory"): memory = state.sample_memory(shots) self.assertEqual(len(memory), shots) self.assertEqual(set(memory), {"0", "2"}) def test_reset_2qubit(self): """Test reset method for 2-qubit state""" state = DensityMatrix(np.diag([0.5, 0, 0, 0.5])) with self.subTest(msg="reset"): rho = state.copy() value = rho.reset() target = DensityMatrix(np.diag([1, 0, 0, 0])) self.assertEqual(value, target) with self.subTest(msg="reset"): rho = state.copy() value = rho.reset([0, 1]) target = DensityMatrix(np.diag([1, 0, 0, 0])) self.assertEqual(value, target) with self.subTest(msg="reset [0]"): rho = state.copy() value = rho.reset([0]) target = DensityMatrix(np.diag([0.5, 0, 0.5, 0])) self.assertEqual(value, target) with self.subTest(msg="reset [0]"): rho = state.copy() value = rho.reset([1]) target = DensityMatrix(np.diag([0.5, 0.5, 0, 0])) self.assertEqual(value, target) def test_reset_qutrit(self): """Test reset method for qutrit""" state = DensityMatrix(np.diag([1, 1, 1]) / 3) state.seed(200) value = state.reset() target = DensityMatrix(np.diag([1, 0, 0])) self.assertEqual(value, target) def test_measure_2qubit(self): """Test measure method for 2-qubit state""" state = DensityMatrix.from_label("+0") seed = 200 shots = 100 with self.subTest(msg="measure"): for i in range(shots): rho = state.copy() rho.seed(seed + i) outcome, value = rho.measure() self.assertIn(outcome, ["00", "10"]) if outcome == "00": target = DensityMatrix.from_label("00") self.assertEqual(value, target) else: target = DensityMatrix.from_label("10") self.assertEqual(value, target) with self.subTest(msg="measure [0, 1]"): for i in range(shots): rho = state.copy() outcome, value = rho.measure([0, 1]) self.assertIn(outcome, ["00", "10"]) if outcome == "00": target = DensityMatrix.from_label("00") self.assertEqual(value, target) else: target = DensityMatrix.from_label("10") self.assertEqual(value, target) with self.subTest(msg="measure [1, 0]"): for i in range(shots): rho = state.copy() outcome, value = rho.measure([1, 0]) self.assertIn(outcome, ["00", "01"]) if outcome == "00": target = DensityMatrix.from_label("00") self.assertEqual(value, target) else: target = DensityMatrix.from_label("10") self.assertEqual(value, target) with self.subTest(msg="measure [0]"): for i in range(shots): rho = state.copy() outcome, value = rho.measure([0]) self.assertEqual(outcome, "0") target = DensityMatrix.from_label("+0") self.assertEqual(value, target) with self.subTest(msg="measure [1]"): for i in range(shots): rho = state.copy() outcome, value = rho.measure([1]) self.assertIn(outcome, ["0", "1"]) if outcome == "0": target = DensityMatrix.from_label("00") self.assertEqual(value, target) else: target = DensityMatrix.from_label("10") self.assertEqual(value, target) def test_measure_qutrit(self): """Test measure method for qutrit""" state = DensityMatrix(np.diag([1, 1, 1]) / 3) seed = 200 shots = 100 for i in range(shots): rho = state.copy() rho.seed(seed + i) outcome, value = rho.measure() self.assertIn(outcome, ["0", "1", "2"]) if outcome == "0": target = DensityMatrix(np.diag([1, 0, 0])) self.assertEqual(value, target) elif outcome == "1": target = DensityMatrix(np.diag([0, 1, 0])) self.assertEqual(value, target) else: target = DensityMatrix(np.diag([0, 0, 1])) self.assertEqual(value, target) def test_from_int(self): """Test from_int method""" with self.subTest(msg="from_int(0, 4)"): target = DensityMatrix([1, 0, 0, 0]) value = DensityMatrix.from_int(0, 4) self.assertEqual(target, value) with self.subTest(msg="from_int(3, 4)"): target = DensityMatrix([0, 0, 0, 1]) value = DensityMatrix.from_int(3, 4) self.assertEqual(target, value) with self.subTest(msg="from_int(8, (3, 3))"): target = DensityMatrix([0, 0, 0, 0, 0, 0, 0, 0, 1], dims=(3, 3)) value = DensityMatrix.from_int(8, (3, 3)) self.assertEqual(target, value) def test_expval(self): """Test expectation_value method""" psi = Statevector([1, 0, 0, 1]) / np.sqrt(2) rho = DensityMatrix(psi) for label, target in [ ("II", 1), ("XX", 1), ("YY", -1), ("ZZ", 1), ("IX", 0), ("YZ", 0), ("ZX", 0), ("YI", 0), ]: with self.subTest(msg=f"<{label}>"): op = Pauli(label) expval = rho.expectation_value(op) self.assertAlmostEqual(expval, target) psi = Statevector([np.sqrt(2), 0, 0, 0, 0, 0, 0, 1 + 1j]) / 2 rho = DensityMatrix(psi) for label, target in [ ("XXX", np.sqrt(2) / 2), ("YYY", -np.sqrt(2) / 2), ("ZZZ", 0), ("XYZ", 0), ("YIY", 0), ]: with self.subTest(msg=f"<{label}>"): op = Pauli(label) expval = rho.expectation_value(op) self.assertAlmostEqual(expval, target) labels = ["XXX", "IXI", "YYY", "III"] coeffs = [3.0, 5.5, -1j, 23] spp_op = SparsePauliOp.from_list(list(zip(labels, coeffs))) expval = rho.expectation_value(spp_op) target = 25.121320343559642 + 0.7071067811865476j self.assertAlmostEqual(expval, target) @data( "II", "IX", "IY", "IZ", "XI", "XX", "XY", "XZ", "YI", "YX", "YY", "YZ", "ZI", "ZX", "ZY", "ZZ", "-II", "-IX", "-IY", "-IZ", "-XI", "-XX", "-XY", "-XZ", "-YI", "-YX", "-YY", "-YZ", "-ZI", "-ZX", "-ZY", "-ZZ", "iII", "iIX", "iIY", "iIZ", "iXI", "iXX", "iXY", "iXZ", "iYI", "iYX", "iYY", "iYZ", "iZI", "iZX", "iZY", "iZZ", "-iII", "-iIX", "-iIY", "-iIZ", "-iXI", "-iXX", "-iXY", "-iXZ", "-iYI", "-iYX", "-iYY", "-iYZ", "-iZI", "-iZX", "-iZY", "-iZZ", ) def test_expval_pauli_f_contiguous(self, pauli): """Test expectation_value method for Pauli op""" seed = 1020 op = Pauli(pauli) rho = random_density_matrix(2**op.num_qubits, seed=seed) rho._data = np.reshape(rho.data.flatten(order="F"), rho.data.shape, order="F") target = rho.expectation_value(op.to_matrix()) expval = rho.expectation_value(op) self.assertAlmostEqual(expval, target) @data( "II", "IX", "IY", "IZ", "XI", "XX", "XY", "XZ", "YI", "YX", "YY", "YZ", "ZI", "ZX", "ZY", "ZZ", "-II", "-IX", "-IY", "-IZ", "-XI", "-XX", "-XY", "-XZ", "-YI", "-YX", "-YY", "-YZ", "-ZI", "-ZX", "-ZY", "-ZZ", "iII", "iIX", "iIY", "iIZ", "iXI", "iXX", "iXY", "iXZ", "iYI", "iYX", "iYY", "iYZ", "iZI", "iZX", "iZY", "iZZ", "-iII", "-iIX", "-iIY", "-iIZ", "-iXI", "-iXX", "-iXY", "-iXZ", "-iYI", "-iYX", "-iYY", "-iYZ", "-iZI", "-iZX", "-iZY", "-iZZ", ) def test_expval_pauli_c_contiguous(self, pauli): """Test expectation_value method for Pauli op""" seed = 1020 op = Pauli(pauli) rho = random_density_matrix(2**op.num_qubits, seed=seed) rho._data = np.reshape(rho.data.flatten(order="C"), rho.data.shape, order="C") target = rho.expectation_value(op.to_matrix()) expval = rho.expectation_value(op) self.assertAlmostEqual(expval, target) @data([0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1]) def test_expval_pauli_qargs(self, qubits): """Test expectation_value method for Pauli op""" seed = 1020 op = random_pauli(2, seed=seed) state = random_density_matrix(2**3, seed=seed) target = state.expectation_value(op.to_matrix(), qubits) expval = state.expectation_value(op, qubits) self.assertAlmostEqual(expval, target) def test_reverse_qargs(self): """Test reverse_qargs method""" circ1 = QFT(5) circ2 = circ1.reverse_bits() state1 = DensityMatrix.from_instruction(circ1) state2 = DensityMatrix.from_instruction(circ2) self.assertEqual(state1.reverse_qargs(), state2) @unittest.skipUnless(optionals.HAS_MATPLOTLIB, "requires matplotlib") @unittest.skipUnless(optionals.HAS_PYLATEX, "requires pylatexenc") def test_drawings(self): """Test draw method""" qc1 = QFT(5) dm = DensityMatrix.from_instruction(qc1) with self.subTest(msg="str(density_matrix)"): str(dm) for drawtype in ["repr", "text", "latex", "latex_source", "qsphere", "hinton", "bloch"]: with self.subTest(msg=f"draw('{drawtype}')"): dm.draw(drawtype) def test_density_matrix_partial_transpose(self): """Test partial_transpose function on density matrices""" with self.subTest(msg="separable"): rho = DensityMatrix.from_label("10+") rho1 = np.zeros((8, 8), complex) rho1[4, 4] = 0.5 rho1[4, 5] = 0.5 rho1[5, 4] = 0.5 rho1[5, 5] = 0.5 self.assertEqual(rho.partial_transpose([0, 1]), DensityMatrix(rho1)) self.assertEqual(rho.partial_transpose([0, 2]), DensityMatrix(rho1)) with self.subTest(msg="entangled"): rho = DensityMatrix([[0, 0, 0, 0], [0, 0.5, -0.5, 0], [0, -0.5, 0.5, 0], [0, 0, 0, 0]]) rho1 = DensityMatrix([[0, 0, 0, -0.5], [0, 0.5, 0, 0], [0, 0, 0.5, 0], [-0.5, 0, 0, 0]]) self.assertEqual(rho.partial_transpose([0]), DensityMatrix(rho1)) self.assertEqual(rho.partial_transpose([1]), DensityMatrix(rho1)) with self.subTest(msg="dims(3,3)"): mat = np.zeros((9, 9)) mat1 = np.zeros((9, 9)) mat[8, 0] = 1 mat1[0, 8] = 1 rho = DensityMatrix(mat, dims=(3, 3)) rho1 = DensityMatrix(mat1, dims=(3, 3)) self.assertEqual(rho.partial_transpose([0, 1]), rho1) def test_clip_probabilities(self): """Test probabilities are clipped to [0, 1].""" dm = DensityMatrix([[1.1, 0], [0, 0]]) self.assertEqual(list(dm.probabilities()), [1.0, 0.0]) # The "1" key should be exactly zero and therefore omitted. self.assertEqual(dm.probabilities_dict(), {"0": 1.0}) def test_round_probabilities(self): """Test probabilities are correctly rounded. This is good to test to ensure clipping, renormalizing and rounding work together. """ p = np.sqrt(1 / 3) amplitudes = [p, p, p, 0] dm = DensityMatrix(np.outer(amplitudes, amplitudes)) expected = [0.33, 0.33, 0.33, 0] # Exact floating-point check because fixing the rounding should ensure this is exact. self.assertEqual(list(dm.probabilities(decimals=2)), expected) if __name__ == "__main__": unittest.main()
https://github.com/rohitgit1/Quantum-Computing-Summer-School
rohitgit1
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/deveshq/QC-with-qiskit
deveshq
# Importing some important libraries import numpy as np from numpy import math from qiskit import * from numpy import pi as pi from math import asin, sqrt import qiskit.quantum_info as qi from qiskit import QuantumCircuit, transpile, Aer, IBMQ, execute from qiskit.tools.jupyter import * from qiskit.visualization import plot_histogram, plot_bloch_multivector from numpy.random import seed import IPython from IPython.display import display,Latex,Markdown # Defining a function which flip the sign of the marked state, in the superpositon of all the states. def orc(d): op = np.identity(2**n) for i in d: op[i][i] = op[i][i]*(-1) display(i) return op # Defining another function which flip all the states about the average. def dif(): op = np.identity(2**n) for i in range(2**n): if ( i != 0): op[i][i] = op[i][i]*(-1) #display(op) return op # Taking vector of integer number as input. display(Latex(r'Expected a vector of length $2^n$ as input!')) n = int(input('Enter n: ')) a = [] print('Enter the vector:') for i in range(2**n): a.append(int(input())) print(f'a = {a}') #Extracting the indices of the input for which two adjacent bits will always have different values. d = [] b_d = [] c = len('{0:b}'.format(max(a))) #number of bits in binary form of highest number in a. def cd(x): b = '{0:0{d}b}'.format(x,d=c) return all(b[i] != b[i+1] for i in range(c-1) ) for i in range(len(a)): if cd(a[i]) is True: d.append(i) b_d.append('{0:0{d}b}'.format(a[i],d=c)) print(f'Indices: {d}, Numbers: {b_d}') if (n<3): if (len(d)>1): n = 3 #Because this program requires atleast three qubits to deal with more than one targets. else: n = n #Initiating a quantum circuit qc = QuantumCircuit(n,n) qc.h(range(n)) qc.draw() #To find the number of repetition. theta = asin(1/sqrt(2**n)) t = int((pi/(2*theta) - 1)/2) #Finally applying all the component on the circuit. for i in range(t): qc.unitary(orc(d), range(n)) qc.h(range(n)) qc.unitary(dif(), range(n)) qc.h(range(n)) qc.draw() #To print the statevector. s_qc = qi.Statevector.from_instruction(qc) #s_qc.draw('latex', prefix='State = ') print(s_qc) #Applying the measurements. qc.measure(range(n),range(n)) qc.draw() #Simulating the circuit qasm_sim = Aer.get_backend('aer_simulator') tqc = transpile(qc, basis_gates=['u', 'cx'], optimization_level=3) print(f"circuit depth: {tqc.depth()}") print(f"circuit contains {tqc.count_ops()['cx']} CNOTs") #Getting final state probabilities. counts = qasm_sim.run(tqc).result().get_counts() print(counts) plot_histogram(counts)
https://github.com/mentesniker/Quantum-Cryptography
mentesniker
%matplotlib inline # Importing standard Qiskit libraries from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from random import randint import hashlib #Alice cell, Bob can't see what's going in on here m0 = randint(0,1) Alice_base = randint(0,1) qubits = list() mycircuit = QuantumCircuit(1,1) if(Alice_base == 0): if(m0 == 1): mycircuit.x(0) else: if(m0 == 0): mycircuit.h(0) else: mycircuit.x(0) mycircuit.h(0) qubits.append(mycircuit) #Bob cell, Alice can't see what's going in on here backend = Aer.get_backend('qasm_simulator') a = 0 qubit = qubits[0] if(Alice_base == 0): qubit.measure(0,0) else: qubit.h(0) qubit.measure(0,0) result = execute(qubit, backend, shots=1, memory=True).result() a = int(result.get_memory()[0]) #Bob cell, Alice can't see what's going in on here m1 = randint(0,1) Bob_base = randint(0,1) qubitsB = list() mycircuitB = QuantumCircuit(1,1) if(Bob_base == 0): if(m1 == 1): mycircuitB.x(0) else: if(m1 == 0): mycircuitB.h(0) else: mycircuitB.x(0) mycircuitB.h(0) qubitsB.append(mycircuitB) #Alice cell, Bob can't see what's going in on here backend = Aer.get_backend('qasm_simulator') b = 0 qubit = qubitsB[0] if(Bob_base == 0): qubit.measure(0,0) else: qubit.h(0) qubit.measure(0,0) result = execute(qubit, backend, shots=1, memory=True).result() b = int(result.get_memory()[0]) #Alice cell, Bob can't see what's going in on here print("The result of the coin flip was: " + str(b ^ m0)) #Bob cell, Alice can't see what's going in on here print("The result of the coin flip was: " + str(m1 ^ a))
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test the DenseLayout pass""" import unittest import numpy as np from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister from qiskit.circuit import Parameter, Qubit from qiskit.circuit.library import CXGate, UGate, ECRGate, RZGate from qiskit.transpiler import CouplingMap, Target, InstructionProperties, TranspilerError from qiskit.transpiler.passes import DenseLayout from qiskit.converters import circuit_to_dag from qiskit.test import QiskitTestCase from qiskit.providers.fake_provider import FakeTokyo from qiskit.transpiler.passes.layout.dense_layout import _build_error_matrix class TestDenseLayout(QiskitTestCase): """Tests the DenseLayout pass""" def setUp(self): super().setUp() self.cmap20 = FakeTokyo().configuration().coupling_map self.target_19 = Target() rng = np.random.default_rng(12345) instruction_props = { edge: InstructionProperties( duration=rng.uniform(1e-7, 1e-6), error=rng.uniform(1e-4, 1e-3) ) for edge in CouplingMap.from_heavy_hex(3).get_edges() } self.target_19.add_instruction(CXGate(), instruction_props) def test_5q_circuit_20q_coupling(self): """Test finds dense 5q corner in 20q coupling map.""" qr = QuantumRegister(5, "q") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[3]) circuit.cx(qr[3], qr[4]) circuit.cx(qr[3], qr[1]) circuit.cx(qr[0], qr[2]) dag = circuit_to_dag(circuit) pass_ = DenseLayout(CouplingMap(self.cmap20)) pass_.run(dag) layout = pass_.property_set["layout"] self.assertEqual(layout[qr[0]], 11) self.assertEqual(layout[qr[1]], 10) self.assertEqual(layout[qr[2]], 6) self.assertEqual(layout[qr[3]], 5) self.assertEqual(layout[qr[4]], 0) def test_6q_circuit_20q_coupling(self): """Test finds dense 5q corner in 20q coupling map.""" qr0 = QuantumRegister(3, "q0") qr1 = QuantumRegister(3, "q1") circuit = QuantumCircuit(qr0, qr1) circuit.cx(qr0[0], qr1[2]) circuit.cx(qr1[1], qr0[2]) dag = circuit_to_dag(circuit) pass_ = DenseLayout(CouplingMap(self.cmap20)) pass_.run(dag) layout = pass_.property_set["layout"] self.assertEqual(layout[qr0[0]], 11) self.assertEqual(layout[qr0[1]], 10) self.assertEqual(layout[qr0[2]], 6) self.assertEqual(layout[qr1[0]], 5) self.assertEqual(layout[qr1[1]], 1) self.assertEqual(layout[qr1[2]], 0) def test_5q_circuit_19q_target_with_noise(self): """Test layout works finds a dense 5q subgraph in a 19q heavy hex target.""" qr = QuantumRegister(5, "q") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[3]) circuit.cx(qr[3], qr[4]) circuit.cx(qr[3], qr[1]) circuit.cx(qr[0], qr[2]) dag = circuit_to_dag(circuit) pass_ = DenseLayout(target=self.target_19) pass_.run(dag) layout = pass_.property_set["layout"] self.assertEqual(layout[qr[0]], 9) self.assertEqual(layout[qr[1]], 3) self.assertEqual(layout[qr[2]], 11) self.assertEqual(layout[qr[3]], 15) self.assertEqual(layout[qr[4]], 4) def test_5q_circuit_19q_target_without_noise(self): """Test layout works finds a dense 5q subgraph in a 19q heavy hex target with no noise.""" qr = QuantumRegister(5, "q") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[3]) circuit.cx(qr[3], qr[4]) circuit.cx(qr[3], qr[1]) circuit.cx(qr[0], qr[2]) dag = circuit_to_dag(circuit) instruction_props = {edge: None for edge in CouplingMap.from_heavy_hex(3).get_edges()} noiseless_target = Target() noiseless_target.add_instruction(CXGate(), instruction_props) pass_ = DenseLayout(target=noiseless_target) pass_.run(dag) layout = pass_.property_set["layout"] self.assertEqual(layout[qr[0]], 1) self.assertEqual(layout[qr[1]], 13) self.assertEqual(layout[qr[2]], 0) self.assertEqual(layout[qr[3]], 9) self.assertEqual(layout[qr[4]], 3) def test_ideal_target_no_coupling(self): """Test pass fails as expected if a target without edge constraints exists.""" qr = QuantumRegister(5, "q") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[3]) circuit.cx(qr[3], qr[4]) circuit.cx(qr[3], qr[1]) circuit.cx(qr[0], qr[2]) dag = circuit_to_dag(circuit) target = Target(num_qubits=19) target.add_instruction(CXGate()) layout_pass = DenseLayout(target=target) with self.assertRaises(TranspilerError): layout_pass.run(dag) def test_target_too_small_for_circuit(self): """Test error is raised when target is too small for circuit.""" target = Target() target.add_instruction( CXGate(), {edge: None for edge in CouplingMap.from_line(3).get_edges()} ) dag = circuit_to_dag(QuantumCircuit(5)) layout_pass = DenseLayout(target=target) with self.assertRaises(TranspilerError): layout_pass.run(dag) def test_19q_target_with_noise_error_matrix(self): """Test the error matrix construction works for a just cx target.""" expected_error_mat = np.zeros((19, 19)) for qargs, props in self.target_19["cx"].items(): error = props.error expected_error_mat[qargs[0]][qargs[1]] = error error_mat = _build_error_matrix( self.target_19.num_qubits, {i: i for i in range(self.target_19.num_qubits)}, target=self.target_19, )[0] np.testing.assert_array_equal(expected_error_mat, error_mat) def test_multiple_gate_error_matrix(self): """Test error matrix ona small target with multiple gets on each qubit generates""" target = Target(num_qubits=3) phi = Parameter("phi") lam = Parameter("lam") theta = Parameter("theta") target.add_instruction( RZGate(phi), {(i,): InstructionProperties(duration=0, error=0) for i in range(3)} ) target.add_instruction( UGate(theta, phi, lam), {(i,): InstructionProperties(duration=1e-7, error=1e-2) for i in range(3)}, ) cx_props = { (0, 1): InstructionProperties(error=1e-3), (0, 2): InstructionProperties(error=1e-3), (1, 0): InstructionProperties(error=1e-3), (1, 2): InstructionProperties(error=1e-3), (2, 0): InstructionProperties(error=1e-3), (2, 1): InstructionProperties(error=1e-3), } target.add_instruction(CXGate(), cx_props) ecr_props = { (0, 1): InstructionProperties(error=2e-2), (1, 2): InstructionProperties(error=2e-2), (2, 0): InstructionProperties(error=2e-2), } target.add_instruction(ECRGate(), ecr_props) expected_error_matrix = np.array( [ [1e-2, 2e-2, 1e-3], [1e-3, 1e-2, 2e-2], [2e-2, 1e-3, 1e-2], ] ) error_mat = _build_error_matrix( target.num_qubits, {i: i for i in range(target.num_qubits)}, target=target )[0] np.testing.assert_array_equal(expected_error_matrix, error_mat) def test_5q_circuit_20q_with_if_else(self): """Test layout works finds a dense 5q subgraph in a 19q heavy hex target.""" qr = QuantumRegister(5, "q") cr = ClassicalRegister(5) circuit = QuantumCircuit(qr, cr) true_body = QuantumCircuit(qr, cr) false_body = QuantumCircuit(qr, cr) true_body.cx(qr[0], qr[3]) true_body.cx(qr[3], qr[4]) false_body.cx(qr[3], qr[1]) false_body.cx(qr[0], qr[2]) circuit.if_else((cr, 0), true_body, false_body, qr, cr) circuit.cx(0, 4) dag = circuit_to_dag(circuit) pass_ = DenseLayout(CouplingMap(self.cmap20)) pass_.run(dag) layout = pass_.property_set["layout"] self.assertEqual(layout[qr[0]], 11) self.assertEqual(layout[qr[1]], 10) self.assertEqual(layout[qr[2]], 6) self.assertEqual(layout[qr[3]], 5) self.assertEqual(layout[qr[4]], 0) def test_loose_bit_circuit(self): """Test dense layout works with loose bits outside a register.""" bits = [Qubit() for _ in range(5)] circuit = QuantumCircuit() circuit.add_bits(bits) circuit.h(3) circuit.cx(3, 4) circuit.cx(3, 2) circuit.cx(3, 0) circuit.cx(3, 1) dag = circuit_to_dag(circuit) pass_ = DenseLayout(CouplingMap(self.cmap20)) pass_.run(dag) layout = pass_.property_set["layout"] self.assertEqual(layout[bits[0]], 11) self.assertEqual(layout[bits[1]], 10) self.assertEqual(layout[bits[2]], 6) self.assertEqual(layout[bits[3]], 5) self.assertEqual(layout[bits[4]], 0) if __name__ == "__main__": unittest.main()
https://github.com/riddheshMarkandeya/shors-algorithm-quantum
riddheshMarkandeya
from qiskit.quantum_info.operators import Operator from qiskit.circuit.library import CU1Gate #helper functions def make_permutation_matrix(n, permutation): r = np.zeros((n,n), dtype=int) for i in range(n): r[permutation(i), i] = 1 return r def mult_mat(x,k,N): n = math.ceil(math.log(N, 2)) return make_permutation_matrix( 2**n, permutation=lambda y: y*pow(x,k) % N if y<N else y) def c_mult_mat(x,k,N): n = math.ceil(math.log(N, 2)) permutation = lambda y: y if y%2==0 or (y-1)/2 >= N else 2*(int((y-1)/2)*pow(x,k) % N) + 1 return make_permutation_matrix(2*(2**n), permutation ) def mult_op(x,k,N): return Operator(mult_mat(x,k,N)) #controlled-U oracle def c_mult_op(x,k,N): return Operator(c_mult_mat(x,k,N)) # QFT and IQFT def qft(circ, q, n): """n-qubit QFT on q in circ.""" for j in range(n): circ.h(q[j]) for k in range(j+1,n): circ.cu1(math.pi/float(2**(k-j)), q[k], q[j]) for i in range(n//2): circ.swap(q[i], q[n-i-1]) def iqft(circ,q,n): for j in range(n): circ.h(q[j]) for k in range(j+1,n): #circ.cu1(-math.pi/float(2**(k-j)), q[k], q[j]) gate = CU1Gate(-np.pi/float(2**(k-j)) ) circ.append(gate, [q[k],q[j]]) for i in range(n//2): circ.swap(q[i], q[n-i-1])
https://github.com/renatawong/classical-shadow-vqe
renatawong
''' CALCULATING NUMBER OF MEASUREMENTS NEEDED AGAINST AN ERROR RATE Example: H2 molecule in sto3g basis ''' import numpy as np from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.mappers import BravyiKitaevMapper # specifying the geometry of the molecule in question driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() hamiltonian = problem.hamiltonian # electronic Hamiltonian of the system second_q_op = hamiltonian.second_q_op() # The Bravyi-Kitaev representation of the Fermionic Hamiltonian mapper = BravyiKitaevMapper() bkencoded_hamiltonian = mapper.map(second_q_op) print(bkencoded_hamiltonian) def shadow_bound(error, observables, failure_rate=0.01): """ Method taken from: https://pennylane.ai/qml/demos/tutorial_classical_shadows Calculate the shadow bound for the Pauli measurement scheme. Implements Eq. (S13) from https://arxiv.org/pdf/2002.08953.pdf Args: error (float): The error on the estimator. observables (list) : List of matrices corresponding to the observables we intend to measure. failure_rate (float): Rate of failure for the bound to hold. Returns: An integer that gives the number of samples required to satisfy the shadow bound and the chunk size required attaining the specified failure rate. """ M = len(observables) K = 2 * np.log(2 * M / failure_rate) shadow_norm = ( lambda op: np.linalg.norm( op - np.trace(op) / 2 ** int(np.log2(op.shape[0])), ord=np.inf ) ** 2 ) N = 34 * max(shadow_norm(o) for o in observables) / error ** 2 return int(np.ceil(N * K)), int(K) matrix_observables = [obs.to_matrix().real for obs in bkencoded_hamiltonian] num_measurements, chunk_size = shadow_bound(error=2e-1, observables=matrix_observables, failure_rate=0.01) print('Number of measurements (error=2e-1):', num_measurements)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# load necessary Runtime libraries from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session backend = "ibmq_qasm_simulator" # use the simulator from qiskit.circuit import Parameter from qiskit.opflow import I, X, Z mu = Parameter('$\\mu$') ham_pauli = mu * X cc = Parameter('$c$') ww = Parameter('$\\omega$') ham_res = -(1/2)*ww*(I^Z) + cc*(X^X) + (ham_pauli^I) tt = Parameter('$t$') U_ham = (tt*ham_res).exp_i() from qiskit import transpile from qiskit.circuit import ClassicalRegister from qiskit.opflow import PauliTrotterEvolution, Suzuki import numpy as np num_trot_steps = 5 total_time = 10 cr = ClassicalRegister(1, 'c') spec_op = PauliTrotterEvolution(trotter_mode=Suzuki(order=2, reps=num_trot_steps)).convert(U_ham) spec_circ = spec_op.to_circuit() spec_circ_t = transpile(spec_circ, basis_gates=['sx', 'rz', 'cx']) spec_circ_t.add_register(cr) spec_circ_t.measure(0, cr[0]) spec_circ_t.draw('mpl') # fixed Parameters fixed_params = { cc: 0.3, mu: 0.7, tt: total_time } # Parameter value for single circuit param_keys = list(spec_circ_t.parameters) # run through all the ww values to create a List of Lists of Parameter value num_pts = 101 wvals = np.linspace(-2, 2, num_pts) param_vals = [] for wval in wvals: all_params = {**fixed_params, **{ww: wval}} param_vals.append([all_params[key] for key in param_keys]) with Session(backend=backend): sampler = Sampler() job = sampler.run( circuits=[spec_circ_t]*num_pts, parameter_values=param_vals, shots=1e5 ) result = job.result() Zexps = [] for dist in result.quasi_dists: if 1 in dist: Zexps.append(1 - 2*dist[1]) else: Zexps.append(1) from qiskit.opflow import PauliExpectation, Zero param_bind = { cc: 0.3, mu: 0.7, tt: total_time } init_state = Zero^2 obsv = I^Z Zexp_exact = (U_ham @ init_state).adjoint() @ obsv @ (U_ham @ init_state) diag_meas_op = PauliExpectation().convert(Zexp_exact) Zexact_values = [] for w_set in wvals: param_bind[ww] = w_set Zexact_values.append(np.real(diag_meas_op.bind_parameters(param_bind).eval())) import matplotlib.pyplot as plt plt.style.use('dark_background') fig, ax = plt.subplots(dpi=100) ax.plot([-param_bind[mu], -param_bind[mu]], [0, 1], ls='--', color='purple') ax.plot([param_bind[mu], param_bind[mu]], [0, 1], ls='--', color='purple') ax.plot(wvals, Zexact_values, label='Exact') ax.plot(wvals, Zexps, label=f"{backend}") ax.set_xlabel(r'$\omega$ (arb)') ax.set_ylabel(r'$\langle Z \rangle$ Expectation') ax.legend() import qiskit_ibm_runtime qiskit_ibm_runtime.version.get_version_info() from qiskit.tools.jupyter import * %qiskit_version_table
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit.library import RealAmplitudes from qiskit.algorithms.optimizers import COBYLA from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, SamplingVQE from qiskit.primitives import Sampler from qiskit_optimization.converters import LinearEqualityToPenalty from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from qiskit.utils import algorithm_globals import numpy as np import matplotlib.pyplot as plt from docplex.mp.model import Model algorithm_globals.random_seed = 123456 # prepare problem instance n = 6 # number of assets q = 0.5 # risk factor budget = n // 2 # budget penalty = 2 * n # scaling of penalty term # instance from [1] mu = np.array([0.7313, 0.9893, 0.2725, 0.8750, 0.7667, 0.3622]) sigma = np.array( [ [0.7312, -0.6233, 0.4689, -0.5452, -0.0082, -0.3809], [-0.6233, 2.4732, -0.7538, 2.4659, -0.0733, 0.8945], [0.4689, -0.7538, 1.1543, -1.4095, 0.0007, -0.4301], [-0.5452, 2.4659, -1.4095, 3.5067, 0.2012, 1.0922], [-0.0082, -0.0733, 0.0007, 0.2012, 0.6231, 0.1509], [-0.3809, 0.8945, -0.4301, 1.0922, 0.1509, 0.8992], ] ) # or create random instance # mu, sigma = portfolio.random_model(n, seed=123) # expected returns and covariance matrix # create docplex model mdl = Model("portfolio_optimization") x = mdl.binary_var_list(range(n), name="x") objective = mdl.sum([mu[i] * x[i] for i in range(n)]) objective -= q * mdl.sum([sigma[i, j] * x[i] * x[j] for i in range(n) for j in range(n)]) mdl.maximize(objective) mdl.add_constraint(mdl.sum(x[i] for i in range(n)) == budget) # case to qp = from_docplex_mp(mdl) # solve classically as reference opt_result = MinimumEigenOptimizer(NumPyMinimumEigensolver()).solve(qp) print(opt_result.prettyprint()) # we convert the problem to an unconstrained problem for further analysis, # otherwise this would not be necessary as the MinimumEigenSolver would do this # translation automatically linear2penalty = LinearEqualityToPenalty(penalty=penalty) qp = linear2penalty.convert(qp) _, offset = qp.to_ising() # set classical optimizer maxiter = 100 optimizer = COBYLA(maxiter=maxiter) # set variational ansatz ansatz = RealAmplitudes(n, reps=1) m = ansatz.num_parameters # set sampler sampler = Sampler() # run variational optimization for different values of alpha alphas = [1.0, 0.50, 0.25] # confidence levels to be evaluated # dictionaries to store optimization progress and results objectives = {alpha: [] for alpha in alphas} # set of tested objective functions w.r.t. alpha results = {} # results of minimum eigensolver w.r.t alpha # callback to store intermediate results def callback(i, params, obj, stddev, alpha): # we translate the objective from the internal Ising representation # to the original optimization problem objectives[alpha].append(np.real_if_close(-(obj + offset))) # loop over all given alpha values for alpha in alphas: # initialize SamplingVQE using CVaR vqe = SamplingVQE( sampler=sampler, ansatz=ansatz, optimizer=optimizer, aggregation=alpha, callback=lambda i, params, obj, stddev: callback(i, params, obj, stddev, alpha), ) # initialize optimization algorithm based on CVaR-SamplingVQE opt_alg = MinimumEigenOptimizer(vqe) # solve problem results[alpha] = opt_alg.solve(qp) # print results print("alpha = {}:".format(alpha)) print(results[alpha].prettyprint()) print() # plot resulting history of objective values plt.figure(figsize=(10, 5)) plt.plot([0, maxiter], [opt_result.fval, opt_result.fval], "r--", linewidth=2, label="optimum") for alpha in alphas: plt.plot(objectives[alpha], label="alpha = %.2f" % alpha, linewidth=2) plt.legend(loc="lower right", fontsize=14) plt.xlim(0, maxiter) plt.xticks(fontsize=14) plt.xlabel("iterations", fontsize=14) plt.yticks(fontsize=14) plt.ylabel("objective value", fontsize=14) plt.show() # evaluate and sort all objective values objective_values = np.zeros(2**n) for i in range(2**n): x_bin = ("{0:0%sb}" % n).format(i) x = [0 if x_ == "0" else 1 for x_ in reversed(x_bin)] objective_values[i] = qp.objective.evaluate(x) ind = np.argsort(objective_values) # evaluate final optimal probability for each alpha for alpha in alphas: probabilities = np.fromiter( results[alpha].min_eigen_solver_result.eigenstate.binary_probabilities().values(), dtype=float, ) print("optimal probability (alpha = %.2f): %.4f" % (alpha, probabilities[ind][-1:])) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/1chooo/Quantum-Oracle
1chooo
#Program 4.1 Apply CX-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.cx(0,1) qc.draw('mpl') #Program 4.2 Show unitary matrix of CX-gate (MSB as target bit) from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex qc = QuantumCircuit(2) qc.cx(0,1) display(qc.draw('mpl')) sim = Aer.get_backend('aer_simulator') qc.save_unitary() unitary = sim.run(qc).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CNOT (MSB as target bit) = }")) #Program 4.3 Show unitary matrix of CX-gate (LSB as target bit) from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex sim = Aer.get_backend('aer_simulator') qc = QuantumCircuit(2) qc.cx(1,0) display(qc.draw('mpl')) qc.save_unitary() unitary = sim.run(qc).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CNOT (LSB as target bit) = }")) #Program 4.4a Appliy CX-gate to qubit from qiskit import QuantumCircuit,execute from qiskit.quantum_info import Statevector qc = QuantumCircuit(8,8) sv = Statevector.from_label('11011000') qc.initialize(sv,range(8)) qc.cx(0,1) qc.cx(2,3) qc.cx(4,5) qc.cx(6,7) qc.measure(range(8),range(8)) qc.draw('mpl') #Program 4.4b Measure state of qubit w/ CX-gate from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 4.5 Build Bell state via H- and CX-gate from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.h(1) qc.cx(1,0) print("Below is the Bell state (top: q0 for target; bottom: q1 for control):") display(qc.draw('mpl')) print("Below is the Bell state (top: q1 for control; bottom: q0 for traget):") display(qc.draw('mpl',reverse_bits=True)) #Program 4.6a Build Bell state via H- and CX-gate from qiskit import QuantumCircuit qc = QuantumCircuit(2,2) qc.h(0) qc.cx(0,1) qc.measure(range(2),range(2)) qc.draw('mpl') #Program 4.6b Measure state of qubit in Bell state from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 4.7a Iinitialize qubit and build Bell state via H- and CX-gate from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector qc = QuantumCircuit(2,2) sv = Statevector.from_label('10') qc.initialize(sv,range(2)) qc.h(0) qc.cx(0,1) qc.measure(range(2),range(2)) qc.draw('mpl') #Program 4.7b Measure state of qubit in Bell state from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 4.8 Show quantum circuit for quantum teleportation from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit qs = QuantumRegister(1,'qs') qa = QuantumRegister(1,'qa') qb = QuantumRegister(1,'qb') cr = ClassicalRegister(2,'c') qc = QuantumCircuit(qs,qa,qb,cr) qc.h(qa) qc.cx(qa,qb) qc.barrier() qc.cx(qs,qa) qc.h(qs) qc.measure(qs,0) qc.measure(qa,1) qc.barrier() qc.x(qb) qc.z(qb) qc.draw('mpl') #Program 4.9 Apply CX-, CY-, CZ-, CH-, and SWAP-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(12) qc.cx(0,1) qc.cy(2,3) qc.cz(4,5) qc.ch(6,7) qc.swap(8,9) qc.cx(10,11) qc.cx(11,10) qc.cx(10,11) qc.draw('mpl') #Program 4.10 Apply CCX-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(3) qc.ccx(0,1,2) qc.draw('mpl') #Program 4.11 Show unitary matrix of CCX-gate from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex sim = Aer.get_backend('aer_simulator') qc1 = QuantumCircuit(3) qc1.ccx(0,1,2) print("="*70,"\nBelow is quantum circuit of CCNOT gate (MSB as target bit):") display(qc1.draw('mpl')) qc1.save_unitary() unitary = sim.run(qc1).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CCNOT (MSB as target bit) = }\n")) qc2 = QuantumCircuit(3) qc2.ccx(2,1,0) print("="*70,"\nBelow is quantum circuit of CCNOT gate (LSB as target bit):") display(qc2.draw('mpl')) qc2.save_unitary() unitary = sim.run(qc2).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CCNOT (LSB as target bit) = }\n")) #Program 4.12 Apply CCCCX-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(7) qc.ccx(0,1,4) qc.ccx(2,3,5) qc.ccx(4,5,6) qc.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumCircuit from qiskit.circuit.library.arithmetic.piecewise_chebyshev import PiecewiseChebyshev f_x, degree, breakpoints, num_state_qubits = lambda x: np.arcsin(1 / x), 2, [2, 4], 2 pw_approximation = PiecewiseChebyshev(f_x, degree, breakpoints, num_state_qubits) pw_approximation._build() qc = QuantumCircuit(pw_approximation.num_qubits) qc.h(list(range(num_state_qubits))) qc.append(pw_approximation.to_instruction(), qc.qubits) qc.draw(output='mpl')
https://github.com/carstenblank/dc-qiskit-qml
carstenblank
import qiskit from qiskit_aer.backends.aerbackend import AerBackend from dc_qiskit_qml.encoding_maps import NormedAmplitudeEncoding from dc_qiskit_qml.distance_based.hadamard import QmlHadamardNeighborClassifier from dc_qiskit_qml.distance_based.hadamard.state import QmlGenericStateCircuitBuilder from dc_qiskit_qml.distance_based.hadamard.state.sparsevector import MottonenStatePreparation initial_state_builder = QmlGenericStateCircuitBuilder(MottonenStatePreparation()) execution_backend: AerBackend = qiskit.Aer.get_backend('qasm_simulator') qml = QmlHadamardNeighborClassifier(backend=execution_backend, shots=8192, classifier_circuit_factory=initial_state_builder, encoding_map=NormedAmplitudeEncoding()) import numpy as np from sklearn.preprocessing import StandardScaler, Normalizer from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.datasets import load_wine from sklearn.decomposition import PCA X, y = load_wine(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.10, random_state=42) pipeline = Pipeline([ ('scaler', StandardScaler()), ('pca2', PCA(n_components=2)), ('l2norm', Normalizer(norm='l2', copy=True)), ('qml', qml) ]) import matplotlib.pyplot as plt _X = pipeline.fit_transform(X, y) figure = plt.figure(figsize=(5,5), num=2) sub1 = figure.subplots(nrows=1, ncols=1) class_0_data = np.asarray([_X[i] for i in range(len(_X)) if y[i] == 0]) class_1_data = np.asarray([_X[i] for i in range(len(_X)) if y[i] == 1]) class_2_data = np.asarray([_X[i] for i in range(len(_X)) if y[i] == 2]) class_0 = sub1.scatter(class_0_data[:,0], class_0_data[:,1], color='red', marker='x', s=50) class_1 = sub1.scatter(class_1_data[:,0], class_1_data[:,1], color='blue', marker='x', s=50) class_2 = sub1.scatter(class_2_data[:,0], class_2_data[:,1], color='green', marker='x', s=50) sub1.plot([np.cos(x) for x in np.arange(0, 2*np.pi, 0.1)], [np.sin(x) for x in np.arange(0, 2*np.pi, 0.1)], color='black', linewidth=1) sub1.set_title("Iris Data") sub1.legend([class_0, class_1, class_2], ["Class 1", "Class 2", "Class 3"]) sub1.axvline(color='gray') sub1.axhline(color='gray') _X_train = pipeline.transform(X_train) _X_test = pipeline.transform(X_test) figure = plt.figure(figsize=(10,4.5), num=2) sub1, sub2 = figure.subplots(nrows=1, ncols=2) class_0_data = np.asarray([_X_train[i] for i in range(len(_X_train)) if y_train[i] == 0]) class_1_data = np.asarray([_X_train[i] for i in range(len(_X_train)) if y_train[i] == 1]) class_2_data = np.asarray([_X_train[i] for i in range(len(_X_train)) if y_train[i] == 2]) class_0 = sub1.scatter(class_0_data[:,0], class_0_data[:,1], color='red', marker='x', s=50) class_1 = sub1.scatter(class_1_data[:,0], class_1_data[:,1], color='blue', marker='x', s=50) class_2 = sub1.scatter(class_2_data[:,0], class_2_data[:,1], color='green', marker='x', s=50) sub1.plot([np.cos(x) for x in np.arange(0, 2*np.pi, 0.1)], [np.sin(x) for x in np.arange(0, 2*np.pi, 0.1)], color='black', linewidth=1) sub1.set_title("Training data") sub1.legend([class_0, class_1, class_2], ["Class 1", "Class 2", "Class 3"]) sub1.axvline(color='gray') sub1.axhline(color='gray') class_0_data_test = np.asarray([_X_test[i] for i in range(len(_X_test)) if y_test[i] == 0]) class_1_data_test = np.asarray([_X_test[i] for i in range(len(_X_test)) if y_test[i] == 1]) class_2_data_test = np.asarray([_X_test[i] for i in range(len(_X_test)) if y_test[i] == 2]) class_0 = sub2.scatter(class_0_data_test[:,0], class_0_data_test[:,1], color='red', marker='x', s=50) class_1 = sub2.scatter(class_1_data_test[:,0], class_1_data_test[:,1], color='blue', marker='x', s=50) class_2 = sub2.scatter(class_2_data_test[:,0], class_2_data_test[:,1], color='green', marker='x', s=50) sub2.plot([np.cos(x) for x in np.arange(0, 2*np.pi, 0.1)], [np.sin(x) for x in np.arange(0, 2*np.pi, 0.1)], color='black', linewidth=1) sub2.set_title("Testing data") sub2.legend([class_0, class_1, class_2], ["Class 1", "Class 2", "Class 3"]) sub2.axvline(color='gray') sub2.axhline(color='gray') pipeline.fit(X_train, y_train) prediction = pipeline.predict(X_test) prediction "Test Accuracy: {}".format( sum([1 if p == t else 0 for p, t in zip(prediction, y_test)])/len(prediction) ) prediction_train = pipeline.predict(X_train) "Train Accuracy: {}".format( sum([1 if p == t else 0 for p, t in zip(prediction_train, y_train)])/len(prediction_train) ) for i in range(len(_X_test)): p_acc_theory = QmlHadamardNeighborClassifier.p_acc_theory(_X_train, y_train, _X_test[i]) print(f"{qml.last_predict_p_acc[i]:.4f} ~~ {p_acc_theory:.4f}") for i in range(len(_X_test)): p_label_theory = QmlHadamardNeighborClassifier.p_label_theory(_X_train, y_train, _X_test[i], prediction[i]) print(f"{qml.last_predict_probability[i]:.4f} ~~ {p_label_theory:.4f}") print(qml._last_predict_circuits[0].qasm())
https://github.com/xtophe388/QISKIT
xtophe388
# Checking the version of PYTHON; we only support > 3.5 import sys if sys.version_info < (3,5): raise Exception('Please use Python version 3.5 or greater.') # useful additional packages import numpy as np import random import re # regular expressions module # importing the QISKit from qiskit import QuantumCircuit, QuantumProgram #import Qconfig # Quantum program setup Q_program = QuantumProgram() #Q_program.set_api(Qconfig.APItoken, Qconfig.config['url']) # set the APIToken and API url # Creating registers qr = Q_program.create_quantum_register("qr", 2) cr = Q_program.create_classical_register("cr", 4) singlet = Q_program.create_circuit('singlet', [qr], [cr]) singlet.x(qr[0]) singlet.x(qr[1]) singlet.h(qr[0]) singlet.cx(qr[0],qr[1]) ## Alice's measurement circuits # measure the spin projection of Alice's qubit onto the a_1 direction (X basis) measureA1 = Q_program.create_circuit('measureA1', [qr], [cr]) measureA1.h(qr[0]) measureA1.measure(qr[0],cr[0]) # measure the spin projection of Alice's qubit onto the a_2 direction (W basis) measureA2 = Q_program.create_circuit('measureA2', [qr], [cr]) measureA2.s(qr[0]) measureA2.h(qr[0]) measureA2.t(qr[0]) measureA2.h(qr[0]) measureA2.measure(qr[0],cr[0]) # measure the spin projection of Alice's qubit onto the a_3 direction (standard Z basis) measureA3 = Q_program.create_circuit('measureA3', [qr], [cr]) measureA3.measure(qr[0],cr[0]) ## Bob's measurement circuits # measure the spin projection of Bob's qubit onto the b_1 direction (W basis) measureB1 = Q_program.create_circuit('measureB1', [qr], [cr]) measureB1.s(qr[1]) measureB1.h(qr[1]) measureB1.t(qr[1]) measureB1.h(qr[1]) measureB1.measure(qr[1],cr[1]) # measure the spin projection of Bob's qubit onto the b_2 direction (standard Z basis) measureB2 = Q_program.create_circuit('measureB2', [qr], [cr]) measureB2.measure(qr[1],cr[1]) # measure the spin projection of Bob's qubit onto the b_3 direction (V basis) measureB3 = Q_program.create_circuit('measureB3', [qr], [cr]) measureB3.s(qr[1]) measureB3.h(qr[1]) measureB3.tdg(qr[1]) measureB3.h(qr[1]) measureB3.measure(qr[1],cr[1]) ## Lists of measurement circuits aliceMeasurements = [measureA1, measureA2, measureA3] bobMeasurements = [measureB1, measureB2, measureB3] # Define the number of singlets N numberOfSinglets = 500 aliceMeasurementChoices = [random.randint(1, 3) for i in range(numberOfSinglets)] # string b of Alice bobMeasurementChoices = [random.randint(1, 3) for i in range(numberOfSinglets)] # string b' of Bob circuits = [] # the list in which the created circuits will be stored for i in range(numberOfSinglets): # create the name of the i-th circuit depending on Alice's and Bob's measurement choices circuitName = str(i) + ':A' + str(aliceMeasurementChoices[i]) + '_B' + str(bobMeasurementChoices[i]) # create the joint measurement circuit # add Alice's and Bob's measurement circuits to the singlet state curcuit Q_program.add_circuit(circuitName, singlet + # singlet state circuit aliceMeasurements[aliceMeasurementChoices[i]-1] + # measurement circuit of Alice bobMeasurements[bobMeasurementChoices[i]-1] # measurement circuit of Bob ) # add the created circuit to the circuits list circuits.append(circuitName) print(circuits[0]) result = Q_program.execute(circuits, backend='local_qasm_simulator', shots=1, max_credits=5, wait=10, timeout=240) print(result) result.get_counts(circuits[0]) abPatterns = [ re.compile('..00$'), # search for the '..00' output (Alice obtained -1 and Bob obtained -1) re.compile('..01$'), # search for the '..01' output re.compile('..10$'), # search for the '..10' output (Alice obtained -1 and Bob obtained 1) re.compile('..11$') # search for the '..11' output ] aliceResults = [] # Alice's results (string a) bobResults = [] # Bob's results (string a') for i in range(numberOfSinglets): res = list(result.get_counts(circuits[i]).keys())[0] # extract the key from the dict and transform it to str; execution result of the i-th circuit if abPatterns[0].search(res): # check if the key is '..00' (if the measurement results are -1,-1) aliceResults.append(-1) # Alice got the result -1 bobResults.append(-1) # Bob got the result -1 if abPatterns[1].search(res): aliceResults.append(1) bobResults.append(-1) if abPatterns[2].search(res): # check if the key is '..10' (if the measurement results are -1,1) aliceResults.append(-1) # Alice got the result -1 bobResults.append(1) # Bob got the result 1 if abPatterns[3].search(res): aliceResults.append(1) bobResults.append(1) aliceKey = [] # Alice's key string k bobKey = [] # Bob's key string k' # comparing the stings with measurement choices for i in range(numberOfSinglets): # if Alice and Bob have measured the spin projections onto the a_2/b_1 or a_3/b_2 directions if (aliceMeasurementChoices[i] == 2 and bobMeasurementChoices[i] == 1) or (aliceMeasurementChoices[i] == 3 and bobMeasurementChoices[i] == 2): aliceKey.append(aliceResults[i]) # record the i-th result obtained by Alice as the bit of the secret key k bobKey.append(- bobResults[i]) # record the multiplied by -1 i-th result obtained Bob as the bit of the secret key k' keyLength = len(aliceKey) # length of the secret key abKeyMismatches = 0 # number of mismatching bits in Alice's and Bob's keys for j in range(keyLength): if aliceKey[j] != bobKey[j]: abKeyMismatches += 1 # function that calculates CHSH correlation value def chsh_corr(result): # lists with the counts of measurement results # each element represents the number of (-1,-1), (-1,1), (1,-1) and (1,1) results respectively countA1B1 = [0, 0, 0, 0] # XW observable countA1B3 = [0, 0, 0, 0] # XV observable countA3B1 = [0, 0, 0, 0] # ZW observable countA3B3 = [0, 0, 0, 0] # ZV observable for i in range(numberOfSinglets): res = list(result.get_counts(circuits[i]).keys())[0] # if the spins of the qubits of the i-th singlet were projected onto the a_1/b_1 directions if (aliceMeasurementChoices[i] == 1 and bobMeasurementChoices[i] == 1): for j in range(4): if abPatterns[j].search(res): countA1B1[j] += 1 if (aliceMeasurementChoices[i] == 1 and bobMeasurementChoices[i] == 3): for j in range(4): if abPatterns[j].search(res): countA1B3[j] += 1 if (aliceMeasurementChoices[i] == 3 and bobMeasurementChoices[i] == 1): for j in range(4): if abPatterns[j].search(res): countA3B1[j] += 1 # if the spins of the qubits of the i-th singlet were projected onto the a_3/b_3 directions if (aliceMeasurementChoices[i] == 3 and bobMeasurementChoices[i] == 3): for j in range(4): if abPatterns[j].search(res): countA3B3[j] += 1 # number of the results obtained from the measurements in a particular basis total11 = sum(countA1B1) total13 = sum(countA1B3) total31 = sum(countA3B1) total33 = sum(countA3B3) # expectation values of XW, XV, ZW and ZV observables (2) expect11 = (countA1B1[0] - countA1B1[1] - countA1B1[2] + countA1B1[3])/total11 # -1/sqrt(2) expect13 = (countA1B3[0] - countA1B3[1] - countA1B3[2] + countA1B3[3])/total13 # 1/sqrt(2) expect31 = (countA3B1[0] - countA3B1[1] - countA3B1[2] + countA3B1[3])/total31 # -1/sqrt(2) expect33 = (countA3B3[0] - countA3B3[1] - countA3B3[2] + countA3B3[3])/total33 # -1/sqrt(2) corr = expect11 - expect13 + expect31 + expect33 # calculate the CHSC correlation value (3) return corr corr = chsh_corr(result) # CHSH correlation value # CHSH inequality test print('CHSH correlation value: ' + str(round(corr, 3))) # Keys print('Length of the key: ' + str(keyLength)) print('Number of mismatching bits: ' + str(abKeyMismatches) + '\n') # measurement of the spin projection of Alice's qubit onto the a_2 direction (W basis) measureEA2 = Q_program.create_circuit('measureEA2', [qr], [cr]) measureEA2.s(qr[0]) measureEA2.h(qr[0]) measureEA2.t(qr[0]) measureEA2.h(qr[0]) measureEA2.measure(qr[0],cr[2]) # measurement of the spin projection of Allice's qubit onto the a_3 direction (standard Z basis) measureEA3 = Q_program.create_circuit('measureEA3', [qr], [cr]) measureEA3.measure(qr[0],cr[2]) # measurement of the spin projection of Bob's qubit onto the b_1 direction (W basis) measureEB1 = Q_program.create_circuit('measureEB1', [qr], [cr]) measureEB1.s(qr[1]) measureEB1.h(qr[1]) measureEB1.t(qr[1]) measureEB1.h(qr[1]) measureEB1.measure(qr[1],cr[3]) # measurement of the spin projection of Bob's qubit onto the b_2 direction (standard Z measurement) measureEB2 = Q_program.create_circuit('measureEB2', [qr], [cr]) measureEB2.measure(qr[1],cr[3]) # lists of measurement circuits eveMeasurements = [measureEA2, measureEA3, measureEB1, measureEB2] # list of Eve's measurement choices # the first and the second elements of each row represent the measurement of Alice's and Bob's qubits by Eve respectively eveMeasurementChoices = [] for j in range(numberOfSinglets): if random.uniform(0, 1) <= 0.5: # in 50% of cases perform the WW measurement eveMeasurementChoices.append([0, 2]) else: # in 50% of cases perform the ZZ measurement eveMeasurementChoices.append([1, 3]) circuits = [] # the list in which the created circuits will be stored for j in range(numberOfSinglets): # create the name of the j-th circuit depending on Alice's, Bob's and Eve's choices of measurement circuitName = str(j) + ':A' + str(aliceMeasurementChoices[j]) + '_B' + str(bobMeasurementChoices[j] + 2) + '_E' + str(eveMeasurementChoices[j][0]) + str(eveMeasurementChoices[j][1] - 1) # create the joint measurement circuit # add Alice's and Bob's measurement circuits to the singlet state curcuit Q_program.add_circuit(circuitName, singlet + # singlet state circuit eveMeasurements[eveMeasurementChoices[j][0]-1] + # Eve's measurement circuit of Alice's qubit eveMeasurements[eveMeasurementChoices[j][1]-1] + # Eve's measurement circuit of Bob's qubit aliceMeasurements[aliceMeasurementChoices[j]-1] + # measurement circuit of Alice bobMeasurements[bobMeasurementChoices[j]-1] # measurement circuit of Bob ) # add the created circuit to the circuits list circuits.append(circuitName) result = Q_program.execute(circuits, backend='local_qasm_simulator', shots=1, max_credits=5, wait=10, timeout=240) print(result) print(str(circuits[0]) + '\t' + str(result.get_counts(circuits[0]))) ePatterns = [ re.compile('00..$'), # search for the '00..' result (Eve obtained the results -1 and -1 for Alice's and Bob's qubits) re.compile('01..$'), # search for the '01..' result (Eve obtained the results 1 and -1 for Alice's and Bob's qubits) re.compile('10..$'), re.compile('11..$') ] aliceResults = [] # Alice's results (string a) bobResults = [] # Bob's results (string a') # list of Eve's measurement results # the elements in the 1-st column are the results obtaned from the measurements of Alice's qubits # the elements in the 2-nd column are the results obtaned from the measurements of Bob's qubits eveResults = [] # recording the measurement results for j in range(numberOfSinglets): res = list(result.get_counts(circuits[j]).keys())[0] # extract a key from the dict and transform it to str # Alice and Bob if abPatterns[0].search(res): # check if the key is '..00' (if the measurement results are -1,-1) aliceResults.append(-1) # Alice got the result -1 bobResults.append(-1) # Bob got the result -1 if abPatterns[1].search(res): aliceResults.append(1) bobResults.append(-1) if abPatterns[2].search(res): # check if the key is '..10' (if the measurement results are -1,1) aliceResults.append(-1) # Alice got the result -1 bobResults.append(1) # Bob got the result 1 if abPatterns[3].search(res): aliceResults.append(1) bobResults.append(1) # Eve if ePatterns[0].search(res): # check if the key is '00..' eveResults.append([-1, -1]) # results of the measurement of Alice's and Bob's qubits are -1,-1 if ePatterns[1].search(res): eveResults.append([1, -1]) if ePatterns[2].search(res): eveResults.append([-1, 1]) if ePatterns[3].search(res): eveResults.append([1, 1]) aliceKey = [] # Alice's key string a bobKey = [] # Bob's key string a' eveKeys = [] # Eve's keys; the 1-st column is the key of Alice, and the 2-nd is the key of Bob # comparing the strings with measurement choices (b and b') for j in range(numberOfSinglets): # if Alice and Bob measured the spin projections onto the a_2/b_1 or a_3/b_2 directions if (aliceMeasurementChoices[j] == 2 and bobMeasurementChoices[j] == 1) or (aliceMeasurementChoices[j] == 3 and bobMeasurementChoices[j] == 2): aliceKey.append(aliceResults[j]) # record the i-th result obtained by Alice as the bit of the secret key k bobKey.append(-bobResults[j]) # record the multiplied by -1 i-th result obtained Bob as the bit of the secret key k' eveKeys.append([eveResults[j][0], -eveResults[j][1]]) # record the i-th bits of the keys of Eve keyLength = len(aliceKey) # length of the secret skey abKeyMismatches = 0 # number of mismatching bits in the keys of Alice and Bob eaKeyMismatches = 0 # number of mismatching bits in the keys of Eve and Alice ebKeyMismatches = 0 # number of mismatching bits in the keys of Eve and Bob for j in range(keyLength): if aliceKey[j] != bobKey[j]: abKeyMismatches += 1 if eveKeys[j][0] != aliceKey[j]: eaKeyMismatches += 1 if eveKeys[j][1] != bobKey[j]: ebKeyMismatches += 1 eaKnowledge = (keyLength - eaKeyMismatches)/keyLength # Eve's knowledge of Bob's key ebKnowledge = (keyLength - ebKeyMismatches)/keyLength # Eve's knowledge of Alice's key corr = chsh_corr(result) # CHSH inequality test print('CHSH correlation value: ' + str(round(corr, 3)) + '\n') # Keys print('Length of the key: ' + str(keyLength)) print('Number of mismatching bits: ' + str(abKeyMismatches) + '\n') print('Eve\'s knowledge of Alice\'s key: ' + str(round(eaKnowledge * 100, 2)) + ' %') print('Eve\'s knowledge of Bob\'s key: ' + str(round(ebKnowledge * 100, 2)) + ' %')
https://github.com/theflyingrahul/qiskitsummerschool2020
theflyingrahul
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/hephaex/Quantum-Computing-Awesome-List
hephaex
from qiskit import QuantumCircuit, execute, Aer from qiskit.visualization import plot_histogram, plot_bloch_vector from math import sqrt, pi %config InlineBackend.figure_format = 'svg' # Makes the images look nice qc = QuantumCircuit(1) initial_state = [0,1] qc.initialize(initial_state, 0) qc.draw() backend = Aer.get_backend('statevector_simulator') result = execute(qc,backend).result() state_vector = result.get_statevector() print(state_vector) qc.measure_all() qc.draw() result = execute(qc, backend).result() counts = result.get_counts() plot_histogram(counts) initial_state = [1/sqrt(2), complex(0,1/sqrt(2))] qc = QuantumCircuit(1) qc.initialize(initial_state, 0) qc.draw() backend = Aer.get_backend('statevector_simulator') result = execute(qc, backend).result() statevector = result.get_statevector() print(statevector) counts = result.get_counts() plot_histogram(counts) initialize_state = [1/sqrt(3), sqrt(2/3)] qc = QuantumCircuit(1) qc.initialize(initialize_state, 0) qc.draw() result = execute(qc, backend).result() counts = result.get_counts() plot_histogram(counts)
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) qc.cx(1, 0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1, 0) ### removed h gate ### return qc
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import matplotlib.pyplot as plt import itertools from pprint import pprint # plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts import time import datetime # Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z) from qiskit.opflow import Zero, One, I, X, Y, Z from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter from qiskit.transpiler.passes import RemoveBarriers # Import QREM package from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter from qiskit.ignis.mitigation import expectation_value # Import mitiq for zne import mitiq # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits from qiskit.quantum_info import state_fidelity import sys import importlib sys.path.append("./") import circuit_utils, zne_utils, tomography_utils, sgs_algorithm importlib.reload(circuit_utils) importlib.reload(zne_utils) importlib.reload(tomography_utils) importlib.reload(sgs_algorithm) from circuit_utils import * from zne_utils import * from tomography_utils import * from sgs_algorithm import * # Combine subcircuits into a single multiqubit gate representing a single trotter step num_qubits = 3 # The final time of the state evolution target_time = np.pi # Parameterize variable t to be evaluated at t=pi later dt = Parameter('t') # Convert custom quantum circuit into a gate trot_gate = trotter_gate(dt) # initial layout initial_layout = [5,3,1] # Number of trotter steps num_steps = 100 print("trotter step: ", num_steps) scale_factors = [1.0, 2.0, 3.0, 4.0, 5.0] # Initialize quantum circuit for 3 qubits qr = QuantumRegister(num_qubits, name="q") qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>) make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian subspace_decoder(qc, targets=[0,1,2]) # decode # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time t1 = time.perf_counter() qc = qc.bind_parameters({dt: target_time / num_steps}) t2 = time.perf_counter() print("created qc,", t2 - t1, "s") # Generate state tomography circuits to evaluate fidelity of simulation t1 = time.perf_counter() st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN === t2 = time.perf_counter() print("created st_qcs (length:", len(st_qcs), "),", t2 - t1, "s") # remove barriers t1 = time.perf_counter() st_qcs = [RemoveBarriers()(qc) for qc in st_qcs] t2 = time.perf_counter() print("removed barriers from st_qcs,", t2 - t1, "s") # optimize circuit t1 = time.perf_counter() t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) t2 = time.perf_counter() print("created t3_st_qcs (length:", len(t3_st_qcs), "),", t2 - t1, "s") t3_st_qcs[0].draw("mpl") # zne wrapping t1 = time.perf_counter() zne_qcs = zne_wrapper(t3_st_qcs, scale_factors=scale_factors) t2 = time.perf_counter() print("created zne_qcs (length:", len(zne_qcs), "),", t2 - t1, "s") t1 = time.perf_counter() zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"]) t2 = time.perf_counter() print("decomposed zne_qcs into basis gates (length:", len(zne_qcs), "),", t2 - t1, "s") t1 = time.perf_counter() t3_zne_qcs = transpile(zne_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) t2 = time.perf_counter() print("optimized zne_qcs -> create t3_zne_qcs (length:", len(t3_zne_qcs), "),", t2 - t1, "s") t1 = time.perf_counter() t3_zne_qcs = transpile(t3_zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout) t2 = time.perf_counter() print("fit the t3_zne_qcs to the initial layoit (length:", len(t3_zne_qcs), "),", t2 - t1, "s") t3_zne_qcs[-3].draw("mpl") from qiskit.test.mock import FakeJakarta backend = FakeJakarta() # backend = Aer.get_backend("qasm_simulator") # IBMQ.load_account() # provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst') # provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') # print("provider:", provider) # backend = provider.get_backend("ibmq_jakarta") shots = 1 << 13 reps = 1 # unused # Number of trotter steps print("trotter step: ", num_steps) # execute: reps = 1 job = execute(t3_zne_qcs, backend, shots=shots) # 毎回チェック: ここちゃんと変えた? print('Job ID', job.job_id()) # QREM qr = QuantumRegister(num_qubits) meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout) print('Job ID', cal_job.job_id()) cal_results = cal_job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') mit_results = meas_fitter.filter.apply(job.result()) zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors=scale_factors) target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!! rho = expvals_to_valid_rho(num_qubits, zne_expvals) fidelity = state_fidelity(rho, target_state) print(fidelity)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit ghz = QuantumCircuit(5) ghz.h(0) ghz.cx(0,range(1,5)) ghz.draw(output='mpl')
https://github.com/vandnaChaturvedi/Qauntum_algorithms_Qiskit
vandnaChaturvedi
#from qiskit_textbook.widgets import dj_widget #dj_widget(size="small", case="balanced") # initialization ####################################################################################################################### qiskit_edit_1 from qiskit import QuantumCircuit, execute from qiskit import QuantumRegister, ClassicalRegister from qiskit.tools.monitor import job_monitor from qiskit import * import time import matplotlib.pyplot as plt import argparse import sys from concurrent.futures import ThreadPoolExecutor import resource from time import sleep ######################################################################################################################### import numpy as np options = { 'plot': True, "rotation_error": {'rx':[0.9, 0.9], 'ry':[0.9, 0.9], 'rz':[0.9, 0.9]}, "tsp_model_error": [0.9, 0.9], "thermal_factor": 0.9, "decoherence_factor": 0.9, "depolarization_factor": 0.9, "bell_depolarization_factor": 0.9, "decay_factor": 0.89, } # importing Qiskit #from qiskit import IBMQ, Aer #from qiskit.providers.ibmq import least_busy #from qiskit import QuantumCircuit, assemble, transpile # import basic plot tools from qiskit.visualization import plot_histogram # set the length of the n-bit input string. n = 3 const_oracle = QuantumCircuit(n+1) output = np.random.randint(2) if output == 1: const_oracle.x(n) const_oracle.draw() balanced_oracle = QuantumCircuit(n+1) b_str = "101" balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) balanced_oracle.draw() balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() balanced_oracle.draw() balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Show oracle balanced_oracle.draw() dj_circuit = QuantumCircuit(n+1, n+1) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) dj_circuit.draw() dj_circuit = QuantumCircuit(n+1, n+1) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit += balanced_oracle dj_circuit.draw() dj_circuit = QuantumCircuit(n+1, n+1) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle # dj_circuit += balanced_oracle # Repeat H-gates for qubit in range(n): dj_circuit.h(qubit) dj_circuit.barrier() # Measure for i in range(n): dj_circuit.measure(i, i, basis='Ensemble', add_param='Z') # Display circuit dj_circuit.draw() # use local simulator backend = qiskit.BasicAer.get_backend('dm_simulator') job = execute(dj_circuit, backend=backend, shots=1) #job1 = execute(dj_circuit, backend=backend, backend_options=options, shots=1) job_result = job.result() #job_result1 = job1.result() #print(job_result['results'][0]['data']['densitymatrix']) #print(job_result1['results'][0]['data']['densitymatrix']) job_result['results'][0]['data']['ensemble_probability'] backend = qiskit.BasicAer.get_backend('dm_simulator') job1 = execute(dj_circuit, backend=backend, backend_options=options, shots=1) job_result1 = job1.result() job_result1['results'][0]['data']['ensemble_probability'] no_noise=job_result['results'][0]['data']['ensemble_probability'] x= no_noise.keys() y = no_noise.values() plt.bar(x, y, width=0.6, label='No Noise') plt.xlabel('combination of bits') plt.ylabel('Probablities') plt.title('Ensemble Probabilities') plt.figure(figsize=(3, 3)) plt.show() noisy=job_result1['results'][0]['data']['ensemble_probability'] x1 = noisy.keys() y1 = noisy.values() plt.bar(x1, y1, width=0.6, label='Noisy', color='coral') plt.xlabel('combination of bits') plt.ylabel('Probablities') plt.title('Ensemble Probabilities Over Noisy data') plt.show() def dj_oracle(case, n): # We need to make a QuantumCircuit object to return # This circuit has n+1 qubits: the size of the input, # plus one output qubit oracle_qc = QuantumCircuit(n+1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1,2**n) # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, '0'+str(n)+'b') # Next, we place the first X-gates. Each digit in our binary string # corresponds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for qubit in range(n): oracle_qc.cx(qubit, n) # Next, place the final X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(n) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate def dj_algorithm(oracle, n): dj_circuit = QuantumCircuit(n+1, n) # Set up the output qubit: dj_circuit.x(n) dj_circuit.h(n) # And set up the input register: for qubit in range(n): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(n+1)) # Finally, perform the H-gates again and measure: for qubit in range(n): dj_circuit.h(qubit) for i in range(n): dj_circuit.measure(i, i, basis='Ensemble', add_param='Z') return dj_circuit n = 4 oracle_gate = dj_oracle('balanced', n) dj_circuit = dj_algorithm(oracle_gate, n) dj_circuit.draw() ##NO_NOISE backend = qiskit.BasicAer.get_backend('dm_simulator') job = execute(dj_circuit, backend=backend, shots=1) job_result = job.result() print(job_result['results'][0]['data']['densitymatrix']) ##plot_histogram(answer) ###no histrogram because of single shot in DM simulator ## Noisy job1 = execute(dj_circuit, backend=backend, backend_options=options, shots=1) job_result1 = job1.result() print(job_result1['results'][0]['data']['densitymatrix']) from qiskit.visualization import plot_state_city get_ipython().run_line_magic('matplotlib', 'inline') plot_state_city(job_result1['results'][0]['data']['densitymatrix'], color=['midnightblue', 'midnightblue'],title="Density Matrix_no_noise") ##no_noise_ensemble_probabs job_result['results'][0]['data']['ensemble_probability'] ##noisy_ensemble_probabs job_result1['results'][0]['data']['ensemble_probability'] no_noise=job_result['results'][0]['data']['ensemble_probability'] noisy=job_result1['results'][0]['data']['ensemble_probability'] labels = noisy.keys() without_noise = no_noise.values() with_noise = noisy.values() x = np.arange(len(labels)) # the label locations width = 0.35 # the width of the bars fig, ax = plt.subplots() rects1 = ax.bar(x - width/2, without_noise, width, label='Without Noise') rects2 = ax.bar(x + width/2, with_noise, width, label='With Noise') # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('Probability') ax.set_title('Ensemble Probabilities with Noise') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend() plt.show() # Load our saved IBMQ accounts and get the least busy backend device with greater than or equal to (n+1) qubits IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n+1) and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor transpiled_dj_circuit = transpile(dj_circuit, backend, optimization_level=3) job = backend.run(transpiled_dj_circuit) job_monitor(job, interval=2) # Get the results of the computation results = job.result() answer = results.get_counts() plot_histogram(answer) from qiskit_textbook.problems import dj_problem_oracle oracle = dj_problem_oracle(1) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/QPower-Research/QPowerAlgo
QPower-Research
from qiskit import * from qiskit.visualization import * import matplotlib.pyplot as plt import numpy as np import math simulator = BasicAer.get_backend('qasm_simulator') prob_distr = [8, 40, 35, 20, 15, 10, 5, 5] #normalization prob_distr = [k/sum(prob_distr) for k in prob_distr] plt.bar(range(len(prob_distr)),prob_distr) def ansatz(param, num_layers): num_q = 3 qc = QuantumCircuit(num_q, num_q) for j in range(num_layers): for i in range(num_q): qc.ry(param[i + j*num_q], i) if j < num_layers-1: qc.cx(0,1) qc.cx(1,2) qc.cx(2,0) qc.barrier() qc.measure(range(num_q), range(num_q)) return qc ansatz(param = np.random.uniform(0, np.pi, 9), num_layers=3).draw('mpl',fold=-1) num_layers = 5 def loss_function(params): num_shots=1024 circ = ansatz(param=params, num_layers=num_layers) counts = execute(circ, backend=simulator, shots=num_shots).result().get_counts(circ) strings = ['000','001','010','011','100','101','110','111'] for i in strings: if i not in counts: counts[i] = 0 p = [counts[string]/num_shots for string in strings] """ cross_entropy = 0 for i in range(len(p)): if p[i]>0: cross_entropy -= prob_distr[i]*math.log2(p[i]) return cross_entropy """ return sum([(p[i] - prob_distr[i])**2 for i in range(len(prob_distr))]) #return sum([abs(p[i] - prob_distr[i]) for i in range(len(prob_distr))]) #return sum([ prob_distr[i]*math.log2(p[i]) for i in range(len(prob_distr))]) from qiskit.algorithms.optimizers import COBYLA,SLSQP,SPSA optimizer = COBYLA(250) ret = optimizer.optimize(num_vars=num_params, objective_function=loss_function, initial_point=np.ones(num_params)) num_shots = 1024 trained_circ = ansatz(param=ret[0], num_layers=num_layers) counts = execute(trained_circ, backend=simulator, shots=num_shots).result().get_counts(trained_circ) strings = ['000','001','010','011','100','101','110','111'] for k in strings: if k not in counts: counts[k]=0 counts = [counts[i]/1024 for i in strings] plt.plot(range(len(counts)),counts, color='r') plt.bar(range(len(prob_distr)), prob_distr) plt.legend(["qGAN approx.", "Reference"]) plt.title("Probability distributions") plt.grid()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import math from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse3Q # TODO: This example should use a real mock backend. backend = FakeOpenPulse3Q() d2 = pulse.DriveChannel(2) with pulse.build(backend) as bell_prep: pulse.u2(0, math.pi, 0) pulse.cx(0, 1) with pulse.build(backend) as decoupled_bell_prep_and_measure: # We call our bell state preparation schedule constructed above. with pulse.align_right(): pulse.call(bell_prep) pulse.play(pulse.Constant(bell_prep.duration, 0.02), d2) pulse.barrier(0, 1, 2) registers = pulse.measure_all() decoupled_bell_prep_and_measure.draw()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector qc = QuantumCircuit(2) qc.h(0) qc.x(1) # You can reverse the order of the qubits. from qiskit.quantum_info import DensityMatrix qc = QuantumCircuit(2) qc.h([0, 1]) qc.t(1) qc.s(0) qc.cx(0,1) matrix = DensityMatrix(qc) plot_bloch_multivector(matrix, title='My Bloch Spheres', reverse_bits=True)
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb N = 2**10; th = asin(1/sqrt(N)); N, float(th), float(sin(th)), float(th*180/pi), sqrt(N) my_list = [1,3,5,2,4,9,5,8,0,7,6] def my_oracle(my_input): solution = 2 if my_input == solution: response = True else: response = False return response my_input = 7; res = my_oracle(my_input); print(res) for j in range(0,len(my_list)): if my_oracle(my_list[j]) == True: print('Solução encontrada no índice',j, ', após ', j+1, ' consultas ao oráculo.') from qiskit import * nshots = 8192 qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') simulator = Aer.get_backend('qasm_simulator') device = provider.get_backend('ibmq_belem') from qiskit.tools.monitor import job_monitor from qiskit.tools.visualization import plot_histogram def qc_Uz(n): # 2|0><0| - I qc = QuantumCircuit(n, name = 'Uz') qrl = [] for j in range(0, n): qrl.append(j) qc.z(0); qc.x(0); qc.z(0); qc.x(0) qc.x(qrl) # 00...0 -> 11...1 qc.h(n-1); qc.mcx(qrl[0:n-1],n-1); qc.h(n-1) # Cz multicontrolada. Multiplica 11...1 por -1 qc.x(qrl); # 11...1 -> 00...0 return qc qc_Uz_ = qc_Uz(3); qc_Uz_.draw() def qc_Uh(n): # 2|h><h| - I qc = QuantumCircuit(n, name = 'Uh') qrl = [] for j in range(0, n): qrl.append(j) qc.h(qrl) # transforma Uz em Uh qc_Uz_ = qc_Uz(n); qc.append(qc_Uz_, qrl) qc.h(qrl) return qc qc_Uh_ = qc_Uh(3); qc_Uh_.draw() def qc_oracle(n): # Nielsen & Chuang, Box 6.1 (N=4) qc = QuantumCircuit(n+1, name = 'Oracle') qc.ccx(0,1,2) # para a solução sendo o estado |11> return qc qc_oracle_ = qc_oracle(2) qc_oracle_.draw('mpl') def qc_grover_iteration(n): qc = QuantumCircuit(n+1, name = 'G') qrl = [] for j in range(0, n+1): qrl.append(j) qc_oracle_ = qc_oracle(n) qc.append(qc_oracle_, qrl) qc_Uh_ = qc_Uh(n); qc.append(qc_Uh_, qrl[0:n]) return qc qc_grover_iteration_ = qc_grover_iteration(2) qc_grover_iteration_.draw('mpl') def qc_hadamard_state(n): # aplica a Hadamard em n qubits qc = QuantumCircuit(n, name = 'H state') # começarei a não usar mais os qr[j] qrl = [] # lista de registros quânticos for j in range(0, n): qrl.append(j) qc.h(qrl) # aplica a hadamard em toda a lista de registros quânticos return qc qc_hadamard_state_ = qc_hadamard_state(3); qc_hadamard_state_.draw() def qc_grover_search(n): qc = QuantumCircuit(n+1, n) qc.x(n) qrl = [] # lista de registros quânticos for j in range(0, n+1): qrl.append(j) qc_hadamard_state_ = qc_hadamard_state(n+1); qc.append(qc_hadamard_state_, qrl) for j in range(0, int((math.pi*math.sqrt(2**n))/4 - 1/2)): qc_grover_iteration_ = qc_grover_iteration(n); qc.append(qc_grover_iteration_, qrl) qc.measure(qrl[0:n], qrl[0:n]) return qc qc_grover_search_ = qc_grover_search(2); qc_grover_search_.draw() qc_grover_search_ = qc_grover_search(2) result = execute(qc_grover_search_, backend = simulator, shots = nshots).result() plot_histogram(result.get_counts(qc_grover_search_)) job = execute(qc_grover_search_, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc_grover_search_))
https://github.com/samuraigab/Quantum-Basic-Algorithms
samuraigab
import matplotlib as mpl import numpy as np import matplotlib.pyplot as plt from qiskit import QuantumCircuit, Aer, transpile, assemble from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(1,1) # Alice prepares qubit in state |+> qc.h(0) qc.barrier() # Alice now sends the qubit to Bob # who measures it in the X-basis qc.h(0) qc.measure(0,0) # Draw and simulate circuit display(qc.draw()) aer_sim = Aer.get_backend('aer_simulator') job = aer_sim.run(assemble(qc)) plot_histogram(job.result().get_counts()) qc = QuantumCircuit(1,1) # Alice prepares qubit in state |+> qc.h(0) # Alice now sends the qubit to Bob # but Eve intercepts and tries to read it qc.measure(0, 0) qc.barrier() # Eve then passes this on to Bob # who measures it in the X-basis qc.h(0) qc.measure(0,0) # Draw and simulate circuit display(qc.draw()) aer_sim = Aer.get_backend('aer_simulator') job = aer_sim.run(assemble(qc)) plot_histogram(job.result().get_counts()) n = 100 ## Step 1 # Alice generates bits. alice_bits = np.random.randint(0,2,n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = np.random.randint(0,2,n) # Function to compare the bits & bases generated by alice, and then 'encode' the message. Basically determines the state of the qubit/photon to send. def encode_message(bits, bases): message = [] for i in range(n): qc = QuantumCircuit(1,1) if bases[i] == 0: # Prepare qubit in Z-basis if bits[i] == 0: pass else: qc.x(0) else: # Prepare qubit in X-basis if bits[i] == 0: qc.h(0) else: qc.x(0) qc.h(0) qc.barrier() message.append(qc) return message # Alice computes the encoded message using the function defined above. message = encode_message(alice_bits, alice_bases) ## Step 3 # Decide which basis to measure in: bob_bases = np.random.randint(0,2,n) # Function to decode the message sent by alice by comparing qubit/photon states with Bob's generated bases. def measure_message(message, bases): backend = Aer.get_backend('aer_simulator') measurements = [] for q in range(n): if bases[q] == 0: # measuring in Z-basis message[q].measure(0,0) if bases[q] == 1: # measuring in X-basis message[q].h(0) message[q].measure(0,0) aer_sim = Aer.get_backend('aer_simulator') qobj = assemble(message[q], shots=1, memory=True) result = aer_sim.run(qobj).result() measured_bit = int(result.get_memory()[0]) measurements.append(measured_bit) return measurements # Decode the message according to his bases bob_results = measure_message(message, bob_bases) ## Step 4 # Function to perform sifting i.e. disregard the bits for which Bob's & A;ice's bases didnot match. def remove_garbage(a_bases, b_bases, bits): good_bits = [] for q in range(n): if a_bases[q] == b_bases[q]: # If both used the same basis, add # this to the list of 'good' bits good_bits.append(bits[q]) return good_bits # Performing sifting for Alice's and Bob's bits. alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) bob_key = remove_garbage(alice_bases, bob_bases, bob_results) print("Alice's key after sifting (without interception)", alice_key) print("Bob's key after sifting (without interception) ", bob_key) # # Step 5 # # Function for parameter estimation i.e. determining the error rate by comparing subsets taen from both Alice's key & Bob's key. # def sample_bits(bits, selection): # sample = [] # for i in selection: # # use np.mod to make sure the # # bit we sample is always in # # the list range # i = np.mod(i, len(bits)) # # pop(i) removes the element of the # # list at index 'i' # sample.append(bits.pop(i)) # return sample # # Performing parameter estimation & disregarding the bits used for comparison from Alice's & Bob's key. # sample_size = 15 # bit_selection = np.random.randint(0,n,size=sample_size) # bob_sample = sample_bits(bob_key, bit_selection) # alice_sample = sample_bits(alice_key, bit_selection) num = 0 for i in range(0,len(bob_key)): if alice_key[i] == bob_key[i]: num = num + 1 matching_bits = (num/len(bob_key))*100 print(matching_bits,"% of the bits match.") ## Step 1 alice_bits = np.random.randint(2, size=n) ## Step 2 alice_bases = np.random.randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Interception!! eve_bases = np.random.randint(2, size=n) intercepted_message = measure_message(message, eve_bases) ## Step 3 bob_bases = np.random.randint(2, size=n) bob_results = measure_message(message, bob_bases) ## Step 4 bob_key = remove_garbage(alice_bases, bob_bases, bob_results) alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) print("Alice's key after sifting (with interception)", alice_key) print("Bob's key after sifting (with interception) ", bob_key) # ## Step 5 # sample_size = 15 # bit_selection = np.random.randint(n, size=sample_size) # bob_sample = sample_bits(bob_key, bit_selection) # alice_sample = sample_bits(alice_key, bit_selection) num = 0 for i in range(0,len(bob_key)): if alice_key[i] == bob_key[i]: num = num + 1 matching_bits = (num/len(bob_key))*100 print(matching_bits,"% of the bits match.") plt.rcParams['axes.linewidth'] = 2 mpl.rcParams['font.family'] = ['Georgia'] plt.figure(figsize=(10.5,6)) ax=plt.axes() ax.set_title('') ax.set_xlabel('$n$ (Number of bits drawn from the sifted keys for determining error rate)',fontsize = 18,labelpad=10) ax.set_ylabel(r'$P(Eve\ detected)$',fontsize = 18,labelpad=10) ax.xaxis.set_tick_params(which='major', size=8, width=2, direction='in', top='on') ax.yaxis.set_tick_params(which='major', size=8, width=2, direction='in', top='on') ax.tick_params(axis='x', labelsize=20) ax.tick_params(axis='y', labelsize=20) ax. xaxis. label. set_size(20) ax. yaxis. label. set_size(20) n = 30 x = np.arange(n+1) y = 1 - 0.75**x ax.plot(x,y,color = plt.cm.rainbow(np.linspace(0, 1, 5))[0], marker = "s", markerfacecolor='r')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile from qiskit.visualization import plot_circuit_layout from qiskit.providers.fake_provider import FakeVigo backend = FakeVigo() ghz = QuantumCircuit(3, 3) ghz.h(0) ghz.cx(0,range(1,3)) ghz.barrier() ghz.measure(range(3), range(3)) new_circ_lv3 = transpile(ghz, backend=backend, optimization_level=3) plot_circuit_layout(new_circ_lv3, backend)
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for the wrapper functionality.""" import io import unittest from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import BasicAer from qiskit import execute from qiskit.tools.monitor import job_monitor from qiskit.test import QiskitTestCase class TestJobMonitor(QiskitTestCase): """Tools test case.""" def test_job_monitor(self): """Test job_monitor""" qreg = QuantumRegister(2) creg = ClassicalRegister(2) qc = QuantumCircuit(qreg, creg) qc.h(qreg[0]) qc.cx(qreg[0], qreg[1]) qc.measure(qreg, creg) backend = BasicAer.get_backend("qasm_simulator") job_sim = execute([qc] * 10, backend) output = io.StringIO() job_monitor(job_sim, output=output) self.assertEqual(job_sim.status().name, "DONE") if __name__ == "__main__": unittest.main(verbosity=2)
https://github.com/t-imamichi/qiskit-utility
t-imamichi
#!/usr/bin/env python # coding: utf-8 # Copyright 2018, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. ''' Translate a QASM file to a QOBJ file. Examples: $ python qasm2qobj.py -i input.qasm -o output.qobj # mapping for all-to-all $ python qasm2qobj.py -i input.qasm -o output.qobj -b ibmq_5_tenerife # mapping for ibmq_5_tenerife ''' import json from qiskit import register, available_backends, load_qasm_file, compile from argparse import ArgumentParser import numpy as np import Qconfig def backends(qconsole=False): key = 'qconsole' if qconsole else 'qx' token = Qconfig.APItoken[key] config = Qconfig.config[key] url = config.get('url', None) hub = config.get('hub', None) group = config.get('group', None) project = config.get('project', None) register(token, url, hub, group, project) return available_backends() def options(): parser = ArgumentParser() parser.add_argument('-i', '--qasm', action='store', help='input QASM file') parser.add_argument('-o', '--qobj', action='store', help='output QOBJ file') parser.add_argument('-s', '--shots', action='store', help='number of shots', type=int, default=1024) parser.add_argument('--out-qasm', action='store', help='output QASM file') parser.add_argument('-b', '--backend', action='store', help='backend (default: local_qasm_simulator)', default='local_qasm_simulator') parser.add_argument('-z', '--qconsole', action='store_true', help='Use qconsole') args = parser.parse_args() print('options:', args) if not args.qasm or not args.qobj: parser.print_help() quit() set_backends = backends(args.qconsole) print('backends:', set_backends) if args.backend not in set_backends: print('invalid backend: {}'.format(args.backend)) print('available backends: {}'.format(set_backends)) #quit() return args def support_npint(val): if isinstance(val, (np.int32, np.int64)): return int(val) return val def main(): args = options() circuit = load_qasm_file(args.qasm, name=args.qasm) qobj = compile(circuit, backend=args.backend, shots=args.shots) with open(args.qobj, 'w') as outfile: json.dump(qobj, outfile, indent=2, sort_keys=True, default=support_npint) if args.out_qasm: with open(args.out_qasm, 'w') as outfile: outfile.write(qobj['circuits'][0]['compiled_circuit_qasm']) if __name__ == '__main__': main()
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
%matplotlib inline import numpy as np import matplotlib.pyplot as plt # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, IBMQ from qiskit.compiler import transpile from qiskit.providers.aer import QasmSimulator, StatevectorSimulator from qiskit.visualization import * from qiskit.quantum_info import * qc1 = QuantumCircuit(1) qc1.x(0) qc1.measure_all() qc1.draw(output='mpl') job1 = execute(qc1, backend=QasmSimulator(), shots=1024) plot_histogram(job1.result().get_counts()) qc2 = QuantumCircuit(2) # State Preparation qc2.x(0) qc2.barrier() # Perform q_0 XOR 0 qc2.cx(0,1) qc2.measure_all() qc2.draw(output='mpl') job2 = execute(qc2.reverse_bits(), backend=QasmSimulator(), shots=1024) plot_histogram(job2.result().get_counts()) qc3 = QuantumCircuit(3) # State Preparation qc3.x(0) qc3.x(1) qc3.barrier() # Perform q_0 XOR 0 qc3.ccx(0,1,2) qc3.measure_all() qc3.draw(output='mpl') job3 = execute(qc3.reverse_bits(), backend=QasmSimulator(), shots=1024) plot_histogram(job3.result().get_counts()) qc4 = QuantumCircuit(3) # State Preparation qc4.h(range(3)) qc4.measure_all() qc4.draw(output='mpl') job4 = execute(qc4.reverse_bits(), backend=QasmSimulator(), shots=8192) plot_histogram(job4.result().get_counts()) from qiskit.providers.aer.noise import NoiseModel from qiskit.test.mock import FakeMelbourne device_backend = FakeMelbourne() coupling_map = device_backend.configuration().coupling_map noise_model = NoiseModel.from_backend(device_backend) basis_gates = noise_model.basis_gates result_noise = execute(qc4, QasmSimulator(), shots=8192, noise_model=noise_model, coupling_map=coupling_map, basis_gates=basis_gates).result() plot_histogram(result_noise.get_counts()) qc3_t = transpile(qc3, basis_gates=basis_gates) qc3_t.draw(output='mpl') # Loading your IBM Q account(s) provider = IBMQ.load_account() provider.backends() ibmq_backend = provider.get_backend('ibmq_16_melbourne') result_device = execute(qc4, backend=ibmq_backend, shots=8192).result() plot_histogram(result_device.get_counts())
https://github.com/Chibikuri/qwopt
Chibikuri
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.3.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import numpy as np import copy from qiskit import QuantumCircuit, QuantumRegister, Aer, execute np.set_printoptions(linewidth=10000, threshold=10000) # + def theoretical_prob(initial, step, ptran, nq): Pi_op = Pi_operator(ptran) swap = swap_operator(nq) operator = (2*Pi_op) - np.identity(len(Pi_op)) Szegedy = np.dot(operator, swap) Szegedy_n = copy.copy(Szegedy) print(id(Szegedy), id(Szegedy_n)) if step == 0: init_prob = np.array([abs(i)**2 for i in initial], dtype=np.float) return init_prob elif step == 1: prob = np.array([abs(i)**2 for i in np.dot(Szegedy, initial)], dtype=np.float) return prob else: for n in range(step-1): Szegedy_n = np.dot(Szegedy_n, Szegedy) probs = np.array([abs(i)**2 for i in np.dot(initial, Szegedy_n)], dtype=np.float) return probs def swap_operator(n_qubit): q1 = QuantumRegister(n_qubit//2) q2 = QuantumRegister(n_qubit//2) qc = QuantumCircuit(q1, q2) for c, t in zip(q1, q2): qc.swap(c, t) # FIXME backend = Aer.get_backend('unitary_simulator') job = execute(qc, backend=backend) swap = job.result().get_unitary(qc) return swap def Pi_operator(ptran): ''' This is not a quantum operation, just returning matrix ''' lg = len(ptran) psi_op = [] count = 0 for i in range(lg): psi_vec = [0 for _ in range(lg**2)] for j in range(lg): psi_vec[count] = np.sqrt(ptran[j][i]) count += 1 psi_op.append(np.kron(np.array(psi_vec).T, np.conjugate(psi_vec)).reshape((lg**2, lg**2))) Pi = psi_op[0] for i in psi_op[1:]: Pi = np.add(Pi, i) return Pi def is_unitary(operator, tolerance=0.0001): h, w = operator.shape if not h == w: return False adjoint = np.conjugate(operator.transpose()) product1 = np.dot(operator, adjoint) product2 = np.dot(adjoint, operator) ida = np.eye(h) return np.allclose(product1, ida) & np.allclose(product2, ida) # + alpha = 0.85 target_graph = np.array([[0, 1, 0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 0], [0, 1, 0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0]]) E = np.array([[1/8, 1/2, 0, 0, 0, 0, 0, 1/2], [1/8, 0, 1/2, 0, 0, 0, 0, 0], [1/8, 1/2, 0, 1/2, 0, 0, 0, 0], [1/8, 0, 1/2, 0, 1/2, 0, 0, 0], [1/8, 0, 0, 1/2, 0, 1/2, 0, 0], [1/8, 0, 0, 0, 1/2, 0, 1/2, 0], [1/8, 0, 0, 0, 0, 1/2, 0, 1/2], [1/8, 0, 0, 0, 0, 0, 1/2, 0]]) # use google matrix lt = len(target_graph) prob_dist = alpha*E + ((1-alpha)/lt)*np.ones((lt, lt)) init_state_eight = 1/2*np.array([np.sqrt(prob_dist[j][i]) for i in range(lt) for j in range(lt)]) # - Pi_op = Pi_operator(prob_dist) operator = (2*Pi_op) - np.identity(len(Pi_op)) lo = len(operator) initial = np.array([0 if i != 32 else 1 for i in range(lo)]) # initial = np.array([np.sqrt(1/lo) for i in range(lo)]) ideal = theoretical_prob(initial, 2, prob_dist, 6) for i, v in enumerate(ideal): print(i, v) import networkx as nx import matplotlib.pyplot as plt target_graph = np.array([[0, 1, 0, 1], [0, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]]) Gs = nx.from_numpy_matrix(target_graph) G = nx.MultiDiGraph() pos = [(1, 1), (5, 1), (5, 5), (1, 5)] G.add_edges_from(Gs.edges()) plt.figure(figsize=(8,8)) nx.draw_networkx(G, pos, node_size=1000, width=3, arrowsize=50) plt.show() # + target_graph = np.array([[0, 1, 0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 0], [0, 1, 0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0]]) Gs = nx.from_numpy_matrix(target_graph) G = nx.MultiDiGraph() # pos = [(1, 1), (2, 2), (3, 3), (1, 5), (2, 2), (6, 2), (6, 6), (2, 6)] pos = [(0, 0), (1, 1), (2, 2), (1, 3), (0, 4), (-1, 3), (-2, 2), (-1, 1)] G.add_edges_from(Gs.edges()) # pos = nx.spring_layout(G) plt.figure(figsize=(8,8)) nx.draw_networkx(G, pos, node_size=1000, width=3, arrowsize=50) plt.show() # + target_graph = np.array([[0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 0, 0, 0], [0, 1, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1]]) Gs = nx.from_numpy_matrix(target_graph) print(Gs.edges()) G = nx.MultiDiGraph() # pos = [(1, 1), (2, 2), (3, 3), (1, 5), (2, 2), (6, 2), (6, 6), (2, 6)] pos = [(0, 0), (3, 3), (2, 9), (-1, 5), (5, 1), (4, 5), (8, 5), (9, 3)] G.add_edges_from(Gs.edges()) G.add_edges_from([(7, 6)]) # pos = nx.spring_layout(G, k=10) plt.figure(figsize=(10, 10)) nx.draw_networkx(G, pos, node_size=1000, width=3, arrowsize=50) plt.show() # -
https://github.com/kuehnste/QiskitTutorial
kuehnste
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.visualization import * from qiskit.quantum_info import state_fidelity # Numpy for numeric functions import numpy as np # Magic function to render plots in the notebook after the cell executing the plot command %matplotlib inline def run_on_statevector_simulator(quantum_circuit, decimals=6): """Takes a circuit, and runs it on the state vector simulator backend.""" statevector_simulator = Aer.get_backend('statevector_simulator') job = execute(quantum_circuit, backend=statevector_simulator) result = job.result() statevector = result.get_statevector(quantum_circuit, decimals=decimals) return statevector # Generate a quantum circuit for two qubits # Add the gates which generate |psi_0> # Draw the quantum circuit # Run it on the state vector simulator # Visualize the resulting state vector # Add a CNOT gate to the circuit # Draw the circuit # Run it on the state vector simulator # Visualize the resulting state vector # Generate a quantum circuit qc2 for two qubits qc2 = QuantumCircuit(2) # Add the gates which generate |psi_0> # Draw the quantum circuit # Run it on the state vector simulator for various angles of Rx # Number of steps nsteps = 10 for i in range(nsteps): # We copy the quantum circuit qc2 into a new circuit qc3 qc3 = QuantumCircuit(2) qc3.compose(qc2, inplace=True) # Add the controllec Rx gates between qubits 0 and 1 for various angles # Hint set: the angle to i*4*np.pi/nsteps # Run the resulting circuit on the state vector simulator vec = run_on_statevector_simulator(qc3) # Visualize the state vector
https://github.com/quantumyatra/quantum_computing
quantumyatra
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Utils for using with Qiskit unit tests.""" import logging import os import unittest from enum import Enum from qiskit import __path__ as qiskit_path class Path(Enum): """Helper with paths commonly used during the tests.""" # Main SDK path: qiskit/ SDK = qiskit_path[0] # test.python path: qiskit/test/python/ TEST = os.path.normpath(os.path.join(SDK, '..', 'test', 'python')) # Examples path: examples/ EXAMPLES = os.path.normpath(os.path.join(SDK, '..', 'examples')) # Schemas path: qiskit/schemas SCHEMAS = os.path.normpath(os.path.join(SDK, 'schemas')) # VCR cassettes path: qiskit/test/cassettes/ CASSETTES = os.path.normpath(os.path.join(TEST, '..', 'cassettes')) # Sample QASMs path: qiskit/test/python/qasm QASMS = os.path.normpath(os.path.join(TEST, 'qasm')) def setup_test_logging(logger, log_level, filename): """Set logging to file and stdout for a logger. Args: logger (Logger): logger object to be updated. log_level (str): logging level. filename (str): name of the output file. """ # Set up formatter. log_fmt = ('{}.%(funcName)s:%(levelname)s:%(asctime)s:' ' %(message)s'.format(logger.name)) formatter = logging.Formatter(log_fmt) # Set up the file handler. file_handler = logging.FileHandler(filename) file_handler.setFormatter(formatter) logger.addHandler(file_handler) # Set the logging level from the environment variable, defaulting # to INFO if it is not a valid level. level = logging._nameToLevel.get(log_level, logging.INFO) logger.setLevel(level) class _AssertNoLogsContext(unittest.case._AssertLogsContext): """A context manager used to implement TestCase.assertNoLogs().""" # pylint: disable=inconsistent-return-statements def __exit__(self, exc_type, exc_value, tb): """ This is a modified version of TestCase._AssertLogsContext.__exit__(...) """ self.logger.handlers = self.old_handlers self.logger.propagate = self.old_propagate self.logger.setLevel(self.old_level) if exc_type is not None: # let unexpected exceptions pass through return False if self.watcher.records: msg = 'logs of level {} or higher triggered on {}:\n'.format( logging.getLevelName(self.level), self.logger.name) for record in self.watcher.records: msg += 'logger %s %s:%i: %s\n' % (record.name, record.pathname, record.lineno, record.getMessage()) self._raiseFailure(msg)
https://github.com/qiskit-community/community.qiskit.org
qiskit-community
from qiskit import * from qiskit.providers.aer.noise import NoiseModel from qiskit.providers.aer.noise.errors import pauli_error, depolarizing_error def get_noise(p): error_meas = pauli_error([('X',p), ('I', 1 - p)]) noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(error_meas, "measure") # measurement error is applied to measurements return noise_model noise_model = get_noise(0.01) for state in ['00','01','10','11']: qc = QuantumCircuit(2,2) if state[0]=='1': qc.x(1) if state[1]=='1': qc.x(0) qc.measure(qc.qregs[0],qc.cregs[0]) print(state+' becomes', execute(qc,Aer.get_backend('qasm_simulator'),noise_model=noise_model,shots=10000).result().get_counts()) qc = QuantumCircuit(2,2) qc.h(0) qc.cx(0,1) qc.measure(qc.qregs[0],qc.cregs[0]) print(execute(qc,Aer.get_backend('qasm_simulator'),noise_model=noise_model,shots=10000).result().get_counts()) import numpy as np M = [[0.9808,0.0107,0.0095,0.0001], [0.0095,0.9788,0.0001,0.0107], [0.0096,0.0002,0.9814,0.0087], [0.0001,0.0103,0.0090,0.9805]] Cideal = [[0], [5000], [5000], [0]] Cnoisy = np.dot( M, Cideal) print('C_noisy =\n',Cnoisy) import scipy.linalg as la M = [[0.9808,0.0107,0.0095,0.0001], [0.0095,0.9788,0.0001,0.0107], [0.0096,0.0002,0.9814,0.0087], [0.0001,0.0103,0.0090,0.9805]] Minv = la.pinv(M) print(Minv) Cmitigated = np.dot( Minv, Cnoisy) print('C_mitigated =\n',Cmitigated) from qiskit.ignis.mitigation.measurement import (complete_meas_cal,CompleteMeasFitter) qr = qiskit.QuantumRegister(2) meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') for circuit in meas_calibs: print('Circuit',circuit.name) print(circuit) print() # Execute the calibration circuits without noise backend = qiskit.Aer.get_backend('qasm_simulator') job = qiskit.execute(meas_calibs, backend=backend, shots=1000) cal_results = job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') print(meas_fitter.cal_matrix) noise_model = get_noise(0.1) backend = qiskit.Aer.get_backend('qasm_simulator') job = qiskit.execute(meas_calibs, backend=backend, shots=1000, noise_model=noise_model) cal_results = job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') print(meas_fitter.cal_matrix) qc = QuantumCircuit(2,2) qc.h(0) qc.cx(0,1) qc.measure(qc.qregs[0],qc.cregs[0]) results = qiskit.execute(qc, backend=backend, shots=10000, noise_model=noise_model).result() noisy_counts = results.get_counts() print(noisy_counts) # Get the filter object meas_filter = meas_fitter.filter # Results with mitigation mitigated_results = meas_filter.apply(results) mitigated_counts = mitigated_results.get_counts(0) from qiskit.tools.visualization import * plot_histogram([noisy_counts, mitigated_counts], legend=['noisy', 'mitigated'])
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Qobj tests.""" import copy from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.compiler import assemble from qiskit.qobj import ( QasmQobj, PulseQobj, QobjHeader, PulseQobjInstruction, PulseQobjExperiment, PulseQobjConfig, QobjMeasurementOption, PulseLibraryItem, QasmQobjInstruction, QasmQobjExperiment, QasmQobjConfig, QasmExperimentCalibrations, GateCalibration, ) from qiskit.test import QiskitTestCase class TestQASMQobj(QiskitTestCase): """Tests for QasmQobj.""" def setUp(self): super().setUp() self.valid_qobj = QasmQobj( qobj_id="12345", header=QobjHeader(), config=QasmQobjConfig(shots=1024, memory_slots=2), experiments=[ QasmQobjExperiment( instructions=[ QasmQobjInstruction(name="u1", qubits=[1], params=[0.4]), QasmQobjInstruction(name="u2", qubits=[1], params=[0.4, 0.2]), ] ) ], ) self.valid_dict = { "qobj_id": "12345", "type": "QASM", "schema_version": "1.2.0", "header": {}, "config": {"memory_slots": 2, "shots": 1024}, "experiments": [ { "instructions": [ {"name": "u1", "params": [0.4], "qubits": [1]}, {"name": "u2", "params": [0.4, 0.2], "qubits": [1]}, ] } ], } self.bad_qobj = copy.deepcopy(self.valid_qobj) self.bad_qobj.experiments = [] def test_from_dict_per_class(self): """Test Qobj and its subclass representations given a dictionary.""" test_parameters = { QasmQobj: (self.valid_qobj, self.valid_dict), QasmQobjConfig: ( QasmQobjConfig(shots=1, memory_slots=2), {"shots": 1, "memory_slots": 2}, ), QasmQobjExperiment: ( QasmQobjExperiment( instructions=[QasmQobjInstruction(name="u1", qubits=[1], params=[0.4])] ), {"instructions": [{"name": "u1", "qubits": [1], "params": [0.4]}]}, ), QasmQobjInstruction: ( QasmQobjInstruction(name="u1", qubits=[1], params=[0.4]), {"name": "u1", "qubits": [1], "params": [0.4]}, ), } for qobj_class, (qobj_item, expected_dict) in test_parameters.items(): with self.subTest(msg=str(qobj_class)): self.assertEqual(qobj_item, qobj_class.from_dict(expected_dict)) def test_snapshot_instruction_to_dict(self): """Test snapshot instruction to dict.""" valid_qobj = QasmQobj( qobj_id="12345", header=QobjHeader(), config=QasmQobjConfig(shots=1024, memory_slots=2), experiments=[ QasmQobjExperiment( instructions=[ QasmQobjInstruction(name="u1", qubits=[1], params=[0.4]), QasmQobjInstruction(name="u2", qubits=[1], params=[0.4, 0.2]), QasmQobjInstruction( name="snapshot", qubits=[1], snapshot_type="statevector", label="my_snap", ), ] ) ], ) res = valid_qobj.to_dict() expected_dict = { "qobj_id": "12345", "type": "QASM", "schema_version": "1.3.0", "header": {}, "config": {"memory_slots": 2, "shots": 1024}, "experiments": [ { "instructions": [ {"name": "u1", "params": [0.4], "qubits": [1]}, {"name": "u2", "params": [0.4, 0.2], "qubits": [1]}, { "name": "snapshot", "qubits": [1], "snapshot_type": "statevector", "label": "my_snap", }, ], "config": {}, "header": {}, } ], } self.assertEqual(expected_dict, res) def test_snapshot_instruction_from_dict(self): """Test snapshot instruction from dict.""" expected_qobj = QasmQobj( qobj_id="12345", header=QobjHeader(), config=QasmQobjConfig(shots=1024, memory_slots=2), experiments=[ QasmQobjExperiment( instructions=[ QasmQobjInstruction(name="u1", qubits=[1], params=[0.4]), QasmQobjInstruction(name="u2", qubits=[1], params=[0.4, 0.2]), QasmQobjInstruction( name="snapshot", qubits=[1], snapshot_type="statevector", label="my_snap", ), ] ) ], ) qobj_dict = { "qobj_id": "12345", "type": "QASM", "schema_version": "1.2.0", "header": {}, "config": {"memory_slots": 2, "shots": 1024}, "experiments": [ { "instructions": [ {"name": "u1", "params": [0.4], "qubits": [1]}, {"name": "u2", "params": [0.4, 0.2], "qubits": [1]}, { "name": "snapshot", "qubits": [1], "snapshot_type": "statevector", "label": "my_snap", }, ] } ], } self.assertEqual(expected_qobj, QasmQobj.from_dict(qobj_dict)) def test_change_qobj_after_compile(self): """Test modifying Qobj parameters after compile.""" qr = QuantumRegister(3) cr = ClassicalRegister(3) qc1 = QuantumCircuit(qr, cr) qc2 = QuantumCircuit(qr, cr) qc1.h(qr[0]) qc1.cx(qr[0], qr[1]) qc1.cx(qr[0], qr[2]) qc2.h(qr) qc1.measure(qr, cr) qc2.measure(qr, cr) circuits = [qc1, qc2] qobj1 = assemble(circuits, shots=1024, seed=88) qobj1.experiments[0].config.shots = 50 qobj1.experiments[1].config.shots = 1 self.assertTrue(qobj1.experiments[0].config.shots == 50) self.assertTrue(qobj1.experiments[1].config.shots == 1) self.assertTrue(qobj1.config.shots == 1024) def test_gate_calibrations_to_dict(self): """Test gate calibrations to dict.""" pulse_library = [PulseLibraryItem(name="test", samples=[1j, 1j])] valid_qobj = QasmQobj( qobj_id="12345", header=QobjHeader(), config=QasmQobjConfig(shots=1024, memory_slots=2, pulse_library=pulse_library), experiments=[ QasmQobjExperiment( instructions=[QasmQobjInstruction(name="u1", qubits=[1], params=[0.4])], config=QasmQobjConfig( calibrations=QasmExperimentCalibrations( gates=[ GateCalibration( name="u1", qubits=[1], params=[0.4], instructions=[] ) ] ) ), ) ], ) res = valid_qobj.to_dict() expected_dict = { "qobj_id": "12345", "type": "QASM", "schema_version": "1.3.0", "header": {}, "config": { "memory_slots": 2, "shots": 1024, "pulse_library": [{"name": "test", "samples": [1j, 1j]}], }, "experiments": [ { "instructions": [{"name": "u1", "params": [0.4], "qubits": [1]}], "config": { "calibrations": { "gates": [ {"name": "u1", "qubits": [1], "params": [0.4], "instructions": []} ] } }, "header": {}, } ], } self.assertEqual(expected_dict, res) class TestPulseQobj(QiskitTestCase): """Tests for PulseQobj.""" def setUp(self): super().setUp() self.valid_qobj = PulseQobj( qobj_id="12345", header=QobjHeader(), config=PulseQobjConfig( shots=1024, memory_slots=2, meas_level=1, memory_slot_size=8192, meas_return="avg", pulse_library=[ PulseLibraryItem(name="pulse0", samples=[0.0 + 0.0j, 0.5 + 0.0j, 0.0 + 0.0j]) ], qubit_lo_freq=[4.9], meas_lo_freq=[6.9], rep_time=1000, ), experiments=[ PulseQobjExperiment( instructions=[ PulseQobjInstruction(name="pulse0", t0=0, ch="d0"), PulseQobjInstruction(name="fc", t0=5, ch="d0", phase=1.57), PulseQobjInstruction(name="fc", t0=5, ch="d0", phase=0.0), PulseQobjInstruction(name="fc", t0=5, ch="d0", phase="P1"), PulseQobjInstruction(name="setp", t0=10, ch="d0", phase=3.14), PulseQobjInstruction(name="setf", t0=10, ch="d0", frequency=8.0), PulseQobjInstruction(name="shiftf", t0=10, ch="d0", frequency=4.0), PulseQobjInstruction( name="acquire", t0=15, duration=5, qubits=[0], memory_slot=[0], kernels=[ QobjMeasurementOption( name="boxcar", params={"start_window": 0, "stop_window": 5} ) ], ), ] ) ], ) self.valid_dict = { "qobj_id": "12345", "type": "PULSE", "schema_version": "1.2.0", "header": {}, "config": { "memory_slots": 2, "shots": 1024, "meas_level": 1, "memory_slot_size": 8192, "meas_return": "avg", "pulse_library": [{"name": "pulse0", "samples": [0, 0.5, 0]}], "qubit_lo_freq": [4.9], "meas_lo_freq": [6.9], "rep_time": 1000, }, "experiments": [ { "instructions": [ {"name": "pulse0", "t0": 0, "ch": "d0"}, {"name": "fc", "t0": 5, "ch": "d0", "phase": 1.57}, {"name": "fc", "t0": 5, "ch": "d0", "phase": 0}, {"name": "fc", "t0": 5, "ch": "d0", "phase": "P1"}, {"name": "setp", "t0": 10, "ch": "d0", "phase": 3.14}, {"name": "setf", "t0": 10, "ch": "d0", "frequency": 8.0}, {"name": "shiftf", "t0": 10, "ch": "d0", "frequency": 4.0}, { "name": "acquire", "t0": 15, "duration": 5, "qubits": [0], "memory_slot": [0], "kernels": [ {"name": "boxcar", "params": {"start_window": 0, "stop_window": 5}} ], }, ] } ], } def test_from_dict_per_class(self): """Test converting to Qobj and its subclass representations given a dictionary.""" test_parameters = { PulseQobj: (self.valid_qobj, self.valid_dict), PulseQobjConfig: ( PulseQobjConfig( meas_level=1, memory_slot_size=8192, meas_return="avg", pulse_library=[PulseLibraryItem(name="pulse0", samples=[0.1 + 0.0j])], qubit_lo_freq=[4.9], meas_lo_freq=[6.9], rep_time=1000, ), { "meas_level": 1, "memory_slot_size": 8192, "meas_return": "avg", "pulse_library": [{"name": "pulse0", "samples": [0.1 + 0j]}], "qubit_lo_freq": [4.9], "meas_lo_freq": [6.9], "rep_time": 1000, }, ), PulseLibraryItem: ( PulseLibraryItem(name="pulse0", samples=[0.1 + 0.0j]), {"name": "pulse0", "samples": [0.1 + 0j]}, ), PulseQobjExperiment: ( PulseQobjExperiment( instructions=[PulseQobjInstruction(name="pulse0", t0=0, ch="d0")] ), {"instructions": [{"name": "pulse0", "t0": 0, "ch": "d0"}]}, ), PulseQobjInstruction: ( PulseQobjInstruction(name="pulse0", t0=0, ch="d0"), {"name": "pulse0", "t0": 0, "ch": "d0"}, ), } for qobj_class, (qobj_item, expected_dict) in test_parameters.items(): with self.subTest(msg=str(qobj_class)): self.assertEqual(qobj_item, qobj_class.from_dict(expected_dict)) def test_to_dict_per_class(self): """Test converting from Qobj and its subclass representations given a dictionary.""" test_parameters = { PulseQobj: (self.valid_qobj, self.valid_dict), PulseQobjConfig: ( PulseQobjConfig( meas_level=1, memory_slot_size=8192, meas_return="avg", pulse_library=[PulseLibraryItem(name="pulse0", samples=[0.1 + 0.0j])], qubit_lo_freq=[4.9], meas_lo_freq=[6.9], rep_time=1000, ), { "meas_level": 1, "memory_slot_size": 8192, "meas_return": "avg", "pulse_library": [{"name": "pulse0", "samples": [0.1 + 0j]}], "qubit_lo_freq": [4.9], "meas_lo_freq": [6.9], "rep_time": 1000, }, ), PulseLibraryItem: ( PulseLibraryItem(name="pulse0", samples=[0.1 + 0.0j]), {"name": "pulse0", "samples": [0.1 + 0j]}, ), PulseQobjExperiment: ( PulseQobjExperiment( instructions=[PulseQobjInstruction(name="pulse0", t0=0, ch="d0")] ), {"instructions": [{"name": "pulse0", "t0": 0, "ch": "d0"}]}, ), PulseQobjInstruction: ( PulseQobjInstruction(name="pulse0", t0=0, ch="d0"), {"name": "pulse0", "t0": 0, "ch": "d0"}, ), } for qobj_class, (qobj_item, expected_dict) in test_parameters.items(): with self.subTest(msg=str(qobj_class)): self.assertEqual(qobj_item.to_dict(), expected_dict) def _nop(): pass
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Multiple-Control, Multiple-Target Gate. """ import logging from qiskit import QuantumCircuit, QuantumRegister from qiskit.aqua import AquaError logger = logging.getLogger(__name__) def _ccx_v_chain_compute(qc, control_qubits, ancillary_qubits): """ First half (compute) of the multi-control basic mode. It progressively compute the ccx of the control qubits and put the final result in the last ancillary qubit Args: qc: the QuantumCircuit control_qubits: the list of control qubits ancillary_qubits: the list of ancillary qubits """ anci_idx = 0 qc.ccx(control_qubits[0], control_qubits[1], ancillary_qubits[anci_idx]) for idx in range(2, len(control_qubits)): assert anci_idx + 1 < len( ancillary_qubits ), "Insufficient number of ancillary qubits {0}.".format( len(ancillary_qubits)) qc.ccx(control_qubits[idx], ancillary_qubits[anci_idx], ancillary_qubits[anci_idx + 1]) anci_idx += 1 def _ccx_v_chain_uncompute(qc, control_qubits, ancillary_qubits): """ Second half (uncompute) of the multi-control basic mode. It progressively compute the ccx of the control qubits and put the final result in the last ancillary qubit Args: qc: the QuantumCircuit control_qubits: the list of control qubits ancillary_qubits: the list of ancillary qubits """ anci_idx = len(ancillary_qubits) - 1 for idx in (range(2, len(control_qubits)))[::-1]: qc.ccx(control_qubits[idx], ancillary_qubits[anci_idx - 1], ancillary_qubits[anci_idx]) anci_idx -= 1 qc.ccx(control_qubits[0], control_qubits[1], ancillary_qubits[anci_idx]) def mcmt(self, q_controls, q_ancillae, single_control_gate_fun, q_targets, mode="basic"): """ Apply a Multi-Control, Multi-Target using a generic gate. It can also be used to implement a generic Multi-Control gate, as the target could also be of length 1. Args: q_controls: The list of control qubits q_ancillae: The list of ancillary qubits single_control_gate_fun: The single control gate function (e.g QuantumCircuit.cz or QuantumCircuit.ch) q_targets: A list of qubits or a QuantumRegister to which the gate function should be applied. mode (string): The implementation mode to use (at the moment, only the basic mode is supported) """ # check controls if isinstance(q_controls, QuantumRegister): control_qubits = [qb for qb in q_controls] elif isinstance(q_controls, list): control_qubits = q_controls else: raise AquaError( 'MCT needs a list of qubits or a quantum register for controls.') # check target if isinstance(q_targets, QuantumRegister): target_qubits = [qb for qb in q_targets] elif isinstance(q_targets, list): target_qubits = q_targets else: raise AquaError( 'MCT needs a list of qubits or a quantum register for targets.') # check ancilla if q_ancillae is None: ancillary_qubits = [] elif isinstance(q_ancillae, QuantumRegister): ancillary_qubits = [qb for qb in q_ancillae] elif isinstance(q_ancillae, list): ancillary_qubits = q_ancillae else: raise AquaError( 'MCT needs None or a list of qubits or a quantum register for ancilla.' ) all_qubits = control_qubits + target_qubits + ancillary_qubits self._check_qargs(all_qubits) self._check_dups(all_qubits) if len(q_controls) == 1: for qubit in target_qubits: single_control_gate_fun(self, q_controls[0], qubit) return if mode == 'basic': # last ancillary qubit is the control of the gate ancn = len(ancillary_qubits) _ccx_v_chain_compute(self, control_qubits, ancillary_qubits) for qubit in target_qubits: single_control_gate_fun(self, ancillary_qubits[ancn - 1], qubit) _ccx_v_chain_uncompute(self, control_qubits, ancillary_qubits) else: raise AquaError( 'Unrecognized mode "{0}" for building mcmt circuit, at the moment only "basic" mode is supported.' .format(mode)) QuantumCircuit.mcmt = mcmt
https://github.com/qiskit-community/qiskit-alt
qiskit-community
import pytest import qiskit_alt project = qiskit_alt.project project.ensure_init(calljulia="juliacall") def test_always_passes(): assert True def test_interface_lib(): assert qiskit_alt.project.julia.__name__ == 'juliacall' def test_Main(): Main = qiskit_alt.project.julia.Main assert Main.sind(90) == 1.0
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile ghz = QuantumCircuit(15) ghz.h(0) ghz.cx(0, range(1, 15)) ghz.draw(output='mpl')
https://github.com/infiniteregrets/QiskitBot
infiniteregrets
from math import sqrt, pi from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister import oracle_simple import composed_gates def get_circuit(n, oracles): """ Build the circuit composed by the oracle black box and the other quantum gates. :param n: The number of qubits (not including the ancillas) :param oracles: A list of black box (quantum) oracles; each of them selects a specific state :returns: The proper quantum circuit :rtype: qiskit.QuantumCircuit """ cr = ClassicalRegister(n) ## Testing if n > 3: #anc = QuantumRegister(n - 1, 'anc') # n qubits for the real number # n - 1 qubits for the ancillas qr = QuantumRegister(n + n - 1) qc = QuantumCircuit(qr, cr) else: # We don't need ancillas qr = QuantumRegister(n) qc = QuantumCircuit(qr, cr) ## /Testing print("Number of qubits is {0}".format(len(qr))) print(qr) # Initial superposition for j in range(n): qc.h(qr[j]) # The length of the oracles list, or, in other words, how many roots of the function do we have m = len(oracles) # Grover's algorithm is a repetition of an oracle box and a diffusion box. # The number of repetitions is given by the following formula. print("n is ", n) r = int(round((pi / 2 * sqrt((2**n) / m) - 1) / 2)) print("Repetition of ORACLE+DIFFUSION boxes required: {0}".format(r)) oracle_t1 = oracle_simple.OracleSimple(n, 5) oracle_t2 = oracle_simple.OracleSimple(n, 0) for j in range(r): for i in range(len(oracles)): oracles[i].get_circuit(qr, qc) diffusion(n, qr, qc) for j in range(n): qc.measure(qr[j], cr[j]) return qc, len(qr) def diffusion(n, qr, qc): """ The Grover diffusion operator. Given the arry of qiskit QuantumRegister qr and the qiskit QuantumCircuit qc, it adds the diffusion operator to the appropriate qubits in the circuit. """ for j in range(n): qc.h(qr[j]) # D matrix, flips state |000> only (instead of flipping all the others) for j in range(n): qc.x(qr[j]) # 0..n-2 control bits, n-1 target, n.. if n > 3: composed_gates.n_controlled_Z_circuit( qc, [qr[j] for j in range(n - 1)], qr[n - 1], [qr[j] for j in range(n, n + n - 1)]) else: composed_gates.n_controlled_Z_circuit( qc, [qr[j] for j in range(n - 1)], qr[n - 1], None) for j in range(n): qc.x(qr[j]) for j in range(n): qc.h(qr[j])
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Remove all barriers in a circuit""" from qiskit.dagcircuit import DAGCircuit from qiskit.transpiler.basepasses import TransformationPass from qiskit.transpiler.passes.utils import control_flow class RemoveBarriers(TransformationPass): """Return a circuit with any barrier removed. This transformation is not semantics preserving. Example: .. plot:: :include-source: from qiskit import QuantumCircuit from qiskit.transpiler.passes import RemoveBarriers circuit = QuantumCircuit(1) circuit.x(0) circuit.barrier() circuit.h(0) circuit = RemoveBarriers()(circuit) circuit.draw('mpl') """ @control_flow.trivial_recurse def run(self, dag: DAGCircuit) -> DAGCircuit: """Run the RemoveBarriers pass on `dag`.""" dag.remove_all_ops_named("barrier") return dag
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit circ = QuantumCircuit(2, 2) circ.h(0) circ.cx(0, 1) circ.measure([0, 1], [0, 1]) circ.draw("mpl") from qiskit import transpile, schedule as build_schedule from qiskit.providers.fake_provider import FakeHanoi backend = FakeHanoi() transpiled_circ = transpile(circ, backend) # Undefined Hadamard is replaced by U1 schedule = build_schedule(transpiled_circ, backend) schedule.draw() from qiskit import pulse with pulse.build() as h_q0: pulse.play(pulse.library.Gaussian(duration=256, amp=0.2, sigma=50, name='custom'), pulse.DriveChannel(0)) circ.add_calibration('h', [0], h_q0) schedule = build_schedule(circ, backend) schedule.draw() circ = QuantumCircuit(2, 2) circ.x(0) circ.x(0) circ.x(1) circ.measure([0, 1], [0, 1]) circ.draw("mpl") schedule = build_schedule(circ, backend, method="as_late_as_possible") schedule.filter(channels=[pulse.DriveChannel(0), pulse.DriveChannel(1)]).draw() schedule = build_schedule(circ, backend, method="as_soon_as_possible") schedule.filter(channels=[pulse.DriveChannel(0), pulse.DriveChannel(1)]).draw() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/h-rathee851/Pulse_application_qiskit
h-rathee851
from qiskit.tools.jupyter import * from qiskit import IBMQ IBMQ.load_account() #provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') provider=IBMQ.get_provider(hub='ibm-q-research', group='uni-maryland-1', project='main') backend = provider.get_backend('ibmq_rome') backend_config = backend.configuration() backend_defaults = backend.defaults() assert backend_config.open_pulse, "Backend doesn't support Pulse" inst_sched_map=backend_defaults.instruction_schedule_map print(inst_sched_map) from qiskit.visualization.pulse_v2 import draw from qiskit import execute dt = backend_config.dt print(f"Sampling time: {dt*1e9} ns") # The configuration returns dt in seconds, so multiply by # 1e9 to get nanoseconds import numpy as np from qiskit import pulse # This is where we access all of our Pulse features! from qiskit.pulse import Play # This Pulse module helps us build sampled pulses for common pulse shapes from qiskit.pulse import library as pulse_lib from pulsecalibration import PulseCalibration as PulseCali %load_ext autoreload %autoreload PC=PulseCali(backend=backend,qubit=0) print(backend_defaults.qubit_freq_est) f01=PC.find_freq_ground(verbose=True,visual=True) f01_1=PC.get_qubit_freq_ground() f01_1 PC=PulseCali(backend=backend,qubit=0,qubit_freq_ground=f01) amp01=PC.find_pi_amp_ground(verbose=True,visual=True) amp01_1=PC.get_pi_amp_ground() amp01_1 PC=PulseCali(backend=backend,qubit=0,qubit_freq_ground=f01,pi_amp_ground=amp01) f12=PC.find_freq_excited(verbose=True,visual=True) PC=PulseCali(backend=backend,qubit=0,qubit_freq_ground=f01,pi_amp_ground=amp01,qubit_freq_excited=f12) f12_1=PC.get_qubit_freq_excited() f12_1 amp12=PC.find_pi_amp_excited(verbose=True,visual=True) amp12_1=PC.get_pi_amp_excited() amp12_1 PC=PulseCali(backend,0,qubit_freq_ground=f01,qubit_freq_excited=f12, pi_amp_ground=amp01, pi_amp_excited=amp12) PC.T1_ground(verbose=True,visual=True) PC.T1_excited(verbose=True,visual=True) PC.T2_ground(verbose=True,visual=True)
https://github.com/minnukota381/Quantum-Computing-Qiskit
minnukota381
from qiskit import * from qiskit.visualization import plot_bloch_multivector, visualize_transition, plot_histogram from numpy import pi # Create a quantum circuit with a single qubit # The default initial state of qubit will be |0> or [1,0] qc = QuantumCircuit(1) #Apply the Pauli X-gate on the qubit to make the input to y gate as |1> #qc.h(0) #qc.h(0) #Apply the Pauli z-gate on the |1> qubit qc.rz(pi/4,0) #Draw the circuit # qc.draw() qc.draw('mpl') #Get the backend for the circuit (simulator or realtime system) backend = Aer.get_backend('statevector_simulator') #execute the circuit using the backend out = execute(qc,backend).result().get_statevector() #plot the result as a bloch sphere visualization plot_bloch_multivector(out) # visualize the output as an animation visualize_transition(qc) #execute the circuit and get the plain result out = execute(qc,backend).result() #getting the count of the result counts = out.get_counts() #plotting the histogram plot_histogram(counts)
https://github.com/DaisukeIto-ynu/KosakaQ
DaisukeIto-ynu
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Compatibility classes for changes to save instruction return types. These subclasses include a `__getattr__` method that allows existing code which used numpy.ndarray attributes to continue functioning with a deprecation warning. Numpy functions that consumed these classes should already work due to them having an `__array__` method for implicit array conversion. """ import warnings import numpy as np import qiskit.quantum_info as qi def _forward_attr(attr): """Return True if attribute should be passed to legacy class""" # Pass Iterable magic methods on to the Numpy array. We can't pass # `__getitem__` (and consequently `__setitem__`, `__delitem__`) on because # `Statevector` implements them itself. if attr[:2] == '__' or attr in ['_data', '_op_shape']: return False return True def _deprecation_warning(instance, instances_name): class_name = instance.__class__.__name__ warnings.warn( f"The return type of saved {instances_name} has been changed from" f" a `numpy.ndarray` to a `qiskit.quantum_info.{class_name}` as" " of qiskit-aer 0.10. Accessing numpy array attributes is deprecated" " and will result in an error in a future release. To continue using" " saved result objects as arrays you can explicitly cast them using " " `np.asarray(object)`.", DeprecationWarning, stacklevel=3, ) class Statevector(qi.Statevector): """Aer result backwards compatibility wrapper for qiskit Statevector.""" def __getattr__(self, attr): if _forward_attr(attr) and hasattr(self._data, attr): _deprecation_warning(self, "statevectors") return getattr(self._data, attr) return getattr(super(), attr) def __eq__(self, other): return ( isinstance(self, type(other)) and self._op_shape == other._op_shape and np.allclose(self.data, other.data, rtol=self.rtol, atol=self.atol) ) def __bool__(self): # Explicit override to the default behaviour for Python objects to # prevent the new `__len__` from messing with it. return True # Magic methods for the iterable/collection interface that need forwarding, # but bypass `__getattr__`. `__getitem__` is defined by `Statevector`, so # that can't be forwarded (and consequently neither can `__setitem__` # without introducing an inconsistency). def __len__(self): _deprecation_warning(self, "statevectors") return self._data.__len__() def __iter__(self): _deprecation_warning(self, "statevectors") return self._data.__iter__() def __contains__(self, value): _deprecation_warning(self, "statevectors") return self._data.__contains__(value) def __reversed__(self): _deprecation_warning(self, "statevectors") return self._data.__reversed__() class DensityMatrix(qi.DensityMatrix): """Aer result backwards compatibility wrapper for qiskit DensityMatrix.""" def __getattr__(self, attr): if _forward_attr(attr) and hasattr(self._data, attr): _deprecation_warning(self, "density matrices") return getattr(self._data, attr) return getattr(super(), attr) def __eq__(self, other): return ( isinstance(self, type(other)) and self._op_shape == other._op_shape and np.allclose(self.data, other.data, rtol=self.rtol, atol=self.atol) ) def __len__(self): _deprecation_warning(self, "density matrices") return self._data.__len__() def __iter__(self): _deprecation_warning(self, "density matrices") return self._data.__iter__() def __contains__(self, value): _deprecation_warning(self, "density matrices") return self._data.__contains__(value) def __reversed__(self): _deprecation_warning(self, "density matrices") return self._data.__reversed__() def __getitem__(self, key): _deprecation_warning(self, "density matrices") return self._data.__getitem__(key) def __setitem__(self, key, value): _deprecation_warning(self, "density matrices") return self._data.__setitem__(key, value) class Operator(qi.Operator): """Aer result backwards compatibility wrapper for qiskit Operator.""" def __getattr__(self, attr): if _forward_attr(attr) and hasattr(self._data, attr): _deprecation_warning(self, "unitaries") return getattr(self._data, attr) return getattr(super(), attr) def __eq__(self, other): return ( isinstance(self, type(other)) and self._op_shape == other._op_shape and np.allclose(self.data, other.data, rtol=self.rtol, atol=self.atol) ) def __bool__(self): # Explicit override to the default behaviour for Python objects to # prevent the new `__len__` from messing with it. return True def __len__(self): _deprecation_warning(self, "unitaries") return self._data.__len__() def __iter__(self): _deprecation_warning(self, "unitaries") return self._data.__iter__() def __contains__(self, value): _deprecation_warning(self, "unitaries") return self._data.__contains__(value) def __reversed__(self): _deprecation_warning(self, "unitaries") return self._data.__reversed__() def __getitem__(self, key): _deprecation_warning(self, "unitaries") return self._data.__getitem__(key) def __setitem__(self, key, value): _deprecation_warning(self, "unitaries") return self._data.__setitem__(key, value) class SuperOp(qi.SuperOp): """Aer result backwards compatibility wrapper for qiskit SuperOp.""" def __getattr__(self, attr): if _forward_attr(attr) and hasattr(self._data, attr): _deprecation_warning(self, "superoperators") return getattr(self._data, attr) return getattr(super(), attr) def __eq__(self, other): return ( isinstance(self, type(other)) and self._op_shape == other._op_shape and np.allclose(self.data, other.data, rtol=self.rtol, atol=self.atol) ) def __bool__(self): # Explicit override to the default behaviour for Python objects to # prevent the new `__len__` from messing with it. return True def __len__(self): _deprecation_warning(self, "superoperators") return self._data.__len__() def __iter__(self): _deprecation_warning(self, "superoperators") return self._data.__iter__() def __contains__(self, value): _deprecation_warning(self, "superoperators") return self._data.__contains__(value) def __reversed__(self): _deprecation_warning(self, "superoperators") return self._data.__reversed__() def __getitem__(self, key): _deprecation_warning(self, "superoperators") return self._data.__getitem__(key) def __setitem__(self, key, value): _deprecation_warning(self, "superoperators") return self._data.__setitem__(key, value) class StabilizerState(qi.StabilizerState): """Aer result backwards compatibility wrapper for qiskit StabilizerState.""" def __deprecation_warning(self): warnings.warn( "The return type of saved stabilizers has been changed from" " a `dict` to a `qiskit.quantum_info.StabilizerState` as of qiskit-aer 0.10." " Accessing dict attributes is deprecated and will result in an" " error in a future release. Use the `.clifford.to_dict()` methods to access " " the stored Clifford operator and convert to a dictionary.", DeprecationWarning, stacklevel=3, ) def __getattr__(self, attr): if _forward_attr(attr) and hasattr(dict, attr): self.__deprecation_warning() return getattr(self._data.to_dict(), attr) return getattr(super(), attr) def __getitem__(self, item): if item in ["stabilizer", "destabilizer"]: warnings.warn( "The return type of saved stabilizers has been changed from" " a `dict` to a `qiskit.quantum_info.StabilizerState` as of qiskit-aer 0.10." " Accessing dict items is deprecated and will result in an" " error in a future release. Use the `.clifford.to_dict()` methods to access " " the stored Clifford operator and convert to a dictionary.", DeprecationWarning, stacklevel=2) return self._data.to_dict()[item] raise TypeError("'StabilizerState object is not subscriptable'") def __bool__(self): # Explicit override to the default behaviour for Python objects to # prevent the new `__len__` from messing with it. return True def __len__(self): self.__deprecation_warning() return self._data.to_dict().__len__() def __iter__(self): self.__deprecation_warning() return self._data.to_dict().__iter__() def __contains__(self, value): self.__deprecation_warning() return self._data.to_dict().__contains__(value) def __reversed__(self): self.__deprecation_warning() return self._data.to_dict().__reversed__() def _add(self, other): raise NotImplementedError(f"{type(self)} does not support addition") def _multiply(self, other): raise NotImplementedError(f"{type(self)} does not support scalar multiplication")
https://github.com/derivation/quantum_image_edge_detection
derivation
import numpy as np from numpy import pi import matplotlib.pyplot as plt import matplotlib.image as mpimg from skimage.transform import resize filename = './schrodin_yang.png' im = mpimg.imread(filename) n_pixels = 2**5 im = resize(im, (n_pixels, n_pixels)) data = im[:,:,0].ravel() fig, ax = plt.subplots() ax.imshow(im) n_qubits = int(np.log2(len(data))) from qiskit_aqua.components.initial_states import Custom init_state = Custom(n_qubits, state_vector=data) circ = init_state.construct_circuit('circuit') qr = circ.qregs # circ.draw() circ.h(qr[0][0]) from qiskit import BasicAer, execute simulator = BasicAer.get_backend('statevector_simulator') sim_result = execute(circ, simulator).result() final_state = sim_result.get_statevector(circ) edge = np.real(final_state) n_rows = int(np.sqrt(len(edge))) n_cols = n_rows edge = edge.reshape(n_rows, n_cols) edge[:,::2] = 0 fig, ax = plt.subplots(1,2) ax[0].imshow(edge) ax[1].imshow(im)
https://github.com/bagmk/Quantum_Machine_Learning_Express
bagmk
import random from random import seed from random import random from numpy import where from collections import Counter from sklearn.datasets import make_blobs from matplotlib import pyplot import numpy as np import matplotlib.pyplot as plt from sklearn import mixture from sklearn.neighbors import KernelDensity import random def my_circle(center, rx, ry, Nmax): R = 1 x2=[] y2=[] for i in range(Nmax): r2=np.sqrt(random.random()) theta2=2 * np.pi * random.random() x2.append(rx*r2 * np.cos(theta2) + center[0]) y2.append(ry*r2 * np.sin(theta2) + center[1]) return np.transpose([x2,y2]) def my_plot(data,lab,counter): for label, _ in counter.items(): row_ix = where(lab == label)[0] pyplot.scatter(data[row_ix, 0], data[row_ix, 1], label=str(label)) pyplot.legend() pyplot.xlim([0, 1]) pyplot.ylim([0, 1]) pyplot.show() def data1a(): seed(30) X1=my_circle([0.3,0.5],0.25,0.4,750) X2=my_circle([0.7,0.5],0.25,0.4,750) y1=[0] * 750 y2=[1] * 750 X_1=np.concatenate((X1,X2)) y_1=np.concatenate((y1, y2)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data1b(): seed(30) X1=my_circle([0.4,0.2],0.25,0.15,375) X2=my_circle([0.6,0.5],0.25,0.15,750) X3=my_circle([0.4,0.8],0.25,0.15,375) y1=[0] * 375 y2=[1] * 750 y3=[0] * 375 X_1=np.concatenate((X1,X2,X3)) y_1=np.concatenate((y1, y2,y3)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data1c(): seed(30) X1=my_circle([0.3,0.2],0.25,0.12,375) X2=my_circle([0.7,0.4],0.25,0.12,375) X3=my_circle([0.3,0.6],0.25,0.12,375) X4=my_circle([0.7,0.8],0.25,0.12,375) y1=[0] * 375 y2=[1] * 375 y3=[0] * 375 y4=[1] * 375 X_1=np.concatenate((X1,X2,X3,X4)) y_1=np.concatenate((y1, y2,y3,y4)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data2a(): seed(30) X1=my_circle([0.25,0.25],0.2,0.2,375) X2=my_circle([0.25,0.75],0.2,0.2,375) X3=my_circle([0.75,0.75],0.2,0.2,375) X4=my_circle([0.75,0.25],0.2,0.2,375) y1=[0] * 375 y2=[1] * 375 y3=[0] * 375 y4=[1] * 375 X_1=np.concatenate((X1,X2,X3,X4)) y_1=np.concatenate((y1, y2,y3,y4)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data2b(): seed(30) r=0.12 n=166 X1=my_circle([0.2,0.2],r,r,n) X2=my_circle([0.5,0.2],r,r,n) X3=my_circle([0.8,0.2],r,r,n) X4=my_circle([0.2,0.5],r,r,n) X5=my_circle([0.5,0.5],r,r,n) X6=my_circle([0.8,0.5],r,r,n) X7=my_circle([0.2,0.8],r,r,n) X8=my_circle([0.5,0.8],r,r,n) X9=my_circle([0.8,0.8],r,r,n) y1=[0] * n y2=[1] * n y3=[0] * n y4=[1] * n y5=[0] * n y6=[1] * n y7=[0] * n y8=[1] * n y9=[0] * n X_1=np.concatenate((X1,X2,X3,X4,X5,X6,X7,X8,X9)) y_1=np.concatenate((y1, y2,y3,y4,y5,y6,y7,y8,y9)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data2c(): seed(30) r=0.1 n=93 X1=my_circle([0.15,0.15],r,r,n) X2=my_circle([0.38,0.15],r,r,n) X3=my_circle([0.62,0.15],r,r,n) X4=my_circle([0.85,0.15],r,r,n) X5=my_circle([0.15,0.38],r,r,n) X6=my_circle([0.38,0.38],r,r,n) X7=my_circle([0.62,0.38],r,r,n) X8=my_circle([0.85,0.38],r,r,n) X9=my_circle([0.15,0.62],r,r,n) X10=my_circle([0.38,0.62],r,r,n) X11=my_circle([0.62,0.62],r,r,n) X12=my_circle([0.85,0.62],r,r,n) X13=my_circle([0.15,0.85],r,r,n) X14=my_circle([0.38,0.85],r,r,n) X15=my_circle([0.62,0.85],r,r,n) X16=my_circle([0.85,0.85],r,r,n) y1=[0] * n y2=[1] * n y3=[0] * n y4=[1] * n y5=[1] * n y6=[0] * n y7=[1] * n y8=[0] * n y9=[0] * n y10=[1] * n y11=[0] * n y12=[1] * n y13=[1] * n y14=[0] * n y15=[1] * n y16=[0] * n X_1=np.concatenate((X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15,X16)) y_1=np.concatenate((y1, y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,y15,y16)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data3a(): seed(30) X1 = [] radius = 0.25 n=750 index = 0 while index < n: x=random.random() y=random.random() if (x-0.5)**2 + (y-0.5)**2 > radius**2: X1 = X1 + [[x,y]] index = index + 1 y1=[1] *750 X2=my_circle([0.5,0.5],radius,radius,750) y2=[0] *750 X_1=np.concatenate((X1,X2)) y_1=np.concatenate((y1, y2)) # Generate uniform noise counter = Counter(y_1) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data3b(): seed(30) X1 = [] radius = 0.15 n=750 index = 0 while index < n: x=random.random() y=random.random() if ((x-0.25)**2 + (y-0.25)**2 > radius**2 and (x-0.75)**2 + (y-0.75)**2 > radius**2): X1 = X1 + [[x,y]] index = index + 1 y1=[1] *750 X2=my_circle([0.25,0.25],radius,radius,375) X3=my_circle([0.75,0.75],radius,radius,375) y2=[0] *750 X_1=np.concatenate((X1,X2,X3)) y_1=np.concatenate((y1, y2)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data3c(): seed(30) X1 = [] radius = 0.15 n=750 n2=187 index = 0 while index < n: x=random.random() y=random.random() if ((x-0.25)**2 + (y-0.25)**2 > radius**2 and (x-0.75)**2 + (y-0.75)**2 > radius**2 and (x-0.75)**2 + (y-0.25)**2 > radius**2 and (x-0.25)**2 + (y-0.75)**2 > radius**2 ): X1 = X1 + [[x,y]] index = index + 1 y1=[1] *750 X2=my_circle([0.25,0.25],radius,radius,n2) X3=my_circle([0.75,0.75],radius,radius,n2) X4=my_circle([0.75,0.25],radius,radius,n2) X5=my_circle([0.25,0.75],radius,radius,n2) y2=[0] *748 X_1=np.concatenate((X1,X2,X3,X4,X5)) y_1=np.concatenate((y1, y2)) # Generate uniform noise counter = Counter(y_1) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter # Plot my_plot(data1a()[0],data1a()[1],data1a()[2]) # Plot my_plot(data1b()[0],data1b()[1],data1b()[2]) # Plot my_plot(data1c()[0],data1c()[1],data1c()[2]) # Plot my_plot(data2a()[0],data2a()[1],data2a()[2]) # Plot my_plot(data2b()[0],data2b()[1],data2b()[2]) # Plot my_plot(data2c()[0],data2c()[1],data2c()[2]) # Plot my_plot(data3a()[0],data3a()[1],data3a()[2]) # Plot my_plot(data3b()[0],data3b()[1],data3b()[2]) # Plot my_plot(data3c()[0],data3c()[1],data3c()[2])
https://github.com/FMZennaro/QuantumGames
FMZennaro
!conda create --name qiscoin python=3.7 !source activate qiscoin !pip install qiskit !pip install gym !pip install stable-baselines !pip install tensorflow==1.14.0 !git clone https://github.com/FMZennaro/gym-qcircuit.git !pip install -e gym-qcircuit
https://github.com/derivation/quantum_image_edge_detection
derivation
import numpy as np from numpy import pi import matplotlib.pyplot as plt import matplotlib.image as mpimg from skimage.transform import resize filename = './schrodin_yang.png' im = mpimg.imread(filename) n_pixels = 2**5 im = resize(im, (n_pixels, n_pixels)) data = im[:,:,0].ravel() fig, ax = plt.subplots() ax.imshow(im) n_qubits = int(np.log2(len(data))) from qiskit_aqua.components.initial_states import Custom init_state = Custom(n_qubits, state_vector=data) circ = init_state.construct_circuit('circuit') qr = circ.qregs # circ.draw() circ.h(qr[0][0]) from qiskit import BasicAer, execute simulator = BasicAer.get_backend('statevector_simulator') sim_result = execute(circ, simulator).result() final_state = sim_result.get_statevector(circ) edge = np.real(final_state) n_rows = int(np.sqrt(len(edge))) n_cols = n_rows edge = edge.reshape(n_rows, n_cols) edge[:,::2] = 0 fig, ax = plt.subplots(1,2) ax[0].imshow(edge) ax[1].imshow(im)
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
import qiskit qiskit.__qiskit_version__ #initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.compiler import transpile from qiskit.tools.monitor import job_monitor # import basic plot tools from qiskit.tools.visualization import plot_histogram # Load our saved IBMQ accounts. IBMQ.load_account() nQubits = 14 # number of physical qubits a = 101 # the hidden integer whose bitstring is 1100101 # make sure that a can be represented with nQubits a = a % 2**(nQubits) # Creating registers # qubits for querying the oracle and finding the hidden integer qr = QuantumRegister(nQubits) # for recording the measurement on qr cr = ClassicalRegister(nQubits) circuitName = "BernsteinVazirani" bvCircuit = QuantumCircuit(qr, cr) # Apply Hadamard gates before querying the oracle for i in range(nQubits): bvCircuit.h(qr[i]) # Apply barrier so that it is not optimized by the compiler bvCircuit.barrier() # Apply the inner-product oracle for i in range(nQubits): if (a & (1 << i)): bvCircuit.z(qr[i]) else: bvCircuit.iden(qr[i]) # Apply barrier bvCircuit.barrier() #Apply Hadamard gates after querying the oracle for i in range(nQubits): bvCircuit.h(qr[i]) # Measurement bvCircuit.barrier(qr) bvCircuit.measure(qr, cr) bvCircuit.draw(output='mpl') # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1000 results = execute(bvCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) backend = IBMQ.get_backend('ibmq_16_melbourne') shots = 1000 bvCompiled = transpile(bvCircuit, backend=backend, optimization_level=1) job_exp = execute(bvCircuit, backend=backend, shots=shots) job_monitor(job_exp) results = job_exp.result() answer = results.get_counts(bvCircuit) threshold = int(0.01 * shots) #the threshold of plotting significant measurements filteredAnswer = {k: v for k,v in answer.items() if v >= threshold} #filter the answer for better view of plots removedCounts = np.sum([ v for k,v in answer.items() if v < threshold ]) #number of counts removed filteredAnswer['other_bitstrings'] = removedCounts #the removed counts is assigned to a new index plot_histogram(filteredAnswer) print(filteredAnswer)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit # Create a circuit with a register of three qubits circ = QuantumCircuit(3) # H gate on qubit 0, putting this qubit in a superposition of |0> + |1>. circ.h(0) # A CX (CNOT) gate on control qubit 0 and target qubit 1 generating a Bell state. circ.cx(0, 1) # CX (CNOT) gate on control qubit 0 and target qubit 2 resulting in a GHZ state. circ.cx(0, 2) # Draw the circuit circ.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer, MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from docplex.mp.model import Model model = Model() x0 = model.binary_var(name="x0") x1 = model.binary_var(name="x1") x2 = model.binary_var(name="x2") model.minimize(-x0 + 2 * x1 - 3 * x2 - 2 * x0 * x2 - 1 * x1 * x2) qp = from_docplex_mp(model) print(qp.prettyprint()) grover_optimizer = GroverOptimizer(6, num_iterations=10, sampler=Sampler()) results = grover_optimizer.solve(qp) print(results.prettyprint()) exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qp) print(exact_result.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/tomtuamnuq/compare-qiskit-ocean
tomtuamnuq
import time, os, logging, warnings import numpy as np from qiskit import IBMQ from qiskit.test.mock import FakeMumbai from qiskit.providers.aer import AerSimulator from qiskit.providers.aer.noise import NoiseModel from qiskit_optimization.algorithms import CplexOptimizer from qiskit_optimization.algorithms.optimization_algorithm import OptimizationResultStatus from utilities.helpers import create_qaoa_meo, create_quadratic_programs_from_paths TEST_DIR = 'TEST_DATA' + "/" + time.strftime("%d_%m_%Y") + "/DENSE/" RES_DIR = 'RESULTS' + "/" + time.strftime("%d_%m_%Y") + "/DENSE/" os.makedirs(RES_DIR, exist_ok=True) TEST_DIR logger = logging.getLogger() max_iter = 5 # set maximum number of optimizer iterations in qaoa online simulation def qaoa_callback(eval_ct: int, opt_pars: np.ndarray, mean: float, stdev: float) -> None: """Print number of iteration in QAOA and log.""" print("Evaluation count:", eval_ct) logger.info(f"\n Evaluation count {eval_ct} with parameters {opt_pars} and mean {mean:.2f}") if eval_ct == max_iter: logger.info(" reached maximum number of evaluations \n") # select linear programs to solve qps = create_quadratic_programs_from_paths(TEST_DIR) # init local backend simulator with noise model device = FakeMumbai() local = AerSimulator.from_backend(device) noise_model = NoiseModel.from_backend(device) conf = device.configuration() # init IBM Q Experience Simulator IBMQ.load_account() ibmq = IBMQ.get_provider(hub='ibm-q').get_backend('simulator_statevector') # init Optimizers cplex = CplexOptimizer() quantum_instance_kwargs = {"shots": 4096, "noise_model": noise_model, "optimization_level": 3} qaoa_local_sim = create_qaoa_meo(backend=local, max_iter=max_iter, **quantum_instance_kwargs) qaoa_ibmq_sim = create_qaoa_meo(backend=ibmq, coupling_map=conf.coupling_map, basis_gates=conf.basis_gates, max_iter=max_iter, qaoa_callback=qaoa_callback, **quantum_instance_kwargs) # set online job informations in IBM Q Experience qaoa_ibmq_sim.min_eigen_solver.quantum_instance.backend_options["job_tags"] = ["qaoa", "dense", "mumbai"] def set_job_name(qp): qaoa_ibmq_sim.min_eigen_solver.quantum_instance.backend_options["job_name"] = "qaoa_dense_" \ + qp.name + "_" + str(qp.get_num_vars()) warnings.filterwarnings("ignore", category=DeprecationWarning) logger.setLevel(logging.INFO) count_fail_qaoa = 0 for qp_name, qp in qps.items() : print(qp_name) print("number of qubits: ", qp.get_num_vars()) output_file_handler = logging.FileHandler(filename=RES_DIR + qp.name + ".log") logger.addHandler(output_file_handler) if qp.get_num_vars() >= 15: set_job_name(qp) qaoa = qaoa_ibmq_sim logstring = "ibmq_simulator_statevector" else: qaoa = qaoa_local_sim logstring = "local_qasm_simulator" with open(RES_DIR + qp.name + '.res', 'w') as file: file.write(str("Start " + qp.name + "\n " + str(qp.get_num_vars()) + " qubits needed")) file.write("\n " + logstring + " \n") logger.info("\n " + logstring + " \n") print(logstring) try: res_classic = cplex.solve(qp) res_quantum = qaoa.solve(qp) if res_quantum.status != OptimizationResultStatus.SUCCESS: print("QAOA minimum eigen solver found no solution.") file.write("\n QAOA minimum eigen solver found no solution. \n") count_fail_qaoa = count_fail_qaoa + 1 if count_fail_qaoa == 3: file.write("\n Stop testing \n") break else: print("QAOA minimum eigen solver successful!") count_fail_qaoa = 0 if res_quantum.fval == res_classic.fval: file.write("\n QAOA found optimal solution\n") else: print("\n optimal value QAOA "+str(res_quantum.fval) \ + " , cplex:"+ str(res_classic.fval)) file.write("\n QAOA:\n") file.write(str(res_quantum)) file.write("\n CPLEX:\n") file.write(str(res_classic)) except Exception as ex: print(qp_name, " ", type(ex).__name__, " : ", ex) file.write("\n Cplex or QAOA solver produced an exception:\n") file.write(str(ex)) count_fail_qaoa = count_fail_qaoa + 1 if count_fail_qaoa == 3: file.write("\n Stop testing because of Exception! \n") break logger.removeHandler(output_file_handler)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# If you introduce a list with less colors than bars, the color of the bars will # alternate following the sequence from the list. import numpy as np from qiskit.quantum_info import DensityMatrix from qiskit import QuantumCircuit from qiskit.visualization import plot_state_paulivec qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc = QuantumCircuit(2) qc.h([0, 1]) qc.cz(0, 1) qc.ry(np.pi/3, 0) qc.rx(np.pi/5, 1) matrix = DensityMatrix(qc) plot_state_paulivec(matrix, color=['crimson', 'midnightblue', 'seagreen'])
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.pulse_v2 import draw from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.measure_all() qc = transpile(qc, FakeBoeblingen(), layout_method='trivial') sched = schedule(qc, FakeBoeblingen()) draw(sched, backend=FakeBoeblingen())
https://github.com/soultanis/Quantum-SAT-Solver
soultanis
import pylab import numpy as np from qiskit.providers.ibmq import least_busy from qiskit import LegacySimulators, execute, IBMQ, Aer from qiskit.tools.visualization import plot_histogram from qiskit_aqua import QuantumInstance from qiskit_aqua import run_algorithm from qiskit_aqua.algorithms import Grover from qiskit_aqua.components.oracles import SAT m = 2 n = 2 satProblem = '3SATm-n\\3sat' + str(m) + '-' + str(n) + '.cnf' with open(satProblem, 'r') as f: sat_cnf = f.read() print(sat_cnf) sat_oracle = SAT(sat_cnf) algorithm = Grover(sat_oracle) sim_backend = Aer.get_backend('qasm_simulator') result = algorithm.run(sim_backend) print(result['result']) plot_histogram(result['measurements']) # Authenticate for access to remote backends try: import Qconfig IBMQ.load_accounts() except: print("""WARNING: There's no connection with the API for remote backends. Have you initialized a file with your personal token? For now, there's only access to local simulator backends...""") ibmq_backend = least_busy(IBMQ.backends(simulator=False)) result = algorithm.run(ibmq_backend) print(result['result']) plot_histogram(result['measurements']) params = { 'problem': {'name': 'search'}, 'algorithm': { 'name': 'Grover' }, 'oracle': { 'name': 'SAT', 'cnf': sat_cnf }, 'backend': { 'shots': 100 } } result_dict = run_algorithm(params, backend=backend) plot_histogram(result_dict['measurements']) from __future__ import print_function def even_ones(s): # Two states: # - 0 (even number of ones seen so far) # - 1 (odd number of ones seen so far) rules = {(0, '0'): 0, (0, '1'): 1, (1, '0'): 1, (1, '1'): 0} # There are 0 (which is an even number) ones in the empty # string so we start with state = 0. state = 0 for c in s: state = rules[state, c] return state == 0 # Example usage: s = "100110" print('Output for {} = {}'.format(s, even_ones(s)))
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """NumTensorFactors pass testing""" import unittest from qiskit import QuantumCircuit, QuantumRegister from qiskit.converters import circuit_to_dag from qiskit.transpiler.passes import NumTensorFactors from qiskit.test import QiskitTestCase class TestNumTensorsFactorPass(QiskitTestCase): """Tests for NumTensorFactors analysis methods.""" def test_empty_dag(self): """Empty DAG has 0 number of tensor factors.""" circuit = QuantumCircuit() dag = circuit_to_dag(circuit) pass_ = NumTensorFactors() _ = pass_.run(dag) self.assertEqual(pass_.property_set["num_tensor_factors"], 0) def test_just_qubits(self): """A dag with 8 operations and 1 tensor factor.""" qr = QuantumRegister(2) circuit = QuantumCircuit(qr) circuit.h(qr[0]) circuit.h(qr[1]) circuit.cx(qr[0], qr[1]) circuit.cx(qr[0], qr[1]) circuit.cx(qr[0], qr[1]) circuit.cx(qr[0], qr[1]) circuit.cx(qr[1], qr[0]) circuit.cx(qr[1], qr[0]) dag = circuit_to_dag(circuit) pass_ = NumTensorFactors() _ = pass_.run(dag) self.assertEqual(pass_.property_set["num_tensor_factors"], 1) def test_depth_one(self): """A dag with operations in parallel (2 tensor factors)""" qr = QuantumRegister(2) circuit = QuantumCircuit(qr) circuit.h(qr[0]) circuit.h(qr[1]) dag = circuit_to_dag(circuit) pass_ = NumTensorFactors() _ = pass_.run(dag) self.assertEqual(pass_.property_set["num_tensor_factors"], 2) if __name__ == "__main__": unittest.main()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.providers.fake_provider import FakeHanoi backend = FakeHanoi() config = backend.configuration() # Basic Features print("This backend is called {0}, and is on version {1}. It has {2} qubit{3}. It " "{4} OpenPulse programs. The basis gates supported on this device are {5}." "".format(config.backend_name, config.backend_version, config.n_qubits, '' if config.n_qubits == 1 else 's', 'supports' if config.open_pulse else 'does not support', config.basis_gates)) config.dt # units of seconds config.meas_levels config.dtm config.meas_map config.drive(0) config.measure(0) config.acquire(0) props = backend.properties() def describe_qubit(qubit, properties): """Print a string describing some of reported properties of the given qubit.""" # Conversion factors from standard SI units us = 1e6 ns = 1e9 GHz = 1e-9 print("Qubit {0} has a \n" " - T1 time of {1} microseconds\n" " - T2 time of {2} microseconds\n" " - U2 gate error of {3}\n" " - U2 gate duration of {4} nanoseconds\n" " - resonant frequency of {5} GHz".format( qubit, properties.t1(qubit) * us, properties.t2(qubit) * us, properties.gate_error('sx', qubit), properties.gate_length('sx', qubit) * ns, properties.frequency(qubit) * GHz)) describe_qubit(0, props) defaults = backend.defaults() q0_freq = defaults.qubit_freq_est[0] # Hz q0_meas_freq = defaults.meas_freq_est[0] # Hz GHz = 1e-9 print("DriveChannel(0) defaults to a modulation frequency of {} GHz.".format(q0_freq * GHz)) print("MeasureChannel(0) defaults to a modulation frequency of {} GHz.".format(q0_meas_freq * GHz)) calibrations = defaults.instruction_schedule_map print(calibrations) measure_schedule = calibrations.get('measure', range(config.n_qubits)) measure_schedule.draw(backend=backend) # You can use `has` to see if an operation is defined. Ex: Does qubit 3 have an x gate defined? calibrations.has('x', 3) # Some circuit operations take parameters. U1 takes a rotation angle: calibrations.get('u1', 0, P0=3.1415) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/PavanCyborg/Quantum-Algorithms-Benchmarking
PavanCyborg
from qiskit import BasicAer from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import Shor N = 15 shor = Shor(N) backend = BasicAer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024) ret = shor.run(quantum_instance) print("The list of factors of {} as computed by the Shor's algorithm is {}.".format(N, ret['factors'][0]))
https://github.com/quantumjim/pewpew_qiskit_workshops
quantumjim
%matplotlib notebook import pew # setting up tools for the pewpew pew.init() # initialize the game engine... screen = pew.Pix() # ...and the screen screen.pixel(1,2,3) # put a bright pixel at (1,2) pew.show(screen) # update screen to display the above change pew.tick(5) # pause for 5 seconds before quitting import pew # setting up tools for the pewpew pew.init() # initialize the game engine... screen = pew.Pix() # ...and the screen # loop over the square centered on (1,2) and make all dim (X,Y) = (1,2) for dX in [+1,0,-1]: for dY in [+1,0,-1]: screen.pixel(X+dX,Y+dY,2) pew.show(screen) # update screen to display the above changes pew.tick(5) # pause for 5 seconds before quitting import pew # setting up tools for the pewpew pew.init() # initialize the game engine... screen = pew.Pix() # ...and the screen # loop over the square centered on (1,2) and make all dim (X,Y) = (1,2) for dX in [+1,0,-1]: for dY in [+1,0,-1]: screen.pixel(X+dX,Y+dY,2) screen.pixel(X,Y,0) # turn off pixel at (1,2) pew.show(screen) # update screen to display the above changes pew.tick(5) # pause for 5 seconds before quitting import pew # setting up tools for the pewpew pew.init() # initialize the game engine... screen = pew.Pix() # ...and the screen # loop over the square centered on (1,2) and make all dim (X,Y) = (1,2) for dX in [+1,0,-1]: for dY in [+1,0,-1]: screen.pixel(X+dX,Y+dY,2) screen.pixel(X,Y,0) # turn off pixel at (1,2) while True: # loop which checks for user input and responds keys = pew.keys() # get current key presses if keys!=0: if keys&pew.K_UP: # if UP is pressed, turn the pixel at (1,2) on (to a brightness of 3) screen.pixel(X,Y,3) pew.show(screen) # update screen to display the above changes pew.tick(1/6) # pause for a sixth of a second
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test -CZ-CX- joint synthesis function.""" import unittest from test import combine import numpy as np from ddt import ddt from qiskit import QuantumCircuit from qiskit.quantum_info import Clifford from qiskit.synthesis.linear_phase.cx_cz_depth_lnn import synth_cx_cz_depth_line_my from qiskit.synthesis.linear import ( synth_cnot_depth_line_kms, random_invertible_binary_matrix, ) from qiskit.synthesis.linear.linear_circuits_utils import check_lnn_connectivity from qiskit.test import QiskitTestCase @ddt class TestCXCZSynth(QiskitTestCase): """Test the linear reversible circuit synthesis functions.""" @combine(num_qubits=[3, 4, 5, 6, 7, 8, 9, 10]) def test_cx_cz_synth_lnn(self, num_qubits): """Test the CXCZ synthesis code for linear nearest neighbour connectivity.""" seed = 1234 rng = np.random.default_rng(seed) num_gates = 10 num_trials = 8 for _ in range(num_trials): # Generate a random CZ circuit mat_z = np.zeros((num_qubits, num_qubits)) cir_z = QuantumCircuit(num_qubits) for _ in range(num_gates): i = rng.integers(num_qubits) j = rng.integers(num_qubits) if i != j: cir_z.cz(i, j) if j > i: mat_z[i][j] = (mat_z[i][j] + 1) % 2 else: mat_z[j][i] = (mat_z[j][i] + 1) % 2 # Generate a random CX circuit mat_x = random_invertible_binary_matrix(num_qubits, seed=rng) mat_x = np.array(mat_x, dtype=bool) cir_x = synth_cnot_depth_line_kms(mat_x) # Joint Synthesis cir_zx_test = QuantumCircuit.compose(cir_z, cir_x) cir_zx = synth_cx_cz_depth_line_my(mat_x, mat_z) # Check that the output circuit 2-qubit depth is at most 5n depth2q = cir_zx.depth(filter_function=lambda x: x.operation.num_qubits == 2) self.assertTrue(depth2q <= 5 * num_qubits) # Check that the output circuit has LNN connectivity self.assertTrue(check_lnn_connectivity(cir_zx)) # Assert that we get the same elements as other methods self.assertEqual(Clifford(cir_zx), Clifford(cir_zx_test)) if __name__ == "__main__": unittest.main()
https://github.com/sooodos/Quantum-Computing-Learning-Gate
sooodos
from qiskit import QuantumCircuit from QCLG_lvl3.oracles.secret_number_oracle import SecretNUmberOracle class BernsteinVazirani: @classmethod def bernstein_vazirani(cls, random_binary, eval_mode: bool) -> QuantumCircuit: # Construct secret number oracle secret_number_oracle = SecretNUmberOracle.create_secret_number_oracle(random_binary=random_binary, eval_mode=eval_mode) num_of_qubits = secret_number_oracle.num_qubits # Construct circuit according to the length of the number dj_circuit = QuantumCircuit(num_of_qubits, num_of_qubits - 1) dj_circuit_before_oracle = QuantumCircuit(num_of_qubits, num_of_qubits - 1) # Apply H-gates for qubit in range(num_of_qubits - 1): dj_circuit_before_oracle.h(qubit) # Put output qubit in state |-> dj_circuit_before_oracle.x(num_of_qubits - 1) dj_circuit_before_oracle.h(num_of_qubits - 1) dj_circuit += dj_circuit_before_oracle # Add oracle dj_circuit += secret_number_oracle dj_circuit_after_oracle = QuantumCircuit(num_of_qubits, num_of_qubits - 1) # Repeat H-gates for qubit in range(num_of_qubits - 1): dj_circuit_after_oracle.h(qubit) dj_circuit_after_oracle.barrier() # Measure for i in range(num_of_qubits - 1): dj_circuit_after_oracle.measure(i, i) dj_circuit += dj_circuit_after_oracle if not eval_mode: print("Circuit before the oracle\n") print(QuantumCircuit.draw(dj_circuit_before_oracle)) print("Circuit after the oracle\n") print(QuantumCircuit.draw(dj_circuit_after_oracle)) print(dj_circuit) return dj_circuit
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
import networkx as nx import sys sys.path.append( "/Users/johnburke/Desktop/QAOA Code/") from qiskit import Aer, transpile from scipy.optimize import minimize from QAOA_Circuit import QAOACircuit from QAOA_Cost_Function import CostFunction import numpy as np class Result: def __init__(self, fun, x, nfev): self.fun = fun self.x = x self.nfev = nfev def addHistory(self, history): self.history = history class QAOAScaffolding: circuit = None simulator = None built = False def __init__(self, numQubits, problemType, problem): self.numQubits = numQubits self.problemType = problemType self.problem = problem def build(self, layers, mixerType, initType, shots): qc = QAOACircuit(self.numQubits, layers, mixerType, self.problem, self.problemType, initType) qc.build() self.layers = layers self.circuit = qc self.simulator = Aer.get_backend('qasm_simulator') self.shots = shots # if ('maxcut' in self.problemType): cost = CostFunction(self.problemType, self.problem) self.costFunction = cost self.built = True def getExpectation(self, params, method = 'average_expectation', customSimulator= None, goal=0, randomGuess=None): if (customSimulator): counts = customSimulator(params, self.shots) else: qc = self.circuit.getCircuitWithParameters(params) qc = transpile(qc, backend=self.simulator) counts = self.simulator.run(qc, shots=self.shots).result().get_counts() if method == 'best_expectation': return self.costFunction.getBestExpectation(counts, goal, randomGuess, self.shots) elif method == "most_common_expectation": return self.costFunction.getMostCommonExpectation(counts) elif method == "desired_expectation": return self.costFunction.getDesiredExpectation(counts, self.shots) # elif method == "count_of_best": # return self.costFunction.getDesiredExpectation(counts, self.shots) return self.costFunction.getExpectation(counts) def minimizeExectation(self, initialParamsType = 'constant', minimizerType = 'scipy', customParameters = [], saveHistory = False, measurementStrategy = "average_expectation", customSimulator = None, goal=0, graph=None, guess=1): if (not self.built): print("Circuit not built") return False initialParams = [] parameterCount = self.circuit.getNumberOfParameters() if (initialParamsType == 'constant'): initialParams = [1.0] * parameterCount elif (initialParamsType =='random'): initialParams = np.random.uniform(0.0, np.pi, parameterCount) elif (initialParamsType == 'custom'): initialParams = customParameters if (minimizerType == 'scipy'): return self.__scipyMinimize(initialParams, measurementStrategy, customSimulator=customSimulator) elif (minimizerType == 'brute_force'): return self.__bruteForceMinimize(parameterCount, saveHistory, measurementStrategy) elif (minimizerType == 'brute_force_custom'): return self.__bruteForceCustom(parameterCount, saveHistory, measurementStrategy, customSimulator=customSimulator) elif (minimizerType == 'annealing'): return self.__annealingMinimize(initialParams, 1000, 1, saveHistory, measurementStrategy) elif (minimizerType == 'z_custom'): return self.__bruteForceZCustom(parameterCount ,saveHistory) elif (minimizerType == 'y_custom_1'): return self.__bruteForceYCustom1(parameterCount ,saveHistory) elif (minimizerType == 'y_custom_2'): return self.__bruteForceYCustom2(parameterCount, measurementStrategy,saveHistory) elif (minimizerType == 'y_custom_3'): return self.__bruteForceYCustom3(parameterCount, saveHistory, graph=graph) elif (minimizerType == 'ma_rz_custom'): return self.__customMARZOptimizer(parameterCount, saveHistory, graph=graph, guess=guess) elif (minimizerType == 'ma_rz_custom_2'): return self.__customMARZOptimizer2(parameterCount, saveHistory, graph=graph, guess=guess) elif (minimizerType == 'ry_custom'): return self.__customCXRYOptimizer(parameterCount, saveHistory, graph=graph) def __scipyMinimize(self, initialParams, measurementStrategy = 'average_expectation', customSimulator=None): res = minimize(self.getExpectation, initialParams, args=(measurementStrategy, customSimulator), method='COBYLA', options={'maxiter':1000}) return res def __bruteForceMinimize(self, parameterCount, saveHistory = False, measurementStrategy = 'average_expectation'): possibleValues = 100 values = np.linspace(0, 2*np.pi, possibleValues, endpoint=False) bestExpectation = 0 bestParameters = [] allValues = [] for i in range(0, possibleValues ** parameterCount): parameters = [values[int(i / (possibleValues ** j)) % possibleValues] for j in range(0, parameterCount)] expectation = self.getExpectation(parameters, measurementStrategy) if (saveHistory): allValues.append((parameters, expectation)) if (expectation < bestExpectation): bestExpectation = expectation bestParameters = parameters res = Result(bestExpectation, bestParameters, possibleValues ** parameterCount) if (saveHistory): res.addHistory(allValues) return res def __annealingMinimize(self, initialParams, temp, stepSize, saveHistory = False, measurementStrategy = 'average_expectation'): def temp_reduction(temp, alpha, type='linear', beta=1): if (type == 'linear'): return temp - alpha if (type == 'geometric'): return temp * alpha if (type == 'slow'): return (temp / (1 + beta * alpha)) def perturb_params(params, curr_temp, max_temp): new_params = params.copy() max_terms_changed = int((curr_temp / max_temp)) * len(new_params) if (max_terms_changed <= 0): max_terms_changed = 1 states_changed = max_terms_changed else: states_changed = np.random.randint(1, max_terms_changed) scale = (curr_temp / max_temp) * np.pi for i in range(states_changed): index = np.random.randint(0, len(new_params)) new_params[index] = new_params[index] + np.random.uniform(-scale , scale) return np.array(new_params) % (np.pi / 2) curr_cost = self.getExpectation(initialParams, measurementStrategy) curr_temp = temp curr_params = initialParams niter = 0 allValues = [] while curr_temp > 1: niter += 1 curr_temp = temp_reduction(curr_temp, stepSize) new_params = perturb_params(curr_params, curr_temp, temp) new_cost = self.getExpectation(new_params, measurementStrategy) if (saveHistory): allValues.append((new_params, new_cost)) if (new_cost < curr_cost): curr_cost = new_cost curr_params = new_params else: cost_dif = (curr_cost - new_cost) * 1000 prob = np.e ** (cost_dif / curr_temp) if (np.random.random() <= prob): curr_cost = new_cost curr_params = new_params res = Result(curr_cost, curr_params, niter) if (saveHistory): res.addHistory(allValues) return res def __bruteForceCustom(self, parameterCount, saveHistory = False, measurementStrategy = 'average_expectation', customSimulator=None): possibleParams = [0.0, np.pi/2, np.pi] bestExpectation = 0.0 parameters = [0.0] * parameterCount for i in range(0, parameterCount): testParams = parameters for param in possibleParams: testParams[i] = param expectation = self.getExpectation(testParams, measurementStrategy, customSimulator) print(expectation, testParams) if (expectation < bestExpectation): bestExpectation = expectation parameters[i] = param def __bruteForceZCustom(self, parameterCount, saveHistory = False, customSimulator=None): possibleParams = [0.0, np.pi/2, 2*np.pi/2, 3*np.pi/2] parameters = [0.0] * parameterCount bestCost = 0.0 for param1 in possibleParams: for param2 in possibleParams: for param3 in possibleParams: params = [param1, param2, param3] newCost = self.getExpectation(params, "desired_expectation") if (newCost < bestCost): parameters = params bestCost = newCost res = Result(bestCost, parameters, 16) return res def __bruteForceYCustom1(self, parameterCount, saveHistory = False, customSimulator=None): parameters = [0.0] * parameterCount bestCost = 0.0 for i in range(0, parameterCount): exp1 = self.getExpectation(parameters, "average_expectation") parameters[i] = np.pi/2 exp2 = self.getExpectation(parameters, "average_expectation") bestCost = exp2 if (exp1 < exp2): parameters[i] = 0 bestCost = exp1 res = Result(bestCost, parameters, parameterCount) return res def __bruteForceYCustom2(self, parameterCount, measurementStrategy = 'average_expectation', saveHistory = False, customSimulator=None): theta = np.pi/4 parameters = [theta] * parameterCount bestCost = 0.0 # parameters[0] = np.pi/2 # parameters[1] = np.pi/2 # parameters[2] = np.pi/2 # parameters[3] = 0 # parameters[4] = 0 # parameters[5] = np.pi/2 # parameters[6] = 0 # parameters[7] = 0 # parameters[8] = np.pi/2 # parameters[9] = 0 # parameters[10] = 0 # parameters[11] = np.pi/2 # parameters[12] = 0 # parameters[13] = 0 # parameters[14] = 0 # parameters[15] = np.pi/2 # parameters[16] = 0 # parameters[17] = 0 bestCost = self.getExpectation(parameters, measurementStrategy) iterations = 0 # allWorse = False # while not allWorse: # currBestCost = 0 # currBestI = -1 # bestChange = 0 # for i in range(0, parameterCount): # if (parameters[i] == theta): # iterations += 1 # parameters[i] = 0 # exp = self.getExpectation(parameters, measurementStrategy) # if (exp < currBestCost): # currBestCost = exp # currBestI = i # bestChange = 0 # parameters[i] = np.pi/2 # exp = self.getExpectation(parameters, measurementStrategy) # if (exp < currBestCost): # currBestCost = exp # currBestI = i # bestChange = np.pi/2 # # parameters[i] = np.pi/4 # # exp = self.getExpectation(parameters, measurementStrategy) # # if (exp < currBestCost): # # currBestCost = exp # # currBestI = i # # bestChange = np.pi/4 # parameters[i] = theta # if (currBestCost < bestCost): # parameters[currBestI] = bestChange # bestCost = currBestCost # else: # allWorse = True # for i in range(0, parameterCount): # if (parameters[i] == theta): # parameters[i] = 0 # exp = self.getExpectation(parameters, measurementStrategy) # if (exp < bestCost): # bestCost = exp # else: # parameters[i] = theta # for i in range(0, parameterCount): # if (parameters[i] == theta): # parameters[i] = np.pi/2 # exp = self.getExpectation(parameters, measurementStrategy) # if (exp < bestCost): # bestCost = exp # else: # parameters[i] = theta # bestCost = self.getExpectation(parameters, measurementStrategy) res = Result(bestCost, parameters, iterations) return res def __bruteForceYCustom3(self, parameterCount, saveHistory = False, customSimulator=None, graph=None): edges = list(graph.edges()) v = len(graph.nodes) orderedEdges = [] rightEdges = [] j = list(range(1, v)) for e in edges: e1 = e[0] e2 = e[1] if (e1 > e2): rightEdges.append((e2, e1)) else: rightEdges.append(e) for e in rightEdges.copy(): # print(e) e1 = e[0] e2 = e[1] if (e2 in j): rightEdges.remove(e) orderedEdges.append(e) j.remove(e2) bestCost = 0.0 v = len(orderedEdges) parameters = [np.pi/2] * v + [0.0] * (parameterCount - v) bestCost = self.getExpectation(parameters, "average_expectation") allWorse = False while not allWorse: currBestCost = 0 currBestI = -1 for i in range(0, parameterCount): if (parameters[i] != np.pi/2): parameters[i] = np.pi/2 exp = self.getExpectation(parameters, "average_expectation") if (exp < currBestCost): currBestCost = exp currBestI = i parameters[i] = 0.0 else: parameters[i] = 0 exp = self.getExpectation(parameters, "average_expectation") if (exp < currBestCost): currBestCost = exp currBestI = i parameters[i] = np.pi/2 if (currBestCost < bestCost): if (parameters[currBestI] == np.pi/2): parameters[currBestI] = 0 else: parameters[currBestI] = np.pi/2 bestCost = currBestCost else: allWorse = True res = Result(bestCost, parameters, parameterCount) return res def __customMARZOptimizer(self, parameterCount, saveHistory = False, customSimulator=None, graph=None, guess=1): edges = list(graph.edges()) v = len(graph.nodes) parameters = [np.pi/guess] * len(edges) + [np.pi/4] bestCost = self.getExpectation(parameters, "average_expectation") for i in range(0, len(edges)): parametersCopy = parameters.copy() parametersCopy[i] = 0.0 cost = self.getExpectation(parametersCopy, "average_expectation") if (cost < bestCost): parameters = parametersCopy bestCost = cost res = Result(bestCost, parameters, len(edges)) return res def __customMARZOptimizer2(self, parameterCount, saveHistory = False, customSimulator=None, graph=None, guess=1): edges = list(graph.edges()) v = len(graph.nodes) parameters = [np.pi/6] + [np.pi/4] bestCost = self.getExpectation(parameters, "average_expectation") # for i in range(1, v+1): # parametersCopy = parameters.copy() # parametersCopy[i] = 0.0 # cost = self.getExpectation(parametersCopy, "average_expectation") # if (cost < bestCost): # parameters = parametersCopy # bestCost = cost # parametersCopy[i] = np.pi/2 # cost = self.getExpectation(parametersCopy, "average_expectation") # if (cost < bestCost): # parameters = parametersCopy # bestCost = cost res = Result(bestCost, parameters, len(edges)) def __customCXRYOptimizer(self, parameterCount, saveHistory = False, customSimulator=None, graph=None): edges = list(graph.edges()) v = len(graph.nodes) initialCut = int(len(edges) / 2) parameters = [np.pi/(initialCut/2)] bestCost = self.getExpectation(parameters, "average_expectation") cutL = initialCut for i in range(1, 20): parametersCopy = [np.pi/(i/2)] cost = self.getExpectation(parametersCopy, "average_expectation") print(i, cost) if (cost < bestCost): parameters = parametersCopy bestCost = cost cutL = i res = Result(bestCost, cutL, len(edges)) return res
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.pulse_v2 import draw from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.measure_all() qc = transpile(qc, FakeBoeblingen(), layout_method='trivial') sched = schedule(qc, FakeBoeblingen()) draw(sched, backend=FakeBoeblingen())
https://github.com/tanjinadnanabir/qbosons-qiskit-hackathon
tanjinadnanabir
from qiskit import BasicAer from qiskit.utils import QuantumInstance, algorithm_globals from qiskit.algorithms.optimizers import COBYLA, SLSQP from qiskit.circuit.library import TwoLocal, ZZFeatureMap,RealAmplitudes from qiskit_machine_learning.algorithms import VQC from qiskit_machine_learning.datasets import ad_hoc_data seed = 1376 algorithm_globals.random_seed = seed import pandas as pd import numpy as np Iris_data=pd.read_csv('Iris.csv') Iris_data.drop(['Id'], axis=1) # print(Iris_data) # Iris_data.head() # import numpy as np # d = np.loadtxt("Iris.csv", delimiter=",") feature_cols = [ 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm' ] target_col = ['Species'] from sklearn.model_selection import train_test_split xtrain = Iris_data[feature_cols] ytrain = Iris_data[target_col]#.astype(int) # ytrain = pd.get_dummies(Iris_data, columns = ['Species']) # print(ytrain) ytrain_new = pd.get_dummies(ytrain, columns=["Species"]) # print("The transform data using get_dummies") # print(ytrain_new) x_train, x_test, y_train, y_test = train_test_split(xtrain, ytrain_new, test_size=0.25, random_state=42) x_train.shape, x_test.shape, y_train.shape, y_test.shape # sv = Statevector.from_label('0' * n) # feature_map = ZZFeatureMap(feature_dimension=len(feature_cols), reps=2, entanglement="linear") feature_map = ZZFeatureMap(feature_dimension=4, reps=3, entanglement='linear', insert_barriers=True) # ansatz = RealAmplitudes(4, reps=1) ansatz = TwoLocal(num_qubits=4, reps=3, rotation_blocks=['ry','rz'], entanglement_blocks='cx', entanglement='circular', insert_barriers=True) # ansatz = TwoLocal(feature_map.num_qubits, ['ry', 'rz'], 'cz', reps=3) circuit = feature_map.combine(ansatz) circuit.decompose().draw(output='mpl') import numpy as np import matplotlib.pyplot as plt from IPython.display import clear_output # callback function that draws a live plot when the .fit() method is called def callback_graph(weights, obj_func_eval): clear_output(wait=True) objective_func_vals.append(obj_func_eval) plt.title("Objective function value against iteration") plt.xlabel("Iteration") plt.ylabel("Objective function value") plt.plot(range(len(objective_func_vals)), objective_func_vals) plt.show() vqc = VQC(feature_map=feature_map, ansatz=ansatz, optimizer=COBYLA(maxiter=250), quantum_instance=QuantumInstance(BasicAer.get_backend('statevector_simulator'), shots=1024, seed_simulator=seed, seed_transpiler=seed),callback=callback_graph ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit classifier to data vqc.fit(x_train, y_train.to_numpy()) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score classifier vqc.score(x_test, y_test.to_numpy()) print(f"Testing accuracy: {score:0.2f}") import os from qiskit import QuantumCircuit, transpile, Aer from qiskit.providers.aer import QasmSimulator from qiskit.providers.aer.noise import NoiseModel import numpy as np from qiskit import QuantumCircuit, transpile from qiskit.quantum_info import Kraus, SuperOp from qiskit.providers.aer import AerSimulator from qiskit.tools.visualization import plot_histogram from qiskit.test.mock import FakeVigo device_backend = FakeVigo() backend = Aer.get_backend('aer_simulator') counts1 = [] values1 = [] noise_model = None device = QasmSimulator.from_backend(device_backend) coupling_map = device.configuration().coupling_map noise_model = NoiseModel.from_backend(device) basis_gates = noise_model.basis_gates print(noise_model) print() algorithm_globals.random_seed = seed qi = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed, coupling_map=coupling_map, noise_model=noise_model,) vqc = VQC(feature_map=feature_map, ansatz=ansatz, optimizer=COBYLA(maxiter=250), quantum_instance=qi,callback=callback_graph ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit classifier to data vqc.fit(x_train, y_train.to_numpy()) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score classifier vqc.score(x_test, y_test.to_numpy()) print(f"Testing accuracy: {score:0.2f}") from qiskit.utils.mitigation import CompleteMeasFitter counts2 = [] values2 = [] if noise_model is not None: algorithm_globals.random_seed = seed qi2 = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed, coupling_map=coupling_map, noise_model=noise_model, measurement_error_mitigation_cls=CompleteMeasFitter, cals_matrix_refresh_period=30) vqc = VQC(feature_map=feature_map, ansatz=ansatz, optimizer=COBYLA(maxiter=250), quantum_instance=qi2,callback=callback_graph ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit classifier to data vqc.fit(x_train, y_train.to_numpy()) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score classifier vqc.score(x_test, y_test.to_numpy()) print(f"Testing accuracy: {score:0.2f}") from qiskit.algorithms.optimizers import SPSA vqc = VQC(feature_map=feature_map, ansatz=ansatz, optimizer=SPSA(maxiter=100), quantum_instance=QuantumInstance(BasicAer.get_backend('statevector_simulator'), shots=1024, seed_simulator=seed, seed_transpiler=seed),callback=callback_graph ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit classifier to data vqc.fit(x_train, y_train.to_numpy()) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score classifier vqc.score(x_test, y_test.to_numpy()) print(f"Testing accuracy: {score:0.2f}") vqc = VQC(feature_map=feature_map, ansatz=ansatz, optimizer=SPSA(maxiter=250), quantum_instance=qi,callback=callback_graph ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit classifier to data vqc.fit(x_train, y_train.to_numpy()) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score classifier vqc.score(x_test, y_test.to_numpy()) print(f"Testing accuracy: {score:0.2f}") vqc = VQC(feature_map=feature_map, ansatz=ansatz, optimizer=SPSA(maxiter=250), quantum_instance=qi2,callback=callback_graph ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit classifier to data vqc.fit(x_train, y_train.to_numpy()) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score classifier vqc.score(x_test, y_test.to_numpy()) print(f"Testing accuracy: {score:0.2f}")
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) es_problem = driver.run() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver numpy_solver = NumPyMinimumEigensolver() from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD ansatz = UCCSD( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, initial_state=HartreeFock( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, ), ) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = [0.0] * ansatz.num_parameters from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.circuit.library import TwoLocal tl_circuit = TwoLocal( rotation_blocks=["h", "rx"], entanglement_blocks="cz", entanglement="full", reps=2, parameter_prefix="y", ) another_solver = VQE(Estimator(), tl_circuit, SLSQP()) from qiskit_nature.second_q.algorithms import GroundStateEigensolver calc = GroundStateEigensolver(mapper, vqe_solver) res = calc.solve(es_problem) print(res) calc = GroundStateEigensolver(mapper, numpy_solver) res = calc.solve(es_problem) print(res) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.mappers import DirectMapper from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis([2, 2, 2, 2]) vib_problem = driver.run(basis=basis) vib_problem.hamiltonian.truncation_order = 2 mapper = DirectMapper() solver_without_filter = NumPyMinimumEigensolver() solver_with_filter = NumPyMinimumEigensolver( filter_criterion=vib_problem.get_default_filter_criterion() ) gsc_wo = GroundStateEigensolver(mapper, solver_without_filter) result_wo = gsc_wo.solve(vib_problem) gsc_w = GroundStateEigensolver(mapper, solver_with_filter) result_w = gsc_w.solve(vib_problem) print(result_wo) print("\n\n") print(result_w) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright