repo
stringclasses 885
values | file
stringclasses 741
values | content
stringlengths 4
215k
|
---|---|---|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
from qiskit import QuantumCircuit
from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem
from qiskit_aer.primitives import Sampler
from qiskit_finance.circuit.library import NormalDistribution
# can be used in case a principal component analysis has been done to derive the uncertainty model, ignored in this example.
A = np.eye(2)
b = np.zeros(2)
# specify the number of qubits that are used to represent the different dimenions of the uncertainty model
num_qubits = [2, 2]
# specify the lower and upper bounds for the different dimension
low = [0, 0]
high = [0.12, 0.24]
mu = [0.12, 0.24]
sigma = 0.01 * np.eye(2)
# construct corresponding distribution
bounds = list(zip(low, high))
u = NormalDistribution(num_qubits, mu, sigma, bounds)
# plot contour of probability density function
x = np.linspace(low[0], high[0], 2 ** num_qubits[0])
y = np.linspace(low[1], high[1], 2 ** num_qubits[1])
z = u.probabilities.reshape(2 ** num_qubits[0], 2 ** num_qubits[1])
plt.contourf(x, y, z)
plt.xticks(x, size=15)
plt.yticks(y, size=15)
plt.grid()
plt.xlabel("$r_1$ (%)", size=15)
plt.ylabel("$r_2$ (%)", size=15)
plt.colorbar()
plt.show()
# specify cash flow
cf = [1.0, 2.0]
periods = range(1, len(cf) + 1)
# plot cash flow
plt.bar(periods, cf)
plt.xticks(periods, size=15)
plt.yticks(size=15)
plt.grid()
plt.xlabel("periods", size=15)
plt.ylabel("cashflow ($)", size=15)
plt.show()
# estimate real value
cnt = 0
exact_value = 0.0
for x1 in np.linspace(low[0], high[0], pow(2, num_qubits[0])):
for x2 in np.linspace(low[1], high[1], pow(2, num_qubits[1])):
prob = u.probabilities[cnt]
for t in range(len(cf)):
# evaluate linear approximation of real value w.r.t. interest rates
exact_value += prob * (
cf[t] / pow(1 + b[t], t + 1)
- (t + 1) * cf[t] * np.dot(A[:, t], np.asarray([x1, x2])) / pow(1 + b[t], t + 2)
)
cnt += 1
print("Exact value: \t%.4f" % exact_value)
# specify approximation factor
c_approx = 0.125
# create fixed income pricing application
from qiskit_finance.applications.estimation import FixedIncomePricing
fixed_income = FixedIncomePricing(
num_qubits=num_qubits,
pca_matrix=A,
initial_interests=b,
cash_flow=cf,
rescaling_factor=c_approx,
bounds=bounds,
uncertainty_model=u,
)
fixed_income._objective.draw()
fixed_income_circ = QuantumCircuit(fixed_income._objective.num_qubits)
# load probability distribution
fixed_income_circ.append(u, range(u.num_qubits))
# apply function
fixed_income_circ.append(fixed_income._objective, range(fixed_income._objective.num_qubits))
fixed_income_circ.draw()
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
# construct amplitude estimation
problem = fixed_income.to_estimation_problem()
ae = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result = ae.estimate(problem)
conf_int = np.array(result.confidence_interval_processed)
print("Exact value: \t%.4f" % exact_value)
print("Estimated value: \t%.4f" % (fixed_income.interpret(result)))
print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int))
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import qiskit.qasm3
program = """
OPENQASM 3.0;
include "stdgates.inc";
input float[64] a;
qubit[3] q;
bit[2] mid;
bit[3] out;
let aliased = q[0:1];
gate my_gate(a) c, t {
gphase(a / 2);
ry(a) c;
cx c, t;
}
gate my_phase(a) c {
ctrl @ inv @ gphase(a) c;
}
my_gate(a * 2) aliased[0], q[{1, 2}][0];
measure q[0] -> mid[0];
measure q[1] -> mid[1];
while (mid == "00") {
reset q[0];
reset q[1];
my_gate(a) q[0], q[1];
my_phase(a - pi/2) q[1];
mid[0] = measure q[0];
mid[1] = measure q[1];
}
if (mid[0]) {
let inner_alias = q[{0, 1}];
reset inner_alias;
}
out = measure q;
"""
circuit = qiskit.qasm3.loads(program)
circuit.draw("mpl")
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_nature.drivers.second_quantization import GaussianForcesDriver
from qiskit_nature.problems.second_quantization import VibrationalStructureProblem
from qiskit_nature.settings import settings
settings.dict_aux_operators = True
driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log")
problem = VibrationalStructureProblem(driver, num_modals=[2, 2, 3, 4], truncation_order=2)
# Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so:
second_q_ops = problem.second_q_ops()
hamiltonian = second_q_ops["VibrationalEnergy"]
print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."]))
from qiskit_nature.second_q.drivers import GaussianForcesDriver
from qiskit_nature.second_q.problems import HarmonicBasis
driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log")
basis = HarmonicBasis(num_modals=[2, 2, 3, 4])
# this is now done explicitly and already requires the basis
problem = driver.run(basis=basis)
problem.hamiltonian.truncation_order = 2
hamiltonian = problem.hamiltonian.second_q_op()
print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."]))
from qiskit_nature.drivers.second_quantization import GaussianLogResult
from qiskit_nature.properties.second_quantization.vibrational.bases import HarmonicBasis
from qiskit_nature.settings import settings
settings.dict_aux_operators = True
log_result = GaussianLogResult("aux_files/CO2_freq_B3LYP_631g.log")
hamiltonian = log_result.get_vibrational_energy()
print(hamiltonian)
hamiltonian.basis = HarmonicBasis([2, 2, 3, 4])
op = hamiltonian.second_q_ops()["VibrationalEnergy"]
print("\n".join(str(op).splitlines()[:10] + ["..."]))
from qiskit_nature.second_q.drivers import GaussianLogResult
from qiskit_nature.second_q.formats import watson_to_problem
from qiskit_nature.second_q.problems import HarmonicBasis
log_result = GaussianLogResult("aux_files/CO2_freq_B3LYP_631g.log")
watson = log_result.get_watson_hamiltonian()
print(watson)
basis = HarmonicBasis(num_modals=[2, 2, 3, 4])
problem = watson_to_problem(watson, basis)
hamiltonian = problem.hamiltonian.second_q_op()
print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."]))
from qiskit_nature.drivers.second_quantization import GaussianForcesDriver
from qiskit_nature.problems.second_quantization import VibrationalStructureProblem
driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log")
problem = VibrationalStructureProblem(driver, num_modals=[2, 2, 3, 4], truncation_order=2)
# we trigger driver.run() implicitly like so:
second_q_ops = problem.second_q_ops()
hamiltonian_op = second_q_ops.pop("VibrationalEnergy")
aux_ops = second_q_ops
from qiskit_nature.second_q.drivers import GaussianForcesDriver
from qiskit_nature.second_q.problems import HarmonicBasis
driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log")
basis = HarmonicBasis(num_modals=[2, 2, 3, 4])
problem = driver.run(basis=basis)
problem.hamiltonian.truncation_order = 2
hamiltonian_op, aux_ops = problem.second_q_ops()
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
top = QuantumCircuit(1)
top.x(0);
bottom = QuantumCircuit(2)
bottom.cry(0.2, 0, 1);
tensored = bottom.tensor(top)
tensored.draw('mpl')
|
https://github.com/Qiskit/feedback
|
Qiskit
|
# pip version of CPLEX is not available for Apple silicon
%pip install cplex
import numpy as np
from qiskit_optimization import QuadraticProgram
from qiskit_optimization.algorithms import GurobiOptimizer
prob = QuadraticProgram()
n = 2001
prob.binary_var_list(n)
prob.minimize(linear=np.ones(n))
print(prob.prettyprint())
GurobiOptimizer().solve(prob)
from qiskit_optimization.applications import Knapsack
prob = Knapsack(
values = [1, 2, 3, 4],
weights= [5, 6, 7, 8],
max_weight=20
).to_quadratic_program()
print(prob.prettyprint())
from qiskit_optimization.algorithms import ScipyMilpOptimizer
milp = ScipyMilpOptimizer()
result = milp.solve(prob)
print(result)
from qiskit_optimization.applications import Maxcut
import networkx as nx
graph = nx.random_regular_graph(d=3, n=8, seed=123)
maxcut = Maxcut(graph)
pos = nx.spring_layout(graph, seed=123)
maxcut.draw(pos=pos)
prob = maxcut.to_quadratic_program()
print(prob.prettyprint())
result = milp.solve(prob)
def quadratic_to_linear(problem: QuadraticProgram) -> QuadraticProgram:
new_prob = QuadraticProgram(problem.name)
for x in problem.variables:
new_prob._add_variable(x.lowerbound, x.upperbound, x.vartype, x.name)
obj = problem.objective
lin = obj.linear.to_dict(use_name=True)
quad = obj.quadratic.to_dict(use_name=True)
prod = {}
for (x, y), coeff in quad.items():
name = f"{x}_AND_{y}"
prod[x, y] = name
new_prob.continuous_var(0, 1, name)
lin[name] = coeff
for (x, y), name in prod.items():
new_prob.linear_constraint({name: 1, x: -1}, "<=", 0)
new_prob.linear_constraint({name: 1, y: -1}, "<=", 0)
new_prob.linear_constraint({name: 1, x: -1, y: -1}, ">=", -1)
if obj.sense == obj.sense.MAXIMIZE:
new_prob.maximize(obj.constant, lin)
else:
new_prob.minimize(obj.constant, lin)
return new_prob
new_prob = quadratic_to_linear(prob)
print(new_prob.prettyprint())
result = milp.solve(new_prob)
print(result)
maxcut.draw(result.x[:prob.get_num_vars()], pos)
result = GurobiOptimizer().solve(prob)
print(result)
maxcut.draw(result, pos)
|
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
|
shesha-raghunathan
|
from qiskit_aqua import register_pluggable
from evolutionfidelity.evolutionfidelity import EvolutionFidelity
try:
register_pluggable(EvolutionFidelity)
except Exception as e:
print(e)
from qiskit import Aer
import numpy as np
from qiskit_aqua.operator import Operator
from evolutionfidelity.evolutionfidelity import EvolutionFidelity
from qiskit_aqua.components.initial_states import Zero
from qiskit_aqua import QuantumInstance
num_qubits = 2
temp = np.random.random((2 ** num_qubits, 2 ** num_qubits))
qubit_op = Operator(matrix=temp + temp.T)
initial_state = Zero(qubit_op.num_qubits)
algo = EvolutionFidelity(qubit_op, initial_state, expansion_order=1)
backend = Aer.get_backend('statevector_simulator')
quantum_instance = QuantumInstance(backend=backend)
result = algo.run(quantum_instance)
print(result['score'])
from qiskit_aqua.input import EnergyInput
from qiskit_aqua import run_algorithm
params = {
'problem': {
'name': 'eoh'
},
'algorithm': {
'name': 'EvolutionFidelity',
'expansion_order': 1
},
'initial_state': {
'name': 'ZERO'
}
}
algo_input = EnergyInput(qubit_op)
result = run_algorithm(params, algo_input, backend=backend)
print(result['score'])
|
https://github.com/ElePT/qiskit-algorithms-test
|
ElePT
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2022, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Time evolution problem class."""
from __future__ import annotations
from collections.abc import Mapping
from qiskit import QuantumCircuit
from qiskit.circuit import Parameter, ParameterExpression
from qiskit.opflow import PauliSumOp
from ..list_or_dict import ListOrDict
from ...quantum_info import Statevector
from ...quantum_info.operators.base_operator import BaseOperator
class TimeEvolutionProblem:
"""Time evolution problem class.
This class is the input to time evolution algorithms and must contain information on the total
evolution time, a quantum state to be evolved and under which Hamiltonian the state is evolved.
Attributes:
hamiltonian (BaseOperator | PauliSumOp): The Hamiltonian under which to evolve the system.
initial_state (QuantumCircuit | Statevector | None): The quantum state to be evolved for
methods like Trotterization. For variational time evolutions, where the evolution
happens in an ansatz, this argument is not required.
aux_operators (ListOrDict[BaseOperator | PauliSumOp] | None): Optional list of auxiliary
operators to be evaluated with the evolved ``initial_state`` and their expectation
values returned.
truncation_threshold (float): Defines a threshold under which values can be assumed to be 0.
Used when ``aux_operators`` is provided.
t_param (Parameter | None): Time parameter in case of a time-dependent Hamiltonian. This
free parameter must be within the ``hamiltonian``.
param_value_map (dict[Parameter, complex] | None): Maps free parameters in the problem to
values. Depending on the algorithm, it might refer to e.g. a Hamiltonian or an initial
state.
"""
def __init__(
self,
hamiltonian: BaseOperator | PauliSumOp,
time: float,
initial_state: QuantumCircuit | Statevector | None = None,
aux_operators: ListOrDict[BaseOperator | PauliSumOp] | None = None,
truncation_threshold: float = 1e-12,
t_param: Parameter | None = None,
param_value_map: Mapping[Parameter, complex] | None = None,
):
"""
Args:
hamiltonian: The Hamiltonian under which to evolve the system.
time: Total time of evolution.
initial_state: The quantum state to be evolved for methods like Trotterization.
For variational time evolutions, where the evolution happens in an ansatz,
this argument is not required.
aux_operators: Optional list of auxiliary operators to be evaluated with the
evolved ``initial_state`` and their expectation values returned.
truncation_threshold: Defines a threshold under which values can be assumed to be 0.
Used when ``aux_operators`` is provided.
t_param: Time parameter in case of a time-dependent Hamiltonian. This
free parameter must be within the ``hamiltonian``.
param_value_map: Maps free parameters in the problem to values. Depending on the
algorithm, it might refer to e.g. a Hamiltonian or an initial state.
Raises:
ValueError: If non-positive time of evolution is provided.
"""
self.t_param = t_param
self.param_value_map = param_value_map
self.hamiltonian = hamiltonian
self.time = time
if isinstance(initial_state, Statevector):
circuit = QuantumCircuit(initial_state.num_qubits)
circuit.prepare_state(initial_state.data)
initial_state = circuit
self.initial_state: QuantumCircuit | None = initial_state
self.aux_operators = aux_operators
self.truncation_threshold = truncation_threshold
@property
def time(self) -> float:
"""Returns time."""
return self._time
@time.setter
def time(self, time: float) -> None:
"""
Sets time and validates it.
"""
self._time = time
def validate_params(self) -> None:
"""
Checks if all parameters present in the Hamiltonian are also present in the dictionary
that maps them to values.
Raises:
ValueError: If Hamiltonian parameters cannot be bound with data provided.
"""
if isinstance(self.hamiltonian, PauliSumOp) and isinstance(
self.hamiltonian.coeff, ParameterExpression
):
raise ValueError("A global parametrized coefficient for PauliSumOp is not allowed.")
|
https://github.com/yh08037/quantum-neural-network
|
yh08037
|
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch.autograd import Function
from torchvision import datasets, transforms
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
import qiskit
from qiskit.visualization import *
class QuantumCircuit:
"""
This class provides a simple interface for interaction
with the quantum circuit
"""
def __init__(self, n_qubits, backend, shots):
# --- Circuit definition ---
self._circuit = qiskit.QuantumCircuit(n_qubits)
all_qubits = [i for i in range(n_qubits)]
self.theta = qiskit.circuit.Parameter('theta')
self._circuit.h(all_qubits)
self._circuit.barrier()
self._circuit.ry(self.theta, all_qubits)
self._circuit.measure_all()
# ---------------------------
self.backend = backend
self.shots = shots
def run(self, thetas):
job = qiskit.execute(self._circuit,
self.backend,
shots = self.shots,
parameter_binds = [{self.theta: theta} for theta in thetas])
result = job.result().get_counts(self._circuit)
counts = np.array(list(result.values()))
states = np.array(list(result.keys())).astype(float)
# Compute probabilities for each state
probabilities = counts / self.shots
# Get state expectation
expectation = np.sum(states * probabilities)
return np.array([expectation])
simulator = qiskit.Aer.get_backend('qasm_simulator')
circuit = QuantumCircuit(1, simulator, 100)
print('Expected value for rotation pi {}'.format(circuit.run([np.pi])[0]))
circuit._circuit.draw('mpl')
class HybridFunction(Function):
""" Hybrid quantum - classical function definition """
@staticmethod
def forward(ctx, inputs, quantum_circuit, shift):
""" Forward pass computation """
ctx.shift = shift
ctx.quantum_circuit = quantum_circuit
expectation_z = []
for input in inputs:
expectation_z.append(ctx.quantum_circuit.run(input.tolist()))
result = torch.tensor(expectation_z)
ctx.save_for_backward(inputs, result)
return result
@staticmethod
def backward(ctx, grad_output):
""" Backward pass computation """
input, expectation_z = ctx.saved_tensors
input_list = np.array(input.tolist())
shift_right = input_list + np.ones(input_list.shape) * ctx.shift
shift_left = input_list - np.ones(input_list.shape) * ctx.shift
gradients = []
for i in range(len(input_list)):
expectation_right = ctx.quantum_circuit.run(shift_right[i])
expectation_left = ctx.quantum_circuit.run(shift_left[i])
gradient = torch.tensor([expectation_right]) - torch.tensor([expectation_left])
gradients.append(gradient)
gradients = np.array([gradients]).T
return torch.tensor([gradients]).float() * grad_output.float(), None, None
class Hybrid(nn.Module):
""" Hybrid quantum - classical layer definition """
def __init__(self, backend, shots, shift):
super(Hybrid, self).__init__()
self.quantum_circuit = QuantumCircuit(1, backend, shots)
self.shift = shift
def forward(self, input):
return HybridFunction.apply(input, self.quantum_circuit, self.shift)
# Concentrating on the first 100 samples
n_samples = 128
batch_size = 32
X_train = datasets.MNIST(root='./data', train=True, download=True,
transform=transforms.Compose([transforms.ToTensor()]))
X_train.data = X_train.data[:n_samples]
X_train.targets = X_train.targets[:n_samples]
train_loader = torch.utils.data.DataLoader(X_train, batch_size=batch_size, shuffle=True)
# n_samples_show = 6
# data_iter = iter(train_loader)
# fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3))
# while n_samples_show > 0:
# images, targets = data_iter.__next__()
# axes[n_samples_show - 1].imshow(images[0].numpy().squeeze(), cmap='gray')
# axes[n_samples_show - 1].set_xticks([])
# axes[n_samples_show - 1].set_yticks([])
# axes[n_samples_show - 1].set_title("Labeled: {}".format(targets.item()))
# n_samples_show -= 1
n_samples = 256
X_test = datasets.MNIST(root='./data', train=False, download=True,
transform=transforms.Compose([transforms.ToTensor()]))
# idx = np.append(np.where(X_test.targets == 0)[0][:n_samples],
# np.where(X_test.targets == 1)[0][:n_samples])
X_test.data = X_test.data[:n_samples]
X_test.targets = X_test.targets[:n_samples]
test_loader = torch.utils.data.DataLoader(X_test, batch_size=batch_size, shuffle=True)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, kernel_size=5)
self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
self.dropout = nn.Dropout2d()
self.fc1 = nn.Linear(256, 64)
self.fc2 = nn.Linear(64, 10)
# self.hybrid = Hybrid(qiskit.Aer.get_backend('qasm_simulator'), 100, np.pi / 2)
self.hybrid = [Hybrid(qiskit.Aer.get_backend('qasm_simulator'), 100, np.pi / 2) for i in range(10)]
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = self.dropout(x)
# x = x.view(-1, 256)
x = torch.flatten(x, start_dim=1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
x = torch.chunk(x, 10, dim=1)
# x = self.hybrid(x)
x = tuple([hy(x_) for hy, x_ in zip(self.hybrid, x)])
return torch.cat(x, -1)
model = Net()
summary(model, (1, 28, 28), device='cpu')
optimizer = optim.Adam(model.parameters(), lr=0.001)
# loss_func = nn.NLLLoss()
loss_func = nn.CrossEntropyLoss()
epochs = 20
loss_list = []
model.train()
for epoch in range(epochs):
total_loss = []
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
# Forward pass
output = model(data)
# print("data ", data.size())
# print("output", output.size())
# print("target", target.size())
# Calculating loss
loss = loss_func(output, target)
# Backward pass
loss.backward()
# Optimize the weights
optimizer.step()
total_loss.append(loss.item())
loss_list.append(sum(total_loss)/len(total_loss))
print('Training [{:.0f}%]\tLoss: {:.4f}'.format(
100. * (epoch + 1) / epochs, loss_list[-1]))
plt.plot(loss_list)
plt.title('Hybrid NN Training Convergence')
plt.xlabel('Training Iterations')
plt.ylabel('Neg Log Likelihood Loss')
model.eval()
with torch.no_grad():
correct = 0
for batch_idx, (data, target) in enumerate(test_loader):
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
loss = loss_func(output, target)
total_loss.append(loss.item())
print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format(
sum(total_loss) / len(total_loss),
correct / len(test_loader) * 100 / batch_size)
)
# n_samples_show = 6
# count = 0
# fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3))
# model.eval()
# with torch.no_grad():
# for batch_idx, (data, target) in enumerate(test_loader):
# if count == n_samples_show:
# break
# output = model(data)
# pred = output.argmax(dim=1, keepdim=True)
# axes[count].imshow(data[0].numpy().squeeze(), cmap='gray')
# axes[count].set_xticks([])
# axes[count].set_yticks([])
# axes[count].set_title('Predicted {}'.format(pred.item()))
# count += 1
|
https://github.com/Benjreggio/psfam
|
Benjreggio
|
'''
runtests.py
@author: Andrew Lytle
Reorganized by Ben Reggio
Unit tests for psfam
'''
from psfam.pauli_organizer import PauliOrganizer
import functools,itertools
from scipy.stats import unitary_group
import scipy.sparse as sp
import qiskit
from qiskit.quantum_info.states import Statevector
from qiskit.circuit.random import random_circuit
import numpy as np
from numpy.random import normal
import operator
op_I = sp.eye(2)
op_Z = sp.dia_matrix([[1,0],[0,-1]])
op_X = sp.dia_matrix([[0,1],[1,0]])
op_Y = -1j * op_Z @ op_X
pauli_ops = { "I" : op_I, "Z" : op_Z, "X": op_X, "Y" : op_Y }
def sp_kron_dok(mat_A, mat_B):
"""Kronecker (tensor) product of two sparse matrices.
Args:
mat_A, mat_B: 2d numpy arrays
Returns:
Sparse matrix in "dictionary of keys" format (to eliminate zeros)
"""
return sp.kron(mat_A, mat_B, format = "dok")
def contribution_to_EV(m, fam, counts, nshots):
cfs = fam.get_coefficients()
#cfs = [_.real for _ in cfs]
#print(f"{np.sum(np.array(cfs)).real = }")
measurement = 0
for i in range(2**m):
bi = bin(i)[2:]
while(len(bi)<m):
bi = '0' + bi
if(bi in counts):
measurement += counts[bi]*cfs[i]/nshots
return measurement
def to_pauli_vec(mat):
"""Pauli string decomposition of a matrix.
Args:
2d numpy array, mat
Returns:
Dictionary pauli_vec, e.g. {'XX': 0.5, 'XY': 0.5}
"""
pauli_vec = {} # the dictionary we are saving
mat_vec = np.array(mat).ravel()
num_qubits = int(np.log2(np.sqrt(mat_vec.size)))
for pauli_string in itertools.product(pauli_ops.keys(), repeat = num_qubits):
# construct this pauli string as a matrix
ops = [ pauli_ops[tag] for tag in pauli_string ]
op = functools.reduce(sp_kron_dok, ops)
# compute an inner product, same as tr(A @ B) but faster
op_vec = op.transpose().reshape((1, 4**num_qubits))
coefficient = (op_vec * mat_vec).sum() / 2**num_qubits
#if coefficient != 0:
pauli_vec["".join(pauli_string)] = coefficient
return pauli_vec
def statedict_to_arr(statedict):
"Convert state dictionary to numpy array."
keys = list(statedict.keys())
m = len(keys[0])
#print(m)
result = np.zeros(2**m, dtype='complex')
bitstrings = itertools.product('01',repeat=m)
for i, bitstring in enumerate(bitstrings):
key = functools.reduce(operator.add, bitstring)
if key in keys:
result[i] = statedict[key]
else:
result[i] = 0.0
return result
def direct_EV_eval(Hmat, state_circuit):
psi = Statevector(state_circuit)
state = statedict_to_arr(psi.to_dict()) # array.
direct_eval = np.vdot(state,np.dot(Hmat,state))
return direct_eval
def random_evals(N):
"List of Gaussian distributed numbers [(0,1),...]."
vals = []
for i in range(N):
vals.append(normal())
return vals
def dot_all(Ms):
"Dot product of [M1, M2, ...]"
res = np.identity(Ms[0].shape[0])
for M in Ms[::-1]:
res = np.dot(M, res)
return res
def hc(M):
"Hermitian conjugate of M."
return M.conj().T
def random_H(N):
"Random NxN Hermitian matrix."
evs = random_evals(N)
D = np.diag(evs)
U = unitary_group.rvs(N)
H = dot_all([U, D, hc(U)])
return H
def families_EV_eval(m, Hmat, state_circuit, backend, nshots):
decomp = to_pauli_vec(Hmat)
PO = PauliOrganizer(m)
PO.input_pauli_decomps(decomp)
PO.calc_coefficients()
fams = PO.f
total = 0
for fam in fams:
_circuit = state_circuit.copy()
fam.apply_to_circuit(_circuit)
job = backend.run(qiskit.transpile(_circuit, backend), shots=nshots)
result = job.result()
counts = result.get_counts(_circuit)
#logging.info(f"{counts = }")
contribution = contribution_to_EV(m, fam, counts, nshots).real
#logging.info(f"{contribution = }")
total += contribution
return total
def random_unit_test(m):
nshots = 1 # statevector_simulator backend.
N = 2**m
Hmat = random_H(N)
nominal_depth = 4
rc = random_circuit(m, nominal_depth, measure=False)
direct_eval = direct_EV_eval(Hmat, rc)
backend_sim = qiskit.Aer.get_backend('statevector_simulator')
total = families_EV_eval(m, Hmat, rc, backend_sim, nshots)
print(f"{total = }")
print(f"{direct_eval = }")
return np.isclose(total, direct_eval.real)
results = []
for m in range(1,6): # Slows down for m >~ 5.
for test in range(1, 101):
print(f"{m = } , {test = }")
passed = random_unit_test(m)
results.append(passed)
if passed:
continue
else:
print(f"Test failed with {m = }")
break
if not passed:
break
print(f"Performed {len(results)} tests, "
f"all tests passed = {np.array(results).all()==True}")
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_state_city
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
# plot using a Statevector
state = Statevector(qc)
plot_state_city(state)
|
https://github.com/alejomonbar/Quantum-Supply-Chain-Manager
|
alejomonbar
|
%load_ext autoreload
%autoreload 2
# pip install pennylane
import pennylane as qml
from pennylane import numpy as np
from pennylane.optimize import NesterovMomentumOptimizer
import tensorflow as tf
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from IPython.display import clear_output
clear_output(wait=False)
import os
import tensorflow as tf
data_train = pd.read_csv("dataset/fair_train.csv")
X_train,y_train = data_train[data_train.columns[:16]].values, data_train[data_train.columns[16]].values
data_test = pd.read_csv("dataset/classic_test.csv")
X_test,y_test = data_test[data_test.columns[:16]].values, data_test[data_test.columns[16]].values
(X_train.shape, y_train.shape),(X_test.shape, y_test.shape)
dev = qml.device("default.qubit", wires=4)
def block(weights, wires):
qml.CNOT(wires=[wires[0],wires[1]])
qml.RY(weights[0], wires=wires[0])
qml.RY(weights[1], wires=wires[1])
n_wires = 4
n_block_wires = 2
n_params_block = 2
n_blocks = qml.TTN.get_n_blocks(range(n_wires),n_block_wires)
n_blocks
@qml.qnode(dev)
def circuit(weights, x):
qml.AmplitudeEmbedding(x, wires=[0,1,2,3],normalize=True,pad_with=True)
for w in weights:
qml.TTN(range(n_wires),n_block_wires,block, n_params_block, w)
#print(w)
#print(x)
return qml.expval(qml.PauliZ(3))
def variational_classifier(weights, bias, x):
return circuit(weights, x) + bias
def square_loss(labels, predictions):
loss = 0
for l, p in zip(labels, predictions):
loss = loss + (l - p) ** 2
loss = loss / len(labels)
return loss
def accuracy(labels, predictions):
loss = 0
for l, p in zip(labels, predictions):
if abs(l - p) < 1e-5:
loss = loss + 1
loss = loss / len(labels)
return loss
def cost(weights, bias, X, Y):
#print(1)
predictions = [variational_classifier(weights, bias, x) for x in X]
return square_loss(Y, predictions)
np.random.seed(0)
num_layers = 2
weights_init = 2*np.pi * np.random.randn(num_layers,n_blocks, n_params_block, requires_grad=True)
bias_init = np.array(0.0, requires_grad=True)
print(weights_init, bias_init)
print(qml.draw(circuit,expansion_strategy='device',wire_order=[0,1,2,3])(weights_init,np.asarray(X_train[0])))
for i in weights_init:
print(i[0])
y_train = np.where(y_train < 1, -1, y_train)
y_test = np.where(y_test < 1, -1, y_test)
from sklearn.utils import shuffle
X,y = shuffle(X_train, y_train, random_state=0)
from sklearn.model_selection import train_test_split
opt = NesterovMomentumOptimizer(0.4)
batch_size = 32
num_data = len(y_train)
num_train = 0.9
# train the variational classifier
weights = weights_init
bias = bias_init
print()
cost_g = []
acc_train = []
acc_test = []
plt.show()
for it in range(50):
X_train_70, X_test_30, y_train_70, y_test_30 =train_test_split(np.asarray(X), np.asarray(y), train_size=num_train, test_size=1.0-num_train, shuffle=True)
# Update the weights by one optimizer step
batch_index = np.random.randint(0, len(X_train_70), (batch_size,))
feats_train_batch = X_train_70[batch_index]
Y_train_batch = y_train_70[batch_index]
weights, bias, _, _ = opt.step(cost, weights, bias, feats_train_batch, Y_train_batch)
# Compute predictions on train and validation set
predictions_train = [np.sign(variational_classifier(weights, bias, f)) for f in X_train_70]
predictions_val = [np.sign(variational_classifier(weights, bias, f)) for f in X_test_30]
# Compute accuracy on train and validation set
acc_tra = accuracy(y_train_70, predictions_train)
acc_val = accuracy(y_test_30, predictions_val)
cost_train = cost(weights, bias,X_train, y_train)
cost_g.append(cost_train)
acc_train.append(acc_tra)
acc_test.append(acc_val)
clear_output(wait=True)
plt.plot(cost_g,label='cost')
plt.plot(acc_train,label='acc_train')
plt.plot(acc_test,label='acc_test')
plt.legend(['cost','acc_train','acc_test'])
plt.show()
print(
"Iter: {:5d} | Cost: {:0.7f} | Acc train: {:0.7f} | Acc validation: {:0.7f} "
"".format(it + 1, cost_train, acc_tra, acc_val)
)
print(weights)
x_test = []
for x in X_test.tolist():
x[0]+=1
x_test.append( x/ np.linalg.norm(x))
x_test[0]
y_test_pred = [np.sign(variational_classifier(weights, bias, f)) for f in x_test]
from sklearn.metrics import confusion_matrix, roc_curve, auc
from sklearn.preprocessing import StandardScaler
# demonstration of calculating metrics for a neural network model using sklearn
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics import roc_auc_score
accuracy = accuracy_score(y_test, y_test_pred)
print('Accuracy: %f' % accuracy)
# precision tp / (tp + fp)
precision = precision_score(y_test, y_test_pred)
print('Precision: %f' % precision)
# recall: tp / (tp + fn)
recall = recall_score(y_test, y_test_pred)
print('Recall: %f' % recall)
# f1: 2 tp / (2 tp + fp + fn)
f1 = f1_score(y_test, y_test_pred)
print('F1 score: %f' % f1)
# kappa
kappa = cohen_kappa_score(y_test, y_test_pred)
print('Cohens kappa: %f' % kappa)
# ROC AUC
auc = roc_auc_score(y_test, y_test_pred)
print('ROC AUC: %f' % auc)
# confusion matrix
test_matrix = confusion_matrix(y_test, y_test_pred)
print(test_matrix)
ax = sns.heatmap(test_matrix, annot=True, cmap='Blues', fmt='g')
ax.set_title('Seaborn Confusion Matrix with labels\n\n');
ax.set_xlabel('\nPredicted Values')
ax.set_ylabel('Actual Values ');
ax.xaxis.set_ticklabels(['0','1'])
ax.yaxis.set_ticklabels(['0','1'])
## Display the visualization of the Confusion Matrix.
plt.show()
y_pred_1 = [int(i) for i in y_pred ]
y_pred_1 = ["{}\n".format(i) for i in y_pred_1]
with open(r'ttn_2_layers.csv', 'w') as fp:
fp.writelines(y_pred_1)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
from docplex.mp.model import Model
from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver
from qiskit.algorithms.optimizers import COBYLA
from qiskit.primitives import Sampler
from qiskit_optimization.algorithms import CobylaOptimizer, MinimumEigenOptimizer
from qiskit_optimization.algorithms.admm_optimizer import ADMMParameters, ADMMOptimizer
from qiskit_optimization.translators import from_docplex_mp
# If CPLEX is installed, you can uncomment this line to import the CplexOptimizer.
# CPLEX can be used in this tutorial to solve the convex continuous problem,
# but also as a reference to solve the QUBO, or even the full problem.
#
# from qiskit.optimization.algorithms import CplexOptimizer
# define COBYLA optimizer to handle convex continuous problems.
cobyla = CobylaOptimizer()
# define QAOA via the minimum eigen optimizer
qaoa = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA()))
# exact QUBO solver as classical benchmark
exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) # to solve QUBOs
# in case CPLEX is installed it can also be used for the convex problems, the QUBO,
# or as a benchmark for the full problem.
#
# cplex = CplexOptimizer()
# construct model using docplex
mdl = Model("ex6")
v = mdl.binary_var(name="v")
w = mdl.binary_var(name="w")
t = mdl.binary_var(name="t")
u = mdl.continuous_var(name="u")
mdl.minimize(v + w + t + 5 * (u - 2) ** 2)
mdl.add_constraint(v + 2 * w + t + u <= 3, "cons1")
mdl.add_constraint(v + w + t >= 1, "cons2")
mdl.add_constraint(v + w == 1, "cons3")
# load quadratic program from docplex model
qp = from_docplex_mp(mdl)
print(qp.prettyprint())
admm_params = ADMMParameters(
rho_initial=1001, beta=1000, factor_c=900, maxiter=100, three_block=True, tol=1.0e-6
)
# define QUBO optimizer
qubo_optimizer = exact
# qubo_optimizer = cplex # uncomment to use CPLEX instead
# define classical optimizer
convex_optimizer = cobyla
# convex_optimizer = cplex # uncomment to use CPLEX instead
# initialize ADMM with classical QUBO and convex optimizer
admm = ADMMOptimizer(
params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer
)
# run ADMM to solve problem
result = admm.solve(qp)
print(result.prettyprint())
plt.plot(result.state.residuals)
plt.xlabel("Iterations")
plt.ylabel("Residuals")
plt.show()
# define QUBO optimizer
qubo_optimizer = qaoa
# define classical optimizer
convex_optimizer = cobyla
# convex_optimizer = cplex # uncomment to use CPLEX instead
# initialize ADMM with quantum QUBO optimizer and classical convex optimizer
admm_q = ADMMOptimizer(
params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer
)
# run ADMM to solve problem
result_q = admm_q.solve(qp)
print(result.prettyprint())
plt.clf()
plt.plot(result_q.state.residuals)
plt.xlabel("Iterations")
plt.ylabel("Residuals")
plt.show()
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/abhik-99/Qiskit-Summer-School
|
abhik-99
|
# import SymPy and define symbols
import sympy as sp
sp.init_printing(use_unicode=True)
wr = sp.Symbol('\omega_r') # resonator frequency
wq = sp.Symbol('\omega_q') # qubit frequency
g = sp.Symbol('g', real=True) # vacuum Rabi coupling
Delta = sp.Symbol('Delta', real=True) # wr - wq; defined later
# import operator relations and define them
from sympy.physics.quantum.boson import BosonOp
a = BosonOp('a') # resonator photon annihilation operator
from sympy.physics.quantum import pauli, Dagger, Commutator
from sympy.physics.quantum.operatorordering import normal_ordered_form
# Pauli matrices
sx = pauli.SigmaX()
sy = pauli.SigmaY()
sz = pauli.SigmaZ()
# qubit raising and lowering operators
splus = pauli.SigmaPlus()
sminus = pauli.SigmaMinus()
# define J-C Hamiltonian in terms of diagonal and non-block diagonal terms
H0 = wr*Dagger(a)*a - (1/2)*wq*sz;
H1 = 0
H2 = g*(Dagger(a)*sminus + a*splus);
HJC = H0 + H1 + H2; HJC # print
# using the above method for finding the ansatz
eta = Commutator(H0, H2); eta
pauli.qsimplify_pauli(normal_ordered_form(eta.doit().expand()))
A = sp.Symbol('A')
B = sp.Symbol('B')
eta = A * Dagger(a) * sminus - B * a * splus;
pauli.qsimplify_pauli(normal_ordered_form(Commutator(H0, eta).doit().expand()))
H2
S1 = eta.subs(A, g/Delta)
S1 = S1.subs(B, g/Delta); S1.factor()
Heff = H0 + H1 + 0.5*pauli.qsimplify_pauli(normal_ordered_form(Commutator(H2, S1).doit().expand())).simplify(); Heff
from qiskit.tools.jupyter import *
from qiskit import IBMQ
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main')
backend = provider.get_backend('ibmq_armonk')
backend_config = backend.configuration()
assert backend_config.open_pulse, "Backend doesn't support Pulse"
dt = backend_config.dt
print(f"Sampling time: {dt*1e9} ns")
backend_defaults = backend.defaults()
import numpy as np
# unit conversion factors -> all backend properties returned in SI (Hz, sec, etc)
GHz = 1.0e9 # Gigahertz
MHz = 1.0e6 # Megahertz
kHz = 1.0e3
us = 1.0e-6 # Microseconds
ns = 1.0e-9 # Nanoseconds
# We will find the qubit frequency for the following qubit.
qubit = 0
# The sweep will be centered around the estimated qubit frequency.
center_frequency_Hz = backend_defaults.qubit_freq_est[qubit] # The default frequency is given in Hz
# warning: this will change in a future release
print(f"Qubit {qubit} has an estimated frequency of {center_frequency_Hz / GHz} GHz.")
# scale factor to remove factors of 10 from the data
scale_factor = 1e-14
# We will sweep 40 MHz around the estimated frequency
frequency_span_Hz = 40 * MHz
# in steps of 1 MHz.
frequency_step_Hz = 1 * MHz
# We will sweep 20 MHz above and 20 MHz below the estimated frequency
frequency_min = center_frequency_Hz - frequency_span_Hz / 2
frequency_max = center_frequency_Hz + frequency_span_Hz / 2
# Construct an np array of the frequencies for our experiment
frequencies_GHz = np.arange(frequency_min / GHz,
frequency_max / GHz,
frequency_step_Hz / GHz)
print(f"The sweep will go from {frequency_min / GHz} GHz to {frequency_max / GHz} GHz \
in steps of {frequency_step_Hz / MHz} MHz.")
from qiskit import pulse # This is where we access all of our Pulse features!
inst_sched_map = backend_defaults.instruction_schedule_map
measure = inst_sched_map.get('measure', qubits=[qubit])
x_pulse = inst_sched_map.get('x', qubits=[qubit])
### Collect the necessary channels
drive_chan = pulse.DriveChannel(qubit)
meas_chan = pulse.MeasureChannel(qubit)
acq_chan = pulse.AcquireChannel(qubit)
# Create the base schedule
# Start with drive pulse acting on the drive channel
schedule = pulse.Schedule(name='Frequency sweep')
schedule += x_pulse
# The left shift `<<` is special syntax meaning to shift the start time of the schedule by some duration
schedule += measure << schedule.duration
# Create the frequency settings for the sweep (MUST BE IN HZ)
frequencies_Hz = frequencies_GHz*GHz
schedule_frequencies = [{drive_chan: freq} for freq in frequencies_Hz]
schedule.draw(label=True, scaling=0.8)
from qiskit import assemble
frequency_sweep_program = assemble(schedule,
backend=backend,
meas_level=1,
meas_return='avg',
shots=1024,
schedule_los=schedule_frequencies)
# RUN the job on a real device
#job = backend.run(rabi_experiment_program)
#print(job.job_id())
#from qiskit.tools.monitor import job_monitor
#job_monitor(job)
# OR retreive result from previous run
job = backend.retrieve_job('5ef3b081fbc24b001275b03b')
frequency_sweep_results = job.result()
import matplotlib.pyplot as plt
plt.style.use('dark_background')
sweep_values = []
for i in range(len(frequency_sweep_results.results)):
# Get the results from the ith experiment
res = frequency_sweep_results.get_memory(i)*scale_factor
# Get the results for `qubit` from this experiment
sweep_values.append(res[qubit])
plt.scatter(frequencies_GHz, np.real(sweep_values), color='white') # plot real part of sweep values
plt.xlim([min(frequencies_GHz), max(frequencies_GHz)])
plt.xlabel("Frequency [GHz]")
plt.ylabel("Measured signal [a.u.]")
plt.show()
from scipy.optimize import curve_fit
def fit_function(x_values, y_values, function, init_params):
fitparams, conv = curve_fit(function, x_values, y_values, init_params)
y_fit = function(x_values, *fitparams)
return fitparams, y_fit
fit_params, y_fit = fit_function(frequencies_GHz,
np.real(sweep_values),
lambda x, A, q_freq, B, C: (A / np.pi) * (B / ((x - q_freq)**2 + B**2)) + C,
[5, 4.975, 1, 3] # initial parameters for curve_fit
)
plt.scatter(frequencies_GHz, np.real(sweep_values), color='white')
plt.plot(frequencies_GHz, y_fit, color='red')
plt.xlim([min(frequencies_GHz), max(frequencies_GHz)])
plt.xlabel("Frequency [GHz]")
plt.ylabel("Measured Signal [a.u.]")
plt.show()
# Create the schedules for 0 and 1
schedule_0 = pulse.Schedule(name='0')
schedule_0 += measure
schedule_1 = pulse.Schedule(name='1')
schedule_1 += x_pulse
schedule_1 += measure << schedule_1.duration
schedule_0.draw()
schedule_1.draw()
frequency_span_Hz = 320 * kHz
frequency_step_Hz = 8 * kHz
center_frequency_Hz = backend_defaults.meas_freq_est[qubit]
print(f"Qubit {qubit} has an estimated readout frequency of {center_frequency_Hz / GHz} GHz.")
frequency_min = center_frequency_Hz - frequency_span_Hz / 2
frequency_max = center_frequency_Hz + frequency_span_Hz / 2
frequencies_GHz = np.arange(frequency_min / GHz,
frequency_max / GHz,
frequency_step_Hz / GHz)
print(f"The sweep will go from {frequency_min / GHz} GHz to {frequency_max / GHz} GHz\
in steps of {frequency_step_Hz / MHz} MHz.")
num_shots_per_frequency = 2048
frequencies_Hz = frequencies_GHz*GHz
schedule_los = [{meas_chan: freq} for freq in frequencies_Hz]
cavity_sweep_0 = assemble(schedule_0,
backend=backend,
meas_level=1,
meas_return='avg',
shots=num_shots_per_frequency,
schedule_los=schedule_los)
cavity_sweep_1 = assemble(schedule_1,
backend=backend,
meas_level=1,
meas_return='avg',
shots=num_shots_per_frequency,
schedule_los=schedule_los)
# RUN the job on a real device
#job_0 = backend.run(cavity_sweep_0)
#job_monitor(job_0)
#job_0.error_message()
#job_1 = backend.run(cavity_sweep_1)
#job_monitor(job_1)
#job_1.error_message()
# OR retreive result from previous run
job_0 = backend.retrieve_job('5efa5b447c0d6800137fff1c')
job_1 = backend.retrieve_job('5efa6b2720eee10013be46b4')
cavity_sweep_0_results = job_0.result()
cavity_sweep_1_results = job_1.result()
scale_factor = 1e-14
sweep_values_0 = []
for i in range(len(cavity_sweep_0_results.results)):
res_0 = cavity_sweep_0_results.get_memory(i)*scale_factor
sweep_values_0.append(res_0[qubit])
sweep_values_1 = []
for i in range(len(cavity_sweep_1_results.results)):
res_1 = cavity_sweep_1_results.get_memory(i)*scale_factor
sweep_values_1.append(res_1[qubit])
plotx = frequencies_Hz/kHz
ploty_0 = np.abs(sweep_values_0)
ploty_1 = np.abs(sweep_values_1)
plt.plot(plotx, ploty_0, color='blue', marker='.') # plot real part of sweep values
plt.plot(plotx, ploty_1, color='red', marker='.') # plot real part of sweep values
plt.legend([r'$\vert0\rangle$', r'$\vert1\rangle$'])
plt.grid()
plt.xlabel("Frequency [kHz]")
plt.ylabel("Measured signal [a.u.]")
plt.yscale('log')
plt.show()
|
https://github.com/DaisukeIto-ynu/KosakaQ
|
DaisukeIto-ynu
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Noise model inserter module
The goal of this module is to add QuantumError gates (Kraus gates) to a circuit
based on a given noise model.
"""
import qiskit.compiler
def insert_noise(circuits, noise_model, transpile=False):
"""Return a noisy version of a QuantumCircuit.
Args:
circuits (QuantumCircuit or list[QuantumCircuit]): Input noise-free circuits.
noise_model (NoiseModel): The noise model containing the errors to add
transpile (Boolean): Should the circuit be transpiled into the noise model basis gates
Returns:
QuantumCircuit: The new circuit with the Kraus noise instructions inserted.
Additional Information:
The noisy circuit return by this function will consist of the
original circuit with ``Kraus`` instructions inserted after all
instructions referenced in the ``noise_model``. The resulting circuit
cannot be ran on a quantum computer but can be executed on the
:class:`~qiskit.providers.aer.QasmSimulator`.
"""
is_circuits_list = isinstance(circuits, (list, tuple))
circuits = circuits if is_circuits_list else [circuits]
result_circuits = []
nonlocal_errors = noise_model._nonlocal_quantum_errors
local_errors = noise_model._local_quantum_errors
default_errors = noise_model._default_quantum_errors
for circuit in circuits:
if transpile:
transpiled_circuit = qiskit.compiler.transpile(circuit,
basis_gates=noise_model.basis_gates)
else:
transpiled_circuit = circuit
qubit_indices = {bit: index for index, bit in enumerate(transpiled_circuit.qubits)}
result_circuit = transpiled_circuit.copy(name=transpiled_circuit.name + '_with_noise')
result_circuit.data = []
for inst, qargs, cargs in transpiled_circuit.data:
result_circuit.data.append((inst, qargs, cargs))
qubits = tuple(qubit_indices[q] for q in qargs)
# Priority for error model used:
# nonlocal error > local error > default error
if inst.name in nonlocal_errors and qubits in nonlocal_errors[inst.name]:
for noise_qubits, error in nonlocal_errors[inst.name][qubits].items():
result_circuit.append(error.to_instruction(), noise_qubits)
elif inst.name in local_errors and qubits in local_errors[inst.name]:
error = local_errors[inst.name][qubits]
result_circuit.append(error.to_instruction(), qargs)
elif inst.name in default_errors.keys():
error = default_errors[inst.name]
result_circuit.append(error.to_instruction(), qargs)
result_circuits.append(result_circuit)
return result_circuits if is_circuits_list else result_circuits[0]
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import pandas as pd
import itertools
import cma
import os
import sys
import argparse
import pickle
import random
import re
from pprint import pprint
import qiskit
from qiskit import *
from qiskit import Aer
from qiskit import IBMQ
from qiskit.providers.aer.noise.noise_model import NoiseModel
from qiskit.test.mock import *
from qiskit.providers.aer import AerSimulator, QasmSimulator
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
import mitiq
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
provider = IBMQ.get_provider(hub='', group='internal', project='hirashi-jst')
print("provider:", provider)
L = 3
p = 2
dt = 1.0
tf = 20
shots = 8192
def TwirlCircuit(circ: str) -> QuantumCircuit:
"""
そのまま使う: 修正は後回し
"""
#! qasm ベタ書き
def apply_pauli(num: int, qb: int) -> str:
if (num == 0):
return f'id q[{qb}];\n'
elif (num == 1):
return f'x q[{qb}];\n'
elif (num == 2):
return f'y q[{qb}];\n'
else:
return f'z q[{qb}];\n'
paulis = [(i,j) for i in range(0,4) for j in range(0,4)]
paulis.remove((0,0))
paulis_map = [(0, 1), (3, 2), (3, 3), (1, 1), (1, 0), (2, 3), (2, 2), (2, 1), (2, 0), (1, 3), (1, 2), (3, 0), (3, 1), (0, 2), (0, 3)]
new_circ = ''
ops = circ.qasm().splitlines(True) #! 生のqasmコードを持ってきてる: オペレータに分解
for op in ops:
if (op[:2] == 'cx'): # can add for cz, etc.
num = random.randrange(len(paulis)) #! permute paulis
qbs = re.findall('q\[(.)\]', op)
new_circ += apply_pauli(paulis[num][0], qbs[0])
new_circ += apply_pauli(paulis[num][1], qbs[1])
new_circ += op
new_circ += apply_pauli(paulis_map[num][0], qbs[0])
new_circ += apply_pauli(paulis_map[num][1], qbs[1])
else:
new_circ += op
return qiskit.circuit.QuantumCircuit.from_qasm_str(new_circ)
# とりあえずOK
def evolve(alpha: float, q0: Union[int, QuantumRegister], q1: Union[int, QuantumRegister]) -> QuantumCircuit:
"""
The implementation of Fig. 4 in https://arxiv.org/abs/2112.12654
"""
qc = QuantumCircuit(2)
qc.rz(-np.pi / 2, q1)
qc.cnot(q1, q0)
qc.rz(alpha - np.pi / 2, q0)
qc.ry(np.pi / 2 - alpha, q1)
qc.cnot(q0, q1)
qc.ry(alpha - np.pi / 2, q1)
qc.cnot(q1, q0)
qc.rz(np.pi / 2, q0)
return qc
# とりあえずOK
def make_ansatz_circuit(num_qubits: int, ansatz_depth: int, parameters: np.array) -> QuantumCircuit:
"""
Prepare ansatz circuit
code reference: https://gitlab.com/QANED/heis_dynamics
method reference: https://arxiv.org/abs/1906.06343
== AnsatzCircuit(param, p) -> QuantumCircuit
Args:
parameters: 1d array (for 2d parameters on circuit)
"""
qc = QuantumCircuit(num_qubits)
for l in range(ansatz_depth):
if num_qubits & 1:
for i in range(0, num_qubits, 2): # linear condition
qc.compose(evolve(parameters[l * ansatz_depth + i] / 4), [i, i + 1], inplace = True) #! we do not have to divide the angle by 4
for i in range(1, num_qubits - 1, 2): # linear condition
# ! we do not have to divide the angle by 4
qc.compose(evolve(parameters[l * ansatz_depth + i] / 4), [i, i + 1], inplace=True)
else:
for i in range(0, num_qubits - 1, 2): # linear condition
# ! we do not have to divide the angle by 4
qc.compose(evolve(parameters[l * ansatz_depth + i]), [i, i + 1], inplace=True)
for i in range(1, num_qubits - 1, 2): # linear condition
# ! we do not have to divide the angle by 4
qc.compose(evolve(parameters[l * ansatz_depth + i]), [i, i + 1], inplace=True)
return qc
# とりあえずOK
def make_trotter_circuit(num_qubits: int, time_interval: float) -> QuantumCircuit:
"""
Prepare Trotter circuit
code reference: https://gitlab.com/QANED/heis_dynamics
method reference: https://arxiv.org/abs/1906.06343
== TrotterEvolveCircuit(dt, nt, init) -> QuantumCircuit
"""
qc = QuantumCircuit(num_qubits)
for n in range(trotter_steps): #! time_interval の符号に注意
if num_qubits & 1:
for i in range(0, num_qubits, 2): # linear condition
qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) #! we do not have to divide the angle by 4
for i in range(1, num_qubits - 1, 2): # linear condition
qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) # ! we do not have to divide the angle by 4
else:
for i in range(0, num_qubits - 1, 2): # linear condition
qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) #! we do not have to divide the angle by 4
for i in range(1, num_qubits - 1, 2): # linear condition
qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) # ! we do not have to divide the angle by 4
return qc
#TODO VTCとは別実装?→ no, 同じ実装に。
def SimulateAndReorder(circ):
"""
#! execution wrapper
Executes a circuit using the statevector simulator and reorders basis to match with standard
"""
backend = Aer.get_backend('statevector_simulator')
return execute(circ.reverse_bits(), backend).result().get_statevector()
def Simulate(circ):
"""
#! execution wrapper
Executes a circuit using the statevector simulator. Doesn't reorder -- which is needed for intermediate steps in the VTC
"""
backend = Aer.get_backend('statevector_simulator')
return execute(circ, backend).result().get_statevector()
#TODO
def LoschmidtEchoExecutor(circuits, backend, shots, filter):
"""
#! 回路を実行
Returns the expectation value to be mitigated.
:param circuit: Circuit to run. #! ここでのcircuitsは
:param backend: backend to run the circuit on
:param shots: Number of times to execute the circuit to compute the expectation value.
:param fitter: measurement error mitigator
"""
# circuits = [TwirlCircuit(circ) for circ in circuits]
scale_factors = [1.0, 2.0, 3.0] #! ZNEのノイズスケーリングパラメタ
folded_circuits = [] #! ZNE用の回路
for circuit in circuits:
folded_circuits.append([mitiq.zne.scaling.fold_gates_at_random(circuit, scale) for scale in scale_factors]) #! ここでmitiqを使用
folded_circuits = list(itertools.chain(*folded_circuits)) #! folded_circuitsを平坦化
folded_circuits = [TwirlCircuit(circ) for circ in folded_circuits] #! 後からPauli Twirlingを施す!
print("length of circuit in job", len(folded_circuits))
#! jobを投げる
job = qiskit.execute(
experiments=folded_circuits,
backend=backend,
optimization_level=0,
shots=shots
)
print("casted job")
#! fidelity測定用(VTCをしないなら、ここはtomographyで良い)
c = ['1','1','0'] #! これをpermutationする
# c = [str((1 + (-1)**(i+1)) // 2) for i in range(L)]
c = ''.join(c)[::-1] #! endianを反転 (big endianへ)
res = job.result()
if (filter is not None): #! QREM
res = filter.apply(res)
print("retrieved job")
all_counts = [job.result().get_counts(i) for i in range(len(folded_circuits))]
expectation_values = []
for counts in all_counts:
total_allowed_shots = [counts.get(''.join(p)) for p in set(itertools.permutations(c))] #! ここでcをpermutationしている
total_allowed_shots = sum([0 if x is None else x for x in total_allowed_shots])
if counts.get(c) is None:
expectation_values.append(0)
else:
expectation_values.append(counts.get(c)/total_allowed_shots)
# expectation_values = [counts.get(c) / shots for counts in all_counts]
zero_noise_values = []
if isinstance(backend, qiskit.providers.aer.backends.qasm_simulator.QasmSimulator): # exact_sim
for i in range(len(circuits)):
zero_noise_values.append(np.mean(expectation_values[i*len(scale_factors):(i+1)*len(scale_factors)]))
else: #device_sim, real_device
fac = mitiq.zne.inference.LinearFactory(scale_factors)
for i in range(len(circuits)):
zero_noise_values.append(fac.extrapolate(scale_factors,
expectation_values[i*len(scale_factors):(i+1)*len(scale_factors)]))
print("zero_noise_values")
pprint(zero_noise_values)
print()
return zero_noise_values
#TODO
def LoschmidtEchoCircuit(params, U_v, U_trot, init, p):
"""
#! 回路を作成
Cost function using the Loschmidt Echo. Just using statevectors currently -- can rewrite using shots
:param params: parameters new variational circuit that represents U_trot U_v | init >. Need dagger for cost function
:param U_v: variational circuit that stores the state before the trotter step
:param U_trot: trotter step
:param init: initial state
:param p: number of ansatz steps
"""
U_v_prime = AnsatzCircuit(params, p)
circ = init + U_v + U_trot + U_v_prime.inverse()
circ.measure_all()
return circ
def LoschmidtEcho(params, U_v, U_trot, init, p, backend, shots, filter):
"""
#! 実行パート
"""
circs = []
for param in params:
circs.append(LoschmidtEchoCircuit(param, U_v, U_trot, init, p)) #! 回路を作成
print("length of circuits without zne:", len(circs))
res = LoschmidtEchoExecutor(circs, backend, shots, filter) #! 回路を実行
return abs(1 - np.array(res))
def LoschmidtEchoExact(params, U_v, U_trot, init, p):
"""
#! unused function
"""
U_v_prime = AnsatzCircuit(params, p)
circ = init + U_v + U_trot + U_v_prime.inverse()
circ_vec = Simulate(circ)
init_vec = Simulate(init)
return 1 - abs(np.conj(circ_vec) @ init_vec)**2
def CMAES(U_v, U_trot, init, p, backend, shots, filter):
"""
#! 実行 + 最適化パート
"""
init_params = np.random.uniform(0, 2*np.pi, (L-1)*p)
es = cma.CMAEvolutionStrategy(init_params, np.pi/2)
es.opts.set({'ftarget':5e-3, 'maxiter':1000})
# es = pickle.load(open(f'./results_{L}/optimizer_dump', 'rb'))
while not es.stop(): #! 最適化パート
# solutions = es.ask(25) # ! 25 = number of returned solutions
solutions = es.ask(10)
print("solutions")
pprint(solutions)
es.tell(solutions, LoschmidtEcho(solutions, U_v, U_trot, init, p, backend, shots, filter)) #! 実行パート
# es.tell(solutions, LoschmidtEchoExact(solutions, U_v, U_trot, init, p)) #! 実行パート
es.disp()
open(f'./results_{L}/optimizer_dump', 'wb').write(es.pickle_dumps())
return es.result_pretty()
def VTC(tf, dt, p, init, backend, shots, filter):
"""
#! tf: 総経過時間
#! dt: trotter step size: 時間間隔
#! p: ansatzのステップ数
"""
VTCParamList = [np.zeros((L-1)*p)] #! デフォルトのパラメタ(初期値)
VTCStepList = [SimulateAndReorder(init.copy())] #! type: List[Statevector]
# TrotterFixStepList = [init]
TimeStep = [0]
if (os.path.exists(f'./results_{L}/VTD_params_{tf}_{L}_{p}_{dt}_{shots}.csv')): #! 2巡目からこっち
VTCParamList = pd.read_csv(f'./results_{L}/VTD_params_{tf}_{L}_{p}_{dt}_{shots}.csv', index_col=0)
VTCStepList = pd.read_csv(f'./results_{L}/VTD_results_{tf}_{L}_{p}_{dt}_{shots}.csv', index_col=0)
temp = VTCParamList.iloc[-1]
print(temp, "th time interval")
U_v = AnsatzCircuit(temp, p)
else: #! 最初はこっちに入る
VTCParamList = pd.DataFrame(np.array(VTCParamList), index=np.array(TimeStep))
VTCStepList = pd.DataFrame(np.array(VTCStepList), index=np.array(TimeStep))
print("0 th time interval")
print()
U_v = QuantumCircuit(L)
ts = VTCParamList.index
#! 時間間隔
U_trot = TrotterEvolveCircuit(dt, p, QuantumCircuit(L)) #! Trotter分解のunitaryを作る
print()
print("start CMAES")
print()
res = CMAES(U_v, U_trot, init, p, backend, shots, filter) #! ここでプロセスを実行!!!!
print()
print("res")
pprint(res)
#! 新しいループ結果を追加し、tsを更新
res = res.xbest # ! best solution evaluated
print("res.xbest")
pprint(res)
VTCParamList.loc[ts[-1]+(dt*p)] = np.array(res)
VTCStepList.loc[ts[-1]+(dt*p)] = np.array(SimulateAndReorder(init + AnsatzCircuit(res, p)))
ts = VTCParamList.index
# VTCParamList = pd.DataFrame(np.array(VTCParamList), index=np.array(TimeStep))
# VTCStepList = pd.DataFrame(np.array(VTCStepList), index=np.array(TimeStep))
#! csvファイルを更新
VTCParamList.to_csv(f'./results_{L}/VTD_params_{tf}_{L}_{p}_{dt}_{shots}.csv')
VTCStepList.to_csv(f'./results_{L}/VTD_results_{tf}_{L}_{p}_{dt}_{shots}.csv')
if (ts[-1] >= tf):
return
else:
print("next step")
VTC(tf, dt, p, init, backend, shots, filter)
#! ここからQREM回路
qr = QuantumRegister(L)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# device_backend = FakeJakarta()
# device_sim = AerSimulator.from_backend(device_backend)
real_device = provider.get_backend('ibmq_jakarta')
noise_model = NoiseModel.from_backend(real_device)
device_sim = QasmSimulator(method='statevector', noise_model=noise_model)
exact_sim = Aer.get_backend('qasm_simulator') # QasmSimulator(method='statevector')
t_qc = transpile(meas_calibs)
qobj = assemble(t_qc, shots=8192)
# cal_results = real_device.run(qobj, shots=8192).result()
cal_results = device_sim.run(qobj, shots=8192).result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
print("qrem done")
# np.around(meas_fitter.cal_matrix, decimals=2)
init = QuantumCircuit(L)
# c = [str((1 + (-1)**(i+1)) // 2) for i in range(L)]
c = ['1','1','0'] #! なぜinitial stateが110なの??????? もしかしてopen science prizeを意識???
#! けどループでこのプログラムが実行されるたびにここが|110>だとおかしくないか?
for q in range(len(c)):
if (c[q] == '1'):
init.x(q)
#! ここまでQREM回路
nt = int(np.ceil(tf / (dt * p)))
# f = open(f'./results_{L}/logging.txt', 'a')
# sys.stdout = f
#! tf: シミュレーションの(経過)時間
#! dt: trotter分解のステップ数
#! p: ansatzのステップ数 (論文中のL)
# VTC(tf, dt, p, init, real_device, shots, meas_fitter.filter) #! mainの処理
print("vtc start!!!! \n\n\n")
VTC(tf, dt, p, init, device_sim, shots, meas_fitter.filter) #! mainの処理
# f.close()
|
https://github.com/tomtuamnuq/compare-qiskit-ocean
|
tomtuamnuq
|
import itertools
import matplotlib.pyplot as plt
import networkx as nx
from qiskit_optimization import QuadraticProgram
from qiskit_optimization.converters import QuadraticProgramToQubo
from dwave.system import DWaveSampler, FixedEmbeddingComposite
import dimod
import dwave_networkx as dnx
from minorminer import find_embedding
import dwave.inspector
# select quadratic program to solve
qp = QuadraticProgram()
qp.read_from_lp_file("example.lp")
qubo = QuadraticProgramToQubo().convert(qp)
bqm_binary = dimod.as_bqm(qubo.objective.linear.to_array(), qubo.objective.quadratic.to_array(), dimod.BINARY)
print(qp)
print(bqm_binary)
bqm_ising = bqm_binary.to_ising()
print("Ising Model form coefficients:")
print(bqm_ising)
sampler_exact = dimod.ExactSolver()
sampleset = sampler_exact.sample(bqm_binary)
print(sampleset)
G = bqm_binary.to_networkx_graph()
P_16 = dnx.pegasus_graph(16)
embedding = find_embedding(G, P_16, timeout=60, tries=50)
P_16_sub = P_16.subgraph(list(itertools.chain(*embedding.values())))
plt.figure(figsize=(4,4))
dnx.draw_pegasus(P_16_sub, node_size=500, node_color='g')
structured_sampler = dimod.StructureComposite(DWaveSampler(), P_16.nodes, P_16.edges)
sampler = FixedEmbeddingComposite(structured_sampler, embedding=embedding)
res = sampler.sample(bqm_binary, label="example_qubo_3", num_reads=100)
res.to_pandas_dataframe()
dwave.inspector.show(res)
|
https://github.com/Interlin-q/diskit
|
Interlin-q
|
from qiskit import BasicAer
from qiskit.aqua import QuantumInstance
from qiskit.aqua.algorithms import Shor
N = 15
shor = Shor(N)
backend = BasicAer.get_backend('qasm_simulator')
quantum_instance = QuantumInstance(backend, shots=1024)
ret = shor.run(quantum_instance)
print("The list of factors of {} as computed by the Shor's algorithm is {}.".format(N, ret['factors'][0]))
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit, transpile
from qiskit.visualization import plot_circuit_layout
from qiskit.providers.fake_provider import FakeVigo
backend = FakeVigo()
ghz = QuantumCircuit(3, 3)
ghz.h(0)
ghz.cx(0,range(1,3))
ghz.barrier()
ghz.measure(range(3), range(3))
ghz.draw(output='mpl')
|
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
|
mmetcalf14
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
import sys
import logging
import time
import copy
import os
import uuid
import numpy as np
from qiskit import compiler
from qiskit.assembler import assemble_circuits
from qiskit.providers import BaseBackend, JobStatus, JobError
from qiskit.providers.basicaer import BasicAerJob
from qiskit.qobj import QobjHeader
from qiskit.aqua.aqua_error import AquaError
from qiskit.aqua.utils import summarize_circuits
from qiskit.aqua.utils.backend_utils import (is_aer_provider,
is_basicaer_provider,
is_ibmq_provider,
is_simulator_backend,
is_local_backend)
MAX_CIRCUITS_PER_JOB = os.environ.get('QISKIT_AQUA_MAX_CIRCUITS_PER_JOB', None)
logger = logging.getLogger(__name__)
def find_regs_by_name(circuit, name, qreg=True):
"""Find the registers in the circuits.
Args:
circuit (QuantumCircuit): the quantum circuit.
name (str): name of register
qreg (bool): quantum or classical register
Returns:
QuantumRegister or ClassicalRegister or None: if not found, return None.
"""
found_reg = None
regs = circuit.qregs if qreg else circuit.cregs
for reg in regs:
if reg.name == name:
found_reg = reg
break
return found_reg
def _avoid_empty_circuits(circuits):
new_circuits = []
for qc in circuits:
if len(qc) == 0:
tmp_q = None
for q in qc.qregs:
tmp_q = q
break
if tmp_q is None:
raise NameError("A QASM without any quantum register is invalid.")
qc.iden(tmp_q[0])
new_circuits.append(qc)
return new_circuits
def _combine_result_objects(results):
"""Tempoary helper function.
TODO:
This function would be removed after Terra supports job with infinite circuits.
"""
if len(results) == 1:
return results[0]
new_result = copy.deepcopy(results[0])
for idx in range(1, len(results)):
new_result.results.extend(results[idx].results)
return new_result
def _maybe_add_aer_expectation_instruction(qobj, options):
if 'expectation' in options:
from qiskit.providers.aer.utils.qobj_utils import snapshot_instr, append_instr, get_instr_pos
# add others, how to derive the correct used number of qubits?
# the compiled qobj could be wrong if coupling map is used.
params = options['expectation']['params']
num_qubits = options['expectation']['num_qubits']
for idx in range(len(qobj.experiments)):
# if mulitple params are provided, we assume that each circuit is corresponding one param
# otherwise, params are used for all circuits.
param_idx = idx if len(params) > 1 else 0
snapshot_pos = get_instr_pos(qobj, idx, 'snapshot')
if len(snapshot_pos) == 0: # does not append the instruction yet.
new_ins = snapshot_instr('expectation_value_pauli', 'test',
list(range(num_qubits)), params=params[param_idx])
qobj = append_instr(qobj, idx, new_ins)
else:
for i in snapshot_pos: # update all expectation_value_snapshot
if qobj.experiments[idx].instructions[i].type == 'expectation_value_pauli':
qobj.experiments[idx].instructions[i].params = params[param_idx]
return qobj
def _compile_wrapper(circuits, backend, backend_config, compile_config, run_config):
transpiled_circuits = compiler.transpile(circuits, backend, **backend_config, **compile_config)
if not isinstance(transpiled_circuits, list):
transpiled_circuits = [transpiled_circuits]
qobj = assemble_circuits(transpiled_circuits, qobj_id=str(uuid.uuid4()), qobj_header=QobjHeader(),
run_config=run_config)
return qobj, transpiled_circuits
def compile_circuits(circuits, backend, backend_config=None, compile_config=None, run_config=None,
show_circuit_summary=False, circuit_cache=None, **kwargs):
"""
An execution wrapper with Qiskit-Terra, with job auto recover capability.
The autorecovery feature is only applied for non-simulator backend.
This wraper will try to get the result no matter how long it costs.
Args:
circuits (QuantumCircuit or list[QuantumCircuit]): circuits to execute
backend (BaseBackend): backend instance
backend_config (dict, optional): configuration for backend
compile_config (dict, optional): configuration for compilation
run_config (RunConfig, optional): configuration for running a circuit
show_circuit_summary (bool, optional): showing the summary of submitted circuits.
circuit_cache (CircuitCache, optional): A CircuitCache to use when calling compile_and_run_circuits
Returns:
QasmObj: compiled qobj.
Raises:
AquaError: Any error except for JobError raised by Qiskit Terra
"""
backend_config = backend_config or {}
compile_config = compile_config or {}
run_config = run_config or {}
if backend is None or not isinstance(backend, BaseBackend):
raise ValueError('Backend is missing or not an instance of BaseBackend')
if not isinstance(circuits, list):
circuits = [circuits]
if is_simulator_backend(backend):
circuits = _avoid_empty_circuits(circuits)
if MAX_CIRCUITS_PER_JOB is not None:
max_circuits_per_job = int(MAX_CIRCUITS_PER_JOB)
else:
if is_local_backend(backend):
max_circuits_per_job = sys.maxsize
else:
max_circuits_per_job = backend.configuration().max_experiments
if circuit_cache is not None and circuit_cache.try_reusing_qobjs:
# Check if all circuits are the same length.
# If not, don't try to use the same qobj.experiment for all of them.
if len(set([len(circ.data) for circ in circuits])) > 1:
circuit_cache.try_reusing_qobjs = False
else: # Try setting up the reusable qobj
# Compile and cache first circuit if cache is empty. The load method will try to reuse it
if circuit_cache.qobjs is None:
qobj, transpiled_circuits = _compile_wrapper([circuits[0]], backend, backend_config,
compile_config, run_config)
if is_aer_provider(backend):
qobj = _maybe_add_aer_expectation_instruction(qobj, kwargs)
circuit_cache.cache_circuit(qobj, [circuits[0]], 0)
qobjs = []
transpiled_circuits = []
chunks = int(np.ceil(len(circuits) / max_circuits_per_job))
for i in range(chunks):
sub_circuits = circuits[i * max_circuits_per_job:(i + 1) * max_circuits_per_job]
if circuit_cache is not None and circuit_cache.misses < circuit_cache.allowed_misses:
try:
if circuit_cache.cache_transpiled_circuits:
transpiled_sub_circuits = compiler.transpile(sub_circuits, backend, **backend_config,
**compile_config)
qobj = circuit_cache.load_qobj_from_cache(transpiled_sub_circuits, i, run_config=run_config)
else:
qobj = circuit_cache.load_qobj_from_cache(sub_circuits, i, run_config=run_config)
if is_aer_provider(backend):
qobj = _maybe_add_aer_expectation_instruction(qobj, kwargs)
# cache miss, fail gracefully
except (TypeError, IndexError, FileNotFoundError, EOFError, AquaError, AttributeError) as e:
circuit_cache.try_reusing_qobjs = False # Reusing Qobj didn't work
if len(circuit_cache.qobjs) > 0:
logger.info('Circuit cache miss, recompiling. Cache miss reason: ' + repr(e))
circuit_cache.misses += 1
else:
logger.info('Circuit cache is empty, compiling from scratch.')
circuit_cache.clear_cache()
qobj, transpiled_sub_circuits = _compile_wrapper(sub_circuits, backend, backend_config,
compile_config, run_config)
transpiled_circuits.extend(transpiled_sub_circuits)
if is_aer_provider(backend):
qobj = _maybe_add_aer_expectation_instruction(qobj, kwargs)
try:
circuit_cache.cache_circuit(qobj, sub_circuits, i)
except (TypeError, IndexError, AquaError, AttributeError, KeyError) as e:
try:
circuit_cache.cache_transpiled_circuits = True
circuit_cache.cache_circuit(qobj, transpiled_sub_circuits, i)
except (TypeError, IndexError, AquaError, AttributeError, KeyError) as e:
logger.info('Circuit could not be cached for reason: ' + repr(e))
logger.info('Transpilation may be too aggressive. Try skipping transpiler.')
else:
qobj, transpiled_sub_circuits = _compile_wrapper(sub_circuits, backend, backend_config, compile_config,
run_config)
transpiled_circuits.extend(transpiled_sub_circuits)
if is_aer_provider(backend):
qobj = _maybe_add_aer_expectation_instruction(qobj, kwargs)
qobjs.append(qobj)
if logger.isEnabledFor(logging.DEBUG) and show_circuit_summary:
logger.debug("==== Before transpiler ====")
logger.debug(summarize_circuits(circuits))
logger.debug("==== After transpiler ====")
logger.debug(summarize_circuits(transpiled_circuits))
return qobjs
def _safe_submit_qobj(qobj, backend, backend_options, noise_config, skip_qobj_validation):
# assure get job ids
while True:
job = run_on_backend(backend, qobj, backend_options=backend_options, noise_config=noise_config,
skip_qobj_validation=skip_qobj_validation)
try:
job_id = job.job_id()
break
except JobError as e:
logger.warning("FAILURE: Can not get job id, Resubmit the qobj to get job id."
"Terra job error: {} ".format(e))
except Exception as e:
logger.warning("FAILURE: Can not get job id, Resubmit the qobj to get job id."
"Error: {} ".format(e))
return job, job_id
def run_qobjs(qobjs, backend, qjob_config=None, backend_options=None,
noise_config=None, skip_qobj_validation=False):
"""
An execution wrapper with Qiskit-Terra, with job auto recover capability.
The autorecovery feature is only applied for non-simulator backend.
This wraper will try to get the result no matter how long it costs.
Args:
qobjs (list[QasmObj]): qobjs to execute
backend (BaseBackend): backend instance
qjob_config (dict, optional): configuration for quantum job object
backend_options (dict, optional): configuration for simulator
noise_config (dict, optional): configuration for noise model
skip_qobj_validation (bool, optional): Bypass Qobj validation to decrease submission time
Returns:
Result: Result object
Raises:
AquaError: Any error except for JobError raised by Qiskit Terra
"""
qjob_config = qjob_config or {}
backend_options = backend_options or {}
noise_config = noise_config or {}
if backend is None or not isinstance(backend, BaseBackend):
raise ValueError('Backend is missing or not an instance of BaseBackend')
with_autorecover = False if is_simulator_backend(backend) else True
jobs = []
job_ids = []
for qobj in qobjs:
job, job_id = _safe_submit_qobj(qobj, backend, backend_options, noise_config, skip_qobj_validation)
job_ids.append(job_id)
jobs.append(job)
results = []
if with_autorecover:
logger.info("Backend status: {}".format(backend.status()))
logger.info("There are {} jobs are submitted.".format(len(jobs)))
logger.info("All job ids:\n{}".format(job_ids))
for idx in range(len(jobs)):
job = jobs[idx]
job_id = job_ids[idx]
while True:
logger.info("Running {}-th qobj, job id: {}".format(idx, job_id))
# try to get result if possible
try:
result = job.result(**qjob_config)
if result.success:
results.append(result)
logger.info("COMPLETED the {}-th qobj, "
"job id: {}".format(idx, job_id))
break
else:
logger.warning("FAILURE: the {}-th qobj, "
"job id: {}".format(idx, job_id))
except JobError as e:
# if terra raise any error, which means something wrong, re-run it
logger.warning("FAILURE: the {}-th qobj, job id: {} "
"Terra job error: {} ".format(idx, job_id, e))
except Exception as e:
raise AquaError("FAILURE: the {}-th qobj, job id: {} "
"Unknown error: {} ".format(idx, job_id, e)) from e
# something wrong here if reach here, querying the status to check how to handle it.
# keep qeurying it until getting the status.
while True:
try:
job_status = job.status()
break
except JobError as e:
logger.warning("FAILURE: job id: {}, "
"status: 'FAIL_TO_GET_STATUS' "
"Terra job error: {}".format(job_id, e))
time.sleep(5)
except Exception as e:
raise AquaError("FAILURE: job id: {}, "
"status: 'FAIL_TO_GET_STATUS' "
"Unknown error: ({})".format(job_id, e)) from e
logger.info("Job status: {}".format(job_status))
# handle the failure job based on job status
if job_status == JobStatus.DONE:
logger.info("Job ({}) is completed anyway, retrieve result "
"from backend.".format(job_id))
job = backend.retrieve_job(job_id)
elif job_status == JobStatus.RUNNING or job_status == JobStatus.QUEUED:
logger.info("Job ({}) is {}, but encounter an exception, "
"recover it from backend.".format(job_id, job_status))
job = backend.retrieve_job(job_id)
else:
logger.info("Fail to run Job ({}), resubmit it.".format(job_id))
qobj = qobjs[idx]
# assure job get its id
job, job_id = _safe_submit_qobj(qobj, backend, backend_options, noise_config, skip_qobj_validation)
jobs[idx] = job
job_ids[idx] = job_id
else:
results = []
for job in jobs:
results.append(job.result(**qjob_config))
result = _combine_result_objects(results) if len(results) != 0 else None
return result
def compile_and_run_circuits(circuits, backend, backend_config=None,
compile_config=None, run_config=None,
qjob_config=None, backend_options=None,
noise_config=None, show_circuit_summary=False,
circuit_cache=None, skip_qobj_validation=False, **kwargs):
"""
An execution wrapper with Qiskit-Terra, with job auto recover capability.
The autorecovery feature is only applied for non-simulator backend.
This wraper will try to get the result no matter how long it costs.
Args:
circuits (QuantumCircuit or list[QuantumCircuit]): circuits to execute
backend (BaseBackend): backend instance
backend_config (dict, optional): configuration for backend
compile_config (dict, optional): configuration for compilation
run_config (RunConfig, optional): configuration for running a circuit
qjob_config (dict, optional): configuration for quantum job object
backend_options (dict, optional): configuration for simulator
noise_config (dict, optional): configuration for noise model
show_circuit_summary (bool, optional): showing the summary of submitted circuits.
circuit_cache (CircuitCache, optional): A CircuitCache to use when calling compile_and_run_circuits
skip_qobj_validation (bool, optional): Bypass Qobj validation to decrease submission time
Returns:
Result: Result object
Raises:
AquaError: Any error except for JobError raised by Qiskit Terra
"""
qobjs = compile_circuits(circuits, backend, backend_config, compile_config, run_config,
show_circuit_summary, circuit_cache, **kwargs)
result = run_qobjs(qobjs, backend, qjob_config, backend_options, noise_config, skip_qobj_validation)
return result
# skip_qobj_validation = True does what backend.run and aerjob.submit do, but without qobj validation.
def run_on_backend(backend, qobj, backend_options=None, noise_config=None, skip_qobj_validation=False):
if skip_qobj_validation:
job_id = str(uuid.uuid4())
if is_aer_provider(backend):
from qiskit.providers.aer.aerjob import AerJob
temp_backend_options = backend_options['backend_options'] if backend_options != {} else None
temp_noise_config = noise_config['noise_model'] if noise_config != {} else None
job = AerJob(backend, job_id, backend._run_job, qobj, temp_backend_options, temp_noise_config, False)
job._future = job._executor.submit(job._fn, job._job_id, job._qobj, *job._args)
elif is_basicaer_provider(backend):
backend._set_options(qobj_config=qobj.config, **backend_options)
job = BasicAerJob(backend, job_id, backend._run_job, qobj)
job._future = job._executor.submit(job._fn, job._job_id, job._qobj)
elif is_ibmq_provider(backend):
# TODO: IBMQJob performs validation during the constructor. the following lines does not
# skip validation but run as is.
from qiskit.providers.ibmq.ibmqjob import IBMQJob
job = IBMQJob(backend, None, backend._api, qobj=qobj)
job._future = job._executor.submit(job._submit_callback)
else:
logger.info("Can't skip qobj validation for the third-party provider.")
job = backend.run(qobj, **backend_options, **noise_config)
return job
else:
job = backend.run(qobj, **backend_options, **noise_config)
return job
|
https://github.com/jonasmaziero/computacao_quantica_qiskit
|
jonasmaziero
|
from sympy import *
init_printing(use_unicode=True)
%matplotlib inline
p00,p01,p10,p11 = symbols('p_{00} p_{01} p_{10} p_{11}')
th,ph = symbols('theta phi')
Psi00 = Matrix([[cos(th)],[0],[0],[sin(th)]])
Psi01 = Matrix([[0],[sin(ph)],[cos(ph)],[0]])
Psi11 = Matrix([[0],[cos(ph)],[-sin(ph)],[0]])
Psi10 = Matrix([[-sin(th)],[0],[0],[cos(th)]])
#Psi00, Psi00.T, Psi00*Psi00.T
rhoX = p00*Psi00*Psi00.T + p01*Psi01*Psi01.T + p10*Psi10*Psi10.T + p11*Psi11*Psi11.T
simplify(rhoX)
def kp(x,y):
return KroneckerProduct(x,y)
I = Matrix([[1,0],[0,1]])
Y = Matrix([[0,-1j],[1j,0]])
Y = Matrix([[0,1],[1,0]])
Z = Matrix([[1,0],[0,-1]])
cxx,cyy,czz,az,bz = symbols('c_{xx} c_{yy} c_{zz} a_{z} b_{z}')
rhoX = (1/4)*(kp(I,I) + cxx*kp(X,X) + cyy*kp(Y,Y) + czz*kp(Z,Z) + az*kp(Z,I) + bz*kp(I,Z))
simplify(rhoX)
th,be,ga = symbols('theta beta gamma')
c00 = cos(th/2)*cos(be/2)*cos(ga/2) + sin(th/2)*sin(be/2)*sin(ga/2)
c01 = cos(th/2)*cos(be/2)*sin(ga/2) - sin(th/2)*sin(be/2)*cos(ga/2)
c10 = cos(th/2)*sin(be/2)*cos(ga/2) - sin(th/2)*cos(be/2)*sin(ga/2)
c11 = cos(th/2)*sin(be/2)*sin(ga/2) + sin(th/2)*cos(be/2)*cos(ga/2)
simplify(c00**2 + c01**2 + c10**2 + c11**2) # ok!
P0 = Matrix([[1,0],[0,0]])
P1 = Matrix([[0,0],[0,1]])
def Ry(th):
return cos(th/2)*I - 1j*sin(th/2)*Y
def Cx_ab():
return KroneckerProduct(P0,I) + KroneckerProduct(P1,X)
def Cx_ba():
return KroneckerProduct(I,P0) + KroneckerProduct(X,P1)
MB = Cx_ab()*KroneckerProduct(Ry(th-ph),I)*Cx_ba()*KroneckerProduct(Ry(th+ph),I) # mudanca de base
simplify(MB)
from qiskit import *
import numpy as np
import math
import qiskit
nshots = 8192
IBMQ.load_account()
provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main')
device = provider.get_backend('ibmq_belem')
simulator = Aer.get_backend('qasm_simulator')
from qiskit.tools.monitor import job_monitor
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
# retorna o circuito quantico que prepara um certo estado real de 1 qubit
# coef = array com os 2 coeficientes reais do estado na base computacional
def qc_psi_1qb_real(coef):
qr = QuantumRegister(1)
qc = QuantumCircuit(qr, name='psir_1qb')
th = 2*math.acos(np.abs(coef[0]))
qc.ry(th, qr[0])
return qc
eigvals = [0.1,0.9]
coef = np.sqrt(eigvals)
print(coef)
qc_psi_1qb_real_ = qc_psi_1qb_real(coef)
qc_psi_1qb_real_.draw('mpl')
from qiskit.quantum_info import Statevector
sv = Statevector.from_label('0')
sv
sv = sv.evolve(qc_psi_1qb_real_)
sv
# retorna o circuito quantico que prepara um certo estado real de 2 qubits
# coef = array com os 4 coeficientes reais do estado na base computacional
def qc_psi_2qb_real(coef):
qr = QuantumRegister(2)
qc = QuantumCircuit(qr, name = 'psir_2qb')
xi = 2*math.acos(math.sqrt(coef[0]**2+coef[1]**2))
coef1 = [math.sqrt(coef[0]**2+coef[1]**2),math.sqrt(1-coef[0]**2-coef[1]**2)]
c_psi_1qb_real_ = qc_psi_1qb_real(coef1)
qc.append(c_psi_1qb_real_, [qr[0]])
th0 = 2*math.atan(np.abs(coef[1])/np.abs(coef[0]))
th1 = 2*math.atan(np.abs(coef[3])/np.abs(coef[2]))
qc.x(0)
qc.cry(th0, 0, 1)
qc.x(0)
qc.cry(th1, 0, 1)
return qc
eigvals = [0.1, 0.2, 0.3, 0.4]
coef = np.sqrt(eigvals)
print(coef)
qc_psi_2qb_real_ = qc_psi_2qb_real(coef)
qc_psi_2qb_real_.draw('mpl')
sv = Statevector.from_label('00')
sv
sv = sv.evolve(qc_psi_2qb_real_)
sv # note o ordenamento, o 2º qb é o 1º e o 1º é o 2º (00,10,01,11)
def qc_ry(th):
qr = QuantumRegister(1)
qc = QuantumCircuit(qr, name = 'RY')
qc.ry(th, 0)
return qc
# retorna o circuito quantico que prepara um certo estado real de 3 qubits
# coef = array com os 8 coeficientes reais do estado na base computacional
def qc_psi_3qb_real(coef):
qr = QuantumRegister(3)
qc = QuantumCircuit(qr, name = 'psir_3qb')
d = len(coef)
coef2 = np.zeros(d//2)
th = np.zeros(d//2)
for j in range(0,2):
for k in range(0,2):
coef2[int(str(j)+str(k),2)] = math.sqrt(coef[int(str(j)+str(k)+str(0),2)]**2+coef[int(str(j)+str(k)+str(1),2)]**2)
c_psi_2qb_real_ = qc_psi_2qb_real(coef2)
qc.append(c_psi_2qb_real_, [qr[0],qr[1]])
for j in range(0,2):
for k in range(0,2):
th[int(str(j)+str(k),2)] = 2*math.atan(np.abs(coef[int(str(j)+str(k)+str(1),2)])/np.abs(coef[int(str(j)+str(k)+str(0),2)]))
if j == 0:
qc.x(0)
if k == 0:
qc.x(1)
qc_ry_ = qc_ry(th[int(str(j)+str(k),2)])
ccry = qc_ry_.to_gate().control(2)
qc.append(ccry, [0,1,2])
if j == 0:
qc.x(0)
if k == 0:
qc.x(1)
return qc
list_bin = []
for j in range(0,2**3):
b = "{:03b}".format(j)
list_bin.append(b)
print(list_bin)
eigvals = [0.01,0.1,0.04,0.2,0.05,0.3,0.18,0.12]
coef = np.sqrt(eigvals)
print(coef)
qc_psi_3qb_real_ = qc_psi_3qb_real(coef)
qc_psi_3qb_real_.draw('mpl') # odernamento: '000', '001', '010', '011', '100', '101', '110', '111'
sv = Statevector.from_label('000')
sv
sv = sv.evolve(qc_psi_3qb_real_)
sv # ordenamento aqui: 000 100 010 110 001 101 011 111
# retorna o circuito quantico que prepara um certo estado real de 4 qubits
# coef = array com os 16 coeficientes reais do estado na base computacional
def qc_psi_4qb_real(coef):
qr = QuantumRegister(4)
qc = QuantumCircuit(qr, name = 'psir_4qb')
d = len(coef)
coef3 = np.zeros(d//2)
th = np.zeros(d//2)
for j in range(0,2):
for k in range(0,2):
for l in range(0,2):
coef3[int(str(j)+str(k)+str(l),2)] = math.sqrt(coef[int(str(j)+str(k)+str(l)+str(0),2)]**2+coef[int(str(j)+str(k)+str(l)+str(1),2)]**2)
c_psi_3qb_real_ = qc_psi_3qb_real(coef3)
qc.append(c_psi_3qb_real_, [qr[0],qr[1],qr[2]])
for j in range(0,2):
for k in range(0,2):
for l in range(0,2):
th[int(str(j)+str(k)+str(l),2)] = 2*math.atan(np.abs(coef[int(str(j)+str(k)+str(l)+str(1),2)])/np.abs(coef[int(str(j)+str(k)+str(l)+str(0),2)]))
if j == 0:
qc.x(0)
if k == 0:
qc.x(1)
if l == 0:
qc.x(2)
qc_ry_ = qc_ry(th[int(str(j)+str(k)+str(l),2)])
ccry = qc_ry_.to_gate().control(3)
qc.append(ccry, [0,1,2,3])
if j == 0:
qc.x(0)
if k == 0:
qc.x(1)
if l == 0:
qc.x(2)
return qc
list_bin = []
for j in range(0,2**4):
b = "{:04b}".format(j)
list_bin.append(b)
print(list_bin)
eigvals = np.zeros(2**4)
eigvals[0] = 0.008
for j in range(1,len(eigvals)-1):
eigvals[j] = eigvals[j-1]+0.005
#print(np.sum(eigvals))
eigvals[j+1] = 1 - np.sum(eigvals)
#print(eigvals)
#print(np.sum(eigvals))
coef = np.sqrt(eigvals)
print(coef)
qc_psi_4qb_real_ = qc_psi_4qb_real(coef)
qc_psi_4qb_real_.draw('mpl')
# '0000', '0001', '0010', '0011', '0100', '0101', '0110', '0111', '1000', '1001', '1010', '1011', '1100', '1101', '1110', '1111'
sv = Statevector.from_label('0000')
sv
sv = sv.evolve(qc_psi_4qb_real_)
sv # ordenamento aqui: 0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111
sv[1]
|
https://github.com/clement-boisson/kagome-vqe-on-heavy-hex
|
clement-boisson
|
import numpy as np
import random
import math
from qiskit import QuantumCircuit
class HeavyHexKagomeEstimator:
"""
Custom estimator designed for the XXX Heisenberg hamiltonian on a Kagome lattice
to be run on a quantum computer based on the Heavy Hex architecture (like the IBMQ
Guadalupe).
It uses 2 error mitigation mechnisms:
- Twirled REadout eXtinction algorithm (T-REx)
- Circuit error mitigation based on control qubits
"""
def __init__(self, device_edges, kagome_triangles):
"""
Create an instance of the estimator.
Caution: this function does NOT check that the kagome lattice, the device and the mapping are correct
Args:
device_edges (List[Tuple[int]]): list of connected qubits on the device
kagome_triangles (List[dict]): list of kagome triangle with a possible control qubit (e.g. {"kagome": (0, 2, 4), "control": 1})
"""
# Save the arguments
self.device_edges = device_edges
self.kagome_triangles = kagome_triangles
# Compute the number of physical qubits, and
self.qubit_count = np.max(self.device_edges) + 1
# Compute the list of Kagome edges and vertices (used to compute the energy)
self.kagome_edges = []
self.kagome_vertices = []
for triangle in self.kagome_triangles:
self.kagome_edges.append([triangle["kagome"][0], triangle["kagome"][1]])
self.kagome_edges.append([triangle["kagome"][1], triangle["kagome"][2]])
self.kagome_edges.append([triangle["kagome"][2], triangle["kagome"][0]])
for vertex in triangle["kagome"]:
if vertex not in self.kagome_vertices:
self.kagome_vertices.append(vertex)
def qiskit_number_to_bit_array(self, qiskit_number):
"""
Convert a number returned by the qiskit sampler primitive to a tuple containing '0' or '1'
for each qubit. Qiskit uses little-endian convention, hence the use of reversed.
Example: 3 will be converted to ('1', '1', '0', '0', '0', '0') in a 6-qubit context.
Args:
qiskit_number(int): the number returned as a key of a qiskit sampler result
Returns:
bitstring (tuple[str]): the tuple that we can use to easily get the value of a qubit
"""
pattern = "{0:0" + str(self.qubit_count) + "b}" # generates "{0:016b}" for qubit_count=16
return tuple(reversed(list(pattern.format(int(qiskit_number)))))
def post_process_qiskit_quasi_dists(self, quasi_dists):
"""
Convert a number returned by the qiskit sampler primitive to a tuple containing '0' or '1'
for each qubit. Qiskit uses little-endian convention, hence the use of reversed.
Example: 3 will be converted to ('1', '1', '0', '0', '0', '0') in a 6-qubit context.
Args:
qiskit_number(int): the number returned as a key of a qiskit sampler result
Returns:
quasi_dists (List[dict]): the quasi_dists with converted keys
"""
for i, quasi_dist in enumerate(quasi_dists):
quasi_dists[i] = {self.qiskit_number_to_bit_array(qiskit_number):quasi_dist[qiskit_number] for qiskit_number in quasi_dist.keys()}
return quasi_dists
def TREx_f(self, gatestrings, quasi_dists, s):
"""
Compute the f function of the T-REx algorithm (see https://arxiv.org/abs/2012.09738)
Note that the probabilities don't have to sum up to 1.0 for each circuit
Args:
gatestrings (List[tuple(str)]): a list of tuples like ('I', 'X', ..., 'I') indicating whether there is an X gate or not in the circuit
quasi_dists (List[dict]): for each circuit, the result of the sampler
s (tuple(str)): a tuple like ('I', 'Z', 'Z', ..., 'I', 'I') indicating the targeted pauli hamiltonian
Returns:
gatestrings (List[tuple(str)]): the list of circuits as a tuple indicating if inserting an X gate or not
"""
# Instead of working with D as in the paper, we'll use probabilities
result = 0.0
probs_sum = 0.0
# For each circuit:
for q_idx in range(len(gatestrings)):
q = gatestrings[q_idx] # same q as in the paper
# Compute \gamma_{s,q} as in the paper, i.e. checking if q and s commute:
gamma_sq_ct = 0
for i in range(len(s)):
if s[i] == 'I' or q[i] == 'I' or s[i] == q[i]:
gamma_sq_ct += 0
else:
gamma_sq_ct += 1
# Use the definition of \gamma_{s,q} (1 if q and s commute, -1 otherwise)
gamma_sq = -1
if gamma_sq_ct % 2 == 0:
gamma_sq = 1
# Loop over x, the measurements of the qubits:
for x in quasi_dists[q_idx].keys():
# compute <s,x>
sx = 0
for i in range(self.qubit_count):
if s[i] == 'Z' and x[i] == '1':
sx += 1
# add probability * \gamma_{s,q} * (-1)^{<s,x>}
prob = quasi_dists[q_idx][x]
result += prob * gamma_sq * (-1)**sx
probs_sum += prob
if probs_sum == 0.0:
return 0.0 # In order to avoid an exception in special cases such as noiseless environments
return result / probs_sum
def generate_balanced_random_X_gates(self, num_twirled_circuits, where_to_apply):
"""
Generates a list of twirled circuits X instructions.
In order to ensure both 0s and 1s well distributed, for each qubit, we take randomly
half of circuits and set a X gate, keeping the other half unchanged.
Example:
For 3 qubits, num_twirled_circuits=2 and where_to_apply=[0], it will return:
[('X', 'I', 'I'), ('I', 'I', 'I')]
or
[('I', 'I', 'I'), ('X', 'I', 'I')]
with half of the circuits having an X gate for the qubit #0
Args:
num_twirled_circuits (int): number of twirled circuits to use
where_to_apply (List[int]): the list of qubits where we want to apply randomly an X gate
Returns:
gatestrings (List[tuple(str)]): the list of circuits as a tuple indicating if inserting an X gate or not
"""
gatestrings = []
for i in range(num_twirled_circuits):
gatestrings.append(['I' for i in range(self.qubit_count)])
gatestring_indices = [i for i in range(num_twirled_circuits)]
for i in where_to_apply:
random.shuffle(gatestring_indices)
for k in range(num_twirled_circuits//2):
gatestrings[gatestring_indices[k]][i] = 'X'
return gatestrings
def calibrate(self, sampler, num_twirled_circuits, shots):
"""
Calibrate the estimator
Args:
sampler: the sampler to use
num_twirled_circuits (int): number of twirled circuits to use
shots (int): number of shots per circuit to use
"""
# 1. Prepare calibration circuits with, for each qubit, either an X gate or no gate
# Let's prepare when apply X gates for all qubits
gatestrings = self.generate_balanced_random_X_gates(num_twirled_circuits, [i for i in range(self.qubit_count)])
# Use the generated gate strings to generate actual circuits
calib_circs = []
for i in range(num_twirled_circuits):
# Create a circuit
circ = QuantumCircuit(self.qubit_count, self.qubit_count)
# Choose randomly for each qubit if applying an X gate or not
gatestring = gatestrings[i]
# Add a X gate when necessary
for qubit in range(self.qubit_count):
if gatestring[qubit] == 'X':
circ.x(qubit)
# Measure all qubits
for qubit in range(self.qubit_count):
circ.measure(qubit, qubit)
# Add the circuit
calib_circs.append({
"circuit": circ,
"gatestring": gatestring
})
# 2. Execute the circuits with the sampler primitive
job = sampler.run([el["circuit"] for el in calib_circs], [[] for el in calib_circs], shots=shots)
quasi_dists = self.post_process_qiskit_quasi_dists(job.result().quasi_dists)
# 3. For all the kagome edges, compute the T-REx calibration value that will make it possible to
# later estimate the edge hamiltonian energies
self.trex_edge_calibrations = {} # key: the edge, value: the result of the f function for the T-REx calibration
for edge in self.kagome_edges:
# Prepare s (as in the T-REx paper) for this edge, i.e. the Z-pauli measurement hamiltonian
s = ['I' for i in range(self.qubit_count)]
s[edge[0]] = 'Z'
s[edge[1]] = 'Z'
fvalue = self.TREx_f([el["gatestring"] for el in calib_circs], quasi_dists, s)
self.trex_edge_calibrations[(edge[0], edge[1])] = fvalue
self.trex_edge_calibrations[(edge[1], edge[0])] = fvalue
# 4. For all the control qubits, estimate the probability of the qubit being 0/1 given a measurement of 0/1
# under uniform apriori distribution
self.control_qubit_measuring_probs = {} # key: qubit number, value: dictionary of probability (see below)
for triangle in self.kagome_triangles:
# If there is no control qubit in the triangle, just ignore it
if triangle["control"] == None:
continue
# Compute the likelihood probabilities (probability of measuring 0/1 given a ground-truth 0/1)
# ("p" as Probability, "t" as True value, "m" as Measured value)
pm0_t0 = 0.0 # 0 given a ground-truth of 0
pm1_t0 = 0.0
pm0_t1 = 0.0
pm1_t1 = 0.0
for circ_idx in range(len(calib_circs)):
for measure in quasi_dists[circ_idx].keys():
if measure[triangle["control"]] == '0': # measuring 0
if calib_circs[circ_idx]["gatestring"][triangle["control"]] == 'I': # ground-truth is 0
pm0_t0 += quasi_dists[circ_idx][measure]
else: # ground-truth is 1
pm0_t1 += quasi_dists[circ_idx][measure]
else: # measuring 1
if calib_circs[circ_idx]["gatestring"][triangle["control"]] == 'I': # ground-truth is 0
pm1_t0 += quasi_dists[circ_idx][measure]
else: # ground-truth is 1
pm1_t1 += quasi_dists[circ_idx][measure]
# Normalize in order to have pm0_t0+pm1_t0=1.0 and pm0_t1+pm1_t1=1.0
p_t0 = pm0_t0+pm1_t0
pm0_t0 /= p_t0
pm1_t0 /= p_t0
p_t1 = pm0_t1+pm1_t1
pm0_t1 /= p_t1
pm1_t1 /= p_t1
# Deriving the probabilities under uniform apriori distribution
self.control_qubit_measuring_probs[triangle["control"]] = {
"pt0_m1": pm1_t0/(pm1_t0+pm0_t0), # probability that the qubit has a true value 0 given a measurement of 1
"pt1_m0": pm0_t1/(pm0_t1+pm1_t1) # probability that the qubit has a true value 1 given a measurement of 0
}
def estimate_energy_for_circuit(self, base_circuit, sampler, num_twirled_circuits, shots):
"""
Estimates the energy (expectaction value of the hamiltonian) for a circuit.
Args:
base_circuit: a quantum circuit
sampler: the sampler to use
num_twirled_circuits (int): number of twirled circuits to use
shots (int): number of shots per circuit to use
Returns:
result (dict): a dictionary containing the value of the energy ("energy" key) and other information
"""
# 1. Let's build a list of circuits to use with the Sampler primitive
# We want circuits for the X, Y, and the Z part of the hamiltonian,
# and randomly apply X gate before measurement (for the T-REx readout error mitigation algorithm)
circuits = []
# For X, Y or Z:
for xyz in ["X", "Y", "Z"]:
circ_xyz = base_circuit.copy()
# Let's generate random X gates (for kagome vertices only):
gatestrings = self.generate_balanced_random_X_gates(num_twirled_circuits, self.kagome_vertices)
# Add the basis change to all the kagome vertices for X, Y or Z measurement
if xyz == "X":
circ_xyz.rz(math.pi/2.0, self.kagome_vertices)
circ_xyz.sx(self.kagome_vertices)
circ_xyz.rz(math.pi/2.0, self.kagome_vertices)
elif xyz == "Y":
circ_xyz.sx(self.kagome_vertices)
circ_xyz.rz(math.pi/2.0, self.kagome_vertices)
elif xyz == "Z":
pass # nothing to do for Z measurement
# And then we apply the X gates (for T-REx) and measuring
for gatestring in gatestrings:
circ = circ_xyz.copy()
# Add X gates:
for qubit in range(self.qubit_count):
if gatestring[qubit] == 'X':
circ.x(qubit)
# Add measurements:
circ.measure([i for i in range(self.qubit_count)], [i for i in range(self.qubit_count)])
# Add the circuit
circuits.append({
"circuit": circ,
"xyz": xyz,
"gatestring": gatestring
})
# 2. Execute the circuits with the sampler primitive
job = sampler.run([el["circuit"] for el in circuits], [[] for el in circuits], shots=shots)
quasi_dists = self.post_process_qiskit_quasi_dists(job.result().quasi_dists)
for i, quasi_dist in enumerate(quasi_dists):
circuits[i]["quasi_dist"] = quasi_dist # add the results to the circuits variable
# 3. For each triangle, and for each X,Y,Z, let's estimate the energy
triangle_results = []
for xyz in ["X", "Y", "Z"]:
xyz_circuits = [el for el in circuits if el["xyz"] == xyz] # keep the results corresponding to xyz
# For each triangle:
for triangle_idx, triangle in enumerate(self.kagome_triangles):
# List the kagome edges belonging to the triangle:
triangle_edges = [
(triangle["kagome"][0], triangle["kagome"][1]),
(triangle["kagome"][1], triangle["kagome"][2]),
(triangle["kagome"][2], triangle["kagome"][0])
]
# First, compute the triangle energy with just the T-REx algorithm
# without the control-qubit error mitigation (as a comparison)
triangle_energy_without_control = 0.0
for edge in triangle_edges:
# Prepare s (as in the T-REx paper) for this edge, i.e. the Z-pauli measurement hamiltonian
s = ['I' for i in range(self.qubit_count)]
s[edge[0]] = 'Z'
s[edge[1]] = 'Z'
# Estimate the edge energy, as in the T-REx paper
edge_energy = self.TREx_f([el["gatestring"] for el in xyz_circuits], [el["quasi_dist"] for el in xyz_circuits], s) / self.trex_edge_calibrations[edge]
# add the edge energy to the triangle energy
triangle_energy_without_control += edge_energy
# If the triangle has no control qubit, we just use the T-Rex algorithm
if triangle["control"] == None:
triangle_energy = triangle_energy_without_control
# If the triangle has a control qubit:
else:
# Compute p0: frequency of measuring 0 for the control qubit
p0 = 0.0
for circ in xyz_circuits:
for measure in circ["quasi_dist"].keys():
if measure[triangle["control"]] == '0': # if 0 is measured
p0 += circ["quasi_dist"][measure] # then we add the associated probability
p0 /= len(xyz_circuits) # there are several circuits, we need to normalize so that p0+p1=1
# Compute p1: frequency of measuring 1 for the control qubit
p1 = 1.0 - p0
# Separate the results of quasi_distributions depending on the measure on the control qubit:
quasi_dists0 = [{k:circ["quasi_dist"][k] for k in circ["quasi_dist"] if k[triangle["control"]] == '0'} for circ in xyz_circuits]
quasi_dists1 = [{k:circ["quasi_dist"][k] for k in circ["quasi_dist"] if k[triangle["control"]] == '1'} for circ in xyz_circuits]
# Compute E0: the energy associated with measuring 0 for the control qubit
E0 = 0.0
for edge in triangle_edges:
# Prepare s (as in the T-Rex paper) for this edge, i.e. the Z-pauli measurement hamiltonian
s = ['I' for i in range(self.qubit_count)]
s[edge[0]] = 'Z'
s[edge[1]] = 'Z'
# Estimate the edge energy, as in the T-Rex paper
edge_energy = self.TREx_f([el["gatestring"] for el in xyz_circuits], quasi_dists0, s) / self.trex_edge_calibrations[edge]
# add the edge energy to the triangle energy
E0 += edge_energy
# Compute E1: the energy associated with measuring 1 for the control qubit
E1 = 0.0
for edge in triangle_edges:
# Prepare s (as in the T-Rex paper) for this edge, i.e. the Z-pauli measurement hamiltonian
s = ['I' for i in range(self.qubit_count)]
s[edge[0]] = 'Z'
s[edge[1]] = 'Z'
# Estimate the edge energy, as in the T-Rex paper
edge_energy = self.TREx_f([el["gatestring"] for el in xyz_circuits], quasi_dists1, s) / self.trex_edge_calibrations[edge]
# add the edge energy to the triangle energy
E1 += edge_energy
# Apply a correction by taking into account readout errors on the control qubits
# and find corrected values p0c, p1c, E0c, E1c ("c" as corrected)
# Retrieve the probability of the control qubit
pt0_m1 = self.control_qubit_measuring_probs[triangle["control"]]["pt0_m1"] # probability of being 0 given that 1 is measured
pt1_m0 = self.control_qubit_measuring_probs[triangle["control"]]["pt1_m0"] # probability of being 1 given that 0 is measured
# The equations for correction are:
# E0 = (1-pt1_m0) * E0c + pt1_m0 * E1c
# E1 = (1-pt0_m1) * E1c + pt0_m1 * E0c
# p0 = (1-pt1_m0) * p0c + pt1_m0 * p1c
# p1 = (1-pt0_m1) * p1c + pt0_m1 * p0c
# Let's derive the corrected values (equivalent to inverting a 2x2 matrix)
E1c = ((1-pt1_m0)*E1 - pt0_m1*E0)/(1-pt0_m1-pt1_m0)
p1c = ((1-pt1_m0)*p1 - pt0_m1*p0)/(1-pt0_m1-pt1_m0)
E0c = ((1-pt0_m1)*E0 - pt1_m0*E1)/(1-pt0_m1-pt1_m0)
p0c = ((1-pt0_m1)*p0 - pt1_m0*p1)/(1-pt0_m1-pt1_m0)
# Find the estimation of the targeted energy
triangle_energy = (p0c * E0c - p1c * E1c) / (p0c-p1c)
# Save results:
triangle_results.append({
"xyz": xyz,
"triangle_idx": triangle_idx,
"triangle_energy": triangle_energy,
"triangle_energy_without_control": triangle_energy_without_control
})
# 4. Return the results:
return {
"energy": np.sum([triangle_result["triangle_energy"] for triangle_result in triangle_results]),
"energy_without_control": np.sum([triangle_result["triangle_energy_without_control"] for triangle_result in triangle_results]),
"triangle_results": triangle_results
}
|
https://github.com/minnukota381/Quantum-Computing-Qiskit
|
minnukota381
|
import qiskit as q
%matplotlib inline
from qiskit import *
from qiskit.visualization import plot_bloch_multivector, visualize_transition, plot_histogram
Msg = "QuantumComputing"
secretnum = ''.join(format(ord(i), 'b') for i in Msg)
# printing result
print("The string after binary conversion : " + str(secretnum))
print("Your Quantum Algorithm is Running!")
circuit = q.QuantumCircuit(len(secretnum)+1, len(secretnum))
circuit.h(range(len(secretnum)))
circuit.x(len(secretnum))
circuit.h(len(secretnum))
circuit.barrier()
for i, j in enumerate(reversed(secretnum)):
if j == '1':
circuit.cx(i, len(secretnum))
circuit.barrier()
circuit.h(range(len(secretnum)))
circuit.barrier()
circuit.measure(range(len(secretnum)),range(len(secretnum)))
circuit.barrier()
simulator = q.Aer.get_backend('qasm_simulator')
result = q.execute(circuit, backend=simulator, shots=1).result()
counts = result.get_counts()
counts = str(counts)
counts = (counts[2:len(secretnum)+2])
print("the binary of ur String is", counts)
def BinaryToDecimal(binary):
string = int(binary, 2)
return string
bin_data = str(counts)
str_data =' '
for i in range(0, len(bin_data), 7):
temp_data = bin_data[i:i + 7]
decimal_data = BinaryToDecimal(temp_data)
str_data = str_data + chr(decimal_data)
# printing the result
print("The Binary value after string conversion is:", str_data)
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=missing-function-docstring
"""Tests basic functionality of the sequence function"""
import unittest
from qiskit import QuantumCircuit, pulse
from qiskit.compiler import sequence, transpile, schedule
from qiskit.pulse.transforms import pad
from qiskit.providers.fake_provider import FakeParis
from qiskit.test import QiskitTestCase
class TestSequence(QiskitTestCase):
"""Test sequence function."""
def setUp(self):
super().setUp()
self.backend = FakeParis()
def test_sequence_empty(self):
self.assertEqual(sequence([], self.backend), [])
def test_transpile_and_sequence_agree_with_schedule(self):
qc = QuantumCircuit(2, name="bell")
qc.h(0)
qc.cx(0, 1)
qc.measure_all()
sc = transpile(qc, self.backend, scheduling_method="alap")
actual = sequence(sc, self.backend)
expected = schedule(transpile(qc, self.backend), self.backend)
self.assertEqual(actual, pad(expected))
def test_transpile_and_sequence_agree_with_schedule_for_circuit_with_delay(self):
qc = QuantumCircuit(1, 1, name="t2")
qc.h(0)
qc.delay(500, 0, unit="ns")
qc.h(0)
qc.measure(0, 0)
sc = transpile(qc, self.backend, scheduling_method="alap")
actual = sequence(sc, self.backend)
expected = schedule(transpile(qc, self.backend), self.backend)
self.assertEqual(
actual.exclude(instruction_types=[pulse.Delay]),
expected.exclude(instruction_types=[pulse.Delay]),
)
@unittest.skip("not yet determined if delays on ancilla should be removed or not")
def test_transpile_and_sequence_agree_with_schedule_for_circuits_without_measures(self):
qc = QuantumCircuit(2, name="bell_without_measurement")
qc.h(0)
qc.cx(0, 1)
sc = transpile(qc, self.backend, scheduling_method="alap")
actual = sequence(sc, self.backend)
expected = schedule(transpile(qc, self.backend), self.backend)
self.assertEqual(actual, pad(expected))
|
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
|
PabloMartinezAngerosa
|
from tsp_qaoa import test_solution
from qiskit.visualization import plot_histogram
import networkx as nx
import numpy as np
import json
import csv
# Array of JSON Objects
header = ['p', 'state', 'probability', 'mean']
length_p = 10
with open('qaoa_multiple_p.csv', 'w', encoding='UTF8') as f:
writer = csv.writer(f)
# write the header
writer.writerow(header)
first_p = False
for p in range(length_p):
p = p+1
if first_p == False:
job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(p=p)
first_p = True
else:
job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(grafo=G, p=p)
# Sort the JSON data based on the value of the brand key
UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"])
mean = UNIFORM_CONVERGENCE_SAMPLE[0]["mean"]
print(mean)
state = 0
for probability in UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"]:
state += 1
writer.writerow([p,state, probability,mean])
|
https://github.com/maryrbarros2/QuantumAlgorithms_Qiskit
|
maryrbarros2
|
my_list = [1,3,5,2,4,2,5,8,0,7,6]
#classical computation method
def oracle(my_input):
winner =7
if my_input is winner:
response = True
else:
response = False
return response
for index, trial_number in enumerate(my_list):
if oracle(trial_number) is True:
print("Winner is found at index %i" %index)
print("%i calls to the oracle used " %(index +1))
break
#quantum implemenation
from qiskit import *
import matplotlib.pyplot as plt
import numpy as np
from qiskit.tools import job_monitor
# oracle circuit
oracle = QuantumCircuit(2, name='oracle')
oracle.cz(0,1)
oracle.to_gate()
oracle.draw(output='mpl')
backend = Aer.get_backend('statevector_simulator')
grover_circuit = QuantumCircuit(2,2)
grover_circuit.h([0,1])
grover_circuit.append(oracle,[0,1])
grover_circuit.draw(output='mpl')
job= execute(grover_circuit, backend=backend)
result= job.result()
sv= result.get_statevector()
np.around(sv,2)
#amplitude amplification
reflection = QuantumCircuit(2, name='reflection')
reflection.h([0,1])
reflection.z([0,1])
reflection.cz(0,1)
reflection.h([0,1])
reflection.to_gate()
reflection.draw(output='mpl')
#testing circuit on simulator
simulator = Aer.get_backend('qasm_simulator')
grover_circuit = QuantumCircuit(2,2)
grover_circuit.h([0,1])
grover_circuit.append(oracle,[0,1])
grover_circuit.append(reflection, [0,1])
grover_circuit.barrier()
grover_circuit.measure([0,1],[0,1])
grover_circuit.draw(output='mpl')
job= execute(grover_circuit,backend=simulator,shots=1)
result=job.result()
result.get_counts()
#testing on real backend system
IBMQ.load_account()
provider= IBMQ.get_provider('ibm-q')
qcomp= provider.get_backend('ibmq_manila')
job = execute(grover_circuit,backend=qcomp)
job_monitor(job)
result=job.result()
counts=result.get_counts(grover_circuit)
from qiskit.visualization import plot_histogram
plot_histogram(counts)
counts['11']
|
https://github.com/apcarrik/qiskit-dev
|
apcarrik
|
import numpy as np
from qiskit.opflow import Z, X, I, StateFn, CircuitStateFn, SummedOp
from qiskit.opflow.gradients import Gradient, NaturalGradient, QFI, Hessian
from qiskit.circuit import (QuantumCircuit, QuantumRegister, Parameter,
ParameterVector, ParameterExpression)
from qiskit.circuit.library import EfficientSU2
### First Order Gradients
## Gradients with respect to Measurement Operator Parameters
# instantiate the quantum state
a = Parameter('a')
b = Parameter('b')
q = QuantumRegister(1)
qc = QuantumCircuit(q)
qc.h(q)
qc.rz(a, q[0])
qc.rx(b, q[0])
# instantiate Hamiltonian observable
H = (2 * X) + Z
# combine the Hamiltonian observable and the state
op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.)
# print the operator corresponding to the expectation value
print(op)
params = [a, b]
# define the values to be asigned to the parameters
value_dict = {a: np.pi / 4, b: np.pi}
# convert the operator and the gradient target params into the respective operators
grad = Gradient().convert(operator= op, params= params)
# print the operator corresponding to the gradient
print(grad)
# assign the parameters and evaluate the gradient
grad_result = grad.assign_parameters(value_dict).eval()
print("Gradient", grad_result)
## Gradients with respect to State Parameters
# define the Hamiltonian with fixed coefficients
H = 0.5 * X - 1 * Z
# define the parameters w.r.t we want to compute the gradients
params = [a,b]
# define the values to be assigned to the parameters
value_dict = {a: np.pi / 4, b: np.pi}
# combine the Hamiltonian observable and the state
op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.)
# print the operator corresponding to the expectation value
print(op)
## Parameter Shift Gradients
# convert the expectation value into an operator corrsponding to the gradient w.r.t
# the state parameters using the parameter shift method
state_grad = Gradient(grad_method='param_shift').convert(operator=op, params=params)
# print the operator corresponding to the gradient
print(state_grad)
# assign the parameters and evaluate the gradient
state_grad_result = state_grad.assign_parameters(value_dict).eval()
print('State gradient computed with parameter shift', state_grad_result)
## Linear Combination of Unitaries Gradients
# convert the expectation value into an operator corresponding to the gradient w.r.t
# the state parameter using a linear combination of unitaries method
state_grad = Gradient(grad_method='lin_comb').convert(operator=op, params=params)
# print the operator corresponding to the gradient
print(state_grad)
# assign the parameters and evaluate the gradient
state_grad_result = state_grad.assign_parameters(value_dict).eval()
print('State gradient computed with the linear combination method', state_grad_result)
## Finite Difference Gradients
# while the previous methods were analytical, this is a numerical approximation method
# convert the expectation value into an operator corresponding to the gradient w.r.t
# the state parameter using the finite difference method
state_grad = Gradient(grad_method='lin_comb').convert(operator=op, params=params)
# print the operator corresponding to the gradient
print(state_grad)
# assign the parameters and evaluate the gradient
state_grad_result = state_grad.assign_parameters(value_dict).eval()
print('State gradient computed with the linear combination method', state_grad_result)
## Natural Gradients
# besides the method to compute the circuit gradients resp. QFI, a regularization method
# can be chosen: 'ridge' or 'lasso' with automatic parameter search or 'perturb_diag'
# or 'perturb_diag_elements', which perturb the diagonal elements of the QFI
nat_grad = NaturalGradient(grad_method='lin_comb', qfi_method='lin_comb_full',
regularization='ridge').convert(operator=op, params=params)
# assign the parameters and evaluate the gradient
nat_grad_result = nat_grad.assign_parameters(value_dict).eval()
print('Natural gradient computed with the linear combination of unitaries', nat_grad_result)
### Hessians (Second Order Gradients)
## Hessians w.r.t Measurement Operator Parameters
# instantiate the Hamiltonian observable
H = X
# instantiate the quantum state with two parameters
a = Parameter('a')
b = Parameter('b')
q = QuantumRegister(1)
qc = QuantumCircuit(q)
qc.h(q)
qc.rz(a, q[0])
qc.rx(b, q[0])
# combine the Hamiltonian observable and the state
op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.)
# convert the operator and the Hessian target coefficients into the respective operator
hessian = Hessian().convert(operator=op, params=[a,b])
# define the values to be assigned to the parameters
value_dict = {a: np.pi/4, b: np.pi/4}
# assign the parameters and evaluate the Hessian w.r.t the Hamiltonian coefficients
hessian_result = hessian.assign_parameters(value_dict).eval()
print('Hessian \n', np.real(np.array(hessian_result)))
## Hessians w.r.t. State Parameters
# define parameters
params = [a, b]
# get the operator object representing the Hessian
state_hess = Hessian(hess_method='param_shift').convert(operator=op, params=params)
# assign the parameters and evaluate the Hessian
hessian_result = state_hess.assign_parameters(value_dict).eval()
print("Hessian computed using the parameter shift method\n", (np.array(hessian_result)))
# get the operator object representing the Hessian
state_hess = Hessian(hess_method='lin_comb').convert(operator=op, params=params)
# assign the parameters and evaluate the Hessian
hessian_result = state_hess.assign_parameters(value_dict).eval()
print("Hessian computed using the linear combination of unitaries method\n",
(np.array(hessian_result)))
# get the operator object representing the Hessian using finite difference
state_hess = Hessian(hess_method='fin_diff').convert(operator=op, params=params)
# assign the parameters and evaluate the Hessian
hessian_result = state_hess.assign_parameters(value_dict).eval()
print("Hessian computed using the finite difference method\n",
(np.array(hessian_result)))
### Quantum Fisher Information (QFI)
## Linear Combination Full QFI
# wrap the quantum circuit into a CircuitStateFn
state = CircuitStateFn(primitive=qc, coeff=1.)
# convert the state and the parameters into the operator object that represents the QFI
qfi = QFI(qfi_method='lin_comb_full').convert(operator=state, params=params)
# define the values for which the QFI is to be computed
values_dict = {a: np.pi/4, b: 0.1}
# assign the parameters and evaluate the QFI
qfi_result = qfi.assign_parameters(values_dict).eval()
print('full QFI \n', np.real(np.array(qfi_result)))
## Block-diagonal and Diagonal Approximation
# convert the state and the parameters into the operator object that represents the QFI
# and set the approximation to 'block_diagonal'
qfi = QFI(qfi_method='overlap_block_diag').convert(operator=state, params=params)
# assign the parameters and evaluate the QFI
qfi_result = qfi.assign_parameters(values_dict).eval()
print('Block-diagonal QFI \n', np.real(np.array(qfi_result)))
# convert the state and the parameters into the operator object that represents the QFI
# and set the approximation to 'diagonal'
qfi = QFI(qfi_method='overlap_diag').convert(operator=state, params=params)
# assign the parameters and evaluate the QFI
qfi_result = qfi.assign_parameters(values_dict).eval()
print('Diagonal QFI \n', np.real(np.array(qfi_result)))
### Application Example: VQE with Gradient-Based Optimization
# execution imports
from qiskit import Aer
from qiskit.utils import QuantumInstance
# algorithm imports
from qiskit.algorithms import VQE
from qiskit.algorithms.optimizers import CG
from qiskit.opflow import I, X , Z
from qiskit.circuit import QuantumCircuit, ParameterVector
from scipy.optimize import minimize
# initiate the system Hamiltonian
h2_hamiltonian = -1.05 * (I ^ I) + 0.39 * (I ^ Z) - 0.39 * (Z ^ I) - 0.01 * (Z ^ Z) + \
0.18 * (X ^ X)
# this is the target energy
h2_energy = -1.85727503
# define the Ansatz
wavefunction = QuantumCircuit(2)
params = ParameterVector('theta', length=8)
it = iter(params)
wavefunction.ry(next(it), 0)
wavefunction.ry(next(it), 1)
wavefunction.rz(next(it), 0)
wavefunction.rz(next(it), 1)
wavefunction.cx(0, 1)
wavefunction.ry(next(it), 0)
wavefunction.ry(next(it), 1)
wavefunction.rz(next(it), 0)
wavefunction.rz(next(it), 1)
# define the expectation value corresponding to the energy
op = ~StateFn(h2_hamiltonian) @ StateFn(wavefunction)
# choose wheither VQE should use Gradient or NaturalGradient
grad = Gradient(grad_method='lin_comb')
qi_sv = QuantumInstance(Aer.get_backend('aer_simulator_statevector'),
shots=1,
seed_simulator=2,
seed_transpiler=2)
# configure Gradient algorithm
optimizer = CG(maxiter=50)
# Gradient callable
vqe = VQE(wavefunction, optimizer=optimizer, gradient=grad, quantum_instance=qi_sv)
result = vqe.compute_minimum_eigenvalue(h2_hamiltonian)
print("Result:", result.optimal_value, 'Reference:', h2_energy)
# define QuantumInstance to execute quantum circuits and run algorithm
|
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
|
rubenandrebarreiro
|
# Expand the Width of the Cells to a ratio of 100%
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
# Update, the Conda's version, if necessary
!conda update -n base conda --yes
# Install other useful Libraries for Quantum Information Science,
# the QuTiP Framework, in this case, based on Python Programming Language
!conda install qutip --yes
# Import the matplotlib Library
import matplotlib.pyplot as plt
%matplotlib inline
# Import the NumPy and Math Libraries,
# based on Python Programming Language
import numpy as np
import math
# Import some basic Modules from Qiskit Library and configuring account
from qiskit import IBMQ, BasicAer
from qiskit import QuantumCircuit, execute, Aer, IBMQ, QuantumRegister, ClassicalRegister
from qiskit.compiler import transpile, assemble
from qiskit.providers.ibmq import least_busy
from qiskit.tools.jupyter import *
from qiskit.visualization import *
# Import some basic Visualization/Plot Modules/Tools from Qiskit Library
from qiskit.tools.visualization import plot_histogram
# In Jupyter Notebooks we can display this nicely using Latex.
# If not using Jupyter Notebooks you may need to remove the
# array_to_latex function and use print() instead.
from qiskit_textbook.tools import array_to_latex
# Import Operator Module from Qiskit Library, for Custom Operators
from qiskit.quantum_info.operators import Operator
def cz(circuit, qr):
circuit.h(qr[1])
circuit.cx(qr[0],qr[1])
circuit.h(qr[1])
# Create a Classical Register for 2 Bits (Classical Bits), with a Total of 2 Possible Processed States
qr2 = QuantumRegister(2)
czCircuit = QuantumCircuit(qr2)
cz(czCircuit,qr2)
czCircuit.draw(output="mpl")
def ccz(circuit,qr):
circuit.h(qr[2])
# CCX is the Toffoli gate
circuit.ccx(qr[0], qr[1], qr[2])
circuit.h(qr[2])
qr3 = QuantumRegister(3)
cczCircuit = QuantumCircuit(qr3)
ccz(cczCircuit,qr3)
cczCircuit.draw(output="mpl")
def cccz(circuit,qr):
pi = math.pi
circuit.cu1(pi/4,qr[0],qr[3])
circuit.cx(qr[0], qr[1])
circuit.cu1(-pi/4, qr[1],qr[3])
circuit.cx(qr[0], qr[1])
circuit.cu1(pi/4, qr[1],qr[3])
circuit.cx(qr[1], qr[2])
circuit.cu1(-pi/4, qr[2],qr[3])
circuit.cx(qr[0], qr[2])
circuit.cu1(pi/4, qr[2],qr[3])
circuit.cx(qr[1], qr[2])
circuit.cu1(-pi/4, qr[2],qr[3])
circuit.cx(qr[0], qr[2])
circuit.cu1(pi/4, qr[2],qr[3])
qr4 = QuantumRegister(4)
ccczCircuit = QuantumCircuit(qr4)
cccz(ccczCircuit,qr4)
ccczCircuit.draw(output="mpl")
def ccccz(circuit, qr):
unitaryMatrixCCCCZ = Operator([
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1]
])
circuit.unitary(unitaryMatrixCCCCZ, qr, label='CCCCZ')
qr5 = QuantumRegister(5)
cccczCircuit = QuantumCircuit(qr5)
ccccz(cccczCircuit,qr5)
cccczCircuit.draw(output="mpl")
def n_controlled_Z(circuit, qr):
# Implement a Z-Gate with multiple controls
if (len(qr) > 5):
raise ValueError('The Controlled-Z with more than 4 Control-Qubits is not implemented!!!')
# This is the case n = 2 (1 control + 1 target Qubit)
elif (len(qr) == 2):
cz(circuit,qr)
# This is the case n = 3 (2 control + 1 target Qubit)
elif (len(qr) == 3):
ccz(circuit,qr)
# This is the case n = 4 (3 control + 1 target Qubit)
elif (len(qr) == 4):
cccz(circuit,qr)
# Extra Exercise (Made by Rúben André Barreiro)
# This is the case n = 5 (4 control + 1 target Qubit)
elif (len(qr) == 5):
cccz(circuit,qr)
# Getting the Backend for the Unitary Representation of the Controlled-Z Gate
# (i.e., the Quantum State represented as an Unitary Matrix)
backend = Aer.get_backend('unitary_simulator')
unitaryCZ = execute(czCircuit,backend).result().get_unitary()
unitaryCCZ = execute(cczCircuit,backend).result().get_unitary()
unitaryCCCZ = execute(ccczCircuit,backend).result().get_unitary()
unitaryCCCCZ = execute(cccczCircuit,backend).result().get_unitary()
array_to_latex(unitaryCZ, pretext="\\text{CZ (Controlled-Z) = }\n")
array_to_latex(unitaryCCZ, pretext="\\text{CCZ (Controlled-Controlled-Z) = }\n")
array_to_latex(unitaryCCCZ, pretext="\\text{CCCZ (Controlled-Controlled-Controlled-Z) = }\n")
# Extra Exercise (not asked by the Professors):
# - Multi Controlled-Z Gate for 5 Qubits (Made by Rúben André Barreiro)
array_to_latex(unitaryCCCCZ, pretext="\\text{CCCZ (Controlled-Controlled-Controlled-Controlled-Z) = }\n")
def phase_oracle(circuit,qr,element):
# Element is an Array that defines the searched Element,
# for example, Element = [0,1,0,1]
for j,x in enumerate(element):
if (x == 0):
circuit.x(qr[j])
circuit.barrier()
n_controlled_Z(circuit,qr)
circuit.barrier()
for j,x in enumerate(element):
if (x == 0):
circuit.x(qr[j])
def mark_state(element_test_state, testCircuit):
for qubit_index, element in enumerate(element_test_state):
if element == 1:
testCircuit.x(qubit_index)
testCircuit.barrier()
# Defining some tests, for the Phase Oracle, with n = 2
#element_test_2_states = [0,0]
element_test_2_states = [0,1]
#element_test_2_states = [1,0]
#element_test_2_states = [1,1]
qr2 = QuantumRegister(2)
testFunctionCircuit2 = QuantumCircuit(qr2)
element_test_2_states_binary = ''.join(map(str,element_test_2_states))
print("The Marked State is: |{}⟩".format(element_test_2_states_binary))
element_test_2_states.reverse()
mark_state(element_test_2_states, testFunctionCircuit2)
phase_oracle(testFunctionCircuit2,qr2,element_test_2_states)
testFunctionCircuit2.draw(output="mpl")
# Getting the Backend for the Statevector Representation
# (i.e., the Quantum State represented as State Vector)
statevector_backend = Aer.get_backend('statevector_simulator')
final_state = execute(testFunctionCircuit2,statevector_backend).result().get_statevector()
array_to_latex(final_state, pretext="\\text{Final State for Marked State (Statevector) = }\n", precision = 1)
# Defining some tests, for the Phase Oracle, with n = 3
#element_test_3_states = [0,0,0]
#element_test_3_states = [0,0,1]
#element_test_3_states = [0,1,0]
element_test_3_states = [0,1,1]
#element_test_3_states = [1,0,0]
#element_test_3_states = [1,0,1]
#element_test_3_states = [1,1,0]
#element_test_3_states = [1,1,1]
qr3 = QuantumRegister(3)
testFunctionCircuit3 = QuantumCircuit(qr3)
element_test_3_states_binary = ''.join(map(str,element_test_3_states))
print("The Marked State is: |{}⟩".format(element_test_3_states_binary))
element_test_3_states.reverse()
mark_state(element_test_3_states, testFunctionCircuit3)
phase_oracle(testFunctionCircuit3,qr3,element_test_3_states)
testFunctionCircuit3.draw(output="mpl")
# Getting the Backend for the Statevector Representation
# (i.e., the Quantum State represented as State Vector)
statevector_backend = Aer.get_backend('statevector_simulator')
final_state = execute(testFunctionCircuit3,statevector_backend).result().get_statevector()
array_to_latex(final_state, pretext="\\text{Final State for Marked State (Statevector) = }\n", precision = 1)
# Defining some tests, for the Phase Oracle, with n = 4
#element_test_4_states = [0,0,0,0]
#element_test_4_states = [0,0,0,1]
#element_test_4_states = [0,0,1,0]
#element_test_4_states = [0,0,1,1]
#element_test_4_states = [0,1,0,0]
#element_test_4_states = [0,1,0,1]
#element_test_4_states = [0,1,1,0]
#element_test_4_states = [0,1,1,1]
#element_test_4_states = [1,0,0,0]
#element_test_4_states = [1,0,0,1]
element_test_4_states = [1,0,1,0]
#element_test_4_states = [1,0,1,1]
#element_test_4_states = [1,1,0,0]
#element_test_4_states = [1,1,0,1]
#element_test_4_states = [1,1,1,0]
#element_test_4_states = [1,1,1,1]
qr4 = QuantumRegister(4)
testFunctionCircuit4 = QuantumCircuit(qr4)
element_test_4_states_binary = ''.join(map(str,element_test_4_states))
print("The Marked State is: |{}⟩".format(element_test_4_states_binary))
element_test_4_states.reverse()
mark_state(element_test_4_states, testFunctionCircuit4)
phase_oracle(testFunctionCircuit4,qr4,element_test_4_states)
testFunctionCircuit4.draw(output="mpl")
# Getting the Backend for the Statevector Representation
# (i.e., the Quantum State represented as State Vector)
statevector_backend = Aer.get_backend('statevector_simulator')
final_state = execute(testFunctionCircuit4,statevector_backend).result().get_statevector()
array_to_latex(final_state, pretext="\\text{Final State for Marked State (Statevector) = }\n", precision = 1)
def inversion_about_average(circuit, qr):
# Apply Inversion Operator about the Average step of Grover's Algorithm
circuit.h(qr)
circuit.x(qr)
n_controlled_Z(circuit, qr)
circuit.x(qr)
circuit.h(qr)
# Now, let's plot the Quantum Circuit for the Quantum Average
qr = QuantumRegister(4)
qAverage = QuantumCircuit(qr)
inversion_about_average(qAverage, qr)
qAverage.draw(output='mpl')
def putAllQubitsInQuantumSuperposition(n, quantumCircuit):
for qubit_index in range(n):
quantumCircuit.h(qubit_index)
def measureAllQubits(n, quantumCircuit, quantumRegister, classicalRegister):
for qubit_index in range(n):
quantumCircuit.measure(quantumRegister[qubit_index], classicalRegister[qubit_index])
def grover_algorithm(quantumCircuit,quantumRegister,classicalRegister,element,n):
putAllQubitsInQuantumSuperposition(n,quantumCircuit)
# Experimental Constant Factor,
# for incrementing the number of Steps of the Grover's Algorithm
additional_steps = 0
#additional_steps = 1
#additional_steps = 2
#additional_steps = 3
#additional_steps = 4
for step in range(1, ( n + additional_steps )):
phase_oracle(quantumCircuit,quantumRegister, element)
inversion_about_average(quantumCircuit, quantumRegister)
measureAllQubits(n, quantumCircuit, quantumRegister, classicalRegister)
qr2 = QuantumRegister(2)
cr2 = ClassicalRegister(2)
groverCircuit = QuantumCircuit(qr2,cr2)
#element_2_states = [0,0]
element_2_states = [0,1]
#element_2_states = [1,0]
#element_2_states = [1,1]
element_2_states_binary = ''.join(map(str,element_2_states))
print("The Marked State, we're looking for, is: |{}⟩".format(element_2_states_binary))
element_2_states.reverse()
grover_algorithm(groverCircuit,qr2,cr2,element_2_states,2)
groverCircuit.draw("mpl")
# Now, let's execute the Quantum Circuit in the QASM Simulator of the Aer Module,
# of the IBM Qiskit Library
backend = Aer.get_backend('qasm_simulator')
counts = execute(groverCircuit,backend,shots=2048).result().get_counts()
# Print the Counts of the Frequencies, resulting from this Experiment
print(counts)
# Plot the Counts of the Frequencies, resulting from this Experiment, through a Histogram
# (i.e., a Distribution of the Probabilities)
plot_histogram(counts)
qr3 = QuantumRegister(3)
cr3 = ClassicalRegister(3)
groverCircuit = QuantumCircuit(qr3,cr3)
#element_3_states = [0,0,0]
#element_3_states = [0,0,1]
#element_3_states = [0,1,0]
#element_3_states = [0,1,1]
#element_3_states = [1,0,0]
#element_3_states = [1,0,1]
element_3_states = [1,1,0]
#element_3_states = [1,1,1]
element_3_states_binary = ''.join(map(str,element_3_states))
print("The Marked State, we're looking for, is: |{}⟩".format(element_3_states_binary))
element_3_states.reverse()
grover_algorithm(groverCircuit,qr3,cr3,element_3_states,3)
groverCircuit.draw("mpl")
# Now, let's execute the Quantum Circuit in the QASM Simulator of the Aer Module,
# of the IBM Qiskit Library
backend = Aer.get_backend('qasm_simulator')
counts = execute(groverCircuit,backend,shots=2048).result().get_counts()
# Print the Counts of the Frequencies, resulting from this Experiment
print(counts)
# Plot the Counts of the Frequencies, resulting from this Experiment, through a Histogram
# (i.e., a Distribution of the Probabilities)
plot_histogram(counts)
qr4 = QuantumRegister(4)
cr4 = ClassicalRegister(4)
groverCircuit = QuantumCircuit(qr4,cr4)
#element_4_states = [0,0,0,0]
#element_4_states = [0,0,0,1]
#element_4_states = [0,0,1,0]
#element_4_states = [0,0,1,1]
#element_4_states = [0,1,0,0]
#element_4_states = [0,1,0,1]
#element_4_states = [0,1,1,0]
#element_4_states = [0,1,1,1]
#element_4_states = [1,0,0,0]
#element_4_states = [1,0,0,1]
#element_4_states = [1,0,1,0]
element_4_states = [1,0,1,1]
#element_4_states = [1,1,0,0]
#element_4_states = [1,1,0,1]
#element_4_states = [1,1,1,0]
#element_4_states = [1,1,1,1]
element_4_states_binary = ''.join(map(str,element_4_states))
print("The Marked State, we're looking for, is: |{}⟩".format(element_4_states_binary))
element_4_states.reverse()
grover_algorithm(groverCircuit,qr4,cr4,element_4_states,4)
groverCircuit.draw("mpl")
# Now, let's execute the Quantum Circuit in the QASM Simulator of the Aer Module,
# of the IBM Qiskit Library
backend = Aer.get_backend('qasm_simulator')
counts = execute(groverCircuit,backend,shots=2048).result().get_counts()
# Print the Counts of the Frequencies, resulting from this Experiment
print(counts)
# Plot the Counts of the Frequencies, resulting from this Experiment, through a Histogram
# (i.e., a Distribution of the Probabilities)
plot_histogram(counts)
qr5 = QuantumRegister(5)
cr5 = ClassicalRegister(5)
groverCircuit = QuantumCircuit(qr5,cr5)
#element_5_states = [0,0,0,0,0]
#element_5_states = [0,0,0,0,1]
element_5_states = [0,0,0,1,0]
#element_5_states = [0,0,0,1,1]
#element_5_states = [0,0,1,0,0]
#element_5_states = [0,0,1,0,1]
#element_5_states = [0,0,1,1,0]
#element_5_states = [0,0,1,1,1]
#element_5_states = [0,1,0,0,0]
#element_5_states = [0,1,0,0,1]
#element_5_states = [0,1,0,1,0]
#element_5_states = [0,1,0,1,1]
#element_5_states = [0,1,1,0,0]
#element_5_states = [0,1,1,0,1]
#element_5_states = [0,1,1,1,0]
#element_5_states = [0,1,1,1,1]
#element_5_states = [1,0,0,0,0]
#element_5_states = [1,0,0,0,1]
#element_5_states = [1,0,0,1,0]
#element_5_states = [1,0,0,1,1]
#element_5_states = [1,0,1,0,0]
#element_5_states = [1,0,1,0,1]
#element_5_states = [1,0,1,1,0]
#element_5_states = [1,0,1,1,1]
#element_5_states = [1,1,0,0,0]
#element_5_states = [1,1,0,0,1]
#element_5_states = [1,1,0,1,0]
#element_5_states = [1,1,0,1,1]
#element_5_states = [1,1,1,0,0]
#element_5_states = [1,1,1,0,1]
#element_5_states = [1,1,1,1,0]
#element_5_states = [1,1,1,1,1]
element_5_states_binary = ''.join(map(str,element_5_states))
print("The Marked State, we're looking for, is: |{}⟩".format(element_5_states_binary))
element_5_states.reverse()
grover_algorithm(groverCircuit,qr5,cr5,element_5_states,5)
groverCircuit.draw("mpl")
# Now, let's execute the Quantum Circuit in the QASM Simulator of the Aer Module,
# of the IBM Qiskit Library
backend = Aer.get_backend('qasm_simulator')
counts = execute(groverCircuit,backend,shots=2048).result().get_counts()
# Print the Counts of the Frequencies, resulting from this Experiment
print(counts)
# Plot the Counts of the Frequencies, resulting from this Experiment, through a Histogram
# (i.e., a Distribution of the Probabilities)
plot_histogram(counts)
# Print the current Qiskit's Modules' Version
import qiskit
qiskit.__qiskit_version__
|
https://github.com/robinsonvs/tcc-information-systems
|
robinsonvs
|
import random
import pycosat
import numpy as np
from qiskit import QuantumCircuit, transpile, QuantumRegister
from qiskit_aer import AerSimulator
from qiskit.visualization import plot_histogram
import matplotlib.pyplot as plt
import networkx as nx
from qiskit import QuantumCircuit as qc
from qiskit import QuantumRegister as qr
from heapq import nlargest
from matplotlib.pyplot import show, subplots, xticks, yticks
from qiskit import ClassicalRegister
def generate_complete_graph(clique_size):
graph = [[1 if i != j else 0 for j in range(clique_size)] for i in range(clique_size)]
return remove_random_edges(graph, clique_size)
def remove_random_edges(graph, clique_size):
num_vertices = len(graph)
max_edges = clique_size * (clique_size - 1) // 2
edges_to_remove = random.sample(range(max_edges, num_vertices * (num_vertices - 1) // 2),
k=num_vertices * (num_vertices - 1) // 2 - max_edges)
for edge in edges_to_remove:
row = edge // num_vertices
col = edge % num_vertices
graph[row][col] = 0
graph[col][row] = 0
return graph
def clique_max_sat(graph):
num_vertices = len(graph)
cnf_clauses = []
# Constraint 1: There is an ith vertex
for i in range(num_vertices):
clique_clause = [j + 1 for j in range(num_vertices) if j != i]
cnf_clauses.append(clique_clause)
# Constraint 2: The ith and jth vertices are different
for i in range(num_vertices):
for j in range(i + 1, num_vertices):
if graph[i][j] == 0:
cnf_clauses.append([-1 * (i + 1), -1 * (j + 1)])
return cnf_clauses
def solve(number_of_vertices, cnf_clauses):
solution = pycosat.solve(cnf_clauses)
if solution != "UNSAT":
return [i for i in range(1, number_of_vertices + 1) if i in solution]
return None
def amplify(num_of_qubits, num_sub_states):
subsets = np.empty(num_sub_states, dtype=object)
N = 2 ** num_of_qubits
index = 0
sup_index = (N // num_sub_states)
if (N % num_sub_states != 0):
k = 0
for i in range(1, num_sub_states):
sup = [0.] * N
num_el = (N // num_sub_states) + 1
sub_state = QuantumCircuit(num_of_qubits)
for j in range(index, sup_index + 1):
sup[j] = np.sqrt((N / num_el) / N)
sub_state.initialize(sup, range(num_of_qubits))
subsets[k] = sub_state
index = index + (N // num_sub_states) + 1
sup_index = sup_index + (N // num_sub_states) + 1
k = k + 1
sub_state = QuantumCircuit(num_of_qubits)
sup = [0.] * N
for j in range(index-1, sup_index):
sup[j] = np.sqrt((N / num_el) / N)
sub_state.initialize(sup, range(num_of_qubits))
subsets[num_sub_states - 1] = sub_state
else:
k = 0
for i in range(0, num_sub_states):
sup = [0.] * N
num_el = N / num_sub_states
sub_state = QuantumCircuit(num_of_qubits)
for j in range(index, sup_index):
sup[j] = np.sqrt((N / num_el) / N)
sub_state.initialize(sup, range(num_of_qubits))
subsets[k] = sub_state
index = index + (N // num_sub_states)
sup_index = sup_index + (N // num_sub_states)
k = k + 1
return subsets
def n_controlled_Z(circuit, controls, target):
if len(controls) == 1:
circuit.h(target)
circuit.cx(controls[0], target)
circuit.h(target)
elif len(controls) > 1:
circuit.h(target)
circuit.mcx(controls, target)
circuit.h(target)
else:
raise ValueError("At least one control qubit is required for controlled-Z gate.")
def inversion_about_average(circuit, f_in, n):
for j in range(n):
circuit.h(f_in[j])
for j in range(n):
circuit.x(f_in[j])
n_controlled_Z(circuit, [f_in[j] for j in range(n-1)], f_in[n-1])
for j in range(n):
circuit.x(f_in[j])
for j in range(n):
circuit.h(f_in[j])
def input_state(circuit, f_in, f_out, n):
for j in range(n):
circuit.h(f_in[j])
circuit.x(f_out)
circuit.h(f_out)
def oracle(circuit, f_in, f_out, aux, cnf_sat):
num_clauses = len(cnf_sat)
for (k, clause) in enumerate(cnf_sat):
for literal in clause:
if literal > 0:
circuit.cx(f_in[literal-1], aux[k])
else:
circuit.x(f_in[-literal-1])
circuit.cx(f_in[-literal-1], aux[k])
circuit.ccx(f_in[0], f_in[1], aux[num_clauses])
circuit.ccx(f_in[2], aux[num_clauses], aux[k])
circuit.ccx(f_in[0], f_in[1], aux[num_clauses])
for literal in clause:
if literal < 0:
circuit.x(f_in[-literal-1])
if num_clauses > 0:
circuit.mcx(aux[:-1], f_out[0])
for (k, clause) in enumerate(cnf_sat):
for literal in clause:
if literal > 0:
circuit.cx(f_in[literal-1], aux[k])
else:
circuit.x(f_in[-literal-1])
circuit.cx(f_in[-literal-1], aux[k])
circuit.ccx(f_in[0], f_in[1], aux[num_clauses])
circuit.ccx(f_in[2], aux[num_clauses], aux[k])
circuit.ccx(f_in[0], f_in[1], aux[num_clauses])
for literal in clause:
if literal < 0:
circuit.x(f_in[-literal-1])
if __name__ == '__main__':
graph = generate_complete_graph(3)
G = nx.Graph()
for i in range(len(graph)):
for j in range(i + 1, len(graph)):
if graph[i][j] == 1:
G.add_edge(i, j)
plt.figure(figsize=(6, 6))
nx.draw(G, with_labels=True, font_weight='bold')
plt.title('Grafo Gerado')
plt.show()
cnf_clauses = clique_max_sat(graph)
for clause in cnf_clauses:
print(clause)
print(cnf_clauses)
max_clique = solve(len(graph), cnf_clauses)
print("Clique máximo :", max_clique)
num_qubits = 3
num_sub_states = 2
subsets = amplify(num_qubits, num_sub_states)
#cnf_clauses = [[1, 2, 3], [-1, -2, -3], [-1, -2, -3]]
#cnf_clauses = [[1, 2, -3], [-1, -2, -3], [-1, 2, 3]]
#cnf_clauses = [[1, -2, -3, -4], [-1, 2, -3, -4], [-1, -2, 3, -4], [-1, -2, -3, 4]]
#cnf_clauses = [[-1, -2, -3, -4], [-1, -2, -3, -4], [-1, -2, -3, -4], [-1, -2, -3, -4]]
f_in = QuantumRegister(num_qubits)
f_out = QuantumRegister(1)
aux = QuantumRegister(len(cnf_clauses) + 1)
ans = ClassicalRegister(num_qubits)
grover = QuantumCircuit()
grover.add_register(f_in)
grover.add_register(f_out)
grover.add_register(aux)
grover.add_register(ans)
#print(grover)
#substate_circuit = QuantumCircuit(num_qubits)
#substate_circuit.initialize(subsets[0], range(num_qubits))
#grover = grover.compose(substate_circuit)
input_state(grover, f_in, f_out, num_qubits)
grover = grover.compose(subsets[0])
#print(grover)
#input_state(grover, f_in, f_out, num_qubits)
#print(grover)
T = 2
for t in range(T):
oracle(grover, f_in, f_out, aux, cnf_clauses)
inversion_about_average(grover, f_in, num_qubits)
for j in range(num_qubits):
grover.measure(f_in[j], ans[j])
#print(grover)
backend = AerSimulator()
new_circuit = transpile(grover, backend)
result = backend.run(new_circuit).result()
counts = result.get_counts(grover)
print("Counts:", counts)
plot_histogram(counts)
plt.show()
|
https://github.com/theflyingrahul/qiskitsummerschool2020
|
theflyingrahul
|
!pip install -U -r grading_tools/requirements.txt
from IPython.display import clear_output
clear_output()
import numpy as np; pi = np.pi
from qiskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram
from copy import deepcopy as make_copy
def prepare_hets_circuit(depth, angle1, angle2):
hets_circ = QuantumCircuit(depth)
hets_circ.ry(angle1, 0)
hets_circ.rz(angle1, 0)
hets_circ.ry(angle1, 1)
hets_circ.rz(angle1, 1)
for ii in range(depth):
hets_circ.cx(0,1)
hets_circ.ry(angle2,0)
hets_circ.rz(angle2,0)
hets_circ.ry(angle2,1)
hets_circ.rz(angle2,1)
return hets_circ
hets_circuit = prepare_hets_circuit(2, pi/2, pi/2)
hets_circuit.draw()
def measure_zz_circuit(given_circuit):
zz_meas = make_copy(given_circuit)
zz_meas.measure_all()
return zz_meas
zz_meas = measure_zz_circuit(hets_circuit)
zz_meas.draw()
simulator = Aer.get_backend('qasm_simulator')
result = execute(zz_meas, backend = simulator, shots=10000).result()
counts = result.get_counts(zz_meas)
plot_histogram(counts)
def measure_zz(given_circuit, num_shots = 10000):
zz_meas = measure_zz_circuit(given_circuit)
result = execute(zz_meas, backend = simulator, shots = num_shots).result()
counts = result.get_counts(zz_meas)
if '00' not in counts:
counts['00'] = 0
if '01' not in counts:
counts['01'] = 0
if '10' not in counts:
counts['10'] = 0
if '11' not in counts:
counts['11'] = 0
total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10']
zz = counts['00'] + counts['11'] - counts['01'] - counts['10']
zz = zz / total_counts
return zz
zz = measure_zz(hets_circuit)
print("<ZZ> =", str(zz))
def measure_zi(given_circuit, num_shots = 10000):
zz_meas = measure_zz_circuit(given_circuit)
result = execute(zz_meas, backend = simulator, shots = num_shots).result()
counts = result.get_counts(zz_meas)
if '00' not in counts:
counts['00'] = 0
if '01' not in counts:
counts['01'] = 0
if '10' not in counts:
counts['10'] = 0
if '11' not in counts:
counts['11'] = 0
total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10']
zi = counts['00'] - counts['11'] + counts['01'] - counts['10']
zi = zi / total_counts
return zi
def measure_iz(given_circuit, num_shots = 10000):
zz_meas = measure_zz_circuit(given_circuit)
result = execute(zz_meas, backend = simulator, shots = num_shots).result()
counts = result.get_counts(zz_meas)
if '00' not in counts:
counts['00'] = 0
if '01' not in counts:
counts['01'] = 0
if '10' not in counts:
counts['10'] = 0
if '11' not in counts:
counts['11'] = 0
total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10']
iz = counts['00'] - counts['11'] - counts['01'] + counts['10']
iz = iz / total_counts
return iz
zi = measure_zi(hets_circuit)
print("<ZI> =", str(zi))
iz = measure_iz(hets_circuit)
print("<IZ> =", str(iz))
def measure_xx_circuit(given_circuit):
xx_meas = make_copy(given_circuit)
### WRITE YOUR CODE BETWEEN THESE LINES - START
xx_meas.h(0)
xx_meas.h(1)
xx_meas.measure_all()
### WRITE YOUR CODE BETWEEN THESE LINES - END
return xx_meas
xx_meas = measure_xx_circuit(hets_circuit)
xx_meas.draw()
def measure_xx(given_circuit, num_shots = 10000):
xx_meas = measure_xx_circuit(given_circuit)
result = execute(xx_meas, backend = simulator, shots = num_shots).result()
counts = result.get_counts(xx_meas)
if '00' not in counts:
counts['00'] = 0
if '01' not in counts:
counts['01'] = 0
if '10' not in counts:
counts['10'] = 0
if '11' not in counts:
counts['11'] = 0
total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10']
xx = counts['00'] + counts['11'] - counts['01'] - counts['10']
xx = xx / total_counts
return xx
xx = measure_xx(hets_circuit)
print("<XX> =", str(xx))
def get_energy(given_circuit, num_shots = 10000):
zz = measure_zz(given_circuit, num_shots = num_shots)
iz = measure_iz(given_circuit, num_shots = num_shots)
zi = measure_zi(given_circuit, num_shots = num_shots)
xx = measure_xx(given_circuit, num_shots = num_shots)
energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx
return energy
energy = get_energy(hets_circuit)
print("The energy of the trial state is", str(energy))
hets_circuit_plus = None
hets_circuit_minus = None
### WRITE YOUR CODE BETWEEN THESE LINES - START
hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2)
hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2)
### WRITE YOUR CODE BETWEEN THESE LINES - END
energy_plus = get_energy(hets_circuit_plus, num_shots=100000)
energy_minus = get_energy(hets_circuit_minus, num_shots=100000)
print(energy_plus, energy_minus)
name = 'Pon Rahul M'
email = 'ponrahul.21it@licet.ac.in'
### Do not change the lines below
from grading_tools import grade
grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1')
grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2')
grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3')
energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0
energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0
### WRITE YOUR CODE BETWEEN THESE LINES - START
energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100)
energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100)
energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000)
energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000)
energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000)
energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000)
### WRITE YOUR CODE BETWEEN THESE LINES - END
print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100)
print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000)
print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000)
### WRITE YOUR CODE BETWEEN THESE LINES - START
I = np.array([
[1, 0],
[0, 1]
])
X = np.array([
[0, 1],
[1, 0]
])
Z = np.array([
[1, 0],
[0, -1]
])
h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \
(0.39793742) * np.kron(I, Z) + \
(-0.3979374) * np.kron(Z, I) + \
(-0.0112801) * np.kron(Z, Z) + \
(0.18093119) * np.kron(X, X)
from numpy import linalg as LA
eigenvalues, eigenvectors = LA.eig(h2_hamiltonian)
for ii, eigenvalue in enumerate(eigenvalues):
print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}")
exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)]
exact_eigenvalue = np.min(eigenvalues)
print()
print("Minimum energy is", exact_eigenvalue)
### WRITE YOUR CODE BETWEEN THESE LINES - END
|
https://github.com/2lambda123/Qiskit-qiskit
|
2lambda123
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""User-space constructor functions for the expression tree, which do some of the inference and
lifting boilerplate work."""
# pylint: disable=redefined-builtin,redefined-outer-name
from __future__ import annotations
__all__ = [
"lift",
"bit_not",
"logic_not",
"bit_and",
"bit_or",
"bit_xor",
"logic_and",
"logic_or",
"equal",
"not_equal",
"less",
"less_equal",
"greater",
"greater_equal",
"lift_legacy_condition",
]
import enum
import typing
from .expr import Expr, Var, Value, Unary, Binary, Cast
from .. import types
if typing.TYPE_CHECKING:
import qiskit
class _CastKind(enum.Enum):
EQUAL = enum.auto()
"""The two types are equal; no cast node is required at all."""
IMPLICIT = enum.auto()
"""The 'from' type can be cast to the 'to' type implicitly. A ``Cast(implicit=True)`` node is
the minimum required to specify this."""
LOSSLESS = enum.auto()
"""The 'from' type can be cast to the 'to' type explicitly, and the cast will be lossless. This
requires a ``Cast(implicit=False)`` node, but there's no danger from inserting one."""
DANGEROUS = enum.auto()
"""The 'from' type has a defined cast to the 'to' type, but depending on the value, it may lose
data. A user would need to manually specify casts."""
NONE = enum.auto()
"""There is no casting permitted from the 'from' type to the 'to' type."""
def _uint_cast(from_: types.Uint, to_: types.Uint, /) -> _CastKind:
if from_.width == to_.width:
return _CastKind.EQUAL
if from_.width < to_.width:
return _CastKind.LOSSLESS
return _CastKind.DANGEROUS
_ALLOWED_CASTS = {
(types.Bool, types.Bool): lambda _a, _b, /: _CastKind.EQUAL,
(types.Bool, types.Uint): lambda _a, _b, /: _CastKind.LOSSLESS,
(types.Uint, types.Bool): lambda _a, _b, /: _CastKind.IMPLICIT,
(types.Uint, types.Uint): _uint_cast,
}
def _cast_kind(from_: types.Type, to_: types.Type, /) -> _CastKind:
if (coercer := _ALLOWED_CASTS.get((from_.kind, to_.kind))) is None:
return _CastKind.NONE
return coercer(from_, to_)
def _coerce_lossless(expr: Expr, type: types.Type) -> Expr:
"""Coerce ``expr`` to ``type`` by inserting a suitable :class:`Cast` node, if the cast is
lossless. Otherwise, raise a ``TypeError``."""
kind = _cast_kind(expr.type, type)
if kind is _CastKind.EQUAL:
return expr
if kind is _CastKind.IMPLICIT:
return Cast(expr, type, implicit=True)
if kind is _CastKind.LOSSLESS:
return Cast(expr, type, implicit=False)
if kind is _CastKind.DANGEROUS:
raise TypeError(f"cannot cast '{expr}' to '{type}' without loss of precision")
raise TypeError(f"no cast is defined to take '{expr}' to '{type}'")
def lift_legacy_condition(
condition: tuple[qiskit.circuit.Clbit | qiskit.circuit.ClassicalRegister, int], /
) -> Expr:
"""Lift a legacy two-tuple equality condition into a new-style :class:`Expr`.
Examples:
Taking an old-style conditional instruction and getting an :class:`Expr` from its
condition::
from qiskit.circuit import ClassicalRegister
from qiskit.circuit.library import HGate
from qiskit.circuit.classical import expr
cr = ClassicalRegister(2)
instr = HGate().c_if(cr, 3)
lifted = expr.lift_legacy_condition(instr.condition)
"""
from qiskit.circuit import Clbit # pylint: disable=cyclic-import
target, value = condition
if isinstance(target, Clbit):
bool_ = types.Bool()
return Var(target, bool_) if value else Unary(Unary.Op.LOGIC_NOT, Var(target, bool_), bool_)
left = Var(target, types.Uint(width=target.size))
if value.bit_length() > target.size:
left = Cast(left, types.Uint(width=value.bit_length()), implicit=True)
right = Value(value, left.type)
return Binary(Binary.Op.EQUAL, left, right, types.Bool())
def lift(value: typing.Any, /, type: types.Type | None = None) -> Expr:
"""Lift the given Python ``value`` to a :class:`~.expr.Value` or :class:`~.expr.Var`.
If an explicit ``type`` is given, the typing in the output will reflect that.
Examples:
Lifting simple circuit objects to be :class:`~.expr.Var` instances::
>>> from qiskit.circuit import Clbit, ClassicalRegister
>>> from qiskit.circuit.classical import expr
>>> expr.lift(Clbit())
Var(<clbit>, Bool())
>>> expr.lift(ClassicalRegister(3, "c"))
Var(ClassicalRegister(3, "c"), Uint(3))
The type of the return value can be influenced, if the given value could be interpreted
losslessly as the given type (use :func:`cast` to perform a full set of casting
operations, include lossy ones)::
>>> from qiskit.circuit import ClassicalRegister
>>> from qiskit.circuit.classical import expr, types
>>> expr.lift(ClassicalRegister(3, "c"), types.Uint(5))
Var(ClassicalRegister(3, "c"), Uint(5))
>>> expr.lift(5, types.Uint(4))
Value(5, Uint(4))
"""
if isinstance(value, Expr):
if type is not None:
raise ValueError("use 'cast' to cast existing expressions, not 'lift'")
return value
from qiskit.circuit import Clbit, ClassicalRegister # pylint: disable=cyclic-import
inferred: types.Type
if value is True or value is False or isinstance(value, Clbit):
inferred = types.Bool()
constructor = Value if value is True or value is False else Var
elif isinstance(value, ClassicalRegister):
inferred = types.Uint(width=value.size)
constructor = Var
elif isinstance(value, int):
if value < 0:
raise ValueError("cannot represent a negative value")
inferred = types.Uint(width=value.bit_length() or 1)
constructor = Value
else:
raise TypeError(f"failed to infer a type for '{value}'")
if type is None:
type = inferred
if types.is_supertype(type, inferred):
return constructor(value, type)
raise TypeError(
f"the explicit type '{type}' is not suitable for representing '{value}';"
f" it must be non-strict supertype of '{inferred}'"
)
def cast(operand: typing.Any, type: types.Type, /) -> Expr:
"""Create an explicit cast from the given value to the given type.
Examples:
Add an explicit cast node that explicitly casts a higher precision type to a lower precision
one::
>>> from qiskit.circuit.classical import expr, types
>>> value = expr.value(5, types.Uint(32))
>>> expr.cast(value, types.Uint(8))
Cast(Value(5, types.Uint(32)), types.Uint(8), implicit=False)
"""
operand = lift(operand)
if _cast_kind(operand.type, type) is _CastKind.NONE:
raise TypeError(f"cannot cast '{operand}' to '{type}'")
return Cast(operand, type)
def bit_not(operand: typing.Any, /) -> Expr:
"""Create a bitwise 'not' expression node from the given value, resolving any implicit casts and
lifting the value into a :class:`Value` node if required.
Examples:
Bitwise negation of a :class:`.ClassicalRegister`::
>>> from qiskit.circuit import ClassicalRegister
>>> from qiskit.circuit.classical import expr
>>> expr.bit_not(ClassicalRegister(3, "c"))
Unary(Unary.Op.BIT_NOT, Var(ClassicalRegister(3, 'c'), Uint(3)), Uint(3))
"""
operand = lift(operand)
if operand.type.kind not in (types.Bool, types.Uint):
raise TypeError(f"cannot apply '{Unary.Op.BIT_NOT}' to type '{operand.type}'")
return Unary(Unary.Op.BIT_NOT, operand, operand.type)
def logic_not(operand: typing.Any, /) -> Expr:
"""Create a logical 'not' expression node from the given value, resolving any implicit casts and
lifting the value into a :class:`Value` node if required.
Examples:
Logical negation of a :class:`.ClassicalRegister`::
>>> from qiskit.circuit import ClassicalRegister
>>> from qiskit.circuit.classical import expr
>>> expr.logic_not(ClassicalRegister(3, "c"))
Unary(\
Unary.Op.LOGIC_NOT, \
Cast(Var(ClassicalRegister(3, 'c'), Uint(3)), Bool(), implicit=True), \
Bool())
"""
operand = _coerce_lossless(lift(operand), types.Bool())
return Unary(Unary.Op.LOGIC_NOT, operand, operand.type)
def _lift_binary_operands(left: typing.Any, right: typing.Any) -> tuple[Expr, Expr]:
"""Lift two binary operands simultaneously, inferring the widths of integer literals in either
position to match the other operand."""
left_int = isinstance(left, int) and not isinstance(left, bool)
right_int = isinstance(right, int) and not isinstance(right, bool)
if not (left_int or right_int):
left = lift(left)
right = lift(right)
elif not right_int:
right = lift(right)
if right.type.kind is types.Uint:
if left.bit_length() > right.type.width:
raise TypeError(
f"integer literal '{left}' is wider than the other operand '{right}'"
)
left = Value(left, right.type)
else:
left = lift(left)
elif not left_int:
left = lift(left)
if left.type.kind is types.Uint:
if right.bit_length() > left.type.width:
raise TypeError(
f"integer literal '{right}' is wider than the other operand '{left}'"
)
right = Value(right, left.type)
else:
right = lift(right)
else:
# Both are `int`, so we take our best case to make things work.
uint = types.Uint(max(left.bit_length(), right.bit_length(), 1))
left = Value(left, uint)
right = Value(right, uint)
return left, right
def _binary_bitwise(op: Binary.Op, left: typing.Any, right: typing.Any) -> Expr:
left, right = _lift_binary_operands(left, right)
type: types.Type
if left.type.kind is right.type.kind is types.Bool:
type = types.Bool()
elif left.type.kind is types.Uint and right.type.kind is types.Uint:
if left.type != right.type:
raise TypeError(
"binary bitwise operations are defined between unsigned integers of the same width,"
f" but got {left.type.width} and {right.type.width}."
)
type = left.type
else:
raise TypeError(f"invalid types for '{op}': '{left.type}' and '{right.type}'")
return Binary(op, left, right, type)
def bit_and(left: typing.Any, right: typing.Any, /) -> Expr:
"""Create a bitwise 'and' expression node from the given value, resolving any implicit casts and
lifting the values into :class:`Value` nodes if required.
Examples:
Bitwise 'and' of a classical register and an integer literal::
>>> from qiskit.circuit import ClassicalRegister
>>> from qiskit.circuit.classical import expr
>>> expr.bit_and(ClassicalRegister(3, "c"), 0b111)
Binary(\
Binary.Op.BIT_AND, \
Var(ClassicalRegister(3, 'c'), Uint(3)), \
Value(7, Uint(3)), \
Uint(3))
"""
return _binary_bitwise(Binary.Op.BIT_AND, left, right)
def bit_or(left: typing.Any, right: typing.Any, /) -> Expr:
"""Create a bitwise 'or' expression node from the given value, resolving any implicit casts and
lifting the values into :class:`Value` nodes if required.
Examples:
Bitwise 'or' of a classical register and an integer literal::
>>> from qiskit.circuit import ClassicalRegister
>>> from qiskit.circuit.classical import expr
>>> expr.bit_or(ClassicalRegister(3, "c"), 0b101)
Binary(\
Binary.Op.BIT_OR, \
Var(ClassicalRegister(3, 'c'), Uint(3)), \
Value(5, Uint(3)), \
Uint(3))
"""
return _binary_bitwise(Binary.Op.BIT_OR, left, right)
def bit_xor(left: typing.Any, right: typing.Any, /) -> Expr:
"""Create a bitwise 'exclusive or' expression node from the given value, resolving any implicit
casts and lifting the values into :class:`Value` nodes if required.
Examples:
Bitwise 'exclusive or' of a classical register and an integer literal::
>>> from qiskit.circuit import ClassicalRegister
>>> from qiskit.circuit.classical import expr
>>> expr.bit_xor(ClassicalRegister(3, "c"), 0b101)
Binary(\
Binary.Op.BIT_XOR, \
Var(ClassicalRegister(3, 'c'), Uint(3)), \
Value(5, Uint(3)), \
Uint(3))
"""
return _binary_bitwise(Binary.Op.BIT_XOR, left, right)
def _binary_logical(op: Binary.Op, left: typing.Any, right: typing.Any) -> Expr:
bool_ = types.Bool()
left = _coerce_lossless(lift(left), bool_)
right = _coerce_lossless(lift(right), bool_)
return Binary(op, left, right, bool_)
def logic_and(left: typing.Any, right: typing.Any, /) -> Expr:
"""Create a logical 'and' expression node from the given value, resolving any implicit casts and
lifting the values into :class:`Value` nodes if required.
Examples:
Logical 'and' of two classical bits::
>>> from qiskit.circuit import Clbit
>>> from qiskit.circuit.classical import expr
>>> expr.logical_and(Clbit(), Clbit())
Binary(Binary.Op.LOGIC_AND, Var(<clbit 0>, Bool()), Var(<clbit 1>, Bool()), Bool())
"""
return _binary_logical(Binary.Op.LOGIC_AND, left, right)
def logic_or(left: typing.Any, right: typing.Any, /) -> Expr:
"""Create a logical 'or' expression node from the given value, resolving any implicit casts and
lifting the values into :class:`Value` nodes if required.
Examples:
Logical 'or' of two classical bits
>>> from qiskit.circuit import Clbit
>>> from qiskit.circuit.classical import expr
>>> expr.logical_and(Clbit(), Clbit())
Binary(Binary.Op.LOGIC_OR, Var(<clbit 0>, Bool()), Var(<clbit 1>, Bool()), Bool())
"""
return _binary_logical(Binary.Op.LOGIC_OR, left, right)
def _equal_like(op: Binary.Op, left: typing.Any, right: typing.Any) -> Expr:
left, right = _lift_binary_operands(left, right)
if left.type.kind is not right.type.kind:
raise TypeError(f"invalid types for '{op}': '{left.type}' and '{right.type}'")
type = types.greater(left.type, right.type)
return Binary(op, _coerce_lossless(left, type), _coerce_lossless(right, type), types.Bool())
def equal(left: typing.Any, right: typing.Any, /) -> Expr:
"""Create an 'equal' expression node from the given value, resolving any implicit casts and
lifting the values into :class:`Value` nodes if required.
Examples:
Equality between a classical register and an integer::
>>> from qiskit.circuit import ClassicalRegister
>>> from qiskit.circuit.classical import expr
>>> expr.equal(ClassicalRegister(3, "c"), 7)
Binary(Binary.Op.EQUAL, \
Var(ClassicalRegister(3, "c"), Uint(3)), \
Value(7, Uint(3)), \
Uint(3))
"""
return _equal_like(Binary.Op.EQUAL, left, right)
def not_equal(left: typing.Any, right: typing.Any, /) -> Expr:
"""Create a 'not equal' expression node from the given value, resolving any implicit casts and
lifting the values into :class:`Value` nodes if required.
Examples:
Inequality between a classical register and an integer::
>>> from qiskit.circuit import ClassicalRegister
>>> from qiskit.circuit.classical import expr
>>> expr.not_equal(ClassicalRegister(3, "c"), 7)
Binary(Binary.Op.NOT_EQUAL, \
Var(ClassicalRegister(3, "c"), Uint(3)), \
Value(7, Uint(3)), \
Uint(3))
"""
return _equal_like(Binary.Op.NOT_EQUAL, left, right)
def _binary_relation(op: Binary.Op, left: typing.Any, right: typing.Any) -> Expr:
left, right = _lift_binary_operands(left, right)
if left.type.kind is not right.type.kind or left.type.kind is types.Bool:
raise TypeError(f"invalid types for '{op}': '{left.type}' and '{right.type}'")
type = types.greater(left.type, right.type)
return Binary(op, _coerce_lossless(left, type), _coerce_lossless(right, type), types.Bool())
def less(left: typing.Any, right: typing.Any, /) -> Expr:
"""Create a 'less than' expression node from the given value, resolving any implicit casts and
lifting the values into :class:`Value` nodes if required.
Examples:
Query if a classical register is less than an integer::
>>> from qiskit.circuit import ClassicalRegister
>>> from qiskit.circuit.classical import expr
>>> expr.less(ClassicalRegister(3, "c"), 5)
Binary(Binary.Op.LESS, \
Var(ClassicalRegister(3, "c"), Uint(3)), \
Value(5, Uint(3)), \
Uint(3))
"""
return _binary_relation(Binary.Op.LESS, left, right)
def less_equal(left: typing.Any, right: typing.Any, /) -> Expr:
"""Create a 'less than or equal to' expression node from the given value, resolving any implicit
casts and lifting the values into :class:`Value` nodes if required.
Examples:
Query if a classical register is less than or equal to another::
>>> from qiskit.circuit import ClassicalRegister
>>> from qiskit.circuit.classical import expr
>>> expr.less(ClassicalRegister(3, "a"), ClassicalRegister(3, "b"))
Binary(Binary.Op.LESS_EQUAL, \
Var(ClassicalRegister(3, "a"), Uint(3)), \
Var(ClassicalRegister(3, "b"), Uint(3)), \
Uint(3))
"""
return _binary_relation(Binary.Op.LESS_EQUAL, left, right)
def greater(left: typing.Any, right: typing.Any, /) -> Expr:
"""Create a 'greater than' expression node from the given value, resolving any implicit casts
and lifting the values into :class:`Value` nodes if required.
Examples:
Query if a classical register is greater than an integer::
>>> from qiskit.circuit import ClassicalRegister
>>> from qiskit.circuit.classical import expr
>>> expr.less(ClassicalRegister(3, "c"), 5)
Binary(Binary.Op.GREATER, \
Var(ClassicalRegister(3, "c"), Uint(3)), \
Value(5, Uint(3)), \
Uint(3))
"""
return _binary_relation(Binary.Op.GREATER, left, right)
def greater_equal(left: typing.Any, right: typing.Any, /) -> Expr:
"""Create a 'greater than or equal to' expression node from the given value, resolving any
implicit casts and lifting the values into :class:`Value` nodes if required.
Examples:
Query if a classical register is greater than or equal to another::
>>> from qiskit.circuit import ClassicalRegister
>>> from qiskit.circuit.classical import expr
>>> expr.less(ClassicalRegister(3, "a"), ClassicalRegister(3, "b"))
Binary(Binary.Op.GREATER_EQUAL, \
Var(ClassicalRegister(3, "a"), Uint(3)), \
Var(ClassicalRegister(3, "b"), Uint(3)), \
Uint(3))
"""
return _binary_relation(Binary.Op.GREATER_EQUAL, left, right)
|
https://github.com/abbarreto/qiskit2
|
abbarreto
|
%run init.ipynb
rx,ry,rz = symbols('r_x r_y r_z')
rho1qb = (1/2)*(id(2) + rx*pauli(1) + ry*pauli(2) + rz*pauli(3))
rho1qb
pI,pX,pZ,pY = symbols('p_I p_X p_Z p_Y')
K0 = sqrt(pI)*id(2); K1 = sqrt(pX)*pauli(1); K2 = sqrt(pZ)*pauli(3); K3 = sqrt(pY)*pauli(2)
rho_p = K0*rho1qb*K0 + K1*rho1qb*K1 + K2*rho1qb*K2 + K3*rho1qb*K3
simplify(rho_p)
p = symbols('p')
pI = (1+3*p)/4; pX = (1-p)/4; pY = pX; pZ = pX
rho_p = K0*rho1qb*K0 + K1*rho1qb*K1 + K2*rho1qb*K2 + K3*rho1qb*K3
simplify(rho_p)
import numpy as np
from matplotlib import pyplot as plt
p = np.arange(0,1.1,0.1) # PD channel
C = np.sqrt(1-p)
plt.plot(p,C)
plt.show()
from sympy import *
N,p = symbols('N p')
K0 = sqrt(1-N)*Matrix([[1,0],[0,sqrt(1-p)]])
K1 = sqrt(1-N)*Matrix([[0,sqrt(p)],[0,0]])
K2 = sqrt(N)*Matrix([[sqrt(1-p),0],[0,1]])
K3 = sqrt(N)*Matrix([[0,0],[sqrt(p),0]])
#K0
r00,r01,r10,r11 = symbols('r_{00} r_{01} r_{10} r_{11}')#; r00
rho = Matrix([[r00,r01],[r10,r11]])#; rho
rho_gad = K0*rho*K0 + K1*rho*K1.T + K2*rho*K2 + K3*rho*K3.T
simplify(rho_gad)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
q = QuantumRegister(1)
c = ClassicalRegister(1)
qc = QuantumCircuit(q, c)
qc.h(q)
qc.measure(q, c)
qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
|
https://github.com/kerenavnery/qmail
|
kerenavnery
|
# needed qiskit library
from qiskit import *
%matplotlib inline
# the channel library providing the class Channel handling the communication
from channel_class import Channel
#Bob needs to know the number of qubits, n_master: number of Alice qubits, n_slave: number of Bobs qubits
n_master = 2
n_channel = 2
n_slave = 1
#initialise the Quantum Channel, Bobs port is 5001, Alice port is 5000
bob_channel = Channel(myport = 5001, remote_port = 5000)
#initialise Bobs circuit
circ_bob = QuantumCircuit(n_master + n_channel + n_slave)
#Bob recieves the qubits from Alice and needs to give his computations up to then into the function
#the function returns the circuit on which Bob continues to operate and an offset he has to add all the time
circ_bob, offset = bob_channel.receive(circ_bob)
# Bob does the controlled operations on his qubit (which is 0+offset)
circ_bob.cx(1+offset,2+offset)
circ_bob.cz(0+offset,2+offset)
# Bob undoes the rotations Alice did to check, whether the states are indeed the same
circ_bob.rx(-0.1,2 + offset)
circ_bob.ry(-0.94,2 + offset)
circ_bob.rz(-0.54,2 + offset)
circ_bob.rx(-0.234,2 + offset)
# The complete Circuit
circ_bob.draw(output='mpl',filename='teleport_bob.png')
# Bob measure his qubit, if the teleportation worked, he undoes exactly what Alice did
meas = QuantumCircuit(5,1)
meas.barrier(range(5))
meas.measure([4],range(1))
qc = circ_bob + meas
# The whole teleportation protocol is simulated
backend_sim = Aer.get_backend('qasm_simulator')
job_sim = execute(qc,backend_sim,shots=1024)
result_sim = job_sim.result()
counts = result_sim.get_counts(qc)
# if Bob undid all of Alice's steps correctly, the final state of his qubit is |0>
print(counts)
|
https://github.com/Z-928/Bugs4Q
|
Z-928
|
from qiskit.circuit import Parameter
from qiskit import pulse
from qiskit.test.mock.backends.almaden import *
phase = Parameter('phase')
with pulse.build(FakeAlmaden()) as phase_test_sched:
pulse.shift_phase(phase, pulse.drive_channel(0))
phase_test_sched.instructions # ()
|
https://github.com/Z-928/Bugs4Q
|
Z-928
|
from qiskit import *
qc = QuantumCircuit(2)
qc.h(i)
qc.crz (PI/4, 0, 1)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit.circuit.random import random_circuit
circuit = random_circuit(2, 2, seed=0).decompose(reps=1)
display(circuit.draw("mpl"))
from qiskit.quantum_info import SparsePauliOp
observable = SparsePauliOp("XZ")
print(f">>> Observable: {observable.paulis}")
from qiskit.primitives import Estimator
estimator = Estimator()
job = estimator.run(circuit, observable)
print(f">>> Job ID: {job.job_id()}")
print(f">>> Job Status: {job.status()}")
result = job.result()
print(f">>> {result}")
print(f" > Expectation value: {result.values[0]}")
circuit = random_circuit(2, 2, seed=1).decompose(reps=1)
observable = SparsePauliOp("IY")
job = estimator.run(circuit, observable)
result = job.result()
display(circuit.draw("mpl"))
print(f">>> Observable: {observable.paulis}")
print(f">>> Expectation value: {result.values[0]}")
circuits = (
random_circuit(2, 2, seed=0).decompose(reps=1),
random_circuit(2, 2, seed=1).decompose(reps=1),
)
observables = (
SparsePauliOp("XZ"),
SparsePauliOp("IY"),
)
job = estimator.run(circuits, observables)
result = job.result()
[display(cir.draw("mpl")) for cir in circuits]
print(f">>> Observables: {[obs.paulis for obs in observables]}")
print(f">>> Expectation values: {result.values.tolist()}")
from qiskit.circuit.library import RealAmplitudes
circuit = RealAmplitudes(num_qubits=2, reps=2).decompose(reps=1)
observable = SparsePauliOp("ZI")
parameter_values = [0, 1, 2, 3, 4, 5]
job = estimator.run(circuit, observable, parameter_values)
result = job.result()
display(circuit.draw("mpl"))
print(f">>> Observable: {observable.paulis}")
print(f">>> Parameter values: {parameter_values}")
print(f">>> Expectation value: {result.values[0]}")
from qiskit_ibm_runtime import QiskitRuntimeService
service = QiskitRuntimeService(channel="ibm_quantum")
backend = service.backend("ibmq_qasm_simulator")
from qiskit.circuit.random import random_circuit
from qiskit.quantum_info import SparsePauliOp
circuit = random_circuit(2, 2, seed=0).decompose(reps=1)
display(circuit.draw("mpl"))
observable = SparsePauliOp("XZ")
print(f">>> Observable: {observable.paulis}")
from qiskit_ibm_runtime import Estimator
estimator = Estimator(session=backend)
job = estimator.run(circuit, observable)
print(f">>> Job ID: {job.job_id()}")
print(f">>> Job Status: {job.status()}")
result = job.result()
print(f">>> {result}")
print(f" > Expectation value: {result.values[0]}")
print(f" > Metadata: {result.metadata[0]}")
from qiskit_ibm_runtime import Options
options = Options(optimization_level=3, environment={"log_level": "INFO"})
from qiskit_ibm_runtime import Options
options = Options()
options.resilience_level = 1
options.execution.shots = 2048
estimator = Estimator(session=backend, options=options)
result = estimator.run(circuit, observable).result()
print(f">>> Metadata: {result.metadata[0]}")
estimator = Estimator(session=backend, options=options)
result = estimator.run(circuit, observable, shots=1024).result()
print(f">>> Metadata: {result.metadata[0]}")
from qiskit_ibm_runtime import Options
# optimization_level=3 adds dynamical decoupling
# resilience_level=1 adds readout error mitigation
options = Options(optimization_level=3, resilience_level=1)
estimator = Estimator(session=backend, options=options)
result = estimator.run(circuit, observable).result()
print(f">>> Expectation value: {result.values[0]}")
print(f">>> Metadata: {result.metadata[0]}")
from qiskit_ibm_runtime import Session, Estimator
with Session(backend=backend, max_time="1h"):
estimator = Estimator()
result = estimator.run(circuit, observable).result()
print(f">>> Expectation value from the first run: {result.values[0]}")
result = estimator.run(circuit, observable).result()
print(f">>> Expectation value from the second run: {result.values[0]}")
from qiskit.circuit.random import random_circuit
sampler_circuit = random_circuit(2, 2, seed=0).decompose(reps=1)
sampler_circuit.measure_all()
display(circuit.draw("mpl"))
from qiskit_ibm_runtime import Session, Sampler, Estimator
with Session(backend=backend):
sampler = Sampler()
estimator = Estimator()
result = sampler.run(sampler_circuit).result()
print(f">>> Quasi Distribution from the sampler job: {result.quasi_dists[0]}")
result = estimator.run(circuit, observable).result()
print(f">>> Expectation value from the estimator job: {result.values[0]}")
from qiskit_ibm_runtime import Session, Sampler, Estimator
with Session(backend=backend):
sampler = Sampler()
estimator = Estimator()
sampler_job = sampler.run(sampler_circuit)
estimator_job = estimator.run(circuit, observable)
print(f">>> Quasi Distribution from the sampler job: {sampler_job.result().quasi_dists[0]}")
print(f">>> Expectation value from the estimator job: {estimator_job.result().values[0]}")
from qiskit_ibm_runtime import QiskitRuntimeService, Session, Sampler, Estimator, Options
# 1. Initialize account
service = QiskitRuntimeService(channel="ibm_quantum")
# 2. Specify options, such as enabling error mitigation
options = Options(resilience_level=1)
# 3. Select a backend.
backend = service.backend("ibmq_qasm_simulator")
# 4. Create a session
with Session(backend=backend):
# 5. Create primitive instances
sampler = Sampler(options=options)
estimator = Estimator(options=options)
# 6. Submit jobs
sampler_job = sampler.run(sampler_circuit)
estimator_job = estimator.run(circuit, observable)
# 7. Get results
print(f">>> Quasi Distribution from the sampler job: {sampler_job.result().quasi_dists[0]}")
print(f">>> Expectation value from the estimator job: {estimator_job.result().values[0]}")
import qiskit_ibm_runtime
qiskit_ibm_runtime.version.get_version_info()
from qiskit.tools.jupyter import *
%qiskit_version_table
%qiskit_copyright
|
https://github.com/dimple12M/Qiskit-Certification-Guide
|
dimple12M
|
from qiskit import QuantumCircuit,BasicAer,execute
from qiskit.visualization import *
qc=QuantumCircuit(2,2)
qc.h(0)
qc.x(1)
qc.draw(output="mpl")
backend=BasicAer.get_backend('statevector_simulator')
job=execute(qc,backend)
result=job.result()
sv=result.get_statevector()
print(sv)
plot_state_city(sv)
plot_state_qsphere(sv)
qc=QuantumCircuit(2,2)
qc.x(0)
qc.h(0)
qc.h(1)
qc.s(0)
qc.draw(output="mpl")
backend=BasicAer.get_backend('statevector_simulator')
job=execute(qc,backend)
result=job.result()
sv=result.get_statevector()
print(sv)
plot_state_qsphere(sv)
plot_state_paulivec(sv)
plot_state_hinton(sv)
plot_bloch_multivector(sv)
qc=QuantumCircuit(2,2)
qc.h(0)
qc.cx(0,1)
qc.draw(output="mpl")
backend=BasicAer.get_backend('statevector_simulator')
job=execute(qc,backend)
result=job.result()
sv=result.get_statevector()
print(sv)
plot_bloch_multivector(sv)
plot_state_qsphere(sv)
plot_state_city(sv)
|
https://github.com/chinsu70802/quantum_teleportation
|
chinsu70802
|
!pip install qiskit
!pip install pylatexenc
!pip install qiskit-aer
from qiskit import QuantumCircuit
mycircuit = QuantumCircuit(1)
mycircuit.draw('mpl')
from qiskit.quantum_info import Statevector
sv = Statevector.from_label('0')
sv
sv.data
new_sv = sv.evolve(mycircuit)
new_sv
from qiskit.quantum_info import state_fidelity
state_fidelity(sv, new_sv)
from qiskit.visualization import plot_state_qsphere
plot_state_qsphere(sv.data)
mycircuit = QuantumCircuit(1)
mycircuit.x(0)
mycircuit.draw('mpl')
sv = Statevector.from_label('0')
new_sv = sv.evolve(mycircuit)
new_sv
state_fidelity(sv, new_sv)
plot_state_qsphere(new_sv.data)
sv = Statevector.from_label('0')
mycircuit = QuantumCircuit(1)
mycircuit.h(0)
mycircuit.draw('mpl')
new_sv = sv.evolve(mycircuit)
print(new_sv)
plot_state_qsphere(new_sv.data)
sv = Statevector.from_label('1')
mycircuit = QuantumCircuit(1)
mycircuit.h(0)
new_sv = sv.evolve(mycircuit)
print(new_sv)
plot_state_qsphere(new_sv.data)
sv = Statevector.from_label('00')
plot_state_qsphere(sv.data)
mycircuit = QuantumCircuit(2)
mycircuit.h(0)
mycircuit.cx(0,1)
mycircuit.draw('mpl')
new_sv = sv.evolve(mycircuit)
print(new_sv)
plot_state_qsphere(new_sv.data)
counts = new_sv.sample_counts(shots=1000)
from qiskit.visualization import plot_histogram
plot_histogram(counts)
sv = Statevector.from_label('10')
mycircuit.draw('mpl')
new_sv = sv.evolve(mycircuit)
new_sv
sv = Statevector.from_label('11')
mycircuit.draw('mpl')
new_sv = sv.evolve(mycircuit)
new_sv
mycircuit = QuantumCircuit(2, 2)
mycircuit.h(0)
mycircuit.cx(0,1)
mycircuit.measure([0,1], [0,1])
mycircuit.draw('mpl')
from qiskit import Aer, execute
simulator = Aer.get_backend('qasm_simulator')
result = execute(mycircuit, simulator, shots=10000).result()
counts = result.get_counts(mycircuit)
plot_histogram(counts)
def initialize_qubit(given_circuit, qubit_index):
import numpy as np
### WRITE YOUR CODE BETWEEN THESE LINES - START
given_circuit.initialize([np.sqrt(0.7),np.sqrt(0.3)],qubit_index)
### WRITE YOUR CODE BETWEEN THESE LINES - END
return given_circuit
def entangle_qubits(given_circuit, qubit_Alice, qubit_Bob):
### WRITE YOUR CODE BETWEEN THESE LINES - START
given_circuit.h(qubit_Alice)
given_circuit.cx(qubit_Alice, qubit_Bob)
### WRITE YOUR CODE BETWEEN THESE LINES - END
return given_circuit
def bell_meas_Alice_qubits(given_circuit, qubit1_Alice, qubit2_Alice, clbit1_Alice, clbit2_Alice):
### WRITE YOUR CODE BETWEEN THESE LINES - START
given_circuit.cx(qubit1_Alice,qubit2_Alice)
given_circuit.h(qubit1_Alice)
given_circuit.barrier()
given_circuit.measure([qubit1_Alice,qubit2_Alice],[clbit1_Alice,clbit2_Alice])
### WRITE YOUR CODE BETWEEN THESE LINES - END
return given_circuit
def controlled_ops_Bob_qubit(given_circuit, qubit_Bob, clbit1_Alice, clbit2_Alice):
### WRITE YOUR CODE BETWEEN THESE LINES - START
if clbit1_Alice == 1 and clbit2_Alice == 0:
given_circuit.z(qubit_Bob)
elif clbit1_Alice == 0 and clbit2_Alice == 1:
given_circuit.x(qubit_Bob)
elif clbit1_Alice == 1 and clbit2_Alice == 1:
given_circuit.x(qubit_Bob)
given_circuit.z(qubit_Bob)
### WRITE YOUR CODE BETWEEN THESE LINES - END
return given_circuit
### imports
from qiskit import QuantumRegister, ClassicalRegister
### set up the qubits and classical bits
all_qubits_Alice = QuantumRegister(2)
all_qubits_Bob = QuantumRegister(1)
creg1_Alice = ClassicalRegister(1)
creg2_Alice = ClassicalRegister(1)
### quantum teleportation circuit here
# Initialize
mycircuit = QuantumCircuit(all_qubits_Alice, all_qubits_Bob, creg1_Alice, creg2_Alice)
initialize_qubit(mycircuit, 0)
mycircuit.barrier()
# Entangle
entangle_qubits(mycircuit, 1, 2)
mycircuit.barrier()
# Do a Bell measurement
bell_meas_Alice_qubits(mycircuit, all_qubits_Alice[0], all_qubits_Alice[1], creg1_Alice[0], creg2_Alice[0])
mycircuit.barrier()
# Apply classically controlled quantum gates
controlled_ops_Bob_qubit(mycircuit, all_qubits_Bob[0], creg1_Alice, creg2_Alice)
### Look at the complete circuit
mycircuit.draw('mpl')
mycircuit.measure_all()
from qiskit import Aer, execute
simulator = Aer.get_backend('qasm_simulator')
result = execute(mycircuit, simulator, shots=10000).result()
counts = result.get_counts(mycircuit)
plot_histogram(counts)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import execute, pulse
d0 = pulse.DriveChannel(0)
with pulse.build() as pulse_prog:
pulse.play(pulse.Constant(100, 1.0), d0)
pulse_prog.draw()
|
https://github.com/JackHidary/quantumcomputingbook
|
JackHidary
|
"""키스킷 초고밀집 부호."""
# 가져오기.
import qiskit
# 2개 큐비트의 양자 레지스터와 2개 비트의 고전레지스터로 회로 구성하기.
qreg = qiskit.QuantumRegister(2)
creg = qiskit.ClassicalRegister(2)
circ = qiskit.QuantumCircuit(qreg, creg)
# 아다마르(Hadamard) 게이트를 0번째 큐비트에 적용하여 중첩상태를 구현합니다.
circ.h(qreg[0])
# X 연산자를 0번째 큐비트에 적용합니다.
circ.x(qreg[0])
# 벨상태를 얻기 위해 0번째와 1번째 큐비트로 CNOT연산을 가합니다.
# (역자주: 첫 번째 인자가 제어비트, 두 번째 인자가 피연산비트입니다.)
circ.cx(qreg[0], qreg[1])
# 아다마르 연산자를 0번째 큐비트에 적용하여 중첩을 해제합니다.
circ.h(qreg[0])
# 메시지를 얻기위해 측정 게이트를 추가합니다.
circ.measure(qreg, creg)
# 회로를 출력합니다.
print("Circuit:")
print(circ.draw())
# 상태벡터 시뮬레이터 백엔드 위에서 회로를 실행하고 결과를 얻습니다.
backend = qiskit.Aer.get_backend("statevector_simulator")
job = qiskit.execute(circ, backend)
res = job.result()
print(res.get_counts())
|
https://github.com/IvanIsCoding/Quantum
|
IvanIsCoding
|
%matplotlib inline
from qiskit import *
circuit = QuantumCircuit(5, 2)
# Steps to change qubits to 1 for test purposes
_ = circuit.x(0)
_ = circuit.x(1)
_ = circuit.x(2)
_ = circuit.barrier()
_ = circuit.ccx(0, 1, 3)
circuit.draw(output="mpl")
_ = circuit.ccx(2, 3, 4)
circuit.draw(output="mpl")
_ = circuit.ccx(0, 1, 3)
circuit.draw(output="mpl")
# Measure (x^y^z) and working qubuit in classical bit
_ = circuit.barrier()
_ = circuit.measure(4, 0)
_ = circuit.measure(3, 1)
circuit.draw(output="mpl")
# Simulate
simulator = Aer.get_backend("qasm_simulator")
job = execute(circuit, backend=simulator, shots=1024)
result = job.result()
counts = result.get_counts()
# Plot results
visualization.plot_histogram(counts)
|
https://github.com/Harcipan/QAI_GroverSim
|
Harcipan
|
# Importing standard Qiskit libraries
from qiskit import QuantumCircuit, transpile
from qiskit_ibm_provider import IBMProvider
import qiskit_ibm_provider.jupyter
#provider = IBMProvider('ibm-q')
#backend = provider.get_backend('ibmq_vigo')
from qiskit.visualization import *
from ibm_quantum_widgets import *
# qiskit-ibmq-provider has been deprecated.
# Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail.
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options
# Loading your IBM Quantum account(s)
service = QiskitRuntimeService(channel="ibm_quantum")
# Invoke a primitive. For more details see https://qiskit.org/documentation/partners/qiskit_ibm_runtime/tutorials.html
# result = Sampler("ibmq_qasm_simulator").run(circuits).result()# Built-in modules
import math
# Imports from Qiskit
from qiskit import QuantumCircuit
from qiskit.circuit.library import GroverOperator, MCMT, ZGate
from qiskit.visualization import plot_distribution
# Imports from Qiskit Runtime
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session
from qiskit.providers.basic_provider import BasicProvider
from qiskit.visualization import plot_histogram
from qiskit import transpile
from qiskit.providers.fake_provider import GenericBackendV2
def grover_oracle(marked_states):
if not isinstance(marked_states, list):
marked_states = [marked_states]
# Compute the number of qubits in circuit
num_qubits = len(marked_states[0])
qc = QuantumCircuit(num_qubits)
# Mark each target state in the input list
for target in marked_states:
# Flip target bit-string to match Qiskit bit-ordering
rev_target = target[::-1]
# Find the indices of all the '0' elements in bit-string
zero_inds = [ind for ind in range(num_qubits) if rev_target.startswith("0", ind)]
# Add a multi-controlled Z-gate with pre- and post-applied X-gates (open-controls)
# where the target bit-string has a '0' entry
qc.x(zero_inds)
"""ZAJ 1"""
qc.ry(0.5,zero_inds)
qc.compose(MCMT(ZGate(), num_qubits - 1, 1), inplace=True)
qc.x(zero_inds)
return qc
marked_states = ["011", "100"]
oracle = grover_oracle(marked_states)
grover_op = GroverOperator(oracle)
optimal_num_iterations = math.floor(
math.pi / 4 * math.sqrt(2**grover_op.num_qubits / len(marked_states))
)
qc = QuantumCircuit(grover_op.num_qubits)
# Create even superposition of all basis states
qc.h(range(grover_op.num_qubits))
# Apply Grover operator the optimal number of times
qc.compose(grover_op.power(optimal_num_iterations), inplace=True)
"""ZAJ 2"""
#qc.x(range(grover_op.num_qubits))
# Measure all qubits
qc.measure_all()
#qc.draw('mpl')
grover_op.decompose().draw("mpl")
qc.draw("mpl")
backend = GenericBackendV2(num_qubits=5)
transpiled_circuit = transpile(qc, backend)
job = backend.run(transpiled_circuit)
counts = job.result().get_counts()
# Write counts data to a text file
with open('counts_data.txt', 'w') as file:
file.write("State,Count\n")
for state, count in counts.items():
file.write(f"{state},{count}\n")
# Print counts data
print(counts)
print("State,Count\n")
for state, count in counts.items():
print(f"{state},{count}\n")
#plot_histogram(counts)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
top = QuantumCircuit(1)
top.x(0);
bottom = QuantumCircuit(2)
bottom.cry(0.2, 0, 1);
tensored = bottom.tensor(top)
tensored.draw('mpl')
|
https://github.com/swe-train/qiskit__qiskit
|
swe-train
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Meta tests for mappers.
The test checks the output of the swapper to a ground truth DAG (one for each
test/swapper) saved in as a QASM (in `test/python/qasm/`). If they need
to be regenerated, the DAG candidate is compiled and run in a simulator and
the count is checked before being saved. This happens with (in the root
directory):
> python -m test.python.transpiler.test_mappers regenerate
To make a new swapper pass throw all the common tests, create a new class inside the file
`path/to/test_mappers.py` that:
* the class name should start with `Tests...`.
* inheriting from ``SwapperCommonTestCases, QiskitTestCase``
* overwrite the required attribute ``pass_class``
For example::
class TestsSomeSwap(SwapperCommonTestCases, QiskitTestCase):
pass_class = SomeSwap # The pass class
additional_args = {'seed_transpiler': 42} # In case SomeSwap.__init__ requires
# additional arguments
To **add a test for all the swappers**, add a new method ``test_foo``to the
``SwapperCommonTestCases`` class:
* defining the following required ``self`` attributes: ``self.count``,
``self.shots``, ``self.delta``. They are required for the regeneration of the
ground truth.
* use the ``self.assertResult`` assertion for comparing for regeneration of the
ground truth.
* explicitly set a unique ``name`` of the ``QuantumCircuit``, as it it used
for the name of the QASM file of the ground truth.
For example::
def test_a_common_test(self):
self.count = {'000': 512, '110': 512} # The expected count for this circuit
self.shots = 1024 # Shots to run in the backend.
self.delta = 5 # This is delta for the AlmostEqual during
# the count check
coupling_map = [[0, 1], [0, 2]] # The coupling map for this specific test
qr = QuantumRegister(3, 'q') #
cr = ClassicalRegister(3, 'c') # Set the circuit to test
circuit = QuantumCircuit(qr, cr, # and don't forget to put a name
name='some_name') # (it will be used to save the QASM
circuit.h(qr[1]) #
circuit.cx(qr[1], qr[2]) #
circuit.measure(qr, cr) #
result = transpile(circuit, self.create_backend(), coupling_map=coupling_map,
pass_manager=self.create_passmanager(coupling_map))
self.assertResult(result, circuit)
```
"""
# pylint: disable=attribute-defined-outside-init
import unittest
import os
import sys
from qiskit import execute
from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit, BasicAer
from qiskit.transpiler import PassManager
from qiskit.transpiler.passes import BasicSwap, LookaheadSwap, StochasticSwap, SabreSwap
from qiskit.transpiler.passes import SetLayout
from qiskit.transpiler import CouplingMap, Layout
from qiskit.test import QiskitTestCase
class CommonUtilitiesMixin:
"""Utilities for meta testing.
Subclasses should redefine the ``pass_class`` argument, with a Swap Mapper
class.
Note: This class assumes that the subclass is also inheriting from
``QiskitTestCase``, and it uses ``QiskitTestCase`` methods directly.
"""
regenerate_expected = False
seed_simulator = 42
seed_transpiler = 42
additional_args = {}
pass_class = None
def create_passmanager(self, coupling_map, initial_layout=None):
"""Returns a PassManager using self.pass_class(coupling_map, initial_layout)"""
passmanager = PassManager()
if initial_layout:
passmanager.append(SetLayout(Layout(initial_layout)))
# pylint: disable=not-callable
passmanager.append(self.pass_class(CouplingMap(coupling_map), **self.additional_args))
return passmanager
def create_backend(self):
"""Returns a Backend."""
return BasicAer.get_backend("qasm_simulator")
def generate_ground_truth(self, transpiled_result, filename):
"""Generates the expected result into a file.
Checks if transpiled_result matches self.counts by running in a backend
(self.create_backend()). That's saved in a QASM in filename.
Args:
transpiled_result (DAGCircuit): The DAGCircuit to execute.
filename (string): Where the QASM is saved.
"""
sim_backend = self.create_backend()
job = execute(
transpiled_result,
sim_backend,
seed_simulator=self.seed_simulator,
seed_transpiler=self.seed_transpiler,
shots=self.shots,
)
self.assertDictAlmostEqual(self.counts, job.result().get_counts(), delta=self.delta)
transpiled_result.qasm(formatted=False, filename=filename)
def assertResult(self, result, circuit):
"""Fetches the QASM in circuit.name file and compares it with result."""
qasm_name = f"{type(self).__name__}_{circuit.name}.qasm"
qasm_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "qasm")
filename = os.path.join(qasm_dir, qasm_name)
if self.regenerate_expected:
# Run result in backend to test that is valid.
self.generate_ground_truth(result, filename)
expected = QuantumCircuit.from_qasm_file(filename)
self.assertEqual(result, expected)
class SwapperCommonTestCases(CommonUtilitiesMixin):
"""Tests that are run in several mappers.
The tests here will be run in several mappers. When adding a test, please
ensure that the test:
* defines ``self.count``, ``self.shots``, ``self.delta``.
* uses the ``self.assertResult`` assertion for comparing for regeneration of
the ground truth.
* explicitly sets a unique ``name`` of the ``QuantumCircuit``.
See also ``CommonUtilitiesMixin`` and the module docstring.
"""
def test_a_cx_to_map(self):
"""A single CX needs to be remapped.
q0:----------m-----
|
q1:-[H]-(+)--|-m---
| | |
q2:------.---|-|-m-
| | |
c0:----------.-|-|-
c1:------------.-|-
c2:--------------.-
CouplingMap map: [1]<-[0]->[2]
expected count: '000': 50%
'110': 50%
"""
self.counts = {"000": 512, "110": 512}
self.shots = 1024
self.delta = 5
coupling_map = [[0, 1], [0, 2]]
qr = QuantumRegister(3, "q")
cr = ClassicalRegister(3, "c")
circuit = QuantumCircuit(qr, cr, name="a_cx_to_map")
circuit.h(qr[1])
circuit.cx(qr[1], qr[2])
circuit.measure(qr, cr)
result = self.create_passmanager(coupling_map).run(circuit)
self.assertResult(result, circuit)
def test_initial_layout(self):
"""Using a non-trivial initial_layout.
q3:----------------m--
q0:----------m-----|--
| |
q1:-[H]-(+)--|-m---|--
| | | |
q2:------.---|-|-m-|--
| | | |
c0:----------.-|-|-|--
c1:------------.-|-|--
c2:--------------.-|--
c3:----------------.--
CouplingMap map: [1]<-[0]->[2]->[3]
expected count: '000': 50%
'110': 50%
"""
self.counts = {"0000": 512, "0110": 512}
self.shots = 1024
self.delta = 5
coupling_map = [[0, 1], [0, 2], [2, 3]]
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(4, "c")
circuit = QuantumCircuit(qr, cr, name="initial_layout")
circuit.h(qr[1])
circuit.cx(qr[1], qr[2])
circuit.measure(qr, cr)
layout = {qr[3]: 0, qr[0]: 1, qr[1]: 2, qr[2]: 3}
result = self.create_passmanager(coupling_map, layout).run(circuit)
self.assertResult(result, circuit)
def test_handle_measurement(self):
"""Handle measurement correctly.
q0:--.-----(+)-m-------
| | |
q1:-(+)-(+)-|--|-m-----
| | | |
q2:------|--|--|-|-m---
| | | | |
q3:-[H]--.--.--|-|-|-m-
| | | |
c0:------------.-|-|-|-
c1:--------------.-|-|-
c2:----------------.-|-
c3:------------------.-
CouplingMap map: [0]->[1]->[2]->[3]
expected count: '0000': 50%
'1011': 50%
"""
self.counts = {"1011": 512, "0000": 512}
self.shots = 1024
self.delta = 5
coupling_map = [[0, 1], [1, 2], [2, 3]]
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(4, "c")
circuit = QuantumCircuit(qr, cr, name="handle_measurement")
circuit.h(qr[3])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[3], qr[1])
circuit.cx(qr[3], qr[0])
circuit.measure(qr, cr)
result = self.create_passmanager(coupling_map).run(circuit)
self.assertResult(result, circuit)
class TestsBasicSwap(SwapperCommonTestCases, QiskitTestCase):
"""Test SwapperCommonTestCases using BasicSwap."""
pass_class = BasicSwap
class TestsLookaheadSwap(SwapperCommonTestCases, QiskitTestCase):
"""Test SwapperCommonTestCases using LookaheadSwap."""
pass_class = LookaheadSwap
class TestsStochasticSwap(SwapperCommonTestCases, QiskitTestCase):
"""Test SwapperCommonTestCases using StochasticSwap."""
pass_class = StochasticSwap
additional_args = {"seed": 0}
class TestsSabreSwap(SwapperCommonTestCases, QiskitTestCase):
"""Test SwapperCommonTestCases using SabreSwap."""
pass_class = SabreSwap
additional_args = {"seed": 1242}
if __name__ == "__main__":
if len(sys.argv) >= 2 and sys.argv[1] == "regenerate":
CommonUtilitiesMixin.regenerate_expected = True
del sys.argv[1]
unittest.main()
|
https://github.com/2lambda123/Qiskit-qiskit
|
2lambda123
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Tests for SparsePauliOp class."""
import itertools as it
import unittest
from test import combine
import numpy as np
from ddt import ddt
from qiskit import QiskitError
from qiskit.circuit import ParameterExpression, Parameter, ParameterVector
from qiskit.circuit.parametertable import ParameterView
from qiskit.quantum_info.operators import Operator, Pauli, PauliList, PauliTable, SparsePauliOp
from qiskit.test import QiskitTestCase
def pauli_mat(label):
"""Return Pauli matrix from a Pauli label"""
mat = np.eye(1, dtype=complex)
for i in label:
if i == "I":
mat = np.kron(mat, np.eye(2, dtype=complex))
elif i == "X":
mat = np.kron(mat, np.array([[0, 1], [1, 0]], dtype=complex))
elif i == "Y":
mat = np.kron(mat, np.array([[0, -1j], [1j, 0]], dtype=complex))
elif i == "Z":
mat = np.kron(mat, np.array([[1, 0], [0, -1]], dtype=complex))
else:
raise QiskitError(f"Invalid Pauli string {i}")
return mat
class TestSparsePauliOpInit(QiskitTestCase):
"""Tests for SparsePauliOp initialization."""
def test_pauli_table_init(self):
"""Test PauliTable initialization."""
labels = ["I", "X", "Y", "Z"]
table = PauliTable.from_labels(labels)
paulis = PauliList(labels)
with self.subTest(msg="no coeffs"):
spp_op = SparsePauliOp(table)
np.testing.assert_array_equal(spp_op.coeffs, np.ones(len(labels)))
self.assertEqual(spp_op.paulis, paulis)
with self.subTest(msg="no coeffs"):
coeffs = [1, 2, 3, 4]
spp_op = SparsePauliOp(table, coeffs)
np.testing.assert_array_equal(spp_op.coeffs, coeffs)
self.assertEqual(spp_op.paulis, paulis)
def test_str_init(self):
"""Test str initialization."""
for label in ["IZ", "XI", "YX", "ZZ"]:
pauli_list = PauliList(label)
spp_op = SparsePauliOp(label)
self.assertEqual(spp_op.paulis, pauli_list)
np.testing.assert_array_equal(spp_op.coeffs, [1])
def test_pauli_list_init(self):
"""Test PauliList initialization."""
labels = ["I", "X", "Y", "-Z", "iZ", "-iX"]
paulis = PauliList(labels)
with self.subTest(msg="no coeffs"):
spp_op = SparsePauliOp(paulis)
np.testing.assert_array_equal(spp_op.coeffs, [1, 1, 1, -1, 1j, -1j])
paulis.phase = 0
self.assertEqual(spp_op.paulis, paulis)
paulis = PauliList(labels)
with self.subTest(msg="with coeffs"):
coeffs = [1, 2, 3, 4, 5, 6]
spp_op = SparsePauliOp(paulis, coeffs)
np.testing.assert_array_equal(spp_op.coeffs, [1, 2, 3, -4, 5j, -6j])
paulis.phase = 0
self.assertEqual(spp_op.paulis, paulis)
paulis = PauliList(labels)
with self.subTest(msg="with Parameterized coeffs"):
params = ParameterVector("params", 6)
coeffs = np.array(params)
spp_op = SparsePauliOp(paulis, coeffs)
target = coeffs.copy()
target[3] *= -1
target[4] *= 1j
target[5] *= -1j
np.testing.assert_array_equal(spp_op.coeffs, target)
paulis.phase = 0
self.assertEqual(spp_op.paulis, paulis)
def test_sparse_pauli_op_init(self):
"""Test SparsePauliOp initialization."""
labels = ["I", "X", "Y", "-Z", "iZ", "-iX"]
with self.subTest(msg="make SparsePauliOp from SparsePauliOp"):
op = SparsePauliOp(labels)
ref_op = op.copy()
spp_op = SparsePauliOp(op)
self.assertEqual(spp_op, ref_op)
np.testing.assert_array_equal(ref_op.paulis.phase, np.zeros(ref_op.size))
np.testing.assert_array_equal(spp_op.paulis.phase, np.zeros(spp_op.size))
# make sure the changes of `op` do not propagate through to `spp_op`
op.paulis.z[:] = False
op.coeffs *= 2
self.assertNotEqual(spp_op, op)
self.assertEqual(spp_op, ref_op)
with self.subTest(msg="make SparsePauliOp from SparsePauliOp and ndarray"):
op = SparsePauliOp(labels)
coeffs = np.array([1, 2, 3, 4, 5, 6])
spp_op = SparsePauliOp(op, coeffs)
ref_op = SparsePauliOp(op.paulis.copy(), coeffs.copy())
self.assertEqual(spp_op, ref_op)
np.testing.assert_array_equal(ref_op.paulis.phase, np.zeros(ref_op.size))
np.testing.assert_array_equal(spp_op.paulis.phase, np.zeros(spp_op.size))
# make sure the changes of `op` and `coeffs` do not propagate through to `spp_op`
op.paulis.z[:] = False
coeffs *= 2
self.assertNotEqual(spp_op, op)
self.assertEqual(spp_op, ref_op)
with self.subTest(msg="make SparsePauliOp from PauliList"):
paulis = PauliList(labels)
spp_op = SparsePauliOp(paulis)
ref_op = SparsePauliOp(labels)
self.assertEqual(spp_op, ref_op)
np.testing.assert_array_equal(ref_op.paulis.phase, np.zeros(ref_op.size))
np.testing.assert_array_equal(spp_op.paulis.phase, np.zeros(spp_op.size))
# make sure the change of `paulis` does not propagate through to `spp_op`
paulis.z[:] = False
self.assertEqual(spp_op, ref_op)
with self.subTest(msg="make SparsePauliOp from PauliList and ndarray"):
paulis = PauliList(labels)
coeffs = np.array([1, 2, 3, 4, 5, 6])
spp_op = SparsePauliOp(paulis, coeffs)
ref_op = SparsePauliOp(labels, coeffs.copy())
self.assertEqual(spp_op, ref_op)
np.testing.assert_array_equal(ref_op.paulis.phase, np.zeros(ref_op.size))
np.testing.assert_array_equal(spp_op.paulis.phase, np.zeros(spp_op.size))
# make sure the changes of `paulis` and `coeffs` do not propagate through to `spp_op`
paulis.z[:] = False
coeffs[:] = 0
self.assertEqual(spp_op, ref_op)
class TestSparsePauliOpConversions(QiskitTestCase):
"""Tests SparsePauliOp representation conversions."""
def test_from_operator(self):
"""Test from_operator methods."""
for tup in it.product(["I", "X", "Y", "Z"], repeat=2):
label = "".join(tup)
with self.subTest(msg=label):
spp_op = SparsePauliOp.from_operator(Operator(pauli_mat(label)))
np.testing.assert_array_equal(spp_op.coeffs, [1])
self.assertEqual(spp_op.paulis, PauliList(label))
def test_from_list(self):
"""Test from_list method."""
labels = ["XXZ", "IXI", "YZZ", "III"]
coeffs = [3.0, 5.5, -1j, 23.3333]
spp_op = SparsePauliOp.from_list(zip(labels, coeffs))
np.testing.assert_array_equal(spp_op.coeffs, coeffs)
self.assertEqual(spp_op.paulis, PauliList(labels))
def test_from_list_parameters(self):
"""Test from_list method with parameters."""
labels = ["XXZ", "IXI", "YZZ", "III"]
coeffs = ParameterVector("a", 4)
spp_op = SparsePauliOp.from_list(zip(labels, coeffs), dtype=object)
np.testing.assert_array_equal(spp_op.coeffs, coeffs)
self.assertEqual(spp_op.paulis, PauliList(labels))
def test_from_index_list(self):
"""Test from_list method specifying the Paulis via indices."""
expected_labels = ["XXZ", "IXI", "YIZ", "III"]
paulis = ["XXZ", "X", "YZ", ""]
indices = [[2, 1, 0], [1], [2, 0], []]
coeffs = [3.0, 5.5, -1j, 23.3333]
spp_op = SparsePauliOp.from_sparse_list(zip(paulis, indices, coeffs), num_qubits=3)
np.testing.assert_array_equal(spp_op.coeffs, coeffs)
self.assertEqual(spp_op.paulis, PauliList(expected_labels))
def test_from_index_list_parameters(self):
"""Test from_list method specifying the Paulis via indices with paramteres."""
expected_labels = ["XXZ", "IXI", "YIZ", "III"]
paulis = ["XXZ", "X", "YZ", ""]
indices = [[2, 1, 0], [1], [2, 0], []]
coeffs = ParameterVector("a", 4)
spp_op = SparsePauliOp.from_sparse_list(
zip(paulis, indices, coeffs), num_qubits=3, dtype=object
)
np.testing.assert_array_equal(spp_op.coeffs, coeffs)
self.assertEqual(spp_op.paulis, PauliList(expected_labels))
def test_from_index_list_endianness(self):
"""Test the construction from index list has the right endianness."""
spp_op = SparsePauliOp.from_sparse_list([("ZX", [1, 4], 1)], num_qubits=5)
expected = Pauli("XIIZI")
self.assertEqual(spp_op.paulis[0], expected)
def test_from_index_list_raises(self):
"""Test from_list via Pauli + indices raises correctly, if number of qubits invalid."""
with self.assertRaises(QiskitError):
_ = SparsePauliOp.from_sparse_list([("Z", [2], 1)], 1)
def test_from_index_list_same_index(self):
"""Test from_list via Pauli + number of qubits raises correctly, if indices duplicate."""
with self.assertRaises(QiskitError):
_ = SparsePauliOp.from_sparse_list([("ZZ", [0, 0], 1)], 2)
with self.assertRaises(QiskitError):
_ = SparsePauliOp.from_sparse_list([("ZI", [0, 0], 1)], 2)
with self.assertRaises(QiskitError):
_ = SparsePauliOp.from_sparse_list([("IZ", [0, 0], 1)], 2)
def test_from_zip(self):
"""Test from_list method for zipped input."""
labels = ["XXZ", "IXI", "YZZ", "III"]
coeffs = [3.0, 5.5, -1j, 23.3333]
spp_op = SparsePauliOp.from_list(zip(labels, coeffs))
np.testing.assert_array_equal(spp_op.coeffs, coeffs)
self.assertEqual(spp_op.paulis, PauliList(labels))
def test_to_matrix(self):
"""Test to_matrix method."""
labels = ["XI", "YZ", "YY", "ZZ"]
coeffs = [-3, 4.4j, 0.2 - 0.1j, 66.12]
spp_op = SparsePauliOp(labels, coeffs)
target = np.zeros((4, 4), dtype=complex)
for coeff, label in zip(coeffs, labels):
target += coeff * pauli_mat(label)
np.testing.assert_array_equal(spp_op.to_matrix(), target)
np.testing.assert_array_equal(spp_op.to_matrix(sparse=True).toarray(), target)
def test_to_matrix_large(self):
"""Test to_matrix method with a large number of qubits."""
reps = 5
labels = ["XI" * reps, "YZ" * reps, "YY" * reps, "ZZ" * reps]
coeffs = [-3, 4.4j, 0.2 - 0.1j, 66.12]
spp_op = SparsePauliOp(labels, coeffs)
size = 1 << 2 * reps
target = np.zeros((size, size), dtype=complex)
for coeff, label in zip(coeffs, labels):
target += coeff * pauli_mat(label)
np.testing.assert_array_equal(spp_op.to_matrix(), target)
np.testing.assert_array_equal(spp_op.to_matrix(sparse=True).toarray(), target)
def test_to_matrix_parameters(self):
"""Test to_matrix method for parameterized SparsePauliOp."""
labels = ["XI", "YZ", "YY", "ZZ"]
coeffs = np.array(ParameterVector("a", 4))
spp_op = SparsePauliOp(labels, coeffs)
target = np.zeros((4, 4), dtype=object)
for coeff, label in zip(coeffs, labels):
target += coeff * pauli_mat(label)
np.testing.assert_array_equal(spp_op.to_matrix(), target)
def test_to_operator(self):
"""Test to_operator method."""
labels = ["XI", "YZ", "YY", "ZZ"]
coeffs = [-3, 4.4j, 0.2 - 0.1j, 66.12]
spp_op = SparsePauliOp(labels, coeffs)
target = Operator(np.zeros((4, 4), dtype=complex))
for coeff, label in zip(coeffs, labels):
target = target + Operator(coeff * pauli_mat(label))
self.assertEqual(spp_op.to_operator(), target)
def test_to_list(self):
"""Test to_operator method."""
labels = ["XI", "YZ", "YY", "ZZ"]
coeffs = [-3, 4.4j, 0.2 - 0.1j, 66.12]
op = SparsePauliOp(labels, coeffs)
target = list(zip(labels, coeffs))
self.assertEqual(op.to_list(), target)
def test_to_list_parameters(self):
"""Test to_operator method with paramters."""
labels = ["XI", "YZ", "YY", "ZZ"]
coeffs = np.array(ParameterVector("a", 4))
op = SparsePauliOp(labels, coeffs)
target = list(zip(labels, coeffs))
self.assertEqual(op.to_list(), target)
class TestSparsePauliOpIteration(QiskitTestCase):
"""Tests for SparsePauliOp iterators class."""
def test_enumerate(self):
"""Test enumerate with SparsePauliOp."""
labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"]
coeffs = np.array([1, 2, 3, 4, 5, 6])
op = SparsePauliOp(labels, coeffs)
for idx, i in enumerate(op):
self.assertEqual(i, SparsePauliOp(labels[idx], coeffs[[idx]]))
def test_enumerate_parameters(self):
"""Test enumerate with SparsePauliOp with parameters."""
labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"]
coeffs = np.array(ParameterVector("a", 6))
op = SparsePauliOp(labels, coeffs)
for idx, i in enumerate(op):
self.assertEqual(i, SparsePauliOp(labels[idx], coeffs[[idx]]))
def test_iter(self):
"""Test iter with SparsePauliOp."""
labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"]
coeffs = np.array([1, 2, 3, 4, 5, 6])
op = SparsePauliOp(labels, coeffs)
for idx, i in enumerate(iter(op)):
self.assertEqual(i, SparsePauliOp(labels[idx], coeffs[[idx]]))
def test_iter_parameters(self):
"""Test iter with SparsePauliOp with parameters."""
labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"]
coeffs = np.array(ParameterVector("a", 6))
op = SparsePauliOp(labels, coeffs)
for idx, i in enumerate(iter(op)):
self.assertEqual(i, SparsePauliOp(labels[idx], coeffs[[idx]]))
def test_label_iter(self):
"""Test SparsePauliOp label_iter method."""
labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"]
coeffs = np.array([1, 2, 3, 4, 5, 6])
op = SparsePauliOp(labels, coeffs)
for idx, i in enumerate(op.label_iter()):
self.assertEqual(i, (labels[idx], coeffs[idx]))
def test_label_iter_parameters(self):
"""Test SparsePauliOp label_iter method with parameters."""
labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"]
coeffs = np.array(ParameterVector("a", 6))
op = SparsePauliOp(labels, coeffs)
for idx, i in enumerate(op.label_iter()):
self.assertEqual(i, (labels[idx], coeffs[idx]))
def test_matrix_iter(self):
"""Test SparsePauliOp dense matrix_iter method."""
labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"]
coeffs = np.array([1, 2, 3, 4, 5, 6])
op = SparsePauliOp(labels, coeffs)
for idx, i in enumerate(op.matrix_iter()):
np.testing.assert_array_equal(i, coeffs[idx] * pauli_mat(labels[idx]))
def test_matrix_iter_parameters(self):
"""Test SparsePauliOp dense matrix_iter method. with parameters"""
labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"]
coeffs = np.array(ParameterVector("a", 6))
op = SparsePauliOp(labels, coeffs)
for idx, i in enumerate(op.matrix_iter()):
np.testing.assert_array_equal(i, coeffs[idx] * pauli_mat(labels[idx]))
def test_matrix_iter_sparse(self):
"""Test SparsePauliOp sparse matrix_iter method."""
labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"]
coeffs = np.array([1, 2, 3, 4, 5, 6])
op = SparsePauliOp(labels, coeffs)
for idx, i in enumerate(op.matrix_iter(sparse=True)):
np.testing.assert_array_equal(i.toarray(), coeffs[idx] * pauli_mat(labels[idx]))
def bind_parameters_to_one(array):
"""Bind parameters to one. The purpose of using this method is to bind some value and
use ``assert_allclose``, since it is impossible to verify equivalence in the case of
numerical errors with parameters existing.
"""
def bind_one(a):
parameters = a.parameters
return complex(a.bind(dict(zip(parameters, [1] * len(parameters)))))
return np.vectorize(bind_one, otypes=[complex])(array)
@ddt
class TestSparsePauliOpMethods(QiskitTestCase):
"""Tests for SparsePauliOp operator methods."""
RNG = np.random.default_rng(1994)
def setUp(self):
super().setUp()
self.parameter_names = (f"param_{x}" for x in it.count())
def random_spp_op(self, num_qubits, num_terms, use_parameters=False):
"""Generate a pseudo-random SparsePauliOp"""
if use_parameters:
coeffs = np.array(ParameterVector(next(self.parameter_names), num_terms))
else:
coeffs = self.RNG.uniform(-1, 1, size=num_terms) + 1j * self.RNG.uniform(
-1, 1, size=num_terms
)
labels = [
"".join(self.RNG.choice(["I", "X", "Y", "Z"], size=num_qubits))
for _ in range(num_terms)
]
return SparsePauliOp(labels, coeffs)
@combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False])
def test_conjugate(self, num_qubits, use_parameters):
"""Test conjugate method for {num_qubits}-qubits."""
spp_op = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters)
target = spp_op.to_matrix().conjugate()
op = spp_op.conjugate()
value = op.to_matrix()
np.testing.assert_array_equal(value, target)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
@combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False])
def test_transpose(self, num_qubits, use_parameters):
"""Test transpose method for {num_qubits}-qubits."""
spp_op = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters)
target = spp_op.to_matrix().transpose()
op = spp_op.transpose()
value = op.to_matrix()
np.testing.assert_array_equal(value, target)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
@combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False])
def test_adjoint(self, num_qubits, use_parameters):
"""Test adjoint method for {num_qubits}-qubits."""
spp_op = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters)
target = spp_op.to_matrix().transpose().conjugate()
op = spp_op.adjoint()
value = op.to_matrix()
np.testing.assert_array_equal(value, target)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
@combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False])
def test_compose(self, num_qubits, use_parameters):
"""Test {num_qubits}-qubit compose methods."""
spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters)
spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters)
target = spp_op2.to_matrix() @ spp_op1.to_matrix()
op = spp_op1.compose(spp_op2)
value = op.to_matrix()
if use_parameters:
value = bind_parameters_to_one(value)
target = bind_parameters_to_one(target)
np.testing.assert_allclose(value, target, atol=1e-8)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
op = spp_op1 & spp_op2
value = op.to_matrix()
if use_parameters:
value = bind_parameters_to_one(value)
np.testing.assert_allclose(value, target, atol=1e-8)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
@combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False])
def test_dot(self, num_qubits, use_parameters):
"""Test {num_qubits}-qubit dot methods."""
spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters)
spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters)
target = spp_op1.to_matrix() @ spp_op2.to_matrix()
op = spp_op1.dot(spp_op2)
value = op.to_matrix()
if use_parameters:
value = bind_parameters_to_one(value)
target = bind_parameters_to_one(target)
np.testing.assert_allclose(value, target, atol=1e-8)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
op = spp_op1 @ spp_op2
value = op.to_matrix()
if use_parameters:
value = bind_parameters_to_one(value)
np.testing.assert_allclose(value, target, atol=1e-8)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
@combine(num_qubits=[1, 2, 3])
def test_qargs_compose(self, num_qubits):
"""Test 3-qubit compose method with {num_qubits}-qubit qargs."""
spp_op1 = self.random_spp_op(3, 2**3)
spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits)
qargs = self.RNG.choice(3, size=num_qubits, replace=False).tolist()
target = Operator(spp_op1).compose(Operator(spp_op2), qargs=qargs)
op = spp_op1.compose(spp_op2, qargs=qargs)
value = op.to_operator()
self.assertEqual(value, target)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
op = spp_op1 & spp_op2(qargs)
value = op.to_operator()
self.assertEqual(value, target)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
@combine(num_qubits=[1, 2, 3])
def test_qargs_dot(self, num_qubits):
"""Test 3-qubit dot method with {num_qubits}-qubit qargs."""
spp_op1 = self.random_spp_op(3, 2**3)
spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits)
qargs = self.RNG.choice(3, size=num_qubits, replace=False).tolist()
target = Operator(spp_op1).dot(Operator(spp_op2), qargs=qargs)
op = spp_op1.dot(spp_op2, qargs=qargs)
value = op.to_operator()
self.assertEqual(value, target)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
@combine(num_qubits1=[1, 2, 3], num_qubits2=[1, 2, 3], use_parameters=[True, False])
def test_tensor(self, num_qubits1, num_qubits2, use_parameters):
"""Test tensor method for {num_qubits1} and {num_qubits2} qubits."""
spp_op1 = self.random_spp_op(num_qubits1, 2**num_qubits1, use_parameters)
spp_op2 = self.random_spp_op(num_qubits2, 2**num_qubits2, use_parameters)
target = np.kron(spp_op1.to_matrix(), spp_op2.to_matrix())
op = spp_op1.tensor(spp_op2)
value = op.to_matrix()
if use_parameters:
value = bind_parameters_to_one(value)
target = bind_parameters_to_one(target)
np.testing.assert_allclose(value, target, atol=1e-8)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
@combine(num_qubits1=[1, 2, 3], num_qubits2=[1, 2, 3], use_parameters=[True, False])
def test_expand(self, num_qubits1, num_qubits2, use_parameters):
"""Test expand method for {num_qubits1} and {num_qubits2} qubits."""
spp_op1 = self.random_spp_op(num_qubits1, 2**num_qubits1, use_parameters)
spp_op2 = self.random_spp_op(num_qubits2, 2**num_qubits2, use_parameters)
target = np.kron(spp_op2.to_matrix(), spp_op1.to_matrix())
op = spp_op1.expand(spp_op2)
value = op.to_matrix()
if use_parameters:
value = bind_parameters_to_one(value)
target = bind_parameters_to_one(target)
np.testing.assert_allclose(value, target, atol=1e-8)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
@combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False])
def test_add(self, num_qubits, use_parameters):
"""Test + method for {num_qubits} qubits."""
spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters)
spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters)
target = spp_op1.to_matrix() + spp_op2.to_matrix()
op = spp_op1 + spp_op2
value = op.to_matrix()
if use_parameters:
value = bind_parameters_to_one(value)
target = bind_parameters_to_one(target)
np.testing.assert_allclose(value, target, atol=1e-8)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
@combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False])
def test_sub(self, num_qubits, use_parameters):
"""Test + method for {num_qubits} qubits."""
spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters)
spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters)
target = spp_op1.to_matrix() - spp_op2.to_matrix()
op = spp_op1 - spp_op2
value = op.to_matrix()
if use_parameters:
value = bind_parameters_to_one(value)
target = bind_parameters_to_one(target)
np.testing.assert_allclose(value, target, atol=1e-8)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
@combine(num_qubits=[1, 2, 3])
def test_add_qargs(self, num_qubits):
"""Test + method for 3 qubits with {num_qubits} qubit qargs."""
spp_op1 = self.random_spp_op(3, 2**3)
spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits)
qargs = self.RNG.choice(3, size=num_qubits, replace=False).tolist()
target = Operator(spp_op1) + Operator(spp_op2)(qargs)
op = spp_op1 + spp_op2(qargs)
value = op.to_operator()
self.assertEqual(value, target)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
@combine(num_qubits=[1, 2, 3])
def test_sub_qargs(self, num_qubits):
"""Test - method for 3 qubits with {num_qubits} qubit qargs."""
spp_op1 = self.random_spp_op(3, 2**3)
spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits)
qargs = self.RNG.choice(3, size=num_qubits, replace=False).tolist()
target = Operator(spp_op1) - Operator(spp_op2)(qargs)
op = spp_op1 - spp_op2(qargs)
value = op.to_operator()
self.assertEqual(value, target)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
@combine(
num_qubits=[1, 2, 3],
value=[
0,
1,
1j,
-3 + 4.4j,
np.int64(2),
Parameter("x"),
0 * Parameter("x"),
(-2 + 1.7j) * Parameter("x"),
],
param=[None, "a"],
)
def test_mul(self, num_qubits, value, param):
"""Test * method for {num_qubits} qubits and value {value}."""
spp_op = self.random_spp_op(num_qubits, 2**num_qubits, param)
target = value * spp_op.to_matrix()
op = value * spp_op
value_mat = op.to_matrix()
has_parameters = isinstance(value, ParameterExpression) or param is not None
if value != 0 and has_parameters:
value_mat = bind_parameters_to_one(value_mat)
target = bind_parameters_to_one(target)
if value == 0:
np.testing.assert_array_equal(value_mat, target.astype(complex))
else:
np.testing.assert_allclose(value_mat, target, atol=1e-8)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
target = spp_op.to_matrix() * value
op = spp_op * value
value_mat = op.to_matrix()
if value != 0 and has_parameters:
value_mat = bind_parameters_to_one(value_mat)
target = bind_parameters_to_one(target)
if value == 0:
np.testing.assert_array_equal(value_mat, target.astype(complex))
else:
np.testing.assert_allclose(value_mat, target, atol=1e-8)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
@combine(num_qubits=[1, 2, 3], value=[1, 1j, -3 + 4.4j], param=[None, "a"])
def test_div(self, num_qubits, value, param):
"""Test / method for {num_qubits} qubits and value {value}."""
spp_op = self.random_spp_op(num_qubits, 2**num_qubits, param)
target = spp_op.to_matrix() / value
op = spp_op / value
value_mat = op.to_matrix()
if param is not None:
value_mat = bind_parameters_to_one(value_mat)
target = bind_parameters_to_one(target)
np.testing.assert_allclose(value_mat, target, atol=1e-8)
np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size))
def test_simplify(self):
"""Test simplify method"""
coeffs = [3 + 1j, -3 - 1j, 0, 4, -5, 2.2, -1.1j]
labels = ["IXI", "IXI", "ZZZ", "III", "III", "XXX", "XXX"]
spp_op = SparsePauliOp.from_list(zip(labels, coeffs))
simplified_op = spp_op.simplify()
target_coeffs = [-1, 2.2 - 1.1j]
target_labels = ["III", "XXX"]
target_op = SparsePauliOp.from_list(zip(target_labels, target_coeffs))
self.assertEqual(simplified_op, target_op)
np.testing.assert_array_equal(simplified_op.paulis.phase, np.zeros(simplified_op.size))
@combine(num_qubits=[1, 2, 3, 4], num_adds=[0, 1, 2, 3])
def test_simplify2(self, num_qubits, num_adds):
"""Test simplify method for {num_qubits} qubits with {num_adds} `add` calls."""
spp_op = self.random_spp_op(num_qubits, 2**num_qubits)
for _ in range(num_adds):
spp_op += spp_op
simplified_op = spp_op.simplify()
value = Operator(simplified_op)
target = Operator(spp_op)
self.assertEqual(value, target)
np.testing.assert_array_equal(spp_op.paulis.phase, np.zeros(spp_op.size))
np.testing.assert_array_equal(simplified_op.paulis.phase, np.zeros(simplified_op.size))
@combine(num_qubits=[1, 2, 3, 4])
def test_simplify_zero(self, num_qubits):
"""Test simplify method for {num_qubits} qubits with zero operators."""
spp_op = self.random_spp_op(num_qubits, 2**num_qubits)
zero_op = spp_op - spp_op
simplified_op = zero_op.simplify()
value = Operator(simplified_op)
target = Operator(zero_op)
self.assertEqual(value, target)
np.testing.assert_array_equal(simplified_op.coeffs, [0])
np.testing.assert_array_equal(zero_op.paulis.phase, np.zeros(zero_op.size))
np.testing.assert_array_equal(simplified_op.paulis.phase, np.zeros(simplified_op.size))
def test_simplify_parameters(self):
"""Test simplify methods for parameterized SparsePauliOp."""
a = Parameter("a")
coeffs = np.array([a, -a, 0, a, a, a, 2 * a])
labels = ["IXI", "IXI", "ZZZ", "III", "III", "XXX", "XXX"]
spp_op = SparsePauliOp(labels, coeffs)
simplified_op = spp_op.simplify()
target_coeffs = np.array([2 * a, 3 * a])
target_labels = ["III", "XXX"]
target_op = SparsePauliOp(target_labels, target_coeffs)
self.assertEqual(simplified_op, target_op)
np.testing.assert_array_equal(simplified_op.paulis.phase, np.zeros(simplified_op.size))
def test_sort(self):
"""Test sort method."""
with self.assertRaises(QiskitError):
target = SparsePauliOp([], [])
with self.subTest(msg="1 qubit real number"):
target = SparsePauliOp(
["I", "I", "I", "I"], [-3.0 + 0.0j, 1.0 + 0.0j, 2.0 + 0.0j, 4.0 + 0.0j]
)
value = SparsePauliOp(["I", "I", "I", "I"], [1, 2, -3, 4]).sort()
self.assertEqual(target, value)
with self.subTest(msg="1 qubit complex"):
target = SparsePauliOp(
["I", "I", "I", "I"], [-1.0 + 0.0j, 0.0 - 1.0j, 0.0 + 1.0j, 1.0 + 0.0j]
)
value = SparsePauliOp(
["I", "I", "I", "I"], [1.0 + 0.0j, 0.0 + 1.0j, 0.0 - 1.0j, -1.0 + 0.0j]
).sort()
self.assertEqual(target, value)
with self.subTest(msg="1 qubit Pauli I, X, Y, Z"):
target = SparsePauliOp(
["I", "X", "Y", "Z"], [-1.0 + 2.0j, 1.0 + 0.0j, 2.0 + 0.0j, 3.0 - 4.0j]
)
value = SparsePauliOp(
["Y", "X", "Z", "I"], [2.0 + 0.0j, 1.0 + 0.0j, 3.0 - 4.0j, -1.0 + 2.0j]
).sort()
self.assertEqual(target, value)
with self.subTest(msg="1 qubit weight order"):
target = SparsePauliOp(
["I", "X", "Y", "Z"], [-1.0 + 2.0j, 1.0 + 0.0j, 2.0 + 0.0j, 3.0 - 4.0j]
)
value = SparsePauliOp(
["Y", "X", "Z", "I"], [2.0 + 0.0j, 1.0 + 0.0j, 3.0 - 4.0j, -1.0 + 2.0j]
).sort(weight=True)
self.assertEqual(target, value)
with self.subTest(msg="1 qubit multi Pauli"):
target = SparsePauliOp(
["I", "I", "I", "I", "X", "X", "Y", "Z"],
[
-1.0 + 2.0j,
1.0 + 0.0j,
2.0 + 0.0j,
3.0 - 4.0j,
-1.0 + 4.0j,
-1.0 + 5.0j,
-1.0 + 3.0j,
-1.0 + 2.0j,
],
)
value = SparsePauliOp(
["I", "I", "I", "I", "X", "Z", "Y", "X"],
[
2.0 + 0.0j,
1.0 + 0.0j,
3.0 - 4.0j,
-1.0 + 2.0j,
-1.0 + 5.0j,
-1.0 + 2.0j,
-1.0 + 3.0j,
-1.0 + 4.0j,
],
).sort()
self.assertEqual(target, value)
with self.subTest(msg="2 qubit standard order"):
target = SparsePauliOp(
["II", "XI", "XX", "XX", "XX", "XY", "XZ", "YI"],
[
4.0 + 0.0j,
7.0 + 0.0j,
2.0 + 1.0j,
2.0 + 2.0j,
3.0 + 0.0j,
6.0 + 0.0j,
5.0 + 0.0j,
3.0 + 0.0j,
],
)
value = SparsePauliOp(
["XX", "XX", "XX", "YI", "II", "XZ", "XY", "XI"],
[
2.0 + 1.0j,
2.0 + 2.0j,
3.0 + 0.0j,
3.0 + 0.0j,
4.0 + 0.0j,
5.0 + 0.0j,
6.0 + 0.0j,
7.0 + 0.0j,
],
).sort()
self.assertEqual(target, value)
with self.subTest(msg="2 qubit weight order"):
target = SparsePauliOp(
["II", "XI", "YI", "XX", "XX", "XX", "XY", "XZ"],
[
4.0 + 0.0j,
7.0 + 0.0j,
3.0 + 0.0j,
2.0 + 1.0j,
2.0 + 2.0j,
3.0 + 0.0j,
6.0 + 0.0j,
5.0 + 0.0j,
],
)
value = SparsePauliOp(
["XX", "XX", "XX", "YI", "II", "XZ", "XY", "XI"],
[
2.0 + 1.0j,
2.0 + 2.0j,
3.0 + 0.0j,
3.0 + 0.0j,
4.0 + 0.0j,
5.0 + 0.0j,
6.0 + 0.0j,
7.0 + 0.0j,
],
).sort(weight=True)
self.assertEqual(target, value)
def test_chop(self):
"""Test chop, which individually truncates real and imaginary parts of the coeffs."""
eps = 1e-10
op = SparsePauliOp(
["XYZ", "ZII", "ZII", "YZY"], coeffs=[eps + 1j * eps, 1 + 1j * eps, eps + 1j, 1 + 1j]
)
simplified = op.chop(tol=eps)
expected_coeffs = [1, 1j, 1 + 1j]
expected_paulis = ["ZII", "ZII", "YZY"]
self.assertListEqual(simplified.coeffs.tolist(), expected_coeffs)
self.assertListEqual(simplified.paulis.to_labels(), expected_paulis)
def test_chop_all(self):
"""Test that chop returns an identity operator with coeff 0 if all coeffs are chopped."""
eps = 1e-10
op = SparsePauliOp(["X", "Z"], coeffs=[eps, eps])
simplified = op.chop(tol=eps)
expected = SparsePauliOp(["I"], coeffs=[0.0])
self.assertEqual(simplified, expected)
@combine(num_qubits=[1, 2, 3, 4], num_ops=[1, 2, 3, 4], param=[None, "a"])
def test_sum(self, num_qubits, num_ops, param):
"""Test sum method for {num_qubits} qubits with {num_ops} operators."""
ops = [
self.random_spp_op(
num_qubits, 2**num_qubits, param if param is None else f"{param}_{i}"
)
for i in range(num_ops)
]
sum_op = SparsePauliOp.sum(ops)
value = sum_op.to_matrix()
target_operator = sum((op.to_matrix() for op in ops[1:]), ops[0].to_matrix())
if param is not None:
value = bind_parameters_to_one(value)
target_operator = bind_parameters_to_one(target_operator)
np.testing.assert_allclose(value, target_operator, atol=1e-8)
target_spp_op = sum((op for op in ops[1:]), ops[0])
self.assertEqual(sum_op, target_spp_op)
np.testing.assert_array_equal(sum_op.paulis.phase, np.zeros(sum_op.size))
def test_sum_error(self):
"""Test sum method with invalid cases."""
with self.assertRaises(QiskitError):
SparsePauliOp.sum([])
with self.assertRaises(QiskitError):
ops = [self.random_spp_op(num_qubits, 2**num_qubits) for num_qubits in [1, 2]]
SparsePauliOp.sum(ops)
with self.assertRaises(QiskitError):
SparsePauliOp.sum([1, 2])
@combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False])
def test_eq(self, num_qubits, use_parameters):
"""Test __eq__ method for {num_qubits} qubits."""
spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters)
spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters)
spp_op3 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters)
zero = spp_op3 - spp_op3
self.assertEqual(spp_op1, spp_op1)
self.assertEqual(spp_op2, spp_op2)
self.assertNotEqual(spp_op1, spp_op1 + zero)
self.assertNotEqual(spp_op2, spp_op2 + zero)
if spp_op1 != spp_op2:
self.assertNotEqual(spp_op1 + spp_op2, spp_op2 + spp_op1)
@combine(num_qubits=[1, 2, 3, 4])
def test_equiv(self, num_qubits):
"""Test equiv method for {num_qubits} qubits."""
spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits)
spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits)
spp_op3 = self.random_spp_op(num_qubits, 2**num_qubits)
spp_op4 = self.random_spp_op(num_qubits, 2**num_qubits)
zero = spp_op3 - spp_op3
zero2 = spp_op4 - spp_op4
self.assertTrue(spp_op1.equiv(spp_op1))
self.assertTrue(spp_op1.equiv(spp_op1 + zero))
self.assertTrue(spp_op2.equiv(spp_op2))
self.assertTrue(spp_op2.equiv(spp_op2 + zero))
self.assertTrue(zero.equiv(zero2))
self.assertTrue((zero + zero2).equiv(zero2 + zero))
self.assertTrue((zero2 + zero).equiv(zero + zero2))
self.assertTrue((spp_op1 + spp_op2).equiv(spp_op2 + spp_op1))
self.assertTrue((spp_op2 + spp_op1).equiv(spp_op1 + spp_op2))
self.assertTrue((spp_op1 - spp_op1).equiv(spp_op2 - spp_op2))
self.assertTrue((2 * spp_op1).equiv(spp_op1 + spp_op1))
self.assertTrue((2 * spp_op2).equiv(spp_op2 + spp_op2))
if not spp_op1.equiv(zero):
self.assertFalse(spp_op1.equiv(spp_op1 + spp_op1))
if not spp_op2.equiv(zero):
self.assertFalse(spp_op2.equiv(spp_op2 + spp_op2))
def test_equiv_atol(self):
"""Test equiv method with atol."""
op1 = SparsePauliOp.from_list([("X", 1), ("Y", 2)])
op2 = op1 + 1e-7 * SparsePauliOp.from_list([("I", 1)])
self.assertFalse(op1.equiv(op2))
self.assertTrue(op1.equiv(op2, atol=1e-7))
def test_eq_equiv(self):
"""Test __eq__ and equiv methods with some specific cases."""
with self.subTest("shuffled"):
spp_op1 = SparsePauliOp.from_list([("X", 1), ("Y", 2)])
spp_op2 = SparsePauliOp.from_list([("Y", 2), ("X", 1)])
self.assertNotEqual(spp_op1, spp_op2)
self.assertTrue(spp_op1.equiv(spp_op2))
with self.subTest("w/ zero"):
spp_op1 = SparsePauliOp.from_list([("X", 1), ("Y", 1)])
spp_op2 = SparsePauliOp.from_list([("X", 1), ("Y", 1), ("Z", 0)])
self.assertNotEqual(spp_op1, spp_op2)
self.assertTrue(spp_op1.equiv(spp_op2))
@combine(parameterized=[True, False], qubit_wise=[True, False])
def test_group_commuting(self, parameterized, qubit_wise):
"""Test general grouping commuting operators"""
def commutes(left: Pauli, right: Pauli, qubit_wise: bool) -> bool:
if len(left) != len(right):
return False
if not qubit_wise:
return left.commutes(right)
else:
# qubit-wise commuting check
vec_l = left.z + 2 * left.x
vec_r = right.z + 2 * right.x
qubit_wise_comparison = (vec_l * vec_r) * (vec_l - vec_r)
return np.all(qubit_wise_comparison == 0)
input_labels = ["IX", "IY", "IZ", "XX", "YY", "ZZ", "XY", "YX", "ZX", "ZY", "XZ", "YZ"]
np.random.shuffle(input_labels)
if parameterized:
coeffs = np.array(ParameterVector("a", len(input_labels)))
else:
coeffs = np.random.random(len(input_labels)) + np.random.random(len(input_labels)) * 1j
sparse_pauli_list = SparsePauliOp(input_labels, coeffs)
groups = sparse_pauli_list.group_commuting(qubit_wise)
# checking that every input Pauli in sparse_pauli_list is in a group in the ouput
output_labels = [pauli.to_label() for group in groups for pauli in group.paulis]
self.assertListEqual(sorted(output_labels), sorted(input_labels))
# checking that every coeffs are grouped according to sparse_pauli_list group
paulis_coeff_dict = dict(
sum([list(zip(group.paulis.to_labels(), group.coeffs)) for group in groups], [])
)
self.assertDictEqual(dict(zip(input_labels, coeffs)), paulis_coeff_dict)
# Within each group, every operator commutes with every other operator.
for group in groups:
self.assertTrue(
all(
commutes(pauli1, pauli2, qubit_wise)
for pauli1, pauli2 in it.combinations(group.paulis, 2)
)
)
# For every pair of groups, at least one element from one group does not commute with
# at least one element of the other.
for group1, group2 in it.combinations(groups, 2):
self.assertFalse(
all(
commutes(group1_pauli, group2_pauli, qubit_wise)
for group1_pauli, group2_pauli in it.product(group1.paulis, group2.paulis)
)
)
def test_dot_real(self):
"""Test dot for real coefficiets."""
x = SparsePauliOp("X", np.array([1]))
y = SparsePauliOp("Y", np.array([1]))
iz = SparsePauliOp("Z", 1j)
self.assertEqual(x.dot(y), iz)
def test_get_parameters(self):
"""Test getting the parameters."""
x, y = Parameter("x"), Parameter("y")
op = SparsePauliOp(["X", "Y", "Z"], coeffs=[1, x, x * y])
with self.subTest(msg="all parameters"):
self.assertEqual(ParameterView([x, y]), op.parameters)
op.assign_parameters({y: 2}, inplace=True)
with self.subTest(msg="after partial binding"):
self.assertEqual(ParameterView([x]), op.parameters)
def test_assign_parameters(self):
"""Test assign parameters."""
x, y = Parameter("x"), Parameter("y")
op = SparsePauliOp(["X", "Y", "Z"], coeffs=[1, x, x * y])
# partial binding inplace
op.assign_parameters({y: 2}, inplace=True)
with self.subTest(msg="partial binding"):
self.assertListEqual(op.coeffs.tolist(), [1, x, 2 * x])
# bind via array
bound = op.assign_parameters([3])
with self.subTest(msg="fully bound"):
self.assertTrue(np.allclose(bound.coeffs.astype(complex), [1, 3, 6]))
def test_paulis_setter_rejects_bad_inputs(self):
"""Test that the setter for `paulis` rejects different-sized inputs."""
op = SparsePauliOp(["XY", "ZX"], coeffs=[1, 1j])
with self.assertRaisesRegex(ValueError, "incorrect number of qubits"):
op.paulis = PauliList([Pauli("X"), Pauli("Y")])
with self.assertRaisesRegex(ValueError, "incorrect number of operators"):
op.paulis = PauliList([Pauli("XY"), Pauli("ZX"), Pauli("YZ")])
if __name__ == "__main__":
unittest.main()
|
https://github.com/achilles-d/qiskitsummerjam
|
achilles-d
|
from PIL import Image
from numpy import*
import matplotlib.cm as cm
import numpy as np
import matplotlib.pyplot as plt
import sys
sys.path.append("../../qiskit-sdk-py/")
import math
from qiskit import (
QuantumCircuit,
execute, QuantumRegister, ClassicalRegister, Aer)
from qiskit import IBMQ
# Loading your IBM Q account(s)
provider = IBMQ.load_account()
def pixelate(first_file, second_file, size):
im1 = Image.open(first_file)
im2 = Image.open(second_file)
im1 = im1.resize((size, size), Image.BILINEAR)
im2 = im2.resize((size, size), Image.BILINEAR)
A1 = (im1)
A2 = (im2)
return A1, A2
# Run the quantum script
def run_quantum(file1, file2):
file_1 = file1
file_2 = file2
size = 16
A1, A2 = pixelate(file_1, file_2, size)
plt.imsave('filename2.jpeg',A2, cmap=cm.gray)
img = np.asarray(A1)
new_img = img.reshape(32, 32)
# new_img = img.reshape((img.shape[0]*img.shape[1]), img.shape[2])
new_img = new_img.transpose()
print(len(new_img[0]))
img1 = np.asarray(A2)
new_img1 = img1.reshape(32, 32)
# new_img1 = img1.reshape((img1.shape[0]*img1.shape[1]), img1.shape[2])
new_img1 = new_img1.transpose()
print(len(new_img1))
# set up registers and program
qr = QuantumRegister(15, 'qr')
cr = ClassicalRegister(15,'cr')
qc = QuantumCircuit(qr, cr)
# rightmost eight (qu)bits have ')' = 00101001
double = np.zeros((16,16)) # final double array
print("Quantum Circuit Complete. Determining Pixel Values...")
for p in range(16):
for k in range(16):
num_1 = bin(new_img[p][k])
num_2 = bin(new_img1[p][k])
for i in range(len(str(num_1))):
if num_1[i] == str(1):
qc.x(qr[i])
qc.h(qr[7]) # create superposition on 9
qc.cx(qr[7],qr[8]) # spread it to 8 with a cnot
for i in range(len(str(num_2))):
if num_2[i] == str(1):
qc.x(qr[i+5])
for j in range(15):
qc.measure(qr[j], cr[j])
simulator = Aer.get_backend('qasm_simulator')
job = execute(qc, simulator, shots=1)
results = job.result()
stats = results.get_counts(qc)
register_value = stats.keys()
for x in register_value:
split = x[0:7]
split2 = x[7:15]
total = abs(int(split,2)-int(split2,2))
double[p][k] = total
# img = plt.imshow(double) # final image
plt.imsave('result.jpeg',double)
|
https://github.com/jonasmaziero/computacao_quantica_qiskit
|
jonasmaziero
| |
https://github.com/MonitSharma/Learn-Quantum-Machine-Learning
|
MonitSharma
|
import pennylane as qml
from pennylane import numpy as np
from pennylane.optimize import NesterovMomentumOptimizer
dev = qml.device("default.qubit", wires=4)
def layer(W):
qml.Rot(W[0, 0], W[0, 1], W[0, 2], wires=0)
qml.Rot(W[1, 0], W[1, 1], W[1, 2], wires=1)
qml.Rot(W[2, 0], W[2, 1], W[2, 2], wires=2)
qml.Rot(W[3, 0], W[3, 1], W[3, 2], wires=3)
qml.CNOT(wires=[0, 1])
qml.CNOT(wires=[1, 2])
qml.CNOT(wires=[2, 3])
qml.CNOT(wires=[3, 0])
def statepreparation(x):
qml.BasisState(x, wires=[0, 1, 2, 3])
@qml.qnode(dev)
def circuit(weights, x):
statepreparation(x)
for W in weights:
layer(W)
return qml.expval(qml.PauliZ(0))
def variational_classifier(weights, bias, x):
return circuit(weights, x) + bias
def square_loss(labels, predictions):
loss = 0
for l, p in zip(labels, predictions):
loss = loss + (l - p) ** 2
loss = loss / len(labels)
return loss
def accuracy(labels, predictions):
loss = 0
for l, p in zip(labels, predictions):
if abs(l - p) < 1e-5:
loss = loss + 1
loss = loss / len(labels)
return loss
def cost(weights, bias, X, Y):
predictions = [variational_classifier(weights, bias, x) for x in X]
return square_loss(Y, predictions)
data = np.loadtxt("variational/data/parity.txt")
X = np.array(data[:, :-1], requires_grad=False)
Y = np.array(data[:, -1], requires_grad=False)
Y = Y * 2 - np.ones(len(Y)) # shift label from {0, 1} to {-1, 1}
for i in range(5):
print("X = {}, Y = {: d}".format(X[i], int(Y[i])))
print("...")
np.random.seed(0)
num_qubits = 4
num_layers = 2
weights_init = 0.01 * np.random.randn(num_layers, num_qubits, 3, requires_grad=True)
bias_init = np.array(0.0, requires_grad=True)
print(weights_init, bias_init)
opt = NesterovMomentumOptimizer(0.5)
batch_size = 5
weights = weights_init
bias = bias_init
for it in range(25):
# Update the weights by one optimizer step
batch_index = np.random.randint(0, len(X), (batch_size,))
X_batch = X[batch_index]
Y_batch = Y[batch_index]
weights, bias, _, _ = opt.step(cost, weights, bias, X_batch, Y_batch)
# Compute accuracy
predictions = [np.sign(variational_classifier(weights, bias, x)) for x in X]
acc = accuracy(Y, predictions)
print(
"Iter: {:5d} | Cost: {:0.7f} | Accuracy: {:0.7f} ".format(
it + 1, cost(weights, bias, X, Y), acc
)
)
dev = qml.device("default.qubit", wires=2)
def get_angles(x):
beta0 = 2 * np.arcsin(np.sqrt(x[1] ** 2) / np.sqrt(x[0] ** 2 + x[1] ** 2 + 1e-12))
beta1 = 2 * np.arcsin(np.sqrt(x[3] ** 2) / np.sqrt(x[2] ** 2 + x[3] ** 2 + 1e-12))
beta2 = 2 * np.arcsin(
np.sqrt(x[2] ** 2 + x[3] ** 2)
/ np.sqrt(x[0] ** 2 + x[1] ** 2 + x[2] ** 2 + x[3] ** 2)
)
return np.array([beta2, -beta1 / 2, beta1 / 2, -beta0 / 2, beta0 / 2])
def statepreparation(a):
qml.RY(a[0], wires=0)
qml.CNOT(wires=[0, 1])
qml.RY(a[1], wires=1)
qml.CNOT(wires=[0, 1])
qml.RY(a[2], wires=1)
qml.PauliX(wires=0)
qml.CNOT(wires=[0, 1])
qml.RY(a[3], wires=1)
qml.CNOT(wires=[0, 1])
qml.RY(a[4], wires=1)
qml.PauliX(wires=0)
x = np.array([0.53896774, 0.79503606, 0.27826503, 0.0], requires_grad=False)
ang = get_angles(x)
@qml.qnode(dev)
def test(angles):
statepreparation(angles)
return qml.expval(qml.PauliZ(0))
test(ang)
print("x : ", x)
print("angles : ", ang)
print("amplitude vector: ", np.real(dev.state))
def layer(W):
qml.Rot(W[0, 0], W[0, 1], W[0, 2], wires=0)
qml.Rot(W[1, 0], W[1, 1], W[1, 2], wires=1)
qml.CNOT(wires=[0, 1])
@qml.qnode(dev)
def circuit(weights, angles):
statepreparation(angles)
for W in weights:
layer(W)
return qml.expval(qml.PauliZ(0))
def variational_classifier(weights, bias, angles):
return circuit(weights, angles) + bias
def cost(weights, bias, features, labels):
predictions = [variational_classifier(weights, bias, f) for f in features]
return square_loss(labels, predictions)
data = np.loadtxt("variational/data/iris.txt")
X = data[:, 0:2]
print("First X sample (original) :", X[0])
# pad the vectors to size 2^2 with constant values
padding = 0.3 * np.ones((len(X), 1))
X_pad = np.c_[np.c_[X, padding], np.zeros((len(X), 1))]
print("First X sample (padded) :", X_pad[0])
# normalize each input
normalization = np.sqrt(np.sum(X_pad ** 2, -1))
X_norm = (X_pad.T / normalization).T
print("First X sample (normalized):", X_norm[0])
# angles for state preparation are new features
features = np.array([get_angles(x) for x in X_norm], requires_grad=False)
print("First features sample :", features[0])
Y = data[:, -1]
import matplotlib.pyplot as plt
plt.figure()
plt.scatter(X[:, 0][Y == 1], X[:, 1][Y == 1], c="b", marker="o", edgecolors="k")
plt.scatter(X[:, 0][Y == -1], X[:, 1][Y == -1], c="r", marker="o", edgecolors="k")
plt.title("Original data")
plt.show()
plt.figure()
dim1 = 0
dim2 = 1
plt.scatter(
X_norm[:, dim1][Y == 1], X_norm[:, dim2][Y == 1], c="b", marker="o", edgecolors="k"
)
plt.scatter(
X_norm[:, dim1][Y == -1], X_norm[:, dim2][Y == -1], c="r", marker="o", edgecolors="k"
)
plt.title("Padded and normalised data (dims {} and {})".format(dim1, dim2))
plt.show()
plt.figure()
dim1 = 0
dim2 = 3
plt.scatter(
features[:, dim1][Y == 1], features[:, dim2][Y == 1], c="b", marker="o", edgecolors="k"
)
plt.scatter(
features[:, dim1][Y == -1], features[:, dim2][Y == -1], c="r", marker="o", edgecolors="k"
)
plt.title("Feature vectors (dims {} and {})".format(dim1, dim2))
plt.show()
np.random.seed(0)
num_data = len(Y)
num_train = int(0.75 * num_data)
index = np.random.permutation(range(num_data))
feats_train = features[index[:num_train]]
Y_train = Y[index[:num_train]]
feats_val = features[index[num_train:]]
Y_val = Y[index[num_train:]]
# We need these later for plotting
X_train = X[index[:num_train]]
X_val = X[index[num_train:]]
num_qubits = 2
num_layers = 6
weights_init = 0.01 * np.random.randn(num_layers, num_qubits, 3, requires_grad=True)
bias_init = np.array(0.0, requires_grad=True)
opt = NesterovMomentumOptimizer(0.01)
batch_size = 5
# train the variational classifier
weights = weights_init
bias = bias_init
for it in range(60):
# Update the weights by one optimizer step
batch_index = np.random.randint(0, num_train, (batch_size,))
feats_train_batch = feats_train[batch_index]
Y_train_batch = Y_train[batch_index]
weights, bias, _, _ = opt.step(cost, weights, bias, feats_train_batch, Y_train_batch)
# Compute predictions on train and validation set
predictions_train = [np.sign(variational_classifier(weights, bias, f)) for f in feats_train]
predictions_val = [np.sign(variational_classifier(weights, bias, f)) for f in feats_val]
# Compute accuracy on train and validation set
acc_train = accuracy(Y_train, predictions_train)
acc_val = accuracy(Y_val, predictions_val)
print(
"Iter: {:5d} | Cost: {:0.7f} | Acc train: {:0.7f} | Acc validation: {:0.7f} "
"".format(it + 1, cost(weights, bias, features, Y), acc_train, acc_val)
)
plt.figure()
cm = plt.cm.RdBu
# make data for decision regions
xx, yy = np.meshgrid(np.linspace(0.0, 1.5, 20), np.linspace(0.0, 1.5, 20))
X_grid = [np.array([x, y]) for x, y in zip(xx.flatten(), yy.flatten())]
# preprocess grid points like data inputs above
padding = 0.3 * np.ones((len(X_grid), 1))
X_grid = np.c_[np.c_[X_grid, padding], np.zeros((len(X_grid), 1))] # pad each input
normalization = np.sqrt(np.sum(X_grid ** 2, -1))
X_grid = (X_grid.T / normalization).T # normalize each input
features_grid = np.array(
[get_angles(x) for x in X_grid]
) # angles for state preparation are new features
predictions_grid = [variational_classifier(weights, bias, f) for f in features_grid]
Z = np.reshape(predictions_grid, xx.shape)
# plot decision regions
cnt = plt.contourf(
xx, yy, Z, levels=np.arange(-1, 1.1, 0.1), cmap=cm, alpha=0.8, extend="both"
)
plt.contour(
xx, yy, Z, levels=[0.0], colors=("black",), linestyles=("--",), linewidths=(0.8,)
)
plt.colorbar(cnt, ticks=[-1, 0, 1])
# plot data
plt.scatter(
X_train[:, 0][Y_train == 1],
X_train[:, 1][Y_train == 1],
c="b",
marker="o",
edgecolors="k",
label="class 1 train",
)
plt.scatter(
X_val[:, 0][Y_val == 1],
X_val[:, 1][Y_val == 1],
c="b",
marker="^",
edgecolors="k",
label="class 1 validation",
)
plt.scatter(
X_train[:, 0][Y_train == -1],
X_train[:, 1][Y_train == -1],
c="r",
marker="o",
edgecolors="k",
label="class -1 train",
)
plt.scatter(
X_val[:, 0][Y_val == -1],
X_val[:, 1][Y_val == -1],
c="r",
marker="^",
edgecolors="k",
label="class -1 validation",
)
plt.legend()
plt.show()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_bloch_multivector
qc = QuantumCircuit(2)
qc.h(0)
qc.x(1)
# You can reverse the order of the qubits.
from qiskit.quantum_info import DensityMatrix
qc = QuantumCircuit(2)
qc.h([0, 1])
qc.t(1)
qc.s(0)
qc.cx(0,1)
matrix = DensityMatrix(qc)
plot_bloch_multivector(matrix, title='My Bloch Spheres', reverse_bits=True)
|
https://github.com/PavanCyborg/Quantum-Algorithms-Benchmarking
|
PavanCyborg
|
#Assign these values as per your requirements.
global min_qubits,max_qubits,skip_qubits,max_circuits,num_shots,Noise_Inclusion
min_qubits=3 #min_qubits are incremented to 4 w.r.t algorithm "qubits should be of even number"
max_qubits=31
skip_qubits=1 #minimum Skip_qubits used is 2 (by default skip_qubits=2 when skip_qubits<2)
max_circuits=2
num_shots=1000
Noise_Inclusion = False
saveplots = False
Memory_utilization_plot = True
gate_counts_plots = True
Type_of_Simulator = "built_in" #Inputs are "built_in" or "FAKE" or "FAKEV2"
backend_name = "FakeGuadalupeV2" #Can refer to the README files for the available backends
#Change your Specification of Simulator in Declaring Backend Section
#By Default : built_in -> qasm_simulator and FAKE -> FakeSantiago() and FAKEV2 -> FakeJakartaV2()
import numpy as np
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, transpile, execute
import time
import matplotlib.pyplot as plt
# Import from Qiskit Aer noise module
from qiskit_aer.noise import (NoiseModel, QuantumError, ReadoutError,pauli_error, depolarizing_error, thermal_relaxation_error,reset_error)
# Benchmark Name
benchmark_name = "Hidden Shift"
# Selection of basis gate set for transpilation
# Note: selector 1 is a hardware agnostic gate set
basis_selector = 2
basis_gates_array = [
[],
['rx', 'ry', 'rz', 'cx'], # a common basis set, default
['cx', 'rz', 'sx', 'x'], # IBM default basis set
['rx', 'ry', 'rxx'], # IonQ default basis set
['h', 'p', 'cx'], # another common basis set
['u', 'cx'] # general unitaries basis gates
]
np.random.seed(0)
def get_QV(backend):
import json
# Assuming backend.conf_filename is the filename and backend.dirname is the directory path
conf_filename = backend.dirname + "/" + backend.conf_filename
# Open the JSON file
with open(conf_filename, 'r') as file:
# Load the JSON data
data = json.load(file)
# Extract the quantum_volume parameter
QV = data.get('quantum_volume', None)
return QV
def checkbackend(backend_name,Type_of_Simulator):
if Type_of_Simulator == "built_in":
available_backends = []
for i in Aer.backends():
available_backends.append(i.name)
if backend_name in available_backends:
platform = backend_name
return platform
else:
print(f"incorrect backend name or backend not available. Using qasm_simulator by default !!!!")
print(f"available backends are : {available_backends}")
platform = "qasm_simulator"
return platform
elif Type_of_Simulator == "FAKE" or Type_of_Simulator == "FAKEV2":
import qiskit.providers.fake_provider as fake_backends
if hasattr(fake_backends,backend_name) is True:
print(f"Backend {backend_name} is available for type {Type_of_Simulator}.")
backend_class = getattr(fake_backends,backend_name)
backend_instance = backend_class()
return backend_instance
else:
print(f"Backend {backend_name} is not available or incorrect for type {Type_of_Simulator}. Executing with FakeSantiago!!!")
if Type_of_Simulator == "FAKEV2":
backend_class = getattr(fake_backends,"FakeSantiagoV2")
else:
backend_class = getattr(fake_backends,"FakeSantiago")
backend_instance = backend_class()
return backend_instance
if Type_of_Simulator == "built_in":
platform = checkbackend(backend_name,Type_of_Simulator)
#By default using "Qasm Simulator"
backend = Aer.get_backend(platform)
QV_=None
print(f"{platform} device is capable of running {backend.num_qubits}")
print(f"backend version is {backend.backend_version}")
elif Type_of_Simulator == "FAKE":
basis_selector = 0
backend = checkbackend(backend_name,Type_of_Simulator)
QV_ = get_QV(backend)
platform = backend.properties().backend_name +"-"+ backend.properties().backend_version #Replace this string with the backend Provider's name as this is used for Plotting.
max_qubits=backend.configuration().n_qubits
print(f"{platform} device is capable of running {backend.configuration().n_qubits}")
print(f"{platform} has QV={QV_}")
if max_qubits > 30:
print(f"Device is capable with max_qubits = {max_qubits}")
max_qubit = 30
print(f"Using fake backend {platform} with max_qubits {max_qubits}")
elif Type_of_Simulator == "FAKEV2":
basis_selector = 0
if "V2" not in backend_name:
backend_name = backend_name+"V2"
backend = checkbackend(backend_name,Type_of_Simulator)
QV_ = get_QV(backend)
platform = backend.name +"-" +backend.backend_version
max_qubits=backend.num_qubits
print(f"{platform} device is capable of running {backend.num_qubits}")
print(f"{platform} has QV={QV_}")
if max_qubits > 30:
print(f"Device is capable with max_qubits = {max_qubits}")
max_qubit = 30
print(f"Using fake backend {platform} with max_qubits {max_qubits}")
else:
print("Enter valid Simulator.....")
# saved circuits for display
QC_ = None
Uf_ = None
Ug_ = None
# Circuit Definition
# Uf oracle where Uf|x> = f(x)|x>, f(x) = {-1,1}
def Uf_oracle(num_qubits, secret_int):
# Initialize qubits qubits
qr = QuantumRegister(num_qubits)
qc = QuantumCircuit(qr, name=f"Uf")
# Perform X on each qubit that matches a bit in secret string
s = ('{0:0'+str(num_qubits)+'b}').format(secret_int)
for i_qubit in range(num_qubits):
if s[num_qubits-1-i_qubit]=='1':
qc.x(qr[i_qubit])
for i_qubit in range(0,num_qubits-1,2):
qc.cz(qr[i_qubit], qr[i_qubit+1])
# Perform X on each qubit that matches a bit in secret string
s = ('{0:0'+str(num_qubits)+'b}').format(secret_int)
for i_qubit in range(num_qubits):
if s[num_qubits-1-i_qubit]=='1':
qc.x(qr[i_qubit])
return qc
# Generate Ug oracle where Ug|x> = g(x)|x>, g(x) = f(x+s)
def Ug_oracle(num_qubits):
# Initialize first n qubits
qr = QuantumRegister(num_qubits)
qc = QuantumCircuit(qr, name=f"Ug")
for i_qubit in range(0,num_qubits-1,2):
qc.cz(qr[i_qubit], qr[i_qubit+1])
return qc
def HiddenShift (num_qubits, secret_int):
# allocate qubits
qr = QuantumRegister(num_qubits); cr = ClassicalRegister(num_qubits);
qc = QuantumCircuit(qr, cr, name=f"hs-{num_qubits}-{secret_int}")
# Start with Hadamard on all input qubits
for i_qubit in range(num_qubits):
qc.h(qr[i_qubit])
qc.barrier()
# Generate Uf oracle where Uf|x> = f(x)|x>, f(x) = {-1,1}
Uf = Uf_oracle(num_qubits, secret_int)
qc.append(Uf,qr)
qc.barrier()
# Again do Hadamard on all qubits
for i_qubit in range(num_qubits):
qc.h(qr[i_qubit])
qc.barrier()
# Generate Ug oracle where Ug|x> = g(x)|x>, g(x) = f(x+s)
Ug = Ug_oracle(num_qubits)
qc.append(Ug,qr)
qc.barrier()
# End with Hadamard on all qubits
for i_qubit in range(num_qubits):
qc.h(qr[i_qubit])
qc.barrier()
# measure all qubits
qc.measure(qr, cr)
# save smaller circuit example for display
global QC_, Uf_, Ug_
if QC_ == None or num_qubits <= 6:
if num_qubits < 9: QC_ = qc
if Uf_ == None or num_qubits <= 6:
if num_qubits < 9: Uf_ = Uf
if Ug_ == None or num_qubits <= 6:
if num_qubits < 9: Ug_ = Ug
# return a handle on the circuit
return qc
# Create an empty noise model
noise_parameters = NoiseModel()
if Type_of_Simulator == "built_in":
# Add depolarizing error to all single qubit gates with error rate 0.05% and to all two qubit gates with error rate 0.5%
depol_one_qb_error = 0.05
depol_two_qb_error = 0.005
noise_parameters.add_all_qubit_quantum_error(depolarizing_error(depol_one_qb_error, 1), ['rx', 'ry', 'rz'])
noise_parameters.add_all_qubit_quantum_error(depolarizing_error(depol_two_qb_error, 2), ['cx'])
# Add amplitude damping error to all single qubit gates with error rate 0.0% and to all two qubit gates with error rate 0.0%
amp_damp_one_qb_error = 0.0
amp_damp_two_qb_error = 0.0
noise_parameters.add_all_qubit_quantum_error(depolarizing_error(amp_damp_one_qb_error, 1), ['rx', 'ry', 'rz'])
noise_parameters.add_all_qubit_quantum_error(depolarizing_error(amp_damp_two_qb_error, 2), ['cx'])
# Add reset noise to all single qubit resets
reset_to_zero_error = 0.005
reset_to_one_error = 0.005
noise_parameters.add_all_qubit_quantum_error(reset_error(reset_to_zero_error, reset_to_one_error),["reset"])
# Add readout error
p0given1_error = 0.000
p1given0_error = 0.000
error_meas = ReadoutError([[1 - p1given0_error, p1given0_error], [p0given1_error, 1 - p0given1_error]])
noise_parameters.add_all_qubit_readout_error(error_meas)
#print(noise_parameters)
elif Type_of_Simulator == "FAKE"or"FAKEV2":
noise_parameters = NoiseModel.from_backend(backend)
print(noise_parameters)
### Analysis methods to be expanded and eventually compiled into a separate analysis.py file
import math, functools
def hellinger_fidelity_with_expected(p, q):
""" p: result distribution, may be passed as a counts distribution
q: the expected distribution to be compared against
References:
`Hellinger Distance @ wikipedia <https://en.wikipedia.org/wiki/Hellinger_distance>`_
Qiskit Hellinger Fidelity Function
"""
p_sum = sum(p.values())
q_sum = sum(q.values())
if q_sum == 0:
print("ERROR: polarization_fidelity(), expected distribution is invalid, all counts equal to 0")
return 0
p_normed = {}
for key, val in p.items():
p_normed[key] = val/p_sum
# if p_sum != 0:
# p_normed[key] = val/p_sum
# else:
# p_normed[key] = 0
q_normed = {}
for key, val in q.items():
q_normed[key] = val/q_sum
total = 0
for key, val in p_normed.items():
if key in q_normed.keys():
total += (np.sqrt(val) - np.sqrt(q_normed[key]))**2
del q_normed[key]
else:
total += val
total += sum(q_normed.values())
# in some situations (error mitigation) this can go negative, use abs value
if total < 0:
print(f"WARNING: using absolute value in fidelity calculation")
total = abs(total)
dist = np.sqrt(total)/np.sqrt(2)
fidelity = (1-dist**2)**2
return fidelity
def polarization_fidelity(counts, correct_dist, thermal_dist=None):
"""
Combines Hellinger fidelity and polarization rescaling into fidelity calculation
used in every benchmark
counts: the measurement outcomes after `num_shots` algorithm runs
correct_dist: the distribution we expect to get for the algorithm running perfectly
thermal_dist: optional distribution to pass in distribution from a uniform
superposition over all states. If `None`: generated as
`uniform_dist` with the same qubits as in `counts`
returns both polarization fidelity and the hellinger fidelity
Polarization from: `https://arxiv.org/abs/2008.11294v1`
"""
num_measured_qubits = len(list(correct_dist.keys())[0])
#print(num_measured_qubits)
counts = {k.zfill(num_measured_qubits): v for k, v in counts.items()}
# calculate hellinger fidelity between measured expectation values and correct distribution
hf_fidelity = hellinger_fidelity_with_expected(counts,correct_dist)
# to limit cpu and memory utilization, skip noise correction if more than 16 measured qubits
if num_measured_qubits > 16:
return { 'fidelity':hf_fidelity, 'hf_fidelity':hf_fidelity }
# if not provided, generate thermal dist based on number of qubits
if thermal_dist == None:
thermal_dist = uniform_dist(num_measured_qubits)
# set our fidelity rescaling value as the hellinger fidelity for a depolarized state
floor_fidelity = hellinger_fidelity_with_expected(thermal_dist, correct_dist)
# rescale fidelity result so uniform superposition (random guessing) returns fidelity
# rescaled to 0 to provide a better measure of success of the algorithm (polarization)
new_floor_fidelity = 0
fidelity = rescale_fidelity(hf_fidelity, floor_fidelity, new_floor_fidelity)
return { 'fidelity':fidelity, 'hf_fidelity':hf_fidelity }
## Uniform distribution function commonly used
def rescale_fidelity(fidelity, floor_fidelity, new_floor_fidelity):
"""
Linearly rescales our fidelities to allow comparisons of fidelities across benchmarks
fidelity: raw fidelity to rescale
floor_fidelity: threshold fidelity which is equivalent to random guessing
new_floor_fidelity: what we rescale the floor_fidelity to
Ex, with floor_fidelity = 0.25, new_floor_fidelity = 0.0:
1 -> 1;
0.25 -> 0;
0.5 -> 0.3333;
"""
rescaled_fidelity = (1-new_floor_fidelity)/(1-floor_fidelity) * (fidelity - 1) + 1
# ensure fidelity is within bounds (0, 1)
if rescaled_fidelity < 0:
rescaled_fidelity = 0.0
if rescaled_fidelity > 1:
rescaled_fidelity = 1.0
return rescaled_fidelity
def uniform_dist(num_state_qubits):
dist = {}
for i in range(2**num_state_qubits):
key = bin(i)[2:].zfill(num_state_qubits)
dist[key] = 1/(2**num_state_qubits)
return dist
from matplotlib.patches import Rectangle
import matplotlib.cm as cm
from matplotlib.colors import ListedColormap, LinearSegmentedColormap, Normalize
from matplotlib.patches import Circle
############### Color Map functions
# Create a selection of colormaps from which to choose; default to custom_spectral
cmap_spectral = plt.get_cmap('Spectral')
cmap_greys = plt.get_cmap('Greys')
cmap_blues = plt.get_cmap('Blues')
cmap_custom_spectral = None
# the default colormap is the spectral map
cmap = cmap_spectral
cmap_orig = cmap_spectral
# current cmap normalization function (default None)
cmap_norm = None
default_fade_low_fidelity_level = 0.16
default_fade_rate = 0.7
# Specify a normalization function here (default None)
def set_custom_cmap_norm(vmin, vmax):
global cmap_norm
if vmin == vmax or (vmin == 0.0 and vmax == 1.0):
print("... setting cmap norm to None")
cmap_norm = None
else:
print(f"... setting cmap norm to [{vmin}, {vmax}]")
cmap_norm = Normalize(vmin=vmin, vmax=vmax)
# Remake the custom spectral colormap with user settings
def set_custom_cmap_style(
fade_low_fidelity_level=default_fade_low_fidelity_level,
fade_rate=default_fade_rate):
#print("... set custom map style")
global cmap, cmap_custom_spectral, cmap_orig
cmap_custom_spectral = create_custom_spectral_cmap(
fade_low_fidelity_level=fade_low_fidelity_level, fade_rate=fade_rate)
cmap = cmap_custom_spectral
cmap_orig = cmap_custom_spectral
# Create the custom spectral colormap from the base spectral
def create_custom_spectral_cmap(
fade_low_fidelity_level=default_fade_low_fidelity_level,
fade_rate=default_fade_rate):
# determine the breakpoint from the fade level
num_colors = 100
breakpoint = round(fade_low_fidelity_level * num_colors)
# get color list for spectral map
spectral_colors = [cmap_spectral(v/num_colors) for v in range(num_colors)]
#print(fade_rate)
# create a list of colors to replace those below the breakpoint
# and fill with "faded" color entries (in reverse)
low_colors = [0] * breakpoint
#for i in reversed(range(breakpoint)):
for i in range(breakpoint):
# x is index of low colors, normalized 0 -> 1
x = i / breakpoint
# get color at this index
bc = spectral_colors[i]
r0 = bc[0]
g0 = bc[1]
b0 = bc[2]
z0 = bc[3]
r_delta = 0.92 - r0
#print(f"{x} {bc} {r_delta}")
# compute saturation and greyness ratio
sat_ratio = 1 - x
#grey_ratio = 1 - x
''' attempt at a reflective gradient
if i >= breakpoint/2:
xf = 2*(x - 0.5)
yf = pow(xf, 1/fade_rate)/2
grey_ratio = 1 - (yf + 0.5)
else:
xf = 2*(0.5 - x)
yf = pow(xf, 1/fade_rate)/2
grey_ratio = 1 - (0.5 - yf)
'''
grey_ratio = 1 - math.pow(x, 1/fade_rate)
#print(f" {xf} {yf} ")
#print(f" {sat_ratio} {grey_ratio}")
r = r0 + r_delta * sat_ratio
g_delta = r - g0
b_delta = r - b0
g = g0 + g_delta * grey_ratio
b = b0 + b_delta * grey_ratio
#print(f"{r} {g} {b}\n")
low_colors[i] = (r,g,b,z0)
#print(low_colors)
# combine the faded low colors with the regular spectral cmap to make a custom version
cmap_custom_spectral = ListedColormap(low_colors + spectral_colors[breakpoint:])
#spectral_colors = [cmap_custom_spectral(v/10) for v in range(10)]
#for i in range(10): print(spectral_colors[i])
#print("")
return cmap_custom_spectral
# Make the custom spectral color map the default on module init
set_custom_cmap_style()
# Arrange the stored annotations optimally and add to plot
def anno_volumetric_data(ax, depth_base=2, label='Depth',
labelpos=(0.2, 0.7), labelrot=0, type=1, fill=True):
# sort all arrays by the x point of the text (anno_offs)
global x_anno_offs, y_anno_offs, anno_labels, x_annos, y_annos
all_annos = sorted(zip(x_anno_offs, y_anno_offs, anno_labels, x_annos, y_annos))
x_anno_offs = [a for a,b,c,d,e in all_annos]
y_anno_offs = [b for a,b,c,d,e in all_annos]
anno_labels = [c for a,b,c,d,e in all_annos]
x_annos = [d for a,b,c,d,e in all_annos]
y_annos = [e for a,b,c,d,e in all_annos]
#print(f"{x_anno_offs}")
#print(f"{y_anno_offs}")
#print(f"{anno_labels}")
for i in range(len(anno_labels)):
x_anno = x_annos[i]
y_anno = y_annos[i]
x_anno_off = x_anno_offs[i]
y_anno_off = y_anno_offs[i]
label = anno_labels[i]
if i > 0:
x_delta = abs(x_anno_off - x_anno_offs[i - 1])
y_delta = abs(y_anno_off - y_anno_offs[i - 1])
if y_delta < 0.7 and x_delta < 2:
y_anno_off = y_anno_offs[i] = y_anno_offs[i - 1] - 0.6
#x_anno_off = x_anno_offs[i] = x_anno_offs[i - 1] + 0.1
ax.annotate(label,
xy=(x_anno+0.0, y_anno+0.1),
arrowprops=dict(facecolor='black', shrink=0.0,
width=0.5, headwidth=4, headlength=5, edgecolor=(0.8,0.8,0.8)),
xytext=(x_anno_off + labelpos[0], y_anno_off + labelpos[1]),
rotation=labelrot,
horizontalalignment='left', verticalalignment='baseline',
color=(0.2,0.2,0.2),
clip_on=True)
if saveplots == True:
plt.savefig("VolumetricPlotSample.jpg")
# Plot one group of data for volumetric presentation
def plot_volumetric_data(ax, w_data, d_data, f_data, depth_base=2, label='Depth',
labelpos=(0.2, 0.7), labelrot=0, type=1, fill=True, w_max=18, do_label=False, do_border=True,
x_size=1.0, y_size=1.0, zorder=1, offset_flag=False,
max_depth=0, suppress_low_fidelity=False):
# since data may come back out of order, save point at max y for annotation
i_anno = 0
x_anno = 0
y_anno = 0
# plot data rectangles
low_fidelity_count = True
last_y = -1
k = 0
# determine y-axis dimension for one pixel to use for offset of bars that start at 0
(_, dy) = get_pixel_dims(ax)
# do this loop in reverse to handle the case where earlier cells are overlapped by later cells
for i in reversed(range(len(d_data))):
x = depth_index(d_data[i], depth_base)
y = float(w_data[i])
f = f_data[i]
# each time we star a new row, reset the offset counter
# DEVNOTE: this is highly specialized for the QA area plots, where there are 8 bars
# that represent time starting from 0 secs. We offset by one pixel each and center the group
if y != last_y:
last_y = y;
k = 3 # hardcoded for 8 cells, offset by 3
#print(f"{i = } {x = } {y = }")
if max_depth > 0 and d_data[i] > max_depth:
#print(f"... excessive depth (2), skipped; w={y} d={d_data[i]}")
break;
# reject cells with low fidelity
if suppress_low_fidelity and f < suppress_low_fidelity_level:
if low_fidelity_count: break
else: low_fidelity_count = True
# the only time this is False is when doing merged gradation plots
if do_border == True:
# this case is for an array of x_sizes, i.e. each box has different width
if isinstance(x_size, list):
# draw each of the cells, with no offset
if not offset_flag:
ax.add_patch(box_at(x, y, f, type=type, fill=fill, x_size=x_size[i], y_size=y_size, zorder=zorder))
# use an offset for y value, AND account for x and width to draw starting at 0
else:
ax.add_patch(box_at((x/2 + x_size[i]/4), y + k*dy, f, type=type, fill=fill, x_size=x+ x_size[i]/2, y_size=y_size, zorder=zorder))
# this case is for only a single cell
else:
ax.add_patch(box_at(x, y, f, type=type, fill=fill, x_size=x_size, y_size=y_size))
# save the annotation point with the largest y value
if y >= y_anno:
x_anno = x
y_anno = y
i_anno = i
# move the next bar down (if using offset)
k -= 1
# if no data rectangles plotted, no need for a label
if x_anno == 0 or y_anno == 0:
return
x_annos.append(x_anno)
y_annos.append(y_anno)
anno_dist = math.sqrt( (y_anno - 1)**2 + (x_anno - 1)**2 )
# adjust radius of annotation circle based on maximum width of apps
anno_max = 10
if w_max > 10:
anno_max = 14
if w_max > 14:
anno_max = 18
scale = anno_max / anno_dist
# offset of text from end of arrow
if scale > 1:
x_anno_off = scale * x_anno - x_anno - 0.5
y_anno_off = scale * y_anno - y_anno
else:
x_anno_off = 0.7
y_anno_off = 0.5
x_anno_off += x_anno
y_anno_off += y_anno
# print(f"... {xx} {yy} {anno_dist}")
x_anno_offs.append(x_anno_off)
y_anno_offs.append(y_anno_off)
anno_labels.append(label)
if do_label:
ax.annotate(label, xy=(x_anno+labelpos[0], y_anno+labelpos[1]), rotation=labelrot,
horizontalalignment='left', verticalalignment='bottom', color=(0.2,0.2,0.2))
x_annos = []
y_annos = []
x_anno_offs = []
y_anno_offs = []
anno_labels = []
# init arrays to hold annotation points for label spreading
def vplot_anno_init ():
global x_annos, y_annos, x_anno_offs, y_anno_offs, anno_labels
x_annos = []
y_annos = []
x_anno_offs = []
y_anno_offs = []
anno_labels = []
# Number of ticks on volumetric depth axis
max_depth_log = 22
# average transpile factor between base QV depth and our depth based on results from QV notebook
QV_transpile_factor = 12.7
# format a number using K,M,B,T for large numbers, optionally rounding to 'digits' decimal places if num > 1
# (sign handling may be incorrect)
def format_number(num, digits=0):
if isinstance(num, str): num = float(num)
num = float('{:.3g}'.format(abs(num)))
sign = ''
metric = {'T': 1000000000000, 'B': 1000000000, 'M': 1000000, 'K': 1000, '': 1}
for index in metric:
num_check = num / metric[index]
if num_check >= 1:
num = round(num_check, digits)
sign = index
break
numstr = f"{str(num)}"
if '.' in numstr:
numstr = numstr.rstrip('0').rstrip('.')
return f"{numstr}{sign}"
# Return the color associated with the spcific value, using color map norm
def get_color(value):
# if there is a normalize function installed, scale the data
if cmap_norm:
value = float(cmap_norm(value))
if cmap == cmap_spectral:
value = 0.05 + value*0.9
elif cmap == cmap_blues:
value = 0.00 + value*1.0
else:
value = 0.0 + value*0.95
return cmap(value)
# Return the x and y equivalent to a single pixel for the given plot axis
def get_pixel_dims(ax):
# transform 0 -> 1 to pixel dimensions
pixdims = ax.transData.transform([(0,1),(1,0)])-ax.transData.transform((0,0))
xpix = pixdims[1][0]
ypix = pixdims[0][1]
#determine x- and y-axis dimension for one pixel
dx = (1 / xpix)
dy = (1 / ypix)
return (dx, dy)
############### Helper functions
# return the base index for a circuit depth value
# take the log in the depth base, and add 1
def depth_index(d, depth_base):
if depth_base <= 1:
return d
if d == 0:
return 0
return math.log(d, depth_base) + 1
# draw a box at x,y with various attributes
def box_at(x, y, value, type=1, fill=True, x_size=1.0, y_size=1.0, alpha=1.0, zorder=1):
value = min(value, 1.0)
value = max(value, 0.0)
fc = get_color(value)
ec = (0.5,0.5,0.5)
return Rectangle((x - (x_size/2), y - (y_size/2)), x_size, y_size,
alpha=alpha,
edgecolor = ec,
facecolor = fc,
fill=fill,
lw=0.5*y_size,
zorder=zorder)
# draw a circle at x,y with various attributes
def circle_at(x, y, value, type=1, fill=True):
size = 1.0
value = min(value, 1.0)
value = max(value, 0.0)
fc = get_color(value)
ec = (0.5,0.5,0.5)
return Circle((x, y), size/2,
alpha = 0.7, # DEVNOTE: changed to 0.7 from 0.5, to handle only one cell
edgecolor = ec,
facecolor = fc,
fill=fill,
lw=0.5)
def box4_at(x, y, value, type=1, fill=True, alpha=1.0):
size = 1.0
value = min(value, 1.0)
value = max(value, 0.0)
fc = get_color(value)
ec = (0.3,0.3,0.3)
ec = fc
return Rectangle((x - size/8, y - size/2), size/4, size,
alpha=alpha,
edgecolor = ec,
facecolor = fc,
fill=fill,
lw=0.1)
# Draw a Quantum Volume rectangle with specified width and depth, and grey-scale value
def qv_box_at(x, y, qv_width, qv_depth, value, depth_base):
#print(f"{qv_width} {qv_depth} {depth_index(qv_depth, depth_base)}")
return Rectangle((x - 0.5, y - 0.5), depth_index(qv_depth, depth_base), qv_width,
edgecolor = (value,value,value),
facecolor = (value,value,value),
fill=True,
lw=1)
def bkg_box_at(x, y, value=0.9):
size = 0.6
return Rectangle((x - size/2, y - size/2), size, size,
edgecolor = (.75,.75,.75),
facecolor = (value,value,value),
fill=True,
lw=0.5)
def bkg_empty_box_at(x, y):
size = 0.6
return Rectangle((x - size/2, y - size/2), size, size,
edgecolor = (.75,.75,.75),
facecolor = (1.0,1.0,1.0),
fill=True,
lw=0.5)
# Plot the background for the volumetric analysis
def plot_volumetric_background(max_qubits=11, QV=32, depth_base=2, suptitle=None, avail_qubits=0, colorbar_label="Avg Result Fidelity"):
if suptitle == None:
suptitle = f"Volumetric Positioning\nCircuit Dimensions and Fidelity Overlaid on Quantum Volume = {QV}"
QV0 = QV
qv_estimate = False
est_str = ""
if QV == 0: # QV = 0 indicates "do not draw QV background or label"
QV = 2048
elif QV < 0: # QV < 0 indicates "add est. to label"
QV = -QV
qv_estimate = True
est_str = " (est.)"
if avail_qubits > 0 and max_qubits > avail_qubits:
max_qubits = avail_qubits
max_width = 13
if max_qubits > 11: max_width = 18
if max_qubits > 14: max_width = 20
if max_qubits > 16: max_width = 24
if max_qubits > 24: max_width = 33
#print(f"... {avail_qubits} {max_qubits} {max_width}")
plot_width = 6.8
plot_height = 0.5 + plot_width * (max_width / max_depth_log)
#print(f"... {plot_width} {plot_height}")
# define matplotlib figure and axis; use constrained layout to fit colorbar to right
fig, ax = plt.subplots(figsize=(plot_width, plot_height), constrained_layout=True)
plt.suptitle(suptitle)
plt.xlim(0, max_depth_log)
plt.ylim(0, max_width)
# circuit depth axis (x axis)
xbasis = [x for x in range(1,max_depth_log)]
xround = [depth_base**(x-1) for x in xbasis]
xlabels = [format_number(x) for x in xround]
ax.set_xlabel('Circuit Depth')
ax.set_xticks(xbasis)
plt.xticks(xbasis, xlabels, color='black', rotation=45, ha='right', va='top', rotation_mode="anchor")
# other label options
#plt.xticks(xbasis, xlabels, color='black', rotation=-60, ha='left')
#plt.xticks(xbasis, xlabels, color='black', rotation=-45, ha='left', va='center', rotation_mode="anchor")
# circuit width axis (y axis)
ybasis = [y for y in range(1,max_width)]
yround = [1,2,3,4,5,6,7,8,10,12,15] # not used now
ylabels = [str(y) for y in yround] # not used now
#ax.set_ylabel('Circuit Width (Number of Qubits)')
ax.set_ylabel('Circuit Width')
ax.set_yticks(ybasis)
#create simple line plot (not used right now)
#ax.plot([0, 10],[0, 10])
log2QV = math.log2(QV)
QV_width = log2QV
QV_depth = log2QV * QV_transpile_factor
# show a quantum volume rectangle of QV = 64 e.g. (6 x 6)
if QV0 != 0:
ax.add_patch(qv_box_at(1, 1, QV_width, QV_depth, 0.87, depth_base))
else:
ax.add_patch(qv_box_at(1, 1, QV_width, QV_depth, 0.91, depth_base))
# the untranspiled version is commented out - we do not show this by default
# also show a quantum volume rectangle un-transpiled
# ax.add_patch(qv_box_at(1, 1, QV_width, QV_width, 0.80, depth_base))
# show 2D array of volumetric cells based on this QV_transpiled
# DEVNOTE: we use +1 only to make the visuals work; s/b without
# Also, the second arg of the min( below seems incorrect, needs correction
maxprod = (QV_width + 1) * (QV_depth + 1)
for w in range(1, min(max_width, round(QV) + 1)):
# don't show VB squares if width greater than known available qubits
if avail_qubits != 0 and w > avail_qubits:
continue
i_success = 0
for d in xround:
# polarization factor for low circuit widths
maxtest = maxprod / ( 1 - 1 / (2**w) )
# if circuit would fail here, don't draw box
if d > maxtest: continue
if w * d > maxtest: continue
# guess for how to capture how hardware decays with width, not entirely correct
# # reduce maxtext by a factor of number of qubits > QV_width
# # just an approximation to account for qubit distances
# if w > QV_width:
# over = w - QV_width
# maxtest = maxtest / (1 + (over/QV_width))
# draw a box at this width and depth
id = depth_index(d, depth_base)
# show vb rectangles; if not showing QV, make all hollow (or less dark)
if QV0 == 0:
#ax.add_patch(bkg_empty_box_at(id, w))
ax.add_patch(bkg_box_at(id, w, 0.95))
else:
ax.add_patch(bkg_box_at(id, w, 0.9))
# save index of last successful depth
i_success += 1
# plot empty rectangle after others
d = xround[i_success]
id = depth_index(d, depth_base)
ax.add_patch(bkg_empty_box_at(id, w))
# Add annotation showing quantum volume
if QV0 != 0:
t = ax.text(max_depth_log - 2.0, 1.5, f"QV{est_str}={QV}", size=12,
horizontalalignment='right', verticalalignment='center', color=(0.2,0.2,0.2),
bbox=dict(boxstyle="square,pad=0.3", fc=(.9,.9,.9), ec="grey", lw=1))
# add colorbar to right of plot
plt.colorbar(cm.ScalarMappable(cmap=cmap), cax=None, ax=ax,
shrink=0.6, label=colorbar_label, panchor=(0.0, 0.7))
return ax
# Function to calculate circuit depth
def calculate_circuit_depth(qc):
# Calculate the depth of the circuit
depth = qc.depth()
return depth
def calculate_transpiled_depth(qc,basis_selector):
# use either the backend or one of the basis gate sets
if basis_selector == 0:
qc = transpile(qc, backend)
else:
basis_gates = basis_gates_array[basis_selector]
qc = transpile(qc, basis_gates=basis_gates, seed_transpiler=0)
transpiled_depth = qc.depth()
return transpiled_depth,qc
def plot_fidelity_data(fidelity_data, Hf_fidelity_data, title):
avg_fidelity_means = []
avg_Hf_fidelity_means = []
avg_num_qubits_values = list(fidelity_data.keys())
# Calculate the average fidelity and Hamming fidelity for each unique number of qubits
for num_qubits in avg_num_qubits_values:
avg_fidelity = np.average(fidelity_data[num_qubits])
avg_fidelity_means.append(avg_fidelity)
avg_Hf_fidelity = np.mean(Hf_fidelity_data[num_qubits])
avg_Hf_fidelity_means.append(avg_Hf_fidelity)
return avg_fidelity_means,avg_Hf_fidelity_means
list_of_gates = []
def list_of_standardgates():
import qiskit.circuit.library as lib
from qiskit.circuit import Gate
import inspect
# List all the attributes of the library module
gate_list = dir(lib)
# Filter out non-gate classes (like functions, variables, etc.)
gates = [gate for gate in gate_list if isinstance(getattr(lib, gate), type) and issubclass(getattr(lib, gate), Gate)]
# Get method names from QuantumCircuit
circuit_methods = inspect.getmembers(QuantumCircuit, inspect.isfunction)
method_names = [name for name, _ in circuit_methods]
# Map gate class names to method names
gate_to_method = {}
for gate in gates:
gate_class = getattr(lib, gate)
class_name = gate_class.__name__.replace('Gate', '').lower() # Normalize class name
for method in method_names:
if method == class_name or method == class_name.replace('cr', 'c-r'):
gate_to_method[gate] = method
break
# Add common operations that are not strictly gates
additional_operations = {
'Measure': 'measure',
'Barrier': 'barrier',
}
gate_to_method.update(additional_operations)
for k,v in gate_to_method.items():
list_of_gates.append(v)
def update_counts(gates,custom_gates):
operations = {}
for key, value in gates.items():
operations[key] = value
for key, value in custom_gates.items():
if key in operations:
operations[key] += value
else:
operations[key] = value
return operations
def get_gate_counts(gates,custom_gate_defs):
result = gates.copy()
# Iterate over the gate counts in the quantum circuit
for gate, count in gates.items():
if gate in custom_gate_defs:
custom_gate_ops = custom_gate_defs[gate]
# Multiply custom gate operations by the count of the custom gate in the circuit
for _ in range(count):
result = update_counts(result, custom_gate_ops)
# Remove the custom gate entry as we have expanded it
del result[gate]
return result
dict_of_qc = dict()
custom_gates_defs = dict()
# Function to count operations recursively
def count_operations(qc):
dict_of_qc.clear()
circuit_traverser(qc)
operations = dict()
operations = dict_of_qc[qc.name]
del dict_of_qc[qc.name]
# print("operations :",operations)
# print("dict_of_qc :",dict_of_qc)
for keys in operations.keys():
if keys not in list_of_gates:
for k,v in dict_of_qc.items():
if k in operations.keys():
custom_gates_defs[k] = v
operations=get_gate_counts(operations,custom_gates_defs)
custom_gates_defs.clear()
return operations
def circuit_traverser(qc):
dict_of_qc[qc.name]=dict(qc.count_ops())
for i in qc.data:
if str(i.operation.name) not in list_of_gates:
qc_1 = i.operation.definition
circuit_traverser(qc_1)
def get_memory():
import resource
usage = resource.getrusage(resource.RUSAGE_SELF)
max_mem = usage.ru_maxrss/1024 #in MB
return max_mem
def analyzer(num_qubits,s_int):
# create the key that is expected to have all the measurements (for this circuit)
key = format(s_int, f"0{num_qubits}b")
# correct distribution is measuring the key 100% of the time
correct_dist = {key: 1.0}
#print("correct_dist=",correct_dist)
return correct_dist
def run (min_qubits=min_qubits, max_qubits=max_qubits, skip_qubits=skip_qubits,
max_circuits=max_circuits, num_shots=num_shots):
creation_times = []
elapsed_times = []
quantum_times = []
circuit_depths = []
transpiled_depths = []
fidelity_data = {}
Hf_fidelity_data = {}
numckts = []
mem_usage = []
algorithmic_1Q_gate_counts = []
algorithmic_2Q_gate_counts = []
transpiled_1Q_gate_counts = []
transpiled_2Q_gate_counts = []
print(f"{benchmark_name} Benchmark Program - {platform}")
# validate parameters (smallest circuit is 2 qubits)
max_qubits = max(2, max_qubits)
min_qubits = min(max(2, min_qubits), max_qubits)
if min_qubits % 2 == 1: min_qubits += 1 # min_qubits must be even
skip_qubits = max(2, skip_qubits)
global max_ckts
max_ckts = max_circuits
global min_qbits,max_qbits,skp_qubits
min_qbits = min_qubits
max_qbits = max_qubits
skp_qubits = skip_qubits
print(f"min, max qubits = {min_qubits} {max_qubits}")
#defining all the standard gates supported by qiskit in a list
if gate_counts_plots == True:
list_of_standardgates()
# Execute Benchmark Program N times for multiple circuit sizes
for num_qubits in range(min_qubits, max_qubits + 1, skip_qubits):
fidelity_data[num_qubits] = []
Hf_fidelity_data[num_qubits] = []
# determine number of circuits to execute for this group
num_circuits = min(2 ** (num_qubits), max_circuits)
numckts.append(num_circuits)
print(f"Executing [{num_circuits}] circuits with num_qubits = {num_qubits}")
# determine range of secret strings to loop over
if 2**(num_qubits) <= max_circuits:
s_range = list(range(num_circuits))
else:
s_range = np.random.choice(2**(num_qubits), num_circuits, False)
for s_int in s_range:
print("*********************************************")
print(f"qc of {num_qubits} qubits for integer {s_int}")
#creation of Quantum Circuit.
ts = time.time()
qc = HiddenShift(num_qubits, s_int)
#creation time
creation_time = time.time() - ts
creation_times.append(creation_time)
#print(qc)
print(f"creation time = {creation_time*1000} ms")
# Calculate gate count for the algorithmic circuit (excluding barriers and measurements)
if gate_counts_plots == True:
operations = count_operations(qc)
n1q = 0; n2q = 0
if operations != None:
for key, value in operations.items():
if key == "measure": continue
if key == "barrier": continue
if key.startswith("c") or key.startswith("mc"):
n2q += value
else:
n1q += value
algorithmic_1Q_gate_counts.append(n1q)
algorithmic_2Q_gate_counts.append(n2q)
# collapse the sub-circuit levels used in this benchmark (for qiskit)
qc=qc.decompose()
#print(qc)
# Calculate circuit depth
depth = calculate_circuit_depth(qc)
circuit_depths.append(depth)
# Calculate transpiled circuit depth
transpiled_depth,qc = calculate_transpiled_depth(qc,basis_selector)
transpiled_depths.append(transpiled_depth)
#print(qc)
print(f"Algorithmic Depth = {depth} and Normalized Depth = {transpiled_depth}")
if gate_counts_plots == True:
# Calculate gate count for the transpiled circuit (excluding barriers and measurements)
tr_ops = qc.count_ops()
#print("tr_ops = ",tr_ops)
tr_n1q = 0; tr_n2q = 0
if tr_ops != None:
for key, value in tr_ops.items():
if key == "measure": continue
if key == "barrier": continue
if key.startswith("c"): tr_n2q += value
else: tr_n1q += value
transpiled_1Q_gate_counts.append(tr_n1q)
transpiled_2Q_gate_counts.append(tr_n2q)
print(f"Algorithmic 1Q gates = {n1q} ,Algorithmic 2Q gates = {n2q}")
print(f"Normalized 1Q gates = {tr_n1q} ,Normalized 2Q gates = {tr_n2q}")
#execution
if Type_of_Simulator == "built_in":
#To check if Noise is required
if Noise_Inclusion == True:
noise_model = noise_parameters
else:
noise_model = None
ts = time.time()
job = execute(qc, backend, shots=num_shots, noise_model=noise_model)
elif Type_of_Simulator == "FAKE" or Type_of_Simulator == "FAKEV2" :
ts = time.time()
job = backend.run(qc,shots=num_shots, noise_model=noise_parameters)
#retrieving the result
result = job.result()
#print(result)
#calculating elapsed time
elapsed_time = time.time() - ts
elapsed_times.append(elapsed_time)
# Calculate quantum processing time
quantum_time = result.time_taken
quantum_times.append(quantum_time)
print(f"Elapsed time = {elapsed_time*1000} ms and Quantum Time = {quantum_time*1000} ms")
#counts in result object
counts = result.get_counts()
#print("Counts = ",counts)
#Correct distribution to compare with counts
correct_dist = analyzer(num_qubits,s_int)
#fidelity calculation comparision of counts and correct_dist
fidelity_dict = polarization_fidelity(counts, correct_dist)
fidelity_data[num_qubits].append(fidelity_dict['fidelity'])
Hf_fidelity_data[num_qubits].append(fidelity_dict['hf_fidelity'])
#maximum memory utilization (if required)
if Memory_utilization_plot == True:
max_mem = get_memory()
print(f"Maximum Memory Utilized: {max_mem} MB")
mem_usage.append(max_mem)
print("*********************************************")
# print a sample circuit
print("Sample Circuit:"); print(QC_ if QC_ != None else " ... too large!")
print("\nQuantum Oracle 'Uf' ="); print(Uf_ if Uf_ != None else " ... too large!")
print("\nQuantum Oracle 'Ug' ="); print(Ug_ if Ug_ != None else " ... too large!")
return (creation_times, elapsed_times, quantum_times, circuit_depths, transpiled_depths,
fidelity_data, Hf_fidelity_data, numckts , algorithmic_1Q_gate_counts, algorithmic_2Q_gate_counts,
transpiled_1Q_gate_counts, transpiled_2Q_gate_counts,mem_usage)
# Execute the benchmark program, accumulate metrics, and calculate circuit depths
(creation_times, elapsed_times, quantum_times, circuit_depths,transpiled_depths, fidelity_data, Hf_fidelity_data, numckts,
algorithmic_1Q_gate_counts, algorithmic_2Q_gate_counts, transpiled_1Q_gate_counts, transpiled_2Q_gate_counts,mem_usage) = run()
# Define the range of qubits for the x-axis
num_qubits_range = range(min_qbits, max_qbits+1,skp_qubits)
print("num_qubits_range =",num_qubits_range)
# Calculate average creation time, elapsed time, quantum processing time, and circuit depth for each number of qubits
avg_creation_times = []
avg_elapsed_times = []
avg_quantum_times = []
avg_circuit_depths = []
avg_transpiled_depths = []
avg_1Q_algorithmic_gate_counts = []
avg_2Q_algorithmic_gate_counts = []
avg_1Q_Transpiled_gate_counts = []
avg_2Q_Transpiled_gate_counts = []
max_memory = []
start = 0
for num in numckts:
avg_creation_times.append(np.mean(creation_times[start:start+num]))
avg_elapsed_times.append(np.mean(elapsed_times[start:start+num]))
avg_quantum_times.append(np.mean(quantum_times[start:start+num]))
avg_circuit_depths.append(np.mean(circuit_depths[start:start+num]))
avg_transpiled_depths.append(np.mean(transpiled_depths[start:start+num]))
if gate_counts_plots == True:
avg_1Q_algorithmic_gate_counts.append(int(np.mean(algorithmic_1Q_gate_counts[start:start+num])))
avg_2Q_algorithmic_gate_counts.append(int(np.mean(algorithmic_2Q_gate_counts[start:start+num])))
avg_1Q_Transpiled_gate_counts.append(int(np.mean(transpiled_1Q_gate_counts[start:start+num])))
avg_2Q_Transpiled_gate_counts.append(int(np.mean(transpiled_2Q_gate_counts[start:start+num])))
if Memory_utilization_plot == True:max_memory.append(np.max(mem_usage[start:start+num]))
start += num
# Calculate the fidelity data
avg_f, avg_Hf = plot_fidelity_data(fidelity_data, Hf_fidelity_data, "Fidelity Comparison")
# Plot histograms for average creation time, average elapsed time, average quantum processing time, and average circuit depth versus the number of qubits
# Add labels to the bars
def autolabel(rects,ax,str='{:.3f}',va='top',text_color="black"):
for rect in rects:
height = rect.get_height()
ax.annotate(str.format(height), # Formatting to two decimal places
xy=(rect.get_x() + rect.get_width() / 2, height / 2),
xytext=(0, 0),
textcoords="offset points",
ha='center', va=va,color=text_color,rotation=90)
bar_width = 0.3
# Determine the number of subplots and their arrangement
if Memory_utilization_plot and gate_counts_plots:
fig, (ax1, ax2, ax3, ax4, ax5, ax6, ax7) = plt.subplots(7, 1, figsize=(18, 30))
# Plotting for both memory utilization and gate counts
# ax1, ax2, ax3, ax4, ax5, ax6, ax7 are available
elif Memory_utilization_plot:
fig, (ax1, ax2, ax3, ax6, ax7) = plt.subplots(5, 1, figsize=(18, 30))
# Plotting for memory utilization only
# ax1, ax2, ax3, ax6, ax7 are available
elif gate_counts_plots:
fig, (ax1, ax2, ax3, ax4, ax5, ax6) = plt.subplots(6, 1, figsize=(18, 30))
# Plotting for gate counts only
# ax1, ax2, ax3, ax4, ax5, ax6 are available
else:
fig, (ax1, ax2, ax3, ax6) = plt.subplots(4, 1, figsize=(18, 30))
# Default plotting
# ax1, ax2, ax3, ax6 are available
fig.suptitle(f"General Benchmarks : {platform} - {benchmark_name}", fontsize=16)
for i in range(len(avg_creation_times)): #converting seconds to milli seconds by multiplying 1000
avg_creation_times[i] *= 1000
ax1.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits))
x = ax1.bar(num_qubits_range, avg_creation_times, color='deepskyblue')
autolabel(ax1.patches, ax1)
ax1.set_xlabel('Number of Qubits')
ax1.set_ylabel('Average Creation Time (ms)')
ax1.set_title('Average Creation Time vs Number of Qubits',fontsize=14)
ax2.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits))
for i in range(len(avg_elapsed_times)): #converting seconds to milli seconds by multiplying 1000
avg_elapsed_times[i] *= 1000
for i in range(len(avg_quantum_times)): #converting seconds to milli seconds by multiplying 1000
avg_quantum_times[i] *= 1000
Elapsed= ax2.bar(np.array(num_qubits_range) - bar_width / 2, avg_elapsed_times, width=bar_width, color='cyan', label='Elapsed Time')
Quantum= ax2.bar(np.array(num_qubits_range) + bar_width / 2, avg_quantum_times,width=bar_width, color='deepskyblue',label ='Quantum Time')
autolabel(Elapsed,ax2,str='{:.1f}')
autolabel(Quantum,ax2,str='{:.1f}')
ax2.set_xlabel('Number of Qubits')
ax2.set_ylabel('Average Time (ms)')
ax2.set_title('Average Time vs Number of Qubits')
ax2.legend()
ax3.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits))
Normalized = ax3.bar(np.array(num_qubits_range) - bar_width / 2, avg_transpiled_depths, color='cyan', label='Normalized Depth', width=bar_width) # Adjust width here
Algorithmic = ax3.bar(np.array(num_qubits_range) + bar_width / 2,avg_circuit_depths, color='deepskyblue', label='Algorithmic Depth', width=bar_width) # Adjust width here
autolabel(Normalized,ax3,str='{:.2f}')
autolabel(Algorithmic,ax3,str='{:.2f}')
ax3.set_xlabel('Number of Qubits')
ax3.set_ylabel('Average Circuit Depth')
ax3.set_title('Average Circuit Depth vs Number of Qubits')
ax3.legend()
if gate_counts_plots == True:
ax4.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits))
Normalized_1Q_counts = ax4.bar(np.array(num_qubits_range) - bar_width / 2, avg_1Q_Transpiled_gate_counts, color='cyan', label='Normalized Gate Counts', width=bar_width) # Adjust width here
Algorithmic_1Q_counts = ax4.bar(np.array(num_qubits_range) + bar_width / 2, avg_1Q_algorithmic_gate_counts, color='deepskyblue', label='Algorithmic Gate Counts', width=bar_width) # Adjust width here
autolabel(Normalized_1Q_counts,ax4,str='{}')
autolabel(Algorithmic_1Q_counts,ax4,str='{}')
ax4.set_xlabel('Number of Qubits')
ax4.set_ylabel('Average 1-Qubit Gate Counts')
ax4.set_title('Average 1-Qubit Gate Counts vs Number of Qubits')
ax4.legend()
ax5.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits))
Normalized_2Q_counts = ax5.bar(np.array(num_qubits_range) - bar_width / 2, avg_2Q_Transpiled_gate_counts, color='cyan', label='Normalized Gate Counts', width=bar_width) # Adjust width here
Algorithmic_2Q_counts = ax5.bar(np.array(num_qubits_range) + bar_width / 2, avg_2Q_algorithmic_gate_counts, color='deepskyblue', label='Algorithmic Gate Counts', width=bar_width) # Adjust width here
autolabel(Normalized_2Q_counts,ax5,str='{}')
autolabel(Algorithmic_2Q_counts,ax5,str='{}')
ax5.set_xlabel('Number of Qubits')
ax5.set_ylabel('Average 2-Qubit Gate Counts')
ax5.set_title('Average 2-Qubit Gate Counts vs Number of Qubits')
ax5.legend()
ax6.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits))
Hellinger = ax6.bar(np.array(num_qubits_range) - bar_width / 2, avg_Hf, width=bar_width, label='Hellinger Fidelity',color='cyan') # Adjust width here
Normalized = ax6.bar(np.array(num_qubits_range) + bar_width / 2, avg_f, width=bar_width, label='Normalized Fidelity', color='deepskyblue') # Adjust width here
autolabel(Hellinger,ax6,str='{:.2f}')
autolabel(Normalized,ax6,str='{:.2f}')
ax6.set_xlabel('Number of Qubits')
ax6.set_ylabel('Average Value')
ax6.set_title("Fidelity Comparison")
ax6.legend()
if Memory_utilization_plot == True:
ax7.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits))
x = ax7.bar(num_qubits_range, max_memory, color='turquoise', width=bar_width, label="Memory Utilizations")
autolabel(ax7.patches, ax7)
ax7.set_xlabel('Number of Qubits')
ax7.set_ylabel('Maximum Memory Utilized (MB)')
ax7.set_title('Memory Utilized vs Number of Qubits',fontsize=14)
plt.tight_layout(rect=[0, 0, 1, 0.96])
if saveplots == True:
plt.savefig("ParameterPlotsSample.jpg")
plt.show()
# Quantum Volume Plot
Suptitle = f"Volumetric Positioning - {platform}"
appname=benchmark_name
if QV_ == None:
QV=2048
else:
QV=QV_
depth_base =2
ax = plot_volumetric_background(max_qubits=max_qbits, QV=QV,depth_base=depth_base, suptitle=Suptitle, colorbar_label="Avg Result Fidelity")
w_data = num_qubits_range
# determine width for circuit
w_max = 0
for i in range(len(w_data)):
y = float(w_data[i])
w_max = max(w_max, y)
d_tr_data = avg_transpiled_depths
f_data = avg_f
plot_volumetric_data(ax, w_data, d_tr_data, f_data, depth_base, fill=True,label=appname, labelpos=(0.4, 0.6), labelrot=15, type=1, w_max=w_max)
anno_volumetric_data(ax, depth_base,label=appname, labelpos=(0.4, 0.6), labelrot=15, type=1, fill=False)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
from qiskit import QuantumCircuit
from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem
from qiskit.circuit.library import LinearAmplitudeFunction
from qiskit_aer.primitives import Sampler
from qiskit_finance.circuit.library import LogNormalDistribution
# number of qubits to represent the uncertainty
num_uncertainty_qubits = 3
# parameters for considered random distribution
S = 2.0 # initial spot price
vol = 0.4 # volatility of 40%
r = 0.05 # annual interest rate of 4%
T = 40 / 365 # 40 days to maturity
# resulting parameters for log-normal distribution
mu = (r - 0.5 * vol**2) * T + np.log(S)
sigma = vol * np.sqrt(T)
mean = np.exp(mu + sigma**2 / 2)
variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2)
stddev = np.sqrt(variance)
# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.
low = np.maximum(0, mean - 3 * stddev)
high = mean + 3 * stddev
# construct A operator for QAE for the payoff function by
# composing the uncertainty model and the objective
uncertainty_model = LogNormalDistribution(
num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high)
)
# plot probability distribution
x = uncertainty_model.values
y = uncertainty_model.probabilities
plt.bar(x, y, width=0.2)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.grid()
plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15)
plt.ylabel("Probability ($\%$)", size=15)
plt.show()
# set the strike price (should be within the low and the high value of the uncertainty)
strike_price = 1.896
# set the approximation scaling for the payoff function
c_approx = 0.25
# setup piecewise linear objective fcuntion
breakpoints = [low, strike_price]
slopes = [0, 1]
offsets = [0, 0]
f_min = 0
f_max = high - strike_price
european_call_objective = LinearAmplitudeFunction(
num_uncertainty_qubits,
slopes,
offsets,
domain=(low, high),
image=(f_min, f_max),
breakpoints=breakpoints,
rescaling_factor=c_approx,
)
# construct A operator for QAE for the payoff function by
# composing the uncertainty model and the objective
num_qubits = european_call_objective.num_qubits
european_call = QuantumCircuit(num_qubits)
european_call.append(uncertainty_model, range(num_uncertainty_qubits))
european_call.append(european_call_objective, range(num_qubits))
# draw the circuit
european_call.draw()
# plot exact payoff function (evaluated on the grid of the uncertainty model)
x = uncertainty_model.values
y = np.maximum(0, x - strike_price)
plt.plot(x, y, "ro-")
plt.grid()
plt.title("Payoff Function", size=15)
plt.xlabel("Spot Price", size=15)
plt.ylabel("Payoff", size=15)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.show()
# evaluate exact expected value (normalized to the [0, 1] interval)
exact_value = np.dot(uncertainty_model.probabilities, y)
exact_delta = sum(uncertainty_model.probabilities[x >= strike_price])
print("exact expected value:\t%.4f" % exact_value)
print("exact delta value: \t%.4f" % exact_delta)
european_call.draw()
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = EstimationProblem(
state_preparation=european_call,
objective_qubits=[3],
post_processing=european_call_objective.post_processing,
)
# construct amplitude estimation
ae = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result = ae.estimate(problem)
conf_int = np.array(result.confidence_interval_processed)
print("Exact value: \t%.4f" % exact_value)
print("Estimated value: \t%.4f" % (result.estimation_processed))
print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int))
from qiskit_finance.applications.estimation import EuropeanCallPricing
european_call_pricing = EuropeanCallPricing(
num_state_qubits=num_uncertainty_qubits,
strike_price=strike_price,
rescaling_factor=c_approx,
bounds=(low, high),
uncertainty_model=uncertainty_model,
)
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = european_call_pricing.to_estimation_problem()
# construct amplitude estimation
ae = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result = ae.estimate(problem)
conf_int = np.array(result.confidence_interval_processed)
print("Exact value: \t%.4f" % exact_value)
print("Estimated value: \t%.4f" % (european_call_pricing.interpret(result)))
print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int))
from qiskit_finance.applications.estimation import EuropeanCallDelta
european_call_delta = EuropeanCallDelta(
num_state_qubits=num_uncertainty_qubits,
strike_price=strike_price,
bounds=(low, high),
uncertainty_model=uncertainty_model,
)
european_call_delta._objective.decompose().draw()
european_call_delta_circ = QuantumCircuit(european_call_delta._objective.num_qubits)
european_call_delta_circ.append(uncertainty_model, range(num_uncertainty_qubits))
european_call_delta_circ.append(
european_call_delta._objective, range(european_call_delta._objective.num_qubits)
)
european_call_delta_circ.draw()
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = european_call_delta.to_estimation_problem()
# construct amplitude estimation
ae_delta = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result_delta = ae_delta.estimate(problem)
conf_int = np.array(result_delta.confidence_interval_processed)
print("Exact delta: \t%.4f" % exact_delta)
print("Esimated value: \t%.4f" % european_call_delta.interpret(result_delta))
print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int))
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/quantumyatra/quantum_computing
|
quantumyatra
|
# Useful additional packages
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
from math import pi
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute
from qiskit import Aer, IBMQ
from qiskit.compiler import transpile, assemble
from qiskit.visualization import *
from qiskit.providers.aer import UnitarySimulator
from qiskit.tools.visualization import circuit_drawer
from qiskit.quantum_info import state_fidelity
from qiskit import BasicAer
backend = BasicAer.get_backend('unitary_simulator')
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
groverCircuit = QuantumCircuit(qr,cr)
groverCircuit.h(qr)
groverCircuit.draw(output="mpl")
job = execute(groverCircuit, backend)
job.result().get_unitary(groverCircuit, decimals=3)
groverCircuit.measure(qr,cr)
groverCircuit.draw(output="mpl")
simulator = Aer.get_backend('qasm_simulator')
result = execute(groverCircuit, simulator).result()
counts = result.get_counts(groverCircuit)
plot_histogram(counts, title='Grover Intermediate measurement')
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
groverCircuit = QuantumCircuit(qr,cr)
groverCircuit.h(qr)
'''oracle w = |00>'''
groverCircuit.x(qr)
groverCircuit.cz(qr[0],qr[1])
groverCircuit.x(qr)
groverCircuit.draw(output="mpl")
job = execute(groverCircuit, backend)
job.result().get_unitary(groverCircuit, decimals=3)
INIT = 0.5*np.array([[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]])
CZ = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,-1]])
XX = np.array([[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]])
'''Oracle'''
ORCL = np.dot(XX,np.dot(CZ,XX))
print(ORCL)
'''FUll circuit matrix so far'''
np.dot(ORCL,INIT)
groverCircuit.measure(qr,cr)
groverCircuit.draw(output="mpl")
simulator = Aer.get_backend('qasm_simulator')
result = execute(groverCircuit, simulator).result()
counts = result.get_counts(groverCircuit)
plot_histogram(counts, title='Grover Intermediate measurement')
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
groverCircuit = QuantumCircuit(qr,cr)
groverCircuit.h(qr)
'''oracle w = |00>'''
groverCircuit.x(qr)
groverCircuit.cz(qr[0],qr[1])
groverCircuit.x(qr)
'''Grover Transform'''
groverCircuit.h(qr)
'''Reflection'''
groverCircuit.z(qr)
groverCircuit.cz(qr[0],qr[1])
'''end of Reflection'''
groverCircuit.h(qr)
'''end of Grover Transform'''
groverCircuit.draw(output="mpl")
job = execute(groverCircuit, backend)
job.result().get_unitary(groverCircuit, decimals=3)
HH = 0.5*np.array([[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]])
ZZ = np.array([[1,0,0,0],[0,-1,0,0],[0,0,-1,0],[0,0,0,1]])
'''Grover Transform'''
GT = np.dot(HH,np.dot(CZ,np.dot(ZZ,HH)))
print(GT)
'''FUll circut matrix'''
np.dot(INIT,np.dot(ORCL,GT))
simulator = Aer.get_backend('qasm_simulator')
result = execute(groverCircuit, simulator).result()
counts = result.get_counts(groverCircuit)
plot_histogram(counts, title='Grover Intermediate measurement')
|
https://github.com/Harcipan/QAI_GroverSim
|
Harcipan
|
# Importing standard Qiskit libraries
from qiskit import QuantumCircuit, transpile
from qiskit.visualization import *
from ibm_quantum_widgets import *
# qiskit-ibmq-provider has been deprecated.
# Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail.
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options
# Loading your IBM Quantum account(s)
service = QiskitRuntimeService(channel="ibm_quantum")
# Invoke a primitive. For more details see https://docs.quantum.ibm.com/run/primitives
# result = Sampler().run(circuits).result()
from qiskit import QuantumCircuit, ClassicalRegister, transpile
from qiskit.providers.fake_provider import GenericBackendV2
# Create a circuit with classical control
creg = ClassicalRegister(19)
qc = QuantumCircuit(25)
qc.add_register(creg)
qc.h(0)
for i in range(18):
qc.cx(0, i + 1)
for i in range(18):
qc.measure(i, creg[i])
with qc.if_test((creg, 0)):
qc.ecr(20, 21)
# Define backend with custom basis gates and
# control flow instructions
backend = GenericBackendV2(
num_qubits=25,
basis_gates=["ecr", "id", "rz", "sx", "x"],
control_flow=True,
)
#Transpile
transpiled_qc = transpile(qc, backend)
job = backend.run(transpiled_qc)
#job = execute(qc, simulator, shots=1024)
# Wait for the job to finish
job_result = job.result()
# Get counts from the result
counts = job.result()[0].data.meas.get_counts()
#counts = job_result.get_counts()
"""# Plot the histogram
plot_histogram(counts)"""
|
https://github.com/trevorpiltch/Grovers-Algorithm
|
trevorpiltch
|
from qiskit import *
def get_result(qc, shots=1024):
"""Runs the circuit on the simulator"""
backend = Aer.get_backend('qasm_simulator')
result = execute(qc, backend, shots = shots).result()
counts = result.get_counts()
return counts
def parse_result(counts, p=False):
"""Returns the maximum value found and optionally prints all results"""
max = [0, 0]
for i in counts:
num = int(i, 2)
key = str(num)
value = str(counts[i])
if (int(counts[i]) > int(max[1])):
max[0] = num
max[1] = value
if p:
print(key + ": " + value)
return max
|
https://github.com/Qiskit/qiskit-transpiler-service
|
Qiskit
|
# -*- coding: utf-8 -*-
# (C) Copyright 2024 IBM. All Rights Reserved.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
import logging
from typing import Dict, List, Union, Literal
import numpy as np
from qiskit import QuantumCircuit, QuantumRegister, qasm2, qasm3
from qiskit.circuit import QuantumCircuit, QuantumRegister, Qubit
from qiskit.qasm2 import QASM2ExportError, QASM2ParseError
from qiskit.transpiler import TranspileLayout
from qiskit.transpiler.layout import Layout
from qiskit_transpiler_service.wrappers import QiskitTranspilerService
# setting backoff logger to error level to avoid too much logging
logging.getLogger("backoff").setLevel(logging.ERROR)
logger = logging.getLogger(__name__)
class TranspileAPI(QiskitTranspilerService):
"""A helper class that covers some basic funcionality from the Qiskit Transpiler API"""
def __init__(self):
super().__init__()
def transpile(
self,
circuits: Union[
Union[List[str], str], Union[List[QuantumCircuit], QuantumCircuit]
],
optimization_level: int = 1,
backend: Union[str, None] = None,
coupling_map: Union[List[List[int]], None] = None,
ai: Literal["true", "false", "auto"] = "true",
qiskit_transpile_options: Dict = None,
ai_layout_mode: str = None,
):
circuits = circuits if isinstance(circuits, list) else [circuits]
qasm_circuits = [_input_to_qasm(circ) for circ in circuits]
json_args = {
"qasm_circuits": qasm_circuits,
}
if qiskit_transpile_options is not None:
json_args["qiskit_transpile_options"] = qiskit_transpile_options
if coupling_map is not None:
json_args["backend_coupling_map"] = coupling_map
params = {
"backend": backend,
"optimization_level": optimization_level,
"ai": ai,
}
if ai_layout_mode is not None:
params["ai_layout_mode"] = ai_layout_mode
transpile_resp = self.request_and_wait(
endpoint="transpile", body=json_args, params=params
)
logger.debug(f"transpile_resp={transpile_resp}")
transpiled_circuits = []
for res, orig_circ in zip(transpile_resp, circuits):
try:
transpiled_circuits.append(_get_circuit_from_result(res, orig_circ))
except Exception as ex:
logger.error("Error transforming the result to a QuantumCircuit object")
raise
return (
transpiled_circuits
if len(transpiled_circuits) > 1
else transpiled_circuits[0]
)
def benchmark(
self,
circuits: Union[
Union[List[str], str], Union[List[QuantumCircuit], QuantumCircuit]
],
backend: str,
optimization_level: int = 1,
qiskit_transpile_options: Dict = None,
):
raise Exception("Not implemented")
def _input_to_qasm(input_circ: Union[QuantumCircuit, str]):
if isinstance(input_circ, QuantumCircuit):
try:
qasm = qasm2.dumps(input_circ).replace("\n", " ")
except QASM2ExportError:
qasm = qasm3.dumps(input_circ).replace("\n", " ")
elif isinstance(input_circ, str):
qasm = input_circ.replace("\n", " ")
else:
raise TypeError("Input circuits must be QuantumCircuit or qasm string.")
return qasm
def _get_circuit_from_result(transpile_resp, orig_circuit):
transpiled_circuit = _get_circuit_from_qasm(transpile_resp["qasm"])
init_layout = transpile_resp["layout"]["initial"]
final_layout = transpile_resp["layout"]["final"]
orig_circuit = (
_get_circuit_from_qasm(orig_circuit)
if isinstance(orig_circuit, str)
else orig_circuit
)
transpiled_circuit = QuantumCircuit(len(init_layout)).compose(transpiled_circuit)
transpiled_circuit._layout = _create_transpile_layout(
init_layout, final_layout, transpiled_circuit, orig_circuit
)
return transpiled_circuit
def _create_initial_layout(initial, n_used_qubits):
"""Create initial layout using the initial index layout and the number of active qubits."""
total_qubits = len(initial)
q_total = n_used_qubits
a_total = total_qubits - q_total
initial_layout = Layout()
for q in range(q_total):
initial_layout.add(initial[q], Qubit(QuantumRegister(q_total, "q"), q))
for a in range(q_total, total_qubits):
initial_layout.add(
initial[a], Qubit(QuantumRegister(a_total, "ancilla"), a - q_total)
)
return initial_layout
def _create_input_qubit_mapping(qubits_used, total_qubits):
"""Create input qubit mapping with the number of active qubits and the total number of qubits."""
input_qubit_mapping = {
Qubit(QuantumRegister(qubits_used, "q"), q): q for q in range(qubits_used)
}
input_ancilla_mapping = {
Qubit(
QuantumRegister(total_qubits - qubits_used, "ancilla"), q - qubits_used
): q
for q in range(qubits_used, total_qubits)
}
input_qubit_mapping.update(input_ancilla_mapping)
return input_qubit_mapping
def _create_final_layout(initial, final, circuit):
"""Create final layout with the initial and final index layout and the circuit."""
final_layout = Layout()
q_total = len(initial)
q_reg = QuantumRegister(q_total, "q")
for i, j in zip(final, initial):
q_index = circuit.find_bit(Qubit(q_reg, j)).index
qubit = circuit.qubits[q_index]
final_layout.add(i, qubit)
return final_layout
def _create_transpile_layout(initial, final, circuit, orig_circuit):
"""Build the full transpile layout."""
n_used_qubits = orig_circuit.num_qubits
return TranspileLayout(
initial_layout=_create_initial_layout(
initial=initial, n_used_qubits=n_used_qubits
), # final=final),
input_qubit_mapping=_create_input_qubit_mapping(
qubits_used=n_used_qubits, total_qubits=len(initial)
),
final_layout=_create_final_layout(
initial=initial, final=final, circuit=circuit
),
_input_qubit_count=n_used_qubits,
_output_qubit_list=circuit.qubits,
)
def _get_circuit_from_qasm(qasm_string):
try:
return qasm2.loads(
qasm_string,
custom_instructions=qasm2.LEGACY_CUSTOM_INSTRUCTIONS,
)
except QASM2ParseError:
return qasm3.loads(qasm_string)
|
https://github.com/jonasmaziero/computacao_quantica_qiskit
|
jonasmaziero
|
%run init.ipynb
def plot_Pr0(R1, R2):
matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100)
ph_max = 2*math.pi; dph = ph_max/20; ph = np.arange(0, ph_max+dph, dph)
dimph = ph.shape[0]; P0 = np.zeros(dimph)
T1 = math.sqrt(1 - R1**2); T2 = math.sqrt(1 - R2**2)
P0 = T1**2*R2**2 + R1**2*T2**2 + 2*T1*R1*T2*R2*np.cos(ph)
plt.plot(ph, P0); plt.xlabel(r'$\phi$'); plt.ylabel(r'$Pr(0)$')
plt.xlim(0, 2*math.pi); plt.ylim(0, 1)
plt.annotate(r'$R_{1}=$'+str(R1), xy=(0.5,0.5), xytext=(0.5,0.5), fontsize=12)
plt.annotate(r'$R_{2}=$'+str(R1), xy=(0.5,0.4), xytext=(0.5,0.4), fontsize=12)
plt.show()
interactive(plot_Pr0, R1 = (0, 1, 0.05), R2 = (0, 1, 0.05))
def V1(T1, T2):
return (2*T1*T2*np.sqrt(1-T1**2)*np.sqrt(1-T2**2))/((T1**2)*(T2**2) + (1-T1**2)*(1-T2**2))
def V_3d(th, ph):
x = np.linspace(0.00001, 0.99999, 20); y = np.linspace(0.00001, 0.99999, 20); X, Y = np.meshgrid(x, y)
Z = V1(X, Y); fig = plt.figure();
ax = plt.axes(projection = "3d"); ax.plot_wireframe(X, Y, Z, color = 'blue')
ax.set_xlabel(r'$T_{1}$'); ax.set_ylabel(r'$T_{2}$'); ax.set_zlabel(r'$V_{0}$')
ax.view_init(th, ph); fig.tight_layout(); plt.show()
interactive(V_3d, th = (0,90,10), ph = (0,360,10))
from mpl_toolkits import mplot3d
def V0(T1, T2):
return (2*T1*T2*np.sqrt(1-T1**2)*np.sqrt(1-T2**2))/((T1**2)*(1-T2**2) + (1-T1**2)*T2**2)
def V_3d(th, ph):
x = np.linspace(0.00001, 0.99999, 20); y = np.linspace(0.00001, 0.99999, 20); X, Y = np.meshgrid(x, y)
Z = V0(X, Y); fig = plt.figure();
ax = plt.axes(projection = "3d"); ax.plot_wireframe(X, Y, Z, color = 'blue')
ax.set_xlabel(r'$T_{1}$'); ax.set_ylabel(r'$T_{2}$'); ax.set_zlabel(r'$V_{0}$')
ax.view_init(th, ph); fig.tight_layout(); plt.show()
interactive(V_3d, th = (0,90,10), ph = (0,360,10))
def V_3d(th, ph):
x = np.linspace(0.00001, 0.99999, 20); y = np.linspace(0.00001, 0.99999, 20); X, Y = np.meshgrid(x, y)
Z = V0(X, Y)-V1(X, Y); fig = plt.figure();
ax = plt.axes(projection = "3d"); ax.plot_wireframe(X, Y, Z, color = 'blue')
ax.set_xlabel(r'$T_{1}$'); ax.set_ylabel(r'$T_{2}$'); ax.set_zlabel(r'$V_{0}-V_{1}$')
ax.view_init(th, ph); fig.tight_layout(); plt.show()
interactive(V_3d, th = (0,90,10), ph = (0,360,10))
import math
import qiskit
def shannon_num(pv):
d = pv.shape[0]; SE = 0.0; j = -1
while (j < d-1):
j = j + 1
if pv[j] > 10**-15 and pv[j] < (1.0-10**-15):
SE -= pv[j]*math.log2(pv[j])
return SE
import scipy.linalg.lapack as lapak
def von_neumann_num(rho):
d = rho.shape[0]; b = lapak.zheevd(rho)
return shannon_num(b[0])
def coh_re_num(rho):
d = rho.shape[0]; pv = np.zeros(d)
for j in range(0,d):
pv[j] = rho[j,j].real
return shannon_num(pv) - von_neumann_num(rho)
def P_vn_num(rho):
d = rho.shape[0]; P = 0
for j in range(0, d):
if rho[j,j] > 10**-15 and rho[j,j] < (1.0-10**-15):
P += np.absolute(rho[j,j])*math.log2(np.absolute(rho[j,j]))
return math.log2(d) + P
def qc_gmzi(th, ph, ga):
qc = qiskit.QuantumCircuit(1)
qc.rx(-2*th, 0); qc.z(0); qc.y(0); qc.p(ph, 0); qc.rx(-2*ga, 0)
return qc
th, ph, ga = math.pi/3, math.pi/2, math.pi; qcgmzi = qc_gmzi(th, ph, ga); qcgmzi.draw(output = 'mpl')
nshots = 8192
qiskit.IBMQ.load_account()
provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main')
device = provider.get_backend('ibmq_armonk')
simulator = qiskit.Aer.get_backend('qasm_simulator')
from qiskit.tools.monitor import job_monitor
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
# for error mitigation
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
qr = qiskit.QuantumRegister(1)
qubit_list = [0] # os qubits para os quais aplicaremos calibracao de medidas
meas_calibs, state_labels = complete_meas_cal(qubit_list = qubit_list, qr = qr)
job = qiskit.execute(meas_calibs, backend = device, shots = nshots); job_monitor(job)
cal_results = job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels)
# for computing coherence and predictability
th_max = math.pi/2; dth = th_max/10; th = np.arange(0, th_max+dth, dth); dimth = th.shape[0]
Csim = np.zeros(dimth); Psim = np.zeros(dimth); Cexp = np.zeros(dimth); Pexp = np.zeros(dimth)
for j in range(0, dimth):
qr = qiskit.QuantumRegister(1); qc = qiskit.QuantumCircuit(qr); qc.rx(-2*th[j], qr[0])
qstc = state_tomography_circuits(qc, qr[0])
job = qiskit.execute(qstc, simulator, shots = nshots) # simulation
qstf = StateTomographyFitter(job.result(), qstc); rho = qstf.fit(method = 'lstsq')
Csim[j] = coh_re_num(rho); Psim[j] = P_vn_num(rho)
jobE = qiskit.execute(qstc, backend = device, shots = nshots); job_monitor(jobE)
mitigated_results = meas_fitter.filter.apply(jobE.result())
qstfE = StateTomographyFitter(mitigated_results, qstc)
#qstfE = StateTomographyFitter(jobE.result(), qstc)
rhoE = qstfE.fit(method = 'lstsq')
Cexp[j] = coh_re_num(rhoE); Pexp[j] = P_vn_num(rhoE)
Cexp
Pexp
matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100)
plt.plot(th, Csim, label = r'$C_{re}^{sim}$')
plt.plot(th, Psim, label = r'$P_{vn}^{sim}$')
plt.plot(th, Cexp, 'o', label = r'$C_{re}^{exp}$')
plt.plot(th, Pexp, '*', label = r'$P_{vn}^{exp}$')
plt.legend(); plt.xlabel(r'$\theta$')
plt.savefig('coh_vs_ivi_armonk_mit.pdf', format = 'pdf', dpi = 200)
plt.show()
# for computing the visibility
ph_max = 2*math.pi; dph = ph_max/10; ph = np.arange(0, ph_max+dph, dph); dimph = ph.shape[0]
P0sim = np.zeros(dimph); P0exp = np.zeros(dimph)
th[j] = math.pi/2
for k in range(0, dimph):
qr = qiskit.QuantumRegister(1); cr = qiskit.ClassicalRegister(1); qc = qiskit.QuantumCircuit(qr, cr)
qc.rx(-2*th[j], qr[0]); qc.z(qr[0]); qc.y(qr[0])
qc.p(ph[k], qr[0]); ga = th[j]; qc.rx(-2*ga, qr[0]); qc.measure(qr[0], cr[0])
job = qiskit.execute(qc, backend = simulator, shots = nshots) # simulation
counts = job.result().get_counts(qc)
if '0' in counts:
P0sim[k] = counts['0']
jobE = qiskit.execute(qc, backend = device, shots = nshots); job_monitor(jobE)
mitigated_results = meas_fitter.filter.apply(jobE.result())
countsE = mitigated_results.get_counts(qc)
#countsE = jobE.result().get_counts(qc)
if '0' in countsE:
P0exp[k] = countsE['0']
P0sim = P0sim/nshots; P0exp = P0exp/nshots
P0exp
P0sim
P0expthpi2 = np.array([0.0267666 , 0.02431936, 0.02646069, 0.03701438, 0.02340165,
0.02997859, 0.02095442, 0.02049556, 0.02156623, 0.01957785,
0.03242582])
P0simthpi2 = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
P0expthpi4 = np.array([1. , 0.90838173, 0.66274091, 0.37488527, 0.11976134,
0.01881309, 0.12251453, 0.36310798, 0.65050474, 0.90455797,
1. ])
P0simthpi4 = np.array([1. , 0.90612793, 0.65258789, 0.34069824, 0.09924316,
0. , 0.09228516, 0.34741211, 0.64331055, 0.90209961,
1. ])
matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100)
plt.plot(ph, P0simthpi4, label = r'$P_{0}^{sim}(\theta=\pi/4)$')
plt.plot(ph, P0expthpi4, 'o', label = r'$P_{0}^{exp}(\theta=\pi/4)$')
plt.plot(ph, P0simthpi2, '.-', label = r'$P_{0}^{sim}(\theta=\pi/2)$')
plt.plot(ph, P0expthpi2, '*', label = r'$P_{0}^{exp}(\theta=\pi/2)$')
plt.ylim(0, 2*math.pi); plt.ylim(-0.01, 1.01)
plt.legend(); plt.xlabel(r'$\phi$')
plt.savefig('P0_thpi4_armonk_mit.pdf', format = 'pdf', dpi = 200)
plt.show()
|
https://github.com/googlercolin/Qiskit-Course
|
googlercolin
|
import numpy as np
import qiskit
from qiskit.circuit.library import RXGate
from qiskit.providers.aer.noise import NoiseModel, ReadoutError, depolarizing_error, coherent_unitary_error
from scipy.stats import norm
from scipy.optimize import curve_fit
import matplotlib.pylab as plt
import qc_grader
# Create circuit to generate an equal superposition of quantum states
# Set the number of qubits
qubits_count = 1
# Set the number of bits
cbits_count = 1
# Instantiate a quantum register
quantum_register = qiskit.QuantumRegister(qubits_count)
# Instantiate a classical register
classical_register = qiskit.ClassicalRegister(cbits_count)
# Instantiate a quantum circuit
circuit = qiskit.QuantumCircuit(quantum_register, classical_register)
# Add a Hadamard gate and measurement
###INSERT CODE BELOW THIS LINE
circuit.h(0)
circuit.measure(0,0)
###DO NOT EDIT BELOW THIS LINE
from qc_grader.challenges.qgss_2022 import grade_lab3_ex1
grade_lab3_ex1(circuit)
# Run the quantum circuit on a simulator backend which returns measured shots in the Z basis
shots_backend = qiskit.Aer.get_backend('qasm_simulator')
# Fix number of times to repeat the experiment
num_shots = 10
# Create a job, run on the simulator, extract the results and get the counts dictionary
###INSERT CODE BELOW THIS LINE
job = shots_backend.run(circuit, shots = num_shots).result()
counts = job.get_counts()
###DO NOT EDIT BELOW THIS LINE
print(counts)
from qc_grader.challenges.qgss_2022 import grade_lab3_ex2
grade_lab3_ex2(counts)
# Set different number of shots
num_shots_list = [10, 100, 1000, 10000]
# For each number of shots, extract the probability of |0> from the experimental counts
p0_list = []
for num_shots in num_shots_list:
# Create a job, run on the simulator, extract the results and get the counts dictionary
###INSERT CODE BELOW THIS LINE
job = shots_backend.run(circuit, shots = num_shots).result()
counts = job.get_counts()
counts_0 = counts['0']
prob = counts_0/num_shots
p0_list.append(prob)
###DO NOT EDIT BELOW THIS LINE
for num_shots, p0 in zip(num_shots_list, p0_list):
print(f"The probability of observing the 0 state with {num_shots} shots is: {p0}")
from qc_grader.challenges.qgss_2022 import grade_lab3_ex3
grade_lab3_ex3(p0_list)
# Set the number of shots
num_shots = 10
# Set the number of times to repeat the experiment
iterations = 10000
# Set the number of bins for the histogram
bin_count = 100
# For each iteration, create job, run the experiment,
# collect results and calculate probability of |0>
p0_list = []
for _ in range(iterations):
job = shots_backend.run(circuit, shots=num_shots)
result = job.result()
if '0' in result.get_counts().keys():
p0 = result.get_counts()['0']/num_shots
else:
p0 = 1 - result.get_counts()['1']/num_shots
p0_list.append(p0)
# Calculate a histogram from the results
yhist, xhist = np.histogram(p0_list, bins=bin_count)
# Restrict horizontal axis to 0-1
x_01 = np.array([xhist[n] + (xhist[n + 1] - xhist[n])/2 for n in range(len(xhist)-1)])
# Find x-points for which the histogram has more than zero counts
xh = np.where(yhist > 0)[0]
# Get the y-points of the corresponding x ones
yh = yhist[xh]
# Get the x-points
x_01_h = x_01[xh]
# Plot
plt.scatter(x_01_h, yh, color = 'red')
plt.title(f"Using {num_shots} shots to estimate probability")
plt.xlim((0, 1))
plt.xlabel(r'probability of $\vert 0 \rangle$')
plt.ylabel('counts')
plt.show()
# Define a Gaussian function for the fit
def gaussian(x, a, mean, sigma):
return a * (1/(sigma*np.sqrt(2*np.pi)))*np.exp(-((x - mean)**2 / (2 * sigma**2)))
# Set initial estimates for the fit: the maximum height of the histogram, the theoretical
# average and the theoretical standard deviation
height_estimate = np.max(yh)
mu_estimate = 0.5
sigma_estimate = np.sqrt(mu_estimate*(1-mu_estimate)/num_shots)
# Define list to store the estimated values of the average (mu_sigma[0]) and standard deviation (mu_sigma[1])
mu_sigma = []
# Use the curve_fit function to fit the experimental data using the definition of the Gaussian function
# which will return the estimate of the parameters.
###INSERT CODE BELOW THIS LINE
popt, pcov = curve_fit(gaussian, x_01_h, yh, [height_estimate, mu_estimate, sigma_estimate])
# (x_01_h, 1, mu_estimate, sigma_estimate)
mu_sigma.append(popt[1])
mu_sigma.append(popt[2])
# ###DO NOT EDIT BELOW THIS LINE
print("The mean is ", mu_sigma[0])
print("The standard deviation is ", mu_sigma[1])
# Plot experimental data and the fit
plt.scatter(x_01_h, yh, label = 'data', color = 'red')
plt.plot(x_01, gaussian(x_01, *popt), label = 'fit', linestyle = '--')
plt.title(f"Using {num_shots} shots to estimate probability")
plt.xlim((0, 1))
plt.xlabel(r'probability of $\vert 0 \rangle$')
plt.ylabel('counts')
plt.legend()
plt.show()
from qc_grader.challenges.qgss_2022 import grade_lab3_ex4
grade_lab3_ex4(mu_sigma)
# Set different number of shots
num_shots_list = [10, 100, 1000,10000]
# Set the number of times to repeat the experiment
iterations = 10000
# Set the number of bins for the histogram
bin_count = 100
# Repeat the protocol above for different number of shots to see how the parameters of the
# estimated Gaussian change with the number of shots
popt_list = []
gaussian_curve_list, x_01_list = [], []
for num_shots in num_shots_list:
p0_list = []
for _ in range(iterations):
job = shots_backend.run(circuit, shots=num_shots)
result = job.result()
if '0' in result.get_counts().keys():
p0 = result.get_counts()['0']/num_shots
else:
p0 = 1 - result.get_counts()['1']/num_shots
p0_list.append(p0)
yhist, xhist = np.histogram(p0_list, bins=bin_count)
norm_y = np.sum(yhist)
yhist = yhist/iterations
x_01 = np.array([xhist[n] + (xhist[n + 1] - xhist[n])/2 for n in range(len(xhist)-1)])
xh = np.where(yhist > 0)[0]
yh = yhist[xh]
x_01_h = x_01[xh]
height_estimate = np.max(yh)
mu_estimate = p0
sigma_estimate = np.sqrt(mu_estimate*(1-mu_estimate)/num_shots)
popt, pcov = curve_fit(gaussian, x_01_h, yh, [height_estimate, mu_estimate, sigma_estimate])
gaussian_curve = gaussian(x_01, *popt)
gaussian_curve_list.append(gaussian_curve)
x_01_list.append(x_01)
popt_list.append(popt)
plt.scatter(x_01_h, yh, label = 'data', color = 'red')
plt.plot(x_01, gaussian_curve, label = 'fit', linestyle = '--')
plt.title(f"Using {num_shots} shots to estimate probability")
plt.xlim((0, 1))
plt.xlabel(r'probability of $\vert 0 \rangle$')
plt.ylabel('counts')
plt.legend()
plt.show()
# Define list which will contain the experimental standard deviations
sigma_exp_list = []
# Append the standard deviations from the experiments with different number of shots to sigma_exp_list
###INSERT CODE BELOW THIS LINE
for popt in popt_list:
sigma_exp_list.append(popt[2])
###DO NOT EDIT BELOW THIS LINE
# Define theoretical sigma
p=0.5
sigma_th_list = [np.sqrt(p*(1-p)/num_shots) for num_shots in num_shots_list]
for sigma_exp, sigma_th in zip(sigma_exp_list, sigma_th_list):
print(f"The variance from experiment is {sigma_exp} while the theoretical one is {sigma_th}")
from qc_grader.challenges.qgss_2022 import grade_lab3_ex5
grade_lab3_ex5(sigma_exp_list)
# Set number of shots
num_shots_measurement = 10000
# Create an empty noise model
readout_noise_model = NoiseModel()
# Measurement miss-assignement probabilities
p0given1 = 0.3 # Probability of measuuring |0> given the state is |1>
p1given0 = 0.05 # Probability of measuring |1> given the state is |0>
readout_error = ReadoutError([[1 - p1given0, p1given0], [p0given1, 1 - p0given1]]) # Define readout error
readout_noise_model.add_readout_error(readout_error, [0]) # Add error to noise model
# Calculate probability of seeing |0> given that |0> is prepared
circuit_0 = qiskit.QuantumCircuit(quantum_register, classical_register)
# Add measurement
###INSERT CODE BELOW THIS LINE
circuit_0.measure(0,0)
###DO NOT EDIT BELOW THIS LINE
from qc_grader.challenges.qgss_2022 import grade_lab3_ex6
grade_lab3_ex6(circuit_0)
# Run the experiment
job = shots_backend.run(circuit_0, shots=num_shots_measurement, noise_model=readout_noise_model)
# Retrieve results
result = job.result()
# Calculate probability of |0>
if '0' in result.get_counts().keys():
p0_0 = result.get_counts()['0']/num_shots_measurement
else:
p0_0 = 1 - result.get_counts()['1']/num_shots_measurement
p1_0 = 1 - p0_0
print('Probability of measuring |0> when |0> is prepared:', p0_0)
print('Probability of measuring |1> when |0> is prepared:', p1_0)
# Calculate probability of seeing |1> given that |1> is prepared
circuit_1 = qiskit.QuantumCircuit(quantum_register, classical_register)
# Add X gate and measurement
###INSERT CODE BELOW THIS LINE
circuit_1.x(0)
circuit_1.measure(0,0)
###DO NOT EDIT BELOW THIS LINE
from qc_grader.challenges.qgss_2022 import grade_lab3_ex7
grade_lab3_ex7(circuit_1)
# Run the experiment
job = shots_backend.run(circuit_1, shots=num_shots_measurement, noise_model=readout_noise_model)
# Retrieve results
result = job.result()
# Calculate probability of |0>
if '0' in result.get_counts().keys():
p1_1 = 1 - result.get_counts()['0']/num_shots_measurement
else:
p1_1 = result.get_counts()['1']/num_shots_measurement
p0_1 = 1 - p1_1
print('Probability of measuring |0> when |1> is prepared:', p0_1)
print('Probability of measuring |1> when |1> is prepared:', p1_1)
# Define the confusion matrix from the probabilities found above
###INSERT CODE BELOW THIS LINE
confusion_matrix = np.array([[p0_0, p0_1], [p1_0, p1_1]])
###DO NOT EDIT BELOW THIS LINE
print("Confusion matrix:")
print(confusion_matrix)
from qc_grader.challenges.qgss_2022 import grade_lab3_ex8
# The grader expects a np.array object (not list)
grade_lab3_ex8(confusion_matrix)
# Run experiments
job = shots_backend.run(circuit, shots=num_shots_measurement, noise_model=readout_noise_model)
# Extract results
result = job.result()
# Calculate probability of |0>
if '0' in result.get_counts().keys():
p0_noisy = result.get_counts()['0']/num_shots_measurement
p1_noisy = 1 - p0_noisy
else:
p0_noisy = 1 - result.get_counts()['1']/num_shots_measurement
p1_noisy = 1 - p0_noisy
p_vector_noisy = np.array([p0_noisy, p1_noisy])
print("Noisy probability of |0>: ", p0_noisy)
print("Noisy probability of |1>: ", p1_noisy)
# Invert the confusion matrix
inverse_confusion_matrix = np.linalg.inv(confusion_matrix)
# Mitigate the counts using the inverse of the confusion matrix
###INSERT CODE BELOW THIS LINE
p_vector_mitigated = (inverse_confusion_matrix @ p_vector_noisy)
###DO NOT EDIT BELOW THIS LINE
print("Mitigated probability of |0>: ", p_vector_mitigated[0])
print("Mitigated probability of |1>: ", p_vector_mitigated[1])
from qc_grader.challenges.qgss_2022 import grade_lab3_ex9
# The grader expects a np.array object (not list)
grade_lab3_ex9(p_vector_mitigated)
# Run ideal experiments
job = shots_backend.run(circuit, shots=num_shots_measurement)
# Extract results
result = job.result()
# Calculate probability of |0>
if '0' in result.get_counts().keys():
p0_ideal = result.get_counts()['0']/num_shots_measurement
p1_ideal = 1 - p0_ideal
else:
p0_ideal = 1 - result.get_counts()['1']/num_shots_measurement
p1_ideal = 1 - p0_ideal
print("Ideal probability of |0>: ", p0_ideal)
print("Ideal probability of |1>: ", p1_ideal)
# Set number of shots
num_shots_coherent = 100
# Create an empty noise model
rx_overrotation_noise_model = NoiseModel()
# Construct a 1 qubit over-rotation of the RX gate
epsilon = np.pi/5 # over rotation amount
epsilon_rotation = RXGate(epsilon).to_matrix() # get matrix representation
# Create coherent error
over_rotation = coherent_unitary_error(epsilon_rotation)
# Add error to error model
rx_overrotation_noise_model.add_quantum_error(over_rotation, ['rx'], qubits = [0])
# Set value of rotation
theta = np.pi
# Instantiate a quantum circuit
circuit = qiskit.QuantumCircuit(quantum_register, classical_register)
# Add a parametrized RX rotation and bind the value of the parameter. (By default, parameter binding is not an in-place operation)
# Then measure the qubit and calculate probability of seeing |0> after rx(np.pi)
###INSERT CODE BELOW THIS LINE
circuit.rx(theta, 0)
circuit.measure(0,0)
###DO NOT EDIT BELOW THIS LINE
from qc_grader.challenges.qgss_2022 import grade_lab3_ex10
grade_lab3_ex10(circuit)
# Run experiments
job = shots_backend.run(circuit, shots=num_shots_coherent, noise_model=rx_overrotation_noise_model)
# Extract results
result = job.result()
# Calculate the probability of |0>
if '0' in result.get_counts().keys():
p0 = result.get_counts()['0']/num_shots_coherent
else:
p0 = 1 - result.get_counts()['1']/num_shots_coherent
print("Noisy probability of |0> after coherent error in idling: ", p0)
print("Noisy probability of |1> after coherent error in idling: ", 1-p0)
# Define number of shots
num_shots_incoherent = 10000
# Create an empty noise model
depolarizing_noise_model = NoiseModel()
# Define a depolarizing error on the identity gate for qubit zero and add it to the noise model
###INSERT CODE BELOW THIS LINE
lamb = float(5/100)
depolarizing = depolarizing_error(lamb, 1)
depolarizing_noise_model.add_quantum_error(depolarizing, ['id'], qubits = [0])
###DO NOT EDIT BELOW THIS LINE
from qc_grader.challenges.qgss_2022 import grade_lab3_ex11
grade_lab3_ex11(depolarizing_noise_model)
# Create a circuit with an idle instruction
circuit_idle = qiskit.QuantumCircuit(quantum_register, classical_register)
circuit_idle.id(0)
circuit_idle.measure(0,0)
# Run experiments
job = shots_backend.run(circuit_idle, shots=num_shots_incoherent, noise_model=depolarizing_noise_model)
# Extract results
result = job.result()
# Calculate probability of seeing |0> after idle time
if '0' in result.get_counts().keys():
p0 = result.get_counts()['0']/num_shots_incoherent
else:
p0 = 1 - result.get_counts()['1']/num_shots_incoherent
print("Noisy probability of |0> after incoherent error in idling: ", p0)
print("Noisy probability of |1> after incoherent error in idling: ", 1-p0)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit, transpile
from qiskit.visualization import plot_circuit_layout
from qiskit.providers.fake_provider import FakeVigo
backend = FakeVigo()
ghz = QuantumCircuit(3, 3)
ghz.h(0)
ghz.cx(0,range(1,3))
ghz.barrier()
ghz.measure(range(3), range(3))
new_circ_lv3 = transpile(ghz, backend=backend, optimization_level=3)
plot_circuit_layout(new_circ_lv3, backend)
|
https://github.com/quantum-tokyo/qiskit-handson
|
quantum-tokyo
|
# Qiskitライブラリーを導入
from qiskit import *
# 描画のためのライブラリーを導入
import matplotlib.pyplot as plt
%matplotlib inline
# Qiskitバージョンの確認
qiskit.__qiskit_version__
# 2量子ビット回路を用意
q1 = QuantumCircuit(2,2) # 2量子ビット回路と2ビットの古典レジスターを用意します。
# 回路を描画
q1.draw(output="mpl")
# 量子ゲートで回路を作成
q1.x(0) # Xゲートを量子ビットq0に操作します。
q1.x(1) # Xゲートを量子ビットq1に操作します。
# 回路を描画
q1.draw(output="mpl")
# 状態ベクトルシミュレーターの実行
vector_sim = Aer.get_backend('statevector_simulator')
job = execute(q1, vector_sim )
result = job.result().get_statevector(q1, decimals=3)
print(result)
# 回路を測定
q1.measure(0,0)
q1.measure(1,1)
# 回路を描画
q1.draw(output='mpl')
# QASMシミュレーターで実験
simulator = Aer.get_backend('qasm_simulator')
job = execute(q1, backend=simulator, shots=1024)
result = job.result()
# 測定された回数を表示
counts = result.get_counts(q1)
print(counts)
# ヒストグラムで測定された確率をプロット
from qiskit.visualization import *
plot_histogram( counts )
# 2量子ビット回路を用意
q2 = QuantumCircuit(2,2) # 2量子ビット回路と2ビットの古典レジスターを用意します。
# 量子ゲートで回路を作成
q2.x(0) # Xゲートを量子ビットq0に操作します。
q2.h(0) # Hゲートを量子ビットq0に操作します。
q2.x(1) # Xゲートを量子ビットq1に操作します。
q2.h(1) # Hゲートを量子ビットq1に操作します。
# 回路を描画
q2.draw(output="mpl")
# 状態ベクトルシミュレーターの実行
vector_sim = Aer.get_backend('statevector_simulator')
job = execute(q2, vector_sim )
result = job.result().get_statevector(q2, decimals=3)
print(result)
# 回路を測定
q2.measure(0,0)
q2.measure(1,1)
# 回路を描画
q2.draw(output='mpl')
# QASMシミュレーターで実験
simulator = Aer.get_backend('qasm_simulator')
job = execute(q2, backend=simulator, shots=1024)
result = job.result()
## 測定された回数を表示
counts = result.get_counts(q2)
print(counts)
## ヒストグラムで測定された確率をプロット
from qiskit.visualization import *
plot_histogram( counts )
|
https://github.com/jonasmaziero/computacao_quantica_qiskit_sbf_2023
|
jonasmaziero
|
from IPython.display import IFrame; IFrame("https://www.ibm.com/quantum", 900,500)
import csv
with open('ibm_lagos_calibrations_2023-09-28T17_22_25Z.csv', newline='') as csvfile:
spamreader = csv.reader(csvfile, delimiter=' ', quotechar='|')
for row in spamreader:
print(', '.join(row))
import qiskit
qiskit.__qiskit_version__
# Copie se API Token no IBMQ e cole aqui
qiskit.IBMQ.save_account('ee8631db565e87e97b066d08e02cafb9bfa745be07e573095b666daa608a37ce58ae6ef5c174aff56a935dadfe1fa9c82edfe37aec6b24774bc94613658cc7d8',
overwrite = True)
# Execute esse comando uma vez só
qiskit.IBMQ.load_account()
provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main')
provider.backends()
from qiskit import *
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
qc = QuantumCircuit(qr,cr)
qc.h(qr[0])
qc.cx(qr[0],qr[1])
qc.measure(qr[0],cr[0])
qc.measure(qr[1],cr[1])
qc.draw('mpl')
simulator = Aer.get_backend('qasm_simulator')
nshots = 8192 # número de "prepara-e-mede"
job = execute(qc, backend = simulator, shots = nshots)
from qiskit.tools.visualization import plot_histogram
plot_histogram(job.result().get_counts(qc))
# Acessando as contagens com numpy
counts = job.result().get_counts(qc)
counts
counts['00']
# probabilidade
p00 = 0; p01 = 0; p10 = 0; p11 = 0
for j in (0,2):
for k in (0,2):
if '00' in counts:
p00 = counts['00']/nshots
if '01' in counts:
p01 = counts['01']/nshots
if '10' in counts:
p10 = counts['10']/nshots
if '11' in counts:
p11 = counts['11']/nshots
p00, p01, p10, p11
device = provider.get_backend('ibm_lagos')
from qiskit.tools.monitor import job_monitor
job = execute(qc, backend = device, shots = nshots)
job_monitor(job)
plot_histogram(job.result().get_counts(qc))
counts = job.result().get_counts(qc)
counts
counts['00']
# probabilidade
p00 = 0; p01 = 0; p10 = 0; p11 = 0
for j in (0,2):
for k in (0,2):
if '00' in counts:
p00 = counts['00']/nshots
if '01' in counts:
p01 = counts['01']/nshots
if '10' in counts:
p10 = counts['10']/nshots
if '11' in counts:
p11 = counts['11']/nshots
p00, p01, p10, p11
|
https://github.com/usamisaori/qLipschitz
|
usamisaori
|
from sklearn import datasets
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
X_train, Y_train = datasets.make_circles(n_samples=500, noise=0.09, factor=0.4)
X_test, Y_test = datasets.make_circles(n_samples=200, noise=0.09, factor=0.4)
print('Training Data:')
print(X_train[:10])
print('\nTraining Label:')
print(Y_train[:10])
plt.scatter(X_train[:, 0], X_train[:, 1], c=Y_train)
plt.show()
print(f'Total datas: {len(X_train)}')
print(f'labels: {list(set(Y_train))}')
print(f' - label 0 datas: {len(list(filter(lambda x: x==0, Y_train)))}')
print(f' - label 1 datas: {len(list(filter(lambda x: x==1, Y_train)))}')
Z_train = (X_train[:, 0] ** 2 + X_train[:, 1] ** 2) ** 0.5
temp = np.zeros((X_train.shape[0], len(X_train[0]) + 1))
temp[:, :-1] = X_train
temp[:, -1] = Z_train
X_train2 = temp
Z_test = (X_test[:, 0] ** 2 + X_test[:, 1] ** 2) ** 0.5
temp = np.zeros((X_test.shape[0], len(X_test[0]) + 1))
temp[:, :-1] = X_test
temp[:, -1] = Z_test
X_test2 = temp
print('Solved Training Data:')
print(X_train2[:10])
def plot3D(X, Y):
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(
X[:, 0], X[:, 1], X[:, 2],
zdir='z', s=30, c=Y, depthshade=True
)
plt.show()
plot3D(X_train2, Y_train)
X, Y = datasets.load_iris(return_X_y=True)
X_train_0 = X[0:30]
X_train_1 = X[50:80]
X_train_iris = np.vstack((X_train_0, X_train_1))
Y_train_0 = Y[0:30]
Y_train_1 = Y[50:80]
Y_train_iris = np.vstack((Y_train_0, Y_train_1)).flatten()
X, Y = datasets.load_iris(return_X_y=True)
X_test_0 = X[30:50]
X_test_1 = X[80:100]
X_test_iris = np.vstack((X_test_0, X_test_1))
Y_test_0 = Y[30:50]
Y_test_1 = Y[80:100]
Y_test_iris = np.vstack((Y_test_0, Y_test_1)).flatten()
X_train_iris = (X_train_iris - X_train_iris.min(axis=0)) / (X_train_iris.max(axis=0) - X_train_iris.min(axis=0))
X_test_iris = (X_test_iris - X_test_iris.min(axis=0)) / (X_test_iris.max(axis=0) - X_test_iris.min(axis=0))
import qiskit
from qiskit import QuantumCircuit
from qiskit import Aer, execute
qasm_backend = Aer.get_backend('qasm_simulator')
params = [
[[-1.18991246e-01, -8.69694713e-01, 1.43722811e-03],
[ 3.47641545e+00, -4.73632073e-02, 1.97135609e+00],
[ 1.95775707e+00, -1.12139160e-02, -6.21796144e-03]],
[[ 2.02460380e-02, -2.25797547e+00, 5.14234265e-03],
[-1.71552299e-02, 2.46283604e-03, -1.03805722e-02],
[-2.37244982e-03, -3.35799404e-03, 6.10191152e-03]]
]
params_iris = [
[[-3.42142600e-02, -5.45047534e-03, 8.11905347e-01],
[-1.52484152e+00, 1.49884676e+00, -1.25408626e-02],
[-1.89515860e-03, 1.35760410e-02, 8.22999582e-03],
[ 1.39102114e+00, 4.19729865e-01, 1.60000380e-04]],
[[ 7.88431068e-01, -8.86177264e-01, 1.33830291e-02],
[-3.71228143e-03, -1.12994101e-02, -1.27897783e-02],
[ 9.45954683e-03, -3.34659883e-03, 1.17217829e-02],
[ 1.98256181e-02, -1.07358054e-02, 7.53621360e-03]]
]
def createInputCircuit(data):
qubits_num = len(data)
qcircuit = QuantumCircuit(qubits_num, qubits_num)
qubits = qcircuit.qubits
for i, d in enumerate(data):
qcircuit.rx(d * np.pi, qubits[i])
return qcircuit
# Test 1: create input circuit
test1_circuit = createInputCircuit(X_train2[0])
test1_circuit.draw(output='mpl')
def createModelCircuit(params):
qubits_num = len(params[0])
qcircuit = QuantumCircuit(qubits_num, qubits_num)
qubits = qcircuit.qubits
for i in range(qubits_num):
qcircuit.u3(*params[0][i], qubits[i])
for i in range(qubits_num - 1):
qcircuit.cz(qubits[i], qubits[i + 1])
qcircuit.cz(qubits[0], qubits[qubits_num - 1])
for i in range(qubits_num):
qcircuit.u3(*params[1][i], qubits[i])
return qcircuit
# Test 2: create model circuit
test2_circuit = createModelCircuit(params)
test2_circuit.draw(output='mpl')
def createCircuit(params, data):
input_circuit = createInputCircuit(data)
model_circuit = createModelCircuit(params)
full_circuit = input_circuit.compose(model_circuit)
return full_circuit
# Test 3-1: create full quantum circuit - circle
test3_circuit = createCircuit(params, X_train2[0])
test3_circuit.draw(output='mpl')
# Test 3-2: create full quantum circuit - iris
test3_circuit = createCircuit(params_iris, X_train_iris[1])
test3_circuit.draw(output='mpl')
def predict(model, data):
qubits_num = len(data)
input_circuit = createInputCircuit(data)
qcircuit = input_circuit.compose(model)
# the measurement
qcircuit.measure(list(range(qubits_num)), list(range(qubits_num)))
# job execution
shots = 1000
job_sim = execute(qcircuit, qasm_backend, shots=shots)
result_sim = job_sim.result()
counts = result_sim.get_counts(qcircuit)
p1 = 0
for i in range(2 ** (qubits_num - 1)):
comb = str(bin(i + 2 ** (qubits_num - 1))[2:])
p1 += counts.get(comb, 0)
p1 /= shots
if p1 > 0.5:
return 1
else:
return 0
def accuracy(model, datas, labels):
predictions = [ predict(model, data) for data in datas ]
acc = 0
for i, p in enumerate(predictions):
if p == labels[i]:
acc += 1
return acc / len(predictions)
def evaluate(model, X_test, Y_test):
acc = accuracy(model, X_test, Y_test)
print("FINAL ACCURACY: {:0.2f}%".format(acc * 100))
# Test 4: evaluate noiseless model
test4_circuit = createModelCircuit(params_iris)
evaluate(test4_circuit, X_train_iris, Y_train_iris)
evaluate(test4_circuit, X_test_iris, Y_test_iris)
from qiskit.providers.aer.noise import NoiseModel
from qiskit.providers.aer.utils import insert_noise
from qiskit.providers.aer.noise import pauli_error, depolarizing_error
def createNoiseModel(p, errorType):
# QuantumError objects
if errorType == 'bit_flip':
error = pauli_error([('X', p), ('I', 1 - p)])
elif errorType == 'phase_flip':
error = pauli_error([('Z', p), ('I', 1 - p)])
elif errorType == 'depolarizing':
error = depolarizing_error(p, num_qubits=1)
## two-qubits quantumError objects
if errorType == 'depolarizing':
error_2qubits = depolarizing_error(p, num_qubits=2)
else:
error_2qubits = error.tensor(error)
# Add errors to noise model
noise_model = NoiseModel()
noise_model.add_all_qubit_quantum_error(error, ['u3'])
noise_model.add_all_qubit_quantum_error(error_2qubits, ['cz'])
return noise_model
def createNoisyModelCircuit(params, p, errorType):
noise_model = createNoiseModel(p, errorType)
model_circuit = createModelCircuit(params)
return insert_noise(model_circuit, noise_model)
# Test 5-1: create noisy model circuit - circle
test5_p = 0.001
test5_circuit = createNoisyModelCircuit(params, test5_p, 'phase_flip')
test5_circuit.draw(output='mpl')
# Test 5-2: create noisy model circuit - iris
test5_p = 0.001
test5_circuit = createNoisyModelCircuit(params_iris, test5_p, 'bit_flip')
test5_circuit.draw(output='mpl')
# Test 6-1: evaluate noisy model - circle
test6_p = 0.001
models_type = [
'noiseless', 'bit_flip', 'phase_flip', 'depolarizing'
]
test6_circuits = [
createModelCircuit(params),
createNoisyModelCircuit(params, test6_p, 'bit_flip'),
createNoisyModelCircuit(params, test6_p, 'phase_flip'),
createNoisyModelCircuit(params, test6_p, 'depolarizing')
]
for i, model_type in enumerate(models_type):
print(f'Evaluate <{model_type}>: ')
evaluate(test6_circuits[i], X_test2, Y_test)
print()
# Test 6-2: evaluate noisy model - iris
test6_p = 0.5
models_type = [
'noiseless', 'bit_flip', 'phase_flip', 'depolarizing'
]
test6_circuits = [
createModelCircuit(params_iris),
createNoisyModelCircuit(params_iris, test6_p, 'bit_flip'),
createNoisyModelCircuit(params_iris, test6_p, 'phase_flip'),
createNoisyModelCircuit(params_iris, test6_p, 'depolarizing')
]
for i, model_type in enumerate(models_type):
print(f'Evaluate <{model_type}>: ')
evaluate(test6_circuits[i], X_test_iris, Y_test_iris)
print()
from functools import reduce
Dag = lambda matrix: matrix.conj().T
Kron = lambda *matrices: reduce(np.kron, matrices)
from qiskit.quantum_info import DensityMatrix, Statevector
def getDensityMatrix(circuit):
return DensityMatrix(circuit).data
def getStatevector(circuit):
return Statevector(circuit).data
psi_0 = np.array([1.0, 0.0])
psi_1 = np.array([0.0, 1.0])
I = np.eye(2)
M_0 = psi_0.reshape([2, 1]) @ psi_0.reshape([1, 2]).conj()
M_1 = psi_1.reshape([2, 1]) @ psi_1.reshape([1, 2]).conj()
def getMeasurements(qubits_num):
measurement_0 = [M_0]
measurement_1 = [M_1]
for i in range(qubits_num - 1):
measurement_0.append(I)
measurement_1.append(I)
return [
Kron(*measurement_0),
Kron(*measurement_1)
]
# Test 7: test measure
test7_M_0, test7_M_1 = getMeasurements(qubits_num=3)
# 2: |0> - X -
test7_1_circuit = QuantumCircuit(3, 3)
test7_1_circuit.x(test7_1_circuit.qubits[2])
test7_1_circuit.draw(output='mpl')
test7_1_density_matrix = getDensityMatrix(test7_1_circuit)
test7_1_p1 = np.trace( test7_M_1 @ test7_1_density_matrix @ Dag(test7_M_1) )
print(test7_1_p1) # should be 1
# 2: |0> - H -
test7_2_circuit = QuantumCircuit(3, 3)
test7_2_circuit.h(test7_2_circuit.qubits[2])
test7_2_circuit.draw(output='mpl')
test7_2_density_matrix = getDensityMatrix(test7_2_circuit)
test7_2_p1 = np.trace( test7_M_1 @ test7_2_density_matrix @ Dag(test7_M_1) )
print(test7_2_p1) # should be 0.5
test7_M_0, test7_M_1 = getMeasurements(qubits_num=4)
# 3: |0> - H -
test7_3_circuit = QuantumCircuit(4, 4)
test7_3_circuit.h(test7_3_circuit.qubits[3])
test7_3_circuit.draw(output='mpl')
test7_3_density_matrix = getDensityMatrix(test7_3_circuit)
test7_3_p1 = np.trace( test7_M_1 @ test7_3_density_matrix @ Dag(test7_M_1) )
print(test7_3_p1) # should be 0.5
def powerSets(items):
N = len(items)
combs = []
for i in range(2 ** N):
comb = []
for j in range(N):
if (i >> j) % 2:
comb.append(items[j])
combs.append(comb)
return combs
# Test 8: calculate power sets
print(powerSets([0, 1]))
class Algorithm:
def __init__(self, model_circuit, measurements, outputs):
# DensityMatrix of model
self.E = getDensityMatrix(model_circuit)
# Measurements
self.M = dict()
for index, output in enumerate(outputs):
self.M[output] = measurements[index]
# Outputs
self.O = outputs
self.O_ = powerSets(outputs)
# Test 9: algorithm objects
test9_circuit = createModelCircuit(params_iris)
test9_A = Algorithm(test9_circuit, getMeasurements(qubits_num=4), [0, 1])
print(test9_A.E.shape)
print(test9_A.O)
print(test9_A.O_)
from scipy.linalg import sqrtm
def D(rou, sigma):
A = rou - sigma
A_ = sqrtm( np.dot( A.conj().T, A ) )
return 0.5 * np.linalg.norm( np.trace(A_) )
# Test 10: trace distance example
from math import isclose
# example from: quantumnanophotonics.org/media/Module2Lecture8.pdf
test10_rou = np.array([[2.0, 0.0], [0.0, 1.0]]) / 3
test10_sigma = np.array([[3.0, 0.0], [0.0, 1.0]]) / 4
assert isclose(D(test10_rou, test10_sigma), 1/12)
# Test 11: calculate input states' distance
test11_rou = getDensityMatrix(createInputCircuit(X_train2[0]))
test11_sigma = getDensityMatrix(createInputCircuit(X_train2[1]))
print(D(test11_rou, test11_rou)) # should be 0
print(D(test11_rou, test11_sigma))
def d(A, rou, sigma):
distance = 0
for output in A.O:
trace = np.trace(
Dag(A.M[output]) @ A.M[output] @
(A.E @ (rou - sigma) @ Dag(A.E))
)
distance += np.linalg.norm(trace)
return distance / 2
# Test 12: calculate total variation distance
test12_circuit = createModelCircuit(params)
test12_A = Algorithm(test12_circuit, getMeasurements(qubits_num=3), [0, 1])
test12_rou = getDensityMatrix(createInputCircuit(X_train2[0]))
test12_sigma = getDensityMatrix(createInputCircuit(X_train2[1]))
print(d(test12_A, test12_rou, test12_rou))
print(d(test12_A, test12_rou, test12_sigma))
def Lipschitz(A):
E, M, O, O_ = A.E, A.M, A.O, A.O_
# Step 1: Calculate W_i
W = dict()
for i in O:
W[i] = Dag(E) @ Dag(M[i]) @ M[i] @ E
# Step 2: Calculate K_star
K_star = 0; vectors = [None, None]
M_star = np.zeros(E.shape)
for S in O_:
if len(S) == 0:
continue
# calculate M_S = Σ Wi
M_S = np.zeros(E.shape).astype('complex64')
for i in S:
M_S += W[i]
# calculate eigenvalues and eigenvectors of M_S
eigenvalues, eigenvectors = np.linalg.eigh(M_S)
min_index = np.where(eigenvalues == eigenvalues.min())
max_index = np.where(eigenvalues == eigenvalues.max())
# calculate K_S
K_S = np.linalg.norm(eigenvalues[max_index][0] - eigenvalues[min_index][0])
if K_S > K_star:
K_star = K_S
vectors[0] = eigenvectors.T[max_index][0]
vectors[1] = eigenvectors.T[min_index][0]
return K_star, np.array(vectors)
# Test 13: calculate lipschitz constant
print('Classifier for centric circle: ')
test13_1_circuit = createModelCircuit(params)
test13_1_A = Algorithm(test13_1_circuit, getMeasurements(qubits_num=3), [0, 1])
print(Lipschitz(test13_1_A))
print('\nClassifier for Iris: ')
test13_2_circuit = createModelCircuit(params_iris)
test13_2_A = Algorithm(test13_2_circuit, getMeasurements(qubits_num=4), [0, 1])
print(Lipschitz(test13_2_A))
# Test 14-1: calculate lipschitz constant in noisy model
test14_p = [0.0001, 0.001, 0.05, 0.1]
models_type = [
'noiseless', 'bit_flip', 'phase_flip', 'depolarizing'
]
print('Classifier for centric circle: ')
for p in test14_p:
test14_1_circuits = [
createModelCircuit(params),
createNoisyModelCircuit(params, p, 'bit_flip'),
createNoisyModelCircuit(params, p, 'phase_flip'),
createNoisyModelCircuit(params, p, 'depolarizing')
]
print(f'p: {p}')
for i, model_type in enumerate(models_type):
test14_1_noisy_A = Algorithm(test14_1_circuits[i], getMeasurements(qubits_num=3), [0, 1])
print(f'{model_type} model: {Lipschitz(test14_1_noisy_A)[0]}')
print()
# Test 14-2: calculate lipschitz constant in noisy model
test14_p = [0.0001, 0.001, 0.05, 0.1]
models_type = [
'noiseless', 'bit_flip', 'phase_flip', 'depolarizing'
]
print('Classifier for Iris: ')
for p in test14_p:
test14_2_circuits = [
createModelCircuit(params_iris),
createNoisyModelCircuit(params_iris, p, 'bit_flip'),
createNoisyModelCircuit(params_iris, p, 'phase_flip'),
createNoisyModelCircuit(params_iris, p, 'depolarizing')
]
print(f'p: {p}')
for i, model_type in enumerate(models_type):
test14_2_noisy_A = Algorithm(test14_2_circuits[i], getMeasurements(qubits_num=4), [0, 1])
print(f'{model_type} model: {Lipschitz(test14_2_noisy_A)[0]}')
print()
def FairVeriQ(A, epsilon, delta):
# epsilon <= 1 and delta > 0
K_star, kernel = Lipschitz(A)
if delta >= K_star * epsilon:
return True, None
else:
return False, kernel
# Test 15-1: find proper epsilon - circle
import random
# D(rou, sigma) <= epsilon
indices = []
while len(indices) < 50:
a = random.randint(0, len(X_train2) - 1)
b = random.randint(0, len(X_train2) - 1)
if a != b:
indices.append([a, b])
distances = []
for pair in indices:
rou = getDensityMatrix(createInputCircuit(X_train2[pair[0]]))
sigma = getDensityMatrix(createInputCircuit(X_train2[pair[1]]))
distances.append(D(rou, sigma))
print('find proper epsilon - centric circle')
print(f'Mean distance: {sum(distances) / len(distances)}')
print(f'Max distance: {max(distances)}')
print(f'Min distance: {min(distances)}')
# Test 15-2: find proper epsilon - iris
# D(rou, sigma) <= epsilon
indices = []
while len(indices) < 50:
a = random.randint(0, len(X_train_iris) - 1)
b = random.randint(0, len(X_train_iris) - 1)
if a != b:
indices.append([a, b])
distances = []
for pair in indices:
rou = getDensityMatrix(createInputCircuit(X_train_iris[pair[0]]))
sigma = getDensityMatrix(createInputCircuit(X_train_iris[pair[1]]))
distances.append(D(rou, sigma))
print('find proper epsilon - centric iris')
print(f'Mean distance: {sum(distances) / len(distances)}')
print(f'Max distance: {max(distances)}')
print(f'Min distance: {min(distances)}')
# Test 16-1: find proper delta - circle
test16_1_circuit = createModelCircuit(params)
test16_1_A = Algorithm(test16_1_circuit, getMeasurements(qubits_num=3), [0, 1])
# d(A(rou), A(sigma)) <= delta
indices = []
while len(indices) < 50:
a = random.randint(0, len(X_train2) - 1)
b = random.randint(0, len(X_train2) - 1)
if a != b:
indices.append([a, b])
distances = []
for pair in indices:
rou = getDensityMatrix(createInputCircuit(X_train2[pair[0]]))
sigma = getDensityMatrix(createInputCircuit(X_train2[pair[1]]))
distances.append(d(test16_1_A, rou, sigma))
print('find proper delta - circle')
print(f'Mean distance: {sum(distances) / len(distances)}')
print(f'Max distance: {max(distances)}')
print(f'Min distance: {min(distances)}')
# Test 16-2: find proper delta - iris
test16_2_circuit = createModelCircuit(params_iris)
test16_2_A = Algorithm(test16_2_circuit, getMeasurements(qubits_num=4), [0, 1])
# d(A(rou), A(sigma)) <= delta
indices = []
while len(indices) < 50:
a = random.randint(0, len(X_train_iris) - 1)
b = random.randint(0, len(X_train_iris) - 1)
if a != b:
indices.append([a, b])
distances = []
for pair in indices:
rou = getDensityMatrix(createInputCircuit(X_train_iris[pair[0]]))
sigma = getDensityMatrix(createInputCircuit(X_train_iris[pair[1]]))
distances.append(d(test16_2_A, rou, sigma))
print('find proper delta - iris')
print(f'Mean distance: {sum(distances) / len(distances)}')
print(f'Max distance: {max(distances)}')
print(f'Min distance: {min(distances)}')
# Test 17-1: fairness verifying - circle
test17_1_circuit = createNoisyModelCircuit(params, p=0.001, errorType='bit_flip')
test17_1_A = Algorithm(test17_1_circuit, getMeasurements(qubits_num=3), [0, 1])
print(f'Lipschitz constant: {Lipschitz(test17_1_A)[0]}\n')
test17_1_fairness_params = [
# epsilon, delta
[1, 1], [0.9, 0.89], [0.6, 0.58], [0.6, 0.59]
]
for epsilon, delta in test17_1_fairness_params:
flag, kernel = FairVeriQ(test17_1_A, epsilon, delta)
print(f'A is ({epsilon},{delta})-fair: <{flag}>')
if not flag:
print(f' - bias kernel pair is: {kernel}')
print()
# Test 17-2: fairness verifying - iris
test17_2_circuit = createNoisyModelCircuit(params_iris, p=0.001, errorType='phase_flip')
test17_2_A = Algorithm(test17_2_circuit, getMeasurements(qubits_num=4), [0, 1])
print(f'Lipschitz constant: {Lipschitz(test17_2_A)[0]}\n')
test17_2_fairness_params = [
# epsilon, delta
[1, 0.99], [0.8, 0.79], [0.5, 0.3]
]
for epsilon, delta in test17_2_fairness_params:
flag, kernel = FairVeriQ(test17_2_A, epsilon, delta)
print(f'A is ({epsilon},{delta})-fair: <{flag}>')
if not flag:
print(f' - bias kernel pair is: {kernel}')
print()
def generateBiasPair(sigma, kernel, epsilon):
psi, phi = kernel
size = len(psi)
psi = psi.reshape(size, 1) @ Dag(psi.reshape(size, 1))
phi = phi.reshape(size, 1) @ Dag(phi.reshape(size, 1))
rou_psi = epsilon * psi + (1 - epsilon) * sigma
rou_phi = epsilon * phi + (1 - epsilon) * sigma
return np.array([
rou_psi, rou_phi
])
# Test 18: generate bias pair
test18_circuit = createNoisyModelCircuit(params_iris, p=0.01, errorType='depolarizing')
test18_A = Algorithm(test18_circuit, getMeasurements(qubits_num=4), [0, 1])
print(f'Lipschitz constant: {Lipschitz(test17_2_A)[0]}\n')
flag, kernel = FairVeriQ(test18_A, epsilon=0.9, delta=0.3)
print(f'fairness: {flag}')
assert (not flag)
test18_sigma = getDensityMatrix(createInputCircuit(X_train_iris[11]))
test18_bias_pair = generateBiasPair(test18_sigma, kernel, epsilon=0.9)
test18_rou_psi, test18_rou_phi = test18_bias_pair
# print(test18_bias_pair)
print(f'epsilon=0.9, delta=0.3')
print('D: ', D(test18_rou_psi, test18_rou_phi))
print('d: ', d(test18_A, test18_rou_psi, test18_rou_phi))
|
https://github.com/qiskit-community/qiskit-qcgpu-provider
|
qiskit-community
|
import matplotlib.pyplot as ply
%matplotlib inline
import networkx as nx
import numpy as np
from qiskit_aqua.translators.ising import maxcut
from qiskit_aqua.input import EnergyInput
from qiskit_aqua import run_algorithm
from qiskit_qcgpu_provider import QCGPUProvider
nodes = 5
edges = [
# Tuple (i, j, weight),
# where (i, j) is an edge.
(0, 1, 1.0),
(0, 2, 1.0),
(1, 2, 1.0),
(1, 4, 1.0),
(3, 4, 1.0),
(2, 3, 1.0)
]
G = nx.Graph()
G.add_nodes_from(np.arange(0, nodes, 1))
G.add_weighted_edges_from(edges)
nx.draw(G, with_labels=True)
# Computing the weight matrix
weights = np.zeros([nodes, nodes])
for i in range(nodes):
for j in range(nodes):
edge_data = G.get_edge_data(i, j, default = None)
# check if there is no edge
if edge_data != None:
weights[i, j] = edge_data['weight']
weights
# Calculate the max cut
best = 0
for b in range(2**nodes):
x = [int(t) for t in reversed(list(bin(b)[2:].zfill(nodes)))]
cost = 0
for i in range(nodes):
for j in range(nodes):
cost = cost + weights[i,j]*x[i]*(1-x[j])
if best < cost:
best = cost
xbest_brute = x
# print('case = ' + str(x)+ ' cost = ' + str(cost))
print('Optimal Solution: case = ' + str(xbest_brute) + ', cost = ' + str(best))
# Plot the optimal solution
colors = ['r' if xbest_brute[i] == 0 else 'b' for i in range(nodes)]
nx.draw(G, node_color=colors, with_labels=True)
operator, offset = maxcut.get_maxcut_qubitops(weights)
algorithm_input = EnergyInput(operator)
algorithm_parameters = {
'problem': { 'name': 'ising', 'random_seed': 3242 },
'algorithm': { 'name': 'VQE', 'operator_mode': 'matrix' },
'optimizer': { 'name': 'SPSA', 'max_trials': 300 },
'variational_form': {'name': 'RY', 'depth': 5, 'entanglement': 'linear'}
}
backend = QCGPUProvider().get_backend('statevector_simulator')
%time result_qiskit = run_algorithm(algorithm_parameters, algorithm_input, backend=backend)
%time result = run_algorithm(algorithm_parameters, algorithm_input, backend=backend)
x = maxcut.sample_most_likely(result['eigvecs'][0])
print('energy:', result['energy'])
print('maxcut objective:', result['energy'] + offset)
print('solution:', maxcut.get_graph_solution(x))
print('solution objective:', maxcut.maxcut_value(x, weights))
colors = ['r' if maxcut.get_graph_solution(x)[i] == 0 else 'b' for i in range(nodes)]
nx.draw(G, node_color=colors, with_labels=True)
import warnings
warnings.filterwarnings('ignore')
|
https://github.com/TanveshT/IBM-Quantum-Challenge
|
TanveshT
|
#initialization
%matplotlib inline
# Importing standard Qiskit libraries and configuring account
from qiskit import IBMQ
from qiskit.compiler import transpile, assemble
from qiskit.providers.ibmq import least_busy
from qiskit.tools.jupyter import *
from qiskit.tools.monitor import job_monitor
from qiskit.visualization import *
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
provider = IBMQ.load_account() # load your IBM Quantum Experience account
# If you are a member of the IBM Q Network, fill your hub, group, and project information to
# get access to your premium devices.
# provider = IBMQ.get_provider(hub='', group='', project='')
from may4_challenge.ex2 import get_counts, show_final_answer
num_qubits = 5
meas_calibs, state_labels = complete_meas_cal(range(num_qubits), circlabel='mcal')
# find the least busy device that has at least 5 qubits
backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= num_qubits and
not x.configuration().simulator and x.status().operational==True))
backend
# run experiments on a real device
shots = 8192
experiments = transpile(meas_calibs, backend=backend, optimization_level=3)
job = backend.run(assemble(experiments, shots=shots))
print(job.job_id())
%qiskit_job_watcher
# get measurement filter
cal_results = job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
meas_filter = meas_fitter.filter
#print(meas_fitter.cal_matrix)
meas_fitter.plot_calibration()
# get noisy counts
noisy_counts = get_counts(backend)
plot_histogram(noisy_counts[0])
# apply measurement error mitigation and plot the mitigated counts
mitigated_counts_0 = meas_filter.apply(noisy_counts[0])
plot_histogram([mitigated_counts_0, noisy_counts[0]])
# uncomment whatever answer you think is correct
# answer1 = 'a'
# answer1 = 'b'
answer1 = 'c'
# answer1 = 'd'
# plot noisy counts
plot_histogram(noisy_counts[1])
# apply measurement error mitigation
# insert your code here to do measurement error mitigation on noisy_counts[1]
mitigated_counts_1 = meas_filter.apply(noisy_counts[1])
plot_histogram([mitigated_counts_1, noisy_counts[1]])
# uncomment whatever answer you think is correct
# answer2 = 'a'
#answer2 = 'b'
#answer2 = 'c'
answer2 = 'd'
# plot noisy counts
plot_histogram(noisy_counts[2])
# apply measurement error mitigation
# insert your code here to do measurement error mitigation on noisy_counts[2]
mitigated_counts_2 = meas_filter.apply(noisy_counts[2])
plot_histogram([mitigated_counts_2, noisy_counts[2]])
# uncomment whatever answer you think is correct
# answer3 = 'a'
answer3 = 'b'
#answer3 = 'c'
# answer3 = 'd'
# plot noisy counts
plot_histogram(noisy_counts[3])
# apply measurement error mitigation
# insert your code here to do measurement error mitigation on noisy_counts[3]
mitigated_counts_3 = meas_filter.apply(noisy_counts[3])
plot_histogram([mitigated_counts_3, noisy_counts[3]])
# uncomment whatever answer you think is correct
#answer4 = 'a'
answer4 = 'b'
#answer4 = 'c'
#answer4 = 'd'
# answer string
show_final_answer(answer1, answer2, answer3, answer4)
|
https://github.com/rohitgit1/Quantum-Computing-Summer-School
|
rohitgit1
|
!pip install -U -r grading_tools/requirements.txt
from IPython.display import clear_output
clear_output()
import numpy as np; pi = np.pi
from qiskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram
from copy import deepcopy as make_copy
def prepare_hets_circuit(depth, angle1, angle2):
hets_circ = QuantumCircuit(depth)
hets_circ.ry(angle1, 0)
hets_circ.rz(angle1, 0)
hets_circ.ry(angle1, 1)
hets_circ.rz(angle1, 1)
for ii in range(depth):
hets_circ.cx(0,1)
hets_circ.ry(angle2,0)
hets_circ.rz(angle2,0)
hets_circ.ry(angle2,1)
hets_circ.rz(angle2,1)
return hets_circ
hets_circuit = prepare_hets_circuit(2, pi/2, pi/2)
hets_circuit.draw()
def measure_zz_circuit(given_circuit):
zz_meas = make_copy(given_circuit)
zz_meas.measure_all()
return zz_meas
zz_meas = measure_zz_circuit(hets_circuit)
zz_meas.draw()
simulator = Aer.get_backend('qasm_simulator')
result = execute(zz_meas, backend = simulator, shots=10000).result()
counts = result.get_counts(zz_meas)
plot_histogram(counts)
def measure_zz(given_circuit, num_shots = 10000):
zz_meas = measure_zz_circuit(given_circuit)
result = execute(zz_meas, backend = simulator, shots = num_shots).result()
counts = result.get_counts(zz_meas)
if '00' not in counts:
counts['00'] = 0
if '01' not in counts:
counts['01'] = 0
if '10' not in counts:
counts['10'] = 0
if '11' not in counts:
counts['11'] = 0
total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10']
zz = counts['00'] + counts['11'] - counts['01'] - counts['10']
zz = zz / total_counts
return zz
zz = measure_zz(hets_circuit)
print("<ZZ> =", str(zz))
def measure_zi(given_circuit, num_shots = 10000):
zz_meas = measure_zz_circuit(given_circuit)
result = execute(zz_meas, backend = simulator, shots = num_shots).result()
counts = result.get_counts(zz_meas)
if '00' not in counts:
counts['00'] = 0
if '01' not in counts:
counts['01'] = 0
if '10' not in counts:
counts['10'] = 0
if '11' not in counts:
counts['11'] = 0
total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10']
zi = counts['00'] - counts['11'] + counts['01'] - counts['10']
zi = zi / total_counts
return zi
def measure_iz(given_circuit, num_shots = 10000):
zz_meas = measure_zz_circuit(given_circuit)
result = execute(zz_meas, backend = simulator, shots = num_shots).result()
counts = result.get_counts(zz_meas)
if '00' not in counts:
counts['00'] = 0
if '01' not in counts:
counts['01'] = 0
if '10' not in counts:
counts['10'] = 0
if '11' not in counts:
counts['11'] = 0
total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10']
iz = counts['00'] - counts['11'] - counts['01'] + counts['10']
iz = iz / total_counts
return iz
zi = measure_zi(hets_circuit)
print("<ZI> =", str(zi))
iz = measure_iz(hets_circuit)
print("<IZ> =", str(iz))
def measure_xx_circuit(given_circuit):
xx_meas = make_copy(given_circuit)
### WRITE YOUR CODE BETWEEN THESE LINES - START
xx_meas.h(0)
xx_meas.h(1)
xx_meas.measure_all()
### WRITE YOUR CODE BETWEEN THESE LINES - END
return xx_meas
xx_meas = measure_xx_circuit(hets_circuit)
xx_meas.draw()
def measure_xx(given_circuit, num_shots = 10000):
xx_meas = measure_xx_circuit(given_circuit)
result = execute(xx_meas, backend = simulator, shots = num_shots).result()
counts = result.get_counts(xx_meas)
if '00' not in counts:
counts['00'] = 0
if '01' not in counts:
counts['01'] = 0
if '10' not in counts:
counts['10'] = 0
if '11' not in counts:
counts['11'] = 0
total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10']
xx = counts['00'] + counts['11'] - counts['01'] - counts['10']
xx = xx / total_counts
return xx
xx = measure_xx(hets_circuit)
print("<XX> =", str(xx))
def get_energy(given_circuit, num_shots = 10000):
zz = measure_zz(given_circuit, num_shots = num_shots)
iz = measure_iz(given_circuit, num_shots = num_shots)
zi = measure_zi(given_circuit, num_shots = num_shots)
xx = measure_xx(given_circuit, num_shots = num_shots)
energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx
return energy
energy = get_energy(hets_circuit)
print("The energy of the trial state is", str(energy))
hets_circuit_plus = None
hets_circuit_minus = None
### WRITE YOUR CODE BETWEEN THESE LINES - START
hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2)
hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2)
### WRITE YOUR CODE BETWEEN THESE LINES - END
energy_plus = get_energy(hets_circuit_plus, num_shots=100000)
energy_minus = get_energy(hets_circuit_minus, num_shots=100000)
print(energy_plus, energy_minus)
name = 'Pon Rahul M'
email = 'ponrahul.21it@licet.ac.in'
### Do not change the lines below
from grading_tools import grade
grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1')
grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2')
grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3')
energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0
energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0
### WRITE YOUR CODE BETWEEN THESE LINES - START
energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100)
energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100)
energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000)
energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000)
energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000)
energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000)
### WRITE YOUR CODE BETWEEN THESE LINES - END
print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100)
print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000)
print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000)
### WRITE YOUR CODE BETWEEN THESE LINES - START
I = np.array([
[1, 0],
[0, 1]
])
X = np.array([
[0, 1],
[1, 0]
])
Z = np.array([
[1, 0],
[0, -1]
])
h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \
(0.39793742) * np.kron(I, Z) + \
(-0.3979374) * np.kron(Z, I) + \
(-0.0112801) * np.kron(Z, Z) + \
(0.18093119) * np.kron(X, X)
from numpy import linalg as LA
eigenvalues, eigenvectors = LA.eig(h2_hamiltonian)
for ii, eigenvalue in enumerate(eigenvalues):
print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}")
exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)]
exact_eigenvalue = np.min(eigenvalues)
print()
print("Minimum energy is", exact_eigenvalue)
### WRITE YOUR CODE BETWEEN THESE LINES - END
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_optimization import QuadraticProgram
problem = QuadraticProgram("sample")
problem.binary_var("x")
problem.binary_var("y")
problem.maximize(linear={"x": 1, "y": -2})
print(problem.prettyprint())
from qiskit.algorithms import NumPyMinimumEigensolver
from qiskit_optimization.algorithms import MinimumEigenOptimizer
mes = NumPyMinimumEigensolver()
meo = MinimumEigenOptimizer(min_eigen_solver=mes)
result = meo.solve(problem)
print(result)
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver
from qiskit_optimization.algorithms import MinimumEigenOptimizer
mes = NumPyMinimumEigensolver()
meo = MinimumEigenOptimizer(min_eigen_solver=mes)
result = meo.solve(problem)
print(result)
from qiskit import BasicAer
from qiskit.algorithms import QAOA
from qiskit.algorithms.optimizers import COBYLA
from qiskit.utils import QuantumInstance
from qiskit_optimization.algorithms import MinimumEigenOptimizer
backend = BasicAer.get_backend("qasm_simulator")
shots = 1000
qins = QuantumInstance(backend=backend, shots=shots)
mes = QAOA(optimizer=COBYLA(), quantum_instance=qins)
meo = MinimumEigenOptimizer(min_eigen_solver=mes)
result = meo.solve(problem)
print(result)
from qiskit.algorithms.minimum_eigensolvers import QAOA
from qiskit.algorithms.optimizers import COBYLA
from qiskit.primitives import Sampler
from qiskit_optimization.algorithms import MinimumEigenOptimizer
shots = 1000
mes = QAOA(sampler=Sampler(), optimizer=COBYLA())
meo = MinimumEigenOptimizer(min_eigen_solver=mes)
result = meo.solve(problem)
print(result)
from qiskit import BasicAer
from qiskit.algorithms import VQE
from qiskit.algorithms.optimizers import COBYLA
from qiskit.circuit.library import RealAmplitudes
from qiskit.utils import QuantumInstance
from qiskit_optimization.algorithms import MinimumEigenOptimizer
backend = BasicAer.get_backend("qasm_simulator")
shots = 1000
qins = QuantumInstance(backend=backend, shots=shots)
mes = VQE(ansatz=RealAmplitudes(), optimizer=COBYLA(), quantum_instance=qins)
meo = MinimumEigenOptimizer(min_eigen_solver=mes)
result = meo.solve(problem)
print(result)
from qiskit.algorithms.minimum_eigensolvers import SamplingVQE
from qiskit.algorithms.optimizers import COBYLA
from qiskit.circuit.library import RealAmplitudes
from qiskit.primitives import Sampler
from qiskit_optimization.algorithms import MinimumEigenOptimizer
mes = SamplingVQE(sampler=Sampler(), ansatz=RealAmplitudes(), optimizer=COBYLA())
meo = MinimumEigenOptimizer(min_eigen_solver=mes)
result = meo.solve(problem)
print(result)
from qiskit.algorithms.minimum_eigensolvers import VQE
from qiskit.algorithms.optimizers import COBYLA
from qiskit.circuit.library import RealAmplitudes
from qiskit.primitives import Estimator
from qiskit_optimization.algorithms import MinimumEigenOptimizer
mes = VQE(estimator=Estimator(), ansatz=RealAmplitudes(), optimizer=COBYLA())
try:
meo = MinimumEigenOptimizer(min_eigen_solver=mes)
except TypeError as ex:
print(ex)
from qiskit import BasicAer
from qiskit.algorithms import QAOA
from qiskit.algorithms.optimizers import COBYLA
from qiskit.utils import QuantumInstance
from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer
backend = BasicAer.get_backend("qasm_simulator")
shots = 1000
qins = QuantumInstance(backend=backend, shots=shots)
qaoa = QAOA(optimizer=COBYLA(), quantum_instance=qins)
optimizer = WarmStartQAOAOptimizer(
pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25
)
result = optimizer.solve(problem)
print(result)
from qiskit.algorithms.minimum_eigensolvers import QAOA
from qiskit.algorithms.optimizers import COBYLA
from qiskit.primitives import Sampler
from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer
qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA())
optimizer = WarmStartQAOAOptimizer(
pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25
)
result = optimizer.solve(problem)
print(result)
from qiskit import BasicAer
from qiskit.algorithms.optimizers import COBYLA
from qiskit.utils import QuantumInstance
from qiskit_optimization.algorithms import GroverOptimizer
backend = BasicAer.get_backend("qasm_simulator")
shots = 1000
qins = QuantumInstance(backend=backend, shots=shots)
optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, quantum_instance=qins)
result = optimizer.solve(problem)
print(result)
from qiskit.algorithms.optimizers import COBYLA
from qiskit.primitives import Sampler
from qiskit_optimization.algorithms import GroverOptimizer
optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, sampler=Sampler())
result = optimizer.solve(problem)
print(result)
from qiskit import BasicAer
from qiskit.algorithms.optimizers import COBYLA
from qiskit.utils import QuantumInstance
from qiskit.primitives import Sampler
from qiskit_optimization.algorithms import GroverOptimizer
backend = BasicAer.get_backend("qasm_simulator")
shots = 1000
qins = QuantumInstance(backend=backend, shots=shots)
try:
optimizer = GroverOptimizer(
num_value_qubits=3, num_iterations=3, quantum_instance=qins, sampler=Sampler()
)
# raises an error because both quantum_instance and sampler are set.
except ValueError as ex:
print(ex)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/bayesian-randomized-benchmarking/qiskit-advocates-bayes-RB
|
bayesian-randomized-benchmarking
|
import numpy as np
import time
from qiskit_experiments.library import StandardRB, InterleavedRB
from qiskit_experiments.framework import ParallelExperiment
from qiskit_experiments.library.randomized_benchmarking import RBUtils
import qiskit.circuit.library as circuits
# for retrieving gate calibration
from datetime import datetime
import qiskit.providers.aer.noise.device as dv
# import the bayesian packages
import pymc3 as pm
import arviz as az
simulation = True # make your choice here
if simulation:
from qiskit.providers.aer import AerSimulator
from qiskit.test.mock import FakeParis
backend = AerSimulator.from_backend(FakeParis())
else:
from qiskit import IBMQ
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q')
backend = provider.get_backend('ibmq_bogota') # type here hardware backend
# describe RB experiment
interleaved_gate = "cx"
qubits = [1,4]
interleaved_circuit = circuits.CXGate()
lengths = np.arange(1, 200, 15)
num_samples = 10
seed = 1010
# get the backend's calibration value
t = None # enter t in datetime format if necessary
# use properties(datetime=t) if t is defined
e_list = dv.gate_error_values(backend.properties())
epc_calib = np.nan
for tuple_e in e_list:
if tuple_e[0] == 'cx' and tuple_e[1] == qubits:
epc_calib = tuple_e[2]
print('EPC calibration: {0:1.4e}'.format(epc_calib))
#prepare circuits
int_exp2 = InterleavedRB(interleaved_circuit, qubits,
lengths, num_samples=num_samples, seed=seed)
#run
print("start experiments",time.strftime('%d/%m/%Y %H:%M:%S'))
int_expdata2 = int_exp2.run(backend).block_for_results()
print(" end experiments",time.strftime('%d/%m/%Y %H:%M:%S'))
#analyse
print(" start analysis",time.strftime('%d/%m/%Y %H:%M:%S'))
int_results2 = int_expdata2.analysis_results()
print(" end analysis",time.strftime('%d/%m/%Y %H:%M:%S'))
# look at result data
for result in int_results2:
print(result)
def get_GSP_counts(data, x_length, data_range):
#obtain the observed counts used in the bayesian model
#corrected for accomodation pooled data from 1Q, 2Q and 3Q interleave processes
list_bitstring = ['0','00', '000', '100'] # all valid bistrings
Y_list = []
for i_samples in data_range:
row_list = []
for c_index in range(x_length) :
total_counts = 0
i_data = i_samples*x_length + c_index
for key,val in data[i_data]['counts'].items():
if key in list_bitstring:
total_counts += val
row_list.append(total_counts)
Y_list.append(row_list)
return np.array(Y_list)
# get count data and other values from int_expdata2
Y1 = get_GSP_counts(int_expdata2._data, len(lengths),
range(0,2*num_samples-1,2))
Y2 = get_GSP_counts(int_expdata2._data, len(lengths),
range(1,2*num_samples,2))
experiment_type = int_expdata2._data[0]['metadata']['experiment_type']
physical_qubits = int_expdata2._data[0]['metadata']['physical_qubits']
shots = int_expdata2._data[0]['shots']
nQ = len(qubits)
scale = (2 ** nQ - 1) / 2 ** nQ
# to compare ultimately: EPC and sigma(EPC) by LSF
epc_est_fm = int_expdata2.analysis_results()[3].value.value
epc_est_fm_err = int_expdata2.analysis_results()[3].value.stderr
# use 2m length array
Y = np.hstack((Y1,Y2))
RvsI_h = np.ravel(np.vstack((np.ones_like(lengths),np.zeros_like(lengths))))
IvsR_h = np.ravel(np.vstack((np.zeros_like(lengths),np.ones_like(lengths))))
X0 = np.tile(lengths,2)
X = np.vstack((X0,RvsI_h,IvsR_h))
y_mean = np.mean(Y, axis = 0)/shots
sigma_y = np.std(Y, axis = 0)/shots
model = "hierarchical_model"
# priors for unknown model parameters
T_priors = int_expdata2.analysis_results()[0].value.value
print(T_priors)
# building the model
h_model = pm.Model()
with h_model:
# Tying parameters
BoundedUniform = pm.Bound(pm.Uniform,
lower=np.fmax(T_priors-0.1, np.full(T_priors.shape,1.e-9)),
upper=np.fmin(T_priors+0.1, np.full(T_priors.shape,1.-1e-9)))
pi = BoundedUniform("Tying_Parameters",testval = T_priors, shape = T_priors.shape)
EPC = pm.Deterministic('EPC', scale*(1-pi[2]))
# sigma of Beta functions
sigma_t = pm.Uniform("σ_Beta", testval = 0.005,
upper = 0.05, lower = 0.0005)
# Tying function
GSP = pi[0] * ( X[1]*pi[1]**X[0] +\
X[2]*(pi[1]*pi[2])**X[0] ) + pi[3]
theta = pm.Beta('θ', mu=GSP, sigma = sigma_t,
shape = ((2*len(lengths, ))) )
# Likelihood (sampling distribution) of observations
p = pm.Binomial("Counts", p = theta, observed = Y, n = shots)
# model graph
pm.model_to_graphviz(h_model)
# sample
with h_model:
trace_h = pm.sample(draws = 4000, tune= 1000, target_accept=.99,
return_inferencedata=True)
with h_model:
az.plot_trace(trace_h);
with h_model:
az.plot_posterior(trace_h, var_names = ["Tying_Parameters","σ_Beta","EPC"], round_to = 4, figsize = [16, 8]);
# look at the posterior values of the hyperparameters:
with h_model:
# (hdi_prob=.94 is default)
azt_summary = az.summary(trace_h, round_to=12,
var_names = ["Tying_Parameters", "σ_Beta","EPC"],
kind="stats")
azt_summary
# mean and sigma of EPC
epc_est_a = azt_summary['mean']['EPC']
epc_est_a_err = azt_summary['sd']['EPC']
# plot
import matplotlib.pyplot as plt # if not yet imported
with h_model:
az.plot_posterior(trace_h, var_names = ["EPC"],
round_to = 4, figsize = [10,6],
textsize = 12)
Bayes_legend = "EPC SMC: {0:1.3e} ± {1:1.3e}"\
.format(epc_est_a, epc_est_a_err)
LSF_legend = "EPC LSF: {0:1.3e} ± {1:1.3e}".format(epc_est_fm, epc_est_fm_err)
Cal_legend = "EPC Calibration: {0:1.3e}".format(epc_calib)
plt.axvline(x=epc_est_fm,color='cyan',ls="-")
if epc_calib != np.nan:
plt.axvline(x=epc_calib,color='r',ls=":")
plt.axvline(x=epc_est_a,color='blue',ls=":")
if epc_calib > 0.0:
plt.legend((Bayes_legend, "$Highest\; density\; interval$ HDI",
LSF_legend,
Cal_legend), fontsize=12 )
else:
plt.legend((Bayes_legend, "$Highest\; density\; interval$ HDI",
LSF_legend))
plt.title(experiment_type +', ' + interleaved_gate + " qubit(s):" + str(physical_qubits)\
+', backend: '+backend.name() + "\n Bayesian "+model,
fontsize=16);
# compare LSF and SMC
print("Model: Frequentist Bayesian Calibration")
print("__________________________________________________________")
print("EPC {0:1.3e} {1:1.3e} {2:1.3e}"
.format(epc_est_fm,epc_est_a,epc_calib ))
print("± sigma ± {0:1.3e} ± {1:1.3e} "
.format(epc_est_fm_err, epc_est_a_err))
def calc_chisquare(ydata, sigma, ycalc):
r = ydata - ycalc
chisq = np.sum((r / sigma) ** 2)
return chisq
# prepare box for GSP plot
# perform reduced χ² value calculation for Bayes hierarchical
mean_h = trace_h.posterior.mean(dim=['chain', 'draw'])
theta_stacked = mean_h.θ.values
NDF_h = len(lengths)*2 - 4 - 1 # (-1 is for σ_Beta)
chisq_h = calc_chisquare(y_mean, sigma_y, theta_stacked)/NDF_h
texto_0 = " alpha = {0:7.4f} ± {1:1.4e}"\
.format(azt_summary['mean']['Tying_Parameters[1]'],
azt_summary['sd']['Tying_Parameters[1]'])
texto_1 =" alpha_c = {0:7.4f} ± {1:1.4e}"\
.format(azt_summary['mean']['Tying_Parameters[2]'],
azt_summary['sd']['Tying_Parameters[2]'])
texto_2 = " EPC = {0:7.4f} ± {1:1.4e}"\
.format(azt_summary['mean']['EPC'],
azt_summary['sd']['EPC'])
texto_3 = " Fit χ² = {0:7.4f} "\
.format(chisq_h)
texto = texto_0 + "\n" + texto_1 + "\n" + texto_2 + "\n" + texto_3
# prepare data for GSP plot
# get the calculated GSP values
with h_model:
hdi_prob = .94
# (hdi_prob=.94 is default, roughly coreresponding to 2σ)
theta_summary = az.summary(trace_h, round_to=12, hdi_prob = hdi_prob,
var_names = ["θ"], kind="stats")
y1 = theta_summary.values[:,0][0:len(lengths)]
y2 = theta_summary.values[:,0][len(lengths):len(lengths)*2]
HDI = False # make your choice here
if HDI:
# HDI values as bounds
bounds_rmk = "(shown bounds are "+ str(int(100*hdi_prob)) + "% HDI)"
y1_min = theta_summary.values[:,2][0:len(lengths)]
y2_min = theta_summary.values[:,2][len(lengths):len(lengths)*2]
y1_max = theta_summary.values[:,3][0:len(lengths)]
y2_max = theta_summary.values[:,3][len(lengths):len(lengths)*2]
else:
# two sigma bounds for plot
bounds_rmk = "(shown bounds are ± two σ)"
sy = theta_summary.values[:,1]
y1_min = y1 - sy[0:len(lengths)]*2
y1_max = y1 + sy[0:len(lengths)]*2
y2_min = y2 - sy[len(lengths):len(lengths)*2]*2
y2_max = y2 + sy[len(lengths):len(lengths)*2]*2
# GSP plot
import matplotlib.pyplot as plt # if not yet imported
font = {'family' : 'DejaVu Sans',
'weight' : 'normal',
'size' : 14}
plt.rc('font', **font)
fig, plt = plt.subplots(1, 1, figsize = [8,5])
plt.set_ylabel("P(0)")
plt.set_xlabel("Clifford Length")
plt.legend(("Standard" , "Interleaved" ),
loc = 'center right', fontsize=10)
plt.plot(lengths,y1,color="purple", marker="o", lw = 0.75)
#plt.errorbar(lengths,y1,2*sy[0:len(lengths)],
#color="purple", marker='o')
plt.fill_between(lengths, y1_min, y1_max,
alpha=.2, edgecolor='purple', facecolor= 'r')
plt.plot(lengths,y2,color="cyan", marker='^', lw = 0.75)
#plt.errorbar(lengths,y2,2*sy[len(lengths):2*len(lengths)],
#color="cyan", marker='^')
plt.fill_between(lengths, y2_min, y2_max,
alpha=.2, edgecolor='cyan', facecolor= 'cyan')
for i_seed in range(num_samples):
plt.scatter(lengths, Y1[i_seed,:]/shots,
label = "data", marker="x",color="grey")
plt.scatter(lengths, Y2[i_seed,:]/shots,
label = "data", marker="+",color="grey")
plt.legend(("Standard" , "Interleaved" ),
loc = 'center right', fontsize=10)
plt.text(lengths[-1]*0.3,0.75, texto, bbox=dict(facecolor='white'))
plt.grid()
plt.set_title(experiment_type +', ' + interleaved_gate\
+ str(physical_qubits)\
+', backend: '+backend.name()+\
"\n Bayesian "+model+" "+ bounds_rmk,
fontsize=14);
# View result data for frequentist model
display(int_expdata2.figure(0))
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import BasicAer, transpile, QuantumRegister, ClassicalRegister, QuantumCircuit
qr = QuantumRegister(1)
cr = ClassicalRegister(1)
qc = QuantumCircuit(qr, cr)
qc.h(0)
qc.measure(0, 0)
qc.draw('mpl')
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
%matplotlib inline
from qiskit_finance import QiskitFinanceError
from qiskit_finance.data_providers import *
import datetime
import matplotlib.pyplot as plt
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
data = RandomDataProvider(
tickers=["TICKER1", "TICKER2"],
start=datetime.datetime(2016, 1, 1),
end=datetime.datetime(2016, 1, 30),
seed=1,
)
data.run()
means = data.get_mean_vector()
print("Means:")
print(means)
rho = data.get_similarity_matrix()
print("A time-series similarity measure:")
print(rho)
plt.imshow(rho)
plt.show()
cov = data.get_covariance_matrix()
print("A covariance matrix:")
print(cov)
plt.imshow(cov)
plt.show()
print("The underlying evolution of stock prices:")
for (cnt, s) in enumerate(data._tickers):
plt.plot(data._data[cnt], label=s)
plt.legend()
plt.xticks(rotation=90)
plt.show()
for (cnt, s) in enumerate(data._tickers):
print(s)
print(data._data[cnt])
data = RandomDataProvider(
tickers=["CompanyA", "CompanyB", "CompanyC"],
start=datetime.datetime(2015, 1, 1),
end=datetime.datetime(2016, 1, 30),
seed=1,
)
data.run()
for (cnt, s) in enumerate(data._tickers):
plt.plot(data._data[cnt], label=s)
plt.legend()
plt.xticks(rotation=90)
plt.show()
stocks = ["GOOG", "AAPL"]
token = "REPLACE-ME"
if token != "REPLACE-ME":
try:
wiki = WikipediaDataProvider(
token=token,
tickers=stocks,
start=datetime.datetime(2016, 1, 1),
end=datetime.datetime(2016, 1, 30),
)
wiki.run()
except QiskitFinanceError as ex:
print(ex)
print("Error retrieving data.")
if token != "REPLACE-ME":
if wiki._data:
if wiki._n <= 1:
print(
"Not enough wiki data to plot covariance or time-series similarity. Please use at least two tickers."
)
else:
rho = wiki.get_similarity_matrix()
print("A time-series similarity measure:")
print(rho)
plt.imshow(rho)
plt.show()
cov = wiki.get_covariance_matrix()
print("A covariance matrix:")
print(cov)
plt.imshow(cov)
plt.show()
else:
print("No wiki data loaded.")
if token != "REPLACE-ME":
if wiki._data:
print("The underlying evolution of stock prices:")
for (cnt, s) in enumerate(stocks):
plt.plot(wiki._data[cnt], label=s)
plt.legend()
plt.xticks(rotation=90)
plt.show()
for (cnt, s) in enumerate(stocks):
print(s)
print(wiki._data[cnt])
else:
print("No wiki data loaded.")
token = "REPLACE-ME"
if token != "REPLACE-ME":
try:
nasdaq = DataOnDemandProvider(
token=token,
tickers=["GOOG", "AAPL"],
start=datetime.datetime(2016, 1, 1),
end=datetime.datetime(2016, 1, 2),
)
nasdaq.run()
for (cnt, s) in enumerate(nasdaq._tickers):
plt.plot(nasdaq._data[cnt], label=s)
plt.legend()
plt.xticks(rotation=90)
plt.show()
except QiskitFinanceError as ex:
print(ex)
print("Error retrieving data.")
token = "REPLACE-ME"
if token != "REPLACE-ME":
try:
lse = ExchangeDataProvider(
token=token,
tickers=["AEO", "ABBY", "ADIG", "ABF", "AEP", "AAL", "AGK", "AFN", "AAS", "AEFS"],
stockmarket=StockMarket.LONDON,
start=datetime.datetime(2018, 1, 1),
end=datetime.datetime(2018, 12, 31),
)
lse.run()
for (cnt, s) in enumerate(lse._tickers):
plt.plot(lse._data[cnt], label=s)
plt.legend()
plt.xticks(rotation=90)
plt.show()
except QiskitFinanceError as ex:
print(ex)
print("Error retrieving data.")
try:
data = YahooDataProvider(
tickers=["MSFT", "AAPL", "GOOG"],
start=datetime.datetime(2021, 1, 1),
end=datetime.datetime(2021, 12, 31),
)
data.run()
for (cnt, s) in enumerate(data._tickers):
plt.plot(data._data[cnt], label=s)
plt.legend(loc="upper center", bbox_to_anchor=(0.5, 1.1), ncol=3)
plt.xticks(rotation=90)
plt.show()
except QiskitFinanceError as ex:
data = None
print(ex)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/CodeJP97/QHT-2022-WoQ
|
CodeJP97
|
import numpy as np
import cmath
# Importing standard Qiskit libraries
from qiskit.quantum_info import Statevector, random_statevector
from qiskit import QuantumCircuit, transpile, Aer, IBMQ, assemble, execute
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from ibm_quantum_widgets import *
from qiskit.extensions import Initialize
# Loading your IBM Quantum account(s)
provider = IBMQ.load_account()
#import sys
#sys.path.insert(0, '/home/jovyan/exercises_levels/Gates_and_Circuits/Single Qubit Gates/Level_1_Single_Qubit_Gates')
#from Check_level_1_gates import *
#import warnings
#warnings.filterwarnings('ignore')
qc = QuantumCircuit(1)
qc.x(0)
state = Statevector.from_instruction(qc)
plot_bloch_multivector(state)
qc = QuantumCircuit(1)
qc.h(0)
state = Statevector.from_instruction(qc)
plot_bloch_multivector(state)
qc = QuantumCircuit(1)
qc.x(0)
qc.h(0)
# or
#qc.h(0)
#qc.z(0)
# or
#qc.u(np.pi/2,np.pi,0,0)
state = Statevector.from_instruction(qc)
plot_bloch_multivector(state)
qc=QuantumCircuit(1,1)
qc.u3(np.pi/4,np.pi/4,np.pi/4,0)
qc.measure(0,0)
backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend
Counts = execute(qc, backend, shots = 1024, seed_simulator=312).result().get_counts() # we run the simulation and get the counts
plot_histogram(Counts) # let us plot a histogram to see the possible outcomes and corresponding probabilities
psi = random_statevector(2, seed=11)
init_gate = Initialize(psi)
init_gate.label = "Random_State"
## Measure the state in the x,y,z basis and make a guess for the state_vector psi
#Measure in all three different bases
qc=QuantumCircuit(1,1)
qc.initialize(psi,0)
qc.measure(0,0)
z = execute(qc, backend, shots = 1024, seed_simulator=312).result().get_counts() # we run the simulation and get the counts
qc=QuantumCircuit(1,1)
qc.initialize(psi,0)
qc.h(0)
qc.s(0)
qc.measure(0,0)
y = execute(qc, backend, shots = 1024, seed_simulator=312).result().get_counts() # we run the simulation and get the counts
qc=QuantumCircuit(1,1)
qc.initialize(psi,0)
qc.h(0)
qc.measure(0,0)
x = execute(qc, backend, shots = 1024, seed_simulator=312).result().get_counts() # we run the simulation and get the counts
print(x,y,z)
#Put your answer here
#Try to remove any global phase in your answer
#phi=
#theta=
#bonus_validation([phi, theta])
angles : [phi,theta]
|
https://github.com/UST-QuAntiL/qiskit-service
|
UST-QuAntiL
|
# ******************************************************************************
# Copyright (c) 2020-2021 University of Stuttgart
#
# See the NOTICE file(s) distributed with this work for additional
# information regarding copyright ownership.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
from qiskit_braket_provider import AWSBraketProvider
from braket.aws.aws_session import AwsSession
import boto3
from qiskit.providers.jobstatus import JOB_FINAL_STATES
from qiskit import QiskitError
def get_qpu(access_key, secret_access_key, qpu_name, region='eu-west-2'):
boto_session = boto3.Session(
aws_access_key_id=access_key,
aws_secret_access_key=secret_access_key,
region_name=region,
)
session = AwsSession(boto_session)
provider = AWSBraketProvider()
backend = provider.get_backend(qpu_name, aws_session=session)
return backend
def execute_job(transpiled_circuit, shots, backend):
"""Generate qObject from transpiled circuit and execute it. Return result."""
try:
job = backend.run(transpiled_circuit, shots=shots)
job_status = job.status()
while job_status not in JOB_FINAL_STATES:
print("The job is still running")
job_status = job.status()
job_result = job.result()
print("\nJob result:")
print(job_result)
job_result_dict = job_result.to_dict()
print(job_result_dict)
try:
statevector = job_result.get_statevector()
print("\nState vector:")
print(statevector)
except QiskitError:
statevector = None
print("No statevector available!")
try:
counts = job_result.get_counts()
print("\nCounts:")
print(counts)
except QiskitError:
counts = None
print("No counts available!")
try:
unitary = job_result.get_unitary()
print("\nUnitary:")
print(unitary)
except QiskitError:
unitary = None
print("No unitary available!")
return {'job_result_raw': job_result_dict, 'statevector': statevector, 'counts': counts, 'unitary': unitary}
except Exception:
return None
|
https://github.com/qiskit-community/qiskit-aqt-provider
|
qiskit-community
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2019, Alpine Quantum Technologies GmbH 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
import typing
import warnings
from dataclasses import dataclass
from typing import (
TYPE_CHECKING,
Any,
Generic,
Optional,
TypeVar,
Union,
)
from uuid import UUID
import httpx
from qiskit import QuantumCircuit
from qiskit.circuit.library import RXGate, RXXGate, RZGate
from qiskit.circuit.measure import Measure
from qiskit.circuit.parameter import Parameter
from qiskit.providers import BackendV2 as Backend
from qiskit.providers import Options as QiskitOptions
from qiskit.providers.models import BackendConfiguration
from qiskit.transpiler import Target
from qiskit_aer import AerJob, AerSimulator, noise
from typing_extensions import override
from qiskit_aqt_provider import api_models, api_models_direct
from qiskit_aqt_provider.aqt_job import AQTDirectAccessJob, AQTJob
from qiskit_aqt_provider.aqt_options import AQTDirectAccessOptions, AQTOptions
from qiskit_aqt_provider.circuit_to_aqt import aqt_to_qiskit_circuit
if TYPE_CHECKING: # pragma: no cover
from qiskit_aqt_provider.aqt_provider import AQTProvider
TargetT = TypeVar("TargetT", bound=Target)
class UnknownOptionWarning(UserWarning):
"""An unknown option was passed to a backend's :meth:`run <AQTResource.run>` method."""
def make_transpiler_target(target_cls: type[TargetT], num_qubits: int) -> TargetT:
"""Factory for transpilation targets of AQT resources.
Args:
target_cls: base class to use for the returned instance.
num_qubits: maximum number of qubits supported by the resource.
Returns:
A Qiskit transpilation target for an AQT resource.
"""
target: TargetT = target_cls(num_qubits=num_qubits)
theta = Parameter("θ")
lam = Parameter("λ")
# configure the transpiler to use RX/RZ/RXX
# the custom scheduling pass rewrites RX to R to comply to the Arnica API format.
target.add_instruction(RZGate(lam))
target.add_instruction(RXGate(theta))
target.add_instruction(RXXGate(theta))
target.add_instruction(Measure())
return target
_JobType = TypeVar("_JobType", AQTJob, AQTDirectAccessJob)
_OptionsType = TypeVar("_OptionsType", bound=AQTOptions)
"""Resource options model."""
class _ResourceBase(Generic[_OptionsType], Backend):
"""Common setup for AQT backends."""
def __init__(
self, provider: "AQTProvider", name: str, options_type: type[_OptionsType]
) -> None:
"""Initialize the Qiskit backend.
Args:
provider: Qiskit provider that owns this backend.
name: name of the backend.
options_type: options model. Must be default-initializable.
"""
super().__init__(name=name, provider=provider)
num_qubits = 20
self._target = make_transpiler_target(Target, num_qubits)
self._options = options_type()
self._configuration = BackendConfiguration.from_dict(
{
"backend_name": name,
"backend_version": 2,
"url": provider.portal_url,
"simulator": True,
"local": False,
"coupling_map": None,
"description": "AQT trapped-ion device simulator",
"basis_gates": ["r", "rz", "rxx"], # the actual basis gates
"memory": True,
"n_qubits": num_qubits,
"conditional": False,
"max_shots": self._options.max_shots(),
"max_experiments": 1,
"open_pulse": False,
"gates": [
{"name": "rz", "parameters": ["theta"], "qasm_def": "TODO"},
{"name": "r", "parameters": ["theta", "phi"], "qasm_def": "TODO"},
{"name": "rxx", "parameters": ["theta"], "qasm_def": "TODO"},
],
}
)
def configuration(self) -> BackendConfiguration:
"""Legacy Qiskit backend configuration."""
return self._configuration
@property
def max_circuits(self) -> int:
"""Maximum number of circuits per batch."""
return 2000
@property
def target(self) -> Target:
"""Transpilation target for this backend."""
return self._target
@classmethod
def _default_options(cls) -> QiskitOptions:
"""Default backend options, in Qiskit format."""
options_type = typing.get_args(cls.__orig_bases__[0])[0]
return QiskitOptions(**options_type())
@property
def options(self) -> _OptionsType:
"""Configured backend options."""
return self._options
def get_scheduling_stage_plugin(self) -> str:
"""Name of the custom scheduling stage plugin for the Qiskit transpiler."""
return "aqt"
def get_translation_stage_plugin(self) -> str:
"""Name of the custom translation stage plugin for the Qiskit transpiler."""
return "aqt"
def _create_job(
self,
job_type: type[_JobType],
circuits: Union[QuantumCircuit, list[QuantumCircuit]],
**options: Any,
) -> _JobType:
"""Initialize a job handle of a given type.
Helper function for the ``run()`` method implementations.
Args:
job_type: type of the job handle to initialize.
circuits: circuits to execute when the job is submitted.
options: backend options overrides.
"""
if not isinstance(circuits, list):
circuits = [circuits]
valid_options = {key: value for key, value in options.items() if key in self.options}
unknown_options = set(options) - set(valid_options)
if unknown_options:
for unknown_option in unknown_options:
warnings.warn(
f"Option {unknown_option} is not used by this backend",
UnknownOptionWarning,
stacklevel=2,
)
options_copy = self.options.model_copy()
options_copy.update_options(**valid_options)
return job_type(
self,
circuits,
options_copy,
)
class AQTResource(_ResourceBase[AQTOptions]):
"""Qiskit backend for AQT cloud quantum computing resources.
Use :meth:`AQTProvider.get_backend <qiskit_aqt_provider.aqt_provider.AQTProvider.get_backend>`
to retrieve backend instances.
"""
def __init__(
self,
provider: "AQTProvider",
resource_id: api_models.ResourceId,
) -> None:
"""Initialize the backend.
Args:
provider: Qiskit provider that owns this backend.
resource_id: description of resource to target.
"""
super().__init__(
name=resource_id.resource_id,
provider=provider,
options_type=AQTOptions,
)
self._http_client: httpx.Client = provider._http_client
self.resource_id = resource_id
def run(self, circuits: Union[QuantumCircuit, list[QuantumCircuit]], **options: Any) -> AQTJob:
"""Submit circuits for execution on this resource.
Args:
circuits: circuits to execute
options: overrides for this resource's options. Elements should be valid fields
of the :class:`AQTOptions <qiskit_aqt_provider.aqt_options.AQTOptions>` model.
Unknown fields are ignored with a :class:`UnknownOptionWarning`.
Returns:
A handle to the submitted job.
"""
job = self._create_job(AQTJob, circuits, **options)
job.submit()
return job
def submit(self, job: AQTJob) -> UUID:
"""Submit a quantum circuits job to the AQT resource.
.. tip:: This is a low-level method. Use the :meth:`run` method to submit
a job and retrieve a :class:`AQTJob <qiskit_aqt_provider.aqt_job.AQTJob>`
handle.
Args:
job: the quantum circuits job to submit to the resource for execution.
Returns:
The unique identifier of the submitted job.
"""
resp = self._http_client.post(
f"/submit/{self.resource_id.workspace_id}/{self.resource_id.resource_id}",
json=job.api_submit_payload.model_dump(),
)
resp.raise_for_status()
return api_models.Response.model_validate(resp.json()).job.job_id
def result(self, job_id: UUID) -> api_models.JobResponse:
"""Query the result for a specific job.
.. tip:: This is a low-level method. Use the
:meth:`AQTJob.result <qiskit_aqt_provider.aqt_job.AQTJob.result>`
method to retrieve the result of a job described by a
:class:`AQTJob <qiskit_aqt_provider.aqt_job.AQTJob>` handle.
Parameters:
job_id: The unique identifier for the target job.
Returns:
AQT API payload with the job results.
"""
resp = self._http_client.get(f"/result/{job_id}")
resp.raise_for_status()
return api_models.Response.model_validate(resp.json())
class AQTDirectAccessResource(_ResourceBase[AQTDirectAccessOptions]):
"""Qiskit backend for AQT direct-access quantum computing resources.
Use
:meth:`AQTProvider.get_direct_access_backend
<qiskit_aqt_provider.aqt_provider.AQTProvider.get_direct_access_backend>`
to retrieve backend instances.
"""
def __init__(
self,
provider: "AQTProvider",
base_url: str,
) -> None:
"""Initialize the backend.
Args:
provider: Qiskit provider that owns the backend.
base_url: URL of the direct-access interface.
"""
super().__init__(
provider=provider,
name="direct-access",
options_type=AQTDirectAccessOptions,
)
self._http_client = api_models.http_client(base_url=base_url, token=provider.access_token)
def run(
self, circuits: Union[QuantumCircuit, list[QuantumCircuit]], **options: Any
) -> AQTDirectAccessJob:
"""Prepare circuits for execution on this resource.
.. warning:: The circuits are only evaluated during
the :meth:`AQTDirectAccessJob.result
<qiskit_aqt_provider.aqt_job.AQTDirectAccessJob.result>`
call.
Args:
circuits: circuits to execute
options: overrides for this resource's options. Elements should be valid fields
of the :class:`AQTOptions <qiskit_aqt_provider.aqt_options.AQTOptions>` model.
Unknown fields are ignored with a :class:`UnknownOptionWarning`.
Returns:
A handle to the prepared job.
"""
return self._create_job(AQTDirectAccessJob, circuits, **options)
def submit(self, circuit: api_models.QuantumCircuit) -> UUID:
"""Submit a quantum circuit job to the AQT resource.
Args:
circuit: circuit to evaluate, in API format.
Returns:
The unique identifier of the submitted job.
"""
resp = self._http_client.put("/circuit", json=circuit.model_dump())
resp.raise_for_status()
return UUID(resp.json())
def result(self, job_id: UUID, *, timeout: Optional[float]) -> api_models_direct.JobResult:
"""Query the result of a specific job.
Block until a result (success or error) is available.
Args:
job_id: unique identifier of the target job.
timeout: query timeout, in seconds. Disabled if `None`.
Returns:
Job result, as API payload.
"""
resp = self._http_client.get(f"/circuit/result/{job_id}", timeout=timeout)
resp.raise_for_status()
return api_models_direct.JobResult.model_validate(resp.json())
def qubit_states_from_int(state: int, num_qubits: int) -> list[int]:
"""Convert the Qiskit state representation to the AQT states samples one.
Args:
state: Qiskit quantum register state representation
num_qubits: number of qubits in the register.
Returns:
AQT qubit states representation.
Raises:
ValueError: the passed state is too large for the passed register size.
Examples:
>>> qubit_states_from_int(0, 3)
[0, 0, 0]
>>> qubit_states_from_int(0b11, 3)
[1, 1, 0]
>>> qubit_states_from_int(0b01, 3)
[1, 0, 0]
>>> qubit_states_from_int(123, 7)
[1, 1, 0, 1, 1, 1, 1]
>>> qubit_states_from_int(123, 3) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Cannot represent state=123 on num_qubits=3.
"""
if state.bit_length() > num_qubits:
raise ValueError(f"Cannot represent {state=} on {num_qubits=}.")
return [(state >> qubit) & 1 for qubit in range(num_qubits)]
@dataclass(frozen=True)
class SimulatorJob:
"""Data for a job running on a local simulator."""
job: AerJob
"""Simulation backend job handle."""
circuits: list[QuantumCircuit]
"""Quantum circuits to evaluate."""
shots: int
"""Number of repetitions of each circuit."""
@property
def job_id(self) -> UUID:
"""The job's unique identifier."""
return UUID(hex=self.job.job_id())
class OfflineSimulatorResource(AQTResource):
"""AQT-compatible offline simulator resource.
Offline simulators expose the same interface and restrictions as hardware backends. If
`with_noise_model` is true, a noise model approximating that of AQT hardware backends is used.
.. tip::
The simulator backend is provided by
`Qiskit Aer <https://qiskit.github.io/qiskit-aer/>`_.
The Qiskit Aer resource is exposed for detailed detuning as the
``OfflineSimulatorResource.simulator`` attribute.
"""
def __init__(
self,
provider: "AQTProvider",
resource_id: api_models.ResourceId,
with_noise_model: bool,
) -> None:
"""Initialize an offline simulator resource.
Args:
provider: Qiskit provider that owns this backend.
resource_id: identification of the offline simulator resource.
with_noise_model: whether to configure a noise model in the simulator backend.
"""
assert resource_id.resource_type == "offline_simulator" # noqa: S101
super().__init__(
provider,
resource_id=resource_id,
)
self.job: Optional[SimulatorJob] = None
if not with_noise_model:
noise_model = None
else:
# the transpiler lowers all operations to the gate set supported by the AQT API,
# not to the resource target's one.
noise_model = noise.NoiseModel(basis_gates=["r", "rz", "rxx"])
noise_model.add_all_qubit_quantum_error(noise.depolarizing_error(0.003, 1), ["r"])
noise_model.add_all_qubit_quantum_error(noise.depolarizing_error(0.01, 2), ["rxx"])
self.simulator = AerSimulator(method="statevector", noise_model=noise_model)
@property
def with_noise_model(self) -> bool:
"""Whether the simulator includes a noise model."""
return self.simulator.options.noise_model is not None
@override
def submit(self, job: AQTJob) -> UUID:
"""Submit a job for execution on the simulator.
.. tip:: This is a low-level method. Use the :meth:`AQTResource.run()` method
to submit a job and retrieve a :class:`AQTJob <qiskit_aqt_provider.aqt_job.AQTJob>`
handle.
Args:
job: quantum circuits job to submit to the simulator.
Returns:
Unique identifier of the simulator job.
"""
# Use the API payload such that the memory map is the same as that
# of the remote devices.
circuits = [
aqt_to_qiskit_circuit(circuit.quantum_circuit, circuit.number_of_qubits)
for circuit in job.api_submit_payload.payload.circuits
]
self.job = SimulatorJob(
job=self.simulator.run(circuits, shots=job.options.shots),
circuits=job.circuits,
shots=job.options.shots,
)
return self.job.job_id
@override
def result(self, job_id: UUID) -> api_models.JobResponse:
"""Query results for a simulator job.
.. tip:: This is a low-level method. Use
:meth:`AQTJob.result() <qiskit_aqt_provider.aqt_job.AQTJob.result>` instead.
Args:
job_id: identifier of the job to retrieve results for.
Returns:
AQT API payload with the job results.
Raises:
UnknownJobError: ``job_id`` doesn't correspond to a simulator job on this resource.
"""
if self.job is None or job_id != self.job.job_id:
raise api_models.UnknownJobError(str(job_id))
qiskit_result = self.job.job.result()
results: dict[str, list[list[int]]] = {}
for circuit_index, circuit in enumerate(self.job.circuits):
samples: list[list[int]] = []
# Use data()["counts"] instead of get_counts() to access the raw counts
# in hexadecimal format.
counts: dict[str, int] = qiskit_result.data(circuit_index)["counts"]
for hex_state, occurrences in counts.items():
samples.extend(
[
qubit_states_from_int(int(hex_state, 16), circuit.num_qubits)
for _ in range(occurrences)
]
)
results[str(circuit_index)] = samples
return api_models.Response.finished(
job_id=job_id,
workspace_id=self.resource_id.workspace_id,
resource_id=self.resource_id.resource_id,
results=results,
)
|
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
|
shesha-raghunathan
|
# useful additional packages
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
# useful math functions
from math import pi, cos, acos, sqrt
import sys
# importing the QISKit
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit import available_backends, execute, register, get_backend
# importing API token to access remote backends
try:
sys.path.append("../../") # go to parent dir
import Qconfig
qx_config = {
"APItoken": Qconfig.APItoken,
"url": Qconfig.config['url']}
except:
qx_config = {
"APItoken":"YOUR_TOKEN_HERE",
"url":"https://quantumexperience.ng.bluemix.net/api"}
# import basic plot tools
from qiskit.tools.visualization import plot_histogram
def ch(qProg, a, b):
""" Controlled-Hadamard gate """
qProg.h(b)
qProg.sdg(b)
qProg.cx(a, b)
qProg.h(b)
qProg.t(b)
qProg.cx(a, b)
qProg.t(b)
qProg.h(b)
qProg.s(b)
qProg.x(b)
qProg.s(a)
return qProg
def cu3(qProg, theta, phi, lambd, c, t):
""" Controlled-u3 gate """
qProg.u1((lambd-phi)/2, t)
qProg.cx(c, t)
qProg.u3(-theta/2, 0, -(phi+lambd)/2, t)
qProg.cx(c, t)
qProg.u3(theta/2, phi, 0, t)
return qProg
#CHANGE THIS 7BIT 0-1 STRING TO PERFORM EXPERIMENT ON ENCODING 0000000, ..., 1111111
x1234567 = "0101010"
if len(x1234567) != 7 or not("1" in x1234567 or "0" in x1234567):
raise Exception("x1234567 is a 7-bit 0-1 pattern. Please set it to the correct pattern")
#compute the value of rotation angle theta of (3,1)-QRAC
theta = acos(sqrt(0.5 + sqrt(3.0)/6.0))
#to record the u3 parameters for encoding 000, 010, 100, 110, 001, 011, 101, 111
rotationParams = {"000":(2*theta, pi/4, -pi/4), "010":(2*theta, 3*pi/4, -3*pi/4),
"100":(pi-2*theta, pi/4, -pi/4), "110":(pi-2*theta, 3*pi/4, -3*pi/4),
"001":(2*theta, -pi/4, pi/4), "011":(2*theta, -3*pi/4, 3*pi/4),
"101":(pi-2*theta, -pi/4, pi/4), "111":(pi-2*theta, -3*pi/4, 3*pi/4)}
# Creating registers
# qubits for encoding 7 bits of information with qr[0] kept by the sender
qr = QuantumRegister(3)
# bits for recording the measurement of the qubits qr[1] and qr[2]
cr = ClassicalRegister(2)
encodingName = "Encode"+x1234567
encodingCircuit = QuantumCircuit(qr, cr, name=encodingName)
#Prepare superposition of mixing QRACs of x1...x6 and x7
encodingCircuit.u3(1.187, 0, 0, qr[0])
#Encoding the seventh bit
seventhBit = x1234567[6]
if seventhBit == "1": #copy qr[0] into qr[1] and qr[2]
encodingCircuit.cx(qr[0], qr[1])
encodingCircuit.cx(qr[0], qr[2])
#perform controlled-Hadamard qr[0], qr[1], and toffoli qr[0], qr[1] , qr[2]
encodingCircuit = ch(encodingCircuit, qr[0], qr[1])
encodingCircuit.ccx(qr[0], qr[1], qr[2])
#End of encoding the seventh bit
#encode x1...x6 with two (3,1)-QRACS. To do that, we must flip q[0] so that the controlled encoding is executed
encodingCircuit.x(qr[0])
#Encoding the first 3 bits 000, ..., 111 into the second qubit, i.e., (3,1)-QRAC on the second qubit
firstThreeBits = x1234567[0:3]
#encodingCircuit.cu3(*rotationParams[firstThreeBits], qr[0], qr[1])
encodingCircuit = cu3(encodingCircuit, *rotationParams[firstThreeBits], qr[0], qr[1])
#Encoding the second 3 bits 000, ..., 111 into the third qubit, i.e., (3,1)-QRAC on the third qubit
secondThreeBits = x1234567[3:6]
#encodingCircuit.cu3(*rotationParams[secondTreeBits], qr[0], qr[2])
encodingCircuit = cu3(encodingCircuit, *rotationParams[secondThreeBits], qr[0], qr[2])
#end of encoding
encodingCircuit.barrier()
# dictionary for decoding circuits
decodingCircuits = {}
# Quantum circuits for decoding the 1st to 6th bits
for i, pos in enumerate(["First", "Second", "Third", "Fourth", "Fifth", "Sixth"]):
circuitName = "Decode"+pos
decodingCircuits[circuitName] = QuantumCircuit(qr, cr, name=circuitName)
if i < 3: #measure 1st, 2nd, 3rd bit
if pos == "Second": #if pos == "First" we can directly measure
decodingCircuits[circuitName].h(qr[1])
elif pos == "Third":
decodingCircuits[circuitName].u3(pi/2, -pi/2, pi/2, qr[1])
decodingCircuits[circuitName].measure(qr[1], cr[1])
else: #measure 4th, 5th, 6th bit
if pos == "Fifth": #if pos == "Fourth" we can directly measure
decodingCircuits[circuitName].h(qr[2])
elif pos == "Sixth":
decodingCircuits[circuitName].u3(pi/2, -pi/2, pi/2, qr[2])
decodingCircuits[circuitName].measure(qr[2], cr[1])
#Quantum circuits for decoding the 7th bit
decodingCircuits["DecodeSeventh"] = QuantumCircuit(qr, cr, name="DecodeSeventh")
decodingCircuits["DecodeSeventh"].measure(qr[1], cr[0])
decodingCircuits["DecodeSeventh"].measure(qr[2], cr[1])
#combine encoding and decoding of (7,2)-QRACs to get a list of complete circuits
circuitNames = []
circuits = []
k1 = encodingName
for k2 in decodingCircuits.keys():
circuitNames.append(k1+k2)
circuits.append(encodingCircuit+decodingCircuits[k2])
print("List of circuit names:", circuitNames) #list of circuit names
#Q_program.get_qasms(circuitNames) #list qasms codes
backend = "local_qasm_simulator"
#backend = "ibmqx2"
shots = 1000
job = execute(circuits, backend=backend, shots=shots)
results = job.result()
for k in ["DecodeFirst", "DecodeSecond", "DecodeThird", "DecodeFourth", "DecodeFifth", "DecodeSixth"]:
print("Experimental Result of ", encodingName+k)
plot_histogram(results.get_counts(circuits[circuitNames.index(encodingName+k)]))
print("Experimental result of ", encodingName+"DecodeSeventh")
plot_histogram(results.get_counts(circuits[circuitNames.index(encodingName+"DecodeSeventh")]))
|
https://github.com/ColibrITD-SAS/mpqp
|
ColibrITD-SAS
|
from mpqp import QCircuit
circ1 = QCircuit(3)
circ2 = QCircuit(5, nb_cbits=2, label="Example")
from mpqp.gates import *
from mpqp.measures import BasisMeasure
from mpqp import Barrier
circ2.add(CNOT(2,3))
circ2.add([H(0), T(1), CNOT(0,1), S(4)])
circ3 = QCircuit(
[
H(0),
X(1),
CNOT(1, 2),
Barrier(),
Y(2),
Z(0),
CZ(1, 0),
BasisMeasure([0, 1, 2], shots=1024),
]
)
print(circ2)
circ3.pretty_print()
circ3.display()
circ3.display("latex")
circ3.depth()
circ3.size()
circ3.count_gates(X)
circ3.get_measurements()
circ1 = QCircuit([H(0), S(1), CNOT(0,1)])
circ2 = QCircuit([X(0)])
print(circ1)
print('-------------')
print(circ2)
appended = circ1 + circ2
print(appended)
tensored = circ1 @ circ2
print(tensored)
from mpqp import Language
circ3.to_other_language(Language.QISKIT)
circ3.to_other_language(Language.MY_QLM)
circ3.to_other_language(Language.BRAKET)
circ3.to_other_language(Language.CIRQ)
print(circ3.to_qasm2())
print(circ3.to_qasm3())
from sympy import symbols
theta, k = symbols("θ k")
param_circ = QCircuit(
[Rx(theta, 0), CNOT(1,2), X(2), Rk(k,1), H(0), CRk(k, 0, 2),
BasisMeasure(list(range(3)), shots=1000)]
)
print(param_circ)
import numpy as np
print(param_circ.subs({theta: np.pi/3, k:2}))
param_circ.variables()
|
https://github.com/alvinli04/Quantum-Steganography
|
alvinli04
|
import qiskit
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit import execute
from qiskit import Aer
from qiskit import IBMQ
from qiskit.circuit.quantumregister import AncillaRegister
def comparator(regX, regY):
qc = QuantumCircuit(regX, regY)
# regX and regY should have the same size
regLength = regX.size
ancilla = AncillaRegister(2*regLength)
qc.add_register(ancilla)
qc.x(ancilla)
for index in range(regLength):
qc.x(regX[index])
qc.mcx([regY[index], regX[index]]+[ancilla[i] for i in range(2*index)], [ancilla[index*2]])
if index < regLength-1:
qc.mcx([regY[index], regX[index]]+[ancilla[i] for i in range(2*index)], [ancilla[2*regLength-2]])
qc.x(regX[index])
qc.x(regY[index])
qc.mcx([regY[index], regX[index]]+[ancilla[i] for i in range(2*index)], [ancilla[index*2+1]])
if index < regLength-1:
qc.mcx([regY[index], regX[index]]+[ancilla[i] for i in range(2*index)], [ancilla[2*regLength-1]])
qc.x(regY[index])
qc.x(ancilla)
return qc
if __name__ == '__main__':
regX = QuantumRegister(2, "x")
regY = QuantumRegister(2, "y")
cResult = comparator(regX, regY)
print("Comparator Register Output")
print(comparator(regX, regY))
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
from qiskit import *
from oracle_generation import generate_oracle
get_bin = lambda x, n: format(x, 'b').zfill(n)
def gen_circuits(min,max,size):
circuits = []
secrets = []
ORACLE_SIZE = size
for i in range(min,max+1):
cur_str = get_bin(i,ORACLE_SIZE-1)
(circuit, secret) = generate_oracle(ORACLE_SIZE,False,3,cur_str)
circuits.append(circuit)
secrets.append(secret)
return (circuits, secrets)
|
https://github.com/tybens/quantum-data-fitting-HHL
|
tybens
|
import numpy as np
from numpy import pi
import scipy
from qiskit.extensions import UnitaryGate
from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister, execute, Aer
from qiskit.visualization import plot_histogram
# A = np.matrix([[1, 0, 0], [0, 1, -1], [0, 1, 1]]) # gets 1.4 but only 2 eigenvalues
A = np.matrix([[1, 1, 0], [-1, 1, -1], [0, .13, 1.3]]) # gets 1.9 and 3 distinct evals
def hermitian_and_pad_matrix(A):
# define a 3x3 zero matrix for aid in construction
zero = np.matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]])
# construct A' to be a hermitian matrix
Ap = np.vstack((np.hstack((zero, A)), np.hstack((A.getH(), zero))))
A_p = np.pad(Ap, ((0, 2), (0, 2)))
# pad
A_p[-1][-1], A_p[-2][-2] = 1, 1
eig_val, eig_vec = scipy.linalg.eig(A_p)
A_p /= max(np.real(eig_val)) # rescale matrix so that eigenvalues are between -1 and 1
return A_p
A_p = hermitian_and_pad_matrix(A)
eig_val, eig_vec = scipy.linalg.eig(A_p)
kappa = np.linalg.cond(A_p)
print(f"Kappa = {kappa}")
print("-"*30)
print(f"Eigen Values:")
for e_val in eig_val:
print(e_val)
A
eig_val, eig_vec = scipy.linalg.eig(A_p)
print("-"*30)
print(f"Eigen Values:")
for e_val in eig_val:
print(e_val)
print("-"*30)
print(f"Eigen Vectors:")
print(eig_vec)
# initialize the b solution vector
b = np.array([1, 3, 2])
# pad the b array with 0's to be 8 by 1
def pad_b(b):
return np.append(b, [0, 0, 0, 0, 0])
b_p = pad_b(b)
print(A_p.shape)
print(b_p.shape)
kappa = np.linalg.cond(A_p)
print(f"Kappa = {kappa}")
T = 150 # Used in hamiltonian evolution. Needs to be relatively large so that alpha in Eq (3) approximates as sync functions
# C = 1/2 # Used in conditional rotation. Needs to be on the order of 1/kappa where kappa is the conditional number of A
n_eig = 8 # Used in QPE, number of qubits to estimate the eigenvalues of A, defines the precision of the eigenvalues up to n_eig bits
n = 3 # 2**n x 2**n A. This defines the number of qubits needed for the dimensions of this problem. Specifically 8 dimensions can be encoded with 3 qubits.
def construct_registers(n_eig, n, b_p):
aux = QuantumRegister(1, 'aux') # for conditional eigenvalue inversion
n_l = QuantumRegister(n_eig, 'nl') # stores binary representation of the eigenvalues
n_b = QuantumRegister(n, 'nb') # contains the vector solution
c = ClassicalRegister(n + n_eig + 1, 'c') # 3 for n_b, n_eig for n_l, and 1 for the auxiliary
return aux, n_l, n_b, c
# aux, n_l, n_b, c = construct_registers(n_eig, n, b_p)
def construct_init_circ(n_eig, n, b_p):
# state preparation of b: |0> -> |b>
init_circ = QuantumCircuit(aux, n_l, n_b, c)
b_p = b_p/scipy.linalg.norm(b_p) # normalize b, so it is ready for loading.
init_circ.initialize(b_p, n_b)
return init_circ
# init_circ = construct_init_circ(n_eig, n, b_p)
def convert_Ap_to_gate(A_p, T):
# convert to unitary matrix through exponentiation
U_mat = scipy.linalg.expm(1j*A_p*T)
# convert to a unitary operator with Qiskit
U = UnitaryGate(U_mat)
U.name = "$U$"
return U
# U = convert_Ap_to_gate(A_p, T)
def construct_qpe_circ(U):
qpe_circ = QuantumCircuit(aux, n_l, n_b, c)
qpe_circ.barrier()
# First, perform a hadamard on all the memory qubits.
qpe_circ.h(n_l)
# Apply powers of controlled U on the target qubits
for i in range(n_eig):
Upow = U.power(2**(n_eig-1-i))
ctrl_Upow = Upow.control()
qpe_circ.append(ctrl_Upow, [n_l[i], n_b[0], n_b[1], n_b[2]])
qpe_circ.barrier()
# Compute the inverse quantum fourier transform
for qubit in range(n_eig//2):
qpe_circ.swap(n_l[qubit], n_l[n_eig-qubit-1])
for i in range(n_eig):
for m in range(i):
qpe_circ.cp(-pi/(2**(i-m)), n_l[n_eig-1-m], n_l[n_eig-1-i])
qpe_circ.h(n_l[n_eig-1-i])
qpe_circ.barrier()
qpe_circ.barrier()
return qpe_circ
# qpe_circ = construct_qpe_circ(U)
def construct_qpe_measure_circ(init_circ, qpe_circ):
measure_circ = init_circ.compose(qpe_circ)
measure_circ.measure(n_l, c[:n_eig])
return measure_circ
# measure_circ = construct_qpe_measure_circ(init_circ, qpe_circ)
def evaluate_QPE(measure_circ):
nShots = 10000
backend_qasm = Aer.get_backend('qasm_simulator')
# perform constant_full_circuit just 1 time and plot the histogram of states!
res = execute(measure_circ, backend_qasm,shots=nShots).result()
counts = res.get_counts();
return counts
# counts = evaluate_QPE(measure_circ)
# plot_histogram(counts, figsize=(30, 15))
# actual_b_j = scipy.linalg.solve(eig_vec, b_p)**2
# need to compare to estimated b_j,
#
# find six peaks that must correspond to the bitstring complements of each other. Verifying that QPE is working.
def calculate_lmd_dec(bit_str):
lmd = 0
for ind, i in enumerate(bit_str[::-1]):
lmd += int(i)/2**(ind+1)
return lmd
def binaryToDec(n):
return int(n, 2)
# 10 classical register, only consider the top 6: i[0][4:]
def get_top_ev_bin(counts):
return [i[0][-n_eig:] for i in sorted(counts.items(), key=lambda i: i[1], reverse=True)[:10]]
# top_ev_bin = get_top_ev_bin(counts)
# print(top_ev_bin)
def get_top_ev_dec(top_phase):
return [binaryToDec(i[::-1]) for i in top_phase]
# top_dec = get_top_ev_dec(top_ev_bin)
# print(top_dec)
def get_real_ev(A_p):
eig_val, eig_vec = scipy.linalg.eig(A_p)
return np.real(eig_val)
# real_ev = get_real_ev(A_p)
def get_real_ev_dec(real_ev):
# in order to compare the real eigenvalues with the lambda from the histogram after QPE
return [int(2**n_eig * T * val / (2*pi) % (2**n_eig)) for val in real_ev]
# real_ev_dec = get_real_ev_dec(real_ev)
# print(f"Lambda associated with each eigenval: {real_ev_dec}")
def print_real_vs_exp_evals(top_dec, real_ev_dec, real_ev):
print("-"*15+"compare this ev_dec array"+"-"*15)
print(top_dec)
print("-"*15+"to the following real_ev's"+"-"*15)
[print(i[0], ":", round(i[1], 3)) for i in zip(real_ev_dec, real_ev)]
print("Use this to manually construct the `correspondance` array:")
print("correspondance = [x_i] where x_i is 1 if the corresponding real"
"ev to the i'th experimental ev_dec is pos, else -1")
return
# print_real_vs_exp_evals(top_dec, real_ev_dec, real_ev)
# currently written for [19, 45, 5, 59, 17, 47, 48, 16, 58, 6]
# correspondance = [1, -1, -1, 1, -1, 1, 1, -1, 1, -1]
def calculate_min_C(correspondance, top_ev_bin):
C = calculate_lmd_dec(top_ev_bin[0])
for neg, ev in zip(correspondance, top_ev_bin):
eigenvalue = calculate_lmd_dec(ev)
# if the lambda corresponds to a negative eigenvalue, invert it
if neg == -1:
eigenvalue = -1*(1 - eigenvalue)
lambda_j = eigenvalue * (2*pi/T)
C = min(C, abs(lambda_j)-0.0001)
return C
# C = calculate_min_C(correspondance, top_ev_bin)
# C
# circuit construction
from qiskit.circuit.library.standard_gates import UGate
import math
def theta_angle(C, eigenvalue_bin, neg):
eigenvalue = calculate_lmd_dec(eigenvalue_bin)
# if the lambda corresponds to a negative eigenvalue
if neg == -1:
eigenvalue = -1*(1 - eigenvalue)
lambda_j = eigenvalue * (2*pi/T)
ratio = C/lambda_j
return math.asin(ratio)
def construct_eig_invert_circ(correspondance, eigenvalues_bin):
C = calculate_min_C(correspondance, eigenvalues_bin)
eig_invert_circ = QuantumCircuit(aux, n_l)
for neg, ev_bin in zip(correspondance, eigenvalues_bin):
rot_angle = theta_angle(C, ev_bin, neg)
cu_gate = UGate(rot_angle*2, 0, 0).control(n_eig, ctrl_state = ev_bin)
wiring = [i for i in range(1, n_eig+1)]+[0]
eig_invert_circ.append(cu_gate, wiring)
return eig_invert_circ
# eig_invert_circ = construct_eig_invert_circ(correspondance, top_ev_bin)
# eig_invert_circ.draw('mpl')
def construct_rev_qpe_circ():
return qpe_circ.inverse()
# rev_qpe_circ = construct_rev_qpe_circ()
# rev_qpe_circ.draw('mpl')
def construct_full_circuit(init_circ, qpe_circ, eig_invert_circ, reverse_qpe_circ):
final_circ = init_circ.compose(qpe_circ).compose(eig_invert_circ).compose(reverse_qpe_circ)
final_circ.measure(aux, c[0]) # measure the aux qubit
final_circ.measure(n_l, c[1:n_eig+1]) # measure n_l into the 3 classical registers
final_circ.measure(n_b, c[n_eig+1:]) # measure to the next 3 classical registers
return final_circ
# full_circuit = construct_full_circuit(init_circ, qpe_circ, eig_invert_circ, rev_qpe_circ)
# full_circuit.draw('mpl')
def checkFailed(class_regs):
# input 10 classical registers, check if the outputs faield
return class_regs[-1] == '0' or any([i != '0' for i in class_regs[3:-1]])
def measure_all(full_circuit, nShots=10000):
backend_qasm = Aer.get_backend('qasm_simulator')
# perform constant_full_circuit just 1 time and plot the histogram of states!
res = execute(full_circuit, backend_qasm, shots=nShots).result()
final_counts = res.get_counts()
# remove the failures
numFailed = sum([val for key, val in final_counts.items() if checkFailed(key)])
delItem = []
for key, val in final_counts.items():
if checkFailed(key):
delItem.append(key)
for item in delItem:
final_counts.pop(item)
return final_counts, numFailed
# nShots = 10000
# final_counts, numFailed = measure_all(full_circuit, nShots)
# plot_histogram(final_counts)
def get_x_hhl(nShots, numFailed):
x_hhl = [i[1]/(nShots - numFailed) for i in sorted(final_counts.items(), key=lambda i: i[0], reverse=False)]
x_hhl = [0, 0, 0] + x_hhl + [0, 0]
return x_hhl
# x_hhl = get_x_hhl(nShots, numFailed)
# x_hhl
def get_x_actual(A_p, b_p):
x_actual = scipy.linalg.solve(A_p, b_p)
x_norm = (x_actual/scipy.linalg.norm(x_actual))**2
return [round(i, 3) for i in (x_norm)]
# x_actual = get_x_actual(A_p, b_p)
# x_actual
# --- inputs ---
A = np.matrix([[1, 1, 0], [-1, 1, -1], [0, .13, 1.3]]) # gets 1.9 and 3 distinct evals
b = np.array([1, 3, 2])
# --- constants ---
T = 150 # Used in hamiltonian evolution. Needs to be relatively large so that alpha in Eq (3) approximates as sync functions
n_eig = 8 # Used in QPE, number of qubits to estimate the eigenvalues of A, defines the precision of the eigenvalues up to n_eig bits
n = 3 # 2**n x 2**n A. This defines the number of qubits needed for the dimensions of this problem. Specifically 8 dimensions can be encoded with 3 qubits.
# ------- HHL ALGO -------
# hermitian and pad the matrix
A_p = hermitian_and_pad_matrix(A)
b_p = pad_b(b)
# - step 1: load the data:
aux, n_l, n_b, c = construct_registers(n_eig, n, b_p) # construct registers
init_circ = construct_init_circ(n_eig, n, b_p)
# - step 2: QPE
U = convert_Ap_to_gate(A_p, T) # convert A_p to unitary gate
qpe_circ = construct_qpe_circ(U)
measure_circ = construct_qpe_measure_circ(init_circ, qpe_circ) # add measurements
counts = evaluate_QPE(measure_circ)
# manual inspection of the eigenvalues from QPE is necessary (in this case) to construct
# the conditional rotation
top_ev_bin = get_top_ev_bin(counts)
top_dec = get_top_ev_dec(top_ev_bin) # these are the decimal representations deciphered from the counts of the QPE evals
real_ev = get_real_ev(A_p) # these are the actual eigenvalues of A'
real_ev_dec = get_real_ev_dec(real_ev) # save the decimal representation to allow comparison to experimental ev's (lamdba's)
# !!! manually construct the correspondance array before moving on !!!
print_real_vs_exp_evals(top_dec, real_ev_dec, real_ev)
# plot_histogram(counts, figsize=((20, 7))) # uncomment to see the histogram
# previous was [77, 179, 180, 76, 66, 190, 22, 234, 235, 21]
correspondance = [-1, 1, 1, -1, 1, -1, 1, -1, 1, -1]
# Step 3: conditional rotation
# compute C to be barely less than the minimum experimental eigenvalues
eig_invert_circ = construct_eig_invert_circ(correspondance, top_ev_bin)
# step 4: inverse QPE
rev_qpe_circ = construct_rev_qpe_circ()
# step 5: measure the auxiliary qubit to check for failures
full_circuit = construct_full_circuit(init_circ, qpe_circ, eig_invert_circ, rev_qpe_circ)
# full_circuit.draw('mpl') # uncomment to see the full circuit design
nShots = 10000
final_counts, numFailed = measure_all(full_circuit, nShots)
plot_histogram(final_counts)
x_hhl = get_x_hhl(nShots, numFailed)
x_actual = get_x_actual(A_p, b_p)
print(f"Percentage of Failed Measurements: {numFailed/nShots*100}% Failed")
print(f"|x> from HHL: {x_hhl}")
print(f"|x> from actual: {x_actual}")
print(f"Normalized difference: {scipy.linalg.norm(x_hhl - x_actual)}")
full_circuit.draw('mpl')
|
https://github.com/pedroripper/qiskit_tutoriais
|
pedroripper
|
from qiskit import *
# Primeiramente vamos iniciar um circuito
circuitoQ = QuantumCircuit(1,1)
# No qiskit os qubits são inicializados por default com o estado |0>
# Podemos ver isso plotando a esfera de bloch que representa ele
from qiskit.tools.visualization import plot_bloch_multivector
simulator = Aer.get_backend('statevector_simulator')
result = execute(circuitoQ, backend = simulator).result()
statevector = result.get_statevector()
plot_bloch_multivector(statevector)
# As portas Rx,Ry,Rz servem para fazer rotações nos eixos X,Y,Z
# Para demonstrar vamos inicializar outro circuito de 1 qubit
circuito2 = QuantumCircuit(1)
# Agora para aplicar a porta usamos .rx(rotacao_em_radianos,qubit_a_passar_pela_porta)
# Nesse exemplo vamos rotacionar o qubit no eixo x em pi/2
# antes é importante importar o pi da biblioteca math
from math import pi
circuito2.rx(pi/2,0)
circuito2.draw(output = 'mpl')
# Vendo o resultado:
from qiskit.tools.visualization import plot_bloch_multivector
simulator = Aer.get_backend('statevector_simulator')
result = execute(circuito2, backend = simulator).result()
statevector = result.get_statevector()
plot_bloch_multivector(statevector)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
q = QuantumRegister(1)
c = ClassicalRegister(1)
qc = QuantumCircuit(q, c)
qc.h(q)
qc.measure(q, c)
qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
|
https://github.com/sayana25/IQCQ-UPES-2023
|
sayana25
|
pip install qiskit
# required imports:
from qiskit.visualization import array_to_latex
from qiskit.quantum_info import Statevector, random_statevector
ket0 = [[1],[0]] #defining the ket |0>
array_to_latex(ket0)
ket1 = [[0],[1]] #defining the ket |1>
array_to_latex(ket1)
bra0 = [1,0]
array_to_latex(bra0)
bra1 = [0,1]
array_to_latex(bra1)
sv_bra0 = Statevector(bra0)
sv_bra0
sv_bra1 = Statevector(bra1)
sv_bra1
sv_ket1 = Statevector(ket1)
sv_ket1
sv_ket0 = Statevector(ket0)
sv_ket0
sv_eq = Statevector([1/2, 3/4, 4/5, 6/8])
sv_eq.draw('latex')
sv_eq.is_valid()
from qiskit.quantum_info.operators import Operator, Pauli
op_bra0 = Operator(bra0)
op_bra0
op_ket0 = Operator(ket0)
op_bra0.tensor(op_ket0)
pauli_x = Pauli('X')
array_to_latex(pauli_x)
pauli_y = Pauli('Y')
array_to_latex(pauli_y)
pauli_z = Pauli('Z')
array_to_latex(pauli_z)
import numpy as np
test1 = np.dot(pauli_x,pauli_y)
test2 = np.dot(pauli_y,pauli_x)
array_to_latex(test1)
array_to_latex(test1-test2)
op_x = Operator(pauli_x) #operator representation of the Pauli X operator
op_x
op_y = Operator(pauli_y) #operator representation of the Pauli Y operator
op_y
op_z = Operator(pauli_z) #operator representation of the Pauli Y operator
op_z
op_new = np.dot(op_x,ket0)
array_to_latex(op_new)
op_new = np.dot(op_y,ket0)
array_to_latex(op_new)
op_new = np.dot(op_z,ket0)
array_to_latex(op_new)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
from qiskit import QuantumCircuit
from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem
from qiskit.circuit.library import LinearAmplitudeFunction
from qiskit_aer.primitives import Sampler
from qiskit_finance.circuit.library import LogNormalDistribution
# number of qubits to represent the uncertainty
num_uncertainty_qubits = 3
# parameters for considered random distribution
S = 2.0 # initial spot price
vol = 0.4 # volatility of 40%
r = 0.05 # annual interest rate of 4%
T = 40 / 365 # 40 days to maturity
# resulting parameters for log-normal distribution
mu = (r - 0.5 * vol**2) * T + np.log(S)
sigma = vol * np.sqrt(T)
mean = np.exp(mu + sigma**2 / 2)
variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2)
stddev = np.sqrt(variance)
# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.
low = np.maximum(0, mean - 3 * stddev)
high = mean + 3 * stddev
# construct A operator for QAE for the payoff function by
# composing the uncertainty model and the objective
uncertainty_model = LogNormalDistribution(
num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high)
)
# plot probability distribution
x = uncertainty_model.values
y = uncertainty_model.probabilities
plt.bar(x, y, width=0.2)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.grid()
plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15)
plt.ylabel("Probability ($\%$)", size=15)
plt.show()
# set the strike price (should be within the low and the high value of the uncertainty)
strike_price = 1.896
# set the approximation scaling for the payoff function
c_approx = 0.25
# setup piecewise linear objective fcuntion
breakpoints = [low, strike_price]
slopes = [0, 1]
offsets = [0, 0]
f_min = 0
f_max = high - strike_price
european_call_objective = LinearAmplitudeFunction(
num_uncertainty_qubits,
slopes,
offsets,
domain=(low, high),
image=(f_min, f_max),
breakpoints=breakpoints,
rescaling_factor=c_approx,
)
# construct A operator for QAE for the payoff function by
# composing the uncertainty model and the objective
num_qubits = european_call_objective.num_qubits
european_call = QuantumCircuit(num_qubits)
european_call.append(uncertainty_model, range(num_uncertainty_qubits))
european_call.append(european_call_objective, range(num_qubits))
# draw the circuit
european_call.draw()
# plot exact payoff function (evaluated on the grid of the uncertainty model)
x = uncertainty_model.values
y = np.maximum(0, x - strike_price)
plt.plot(x, y, "ro-")
plt.grid()
plt.title("Payoff Function", size=15)
plt.xlabel("Spot Price", size=15)
plt.ylabel("Payoff", size=15)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.show()
# evaluate exact expected value (normalized to the [0, 1] interval)
exact_value = np.dot(uncertainty_model.probabilities, y)
exact_delta = sum(uncertainty_model.probabilities[x >= strike_price])
print("exact expected value:\t%.4f" % exact_value)
print("exact delta value: \t%.4f" % exact_delta)
european_call.draw()
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = EstimationProblem(
state_preparation=european_call,
objective_qubits=[3],
post_processing=european_call_objective.post_processing,
)
# construct amplitude estimation
ae = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result = ae.estimate(problem)
conf_int = np.array(result.confidence_interval_processed)
print("Exact value: \t%.4f" % exact_value)
print("Estimated value: \t%.4f" % (result.estimation_processed))
print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int))
from qiskit_finance.applications.estimation import EuropeanCallPricing
european_call_pricing = EuropeanCallPricing(
num_state_qubits=num_uncertainty_qubits,
strike_price=strike_price,
rescaling_factor=c_approx,
bounds=(low, high),
uncertainty_model=uncertainty_model,
)
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = european_call_pricing.to_estimation_problem()
# construct amplitude estimation
ae = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result = ae.estimate(problem)
conf_int = np.array(result.confidence_interval_processed)
print("Exact value: \t%.4f" % exact_value)
print("Estimated value: \t%.4f" % (european_call_pricing.interpret(result)))
print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int))
from qiskit_finance.applications.estimation import EuropeanCallDelta
european_call_delta = EuropeanCallDelta(
num_state_qubits=num_uncertainty_qubits,
strike_price=strike_price,
bounds=(low, high),
uncertainty_model=uncertainty_model,
)
european_call_delta._objective.decompose().draw()
european_call_delta_circ = QuantumCircuit(european_call_delta._objective.num_qubits)
european_call_delta_circ.append(uncertainty_model, range(num_uncertainty_qubits))
european_call_delta_circ.append(
european_call_delta._objective, range(european_call_delta._objective.num_qubits)
)
european_call_delta_circ.draw()
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = european_call_delta.to_estimation_problem()
# construct amplitude estimation
ae_delta = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result_delta = ae_delta.estimate(problem)
conf_int = np.array(result_delta.confidence_interval_processed)
print("Exact delta: \t%.4f" % exact_delta)
print("Esimated value: \t%.4f" % european_call_delta.interpret(result_delta))
print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int))
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_nature.second_q.problems import BaseProblem
dummy_hamiltonian = None
base_problem = BaseProblem(dummy_hamiltonian)
print(base_problem.properties)
from qiskit_nature.second_q.properties import AngularMomentum
print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties)
print("Adding AngularMomentum to problem.properties...")
base_problem.properties.add(AngularMomentum(2))
print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties)
print("Discarding AngularMomentum from problem.properties...")
base_problem.properties.discard(AngularMomentum)
print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties)
from qiskit_nature.second_q.drivers import PySCFDriver
es_problem = PySCFDriver().run()
print(es_problem.properties.particle_number)
print(es_problem.properties.angular_momentum)
print(es_problem.properties.magnetization)
print(es_problem.properties.electronic_dipole_moment)
print(es_problem.properties.electronic_density)
from qiskit_nature.second_q.properties import ElectronicDensity
density = ElectronicDensity.from_orbital_occupation(
es_problem.orbital_occupations,
es_problem.orbital_occupations_b,
)
es_problem.properties.electronic_density = density
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/Harcipan/QAI_GroverSim
|
Harcipan
|
from qiskit import transpile, QuantumCircuit
import qiskit.quantum_info as qi
from qiskit_aer import AerSimulator
from qiskit_aer.noise import NoiseModel, amplitude_damping_error
from qiskit.visualization import plot_histogram
# CNOT matrix operator with qubit-0 as control and qubit-1 as target
cx_op = qi.Operator([[1, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0],
[0, 1, 0, 0]])
# iSWAP matrix operator
iswap_op = qi.Operator([[1, 0, 0, 0],
[0, 0, 1j, 0],
[0, 1j, 0, 0],
[0, 0, 0, 1]])
# CNOT in terms of iSWAP and single-qubit gates
cx_circ = QuantumCircuit(2, name='cx<iSWAP>')
# Add gates
cx_circ.sdg(1)
cx_circ.h(1)
cx_circ.sdg(0)
cx_circ.unitary(iswap_op, [0, 1], label='iswap')
cx_circ.sdg(0)
cx_circ.h(0)
cx_circ.sdg(0)
cx_circ.unitary(iswap_op, [0, 1], label='iswap')
cx_circ.s(1)
print(cx_circ)
# Simulate the unitary for the circuit using Operator:
unitary = qi.Operator(cx_circ)
print(unitary)
'unitary' in AerSimulator().configuration().basis_gates
# Error parameters
param_q0 = 0.05 # damping parameter for qubit-0
param_q1 = 0.1 # damping parameter for qubit-1
# Construct the error
qerror_q0 = amplitude_damping_error(param_q0)
qerror_q1 = amplitude_damping_error(param_q1)
iswap_error = qerror_q1.tensor(qerror_q0)
# Build the noise model by adding the error to the "iswap" gate
noise_model = NoiseModel()
noise_model.add_all_qubit_quantum_error(iswap_error, 'iswap')
# Bell state circuit where iSWAPS should be inserted at barrier locations
bell_circ = QuantumCircuit(2, 2, name='bell')
bell_circ.h(0)
bell_circ.append(cx_circ, [0, 1])
bell_circ.measure([0,1], [0,1])
print(bell_circ)
noise_model.add_basis_gates(['unitary'])
print(noise_model.basis_gates)
# Create ideal simulator backend and transpile circuit
sim_ideal = AerSimulator()
tbell_circ = transpile(bell_circ, sim_ideal)
ideal_result = sim_ideal.run(tbell_circ).result()
ideal_counts = ideal_result.get_counts(0)
plot_histogram(ideal_counts,
title='Ideal output for iSWAP bell-state preparation')
# Create noisy simulator and transpile circuit
sim_noise = AerSimulator(noise_model=noise_model)
tbell_circ_noise = transpile(bell_circ, sim_noise)
# Run on the simulator without noise
noise_result = sim_noise.run(tbell_circ_noise).result()
noise_counts = noise_result.get_counts(bell_circ)
plot_histogram(noise_counts,
title='Noisy output for iSWAP bell-state preparation')
|
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
|
shesha-raghunathan
|
# useful additional packages
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
from math import pi
import sys
# importing the QISKit
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit import available_backends, execute, register, get_backend
# importing API token to access remote backends
try:
sys.path.append("../../") # go to parent dir
import Qconfig
qx_config = {
"APItoken": Qconfig.APItoken,
"url": Qconfig.config['url']}
except:
qx_config = {
"APItoken":"YOUR_TOKEN_HERE",
"url":"https://quantumexperience.ng.bluemix.net/api"}
# import basic plot tools
from qiskit.tools.visualization import plot_histogram
backend = 'local_qasm_simulator' # the device to run on
shots = 1024 # the number of shots in the experiment
#to record the rotation number for encoding 00, 10, 11, 01
rotationNumbers = {"00":1, "10":3, "11":5, "01":7}
# Creating registers
# qubit for encoding 2 bits of information
qr = QuantumRegister(1)
# bit for recording the measurement of the qubit
cr = ClassicalRegister(1)
# dictionary for encoding circuits
encodingCircuits = {}
# Quantum circuits for encoding 00, 10, 11, 01
for bits in ("00", "01", "10", "11"):
circuitName = "Encode"+bits
encodingCircuits[circuitName] = QuantumCircuit(qr, cr, name=circuitName)
encodingCircuits[circuitName].u3(rotationNumbers[bits]*pi/4.0, 0, 0, qr[0])
encodingCircuits[circuitName].barrier()
# dictionary for decoding circuits
decodingCircuits = {}
# Quantum circuits for decoding the first and second bit
for pos in ("First", "Second"):
circuitName = "Decode"+pos
decodingCircuits[circuitName] = QuantumCircuit(qr, cr, name=circuitName)
if pos == "Second": #if pos == "First" we can directly measure
decodingCircuits[circuitName].h(qr[0])
decodingCircuits[circuitName].measure(qr[0], cr[0])
#combine encoding and decoding of QRACs to get a list of complete circuits
circuitNames = []
circuits = []
for k1 in encodingCircuits.keys():
for k2 in decodingCircuits.keys():
circuitNames.append(k1+k2)
circuits.append(encodingCircuits[k1]+decodingCircuits[k2])
print("List of circuit names:", circuitNames) #list of circuit names
job = execute(circuits, backend=backend, shots=shots)
results = job.result()
print("Experimental Result of Encode01DecodeFirst")
plot_histogram(results.get_counts(circuits[circuitNames.index("Encode01DecodeFirst")])) #We should measure "0" with probability 0.85
print("Experimental Result of Encode01DecodeSecond")
plot_histogram(results.get_counts(circuits[circuitNames.index("Encode01DecodeSecond")])) #We should measure "1" with probability 0.85
print("Experimental Result of Encode11DecodeFirst")
plot_histogram(results.get_counts(circuits[circuitNames.index("Encode11DecodeFirst")])) #We should measure "1" with probability 0.85
print("Experimental Result of Encode11DecodeSecond")
plot_histogram(results.get_counts(circuits[circuitNames.index("Encode11DecodeSecond")])) #We should measure "1" with probability 0.85
#to enable sleep
import time
backend = "ibmqx4"
#connect to remote API to be able to use remote simulators and real devices
register(qx_config['APItoken'], qx_config['url'])
print("Available backends:", available_backends())
if get_backend(backend).status["available"] is True:
job_exp = execute(circuits, backend=backend, shots=shots)
lapse = 0
interval = 50
while not job_exp.done:
print('Status @ {} seconds'.format(interval * lapse))
print(job_exp.status)
time.sleep(interval)
lapse += 1
print(job_exp.status)
results = job_exp.result()
print("Experimental Result of Encode01DecodeFirst")
plot_histogram(results.get_counts(circuits[circuitNames.index("Encode01DecodeFirst")])) #We should measure "0" with probability 0.85
print("Experimental Result of Encode01DecodeSecond")
plot_histogram(results.get_counts(circuits[circuitNames.index("Encode01DecodeSecond")])) #We should measure "1" with probability 0.85
backend = 'local_qasm_simulator' # the device to run on
shots = 1024 # the number of shots in the experiment
from math import sqrt, cos, acos
#compute the value of theta
theta = acos(sqrt(0.5 + sqrt(3.0)/6.0))
#to record the u3 parameters for encoding 000, 010, 100, 110, 001, 011, 101, 111
rotationParams = {"000":(2*theta, pi/4, -pi/4), "010":(2*theta, 3*pi/4, -3*pi/4),
"100":(pi-2*theta, pi/4, -pi/4), "110":(pi-2*theta, 3*pi/4, -3*pi/4),
"001":(2*theta, -pi/4, pi/4), "011":(2*theta, -3*pi/4, 3*pi/4),
"101":(pi-2*theta, -pi/4, pi/4), "111":(pi-2*theta, -3*pi/4, 3*pi/4)}
# Creating registers
# qubit for encoding 3 bits of information
qr = QuantumRegister(1)
# bit for recording the measurement of the qubit
cr = ClassicalRegister(1)
# dictionary for encoding circuits
encodingCircuits = {}
# Quantum circuits for encoding 000, ..., 111
for bits in rotationParams.keys():
circuitName = "Encode"+bits
encodingCircuits[circuitName] = QuantumCircuit(qr, cr, name=circuitName)
encodingCircuits[circuitName].u3(*rotationParams[bits], qr[0])
encodingCircuits[circuitName].barrier()
# dictionary for decoding circuits
decodingCircuits = {}
# Quantum circuits for decoding the first, second and third bit
for pos in ("First", "Second", "Third"):
circuitName = "Decode"+pos
decodingCircuits[circuitName] = QuantumCircuit(qr, cr, name=circuitName)
if pos == "Second": #if pos == "First" we can directly measure
decodingCircuits[circuitName].h(qr[0])
elif pos == "Third":
decodingCircuits[circuitName].u3(pi/2, -pi/2, pi/2, qr[0])
decodingCircuits[circuitName].measure(qr[0], cr[0])
#combine encoding and decoding of QRACs to get a list of complete circuits
circuitNames = []
circuits = []
for k1 in encodingCircuits.keys():
for k2 in decodingCircuits.keys():
circuitNames.append(k1+k2)
circuits.append(encodingCircuits[k1]+decodingCircuits[k2])
print("List of circuit names:", circuitNames) #list of circuit names
job = execute(circuits, backend=backend, shots=shots)
results = job.result()
print("Experimental Result of Encode010DecodeFirst")
plot_histogram(results.get_counts(circuits[circuitNames.index("Encode010DecodeFirst")])) #We should measure "0" with probability 0.78
print("Experimental Result of Encode010DecodeSecond")
plot_histogram(results.get_counts(circuits[circuitNames.index("Encode010DecodeSecond")])) #We should measure "1" with probability 0.78
print("Experimental Result of Encode010DecodeThird")
plot_histogram(results.get_counts(circuits[circuitNames.index("Encode010DecodeThird")])) #We should measure "0" with probability 0.78
backend = "ibmqx4"
#backend = "local_qasm_simulator"
print("Available backends:", available_backends())
if get_backend(backend).status["available"] is True:
job_exp = execute(circuits, backend=backend, shots=shots)
lapse = 0
interval = 50
while not job_exp.done:
print('Status @ {} seconds'.format(interval * lapse))
print(job_exp.status)
time.sleep(interval)
lapse += 1
print(job_exp.status)
results = job_exp.result()
print("Experimental Result of Encode010DecodeFirst")
plot_histogram(results.get_counts(circuits[circuitNames.index("Encode010DecodeFirst")])) #We should measure "0" with probability 0.78
print("Experimental Result of Encode010DecodeSecond")
plot_histogram(results.get_counts(circuits[circuitNames.index("Encode010DecodeSecond")])) #We should measure "1" with probability 0.78
print("Experimental Result of Encode010DecodeThird")
plot_histogram(results.get_counts(circuits[circuitNames.index("Encode010DecodeThird")])) #We should measure "0" with probability 0.78
|
https://github.com/abhishekchak52/quantum-computing-course
|
abhishekchak52
|
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
# Importing standard Qiskit libraries
from qiskit import QuantumCircuit, execute
from qiskit.providers.aer import QasmSimulator
from qiskit.visualization import *
from qiskit.quantum_info import *
basis_gates = ['id', 'x', 'y', 'z', 's', 't', 'sdg', 'tdg', 'h', 'p', 'sx' ,'r', 'rx', 'ry', 'rz', 'u', 'u1', 'u2', 'u3', 'cx', 'ccx', 'barrier', 'measure', 'snapshot']
or_oracle = QuantumCircuit(3)
# Do not change below this line
or_oracle.draw(output='mpl')
or_tt = ['000', '011', '101', '111']
def check_or_oracle(tt_row):
check_qc = QuantumCircuit(3)
for i in range(2):
if (tt_row[i] == '1'):
check_qc.x(i)
check_qc.extend(or_oracle)
check_qc.measure_all()
return (execute(check_qc.reverse_bits(),backend=QasmSimulator(), shots=1).result().get_counts().most_frequent() == tt_row)
try:
assert list(or_oracle.count_ops()) != [], f"Circuit cannot be empty"
assert 'measure' not in or_oracle.count_ops(), f"Please remove measurements"
assert set(or_oracle.count_ops().keys()).difference(basis_gates) == set(), f"Only the following basic gates are allowed: {basis_gates}"
for tt_row in or_tt:
assert check_or_oracle(tt_row), f" Input {tt_row[0:2]}: Your encoding is not correct"
print("Your oracle construction passed all checks")
except AssertionError as e:
print(f'Your code has an error: {e.args[0]}')
except Exception as e:
print(f'This error occured: {e.args[0]}')
bv_oracle = QuantumCircuit(3)
bv_oracle.cx(0,2)
bv_oracle.cx(1,2)
bv_oracle.draw('mpl')
bv_circ = QuantumCircuit(3,2)
# Do not remove this line
bv_circ.draw(output='mpl')
try:
assert list(bv_circ.count_ops()) != [], f"Circuit cannot be empty"
assert set(bv_circ.count_ops().keys()).difference(basis_gates) == set(), f"Only the following basic gates are allowed: {basis_gates}"
counts = execute(bv_circ.reverse_bits(), backend=QasmSimulator(), shots=8192).result().get_counts()
assert list(counts.keys()) == ['11'], "Your circuit did not produce the right answer"
print(" Your circuit produced the correct output. Please submit for evaluation.")
except AssertionError as e:
print(f'Your code has an error: {e.args[0]}')
except Exception as e:
print(f'This error occured: {e.args[0]}')
plot_histogram(counts)
|
https://github.com/qiskit-community/qopt-best-practices
|
qiskit-community
|
def aggregate(alpha, measurements):
if not 0 <= alpha <= 1:
raise ValueError(f"alpha must be in [0, 1] but was {alpha}")
# sort by values
sorted_measurements = sorted(measurements, key=lambda x: x[1])
accumulated_percent = 0.0 # once alpha is reached, stop
cvar = 0.0
for probability, value in sorted_measurements:
cvar += value * min(probability, alpha - accumulated_percent)
accumulated_percent += probability
if accumulated_percent >= alpha:
break
return cvar / alpha
from qopt_best_practices.cost_function import evaluate_sparse_pauli
def cost_func_cvar_sampler(params, ansatz, hamiltonian, sampler, aggregation):
job = sampler.run(ansatz, params)
sampler_result = job.result()
sampled = sampler_result.quasi_dists[0]
# a dictionary containing: {state: (measurement probability, value)}
evaluated = {
state: (probability, evaluate_sparse_pauli(state, hamiltonian))
for state, probability in sampled.items()
}
result = aggregate(aggregation, evaluated.values())
return result
# BASIC STATEVECTOR SIMULATOR BACKEND --> primitives in qiskit.primtives
from qiskit.primitives import Sampler
sampler = Sampler()
# Import pre-computed Hamiltonian
import json
from qiskit.quantum_info import SparsePauliOp
graph_file = "data/graph_2layers_0seed.json"
data = json.load(open(graph_file, "r"))
hamiltonian = SparsePauliOp.from_list(data["paulis"])
print(hamiltonian)
# Build basic ansatz using the circuit library utility
from qiskit.circuit.library import QAOAAnsatz
ansatz = QAOAAnsatz(hamiltonian, reps=2)
ansatz.draw("mpl")
ansatz.measure_all()
# Define random initial point
import numpy as np
init_params = np.random.rand(ansatz.num_parameters)
print(init_params)
from scipy.optimize import minimize
result = minimize(
cost_func_cvar_sampler,
init_params,
args=(ansatz, hamiltonian, sampler, 0.5),
method="COBYLA",
)
print(result)
# auxiliary functions to sample most likely bitstring
def to_bitstring(integer, num_bits):
result = np.binary_repr(integer, width=num_bits)
return [int(digit) for digit in result]
def sample_most_likely_bitstring(state_vector, num_bits):
values = list(state_vector.values())
most_likely = np.argmax(np.abs(values))
most_likely_bitstring = to_bitstring(most_likely, num_bits)
most_likely_bitstring.reverse()
return np.asarray(most_likely_bitstring)
import matplotlib.pyplot as plt
import networkx as nx
# auxiliary function to plot graphs
def plot_result(G, x):
colors = ["r" if i == 0 else "b" for i in x]
pos, default_axes = nx.spring_layout(G), plt.axes(frameon=True)
nx.draw_networkx(G, node_color=colors, node_size=600, alpha=0.8, pos=pos)
from qopt_best_practices.utils import build_max_cut_graph
graph = build_max_cut_graph(data["paulis"])
qc = ansatz.assign_parameters(result.x)
samp_dist = sampler.run(qc, shots=int(1e4)).result().quasi_dists[0]
best_result = sample_most_likely_bitstring(samp_dist, len(graph))
plot_result(graph, best_result)
|
https://github.com/rickapocalypse/final_paper_qiskit_sat
|
rickapocalypse
|
from qiskit import*
import matplotlib.pyplot as plt
from qiskit.extensions import Initialize
from qiskit.tools.visualization import plot_bloch_multivector
from qiskit_textbook.tools import random_state
circuit = QuantumCircuit(3,2)
psi = random_state(1)
plot_bloch_multivector(psi)
init_gate = Initialize(psi)
print(f'\psi = {psi}')
init_gate.label = 'Estado inicial'
circuit.append(init_gate, [0])
circuit.barrier()
circuit.h(1)
circuit.cx(1,2)
circuit.barrier()
circuit.cx(0,1)
circuit.h(0)
circuit.barrier()
circuit.measure([0,1], [0,1]) # fazer as medidas de q0 e q1 e armazenar nos bits 0 e 1
circuit.barrier()
circuit.cx(1,2)
circuit.cz(0,2)
circuit.draw(output ='mpl')
simulator = Aer.get_backend('qasm_simulator')
circuit.save_statevector()
result = simulator.run(circuit).result().get_statevector()
plot_bloch_multivector(result)
plt.show()
|
https://github.com/swe-train/qiskit__qiskit
|
swe-train
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Filter ops from a circuit"""
from typing import Callable
from qiskit.dagcircuit import DAGCircuit, DAGOpNode
from qiskit.transpiler.basepasses import TransformationPass
from qiskit.transpiler.passes.utils import control_flow
class FilterOpNodes(TransformationPass):
"""Remove all operations that match a filter function
This transformation pass is used to remove any operations that matches a
the provided filter function.
Args:
predicate: A given callable that will be passed the :class:`.DAGOpNode`
for each node in the :class:`.DAGCircuit`. If the callable returns
``True`` the :class:`.DAGOpNode` is retained in the circuit and if it
returns ``False`` it is removed from the circuit.
Example:
Filter out operations that are labelled ``"foo"``
.. plot::
:include-source:
from qiskit import QuantumCircuit
from qiskit.transpiler.passes import FilterOpNodes
circuit = QuantumCircuit(1)
circuit.x(0, label='foo')
circuit.barrier()
circuit.h(0)
circuit = FilterOpNodes(
lambda node: getattr(node.op, "label") != "foo"
)(circuit)
circuit.draw('mpl')
"""
def __init__(self, predicate: Callable[[DAGOpNode], bool]):
super().__init__()
self.predicate = predicate
@control_flow.trivial_recurse
def run(self, dag: DAGCircuit) -> DAGCircuit:
"""Run the RemoveBarriers pass on `dag`."""
for node in dag.op_nodes():
if not self.predicate(node):
dag.remove_op_node(node)
return dag
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
from qiskit import QuantumCircuit
from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem
from qiskit.circuit.library import LinearAmplitudeFunction
from qiskit_aer.primitives import Sampler
from qiskit_finance.circuit.library import LogNormalDistribution
# number of qubits to represent the uncertainty
num_uncertainty_qubits = 3
# parameters for considered random distribution
S = 2.0 # initial spot price
vol = 0.4 # volatility of 40%
r = 0.05 # annual interest rate of 4%
T = 40 / 365 # 40 days to maturity
# resulting parameters for log-normal distribution
mu = (r - 0.5 * vol**2) * T + np.log(S)
sigma = vol * np.sqrt(T)
mean = np.exp(mu + sigma**2 / 2)
variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2)
stddev = np.sqrt(variance)
# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.
low = np.maximum(0, mean - 3 * stddev)
high = mean + 3 * stddev
# construct A operator for QAE for the payoff function by
# composing the uncertainty model and the objective
uncertainty_model = LogNormalDistribution(
num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high)
)
# plot probability distribution
x = uncertainty_model.values
y = uncertainty_model.probabilities
plt.bar(x, y, width=0.2)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.grid()
plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15)
plt.ylabel("Probability ($\%$)", size=15)
plt.show()
# set the strike price (should be within the low and the high value of the uncertainty)
strike_price = 1.896
# set the approximation scaling for the payoff function
c_approx = 0.25
# setup piecewise linear objective fcuntion
breakpoints = [low, strike_price]
slopes = [0, 1]
offsets = [0, 0]
f_min = 0
f_max = high - strike_price
european_call_objective = LinearAmplitudeFunction(
num_uncertainty_qubits,
slopes,
offsets,
domain=(low, high),
image=(f_min, f_max),
breakpoints=breakpoints,
rescaling_factor=c_approx,
)
# construct A operator for QAE for the payoff function by
# composing the uncertainty model and the objective
num_qubits = european_call_objective.num_qubits
european_call = QuantumCircuit(num_qubits)
european_call.append(uncertainty_model, range(num_uncertainty_qubits))
european_call.append(european_call_objective, range(num_qubits))
# draw the circuit
european_call.draw()
# plot exact payoff function (evaluated on the grid of the uncertainty model)
x = uncertainty_model.values
y = np.maximum(0, x - strike_price)
plt.plot(x, y, "ro-")
plt.grid()
plt.title("Payoff Function", size=15)
plt.xlabel("Spot Price", size=15)
plt.ylabel("Payoff", size=15)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.show()
# evaluate exact expected value (normalized to the [0, 1] interval)
exact_value = np.dot(uncertainty_model.probabilities, y)
exact_delta = sum(uncertainty_model.probabilities[x >= strike_price])
print("exact expected value:\t%.4f" % exact_value)
print("exact delta value: \t%.4f" % exact_delta)
european_call.draw()
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = EstimationProblem(
state_preparation=european_call,
objective_qubits=[3],
post_processing=european_call_objective.post_processing,
)
# construct amplitude estimation
ae = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result = ae.estimate(problem)
conf_int = np.array(result.confidence_interval_processed)
print("Exact value: \t%.4f" % exact_value)
print("Estimated value: \t%.4f" % (result.estimation_processed))
print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int))
from qiskit_finance.applications.estimation import EuropeanCallPricing
european_call_pricing = EuropeanCallPricing(
num_state_qubits=num_uncertainty_qubits,
strike_price=strike_price,
rescaling_factor=c_approx,
bounds=(low, high),
uncertainty_model=uncertainty_model,
)
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = european_call_pricing.to_estimation_problem()
# construct amplitude estimation
ae = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result = ae.estimate(problem)
conf_int = np.array(result.confidence_interval_processed)
print("Exact value: \t%.4f" % exact_value)
print("Estimated value: \t%.4f" % (european_call_pricing.interpret(result)))
print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int))
from qiskit_finance.applications.estimation import EuropeanCallDelta
european_call_delta = EuropeanCallDelta(
num_state_qubits=num_uncertainty_qubits,
strike_price=strike_price,
bounds=(low, high),
uncertainty_model=uncertainty_model,
)
european_call_delta._objective.decompose().draw()
european_call_delta_circ = QuantumCircuit(european_call_delta._objective.num_qubits)
european_call_delta_circ.append(uncertainty_model, range(num_uncertainty_qubits))
european_call_delta_circ.append(
european_call_delta._objective, range(european_call_delta._objective.num_qubits)
)
european_call_delta_circ.draw()
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = european_call_delta.to_estimation_problem()
# construct amplitude estimation
ae_delta = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result_delta = ae_delta.estimate(problem)
conf_int = np.array(result_delta.confidence_interval_processed)
print("Exact delta: \t%.4f" % exact_delta)
print("Esimated value: \t%.4f" % european_call_delta.interpret(result_delta))
print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int))
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
|
shesha-raghunathan
|
import math
import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt
# swap is 2x2 matrix
swap = np.array([[0, 1], [1, 0]], dtype=complex)
# Hadamard coin
c_Hadamard = (1/math.sqrt(2))*np.array([[1, 1], [1, -1]], dtype=complex)
# Balanced coin (not used)
c_bal = (1/math.sqrt(2))*np.array([[1, 1j], [1j, 1]], dtype=complex)
# step with swap and coin
s_coin = c_Hadamard.dot(swap)
# Number of nodes (should be odd)
n_nodes = 15
# Step 1 includes swap and coin for first partition
Step1 = np.identity(n_nodes, dtype=complex)
for i in range(0,n_nodes-1,2):
for i1 in range(0,2):
for i2 in range(0,2):
Step1[i+i1,i+i2] = s_coin[i1,i2]
# Step 2 includes swap for second partition
Step2 = np.identity(n_nodes, dtype=complex)
for i in range(1,n_nodes,2):
for i1 in range(0,2):
for i2 in range(0,2):
Step2[i+i1,i+i2] = swap[i1,i2]
# Vector with chain nodes
ch = np.zeros(n_nodes, dtype=complex)
# Initial distribution for symmetric walk with Hadamard coin
# two central nodes
n_pos = n_nodes//2
ch[n_pos] = 1/math.sqrt(2)
ch[n_pos+1] = 1j/math.sqrt(2)
# Alternative initial distribution also could be used
#ch[0] = 1
# Probability from complex amplitude
def abs2(x):
return x.real**2 + x.imag**2
# Vector with probabilities
ch2 = np.zeros(n_nodes, dtype = float)
# Number of steps
n_step=12
for i in range(0,n_step):
if i > 0: # step = 0 doing nothing, only draw
if i%2 == 1 :
ch = Step1.dot(ch) # odd steps 1 3 5 ...
else:
ch = Step2.dot(ch) # even steps 2 4 6 ...
ch2 = abs2(ch) # calculate probabilities
print(ch2)
if i%2 == 0 : # plot for even steps 0 2 4 ...
plt.plot(ch2)
plt.show()
|
https://github.com/Marduk-42/Quantum-Algorithm-Tutorials
|
Marduk-42
|
from qiskit import *
def random_int(backend, size):
qreg = QuantumRegister(1) #Using only one quibt
creg = ClassicalRegister(1)
circuit = QuantumCircuit(qreg,creg)
circuit.reset(qreg) #Reset the qubit to state |0>
circuit.h(qreg) #Apply Hadamard gate/put qubit into superposition
circuit.measure(qreg,creg) #Measure
job = execute(circuit, backend, shots=size, memory=True)
result = job.result()
bin_num = ''.join(result.get_memory())
return int(bin_num,2)
#QASM Simulator backend:
backend = Aer.get_backend('qasm_simulator')
#Real IBM Quantum Computer backend
#from qiskit.providers.ibmq import least_busy
#provider = IBMQ.load_account()
#backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
# not x.configuration().simulator and x.status().operational==True))
bits = 64
print("Here you have a random number: ", random_int(backend, bits))
|
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
|
mathelatics
|
import qiskit.quantum_info as qi
from qiskit.circuit.library import FourierChecking
from qiskit.visualization import plot_histogram
f = [1, -1, -1, -1]
g = [1, 1, -1, -1]
# FourierChecking() : How our Fourier Transform of F is correlated with G.
# if p(f,g) <= 0.01
# p(f, g) > 0.05 Fourier Exits between f and g
qc = FourierChecking(f=f, g=g)
qc.draw(output='mpl')
zero = qi.Statevector.from_label('00')
sv = zero.evolve(qc)
probs = sv.probabilities_dict()
plot_histogram(probs)
# We are only interested in 00 qubit thus our function f is correlated in 00 state to g with probabilites of 25%
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit, transpile
from qiskit.providers.fake_provider import FakeBoeblingen
backend = FakeBoeblingen()
ghz = QuantumCircuit(5)
ghz.h(0)
ghz.cx(0,range(1,5))
circ = transpile(ghz, backend, scheduling_method="asap")
circ.draw(output='mpl')
|
https://github.com/Z-928/Bugs4Q
|
Z-928
|
from qiskit import Aer, QuantumCircuit, transpile
from qiskit.circuit.library import PhaseEstimation
qc= QuantumCircuit(3,3)
# dummy unitary circuit
unitary_circuit = QuantumCircuit(1)
unitary_circuit.h(0)
# QPE
qc.append(PhaseEstimation(2, unitary_circuit), list(range(3)))
qc.measure(list(range(3)), list(range(3)))
backend = Aer.get_backend('qasm_simulator')
qc_transpiled = transpile(qc, backend)
result = backend.run(qc, shots = 8192).result()
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=wrong-import-order
"""Main Qiskit public functionality."""
import pkgutil
# First, check for required Python and API version
from . import util
# qiskit errors operator
from .exceptions import QiskitError
# The main qiskit operators
from qiskit.circuit import ClassicalRegister
from qiskit.circuit import QuantumRegister
from qiskit.circuit import QuantumCircuit
# pylint: disable=redefined-builtin
from qiskit.tools.compiler import compile # TODO remove after 0.8
from qiskit.execute import execute
# The qiskit.extensions.x imports needs to be placed here due to the
# mechanism for adding gates dynamically.
import qiskit.extensions
import qiskit.circuit.measure
import qiskit.circuit.reset
# Allow extending this namespace. Please note that currently this line needs
# to be placed *before* the wrapper imports or any non-import code AND *before*
# importing the package you want to allow extensions for (in this case `backends`).
__path__ = pkgutil.extend_path(__path__, __name__)
# Please note these are global instances, not modules.
from qiskit.providers.basicaer import BasicAer
# Try to import the Aer provider if installed.
try:
from qiskit.providers.aer import Aer
except ImportError:
pass
# Try to import the IBMQ provider if installed.
try:
from qiskit.providers.ibmq import IBMQ
except ImportError:
pass
from .version import __version__
from .version import __qiskit_version__
|
https://github.com/hephaex/Quantum-Computing-Awesome-List
|
hephaex
|
import cirq
import random
def main(qubit_count = 8):
circuit_sample_count = 3
# Choose qubits to use.
input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)]
output_qubit = cirq.GridQubit(qubit_count, 0)
# Pick coefficients for the oracle and create a circuit to query it.
secret_bias_bit = random.randint(0, 1)
secret_factor_bits = [random.randint(0, 1) for _ in range(qubit_count)]
oracle = make_oracle(input_qubits,
output_qubit,
secret_factor_bits,
secret_bias_bit)
print('Secret function:\nf(a) = a·<{}> + {} (mod 2)'.format(
', '.join(str(e) for e in secret_factor_bits),
secret_bias_bit))
# Embed the oracle into a special quantum circuit querying it exactly once.
circuit = make_bernstein_vazirani_circuit(
input_qubits, output_qubit, oracle)
print('Circuit:')
print(circuit)
# Sample from the circuit a couple times.
simulator = cirq.Simulator()
result = simulator.run(circuit, repetitions=circuit_sample_count)
frequencies = result.histogram(key='result', fold_func=bitstring)
print('Sampled results:\n{}'.format(frequencies))
# Check if we actually found the secret value.
most_common_bitstring = frequencies.most_common(1)[0][0]
print('Most common matches secret factors:\n{}'.format(
most_common_bitstring == bitstring(secret_factor_bits)))
def make_oracle(input_qubits,
output_qubit,
secret_factor_bits,
secret_bias_bit):
"""Gates implementing the function f(a) = a·factors + bias (mod 2)."""
if secret_bias_bit:
yield cirq.X(output_qubit)
for qubit, bit in zip(input_qubits, secret_factor_bits):
if bit:
yield cirq.CNOT(qubit, output_qubit)
def make_bernstein_vazirani_circuit(input_qubits, output_qubit, oracle):
"""Solves for factors in f(a) = a·factors + bias (mod 2) with one query."""
c = cirq.Circuit()
# Initialize qubits.
c.append([
cirq.X(output_qubit),
cirq.H(output_qubit),
cirq.H.on_each(*input_qubits),
])
# Query oracle.
c.append(oracle)
# Measure in X basis.
c.append([
cirq.H.on_each(*input_qubits),
cirq.measure(*input_qubits, key='result')
])
return c
def bitstring(bits):
return ''.join(str(int(b)) for b in bits)
if __name__ == '__main__':
main()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_nature.mappers.second_quantization import LogarithmicMapper
mapper = LogarithmicMapper(2)
from qiskit_nature.second_q.mappers import LogarithmicMapper
mapper = LogarithmicMapper(2)
from qiskit_nature.second_q.mappers import LogarithmicMapper
mapper = LogarithmicMapper(padding=2)
from qiskit_nature.circuit.library import HartreeFock
from qiskit_nature.converters.second_quantization import QubitConverter
from qiskit_nature.mappers.second_quantization import JordanWignerMapper
converter = QubitConverter(JordanWignerMapper())
init_state = HartreeFock(num_spin_orbitals=6, num_particles=(2, 1), qubit_converter=converter)
print(init_state.draw())
from qiskit_nature.second_q.circuit.library import HartreeFock
from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter
converter = QubitConverter(JordanWignerMapper())
init_state = HartreeFock(num_spatial_orbitals=3, num_particles=(2, 1), qubit_converter=converter)
print(init_state.draw())
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/0sophy1/Qiskit-Dev-Cert-lectures
|
0sophy1
|
a = 2 + 3j
b = 5 - 2j
print("a + b=", a+b)
print("a * b=", a*b)
a = 2 + 3j
a_bar = 2 - 3j
print("a + a_bar = ", a + a_bar)
print("a * a_bar = ", a * a_bar)
import matplotlib.pyplot as plt
import numpy as np
import math
z1 = 3 + 4j
x_min = 0
x_max = 5.0
y_min = 0
y_max = 5.0
def plot_complex_number_geometric_representation(z,x_min,x_max,y_min,y_max):
fig = plt.figure()
ax = plt.gca()
a = [0.0,0.0]
b = [z.real,z.imag]
head_length = 0.2
dx = b[0] - a[0]
dy = b[1] - a[1]
vec_ab = [dx,dy]
vec_ab_magnitude = math.sqrt(dx**2+dy**2)
dx = dx / vec_ab_magnitude
dy = dy / vec_ab_magnitude
vec_ab_magnitude = vec_ab_magnitude - head_length
ax.arrow(a[0], a[1], vec_ab_magnitude*dx, vec_ab_magnitude*dy, head_width=head_length, head_length=head_length, fc='black', ec='black')
plt.xlim(x_min,x_max)
plt.ylim(y_min,y_max)
plt.grid(True,linestyle='-')
plt.show()
plot_complex_number_geometric_representation(z1,x_min,x_max,y_min,y_max)
import numpy as np
A = np.array([[1,2,3]])
B = np.array([[7], [10], [9]])
A+B
A = np.array([[7], [10], [9]])
B = np.array([[1,2,3]])
C = np.array([[1, 2, 3], [5, 6, 7], [8,9,10]])
print("AB = ", np.matmul(A,B))
print("BA = ", np.matmul(B,A))
print("CA = ", np.matmul(C, A))
print("AC = ", np.matmul(A, C))
A = np.array([[1, 2], [3,4]])
B = np.array([[5, 6], [7,8]])
print("AB = \n", np.matmul(A,B))
print("BA = \n", np.matmul(B,A))
from scipy.linalg import orth
from numpy import linalg as LA
A = np.array([[1 + 3j, 2 - 1j], [3, 4 - 2j]])
data =orth(A)
x, y = data[:, 0], data[:, 1]
print("norm of x = %f" % LA.norm(x))
print("norm of y = %f" % LA.norm(y))
print("x dot y = ", np.vdot(x,y))
|
https://github.com/carstenblank/dc-qiskit-stochastics
|
carstenblank
|
# Copyright 2018-2022 Carsten Blank
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Optional, Dict, Any, Union
import numpy as np
import qiskit
from dc_qiskit_algorithms import UniformRotationGate, QuantumFourierTransformGate
from dc_qiskit_algorithms.MöttönenStatePreparation import get_alpha_y
from dc_qiskit_algorithms.Qft import get_theta
from hmmlearn import hmm
from hmmlearn.hmm import MultinomialHMM
from qiskit import QuantumRegister, QuantumCircuit
from qiskit.circuit import Gate, Parameter
from qiskit.circuit.library import RYGate, CU1Gate
from scipy import sparse
LOG = logging.basicConfig(format=logging.BASIC_FORMAT)
class DraperAdder(Gate):
num_qubits_a: int
num_qubits_b: int
def __init__(self, num_qubits_a: int, num_qubits_b: int, label: Optional[str] = None) -> None:
super().__init__("draper", num_qubits_a + num_qubits_b, [], label)
self.num_qubits_a = num_qubits_a
self.num_qubits_b = num_qubits_b
def _define(self):
a = QuantumRegister(self.num_qubits_a, "a")
b = QuantumRegister(self.num_qubits_b, "b")
qc = QuantumCircuit(a, b, name=self.name)
qc.append(QuantumFourierTransformGate(len(a)), a, [])
for b_index in reversed(range(len(b))):
theta_index = 1
for a_index in reversed(range(b_index + 1)):
qc.append(CU1Gate(get_theta(theta_index)), [b[b_index], a[a_index]], [])
theta_index += 1
qc.append(QuantumFourierTransformGate(len(a)).inverse(), a, [])
self.definition = qc
class RYGateSpecial(object):
scaling: Parameter
def __init__(self, scaling: Parameter):
self.scaling = scaling
def gate(self):
return lambda phi: RYGate(self.scaling * (-phi))
class MultinomialHmmSpecial(MultinomialHMM):
def __init__(self, n_components=1, startprob_prior=1.0, transmat_prior=1.0, algorithm="viterbi", random_state=None,
n_iter=10, tol=1e-2, verbose=False, params="ste", init_params="ste"):
super().__init__(n_components, startprob_prior, transmat_prior, algorithm, random_state, n_iter, tol, verbose,
params, init_params)
def emitted_symbol(self, state):
return self.emissionprob_[state, :].argmax()
def _generate_sample_from_state(self, state, random_state=None):
most_likely_emmission = self.emitted_symbol(state)
return [most_likely_emmission]
class HiddenMarkovModel(object):
emitted_symbols_map: Dict[int, float]
accumulator_register: QuantumRegister
state_register: QuantumRegister
number_of_state_qubits: int
number_of_level_qubits: int
model: MultinomialHmmSpecial
def __init__(self, model: MultinomialHmmSpecial, emitted_symbols_map: Optional[Dict[int, float]] = None) -> None:
self.emitted_symbols_map = emitted_symbols_map or {}
self.model = model
self.number_of_state_qubits = int(np.ceil(np.log2(model.n_components)))
self.number_of_level_qubits = int(np.ceil(np.log2(model.n_features)))
self.state_register = QuantumRegister(size=self.number_of_state_qubits, name='state')
self.accumulator_register = QuantumRegister(size=1, name='accumulator')
def _create_index(self, level: int, scaling: Parameter):
angles = {}
for k in range(1, self.number_of_state_qubits + 1):
size_of_vector = 2 ** (2 * self.number_of_state_qubits - k)
vector = sparse.dok_matrix((size_of_vector, 1))
angles[k] = vector
transition_matrix: np.ndarray = self.model.transmat_
for state in range(self.model.n_components):
transitions: np.ndarray = transition_matrix[state]
a = sparse.dok_matrix([transitions]).transpose()
for k in range(1, self.number_of_state_qubits + 1):
resulting_angles = angles[k]
alpha_vector = get_alpha_y(a, self.number_of_state_qubits, k)
offset = state * 2 ** (self.number_of_state_qubits - k)
for key, alpha in alpha_vector.items():
resulting_angles[offset + key[0], key[1]] = alpha
level_register = QuantumRegister(size=self.number_of_state_qubits, name=f'level_{level}')
qc: QuantumCircuit = QuantumCircuit(self.state_register, level_register, name=f'circuit_level_{level}')
for k in range(1, self.number_of_state_qubits + 1):
alpha_angles = angles[k]
control = list(self.state_register) + list(level_register)[0:self.number_of_state_qubits - k]
target = level_register[self.number_of_state_qubits - k]
# FIXME: scaling must be adjusted too!
qc.append(UniformRotationGate(gate=RYGateSpecial(scaling).gate(), alpha=alpha_angles), control + [target], [])
return qc
def _create_accumulator_circuit(self, level: int, scaling: Parameter):
angles: sparse.dok_matrix = sparse.dok_matrix((2 ** (2 * self.number_of_state_qubits), 1))
for state in range(self.model.n_components):
for transition in range(self.model.n_components):
index = state + transition * self.model.n_components
# The emitted symbol that occurs when going from state to state + transition!
target_state = (state + transition) % self.model.n_components
# The problem with the HMM is that it associates to a state a random variable
# FIXME: for epsilon-machines this is a state/target-state pair!
emitted_symbol = self.model.emitted_symbol(target_state)
angles[index, 0] = self.emitted_symbols_map.get(emitted_symbol, emitted_symbol)
level_register = QuantumRegister(size=self.number_of_state_qubits, name=f'level_{level}')
qc: QuantumCircuit = QuantumCircuit(self.state_register, level_register, self.accumulator_register,
name=f'circuit_accumulator_{level}')
control = list(self.state_register) + list(level_register)
target = list(self.accumulator_register)[0]
# FIXME: scaling must be adjusted too!
qc.append(
UniformRotationGate(gate=RYGateSpecial(scaling).gate(), alpha=angles), control + [target], []
)
return qc
def _create_adder(self, level: int):
level_register = QuantumRegister(size=self.number_of_state_qubits, name=f'level_{level}')
qc: QuantumCircuit = QuantumCircuit(self.state_register, level_register,
name=f'circuit_adder_{level}')
control = list(self.state_register) + list(level_register)
if self.number_of_state_qubits == 1:
qc.cx(level_register, self.state_register)
else:
qc.append(
DraperAdder(num_qubits_a=self.number_of_state_qubits, num_qubits_b=self.number_of_state_qubits), control, []
)
return qc
if __name__ == "__main__":
samples = 10*[[0], [1], [1], [1], [1], [2], [2], [0], [1], [1], [1], [0], [2]]
model = hmm.MultinomialHMM(n_components=4)
model.fit(samples)
samples = model.sample(10)
q_model = HiddenMarkovModel(model)
qc: QuantumCircuit = QuantumCircuit(name='hmm_circuit')
scaling_v: Parameter = Parameter('v')
steps = 3
for level in range(1, steps + 1):
level_qc = q_model._create_index(level, scaling_v)
qc.extend(level_qc)
# qc.barrier()
acc_qc = q_model._create_accumulator_circuit(level, scaling_v)
qc.extend(acc_qc)
# qc.barrier()
update_state_qc = q_model._create_adder(level)
qc.extend(update_state_qc)
qc.barrier()
print(qc.draw(fold=-1))
transpiled_qc = qiskit.transpile(
qc,
optimization_level=3,
basis_gates=[
'u1', 'u2', 'u3', 'cx', 'id',
# 'cu1', 'h'
]
)
print(transpiled_qc.draw(fold=-1))
print(transpiled_qc.depth(), transpiled_qc.width())
|
https://github.com/QuSTaR/kaleidoscope
|
QuSTaR
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""A module for visualizing device coupling maps."""
import math
from typing import List
import numpy as np
from qiskit.exceptions import MissingOptionalLibraryError, QiskitError
from qiskit.providers.backend import BackendV2
from qiskit.tools.visualization import HAS_MATPLOTLIB, VisualizationError
from qiskit.visualization.utils import matplotlib_close_if_inline
def plot_gate_map(
backend,
figsize=None,
plot_directed=False,
label_qubits=True,
qubit_size=None,
line_width=4,
font_size=None,
qubit_color=None,
qubit_labels=None,
line_color=None,
font_color="w",
ax=None,
filename=None,
qubit_coordinates=None,
):
"""Plots the gate map of a device.
Args:
backend (BaseBackend): The backend instance that will be used to plot the device
gate map.
figsize (tuple): Output figure size (wxh) in inches.
plot_directed (bool): Plot directed coupling map.
label_qubits (bool): Label the qubits.
qubit_size (float): Size of qubit marker.
line_width (float): Width of lines.
font_size (int): Font size of qubit labels.
qubit_color (list): A list of colors for the qubits
qubit_labels (list): A list of qubit labels
line_color (list): A list of colors for each line from coupling_map.
font_color (str): The font color for the qubit labels.
ax (Axes): A Matplotlib axes instance.
filename (str): file path to save image to.
Returns:
Figure: A Matplotlib figure instance.
Raises:
QiskitError: if tried to pass a simulator, or if the backend is None,
but one of num_qubits, mpl_data, or cmap is None.
MissingOptionalLibraryError: if matplotlib not installed.
Example:
.. jupyter-execute::
:hide-code:
:hide-output:
from qiskit.test.ibmq_mock import mock_get_backend
mock_get_backend('FakeVigo')
.. jupyter-execute::
from qiskit import QuantumCircuit, execute, IBMQ
from qiskit.visualization import plot_gate_map
%matplotlib inline
provider = IBMQ.load_account()
accountProvider = IBMQ.get_provider(hub='ibm-q')
backend = accountProvider.get_backend('ibmq_vigo')
plot_gate_map(backend)
"""
if not HAS_MATPLOTLIB:
raise MissingOptionalLibraryError(
libname="Matplotlib",
name="plot_gate_map",
pip_install="pip install matplotlib",
)
if isinstance(backend, BackendV2):
pass
elif backend.configuration().simulator:
raise QiskitError("Requires a device backend, not simulator.")
qubit_coordinates_map = {}
qubit_coordinates_map[1] = [[0, 0]]
qubit_coordinates_map[5] = [[1, 0], [0, 1], [1, 1], [1, 2], [2, 1]]
qubit_coordinates_map[7] = [[0, 0], [0, 1], [0, 2], [1, 1], [2, 0], [2, 1], [2, 2]]
qubit_coordinates_map[20] = [
[0, 0],
[0, 1],
[0, 2],
[0, 3],
[0, 4],
[1, 0],
[1, 1],
[1, 2],
[1, 3],
[1, 4],
[2, 0],
[2, 1],
[2, 2],
[2, 3],
[2, 4],
[3, 0],
[3, 1],
[3, 2],
[3, 3],
[3, 4],
]
qubit_coordinates_map[15] = [
[0, 0],
[0, 1],
[0, 2],
[0, 3],
[0, 4],
[0, 5],
[0, 6],
[1, 7],
[1, 6],
[1, 5],
[1, 4],
[1, 3],
[1, 2],
[1, 1],
[1, 0],
]
qubit_coordinates_map[16] = [
[1, 0],
[1, 1],
[2, 1],
[3, 1],
[1, 2],
[3, 2],
[0, 3],
[1, 3],
[3, 3],
[4, 3],
[1, 4],
[3, 4],
[1, 5],
[2, 5],
[3, 5],
[1, 6],
]
qubit_coordinates_map[27] = [
[1, 0],
[1, 1],
[2, 1],
[3, 1],
[1, 2],
[3, 2],
[0, 3],
[1, 3],
[3, 3],
[4, 3],
[1, 4],
[3, 4],
[1, 5],
[2, 5],
[3, 5],
[1, 6],
[3, 6],
[0, 7],
[1, 7],
[3, 7],
[4, 7],
[1, 8],
[3, 8],
[1, 9],
[2, 9],
[3, 9],
[3, 10],
]
qubit_coordinates_map[28] = [
[0, 2],
[0, 3],
[0, 4],
[0, 5],
[0, 6],
[1, 2],
[1, 6],
[2, 0],
[2, 1],
[2, 2],
[2, 3],
[2, 4],
[2, 5],
[2, 6],
[2, 7],
[2, 8],
[3, 0],
[3, 4],
[3, 8],
[4, 0],
[4, 1],
[4, 2],
[4, 3],
[4, 4],
[4, 5],
[4, 6],
[4, 7],
[4, 8],
]
qubit_coordinates_map[53] = [
[0, 2],
[0, 3],
[0, 4],
[0, 5],
[0, 6],
[1, 2],
[1, 6],
[2, 0],
[2, 1],
[2, 2],
[2, 3],
[2, 4],
[2, 5],
[2, 6],
[2, 7],
[2, 8],
[3, 0],
[3, 4],
[3, 8],
[4, 0],
[4, 1],
[4, 2],
[4, 3],
[4, 4],
[4, 5],
[4, 6],
[4, 7],
[4, 8],
[5, 2],
[5, 6],
[6, 0],
[6, 1],
[6, 2],
[6, 3],
[6, 4],
[6, 5],
[6, 6],
[6, 7],
[6, 8],
[7, 0],
[7, 4],
[7, 8],
[8, 0],
[8, 1],
[8, 2],
[8, 3],
[8, 4],
[8, 5],
[8, 6],
[8, 7],
[8, 8],
[9, 2],
[9, 6],
]
qubit_coordinates_map[65] = [
[0, 0],
[0, 1],
[0, 2],
[0, 3],
[0, 4],
[0, 5],
[0, 6],
[0, 7],
[0, 8],
[0, 9],
[1, 0],
[1, 4],
[1, 8],
[2, 0],
[2, 1],
[2, 2],
[2, 3],
[2, 4],
[2, 5],
[2, 6],
[2, 7],
[2, 8],
[2, 9],
[2, 10],
[3, 2],
[3, 6],
[3, 10],
[4, 0],
[4, 1],
[4, 2],
[4, 3],
[4, 4],
[4, 5],
[4, 6],
[4, 7],
[4, 8],
[4, 9],
[4, 10],
[5, 0],
[5, 4],
[5, 8],
[6, 0],
[6, 1],
[6, 2],
[6, 3],
[6, 4],
[6, 5],
[6, 6],
[6, 7],
[6, 8],
[6, 9],
[6, 10],
[7, 2],
[7, 6],
[7, 10],
[8, 1],
[8, 2],
[8, 3],
[8, 4],
[8, 5],
[8, 6],
[8, 7],
[8, 8],
[8, 9],
[8, 10],
]
if isinstance(backend, BackendV2):
num_qubits = backend.num_qubits
coupling_map = backend.plot_coupling_map
else:
config = backend.configuration()
num_qubits = config.n_qubits
coupling_map = config.coupling_map
# don't reference dictionary if provided as a parameter
if qubit_coordinates is None:
qubit_coordinates = qubit_coordinates_map.get(num_qubits)
# try to adjust num_qubits to match the next highest hardcoded grid size
if qubit_coordinates is None:
if any([num_qubits < key for key in qubit_coordinates_map.keys()]):
num_qubits_roundup = max(qubit_coordinates_map.keys())
for key in qubit_coordinates_map.keys():
if key < num_qubits_roundup and key > num_qubits:
num_qubits_roundup = key
qubit_coordinates = qubit_coordinates_map.get(num_qubits_roundup)
return plot_coupling_map(
num_qubits,
qubit_coordinates,
coupling_map,
figsize,
plot_directed,
label_qubits,
qubit_size,
line_width,
font_size,
qubit_color,
qubit_labels,
line_color,
font_color,
ax,
filename,
)
def plot_coupling_map(
num_qubits: int,
qubit_coordinates: List[List[int]],
coupling_map: List[List[int]],
figsize=None,
plot_directed=False,
label_qubits=True,
qubit_size=None,
line_width=4,
font_size=None,
qubit_color=None,
qubit_labels=None,
line_color=None,
font_color="w",
ax=None,
filename=None,
):
"""Plots an arbitrary coupling map of qubits (embedded in a plane).
Args:
num_qubits (int): The number of qubits defined and plotted.
qubit_coordinates (List[List[int]]): A list of two-element lists, with entries of each nested
list being the planar coordinates in a 0-based square grid where each qubit is located.
coupling_map (List[List[int]]): A list of two-element lists, with entries of each nested
list being the qubit numbers of the bonds to be plotted.
figsize (tuple): Output figure size (wxh) in inches.
plot_directed (bool): Plot directed coupling map.
label_qubits (bool): Label the qubits.
qubit_size (float): Size of qubit marker.
line_width (float): Width of lines.
font_size (int): Font size of qubit labels.
qubit_color (list): A list of colors for the qubits
qubit_labels (list): A list of qubit labels
line_color (list): A list of colors for each line from coupling_map.
font_color (str): The font color for the qubit labels.
ax (Axes): A Matplotlib axes instance.
filename (str): file path to save image to.
Returns:
Figure: A Matplotlib figure instance.
Raises:
MissingOptionalLibraryError: if matplotlib not installed.
QiskitError: If length of qubit labels does not match number of qubits.
Example:
.. jupyter-execute::
from qiskit.visualization import plot_coupling_map
%matplotlib inline
num_qubits = 8
coupling_map = [[0, 1], [1, 2], [2, 3], [3, 5], [4, 5], [5, 6], [2, 4], [6, 7]]
qubit_coordinates = [[0, 1], [1, 1], [1, 0], [1, 2], [2, 0], [2, 2], [2, 1], [3, 1]]
plot_coupling_map(num_qubits, coupling_map, qubit_coordinates)
"""
if not HAS_MATPLOTLIB:
raise MissingOptionalLibraryError(
libname="Matplotlib",
name="plot_coupling_map",
pip_install="pip install matplotlib",
)
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
input_axes = False
if ax:
input_axes = True
if font_size is None:
font_size = 12
if qubit_size is None:
qubit_size = 24
if num_qubits > 20:
qubit_size = 28
font_size = 10
if qubit_labels is None:
qubit_labels = list(range(num_qubits))
else:
if len(qubit_labels) != num_qubits:
raise QiskitError("Length of qubit labels does not equal number of qubits.")
if qubit_coordinates is not None:
grid_data = qubit_coordinates
else:
if not input_axes:
fig, ax = plt.subplots(figsize=(5, 5))
ax.axis("off")
if filename:
fig.savefig(filename)
return fig
x_max = max(d[1] for d in grid_data)
y_max = max(d[0] for d in grid_data)
max_dim = max(x_max, y_max)
if figsize is None:
if num_qubits == 1 or (x_max / max_dim > 0.33 and y_max / max_dim > 0.33):
figsize = (5, 5)
else:
figsize = (9, 3)
if ax is None:
fig, ax = plt.subplots(figsize=figsize)
ax.axis("off")
# set coloring
if qubit_color is None:
qubit_color = ["#648fff"] * num_qubits
if line_color is None:
line_color = ["#648fff"] * len(coupling_map) if coupling_map else []
# Add lines for couplings
if num_qubits != 1:
for ind, edge in enumerate(coupling_map):
is_symmetric = False
if edge[::-1] in coupling_map:
is_symmetric = True
y_start = grid_data[edge[0]][0]
x_start = grid_data[edge[0]][1]
y_end = grid_data[edge[1]][0]
x_end = grid_data[edge[1]][1]
if is_symmetric:
if y_start == y_end:
x_end = (x_end - x_start) / 2 + x_start
elif x_start == x_end:
y_end = (y_end - y_start) / 2 + y_start
else:
x_end = (x_end - x_start) / 2 + x_start
y_end = (y_end - y_start) / 2 + y_start
ax.add_artist(
plt.Line2D(
[x_start, x_end],
[-y_start, -y_end],
color=line_color[ind],
linewidth=line_width,
zorder=0,
)
)
if plot_directed:
dx = x_end - x_start
dy = y_end - y_start
if is_symmetric:
x_arrow = x_start + dx * 0.95
y_arrow = -y_start - dy * 0.95
dx_arrow = dx * 0.01
dy_arrow = -dy * 0.01
head_width = 0.15
else:
x_arrow = x_start + dx * 0.5
y_arrow = -y_start - dy * 0.5
dx_arrow = dx * 0.2
dy_arrow = -dy * 0.2
head_width = 0.2
ax.add_patch(
mpatches.FancyArrow(
x_arrow,
y_arrow,
dx_arrow,
dy_arrow,
head_width=head_width,
length_includes_head=True,
edgecolor=None,
linewidth=0,
facecolor=line_color[ind],
zorder=1,
)
)
# Add circles for qubits
for var, idx in enumerate(grid_data):
# add check if num_qubits had been rounded up
if var >= num_qubits:
break
_idx = [idx[1], -idx[0]]
ax.add_artist(
mpatches.Ellipse(
_idx,
qubit_size / 48,
qubit_size / 48, # This is here so that the changes
color=qubit_color[var],
zorder=1,
)
) # to how qubits are plotted does
if label_qubits: # not affect qubit size kwarg.
ax.text(
*_idx,
s=qubit_labels[var],
horizontalalignment="center",
verticalalignment="center",
color=font_color,
size=font_size,
weight="bold",
)
ax.set_xlim([-1, x_max + 1])
ax.set_ylim([-(y_max + 1), 1])
ax.set_aspect("equal")
if not input_axes:
matplotlib_close_if_inline(fig)
if filename:
fig.savefig(filename)
return fig
return None
def plot_circuit_layout(circuit, backend, view="virtual", qubit_coordinates=None):
"""Plot the layout of a circuit transpiled for a given target backend.
Args:
circuit (QuantumCircuit): Input quantum circuit.
backend (BaseBackend): Target backend.
view (str): Layout view: either 'virtual' or 'physical'.
Returns:
Figure: A matplotlib figure showing layout.
Raises:
QiskitError: Invalid view type given.
VisualizationError: Circuit has no layout attribute.
Example:
.. jupyter-execute::
:hide-code:
:hide-output:
from qiskit.test.ibmq_mock import mock_get_backend
mock_get_backend('FakeVigo')
.. jupyter-execute::
import numpy as np
from qiskit import QuantumCircuit, IBMQ, transpile
from qiskit.visualization import plot_histogram, plot_gate_map, plot_circuit_layout
from qiskit.tools.monitor import job_monitor
import matplotlib.pyplot as plt
%matplotlib inline
IBMQ.load_account()
ghz = QuantumCircuit(3, 3)
ghz.h(0)
for idx in range(1,3):
ghz.cx(0,idx)
ghz.measure(range(3), range(3))
provider = IBMQ.get_provider(hub='ibm-q')
backend = provider.get_backend('ibmq_vigo')
new_circ_lv3 = transpile(ghz, backend=backend, optimization_level=3)
plot_circuit_layout(new_circ_lv3, backend)
"""
if circuit._layout is None:
raise QiskitError("Circuit has no layout. Perhaps it has not been transpiled.")
if isinstance(backend, BackendV2):
num_qubits = backend.num_qubits
else:
num_qubits = backend.configuration().n_qubits
qubits = []
qubit_labels = [None] * num_qubits
bit_locations = {
bit: {"register": register, "index": index}
for register in circuit._layout.get_registers()
for index, bit in enumerate(register)
}
for index, qubit in enumerate(circuit._layout.get_virtual_bits()):
if qubit not in bit_locations:
bit_locations[qubit] = {"register": None, "index": index}
if view == "virtual":
for key, val in circuit._layout.get_virtual_bits().items():
bit_register = bit_locations[key]["register"]
if bit_register is None or bit_register.name != "ancilla":
qubits.append(val)
qubit_labels[val] = bit_locations[key]["index"]
elif view == "physical":
for key, val in circuit._layout.get_physical_bits().items():
bit_register = bit_locations[val]["register"]
if bit_register is None or bit_register.name != "ancilla":
qubits.append(key)
qubit_labels[key] = key
else:
raise VisualizationError("Layout view must be 'virtual' or 'physical'.")
qcolors = ["#648fff"] * num_qubits
for k in qubits:
qcolors[k] = "k"
if isinstance(backend, BackendV2):
cmap = backend.plot_coupling_map
else:
cmap = backend.configuration().coupling_map
lcolors = ["#648fff"] * len(cmap)
for idx, edge in enumerate(cmap):
if edge[0] in qubits and edge[1] in qubits:
lcolors[idx] = "k"
fig = plot_gate_map(
backend,
qubit_color=qcolors,
qubit_labels=qubit_labels,
line_color=lcolors,
qubit_coordinates=qubit_coordinates,
)
return fig
def plot_error_map(backend, figsize=(12, 9), show_title=True):
"""Plots the error map of a given backend.
Args:
backend (IBMQBackend): Given backend.
figsize (tuple): Figure size in inches.
show_title (bool): Show the title or not.
Returns:
Figure: A matplotlib figure showing error map.
Raises:
VisualizationError: Input is not IBMQ backend.
VisualizationError: The backend does not provide gate errors for the 'sx' gate.
MissingOptionalLibraryError: If seaborn is not installed
Example:
.. jupyter-execute::
:hide-code:
:hide-output:
from qiskit.test.ibmq_mock import mock_get_backend
mock_get_backend('FakeVigo')
.. jupyter-execute::
from qiskit import QuantumCircuit, execute, IBMQ
from qiskit.visualization import plot_error_map
%matplotlib inline
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q')
backend = provider.get_backend('ibmq_vigo')
plot_error_map(backend)
"""
try:
import seaborn as sns
except ImportError as ex:
raise MissingOptionalLibraryError(
libname="seaborn",
name="plot_error_map",
pip_install="pip install seaborn",
) from ex
if not HAS_MATPLOTLIB:
raise MissingOptionalLibraryError(
libname="Matplotlib",
name="plot_error_map",
pip_install="pip install matplotlib",
)
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import gridspec, ticker
color_map = sns.cubehelix_palette(reverse=True, as_cmap=True)
props = backend.properties().to_dict()
config = backend.configuration().to_dict()
num_qubits = config["n_qubits"]
# sx error rates
single_gate_errors = [0] * num_qubits
for gate in props["gates"]:
if gate["gate"] == "sx":
_qubit = gate["qubits"][0]
for param in gate["parameters"]:
if param["name"] == "gate_error":
single_gate_errors[_qubit] = param["value"]
break
else:
raise VisualizationError(
f"Backend '{backend}' did not supply an error for the 'sx' gate."
)
# Convert to percent
single_gate_errors = 100 * np.asarray(single_gate_errors)
avg_1q_err = np.mean(single_gate_errors)
single_norm = matplotlib.colors.Normalize(
vmin=min(single_gate_errors), vmax=max(single_gate_errors)
)
q_colors = [color_map(single_norm(err)) for err in single_gate_errors]
cmap = config["coupling_map"]
directed = False
line_colors = []
if cmap:
directed = False
if num_qubits < 20:
for edge in cmap:
if [edge[1], edge[0]] not in cmap:
directed = True
break
cx_errors = []
for line in cmap:
for item in props["gates"]:
if item["qubits"] == line:
cx_errors.append(item["parameters"][0]["value"])
break
else:
continue
# Convert to percent
cx_errors = 100 * np.asarray(cx_errors)
avg_cx_err = np.mean(cx_errors)
cx_norm = matplotlib.colors.Normalize(vmin=min(cx_errors), vmax=max(cx_errors))
line_colors = [color_map(cx_norm(err)) for err in cx_errors]
# Measurement errors
read_err = []
for qubit in range(num_qubits):
for item in props["qubits"][qubit]:
if item["name"] == "readout_error":
read_err.append(item["value"])
read_err = 100 * np.asarray(read_err)
avg_read_err = np.mean(read_err)
max_read_err = np.max(read_err)
fig = plt.figure(figsize=figsize)
gridspec.GridSpec(nrows=2, ncols=3)
grid_spec = gridspec.GridSpec(
12,
12,
height_ratios=[1] * 11 + [0.5],
width_ratios=[2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2],
)
left_ax = plt.subplot(grid_spec[2:10, :1])
main_ax = plt.subplot(grid_spec[:11, 1:11])
right_ax = plt.subplot(grid_spec[2:10, 11:])
bleft_ax = plt.subplot(grid_spec[-1, :5])
if cmap:
bright_ax = plt.subplot(grid_spec[-1, 7:])
qubit_size = 28
if num_qubits <= 5:
qubit_size = 20
plot_gate_map(
backend,
qubit_color=q_colors,
line_color=line_colors,
qubit_size=qubit_size,
line_width=5,
plot_directed=directed,
ax=main_ax,
)
main_ax.axis("off")
main_ax.set_aspect(1)
if cmap:
single_cb = matplotlib.colorbar.ColorbarBase(
bleft_ax, cmap=color_map, norm=single_norm, orientation="horizontal"
)
tick_locator = ticker.MaxNLocator(nbins=5)
single_cb.locator = tick_locator
single_cb.update_ticks()
single_cb.update_ticks()
bleft_ax.set_title(f"H error rate (%) [Avg. = {round(avg_1q_err, 3)}]")
if cmap is None:
bleft_ax.axis("off")
bleft_ax.set_title(f"H error rate (%) = {round(avg_1q_err, 3)}")
if cmap:
cx_cb = matplotlib.colorbar.ColorbarBase(
bright_ax, cmap=color_map, norm=cx_norm, orientation="horizontal"
)
tick_locator = ticker.MaxNLocator(nbins=5)
cx_cb.locator = tick_locator
cx_cb.update_ticks()
bright_ax.set_title(f"CNOT error rate (%) [Avg. = {round(avg_cx_err, 3)}]")
if num_qubits < 10:
num_left = num_qubits
num_right = 0
else:
num_left = math.ceil(num_qubits / 2)
num_right = num_qubits - num_left
left_ax.barh(range(num_left), read_err[:num_left], align="center", color="#DDBBBA")
left_ax.axvline(avg_read_err, linestyle="--", color="#212121")
left_ax.set_yticks(range(num_left))
left_ax.set_xticks([0, round(avg_read_err, 2), round(max_read_err, 2)])
left_ax.set_yticklabels([str(kk) for kk in range(num_left)], fontsize=12)
left_ax.invert_yaxis()
left_ax.set_title("Readout Error (%)", fontsize=12)
for spine in left_ax.spines.values():
spine.set_visible(False)
if num_right:
right_ax.barh(
range(num_left, num_qubits),
read_err[num_left:],
align="center",
color="#DDBBBA",
)
right_ax.axvline(avg_read_err, linestyle="--", color="#212121")
right_ax.set_yticks(range(num_left, num_qubits))
right_ax.set_xticks([0, round(avg_read_err, 2), round(max_read_err, 2)])
right_ax.set_yticklabels(
[str(kk) for kk in range(num_left, num_qubits)], fontsize=12
)
right_ax.invert_yaxis()
right_ax.invert_xaxis()
right_ax.yaxis.set_label_position("right")
right_ax.yaxis.tick_right()
right_ax.set_title("Readout Error (%)", fontsize=12)
else:
right_ax.axis("off")
for spine in right_ax.spines.values():
spine.set_visible(False)
if show_title:
fig.suptitle(f"{backend.name()} Error Map", fontsize=24, y=0.9)
matplotlib_close_if_inline(fig)
return fig
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import numpy as np
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit import BasicAer
from qiskit.compiler import transpile
from qiskit.quantum_info.operators import Operator, Pauli
from qiskit.quantum_info import process_fidelity
from qiskit.extensions import RXGate, XGate, CXGate
XX = Operator([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]])
XX
XX.data
input_dim, output_dim = XX.dim
input_dim, output_dim
op = Operator(np.random.rand(2 ** 1, 2 ** 2))
print('Input dimensions:', op.input_dims())
print('Output dimensions:', op.output_dims())
op = Operator(np.random.rand(6, 6))
print('Input dimensions:', op.input_dims())
print('Output dimensions:', op.output_dims())
# Force input dimension to be (4,) rather than (2, 2)
op = Operator(np.random.rand(2 ** 1, 2 ** 2), input_dims=[4])
print('Input dimensions:', op.input_dims())
print('Output dimensions:', op.output_dims())
# Specify system is a qubit and qutrit
op = Operator(np.random.rand(6, 6),
input_dims=[2, 3], output_dims=[2, 3])
print('Input dimensions:', op.input_dims())
print('Output dimensions:', op.output_dims())
print('Dimension of input system 0:', op.input_dims([0]))
print('Dimension of input system 1:', op.input_dims([1]))
# Create an Operator from a Pauli object
pauliXX = Pauli('XX')
Operator(pauliXX)
# Create an Operator for a Gate object
Operator(CXGate())
# Create an operator from a parameterized Gate object
Operator(RXGate(np.pi / 2))
# Create an operator from a QuantumCircuit object
circ = QuantumCircuit(10)
circ.h(0)
for j in range(1, 10):
circ.cx(j-1, j)
# Convert circuit to an operator by implicit unitary simulation
Operator(circ)
# Create an operator
XX = Operator(Pauli('XX'))
# Add to a circuit
circ = QuantumCircuit(2, 2)
circ.append(XX, [0, 1])
circ.measure([0,1], [0,1])
circ.draw('mpl')
backend = BasicAer.get_backend('qasm_simulator')
circ = transpile(circ, backend, basis_gates=['u1','u2','u3','cx'])
job = backend.run(circ)
job.result().get_counts(0)
# Add to a circuit
circ2 = QuantumCircuit(2, 2)
circ2.append(Pauli('XX'), [0, 1])
circ2.measure([0,1], [0,1])
circ2.draw()
A = Operator(Pauli('X'))
B = Operator(Pauli('Z'))
A.tensor(B)
A = Operator(Pauli('X'))
B = Operator(Pauli('Z'))
A.expand(B)
A = Operator(Pauli('X'))
B = Operator(Pauli('Z'))
A.compose(B)
A = Operator(Pauli('X'))
B = Operator(Pauli('Z'))
A.compose(B, front=True)
# Compose XZ with an 3-qubit identity operator
op = Operator(np.eye(2 ** 3))
XZ = Operator(Pauli('XZ'))
op.compose(XZ, qargs=[0, 2])
# Compose YX in front of the previous operator
op = Operator(np.eye(2 ** 3))
YX = Operator(Pauli('YX'))
op.compose(XZ, qargs=[0, 2], front=True)
XX = Operator(Pauli('XX'))
YY = Operator(Pauli('YY'))
ZZ = Operator(Pauli('ZZ'))
op = 0.5 * (XX + YY - 3 * ZZ)
op
op.is_unitary()
# Compose with a matrix passed as a list
Operator(np.eye(2)).compose([[0, 1], [1, 0]])
Operator(Pauli('X')) == Operator(XGate())
Operator(XGate()) == np.exp(1j * 0.5) * Operator(XGate())
# Two operators which differ only by phase
op_a = Operator(XGate())
op_b = np.exp(1j * 0.5) * Operator(XGate())
# Compute process fidelity
F = process_fidelity(op_a, op_b)
print('Process fidelity =', F)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.