repo
stringclasses
885 values
file
stringclasses
741 values
content
stringlengths
4
215k
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import QuantumCircuit from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import NormalDistribution # can be used in case a principal component analysis has been done to derive the uncertainty model, ignored in this example. A = np.eye(2) b = np.zeros(2) # specify the number of qubits that are used to represent the different dimenions of the uncertainty model num_qubits = [2, 2] # specify the lower and upper bounds for the different dimension low = [0, 0] high = [0.12, 0.24] mu = [0.12, 0.24] sigma = 0.01 * np.eye(2) # construct corresponding distribution bounds = list(zip(low, high)) u = NormalDistribution(num_qubits, mu, sigma, bounds) # plot contour of probability density function x = np.linspace(low[0], high[0], 2 ** num_qubits[0]) y = np.linspace(low[1], high[1], 2 ** num_qubits[1]) z = u.probabilities.reshape(2 ** num_qubits[0], 2 ** num_qubits[1]) plt.contourf(x, y, z) plt.xticks(x, size=15) plt.yticks(y, size=15) plt.grid() plt.xlabel("$r_1$ (%)", size=15) plt.ylabel("$r_2$ (%)", size=15) plt.colorbar() plt.show() # specify cash flow cf = [1.0, 2.0] periods = range(1, len(cf) + 1) # plot cash flow plt.bar(periods, cf) plt.xticks(periods, size=15) plt.yticks(size=15) plt.grid() plt.xlabel("periods", size=15) plt.ylabel("cashflow ($)", size=15) plt.show() # estimate real value cnt = 0 exact_value = 0.0 for x1 in np.linspace(low[0], high[0], pow(2, num_qubits[0])): for x2 in np.linspace(low[1], high[1], pow(2, num_qubits[1])): prob = u.probabilities[cnt] for t in range(len(cf)): # evaluate linear approximation of real value w.r.t. interest rates exact_value += prob * ( cf[t] / pow(1 + b[t], t + 1) - (t + 1) * cf[t] * np.dot(A[:, t], np.asarray([x1, x2])) / pow(1 + b[t], t + 2) ) cnt += 1 print("Exact value: \t%.4f" % exact_value) # specify approximation factor c_approx = 0.125 # create fixed income pricing application from qiskit_finance.applications.estimation import FixedIncomePricing fixed_income = FixedIncomePricing( num_qubits=num_qubits, pca_matrix=A, initial_interests=b, cash_flow=cf, rescaling_factor=c_approx, bounds=bounds, uncertainty_model=u, ) fixed_income._objective.draw() fixed_income_circ = QuantumCircuit(fixed_income._objective.num_qubits) # load probability distribution fixed_income_circ.append(u, range(u.num_qubits)) # apply function fixed_income_circ.append(fixed_income._objective, range(fixed_income._objective.num_qubits)) fixed_income_circ.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 # construct amplitude estimation problem = fixed_income.to_estimation_problem() ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (fixed_income.interpret(result))) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import qiskit.qasm3 program = """ OPENQASM 3.0; include "stdgates.inc"; input float[64] a; qubit[3] q; bit[2] mid; bit[3] out; let aliased = q[0:1]; gate my_gate(a) c, t { gphase(a / 2); ry(a) c; cx c, t; } gate my_phase(a) c { ctrl @ inv @ gphase(a) c; } my_gate(a * 2) aliased[0], q[{1, 2}][0]; measure q[0] -> mid[0]; measure q[1] -> mid[1]; while (mid == "00") { reset q[0]; reset q[1]; my_gate(a) q[0], q[1]; my_phase(a - pi/2) q[1]; mid[0] = measure q[0]; mid[1] = measure q[1]; } if (mid[0]) { let inner_alias = q[{0, 1}]; reset inner_alias; } out = measure q; """ circuit = qiskit.qasm3.loads(program) circuit.draw("mpl")
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers.second_quantization import GaussianForcesDriver from qiskit_nature.problems.second_quantization import VibrationalStructureProblem from qiskit_nature.settings import settings settings.dict_aux_operators = True driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") problem = VibrationalStructureProblem(driver, num_modals=[2, 2, 3, 4], truncation_order=2) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["VibrationalEnergy"] print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) # this is now done explicitly and already requires the basis problem = driver.run(basis=basis) problem.hamiltonian.truncation_order = 2 hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers.second_quantization import GaussianLogResult from qiskit_nature.properties.second_quantization.vibrational.bases import HarmonicBasis from qiskit_nature.settings import settings settings.dict_aux_operators = True log_result = GaussianLogResult("aux_files/CO2_freq_B3LYP_631g.log") hamiltonian = log_result.get_vibrational_energy() print(hamiltonian) hamiltonian.basis = HarmonicBasis([2, 2, 3, 4]) op = hamiltonian.second_q_ops()["VibrationalEnergy"] print("\n".join(str(op).splitlines()[:10] + ["..."])) from qiskit_nature.second_q.drivers import GaussianLogResult from qiskit_nature.second_q.formats import watson_to_problem from qiskit_nature.second_q.problems import HarmonicBasis log_result = GaussianLogResult("aux_files/CO2_freq_B3LYP_631g.log") watson = log_result.get_watson_hamiltonian() print(watson) basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) problem = watson_to_problem(watson, basis) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers.second_quantization import GaussianForcesDriver from qiskit_nature.problems.second_quantization import VibrationalStructureProblem driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") problem = VibrationalStructureProblem(driver, num_modals=[2, 2, 3, 4], truncation_order=2) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("VibrationalEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) problem = driver.run(basis=basis) problem.hamiltonian.truncation_order = 2 hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1); tensored = bottom.tensor(top) tensored.draw('mpl')
https://github.com/Qiskit/feedback
Qiskit
# pip version of CPLEX is not available for Apple silicon %pip install cplex import numpy as np from qiskit_optimization import QuadraticProgram from qiskit_optimization.algorithms import GurobiOptimizer prob = QuadraticProgram() n = 2001 prob.binary_var_list(n) prob.minimize(linear=np.ones(n)) print(prob.prettyprint()) GurobiOptimizer().solve(prob) from qiskit_optimization.applications import Knapsack prob = Knapsack( values = [1, 2, 3, 4], weights= [5, 6, 7, 8], max_weight=20 ).to_quadratic_program() print(prob.prettyprint()) from qiskit_optimization.algorithms import ScipyMilpOptimizer milp = ScipyMilpOptimizer() result = milp.solve(prob) print(result) from qiskit_optimization.applications import Maxcut import networkx as nx graph = nx.random_regular_graph(d=3, n=8, seed=123) maxcut = Maxcut(graph) pos = nx.spring_layout(graph, seed=123) maxcut.draw(pos=pos) prob = maxcut.to_quadratic_program() print(prob.prettyprint()) result = milp.solve(prob) def quadratic_to_linear(problem: QuadraticProgram) -> QuadraticProgram: new_prob = QuadraticProgram(problem.name) for x in problem.variables: new_prob._add_variable(x.lowerbound, x.upperbound, x.vartype, x.name) obj = problem.objective lin = obj.linear.to_dict(use_name=True) quad = obj.quadratic.to_dict(use_name=True) prod = {} for (x, y), coeff in quad.items(): name = f"{x}_AND_{y}" prod[x, y] = name new_prob.continuous_var(0, 1, name) lin[name] = coeff for (x, y), name in prod.items(): new_prob.linear_constraint({name: 1, x: -1}, "<=", 0) new_prob.linear_constraint({name: 1, y: -1}, "<=", 0) new_prob.linear_constraint({name: 1, x: -1, y: -1}, ">=", -1) if obj.sense == obj.sense.MAXIMIZE: new_prob.maximize(obj.constant, lin) else: new_prob.minimize(obj.constant, lin) return new_prob new_prob = quadratic_to_linear(prob) print(new_prob.prettyprint()) result = milp.solve(new_prob) print(result) maxcut.draw(result.x[:prob.get_num_vars()], pos) result = GurobiOptimizer().solve(prob) print(result) maxcut.draw(result, pos)
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
from qiskit_aqua import register_pluggable from evolutionfidelity.evolutionfidelity import EvolutionFidelity try: register_pluggable(EvolutionFidelity) except Exception as e: print(e) from qiskit import Aer import numpy as np from qiskit_aqua.operator import Operator from evolutionfidelity.evolutionfidelity import EvolutionFidelity from qiskit_aqua.components.initial_states import Zero from qiskit_aqua import QuantumInstance num_qubits = 2 temp = np.random.random((2 ** num_qubits, 2 ** num_qubits)) qubit_op = Operator(matrix=temp + temp.T) initial_state = Zero(qubit_op.num_qubits) algo = EvolutionFidelity(qubit_op, initial_state, expansion_order=1) backend = Aer.get_backend('statevector_simulator') quantum_instance = QuantumInstance(backend=backend) result = algo.run(quantum_instance) print(result['score']) from qiskit_aqua.input import EnergyInput from qiskit_aqua import run_algorithm params = { 'problem': { 'name': 'eoh' }, 'algorithm': { 'name': 'EvolutionFidelity', 'expansion_order': 1 }, 'initial_state': { 'name': 'ZERO' } } algo_input = EnergyInput(qubit_op) result = run_algorithm(params, algo_input, backend=backend) print(result['score'])
https://github.com/ElePT/qiskit-algorithms-test
ElePT
# This code is part of Qiskit. # # (C) Copyright IBM 2022, 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Time evolution problem class.""" from __future__ import annotations from collections.abc import Mapping from qiskit import QuantumCircuit from qiskit.circuit import Parameter, ParameterExpression from qiskit.opflow import PauliSumOp from ..list_or_dict import ListOrDict from ...quantum_info import Statevector from ...quantum_info.operators.base_operator import BaseOperator class TimeEvolutionProblem: """Time evolution problem class. This class is the input to time evolution algorithms and must contain information on the total evolution time, a quantum state to be evolved and under which Hamiltonian the state is evolved. Attributes: hamiltonian (BaseOperator | PauliSumOp): The Hamiltonian under which to evolve the system. initial_state (QuantumCircuit | Statevector | None): The quantum state to be evolved for methods like Trotterization. For variational time evolutions, where the evolution happens in an ansatz, this argument is not required. aux_operators (ListOrDict[BaseOperator | PauliSumOp] | None): Optional list of auxiliary operators to be evaluated with the evolved ``initial_state`` and their expectation values returned. truncation_threshold (float): Defines a threshold under which values can be assumed to be 0. Used when ``aux_operators`` is provided. t_param (Parameter | None): Time parameter in case of a time-dependent Hamiltonian. This free parameter must be within the ``hamiltonian``. param_value_map (dict[Parameter, complex] | None): Maps free parameters in the problem to values. Depending on the algorithm, it might refer to e.g. a Hamiltonian or an initial state. """ def __init__( self, hamiltonian: BaseOperator | PauliSumOp, time: float, initial_state: QuantumCircuit | Statevector | None = None, aux_operators: ListOrDict[BaseOperator | PauliSumOp] | None = None, truncation_threshold: float = 1e-12, t_param: Parameter | None = None, param_value_map: Mapping[Parameter, complex] | None = None, ): """ Args: hamiltonian: The Hamiltonian under which to evolve the system. time: Total time of evolution. initial_state: The quantum state to be evolved for methods like Trotterization. For variational time evolutions, where the evolution happens in an ansatz, this argument is not required. aux_operators: Optional list of auxiliary operators to be evaluated with the evolved ``initial_state`` and their expectation values returned. truncation_threshold: Defines a threshold under which values can be assumed to be 0. Used when ``aux_operators`` is provided. t_param: Time parameter in case of a time-dependent Hamiltonian. This free parameter must be within the ``hamiltonian``. param_value_map: Maps free parameters in the problem to values. Depending on the algorithm, it might refer to e.g. a Hamiltonian or an initial state. Raises: ValueError: If non-positive time of evolution is provided. """ self.t_param = t_param self.param_value_map = param_value_map self.hamiltonian = hamiltonian self.time = time if isinstance(initial_state, Statevector): circuit = QuantumCircuit(initial_state.num_qubits) circuit.prepare_state(initial_state.data) initial_state = circuit self.initial_state: QuantumCircuit | None = initial_state self.aux_operators = aux_operators self.truncation_threshold = truncation_threshold @property def time(self) -> float: """Returns time.""" return self._time @time.setter def time(self, time: float) -> None: """ Sets time and validates it. """ self._time = time def validate_params(self) -> None: """ Checks if all parameters present in the Hamiltonian are also present in the dictionary that maps them to values. Raises: ValueError: If Hamiltonian parameters cannot be bound with data provided. """ if isinstance(self.hamiltonian, PauliSumOp) and isinstance( self.hamiltonian.coeff, ParameterExpression ): raise ValueError("A global parametrized coefficient for PauliSumOp is not allowed.")
https://github.com/yh08037/quantum-neural-network
yh08037
import numpy as np import matplotlib.pyplot as plt import torch from torch.autograd import Function from torchvision import datasets, transforms import torch.optim as optim import torch.nn as nn import torch.nn.functional as F from torchsummary import summary import qiskit from qiskit.visualization import * class QuantumCircuit: """ This class provides a simple interface for interaction with the quantum circuit """ def __init__(self, n_qubits, backend, shots): # --- Circuit definition --- self._circuit = qiskit.QuantumCircuit(n_qubits) all_qubits = [i for i in range(n_qubits)] self.theta = qiskit.circuit.Parameter('theta') self._circuit.h(all_qubits) self._circuit.barrier() self._circuit.ry(self.theta, all_qubits) self._circuit.measure_all() # --------------------------- self.backend = backend self.shots = shots def run(self, thetas): job = qiskit.execute(self._circuit, self.backend, shots = self.shots, parameter_binds = [{self.theta: theta} for theta in thetas]) result = job.result().get_counts(self._circuit) counts = np.array(list(result.values())) states = np.array(list(result.keys())).astype(float) # Compute probabilities for each state probabilities = counts / self.shots # Get state expectation expectation = np.sum(states * probabilities) return np.array([expectation]) simulator = qiskit.Aer.get_backend('qasm_simulator') circuit = QuantumCircuit(1, simulator, 100) print('Expected value for rotation pi {}'.format(circuit.run([np.pi])[0])) circuit._circuit.draw('mpl') class HybridFunction(Function): """ Hybrid quantum - classical function definition """ @staticmethod def forward(ctx, inputs, quantum_circuit, shift): """ Forward pass computation """ ctx.shift = shift ctx.quantum_circuit = quantum_circuit expectation_z = [] for input in inputs: expectation_z.append(ctx.quantum_circuit.run(input.tolist())) result = torch.tensor(expectation_z) ctx.save_for_backward(inputs, result) return result @staticmethod def backward(ctx, grad_output): """ Backward pass computation """ input, expectation_z = ctx.saved_tensors input_list = np.array(input.tolist()) shift_right = input_list + np.ones(input_list.shape) * ctx.shift shift_left = input_list - np.ones(input_list.shape) * ctx.shift gradients = [] for i in range(len(input_list)): expectation_right = ctx.quantum_circuit.run(shift_right[i]) expectation_left = ctx.quantum_circuit.run(shift_left[i]) gradient = torch.tensor([expectation_right]) - torch.tensor([expectation_left]) gradients.append(gradient) gradients = np.array([gradients]).T return torch.tensor([gradients]).float() * grad_output.float(), None, None class Hybrid(nn.Module): """ Hybrid quantum - classical layer definition """ def __init__(self, backend, shots, shift): super(Hybrid, self).__init__() self.quantum_circuit = QuantumCircuit(1, backend, shots) self.shift = shift def forward(self, input): return HybridFunction.apply(input, self.quantum_circuit, self.shift) # Concentrating on the first 100 samples n_samples = 128 batch_size = 32 X_train = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.Compose([transforms.ToTensor()])) X_train.data = X_train.data[:n_samples] X_train.targets = X_train.targets[:n_samples] train_loader = torch.utils.data.DataLoader(X_train, batch_size=batch_size, shuffle=True) # n_samples_show = 6 # data_iter = iter(train_loader) # fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) # while n_samples_show > 0: # images, targets = data_iter.__next__() # axes[n_samples_show - 1].imshow(images[0].numpy().squeeze(), cmap='gray') # axes[n_samples_show - 1].set_xticks([]) # axes[n_samples_show - 1].set_yticks([]) # axes[n_samples_show - 1].set_title("Labeled: {}".format(targets.item())) # n_samples_show -= 1 n_samples = 256 X_test = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.Compose([transforms.ToTensor()])) # idx = np.append(np.where(X_test.targets == 0)[0][:n_samples], # np.where(X_test.targets == 1)[0][:n_samples]) X_test.data = X_test.data[:n_samples] X_test.targets = X_test.targets[:n_samples] test_loader = torch.utils.data.DataLoader(X_test, batch_size=batch_size, shuffle=True) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, kernel_size=5) self.conv2 = nn.Conv2d(6, 16, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(256, 64) self.fc2 = nn.Linear(64, 10) # self.hybrid = Hybrid(qiskit.Aer.get_backend('qasm_simulator'), 100, np.pi / 2) self.hybrid = [Hybrid(qiskit.Aer.get_backend('qasm_simulator'), 100, np.pi / 2) for i in range(10)] def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) # x = x.view(-1, 256) x = torch.flatten(x, start_dim=1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = torch.chunk(x, 10, dim=1) # x = self.hybrid(x) x = tuple([hy(x_) for hy, x_ in zip(self.hybrid, x)]) return torch.cat(x, -1) model = Net() summary(model, (1, 28, 28), device='cpu') optimizer = optim.Adam(model.parameters(), lr=0.001) # loss_func = nn.NLLLoss() loss_func = nn.CrossEntropyLoss() epochs = 20 loss_list = [] model.train() for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # print("data ", data.size()) # print("output", output.size()) # print("target", target.size()) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() total_loss.append(loss.item()) loss_list.append(sum(total_loss)/len(total_loss)) print('Training [{:.0f}%]\tLoss: {:.4f}'.format( 100. * (epoch + 1) / epochs, loss_list[-1])) plt.plot(loss_list) plt.title('Hybrid NN Training Convergence') plt.xlabel('Training Iterations') plt.ylabel('Neg Log Likelihood Loss') model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100 / batch_size) ) # n_samples_show = 6 # count = 0 # fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) # model.eval() # with torch.no_grad(): # for batch_idx, (data, target) in enumerate(test_loader): # if count == n_samples_show: # break # output = model(data) # pred = output.argmax(dim=1, keepdim=True) # axes[count].imshow(data[0].numpy().squeeze(), cmap='gray') # axes[count].set_xticks([]) # axes[count].set_yticks([]) # axes[count].set_title('Predicted {}'.format(pred.item())) # count += 1
https://github.com/Benjreggio/psfam
Benjreggio
''' runtests.py @author: Andrew Lytle Reorganized by Ben Reggio Unit tests for psfam ''' from psfam.pauli_organizer import PauliOrganizer import functools,itertools from scipy.stats import unitary_group import scipy.sparse as sp import qiskit from qiskit.quantum_info.states import Statevector from qiskit.circuit.random import random_circuit import numpy as np from numpy.random import normal import operator op_I = sp.eye(2) op_Z = sp.dia_matrix([[1,0],[0,-1]]) op_X = sp.dia_matrix([[0,1],[1,0]]) op_Y = -1j * op_Z @ op_X pauli_ops = { "I" : op_I, "Z" : op_Z, "X": op_X, "Y" : op_Y } def sp_kron_dok(mat_A, mat_B): """Kronecker (tensor) product of two sparse matrices. Args: mat_A, mat_B: 2d numpy arrays Returns: Sparse matrix in "dictionary of keys" format (to eliminate zeros) """ return sp.kron(mat_A, mat_B, format = "dok") def contribution_to_EV(m, fam, counts, nshots): cfs = fam.get_coefficients() #cfs = [_.real for _ in cfs] #print(f"{np.sum(np.array(cfs)).real = }") measurement = 0 for i in range(2**m): bi = bin(i)[2:] while(len(bi)<m): bi = '0' + bi if(bi in counts): measurement += counts[bi]*cfs[i]/nshots return measurement def to_pauli_vec(mat): """Pauli string decomposition of a matrix. Args: 2d numpy array, mat Returns: Dictionary pauli_vec, e.g. {'XX': 0.5, 'XY': 0.5} """ pauli_vec = {} # the dictionary we are saving mat_vec = np.array(mat).ravel() num_qubits = int(np.log2(np.sqrt(mat_vec.size))) for pauli_string in itertools.product(pauli_ops.keys(), repeat = num_qubits): # construct this pauli string as a matrix ops = [ pauli_ops[tag] for tag in pauli_string ] op = functools.reduce(sp_kron_dok, ops) # compute an inner product, same as tr(A @ B) but faster op_vec = op.transpose().reshape((1, 4**num_qubits)) coefficient = (op_vec * mat_vec).sum() / 2**num_qubits #if coefficient != 0: pauli_vec["".join(pauli_string)] = coefficient return pauli_vec def statedict_to_arr(statedict): "Convert state dictionary to numpy array." keys = list(statedict.keys()) m = len(keys[0]) #print(m) result = np.zeros(2**m, dtype='complex') bitstrings = itertools.product('01',repeat=m) for i, bitstring in enumerate(bitstrings): key = functools.reduce(operator.add, bitstring) if key in keys: result[i] = statedict[key] else: result[i] = 0.0 return result def direct_EV_eval(Hmat, state_circuit): psi = Statevector(state_circuit) state = statedict_to_arr(psi.to_dict()) # array. direct_eval = np.vdot(state,np.dot(Hmat,state)) return direct_eval def random_evals(N): "List of Gaussian distributed numbers [(0,1),...]." vals = [] for i in range(N): vals.append(normal()) return vals def dot_all(Ms): "Dot product of [M1, M2, ...]" res = np.identity(Ms[0].shape[0]) for M in Ms[::-1]: res = np.dot(M, res) return res def hc(M): "Hermitian conjugate of M." return M.conj().T def random_H(N): "Random NxN Hermitian matrix." evs = random_evals(N) D = np.diag(evs) U = unitary_group.rvs(N) H = dot_all([U, D, hc(U)]) return H def families_EV_eval(m, Hmat, state_circuit, backend, nshots): decomp = to_pauli_vec(Hmat) PO = PauliOrganizer(m) PO.input_pauli_decomps(decomp) PO.calc_coefficients() fams = PO.f total = 0 for fam in fams: _circuit = state_circuit.copy() fam.apply_to_circuit(_circuit) job = backend.run(qiskit.transpile(_circuit, backend), shots=nshots) result = job.result() counts = result.get_counts(_circuit) #logging.info(f"{counts = }") contribution = contribution_to_EV(m, fam, counts, nshots).real #logging.info(f"{contribution = }") total += contribution return total def random_unit_test(m): nshots = 1 # statevector_simulator backend. N = 2**m Hmat = random_H(N) nominal_depth = 4 rc = random_circuit(m, nominal_depth, measure=False) direct_eval = direct_EV_eval(Hmat, rc) backend_sim = qiskit.Aer.get_backend('statevector_simulator') total = families_EV_eval(m, Hmat, rc, backend_sim, nshots) print(f"{total = }") print(f"{direct_eval = }") return np.isclose(total, direct_eval.real) results = [] for m in range(1,6): # Slows down for m >~ 5. for test in range(1, 101): print(f"{m = } , {test = }") passed = random_unit_test(m) results.append(passed) if passed: continue else: print(f"Test failed with {m = }") break if not passed: break print(f"Performed {len(results)} tests, " f"all tests passed = {np.array(results).all()==True}")
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_state_city qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) # plot using a Statevector state = Statevector(qc) plot_state_city(state)
https://github.com/alejomonbar/Quantum-Supply-Chain-Manager
alejomonbar
%load_ext autoreload %autoreload 2 # pip install pennylane import pennylane as qml from pennylane import numpy as np from pennylane.optimize import NesterovMomentumOptimizer import tensorflow as tf import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from IPython.display import clear_output clear_output(wait=False) import os import tensorflow as tf data_train = pd.read_csv("dataset/fair_train.csv") X_train,y_train = data_train[data_train.columns[:16]].values, data_train[data_train.columns[16]].values data_test = pd.read_csv("dataset/classic_test.csv") X_test,y_test = data_test[data_test.columns[:16]].values, data_test[data_test.columns[16]].values (X_train.shape, y_train.shape),(X_test.shape, y_test.shape) dev = qml.device("default.qubit", wires=4) def block(weights, wires): qml.CNOT(wires=[wires[0],wires[1]]) qml.RY(weights[0], wires=wires[0]) qml.RY(weights[1], wires=wires[1]) n_wires = 4 n_block_wires = 2 n_params_block = 2 n_blocks = qml.TTN.get_n_blocks(range(n_wires),n_block_wires) n_blocks @qml.qnode(dev) def circuit(weights, x): qml.AmplitudeEmbedding(x, wires=[0,1,2,3],normalize=True,pad_with=True) for w in weights: qml.TTN(range(n_wires),n_block_wires,block, n_params_block, w) #print(w) #print(x) return qml.expval(qml.PauliZ(3)) def variational_classifier(weights, bias, x): return circuit(weights, x) + bias def square_loss(labels, predictions): loss = 0 for l, p in zip(labels, predictions): loss = loss + (l - p) ** 2 loss = loss / len(labels) return loss def accuracy(labels, predictions): loss = 0 for l, p in zip(labels, predictions): if abs(l - p) < 1e-5: loss = loss + 1 loss = loss / len(labels) return loss def cost(weights, bias, X, Y): #print(1) predictions = [variational_classifier(weights, bias, x) for x in X] return square_loss(Y, predictions) np.random.seed(0) num_layers = 2 weights_init = 2*np.pi * np.random.randn(num_layers,n_blocks, n_params_block, requires_grad=True) bias_init = np.array(0.0, requires_grad=True) print(weights_init, bias_init) print(qml.draw(circuit,expansion_strategy='device',wire_order=[0,1,2,3])(weights_init,np.asarray(X_train[0]))) for i in weights_init: print(i[0]) y_train = np.where(y_train < 1, -1, y_train) y_test = np.where(y_test < 1, -1, y_test) from sklearn.utils import shuffle X,y = shuffle(X_train, y_train, random_state=0) from sklearn.model_selection import train_test_split opt = NesterovMomentumOptimizer(0.4) batch_size = 32 num_data = len(y_train) num_train = 0.9 # train the variational classifier weights = weights_init bias = bias_init print() cost_g = [] acc_train = [] acc_test = [] plt.show() for it in range(50): X_train_70, X_test_30, y_train_70, y_test_30 =train_test_split(np.asarray(X), np.asarray(y), train_size=num_train, test_size=1.0-num_train, shuffle=True) # Update the weights by one optimizer step batch_index = np.random.randint(0, len(X_train_70), (batch_size,)) feats_train_batch = X_train_70[batch_index] Y_train_batch = y_train_70[batch_index] weights, bias, _, _ = opt.step(cost, weights, bias, feats_train_batch, Y_train_batch) # Compute predictions on train and validation set predictions_train = [np.sign(variational_classifier(weights, bias, f)) for f in X_train_70] predictions_val = [np.sign(variational_classifier(weights, bias, f)) for f in X_test_30] # Compute accuracy on train and validation set acc_tra = accuracy(y_train_70, predictions_train) acc_val = accuracy(y_test_30, predictions_val) cost_train = cost(weights, bias,X_train, y_train) cost_g.append(cost_train) acc_train.append(acc_tra) acc_test.append(acc_val) clear_output(wait=True) plt.plot(cost_g,label='cost') plt.plot(acc_train,label='acc_train') plt.plot(acc_test,label='acc_test') plt.legend(['cost','acc_train','acc_test']) plt.show() print( "Iter: {:5d} | Cost: {:0.7f} | Acc train: {:0.7f} | Acc validation: {:0.7f} " "".format(it + 1, cost_train, acc_tra, acc_val) ) print(weights) x_test = [] for x in X_test.tolist(): x[0]+=1 x_test.append( x/ np.linalg.norm(x)) x_test[0] y_test_pred = [np.sign(variational_classifier(weights, bias, f)) for f in x_test] from sklearn.metrics import confusion_matrix, roc_curve, auc from sklearn.preprocessing import StandardScaler # demonstration of calculating metrics for a neural network model using sklearn from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score from sklearn.metrics import roc_auc_score accuracy = accuracy_score(y_test, y_test_pred) print('Accuracy: %f' % accuracy) # precision tp / (tp + fp) precision = precision_score(y_test, y_test_pred) print('Precision: %f' % precision) # recall: tp / (tp + fn) recall = recall_score(y_test, y_test_pred) print('Recall: %f' % recall) # f1: 2 tp / (2 tp + fp + fn) f1 = f1_score(y_test, y_test_pred) print('F1 score: %f' % f1) # kappa kappa = cohen_kappa_score(y_test, y_test_pred) print('Cohens kappa: %f' % kappa) # ROC AUC auc = roc_auc_score(y_test, y_test_pred) print('ROC AUC: %f' % auc) # confusion matrix test_matrix = confusion_matrix(y_test, y_test_pred) print(test_matrix) ax = sns.heatmap(test_matrix, annot=True, cmap='Blues', fmt='g') ax.set_title('Seaborn Confusion Matrix with labels\n\n'); ax.set_xlabel('\nPredicted Values') ax.set_ylabel('Actual Values '); ax.xaxis.set_ticklabels(['0','1']) ax.yaxis.set_ticklabels(['0','1']) ## Display the visualization of the Confusion Matrix. plt.show() y_pred_1 = [int(i) for i in y_pred ] y_pred_1 = ["{}\n".format(i) for i in y_pred_1] with open(r'ttn_2_layers.csv', 'w') as fp: fp.writelines(y_pred_1)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from docplex.mp.model import Model from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import CobylaOptimizer, MinimumEigenOptimizer from qiskit_optimization.algorithms.admm_optimizer import ADMMParameters, ADMMOptimizer from qiskit_optimization.translators import from_docplex_mp # If CPLEX is installed, you can uncomment this line to import the CplexOptimizer. # CPLEX can be used in this tutorial to solve the convex continuous problem, # but also as a reference to solve the QUBO, or even the full problem. # # from qiskit.optimization.algorithms import CplexOptimizer # define COBYLA optimizer to handle convex continuous problems. cobyla = CobylaOptimizer() # define QAOA via the minimum eigen optimizer qaoa = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA())) # exact QUBO solver as classical benchmark exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) # to solve QUBOs # in case CPLEX is installed it can also be used for the convex problems, the QUBO, # or as a benchmark for the full problem. # # cplex = CplexOptimizer() # construct model using docplex mdl = Model("ex6") v = mdl.binary_var(name="v") w = mdl.binary_var(name="w") t = mdl.binary_var(name="t") u = mdl.continuous_var(name="u") mdl.minimize(v + w + t + 5 * (u - 2) ** 2) mdl.add_constraint(v + 2 * w + t + u <= 3, "cons1") mdl.add_constraint(v + w + t >= 1, "cons2") mdl.add_constraint(v + w == 1, "cons3") # load quadratic program from docplex model qp = from_docplex_mp(mdl) print(qp.prettyprint()) admm_params = ADMMParameters( rho_initial=1001, beta=1000, factor_c=900, maxiter=100, three_block=True, tol=1.0e-6 ) # define QUBO optimizer qubo_optimizer = exact # qubo_optimizer = cplex # uncomment to use CPLEX instead # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with classical QUBO and convex optimizer admm = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result = admm.solve(qp) print(result.prettyprint()) plt.plot(result.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() # define QUBO optimizer qubo_optimizer = qaoa # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with quantum QUBO optimizer and classical convex optimizer admm_q = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result_q = admm_q.solve(qp) print(result.prettyprint()) plt.clf() plt.plot(result_q.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/abhik-99/Qiskit-Summer-School
abhik-99
# import SymPy and define symbols import sympy as sp sp.init_printing(use_unicode=True) wr = sp.Symbol('\omega_r') # resonator frequency wq = sp.Symbol('\omega_q') # qubit frequency g = sp.Symbol('g', real=True) # vacuum Rabi coupling Delta = sp.Symbol('Delta', real=True) # wr - wq; defined later # import operator relations and define them from sympy.physics.quantum.boson import BosonOp a = BosonOp('a') # resonator photon annihilation operator from sympy.physics.quantum import pauli, Dagger, Commutator from sympy.physics.quantum.operatorordering import normal_ordered_form # Pauli matrices sx = pauli.SigmaX() sy = pauli.SigmaY() sz = pauli.SigmaZ() # qubit raising and lowering operators splus = pauli.SigmaPlus() sminus = pauli.SigmaMinus() # define J-C Hamiltonian in terms of diagonal and non-block diagonal terms H0 = wr*Dagger(a)*a - (1/2)*wq*sz; H1 = 0 H2 = g*(Dagger(a)*sminus + a*splus); HJC = H0 + H1 + H2; HJC # print # using the above method for finding the ansatz eta = Commutator(H0, H2); eta pauli.qsimplify_pauli(normal_ordered_form(eta.doit().expand())) A = sp.Symbol('A') B = sp.Symbol('B') eta = A * Dagger(a) * sminus - B * a * splus; pauli.qsimplify_pauli(normal_ordered_form(Commutator(H0, eta).doit().expand())) H2 S1 = eta.subs(A, g/Delta) S1 = S1.subs(B, g/Delta); S1.factor() Heff = H0 + H1 + 0.5*pauli.qsimplify_pauli(normal_ordered_form(Commutator(H2, S1).doit().expand())).simplify(); Heff from qiskit.tools.jupyter import * from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') backend = provider.get_backend('ibmq_armonk') backend_config = backend.configuration() assert backend_config.open_pulse, "Backend doesn't support Pulse" dt = backend_config.dt print(f"Sampling time: {dt*1e9} ns") backend_defaults = backend.defaults() import numpy as np # unit conversion factors -> all backend properties returned in SI (Hz, sec, etc) GHz = 1.0e9 # Gigahertz MHz = 1.0e6 # Megahertz kHz = 1.0e3 us = 1.0e-6 # Microseconds ns = 1.0e-9 # Nanoseconds # We will find the qubit frequency for the following qubit. qubit = 0 # The sweep will be centered around the estimated qubit frequency. center_frequency_Hz = backend_defaults.qubit_freq_est[qubit] # The default frequency is given in Hz # warning: this will change in a future release print(f"Qubit {qubit} has an estimated frequency of {center_frequency_Hz / GHz} GHz.") # scale factor to remove factors of 10 from the data scale_factor = 1e-14 # We will sweep 40 MHz around the estimated frequency frequency_span_Hz = 40 * MHz # in steps of 1 MHz. frequency_step_Hz = 1 * MHz # We will sweep 20 MHz above and 20 MHz below the estimated frequency frequency_min = center_frequency_Hz - frequency_span_Hz / 2 frequency_max = center_frequency_Hz + frequency_span_Hz / 2 # Construct an np array of the frequencies for our experiment frequencies_GHz = np.arange(frequency_min / GHz, frequency_max / GHz, frequency_step_Hz / GHz) print(f"The sweep will go from {frequency_min / GHz} GHz to {frequency_max / GHz} GHz \ in steps of {frequency_step_Hz / MHz} MHz.") from qiskit import pulse # This is where we access all of our Pulse features! inst_sched_map = backend_defaults.instruction_schedule_map measure = inst_sched_map.get('measure', qubits=[qubit]) x_pulse = inst_sched_map.get('x', qubits=[qubit]) ### Collect the necessary channels drive_chan = pulse.DriveChannel(qubit) meas_chan = pulse.MeasureChannel(qubit) acq_chan = pulse.AcquireChannel(qubit) # Create the base schedule # Start with drive pulse acting on the drive channel schedule = pulse.Schedule(name='Frequency sweep') schedule += x_pulse # The left shift `<<` is special syntax meaning to shift the start time of the schedule by some duration schedule += measure << schedule.duration # Create the frequency settings for the sweep (MUST BE IN HZ) frequencies_Hz = frequencies_GHz*GHz schedule_frequencies = [{drive_chan: freq} for freq in frequencies_Hz] schedule.draw(label=True, scaling=0.8) from qiskit import assemble frequency_sweep_program = assemble(schedule, backend=backend, meas_level=1, meas_return='avg', shots=1024, schedule_los=schedule_frequencies) # RUN the job on a real device #job = backend.run(rabi_experiment_program) #print(job.job_id()) #from qiskit.tools.monitor import job_monitor #job_monitor(job) # OR retreive result from previous run job = backend.retrieve_job('5ef3b081fbc24b001275b03b') frequency_sweep_results = job.result() import matplotlib.pyplot as plt plt.style.use('dark_background') sweep_values = [] for i in range(len(frequency_sweep_results.results)): # Get the results from the ith experiment res = frequency_sweep_results.get_memory(i)*scale_factor # Get the results for `qubit` from this experiment sweep_values.append(res[qubit]) plt.scatter(frequencies_GHz, np.real(sweep_values), color='white') # plot real part of sweep values plt.xlim([min(frequencies_GHz), max(frequencies_GHz)]) plt.xlabel("Frequency [GHz]") plt.ylabel("Measured signal [a.u.]") plt.show() from scipy.optimize import curve_fit def fit_function(x_values, y_values, function, init_params): fitparams, conv = curve_fit(function, x_values, y_values, init_params) y_fit = function(x_values, *fitparams) return fitparams, y_fit fit_params, y_fit = fit_function(frequencies_GHz, np.real(sweep_values), lambda x, A, q_freq, B, C: (A / np.pi) * (B / ((x - q_freq)**2 + B**2)) + C, [5, 4.975, 1, 3] # initial parameters for curve_fit ) plt.scatter(frequencies_GHz, np.real(sweep_values), color='white') plt.plot(frequencies_GHz, y_fit, color='red') plt.xlim([min(frequencies_GHz), max(frequencies_GHz)]) plt.xlabel("Frequency [GHz]") plt.ylabel("Measured Signal [a.u.]") plt.show() # Create the schedules for 0 and 1 schedule_0 = pulse.Schedule(name='0') schedule_0 += measure schedule_1 = pulse.Schedule(name='1') schedule_1 += x_pulse schedule_1 += measure << schedule_1.duration schedule_0.draw() schedule_1.draw() frequency_span_Hz = 320 * kHz frequency_step_Hz = 8 * kHz center_frequency_Hz = backend_defaults.meas_freq_est[qubit] print(f"Qubit {qubit} has an estimated readout frequency of {center_frequency_Hz / GHz} GHz.") frequency_min = center_frequency_Hz - frequency_span_Hz / 2 frequency_max = center_frequency_Hz + frequency_span_Hz / 2 frequencies_GHz = np.arange(frequency_min / GHz, frequency_max / GHz, frequency_step_Hz / GHz) print(f"The sweep will go from {frequency_min / GHz} GHz to {frequency_max / GHz} GHz\ in steps of {frequency_step_Hz / MHz} MHz.") num_shots_per_frequency = 2048 frequencies_Hz = frequencies_GHz*GHz schedule_los = [{meas_chan: freq} for freq in frequencies_Hz] cavity_sweep_0 = assemble(schedule_0, backend=backend, meas_level=1, meas_return='avg', shots=num_shots_per_frequency, schedule_los=schedule_los) cavity_sweep_1 = assemble(schedule_1, backend=backend, meas_level=1, meas_return='avg', shots=num_shots_per_frequency, schedule_los=schedule_los) # RUN the job on a real device #job_0 = backend.run(cavity_sweep_0) #job_monitor(job_0) #job_0.error_message() #job_1 = backend.run(cavity_sweep_1) #job_monitor(job_1) #job_1.error_message() # OR retreive result from previous run job_0 = backend.retrieve_job('5efa5b447c0d6800137fff1c') job_1 = backend.retrieve_job('5efa6b2720eee10013be46b4') cavity_sweep_0_results = job_0.result() cavity_sweep_1_results = job_1.result() scale_factor = 1e-14 sweep_values_0 = [] for i in range(len(cavity_sweep_0_results.results)): res_0 = cavity_sweep_0_results.get_memory(i)*scale_factor sweep_values_0.append(res_0[qubit]) sweep_values_1 = [] for i in range(len(cavity_sweep_1_results.results)): res_1 = cavity_sweep_1_results.get_memory(i)*scale_factor sweep_values_1.append(res_1[qubit]) plotx = frequencies_Hz/kHz ploty_0 = np.abs(sweep_values_0) ploty_1 = np.abs(sweep_values_1) plt.plot(plotx, ploty_0, color='blue', marker='.') # plot real part of sweep values plt.plot(plotx, ploty_1, color='red', marker='.') # plot real part of sweep values plt.legend([r'$\vert0\rangle$', r'$\vert1\rangle$']) plt.grid() plt.xlabel("Frequency [kHz]") plt.ylabel("Measured signal [a.u.]") plt.yscale('log') plt.show()
https://github.com/DaisukeIto-ynu/KosakaQ
DaisukeIto-ynu
# This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Noise model inserter module The goal of this module is to add QuantumError gates (Kraus gates) to a circuit based on a given noise model. """ import qiskit.compiler def insert_noise(circuits, noise_model, transpile=False): """Return a noisy version of a QuantumCircuit. Args: circuits (QuantumCircuit or list[QuantumCircuit]): Input noise-free circuits. noise_model (NoiseModel): The noise model containing the errors to add transpile (Boolean): Should the circuit be transpiled into the noise model basis gates Returns: QuantumCircuit: The new circuit with the Kraus noise instructions inserted. Additional Information: The noisy circuit return by this function will consist of the original circuit with ``Kraus`` instructions inserted after all instructions referenced in the ``noise_model``. The resulting circuit cannot be ran on a quantum computer but can be executed on the :class:`~qiskit.providers.aer.QasmSimulator`. """ is_circuits_list = isinstance(circuits, (list, tuple)) circuits = circuits if is_circuits_list else [circuits] result_circuits = [] nonlocal_errors = noise_model._nonlocal_quantum_errors local_errors = noise_model._local_quantum_errors default_errors = noise_model._default_quantum_errors for circuit in circuits: if transpile: transpiled_circuit = qiskit.compiler.transpile(circuit, basis_gates=noise_model.basis_gates) else: transpiled_circuit = circuit qubit_indices = {bit: index for index, bit in enumerate(transpiled_circuit.qubits)} result_circuit = transpiled_circuit.copy(name=transpiled_circuit.name + '_with_noise') result_circuit.data = [] for inst, qargs, cargs in transpiled_circuit.data: result_circuit.data.append((inst, qargs, cargs)) qubits = tuple(qubit_indices[q] for q in qargs) # Priority for error model used: # nonlocal error > local error > default error if inst.name in nonlocal_errors and qubits in nonlocal_errors[inst.name]: for noise_qubits, error in nonlocal_errors[inst.name][qubits].items(): result_circuit.append(error.to_instruction(), noise_qubits) elif inst.name in local_errors and qubits in local_errors[inst.name]: error = local_errors[inst.name][qubits] result_circuit.append(error.to_instruction(), qargs) elif inst.name in default_errors.keys(): error = default_errors[inst.name] result_circuit.append(error.to_instruction(), qargs) result_circuits.append(result_circuit) return result_circuits if is_circuits_list else result_circuits[0]
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import pandas as pd import itertools import cma import os import sys import argparse import pickle import random import re from pprint import pprint import qiskit from qiskit import * from qiskit import Aer from qiskit import IBMQ from qiskit.providers.aer.noise.noise_model import NoiseModel from qiskit.test.mock import * from qiskit.providers.aer import AerSimulator, QasmSimulator from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter import mitiq IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst') provider = IBMQ.get_provider(hub='', group='internal', project='hirashi-jst') print("provider:", provider) L = 3 p = 2 dt = 1.0 tf = 20 shots = 8192 def TwirlCircuit(circ: str) -> QuantumCircuit: """ そのまま使う: 修正は後回し """ #! qasm ベタ書き def apply_pauli(num: int, qb: int) -> str: if (num == 0): return f'id q[{qb}];\n' elif (num == 1): return f'x q[{qb}];\n' elif (num == 2): return f'y q[{qb}];\n' else: return f'z q[{qb}];\n' paulis = [(i,j) for i in range(0,4) for j in range(0,4)] paulis.remove((0,0)) paulis_map = [(0, 1), (3, 2), (3, 3), (1, 1), (1, 0), (2, 3), (2, 2), (2, 1), (2, 0), (1, 3), (1, 2), (3, 0), (3, 1), (0, 2), (0, 3)] new_circ = '' ops = circ.qasm().splitlines(True) #! 生のqasmコードを持ってきてる: オペレータに分解 for op in ops: if (op[:2] == 'cx'): # can add for cz, etc. num = random.randrange(len(paulis)) #! permute paulis qbs = re.findall('q\[(.)\]', op) new_circ += apply_pauli(paulis[num][0], qbs[0]) new_circ += apply_pauli(paulis[num][1], qbs[1]) new_circ += op new_circ += apply_pauli(paulis_map[num][0], qbs[0]) new_circ += apply_pauli(paulis_map[num][1], qbs[1]) else: new_circ += op return qiskit.circuit.QuantumCircuit.from_qasm_str(new_circ) # とりあえずOK def evolve(alpha: float, q0: Union[int, QuantumRegister], q1: Union[int, QuantumRegister]) -> QuantumCircuit: """ The implementation of Fig. 4 in https://arxiv.org/abs/2112.12654 """ qc = QuantumCircuit(2) qc.rz(-np.pi / 2, q1) qc.cnot(q1, q0) qc.rz(alpha - np.pi / 2, q0) qc.ry(np.pi / 2 - alpha, q1) qc.cnot(q0, q1) qc.ry(alpha - np.pi / 2, q1) qc.cnot(q1, q0) qc.rz(np.pi / 2, q0) return qc # とりあえずOK def make_ansatz_circuit(num_qubits: int, ansatz_depth: int, parameters: np.array) -> QuantumCircuit: """ Prepare ansatz circuit code reference: https://gitlab.com/QANED/heis_dynamics method reference: https://arxiv.org/abs/1906.06343 == AnsatzCircuit(param, p) -> QuantumCircuit Args: parameters: 1d array (for 2d parameters on circuit) """ qc = QuantumCircuit(num_qubits) for l in range(ansatz_depth): if num_qubits & 1: for i in range(0, num_qubits, 2): # linear condition qc.compose(evolve(parameters[l * ansatz_depth + i] / 4), [i, i + 1], inplace = True) #! we do not have to divide the angle by 4 for i in range(1, num_qubits - 1, 2): # linear condition # ! we do not have to divide the angle by 4 qc.compose(evolve(parameters[l * ansatz_depth + i] / 4), [i, i + 1], inplace=True) else: for i in range(0, num_qubits - 1, 2): # linear condition # ! we do not have to divide the angle by 4 qc.compose(evolve(parameters[l * ansatz_depth + i]), [i, i + 1], inplace=True) for i in range(1, num_qubits - 1, 2): # linear condition # ! we do not have to divide the angle by 4 qc.compose(evolve(parameters[l * ansatz_depth + i]), [i, i + 1], inplace=True) return qc # とりあえずOK def make_trotter_circuit(num_qubits: int, time_interval: float) -> QuantumCircuit: """ Prepare Trotter circuit code reference: https://gitlab.com/QANED/heis_dynamics method reference: https://arxiv.org/abs/1906.06343 == TrotterEvolveCircuit(dt, nt, init) -> QuantumCircuit """ qc = QuantumCircuit(num_qubits) for n in range(trotter_steps): #! time_interval の符号に注意 if num_qubits & 1: for i in range(0, num_qubits, 2): # linear condition qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) #! we do not have to divide the angle by 4 for i in range(1, num_qubits - 1, 2): # linear condition qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) # ! we do not have to divide the angle by 4 else: for i in range(0, num_qubits - 1, 2): # linear condition qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) #! we do not have to divide the angle by 4 for i in range(1, num_qubits - 1, 2): # linear condition qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) # ! we do not have to divide the angle by 4 return qc #TODO VTCとは別実装?→ no, 同じ実装に。 def SimulateAndReorder(circ): """ #! execution wrapper Executes a circuit using the statevector simulator and reorders basis to match with standard """ backend = Aer.get_backend('statevector_simulator') return execute(circ.reverse_bits(), backend).result().get_statevector() def Simulate(circ): """ #! execution wrapper Executes a circuit using the statevector simulator. Doesn't reorder -- which is needed for intermediate steps in the VTC """ backend = Aer.get_backend('statevector_simulator') return execute(circ, backend).result().get_statevector() #TODO def LoschmidtEchoExecutor(circuits, backend, shots, filter): """ #! 回路を実行 Returns the expectation value to be mitigated. :param circuit: Circuit to run. #! ここでのcircuitsは :param backend: backend to run the circuit on :param shots: Number of times to execute the circuit to compute the expectation value. :param fitter: measurement error mitigator """ # circuits = [TwirlCircuit(circ) for circ in circuits] scale_factors = [1.0, 2.0, 3.0] #! ZNEのノイズスケーリングパラメタ folded_circuits = [] #! ZNE用の回路 for circuit in circuits: folded_circuits.append([mitiq.zne.scaling.fold_gates_at_random(circuit, scale) for scale in scale_factors]) #! ここでmitiqを使用 folded_circuits = list(itertools.chain(*folded_circuits)) #! folded_circuitsを平坦化 folded_circuits = [TwirlCircuit(circ) for circ in folded_circuits] #! 後からPauli Twirlingを施す! print("length of circuit in job", len(folded_circuits)) #! jobを投げる job = qiskit.execute( experiments=folded_circuits, backend=backend, optimization_level=0, shots=shots ) print("casted job") #! fidelity測定用(VTCをしないなら、ここはtomographyで良い) c = ['1','1','0'] #! これをpermutationする # c = [str((1 + (-1)**(i+1)) // 2) for i in range(L)] c = ''.join(c)[::-1] #! endianを反転 (big endianへ) res = job.result() if (filter is not None): #! QREM res = filter.apply(res) print("retrieved job") all_counts = [job.result().get_counts(i) for i in range(len(folded_circuits))] expectation_values = [] for counts in all_counts: total_allowed_shots = [counts.get(''.join(p)) for p in set(itertools.permutations(c))] #! ここでcをpermutationしている total_allowed_shots = sum([0 if x is None else x for x in total_allowed_shots]) if counts.get(c) is None: expectation_values.append(0) else: expectation_values.append(counts.get(c)/total_allowed_shots) # expectation_values = [counts.get(c) / shots for counts in all_counts] zero_noise_values = [] if isinstance(backend, qiskit.providers.aer.backends.qasm_simulator.QasmSimulator): # exact_sim for i in range(len(circuits)): zero_noise_values.append(np.mean(expectation_values[i*len(scale_factors):(i+1)*len(scale_factors)])) else: #device_sim, real_device fac = mitiq.zne.inference.LinearFactory(scale_factors) for i in range(len(circuits)): zero_noise_values.append(fac.extrapolate(scale_factors, expectation_values[i*len(scale_factors):(i+1)*len(scale_factors)])) print("zero_noise_values") pprint(zero_noise_values) print() return zero_noise_values #TODO def LoschmidtEchoCircuit(params, U_v, U_trot, init, p): """ #! 回路を作成 Cost function using the Loschmidt Echo. Just using statevectors currently -- can rewrite using shots :param params: parameters new variational circuit that represents U_trot U_v | init >. Need dagger for cost function :param U_v: variational circuit that stores the state before the trotter step :param U_trot: trotter step :param init: initial state :param p: number of ansatz steps """ U_v_prime = AnsatzCircuit(params, p) circ = init + U_v + U_trot + U_v_prime.inverse() circ.measure_all() return circ def LoschmidtEcho(params, U_v, U_trot, init, p, backend, shots, filter): """ #! 実行パート """ circs = [] for param in params: circs.append(LoschmidtEchoCircuit(param, U_v, U_trot, init, p)) #! 回路を作成 print("length of circuits without zne:", len(circs)) res = LoschmidtEchoExecutor(circs, backend, shots, filter) #! 回路を実行 return abs(1 - np.array(res)) def LoschmidtEchoExact(params, U_v, U_trot, init, p): """ #! unused function """ U_v_prime = AnsatzCircuit(params, p) circ = init + U_v + U_trot + U_v_prime.inverse() circ_vec = Simulate(circ) init_vec = Simulate(init) return 1 - abs(np.conj(circ_vec) @ init_vec)**2 def CMAES(U_v, U_trot, init, p, backend, shots, filter): """ #! 実行 + 最適化パート """ init_params = np.random.uniform(0, 2*np.pi, (L-1)*p) es = cma.CMAEvolutionStrategy(init_params, np.pi/2) es.opts.set({'ftarget':5e-3, 'maxiter':1000}) # es = pickle.load(open(f'./results_{L}/optimizer_dump', 'rb')) while not es.stop(): #! 最適化パート # solutions = es.ask(25) # ! 25 = number of returned solutions solutions = es.ask(10) print("solutions") pprint(solutions) es.tell(solutions, LoschmidtEcho(solutions, U_v, U_trot, init, p, backend, shots, filter)) #! 実行パート # es.tell(solutions, LoschmidtEchoExact(solutions, U_v, U_trot, init, p)) #! 実行パート es.disp() open(f'./results_{L}/optimizer_dump', 'wb').write(es.pickle_dumps()) return es.result_pretty() def VTC(tf, dt, p, init, backend, shots, filter): """ #! tf: 総経過時間 #! dt: trotter step size: 時間間隔 #! p: ansatzのステップ数 """ VTCParamList = [np.zeros((L-1)*p)] #! デフォルトのパラメタ(初期値) VTCStepList = [SimulateAndReorder(init.copy())] #! type: List[Statevector] # TrotterFixStepList = [init] TimeStep = [0] if (os.path.exists(f'./results_{L}/VTD_params_{tf}_{L}_{p}_{dt}_{shots}.csv')): #! 2巡目からこっち VTCParamList = pd.read_csv(f'./results_{L}/VTD_params_{tf}_{L}_{p}_{dt}_{shots}.csv', index_col=0) VTCStepList = pd.read_csv(f'./results_{L}/VTD_results_{tf}_{L}_{p}_{dt}_{shots}.csv', index_col=0) temp = VTCParamList.iloc[-1] print(temp, "th time interval") U_v = AnsatzCircuit(temp, p) else: #! 最初はこっちに入る VTCParamList = pd.DataFrame(np.array(VTCParamList), index=np.array(TimeStep)) VTCStepList = pd.DataFrame(np.array(VTCStepList), index=np.array(TimeStep)) print("0 th time interval") print() U_v = QuantumCircuit(L) ts = VTCParamList.index #! 時間間隔 U_trot = TrotterEvolveCircuit(dt, p, QuantumCircuit(L)) #! Trotter分解のunitaryを作る print() print("start CMAES") print() res = CMAES(U_v, U_trot, init, p, backend, shots, filter) #! ここでプロセスを実行!!!! print() print("res") pprint(res) #! 新しいループ結果を追加し、tsを更新 res = res.xbest # ! best solution evaluated print("res.xbest") pprint(res) VTCParamList.loc[ts[-1]+(dt*p)] = np.array(res) VTCStepList.loc[ts[-1]+(dt*p)] = np.array(SimulateAndReorder(init + AnsatzCircuit(res, p))) ts = VTCParamList.index # VTCParamList = pd.DataFrame(np.array(VTCParamList), index=np.array(TimeStep)) # VTCStepList = pd.DataFrame(np.array(VTCStepList), index=np.array(TimeStep)) #! csvファイルを更新 VTCParamList.to_csv(f'./results_{L}/VTD_params_{tf}_{L}_{p}_{dt}_{shots}.csv') VTCStepList.to_csv(f'./results_{L}/VTD_results_{tf}_{L}_{p}_{dt}_{shots}.csv') if (ts[-1] >= tf): return else: print("next step") VTC(tf, dt, p, init, backend, shots, filter) #! ここからQREM回路 qr = QuantumRegister(L) meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') # device_backend = FakeJakarta() # device_sim = AerSimulator.from_backend(device_backend) real_device = provider.get_backend('ibmq_jakarta') noise_model = NoiseModel.from_backend(real_device) device_sim = QasmSimulator(method='statevector', noise_model=noise_model) exact_sim = Aer.get_backend('qasm_simulator') # QasmSimulator(method='statevector') t_qc = transpile(meas_calibs) qobj = assemble(t_qc, shots=8192) # cal_results = real_device.run(qobj, shots=8192).result() cal_results = device_sim.run(qobj, shots=8192).result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') print("qrem done") # np.around(meas_fitter.cal_matrix, decimals=2) init = QuantumCircuit(L) # c = [str((1 + (-1)**(i+1)) // 2) for i in range(L)] c = ['1','1','0'] #! なぜinitial stateが110なの??????? もしかしてopen science prizeを意識??? #! けどループでこのプログラムが実行されるたびにここが|110>だとおかしくないか? for q in range(len(c)): if (c[q] == '1'): init.x(q) #! ここまでQREM回路 nt = int(np.ceil(tf / (dt * p))) # f = open(f'./results_{L}/logging.txt', 'a') # sys.stdout = f #! tf: シミュレーションの(経過)時間 #! dt: trotter分解のステップ数 #! p: ansatzのステップ数 (論文中のL) # VTC(tf, dt, p, init, real_device, shots, meas_fitter.filter) #! mainの処理 print("vtc start!!!! \n\n\n") VTC(tf, dt, p, init, device_sim, shots, meas_fitter.filter) #! mainの処理 # f.close()
https://github.com/tomtuamnuq/compare-qiskit-ocean
tomtuamnuq
import itertools import matplotlib.pyplot as plt import networkx as nx from qiskit_optimization import QuadraticProgram from qiskit_optimization.converters import QuadraticProgramToQubo from dwave.system import DWaveSampler, FixedEmbeddingComposite import dimod import dwave_networkx as dnx from minorminer import find_embedding import dwave.inspector # select quadratic program to solve qp = QuadraticProgram() qp.read_from_lp_file("example.lp") qubo = QuadraticProgramToQubo().convert(qp) bqm_binary = dimod.as_bqm(qubo.objective.linear.to_array(), qubo.objective.quadratic.to_array(), dimod.BINARY) print(qp) print(bqm_binary) bqm_ising = bqm_binary.to_ising() print("Ising Model form coefficients:") print(bqm_ising) sampler_exact = dimod.ExactSolver() sampleset = sampler_exact.sample(bqm_binary) print(sampleset) G = bqm_binary.to_networkx_graph() P_16 = dnx.pegasus_graph(16) embedding = find_embedding(G, P_16, timeout=60, tries=50) P_16_sub = P_16.subgraph(list(itertools.chain(*embedding.values()))) plt.figure(figsize=(4,4)) dnx.draw_pegasus(P_16_sub, node_size=500, node_color='g') structured_sampler = dimod.StructureComposite(DWaveSampler(), P_16.nodes, P_16.edges) sampler = FixedEmbeddingComposite(structured_sampler, embedding=embedding) res = sampler.sample(bqm_binary, label="example_qubo_3", num_reads=100) res.to_pandas_dataframe() dwave.inspector.show(res)
https://github.com/Interlin-q/diskit
Interlin-q
from qiskit import BasicAer from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import Shor N = 15 shor = Shor(N) backend = BasicAer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024) ret = shor.run(quantum_instance) print("The list of factors of {} as computed by the Shor's algorithm is {}.".format(N, ret['factors'][0]))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile from qiskit.visualization import plot_circuit_layout from qiskit.providers.fake_provider import FakeVigo backend = FakeVigo() ghz = QuantumCircuit(3, 3) ghz.h(0) ghz.cx(0,range(1,3)) ghz.barrier() ghz.measure(range(3), range(3)) ghz.draw(output='mpl')
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import sys import logging import time import copy import os import uuid import numpy as np from qiskit import compiler from qiskit.assembler import assemble_circuits from qiskit.providers import BaseBackend, JobStatus, JobError from qiskit.providers.basicaer import BasicAerJob from qiskit.qobj import QobjHeader from qiskit.aqua.aqua_error import AquaError from qiskit.aqua.utils import summarize_circuits from qiskit.aqua.utils.backend_utils import (is_aer_provider, is_basicaer_provider, is_ibmq_provider, is_simulator_backend, is_local_backend) MAX_CIRCUITS_PER_JOB = os.environ.get('QISKIT_AQUA_MAX_CIRCUITS_PER_JOB', None) logger = logging.getLogger(__name__) def find_regs_by_name(circuit, name, qreg=True): """Find the registers in the circuits. Args: circuit (QuantumCircuit): the quantum circuit. name (str): name of register qreg (bool): quantum or classical register Returns: QuantumRegister or ClassicalRegister or None: if not found, return None. """ found_reg = None regs = circuit.qregs if qreg else circuit.cregs for reg in regs: if reg.name == name: found_reg = reg break return found_reg def _avoid_empty_circuits(circuits): new_circuits = [] for qc in circuits: if len(qc) == 0: tmp_q = None for q in qc.qregs: tmp_q = q break if tmp_q is None: raise NameError("A QASM without any quantum register is invalid.") qc.iden(tmp_q[0]) new_circuits.append(qc) return new_circuits def _combine_result_objects(results): """Tempoary helper function. TODO: This function would be removed after Terra supports job with infinite circuits. """ if len(results) == 1: return results[0] new_result = copy.deepcopy(results[0]) for idx in range(1, len(results)): new_result.results.extend(results[idx].results) return new_result def _maybe_add_aer_expectation_instruction(qobj, options): if 'expectation' in options: from qiskit.providers.aer.utils.qobj_utils import snapshot_instr, append_instr, get_instr_pos # add others, how to derive the correct used number of qubits? # the compiled qobj could be wrong if coupling map is used. params = options['expectation']['params'] num_qubits = options['expectation']['num_qubits'] for idx in range(len(qobj.experiments)): # if mulitple params are provided, we assume that each circuit is corresponding one param # otherwise, params are used for all circuits. param_idx = idx if len(params) > 1 else 0 snapshot_pos = get_instr_pos(qobj, idx, 'snapshot') if len(snapshot_pos) == 0: # does not append the instruction yet. new_ins = snapshot_instr('expectation_value_pauli', 'test', list(range(num_qubits)), params=params[param_idx]) qobj = append_instr(qobj, idx, new_ins) else: for i in snapshot_pos: # update all expectation_value_snapshot if qobj.experiments[idx].instructions[i].type == 'expectation_value_pauli': qobj.experiments[idx].instructions[i].params = params[param_idx] return qobj def _compile_wrapper(circuits, backend, backend_config, compile_config, run_config): transpiled_circuits = compiler.transpile(circuits, backend, **backend_config, **compile_config) if not isinstance(transpiled_circuits, list): transpiled_circuits = [transpiled_circuits] qobj = assemble_circuits(transpiled_circuits, qobj_id=str(uuid.uuid4()), qobj_header=QobjHeader(), run_config=run_config) return qobj, transpiled_circuits def compile_circuits(circuits, backend, backend_config=None, compile_config=None, run_config=None, show_circuit_summary=False, circuit_cache=None, **kwargs): """ An execution wrapper with Qiskit-Terra, with job auto recover capability. The autorecovery feature is only applied for non-simulator backend. This wraper will try to get the result no matter how long it costs. Args: circuits (QuantumCircuit or list[QuantumCircuit]): circuits to execute backend (BaseBackend): backend instance backend_config (dict, optional): configuration for backend compile_config (dict, optional): configuration for compilation run_config (RunConfig, optional): configuration for running a circuit show_circuit_summary (bool, optional): showing the summary of submitted circuits. circuit_cache (CircuitCache, optional): A CircuitCache to use when calling compile_and_run_circuits Returns: QasmObj: compiled qobj. Raises: AquaError: Any error except for JobError raised by Qiskit Terra """ backend_config = backend_config or {} compile_config = compile_config or {} run_config = run_config or {} if backend is None or not isinstance(backend, BaseBackend): raise ValueError('Backend is missing or not an instance of BaseBackend') if not isinstance(circuits, list): circuits = [circuits] if is_simulator_backend(backend): circuits = _avoid_empty_circuits(circuits) if MAX_CIRCUITS_PER_JOB is not None: max_circuits_per_job = int(MAX_CIRCUITS_PER_JOB) else: if is_local_backend(backend): max_circuits_per_job = sys.maxsize else: max_circuits_per_job = backend.configuration().max_experiments if circuit_cache is not None and circuit_cache.try_reusing_qobjs: # Check if all circuits are the same length. # If not, don't try to use the same qobj.experiment for all of them. if len(set([len(circ.data) for circ in circuits])) > 1: circuit_cache.try_reusing_qobjs = False else: # Try setting up the reusable qobj # Compile and cache first circuit if cache is empty. The load method will try to reuse it if circuit_cache.qobjs is None: qobj, transpiled_circuits = _compile_wrapper([circuits[0]], backend, backend_config, compile_config, run_config) if is_aer_provider(backend): qobj = _maybe_add_aer_expectation_instruction(qobj, kwargs) circuit_cache.cache_circuit(qobj, [circuits[0]], 0) qobjs = [] transpiled_circuits = [] chunks = int(np.ceil(len(circuits) / max_circuits_per_job)) for i in range(chunks): sub_circuits = circuits[i * max_circuits_per_job:(i + 1) * max_circuits_per_job] if circuit_cache is not None and circuit_cache.misses < circuit_cache.allowed_misses: try: if circuit_cache.cache_transpiled_circuits: transpiled_sub_circuits = compiler.transpile(sub_circuits, backend, **backend_config, **compile_config) qobj = circuit_cache.load_qobj_from_cache(transpiled_sub_circuits, i, run_config=run_config) else: qobj = circuit_cache.load_qobj_from_cache(sub_circuits, i, run_config=run_config) if is_aer_provider(backend): qobj = _maybe_add_aer_expectation_instruction(qobj, kwargs) # cache miss, fail gracefully except (TypeError, IndexError, FileNotFoundError, EOFError, AquaError, AttributeError) as e: circuit_cache.try_reusing_qobjs = False # Reusing Qobj didn't work if len(circuit_cache.qobjs) > 0: logger.info('Circuit cache miss, recompiling. Cache miss reason: ' + repr(e)) circuit_cache.misses += 1 else: logger.info('Circuit cache is empty, compiling from scratch.') circuit_cache.clear_cache() qobj, transpiled_sub_circuits = _compile_wrapper(sub_circuits, backend, backend_config, compile_config, run_config) transpiled_circuits.extend(transpiled_sub_circuits) if is_aer_provider(backend): qobj = _maybe_add_aer_expectation_instruction(qobj, kwargs) try: circuit_cache.cache_circuit(qobj, sub_circuits, i) except (TypeError, IndexError, AquaError, AttributeError, KeyError) as e: try: circuit_cache.cache_transpiled_circuits = True circuit_cache.cache_circuit(qobj, transpiled_sub_circuits, i) except (TypeError, IndexError, AquaError, AttributeError, KeyError) as e: logger.info('Circuit could not be cached for reason: ' + repr(e)) logger.info('Transpilation may be too aggressive. Try skipping transpiler.') else: qobj, transpiled_sub_circuits = _compile_wrapper(sub_circuits, backend, backend_config, compile_config, run_config) transpiled_circuits.extend(transpiled_sub_circuits) if is_aer_provider(backend): qobj = _maybe_add_aer_expectation_instruction(qobj, kwargs) qobjs.append(qobj) if logger.isEnabledFor(logging.DEBUG) and show_circuit_summary: logger.debug("==== Before transpiler ====") logger.debug(summarize_circuits(circuits)) logger.debug("==== After transpiler ====") logger.debug(summarize_circuits(transpiled_circuits)) return qobjs def _safe_submit_qobj(qobj, backend, backend_options, noise_config, skip_qobj_validation): # assure get job ids while True: job = run_on_backend(backend, qobj, backend_options=backend_options, noise_config=noise_config, skip_qobj_validation=skip_qobj_validation) try: job_id = job.job_id() break except JobError as e: logger.warning("FAILURE: Can not get job id, Resubmit the qobj to get job id." "Terra job error: {} ".format(e)) except Exception as e: logger.warning("FAILURE: Can not get job id, Resubmit the qobj to get job id." "Error: {} ".format(e)) return job, job_id def run_qobjs(qobjs, backend, qjob_config=None, backend_options=None, noise_config=None, skip_qobj_validation=False): """ An execution wrapper with Qiskit-Terra, with job auto recover capability. The autorecovery feature is only applied for non-simulator backend. This wraper will try to get the result no matter how long it costs. Args: qobjs (list[QasmObj]): qobjs to execute backend (BaseBackend): backend instance qjob_config (dict, optional): configuration for quantum job object backend_options (dict, optional): configuration for simulator noise_config (dict, optional): configuration for noise model skip_qobj_validation (bool, optional): Bypass Qobj validation to decrease submission time Returns: Result: Result object Raises: AquaError: Any error except for JobError raised by Qiskit Terra """ qjob_config = qjob_config or {} backend_options = backend_options or {} noise_config = noise_config or {} if backend is None or not isinstance(backend, BaseBackend): raise ValueError('Backend is missing or not an instance of BaseBackend') with_autorecover = False if is_simulator_backend(backend) else True jobs = [] job_ids = [] for qobj in qobjs: job, job_id = _safe_submit_qobj(qobj, backend, backend_options, noise_config, skip_qobj_validation) job_ids.append(job_id) jobs.append(job) results = [] if with_autorecover: logger.info("Backend status: {}".format(backend.status())) logger.info("There are {} jobs are submitted.".format(len(jobs))) logger.info("All job ids:\n{}".format(job_ids)) for idx in range(len(jobs)): job = jobs[idx] job_id = job_ids[idx] while True: logger.info("Running {}-th qobj, job id: {}".format(idx, job_id)) # try to get result if possible try: result = job.result(**qjob_config) if result.success: results.append(result) logger.info("COMPLETED the {}-th qobj, " "job id: {}".format(idx, job_id)) break else: logger.warning("FAILURE: the {}-th qobj, " "job id: {}".format(idx, job_id)) except JobError as e: # if terra raise any error, which means something wrong, re-run it logger.warning("FAILURE: the {}-th qobj, job id: {} " "Terra job error: {} ".format(idx, job_id, e)) except Exception as e: raise AquaError("FAILURE: the {}-th qobj, job id: {} " "Unknown error: {} ".format(idx, job_id, e)) from e # something wrong here if reach here, querying the status to check how to handle it. # keep qeurying it until getting the status. while True: try: job_status = job.status() break except JobError as e: logger.warning("FAILURE: job id: {}, " "status: 'FAIL_TO_GET_STATUS' " "Terra job error: {}".format(job_id, e)) time.sleep(5) except Exception as e: raise AquaError("FAILURE: job id: {}, " "status: 'FAIL_TO_GET_STATUS' " "Unknown error: ({})".format(job_id, e)) from e logger.info("Job status: {}".format(job_status)) # handle the failure job based on job status if job_status == JobStatus.DONE: logger.info("Job ({}) is completed anyway, retrieve result " "from backend.".format(job_id)) job = backend.retrieve_job(job_id) elif job_status == JobStatus.RUNNING or job_status == JobStatus.QUEUED: logger.info("Job ({}) is {}, but encounter an exception, " "recover it from backend.".format(job_id, job_status)) job = backend.retrieve_job(job_id) else: logger.info("Fail to run Job ({}), resubmit it.".format(job_id)) qobj = qobjs[idx] # assure job get its id job, job_id = _safe_submit_qobj(qobj, backend, backend_options, noise_config, skip_qobj_validation) jobs[idx] = job job_ids[idx] = job_id else: results = [] for job in jobs: results.append(job.result(**qjob_config)) result = _combine_result_objects(results) if len(results) != 0 else None return result def compile_and_run_circuits(circuits, backend, backend_config=None, compile_config=None, run_config=None, qjob_config=None, backend_options=None, noise_config=None, show_circuit_summary=False, circuit_cache=None, skip_qobj_validation=False, **kwargs): """ An execution wrapper with Qiskit-Terra, with job auto recover capability. The autorecovery feature is only applied for non-simulator backend. This wraper will try to get the result no matter how long it costs. Args: circuits (QuantumCircuit or list[QuantumCircuit]): circuits to execute backend (BaseBackend): backend instance backend_config (dict, optional): configuration for backend compile_config (dict, optional): configuration for compilation run_config (RunConfig, optional): configuration for running a circuit qjob_config (dict, optional): configuration for quantum job object backend_options (dict, optional): configuration for simulator noise_config (dict, optional): configuration for noise model show_circuit_summary (bool, optional): showing the summary of submitted circuits. circuit_cache (CircuitCache, optional): A CircuitCache to use when calling compile_and_run_circuits skip_qobj_validation (bool, optional): Bypass Qobj validation to decrease submission time Returns: Result: Result object Raises: AquaError: Any error except for JobError raised by Qiskit Terra """ qobjs = compile_circuits(circuits, backend, backend_config, compile_config, run_config, show_circuit_summary, circuit_cache, **kwargs) result = run_qobjs(qobjs, backend, qjob_config, backend_options, noise_config, skip_qobj_validation) return result # skip_qobj_validation = True does what backend.run and aerjob.submit do, but without qobj validation. def run_on_backend(backend, qobj, backend_options=None, noise_config=None, skip_qobj_validation=False): if skip_qobj_validation: job_id = str(uuid.uuid4()) if is_aer_provider(backend): from qiskit.providers.aer.aerjob import AerJob temp_backend_options = backend_options['backend_options'] if backend_options != {} else None temp_noise_config = noise_config['noise_model'] if noise_config != {} else None job = AerJob(backend, job_id, backend._run_job, qobj, temp_backend_options, temp_noise_config, False) job._future = job._executor.submit(job._fn, job._job_id, job._qobj, *job._args) elif is_basicaer_provider(backend): backend._set_options(qobj_config=qobj.config, **backend_options) job = BasicAerJob(backend, job_id, backend._run_job, qobj) job._future = job._executor.submit(job._fn, job._job_id, job._qobj) elif is_ibmq_provider(backend): # TODO: IBMQJob performs validation during the constructor. the following lines does not # skip validation but run as is. from qiskit.providers.ibmq.ibmqjob import IBMQJob job = IBMQJob(backend, None, backend._api, qobj=qobj) job._future = job._executor.submit(job._submit_callback) else: logger.info("Can't skip qobj validation for the third-party provider.") job = backend.run(qobj, **backend_options, **noise_config) return job else: job = backend.run(qobj, **backend_options, **noise_config) return job
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
from sympy import * init_printing(use_unicode=True) %matplotlib inline p00,p01,p10,p11 = symbols('p_{00} p_{01} p_{10} p_{11}') th,ph = symbols('theta phi') Psi00 = Matrix([[cos(th)],[0],[0],[sin(th)]]) Psi01 = Matrix([[0],[sin(ph)],[cos(ph)],[0]]) Psi11 = Matrix([[0],[cos(ph)],[-sin(ph)],[0]]) Psi10 = Matrix([[-sin(th)],[0],[0],[cos(th)]]) #Psi00, Psi00.T, Psi00*Psi00.T rhoX = p00*Psi00*Psi00.T + p01*Psi01*Psi01.T + p10*Psi10*Psi10.T + p11*Psi11*Psi11.T simplify(rhoX) def kp(x,y): return KroneckerProduct(x,y) I = Matrix([[1,0],[0,1]]) Y = Matrix([[0,-1j],[1j,0]]) Y = Matrix([[0,1],[1,0]]) Z = Matrix([[1,0],[0,-1]]) cxx,cyy,czz,az,bz = symbols('c_{xx} c_{yy} c_{zz} a_{z} b_{z}') rhoX = (1/4)*(kp(I,I) + cxx*kp(X,X) + cyy*kp(Y,Y) + czz*kp(Z,Z) + az*kp(Z,I) + bz*kp(I,Z)) simplify(rhoX) th,be,ga = symbols('theta beta gamma') c00 = cos(th/2)*cos(be/2)*cos(ga/2) + sin(th/2)*sin(be/2)*sin(ga/2) c01 = cos(th/2)*cos(be/2)*sin(ga/2) - sin(th/2)*sin(be/2)*cos(ga/2) c10 = cos(th/2)*sin(be/2)*cos(ga/2) - sin(th/2)*cos(be/2)*sin(ga/2) c11 = cos(th/2)*sin(be/2)*sin(ga/2) + sin(th/2)*cos(be/2)*cos(ga/2) simplify(c00**2 + c01**2 + c10**2 + c11**2) # ok! P0 = Matrix([[1,0],[0,0]]) P1 = Matrix([[0,0],[0,1]]) def Ry(th): return cos(th/2)*I - 1j*sin(th/2)*Y def Cx_ab(): return KroneckerProduct(P0,I) + KroneckerProduct(P1,X) def Cx_ba(): return KroneckerProduct(I,P0) + KroneckerProduct(X,P1) MB = Cx_ab()*KroneckerProduct(Ry(th-ph),I)*Cx_ba()*KroneckerProduct(Ry(th+ph),I) # mudanca de base simplify(MB) from qiskit import * import numpy as np import math import qiskit nshots = 8192 IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') device = provider.get_backend('ibmq_belem') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter # retorna o circuito quantico que prepara um certo estado real de 1 qubit # coef = array com os 2 coeficientes reais do estado na base computacional def qc_psi_1qb_real(coef): qr = QuantumRegister(1) qc = QuantumCircuit(qr, name='psir_1qb') th = 2*math.acos(np.abs(coef[0])) qc.ry(th, qr[0]) return qc eigvals = [0.1,0.9] coef = np.sqrt(eigvals) print(coef) qc_psi_1qb_real_ = qc_psi_1qb_real(coef) qc_psi_1qb_real_.draw('mpl') from qiskit.quantum_info import Statevector sv = Statevector.from_label('0') sv sv = sv.evolve(qc_psi_1qb_real_) sv # retorna o circuito quantico que prepara um certo estado real de 2 qubits # coef = array com os 4 coeficientes reais do estado na base computacional def qc_psi_2qb_real(coef): qr = QuantumRegister(2) qc = QuantumCircuit(qr, name = 'psir_2qb') xi = 2*math.acos(math.sqrt(coef[0]**2+coef[1]**2)) coef1 = [math.sqrt(coef[0]**2+coef[1]**2),math.sqrt(1-coef[0]**2-coef[1]**2)] c_psi_1qb_real_ = qc_psi_1qb_real(coef1) qc.append(c_psi_1qb_real_, [qr[0]]) th0 = 2*math.atan(np.abs(coef[1])/np.abs(coef[0])) th1 = 2*math.atan(np.abs(coef[3])/np.abs(coef[2])) qc.x(0) qc.cry(th0, 0, 1) qc.x(0) qc.cry(th1, 0, 1) return qc eigvals = [0.1, 0.2, 0.3, 0.4] coef = np.sqrt(eigvals) print(coef) qc_psi_2qb_real_ = qc_psi_2qb_real(coef) qc_psi_2qb_real_.draw('mpl') sv = Statevector.from_label('00') sv sv = sv.evolve(qc_psi_2qb_real_) sv # note o ordenamento, o 2º qb é o 1º e o 1º é o 2º (00,10,01,11) def qc_ry(th): qr = QuantumRegister(1) qc = QuantumCircuit(qr, name = 'RY') qc.ry(th, 0) return qc # retorna o circuito quantico que prepara um certo estado real de 3 qubits # coef = array com os 8 coeficientes reais do estado na base computacional def qc_psi_3qb_real(coef): qr = QuantumRegister(3) qc = QuantumCircuit(qr, name = 'psir_3qb') d = len(coef) coef2 = np.zeros(d//2) th = np.zeros(d//2) for j in range(0,2): for k in range(0,2): coef2[int(str(j)+str(k),2)] = math.sqrt(coef[int(str(j)+str(k)+str(0),2)]**2+coef[int(str(j)+str(k)+str(1),2)]**2) c_psi_2qb_real_ = qc_psi_2qb_real(coef2) qc.append(c_psi_2qb_real_, [qr[0],qr[1]]) for j in range(0,2): for k in range(0,2): th[int(str(j)+str(k),2)] = 2*math.atan(np.abs(coef[int(str(j)+str(k)+str(1),2)])/np.abs(coef[int(str(j)+str(k)+str(0),2)])) if j == 0: qc.x(0) if k == 0: qc.x(1) qc_ry_ = qc_ry(th[int(str(j)+str(k),2)]) ccry = qc_ry_.to_gate().control(2) qc.append(ccry, [0,1,2]) if j == 0: qc.x(0) if k == 0: qc.x(1) return qc list_bin = [] for j in range(0,2**3): b = "{:03b}".format(j) list_bin.append(b) print(list_bin) eigvals = [0.01,0.1,0.04,0.2,0.05,0.3,0.18,0.12] coef = np.sqrt(eigvals) print(coef) qc_psi_3qb_real_ = qc_psi_3qb_real(coef) qc_psi_3qb_real_.draw('mpl') # odernamento: '000', '001', '010', '011', '100', '101', '110', '111' sv = Statevector.from_label('000') sv sv = sv.evolve(qc_psi_3qb_real_) sv # ordenamento aqui: 000 100 010 110 001 101 011 111 # retorna o circuito quantico que prepara um certo estado real de 4 qubits # coef = array com os 16 coeficientes reais do estado na base computacional def qc_psi_4qb_real(coef): qr = QuantumRegister(4) qc = QuantumCircuit(qr, name = 'psir_4qb') d = len(coef) coef3 = np.zeros(d//2) th = np.zeros(d//2) for j in range(0,2): for k in range(0,2): for l in range(0,2): coef3[int(str(j)+str(k)+str(l),2)] = math.sqrt(coef[int(str(j)+str(k)+str(l)+str(0),2)]**2+coef[int(str(j)+str(k)+str(l)+str(1),2)]**2) c_psi_3qb_real_ = qc_psi_3qb_real(coef3) qc.append(c_psi_3qb_real_, [qr[0],qr[1],qr[2]]) for j in range(0,2): for k in range(0,2): for l in range(0,2): th[int(str(j)+str(k)+str(l),2)] = 2*math.atan(np.abs(coef[int(str(j)+str(k)+str(l)+str(1),2)])/np.abs(coef[int(str(j)+str(k)+str(l)+str(0),2)])) if j == 0: qc.x(0) if k == 0: qc.x(1) if l == 0: qc.x(2) qc_ry_ = qc_ry(th[int(str(j)+str(k)+str(l),2)]) ccry = qc_ry_.to_gate().control(3) qc.append(ccry, [0,1,2,3]) if j == 0: qc.x(0) if k == 0: qc.x(1) if l == 0: qc.x(2) return qc list_bin = [] for j in range(0,2**4): b = "{:04b}".format(j) list_bin.append(b) print(list_bin) eigvals = np.zeros(2**4) eigvals[0] = 0.008 for j in range(1,len(eigvals)-1): eigvals[j] = eigvals[j-1]+0.005 #print(np.sum(eigvals)) eigvals[j+1] = 1 - np.sum(eigvals) #print(eigvals) #print(np.sum(eigvals)) coef = np.sqrt(eigvals) print(coef) qc_psi_4qb_real_ = qc_psi_4qb_real(coef) qc_psi_4qb_real_.draw('mpl') # '0000', '0001', '0010', '0011', '0100', '0101', '0110', '0111', '1000', '1001', '1010', '1011', '1100', '1101', '1110', '1111' sv = Statevector.from_label('0000') sv sv = sv.evolve(qc_psi_4qb_real_) sv # ordenamento aqui: 0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111 sv[1]
https://github.com/clement-boisson/kagome-vqe-on-heavy-hex
clement-boisson
import numpy as np import random import math from qiskit import QuantumCircuit class HeavyHexKagomeEstimator: """ Custom estimator designed for the XXX Heisenberg hamiltonian on a Kagome lattice to be run on a quantum computer based on the Heavy Hex architecture (like the IBMQ Guadalupe). It uses 2 error mitigation mechnisms: - Twirled REadout eXtinction algorithm (T-REx) - Circuit error mitigation based on control qubits """ def __init__(self, device_edges, kagome_triangles): """ Create an instance of the estimator. Caution: this function does NOT check that the kagome lattice, the device and the mapping are correct Args: device_edges (List[Tuple[int]]): list of connected qubits on the device kagome_triangles (List[dict]): list of kagome triangle with a possible control qubit (e.g. {"kagome": (0, 2, 4), "control": 1}) """ # Save the arguments self.device_edges = device_edges self.kagome_triangles = kagome_triangles # Compute the number of physical qubits, and self.qubit_count = np.max(self.device_edges) + 1 # Compute the list of Kagome edges and vertices (used to compute the energy) self.kagome_edges = [] self.kagome_vertices = [] for triangle in self.kagome_triangles: self.kagome_edges.append([triangle["kagome"][0], triangle["kagome"][1]]) self.kagome_edges.append([triangle["kagome"][1], triangle["kagome"][2]]) self.kagome_edges.append([triangle["kagome"][2], triangle["kagome"][0]]) for vertex in triangle["kagome"]: if vertex not in self.kagome_vertices: self.kagome_vertices.append(vertex) def qiskit_number_to_bit_array(self, qiskit_number): """ Convert a number returned by the qiskit sampler primitive to a tuple containing '0' or '1' for each qubit. Qiskit uses little-endian convention, hence the use of reversed. Example: 3 will be converted to ('1', '1', '0', '0', '0', '0') in a 6-qubit context. Args: qiskit_number(int): the number returned as a key of a qiskit sampler result Returns: bitstring (tuple[str]): the tuple that we can use to easily get the value of a qubit """ pattern = "{0:0" + str(self.qubit_count) + "b}" # generates "{0:016b}" for qubit_count=16 return tuple(reversed(list(pattern.format(int(qiskit_number))))) def post_process_qiskit_quasi_dists(self, quasi_dists): """ Convert a number returned by the qiskit sampler primitive to a tuple containing '0' or '1' for each qubit. Qiskit uses little-endian convention, hence the use of reversed. Example: 3 will be converted to ('1', '1', '0', '0', '0', '0') in a 6-qubit context. Args: qiskit_number(int): the number returned as a key of a qiskit sampler result Returns: quasi_dists (List[dict]): the quasi_dists with converted keys """ for i, quasi_dist in enumerate(quasi_dists): quasi_dists[i] = {self.qiskit_number_to_bit_array(qiskit_number):quasi_dist[qiskit_number] for qiskit_number in quasi_dist.keys()} return quasi_dists def TREx_f(self, gatestrings, quasi_dists, s): """ Compute the f function of the T-REx algorithm (see https://arxiv.org/abs/2012.09738) Note that the probabilities don't have to sum up to 1.0 for each circuit Args: gatestrings (List[tuple(str)]): a list of tuples like ('I', 'X', ..., 'I') indicating whether there is an X gate or not in the circuit quasi_dists (List[dict]): for each circuit, the result of the sampler s (tuple(str)): a tuple like ('I', 'Z', 'Z', ..., 'I', 'I') indicating the targeted pauli hamiltonian Returns: gatestrings (List[tuple(str)]): the list of circuits as a tuple indicating if inserting an X gate or not """ # Instead of working with D as in the paper, we'll use probabilities result = 0.0 probs_sum = 0.0 # For each circuit: for q_idx in range(len(gatestrings)): q = gatestrings[q_idx] # same q as in the paper # Compute \gamma_{s,q} as in the paper, i.e. checking if q and s commute: gamma_sq_ct = 0 for i in range(len(s)): if s[i] == 'I' or q[i] == 'I' or s[i] == q[i]: gamma_sq_ct += 0 else: gamma_sq_ct += 1 # Use the definition of \gamma_{s,q} (1 if q and s commute, -1 otherwise) gamma_sq = -1 if gamma_sq_ct % 2 == 0: gamma_sq = 1 # Loop over x, the measurements of the qubits: for x in quasi_dists[q_idx].keys(): # compute <s,x> sx = 0 for i in range(self.qubit_count): if s[i] == 'Z' and x[i] == '1': sx += 1 # add probability * \gamma_{s,q} * (-1)^{<s,x>} prob = quasi_dists[q_idx][x] result += prob * gamma_sq * (-1)**sx probs_sum += prob if probs_sum == 0.0: return 0.0 # In order to avoid an exception in special cases such as noiseless environments return result / probs_sum def generate_balanced_random_X_gates(self, num_twirled_circuits, where_to_apply): """ Generates a list of twirled circuits X instructions. In order to ensure both 0s and 1s well distributed, for each qubit, we take randomly half of circuits and set a X gate, keeping the other half unchanged. Example: For 3 qubits, num_twirled_circuits=2 and where_to_apply=[0], it will return: [('X', 'I', 'I'), ('I', 'I', 'I')] or [('I', 'I', 'I'), ('X', 'I', 'I')] with half of the circuits having an X gate for the qubit #0 Args: num_twirled_circuits (int): number of twirled circuits to use where_to_apply (List[int]): the list of qubits where we want to apply randomly an X gate Returns: gatestrings (List[tuple(str)]): the list of circuits as a tuple indicating if inserting an X gate or not """ gatestrings = [] for i in range(num_twirled_circuits): gatestrings.append(['I' for i in range(self.qubit_count)]) gatestring_indices = [i for i in range(num_twirled_circuits)] for i in where_to_apply: random.shuffle(gatestring_indices) for k in range(num_twirled_circuits//2): gatestrings[gatestring_indices[k]][i] = 'X' return gatestrings def calibrate(self, sampler, num_twirled_circuits, shots): """ Calibrate the estimator Args: sampler: the sampler to use num_twirled_circuits (int): number of twirled circuits to use shots (int): number of shots per circuit to use """ # 1. Prepare calibration circuits with, for each qubit, either an X gate or no gate # Let's prepare when apply X gates for all qubits gatestrings = self.generate_balanced_random_X_gates(num_twirled_circuits, [i for i in range(self.qubit_count)]) # Use the generated gate strings to generate actual circuits calib_circs = [] for i in range(num_twirled_circuits): # Create a circuit circ = QuantumCircuit(self.qubit_count, self.qubit_count) # Choose randomly for each qubit if applying an X gate or not gatestring = gatestrings[i] # Add a X gate when necessary for qubit in range(self.qubit_count): if gatestring[qubit] == 'X': circ.x(qubit) # Measure all qubits for qubit in range(self.qubit_count): circ.measure(qubit, qubit) # Add the circuit calib_circs.append({ "circuit": circ, "gatestring": gatestring }) # 2. Execute the circuits with the sampler primitive job = sampler.run([el["circuit"] for el in calib_circs], [[] for el in calib_circs], shots=shots) quasi_dists = self.post_process_qiskit_quasi_dists(job.result().quasi_dists) # 3. For all the kagome edges, compute the T-REx calibration value that will make it possible to # later estimate the edge hamiltonian energies self.trex_edge_calibrations = {} # key: the edge, value: the result of the f function for the T-REx calibration for edge in self.kagome_edges: # Prepare s (as in the T-REx paper) for this edge, i.e. the Z-pauli measurement hamiltonian s = ['I' for i in range(self.qubit_count)] s[edge[0]] = 'Z' s[edge[1]] = 'Z' fvalue = self.TREx_f([el["gatestring"] for el in calib_circs], quasi_dists, s) self.trex_edge_calibrations[(edge[0], edge[1])] = fvalue self.trex_edge_calibrations[(edge[1], edge[0])] = fvalue # 4. For all the control qubits, estimate the probability of the qubit being 0/1 given a measurement of 0/1 # under uniform apriori distribution self.control_qubit_measuring_probs = {} # key: qubit number, value: dictionary of probability (see below) for triangle in self.kagome_triangles: # If there is no control qubit in the triangle, just ignore it if triangle["control"] == None: continue # Compute the likelihood probabilities (probability of measuring 0/1 given a ground-truth 0/1) # ("p" as Probability, "t" as True value, "m" as Measured value) pm0_t0 = 0.0 # 0 given a ground-truth of 0 pm1_t0 = 0.0 pm0_t1 = 0.0 pm1_t1 = 0.0 for circ_idx in range(len(calib_circs)): for measure in quasi_dists[circ_idx].keys(): if measure[triangle["control"]] == '0': # measuring 0 if calib_circs[circ_idx]["gatestring"][triangle["control"]] == 'I': # ground-truth is 0 pm0_t0 += quasi_dists[circ_idx][measure] else: # ground-truth is 1 pm0_t1 += quasi_dists[circ_idx][measure] else: # measuring 1 if calib_circs[circ_idx]["gatestring"][triangle["control"]] == 'I': # ground-truth is 0 pm1_t0 += quasi_dists[circ_idx][measure] else: # ground-truth is 1 pm1_t1 += quasi_dists[circ_idx][measure] # Normalize in order to have pm0_t0+pm1_t0=1.0 and pm0_t1+pm1_t1=1.0 p_t0 = pm0_t0+pm1_t0 pm0_t0 /= p_t0 pm1_t0 /= p_t0 p_t1 = pm0_t1+pm1_t1 pm0_t1 /= p_t1 pm1_t1 /= p_t1 # Deriving the probabilities under uniform apriori distribution self.control_qubit_measuring_probs[triangle["control"]] = { "pt0_m1": pm1_t0/(pm1_t0+pm0_t0), # probability that the qubit has a true value 0 given a measurement of 1 "pt1_m0": pm0_t1/(pm0_t1+pm1_t1) # probability that the qubit has a true value 1 given a measurement of 0 } def estimate_energy_for_circuit(self, base_circuit, sampler, num_twirled_circuits, shots): """ Estimates the energy (expectaction value of the hamiltonian) for a circuit. Args: base_circuit: a quantum circuit sampler: the sampler to use num_twirled_circuits (int): number of twirled circuits to use shots (int): number of shots per circuit to use Returns: result (dict): a dictionary containing the value of the energy ("energy" key) and other information """ # 1. Let's build a list of circuits to use with the Sampler primitive # We want circuits for the X, Y, and the Z part of the hamiltonian, # and randomly apply X gate before measurement (for the T-REx readout error mitigation algorithm) circuits = [] # For X, Y or Z: for xyz in ["X", "Y", "Z"]: circ_xyz = base_circuit.copy() # Let's generate random X gates (for kagome vertices only): gatestrings = self.generate_balanced_random_X_gates(num_twirled_circuits, self.kagome_vertices) # Add the basis change to all the kagome vertices for X, Y or Z measurement if xyz == "X": circ_xyz.rz(math.pi/2.0, self.kagome_vertices) circ_xyz.sx(self.kagome_vertices) circ_xyz.rz(math.pi/2.0, self.kagome_vertices) elif xyz == "Y": circ_xyz.sx(self.kagome_vertices) circ_xyz.rz(math.pi/2.0, self.kagome_vertices) elif xyz == "Z": pass # nothing to do for Z measurement # And then we apply the X gates (for T-REx) and measuring for gatestring in gatestrings: circ = circ_xyz.copy() # Add X gates: for qubit in range(self.qubit_count): if gatestring[qubit] == 'X': circ.x(qubit) # Add measurements: circ.measure([i for i in range(self.qubit_count)], [i for i in range(self.qubit_count)]) # Add the circuit circuits.append({ "circuit": circ, "xyz": xyz, "gatestring": gatestring }) # 2. Execute the circuits with the sampler primitive job = sampler.run([el["circuit"] for el in circuits], [[] for el in circuits], shots=shots) quasi_dists = self.post_process_qiskit_quasi_dists(job.result().quasi_dists) for i, quasi_dist in enumerate(quasi_dists): circuits[i]["quasi_dist"] = quasi_dist # add the results to the circuits variable # 3. For each triangle, and for each X,Y,Z, let's estimate the energy triangle_results = [] for xyz in ["X", "Y", "Z"]: xyz_circuits = [el for el in circuits if el["xyz"] == xyz] # keep the results corresponding to xyz # For each triangle: for triangle_idx, triangle in enumerate(self.kagome_triangles): # List the kagome edges belonging to the triangle: triangle_edges = [ (triangle["kagome"][0], triangle["kagome"][1]), (triangle["kagome"][1], triangle["kagome"][2]), (triangle["kagome"][2], triangle["kagome"][0]) ] # First, compute the triangle energy with just the T-REx algorithm # without the control-qubit error mitigation (as a comparison) triangle_energy_without_control = 0.0 for edge in triangle_edges: # Prepare s (as in the T-REx paper) for this edge, i.e. the Z-pauli measurement hamiltonian s = ['I' for i in range(self.qubit_count)] s[edge[0]] = 'Z' s[edge[1]] = 'Z' # Estimate the edge energy, as in the T-REx paper edge_energy = self.TREx_f([el["gatestring"] for el in xyz_circuits], [el["quasi_dist"] for el in xyz_circuits], s) / self.trex_edge_calibrations[edge] # add the edge energy to the triangle energy triangle_energy_without_control += edge_energy # If the triangle has no control qubit, we just use the T-Rex algorithm if triangle["control"] == None: triangle_energy = triangle_energy_without_control # If the triangle has a control qubit: else: # Compute p0: frequency of measuring 0 for the control qubit p0 = 0.0 for circ in xyz_circuits: for measure in circ["quasi_dist"].keys(): if measure[triangle["control"]] == '0': # if 0 is measured p0 += circ["quasi_dist"][measure] # then we add the associated probability p0 /= len(xyz_circuits) # there are several circuits, we need to normalize so that p0+p1=1 # Compute p1: frequency of measuring 1 for the control qubit p1 = 1.0 - p0 # Separate the results of quasi_distributions depending on the measure on the control qubit: quasi_dists0 = [{k:circ["quasi_dist"][k] for k in circ["quasi_dist"] if k[triangle["control"]] == '0'} for circ in xyz_circuits] quasi_dists1 = [{k:circ["quasi_dist"][k] for k in circ["quasi_dist"] if k[triangle["control"]] == '1'} for circ in xyz_circuits] # Compute E0: the energy associated with measuring 0 for the control qubit E0 = 0.0 for edge in triangle_edges: # Prepare s (as in the T-Rex paper) for this edge, i.e. the Z-pauli measurement hamiltonian s = ['I' for i in range(self.qubit_count)] s[edge[0]] = 'Z' s[edge[1]] = 'Z' # Estimate the edge energy, as in the T-Rex paper edge_energy = self.TREx_f([el["gatestring"] for el in xyz_circuits], quasi_dists0, s) / self.trex_edge_calibrations[edge] # add the edge energy to the triangle energy E0 += edge_energy # Compute E1: the energy associated with measuring 1 for the control qubit E1 = 0.0 for edge in triangle_edges: # Prepare s (as in the T-Rex paper) for this edge, i.e. the Z-pauli measurement hamiltonian s = ['I' for i in range(self.qubit_count)] s[edge[0]] = 'Z' s[edge[1]] = 'Z' # Estimate the edge energy, as in the T-Rex paper edge_energy = self.TREx_f([el["gatestring"] for el in xyz_circuits], quasi_dists1, s) / self.trex_edge_calibrations[edge] # add the edge energy to the triangle energy E1 += edge_energy # Apply a correction by taking into account readout errors on the control qubits # and find corrected values p0c, p1c, E0c, E1c ("c" as corrected) # Retrieve the probability of the control qubit pt0_m1 = self.control_qubit_measuring_probs[triangle["control"]]["pt0_m1"] # probability of being 0 given that 1 is measured pt1_m0 = self.control_qubit_measuring_probs[triangle["control"]]["pt1_m0"] # probability of being 1 given that 0 is measured # The equations for correction are: # E0 = (1-pt1_m0) * E0c + pt1_m0 * E1c # E1 = (1-pt0_m1) * E1c + pt0_m1 * E0c # p0 = (1-pt1_m0) * p0c + pt1_m0 * p1c # p1 = (1-pt0_m1) * p1c + pt0_m1 * p0c # Let's derive the corrected values (equivalent to inverting a 2x2 matrix) E1c = ((1-pt1_m0)*E1 - pt0_m1*E0)/(1-pt0_m1-pt1_m0) p1c = ((1-pt1_m0)*p1 - pt0_m1*p0)/(1-pt0_m1-pt1_m0) E0c = ((1-pt0_m1)*E0 - pt1_m0*E1)/(1-pt0_m1-pt1_m0) p0c = ((1-pt0_m1)*p0 - pt1_m0*p1)/(1-pt0_m1-pt1_m0) # Find the estimation of the targeted energy triangle_energy = (p0c * E0c - p1c * E1c) / (p0c-p1c) # Save results: triangle_results.append({ "xyz": xyz, "triangle_idx": triangle_idx, "triangle_energy": triangle_energy, "triangle_energy_without_control": triangle_energy_without_control }) # 4. Return the results: return { "energy": np.sum([triangle_result["triangle_energy"] for triangle_result in triangle_results]), "energy_without_control": np.sum([triangle_result["triangle_energy_without_control"] for triangle_result in triangle_results]), "triangle_results": triangle_results }
https://github.com/minnukota381/Quantum-Computing-Qiskit
minnukota381
import qiskit as q %matplotlib inline from qiskit import * from qiskit.visualization import plot_bloch_multivector, visualize_transition, plot_histogram Msg = "QuantumComputing" secretnum = ''.join(format(ord(i), 'b') for i in Msg) # printing result print("The string after binary conversion : " + str(secretnum)) print("Your Quantum Algorithm is Running!") circuit = q.QuantumCircuit(len(secretnum)+1, len(secretnum)) circuit.h(range(len(secretnum))) circuit.x(len(secretnum)) circuit.h(len(secretnum)) circuit.barrier() for i, j in enumerate(reversed(secretnum)): if j == '1': circuit.cx(i, len(secretnum)) circuit.barrier() circuit.h(range(len(secretnum))) circuit.barrier() circuit.measure(range(len(secretnum)),range(len(secretnum))) circuit.barrier() simulator = q.Aer.get_backend('qasm_simulator') result = q.execute(circuit, backend=simulator, shots=1).result() counts = result.get_counts() counts = str(counts) counts = (counts[2:len(secretnum)+2]) print("the binary of ur String is", counts) def BinaryToDecimal(binary): string = int(binary, 2) return string bin_data = str(counts) str_data =' ' for i in range(0, len(bin_data), 7): temp_data = bin_data[i:i + 7] decimal_data = BinaryToDecimal(temp_data) str_data = str_data + chr(decimal_data) # printing the result print("The Binary value after string conversion is:", str_data)
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-function-docstring """Tests basic functionality of the sequence function""" import unittest from qiskit import QuantumCircuit, pulse from qiskit.compiler import sequence, transpile, schedule from qiskit.pulse.transforms import pad from qiskit.providers.fake_provider import FakeParis from qiskit.test import QiskitTestCase class TestSequence(QiskitTestCase): """Test sequence function.""" def setUp(self): super().setUp() self.backend = FakeParis() def test_sequence_empty(self): self.assertEqual(sequence([], self.backend), []) def test_transpile_and_sequence_agree_with_schedule(self): qc = QuantumCircuit(2, name="bell") qc.h(0) qc.cx(0, 1) qc.measure_all() sc = transpile(qc, self.backend, scheduling_method="alap") actual = sequence(sc, self.backend) expected = schedule(transpile(qc, self.backend), self.backend) self.assertEqual(actual, pad(expected)) def test_transpile_and_sequence_agree_with_schedule_for_circuit_with_delay(self): qc = QuantumCircuit(1, 1, name="t2") qc.h(0) qc.delay(500, 0, unit="ns") qc.h(0) qc.measure(0, 0) sc = transpile(qc, self.backend, scheduling_method="alap") actual = sequence(sc, self.backend) expected = schedule(transpile(qc, self.backend), self.backend) self.assertEqual( actual.exclude(instruction_types=[pulse.Delay]), expected.exclude(instruction_types=[pulse.Delay]), ) @unittest.skip("not yet determined if delays on ancilla should be removed or not") def test_transpile_and_sequence_agree_with_schedule_for_circuits_without_measures(self): qc = QuantumCircuit(2, name="bell_without_measurement") qc.h(0) qc.cx(0, 1) sc = transpile(qc, self.backend, scheduling_method="alap") actual = sequence(sc, self.backend) expected = schedule(transpile(qc, self.backend), self.backend) self.assertEqual(actual, pad(expected))
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
from tsp_qaoa import test_solution from qiskit.visualization import plot_histogram import networkx as nx import numpy as np import json import csv # Array of JSON Objects header = ['p', 'state', 'probability', 'mean'] length_p = 10 with open('qaoa_multiple_p.csv', 'w', encoding='UTF8') as f: writer = csv.writer(f) # write the header writer.writerow(header) first_p = False for p in range(length_p): p = p+1 if first_p == False: job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(p=p) first_p = True else: job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(grafo=G, p=p) # Sort the JSON data based on the value of the brand key UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"]) mean = UNIFORM_CONVERGENCE_SAMPLE[0]["mean"] print(mean) state = 0 for probability in UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"]: state += 1 writer.writerow([p,state, probability,mean])
https://github.com/maryrbarros2/QuantumAlgorithms_Qiskit
maryrbarros2
my_list = [1,3,5,2,4,2,5,8,0,7,6] #classical computation method def oracle(my_input): winner =7 if my_input is winner: response = True else: response = False return response for index, trial_number in enumerate(my_list): if oracle(trial_number) is True: print("Winner is found at index %i" %index) print("%i calls to the oracle used " %(index +1)) break #quantum implemenation from qiskit import * import matplotlib.pyplot as plt import numpy as np from qiskit.tools import job_monitor # oracle circuit oracle = QuantumCircuit(2, name='oracle') oracle.cz(0,1) oracle.to_gate() oracle.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') grover_circuit = QuantumCircuit(2,2) grover_circuit.h([0,1]) grover_circuit.append(oracle,[0,1]) grover_circuit.draw(output='mpl') job= execute(grover_circuit, backend=backend) result= job.result() sv= result.get_statevector() np.around(sv,2) #amplitude amplification reflection = QuantumCircuit(2, name='reflection') reflection.h([0,1]) reflection.z([0,1]) reflection.cz(0,1) reflection.h([0,1]) reflection.to_gate() reflection.draw(output='mpl') #testing circuit on simulator simulator = Aer.get_backend('qasm_simulator') grover_circuit = QuantumCircuit(2,2) grover_circuit.h([0,1]) grover_circuit.append(oracle,[0,1]) grover_circuit.append(reflection, [0,1]) grover_circuit.barrier() grover_circuit.measure([0,1],[0,1]) grover_circuit.draw(output='mpl') job= execute(grover_circuit,backend=simulator,shots=1) result=job.result() result.get_counts() #testing on real backend system IBMQ.load_account() provider= IBMQ.get_provider('ibm-q') qcomp= provider.get_backend('ibmq_manila') job = execute(grover_circuit,backend=qcomp) job_monitor(job) result=job.result() counts=result.get_counts(grover_circuit) from qiskit.visualization import plot_histogram plot_histogram(counts) counts['11']
https://github.com/apcarrik/qiskit-dev
apcarrik
import numpy as np from qiskit.opflow import Z, X, I, StateFn, CircuitStateFn, SummedOp from qiskit.opflow.gradients import Gradient, NaturalGradient, QFI, Hessian from qiskit.circuit import (QuantumCircuit, QuantumRegister, Parameter, ParameterVector, ParameterExpression) from qiskit.circuit.library import EfficientSU2 ### First Order Gradients ## Gradients with respect to Measurement Operator Parameters # instantiate the quantum state a = Parameter('a') b = Parameter('b') q = QuantumRegister(1) qc = QuantumCircuit(q) qc.h(q) qc.rz(a, q[0]) qc.rx(b, q[0]) # instantiate Hamiltonian observable H = (2 * X) + Z # combine the Hamiltonian observable and the state op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.) # print the operator corresponding to the expectation value print(op) params = [a, b] # define the values to be asigned to the parameters value_dict = {a: np.pi / 4, b: np.pi} # convert the operator and the gradient target params into the respective operators grad = Gradient().convert(operator= op, params= params) # print the operator corresponding to the gradient print(grad) # assign the parameters and evaluate the gradient grad_result = grad.assign_parameters(value_dict).eval() print("Gradient", grad_result) ## Gradients with respect to State Parameters # define the Hamiltonian with fixed coefficients H = 0.5 * X - 1 * Z # define the parameters w.r.t we want to compute the gradients params = [a,b] # define the values to be assigned to the parameters value_dict = {a: np.pi / 4, b: np.pi} # combine the Hamiltonian observable and the state op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.) # print the operator corresponding to the expectation value print(op) ## Parameter Shift Gradients # convert the expectation value into an operator corrsponding to the gradient w.r.t # the state parameters using the parameter shift method state_grad = Gradient(grad_method='param_shift').convert(operator=op, params=params) # print the operator corresponding to the gradient print(state_grad) # assign the parameters and evaluate the gradient state_grad_result = state_grad.assign_parameters(value_dict).eval() print('State gradient computed with parameter shift', state_grad_result) ## Linear Combination of Unitaries Gradients # convert the expectation value into an operator corresponding to the gradient w.r.t # the state parameter using a linear combination of unitaries method state_grad = Gradient(grad_method='lin_comb').convert(operator=op, params=params) # print the operator corresponding to the gradient print(state_grad) # assign the parameters and evaluate the gradient state_grad_result = state_grad.assign_parameters(value_dict).eval() print('State gradient computed with the linear combination method', state_grad_result) ## Finite Difference Gradients # while the previous methods were analytical, this is a numerical approximation method # convert the expectation value into an operator corresponding to the gradient w.r.t # the state parameter using the finite difference method state_grad = Gradient(grad_method='lin_comb').convert(operator=op, params=params) # print the operator corresponding to the gradient print(state_grad) # assign the parameters and evaluate the gradient state_grad_result = state_grad.assign_parameters(value_dict).eval() print('State gradient computed with the linear combination method', state_grad_result) ## Natural Gradients # besides the method to compute the circuit gradients resp. QFI, a regularization method # can be chosen: 'ridge' or 'lasso' with automatic parameter search or 'perturb_diag' # or 'perturb_diag_elements', which perturb the diagonal elements of the QFI nat_grad = NaturalGradient(grad_method='lin_comb', qfi_method='lin_comb_full', regularization='ridge').convert(operator=op, params=params) # assign the parameters and evaluate the gradient nat_grad_result = nat_grad.assign_parameters(value_dict).eval() print('Natural gradient computed with the linear combination of unitaries', nat_grad_result) ### Hessians (Second Order Gradients) ## Hessians w.r.t Measurement Operator Parameters # instantiate the Hamiltonian observable H = X # instantiate the quantum state with two parameters a = Parameter('a') b = Parameter('b') q = QuantumRegister(1) qc = QuantumCircuit(q) qc.h(q) qc.rz(a, q[0]) qc.rx(b, q[0]) # combine the Hamiltonian observable and the state op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.) # convert the operator and the Hessian target coefficients into the respective operator hessian = Hessian().convert(operator=op, params=[a,b]) # define the values to be assigned to the parameters value_dict = {a: np.pi/4, b: np.pi/4} # assign the parameters and evaluate the Hessian w.r.t the Hamiltonian coefficients hessian_result = hessian.assign_parameters(value_dict).eval() print('Hessian \n', np.real(np.array(hessian_result))) ## Hessians w.r.t. State Parameters # define parameters params = [a, b] # get the operator object representing the Hessian state_hess = Hessian(hess_method='param_shift').convert(operator=op, params=params) # assign the parameters and evaluate the Hessian hessian_result = state_hess.assign_parameters(value_dict).eval() print("Hessian computed using the parameter shift method\n", (np.array(hessian_result))) # get the operator object representing the Hessian state_hess = Hessian(hess_method='lin_comb').convert(operator=op, params=params) # assign the parameters and evaluate the Hessian hessian_result = state_hess.assign_parameters(value_dict).eval() print("Hessian computed using the linear combination of unitaries method\n", (np.array(hessian_result))) # get the operator object representing the Hessian using finite difference state_hess = Hessian(hess_method='fin_diff').convert(operator=op, params=params) # assign the parameters and evaluate the Hessian hessian_result = state_hess.assign_parameters(value_dict).eval() print("Hessian computed using the finite difference method\n", (np.array(hessian_result))) ### Quantum Fisher Information (QFI) ## Linear Combination Full QFI # wrap the quantum circuit into a CircuitStateFn state = CircuitStateFn(primitive=qc, coeff=1.) # convert the state and the parameters into the operator object that represents the QFI qfi = QFI(qfi_method='lin_comb_full').convert(operator=state, params=params) # define the values for which the QFI is to be computed values_dict = {a: np.pi/4, b: 0.1} # assign the parameters and evaluate the QFI qfi_result = qfi.assign_parameters(values_dict).eval() print('full QFI \n', np.real(np.array(qfi_result))) ## Block-diagonal and Diagonal Approximation # convert the state and the parameters into the operator object that represents the QFI # and set the approximation to 'block_diagonal' qfi = QFI(qfi_method='overlap_block_diag').convert(operator=state, params=params) # assign the parameters and evaluate the QFI qfi_result = qfi.assign_parameters(values_dict).eval() print('Block-diagonal QFI \n', np.real(np.array(qfi_result))) # convert the state and the parameters into the operator object that represents the QFI # and set the approximation to 'diagonal' qfi = QFI(qfi_method='overlap_diag').convert(operator=state, params=params) # assign the parameters and evaluate the QFI qfi_result = qfi.assign_parameters(values_dict).eval() print('Diagonal QFI \n', np.real(np.array(qfi_result))) ### Application Example: VQE with Gradient-Based Optimization # execution imports from qiskit import Aer from qiskit.utils import QuantumInstance # algorithm imports from qiskit.algorithms import VQE from qiskit.algorithms.optimizers import CG from qiskit.opflow import I, X , Z from qiskit.circuit import QuantumCircuit, ParameterVector from scipy.optimize import minimize # initiate the system Hamiltonian h2_hamiltonian = -1.05 * (I ^ I) + 0.39 * (I ^ Z) - 0.39 * (Z ^ I) - 0.01 * (Z ^ Z) + \ 0.18 * (X ^ X) # this is the target energy h2_energy = -1.85727503 # define the Ansatz wavefunction = QuantumCircuit(2) params = ParameterVector('theta', length=8) it = iter(params) wavefunction.ry(next(it), 0) wavefunction.ry(next(it), 1) wavefunction.rz(next(it), 0) wavefunction.rz(next(it), 1) wavefunction.cx(0, 1) wavefunction.ry(next(it), 0) wavefunction.ry(next(it), 1) wavefunction.rz(next(it), 0) wavefunction.rz(next(it), 1) # define the expectation value corresponding to the energy op = ~StateFn(h2_hamiltonian) @ StateFn(wavefunction) # choose wheither VQE should use Gradient or NaturalGradient grad = Gradient(grad_method='lin_comb') qi_sv = QuantumInstance(Aer.get_backend('aer_simulator_statevector'), shots=1, seed_simulator=2, seed_transpiler=2) # configure Gradient algorithm optimizer = CG(maxiter=50) # Gradient callable vqe = VQE(wavefunction, optimizer=optimizer, gradient=grad, quantum_instance=qi_sv) result = vqe.compute_minimum_eigenvalue(h2_hamiltonian) print("Result:", result.optimal_value, 'Reference:', h2_energy) # define QuantumInstance to execute quantum circuits and run algorithm
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
rubenandrebarreiro
# Expand the Width of the Cells to a ratio of 100% from IPython.core.display import display, HTML display(HTML("<style>.container { width:100% !important; }</style>")) # Update, the Conda's version, if necessary !conda update -n base conda --yes # Install other useful Libraries for Quantum Information Science, # the QuTiP Framework, in this case, based on Python Programming Language !conda install qutip --yes # Import the matplotlib Library import matplotlib.pyplot as plt %matplotlib inline # Import the NumPy and Math Libraries, # based on Python Programming Language import numpy as np import math # Import some basic Modules from Qiskit Library and configuring account from qiskit import IBMQ, BasicAer from qiskit import QuantumCircuit, execute, Aer, IBMQ, QuantumRegister, ClassicalRegister from qiskit.compiler import transpile, assemble from qiskit.providers.ibmq import least_busy from qiskit.tools.jupyter import * from qiskit.visualization import * # Import some basic Visualization/Plot Modules/Tools from Qiskit Library from qiskit.tools.visualization import plot_histogram # In Jupyter Notebooks we can display this nicely using Latex. # If not using Jupyter Notebooks you may need to remove the # array_to_latex function and use print() instead. from qiskit_textbook.tools import array_to_latex # Import Operator Module from Qiskit Library, for Custom Operators from qiskit.quantum_info.operators import Operator def cz(circuit, qr): circuit.h(qr[1]) circuit.cx(qr[0],qr[1]) circuit.h(qr[1]) # Create a Classical Register for 2 Bits (Classical Bits), with a Total of 2 Possible Processed States qr2 = QuantumRegister(2) czCircuit = QuantumCircuit(qr2) cz(czCircuit,qr2) czCircuit.draw(output="mpl") def ccz(circuit,qr): circuit.h(qr[2]) # CCX is the Toffoli gate circuit.ccx(qr[0], qr[1], qr[2]) circuit.h(qr[2]) qr3 = QuantumRegister(3) cczCircuit = QuantumCircuit(qr3) ccz(cczCircuit,qr3) cczCircuit.draw(output="mpl") def cccz(circuit,qr): pi = math.pi circuit.cu1(pi/4,qr[0],qr[3]) circuit.cx(qr[0], qr[1]) circuit.cu1(-pi/4, qr[1],qr[3]) circuit.cx(qr[0], qr[1]) circuit.cu1(pi/4, qr[1],qr[3]) circuit.cx(qr[1], qr[2]) circuit.cu1(-pi/4, qr[2],qr[3]) circuit.cx(qr[0], qr[2]) circuit.cu1(pi/4, qr[2],qr[3]) circuit.cx(qr[1], qr[2]) circuit.cu1(-pi/4, qr[2],qr[3]) circuit.cx(qr[0], qr[2]) circuit.cu1(pi/4, qr[2],qr[3]) qr4 = QuantumRegister(4) ccczCircuit = QuantumCircuit(qr4) cccz(ccczCircuit,qr4) ccczCircuit.draw(output="mpl") def ccccz(circuit, qr): unitaryMatrixCCCCZ = Operator([ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1] ]) circuit.unitary(unitaryMatrixCCCCZ, qr, label='CCCCZ') qr5 = QuantumRegister(5) cccczCircuit = QuantumCircuit(qr5) ccccz(cccczCircuit,qr5) cccczCircuit.draw(output="mpl") def n_controlled_Z(circuit, qr): # Implement a Z-Gate with multiple controls if (len(qr) > 5): raise ValueError('The Controlled-Z with more than 4 Control-Qubits is not implemented!!!') # This is the case n = 2 (1 control + 1 target Qubit) elif (len(qr) == 2): cz(circuit,qr) # This is the case n = 3 (2 control + 1 target Qubit) elif (len(qr) == 3): ccz(circuit,qr) # This is the case n = 4 (3 control + 1 target Qubit) elif (len(qr) == 4): cccz(circuit,qr) # Extra Exercise (Made by Rúben André Barreiro) # This is the case n = 5 (4 control + 1 target Qubit) elif (len(qr) == 5): cccz(circuit,qr) # Getting the Backend for the Unitary Representation of the Controlled-Z Gate # (i.e., the Quantum State represented as an Unitary Matrix) backend = Aer.get_backend('unitary_simulator') unitaryCZ = execute(czCircuit,backend).result().get_unitary() unitaryCCZ = execute(cczCircuit,backend).result().get_unitary() unitaryCCCZ = execute(ccczCircuit,backend).result().get_unitary() unitaryCCCCZ = execute(cccczCircuit,backend).result().get_unitary() array_to_latex(unitaryCZ, pretext="\\text{CZ (Controlled-Z) = }\n") array_to_latex(unitaryCCZ, pretext="\\text{CCZ (Controlled-Controlled-Z) = }\n") array_to_latex(unitaryCCCZ, pretext="\\text{CCCZ (Controlled-Controlled-Controlled-Z) = }\n") # Extra Exercise (not asked by the Professors): # - Multi Controlled-Z Gate for 5 Qubits (Made by Rúben André Barreiro) array_to_latex(unitaryCCCCZ, pretext="\\text{CCCZ (Controlled-Controlled-Controlled-Controlled-Z) = }\n") def phase_oracle(circuit,qr,element): # Element is an Array that defines the searched Element, # for example, Element = [0,1,0,1] for j,x in enumerate(element): if (x == 0): circuit.x(qr[j]) circuit.barrier() n_controlled_Z(circuit,qr) circuit.barrier() for j,x in enumerate(element): if (x == 0): circuit.x(qr[j]) def mark_state(element_test_state, testCircuit): for qubit_index, element in enumerate(element_test_state): if element == 1: testCircuit.x(qubit_index) testCircuit.barrier() # Defining some tests, for the Phase Oracle, with n = 2 #element_test_2_states = [0,0] element_test_2_states = [0,1] #element_test_2_states = [1,0] #element_test_2_states = [1,1] qr2 = QuantumRegister(2) testFunctionCircuit2 = QuantumCircuit(qr2) element_test_2_states_binary = ''.join(map(str,element_test_2_states)) print("The Marked State is: |{}⟩".format(element_test_2_states_binary)) element_test_2_states.reverse() mark_state(element_test_2_states, testFunctionCircuit2) phase_oracle(testFunctionCircuit2,qr2,element_test_2_states) testFunctionCircuit2.draw(output="mpl") # Getting the Backend for the Statevector Representation # (i.e., the Quantum State represented as State Vector) statevector_backend = Aer.get_backend('statevector_simulator') final_state = execute(testFunctionCircuit2,statevector_backend).result().get_statevector() array_to_latex(final_state, pretext="\\text{Final State for Marked State (Statevector) = }\n", precision = 1) # Defining some tests, for the Phase Oracle, with n = 3 #element_test_3_states = [0,0,0] #element_test_3_states = [0,0,1] #element_test_3_states = [0,1,0] element_test_3_states = [0,1,1] #element_test_3_states = [1,0,0] #element_test_3_states = [1,0,1] #element_test_3_states = [1,1,0] #element_test_3_states = [1,1,1] qr3 = QuantumRegister(3) testFunctionCircuit3 = QuantumCircuit(qr3) element_test_3_states_binary = ''.join(map(str,element_test_3_states)) print("The Marked State is: |{}⟩".format(element_test_3_states_binary)) element_test_3_states.reverse() mark_state(element_test_3_states, testFunctionCircuit3) phase_oracle(testFunctionCircuit3,qr3,element_test_3_states) testFunctionCircuit3.draw(output="mpl") # Getting the Backend for the Statevector Representation # (i.e., the Quantum State represented as State Vector) statevector_backend = Aer.get_backend('statevector_simulator') final_state = execute(testFunctionCircuit3,statevector_backend).result().get_statevector() array_to_latex(final_state, pretext="\\text{Final State for Marked State (Statevector) = }\n", precision = 1) # Defining some tests, for the Phase Oracle, with n = 4 #element_test_4_states = [0,0,0,0] #element_test_4_states = [0,0,0,1] #element_test_4_states = [0,0,1,0] #element_test_4_states = [0,0,1,1] #element_test_4_states = [0,1,0,0] #element_test_4_states = [0,1,0,1] #element_test_4_states = [0,1,1,0] #element_test_4_states = [0,1,1,1] #element_test_4_states = [1,0,0,0] #element_test_4_states = [1,0,0,1] element_test_4_states = [1,0,1,0] #element_test_4_states = [1,0,1,1] #element_test_4_states = [1,1,0,0] #element_test_4_states = [1,1,0,1] #element_test_4_states = [1,1,1,0] #element_test_4_states = [1,1,1,1] qr4 = QuantumRegister(4) testFunctionCircuit4 = QuantumCircuit(qr4) element_test_4_states_binary = ''.join(map(str,element_test_4_states)) print("The Marked State is: |{}⟩".format(element_test_4_states_binary)) element_test_4_states.reverse() mark_state(element_test_4_states, testFunctionCircuit4) phase_oracle(testFunctionCircuit4,qr4,element_test_4_states) testFunctionCircuit4.draw(output="mpl") # Getting the Backend for the Statevector Representation # (i.e., the Quantum State represented as State Vector) statevector_backend = Aer.get_backend('statevector_simulator') final_state = execute(testFunctionCircuit4,statevector_backend).result().get_statevector() array_to_latex(final_state, pretext="\\text{Final State for Marked State (Statevector) = }\n", precision = 1) def inversion_about_average(circuit, qr): # Apply Inversion Operator about the Average step of Grover's Algorithm circuit.h(qr) circuit.x(qr) n_controlled_Z(circuit, qr) circuit.x(qr) circuit.h(qr) # Now, let's plot the Quantum Circuit for the Quantum Average qr = QuantumRegister(4) qAverage = QuantumCircuit(qr) inversion_about_average(qAverage, qr) qAverage.draw(output='mpl') def putAllQubitsInQuantumSuperposition(n, quantumCircuit): for qubit_index in range(n): quantumCircuit.h(qubit_index) def measureAllQubits(n, quantumCircuit, quantumRegister, classicalRegister): for qubit_index in range(n): quantumCircuit.measure(quantumRegister[qubit_index], classicalRegister[qubit_index]) def grover_algorithm(quantumCircuit,quantumRegister,classicalRegister,element,n): putAllQubitsInQuantumSuperposition(n,quantumCircuit) # Experimental Constant Factor, # for incrementing the number of Steps of the Grover's Algorithm additional_steps = 0 #additional_steps = 1 #additional_steps = 2 #additional_steps = 3 #additional_steps = 4 for step in range(1, ( n + additional_steps )): phase_oracle(quantumCircuit,quantumRegister, element) inversion_about_average(quantumCircuit, quantumRegister) measureAllQubits(n, quantumCircuit, quantumRegister, classicalRegister) qr2 = QuantumRegister(2) cr2 = ClassicalRegister(2) groverCircuit = QuantumCircuit(qr2,cr2) #element_2_states = [0,0] element_2_states = [0,1] #element_2_states = [1,0] #element_2_states = [1,1] element_2_states_binary = ''.join(map(str,element_2_states)) print("The Marked State, we're looking for, is: |{}⟩".format(element_2_states_binary)) element_2_states.reverse() grover_algorithm(groverCircuit,qr2,cr2,element_2_states,2) groverCircuit.draw("mpl") # Now, let's execute the Quantum Circuit in the QASM Simulator of the Aer Module, # of the IBM Qiskit Library backend = Aer.get_backend('qasm_simulator') counts = execute(groverCircuit,backend,shots=2048).result().get_counts() # Print the Counts of the Frequencies, resulting from this Experiment print(counts) # Plot the Counts of the Frequencies, resulting from this Experiment, through a Histogram # (i.e., a Distribution of the Probabilities) plot_histogram(counts) qr3 = QuantumRegister(3) cr3 = ClassicalRegister(3) groverCircuit = QuantumCircuit(qr3,cr3) #element_3_states = [0,0,0] #element_3_states = [0,0,1] #element_3_states = [0,1,0] #element_3_states = [0,1,1] #element_3_states = [1,0,0] #element_3_states = [1,0,1] element_3_states = [1,1,0] #element_3_states = [1,1,1] element_3_states_binary = ''.join(map(str,element_3_states)) print("The Marked State, we're looking for, is: |{}⟩".format(element_3_states_binary)) element_3_states.reverse() grover_algorithm(groverCircuit,qr3,cr3,element_3_states,3) groverCircuit.draw("mpl") # Now, let's execute the Quantum Circuit in the QASM Simulator of the Aer Module, # of the IBM Qiskit Library backend = Aer.get_backend('qasm_simulator') counts = execute(groverCircuit,backend,shots=2048).result().get_counts() # Print the Counts of the Frequencies, resulting from this Experiment print(counts) # Plot the Counts of the Frequencies, resulting from this Experiment, through a Histogram # (i.e., a Distribution of the Probabilities) plot_histogram(counts) qr4 = QuantumRegister(4) cr4 = ClassicalRegister(4) groverCircuit = QuantumCircuit(qr4,cr4) #element_4_states = [0,0,0,0] #element_4_states = [0,0,0,1] #element_4_states = [0,0,1,0] #element_4_states = [0,0,1,1] #element_4_states = [0,1,0,0] #element_4_states = [0,1,0,1] #element_4_states = [0,1,1,0] #element_4_states = [0,1,1,1] #element_4_states = [1,0,0,0] #element_4_states = [1,0,0,1] #element_4_states = [1,0,1,0] element_4_states = [1,0,1,1] #element_4_states = [1,1,0,0] #element_4_states = [1,1,0,1] #element_4_states = [1,1,1,0] #element_4_states = [1,1,1,1] element_4_states_binary = ''.join(map(str,element_4_states)) print("The Marked State, we're looking for, is: |{}⟩".format(element_4_states_binary)) element_4_states.reverse() grover_algorithm(groverCircuit,qr4,cr4,element_4_states,4) groverCircuit.draw("mpl") # Now, let's execute the Quantum Circuit in the QASM Simulator of the Aer Module, # of the IBM Qiskit Library backend = Aer.get_backend('qasm_simulator') counts = execute(groverCircuit,backend,shots=2048).result().get_counts() # Print the Counts of the Frequencies, resulting from this Experiment print(counts) # Plot the Counts of the Frequencies, resulting from this Experiment, through a Histogram # (i.e., a Distribution of the Probabilities) plot_histogram(counts) qr5 = QuantumRegister(5) cr5 = ClassicalRegister(5) groverCircuit = QuantumCircuit(qr5,cr5) #element_5_states = [0,0,0,0,0] #element_5_states = [0,0,0,0,1] element_5_states = [0,0,0,1,0] #element_5_states = [0,0,0,1,1] #element_5_states = [0,0,1,0,0] #element_5_states = [0,0,1,0,1] #element_5_states = [0,0,1,1,0] #element_5_states = [0,0,1,1,1] #element_5_states = [0,1,0,0,0] #element_5_states = [0,1,0,0,1] #element_5_states = [0,1,0,1,0] #element_5_states = [0,1,0,1,1] #element_5_states = [0,1,1,0,0] #element_5_states = [0,1,1,0,1] #element_5_states = [0,1,1,1,0] #element_5_states = [0,1,1,1,1] #element_5_states = [1,0,0,0,0] #element_5_states = [1,0,0,0,1] #element_5_states = [1,0,0,1,0] #element_5_states = [1,0,0,1,1] #element_5_states = [1,0,1,0,0] #element_5_states = [1,0,1,0,1] #element_5_states = [1,0,1,1,0] #element_5_states = [1,0,1,1,1] #element_5_states = [1,1,0,0,0] #element_5_states = [1,1,0,0,1] #element_5_states = [1,1,0,1,0] #element_5_states = [1,1,0,1,1] #element_5_states = [1,1,1,0,0] #element_5_states = [1,1,1,0,1] #element_5_states = [1,1,1,1,0] #element_5_states = [1,1,1,1,1] element_5_states_binary = ''.join(map(str,element_5_states)) print("The Marked State, we're looking for, is: |{}⟩".format(element_5_states_binary)) element_5_states.reverse() grover_algorithm(groverCircuit,qr5,cr5,element_5_states,5) groverCircuit.draw("mpl") # Now, let's execute the Quantum Circuit in the QASM Simulator of the Aer Module, # of the IBM Qiskit Library backend = Aer.get_backend('qasm_simulator') counts = execute(groverCircuit,backend,shots=2048).result().get_counts() # Print the Counts of the Frequencies, resulting from this Experiment print(counts) # Plot the Counts of the Frequencies, resulting from this Experiment, through a Histogram # (i.e., a Distribution of the Probabilities) plot_histogram(counts) # Print the current Qiskit's Modules' Version import qiskit qiskit.__qiskit_version__
https://github.com/robinsonvs/tcc-information-systems
robinsonvs
import random import pycosat import numpy as np from qiskit import QuantumCircuit, transpile, QuantumRegister from qiskit_aer import AerSimulator from qiskit.visualization import plot_histogram import matplotlib.pyplot as plt import networkx as nx from qiskit import QuantumCircuit as qc from qiskit import QuantumRegister as qr from heapq import nlargest from matplotlib.pyplot import show, subplots, xticks, yticks from qiskit import ClassicalRegister def generate_complete_graph(clique_size): graph = [[1 if i != j else 0 for j in range(clique_size)] for i in range(clique_size)] return remove_random_edges(graph, clique_size) def remove_random_edges(graph, clique_size): num_vertices = len(graph) max_edges = clique_size * (clique_size - 1) // 2 edges_to_remove = random.sample(range(max_edges, num_vertices * (num_vertices - 1) // 2), k=num_vertices * (num_vertices - 1) // 2 - max_edges) for edge in edges_to_remove: row = edge // num_vertices col = edge % num_vertices graph[row][col] = 0 graph[col][row] = 0 return graph def clique_max_sat(graph): num_vertices = len(graph) cnf_clauses = [] # Constraint 1: There is an ith vertex for i in range(num_vertices): clique_clause = [j + 1 for j in range(num_vertices) if j != i] cnf_clauses.append(clique_clause) # Constraint 2: The ith and jth vertices are different for i in range(num_vertices): for j in range(i + 1, num_vertices): if graph[i][j] == 0: cnf_clauses.append([-1 * (i + 1), -1 * (j + 1)]) return cnf_clauses def solve(number_of_vertices, cnf_clauses): solution = pycosat.solve(cnf_clauses) if solution != "UNSAT": return [i for i in range(1, number_of_vertices + 1) if i in solution] return None def amplify(num_of_qubits, num_sub_states): subsets = np.empty(num_sub_states, dtype=object) N = 2 ** num_of_qubits index = 0 sup_index = (N // num_sub_states) if (N % num_sub_states != 0): k = 0 for i in range(1, num_sub_states): sup = [0.] * N num_el = (N // num_sub_states) + 1 sub_state = QuantumCircuit(num_of_qubits) for j in range(index, sup_index + 1): sup[j] = np.sqrt((N / num_el) / N) sub_state.initialize(sup, range(num_of_qubits)) subsets[k] = sub_state index = index + (N // num_sub_states) + 1 sup_index = sup_index + (N // num_sub_states) + 1 k = k + 1 sub_state = QuantumCircuit(num_of_qubits) sup = [0.] * N for j in range(index-1, sup_index): sup[j] = np.sqrt((N / num_el) / N) sub_state.initialize(sup, range(num_of_qubits)) subsets[num_sub_states - 1] = sub_state else: k = 0 for i in range(0, num_sub_states): sup = [0.] * N num_el = N / num_sub_states sub_state = QuantumCircuit(num_of_qubits) for j in range(index, sup_index): sup[j] = np.sqrt((N / num_el) / N) sub_state.initialize(sup, range(num_of_qubits)) subsets[k] = sub_state index = index + (N // num_sub_states) sup_index = sup_index + (N // num_sub_states) k = k + 1 return subsets def n_controlled_Z(circuit, controls, target): if len(controls) == 1: circuit.h(target) circuit.cx(controls[0], target) circuit.h(target) elif len(controls) > 1: circuit.h(target) circuit.mcx(controls, target) circuit.h(target) else: raise ValueError("At least one control qubit is required for controlled-Z gate.") def inversion_about_average(circuit, f_in, n): for j in range(n): circuit.h(f_in[j]) for j in range(n): circuit.x(f_in[j]) n_controlled_Z(circuit, [f_in[j] for j in range(n-1)], f_in[n-1]) for j in range(n): circuit.x(f_in[j]) for j in range(n): circuit.h(f_in[j]) def input_state(circuit, f_in, f_out, n): for j in range(n): circuit.h(f_in[j]) circuit.x(f_out) circuit.h(f_out) def oracle(circuit, f_in, f_out, aux, cnf_sat): num_clauses = len(cnf_sat) for (k, clause) in enumerate(cnf_sat): for literal in clause: if literal > 0: circuit.cx(f_in[literal-1], aux[k]) else: circuit.x(f_in[-literal-1]) circuit.cx(f_in[-literal-1], aux[k]) circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) circuit.ccx(f_in[2], aux[num_clauses], aux[k]) circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) for literal in clause: if literal < 0: circuit.x(f_in[-literal-1]) if num_clauses > 0: circuit.mcx(aux[:-1], f_out[0]) for (k, clause) in enumerate(cnf_sat): for literal in clause: if literal > 0: circuit.cx(f_in[literal-1], aux[k]) else: circuit.x(f_in[-literal-1]) circuit.cx(f_in[-literal-1], aux[k]) circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) circuit.ccx(f_in[2], aux[num_clauses], aux[k]) circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) for literal in clause: if literal < 0: circuit.x(f_in[-literal-1]) if __name__ == '__main__': graph = generate_complete_graph(3) G = nx.Graph() for i in range(len(graph)): for j in range(i + 1, len(graph)): if graph[i][j] == 1: G.add_edge(i, j) plt.figure(figsize=(6, 6)) nx.draw(G, with_labels=True, font_weight='bold') plt.title('Grafo Gerado') plt.show() cnf_clauses = clique_max_sat(graph) for clause in cnf_clauses: print(clause) print(cnf_clauses) max_clique = solve(len(graph), cnf_clauses) print("Clique máximo :", max_clique) num_qubits = 3 num_sub_states = 2 subsets = amplify(num_qubits, num_sub_states) #cnf_clauses = [[1, 2, 3], [-1, -2, -3], [-1, -2, -3]] #cnf_clauses = [[1, 2, -3], [-1, -2, -3], [-1, 2, 3]] #cnf_clauses = [[1, -2, -3, -4], [-1, 2, -3, -4], [-1, -2, 3, -4], [-1, -2, -3, 4]] #cnf_clauses = [[-1, -2, -3, -4], [-1, -2, -3, -4], [-1, -2, -3, -4], [-1, -2, -3, -4]] f_in = QuantumRegister(num_qubits) f_out = QuantumRegister(1) aux = QuantumRegister(len(cnf_clauses) + 1) ans = ClassicalRegister(num_qubits) grover = QuantumCircuit() grover.add_register(f_in) grover.add_register(f_out) grover.add_register(aux) grover.add_register(ans) #print(grover) #substate_circuit = QuantumCircuit(num_qubits) #substate_circuit.initialize(subsets[0], range(num_qubits)) #grover = grover.compose(substate_circuit) input_state(grover, f_in, f_out, num_qubits) grover = grover.compose(subsets[0]) #print(grover) #input_state(grover, f_in, f_out, num_qubits) #print(grover) T = 2 for t in range(T): oracle(grover, f_in, f_out, aux, cnf_clauses) inversion_about_average(grover, f_in, num_qubits) for j in range(num_qubits): grover.measure(f_in[j], ans[j]) #print(grover) backend = AerSimulator() new_circuit = transpile(grover, backend) result = backend.run(new_circuit).result() counts = result.get_counts(grover) print("Counts:", counts) plot_histogram(counts) plt.show()
https://github.com/theflyingrahul/qiskitsummerschool2020
theflyingrahul
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """User-space constructor functions for the expression tree, which do some of the inference and lifting boilerplate work.""" # pylint: disable=redefined-builtin,redefined-outer-name from __future__ import annotations __all__ = [ "lift", "bit_not", "logic_not", "bit_and", "bit_or", "bit_xor", "logic_and", "logic_or", "equal", "not_equal", "less", "less_equal", "greater", "greater_equal", "lift_legacy_condition", ] import enum import typing from .expr import Expr, Var, Value, Unary, Binary, Cast from .. import types if typing.TYPE_CHECKING: import qiskit class _CastKind(enum.Enum): EQUAL = enum.auto() """The two types are equal; no cast node is required at all.""" IMPLICIT = enum.auto() """The 'from' type can be cast to the 'to' type implicitly. A ``Cast(implicit=True)`` node is the minimum required to specify this.""" LOSSLESS = enum.auto() """The 'from' type can be cast to the 'to' type explicitly, and the cast will be lossless. This requires a ``Cast(implicit=False)`` node, but there's no danger from inserting one.""" DANGEROUS = enum.auto() """The 'from' type has a defined cast to the 'to' type, but depending on the value, it may lose data. A user would need to manually specify casts.""" NONE = enum.auto() """There is no casting permitted from the 'from' type to the 'to' type.""" def _uint_cast(from_: types.Uint, to_: types.Uint, /) -> _CastKind: if from_.width == to_.width: return _CastKind.EQUAL if from_.width < to_.width: return _CastKind.LOSSLESS return _CastKind.DANGEROUS _ALLOWED_CASTS = { (types.Bool, types.Bool): lambda _a, _b, /: _CastKind.EQUAL, (types.Bool, types.Uint): lambda _a, _b, /: _CastKind.LOSSLESS, (types.Uint, types.Bool): lambda _a, _b, /: _CastKind.IMPLICIT, (types.Uint, types.Uint): _uint_cast, } def _cast_kind(from_: types.Type, to_: types.Type, /) -> _CastKind: if (coercer := _ALLOWED_CASTS.get((from_.kind, to_.kind))) is None: return _CastKind.NONE return coercer(from_, to_) def _coerce_lossless(expr: Expr, type: types.Type) -> Expr: """Coerce ``expr`` to ``type`` by inserting a suitable :class:`Cast` node, if the cast is lossless. Otherwise, raise a ``TypeError``.""" kind = _cast_kind(expr.type, type) if kind is _CastKind.EQUAL: return expr if kind is _CastKind.IMPLICIT: return Cast(expr, type, implicit=True) if kind is _CastKind.LOSSLESS: return Cast(expr, type, implicit=False) if kind is _CastKind.DANGEROUS: raise TypeError(f"cannot cast '{expr}' to '{type}' without loss of precision") raise TypeError(f"no cast is defined to take '{expr}' to '{type}'") def lift_legacy_condition( condition: tuple[qiskit.circuit.Clbit | qiskit.circuit.ClassicalRegister, int], / ) -> Expr: """Lift a legacy two-tuple equality condition into a new-style :class:`Expr`. Examples: Taking an old-style conditional instruction and getting an :class:`Expr` from its condition:: from qiskit.circuit import ClassicalRegister from qiskit.circuit.library import HGate from qiskit.circuit.classical import expr cr = ClassicalRegister(2) instr = HGate().c_if(cr, 3) lifted = expr.lift_legacy_condition(instr.condition) """ from qiskit.circuit import Clbit # pylint: disable=cyclic-import target, value = condition if isinstance(target, Clbit): bool_ = types.Bool() return Var(target, bool_) if value else Unary(Unary.Op.LOGIC_NOT, Var(target, bool_), bool_) left = Var(target, types.Uint(width=target.size)) if value.bit_length() > target.size: left = Cast(left, types.Uint(width=value.bit_length()), implicit=True) right = Value(value, left.type) return Binary(Binary.Op.EQUAL, left, right, types.Bool()) def lift(value: typing.Any, /, type: types.Type | None = None) -> Expr: """Lift the given Python ``value`` to a :class:`~.expr.Value` or :class:`~.expr.Var`. If an explicit ``type`` is given, the typing in the output will reflect that. Examples: Lifting simple circuit objects to be :class:`~.expr.Var` instances:: >>> from qiskit.circuit import Clbit, ClassicalRegister >>> from qiskit.circuit.classical import expr >>> expr.lift(Clbit()) Var(<clbit>, Bool()) >>> expr.lift(ClassicalRegister(3, "c")) Var(ClassicalRegister(3, "c"), Uint(3)) The type of the return value can be influenced, if the given value could be interpreted losslessly as the given type (use :func:`cast` to perform a full set of casting operations, include lossy ones):: >>> from qiskit.circuit import ClassicalRegister >>> from qiskit.circuit.classical import expr, types >>> expr.lift(ClassicalRegister(3, "c"), types.Uint(5)) Var(ClassicalRegister(3, "c"), Uint(5)) >>> expr.lift(5, types.Uint(4)) Value(5, Uint(4)) """ if isinstance(value, Expr): if type is not None: raise ValueError("use 'cast' to cast existing expressions, not 'lift'") return value from qiskit.circuit import Clbit, ClassicalRegister # pylint: disable=cyclic-import inferred: types.Type if value is True or value is False or isinstance(value, Clbit): inferred = types.Bool() constructor = Value if value is True or value is False else Var elif isinstance(value, ClassicalRegister): inferred = types.Uint(width=value.size) constructor = Var elif isinstance(value, int): if value < 0: raise ValueError("cannot represent a negative value") inferred = types.Uint(width=value.bit_length() or 1) constructor = Value else: raise TypeError(f"failed to infer a type for '{value}'") if type is None: type = inferred if types.is_supertype(type, inferred): return constructor(value, type) raise TypeError( f"the explicit type '{type}' is not suitable for representing '{value}';" f" it must be non-strict supertype of '{inferred}'" ) def cast(operand: typing.Any, type: types.Type, /) -> Expr: """Create an explicit cast from the given value to the given type. Examples: Add an explicit cast node that explicitly casts a higher precision type to a lower precision one:: >>> from qiskit.circuit.classical import expr, types >>> value = expr.value(5, types.Uint(32)) >>> expr.cast(value, types.Uint(8)) Cast(Value(5, types.Uint(32)), types.Uint(8), implicit=False) """ operand = lift(operand) if _cast_kind(operand.type, type) is _CastKind.NONE: raise TypeError(f"cannot cast '{operand}' to '{type}'") return Cast(operand, type) def bit_not(operand: typing.Any, /) -> Expr: """Create a bitwise 'not' expression node from the given value, resolving any implicit casts and lifting the value into a :class:`Value` node if required. Examples: Bitwise negation of a :class:`.ClassicalRegister`:: >>> from qiskit.circuit import ClassicalRegister >>> from qiskit.circuit.classical import expr >>> expr.bit_not(ClassicalRegister(3, "c")) Unary(Unary.Op.BIT_NOT, Var(ClassicalRegister(3, 'c'), Uint(3)), Uint(3)) """ operand = lift(operand) if operand.type.kind not in (types.Bool, types.Uint): raise TypeError(f"cannot apply '{Unary.Op.BIT_NOT}' to type '{operand.type}'") return Unary(Unary.Op.BIT_NOT, operand, operand.type) def logic_not(operand: typing.Any, /) -> Expr: """Create a logical 'not' expression node from the given value, resolving any implicit casts and lifting the value into a :class:`Value` node if required. Examples: Logical negation of a :class:`.ClassicalRegister`:: >>> from qiskit.circuit import ClassicalRegister >>> from qiskit.circuit.classical import expr >>> expr.logic_not(ClassicalRegister(3, "c")) Unary(\ Unary.Op.LOGIC_NOT, \ Cast(Var(ClassicalRegister(3, 'c'), Uint(3)), Bool(), implicit=True), \ Bool()) """ operand = _coerce_lossless(lift(operand), types.Bool()) return Unary(Unary.Op.LOGIC_NOT, operand, operand.type) def _lift_binary_operands(left: typing.Any, right: typing.Any) -> tuple[Expr, Expr]: """Lift two binary operands simultaneously, inferring the widths of integer literals in either position to match the other operand.""" left_int = isinstance(left, int) and not isinstance(left, bool) right_int = isinstance(right, int) and not isinstance(right, bool) if not (left_int or right_int): left = lift(left) right = lift(right) elif not right_int: right = lift(right) if right.type.kind is types.Uint: if left.bit_length() > right.type.width: raise TypeError( f"integer literal '{left}' is wider than the other operand '{right}'" ) left = Value(left, right.type) else: left = lift(left) elif not left_int: left = lift(left) if left.type.kind is types.Uint: if right.bit_length() > left.type.width: raise TypeError( f"integer literal '{right}' is wider than the other operand '{left}'" ) right = Value(right, left.type) else: right = lift(right) else: # Both are `int`, so we take our best case to make things work. uint = types.Uint(max(left.bit_length(), right.bit_length(), 1)) left = Value(left, uint) right = Value(right, uint) return left, right def _binary_bitwise(op: Binary.Op, left: typing.Any, right: typing.Any) -> Expr: left, right = _lift_binary_operands(left, right) type: types.Type if left.type.kind is right.type.kind is types.Bool: type = types.Bool() elif left.type.kind is types.Uint and right.type.kind is types.Uint: if left.type != right.type: raise TypeError( "binary bitwise operations are defined between unsigned integers of the same width," f" but got {left.type.width} and {right.type.width}." ) type = left.type else: raise TypeError(f"invalid types for '{op}': '{left.type}' and '{right.type}'") return Binary(op, left, right, type) def bit_and(left: typing.Any, right: typing.Any, /) -> Expr: """Create a bitwise 'and' expression node from the given value, resolving any implicit casts and lifting the values into :class:`Value` nodes if required. Examples: Bitwise 'and' of a classical register and an integer literal:: >>> from qiskit.circuit import ClassicalRegister >>> from qiskit.circuit.classical import expr >>> expr.bit_and(ClassicalRegister(3, "c"), 0b111) Binary(\ Binary.Op.BIT_AND, \ Var(ClassicalRegister(3, 'c'), Uint(3)), \ Value(7, Uint(3)), \ Uint(3)) """ return _binary_bitwise(Binary.Op.BIT_AND, left, right) def bit_or(left: typing.Any, right: typing.Any, /) -> Expr: """Create a bitwise 'or' expression node from the given value, resolving any implicit casts and lifting the values into :class:`Value` nodes if required. Examples: Bitwise 'or' of a classical register and an integer literal:: >>> from qiskit.circuit import ClassicalRegister >>> from qiskit.circuit.classical import expr >>> expr.bit_or(ClassicalRegister(3, "c"), 0b101) Binary(\ Binary.Op.BIT_OR, \ Var(ClassicalRegister(3, 'c'), Uint(3)), \ Value(5, Uint(3)), \ Uint(3)) """ return _binary_bitwise(Binary.Op.BIT_OR, left, right) def bit_xor(left: typing.Any, right: typing.Any, /) -> Expr: """Create a bitwise 'exclusive or' expression node from the given value, resolving any implicit casts and lifting the values into :class:`Value` nodes if required. Examples: Bitwise 'exclusive or' of a classical register and an integer literal:: >>> from qiskit.circuit import ClassicalRegister >>> from qiskit.circuit.classical import expr >>> expr.bit_xor(ClassicalRegister(3, "c"), 0b101) Binary(\ Binary.Op.BIT_XOR, \ Var(ClassicalRegister(3, 'c'), Uint(3)), \ Value(5, Uint(3)), \ Uint(3)) """ return _binary_bitwise(Binary.Op.BIT_XOR, left, right) def _binary_logical(op: Binary.Op, left: typing.Any, right: typing.Any) -> Expr: bool_ = types.Bool() left = _coerce_lossless(lift(left), bool_) right = _coerce_lossless(lift(right), bool_) return Binary(op, left, right, bool_) def logic_and(left: typing.Any, right: typing.Any, /) -> Expr: """Create a logical 'and' expression node from the given value, resolving any implicit casts and lifting the values into :class:`Value` nodes if required. Examples: Logical 'and' of two classical bits:: >>> from qiskit.circuit import Clbit >>> from qiskit.circuit.classical import expr >>> expr.logical_and(Clbit(), Clbit()) Binary(Binary.Op.LOGIC_AND, Var(<clbit 0>, Bool()), Var(<clbit 1>, Bool()), Bool()) """ return _binary_logical(Binary.Op.LOGIC_AND, left, right) def logic_or(left: typing.Any, right: typing.Any, /) -> Expr: """Create a logical 'or' expression node from the given value, resolving any implicit casts and lifting the values into :class:`Value` nodes if required. Examples: Logical 'or' of two classical bits >>> from qiskit.circuit import Clbit >>> from qiskit.circuit.classical import expr >>> expr.logical_and(Clbit(), Clbit()) Binary(Binary.Op.LOGIC_OR, Var(<clbit 0>, Bool()), Var(<clbit 1>, Bool()), Bool()) """ return _binary_logical(Binary.Op.LOGIC_OR, left, right) def _equal_like(op: Binary.Op, left: typing.Any, right: typing.Any) -> Expr: left, right = _lift_binary_operands(left, right) if left.type.kind is not right.type.kind: raise TypeError(f"invalid types for '{op}': '{left.type}' and '{right.type}'") type = types.greater(left.type, right.type) return Binary(op, _coerce_lossless(left, type), _coerce_lossless(right, type), types.Bool()) def equal(left: typing.Any, right: typing.Any, /) -> Expr: """Create an 'equal' expression node from the given value, resolving any implicit casts and lifting the values into :class:`Value` nodes if required. Examples: Equality between a classical register and an integer:: >>> from qiskit.circuit import ClassicalRegister >>> from qiskit.circuit.classical import expr >>> expr.equal(ClassicalRegister(3, "c"), 7) Binary(Binary.Op.EQUAL, \ Var(ClassicalRegister(3, "c"), Uint(3)), \ Value(7, Uint(3)), \ Uint(3)) """ return _equal_like(Binary.Op.EQUAL, left, right) def not_equal(left: typing.Any, right: typing.Any, /) -> Expr: """Create a 'not equal' expression node from the given value, resolving any implicit casts and lifting the values into :class:`Value` nodes if required. Examples: Inequality between a classical register and an integer:: >>> from qiskit.circuit import ClassicalRegister >>> from qiskit.circuit.classical import expr >>> expr.not_equal(ClassicalRegister(3, "c"), 7) Binary(Binary.Op.NOT_EQUAL, \ Var(ClassicalRegister(3, "c"), Uint(3)), \ Value(7, Uint(3)), \ Uint(3)) """ return _equal_like(Binary.Op.NOT_EQUAL, left, right) def _binary_relation(op: Binary.Op, left: typing.Any, right: typing.Any) -> Expr: left, right = _lift_binary_operands(left, right) if left.type.kind is not right.type.kind or left.type.kind is types.Bool: raise TypeError(f"invalid types for '{op}': '{left.type}' and '{right.type}'") type = types.greater(left.type, right.type) return Binary(op, _coerce_lossless(left, type), _coerce_lossless(right, type), types.Bool()) def less(left: typing.Any, right: typing.Any, /) -> Expr: """Create a 'less than' expression node from the given value, resolving any implicit casts and lifting the values into :class:`Value` nodes if required. Examples: Query if a classical register is less than an integer:: >>> from qiskit.circuit import ClassicalRegister >>> from qiskit.circuit.classical import expr >>> expr.less(ClassicalRegister(3, "c"), 5) Binary(Binary.Op.LESS, \ Var(ClassicalRegister(3, "c"), Uint(3)), \ Value(5, Uint(3)), \ Uint(3)) """ return _binary_relation(Binary.Op.LESS, left, right) def less_equal(left: typing.Any, right: typing.Any, /) -> Expr: """Create a 'less than or equal to' expression node from the given value, resolving any implicit casts and lifting the values into :class:`Value` nodes if required. Examples: Query if a classical register is less than or equal to another:: >>> from qiskit.circuit import ClassicalRegister >>> from qiskit.circuit.classical import expr >>> expr.less(ClassicalRegister(3, "a"), ClassicalRegister(3, "b")) Binary(Binary.Op.LESS_EQUAL, \ Var(ClassicalRegister(3, "a"), Uint(3)), \ Var(ClassicalRegister(3, "b"), Uint(3)), \ Uint(3)) """ return _binary_relation(Binary.Op.LESS_EQUAL, left, right) def greater(left: typing.Any, right: typing.Any, /) -> Expr: """Create a 'greater than' expression node from the given value, resolving any implicit casts and lifting the values into :class:`Value` nodes if required. Examples: Query if a classical register is greater than an integer:: >>> from qiskit.circuit import ClassicalRegister >>> from qiskit.circuit.classical import expr >>> expr.less(ClassicalRegister(3, "c"), 5) Binary(Binary.Op.GREATER, \ Var(ClassicalRegister(3, "c"), Uint(3)), \ Value(5, Uint(3)), \ Uint(3)) """ return _binary_relation(Binary.Op.GREATER, left, right) def greater_equal(left: typing.Any, right: typing.Any, /) -> Expr: """Create a 'greater than or equal to' expression node from the given value, resolving any implicit casts and lifting the values into :class:`Value` nodes if required. Examples: Query if a classical register is greater than or equal to another:: >>> from qiskit.circuit import ClassicalRegister >>> from qiskit.circuit.classical import expr >>> expr.less(ClassicalRegister(3, "a"), ClassicalRegister(3, "b")) Binary(Binary.Op.GREATER_EQUAL, \ Var(ClassicalRegister(3, "a"), Uint(3)), \ Var(ClassicalRegister(3, "b"), Uint(3)), \ Uint(3)) """ return _binary_relation(Binary.Op.GREATER_EQUAL, left, right)
https://github.com/abbarreto/qiskit2
abbarreto
%run init.ipynb rx,ry,rz = symbols('r_x r_y r_z') rho1qb = (1/2)*(id(2) + rx*pauli(1) + ry*pauli(2) + rz*pauli(3)) rho1qb pI,pX,pZ,pY = symbols('p_I p_X p_Z p_Y') K0 = sqrt(pI)*id(2); K1 = sqrt(pX)*pauli(1); K2 = sqrt(pZ)*pauli(3); K3 = sqrt(pY)*pauli(2) rho_p = K0*rho1qb*K0 + K1*rho1qb*K1 + K2*rho1qb*K2 + K3*rho1qb*K3 simplify(rho_p) p = symbols('p') pI = (1+3*p)/4; pX = (1-p)/4; pY = pX; pZ = pX rho_p = K0*rho1qb*K0 + K1*rho1qb*K1 + K2*rho1qb*K2 + K3*rho1qb*K3 simplify(rho_p) import numpy as np from matplotlib import pyplot as plt p = np.arange(0,1.1,0.1) # PD channel C = np.sqrt(1-p) plt.plot(p,C) plt.show() from sympy import * N,p = symbols('N p') K0 = sqrt(1-N)*Matrix([[1,0],[0,sqrt(1-p)]]) K1 = sqrt(1-N)*Matrix([[0,sqrt(p)],[0,0]]) K2 = sqrt(N)*Matrix([[sqrt(1-p),0],[0,1]]) K3 = sqrt(N)*Matrix([[0,0],[sqrt(p),0]]) #K0 r00,r01,r10,r11 = symbols('r_{00} r_{01} r_{10} r_{11}')#; r00 rho = Matrix([[r00,r01],[r10,r11]])#; rho rho_gad = K0*rho*K0 + K1*rho*K1.T + K2*rho*K2 + K3*rho*K3.T simplify(rho_gad)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
https://github.com/kerenavnery/qmail
kerenavnery
# needed qiskit library from qiskit import * %matplotlib inline # the channel library providing the class Channel handling the communication from channel_class import Channel #Bob needs to know the number of qubits, n_master: number of Alice qubits, n_slave: number of Bobs qubits n_master = 2 n_channel = 2 n_slave = 1 #initialise the Quantum Channel, Bobs port is 5001, Alice port is 5000 bob_channel = Channel(myport = 5001, remote_port = 5000) #initialise Bobs circuit circ_bob = QuantumCircuit(n_master + n_channel + n_slave) #Bob recieves the qubits from Alice and needs to give his computations up to then into the function #the function returns the circuit on which Bob continues to operate and an offset he has to add all the time circ_bob, offset = bob_channel.receive(circ_bob) # Bob does the controlled operations on his qubit (which is 0+offset) circ_bob.cx(1+offset,2+offset) circ_bob.cz(0+offset,2+offset) # Bob undoes the rotations Alice did to check, whether the states are indeed the same circ_bob.rx(-0.1,2 + offset) circ_bob.ry(-0.94,2 + offset) circ_bob.rz(-0.54,2 + offset) circ_bob.rx(-0.234,2 + offset) # The complete Circuit circ_bob.draw(output='mpl',filename='teleport_bob.png') # Bob measure his qubit, if the teleportation worked, he undoes exactly what Alice did meas = QuantumCircuit(5,1) meas.barrier(range(5)) meas.measure([4],range(1)) qc = circ_bob + meas # The whole teleportation protocol is simulated backend_sim = Aer.get_backend('qasm_simulator') job_sim = execute(qc,backend_sim,shots=1024) result_sim = job_sim.result() counts = result_sim.get_counts(qc) # if Bob undid all of Alice's steps correctly, the final state of his qubit is |0> print(counts)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit.circuit import Parameter from qiskit import pulse from qiskit.test.mock.backends.almaden import * phase = Parameter('phase') with pulse.build(FakeAlmaden()) as phase_test_sched: pulse.shift_phase(phase, pulse.drive_channel(0)) phase_test_sched.instructions # ()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit.random import random_circuit circuit = random_circuit(2, 2, seed=0).decompose(reps=1) display(circuit.draw("mpl")) from qiskit.quantum_info import SparsePauliOp observable = SparsePauliOp("XZ") print(f">>> Observable: {observable.paulis}") from qiskit.primitives import Estimator estimator = Estimator() job = estimator.run(circuit, observable) print(f">>> Job ID: {job.job_id()}") print(f">>> Job Status: {job.status()}") result = job.result() print(f">>> {result}") print(f" > Expectation value: {result.values[0]}") circuit = random_circuit(2, 2, seed=1).decompose(reps=1) observable = SparsePauliOp("IY") job = estimator.run(circuit, observable) result = job.result() display(circuit.draw("mpl")) print(f">>> Observable: {observable.paulis}") print(f">>> Expectation value: {result.values[0]}") circuits = ( random_circuit(2, 2, seed=0).decompose(reps=1), random_circuit(2, 2, seed=1).decompose(reps=1), ) observables = ( SparsePauliOp("XZ"), SparsePauliOp("IY"), ) job = estimator.run(circuits, observables) result = job.result() [display(cir.draw("mpl")) for cir in circuits] print(f">>> Observables: {[obs.paulis for obs in observables]}") print(f">>> Expectation values: {result.values.tolist()}") from qiskit.circuit.library import RealAmplitudes circuit = RealAmplitudes(num_qubits=2, reps=2).decompose(reps=1) observable = SparsePauliOp("ZI") parameter_values = [0, 1, 2, 3, 4, 5] job = estimator.run(circuit, observable, parameter_values) result = job.result() display(circuit.draw("mpl")) print(f">>> Observable: {observable.paulis}") print(f">>> Parameter values: {parameter_values}") print(f">>> Expectation value: {result.values[0]}") from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService(channel="ibm_quantum") backend = service.backend("ibmq_qasm_simulator") from qiskit.circuit.random import random_circuit from qiskit.quantum_info import SparsePauliOp circuit = random_circuit(2, 2, seed=0).decompose(reps=1) display(circuit.draw("mpl")) observable = SparsePauliOp("XZ") print(f">>> Observable: {observable.paulis}") from qiskit_ibm_runtime import Estimator estimator = Estimator(session=backend) job = estimator.run(circuit, observable) print(f">>> Job ID: {job.job_id()}") print(f">>> Job Status: {job.status()}") result = job.result() print(f">>> {result}") print(f" > Expectation value: {result.values[0]}") print(f" > Metadata: {result.metadata[0]}") from qiskit_ibm_runtime import Options options = Options(optimization_level=3, environment={"log_level": "INFO"}) from qiskit_ibm_runtime import Options options = Options() options.resilience_level = 1 options.execution.shots = 2048 estimator = Estimator(session=backend, options=options) result = estimator.run(circuit, observable).result() print(f">>> Metadata: {result.metadata[0]}") estimator = Estimator(session=backend, options=options) result = estimator.run(circuit, observable, shots=1024).result() print(f">>> Metadata: {result.metadata[0]}") from qiskit_ibm_runtime import Options # optimization_level=3 adds dynamical decoupling # resilience_level=1 adds readout error mitigation options = Options(optimization_level=3, resilience_level=1) estimator = Estimator(session=backend, options=options) result = estimator.run(circuit, observable).result() print(f">>> Expectation value: {result.values[0]}") print(f">>> Metadata: {result.metadata[0]}") from qiskit_ibm_runtime import Session, Estimator with Session(backend=backend, max_time="1h"): estimator = Estimator() result = estimator.run(circuit, observable).result() print(f">>> Expectation value from the first run: {result.values[0]}") result = estimator.run(circuit, observable).result() print(f">>> Expectation value from the second run: {result.values[0]}") from qiskit.circuit.random import random_circuit sampler_circuit = random_circuit(2, 2, seed=0).decompose(reps=1) sampler_circuit.measure_all() display(circuit.draw("mpl")) from qiskit_ibm_runtime import Session, Sampler, Estimator with Session(backend=backend): sampler = Sampler() estimator = Estimator() result = sampler.run(sampler_circuit).result() print(f">>> Quasi Distribution from the sampler job: {result.quasi_dists[0]}") result = estimator.run(circuit, observable).result() print(f">>> Expectation value from the estimator job: {result.values[0]}") from qiskit_ibm_runtime import Session, Sampler, Estimator with Session(backend=backend): sampler = Sampler() estimator = Estimator() sampler_job = sampler.run(sampler_circuit) estimator_job = estimator.run(circuit, observable) print(f">>> Quasi Distribution from the sampler job: {sampler_job.result().quasi_dists[0]}") print(f">>> Expectation value from the estimator job: {estimator_job.result().values[0]}") from qiskit_ibm_runtime import QiskitRuntimeService, Session, Sampler, Estimator, Options # 1. Initialize account service = QiskitRuntimeService(channel="ibm_quantum") # 2. Specify options, such as enabling error mitigation options = Options(resilience_level=1) # 3. Select a backend. backend = service.backend("ibmq_qasm_simulator") # 4. Create a session with Session(backend=backend): # 5. Create primitive instances sampler = Sampler(options=options) estimator = Estimator(options=options) # 6. Submit jobs sampler_job = sampler.run(sampler_circuit) estimator_job = estimator.run(circuit, observable) # 7. Get results print(f">>> Quasi Distribution from the sampler job: {sampler_job.result().quasi_dists[0]}") print(f">>> Expectation value from the estimator job: {estimator_job.result().values[0]}") import qiskit_ibm_runtime qiskit_ibm_runtime.version.get_version_info() from qiskit.tools.jupyter import * %qiskit_version_table %qiskit_copyright
https://github.com/dimple12M/Qiskit-Certification-Guide
dimple12M
from qiskit import QuantumCircuit,BasicAer,execute from qiskit.visualization import * qc=QuantumCircuit(2,2) qc.h(0) qc.x(1) qc.draw(output="mpl") backend=BasicAer.get_backend('statevector_simulator') job=execute(qc,backend) result=job.result() sv=result.get_statevector() print(sv) plot_state_city(sv) plot_state_qsphere(sv) qc=QuantumCircuit(2,2) qc.x(0) qc.h(0) qc.h(1) qc.s(0) qc.draw(output="mpl") backend=BasicAer.get_backend('statevector_simulator') job=execute(qc,backend) result=job.result() sv=result.get_statevector() print(sv) plot_state_qsphere(sv) plot_state_paulivec(sv) plot_state_hinton(sv) plot_bloch_multivector(sv) qc=QuantumCircuit(2,2) qc.h(0) qc.cx(0,1) qc.draw(output="mpl") backend=BasicAer.get_backend('statevector_simulator') job=execute(qc,backend) result=job.result() sv=result.get_statevector() print(sv) plot_bloch_multivector(sv) plot_state_qsphere(sv) plot_state_city(sv)
https://github.com/chinsu70802/quantum_teleportation
chinsu70802
!pip install qiskit !pip install pylatexenc !pip install qiskit-aer from qiskit import QuantumCircuit mycircuit = QuantumCircuit(1) mycircuit.draw('mpl') from qiskit.quantum_info import Statevector sv = Statevector.from_label('0') sv sv.data new_sv = sv.evolve(mycircuit) new_sv from qiskit.quantum_info import state_fidelity state_fidelity(sv, new_sv) from qiskit.visualization import plot_state_qsphere plot_state_qsphere(sv.data) mycircuit = QuantumCircuit(1) mycircuit.x(0) mycircuit.draw('mpl') sv = Statevector.from_label('0') new_sv = sv.evolve(mycircuit) new_sv state_fidelity(sv, new_sv) plot_state_qsphere(new_sv.data) sv = Statevector.from_label('0') mycircuit = QuantumCircuit(1) mycircuit.h(0) mycircuit.draw('mpl') new_sv = sv.evolve(mycircuit) print(new_sv) plot_state_qsphere(new_sv.data) sv = Statevector.from_label('1') mycircuit = QuantumCircuit(1) mycircuit.h(0) new_sv = sv.evolve(mycircuit) print(new_sv) plot_state_qsphere(new_sv.data) sv = Statevector.from_label('00') plot_state_qsphere(sv.data) mycircuit = QuantumCircuit(2) mycircuit.h(0) mycircuit.cx(0,1) mycircuit.draw('mpl') new_sv = sv.evolve(mycircuit) print(new_sv) plot_state_qsphere(new_sv.data) counts = new_sv.sample_counts(shots=1000) from qiskit.visualization import plot_histogram plot_histogram(counts) sv = Statevector.from_label('10') mycircuit.draw('mpl') new_sv = sv.evolve(mycircuit) new_sv sv = Statevector.from_label('11') mycircuit.draw('mpl') new_sv = sv.evolve(mycircuit) new_sv mycircuit = QuantumCircuit(2, 2) mycircuit.h(0) mycircuit.cx(0,1) mycircuit.measure([0,1], [0,1]) mycircuit.draw('mpl') from qiskit import Aer, execute simulator = Aer.get_backend('qasm_simulator') result = execute(mycircuit, simulator, shots=10000).result() counts = result.get_counts(mycircuit) plot_histogram(counts) def initialize_qubit(given_circuit, qubit_index): import numpy as np ### WRITE YOUR CODE BETWEEN THESE LINES - START given_circuit.initialize([np.sqrt(0.7),np.sqrt(0.3)],qubit_index) ### WRITE YOUR CODE BETWEEN THESE LINES - END return given_circuit def entangle_qubits(given_circuit, qubit_Alice, qubit_Bob): ### WRITE YOUR CODE BETWEEN THESE LINES - START given_circuit.h(qubit_Alice) given_circuit.cx(qubit_Alice, qubit_Bob) ### WRITE YOUR CODE BETWEEN THESE LINES - END return given_circuit def bell_meas_Alice_qubits(given_circuit, qubit1_Alice, qubit2_Alice, clbit1_Alice, clbit2_Alice): ### WRITE YOUR CODE BETWEEN THESE LINES - START given_circuit.cx(qubit1_Alice,qubit2_Alice) given_circuit.h(qubit1_Alice) given_circuit.barrier() given_circuit.measure([qubit1_Alice,qubit2_Alice],[clbit1_Alice,clbit2_Alice]) ### WRITE YOUR CODE BETWEEN THESE LINES - END return given_circuit def controlled_ops_Bob_qubit(given_circuit, qubit_Bob, clbit1_Alice, clbit2_Alice): ### WRITE YOUR CODE BETWEEN THESE LINES - START if clbit1_Alice == 1 and clbit2_Alice == 0: given_circuit.z(qubit_Bob) elif clbit1_Alice == 0 and clbit2_Alice == 1: given_circuit.x(qubit_Bob) elif clbit1_Alice == 1 and clbit2_Alice == 1: given_circuit.x(qubit_Bob) given_circuit.z(qubit_Bob) ### WRITE YOUR CODE BETWEEN THESE LINES - END return given_circuit ### imports from qiskit import QuantumRegister, ClassicalRegister ### set up the qubits and classical bits all_qubits_Alice = QuantumRegister(2) all_qubits_Bob = QuantumRegister(1) creg1_Alice = ClassicalRegister(1) creg2_Alice = ClassicalRegister(1) ### quantum teleportation circuit here # Initialize mycircuit = QuantumCircuit(all_qubits_Alice, all_qubits_Bob, creg1_Alice, creg2_Alice) initialize_qubit(mycircuit, 0) mycircuit.barrier() # Entangle entangle_qubits(mycircuit, 1, 2) mycircuit.barrier() # Do a Bell measurement bell_meas_Alice_qubits(mycircuit, all_qubits_Alice[0], all_qubits_Alice[1], creg1_Alice[0], creg2_Alice[0]) mycircuit.barrier() # Apply classically controlled quantum gates controlled_ops_Bob_qubit(mycircuit, all_qubits_Bob[0], creg1_Alice, creg2_Alice) ### Look at the complete circuit mycircuit.draw('mpl') mycircuit.measure_all() from qiskit import Aer, execute simulator = Aer.get_backend('qasm_simulator') result = execute(mycircuit, simulator, shots=10000).result() counts = result.get_counts(mycircuit) plot_histogram(counts)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import execute, pulse d0 = pulse.DriveChannel(0) with pulse.build() as pulse_prog: pulse.play(pulse.Constant(100, 1.0), d0) pulse_prog.draw()
https://github.com/JackHidary/quantumcomputingbook
JackHidary
"""키스킷 초고밀집 부호.""" # 가져오기. import qiskit # 2개 큐비트의 양자 레지스터와 2개 비트의 고전레지스터로 회로 구성하기. qreg = qiskit.QuantumRegister(2) creg = qiskit.ClassicalRegister(2) circ = qiskit.QuantumCircuit(qreg, creg) # 아다마르(Hadamard) 게이트를 0번째 큐비트에 적용하여 중첩상태를 구현합니다. circ.h(qreg[0]) # X 연산자를 0번째 큐비트에 적용합니다. circ.x(qreg[0]) # 벨상태를 얻기 위해 0번째와 1번째 큐비트로 CNOT연산을 가합니다. # (역자주: 첫 번째 인자가 제어비트, 두 번째 인자가 피연산비트입니다.) circ.cx(qreg[0], qreg[1]) # 아다마르 연산자를 0번째 큐비트에 적용하여 중첩을 해제합니다. circ.h(qreg[0]) # 메시지를 얻기위해 측정 게이트를 추가합니다. circ.measure(qreg, creg) # 회로를 출력합니다. print("Circuit:") print(circ.draw()) # 상태벡터 시뮬레이터 백엔드 위에서 회로를 실행하고 결과를 얻습니다. backend = qiskit.Aer.get_backend("statevector_simulator") job = qiskit.execute(circ, backend) res = job.result() print(res.get_counts())
https://github.com/IvanIsCoding/Quantum
IvanIsCoding
%matplotlib inline from qiskit import * circuit = QuantumCircuit(5, 2) # Steps to change qubits to 1 for test purposes _ = circuit.x(0) _ = circuit.x(1) _ = circuit.x(2) _ = circuit.barrier() _ = circuit.ccx(0, 1, 3) circuit.draw(output="mpl") _ = circuit.ccx(2, 3, 4) circuit.draw(output="mpl") _ = circuit.ccx(0, 1, 3) circuit.draw(output="mpl") # Measure (x^y^z) and working qubuit in classical bit _ = circuit.barrier() _ = circuit.measure(4, 0) _ = circuit.measure(3, 1) circuit.draw(output="mpl") # Simulate simulator = Aer.get_backend("qasm_simulator") job = execute(circuit, backend=simulator, shots=1024) result = job.result() counts = result.get_counts() # Plot results visualization.plot_histogram(counts)
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit_ibm_provider import IBMProvider import qiskit_ibm_provider.jupyter #provider = IBMProvider('ibm-q') #backend = provider.get_backend('ibmq_vigo') from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive. For more details see https://qiskit.org/documentation/partners/qiskit_ibm_runtime/tutorials.html # result = Sampler("ibmq_qasm_simulator").run(circuits).result()# Built-in modules import math # Imports from Qiskit from qiskit import QuantumCircuit from qiskit.circuit.library import GroverOperator, MCMT, ZGate from qiskit.visualization import plot_distribution # Imports from Qiskit Runtime from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session from qiskit.providers.basic_provider import BasicProvider from qiskit.visualization import plot_histogram from qiskit import transpile from qiskit.providers.fake_provider import GenericBackendV2 def grover_oracle(marked_states): if not isinstance(marked_states, list): marked_states = [marked_states] # Compute the number of qubits in circuit num_qubits = len(marked_states[0]) qc = QuantumCircuit(num_qubits) # Mark each target state in the input list for target in marked_states: # Flip target bit-string to match Qiskit bit-ordering rev_target = target[::-1] # Find the indices of all the '0' elements in bit-string zero_inds = [ind for ind in range(num_qubits) if rev_target.startswith("0", ind)] # Add a multi-controlled Z-gate with pre- and post-applied X-gates (open-controls) # where the target bit-string has a '0' entry qc.x(zero_inds) """ZAJ 1""" qc.ry(0.5,zero_inds) qc.compose(MCMT(ZGate(), num_qubits - 1, 1), inplace=True) qc.x(zero_inds) return qc marked_states = ["011", "100"] oracle = grover_oracle(marked_states) grover_op = GroverOperator(oracle) optimal_num_iterations = math.floor( math.pi / 4 * math.sqrt(2**grover_op.num_qubits / len(marked_states)) ) qc = QuantumCircuit(grover_op.num_qubits) # Create even superposition of all basis states qc.h(range(grover_op.num_qubits)) # Apply Grover operator the optimal number of times qc.compose(grover_op.power(optimal_num_iterations), inplace=True) """ZAJ 2""" #qc.x(range(grover_op.num_qubits)) # Measure all qubits qc.measure_all() #qc.draw('mpl') grover_op.decompose().draw("mpl") qc.draw("mpl") backend = GenericBackendV2(num_qubits=5) transpiled_circuit = transpile(qc, backend) job = backend.run(transpiled_circuit) counts = job.result().get_counts() # Write counts data to a text file with open('counts_data.txt', 'w') as file: file.write("State,Count\n") for state, count in counts.items(): file.write(f"{state},{count}\n") # Print counts data print(counts) print("State,Count\n") for state, count in counts.items(): print(f"{state},{count}\n") #plot_histogram(counts)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1); tensored = bottom.tensor(top) tensored.draw('mpl')
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Meta tests for mappers. The test checks the output of the swapper to a ground truth DAG (one for each test/swapper) saved in as a QASM (in `test/python/qasm/`). If they need to be regenerated, the DAG candidate is compiled and run in a simulator and the count is checked before being saved. This happens with (in the root directory): > python -m test.python.transpiler.test_mappers regenerate To make a new swapper pass throw all the common tests, create a new class inside the file `path/to/test_mappers.py` that: * the class name should start with `Tests...`. * inheriting from ``SwapperCommonTestCases, QiskitTestCase`` * overwrite the required attribute ``pass_class`` For example:: class TestsSomeSwap(SwapperCommonTestCases, QiskitTestCase): pass_class = SomeSwap # The pass class additional_args = {'seed_transpiler': 42} # In case SomeSwap.__init__ requires # additional arguments To **add a test for all the swappers**, add a new method ``test_foo``to the ``SwapperCommonTestCases`` class: * defining the following required ``self`` attributes: ``self.count``, ``self.shots``, ``self.delta``. They are required for the regeneration of the ground truth. * use the ``self.assertResult`` assertion for comparing for regeneration of the ground truth. * explicitly set a unique ``name`` of the ``QuantumCircuit``, as it it used for the name of the QASM file of the ground truth. For example:: def test_a_common_test(self): self.count = {'000': 512, '110': 512} # The expected count for this circuit self.shots = 1024 # Shots to run in the backend. self.delta = 5 # This is delta for the AlmostEqual during # the count check coupling_map = [[0, 1], [0, 2]] # The coupling map for this specific test qr = QuantumRegister(3, 'q') # cr = ClassicalRegister(3, 'c') # Set the circuit to test circuit = QuantumCircuit(qr, cr, # and don't forget to put a name name='some_name') # (it will be used to save the QASM circuit.h(qr[1]) # circuit.cx(qr[1], qr[2]) # circuit.measure(qr, cr) # result = transpile(circuit, self.create_backend(), coupling_map=coupling_map, pass_manager=self.create_passmanager(coupling_map)) self.assertResult(result, circuit) ``` """ # pylint: disable=attribute-defined-outside-init import unittest import os import sys from qiskit import execute from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit, BasicAer from qiskit.transpiler import PassManager from qiskit.transpiler.passes import BasicSwap, LookaheadSwap, StochasticSwap, SabreSwap from qiskit.transpiler.passes import SetLayout from qiskit.transpiler import CouplingMap, Layout from qiskit.test import QiskitTestCase class CommonUtilitiesMixin: """Utilities for meta testing. Subclasses should redefine the ``pass_class`` argument, with a Swap Mapper class. Note: This class assumes that the subclass is also inheriting from ``QiskitTestCase``, and it uses ``QiskitTestCase`` methods directly. """ regenerate_expected = False seed_simulator = 42 seed_transpiler = 42 additional_args = {} pass_class = None def create_passmanager(self, coupling_map, initial_layout=None): """Returns a PassManager using self.pass_class(coupling_map, initial_layout)""" passmanager = PassManager() if initial_layout: passmanager.append(SetLayout(Layout(initial_layout))) # pylint: disable=not-callable passmanager.append(self.pass_class(CouplingMap(coupling_map), **self.additional_args)) return passmanager def create_backend(self): """Returns a Backend.""" return BasicAer.get_backend("qasm_simulator") def generate_ground_truth(self, transpiled_result, filename): """Generates the expected result into a file. Checks if transpiled_result matches self.counts by running in a backend (self.create_backend()). That's saved in a QASM in filename. Args: transpiled_result (DAGCircuit): The DAGCircuit to execute. filename (string): Where the QASM is saved. """ sim_backend = self.create_backend() job = execute( transpiled_result, sim_backend, seed_simulator=self.seed_simulator, seed_transpiler=self.seed_transpiler, shots=self.shots, ) self.assertDictAlmostEqual(self.counts, job.result().get_counts(), delta=self.delta) transpiled_result.qasm(formatted=False, filename=filename) def assertResult(self, result, circuit): """Fetches the QASM in circuit.name file and compares it with result.""" qasm_name = f"{type(self).__name__}_{circuit.name}.qasm" qasm_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "qasm") filename = os.path.join(qasm_dir, qasm_name) if self.regenerate_expected: # Run result in backend to test that is valid. self.generate_ground_truth(result, filename) expected = QuantumCircuit.from_qasm_file(filename) self.assertEqual(result, expected) class SwapperCommonTestCases(CommonUtilitiesMixin): """Tests that are run in several mappers. The tests here will be run in several mappers. When adding a test, please ensure that the test: * defines ``self.count``, ``self.shots``, ``self.delta``. * uses the ``self.assertResult`` assertion for comparing for regeneration of the ground truth. * explicitly sets a unique ``name`` of the ``QuantumCircuit``. See also ``CommonUtilitiesMixin`` and the module docstring. """ def test_a_cx_to_map(self): """A single CX needs to be remapped. q0:----------m----- | q1:-[H]-(+)--|-m--- | | | q2:------.---|-|-m- | | | c0:----------.-|-|- c1:------------.-|- c2:--------------.- CouplingMap map: [1]<-[0]->[2] expected count: '000': 50% '110': 50% """ self.counts = {"000": 512, "110": 512} self.shots = 1024 self.delta = 5 coupling_map = [[0, 1], [0, 2]] qr = QuantumRegister(3, "q") cr = ClassicalRegister(3, "c") circuit = QuantumCircuit(qr, cr, name="a_cx_to_map") circuit.h(qr[1]) circuit.cx(qr[1], qr[2]) circuit.measure(qr, cr) result = self.create_passmanager(coupling_map).run(circuit) self.assertResult(result, circuit) def test_initial_layout(self): """Using a non-trivial initial_layout. q3:----------------m-- q0:----------m-----|-- | | q1:-[H]-(+)--|-m---|-- | | | | q2:------.---|-|-m-|-- | | | | c0:----------.-|-|-|-- c1:------------.-|-|-- c2:--------------.-|-- c3:----------------.-- CouplingMap map: [1]<-[0]->[2]->[3] expected count: '000': 50% '110': 50% """ self.counts = {"0000": 512, "0110": 512} self.shots = 1024 self.delta = 5 coupling_map = [[0, 1], [0, 2], [2, 3]] qr = QuantumRegister(4, "q") cr = ClassicalRegister(4, "c") circuit = QuantumCircuit(qr, cr, name="initial_layout") circuit.h(qr[1]) circuit.cx(qr[1], qr[2]) circuit.measure(qr, cr) layout = {qr[3]: 0, qr[0]: 1, qr[1]: 2, qr[2]: 3} result = self.create_passmanager(coupling_map, layout).run(circuit) self.assertResult(result, circuit) def test_handle_measurement(self): """Handle measurement correctly. q0:--.-----(+)-m------- | | | q1:-(+)-(+)-|--|-m----- | | | | q2:------|--|--|-|-m--- | | | | | q3:-[H]--.--.--|-|-|-m- | | | | c0:------------.-|-|-|- c1:--------------.-|-|- c2:----------------.-|- c3:------------------.- CouplingMap map: [0]->[1]->[2]->[3] expected count: '0000': 50% '1011': 50% """ self.counts = {"1011": 512, "0000": 512} self.shots = 1024 self.delta = 5 coupling_map = [[0, 1], [1, 2], [2, 3]] qr = QuantumRegister(4, "q") cr = ClassicalRegister(4, "c") circuit = QuantumCircuit(qr, cr, name="handle_measurement") circuit.h(qr[3]) circuit.cx(qr[0], qr[1]) circuit.cx(qr[3], qr[1]) circuit.cx(qr[3], qr[0]) circuit.measure(qr, cr) result = self.create_passmanager(coupling_map).run(circuit) self.assertResult(result, circuit) class TestsBasicSwap(SwapperCommonTestCases, QiskitTestCase): """Test SwapperCommonTestCases using BasicSwap.""" pass_class = BasicSwap class TestsLookaheadSwap(SwapperCommonTestCases, QiskitTestCase): """Test SwapperCommonTestCases using LookaheadSwap.""" pass_class = LookaheadSwap class TestsStochasticSwap(SwapperCommonTestCases, QiskitTestCase): """Test SwapperCommonTestCases using StochasticSwap.""" pass_class = StochasticSwap additional_args = {"seed": 0} class TestsSabreSwap(SwapperCommonTestCases, QiskitTestCase): """Test SwapperCommonTestCases using SabreSwap.""" pass_class = SabreSwap additional_args = {"seed": 1242} if __name__ == "__main__": if len(sys.argv) >= 2 and sys.argv[1] == "regenerate": CommonUtilitiesMixin.regenerate_expected = True del sys.argv[1] unittest.main()
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for SparsePauliOp class.""" import itertools as it import unittest from test import combine import numpy as np from ddt import ddt from qiskit import QiskitError from qiskit.circuit import ParameterExpression, Parameter, ParameterVector from qiskit.circuit.parametertable import ParameterView from qiskit.quantum_info.operators import Operator, Pauli, PauliList, PauliTable, SparsePauliOp from qiskit.test import QiskitTestCase def pauli_mat(label): """Return Pauli matrix from a Pauli label""" mat = np.eye(1, dtype=complex) for i in label: if i == "I": mat = np.kron(mat, np.eye(2, dtype=complex)) elif i == "X": mat = np.kron(mat, np.array([[0, 1], [1, 0]], dtype=complex)) elif i == "Y": mat = np.kron(mat, np.array([[0, -1j], [1j, 0]], dtype=complex)) elif i == "Z": mat = np.kron(mat, np.array([[1, 0], [0, -1]], dtype=complex)) else: raise QiskitError(f"Invalid Pauli string {i}") return mat class TestSparsePauliOpInit(QiskitTestCase): """Tests for SparsePauliOp initialization.""" def test_pauli_table_init(self): """Test PauliTable initialization.""" labels = ["I", "X", "Y", "Z"] table = PauliTable.from_labels(labels) paulis = PauliList(labels) with self.subTest(msg="no coeffs"): spp_op = SparsePauliOp(table) np.testing.assert_array_equal(spp_op.coeffs, np.ones(len(labels))) self.assertEqual(spp_op.paulis, paulis) with self.subTest(msg="no coeffs"): coeffs = [1, 2, 3, 4] spp_op = SparsePauliOp(table, coeffs) np.testing.assert_array_equal(spp_op.coeffs, coeffs) self.assertEqual(spp_op.paulis, paulis) def test_str_init(self): """Test str initialization.""" for label in ["IZ", "XI", "YX", "ZZ"]: pauli_list = PauliList(label) spp_op = SparsePauliOp(label) self.assertEqual(spp_op.paulis, pauli_list) np.testing.assert_array_equal(spp_op.coeffs, [1]) def test_pauli_list_init(self): """Test PauliList initialization.""" labels = ["I", "X", "Y", "-Z", "iZ", "-iX"] paulis = PauliList(labels) with self.subTest(msg="no coeffs"): spp_op = SparsePauliOp(paulis) np.testing.assert_array_equal(spp_op.coeffs, [1, 1, 1, -1, 1j, -1j]) paulis.phase = 0 self.assertEqual(spp_op.paulis, paulis) paulis = PauliList(labels) with self.subTest(msg="with coeffs"): coeffs = [1, 2, 3, 4, 5, 6] spp_op = SparsePauliOp(paulis, coeffs) np.testing.assert_array_equal(spp_op.coeffs, [1, 2, 3, -4, 5j, -6j]) paulis.phase = 0 self.assertEqual(spp_op.paulis, paulis) paulis = PauliList(labels) with self.subTest(msg="with Parameterized coeffs"): params = ParameterVector("params", 6) coeffs = np.array(params) spp_op = SparsePauliOp(paulis, coeffs) target = coeffs.copy() target[3] *= -1 target[4] *= 1j target[5] *= -1j np.testing.assert_array_equal(spp_op.coeffs, target) paulis.phase = 0 self.assertEqual(spp_op.paulis, paulis) def test_sparse_pauli_op_init(self): """Test SparsePauliOp initialization.""" labels = ["I", "X", "Y", "-Z", "iZ", "-iX"] with self.subTest(msg="make SparsePauliOp from SparsePauliOp"): op = SparsePauliOp(labels) ref_op = op.copy() spp_op = SparsePauliOp(op) self.assertEqual(spp_op, ref_op) np.testing.assert_array_equal(ref_op.paulis.phase, np.zeros(ref_op.size)) np.testing.assert_array_equal(spp_op.paulis.phase, np.zeros(spp_op.size)) # make sure the changes of `op` do not propagate through to `spp_op` op.paulis.z[:] = False op.coeffs *= 2 self.assertNotEqual(spp_op, op) self.assertEqual(spp_op, ref_op) with self.subTest(msg="make SparsePauliOp from SparsePauliOp and ndarray"): op = SparsePauliOp(labels) coeffs = np.array([1, 2, 3, 4, 5, 6]) spp_op = SparsePauliOp(op, coeffs) ref_op = SparsePauliOp(op.paulis.copy(), coeffs.copy()) self.assertEqual(spp_op, ref_op) np.testing.assert_array_equal(ref_op.paulis.phase, np.zeros(ref_op.size)) np.testing.assert_array_equal(spp_op.paulis.phase, np.zeros(spp_op.size)) # make sure the changes of `op` and `coeffs` do not propagate through to `spp_op` op.paulis.z[:] = False coeffs *= 2 self.assertNotEqual(spp_op, op) self.assertEqual(spp_op, ref_op) with self.subTest(msg="make SparsePauliOp from PauliList"): paulis = PauliList(labels) spp_op = SparsePauliOp(paulis) ref_op = SparsePauliOp(labels) self.assertEqual(spp_op, ref_op) np.testing.assert_array_equal(ref_op.paulis.phase, np.zeros(ref_op.size)) np.testing.assert_array_equal(spp_op.paulis.phase, np.zeros(spp_op.size)) # make sure the change of `paulis` does not propagate through to `spp_op` paulis.z[:] = False self.assertEqual(spp_op, ref_op) with self.subTest(msg="make SparsePauliOp from PauliList and ndarray"): paulis = PauliList(labels) coeffs = np.array([1, 2, 3, 4, 5, 6]) spp_op = SparsePauliOp(paulis, coeffs) ref_op = SparsePauliOp(labels, coeffs.copy()) self.assertEqual(spp_op, ref_op) np.testing.assert_array_equal(ref_op.paulis.phase, np.zeros(ref_op.size)) np.testing.assert_array_equal(spp_op.paulis.phase, np.zeros(spp_op.size)) # make sure the changes of `paulis` and `coeffs` do not propagate through to `spp_op` paulis.z[:] = False coeffs[:] = 0 self.assertEqual(spp_op, ref_op) class TestSparsePauliOpConversions(QiskitTestCase): """Tests SparsePauliOp representation conversions.""" def test_from_operator(self): """Test from_operator methods.""" for tup in it.product(["I", "X", "Y", "Z"], repeat=2): label = "".join(tup) with self.subTest(msg=label): spp_op = SparsePauliOp.from_operator(Operator(pauli_mat(label))) np.testing.assert_array_equal(spp_op.coeffs, [1]) self.assertEqual(spp_op.paulis, PauliList(label)) def test_from_list(self): """Test from_list method.""" labels = ["XXZ", "IXI", "YZZ", "III"] coeffs = [3.0, 5.5, -1j, 23.3333] spp_op = SparsePauliOp.from_list(zip(labels, coeffs)) np.testing.assert_array_equal(spp_op.coeffs, coeffs) self.assertEqual(spp_op.paulis, PauliList(labels)) def test_from_list_parameters(self): """Test from_list method with parameters.""" labels = ["XXZ", "IXI", "YZZ", "III"] coeffs = ParameterVector("a", 4) spp_op = SparsePauliOp.from_list(zip(labels, coeffs), dtype=object) np.testing.assert_array_equal(spp_op.coeffs, coeffs) self.assertEqual(spp_op.paulis, PauliList(labels)) def test_from_index_list(self): """Test from_list method specifying the Paulis via indices.""" expected_labels = ["XXZ", "IXI", "YIZ", "III"] paulis = ["XXZ", "X", "YZ", ""] indices = [[2, 1, 0], [1], [2, 0], []] coeffs = [3.0, 5.5, -1j, 23.3333] spp_op = SparsePauliOp.from_sparse_list(zip(paulis, indices, coeffs), num_qubits=3) np.testing.assert_array_equal(spp_op.coeffs, coeffs) self.assertEqual(spp_op.paulis, PauliList(expected_labels)) def test_from_index_list_parameters(self): """Test from_list method specifying the Paulis via indices with paramteres.""" expected_labels = ["XXZ", "IXI", "YIZ", "III"] paulis = ["XXZ", "X", "YZ", ""] indices = [[2, 1, 0], [1], [2, 0], []] coeffs = ParameterVector("a", 4) spp_op = SparsePauliOp.from_sparse_list( zip(paulis, indices, coeffs), num_qubits=3, dtype=object ) np.testing.assert_array_equal(spp_op.coeffs, coeffs) self.assertEqual(spp_op.paulis, PauliList(expected_labels)) def test_from_index_list_endianness(self): """Test the construction from index list has the right endianness.""" spp_op = SparsePauliOp.from_sparse_list([("ZX", [1, 4], 1)], num_qubits=5) expected = Pauli("XIIZI") self.assertEqual(spp_op.paulis[0], expected) def test_from_index_list_raises(self): """Test from_list via Pauli + indices raises correctly, if number of qubits invalid.""" with self.assertRaises(QiskitError): _ = SparsePauliOp.from_sparse_list([("Z", [2], 1)], 1) def test_from_index_list_same_index(self): """Test from_list via Pauli + number of qubits raises correctly, if indices duplicate.""" with self.assertRaises(QiskitError): _ = SparsePauliOp.from_sparse_list([("ZZ", [0, 0], 1)], 2) with self.assertRaises(QiskitError): _ = SparsePauliOp.from_sparse_list([("ZI", [0, 0], 1)], 2) with self.assertRaises(QiskitError): _ = SparsePauliOp.from_sparse_list([("IZ", [0, 0], 1)], 2) def test_from_zip(self): """Test from_list method for zipped input.""" labels = ["XXZ", "IXI", "YZZ", "III"] coeffs = [3.0, 5.5, -1j, 23.3333] spp_op = SparsePauliOp.from_list(zip(labels, coeffs)) np.testing.assert_array_equal(spp_op.coeffs, coeffs) self.assertEqual(spp_op.paulis, PauliList(labels)) def test_to_matrix(self): """Test to_matrix method.""" labels = ["XI", "YZ", "YY", "ZZ"] coeffs = [-3, 4.4j, 0.2 - 0.1j, 66.12] spp_op = SparsePauliOp(labels, coeffs) target = np.zeros((4, 4), dtype=complex) for coeff, label in zip(coeffs, labels): target += coeff * pauli_mat(label) np.testing.assert_array_equal(spp_op.to_matrix(), target) np.testing.assert_array_equal(spp_op.to_matrix(sparse=True).toarray(), target) def test_to_matrix_large(self): """Test to_matrix method with a large number of qubits.""" reps = 5 labels = ["XI" * reps, "YZ" * reps, "YY" * reps, "ZZ" * reps] coeffs = [-3, 4.4j, 0.2 - 0.1j, 66.12] spp_op = SparsePauliOp(labels, coeffs) size = 1 << 2 * reps target = np.zeros((size, size), dtype=complex) for coeff, label in zip(coeffs, labels): target += coeff * pauli_mat(label) np.testing.assert_array_equal(spp_op.to_matrix(), target) np.testing.assert_array_equal(spp_op.to_matrix(sparse=True).toarray(), target) def test_to_matrix_parameters(self): """Test to_matrix method for parameterized SparsePauliOp.""" labels = ["XI", "YZ", "YY", "ZZ"] coeffs = np.array(ParameterVector("a", 4)) spp_op = SparsePauliOp(labels, coeffs) target = np.zeros((4, 4), dtype=object) for coeff, label in zip(coeffs, labels): target += coeff * pauli_mat(label) np.testing.assert_array_equal(spp_op.to_matrix(), target) def test_to_operator(self): """Test to_operator method.""" labels = ["XI", "YZ", "YY", "ZZ"] coeffs = [-3, 4.4j, 0.2 - 0.1j, 66.12] spp_op = SparsePauliOp(labels, coeffs) target = Operator(np.zeros((4, 4), dtype=complex)) for coeff, label in zip(coeffs, labels): target = target + Operator(coeff * pauli_mat(label)) self.assertEqual(spp_op.to_operator(), target) def test_to_list(self): """Test to_operator method.""" labels = ["XI", "YZ", "YY", "ZZ"] coeffs = [-3, 4.4j, 0.2 - 0.1j, 66.12] op = SparsePauliOp(labels, coeffs) target = list(zip(labels, coeffs)) self.assertEqual(op.to_list(), target) def test_to_list_parameters(self): """Test to_operator method with paramters.""" labels = ["XI", "YZ", "YY", "ZZ"] coeffs = np.array(ParameterVector("a", 4)) op = SparsePauliOp(labels, coeffs) target = list(zip(labels, coeffs)) self.assertEqual(op.to_list(), target) class TestSparsePauliOpIteration(QiskitTestCase): """Tests for SparsePauliOp iterators class.""" def test_enumerate(self): """Test enumerate with SparsePauliOp.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array([1, 2, 3, 4, 5, 6]) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(op): self.assertEqual(i, SparsePauliOp(labels[idx], coeffs[[idx]])) def test_enumerate_parameters(self): """Test enumerate with SparsePauliOp with parameters.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array(ParameterVector("a", 6)) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(op): self.assertEqual(i, SparsePauliOp(labels[idx], coeffs[[idx]])) def test_iter(self): """Test iter with SparsePauliOp.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array([1, 2, 3, 4, 5, 6]) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(iter(op)): self.assertEqual(i, SparsePauliOp(labels[idx], coeffs[[idx]])) def test_iter_parameters(self): """Test iter with SparsePauliOp with parameters.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array(ParameterVector("a", 6)) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(iter(op)): self.assertEqual(i, SparsePauliOp(labels[idx], coeffs[[idx]])) def test_label_iter(self): """Test SparsePauliOp label_iter method.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array([1, 2, 3, 4, 5, 6]) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(op.label_iter()): self.assertEqual(i, (labels[idx], coeffs[idx])) def test_label_iter_parameters(self): """Test SparsePauliOp label_iter method with parameters.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array(ParameterVector("a", 6)) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(op.label_iter()): self.assertEqual(i, (labels[idx], coeffs[idx])) def test_matrix_iter(self): """Test SparsePauliOp dense matrix_iter method.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array([1, 2, 3, 4, 5, 6]) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(op.matrix_iter()): np.testing.assert_array_equal(i, coeffs[idx] * pauli_mat(labels[idx])) def test_matrix_iter_parameters(self): """Test SparsePauliOp dense matrix_iter method. with parameters""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array(ParameterVector("a", 6)) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(op.matrix_iter()): np.testing.assert_array_equal(i, coeffs[idx] * pauli_mat(labels[idx])) def test_matrix_iter_sparse(self): """Test SparsePauliOp sparse matrix_iter method.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array([1, 2, 3, 4, 5, 6]) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(op.matrix_iter(sparse=True)): np.testing.assert_array_equal(i.toarray(), coeffs[idx] * pauli_mat(labels[idx])) def bind_parameters_to_one(array): """Bind parameters to one. The purpose of using this method is to bind some value and use ``assert_allclose``, since it is impossible to verify equivalence in the case of numerical errors with parameters existing. """ def bind_one(a): parameters = a.parameters return complex(a.bind(dict(zip(parameters, [1] * len(parameters))))) return np.vectorize(bind_one, otypes=[complex])(array) @ddt class TestSparsePauliOpMethods(QiskitTestCase): """Tests for SparsePauliOp operator methods.""" RNG = np.random.default_rng(1994) def setUp(self): super().setUp() self.parameter_names = (f"param_{x}" for x in it.count()) def random_spp_op(self, num_qubits, num_terms, use_parameters=False): """Generate a pseudo-random SparsePauliOp""" if use_parameters: coeffs = np.array(ParameterVector(next(self.parameter_names), num_terms)) else: coeffs = self.RNG.uniform(-1, 1, size=num_terms) + 1j * self.RNG.uniform( -1, 1, size=num_terms ) labels = [ "".join(self.RNG.choice(["I", "X", "Y", "Z"], size=num_qubits)) for _ in range(num_terms) ] return SparsePauliOp(labels, coeffs) @combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False]) def test_conjugate(self, num_qubits, use_parameters): """Test conjugate method for {num_qubits}-qubits.""" spp_op = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) target = spp_op.to_matrix().conjugate() op = spp_op.conjugate() value = op.to_matrix() np.testing.assert_array_equal(value, target) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False]) def test_transpose(self, num_qubits, use_parameters): """Test transpose method for {num_qubits}-qubits.""" spp_op = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) target = spp_op.to_matrix().transpose() op = spp_op.transpose() value = op.to_matrix() np.testing.assert_array_equal(value, target) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False]) def test_adjoint(self, num_qubits, use_parameters): """Test adjoint method for {num_qubits}-qubits.""" spp_op = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) target = spp_op.to_matrix().transpose().conjugate() op = spp_op.adjoint() value = op.to_matrix() np.testing.assert_array_equal(value, target) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False]) def test_compose(self, num_qubits, use_parameters): """Test {num_qubits}-qubit compose methods.""" spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) target = spp_op2.to_matrix() @ spp_op1.to_matrix() op = spp_op1.compose(spp_op2) value = op.to_matrix() if use_parameters: value = bind_parameters_to_one(value) target = bind_parameters_to_one(target) np.testing.assert_allclose(value, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) op = spp_op1 & spp_op2 value = op.to_matrix() if use_parameters: value = bind_parameters_to_one(value) np.testing.assert_allclose(value, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False]) def test_dot(self, num_qubits, use_parameters): """Test {num_qubits}-qubit dot methods.""" spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) target = spp_op1.to_matrix() @ spp_op2.to_matrix() op = spp_op1.dot(spp_op2) value = op.to_matrix() if use_parameters: value = bind_parameters_to_one(value) target = bind_parameters_to_one(target) np.testing.assert_allclose(value, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) op = spp_op1 @ spp_op2 value = op.to_matrix() if use_parameters: value = bind_parameters_to_one(value) np.testing.assert_allclose(value, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3]) def test_qargs_compose(self, num_qubits): """Test 3-qubit compose method with {num_qubits}-qubit qargs.""" spp_op1 = self.random_spp_op(3, 2**3) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits) qargs = self.RNG.choice(3, size=num_qubits, replace=False).tolist() target = Operator(spp_op1).compose(Operator(spp_op2), qargs=qargs) op = spp_op1.compose(spp_op2, qargs=qargs) value = op.to_operator() self.assertEqual(value, target) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) op = spp_op1 & spp_op2(qargs) value = op.to_operator() self.assertEqual(value, target) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3]) def test_qargs_dot(self, num_qubits): """Test 3-qubit dot method with {num_qubits}-qubit qargs.""" spp_op1 = self.random_spp_op(3, 2**3) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits) qargs = self.RNG.choice(3, size=num_qubits, replace=False).tolist() target = Operator(spp_op1).dot(Operator(spp_op2), qargs=qargs) op = spp_op1.dot(spp_op2, qargs=qargs) value = op.to_operator() self.assertEqual(value, target) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits1=[1, 2, 3], num_qubits2=[1, 2, 3], use_parameters=[True, False]) def test_tensor(self, num_qubits1, num_qubits2, use_parameters): """Test tensor method for {num_qubits1} and {num_qubits2} qubits.""" spp_op1 = self.random_spp_op(num_qubits1, 2**num_qubits1, use_parameters) spp_op2 = self.random_spp_op(num_qubits2, 2**num_qubits2, use_parameters) target = np.kron(spp_op1.to_matrix(), spp_op2.to_matrix()) op = spp_op1.tensor(spp_op2) value = op.to_matrix() if use_parameters: value = bind_parameters_to_one(value) target = bind_parameters_to_one(target) np.testing.assert_allclose(value, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits1=[1, 2, 3], num_qubits2=[1, 2, 3], use_parameters=[True, False]) def test_expand(self, num_qubits1, num_qubits2, use_parameters): """Test expand method for {num_qubits1} and {num_qubits2} qubits.""" spp_op1 = self.random_spp_op(num_qubits1, 2**num_qubits1, use_parameters) spp_op2 = self.random_spp_op(num_qubits2, 2**num_qubits2, use_parameters) target = np.kron(spp_op2.to_matrix(), spp_op1.to_matrix()) op = spp_op1.expand(spp_op2) value = op.to_matrix() if use_parameters: value = bind_parameters_to_one(value) target = bind_parameters_to_one(target) np.testing.assert_allclose(value, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False]) def test_add(self, num_qubits, use_parameters): """Test + method for {num_qubits} qubits.""" spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) target = spp_op1.to_matrix() + spp_op2.to_matrix() op = spp_op1 + spp_op2 value = op.to_matrix() if use_parameters: value = bind_parameters_to_one(value) target = bind_parameters_to_one(target) np.testing.assert_allclose(value, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False]) def test_sub(self, num_qubits, use_parameters): """Test + method for {num_qubits} qubits.""" spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) target = spp_op1.to_matrix() - spp_op2.to_matrix() op = spp_op1 - spp_op2 value = op.to_matrix() if use_parameters: value = bind_parameters_to_one(value) target = bind_parameters_to_one(target) np.testing.assert_allclose(value, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3]) def test_add_qargs(self, num_qubits): """Test + method for 3 qubits with {num_qubits} qubit qargs.""" spp_op1 = self.random_spp_op(3, 2**3) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits) qargs = self.RNG.choice(3, size=num_qubits, replace=False).tolist() target = Operator(spp_op1) + Operator(spp_op2)(qargs) op = spp_op1 + spp_op2(qargs) value = op.to_operator() self.assertEqual(value, target) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3]) def test_sub_qargs(self, num_qubits): """Test - method for 3 qubits with {num_qubits} qubit qargs.""" spp_op1 = self.random_spp_op(3, 2**3) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits) qargs = self.RNG.choice(3, size=num_qubits, replace=False).tolist() target = Operator(spp_op1) - Operator(spp_op2)(qargs) op = spp_op1 - spp_op2(qargs) value = op.to_operator() self.assertEqual(value, target) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine( num_qubits=[1, 2, 3], value=[ 0, 1, 1j, -3 + 4.4j, np.int64(2), Parameter("x"), 0 * Parameter("x"), (-2 + 1.7j) * Parameter("x"), ], param=[None, "a"], ) def test_mul(self, num_qubits, value, param): """Test * method for {num_qubits} qubits and value {value}.""" spp_op = self.random_spp_op(num_qubits, 2**num_qubits, param) target = value * spp_op.to_matrix() op = value * spp_op value_mat = op.to_matrix() has_parameters = isinstance(value, ParameterExpression) or param is not None if value != 0 and has_parameters: value_mat = bind_parameters_to_one(value_mat) target = bind_parameters_to_one(target) if value == 0: np.testing.assert_array_equal(value_mat, target.astype(complex)) else: np.testing.assert_allclose(value_mat, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) target = spp_op.to_matrix() * value op = spp_op * value value_mat = op.to_matrix() if value != 0 and has_parameters: value_mat = bind_parameters_to_one(value_mat) target = bind_parameters_to_one(target) if value == 0: np.testing.assert_array_equal(value_mat, target.astype(complex)) else: np.testing.assert_allclose(value_mat, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3], value=[1, 1j, -3 + 4.4j], param=[None, "a"]) def test_div(self, num_qubits, value, param): """Test / method for {num_qubits} qubits and value {value}.""" spp_op = self.random_spp_op(num_qubits, 2**num_qubits, param) target = spp_op.to_matrix() / value op = spp_op / value value_mat = op.to_matrix() if param is not None: value_mat = bind_parameters_to_one(value_mat) target = bind_parameters_to_one(target) np.testing.assert_allclose(value_mat, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) def test_simplify(self): """Test simplify method""" coeffs = [3 + 1j, -3 - 1j, 0, 4, -5, 2.2, -1.1j] labels = ["IXI", "IXI", "ZZZ", "III", "III", "XXX", "XXX"] spp_op = SparsePauliOp.from_list(zip(labels, coeffs)) simplified_op = spp_op.simplify() target_coeffs = [-1, 2.2 - 1.1j] target_labels = ["III", "XXX"] target_op = SparsePauliOp.from_list(zip(target_labels, target_coeffs)) self.assertEqual(simplified_op, target_op) np.testing.assert_array_equal(simplified_op.paulis.phase, np.zeros(simplified_op.size)) @combine(num_qubits=[1, 2, 3, 4], num_adds=[0, 1, 2, 3]) def test_simplify2(self, num_qubits, num_adds): """Test simplify method for {num_qubits} qubits with {num_adds} `add` calls.""" spp_op = self.random_spp_op(num_qubits, 2**num_qubits) for _ in range(num_adds): spp_op += spp_op simplified_op = spp_op.simplify() value = Operator(simplified_op) target = Operator(spp_op) self.assertEqual(value, target) np.testing.assert_array_equal(spp_op.paulis.phase, np.zeros(spp_op.size)) np.testing.assert_array_equal(simplified_op.paulis.phase, np.zeros(simplified_op.size)) @combine(num_qubits=[1, 2, 3, 4]) def test_simplify_zero(self, num_qubits): """Test simplify method for {num_qubits} qubits with zero operators.""" spp_op = self.random_spp_op(num_qubits, 2**num_qubits) zero_op = spp_op - spp_op simplified_op = zero_op.simplify() value = Operator(simplified_op) target = Operator(zero_op) self.assertEqual(value, target) np.testing.assert_array_equal(simplified_op.coeffs, [0]) np.testing.assert_array_equal(zero_op.paulis.phase, np.zeros(zero_op.size)) np.testing.assert_array_equal(simplified_op.paulis.phase, np.zeros(simplified_op.size)) def test_simplify_parameters(self): """Test simplify methods for parameterized SparsePauliOp.""" a = Parameter("a") coeffs = np.array([a, -a, 0, a, a, a, 2 * a]) labels = ["IXI", "IXI", "ZZZ", "III", "III", "XXX", "XXX"] spp_op = SparsePauliOp(labels, coeffs) simplified_op = spp_op.simplify() target_coeffs = np.array([2 * a, 3 * a]) target_labels = ["III", "XXX"] target_op = SparsePauliOp(target_labels, target_coeffs) self.assertEqual(simplified_op, target_op) np.testing.assert_array_equal(simplified_op.paulis.phase, np.zeros(simplified_op.size)) def test_sort(self): """Test sort method.""" with self.assertRaises(QiskitError): target = SparsePauliOp([], []) with self.subTest(msg="1 qubit real number"): target = SparsePauliOp( ["I", "I", "I", "I"], [-3.0 + 0.0j, 1.0 + 0.0j, 2.0 + 0.0j, 4.0 + 0.0j] ) value = SparsePauliOp(["I", "I", "I", "I"], [1, 2, -3, 4]).sort() self.assertEqual(target, value) with self.subTest(msg="1 qubit complex"): target = SparsePauliOp( ["I", "I", "I", "I"], [-1.0 + 0.0j, 0.0 - 1.0j, 0.0 + 1.0j, 1.0 + 0.0j] ) value = SparsePauliOp( ["I", "I", "I", "I"], [1.0 + 0.0j, 0.0 + 1.0j, 0.0 - 1.0j, -1.0 + 0.0j] ).sort() self.assertEqual(target, value) with self.subTest(msg="1 qubit Pauli I, X, Y, Z"): target = SparsePauliOp( ["I", "X", "Y", "Z"], [-1.0 + 2.0j, 1.0 + 0.0j, 2.0 + 0.0j, 3.0 - 4.0j] ) value = SparsePauliOp( ["Y", "X", "Z", "I"], [2.0 + 0.0j, 1.0 + 0.0j, 3.0 - 4.0j, -1.0 + 2.0j] ).sort() self.assertEqual(target, value) with self.subTest(msg="1 qubit weight order"): target = SparsePauliOp( ["I", "X", "Y", "Z"], [-1.0 + 2.0j, 1.0 + 0.0j, 2.0 + 0.0j, 3.0 - 4.0j] ) value = SparsePauliOp( ["Y", "X", "Z", "I"], [2.0 + 0.0j, 1.0 + 0.0j, 3.0 - 4.0j, -1.0 + 2.0j] ).sort(weight=True) self.assertEqual(target, value) with self.subTest(msg="1 qubit multi Pauli"): target = SparsePauliOp( ["I", "I", "I", "I", "X", "X", "Y", "Z"], [ -1.0 + 2.0j, 1.0 + 0.0j, 2.0 + 0.0j, 3.0 - 4.0j, -1.0 + 4.0j, -1.0 + 5.0j, -1.0 + 3.0j, -1.0 + 2.0j, ], ) value = SparsePauliOp( ["I", "I", "I", "I", "X", "Z", "Y", "X"], [ 2.0 + 0.0j, 1.0 + 0.0j, 3.0 - 4.0j, -1.0 + 2.0j, -1.0 + 5.0j, -1.0 + 2.0j, -1.0 + 3.0j, -1.0 + 4.0j, ], ).sort() self.assertEqual(target, value) with self.subTest(msg="2 qubit standard order"): target = SparsePauliOp( ["II", "XI", "XX", "XX", "XX", "XY", "XZ", "YI"], [ 4.0 + 0.0j, 7.0 + 0.0j, 2.0 + 1.0j, 2.0 + 2.0j, 3.0 + 0.0j, 6.0 + 0.0j, 5.0 + 0.0j, 3.0 + 0.0j, ], ) value = SparsePauliOp( ["XX", "XX", "XX", "YI", "II", "XZ", "XY", "XI"], [ 2.0 + 1.0j, 2.0 + 2.0j, 3.0 + 0.0j, 3.0 + 0.0j, 4.0 + 0.0j, 5.0 + 0.0j, 6.0 + 0.0j, 7.0 + 0.0j, ], ).sort() self.assertEqual(target, value) with self.subTest(msg="2 qubit weight order"): target = SparsePauliOp( ["II", "XI", "YI", "XX", "XX", "XX", "XY", "XZ"], [ 4.0 + 0.0j, 7.0 + 0.0j, 3.0 + 0.0j, 2.0 + 1.0j, 2.0 + 2.0j, 3.0 + 0.0j, 6.0 + 0.0j, 5.0 + 0.0j, ], ) value = SparsePauliOp( ["XX", "XX", "XX", "YI", "II", "XZ", "XY", "XI"], [ 2.0 + 1.0j, 2.0 + 2.0j, 3.0 + 0.0j, 3.0 + 0.0j, 4.0 + 0.0j, 5.0 + 0.0j, 6.0 + 0.0j, 7.0 + 0.0j, ], ).sort(weight=True) self.assertEqual(target, value) def test_chop(self): """Test chop, which individually truncates real and imaginary parts of the coeffs.""" eps = 1e-10 op = SparsePauliOp( ["XYZ", "ZII", "ZII", "YZY"], coeffs=[eps + 1j * eps, 1 + 1j * eps, eps + 1j, 1 + 1j] ) simplified = op.chop(tol=eps) expected_coeffs = [1, 1j, 1 + 1j] expected_paulis = ["ZII", "ZII", "YZY"] self.assertListEqual(simplified.coeffs.tolist(), expected_coeffs) self.assertListEqual(simplified.paulis.to_labels(), expected_paulis) def test_chop_all(self): """Test that chop returns an identity operator with coeff 0 if all coeffs are chopped.""" eps = 1e-10 op = SparsePauliOp(["X", "Z"], coeffs=[eps, eps]) simplified = op.chop(tol=eps) expected = SparsePauliOp(["I"], coeffs=[0.0]) self.assertEqual(simplified, expected) @combine(num_qubits=[1, 2, 3, 4], num_ops=[1, 2, 3, 4], param=[None, "a"]) def test_sum(self, num_qubits, num_ops, param): """Test sum method for {num_qubits} qubits with {num_ops} operators.""" ops = [ self.random_spp_op( num_qubits, 2**num_qubits, param if param is None else f"{param}_{i}" ) for i in range(num_ops) ] sum_op = SparsePauliOp.sum(ops) value = sum_op.to_matrix() target_operator = sum((op.to_matrix() for op in ops[1:]), ops[0].to_matrix()) if param is not None: value = bind_parameters_to_one(value) target_operator = bind_parameters_to_one(target_operator) np.testing.assert_allclose(value, target_operator, atol=1e-8) target_spp_op = sum((op for op in ops[1:]), ops[0]) self.assertEqual(sum_op, target_spp_op) np.testing.assert_array_equal(sum_op.paulis.phase, np.zeros(sum_op.size)) def test_sum_error(self): """Test sum method with invalid cases.""" with self.assertRaises(QiskitError): SparsePauliOp.sum([]) with self.assertRaises(QiskitError): ops = [self.random_spp_op(num_qubits, 2**num_qubits) for num_qubits in [1, 2]] SparsePauliOp.sum(ops) with self.assertRaises(QiskitError): SparsePauliOp.sum([1, 2]) @combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False]) def test_eq(self, num_qubits, use_parameters): """Test __eq__ method for {num_qubits} qubits.""" spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) spp_op3 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) zero = spp_op3 - spp_op3 self.assertEqual(spp_op1, spp_op1) self.assertEqual(spp_op2, spp_op2) self.assertNotEqual(spp_op1, spp_op1 + zero) self.assertNotEqual(spp_op2, spp_op2 + zero) if spp_op1 != spp_op2: self.assertNotEqual(spp_op1 + spp_op2, spp_op2 + spp_op1) @combine(num_qubits=[1, 2, 3, 4]) def test_equiv(self, num_qubits): """Test equiv method for {num_qubits} qubits.""" spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits) spp_op3 = self.random_spp_op(num_qubits, 2**num_qubits) spp_op4 = self.random_spp_op(num_qubits, 2**num_qubits) zero = spp_op3 - spp_op3 zero2 = spp_op4 - spp_op4 self.assertTrue(spp_op1.equiv(spp_op1)) self.assertTrue(spp_op1.equiv(spp_op1 + zero)) self.assertTrue(spp_op2.equiv(spp_op2)) self.assertTrue(spp_op2.equiv(spp_op2 + zero)) self.assertTrue(zero.equiv(zero2)) self.assertTrue((zero + zero2).equiv(zero2 + zero)) self.assertTrue((zero2 + zero).equiv(zero + zero2)) self.assertTrue((spp_op1 + spp_op2).equiv(spp_op2 + spp_op1)) self.assertTrue((spp_op2 + spp_op1).equiv(spp_op1 + spp_op2)) self.assertTrue((spp_op1 - spp_op1).equiv(spp_op2 - spp_op2)) self.assertTrue((2 * spp_op1).equiv(spp_op1 + spp_op1)) self.assertTrue((2 * spp_op2).equiv(spp_op2 + spp_op2)) if not spp_op1.equiv(zero): self.assertFalse(spp_op1.equiv(spp_op1 + spp_op1)) if not spp_op2.equiv(zero): self.assertFalse(spp_op2.equiv(spp_op2 + spp_op2)) def test_equiv_atol(self): """Test equiv method with atol.""" op1 = SparsePauliOp.from_list([("X", 1), ("Y", 2)]) op2 = op1 + 1e-7 * SparsePauliOp.from_list([("I", 1)]) self.assertFalse(op1.equiv(op2)) self.assertTrue(op1.equiv(op2, atol=1e-7)) def test_eq_equiv(self): """Test __eq__ and equiv methods with some specific cases.""" with self.subTest("shuffled"): spp_op1 = SparsePauliOp.from_list([("X", 1), ("Y", 2)]) spp_op2 = SparsePauliOp.from_list([("Y", 2), ("X", 1)]) self.assertNotEqual(spp_op1, spp_op2) self.assertTrue(spp_op1.equiv(spp_op2)) with self.subTest("w/ zero"): spp_op1 = SparsePauliOp.from_list([("X", 1), ("Y", 1)]) spp_op2 = SparsePauliOp.from_list([("X", 1), ("Y", 1), ("Z", 0)]) self.assertNotEqual(spp_op1, spp_op2) self.assertTrue(spp_op1.equiv(spp_op2)) @combine(parameterized=[True, False], qubit_wise=[True, False]) def test_group_commuting(self, parameterized, qubit_wise): """Test general grouping commuting operators""" def commutes(left: Pauli, right: Pauli, qubit_wise: bool) -> bool: if len(left) != len(right): return False if not qubit_wise: return left.commutes(right) else: # qubit-wise commuting check vec_l = left.z + 2 * left.x vec_r = right.z + 2 * right.x qubit_wise_comparison = (vec_l * vec_r) * (vec_l - vec_r) return np.all(qubit_wise_comparison == 0) input_labels = ["IX", "IY", "IZ", "XX", "YY", "ZZ", "XY", "YX", "ZX", "ZY", "XZ", "YZ"] np.random.shuffle(input_labels) if parameterized: coeffs = np.array(ParameterVector("a", len(input_labels))) else: coeffs = np.random.random(len(input_labels)) + np.random.random(len(input_labels)) * 1j sparse_pauli_list = SparsePauliOp(input_labels, coeffs) groups = sparse_pauli_list.group_commuting(qubit_wise) # checking that every input Pauli in sparse_pauli_list is in a group in the ouput output_labels = [pauli.to_label() for group in groups for pauli in group.paulis] self.assertListEqual(sorted(output_labels), sorted(input_labels)) # checking that every coeffs are grouped according to sparse_pauli_list group paulis_coeff_dict = dict( sum([list(zip(group.paulis.to_labels(), group.coeffs)) for group in groups], []) ) self.assertDictEqual(dict(zip(input_labels, coeffs)), paulis_coeff_dict) # Within each group, every operator commutes with every other operator. for group in groups: self.assertTrue( all( commutes(pauli1, pauli2, qubit_wise) for pauli1, pauli2 in it.combinations(group.paulis, 2) ) ) # For every pair of groups, at least one element from one group does not commute with # at least one element of the other. for group1, group2 in it.combinations(groups, 2): self.assertFalse( all( commutes(group1_pauli, group2_pauli, qubit_wise) for group1_pauli, group2_pauli in it.product(group1.paulis, group2.paulis) ) ) def test_dot_real(self): """Test dot for real coefficiets.""" x = SparsePauliOp("X", np.array([1])) y = SparsePauliOp("Y", np.array([1])) iz = SparsePauliOp("Z", 1j) self.assertEqual(x.dot(y), iz) def test_get_parameters(self): """Test getting the parameters.""" x, y = Parameter("x"), Parameter("y") op = SparsePauliOp(["X", "Y", "Z"], coeffs=[1, x, x * y]) with self.subTest(msg="all parameters"): self.assertEqual(ParameterView([x, y]), op.parameters) op.assign_parameters({y: 2}, inplace=True) with self.subTest(msg="after partial binding"): self.assertEqual(ParameterView([x]), op.parameters) def test_assign_parameters(self): """Test assign parameters.""" x, y = Parameter("x"), Parameter("y") op = SparsePauliOp(["X", "Y", "Z"], coeffs=[1, x, x * y]) # partial binding inplace op.assign_parameters({y: 2}, inplace=True) with self.subTest(msg="partial binding"): self.assertListEqual(op.coeffs.tolist(), [1, x, 2 * x]) # bind via array bound = op.assign_parameters([3]) with self.subTest(msg="fully bound"): self.assertTrue(np.allclose(bound.coeffs.astype(complex), [1, 3, 6])) def test_paulis_setter_rejects_bad_inputs(self): """Test that the setter for `paulis` rejects different-sized inputs.""" op = SparsePauliOp(["XY", "ZX"], coeffs=[1, 1j]) with self.assertRaisesRegex(ValueError, "incorrect number of qubits"): op.paulis = PauliList([Pauli("X"), Pauli("Y")]) with self.assertRaisesRegex(ValueError, "incorrect number of operators"): op.paulis = PauliList([Pauli("XY"), Pauli("ZX"), Pauli("YZ")]) if __name__ == "__main__": unittest.main()
https://github.com/achilles-d/qiskitsummerjam
achilles-d
from PIL import Image from numpy import* import matplotlib.cm as cm import numpy as np import matplotlib.pyplot as plt import sys sys.path.append("../../qiskit-sdk-py/") import math from qiskit import ( QuantumCircuit, execute, QuantumRegister, ClassicalRegister, Aer) from qiskit import IBMQ # Loading your IBM Q account(s) provider = IBMQ.load_account() def pixelate(first_file, second_file, size): im1 = Image.open(first_file) im2 = Image.open(second_file) im1 = im1.resize((size, size), Image.BILINEAR) im2 = im2.resize((size, size), Image.BILINEAR) A1 = (im1) A2 = (im2) return A1, A2 # Run the quantum script def run_quantum(file1, file2): file_1 = file1 file_2 = file2 size = 16 A1, A2 = pixelate(file_1, file_2, size) plt.imsave('filename2.jpeg',A2, cmap=cm.gray) img = np.asarray(A1) new_img = img.reshape(32, 32) # new_img = img.reshape((img.shape[0]*img.shape[1]), img.shape[2]) new_img = new_img.transpose() print(len(new_img[0])) img1 = np.asarray(A2) new_img1 = img1.reshape(32, 32) # new_img1 = img1.reshape((img1.shape[0]*img1.shape[1]), img1.shape[2]) new_img1 = new_img1.transpose() print(len(new_img1)) # set up registers and program qr = QuantumRegister(15, 'qr') cr = ClassicalRegister(15,'cr') qc = QuantumCircuit(qr, cr) # rightmost eight (qu)bits have ')' = 00101001 double = np.zeros((16,16)) # final double array print("Quantum Circuit Complete. Determining Pixel Values...") for p in range(16): for k in range(16): num_1 = bin(new_img[p][k]) num_2 = bin(new_img1[p][k]) for i in range(len(str(num_1))): if num_1[i] == str(1): qc.x(qr[i]) qc.h(qr[7]) # create superposition on 9 qc.cx(qr[7],qr[8]) # spread it to 8 with a cnot for i in range(len(str(num_2))): if num_2[i] == str(1): qc.x(qr[i+5]) for j in range(15): qc.measure(qr[j], cr[j]) simulator = Aer.get_backend('qasm_simulator') job = execute(qc, simulator, shots=1) results = job.result() stats = results.get_counts(qc) register_value = stats.keys() for x in register_value: split = x[0:7] split2 = x[7:15] total = abs(int(split,2)-int(split2,2)) double[p][k] = total # img = plt.imshow(double) # final image plt.imsave('result.jpeg',double)
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
https://github.com/MonitSharma/Learn-Quantum-Machine-Learning
MonitSharma
import pennylane as qml from pennylane import numpy as np from pennylane.optimize import NesterovMomentumOptimizer dev = qml.device("default.qubit", wires=4) def layer(W): qml.Rot(W[0, 0], W[0, 1], W[0, 2], wires=0) qml.Rot(W[1, 0], W[1, 1], W[1, 2], wires=1) qml.Rot(W[2, 0], W[2, 1], W[2, 2], wires=2) qml.Rot(W[3, 0], W[3, 1], W[3, 2], wires=3) qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2]) qml.CNOT(wires=[2, 3]) qml.CNOT(wires=[3, 0]) def statepreparation(x): qml.BasisState(x, wires=[0, 1, 2, 3]) @qml.qnode(dev) def circuit(weights, x): statepreparation(x) for W in weights: layer(W) return qml.expval(qml.PauliZ(0)) def variational_classifier(weights, bias, x): return circuit(weights, x) + bias def square_loss(labels, predictions): loss = 0 for l, p in zip(labels, predictions): loss = loss + (l - p) ** 2 loss = loss / len(labels) return loss def accuracy(labels, predictions): loss = 0 for l, p in zip(labels, predictions): if abs(l - p) < 1e-5: loss = loss + 1 loss = loss / len(labels) return loss def cost(weights, bias, X, Y): predictions = [variational_classifier(weights, bias, x) for x in X] return square_loss(Y, predictions) data = np.loadtxt("variational/data/parity.txt") X = np.array(data[:, :-1], requires_grad=False) Y = np.array(data[:, -1], requires_grad=False) Y = Y * 2 - np.ones(len(Y)) # shift label from {0, 1} to {-1, 1} for i in range(5): print("X = {}, Y = {: d}".format(X[i], int(Y[i]))) print("...") np.random.seed(0) num_qubits = 4 num_layers = 2 weights_init = 0.01 * np.random.randn(num_layers, num_qubits, 3, requires_grad=True) bias_init = np.array(0.0, requires_grad=True) print(weights_init, bias_init) opt = NesterovMomentumOptimizer(0.5) batch_size = 5 weights = weights_init bias = bias_init for it in range(25): # Update the weights by one optimizer step batch_index = np.random.randint(0, len(X), (batch_size,)) X_batch = X[batch_index] Y_batch = Y[batch_index] weights, bias, _, _ = opt.step(cost, weights, bias, X_batch, Y_batch) # Compute accuracy predictions = [np.sign(variational_classifier(weights, bias, x)) for x in X] acc = accuracy(Y, predictions) print( "Iter: {:5d} | Cost: {:0.7f} | Accuracy: {:0.7f} ".format( it + 1, cost(weights, bias, X, Y), acc ) ) dev = qml.device("default.qubit", wires=2) def get_angles(x): beta0 = 2 * np.arcsin(np.sqrt(x[1] ** 2) / np.sqrt(x[0] ** 2 + x[1] ** 2 + 1e-12)) beta1 = 2 * np.arcsin(np.sqrt(x[3] ** 2) / np.sqrt(x[2] ** 2 + x[3] ** 2 + 1e-12)) beta2 = 2 * np.arcsin( np.sqrt(x[2] ** 2 + x[3] ** 2) / np.sqrt(x[0] ** 2 + x[1] ** 2 + x[2] ** 2 + x[3] ** 2) ) return np.array([beta2, -beta1 / 2, beta1 / 2, -beta0 / 2, beta0 / 2]) def statepreparation(a): qml.RY(a[0], wires=0) qml.CNOT(wires=[0, 1]) qml.RY(a[1], wires=1) qml.CNOT(wires=[0, 1]) qml.RY(a[2], wires=1) qml.PauliX(wires=0) qml.CNOT(wires=[0, 1]) qml.RY(a[3], wires=1) qml.CNOT(wires=[0, 1]) qml.RY(a[4], wires=1) qml.PauliX(wires=0) x = np.array([0.53896774, 0.79503606, 0.27826503, 0.0], requires_grad=False) ang = get_angles(x) @qml.qnode(dev) def test(angles): statepreparation(angles) return qml.expval(qml.PauliZ(0)) test(ang) print("x : ", x) print("angles : ", ang) print("amplitude vector: ", np.real(dev.state)) def layer(W): qml.Rot(W[0, 0], W[0, 1], W[0, 2], wires=0) qml.Rot(W[1, 0], W[1, 1], W[1, 2], wires=1) qml.CNOT(wires=[0, 1]) @qml.qnode(dev) def circuit(weights, angles): statepreparation(angles) for W in weights: layer(W) return qml.expval(qml.PauliZ(0)) def variational_classifier(weights, bias, angles): return circuit(weights, angles) + bias def cost(weights, bias, features, labels): predictions = [variational_classifier(weights, bias, f) for f in features] return square_loss(labels, predictions) data = np.loadtxt("variational/data/iris.txt") X = data[:, 0:2] print("First X sample (original) :", X[0]) # pad the vectors to size 2^2 with constant values padding = 0.3 * np.ones((len(X), 1)) X_pad = np.c_[np.c_[X, padding], np.zeros((len(X), 1))] print("First X sample (padded) :", X_pad[0]) # normalize each input normalization = np.sqrt(np.sum(X_pad ** 2, -1)) X_norm = (X_pad.T / normalization).T print("First X sample (normalized):", X_norm[0]) # angles for state preparation are new features features = np.array([get_angles(x) for x in X_norm], requires_grad=False) print("First features sample :", features[0]) Y = data[:, -1] import matplotlib.pyplot as plt plt.figure() plt.scatter(X[:, 0][Y == 1], X[:, 1][Y == 1], c="b", marker="o", edgecolors="k") plt.scatter(X[:, 0][Y == -1], X[:, 1][Y == -1], c="r", marker="o", edgecolors="k") plt.title("Original data") plt.show() plt.figure() dim1 = 0 dim2 = 1 plt.scatter( X_norm[:, dim1][Y == 1], X_norm[:, dim2][Y == 1], c="b", marker="o", edgecolors="k" ) plt.scatter( X_norm[:, dim1][Y == -1], X_norm[:, dim2][Y == -1], c="r", marker="o", edgecolors="k" ) plt.title("Padded and normalised data (dims {} and {})".format(dim1, dim2)) plt.show() plt.figure() dim1 = 0 dim2 = 3 plt.scatter( features[:, dim1][Y == 1], features[:, dim2][Y == 1], c="b", marker="o", edgecolors="k" ) plt.scatter( features[:, dim1][Y == -1], features[:, dim2][Y == -1], c="r", marker="o", edgecolors="k" ) plt.title("Feature vectors (dims {} and {})".format(dim1, dim2)) plt.show() np.random.seed(0) num_data = len(Y) num_train = int(0.75 * num_data) index = np.random.permutation(range(num_data)) feats_train = features[index[:num_train]] Y_train = Y[index[:num_train]] feats_val = features[index[num_train:]] Y_val = Y[index[num_train:]] # We need these later for plotting X_train = X[index[:num_train]] X_val = X[index[num_train:]] num_qubits = 2 num_layers = 6 weights_init = 0.01 * np.random.randn(num_layers, num_qubits, 3, requires_grad=True) bias_init = np.array(0.0, requires_grad=True) opt = NesterovMomentumOptimizer(0.01) batch_size = 5 # train the variational classifier weights = weights_init bias = bias_init for it in range(60): # Update the weights by one optimizer step batch_index = np.random.randint(0, num_train, (batch_size,)) feats_train_batch = feats_train[batch_index] Y_train_batch = Y_train[batch_index] weights, bias, _, _ = opt.step(cost, weights, bias, feats_train_batch, Y_train_batch) # Compute predictions on train and validation set predictions_train = [np.sign(variational_classifier(weights, bias, f)) for f in feats_train] predictions_val = [np.sign(variational_classifier(weights, bias, f)) for f in feats_val] # Compute accuracy on train and validation set acc_train = accuracy(Y_train, predictions_train) acc_val = accuracy(Y_val, predictions_val) print( "Iter: {:5d} | Cost: {:0.7f} | Acc train: {:0.7f} | Acc validation: {:0.7f} " "".format(it + 1, cost(weights, bias, features, Y), acc_train, acc_val) ) plt.figure() cm = plt.cm.RdBu # make data for decision regions xx, yy = np.meshgrid(np.linspace(0.0, 1.5, 20), np.linspace(0.0, 1.5, 20)) X_grid = [np.array([x, y]) for x, y in zip(xx.flatten(), yy.flatten())] # preprocess grid points like data inputs above padding = 0.3 * np.ones((len(X_grid), 1)) X_grid = np.c_[np.c_[X_grid, padding], np.zeros((len(X_grid), 1))] # pad each input normalization = np.sqrt(np.sum(X_grid ** 2, -1)) X_grid = (X_grid.T / normalization).T # normalize each input features_grid = np.array( [get_angles(x) for x in X_grid] ) # angles for state preparation are new features predictions_grid = [variational_classifier(weights, bias, f) for f in features_grid] Z = np.reshape(predictions_grid, xx.shape) # plot decision regions cnt = plt.contourf( xx, yy, Z, levels=np.arange(-1, 1.1, 0.1), cmap=cm, alpha=0.8, extend="both" ) plt.contour( xx, yy, Z, levels=[0.0], colors=("black",), linestyles=("--",), linewidths=(0.8,) ) plt.colorbar(cnt, ticks=[-1, 0, 1]) # plot data plt.scatter( X_train[:, 0][Y_train == 1], X_train[:, 1][Y_train == 1], c="b", marker="o", edgecolors="k", label="class 1 train", ) plt.scatter( X_val[:, 0][Y_val == 1], X_val[:, 1][Y_val == 1], c="b", marker="^", edgecolors="k", label="class 1 validation", ) plt.scatter( X_train[:, 0][Y_train == -1], X_train[:, 1][Y_train == -1], c="r", marker="o", edgecolors="k", label="class -1 train", ) plt.scatter( X_val[:, 0][Y_val == -1], X_val[:, 1][Y_val == -1], c="r", marker="^", edgecolors="k", label="class -1 validation", ) plt.legend() plt.show()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector qc = QuantumCircuit(2) qc.h(0) qc.x(1) # You can reverse the order of the qubits. from qiskit.quantum_info import DensityMatrix qc = QuantumCircuit(2) qc.h([0, 1]) qc.t(1) qc.s(0) qc.cx(0,1) matrix = DensityMatrix(qc) plot_bloch_multivector(matrix, title='My Bloch Spheres', reverse_bits=True)
https://github.com/PavanCyborg/Quantum-Algorithms-Benchmarking
PavanCyborg
#Assign these values as per your requirements. global min_qubits,max_qubits,skip_qubits,max_circuits,num_shots,Noise_Inclusion min_qubits=3 #min_qubits are incremented to 4 w.r.t algorithm "qubits should be of even number" max_qubits=31 skip_qubits=1 #minimum Skip_qubits used is 2 (by default skip_qubits=2 when skip_qubits<2) max_circuits=2 num_shots=1000 Noise_Inclusion = False saveplots = False Memory_utilization_plot = True gate_counts_plots = True Type_of_Simulator = "built_in" #Inputs are "built_in" or "FAKE" or "FAKEV2" backend_name = "FakeGuadalupeV2" #Can refer to the README files for the available backends #Change your Specification of Simulator in Declaring Backend Section #By Default : built_in -> qasm_simulator and FAKE -> FakeSantiago() and FAKEV2 -> FakeJakartaV2() import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, transpile, execute import time import matplotlib.pyplot as plt # Import from Qiskit Aer noise module from qiskit_aer.noise import (NoiseModel, QuantumError, ReadoutError,pauli_error, depolarizing_error, thermal_relaxation_error,reset_error) # Benchmark Name benchmark_name = "Hidden Shift" # Selection of basis gate set for transpilation # Note: selector 1 is a hardware agnostic gate set basis_selector = 2 basis_gates_array = [ [], ['rx', 'ry', 'rz', 'cx'], # a common basis set, default ['cx', 'rz', 'sx', 'x'], # IBM default basis set ['rx', 'ry', 'rxx'], # IonQ default basis set ['h', 'p', 'cx'], # another common basis set ['u', 'cx'] # general unitaries basis gates ] np.random.seed(0) def get_QV(backend): import json # Assuming backend.conf_filename is the filename and backend.dirname is the directory path conf_filename = backend.dirname + "/" + backend.conf_filename # Open the JSON file with open(conf_filename, 'r') as file: # Load the JSON data data = json.load(file) # Extract the quantum_volume parameter QV = data.get('quantum_volume', None) return QV def checkbackend(backend_name,Type_of_Simulator): if Type_of_Simulator == "built_in": available_backends = [] for i in Aer.backends(): available_backends.append(i.name) if backend_name in available_backends: platform = backend_name return platform else: print(f"incorrect backend name or backend not available. Using qasm_simulator by default !!!!") print(f"available backends are : {available_backends}") platform = "qasm_simulator" return platform elif Type_of_Simulator == "FAKE" or Type_of_Simulator == "FAKEV2": import qiskit.providers.fake_provider as fake_backends if hasattr(fake_backends,backend_name) is True: print(f"Backend {backend_name} is available for type {Type_of_Simulator}.") backend_class = getattr(fake_backends,backend_name) backend_instance = backend_class() return backend_instance else: print(f"Backend {backend_name} is not available or incorrect for type {Type_of_Simulator}. Executing with FakeSantiago!!!") if Type_of_Simulator == "FAKEV2": backend_class = getattr(fake_backends,"FakeSantiagoV2") else: backend_class = getattr(fake_backends,"FakeSantiago") backend_instance = backend_class() return backend_instance if Type_of_Simulator == "built_in": platform = checkbackend(backend_name,Type_of_Simulator) #By default using "Qasm Simulator" backend = Aer.get_backend(platform) QV_=None print(f"{platform} device is capable of running {backend.num_qubits}") print(f"backend version is {backend.backend_version}") elif Type_of_Simulator == "FAKE": basis_selector = 0 backend = checkbackend(backend_name,Type_of_Simulator) QV_ = get_QV(backend) platform = backend.properties().backend_name +"-"+ backend.properties().backend_version #Replace this string with the backend Provider's name as this is used for Plotting. max_qubits=backend.configuration().n_qubits print(f"{platform} device is capable of running {backend.configuration().n_qubits}") print(f"{platform} has QV={QV_}") if max_qubits > 30: print(f"Device is capable with max_qubits = {max_qubits}") max_qubit = 30 print(f"Using fake backend {platform} with max_qubits {max_qubits}") elif Type_of_Simulator == "FAKEV2": basis_selector = 0 if "V2" not in backend_name: backend_name = backend_name+"V2" backend = checkbackend(backend_name,Type_of_Simulator) QV_ = get_QV(backend) platform = backend.name +"-" +backend.backend_version max_qubits=backend.num_qubits print(f"{platform} device is capable of running {backend.num_qubits}") print(f"{platform} has QV={QV_}") if max_qubits > 30: print(f"Device is capable with max_qubits = {max_qubits}") max_qubit = 30 print(f"Using fake backend {platform} with max_qubits {max_qubits}") else: print("Enter valid Simulator.....") # saved circuits for display QC_ = None Uf_ = None Ug_ = None # Circuit Definition # Uf oracle where Uf|x> = f(x)|x>, f(x) = {-1,1} def Uf_oracle(num_qubits, secret_int): # Initialize qubits qubits qr = QuantumRegister(num_qubits) qc = QuantumCircuit(qr, name=f"Uf") # Perform X on each qubit that matches a bit in secret string s = ('{0:0'+str(num_qubits)+'b}').format(secret_int) for i_qubit in range(num_qubits): if s[num_qubits-1-i_qubit]=='1': qc.x(qr[i_qubit]) for i_qubit in range(0,num_qubits-1,2): qc.cz(qr[i_qubit], qr[i_qubit+1]) # Perform X on each qubit that matches a bit in secret string s = ('{0:0'+str(num_qubits)+'b}').format(secret_int) for i_qubit in range(num_qubits): if s[num_qubits-1-i_qubit]=='1': qc.x(qr[i_qubit]) return qc # Generate Ug oracle where Ug|x> = g(x)|x>, g(x) = f(x+s) def Ug_oracle(num_qubits): # Initialize first n qubits qr = QuantumRegister(num_qubits) qc = QuantumCircuit(qr, name=f"Ug") for i_qubit in range(0,num_qubits-1,2): qc.cz(qr[i_qubit], qr[i_qubit+1]) return qc def HiddenShift (num_qubits, secret_int): # allocate qubits qr = QuantumRegister(num_qubits); cr = ClassicalRegister(num_qubits); qc = QuantumCircuit(qr, cr, name=f"hs-{num_qubits}-{secret_int}") # Start with Hadamard on all input qubits for i_qubit in range(num_qubits): qc.h(qr[i_qubit]) qc.barrier() # Generate Uf oracle where Uf|x> = f(x)|x>, f(x) = {-1,1} Uf = Uf_oracle(num_qubits, secret_int) qc.append(Uf,qr) qc.barrier() # Again do Hadamard on all qubits for i_qubit in range(num_qubits): qc.h(qr[i_qubit]) qc.barrier() # Generate Ug oracle where Ug|x> = g(x)|x>, g(x) = f(x+s) Ug = Ug_oracle(num_qubits) qc.append(Ug,qr) qc.barrier() # End with Hadamard on all qubits for i_qubit in range(num_qubits): qc.h(qr[i_qubit]) qc.barrier() # measure all qubits qc.measure(qr, cr) # save smaller circuit example for display global QC_, Uf_, Ug_ if QC_ == None or num_qubits <= 6: if num_qubits < 9: QC_ = qc if Uf_ == None or num_qubits <= 6: if num_qubits < 9: Uf_ = Uf if Ug_ == None or num_qubits <= 6: if num_qubits < 9: Ug_ = Ug # return a handle on the circuit return qc # Create an empty noise model noise_parameters = NoiseModel() if Type_of_Simulator == "built_in": # Add depolarizing error to all single qubit gates with error rate 0.05% and to all two qubit gates with error rate 0.5% depol_one_qb_error = 0.05 depol_two_qb_error = 0.005 noise_parameters.add_all_qubit_quantum_error(depolarizing_error(depol_one_qb_error, 1), ['rx', 'ry', 'rz']) noise_parameters.add_all_qubit_quantum_error(depolarizing_error(depol_two_qb_error, 2), ['cx']) # Add amplitude damping error to all single qubit gates with error rate 0.0% and to all two qubit gates with error rate 0.0% amp_damp_one_qb_error = 0.0 amp_damp_two_qb_error = 0.0 noise_parameters.add_all_qubit_quantum_error(depolarizing_error(amp_damp_one_qb_error, 1), ['rx', 'ry', 'rz']) noise_parameters.add_all_qubit_quantum_error(depolarizing_error(amp_damp_two_qb_error, 2), ['cx']) # Add reset noise to all single qubit resets reset_to_zero_error = 0.005 reset_to_one_error = 0.005 noise_parameters.add_all_qubit_quantum_error(reset_error(reset_to_zero_error, reset_to_one_error),["reset"]) # Add readout error p0given1_error = 0.000 p1given0_error = 0.000 error_meas = ReadoutError([[1 - p1given0_error, p1given0_error], [p0given1_error, 1 - p0given1_error]]) noise_parameters.add_all_qubit_readout_error(error_meas) #print(noise_parameters) elif Type_of_Simulator == "FAKE"or"FAKEV2": noise_parameters = NoiseModel.from_backend(backend) print(noise_parameters) ### Analysis methods to be expanded and eventually compiled into a separate analysis.py file import math, functools def hellinger_fidelity_with_expected(p, q): """ p: result distribution, may be passed as a counts distribution q: the expected distribution to be compared against References: `Hellinger Distance @ wikipedia <https://en.wikipedia.org/wiki/Hellinger_distance>`_ Qiskit Hellinger Fidelity Function """ p_sum = sum(p.values()) q_sum = sum(q.values()) if q_sum == 0: print("ERROR: polarization_fidelity(), expected distribution is invalid, all counts equal to 0") return 0 p_normed = {} for key, val in p.items(): p_normed[key] = val/p_sum # if p_sum != 0: # p_normed[key] = val/p_sum # else: # p_normed[key] = 0 q_normed = {} for key, val in q.items(): q_normed[key] = val/q_sum total = 0 for key, val in p_normed.items(): if key in q_normed.keys(): total += (np.sqrt(val) - np.sqrt(q_normed[key]))**2 del q_normed[key] else: total += val total += sum(q_normed.values()) # in some situations (error mitigation) this can go negative, use abs value if total < 0: print(f"WARNING: using absolute value in fidelity calculation") total = abs(total) dist = np.sqrt(total)/np.sqrt(2) fidelity = (1-dist**2)**2 return fidelity def polarization_fidelity(counts, correct_dist, thermal_dist=None): """ Combines Hellinger fidelity and polarization rescaling into fidelity calculation used in every benchmark counts: the measurement outcomes after `num_shots` algorithm runs correct_dist: the distribution we expect to get for the algorithm running perfectly thermal_dist: optional distribution to pass in distribution from a uniform superposition over all states. If `None`: generated as `uniform_dist` with the same qubits as in `counts` returns both polarization fidelity and the hellinger fidelity Polarization from: `https://arxiv.org/abs/2008.11294v1` """ num_measured_qubits = len(list(correct_dist.keys())[0]) #print(num_measured_qubits) counts = {k.zfill(num_measured_qubits): v for k, v in counts.items()} # calculate hellinger fidelity between measured expectation values and correct distribution hf_fidelity = hellinger_fidelity_with_expected(counts,correct_dist) # to limit cpu and memory utilization, skip noise correction if more than 16 measured qubits if num_measured_qubits > 16: return { 'fidelity':hf_fidelity, 'hf_fidelity':hf_fidelity } # if not provided, generate thermal dist based on number of qubits if thermal_dist == None: thermal_dist = uniform_dist(num_measured_qubits) # set our fidelity rescaling value as the hellinger fidelity for a depolarized state floor_fidelity = hellinger_fidelity_with_expected(thermal_dist, correct_dist) # rescale fidelity result so uniform superposition (random guessing) returns fidelity # rescaled to 0 to provide a better measure of success of the algorithm (polarization) new_floor_fidelity = 0 fidelity = rescale_fidelity(hf_fidelity, floor_fidelity, new_floor_fidelity) return { 'fidelity':fidelity, 'hf_fidelity':hf_fidelity } ## Uniform distribution function commonly used def rescale_fidelity(fidelity, floor_fidelity, new_floor_fidelity): """ Linearly rescales our fidelities to allow comparisons of fidelities across benchmarks fidelity: raw fidelity to rescale floor_fidelity: threshold fidelity which is equivalent to random guessing new_floor_fidelity: what we rescale the floor_fidelity to Ex, with floor_fidelity = 0.25, new_floor_fidelity = 0.0: 1 -> 1; 0.25 -> 0; 0.5 -> 0.3333; """ rescaled_fidelity = (1-new_floor_fidelity)/(1-floor_fidelity) * (fidelity - 1) + 1 # ensure fidelity is within bounds (0, 1) if rescaled_fidelity < 0: rescaled_fidelity = 0.0 if rescaled_fidelity > 1: rescaled_fidelity = 1.0 return rescaled_fidelity def uniform_dist(num_state_qubits): dist = {} for i in range(2**num_state_qubits): key = bin(i)[2:].zfill(num_state_qubits) dist[key] = 1/(2**num_state_qubits) return dist from matplotlib.patches import Rectangle import matplotlib.cm as cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap, Normalize from matplotlib.patches import Circle ############### Color Map functions # Create a selection of colormaps from which to choose; default to custom_spectral cmap_spectral = plt.get_cmap('Spectral') cmap_greys = plt.get_cmap('Greys') cmap_blues = plt.get_cmap('Blues') cmap_custom_spectral = None # the default colormap is the spectral map cmap = cmap_spectral cmap_orig = cmap_spectral # current cmap normalization function (default None) cmap_norm = None default_fade_low_fidelity_level = 0.16 default_fade_rate = 0.7 # Specify a normalization function here (default None) def set_custom_cmap_norm(vmin, vmax): global cmap_norm if vmin == vmax or (vmin == 0.0 and vmax == 1.0): print("... setting cmap norm to None") cmap_norm = None else: print(f"... setting cmap norm to [{vmin}, {vmax}]") cmap_norm = Normalize(vmin=vmin, vmax=vmax) # Remake the custom spectral colormap with user settings def set_custom_cmap_style( fade_low_fidelity_level=default_fade_low_fidelity_level, fade_rate=default_fade_rate): #print("... set custom map style") global cmap, cmap_custom_spectral, cmap_orig cmap_custom_spectral = create_custom_spectral_cmap( fade_low_fidelity_level=fade_low_fidelity_level, fade_rate=fade_rate) cmap = cmap_custom_spectral cmap_orig = cmap_custom_spectral # Create the custom spectral colormap from the base spectral def create_custom_spectral_cmap( fade_low_fidelity_level=default_fade_low_fidelity_level, fade_rate=default_fade_rate): # determine the breakpoint from the fade level num_colors = 100 breakpoint = round(fade_low_fidelity_level * num_colors) # get color list for spectral map spectral_colors = [cmap_spectral(v/num_colors) for v in range(num_colors)] #print(fade_rate) # create a list of colors to replace those below the breakpoint # and fill with "faded" color entries (in reverse) low_colors = [0] * breakpoint #for i in reversed(range(breakpoint)): for i in range(breakpoint): # x is index of low colors, normalized 0 -> 1 x = i / breakpoint # get color at this index bc = spectral_colors[i] r0 = bc[0] g0 = bc[1] b0 = bc[2] z0 = bc[3] r_delta = 0.92 - r0 #print(f"{x} {bc} {r_delta}") # compute saturation and greyness ratio sat_ratio = 1 - x #grey_ratio = 1 - x ''' attempt at a reflective gradient if i >= breakpoint/2: xf = 2*(x - 0.5) yf = pow(xf, 1/fade_rate)/2 grey_ratio = 1 - (yf + 0.5) else: xf = 2*(0.5 - x) yf = pow(xf, 1/fade_rate)/2 grey_ratio = 1 - (0.5 - yf) ''' grey_ratio = 1 - math.pow(x, 1/fade_rate) #print(f" {xf} {yf} ") #print(f" {sat_ratio} {grey_ratio}") r = r0 + r_delta * sat_ratio g_delta = r - g0 b_delta = r - b0 g = g0 + g_delta * grey_ratio b = b0 + b_delta * grey_ratio #print(f"{r} {g} {b}\n") low_colors[i] = (r,g,b,z0) #print(low_colors) # combine the faded low colors with the regular spectral cmap to make a custom version cmap_custom_spectral = ListedColormap(low_colors + spectral_colors[breakpoint:]) #spectral_colors = [cmap_custom_spectral(v/10) for v in range(10)] #for i in range(10): print(spectral_colors[i]) #print("") return cmap_custom_spectral # Make the custom spectral color map the default on module init set_custom_cmap_style() # Arrange the stored annotations optimally and add to plot def anno_volumetric_data(ax, depth_base=2, label='Depth', labelpos=(0.2, 0.7), labelrot=0, type=1, fill=True): # sort all arrays by the x point of the text (anno_offs) global x_anno_offs, y_anno_offs, anno_labels, x_annos, y_annos all_annos = sorted(zip(x_anno_offs, y_anno_offs, anno_labels, x_annos, y_annos)) x_anno_offs = [a for a,b,c,d,e in all_annos] y_anno_offs = [b for a,b,c,d,e in all_annos] anno_labels = [c for a,b,c,d,e in all_annos] x_annos = [d for a,b,c,d,e in all_annos] y_annos = [e for a,b,c,d,e in all_annos] #print(f"{x_anno_offs}") #print(f"{y_anno_offs}") #print(f"{anno_labels}") for i in range(len(anno_labels)): x_anno = x_annos[i] y_anno = y_annos[i] x_anno_off = x_anno_offs[i] y_anno_off = y_anno_offs[i] label = anno_labels[i] if i > 0: x_delta = abs(x_anno_off - x_anno_offs[i - 1]) y_delta = abs(y_anno_off - y_anno_offs[i - 1]) if y_delta < 0.7 and x_delta < 2: y_anno_off = y_anno_offs[i] = y_anno_offs[i - 1] - 0.6 #x_anno_off = x_anno_offs[i] = x_anno_offs[i - 1] + 0.1 ax.annotate(label, xy=(x_anno+0.0, y_anno+0.1), arrowprops=dict(facecolor='black', shrink=0.0, width=0.5, headwidth=4, headlength=5, edgecolor=(0.8,0.8,0.8)), xytext=(x_anno_off + labelpos[0], y_anno_off + labelpos[1]), rotation=labelrot, horizontalalignment='left', verticalalignment='baseline', color=(0.2,0.2,0.2), clip_on=True) if saveplots == True: plt.savefig("VolumetricPlotSample.jpg") # Plot one group of data for volumetric presentation def plot_volumetric_data(ax, w_data, d_data, f_data, depth_base=2, label='Depth', labelpos=(0.2, 0.7), labelrot=0, type=1, fill=True, w_max=18, do_label=False, do_border=True, x_size=1.0, y_size=1.0, zorder=1, offset_flag=False, max_depth=0, suppress_low_fidelity=False): # since data may come back out of order, save point at max y for annotation i_anno = 0 x_anno = 0 y_anno = 0 # plot data rectangles low_fidelity_count = True last_y = -1 k = 0 # determine y-axis dimension for one pixel to use for offset of bars that start at 0 (_, dy) = get_pixel_dims(ax) # do this loop in reverse to handle the case where earlier cells are overlapped by later cells for i in reversed(range(len(d_data))): x = depth_index(d_data[i], depth_base) y = float(w_data[i]) f = f_data[i] # each time we star a new row, reset the offset counter # DEVNOTE: this is highly specialized for the QA area plots, where there are 8 bars # that represent time starting from 0 secs. We offset by one pixel each and center the group if y != last_y: last_y = y; k = 3 # hardcoded for 8 cells, offset by 3 #print(f"{i = } {x = } {y = }") if max_depth > 0 and d_data[i] > max_depth: #print(f"... excessive depth (2), skipped; w={y} d={d_data[i]}") break; # reject cells with low fidelity if suppress_low_fidelity and f < suppress_low_fidelity_level: if low_fidelity_count: break else: low_fidelity_count = True # the only time this is False is when doing merged gradation plots if do_border == True: # this case is for an array of x_sizes, i.e. each box has different width if isinstance(x_size, list): # draw each of the cells, with no offset if not offset_flag: ax.add_patch(box_at(x, y, f, type=type, fill=fill, x_size=x_size[i], y_size=y_size, zorder=zorder)) # use an offset for y value, AND account for x and width to draw starting at 0 else: ax.add_patch(box_at((x/2 + x_size[i]/4), y + k*dy, f, type=type, fill=fill, x_size=x+ x_size[i]/2, y_size=y_size, zorder=zorder)) # this case is for only a single cell else: ax.add_patch(box_at(x, y, f, type=type, fill=fill, x_size=x_size, y_size=y_size)) # save the annotation point with the largest y value if y >= y_anno: x_anno = x y_anno = y i_anno = i # move the next bar down (if using offset) k -= 1 # if no data rectangles plotted, no need for a label if x_anno == 0 or y_anno == 0: return x_annos.append(x_anno) y_annos.append(y_anno) anno_dist = math.sqrt( (y_anno - 1)**2 + (x_anno - 1)**2 ) # adjust radius of annotation circle based on maximum width of apps anno_max = 10 if w_max > 10: anno_max = 14 if w_max > 14: anno_max = 18 scale = anno_max / anno_dist # offset of text from end of arrow if scale > 1: x_anno_off = scale * x_anno - x_anno - 0.5 y_anno_off = scale * y_anno - y_anno else: x_anno_off = 0.7 y_anno_off = 0.5 x_anno_off += x_anno y_anno_off += y_anno # print(f"... {xx} {yy} {anno_dist}") x_anno_offs.append(x_anno_off) y_anno_offs.append(y_anno_off) anno_labels.append(label) if do_label: ax.annotate(label, xy=(x_anno+labelpos[0], y_anno+labelpos[1]), rotation=labelrot, horizontalalignment='left', verticalalignment='bottom', color=(0.2,0.2,0.2)) x_annos = [] y_annos = [] x_anno_offs = [] y_anno_offs = [] anno_labels = [] # init arrays to hold annotation points for label spreading def vplot_anno_init (): global x_annos, y_annos, x_anno_offs, y_anno_offs, anno_labels x_annos = [] y_annos = [] x_anno_offs = [] y_anno_offs = [] anno_labels = [] # Number of ticks on volumetric depth axis max_depth_log = 22 # average transpile factor between base QV depth and our depth based on results from QV notebook QV_transpile_factor = 12.7 # format a number using K,M,B,T for large numbers, optionally rounding to 'digits' decimal places if num > 1 # (sign handling may be incorrect) def format_number(num, digits=0): if isinstance(num, str): num = float(num) num = float('{:.3g}'.format(abs(num))) sign = '' metric = {'T': 1000000000000, 'B': 1000000000, 'M': 1000000, 'K': 1000, '': 1} for index in metric: num_check = num / metric[index] if num_check >= 1: num = round(num_check, digits) sign = index break numstr = f"{str(num)}" if '.' in numstr: numstr = numstr.rstrip('0').rstrip('.') return f"{numstr}{sign}" # Return the color associated with the spcific value, using color map norm def get_color(value): # if there is a normalize function installed, scale the data if cmap_norm: value = float(cmap_norm(value)) if cmap == cmap_spectral: value = 0.05 + value*0.9 elif cmap == cmap_blues: value = 0.00 + value*1.0 else: value = 0.0 + value*0.95 return cmap(value) # Return the x and y equivalent to a single pixel for the given plot axis def get_pixel_dims(ax): # transform 0 -> 1 to pixel dimensions pixdims = ax.transData.transform([(0,1),(1,0)])-ax.transData.transform((0,0)) xpix = pixdims[1][0] ypix = pixdims[0][1] #determine x- and y-axis dimension for one pixel dx = (1 / xpix) dy = (1 / ypix) return (dx, dy) ############### Helper functions # return the base index for a circuit depth value # take the log in the depth base, and add 1 def depth_index(d, depth_base): if depth_base <= 1: return d if d == 0: return 0 return math.log(d, depth_base) + 1 # draw a box at x,y with various attributes def box_at(x, y, value, type=1, fill=True, x_size=1.0, y_size=1.0, alpha=1.0, zorder=1): value = min(value, 1.0) value = max(value, 0.0) fc = get_color(value) ec = (0.5,0.5,0.5) return Rectangle((x - (x_size/2), y - (y_size/2)), x_size, y_size, alpha=alpha, edgecolor = ec, facecolor = fc, fill=fill, lw=0.5*y_size, zorder=zorder) # draw a circle at x,y with various attributes def circle_at(x, y, value, type=1, fill=True): size = 1.0 value = min(value, 1.0) value = max(value, 0.0) fc = get_color(value) ec = (0.5,0.5,0.5) return Circle((x, y), size/2, alpha = 0.7, # DEVNOTE: changed to 0.7 from 0.5, to handle only one cell edgecolor = ec, facecolor = fc, fill=fill, lw=0.5) def box4_at(x, y, value, type=1, fill=True, alpha=1.0): size = 1.0 value = min(value, 1.0) value = max(value, 0.0) fc = get_color(value) ec = (0.3,0.3,0.3) ec = fc return Rectangle((x - size/8, y - size/2), size/4, size, alpha=alpha, edgecolor = ec, facecolor = fc, fill=fill, lw=0.1) # Draw a Quantum Volume rectangle with specified width and depth, and grey-scale value def qv_box_at(x, y, qv_width, qv_depth, value, depth_base): #print(f"{qv_width} {qv_depth} {depth_index(qv_depth, depth_base)}") return Rectangle((x - 0.5, y - 0.5), depth_index(qv_depth, depth_base), qv_width, edgecolor = (value,value,value), facecolor = (value,value,value), fill=True, lw=1) def bkg_box_at(x, y, value=0.9): size = 0.6 return Rectangle((x - size/2, y - size/2), size, size, edgecolor = (.75,.75,.75), facecolor = (value,value,value), fill=True, lw=0.5) def bkg_empty_box_at(x, y): size = 0.6 return Rectangle((x - size/2, y - size/2), size, size, edgecolor = (.75,.75,.75), facecolor = (1.0,1.0,1.0), fill=True, lw=0.5) # Plot the background for the volumetric analysis def plot_volumetric_background(max_qubits=11, QV=32, depth_base=2, suptitle=None, avail_qubits=0, colorbar_label="Avg Result Fidelity"): if suptitle == None: suptitle = f"Volumetric Positioning\nCircuit Dimensions and Fidelity Overlaid on Quantum Volume = {QV}" QV0 = QV qv_estimate = False est_str = "" if QV == 0: # QV = 0 indicates "do not draw QV background or label" QV = 2048 elif QV < 0: # QV < 0 indicates "add est. to label" QV = -QV qv_estimate = True est_str = " (est.)" if avail_qubits > 0 and max_qubits > avail_qubits: max_qubits = avail_qubits max_width = 13 if max_qubits > 11: max_width = 18 if max_qubits > 14: max_width = 20 if max_qubits > 16: max_width = 24 if max_qubits > 24: max_width = 33 #print(f"... {avail_qubits} {max_qubits} {max_width}") plot_width = 6.8 plot_height = 0.5 + plot_width * (max_width / max_depth_log) #print(f"... {plot_width} {plot_height}") # define matplotlib figure and axis; use constrained layout to fit colorbar to right fig, ax = plt.subplots(figsize=(plot_width, plot_height), constrained_layout=True) plt.suptitle(suptitle) plt.xlim(0, max_depth_log) plt.ylim(0, max_width) # circuit depth axis (x axis) xbasis = [x for x in range(1,max_depth_log)] xround = [depth_base**(x-1) for x in xbasis] xlabels = [format_number(x) for x in xround] ax.set_xlabel('Circuit Depth') ax.set_xticks(xbasis) plt.xticks(xbasis, xlabels, color='black', rotation=45, ha='right', va='top', rotation_mode="anchor") # other label options #plt.xticks(xbasis, xlabels, color='black', rotation=-60, ha='left') #plt.xticks(xbasis, xlabels, color='black', rotation=-45, ha='left', va='center', rotation_mode="anchor") # circuit width axis (y axis) ybasis = [y for y in range(1,max_width)] yround = [1,2,3,4,5,6,7,8,10,12,15] # not used now ylabels = [str(y) for y in yround] # not used now #ax.set_ylabel('Circuit Width (Number of Qubits)') ax.set_ylabel('Circuit Width') ax.set_yticks(ybasis) #create simple line plot (not used right now) #ax.plot([0, 10],[0, 10]) log2QV = math.log2(QV) QV_width = log2QV QV_depth = log2QV * QV_transpile_factor # show a quantum volume rectangle of QV = 64 e.g. (6 x 6) if QV0 != 0: ax.add_patch(qv_box_at(1, 1, QV_width, QV_depth, 0.87, depth_base)) else: ax.add_patch(qv_box_at(1, 1, QV_width, QV_depth, 0.91, depth_base)) # the untranspiled version is commented out - we do not show this by default # also show a quantum volume rectangle un-transpiled # ax.add_patch(qv_box_at(1, 1, QV_width, QV_width, 0.80, depth_base)) # show 2D array of volumetric cells based on this QV_transpiled # DEVNOTE: we use +1 only to make the visuals work; s/b without # Also, the second arg of the min( below seems incorrect, needs correction maxprod = (QV_width + 1) * (QV_depth + 1) for w in range(1, min(max_width, round(QV) + 1)): # don't show VB squares if width greater than known available qubits if avail_qubits != 0 and w > avail_qubits: continue i_success = 0 for d in xround: # polarization factor for low circuit widths maxtest = maxprod / ( 1 - 1 / (2**w) ) # if circuit would fail here, don't draw box if d > maxtest: continue if w * d > maxtest: continue # guess for how to capture how hardware decays with width, not entirely correct # # reduce maxtext by a factor of number of qubits > QV_width # # just an approximation to account for qubit distances # if w > QV_width: # over = w - QV_width # maxtest = maxtest / (1 + (over/QV_width)) # draw a box at this width and depth id = depth_index(d, depth_base) # show vb rectangles; if not showing QV, make all hollow (or less dark) if QV0 == 0: #ax.add_patch(bkg_empty_box_at(id, w)) ax.add_patch(bkg_box_at(id, w, 0.95)) else: ax.add_patch(bkg_box_at(id, w, 0.9)) # save index of last successful depth i_success += 1 # plot empty rectangle after others d = xround[i_success] id = depth_index(d, depth_base) ax.add_patch(bkg_empty_box_at(id, w)) # Add annotation showing quantum volume if QV0 != 0: t = ax.text(max_depth_log - 2.0, 1.5, f"QV{est_str}={QV}", size=12, horizontalalignment='right', verticalalignment='center', color=(0.2,0.2,0.2), bbox=dict(boxstyle="square,pad=0.3", fc=(.9,.9,.9), ec="grey", lw=1)) # add colorbar to right of plot plt.colorbar(cm.ScalarMappable(cmap=cmap), cax=None, ax=ax, shrink=0.6, label=colorbar_label, panchor=(0.0, 0.7)) return ax # Function to calculate circuit depth def calculate_circuit_depth(qc): # Calculate the depth of the circuit depth = qc.depth() return depth def calculate_transpiled_depth(qc,basis_selector): # use either the backend or one of the basis gate sets if basis_selector == 0: qc = transpile(qc, backend) else: basis_gates = basis_gates_array[basis_selector] qc = transpile(qc, basis_gates=basis_gates, seed_transpiler=0) transpiled_depth = qc.depth() return transpiled_depth,qc def plot_fidelity_data(fidelity_data, Hf_fidelity_data, title): avg_fidelity_means = [] avg_Hf_fidelity_means = [] avg_num_qubits_values = list(fidelity_data.keys()) # Calculate the average fidelity and Hamming fidelity for each unique number of qubits for num_qubits in avg_num_qubits_values: avg_fidelity = np.average(fidelity_data[num_qubits]) avg_fidelity_means.append(avg_fidelity) avg_Hf_fidelity = np.mean(Hf_fidelity_data[num_qubits]) avg_Hf_fidelity_means.append(avg_Hf_fidelity) return avg_fidelity_means,avg_Hf_fidelity_means list_of_gates = [] def list_of_standardgates(): import qiskit.circuit.library as lib from qiskit.circuit import Gate import inspect # List all the attributes of the library module gate_list = dir(lib) # Filter out non-gate classes (like functions, variables, etc.) gates = [gate for gate in gate_list if isinstance(getattr(lib, gate), type) and issubclass(getattr(lib, gate), Gate)] # Get method names from QuantumCircuit circuit_methods = inspect.getmembers(QuantumCircuit, inspect.isfunction) method_names = [name for name, _ in circuit_methods] # Map gate class names to method names gate_to_method = {} for gate in gates: gate_class = getattr(lib, gate) class_name = gate_class.__name__.replace('Gate', '').lower() # Normalize class name for method in method_names: if method == class_name or method == class_name.replace('cr', 'c-r'): gate_to_method[gate] = method break # Add common operations that are not strictly gates additional_operations = { 'Measure': 'measure', 'Barrier': 'barrier', } gate_to_method.update(additional_operations) for k,v in gate_to_method.items(): list_of_gates.append(v) def update_counts(gates,custom_gates): operations = {} for key, value in gates.items(): operations[key] = value for key, value in custom_gates.items(): if key in operations: operations[key] += value else: operations[key] = value return operations def get_gate_counts(gates,custom_gate_defs): result = gates.copy() # Iterate over the gate counts in the quantum circuit for gate, count in gates.items(): if gate in custom_gate_defs: custom_gate_ops = custom_gate_defs[gate] # Multiply custom gate operations by the count of the custom gate in the circuit for _ in range(count): result = update_counts(result, custom_gate_ops) # Remove the custom gate entry as we have expanded it del result[gate] return result dict_of_qc = dict() custom_gates_defs = dict() # Function to count operations recursively def count_operations(qc): dict_of_qc.clear() circuit_traverser(qc) operations = dict() operations = dict_of_qc[qc.name] del dict_of_qc[qc.name] # print("operations :",operations) # print("dict_of_qc :",dict_of_qc) for keys in operations.keys(): if keys not in list_of_gates: for k,v in dict_of_qc.items(): if k in operations.keys(): custom_gates_defs[k] = v operations=get_gate_counts(operations,custom_gates_defs) custom_gates_defs.clear() return operations def circuit_traverser(qc): dict_of_qc[qc.name]=dict(qc.count_ops()) for i in qc.data: if str(i.operation.name) not in list_of_gates: qc_1 = i.operation.definition circuit_traverser(qc_1) def get_memory(): import resource usage = resource.getrusage(resource.RUSAGE_SELF) max_mem = usage.ru_maxrss/1024 #in MB return max_mem def analyzer(num_qubits,s_int): # create the key that is expected to have all the measurements (for this circuit) key = format(s_int, f"0{num_qubits}b") # correct distribution is measuring the key 100% of the time correct_dist = {key: 1.0} #print("correct_dist=",correct_dist) return correct_dist def run (min_qubits=min_qubits, max_qubits=max_qubits, skip_qubits=skip_qubits, max_circuits=max_circuits, num_shots=num_shots): creation_times = [] elapsed_times = [] quantum_times = [] circuit_depths = [] transpiled_depths = [] fidelity_data = {} Hf_fidelity_data = {} numckts = [] mem_usage = [] algorithmic_1Q_gate_counts = [] algorithmic_2Q_gate_counts = [] transpiled_1Q_gate_counts = [] transpiled_2Q_gate_counts = [] print(f"{benchmark_name} Benchmark Program - {platform}") # validate parameters (smallest circuit is 2 qubits) max_qubits = max(2, max_qubits) min_qubits = min(max(2, min_qubits), max_qubits) if min_qubits % 2 == 1: min_qubits += 1 # min_qubits must be even skip_qubits = max(2, skip_qubits) global max_ckts max_ckts = max_circuits global min_qbits,max_qbits,skp_qubits min_qbits = min_qubits max_qbits = max_qubits skp_qubits = skip_qubits print(f"min, max qubits = {min_qubits} {max_qubits}") #defining all the standard gates supported by qiskit in a list if gate_counts_plots == True: list_of_standardgates() # Execute Benchmark Program N times for multiple circuit sizes for num_qubits in range(min_qubits, max_qubits + 1, skip_qubits): fidelity_data[num_qubits] = [] Hf_fidelity_data[num_qubits] = [] # determine number of circuits to execute for this group num_circuits = min(2 ** (num_qubits), max_circuits) numckts.append(num_circuits) print(f"Executing [{num_circuits}] circuits with num_qubits = {num_qubits}") # determine range of secret strings to loop over if 2**(num_qubits) <= max_circuits: s_range = list(range(num_circuits)) else: s_range = np.random.choice(2**(num_qubits), num_circuits, False) for s_int in s_range: print("*********************************************") print(f"qc of {num_qubits} qubits for integer {s_int}") #creation of Quantum Circuit. ts = time.time() qc = HiddenShift(num_qubits, s_int) #creation time creation_time = time.time() - ts creation_times.append(creation_time) #print(qc) print(f"creation time = {creation_time*1000} ms") # Calculate gate count for the algorithmic circuit (excluding barriers and measurements) if gate_counts_plots == True: operations = count_operations(qc) n1q = 0; n2q = 0 if operations != None: for key, value in operations.items(): if key == "measure": continue if key == "barrier": continue if key.startswith("c") or key.startswith("mc"): n2q += value else: n1q += value algorithmic_1Q_gate_counts.append(n1q) algorithmic_2Q_gate_counts.append(n2q) # collapse the sub-circuit levels used in this benchmark (for qiskit) qc=qc.decompose() #print(qc) # Calculate circuit depth depth = calculate_circuit_depth(qc) circuit_depths.append(depth) # Calculate transpiled circuit depth transpiled_depth,qc = calculate_transpiled_depth(qc,basis_selector) transpiled_depths.append(transpiled_depth) #print(qc) print(f"Algorithmic Depth = {depth} and Normalized Depth = {transpiled_depth}") if gate_counts_plots == True: # Calculate gate count for the transpiled circuit (excluding barriers and measurements) tr_ops = qc.count_ops() #print("tr_ops = ",tr_ops) tr_n1q = 0; tr_n2q = 0 if tr_ops != None: for key, value in tr_ops.items(): if key == "measure": continue if key == "barrier": continue if key.startswith("c"): tr_n2q += value else: tr_n1q += value transpiled_1Q_gate_counts.append(tr_n1q) transpiled_2Q_gate_counts.append(tr_n2q) print(f"Algorithmic 1Q gates = {n1q} ,Algorithmic 2Q gates = {n2q}") print(f"Normalized 1Q gates = {tr_n1q} ,Normalized 2Q gates = {tr_n2q}") #execution if Type_of_Simulator == "built_in": #To check if Noise is required if Noise_Inclusion == True: noise_model = noise_parameters else: noise_model = None ts = time.time() job = execute(qc, backend, shots=num_shots, noise_model=noise_model) elif Type_of_Simulator == "FAKE" or Type_of_Simulator == "FAKEV2" : ts = time.time() job = backend.run(qc,shots=num_shots, noise_model=noise_parameters) #retrieving the result result = job.result() #print(result) #calculating elapsed time elapsed_time = time.time() - ts elapsed_times.append(elapsed_time) # Calculate quantum processing time quantum_time = result.time_taken quantum_times.append(quantum_time) print(f"Elapsed time = {elapsed_time*1000} ms and Quantum Time = {quantum_time*1000} ms") #counts in result object counts = result.get_counts() #print("Counts = ",counts) #Correct distribution to compare with counts correct_dist = analyzer(num_qubits,s_int) #fidelity calculation comparision of counts and correct_dist fidelity_dict = polarization_fidelity(counts, correct_dist) fidelity_data[num_qubits].append(fidelity_dict['fidelity']) Hf_fidelity_data[num_qubits].append(fidelity_dict['hf_fidelity']) #maximum memory utilization (if required) if Memory_utilization_plot == True: max_mem = get_memory() print(f"Maximum Memory Utilized: {max_mem} MB") mem_usage.append(max_mem) print("*********************************************") # print a sample circuit print("Sample Circuit:"); print(QC_ if QC_ != None else " ... too large!") print("\nQuantum Oracle 'Uf' ="); print(Uf_ if Uf_ != None else " ... too large!") print("\nQuantum Oracle 'Ug' ="); print(Ug_ if Ug_ != None else " ... too large!") return (creation_times, elapsed_times, quantum_times, circuit_depths, transpiled_depths, fidelity_data, Hf_fidelity_data, numckts , algorithmic_1Q_gate_counts, algorithmic_2Q_gate_counts, transpiled_1Q_gate_counts, transpiled_2Q_gate_counts,mem_usage) # Execute the benchmark program, accumulate metrics, and calculate circuit depths (creation_times, elapsed_times, quantum_times, circuit_depths,transpiled_depths, fidelity_data, Hf_fidelity_data, numckts, algorithmic_1Q_gate_counts, algorithmic_2Q_gate_counts, transpiled_1Q_gate_counts, transpiled_2Q_gate_counts,mem_usage) = run() # Define the range of qubits for the x-axis num_qubits_range = range(min_qbits, max_qbits+1,skp_qubits) print("num_qubits_range =",num_qubits_range) # Calculate average creation time, elapsed time, quantum processing time, and circuit depth for each number of qubits avg_creation_times = [] avg_elapsed_times = [] avg_quantum_times = [] avg_circuit_depths = [] avg_transpiled_depths = [] avg_1Q_algorithmic_gate_counts = [] avg_2Q_algorithmic_gate_counts = [] avg_1Q_Transpiled_gate_counts = [] avg_2Q_Transpiled_gate_counts = [] max_memory = [] start = 0 for num in numckts: avg_creation_times.append(np.mean(creation_times[start:start+num])) avg_elapsed_times.append(np.mean(elapsed_times[start:start+num])) avg_quantum_times.append(np.mean(quantum_times[start:start+num])) avg_circuit_depths.append(np.mean(circuit_depths[start:start+num])) avg_transpiled_depths.append(np.mean(transpiled_depths[start:start+num])) if gate_counts_plots == True: avg_1Q_algorithmic_gate_counts.append(int(np.mean(algorithmic_1Q_gate_counts[start:start+num]))) avg_2Q_algorithmic_gate_counts.append(int(np.mean(algorithmic_2Q_gate_counts[start:start+num]))) avg_1Q_Transpiled_gate_counts.append(int(np.mean(transpiled_1Q_gate_counts[start:start+num]))) avg_2Q_Transpiled_gate_counts.append(int(np.mean(transpiled_2Q_gate_counts[start:start+num]))) if Memory_utilization_plot == True:max_memory.append(np.max(mem_usage[start:start+num])) start += num # Calculate the fidelity data avg_f, avg_Hf = plot_fidelity_data(fidelity_data, Hf_fidelity_data, "Fidelity Comparison") # Plot histograms for average creation time, average elapsed time, average quantum processing time, and average circuit depth versus the number of qubits # Add labels to the bars def autolabel(rects,ax,str='{:.3f}',va='top',text_color="black"): for rect in rects: height = rect.get_height() ax.annotate(str.format(height), # Formatting to two decimal places xy=(rect.get_x() + rect.get_width() / 2, height / 2), xytext=(0, 0), textcoords="offset points", ha='center', va=va,color=text_color,rotation=90) bar_width = 0.3 # Determine the number of subplots and their arrangement if Memory_utilization_plot and gate_counts_plots: fig, (ax1, ax2, ax3, ax4, ax5, ax6, ax7) = plt.subplots(7, 1, figsize=(18, 30)) # Plotting for both memory utilization and gate counts # ax1, ax2, ax3, ax4, ax5, ax6, ax7 are available elif Memory_utilization_plot: fig, (ax1, ax2, ax3, ax6, ax7) = plt.subplots(5, 1, figsize=(18, 30)) # Plotting for memory utilization only # ax1, ax2, ax3, ax6, ax7 are available elif gate_counts_plots: fig, (ax1, ax2, ax3, ax4, ax5, ax6) = plt.subplots(6, 1, figsize=(18, 30)) # Plotting for gate counts only # ax1, ax2, ax3, ax4, ax5, ax6 are available else: fig, (ax1, ax2, ax3, ax6) = plt.subplots(4, 1, figsize=(18, 30)) # Default plotting # ax1, ax2, ax3, ax6 are available fig.suptitle(f"General Benchmarks : {platform} - {benchmark_name}", fontsize=16) for i in range(len(avg_creation_times)): #converting seconds to milli seconds by multiplying 1000 avg_creation_times[i] *= 1000 ax1.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) x = ax1.bar(num_qubits_range, avg_creation_times, color='deepskyblue') autolabel(ax1.patches, ax1) ax1.set_xlabel('Number of Qubits') ax1.set_ylabel('Average Creation Time (ms)') ax1.set_title('Average Creation Time vs Number of Qubits',fontsize=14) ax2.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) for i in range(len(avg_elapsed_times)): #converting seconds to milli seconds by multiplying 1000 avg_elapsed_times[i] *= 1000 for i in range(len(avg_quantum_times)): #converting seconds to milli seconds by multiplying 1000 avg_quantum_times[i] *= 1000 Elapsed= ax2.bar(np.array(num_qubits_range) - bar_width / 2, avg_elapsed_times, width=bar_width, color='cyan', label='Elapsed Time') Quantum= ax2.bar(np.array(num_qubits_range) + bar_width / 2, avg_quantum_times,width=bar_width, color='deepskyblue',label ='Quantum Time') autolabel(Elapsed,ax2,str='{:.1f}') autolabel(Quantum,ax2,str='{:.1f}') ax2.set_xlabel('Number of Qubits') ax2.set_ylabel('Average Time (ms)') ax2.set_title('Average Time vs Number of Qubits') ax2.legend() ax3.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) Normalized = ax3.bar(np.array(num_qubits_range) - bar_width / 2, avg_transpiled_depths, color='cyan', label='Normalized Depth', width=bar_width) # Adjust width here Algorithmic = ax3.bar(np.array(num_qubits_range) + bar_width / 2,avg_circuit_depths, color='deepskyblue', label='Algorithmic Depth', width=bar_width) # Adjust width here autolabel(Normalized,ax3,str='{:.2f}') autolabel(Algorithmic,ax3,str='{:.2f}') ax3.set_xlabel('Number of Qubits') ax3.set_ylabel('Average Circuit Depth') ax3.set_title('Average Circuit Depth vs Number of Qubits') ax3.legend() if gate_counts_plots == True: ax4.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) Normalized_1Q_counts = ax4.bar(np.array(num_qubits_range) - bar_width / 2, avg_1Q_Transpiled_gate_counts, color='cyan', label='Normalized Gate Counts', width=bar_width) # Adjust width here Algorithmic_1Q_counts = ax4.bar(np.array(num_qubits_range) + bar_width / 2, avg_1Q_algorithmic_gate_counts, color='deepskyblue', label='Algorithmic Gate Counts', width=bar_width) # Adjust width here autolabel(Normalized_1Q_counts,ax4,str='{}') autolabel(Algorithmic_1Q_counts,ax4,str='{}') ax4.set_xlabel('Number of Qubits') ax4.set_ylabel('Average 1-Qubit Gate Counts') ax4.set_title('Average 1-Qubit Gate Counts vs Number of Qubits') ax4.legend() ax5.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) Normalized_2Q_counts = ax5.bar(np.array(num_qubits_range) - bar_width / 2, avg_2Q_Transpiled_gate_counts, color='cyan', label='Normalized Gate Counts', width=bar_width) # Adjust width here Algorithmic_2Q_counts = ax5.bar(np.array(num_qubits_range) + bar_width / 2, avg_2Q_algorithmic_gate_counts, color='deepskyblue', label='Algorithmic Gate Counts', width=bar_width) # Adjust width here autolabel(Normalized_2Q_counts,ax5,str='{}') autolabel(Algorithmic_2Q_counts,ax5,str='{}') ax5.set_xlabel('Number of Qubits') ax5.set_ylabel('Average 2-Qubit Gate Counts') ax5.set_title('Average 2-Qubit Gate Counts vs Number of Qubits') ax5.legend() ax6.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) Hellinger = ax6.bar(np.array(num_qubits_range) - bar_width / 2, avg_Hf, width=bar_width, label='Hellinger Fidelity',color='cyan') # Adjust width here Normalized = ax6.bar(np.array(num_qubits_range) + bar_width / 2, avg_f, width=bar_width, label='Normalized Fidelity', color='deepskyblue') # Adjust width here autolabel(Hellinger,ax6,str='{:.2f}') autolabel(Normalized,ax6,str='{:.2f}') ax6.set_xlabel('Number of Qubits') ax6.set_ylabel('Average Value') ax6.set_title("Fidelity Comparison") ax6.legend() if Memory_utilization_plot == True: ax7.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) x = ax7.bar(num_qubits_range, max_memory, color='turquoise', width=bar_width, label="Memory Utilizations") autolabel(ax7.patches, ax7) ax7.set_xlabel('Number of Qubits') ax7.set_ylabel('Maximum Memory Utilized (MB)') ax7.set_title('Memory Utilized vs Number of Qubits',fontsize=14) plt.tight_layout(rect=[0, 0, 1, 0.96]) if saveplots == True: plt.savefig("ParameterPlotsSample.jpg") plt.show() # Quantum Volume Plot Suptitle = f"Volumetric Positioning - {platform}" appname=benchmark_name if QV_ == None: QV=2048 else: QV=QV_ depth_base =2 ax = plot_volumetric_background(max_qubits=max_qbits, QV=QV,depth_base=depth_base, suptitle=Suptitle, colorbar_label="Avg Result Fidelity") w_data = num_qubits_range # determine width for circuit w_max = 0 for i in range(len(w_data)): y = float(w_data[i]) w_max = max(w_max, y) d_tr_data = avg_transpiled_depths f_data = avg_f plot_volumetric_data(ax, w_data, d_tr_data, f_data, depth_base, fill=True,label=appname, labelpos=(0.4, 0.6), labelrot=15, type=1, w_max=w_max) anno_volumetric_data(ax, depth_base,label=appname, labelpos=(0.4, 0.6), labelrot=15, type=1, fill=False)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import QuantumCircuit from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits to represent the uncertainty num_uncertainty_qubits = 3 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective uncertainty_model = LogNormalDistribution( num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high) ) # plot probability distribution x = uncertainty_model.values y = uncertainty_model.probabilities plt.bar(x, y, width=0.2) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.show() # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 1.896 # set the approximation scaling for the payoff function c_approx = 0.25 # setup piecewise linear objective fcuntion breakpoints = [low, strike_price] slopes = [0, 1] offsets = [0, 0] f_min = 0 f_max = high - strike_price european_call_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, rescaling_factor=c_approx, ) # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective num_qubits = european_call_objective.num_qubits european_call = QuantumCircuit(num_qubits) european_call.append(uncertainty_model, range(num_uncertainty_qubits)) european_call.append(european_call_objective, range(num_qubits)) # draw the circuit european_call.draw() # plot exact payoff function (evaluated on the grid of the uncertainty model) x = uncertainty_model.values y = np.maximum(0, x - strike_price) plt.plot(x, y, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value (normalized to the [0, 1] interval) exact_value = np.dot(uncertainty_model.probabilities, y) exact_delta = sum(uncertainty_model.probabilities[x >= strike_price]) print("exact expected value:\t%.4f" % exact_value) print("exact delta value: \t%.4f" % exact_delta) european_call.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=european_call, objective_qubits=[3], post_processing=european_call_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (result.estimation_processed)) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) from qiskit_finance.applications.estimation import EuropeanCallPricing european_call_pricing = EuropeanCallPricing( num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, rescaling_factor=c_approx, bounds=(low, high), uncertainty_model=uncertainty_model, ) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_pricing.to_estimation_problem() # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (european_call_pricing.interpret(result))) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) from qiskit_finance.applications.estimation import EuropeanCallDelta european_call_delta = EuropeanCallDelta( num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, bounds=(low, high), uncertainty_model=uncertainty_model, ) european_call_delta._objective.decompose().draw() european_call_delta_circ = QuantumCircuit(european_call_delta._objective.num_qubits) european_call_delta_circ.append(uncertainty_model, range(num_uncertainty_qubits)) european_call_delta_circ.append( european_call_delta._objective, range(european_call_delta._objective.num_qubits) ) european_call_delta_circ.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_delta.to_estimation_problem() # construct amplitude estimation ae_delta = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_delta = ae_delta.estimate(problem) conf_int = np.array(result_delta.confidence_interval_processed) print("Exact delta: \t%.4f" % exact_delta) print("Esimated value: \t%.4f" % european_call_delta.interpret(result_delta)) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/quantumyatra/quantum_computing
quantumyatra
# Useful additional packages import matplotlib.pyplot as plt %matplotlib inline import numpy as np from math import pi from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit import Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.visualization import * from qiskit.providers.aer import UnitarySimulator from qiskit.tools.visualization import circuit_drawer from qiskit.quantum_info import state_fidelity from qiskit import BasicAer backend = BasicAer.get_backend('unitary_simulator') qr = QuantumRegister(2) cr = ClassicalRegister(2) groverCircuit = QuantumCircuit(qr,cr) groverCircuit.h(qr) groverCircuit.draw(output="mpl") job = execute(groverCircuit, backend) job.result().get_unitary(groverCircuit, decimals=3) groverCircuit.measure(qr,cr) groverCircuit.draw(output="mpl") simulator = Aer.get_backend('qasm_simulator') result = execute(groverCircuit, simulator).result() counts = result.get_counts(groverCircuit) plot_histogram(counts, title='Grover Intermediate measurement') qr = QuantumRegister(2) cr = ClassicalRegister(2) groverCircuit = QuantumCircuit(qr,cr) groverCircuit.h(qr) '''oracle w = |00>''' groverCircuit.x(qr) groverCircuit.cz(qr[0],qr[1]) groverCircuit.x(qr) groverCircuit.draw(output="mpl") job = execute(groverCircuit, backend) job.result().get_unitary(groverCircuit, decimals=3) INIT = 0.5*np.array([[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]]) CZ = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,-1]]) XX = np.array([[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]) '''Oracle''' ORCL = np.dot(XX,np.dot(CZ,XX)) print(ORCL) '''FUll circuit matrix so far''' np.dot(ORCL,INIT) groverCircuit.measure(qr,cr) groverCircuit.draw(output="mpl") simulator = Aer.get_backend('qasm_simulator') result = execute(groverCircuit, simulator).result() counts = result.get_counts(groverCircuit) plot_histogram(counts, title='Grover Intermediate measurement') qr = QuantumRegister(2) cr = ClassicalRegister(2) groverCircuit = QuantumCircuit(qr,cr) groverCircuit.h(qr) '''oracle w = |00>''' groverCircuit.x(qr) groverCircuit.cz(qr[0],qr[1]) groverCircuit.x(qr) '''Grover Transform''' groverCircuit.h(qr) '''Reflection''' groverCircuit.z(qr) groverCircuit.cz(qr[0],qr[1]) '''end of Reflection''' groverCircuit.h(qr) '''end of Grover Transform''' groverCircuit.draw(output="mpl") job = execute(groverCircuit, backend) job.result().get_unitary(groverCircuit, decimals=3) HH = 0.5*np.array([[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]]) ZZ = np.array([[1,0,0,0],[0,-1,0,0],[0,0,-1,0],[0,0,0,1]]) '''Grover Transform''' GT = np.dot(HH,np.dot(CZ,np.dot(ZZ,HH))) print(GT) '''FUll circut matrix''' np.dot(INIT,np.dot(ORCL,GT)) simulator = Aer.get_backend('qasm_simulator') result = execute(groverCircuit, simulator).result() counts = result.get_counts(groverCircuit) plot_histogram(counts, title='Grover Intermediate measurement')
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive. For more details see https://docs.quantum.ibm.com/run/primitives # result = Sampler().run(circuits).result() from qiskit import QuantumCircuit, ClassicalRegister, transpile from qiskit.providers.fake_provider import GenericBackendV2 # Create a circuit with classical control creg = ClassicalRegister(19) qc = QuantumCircuit(25) qc.add_register(creg) qc.h(0) for i in range(18): qc.cx(0, i + 1) for i in range(18): qc.measure(i, creg[i]) with qc.if_test((creg, 0)): qc.ecr(20, 21) # Define backend with custom basis gates and # control flow instructions backend = GenericBackendV2( num_qubits=25, basis_gates=["ecr", "id", "rz", "sx", "x"], control_flow=True, ) #Transpile transpiled_qc = transpile(qc, backend) job = backend.run(transpiled_qc) #job = execute(qc, simulator, shots=1024) # Wait for the job to finish job_result = job.result() # Get counts from the result counts = job.result()[0].data.meas.get_counts() #counts = job_result.get_counts() """# Plot the histogram plot_histogram(counts)"""
https://github.com/trevorpiltch/Grovers-Algorithm
trevorpiltch
from qiskit import * def get_result(qc, shots=1024): """Runs the circuit on the simulator""" backend = Aer.get_backend('qasm_simulator') result = execute(qc, backend, shots = shots).result() counts = result.get_counts() return counts def parse_result(counts, p=False): """Returns the maximum value found and optionally prints all results""" max = [0, 0] for i in counts: num = int(i, 2) key = str(num) value = str(counts[i]) if (int(counts[i]) > int(max[1])): max[0] = num max[1] = value if p: print(key + ": " + value) return max
https://github.com/Qiskit/qiskit-transpiler-service
Qiskit
# -*- coding: utf-8 -*- # (C) Copyright 2024 IBM. All Rights Reserved. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import logging from typing import Dict, List, Union, Literal import numpy as np from qiskit import QuantumCircuit, QuantumRegister, qasm2, qasm3 from qiskit.circuit import QuantumCircuit, QuantumRegister, Qubit from qiskit.qasm2 import QASM2ExportError, QASM2ParseError from qiskit.transpiler import TranspileLayout from qiskit.transpiler.layout import Layout from qiskit_transpiler_service.wrappers import QiskitTranspilerService # setting backoff logger to error level to avoid too much logging logging.getLogger("backoff").setLevel(logging.ERROR) logger = logging.getLogger(__name__) class TranspileAPI(QiskitTranspilerService): """A helper class that covers some basic funcionality from the Qiskit Transpiler API""" def __init__(self): super().__init__() def transpile( self, circuits: Union[ Union[List[str], str], Union[List[QuantumCircuit], QuantumCircuit] ], optimization_level: int = 1, backend: Union[str, None] = None, coupling_map: Union[List[List[int]], None] = None, ai: Literal["true", "false", "auto"] = "true", qiskit_transpile_options: Dict = None, ai_layout_mode: str = None, ): circuits = circuits if isinstance(circuits, list) else [circuits] qasm_circuits = [_input_to_qasm(circ) for circ in circuits] json_args = { "qasm_circuits": qasm_circuits, } if qiskit_transpile_options is not None: json_args["qiskit_transpile_options"] = qiskit_transpile_options if coupling_map is not None: json_args["backend_coupling_map"] = coupling_map params = { "backend": backend, "optimization_level": optimization_level, "ai": ai, } if ai_layout_mode is not None: params["ai_layout_mode"] = ai_layout_mode transpile_resp = self.request_and_wait( endpoint="transpile", body=json_args, params=params ) logger.debug(f"transpile_resp={transpile_resp}") transpiled_circuits = [] for res, orig_circ in zip(transpile_resp, circuits): try: transpiled_circuits.append(_get_circuit_from_result(res, orig_circ)) except Exception as ex: logger.error("Error transforming the result to a QuantumCircuit object") raise return ( transpiled_circuits if len(transpiled_circuits) > 1 else transpiled_circuits[0] ) def benchmark( self, circuits: Union[ Union[List[str], str], Union[List[QuantumCircuit], QuantumCircuit] ], backend: str, optimization_level: int = 1, qiskit_transpile_options: Dict = None, ): raise Exception("Not implemented") def _input_to_qasm(input_circ: Union[QuantumCircuit, str]): if isinstance(input_circ, QuantumCircuit): try: qasm = qasm2.dumps(input_circ).replace("\n", " ") except QASM2ExportError: qasm = qasm3.dumps(input_circ).replace("\n", " ") elif isinstance(input_circ, str): qasm = input_circ.replace("\n", " ") else: raise TypeError("Input circuits must be QuantumCircuit or qasm string.") return qasm def _get_circuit_from_result(transpile_resp, orig_circuit): transpiled_circuit = _get_circuit_from_qasm(transpile_resp["qasm"]) init_layout = transpile_resp["layout"]["initial"] final_layout = transpile_resp["layout"]["final"] orig_circuit = ( _get_circuit_from_qasm(orig_circuit) if isinstance(orig_circuit, str) else orig_circuit ) transpiled_circuit = QuantumCircuit(len(init_layout)).compose(transpiled_circuit) transpiled_circuit._layout = _create_transpile_layout( init_layout, final_layout, transpiled_circuit, orig_circuit ) return transpiled_circuit def _create_initial_layout(initial, n_used_qubits): """Create initial layout using the initial index layout and the number of active qubits.""" total_qubits = len(initial) q_total = n_used_qubits a_total = total_qubits - q_total initial_layout = Layout() for q in range(q_total): initial_layout.add(initial[q], Qubit(QuantumRegister(q_total, "q"), q)) for a in range(q_total, total_qubits): initial_layout.add( initial[a], Qubit(QuantumRegister(a_total, "ancilla"), a - q_total) ) return initial_layout def _create_input_qubit_mapping(qubits_used, total_qubits): """Create input qubit mapping with the number of active qubits and the total number of qubits.""" input_qubit_mapping = { Qubit(QuantumRegister(qubits_used, "q"), q): q for q in range(qubits_used) } input_ancilla_mapping = { Qubit( QuantumRegister(total_qubits - qubits_used, "ancilla"), q - qubits_used ): q for q in range(qubits_used, total_qubits) } input_qubit_mapping.update(input_ancilla_mapping) return input_qubit_mapping def _create_final_layout(initial, final, circuit): """Create final layout with the initial and final index layout and the circuit.""" final_layout = Layout() q_total = len(initial) q_reg = QuantumRegister(q_total, "q") for i, j in zip(final, initial): q_index = circuit.find_bit(Qubit(q_reg, j)).index qubit = circuit.qubits[q_index] final_layout.add(i, qubit) return final_layout def _create_transpile_layout(initial, final, circuit, orig_circuit): """Build the full transpile layout.""" n_used_qubits = orig_circuit.num_qubits return TranspileLayout( initial_layout=_create_initial_layout( initial=initial, n_used_qubits=n_used_qubits ), # final=final), input_qubit_mapping=_create_input_qubit_mapping( qubits_used=n_used_qubits, total_qubits=len(initial) ), final_layout=_create_final_layout( initial=initial, final=final, circuit=circuit ), _input_qubit_count=n_used_qubits, _output_qubit_list=circuit.qubits, ) def _get_circuit_from_qasm(qasm_string): try: return qasm2.loads( qasm_string, custom_instructions=qasm2.LEGACY_CUSTOM_INSTRUCTIONS, ) except QASM2ParseError: return qasm3.loads(qasm_string)
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb def plot_Pr0(R1, R2): matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100) ph_max = 2*math.pi; dph = ph_max/20; ph = np.arange(0, ph_max+dph, dph) dimph = ph.shape[0]; P0 = np.zeros(dimph) T1 = math.sqrt(1 - R1**2); T2 = math.sqrt(1 - R2**2) P0 = T1**2*R2**2 + R1**2*T2**2 + 2*T1*R1*T2*R2*np.cos(ph) plt.plot(ph, P0); plt.xlabel(r'$\phi$'); plt.ylabel(r'$Pr(0)$') plt.xlim(0, 2*math.pi); plt.ylim(0, 1) plt.annotate(r'$R_{1}=$'+str(R1), xy=(0.5,0.5), xytext=(0.5,0.5), fontsize=12) plt.annotate(r'$R_{2}=$'+str(R1), xy=(0.5,0.4), xytext=(0.5,0.4), fontsize=12) plt.show() interactive(plot_Pr0, R1 = (0, 1, 0.05), R2 = (0, 1, 0.05)) def V1(T1, T2): return (2*T1*T2*np.sqrt(1-T1**2)*np.sqrt(1-T2**2))/((T1**2)*(T2**2) + (1-T1**2)*(1-T2**2)) def V_3d(th, ph): x = np.linspace(0.00001, 0.99999, 20); y = np.linspace(0.00001, 0.99999, 20); X, Y = np.meshgrid(x, y) Z = V1(X, Y); fig = plt.figure(); ax = plt.axes(projection = "3d"); ax.plot_wireframe(X, Y, Z, color = 'blue') ax.set_xlabel(r'$T_{1}$'); ax.set_ylabel(r'$T_{2}$'); ax.set_zlabel(r'$V_{0}$') ax.view_init(th, ph); fig.tight_layout(); plt.show() interactive(V_3d, th = (0,90,10), ph = (0,360,10)) from mpl_toolkits import mplot3d def V0(T1, T2): return (2*T1*T2*np.sqrt(1-T1**2)*np.sqrt(1-T2**2))/((T1**2)*(1-T2**2) + (1-T1**2)*T2**2) def V_3d(th, ph): x = np.linspace(0.00001, 0.99999, 20); y = np.linspace(0.00001, 0.99999, 20); X, Y = np.meshgrid(x, y) Z = V0(X, Y); fig = plt.figure(); ax = plt.axes(projection = "3d"); ax.plot_wireframe(X, Y, Z, color = 'blue') ax.set_xlabel(r'$T_{1}$'); ax.set_ylabel(r'$T_{2}$'); ax.set_zlabel(r'$V_{0}$') ax.view_init(th, ph); fig.tight_layout(); plt.show() interactive(V_3d, th = (0,90,10), ph = (0,360,10)) def V_3d(th, ph): x = np.linspace(0.00001, 0.99999, 20); y = np.linspace(0.00001, 0.99999, 20); X, Y = np.meshgrid(x, y) Z = V0(X, Y)-V1(X, Y); fig = plt.figure(); ax = plt.axes(projection = "3d"); ax.plot_wireframe(X, Y, Z, color = 'blue') ax.set_xlabel(r'$T_{1}$'); ax.set_ylabel(r'$T_{2}$'); ax.set_zlabel(r'$V_{0}-V_{1}$') ax.view_init(th, ph); fig.tight_layout(); plt.show() interactive(V_3d, th = (0,90,10), ph = (0,360,10)) import math import qiskit def shannon_num(pv): d = pv.shape[0]; SE = 0.0; j = -1 while (j < d-1): j = j + 1 if pv[j] > 10**-15 and pv[j] < (1.0-10**-15): SE -= pv[j]*math.log2(pv[j]) return SE import scipy.linalg.lapack as lapak def von_neumann_num(rho): d = rho.shape[0]; b = lapak.zheevd(rho) return shannon_num(b[0]) def coh_re_num(rho): d = rho.shape[0]; pv = np.zeros(d) for j in range(0,d): pv[j] = rho[j,j].real return shannon_num(pv) - von_neumann_num(rho) def P_vn_num(rho): d = rho.shape[0]; P = 0 for j in range(0, d): if rho[j,j] > 10**-15 and rho[j,j] < (1.0-10**-15): P += np.absolute(rho[j,j])*math.log2(np.absolute(rho[j,j])) return math.log2(d) + P def qc_gmzi(th, ph, ga): qc = qiskit.QuantumCircuit(1) qc.rx(-2*th, 0); qc.z(0); qc.y(0); qc.p(ph, 0); qc.rx(-2*ga, 0) return qc th, ph, ga = math.pi/3, math.pi/2, math.pi; qcgmzi = qc_gmzi(th, ph, ga); qcgmzi.draw(output = 'mpl') nshots = 8192 qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibmq_armonk') simulator = qiskit.Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter # for error mitigation from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter qr = qiskit.QuantumRegister(1) qubit_list = [0] # os qubits para os quais aplicaremos calibracao de medidas meas_calibs, state_labels = complete_meas_cal(qubit_list = qubit_list, qr = qr) job = qiskit.execute(meas_calibs, backend = device, shots = nshots); job_monitor(job) cal_results = job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels) # for computing coherence and predictability th_max = math.pi/2; dth = th_max/10; th = np.arange(0, th_max+dth, dth); dimth = th.shape[0] Csim = np.zeros(dimth); Psim = np.zeros(dimth); Cexp = np.zeros(dimth); Pexp = np.zeros(dimth) for j in range(0, dimth): qr = qiskit.QuantumRegister(1); qc = qiskit.QuantumCircuit(qr); qc.rx(-2*th[j], qr[0]) qstc = state_tomography_circuits(qc, qr[0]) job = qiskit.execute(qstc, simulator, shots = nshots) # simulation qstf = StateTomographyFitter(job.result(), qstc); rho = qstf.fit(method = 'lstsq') Csim[j] = coh_re_num(rho); Psim[j] = P_vn_num(rho) jobE = qiskit.execute(qstc, backend = device, shots = nshots); job_monitor(jobE) mitigated_results = meas_fitter.filter.apply(jobE.result()) qstfE = StateTomographyFitter(mitigated_results, qstc) #qstfE = StateTomographyFitter(jobE.result(), qstc) rhoE = qstfE.fit(method = 'lstsq') Cexp[j] = coh_re_num(rhoE); Pexp[j] = P_vn_num(rhoE) Cexp Pexp matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100) plt.plot(th, Csim, label = r'$C_{re}^{sim}$') plt.plot(th, Psim, label = r'$P_{vn}^{sim}$') plt.plot(th, Cexp, 'o', label = r'$C_{re}^{exp}$') plt.plot(th, Pexp, '*', label = r'$P_{vn}^{exp}$') plt.legend(); plt.xlabel(r'$\theta$') plt.savefig('coh_vs_ivi_armonk_mit.pdf', format = 'pdf', dpi = 200) plt.show() # for computing the visibility ph_max = 2*math.pi; dph = ph_max/10; ph = np.arange(0, ph_max+dph, dph); dimph = ph.shape[0] P0sim = np.zeros(dimph); P0exp = np.zeros(dimph) th[j] = math.pi/2 for k in range(0, dimph): qr = qiskit.QuantumRegister(1); cr = qiskit.ClassicalRegister(1); qc = qiskit.QuantumCircuit(qr, cr) qc.rx(-2*th[j], qr[0]); qc.z(qr[0]); qc.y(qr[0]) qc.p(ph[k], qr[0]); ga = th[j]; qc.rx(-2*ga, qr[0]); qc.measure(qr[0], cr[0]) job = qiskit.execute(qc, backend = simulator, shots = nshots) # simulation counts = job.result().get_counts(qc) if '0' in counts: P0sim[k] = counts['0'] jobE = qiskit.execute(qc, backend = device, shots = nshots); job_monitor(jobE) mitigated_results = meas_fitter.filter.apply(jobE.result()) countsE = mitigated_results.get_counts(qc) #countsE = jobE.result().get_counts(qc) if '0' in countsE: P0exp[k] = countsE['0'] P0sim = P0sim/nshots; P0exp = P0exp/nshots P0exp P0sim P0expthpi2 = np.array([0.0267666 , 0.02431936, 0.02646069, 0.03701438, 0.02340165, 0.02997859, 0.02095442, 0.02049556, 0.02156623, 0.01957785, 0.03242582]) P0simthpi2 = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) P0expthpi4 = np.array([1. , 0.90838173, 0.66274091, 0.37488527, 0.11976134, 0.01881309, 0.12251453, 0.36310798, 0.65050474, 0.90455797, 1. ]) P0simthpi4 = np.array([1. , 0.90612793, 0.65258789, 0.34069824, 0.09924316, 0. , 0.09228516, 0.34741211, 0.64331055, 0.90209961, 1. ]) matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100) plt.plot(ph, P0simthpi4, label = r'$P_{0}^{sim}(\theta=\pi/4)$') plt.plot(ph, P0expthpi4, 'o', label = r'$P_{0}^{exp}(\theta=\pi/4)$') plt.plot(ph, P0simthpi2, '.-', label = r'$P_{0}^{sim}(\theta=\pi/2)$') plt.plot(ph, P0expthpi2, '*', label = r'$P_{0}^{exp}(\theta=\pi/2)$') plt.ylim(0, 2*math.pi); plt.ylim(-0.01, 1.01) plt.legend(); plt.xlabel(r'$\phi$') plt.savefig('P0_thpi4_armonk_mit.pdf', format = 'pdf', dpi = 200) plt.show()
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np import qiskit from qiskit.circuit.library import RXGate from qiskit.providers.aer.noise import NoiseModel, ReadoutError, depolarizing_error, coherent_unitary_error from scipy.stats import norm from scipy.optimize import curve_fit import matplotlib.pylab as plt import qc_grader # Create circuit to generate an equal superposition of quantum states # Set the number of qubits qubits_count = 1 # Set the number of bits cbits_count = 1 # Instantiate a quantum register quantum_register = qiskit.QuantumRegister(qubits_count) # Instantiate a classical register classical_register = qiskit.ClassicalRegister(cbits_count) # Instantiate a quantum circuit circuit = qiskit.QuantumCircuit(quantum_register, classical_register) # Add a Hadamard gate and measurement ###INSERT CODE BELOW THIS LINE circuit.h(0) circuit.measure(0,0) ###DO NOT EDIT BELOW THIS LINE from qc_grader.challenges.qgss_2022 import grade_lab3_ex1 grade_lab3_ex1(circuit) # Run the quantum circuit on a simulator backend which returns measured shots in the Z basis shots_backend = qiskit.Aer.get_backend('qasm_simulator') # Fix number of times to repeat the experiment num_shots = 10 # Create a job, run on the simulator, extract the results and get the counts dictionary ###INSERT CODE BELOW THIS LINE job = shots_backend.run(circuit, shots = num_shots).result() counts = job.get_counts() ###DO NOT EDIT BELOW THIS LINE print(counts) from qc_grader.challenges.qgss_2022 import grade_lab3_ex2 grade_lab3_ex2(counts) # Set different number of shots num_shots_list = [10, 100, 1000, 10000] # For each number of shots, extract the probability of |0> from the experimental counts p0_list = [] for num_shots in num_shots_list: # Create a job, run on the simulator, extract the results and get the counts dictionary ###INSERT CODE BELOW THIS LINE job = shots_backend.run(circuit, shots = num_shots).result() counts = job.get_counts() counts_0 = counts['0'] prob = counts_0/num_shots p0_list.append(prob) ###DO NOT EDIT BELOW THIS LINE for num_shots, p0 in zip(num_shots_list, p0_list): print(f"The probability of observing the 0 state with {num_shots} shots is: {p0}") from qc_grader.challenges.qgss_2022 import grade_lab3_ex3 grade_lab3_ex3(p0_list) # Set the number of shots num_shots = 10 # Set the number of times to repeat the experiment iterations = 10000 # Set the number of bins for the histogram bin_count = 100 # For each iteration, create job, run the experiment, # collect results and calculate probability of |0> p0_list = [] for _ in range(iterations): job = shots_backend.run(circuit, shots=num_shots) result = job.result() if '0' in result.get_counts().keys(): p0 = result.get_counts()['0']/num_shots else: p0 = 1 - result.get_counts()['1']/num_shots p0_list.append(p0) # Calculate a histogram from the results yhist, xhist = np.histogram(p0_list, bins=bin_count) # Restrict horizontal axis to 0-1 x_01 = np.array([xhist[n] + (xhist[n + 1] - xhist[n])/2 for n in range(len(xhist)-1)]) # Find x-points for which the histogram has more than zero counts xh = np.where(yhist > 0)[0] # Get the y-points of the corresponding x ones yh = yhist[xh] # Get the x-points x_01_h = x_01[xh] # Plot plt.scatter(x_01_h, yh, color = 'red') plt.title(f"Using {num_shots} shots to estimate probability") plt.xlim((0, 1)) plt.xlabel(r'probability of $\vert 0 \rangle$') plt.ylabel('counts') plt.show() # Define a Gaussian function for the fit def gaussian(x, a, mean, sigma): return a * (1/(sigma*np.sqrt(2*np.pi)))*np.exp(-((x - mean)**2 / (2 * sigma**2))) # Set initial estimates for the fit: the maximum height of the histogram, the theoretical # average and the theoretical standard deviation height_estimate = np.max(yh) mu_estimate = 0.5 sigma_estimate = np.sqrt(mu_estimate*(1-mu_estimate)/num_shots) # Define list to store the estimated values of the average (mu_sigma[0]) and standard deviation (mu_sigma[1]) mu_sigma = [] # Use the curve_fit function to fit the experimental data using the definition of the Gaussian function # which will return the estimate of the parameters. ###INSERT CODE BELOW THIS LINE popt, pcov = curve_fit(gaussian, x_01_h, yh, [height_estimate, mu_estimate, sigma_estimate]) # (x_01_h, 1, mu_estimate, sigma_estimate) mu_sigma.append(popt[1]) mu_sigma.append(popt[2]) # ###DO NOT EDIT BELOW THIS LINE print("The mean is ", mu_sigma[0]) print("The standard deviation is ", mu_sigma[1]) # Plot experimental data and the fit plt.scatter(x_01_h, yh, label = 'data', color = 'red') plt.plot(x_01, gaussian(x_01, *popt), label = 'fit', linestyle = '--') plt.title(f"Using {num_shots} shots to estimate probability") plt.xlim((0, 1)) plt.xlabel(r'probability of $\vert 0 \rangle$') plt.ylabel('counts') plt.legend() plt.show() from qc_grader.challenges.qgss_2022 import grade_lab3_ex4 grade_lab3_ex4(mu_sigma) # Set different number of shots num_shots_list = [10, 100, 1000,10000] # Set the number of times to repeat the experiment iterations = 10000 # Set the number of bins for the histogram bin_count = 100 # Repeat the protocol above for different number of shots to see how the parameters of the # estimated Gaussian change with the number of shots popt_list = [] gaussian_curve_list, x_01_list = [], [] for num_shots in num_shots_list: p0_list = [] for _ in range(iterations): job = shots_backend.run(circuit, shots=num_shots) result = job.result() if '0' in result.get_counts().keys(): p0 = result.get_counts()['0']/num_shots else: p0 = 1 - result.get_counts()['1']/num_shots p0_list.append(p0) yhist, xhist = np.histogram(p0_list, bins=bin_count) norm_y = np.sum(yhist) yhist = yhist/iterations x_01 = np.array([xhist[n] + (xhist[n + 1] - xhist[n])/2 for n in range(len(xhist)-1)]) xh = np.where(yhist > 0)[0] yh = yhist[xh] x_01_h = x_01[xh] height_estimate = np.max(yh) mu_estimate = p0 sigma_estimate = np.sqrt(mu_estimate*(1-mu_estimate)/num_shots) popt, pcov = curve_fit(gaussian, x_01_h, yh, [height_estimate, mu_estimate, sigma_estimate]) gaussian_curve = gaussian(x_01, *popt) gaussian_curve_list.append(gaussian_curve) x_01_list.append(x_01) popt_list.append(popt) plt.scatter(x_01_h, yh, label = 'data', color = 'red') plt.plot(x_01, gaussian_curve, label = 'fit', linestyle = '--') plt.title(f"Using {num_shots} shots to estimate probability") plt.xlim((0, 1)) plt.xlabel(r'probability of $\vert 0 \rangle$') plt.ylabel('counts') plt.legend() plt.show() # Define list which will contain the experimental standard deviations sigma_exp_list = [] # Append the standard deviations from the experiments with different number of shots to sigma_exp_list ###INSERT CODE BELOW THIS LINE for popt in popt_list: sigma_exp_list.append(popt[2]) ###DO NOT EDIT BELOW THIS LINE # Define theoretical sigma p=0.5 sigma_th_list = [np.sqrt(p*(1-p)/num_shots) for num_shots in num_shots_list] for sigma_exp, sigma_th in zip(sigma_exp_list, sigma_th_list): print(f"The variance from experiment is {sigma_exp} while the theoretical one is {sigma_th}") from qc_grader.challenges.qgss_2022 import grade_lab3_ex5 grade_lab3_ex5(sigma_exp_list) # Set number of shots num_shots_measurement = 10000 # Create an empty noise model readout_noise_model = NoiseModel() # Measurement miss-assignement probabilities p0given1 = 0.3 # Probability of measuuring |0> given the state is |1> p1given0 = 0.05 # Probability of measuring |1> given the state is |0> readout_error = ReadoutError([[1 - p1given0, p1given0], [p0given1, 1 - p0given1]]) # Define readout error readout_noise_model.add_readout_error(readout_error, [0]) # Add error to noise model # Calculate probability of seeing |0> given that |0> is prepared circuit_0 = qiskit.QuantumCircuit(quantum_register, classical_register) # Add measurement ###INSERT CODE BELOW THIS LINE circuit_0.measure(0,0) ###DO NOT EDIT BELOW THIS LINE from qc_grader.challenges.qgss_2022 import grade_lab3_ex6 grade_lab3_ex6(circuit_0) # Run the experiment job = shots_backend.run(circuit_0, shots=num_shots_measurement, noise_model=readout_noise_model) # Retrieve results result = job.result() # Calculate probability of |0> if '0' in result.get_counts().keys(): p0_0 = result.get_counts()['0']/num_shots_measurement else: p0_0 = 1 - result.get_counts()['1']/num_shots_measurement p1_0 = 1 - p0_0 print('Probability of measuring |0> when |0> is prepared:', p0_0) print('Probability of measuring |1> when |0> is prepared:', p1_0) # Calculate probability of seeing |1> given that |1> is prepared circuit_1 = qiskit.QuantumCircuit(quantum_register, classical_register) # Add X gate and measurement ###INSERT CODE BELOW THIS LINE circuit_1.x(0) circuit_1.measure(0,0) ###DO NOT EDIT BELOW THIS LINE from qc_grader.challenges.qgss_2022 import grade_lab3_ex7 grade_lab3_ex7(circuit_1) # Run the experiment job = shots_backend.run(circuit_1, shots=num_shots_measurement, noise_model=readout_noise_model) # Retrieve results result = job.result() # Calculate probability of |0> if '0' in result.get_counts().keys(): p1_1 = 1 - result.get_counts()['0']/num_shots_measurement else: p1_1 = result.get_counts()['1']/num_shots_measurement p0_1 = 1 - p1_1 print('Probability of measuring |0> when |1> is prepared:', p0_1) print('Probability of measuring |1> when |1> is prepared:', p1_1) # Define the confusion matrix from the probabilities found above ###INSERT CODE BELOW THIS LINE confusion_matrix = np.array([[p0_0, p0_1], [p1_0, p1_1]]) ###DO NOT EDIT BELOW THIS LINE print("Confusion matrix:") print(confusion_matrix) from qc_grader.challenges.qgss_2022 import grade_lab3_ex8 # The grader expects a np.array object (not list) grade_lab3_ex8(confusion_matrix) # Run experiments job = shots_backend.run(circuit, shots=num_shots_measurement, noise_model=readout_noise_model) # Extract results result = job.result() # Calculate probability of |0> if '0' in result.get_counts().keys(): p0_noisy = result.get_counts()['0']/num_shots_measurement p1_noisy = 1 - p0_noisy else: p0_noisy = 1 - result.get_counts()['1']/num_shots_measurement p1_noisy = 1 - p0_noisy p_vector_noisy = np.array([p0_noisy, p1_noisy]) print("Noisy probability of |0>: ", p0_noisy) print("Noisy probability of |1>: ", p1_noisy) # Invert the confusion matrix inverse_confusion_matrix = np.linalg.inv(confusion_matrix) # Mitigate the counts using the inverse of the confusion matrix ###INSERT CODE BELOW THIS LINE p_vector_mitigated = (inverse_confusion_matrix @ p_vector_noisy) ###DO NOT EDIT BELOW THIS LINE print("Mitigated probability of |0>: ", p_vector_mitigated[0]) print("Mitigated probability of |1>: ", p_vector_mitigated[1]) from qc_grader.challenges.qgss_2022 import grade_lab3_ex9 # The grader expects a np.array object (not list) grade_lab3_ex9(p_vector_mitigated) # Run ideal experiments job = shots_backend.run(circuit, shots=num_shots_measurement) # Extract results result = job.result() # Calculate probability of |0> if '0' in result.get_counts().keys(): p0_ideal = result.get_counts()['0']/num_shots_measurement p1_ideal = 1 - p0_ideal else: p0_ideal = 1 - result.get_counts()['1']/num_shots_measurement p1_ideal = 1 - p0_ideal print("Ideal probability of |0>: ", p0_ideal) print("Ideal probability of |1>: ", p1_ideal) # Set number of shots num_shots_coherent = 100 # Create an empty noise model rx_overrotation_noise_model = NoiseModel() # Construct a 1 qubit over-rotation of the RX gate epsilon = np.pi/5 # over rotation amount epsilon_rotation = RXGate(epsilon).to_matrix() # get matrix representation # Create coherent error over_rotation = coherent_unitary_error(epsilon_rotation) # Add error to error model rx_overrotation_noise_model.add_quantum_error(over_rotation, ['rx'], qubits = [0]) # Set value of rotation theta = np.pi # Instantiate a quantum circuit circuit = qiskit.QuantumCircuit(quantum_register, classical_register) # Add a parametrized RX rotation and bind the value of the parameter. (By default, parameter binding is not an in-place operation) # Then measure the qubit and calculate probability of seeing |0> after rx(np.pi) ###INSERT CODE BELOW THIS LINE circuit.rx(theta, 0) circuit.measure(0,0) ###DO NOT EDIT BELOW THIS LINE from qc_grader.challenges.qgss_2022 import grade_lab3_ex10 grade_lab3_ex10(circuit) # Run experiments job = shots_backend.run(circuit, shots=num_shots_coherent, noise_model=rx_overrotation_noise_model) # Extract results result = job.result() # Calculate the probability of |0> if '0' in result.get_counts().keys(): p0 = result.get_counts()['0']/num_shots_coherent else: p0 = 1 - result.get_counts()['1']/num_shots_coherent print("Noisy probability of |0> after coherent error in idling: ", p0) print("Noisy probability of |1> after coherent error in idling: ", 1-p0) # Define number of shots num_shots_incoherent = 10000 # Create an empty noise model depolarizing_noise_model = NoiseModel() # Define a depolarizing error on the identity gate for qubit zero and add it to the noise model ###INSERT CODE BELOW THIS LINE lamb = float(5/100) depolarizing = depolarizing_error(lamb, 1) depolarizing_noise_model.add_quantum_error(depolarizing, ['id'], qubits = [0]) ###DO NOT EDIT BELOW THIS LINE from qc_grader.challenges.qgss_2022 import grade_lab3_ex11 grade_lab3_ex11(depolarizing_noise_model) # Create a circuit with an idle instruction circuit_idle = qiskit.QuantumCircuit(quantum_register, classical_register) circuit_idle.id(0) circuit_idle.measure(0,0) # Run experiments job = shots_backend.run(circuit_idle, shots=num_shots_incoherent, noise_model=depolarizing_noise_model) # Extract results result = job.result() # Calculate probability of seeing |0> after idle time if '0' in result.get_counts().keys(): p0 = result.get_counts()['0']/num_shots_incoherent else: p0 = 1 - result.get_counts()['1']/num_shots_incoherent print("Noisy probability of |0> after incoherent error in idling: ", p0) print("Noisy probability of |1> after incoherent error in idling: ", 1-p0)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile from qiskit.visualization import plot_circuit_layout from qiskit.providers.fake_provider import FakeVigo backend = FakeVigo() ghz = QuantumCircuit(3, 3) ghz.h(0) ghz.cx(0,range(1,3)) ghz.barrier() ghz.measure(range(3), range(3)) new_circ_lv3 = transpile(ghz, backend=backend, optimization_level=3) plot_circuit_layout(new_circ_lv3, backend)
https://github.com/quantum-tokyo/qiskit-handson
quantum-tokyo
# Qiskitライブラリーを導入 from qiskit import * # 描画のためのライブラリーを導入 import matplotlib.pyplot as plt %matplotlib inline # Qiskitバージョンの確認 qiskit.__qiskit_version__ # 2量子ビット回路を用意 q1 = QuantumCircuit(2,2) # 2量子ビット回路と2ビットの古典レジスターを用意します。 # 回路を描画 q1.draw(output="mpl") # 量子ゲートで回路を作成 q1.x(0) # Xゲートを量子ビットq0に操作します。 q1.x(1) # Xゲートを量子ビットq1に操作します。 # 回路を描画 q1.draw(output="mpl") # 状態ベクトルシミュレーターの実行 vector_sim = Aer.get_backend('statevector_simulator') job = execute(q1, vector_sim ) result = job.result().get_statevector(q1, decimals=3) print(result) # 回路を測定 q1.measure(0,0) q1.measure(1,1) # 回路を描画 q1.draw(output='mpl') # QASMシミュレーターで実験 simulator = Aer.get_backend('qasm_simulator') job = execute(q1, backend=simulator, shots=1024) result = job.result() # 測定された回数を表示 counts = result.get_counts(q1) print(counts) # ヒストグラムで測定された確率をプロット from qiskit.visualization import * plot_histogram( counts ) # 2量子ビット回路を用意 q2 = QuantumCircuit(2,2) # 2量子ビット回路と2ビットの古典レジスターを用意します。 # 量子ゲートで回路を作成 q2.x(0) # Xゲートを量子ビットq0に操作します。 q2.h(0) # Hゲートを量子ビットq0に操作します。 q2.x(1) # Xゲートを量子ビットq1に操作します。 q2.h(1) # Hゲートを量子ビットq1に操作します。 # 回路を描画 q2.draw(output="mpl") # 状態ベクトルシミュレーターの実行 vector_sim = Aer.get_backend('statevector_simulator') job = execute(q2, vector_sim ) result = job.result().get_statevector(q2, decimals=3) print(result) # 回路を測定 q2.measure(0,0) q2.measure(1,1) # 回路を描画 q2.draw(output='mpl') # QASMシミュレーターで実験 simulator = Aer.get_backend('qasm_simulator') job = execute(q2, backend=simulator, shots=1024) result = job.result() ## 測定された回数を表示 counts = result.get_counts(q2) print(counts) ## ヒストグラムで測定された確率をプロット from qiskit.visualization import * plot_histogram( counts )
https://github.com/jonasmaziero/computacao_quantica_qiskit_sbf_2023
jonasmaziero
from IPython.display import IFrame; IFrame("https://www.ibm.com/quantum", 900,500) import csv with open('ibm_lagos_calibrations_2023-09-28T17_22_25Z.csv', newline='') as csvfile: spamreader = csv.reader(csvfile, delimiter=' ', quotechar='|') for row in spamreader: print(', '.join(row)) import qiskit qiskit.__qiskit_version__ # Copie se API Token no IBMQ e cole aqui qiskit.IBMQ.save_account('ee8631db565e87e97b066d08e02cafb9bfa745be07e573095b666daa608a37ce58ae6ef5c174aff56a935dadfe1fa9c82edfe37aec6b24774bc94613658cc7d8', overwrite = True) # Execute esse comando uma vez só qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') provider.backends() from qiskit import * qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr,cr) qc.h(qr[0]) qc.cx(qr[0],qr[1]) qc.measure(qr[0],cr[0]) qc.measure(qr[1],cr[1]) qc.draw('mpl') simulator = Aer.get_backend('qasm_simulator') nshots = 8192 # número de "prepara-e-mede" job = execute(qc, backend = simulator, shots = nshots) from qiskit.tools.visualization import plot_histogram plot_histogram(job.result().get_counts(qc)) # Acessando as contagens com numpy counts = job.result().get_counts(qc) counts counts['00'] # probabilidade p00 = 0; p01 = 0; p10 = 0; p11 = 0 for j in (0,2): for k in (0,2): if '00' in counts: p00 = counts['00']/nshots if '01' in counts: p01 = counts['01']/nshots if '10' in counts: p10 = counts['10']/nshots if '11' in counts: p11 = counts['11']/nshots p00, p01, p10, p11 device = provider.get_backend('ibm_lagos') from qiskit.tools.monitor import job_monitor job = execute(qc, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc)) counts = job.result().get_counts(qc) counts counts['00'] # probabilidade p00 = 0; p01 = 0; p10 = 0; p11 = 0 for j in (0,2): for k in (0,2): if '00' in counts: p00 = counts['00']/nshots if '01' in counts: p01 = counts['01']/nshots if '10' in counts: p10 = counts['10']/nshots if '11' in counts: p11 = counts['11']/nshots p00, p01, p10, p11
https://github.com/usamisaori/qLipschitz
usamisaori
from sklearn import datasets import numpy as np import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') X_train, Y_train = datasets.make_circles(n_samples=500, noise=0.09, factor=0.4) X_test, Y_test = datasets.make_circles(n_samples=200, noise=0.09, factor=0.4) print('Training Data:') print(X_train[:10]) print('\nTraining Label:') print(Y_train[:10]) plt.scatter(X_train[:, 0], X_train[:, 1], c=Y_train) plt.show() print(f'Total datas: {len(X_train)}') print(f'labels: {list(set(Y_train))}') print(f' - label 0 datas: {len(list(filter(lambda x: x==0, Y_train)))}') print(f' - label 1 datas: {len(list(filter(lambda x: x==1, Y_train)))}') Z_train = (X_train[:, 0] ** 2 + X_train[:, 1] ** 2) ** 0.5 temp = np.zeros((X_train.shape[0], len(X_train[0]) + 1)) temp[:, :-1] = X_train temp[:, -1] = Z_train X_train2 = temp Z_test = (X_test[:, 0] ** 2 + X_test[:, 1] ** 2) ** 0.5 temp = np.zeros((X_test.shape[0], len(X_test[0]) + 1)) temp[:, :-1] = X_test temp[:, -1] = Z_test X_test2 = temp print('Solved Training Data:') print(X_train2[:10]) def plot3D(X, Y): fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(111, projection='3d') ax.scatter( X[:, 0], X[:, 1], X[:, 2], zdir='z', s=30, c=Y, depthshade=True ) plt.show() plot3D(X_train2, Y_train) X, Y = datasets.load_iris(return_X_y=True) X_train_0 = X[0:30] X_train_1 = X[50:80] X_train_iris = np.vstack((X_train_0, X_train_1)) Y_train_0 = Y[0:30] Y_train_1 = Y[50:80] Y_train_iris = np.vstack((Y_train_0, Y_train_1)).flatten() X, Y = datasets.load_iris(return_X_y=True) X_test_0 = X[30:50] X_test_1 = X[80:100] X_test_iris = np.vstack((X_test_0, X_test_1)) Y_test_0 = Y[30:50] Y_test_1 = Y[80:100] Y_test_iris = np.vstack((Y_test_0, Y_test_1)).flatten() X_train_iris = (X_train_iris - X_train_iris.min(axis=0)) / (X_train_iris.max(axis=0) - X_train_iris.min(axis=0)) X_test_iris = (X_test_iris - X_test_iris.min(axis=0)) / (X_test_iris.max(axis=0) - X_test_iris.min(axis=0)) import qiskit from qiskit import QuantumCircuit from qiskit import Aer, execute qasm_backend = Aer.get_backend('qasm_simulator') params = [ [[-1.18991246e-01, -8.69694713e-01, 1.43722811e-03], [ 3.47641545e+00, -4.73632073e-02, 1.97135609e+00], [ 1.95775707e+00, -1.12139160e-02, -6.21796144e-03]], [[ 2.02460380e-02, -2.25797547e+00, 5.14234265e-03], [-1.71552299e-02, 2.46283604e-03, -1.03805722e-02], [-2.37244982e-03, -3.35799404e-03, 6.10191152e-03]] ] params_iris = [ [[-3.42142600e-02, -5.45047534e-03, 8.11905347e-01], [-1.52484152e+00, 1.49884676e+00, -1.25408626e-02], [-1.89515860e-03, 1.35760410e-02, 8.22999582e-03], [ 1.39102114e+00, 4.19729865e-01, 1.60000380e-04]], [[ 7.88431068e-01, -8.86177264e-01, 1.33830291e-02], [-3.71228143e-03, -1.12994101e-02, -1.27897783e-02], [ 9.45954683e-03, -3.34659883e-03, 1.17217829e-02], [ 1.98256181e-02, -1.07358054e-02, 7.53621360e-03]] ] def createInputCircuit(data): qubits_num = len(data) qcircuit = QuantumCircuit(qubits_num, qubits_num) qubits = qcircuit.qubits for i, d in enumerate(data): qcircuit.rx(d * np.pi, qubits[i]) return qcircuit # Test 1: create input circuit test1_circuit = createInputCircuit(X_train2[0]) test1_circuit.draw(output='mpl') def createModelCircuit(params): qubits_num = len(params[0]) qcircuit = QuantumCircuit(qubits_num, qubits_num) qubits = qcircuit.qubits for i in range(qubits_num): qcircuit.u3(*params[0][i], qubits[i]) for i in range(qubits_num - 1): qcircuit.cz(qubits[i], qubits[i + 1]) qcircuit.cz(qubits[0], qubits[qubits_num - 1]) for i in range(qubits_num): qcircuit.u3(*params[1][i], qubits[i]) return qcircuit # Test 2: create model circuit test2_circuit = createModelCircuit(params) test2_circuit.draw(output='mpl') def createCircuit(params, data): input_circuit = createInputCircuit(data) model_circuit = createModelCircuit(params) full_circuit = input_circuit.compose(model_circuit) return full_circuit # Test 3-1: create full quantum circuit - circle test3_circuit = createCircuit(params, X_train2[0]) test3_circuit.draw(output='mpl') # Test 3-2: create full quantum circuit - iris test3_circuit = createCircuit(params_iris, X_train_iris[1]) test3_circuit.draw(output='mpl') def predict(model, data): qubits_num = len(data) input_circuit = createInputCircuit(data) qcircuit = input_circuit.compose(model) # the measurement qcircuit.measure(list(range(qubits_num)), list(range(qubits_num))) # job execution shots = 1000 job_sim = execute(qcircuit, qasm_backend, shots=shots) result_sim = job_sim.result() counts = result_sim.get_counts(qcircuit) p1 = 0 for i in range(2 ** (qubits_num - 1)): comb = str(bin(i + 2 ** (qubits_num - 1))[2:]) p1 += counts.get(comb, 0) p1 /= shots if p1 > 0.5: return 1 else: return 0 def accuracy(model, datas, labels): predictions = [ predict(model, data) for data in datas ] acc = 0 for i, p in enumerate(predictions): if p == labels[i]: acc += 1 return acc / len(predictions) def evaluate(model, X_test, Y_test): acc = accuracy(model, X_test, Y_test) print("FINAL ACCURACY: {:0.2f}%".format(acc * 100)) # Test 4: evaluate noiseless model test4_circuit = createModelCircuit(params_iris) evaluate(test4_circuit, X_train_iris, Y_train_iris) evaluate(test4_circuit, X_test_iris, Y_test_iris) from qiskit.providers.aer.noise import NoiseModel from qiskit.providers.aer.utils import insert_noise from qiskit.providers.aer.noise import pauli_error, depolarizing_error def createNoiseModel(p, errorType): # QuantumError objects if errorType == 'bit_flip': error = pauli_error([('X', p), ('I', 1 - p)]) elif errorType == 'phase_flip': error = pauli_error([('Z', p), ('I', 1 - p)]) elif errorType == 'depolarizing': error = depolarizing_error(p, num_qubits=1) ## two-qubits quantumError objects if errorType == 'depolarizing': error_2qubits = depolarizing_error(p, num_qubits=2) else: error_2qubits = error.tensor(error) # Add errors to noise model noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(error, ['u3']) noise_model.add_all_qubit_quantum_error(error_2qubits, ['cz']) return noise_model def createNoisyModelCircuit(params, p, errorType): noise_model = createNoiseModel(p, errorType) model_circuit = createModelCircuit(params) return insert_noise(model_circuit, noise_model) # Test 5-1: create noisy model circuit - circle test5_p = 0.001 test5_circuit = createNoisyModelCircuit(params, test5_p, 'phase_flip') test5_circuit.draw(output='mpl') # Test 5-2: create noisy model circuit - iris test5_p = 0.001 test5_circuit = createNoisyModelCircuit(params_iris, test5_p, 'bit_flip') test5_circuit.draw(output='mpl') # Test 6-1: evaluate noisy model - circle test6_p = 0.001 models_type = [ 'noiseless', 'bit_flip', 'phase_flip', 'depolarizing' ] test6_circuits = [ createModelCircuit(params), createNoisyModelCircuit(params, test6_p, 'bit_flip'), createNoisyModelCircuit(params, test6_p, 'phase_flip'), createNoisyModelCircuit(params, test6_p, 'depolarizing') ] for i, model_type in enumerate(models_type): print(f'Evaluate <{model_type}>: ') evaluate(test6_circuits[i], X_test2, Y_test) print() # Test 6-2: evaluate noisy model - iris test6_p = 0.5 models_type = [ 'noiseless', 'bit_flip', 'phase_flip', 'depolarizing' ] test6_circuits = [ createModelCircuit(params_iris), createNoisyModelCircuit(params_iris, test6_p, 'bit_flip'), createNoisyModelCircuit(params_iris, test6_p, 'phase_flip'), createNoisyModelCircuit(params_iris, test6_p, 'depolarizing') ] for i, model_type in enumerate(models_type): print(f'Evaluate <{model_type}>: ') evaluate(test6_circuits[i], X_test_iris, Y_test_iris) print() from functools import reduce Dag = lambda matrix: matrix.conj().T Kron = lambda *matrices: reduce(np.kron, matrices) from qiskit.quantum_info import DensityMatrix, Statevector def getDensityMatrix(circuit): return DensityMatrix(circuit).data def getStatevector(circuit): return Statevector(circuit).data psi_0 = np.array([1.0, 0.0]) psi_1 = np.array([0.0, 1.0]) I = np.eye(2) M_0 = psi_0.reshape([2, 1]) @ psi_0.reshape([1, 2]).conj() M_1 = psi_1.reshape([2, 1]) @ psi_1.reshape([1, 2]).conj() def getMeasurements(qubits_num): measurement_0 = [M_0] measurement_1 = [M_1] for i in range(qubits_num - 1): measurement_0.append(I) measurement_1.append(I) return [ Kron(*measurement_0), Kron(*measurement_1) ] # Test 7: test measure test7_M_0, test7_M_1 = getMeasurements(qubits_num=3) # 2: |0> - X - test7_1_circuit = QuantumCircuit(3, 3) test7_1_circuit.x(test7_1_circuit.qubits[2]) test7_1_circuit.draw(output='mpl') test7_1_density_matrix = getDensityMatrix(test7_1_circuit) test7_1_p1 = np.trace( test7_M_1 @ test7_1_density_matrix @ Dag(test7_M_1) ) print(test7_1_p1) # should be 1 # 2: |0> - H - test7_2_circuit = QuantumCircuit(3, 3) test7_2_circuit.h(test7_2_circuit.qubits[2]) test7_2_circuit.draw(output='mpl') test7_2_density_matrix = getDensityMatrix(test7_2_circuit) test7_2_p1 = np.trace( test7_M_1 @ test7_2_density_matrix @ Dag(test7_M_1) ) print(test7_2_p1) # should be 0.5 test7_M_0, test7_M_1 = getMeasurements(qubits_num=4) # 3: |0> - H - test7_3_circuit = QuantumCircuit(4, 4) test7_3_circuit.h(test7_3_circuit.qubits[3]) test7_3_circuit.draw(output='mpl') test7_3_density_matrix = getDensityMatrix(test7_3_circuit) test7_3_p1 = np.trace( test7_M_1 @ test7_3_density_matrix @ Dag(test7_M_1) ) print(test7_3_p1) # should be 0.5 def powerSets(items): N = len(items) combs = [] for i in range(2 ** N): comb = [] for j in range(N): if (i >> j) % 2: comb.append(items[j]) combs.append(comb) return combs # Test 8: calculate power sets print(powerSets([0, 1])) class Algorithm: def __init__(self, model_circuit, measurements, outputs): # DensityMatrix of model self.E = getDensityMatrix(model_circuit) # Measurements self.M = dict() for index, output in enumerate(outputs): self.M[output] = measurements[index] # Outputs self.O = outputs self.O_ = powerSets(outputs) # Test 9: algorithm objects test9_circuit = createModelCircuit(params_iris) test9_A = Algorithm(test9_circuit, getMeasurements(qubits_num=4), [0, 1]) print(test9_A.E.shape) print(test9_A.O) print(test9_A.O_) from scipy.linalg import sqrtm def D(rou, sigma): A = rou - sigma A_ = sqrtm( np.dot( A.conj().T, A ) ) return 0.5 * np.linalg.norm( np.trace(A_) ) # Test 10: trace distance example from math import isclose # example from: quantumnanophotonics.org/media/Module2Lecture8.pdf test10_rou = np.array([[2.0, 0.0], [0.0, 1.0]]) / 3 test10_sigma = np.array([[3.0, 0.0], [0.0, 1.0]]) / 4 assert isclose(D(test10_rou, test10_sigma), 1/12) # Test 11: calculate input states' distance test11_rou = getDensityMatrix(createInputCircuit(X_train2[0])) test11_sigma = getDensityMatrix(createInputCircuit(X_train2[1])) print(D(test11_rou, test11_rou)) # should be 0 print(D(test11_rou, test11_sigma)) def d(A, rou, sigma): distance = 0 for output in A.O: trace = np.trace( Dag(A.M[output]) @ A.M[output] @ (A.E @ (rou - sigma) @ Dag(A.E)) ) distance += np.linalg.norm(trace) return distance / 2 # Test 12: calculate total variation distance test12_circuit = createModelCircuit(params) test12_A = Algorithm(test12_circuit, getMeasurements(qubits_num=3), [0, 1]) test12_rou = getDensityMatrix(createInputCircuit(X_train2[0])) test12_sigma = getDensityMatrix(createInputCircuit(X_train2[1])) print(d(test12_A, test12_rou, test12_rou)) print(d(test12_A, test12_rou, test12_sigma)) def Lipschitz(A): E, M, O, O_ = A.E, A.M, A.O, A.O_ # Step 1: Calculate W_i W = dict() for i in O: W[i] = Dag(E) @ Dag(M[i]) @ M[i] @ E # Step 2: Calculate K_star K_star = 0; vectors = [None, None] M_star = np.zeros(E.shape) for S in O_: if len(S) == 0: continue # calculate M_S = Σ Wi M_S = np.zeros(E.shape).astype('complex64') for i in S: M_S += W[i] # calculate eigenvalues and eigenvectors of M_S eigenvalues, eigenvectors = np.linalg.eigh(M_S) min_index = np.where(eigenvalues == eigenvalues.min()) max_index = np.where(eigenvalues == eigenvalues.max()) # calculate K_S K_S = np.linalg.norm(eigenvalues[max_index][0] - eigenvalues[min_index][0]) if K_S > K_star: K_star = K_S vectors[0] = eigenvectors.T[max_index][0] vectors[1] = eigenvectors.T[min_index][0] return K_star, np.array(vectors) # Test 13: calculate lipschitz constant print('Classifier for centric circle: ') test13_1_circuit = createModelCircuit(params) test13_1_A = Algorithm(test13_1_circuit, getMeasurements(qubits_num=3), [0, 1]) print(Lipschitz(test13_1_A)) print('\nClassifier for Iris: ') test13_2_circuit = createModelCircuit(params_iris) test13_2_A = Algorithm(test13_2_circuit, getMeasurements(qubits_num=4), [0, 1]) print(Lipschitz(test13_2_A)) # Test 14-1: calculate lipschitz constant in noisy model test14_p = [0.0001, 0.001, 0.05, 0.1] models_type = [ 'noiseless', 'bit_flip', 'phase_flip', 'depolarizing' ] print('Classifier for centric circle: ') for p in test14_p: test14_1_circuits = [ createModelCircuit(params), createNoisyModelCircuit(params, p, 'bit_flip'), createNoisyModelCircuit(params, p, 'phase_flip'), createNoisyModelCircuit(params, p, 'depolarizing') ] print(f'p: {p}') for i, model_type in enumerate(models_type): test14_1_noisy_A = Algorithm(test14_1_circuits[i], getMeasurements(qubits_num=3), [0, 1]) print(f'{model_type} model: {Lipschitz(test14_1_noisy_A)[0]}') print() # Test 14-2: calculate lipschitz constant in noisy model test14_p = [0.0001, 0.001, 0.05, 0.1] models_type = [ 'noiseless', 'bit_flip', 'phase_flip', 'depolarizing' ] print('Classifier for Iris: ') for p in test14_p: test14_2_circuits = [ createModelCircuit(params_iris), createNoisyModelCircuit(params_iris, p, 'bit_flip'), createNoisyModelCircuit(params_iris, p, 'phase_flip'), createNoisyModelCircuit(params_iris, p, 'depolarizing') ] print(f'p: {p}') for i, model_type in enumerate(models_type): test14_2_noisy_A = Algorithm(test14_2_circuits[i], getMeasurements(qubits_num=4), [0, 1]) print(f'{model_type} model: {Lipschitz(test14_2_noisy_A)[0]}') print() def FairVeriQ(A, epsilon, delta): # epsilon <= 1 and delta > 0 K_star, kernel = Lipschitz(A) if delta >= K_star * epsilon: return True, None else: return False, kernel # Test 15-1: find proper epsilon - circle import random # D(rou, sigma) <= epsilon indices = [] while len(indices) < 50: a = random.randint(0, len(X_train2) - 1) b = random.randint(0, len(X_train2) - 1) if a != b: indices.append([a, b]) distances = [] for pair in indices: rou = getDensityMatrix(createInputCircuit(X_train2[pair[0]])) sigma = getDensityMatrix(createInputCircuit(X_train2[pair[1]])) distances.append(D(rou, sigma)) print('find proper epsilon - centric circle') print(f'Mean distance: {sum(distances) / len(distances)}') print(f'Max distance: {max(distances)}') print(f'Min distance: {min(distances)}') # Test 15-2: find proper epsilon - iris # D(rou, sigma) <= epsilon indices = [] while len(indices) < 50: a = random.randint(0, len(X_train_iris) - 1) b = random.randint(0, len(X_train_iris) - 1) if a != b: indices.append([a, b]) distances = [] for pair in indices: rou = getDensityMatrix(createInputCircuit(X_train_iris[pair[0]])) sigma = getDensityMatrix(createInputCircuit(X_train_iris[pair[1]])) distances.append(D(rou, sigma)) print('find proper epsilon - centric iris') print(f'Mean distance: {sum(distances) / len(distances)}') print(f'Max distance: {max(distances)}') print(f'Min distance: {min(distances)}') # Test 16-1: find proper delta - circle test16_1_circuit = createModelCircuit(params) test16_1_A = Algorithm(test16_1_circuit, getMeasurements(qubits_num=3), [0, 1]) # d(A(rou), A(sigma)) <= delta indices = [] while len(indices) < 50: a = random.randint(0, len(X_train2) - 1) b = random.randint(0, len(X_train2) - 1) if a != b: indices.append([a, b]) distances = [] for pair in indices: rou = getDensityMatrix(createInputCircuit(X_train2[pair[0]])) sigma = getDensityMatrix(createInputCircuit(X_train2[pair[1]])) distances.append(d(test16_1_A, rou, sigma)) print('find proper delta - circle') print(f'Mean distance: {sum(distances) / len(distances)}') print(f'Max distance: {max(distances)}') print(f'Min distance: {min(distances)}') # Test 16-2: find proper delta - iris test16_2_circuit = createModelCircuit(params_iris) test16_2_A = Algorithm(test16_2_circuit, getMeasurements(qubits_num=4), [0, 1]) # d(A(rou), A(sigma)) <= delta indices = [] while len(indices) < 50: a = random.randint(0, len(X_train_iris) - 1) b = random.randint(0, len(X_train_iris) - 1) if a != b: indices.append([a, b]) distances = [] for pair in indices: rou = getDensityMatrix(createInputCircuit(X_train_iris[pair[0]])) sigma = getDensityMatrix(createInputCircuit(X_train_iris[pair[1]])) distances.append(d(test16_2_A, rou, sigma)) print('find proper delta - iris') print(f'Mean distance: {sum(distances) / len(distances)}') print(f'Max distance: {max(distances)}') print(f'Min distance: {min(distances)}') # Test 17-1: fairness verifying - circle test17_1_circuit = createNoisyModelCircuit(params, p=0.001, errorType='bit_flip') test17_1_A = Algorithm(test17_1_circuit, getMeasurements(qubits_num=3), [0, 1]) print(f'Lipschitz constant: {Lipschitz(test17_1_A)[0]}\n') test17_1_fairness_params = [ # epsilon, delta [1, 1], [0.9, 0.89], [0.6, 0.58], [0.6, 0.59] ] for epsilon, delta in test17_1_fairness_params: flag, kernel = FairVeriQ(test17_1_A, epsilon, delta) print(f'A is ({epsilon},{delta})-fair: <{flag}>') if not flag: print(f' - bias kernel pair is: {kernel}') print() # Test 17-2: fairness verifying - iris test17_2_circuit = createNoisyModelCircuit(params_iris, p=0.001, errorType='phase_flip') test17_2_A = Algorithm(test17_2_circuit, getMeasurements(qubits_num=4), [0, 1]) print(f'Lipschitz constant: {Lipschitz(test17_2_A)[0]}\n') test17_2_fairness_params = [ # epsilon, delta [1, 0.99], [0.8, 0.79], [0.5, 0.3] ] for epsilon, delta in test17_2_fairness_params: flag, kernel = FairVeriQ(test17_2_A, epsilon, delta) print(f'A is ({epsilon},{delta})-fair: <{flag}>') if not flag: print(f' - bias kernel pair is: {kernel}') print() def generateBiasPair(sigma, kernel, epsilon): psi, phi = kernel size = len(psi) psi = psi.reshape(size, 1) @ Dag(psi.reshape(size, 1)) phi = phi.reshape(size, 1) @ Dag(phi.reshape(size, 1)) rou_psi = epsilon * psi + (1 - epsilon) * sigma rou_phi = epsilon * phi + (1 - epsilon) * sigma return np.array([ rou_psi, rou_phi ]) # Test 18: generate bias pair test18_circuit = createNoisyModelCircuit(params_iris, p=0.01, errorType='depolarizing') test18_A = Algorithm(test18_circuit, getMeasurements(qubits_num=4), [0, 1]) print(f'Lipschitz constant: {Lipschitz(test17_2_A)[0]}\n') flag, kernel = FairVeriQ(test18_A, epsilon=0.9, delta=0.3) print(f'fairness: {flag}') assert (not flag) test18_sigma = getDensityMatrix(createInputCircuit(X_train_iris[11])) test18_bias_pair = generateBiasPair(test18_sigma, kernel, epsilon=0.9) test18_rou_psi, test18_rou_phi = test18_bias_pair # print(test18_bias_pair) print(f'epsilon=0.9, delta=0.3') print('D: ', D(test18_rou_psi, test18_rou_phi)) print('d: ', d(test18_A, test18_rou_psi, test18_rou_phi))
https://github.com/qiskit-community/qiskit-qcgpu-provider
qiskit-community
import matplotlib.pyplot as ply %matplotlib inline import networkx as nx import numpy as np from qiskit_aqua.translators.ising import maxcut from qiskit_aqua.input import EnergyInput from qiskit_aqua import run_algorithm from qiskit_qcgpu_provider import QCGPUProvider nodes = 5 edges = [ # Tuple (i, j, weight), # where (i, j) is an edge. (0, 1, 1.0), (0, 2, 1.0), (1, 2, 1.0), (1, 4, 1.0), (3, 4, 1.0), (2, 3, 1.0) ] G = nx.Graph() G.add_nodes_from(np.arange(0, nodes, 1)) G.add_weighted_edges_from(edges) nx.draw(G, with_labels=True) # Computing the weight matrix weights = np.zeros([nodes, nodes]) for i in range(nodes): for j in range(nodes): edge_data = G.get_edge_data(i, j, default = None) # check if there is no edge if edge_data != None: weights[i, j] = edge_data['weight'] weights # Calculate the max cut best = 0 for b in range(2**nodes): x = [int(t) for t in reversed(list(bin(b)[2:].zfill(nodes)))] cost = 0 for i in range(nodes): for j in range(nodes): cost = cost + weights[i,j]*x[i]*(1-x[j]) if best < cost: best = cost xbest_brute = x # print('case = ' + str(x)+ ' cost = ' + str(cost)) print('Optimal Solution: case = ' + str(xbest_brute) + ', cost = ' + str(best)) # Plot the optimal solution colors = ['r' if xbest_brute[i] == 0 else 'b' for i in range(nodes)] nx.draw(G, node_color=colors, with_labels=True) operator, offset = maxcut.get_maxcut_qubitops(weights) algorithm_input = EnergyInput(operator) algorithm_parameters = { 'problem': { 'name': 'ising', 'random_seed': 3242 }, 'algorithm': { 'name': 'VQE', 'operator_mode': 'matrix' }, 'optimizer': { 'name': 'SPSA', 'max_trials': 300 }, 'variational_form': {'name': 'RY', 'depth': 5, 'entanglement': 'linear'} } backend = QCGPUProvider().get_backend('statevector_simulator') %time result_qiskit = run_algorithm(algorithm_parameters, algorithm_input, backend=backend) %time result = run_algorithm(algorithm_parameters, algorithm_input, backend=backend) x = maxcut.sample_most_likely(result['eigvecs'][0]) print('energy:', result['energy']) print('maxcut objective:', result['energy'] + offset) print('solution:', maxcut.get_graph_solution(x)) print('solution objective:', maxcut.maxcut_value(x, weights)) colors = ['r' if maxcut.get_graph_solution(x)[i] == 0 else 'b' for i in range(nodes)] nx.draw(G, node_color=colors, with_labels=True) import warnings warnings.filterwarnings('ignore')
https://github.com/TanveshT/IBM-Quantum-Challenge
TanveshT
#initialization %matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import IBMQ from qiskit.compiler import transpile, assemble from qiskit.providers.ibmq import least_busy from qiskit.tools.jupyter import * from qiskit.tools.monitor import job_monitor from qiskit.visualization import * from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter provider = IBMQ.load_account() # load your IBM Quantum Experience account # If you are a member of the IBM Q Network, fill your hub, group, and project information to # get access to your premium devices. # provider = IBMQ.get_provider(hub='', group='', project='') from may4_challenge.ex2 import get_counts, show_final_answer num_qubits = 5 meas_calibs, state_labels = complete_meas_cal(range(num_qubits), circlabel='mcal') # find the least busy device that has at least 5 qubits backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= num_qubits and not x.configuration().simulator and x.status().operational==True)) backend # run experiments on a real device shots = 8192 experiments = transpile(meas_calibs, backend=backend, optimization_level=3) job = backend.run(assemble(experiments, shots=shots)) print(job.job_id()) %qiskit_job_watcher # get measurement filter cal_results = job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') meas_filter = meas_fitter.filter #print(meas_fitter.cal_matrix) meas_fitter.plot_calibration() # get noisy counts noisy_counts = get_counts(backend) plot_histogram(noisy_counts[0]) # apply measurement error mitigation and plot the mitigated counts mitigated_counts_0 = meas_filter.apply(noisy_counts[0]) plot_histogram([mitigated_counts_0, noisy_counts[0]]) # uncomment whatever answer you think is correct # answer1 = 'a' # answer1 = 'b' answer1 = 'c' # answer1 = 'd' # plot noisy counts plot_histogram(noisy_counts[1]) # apply measurement error mitigation # insert your code here to do measurement error mitigation on noisy_counts[1] mitigated_counts_1 = meas_filter.apply(noisy_counts[1]) plot_histogram([mitigated_counts_1, noisy_counts[1]]) # uncomment whatever answer you think is correct # answer2 = 'a' #answer2 = 'b' #answer2 = 'c' answer2 = 'd' # plot noisy counts plot_histogram(noisy_counts[2]) # apply measurement error mitigation # insert your code here to do measurement error mitigation on noisy_counts[2] mitigated_counts_2 = meas_filter.apply(noisy_counts[2]) plot_histogram([mitigated_counts_2, noisy_counts[2]]) # uncomment whatever answer you think is correct # answer3 = 'a' answer3 = 'b' #answer3 = 'c' # answer3 = 'd' # plot noisy counts plot_histogram(noisy_counts[3]) # apply measurement error mitigation # insert your code here to do measurement error mitigation on noisy_counts[3] mitigated_counts_3 = meas_filter.apply(noisy_counts[3]) plot_histogram([mitigated_counts_3, noisy_counts[3]]) # uncomment whatever answer you think is correct #answer4 = 'a' answer4 = 'b' #answer4 = 'c' #answer4 = 'd' # answer string show_final_answer(answer1, answer2, answer3, answer4)
https://github.com/rohitgit1/Quantum-Computing-Summer-School
rohitgit1
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram problem = QuadraticProgram("sample") problem.binary_var("x") problem.binary_var("y") problem.maximize(linear={"x": 1, "y": -2}) print(problem.prettyprint()) from qiskit.algorithms import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = QAOA(optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer shots = 1000 mes = QAOA(sampler=Sampler(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = VQE(ansatz=RealAmplitudes(), optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = SamplingVQE(sampler=Sampler(), ansatz=RealAmplitudes(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Estimator from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = VQE(estimator=Estimator(), ansatz=RealAmplitudes(), optimizer=COBYLA()) try: meo = MinimumEigenOptimizer(min_eigen_solver=mes) except TypeError as ex: print(ex) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) qaoa = QAOA(optimizer=COBYLA(), quantum_instance=qins) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA()) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, quantum_instance=qins) result = optimizer.solve(problem) print(result) from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, sampler=Sampler()) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) try: optimizer = GroverOptimizer( num_value_qubits=3, num_iterations=3, quantum_instance=qins, sampler=Sampler() ) # raises an error because both quantum_instance and sampler are set. except ValueError as ex: print(ex) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/bayesian-randomized-benchmarking/qiskit-advocates-bayes-RB
bayesian-randomized-benchmarking
import numpy as np import time from qiskit_experiments.library import StandardRB, InterleavedRB from qiskit_experiments.framework import ParallelExperiment from qiskit_experiments.library.randomized_benchmarking import RBUtils import qiskit.circuit.library as circuits # for retrieving gate calibration from datetime import datetime import qiskit.providers.aer.noise.device as dv # import the bayesian packages import pymc3 as pm import arviz as az simulation = True # make your choice here if simulation: from qiskit.providers.aer import AerSimulator from qiskit.test.mock import FakeParis backend = AerSimulator.from_backend(FakeParis()) else: from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_bogota') # type here hardware backend # describe RB experiment interleaved_gate = "cx" qubits = [1,4] interleaved_circuit = circuits.CXGate() lengths = np.arange(1, 200, 15) num_samples = 10 seed = 1010 # get the backend's calibration value t = None # enter t in datetime format if necessary # use properties(datetime=t) if t is defined e_list = dv.gate_error_values(backend.properties()) epc_calib = np.nan for tuple_e in e_list: if tuple_e[0] == 'cx' and tuple_e[1] == qubits: epc_calib = tuple_e[2] print('EPC calibration: {0:1.4e}'.format(epc_calib)) #prepare circuits int_exp2 = InterleavedRB(interleaved_circuit, qubits, lengths, num_samples=num_samples, seed=seed) #run print("start experiments",time.strftime('%d/%m/%Y %H:%M:%S')) int_expdata2 = int_exp2.run(backend).block_for_results() print(" end experiments",time.strftime('%d/%m/%Y %H:%M:%S')) #analyse print(" start analysis",time.strftime('%d/%m/%Y %H:%M:%S')) int_results2 = int_expdata2.analysis_results() print(" end analysis",time.strftime('%d/%m/%Y %H:%M:%S')) # look at result data for result in int_results2: print(result) def get_GSP_counts(data, x_length, data_range): #obtain the observed counts used in the bayesian model #corrected for accomodation pooled data from 1Q, 2Q and 3Q interleave processes list_bitstring = ['0','00', '000', '100'] # all valid bistrings Y_list = [] for i_samples in data_range: row_list = [] for c_index in range(x_length) : total_counts = 0 i_data = i_samples*x_length + c_index for key,val in data[i_data]['counts'].items(): if key in list_bitstring: total_counts += val row_list.append(total_counts) Y_list.append(row_list) return np.array(Y_list) # get count data and other values from int_expdata2 Y1 = get_GSP_counts(int_expdata2._data, len(lengths), range(0,2*num_samples-1,2)) Y2 = get_GSP_counts(int_expdata2._data, len(lengths), range(1,2*num_samples,2)) experiment_type = int_expdata2._data[0]['metadata']['experiment_type'] physical_qubits = int_expdata2._data[0]['metadata']['physical_qubits'] shots = int_expdata2._data[0]['shots'] nQ = len(qubits) scale = (2 ** nQ - 1) / 2 ** nQ # to compare ultimately: EPC and sigma(EPC) by LSF epc_est_fm = int_expdata2.analysis_results()[3].value.value epc_est_fm_err = int_expdata2.analysis_results()[3].value.stderr # use 2m length array Y = np.hstack((Y1,Y2)) RvsI_h = np.ravel(np.vstack((np.ones_like(lengths),np.zeros_like(lengths)))) IvsR_h = np.ravel(np.vstack((np.zeros_like(lengths),np.ones_like(lengths)))) X0 = np.tile(lengths,2) X = np.vstack((X0,RvsI_h,IvsR_h)) y_mean = np.mean(Y, axis = 0)/shots sigma_y = np.std(Y, axis = 0)/shots model = "hierarchical_model" # priors for unknown model parameters T_priors = int_expdata2.analysis_results()[0].value.value print(T_priors) # building the model h_model = pm.Model() with h_model: # Tying parameters BoundedUniform = pm.Bound(pm.Uniform, lower=np.fmax(T_priors-0.1, np.full(T_priors.shape,1.e-9)), upper=np.fmin(T_priors+0.1, np.full(T_priors.shape,1.-1e-9))) pi = BoundedUniform("Tying_Parameters",testval = T_priors, shape = T_priors.shape) EPC = pm.Deterministic('EPC', scale*(1-pi[2])) # sigma of Beta functions sigma_t = pm.Uniform("σ_Beta", testval = 0.005, upper = 0.05, lower = 0.0005) # Tying function GSP = pi[0] * ( X[1]*pi[1]**X[0] +\ X[2]*(pi[1]*pi[2])**X[0] ) + pi[3] theta = pm.Beta('θ', mu=GSP, sigma = sigma_t, shape = ((2*len(lengths, ))) ) # Likelihood (sampling distribution) of observations p = pm.Binomial("Counts", p = theta, observed = Y, n = shots) # model graph pm.model_to_graphviz(h_model) # sample with h_model: trace_h = pm.sample(draws = 4000, tune= 1000, target_accept=.99, return_inferencedata=True) with h_model: az.plot_trace(trace_h); with h_model: az.plot_posterior(trace_h, var_names = ["Tying_Parameters","σ_Beta","EPC"], round_to = 4, figsize = [16, 8]); # look at the posterior values of the hyperparameters: with h_model: # (hdi_prob=.94 is default) azt_summary = az.summary(trace_h, round_to=12, var_names = ["Tying_Parameters", "σ_Beta","EPC"], kind="stats") azt_summary # mean and sigma of EPC epc_est_a = azt_summary['mean']['EPC'] epc_est_a_err = azt_summary['sd']['EPC'] # plot import matplotlib.pyplot as plt # if not yet imported with h_model: az.plot_posterior(trace_h, var_names = ["EPC"], round_to = 4, figsize = [10,6], textsize = 12) Bayes_legend = "EPC SMC: {0:1.3e} ± {1:1.3e}"\ .format(epc_est_a, epc_est_a_err) LSF_legend = "EPC LSF: {0:1.3e} ± {1:1.3e}".format(epc_est_fm, epc_est_fm_err) Cal_legend = "EPC Calibration: {0:1.3e}".format(epc_calib) plt.axvline(x=epc_est_fm,color='cyan',ls="-") if epc_calib != np.nan: plt.axvline(x=epc_calib,color='r',ls=":") plt.axvline(x=epc_est_a,color='blue',ls=":") if epc_calib > 0.0: plt.legend((Bayes_legend, "$Highest\; density\; interval$ HDI", LSF_legend, Cal_legend), fontsize=12 ) else: plt.legend((Bayes_legend, "$Highest\; density\; interval$ HDI", LSF_legend)) plt.title(experiment_type +', ' + interleaved_gate + " qubit(s):" + str(physical_qubits)\ +', backend: '+backend.name() + "\n Bayesian "+model, fontsize=16); # compare LSF and SMC print("Model: Frequentist Bayesian Calibration") print("__________________________________________________________") print("EPC {0:1.3e} {1:1.3e} {2:1.3e}" .format(epc_est_fm,epc_est_a,epc_calib )) print("± sigma ± {0:1.3e} ± {1:1.3e} " .format(epc_est_fm_err, epc_est_a_err)) def calc_chisquare(ydata, sigma, ycalc): r = ydata - ycalc chisq = np.sum((r / sigma) ** 2) return chisq # prepare box for GSP plot # perform reduced χ² value calculation for Bayes hierarchical mean_h = trace_h.posterior.mean(dim=['chain', 'draw']) theta_stacked = mean_h.θ.values NDF_h = len(lengths)*2 - 4 - 1 # (-1 is for σ_Beta) chisq_h = calc_chisquare(y_mean, sigma_y, theta_stacked)/NDF_h texto_0 = " alpha = {0:7.4f} ± {1:1.4e}"\ .format(azt_summary['mean']['Tying_Parameters[1]'], azt_summary['sd']['Tying_Parameters[1]']) texto_1 =" alpha_c = {0:7.4f} ± {1:1.4e}"\ .format(azt_summary['mean']['Tying_Parameters[2]'], azt_summary['sd']['Tying_Parameters[2]']) texto_2 = " EPC = {0:7.4f} ± {1:1.4e}"\ .format(azt_summary['mean']['EPC'], azt_summary['sd']['EPC']) texto_3 = " Fit χ² = {0:7.4f} "\ .format(chisq_h) texto = texto_0 + "\n" + texto_1 + "\n" + texto_2 + "\n" + texto_3 # prepare data for GSP plot # get the calculated GSP values with h_model: hdi_prob = .94 # (hdi_prob=.94 is default, roughly coreresponding to 2σ) theta_summary = az.summary(trace_h, round_to=12, hdi_prob = hdi_prob, var_names = ["θ"], kind="stats") y1 = theta_summary.values[:,0][0:len(lengths)] y2 = theta_summary.values[:,0][len(lengths):len(lengths)*2] HDI = False # make your choice here if HDI: # HDI values as bounds bounds_rmk = "(shown bounds are "+ str(int(100*hdi_prob)) + "% HDI)" y1_min = theta_summary.values[:,2][0:len(lengths)] y2_min = theta_summary.values[:,2][len(lengths):len(lengths)*2] y1_max = theta_summary.values[:,3][0:len(lengths)] y2_max = theta_summary.values[:,3][len(lengths):len(lengths)*2] else: # two sigma bounds for plot bounds_rmk = "(shown bounds are ± two σ)" sy = theta_summary.values[:,1] y1_min = y1 - sy[0:len(lengths)]*2 y1_max = y1 + sy[0:len(lengths)]*2 y2_min = y2 - sy[len(lengths):len(lengths)*2]*2 y2_max = y2 + sy[len(lengths):len(lengths)*2]*2 # GSP plot import matplotlib.pyplot as plt # if not yet imported font = {'family' : 'DejaVu Sans', 'weight' : 'normal', 'size' : 14} plt.rc('font', **font) fig, plt = plt.subplots(1, 1, figsize = [8,5]) plt.set_ylabel("P(0)") plt.set_xlabel("Clifford Length") plt.legend(("Standard" , "Interleaved" ), loc = 'center right', fontsize=10) plt.plot(lengths,y1,color="purple", marker="o", lw = 0.75) #plt.errorbar(lengths,y1,2*sy[0:len(lengths)], #color="purple", marker='o') plt.fill_between(lengths, y1_min, y1_max, alpha=.2, edgecolor='purple', facecolor= 'r') plt.plot(lengths,y2,color="cyan", marker='^', lw = 0.75) #plt.errorbar(lengths,y2,2*sy[len(lengths):2*len(lengths)], #color="cyan", marker='^') plt.fill_between(lengths, y2_min, y2_max, alpha=.2, edgecolor='cyan', facecolor= 'cyan') for i_seed in range(num_samples): plt.scatter(lengths, Y1[i_seed,:]/shots, label = "data", marker="x",color="grey") plt.scatter(lengths, Y2[i_seed,:]/shots, label = "data", marker="+",color="grey") plt.legend(("Standard" , "Interleaved" ), loc = 'center right', fontsize=10) plt.text(lengths[-1]*0.3,0.75, texto, bbox=dict(facecolor='white')) plt.grid() plt.set_title(experiment_type +', ' + interleaved_gate\ + str(physical_qubits)\ +', backend: '+backend.name()+\ "\n Bayesian "+model+" "+ bounds_rmk, fontsize=14); # View result data for frequentist model display(int_expdata2.figure(0))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import BasicAer, transpile, QuantumRegister, ClassicalRegister, QuantumCircuit qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) qc.h(0) qc.measure(0, 0) qc.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
%matplotlib inline from qiskit_finance import QiskitFinanceError from qiskit_finance.data_providers import * import datetime import matplotlib.pyplot as plt from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() data = RandomDataProvider( tickers=["TICKER1", "TICKER2"], start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 30), seed=1, ) data.run() means = data.get_mean_vector() print("Means:") print(means) rho = data.get_similarity_matrix() print("A time-series similarity measure:") print(rho) plt.imshow(rho) plt.show() cov = data.get_covariance_matrix() print("A covariance matrix:") print(cov) plt.imshow(cov) plt.show() print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() for (cnt, s) in enumerate(data._tickers): print(s) print(data._data[cnt]) data = RandomDataProvider( tickers=["CompanyA", "CompanyB", "CompanyC"], start=datetime.datetime(2015, 1, 1), end=datetime.datetime(2016, 1, 30), seed=1, ) data.run() for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() stocks = ["GOOG", "AAPL"] token = "REPLACE-ME" if token != "REPLACE-ME": try: wiki = WikipediaDataProvider( token=token, tickers=stocks, start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 30), ) wiki.run() except QiskitFinanceError as ex: print(ex) print("Error retrieving data.") if token != "REPLACE-ME": if wiki._data: if wiki._n <= 1: print( "Not enough wiki data to plot covariance or time-series similarity. Please use at least two tickers." ) else: rho = wiki.get_similarity_matrix() print("A time-series similarity measure:") print(rho) plt.imshow(rho) plt.show() cov = wiki.get_covariance_matrix() print("A covariance matrix:") print(cov) plt.imshow(cov) plt.show() else: print("No wiki data loaded.") if token != "REPLACE-ME": if wiki._data: print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(stocks): plt.plot(wiki._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() for (cnt, s) in enumerate(stocks): print(s) print(wiki._data[cnt]) else: print("No wiki data loaded.") token = "REPLACE-ME" if token != "REPLACE-ME": try: nasdaq = DataOnDemandProvider( token=token, tickers=["GOOG", "AAPL"], start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 2), ) nasdaq.run() for (cnt, s) in enumerate(nasdaq._tickers): plt.plot(nasdaq._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() except QiskitFinanceError as ex: print(ex) print("Error retrieving data.") token = "REPLACE-ME" if token != "REPLACE-ME": try: lse = ExchangeDataProvider( token=token, tickers=["AEO", "ABBY", "ADIG", "ABF", "AEP", "AAL", "AGK", "AFN", "AAS", "AEFS"], stockmarket=StockMarket.LONDON, start=datetime.datetime(2018, 1, 1), end=datetime.datetime(2018, 12, 31), ) lse.run() for (cnt, s) in enumerate(lse._tickers): plt.plot(lse._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() except QiskitFinanceError as ex: print(ex) print("Error retrieving data.") try: data = YahooDataProvider( tickers=["MSFT", "AAPL", "GOOG"], start=datetime.datetime(2021, 1, 1), end=datetime.datetime(2021, 12, 31), ) data.run() for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend(loc="upper center", bbox_to_anchor=(0.5, 1.1), ncol=3) plt.xticks(rotation=90) plt.show() except QiskitFinanceError as ex: data = None print(ex) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/CodeJP97/QHT-2022-WoQ
CodeJP97
import numpy as np import cmath # Importing standard Qiskit libraries from qiskit.quantum_info import Statevector, random_statevector from qiskit import QuantumCircuit, transpile, Aer, IBMQ, assemble, execute from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.extensions import Initialize # Loading your IBM Quantum account(s) provider = IBMQ.load_account() #import sys #sys.path.insert(0, '/home/jovyan/exercises_levels/Gates_and_Circuits/Single Qubit Gates/Level_1_Single_Qubit_Gates') #from Check_level_1_gates import * #import warnings #warnings.filterwarnings('ignore') qc = QuantumCircuit(1) qc.x(0) state = Statevector.from_instruction(qc) plot_bloch_multivector(state) qc = QuantumCircuit(1) qc.h(0) state = Statevector.from_instruction(qc) plot_bloch_multivector(state) qc = QuantumCircuit(1) qc.x(0) qc.h(0) # or #qc.h(0) #qc.z(0) # or #qc.u(np.pi/2,np.pi,0,0) state = Statevector.from_instruction(qc) plot_bloch_multivector(state) qc=QuantumCircuit(1,1) qc.u3(np.pi/4,np.pi/4,np.pi/4,0) qc.measure(0,0) backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend Counts = execute(qc, backend, shots = 1024, seed_simulator=312).result().get_counts() # we run the simulation and get the counts plot_histogram(Counts) # let us plot a histogram to see the possible outcomes and corresponding probabilities psi = random_statevector(2, seed=11) init_gate = Initialize(psi) init_gate.label = "Random_State" ## Measure the state in the x,y,z basis and make a guess for the state_vector psi #Measure in all three different bases qc=QuantumCircuit(1,1) qc.initialize(psi,0) qc.measure(0,0) z = execute(qc, backend, shots = 1024, seed_simulator=312).result().get_counts() # we run the simulation and get the counts qc=QuantumCircuit(1,1) qc.initialize(psi,0) qc.h(0) qc.s(0) qc.measure(0,0) y = execute(qc, backend, shots = 1024, seed_simulator=312).result().get_counts() # we run the simulation and get the counts qc=QuantumCircuit(1,1) qc.initialize(psi,0) qc.h(0) qc.measure(0,0) x = execute(qc, backend, shots = 1024, seed_simulator=312).result().get_counts() # we run the simulation and get the counts print(x,y,z) #Put your answer here #Try to remove any global phase in your answer #phi= #theta= #bonus_validation([phi, theta]) angles : [phi,theta]
https://github.com/UST-QuAntiL/qiskit-service
UST-QuAntiL
# ****************************************************************************** # Copyright (c) 2020-2021 University of Stuttgart # # See the NOTICE file(s) distributed with this work for additional # information regarding copyright ownership. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** from qiskit_braket_provider import AWSBraketProvider from braket.aws.aws_session import AwsSession import boto3 from qiskit.providers.jobstatus import JOB_FINAL_STATES from qiskit import QiskitError def get_qpu(access_key, secret_access_key, qpu_name, region='eu-west-2'): boto_session = boto3.Session( aws_access_key_id=access_key, aws_secret_access_key=secret_access_key, region_name=region, ) session = AwsSession(boto_session) provider = AWSBraketProvider() backend = provider.get_backend(qpu_name, aws_session=session) return backend def execute_job(transpiled_circuit, shots, backend): """Generate qObject from transpiled circuit and execute it. Return result.""" try: job = backend.run(transpiled_circuit, shots=shots) job_status = job.status() while job_status not in JOB_FINAL_STATES: print("The job is still running") job_status = job.status() job_result = job.result() print("\nJob result:") print(job_result) job_result_dict = job_result.to_dict() print(job_result_dict) try: statevector = job_result.get_statevector() print("\nState vector:") print(statevector) except QiskitError: statevector = None print("No statevector available!") try: counts = job_result.get_counts() print("\nCounts:") print(counts) except QiskitError: counts = None print("No counts available!") try: unitary = job_result.get_unitary() print("\nUnitary:") print(unitary) except QiskitError: unitary = None print("No unitary available!") return {'job_result_raw': job_result_dict, 'statevector': statevector, 'counts': counts, 'unitary': unitary} except Exception: return None
https://github.com/qiskit-community/qiskit-aqt-provider
qiskit-community
# This code is part of Qiskit. # # (C) Copyright IBM 2019, Alpine Quantum Technologies GmbH 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import typing import warnings from dataclasses import dataclass from typing import ( TYPE_CHECKING, Any, Generic, Optional, TypeVar, Union, ) from uuid import UUID import httpx from qiskit import QuantumCircuit from qiskit.circuit.library import RXGate, RXXGate, RZGate from qiskit.circuit.measure import Measure from qiskit.circuit.parameter import Parameter from qiskit.providers import BackendV2 as Backend from qiskit.providers import Options as QiskitOptions from qiskit.providers.models import BackendConfiguration from qiskit.transpiler import Target from qiskit_aer import AerJob, AerSimulator, noise from typing_extensions import override from qiskit_aqt_provider import api_models, api_models_direct from qiskit_aqt_provider.aqt_job import AQTDirectAccessJob, AQTJob from qiskit_aqt_provider.aqt_options import AQTDirectAccessOptions, AQTOptions from qiskit_aqt_provider.circuit_to_aqt import aqt_to_qiskit_circuit if TYPE_CHECKING: # pragma: no cover from qiskit_aqt_provider.aqt_provider import AQTProvider TargetT = TypeVar("TargetT", bound=Target) class UnknownOptionWarning(UserWarning): """An unknown option was passed to a backend's :meth:`run <AQTResource.run>` method.""" def make_transpiler_target(target_cls: type[TargetT], num_qubits: int) -> TargetT: """Factory for transpilation targets of AQT resources. Args: target_cls: base class to use for the returned instance. num_qubits: maximum number of qubits supported by the resource. Returns: A Qiskit transpilation target for an AQT resource. """ target: TargetT = target_cls(num_qubits=num_qubits) theta = Parameter("θ") lam = Parameter("λ") # configure the transpiler to use RX/RZ/RXX # the custom scheduling pass rewrites RX to R to comply to the Arnica API format. target.add_instruction(RZGate(lam)) target.add_instruction(RXGate(theta)) target.add_instruction(RXXGate(theta)) target.add_instruction(Measure()) return target _JobType = TypeVar("_JobType", AQTJob, AQTDirectAccessJob) _OptionsType = TypeVar("_OptionsType", bound=AQTOptions) """Resource options model.""" class _ResourceBase(Generic[_OptionsType], Backend): """Common setup for AQT backends.""" def __init__( self, provider: "AQTProvider", name: str, options_type: type[_OptionsType] ) -> None: """Initialize the Qiskit backend. Args: provider: Qiskit provider that owns this backend. name: name of the backend. options_type: options model. Must be default-initializable. """ super().__init__(name=name, provider=provider) num_qubits = 20 self._target = make_transpiler_target(Target, num_qubits) self._options = options_type() self._configuration = BackendConfiguration.from_dict( { "backend_name": name, "backend_version": 2, "url": provider.portal_url, "simulator": True, "local": False, "coupling_map": None, "description": "AQT trapped-ion device simulator", "basis_gates": ["r", "rz", "rxx"], # the actual basis gates "memory": True, "n_qubits": num_qubits, "conditional": False, "max_shots": self._options.max_shots(), "max_experiments": 1, "open_pulse": False, "gates": [ {"name": "rz", "parameters": ["theta"], "qasm_def": "TODO"}, {"name": "r", "parameters": ["theta", "phi"], "qasm_def": "TODO"}, {"name": "rxx", "parameters": ["theta"], "qasm_def": "TODO"}, ], } ) def configuration(self) -> BackendConfiguration: """Legacy Qiskit backend configuration.""" return self._configuration @property def max_circuits(self) -> int: """Maximum number of circuits per batch.""" return 2000 @property def target(self) -> Target: """Transpilation target for this backend.""" return self._target @classmethod def _default_options(cls) -> QiskitOptions: """Default backend options, in Qiskit format.""" options_type = typing.get_args(cls.__orig_bases__[0])[0] return QiskitOptions(**options_type()) @property def options(self) -> _OptionsType: """Configured backend options.""" return self._options def get_scheduling_stage_plugin(self) -> str: """Name of the custom scheduling stage plugin for the Qiskit transpiler.""" return "aqt" def get_translation_stage_plugin(self) -> str: """Name of the custom translation stage plugin for the Qiskit transpiler.""" return "aqt" def _create_job( self, job_type: type[_JobType], circuits: Union[QuantumCircuit, list[QuantumCircuit]], **options: Any, ) -> _JobType: """Initialize a job handle of a given type. Helper function for the ``run()`` method implementations. Args: job_type: type of the job handle to initialize. circuits: circuits to execute when the job is submitted. options: backend options overrides. """ if not isinstance(circuits, list): circuits = [circuits] valid_options = {key: value for key, value in options.items() if key in self.options} unknown_options = set(options) - set(valid_options) if unknown_options: for unknown_option in unknown_options: warnings.warn( f"Option {unknown_option} is not used by this backend", UnknownOptionWarning, stacklevel=2, ) options_copy = self.options.model_copy() options_copy.update_options(**valid_options) return job_type( self, circuits, options_copy, ) class AQTResource(_ResourceBase[AQTOptions]): """Qiskit backend for AQT cloud quantum computing resources. Use :meth:`AQTProvider.get_backend <qiskit_aqt_provider.aqt_provider.AQTProvider.get_backend>` to retrieve backend instances. """ def __init__( self, provider: "AQTProvider", resource_id: api_models.ResourceId, ) -> None: """Initialize the backend. Args: provider: Qiskit provider that owns this backend. resource_id: description of resource to target. """ super().__init__( name=resource_id.resource_id, provider=provider, options_type=AQTOptions, ) self._http_client: httpx.Client = provider._http_client self.resource_id = resource_id def run(self, circuits: Union[QuantumCircuit, list[QuantumCircuit]], **options: Any) -> AQTJob: """Submit circuits for execution on this resource. Args: circuits: circuits to execute options: overrides for this resource's options. Elements should be valid fields of the :class:`AQTOptions <qiskit_aqt_provider.aqt_options.AQTOptions>` model. Unknown fields are ignored with a :class:`UnknownOptionWarning`. Returns: A handle to the submitted job. """ job = self._create_job(AQTJob, circuits, **options) job.submit() return job def submit(self, job: AQTJob) -> UUID: """Submit a quantum circuits job to the AQT resource. .. tip:: This is a low-level method. Use the :meth:`run` method to submit a job and retrieve a :class:`AQTJob <qiskit_aqt_provider.aqt_job.AQTJob>` handle. Args: job: the quantum circuits job to submit to the resource for execution. Returns: The unique identifier of the submitted job. """ resp = self._http_client.post( f"/submit/{self.resource_id.workspace_id}/{self.resource_id.resource_id}", json=job.api_submit_payload.model_dump(), ) resp.raise_for_status() return api_models.Response.model_validate(resp.json()).job.job_id def result(self, job_id: UUID) -> api_models.JobResponse: """Query the result for a specific job. .. tip:: This is a low-level method. Use the :meth:`AQTJob.result <qiskit_aqt_provider.aqt_job.AQTJob.result>` method to retrieve the result of a job described by a :class:`AQTJob <qiskit_aqt_provider.aqt_job.AQTJob>` handle. Parameters: job_id: The unique identifier for the target job. Returns: AQT API payload with the job results. """ resp = self._http_client.get(f"/result/{job_id}") resp.raise_for_status() return api_models.Response.model_validate(resp.json()) class AQTDirectAccessResource(_ResourceBase[AQTDirectAccessOptions]): """Qiskit backend for AQT direct-access quantum computing resources. Use :meth:`AQTProvider.get_direct_access_backend <qiskit_aqt_provider.aqt_provider.AQTProvider.get_direct_access_backend>` to retrieve backend instances. """ def __init__( self, provider: "AQTProvider", base_url: str, ) -> None: """Initialize the backend. Args: provider: Qiskit provider that owns the backend. base_url: URL of the direct-access interface. """ super().__init__( provider=provider, name="direct-access", options_type=AQTDirectAccessOptions, ) self._http_client = api_models.http_client(base_url=base_url, token=provider.access_token) def run( self, circuits: Union[QuantumCircuit, list[QuantumCircuit]], **options: Any ) -> AQTDirectAccessJob: """Prepare circuits for execution on this resource. .. warning:: The circuits are only evaluated during the :meth:`AQTDirectAccessJob.result <qiskit_aqt_provider.aqt_job.AQTDirectAccessJob.result>` call. Args: circuits: circuits to execute options: overrides for this resource's options. Elements should be valid fields of the :class:`AQTOptions <qiskit_aqt_provider.aqt_options.AQTOptions>` model. Unknown fields are ignored with a :class:`UnknownOptionWarning`. Returns: A handle to the prepared job. """ return self._create_job(AQTDirectAccessJob, circuits, **options) def submit(self, circuit: api_models.QuantumCircuit) -> UUID: """Submit a quantum circuit job to the AQT resource. Args: circuit: circuit to evaluate, in API format. Returns: The unique identifier of the submitted job. """ resp = self._http_client.put("/circuit", json=circuit.model_dump()) resp.raise_for_status() return UUID(resp.json()) def result(self, job_id: UUID, *, timeout: Optional[float]) -> api_models_direct.JobResult: """Query the result of a specific job. Block until a result (success or error) is available. Args: job_id: unique identifier of the target job. timeout: query timeout, in seconds. Disabled if `None`. Returns: Job result, as API payload. """ resp = self._http_client.get(f"/circuit/result/{job_id}", timeout=timeout) resp.raise_for_status() return api_models_direct.JobResult.model_validate(resp.json()) def qubit_states_from_int(state: int, num_qubits: int) -> list[int]: """Convert the Qiskit state representation to the AQT states samples one. Args: state: Qiskit quantum register state representation num_qubits: number of qubits in the register. Returns: AQT qubit states representation. Raises: ValueError: the passed state is too large for the passed register size. Examples: >>> qubit_states_from_int(0, 3) [0, 0, 0] >>> qubit_states_from_int(0b11, 3) [1, 1, 0] >>> qubit_states_from_int(0b01, 3) [1, 0, 0] >>> qubit_states_from_int(123, 7) [1, 1, 0, 1, 1, 1, 1] >>> qubit_states_from_int(123, 3) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Cannot represent state=123 on num_qubits=3. """ if state.bit_length() > num_qubits: raise ValueError(f"Cannot represent {state=} on {num_qubits=}.") return [(state >> qubit) & 1 for qubit in range(num_qubits)] @dataclass(frozen=True) class SimulatorJob: """Data for a job running on a local simulator.""" job: AerJob """Simulation backend job handle.""" circuits: list[QuantumCircuit] """Quantum circuits to evaluate.""" shots: int """Number of repetitions of each circuit.""" @property def job_id(self) -> UUID: """The job's unique identifier.""" return UUID(hex=self.job.job_id()) class OfflineSimulatorResource(AQTResource): """AQT-compatible offline simulator resource. Offline simulators expose the same interface and restrictions as hardware backends. If `with_noise_model` is true, a noise model approximating that of AQT hardware backends is used. .. tip:: The simulator backend is provided by `Qiskit Aer <https://qiskit.github.io/qiskit-aer/>`_. The Qiskit Aer resource is exposed for detailed detuning as the ``OfflineSimulatorResource.simulator`` attribute. """ def __init__( self, provider: "AQTProvider", resource_id: api_models.ResourceId, with_noise_model: bool, ) -> None: """Initialize an offline simulator resource. Args: provider: Qiskit provider that owns this backend. resource_id: identification of the offline simulator resource. with_noise_model: whether to configure a noise model in the simulator backend. """ assert resource_id.resource_type == "offline_simulator" # noqa: S101 super().__init__( provider, resource_id=resource_id, ) self.job: Optional[SimulatorJob] = None if not with_noise_model: noise_model = None else: # the transpiler lowers all operations to the gate set supported by the AQT API, # not to the resource target's one. noise_model = noise.NoiseModel(basis_gates=["r", "rz", "rxx"]) noise_model.add_all_qubit_quantum_error(noise.depolarizing_error(0.003, 1), ["r"]) noise_model.add_all_qubit_quantum_error(noise.depolarizing_error(0.01, 2), ["rxx"]) self.simulator = AerSimulator(method="statevector", noise_model=noise_model) @property def with_noise_model(self) -> bool: """Whether the simulator includes a noise model.""" return self.simulator.options.noise_model is not None @override def submit(self, job: AQTJob) -> UUID: """Submit a job for execution on the simulator. .. tip:: This is a low-level method. Use the :meth:`AQTResource.run()` method to submit a job and retrieve a :class:`AQTJob <qiskit_aqt_provider.aqt_job.AQTJob>` handle. Args: job: quantum circuits job to submit to the simulator. Returns: Unique identifier of the simulator job. """ # Use the API payload such that the memory map is the same as that # of the remote devices. circuits = [ aqt_to_qiskit_circuit(circuit.quantum_circuit, circuit.number_of_qubits) for circuit in job.api_submit_payload.payload.circuits ] self.job = SimulatorJob( job=self.simulator.run(circuits, shots=job.options.shots), circuits=job.circuits, shots=job.options.shots, ) return self.job.job_id @override def result(self, job_id: UUID) -> api_models.JobResponse: """Query results for a simulator job. .. tip:: This is a low-level method. Use :meth:`AQTJob.result() <qiskit_aqt_provider.aqt_job.AQTJob.result>` instead. Args: job_id: identifier of the job to retrieve results for. Returns: AQT API payload with the job results. Raises: UnknownJobError: ``job_id`` doesn't correspond to a simulator job on this resource. """ if self.job is None or job_id != self.job.job_id: raise api_models.UnknownJobError(str(job_id)) qiskit_result = self.job.job.result() results: dict[str, list[list[int]]] = {} for circuit_index, circuit in enumerate(self.job.circuits): samples: list[list[int]] = [] # Use data()["counts"] instead of get_counts() to access the raw counts # in hexadecimal format. counts: dict[str, int] = qiskit_result.data(circuit_index)["counts"] for hex_state, occurrences in counts.items(): samples.extend( [ qubit_states_from_int(int(hex_state, 16), circuit.num_qubits) for _ in range(occurrences) ] ) results[str(circuit_index)] = samples return api_models.Response.finished( job_id=job_id, workspace_id=self.resource_id.workspace_id, resource_id=self.resource_id.resource_id, results=results, )
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
# useful additional packages import matplotlib.pyplot as plt %matplotlib inline import numpy as np # useful math functions from math import pi, cos, acos, sqrt import sys # importing the QISKit from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import available_backends, execute, register, get_backend # importing API token to access remote backends try: sys.path.append("../../") # go to parent dir import Qconfig qx_config = { "APItoken": Qconfig.APItoken, "url": Qconfig.config['url']} except: qx_config = { "APItoken":"YOUR_TOKEN_HERE", "url":"https://quantumexperience.ng.bluemix.net/api"} # import basic plot tools from qiskit.tools.visualization import plot_histogram def ch(qProg, a, b): """ Controlled-Hadamard gate """ qProg.h(b) qProg.sdg(b) qProg.cx(a, b) qProg.h(b) qProg.t(b) qProg.cx(a, b) qProg.t(b) qProg.h(b) qProg.s(b) qProg.x(b) qProg.s(a) return qProg def cu3(qProg, theta, phi, lambd, c, t): """ Controlled-u3 gate """ qProg.u1((lambd-phi)/2, t) qProg.cx(c, t) qProg.u3(-theta/2, 0, -(phi+lambd)/2, t) qProg.cx(c, t) qProg.u3(theta/2, phi, 0, t) return qProg #CHANGE THIS 7BIT 0-1 STRING TO PERFORM EXPERIMENT ON ENCODING 0000000, ..., 1111111 x1234567 = "0101010" if len(x1234567) != 7 or not("1" in x1234567 or "0" in x1234567): raise Exception("x1234567 is a 7-bit 0-1 pattern. Please set it to the correct pattern") #compute the value of rotation angle theta of (3,1)-QRAC theta = acos(sqrt(0.5 + sqrt(3.0)/6.0)) #to record the u3 parameters for encoding 000, 010, 100, 110, 001, 011, 101, 111 rotationParams = {"000":(2*theta, pi/4, -pi/4), "010":(2*theta, 3*pi/4, -3*pi/4), "100":(pi-2*theta, pi/4, -pi/4), "110":(pi-2*theta, 3*pi/4, -3*pi/4), "001":(2*theta, -pi/4, pi/4), "011":(2*theta, -3*pi/4, 3*pi/4), "101":(pi-2*theta, -pi/4, pi/4), "111":(pi-2*theta, -3*pi/4, 3*pi/4)} # Creating registers # qubits for encoding 7 bits of information with qr[0] kept by the sender qr = QuantumRegister(3) # bits for recording the measurement of the qubits qr[1] and qr[2] cr = ClassicalRegister(2) encodingName = "Encode"+x1234567 encodingCircuit = QuantumCircuit(qr, cr, name=encodingName) #Prepare superposition of mixing QRACs of x1...x6 and x7 encodingCircuit.u3(1.187, 0, 0, qr[0]) #Encoding the seventh bit seventhBit = x1234567[6] if seventhBit == "1": #copy qr[0] into qr[1] and qr[2] encodingCircuit.cx(qr[0], qr[1]) encodingCircuit.cx(qr[0], qr[2]) #perform controlled-Hadamard qr[0], qr[1], and toffoli qr[0], qr[1] , qr[2] encodingCircuit = ch(encodingCircuit, qr[0], qr[1]) encodingCircuit.ccx(qr[0], qr[1], qr[2]) #End of encoding the seventh bit #encode x1...x6 with two (3,1)-QRACS. To do that, we must flip q[0] so that the controlled encoding is executed encodingCircuit.x(qr[0]) #Encoding the first 3 bits 000, ..., 111 into the second qubit, i.e., (3,1)-QRAC on the second qubit firstThreeBits = x1234567[0:3] #encodingCircuit.cu3(*rotationParams[firstThreeBits], qr[0], qr[1]) encodingCircuit = cu3(encodingCircuit, *rotationParams[firstThreeBits], qr[0], qr[1]) #Encoding the second 3 bits 000, ..., 111 into the third qubit, i.e., (3,1)-QRAC on the third qubit secondThreeBits = x1234567[3:6] #encodingCircuit.cu3(*rotationParams[secondTreeBits], qr[0], qr[2]) encodingCircuit = cu3(encodingCircuit, *rotationParams[secondThreeBits], qr[0], qr[2]) #end of encoding encodingCircuit.barrier() # dictionary for decoding circuits decodingCircuits = {} # Quantum circuits for decoding the 1st to 6th bits for i, pos in enumerate(["First", "Second", "Third", "Fourth", "Fifth", "Sixth"]): circuitName = "Decode"+pos decodingCircuits[circuitName] = QuantumCircuit(qr, cr, name=circuitName) if i < 3: #measure 1st, 2nd, 3rd bit if pos == "Second": #if pos == "First" we can directly measure decodingCircuits[circuitName].h(qr[1]) elif pos == "Third": decodingCircuits[circuitName].u3(pi/2, -pi/2, pi/2, qr[1]) decodingCircuits[circuitName].measure(qr[1], cr[1]) else: #measure 4th, 5th, 6th bit if pos == "Fifth": #if pos == "Fourth" we can directly measure decodingCircuits[circuitName].h(qr[2]) elif pos == "Sixth": decodingCircuits[circuitName].u3(pi/2, -pi/2, pi/2, qr[2]) decodingCircuits[circuitName].measure(qr[2], cr[1]) #Quantum circuits for decoding the 7th bit decodingCircuits["DecodeSeventh"] = QuantumCircuit(qr, cr, name="DecodeSeventh") decodingCircuits["DecodeSeventh"].measure(qr[1], cr[0]) decodingCircuits["DecodeSeventh"].measure(qr[2], cr[1]) #combine encoding and decoding of (7,2)-QRACs to get a list of complete circuits circuitNames = [] circuits = [] k1 = encodingName for k2 in decodingCircuits.keys(): circuitNames.append(k1+k2) circuits.append(encodingCircuit+decodingCircuits[k2]) print("List of circuit names:", circuitNames) #list of circuit names #Q_program.get_qasms(circuitNames) #list qasms codes backend = "local_qasm_simulator" #backend = "ibmqx2" shots = 1000 job = execute(circuits, backend=backend, shots=shots) results = job.result() for k in ["DecodeFirst", "DecodeSecond", "DecodeThird", "DecodeFourth", "DecodeFifth", "DecodeSixth"]: print("Experimental Result of ", encodingName+k) plot_histogram(results.get_counts(circuits[circuitNames.index(encodingName+k)])) print("Experimental result of ", encodingName+"DecodeSeventh") plot_histogram(results.get_counts(circuits[circuitNames.index(encodingName+"DecodeSeventh")]))
https://github.com/ColibrITD-SAS/mpqp
ColibrITD-SAS
from mpqp import QCircuit circ1 = QCircuit(3) circ2 = QCircuit(5, nb_cbits=2, label="Example") from mpqp.gates import * from mpqp.measures import BasisMeasure from mpqp import Barrier circ2.add(CNOT(2,3)) circ2.add([H(0), T(1), CNOT(0,1), S(4)]) circ3 = QCircuit( [ H(0), X(1), CNOT(1, 2), Barrier(), Y(2), Z(0), CZ(1, 0), BasisMeasure([0, 1, 2], shots=1024), ] ) print(circ2) circ3.pretty_print() circ3.display() circ3.display("latex") circ3.depth() circ3.size() circ3.count_gates(X) circ3.get_measurements() circ1 = QCircuit([H(0), S(1), CNOT(0,1)]) circ2 = QCircuit([X(0)]) print(circ1) print('-------------') print(circ2) appended = circ1 + circ2 print(appended) tensored = circ1 @ circ2 print(tensored) from mpqp import Language circ3.to_other_language(Language.QISKIT) circ3.to_other_language(Language.MY_QLM) circ3.to_other_language(Language.BRAKET) circ3.to_other_language(Language.CIRQ) print(circ3.to_qasm2()) print(circ3.to_qasm3()) from sympy import symbols theta, k = symbols("θ k") param_circ = QCircuit( [Rx(theta, 0), CNOT(1,2), X(2), Rk(k,1), H(0), CRk(k, 0, 2), BasisMeasure(list(range(3)), shots=1000)] ) print(param_circ) import numpy as np print(param_circ.subs({theta: np.pi/3, k:2})) param_circ.variables()
https://github.com/alvinli04/Quantum-Steganography
alvinli04
import qiskit from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute from qiskit import Aer from qiskit import IBMQ from qiskit.circuit.quantumregister import AncillaRegister def comparator(regX, regY): qc = QuantumCircuit(regX, regY) # regX and regY should have the same size regLength = regX.size ancilla = AncillaRegister(2*regLength) qc.add_register(ancilla) qc.x(ancilla) for index in range(regLength): qc.x(regX[index]) qc.mcx([regY[index], regX[index]]+[ancilla[i] for i in range(2*index)], [ancilla[index*2]]) if index < regLength-1: qc.mcx([regY[index], regX[index]]+[ancilla[i] for i in range(2*index)], [ancilla[2*regLength-2]]) qc.x(regX[index]) qc.x(regY[index]) qc.mcx([regY[index], regX[index]]+[ancilla[i] for i in range(2*index)], [ancilla[index*2+1]]) if index < regLength-1: qc.mcx([regY[index], regX[index]]+[ancilla[i] for i in range(2*index)], [ancilla[2*regLength-1]]) qc.x(regY[index]) qc.x(ancilla) return qc if __name__ == '__main__': regX = QuantumRegister(2, "x") regY = QuantumRegister(2, "y") cResult = comparator(regX, regY) print("Comparator Register Output") print(comparator(regX, regY))
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
from qiskit import * from oracle_generation import generate_oracle get_bin = lambda x, n: format(x, 'b').zfill(n) def gen_circuits(min,max,size): circuits = [] secrets = [] ORACLE_SIZE = size for i in range(min,max+1): cur_str = get_bin(i,ORACLE_SIZE-1) (circuit, secret) = generate_oracle(ORACLE_SIZE,False,3,cur_str) circuits.append(circuit) secrets.append(secret) return (circuits, secrets)
https://github.com/tybens/quantum-data-fitting-HHL
tybens
import numpy as np from numpy import pi import scipy from qiskit.extensions import UnitaryGate from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister, execute, Aer from qiskit.visualization import plot_histogram # A = np.matrix([[1, 0, 0], [0, 1, -1], [0, 1, 1]]) # gets 1.4 but only 2 eigenvalues A = np.matrix([[1, 1, 0], [-1, 1, -1], [0, .13, 1.3]]) # gets 1.9 and 3 distinct evals def hermitian_and_pad_matrix(A): # define a 3x3 zero matrix for aid in construction zero = np.matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]]) # construct A' to be a hermitian matrix Ap = np.vstack((np.hstack((zero, A)), np.hstack((A.getH(), zero)))) A_p = np.pad(Ap, ((0, 2), (0, 2))) # pad A_p[-1][-1], A_p[-2][-2] = 1, 1 eig_val, eig_vec = scipy.linalg.eig(A_p) A_p /= max(np.real(eig_val)) # rescale matrix so that eigenvalues are between -1 and 1 return A_p A_p = hermitian_and_pad_matrix(A) eig_val, eig_vec = scipy.linalg.eig(A_p) kappa = np.linalg.cond(A_p) print(f"Kappa = {kappa}") print("-"*30) print(f"Eigen Values:") for e_val in eig_val: print(e_val) A eig_val, eig_vec = scipy.linalg.eig(A_p) print("-"*30) print(f"Eigen Values:") for e_val in eig_val: print(e_val) print("-"*30) print(f"Eigen Vectors:") print(eig_vec) # initialize the b solution vector b = np.array([1, 3, 2]) # pad the b array with 0's to be 8 by 1 def pad_b(b): return np.append(b, [0, 0, 0, 0, 0]) b_p = pad_b(b) print(A_p.shape) print(b_p.shape) kappa = np.linalg.cond(A_p) print(f"Kappa = {kappa}") T = 150 # Used in hamiltonian evolution. Needs to be relatively large so that alpha in Eq (3) approximates as sync functions # C = 1/2 # Used in conditional rotation. Needs to be on the order of 1/kappa where kappa is the conditional number of A n_eig = 8 # Used in QPE, number of qubits to estimate the eigenvalues of A, defines the precision of the eigenvalues up to n_eig bits n = 3 # 2**n x 2**n A. This defines the number of qubits needed for the dimensions of this problem. Specifically 8 dimensions can be encoded with 3 qubits. def construct_registers(n_eig, n, b_p): aux = QuantumRegister(1, 'aux') # for conditional eigenvalue inversion n_l = QuantumRegister(n_eig, 'nl') # stores binary representation of the eigenvalues n_b = QuantumRegister(n, 'nb') # contains the vector solution c = ClassicalRegister(n + n_eig + 1, 'c') # 3 for n_b, n_eig for n_l, and 1 for the auxiliary return aux, n_l, n_b, c # aux, n_l, n_b, c = construct_registers(n_eig, n, b_p) def construct_init_circ(n_eig, n, b_p): # state preparation of b: |0> -> |b> init_circ = QuantumCircuit(aux, n_l, n_b, c) b_p = b_p/scipy.linalg.norm(b_p) # normalize b, so it is ready for loading. init_circ.initialize(b_p, n_b) return init_circ # init_circ = construct_init_circ(n_eig, n, b_p) def convert_Ap_to_gate(A_p, T): # convert to unitary matrix through exponentiation U_mat = scipy.linalg.expm(1j*A_p*T) # convert to a unitary operator with Qiskit U = UnitaryGate(U_mat) U.name = "$U$" return U # U = convert_Ap_to_gate(A_p, T) def construct_qpe_circ(U): qpe_circ = QuantumCircuit(aux, n_l, n_b, c) qpe_circ.barrier() # First, perform a hadamard on all the memory qubits. qpe_circ.h(n_l) # Apply powers of controlled U on the target qubits for i in range(n_eig): Upow = U.power(2**(n_eig-1-i)) ctrl_Upow = Upow.control() qpe_circ.append(ctrl_Upow, [n_l[i], n_b[0], n_b[1], n_b[2]]) qpe_circ.barrier() # Compute the inverse quantum fourier transform for qubit in range(n_eig//2): qpe_circ.swap(n_l[qubit], n_l[n_eig-qubit-1]) for i in range(n_eig): for m in range(i): qpe_circ.cp(-pi/(2**(i-m)), n_l[n_eig-1-m], n_l[n_eig-1-i]) qpe_circ.h(n_l[n_eig-1-i]) qpe_circ.barrier() qpe_circ.barrier() return qpe_circ # qpe_circ = construct_qpe_circ(U) def construct_qpe_measure_circ(init_circ, qpe_circ): measure_circ = init_circ.compose(qpe_circ) measure_circ.measure(n_l, c[:n_eig]) return measure_circ # measure_circ = construct_qpe_measure_circ(init_circ, qpe_circ) def evaluate_QPE(measure_circ): nShots = 10000 backend_qasm = Aer.get_backend('qasm_simulator') # perform constant_full_circuit just 1 time and plot the histogram of states! res = execute(measure_circ, backend_qasm,shots=nShots).result() counts = res.get_counts(); return counts # counts = evaluate_QPE(measure_circ) # plot_histogram(counts, figsize=(30, 15)) # actual_b_j = scipy.linalg.solve(eig_vec, b_p)**2 # need to compare to estimated b_j, # # find six peaks that must correspond to the bitstring complements of each other. Verifying that QPE is working. def calculate_lmd_dec(bit_str): lmd = 0 for ind, i in enumerate(bit_str[::-1]): lmd += int(i)/2**(ind+1) return lmd def binaryToDec(n): return int(n, 2) # 10 classical register, only consider the top 6: i[0][4:] def get_top_ev_bin(counts): return [i[0][-n_eig:] for i in sorted(counts.items(), key=lambda i: i[1], reverse=True)[:10]] # top_ev_bin = get_top_ev_bin(counts) # print(top_ev_bin) def get_top_ev_dec(top_phase): return [binaryToDec(i[::-1]) for i in top_phase] # top_dec = get_top_ev_dec(top_ev_bin) # print(top_dec) def get_real_ev(A_p): eig_val, eig_vec = scipy.linalg.eig(A_p) return np.real(eig_val) # real_ev = get_real_ev(A_p) def get_real_ev_dec(real_ev): # in order to compare the real eigenvalues with the lambda from the histogram after QPE return [int(2**n_eig * T * val / (2*pi) % (2**n_eig)) for val in real_ev] # real_ev_dec = get_real_ev_dec(real_ev) # print(f"Lambda associated with each eigenval: {real_ev_dec}") def print_real_vs_exp_evals(top_dec, real_ev_dec, real_ev): print("-"*15+"compare this ev_dec array"+"-"*15) print(top_dec) print("-"*15+"to the following real_ev's"+"-"*15) [print(i[0], ":", round(i[1], 3)) for i in zip(real_ev_dec, real_ev)] print("Use this to manually construct the `correspondance` array:") print("correspondance = [x_i] where x_i is 1 if the corresponding real" "ev to the i'th experimental ev_dec is pos, else -1") return # print_real_vs_exp_evals(top_dec, real_ev_dec, real_ev) # currently written for [19, 45, 5, 59, 17, 47, 48, 16, 58, 6] # correspondance = [1, -1, -1, 1, -1, 1, 1, -1, 1, -1] def calculate_min_C(correspondance, top_ev_bin): C = calculate_lmd_dec(top_ev_bin[0]) for neg, ev in zip(correspondance, top_ev_bin): eigenvalue = calculate_lmd_dec(ev) # if the lambda corresponds to a negative eigenvalue, invert it if neg == -1: eigenvalue = -1*(1 - eigenvalue) lambda_j = eigenvalue * (2*pi/T) C = min(C, abs(lambda_j)-0.0001) return C # C = calculate_min_C(correspondance, top_ev_bin) # C # circuit construction from qiskit.circuit.library.standard_gates import UGate import math def theta_angle(C, eigenvalue_bin, neg): eigenvalue = calculate_lmd_dec(eigenvalue_bin) # if the lambda corresponds to a negative eigenvalue if neg == -1: eigenvalue = -1*(1 - eigenvalue) lambda_j = eigenvalue * (2*pi/T) ratio = C/lambda_j return math.asin(ratio) def construct_eig_invert_circ(correspondance, eigenvalues_bin): C = calculate_min_C(correspondance, eigenvalues_bin) eig_invert_circ = QuantumCircuit(aux, n_l) for neg, ev_bin in zip(correspondance, eigenvalues_bin): rot_angle = theta_angle(C, ev_bin, neg) cu_gate = UGate(rot_angle*2, 0, 0).control(n_eig, ctrl_state = ev_bin) wiring = [i for i in range(1, n_eig+1)]+[0] eig_invert_circ.append(cu_gate, wiring) return eig_invert_circ # eig_invert_circ = construct_eig_invert_circ(correspondance, top_ev_bin) # eig_invert_circ.draw('mpl') def construct_rev_qpe_circ(): return qpe_circ.inverse() # rev_qpe_circ = construct_rev_qpe_circ() # rev_qpe_circ.draw('mpl') def construct_full_circuit(init_circ, qpe_circ, eig_invert_circ, reverse_qpe_circ): final_circ = init_circ.compose(qpe_circ).compose(eig_invert_circ).compose(reverse_qpe_circ) final_circ.measure(aux, c[0]) # measure the aux qubit final_circ.measure(n_l, c[1:n_eig+1]) # measure n_l into the 3 classical registers final_circ.measure(n_b, c[n_eig+1:]) # measure to the next 3 classical registers return final_circ # full_circuit = construct_full_circuit(init_circ, qpe_circ, eig_invert_circ, rev_qpe_circ) # full_circuit.draw('mpl') def checkFailed(class_regs): # input 10 classical registers, check if the outputs faield return class_regs[-1] == '0' or any([i != '0' for i in class_regs[3:-1]]) def measure_all(full_circuit, nShots=10000): backend_qasm = Aer.get_backend('qasm_simulator') # perform constant_full_circuit just 1 time and plot the histogram of states! res = execute(full_circuit, backend_qasm, shots=nShots).result() final_counts = res.get_counts() # remove the failures numFailed = sum([val for key, val in final_counts.items() if checkFailed(key)]) delItem = [] for key, val in final_counts.items(): if checkFailed(key): delItem.append(key) for item in delItem: final_counts.pop(item) return final_counts, numFailed # nShots = 10000 # final_counts, numFailed = measure_all(full_circuit, nShots) # plot_histogram(final_counts) def get_x_hhl(nShots, numFailed): x_hhl = [i[1]/(nShots - numFailed) for i in sorted(final_counts.items(), key=lambda i: i[0], reverse=False)] x_hhl = [0, 0, 0] + x_hhl + [0, 0] return x_hhl # x_hhl = get_x_hhl(nShots, numFailed) # x_hhl def get_x_actual(A_p, b_p): x_actual = scipy.linalg.solve(A_p, b_p) x_norm = (x_actual/scipy.linalg.norm(x_actual))**2 return [round(i, 3) for i in (x_norm)] # x_actual = get_x_actual(A_p, b_p) # x_actual # --- inputs --- A = np.matrix([[1, 1, 0], [-1, 1, -1], [0, .13, 1.3]]) # gets 1.9 and 3 distinct evals b = np.array([1, 3, 2]) # --- constants --- T = 150 # Used in hamiltonian evolution. Needs to be relatively large so that alpha in Eq (3) approximates as sync functions n_eig = 8 # Used in QPE, number of qubits to estimate the eigenvalues of A, defines the precision of the eigenvalues up to n_eig bits n = 3 # 2**n x 2**n A. This defines the number of qubits needed for the dimensions of this problem. Specifically 8 dimensions can be encoded with 3 qubits. # ------- HHL ALGO ------- # hermitian and pad the matrix A_p = hermitian_and_pad_matrix(A) b_p = pad_b(b) # - step 1: load the data: aux, n_l, n_b, c = construct_registers(n_eig, n, b_p) # construct registers init_circ = construct_init_circ(n_eig, n, b_p) # - step 2: QPE U = convert_Ap_to_gate(A_p, T) # convert A_p to unitary gate qpe_circ = construct_qpe_circ(U) measure_circ = construct_qpe_measure_circ(init_circ, qpe_circ) # add measurements counts = evaluate_QPE(measure_circ) # manual inspection of the eigenvalues from QPE is necessary (in this case) to construct # the conditional rotation top_ev_bin = get_top_ev_bin(counts) top_dec = get_top_ev_dec(top_ev_bin) # these are the decimal representations deciphered from the counts of the QPE evals real_ev = get_real_ev(A_p) # these are the actual eigenvalues of A' real_ev_dec = get_real_ev_dec(real_ev) # save the decimal representation to allow comparison to experimental ev's (lamdba's) # !!! manually construct the correspondance array before moving on !!! print_real_vs_exp_evals(top_dec, real_ev_dec, real_ev) # plot_histogram(counts, figsize=((20, 7))) # uncomment to see the histogram # previous was [77, 179, 180, 76, 66, 190, 22, 234, 235, 21] correspondance = [-1, 1, 1, -1, 1, -1, 1, -1, 1, -1] # Step 3: conditional rotation # compute C to be barely less than the minimum experimental eigenvalues eig_invert_circ = construct_eig_invert_circ(correspondance, top_ev_bin) # step 4: inverse QPE rev_qpe_circ = construct_rev_qpe_circ() # step 5: measure the auxiliary qubit to check for failures full_circuit = construct_full_circuit(init_circ, qpe_circ, eig_invert_circ, rev_qpe_circ) # full_circuit.draw('mpl') # uncomment to see the full circuit design nShots = 10000 final_counts, numFailed = measure_all(full_circuit, nShots) plot_histogram(final_counts) x_hhl = get_x_hhl(nShots, numFailed) x_actual = get_x_actual(A_p, b_p) print(f"Percentage of Failed Measurements: {numFailed/nShots*100}% Failed") print(f"|x> from HHL: {x_hhl}") print(f"|x> from actual: {x_actual}") print(f"Normalized difference: {scipy.linalg.norm(x_hhl - x_actual)}") full_circuit.draw('mpl')
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * # Primeiramente vamos iniciar um circuito circuitoQ = QuantumCircuit(1,1) # No qiskit os qubits são inicializados por default com o estado |0> # Podemos ver isso plotando a esfera de bloch que representa ele from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuitoQ, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector) # As portas Rx,Ry,Rz servem para fazer rotações nos eixos X,Y,Z # Para demonstrar vamos inicializar outro circuito de 1 qubit circuito2 = QuantumCircuit(1) # Agora para aplicar a porta usamos .rx(rotacao_em_radianos,qubit_a_passar_pela_porta) # Nesse exemplo vamos rotacionar o qubit no eixo x em pi/2 # antes é importante importar o pi da biblioteca math from math import pi circuito2.rx(pi/2,0) circuito2.draw(output = 'mpl') # Vendo o resultado: from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuito2, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
https://github.com/sayana25/IQCQ-UPES-2023
sayana25
pip install qiskit # required imports: from qiskit.visualization import array_to_latex from qiskit.quantum_info import Statevector, random_statevector ket0 = [[1],[0]] #defining the ket |0> array_to_latex(ket0) ket1 = [[0],[1]] #defining the ket |1> array_to_latex(ket1) bra0 = [1,0] array_to_latex(bra0) bra1 = [0,1] array_to_latex(bra1) sv_bra0 = Statevector(bra0) sv_bra0 sv_bra1 = Statevector(bra1) sv_bra1 sv_ket1 = Statevector(ket1) sv_ket1 sv_ket0 = Statevector(ket0) sv_ket0 sv_eq = Statevector([1/2, 3/4, 4/5, 6/8]) sv_eq.draw('latex') sv_eq.is_valid() from qiskit.quantum_info.operators import Operator, Pauli op_bra0 = Operator(bra0) op_bra0 op_ket0 = Operator(ket0) op_bra0.tensor(op_ket0) pauli_x = Pauli('X') array_to_latex(pauli_x) pauli_y = Pauli('Y') array_to_latex(pauli_y) pauli_z = Pauli('Z') array_to_latex(pauli_z) import numpy as np test1 = np.dot(pauli_x,pauli_y) test2 = np.dot(pauli_y,pauli_x) array_to_latex(test1) array_to_latex(test1-test2) op_x = Operator(pauli_x) #operator representation of the Pauli X operator op_x op_y = Operator(pauli_y) #operator representation of the Pauli Y operator op_y op_z = Operator(pauli_z) #operator representation of the Pauli Y operator op_z op_new = np.dot(op_x,ket0) array_to_latex(op_new) op_new = np.dot(op_y,ket0) array_to_latex(op_new) op_new = np.dot(op_z,ket0) array_to_latex(op_new)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import QuantumCircuit from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits to represent the uncertainty num_uncertainty_qubits = 3 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective uncertainty_model = LogNormalDistribution( num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high) ) # plot probability distribution x = uncertainty_model.values y = uncertainty_model.probabilities plt.bar(x, y, width=0.2) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.show() # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 1.896 # set the approximation scaling for the payoff function c_approx = 0.25 # setup piecewise linear objective fcuntion breakpoints = [low, strike_price] slopes = [0, 1] offsets = [0, 0] f_min = 0 f_max = high - strike_price european_call_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, rescaling_factor=c_approx, ) # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective num_qubits = european_call_objective.num_qubits european_call = QuantumCircuit(num_qubits) european_call.append(uncertainty_model, range(num_uncertainty_qubits)) european_call.append(european_call_objective, range(num_qubits)) # draw the circuit european_call.draw() # plot exact payoff function (evaluated on the grid of the uncertainty model) x = uncertainty_model.values y = np.maximum(0, x - strike_price) plt.plot(x, y, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value (normalized to the [0, 1] interval) exact_value = np.dot(uncertainty_model.probabilities, y) exact_delta = sum(uncertainty_model.probabilities[x >= strike_price]) print("exact expected value:\t%.4f" % exact_value) print("exact delta value: \t%.4f" % exact_delta) european_call.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=european_call, objective_qubits=[3], post_processing=european_call_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (result.estimation_processed)) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) from qiskit_finance.applications.estimation import EuropeanCallPricing european_call_pricing = EuropeanCallPricing( num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, rescaling_factor=c_approx, bounds=(low, high), uncertainty_model=uncertainty_model, ) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_pricing.to_estimation_problem() # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (european_call_pricing.interpret(result))) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) from qiskit_finance.applications.estimation import EuropeanCallDelta european_call_delta = EuropeanCallDelta( num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, bounds=(low, high), uncertainty_model=uncertainty_model, ) european_call_delta._objective.decompose().draw() european_call_delta_circ = QuantumCircuit(european_call_delta._objective.num_qubits) european_call_delta_circ.append(uncertainty_model, range(num_uncertainty_qubits)) european_call_delta_circ.append( european_call_delta._objective, range(european_call_delta._objective.num_qubits) ) european_call_delta_circ.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_delta.to_estimation_problem() # construct amplitude estimation ae_delta = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_delta = ae_delta.estimate(problem) conf_int = np.array(result_delta.confidence_interval_processed) print("Exact delta: \t%.4f" % exact_delta) print("Esimated value: \t%.4f" % european_call_delta.interpret(result_delta)) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.problems import BaseProblem dummy_hamiltonian = None base_problem = BaseProblem(dummy_hamiltonian) print(base_problem.properties) from qiskit_nature.second_q.properties import AngularMomentum print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Adding AngularMomentum to problem.properties...") base_problem.properties.add(AngularMomentum(2)) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Discarding AngularMomentum from problem.properties...") base_problem.properties.discard(AngularMomentum) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) from qiskit_nature.second_q.drivers import PySCFDriver es_problem = PySCFDriver().run() print(es_problem.properties.particle_number) print(es_problem.properties.angular_momentum) print(es_problem.properties.magnetization) print(es_problem.properties.electronic_dipole_moment) print(es_problem.properties.electronic_density) from qiskit_nature.second_q.properties import ElectronicDensity density = ElectronicDensity.from_orbital_occupation( es_problem.orbital_occupations, es_problem.orbital_occupations_b, ) es_problem.properties.electronic_density = density import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/Harcipan/QAI_GroverSim
Harcipan
from qiskit import transpile, QuantumCircuit import qiskit.quantum_info as qi from qiskit_aer import AerSimulator from qiskit_aer.noise import NoiseModel, amplitude_damping_error from qiskit.visualization import plot_histogram # CNOT matrix operator with qubit-0 as control and qubit-1 as target cx_op = qi.Operator([[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]]) # iSWAP matrix operator iswap_op = qi.Operator([[1, 0, 0, 0], [0, 0, 1j, 0], [0, 1j, 0, 0], [0, 0, 0, 1]]) # CNOT in terms of iSWAP and single-qubit gates cx_circ = QuantumCircuit(2, name='cx<iSWAP>') # Add gates cx_circ.sdg(1) cx_circ.h(1) cx_circ.sdg(0) cx_circ.unitary(iswap_op, [0, 1], label='iswap') cx_circ.sdg(0) cx_circ.h(0) cx_circ.sdg(0) cx_circ.unitary(iswap_op, [0, 1], label='iswap') cx_circ.s(1) print(cx_circ) # Simulate the unitary for the circuit using Operator: unitary = qi.Operator(cx_circ) print(unitary) 'unitary' in AerSimulator().configuration().basis_gates # Error parameters param_q0 = 0.05 # damping parameter for qubit-0 param_q1 = 0.1 # damping parameter for qubit-1 # Construct the error qerror_q0 = amplitude_damping_error(param_q0) qerror_q1 = amplitude_damping_error(param_q1) iswap_error = qerror_q1.tensor(qerror_q0) # Build the noise model by adding the error to the "iswap" gate noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(iswap_error, 'iswap') # Bell state circuit where iSWAPS should be inserted at barrier locations bell_circ = QuantumCircuit(2, 2, name='bell') bell_circ.h(0) bell_circ.append(cx_circ, [0, 1]) bell_circ.measure([0,1], [0,1]) print(bell_circ) noise_model.add_basis_gates(['unitary']) print(noise_model.basis_gates) # Create ideal simulator backend and transpile circuit sim_ideal = AerSimulator() tbell_circ = transpile(bell_circ, sim_ideal) ideal_result = sim_ideal.run(tbell_circ).result() ideal_counts = ideal_result.get_counts(0) plot_histogram(ideal_counts, title='Ideal output for iSWAP bell-state preparation') # Create noisy simulator and transpile circuit sim_noise = AerSimulator(noise_model=noise_model) tbell_circ_noise = transpile(bell_circ, sim_noise) # Run on the simulator without noise noise_result = sim_noise.run(tbell_circ_noise).result() noise_counts = noise_result.get_counts(bell_circ) plot_histogram(noise_counts, title='Noisy output for iSWAP bell-state preparation')
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
# useful additional packages import matplotlib.pyplot as plt %matplotlib inline import numpy as np from math import pi import sys # importing the QISKit from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import available_backends, execute, register, get_backend # importing API token to access remote backends try: sys.path.append("../../") # go to parent dir import Qconfig qx_config = { "APItoken": Qconfig.APItoken, "url": Qconfig.config['url']} except: qx_config = { "APItoken":"YOUR_TOKEN_HERE", "url":"https://quantumexperience.ng.bluemix.net/api"} # import basic plot tools from qiskit.tools.visualization import plot_histogram backend = 'local_qasm_simulator' # the device to run on shots = 1024 # the number of shots in the experiment #to record the rotation number for encoding 00, 10, 11, 01 rotationNumbers = {"00":1, "10":3, "11":5, "01":7} # Creating registers # qubit for encoding 2 bits of information qr = QuantumRegister(1) # bit for recording the measurement of the qubit cr = ClassicalRegister(1) # dictionary for encoding circuits encodingCircuits = {} # Quantum circuits for encoding 00, 10, 11, 01 for bits in ("00", "01", "10", "11"): circuitName = "Encode"+bits encodingCircuits[circuitName] = QuantumCircuit(qr, cr, name=circuitName) encodingCircuits[circuitName].u3(rotationNumbers[bits]*pi/4.0, 0, 0, qr[0]) encodingCircuits[circuitName].barrier() # dictionary for decoding circuits decodingCircuits = {} # Quantum circuits for decoding the first and second bit for pos in ("First", "Second"): circuitName = "Decode"+pos decodingCircuits[circuitName] = QuantumCircuit(qr, cr, name=circuitName) if pos == "Second": #if pos == "First" we can directly measure decodingCircuits[circuitName].h(qr[0]) decodingCircuits[circuitName].measure(qr[0], cr[0]) #combine encoding and decoding of QRACs to get a list of complete circuits circuitNames = [] circuits = [] for k1 in encodingCircuits.keys(): for k2 in decodingCircuits.keys(): circuitNames.append(k1+k2) circuits.append(encodingCircuits[k1]+decodingCircuits[k2]) print("List of circuit names:", circuitNames) #list of circuit names job = execute(circuits, backend=backend, shots=shots) results = job.result() print("Experimental Result of Encode01DecodeFirst") plot_histogram(results.get_counts(circuits[circuitNames.index("Encode01DecodeFirst")])) #We should measure "0" with probability 0.85 print("Experimental Result of Encode01DecodeSecond") plot_histogram(results.get_counts(circuits[circuitNames.index("Encode01DecodeSecond")])) #We should measure "1" with probability 0.85 print("Experimental Result of Encode11DecodeFirst") plot_histogram(results.get_counts(circuits[circuitNames.index("Encode11DecodeFirst")])) #We should measure "1" with probability 0.85 print("Experimental Result of Encode11DecodeSecond") plot_histogram(results.get_counts(circuits[circuitNames.index("Encode11DecodeSecond")])) #We should measure "1" with probability 0.85 #to enable sleep import time backend = "ibmqx4" #connect to remote API to be able to use remote simulators and real devices register(qx_config['APItoken'], qx_config['url']) print("Available backends:", available_backends()) if get_backend(backend).status["available"] is True: job_exp = execute(circuits, backend=backend, shots=shots) lapse = 0 interval = 50 while not job_exp.done: print('Status @ {} seconds'.format(interval * lapse)) print(job_exp.status) time.sleep(interval) lapse += 1 print(job_exp.status) results = job_exp.result() print("Experimental Result of Encode01DecodeFirst") plot_histogram(results.get_counts(circuits[circuitNames.index("Encode01DecodeFirst")])) #We should measure "0" with probability 0.85 print("Experimental Result of Encode01DecodeSecond") plot_histogram(results.get_counts(circuits[circuitNames.index("Encode01DecodeSecond")])) #We should measure "1" with probability 0.85 backend = 'local_qasm_simulator' # the device to run on shots = 1024 # the number of shots in the experiment from math import sqrt, cos, acos #compute the value of theta theta = acos(sqrt(0.5 + sqrt(3.0)/6.0)) #to record the u3 parameters for encoding 000, 010, 100, 110, 001, 011, 101, 111 rotationParams = {"000":(2*theta, pi/4, -pi/4), "010":(2*theta, 3*pi/4, -3*pi/4), "100":(pi-2*theta, pi/4, -pi/4), "110":(pi-2*theta, 3*pi/4, -3*pi/4), "001":(2*theta, -pi/4, pi/4), "011":(2*theta, -3*pi/4, 3*pi/4), "101":(pi-2*theta, -pi/4, pi/4), "111":(pi-2*theta, -3*pi/4, 3*pi/4)} # Creating registers # qubit for encoding 3 bits of information qr = QuantumRegister(1) # bit for recording the measurement of the qubit cr = ClassicalRegister(1) # dictionary for encoding circuits encodingCircuits = {} # Quantum circuits for encoding 000, ..., 111 for bits in rotationParams.keys(): circuitName = "Encode"+bits encodingCircuits[circuitName] = QuantumCircuit(qr, cr, name=circuitName) encodingCircuits[circuitName].u3(*rotationParams[bits], qr[0]) encodingCircuits[circuitName].barrier() # dictionary for decoding circuits decodingCircuits = {} # Quantum circuits for decoding the first, second and third bit for pos in ("First", "Second", "Third"): circuitName = "Decode"+pos decodingCircuits[circuitName] = QuantumCircuit(qr, cr, name=circuitName) if pos == "Second": #if pos == "First" we can directly measure decodingCircuits[circuitName].h(qr[0]) elif pos == "Third": decodingCircuits[circuitName].u3(pi/2, -pi/2, pi/2, qr[0]) decodingCircuits[circuitName].measure(qr[0], cr[0]) #combine encoding and decoding of QRACs to get a list of complete circuits circuitNames = [] circuits = [] for k1 in encodingCircuits.keys(): for k2 in decodingCircuits.keys(): circuitNames.append(k1+k2) circuits.append(encodingCircuits[k1]+decodingCircuits[k2]) print("List of circuit names:", circuitNames) #list of circuit names job = execute(circuits, backend=backend, shots=shots) results = job.result() print("Experimental Result of Encode010DecodeFirst") plot_histogram(results.get_counts(circuits[circuitNames.index("Encode010DecodeFirst")])) #We should measure "0" with probability 0.78 print("Experimental Result of Encode010DecodeSecond") plot_histogram(results.get_counts(circuits[circuitNames.index("Encode010DecodeSecond")])) #We should measure "1" with probability 0.78 print("Experimental Result of Encode010DecodeThird") plot_histogram(results.get_counts(circuits[circuitNames.index("Encode010DecodeThird")])) #We should measure "0" with probability 0.78 backend = "ibmqx4" #backend = "local_qasm_simulator" print("Available backends:", available_backends()) if get_backend(backend).status["available"] is True: job_exp = execute(circuits, backend=backend, shots=shots) lapse = 0 interval = 50 while not job_exp.done: print('Status @ {} seconds'.format(interval * lapse)) print(job_exp.status) time.sleep(interval) lapse += 1 print(job_exp.status) results = job_exp.result() print("Experimental Result of Encode010DecodeFirst") plot_histogram(results.get_counts(circuits[circuitNames.index("Encode010DecodeFirst")])) #We should measure "0" with probability 0.78 print("Experimental Result of Encode010DecodeSecond") plot_histogram(results.get_counts(circuits[circuitNames.index("Encode010DecodeSecond")])) #We should measure "1" with probability 0.78 print("Experimental Result of Encode010DecodeThird") plot_histogram(results.get_counts(circuits[circuitNames.index("Encode010DecodeThird")])) #We should measure "0" with probability 0.78
https://github.com/abhishekchak52/quantum-computing-course
abhishekchak52
%matplotlib inline import numpy as np import matplotlib.pyplot as plt # Importing standard Qiskit libraries from qiskit import QuantumCircuit, execute from qiskit.providers.aer import QasmSimulator from qiskit.visualization import * from qiskit.quantum_info import * basis_gates = ['id', 'x', 'y', 'z', 's', 't', 'sdg', 'tdg', 'h', 'p', 'sx' ,'r', 'rx', 'ry', 'rz', 'u', 'u1', 'u2', 'u3', 'cx', 'ccx', 'barrier', 'measure', 'snapshot'] or_oracle = QuantumCircuit(3) # Do not change below this line or_oracle.draw(output='mpl') or_tt = ['000', '011', '101', '111'] def check_or_oracle(tt_row): check_qc = QuantumCircuit(3) for i in range(2): if (tt_row[i] == '1'): check_qc.x(i) check_qc.extend(or_oracle) check_qc.measure_all() return (execute(check_qc.reverse_bits(),backend=QasmSimulator(), shots=1).result().get_counts().most_frequent() == tt_row) try: assert list(or_oracle.count_ops()) != [], f"Circuit cannot be empty" assert 'measure' not in or_oracle.count_ops(), f"Please remove measurements" assert set(or_oracle.count_ops().keys()).difference(basis_gates) == set(), f"Only the following basic gates are allowed: {basis_gates}" for tt_row in or_tt: assert check_or_oracle(tt_row), f" Input {tt_row[0:2]}: Your encoding is not correct" print("Your oracle construction passed all checks") except AssertionError as e: print(f'Your code has an error: {e.args[0]}') except Exception as e: print(f'This error occured: {e.args[0]}') bv_oracle = QuantumCircuit(3) bv_oracle.cx(0,2) bv_oracle.cx(1,2) bv_oracle.draw('mpl') bv_circ = QuantumCircuit(3,2) # Do not remove this line bv_circ.draw(output='mpl') try: assert list(bv_circ.count_ops()) != [], f"Circuit cannot be empty" assert set(bv_circ.count_ops().keys()).difference(basis_gates) == set(), f"Only the following basic gates are allowed: {basis_gates}" counts = execute(bv_circ.reverse_bits(), backend=QasmSimulator(), shots=8192).result().get_counts() assert list(counts.keys()) == ['11'], "Your circuit did not produce the right answer" print(" Your circuit produced the correct output. Please submit for evaluation.") except AssertionError as e: print(f'Your code has an error: {e.args[0]}') except Exception as e: print(f'This error occured: {e.args[0]}') plot_histogram(counts)
https://github.com/qiskit-community/qopt-best-practices
qiskit-community
def aggregate(alpha, measurements): if not 0 <= alpha <= 1: raise ValueError(f"alpha must be in [0, 1] but was {alpha}") # sort by values sorted_measurements = sorted(measurements, key=lambda x: x[1]) accumulated_percent = 0.0 # once alpha is reached, stop cvar = 0.0 for probability, value in sorted_measurements: cvar += value * min(probability, alpha - accumulated_percent) accumulated_percent += probability if accumulated_percent >= alpha: break return cvar / alpha from qopt_best_practices.cost_function import evaluate_sparse_pauli def cost_func_cvar_sampler(params, ansatz, hamiltonian, sampler, aggregation): job = sampler.run(ansatz, params) sampler_result = job.result() sampled = sampler_result.quasi_dists[0] # a dictionary containing: {state: (measurement probability, value)} evaluated = { state: (probability, evaluate_sparse_pauli(state, hamiltonian)) for state, probability in sampled.items() } result = aggregate(aggregation, evaluated.values()) return result # BASIC STATEVECTOR SIMULATOR BACKEND --> primitives in qiskit.primtives from qiskit.primitives import Sampler sampler = Sampler() # Import pre-computed Hamiltonian import json from qiskit.quantum_info import SparsePauliOp graph_file = "data/graph_2layers_0seed.json" data = json.load(open(graph_file, "r")) hamiltonian = SparsePauliOp.from_list(data["paulis"]) print(hamiltonian) # Build basic ansatz using the circuit library utility from qiskit.circuit.library import QAOAAnsatz ansatz = QAOAAnsatz(hamiltonian, reps=2) ansatz.draw("mpl") ansatz.measure_all() # Define random initial point import numpy as np init_params = np.random.rand(ansatz.num_parameters) print(init_params) from scipy.optimize import minimize result = minimize( cost_func_cvar_sampler, init_params, args=(ansatz, hamiltonian, sampler, 0.5), method="COBYLA", ) print(result) # auxiliary functions to sample most likely bitstring def to_bitstring(integer, num_bits): result = np.binary_repr(integer, width=num_bits) return [int(digit) for digit in result] def sample_most_likely_bitstring(state_vector, num_bits): values = list(state_vector.values()) most_likely = np.argmax(np.abs(values)) most_likely_bitstring = to_bitstring(most_likely, num_bits) most_likely_bitstring.reverse() return np.asarray(most_likely_bitstring) import matplotlib.pyplot as plt import networkx as nx # auxiliary function to plot graphs def plot_result(G, x): colors = ["r" if i == 0 else "b" for i in x] pos, default_axes = nx.spring_layout(G), plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=0.8, pos=pos) from qopt_best_practices.utils import build_max_cut_graph graph = build_max_cut_graph(data["paulis"]) qc = ansatz.assign_parameters(result.x) samp_dist = sampler.run(qc, shots=int(1e4)).result().quasi_dists[0] best_result = sample_most_likely_bitstring(samp_dist, len(graph)) plot_result(graph, best_result)
https://github.com/rickapocalypse/final_paper_qiskit_sat
rickapocalypse
from qiskit import* import matplotlib.pyplot as plt from qiskit.extensions import Initialize from qiskit.tools.visualization import plot_bloch_multivector from qiskit_textbook.tools import random_state circuit = QuantumCircuit(3,2) psi = random_state(1) plot_bloch_multivector(psi) init_gate = Initialize(psi) print(f'\psi = {psi}') init_gate.label = 'Estado inicial' circuit.append(init_gate, [0]) circuit.barrier() circuit.h(1) circuit.cx(1,2) circuit.barrier() circuit.cx(0,1) circuit.h(0) circuit.barrier() circuit.measure([0,1], [0,1]) # fazer as medidas de q0 e q1 e armazenar nos bits 0 e 1 circuit.barrier() circuit.cx(1,2) circuit.cz(0,2) circuit.draw(output ='mpl') simulator = Aer.get_backend('qasm_simulator') circuit.save_statevector() result = simulator.run(circuit).result().get_statevector() plot_bloch_multivector(result) plt.show()
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Filter ops from a circuit""" from typing import Callable from qiskit.dagcircuit import DAGCircuit, DAGOpNode from qiskit.transpiler.basepasses import TransformationPass from qiskit.transpiler.passes.utils import control_flow class FilterOpNodes(TransformationPass): """Remove all operations that match a filter function This transformation pass is used to remove any operations that matches a the provided filter function. Args: predicate: A given callable that will be passed the :class:`.DAGOpNode` for each node in the :class:`.DAGCircuit`. If the callable returns ``True`` the :class:`.DAGOpNode` is retained in the circuit and if it returns ``False`` it is removed from the circuit. Example: Filter out operations that are labelled ``"foo"`` .. plot:: :include-source: from qiskit import QuantumCircuit from qiskit.transpiler.passes import FilterOpNodes circuit = QuantumCircuit(1) circuit.x(0, label='foo') circuit.barrier() circuit.h(0) circuit = FilterOpNodes( lambda node: getattr(node.op, "label") != "foo" )(circuit) circuit.draw('mpl') """ def __init__(self, predicate: Callable[[DAGOpNode], bool]): super().__init__() self.predicate = predicate @control_flow.trivial_recurse def run(self, dag: DAGCircuit) -> DAGCircuit: """Run the RemoveBarriers pass on `dag`.""" for node in dag.op_nodes(): if not self.predicate(node): dag.remove_op_node(node) return dag
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import QuantumCircuit from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits to represent the uncertainty num_uncertainty_qubits = 3 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective uncertainty_model = LogNormalDistribution( num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high) ) # plot probability distribution x = uncertainty_model.values y = uncertainty_model.probabilities plt.bar(x, y, width=0.2) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.show() # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 1.896 # set the approximation scaling for the payoff function c_approx = 0.25 # setup piecewise linear objective fcuntion breakpoints = [low, strike_price] slopes = [0, 1] offsets = [0, 0] f_min = 0 f_max = high - strike_price european_call_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, rescaling_factor=c_approx, ) # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective num_qubits = european_call_objective.num_qubits european_call = QuantumCircuit(num_qubits) european_call.append(uncertainty_model, range(num_uncertainty_qubits)) european_call.append(european_call_objective, range(num_qubits)) # draw the circuit european_call.draw() # plot exact payoff function (evaluated on the grid of the uncertainty model) x = uncertainty_model.values y = np.maximum(0, x - strike_price) plt.plot(x, y, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value (normalized to the [0, 1] interval) exact_value = np.dot(uncertainty_model.probabilities, y) exact_delta = sum(uncertainty_model.probabilities[x >= strike_price]) print("exact expected value:\t%.4f" % exact_value) print("exact delta value: \t%.4f" % exact_delta) european_call.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=european_call, objective_qubits=[3], post_processing=european_call_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (result.estimation_processed)) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) from qiskit_finance.applications.estimation import EuropeanCallPricing european_call_pricing = EuropeanCallPricing( num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, rescaling_factor=c_approx, bounds=(low, high), uncertainty_model=uncertainty_model, ) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_pricing.to_estimation_problem() # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (european_call_pricing.interpret(result))) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) from qiskit_finance.applications.estimation import EuropeanCallDelta european_call_delta = EuropeanCallDelta( num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, bounds=(low, high), uncertainty_model=uncertainty_model, ) european_call_delta._objective.decompose().draw() european_call_delta_circ = QuantumCircuit(european_call_delta._objective.num_qubits) european_call_delta_circ.append(uncertainty_model, range(num_uncertainty_qubits)) european_call_delta_circ.append( european_call_delta._objective, range(european_call_delta._objective.num_qubits) ) european_call_delta_circ.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_delta.to_estimation_problem() # construct amplitude estimation ae_delta = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_delta = ae_delta.estimate(problem) conf_int = np.array(result_delta.confidence_interval_processed) print("Exact delta: \t%.4f" % exact_delta) print("Esimated value: \t%.4f" % european_call_delta.interpret(result_delta)) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
import math import numpy as np from scipy import linalg import matplotlib.pyplot as plt # swap is 2x2 matrix swap = np.array([[0, 1], [1, 0]], dtype=complex) # Hadamard coin c_Hadamard = (1/math.sqrt(2))*np.array([[1, 1], [1, -1]], dtype=complex) # Balanced coin (not used) c_bal = (1/math.sqrt(2))*np.array([[1, 1j], [1j, 1]], dtype=complex) # step with swap and coin s_coin = c_Hadamard.dot(swap) # Number of nodes (should be odd) n_nodes = 15 # Step 1 includes swap and coin for first partition Step1 = np.identity(n_nodes, dtype=complex) for i in range(0,n_nodes-1,2): for i1 in range(0,2): for i2 in range(0,2): Step1[i+i1,i+i2] = s_coin[i1,i2] # Step 2 includes swap for second partition Step2 = np.identity(n_nodes, dtype=complex) for i in range(1,n_nodes,2): for i1 in range(0,2): for i2 in range(0,2): Step2[i+i1,i+i2] = swap[i1,i2] # Vector with chain nodes ch = np.zeros(n_nodes, dtype=complex) # Initial distribution for symmetric walk with Hadamard coin # two central nodes n_pos = n_nodes//2 ch[n_pos] = 1/math.sqrt(2) ch[n_pos+1] = 1j/math.sqrt(2) # Alternative initial distribution also could be used #ch[0] = 1 # Probability from complex amplitude def abs2(x): return x.real**2 + x.imag**2 # Vector with probabilities ch2 = np.zeros(n_nodes, dtype = float) # Number of steps n_step=12 for i in range(0,n_step): if i > 0: # step = 0 doing nothing, only draw if i%2 == 1 : ch = Step1.dot(ch) # odd steps 1 3 5 ... else: ch = Step2.dot(ch) # even steps 2 4 6 ... ch2 = abs2(ch) # calculate probabilities print(ch2) if i%2 == 0 : # plot for even steps 0 2 4 ... plt.plot(ch2) plt.show()
https://github.com/Marduk-42/Quantum-Algorithm-Tutorials
Marduk-42
from qiskit import * def random_int(backend, size): qreg = QuantumRegister(1) #Using only one quibt creg = ClassicalRegister(1) circuit = QuantumCircuit(qreg,creg) circuit.reset(qreg) #Reset the qubit to state |0> circuit.h(qreg) #Apply Hadamard gate/put qubit into superposition circuit.measure(qreg,creg) #Measure job = execute(circuit, backend, shots=size, memory=True) result = job.result() bin_num = ''.join(result.get_memory()) return int(bin_num,2) #QASM Simulator backend: backend = Aer.get_backend('qasm_simulator') #Real IBM Quantum Computer backend #from qiskit.providers.ibmq import least_busy #provider = IBMQ.load_account() #backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and # not x.configuration().simulator and x.status().operational==True)) bits = 64 print("Here you have a random number: ", random_int(backend, bits))
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import qiskit.quantum_info as qi from qiskit.circuit.library import FourierChecking from qiskit.visualization import plot_histogram f = [1, -1, -1, -1] g = [1, 1, -1, -1] # FourierChecking() : How our Fourier Transform of F is correlated with G. # if p(f,g) <= 0.01 # p(f, g) > 0.05 Fourier Exits between f and g qc = FourierChecking(f=f, g=g) qc.draw(output='mpl') zero = qi.Statevector.from_label('00') sv = zero.evolve(qc) probs = sv.probabilities_dict() plot_histogram(probs) # We are only interested in 00 qubit thus our function f is correlated in 00 state to g with probabilites of 25%
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile from qiskit.providers.fake_provider import FakeBoeblingen backend = FakeBoeblingen() ghz = QuantumCircuit(5) ghz.h(0) ghz.cx(0,range(1,5)) circ = transpile(ghz, backend, scheduling_method="asap") circ.draw(output='mpl')
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit, transpile from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') qc_transpiled = transpile(qc, backend) result = backend.run(qc, shots = 8192).result()
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/hephaex/Quantum-Computing-Awesome-List
hephaex
import cirq import random def main(qubit_count = 8): circuit_sample_count = 3 # Choose qubits to use. input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] output_qubit = cirq.GridQubit(qubit_count, 0) # Pick coefficients for the oracle and create a circuit to query it. secret_bias_bit = random.randint(0, 1) secret_factor_bits = [random.randint(0, 1) for _ in range(qubit_count)] oracle = make_oracle(input_qubits, output_qubit, secret_factor_bits, secret_bias_bit) print('Secret function:\nf(a) = a·<{}> + {} (mod 2)'.format( ', '.join(str(e) for e in secret_factor_bits), secret_bias_bit)) # Embed the oracle into a special quantum circuit querying it exactly once. circuit = make_bernstein_vazirani_circuit( input_qubits, output_qubit, oracle) print('Circuit:') print(circuit) # Sample from the circuit a couple times. simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) print('Sampled results:\n{}'.format(frequencies)) # Check if we actually found the secret value. most_common_bitstring = frequencies.most_common(1)[0][0] print('Most common matches secret factors:\n{}'.format( most_common_bitstring == bitstring(secret_factor_bits))) def make_oracle(input_qubits, output_qubit, secret_factor_bits, secret_bias_bit): """Gates implementing the function f(a) = a·factors + bias (mod 2).""" if secret_bias_bit: yield cirq.X(output_qubit) for qubit, bit in zip(input_qubits, secret_factor_bits): if bit: yield cirq.CNOT(qubit, output_qubit) def make_bernstein_vazirani_circuit(input_qubits, output_qubit, oracle): """Solves for factors in f(a) = a·factors + bias (mod 2) with one query.""" c = cirq.Circuit() # Initialize qubits. c.append([ cirq.X(output_qubit), cirq.H(output_qubit), cirq.H.on_each(*input_qubits), ]) # Query oracle. c.append(oracle) # Measure in X basis. c.append([ cirq.H.on_each(*input_qubits), cirq.measure(*input_qubits, key='result') ]) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': main()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.mappers.second_quantization import LogarithmicMapper mapper = LogarithmicMapper(2) from qiskit_nature.second_q.mappers import LogarithmicMapper mapper = LogarithmicMapper(2) from qiskit_nature.second_q.mappers import LogarithmicMapper mapper = LogarithmicMapper(padding=2) from qiskit_nature.circuit.library import HartreeFock from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper converter = QubitConverter(JordanWignerMapper()) init_state = HartreeFock(num_spin_orbitals=6, num_particles=(2, 1), qubit_converter=converter) print(init_state.draw()) from qiskit_nature.second_q.circuit.library import HartreeFock from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter converter = QubitConverter(JordanWignerMapper()) init_state = HartreeFock(num_spatial_orbitals=3, num_particles=(2, 1), qubit_converter=converter) print(init_state.draw()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/0sophy1/Qiskit-Dev-Cert-lectures
0sophy1
a = 2 + 3j b = 5 - 2j print("a + b=", a+b) print("a * b=", a*b) a = 2 + 3j a_bar = 2 - 3j print("a + a_bar = ", a + a_bar) print("a * a_bar = ", a * a_bar) import matplotlib.pyplot as plt import numpy as np import math z1 = 3 + 4j x_min = 0 x_max = 5.0 y_min = 0 y_max = 5.0 def plot_complex_number_geometric_representation(z,x_min,x_max,y_min,y_max): fig = plt.figure() ax = plt.gca() a = [0.0,0.0] b = [z.real,z.imag] head_length = 0.2 dx = b[0] - a[0] dy = b[1] - a[1] vec_ab = [dx,dy] vec_ab_magnitude = math.sqrt(dx**2+dy**2) dx = dx / vec_ab_magnitude dy = dy / vec_ab_magnitude vec_ab_magnitude = vec_ab_magnitude - head_length ax.arrow(a[0], a[1], vec_ab_magnitude*dx, vec_ab_magnitude*dy, head_width=head_length, head_length=head_length, fc='black', ec='black') plt.xlim(x_min,x_max) plt.ylim(y_min,y_max) plt.grid(True,linestyle='-') plt.show() plot_complex_number_geometric_representation(z1,x_min,x_max,y_min,y_max) import numpy as np A = np.array([[1,2,3]]) B = np.array([[7], [10], [9]]) A+B A = np.array([[7], [10], [9]]) B = np.array([[1,2,3]]) C = np.array([[1, 2, 3], [5, 6, 7], [8,9,10]]) print("AB = ", np.matmul(A,B)) print("BA = ", np.matmul(B,A)) print("CA = ", np.matmul(C, A)) print("AC = ", np.matmul(A, C)) A = np.array([[1, 2], [3,4]]) B = np.array([[5, 6], [7,8]]) print("AB = \n", np.matmul(A,B)) print("BA = \n", np.matmul(B,A)) from scipy.linalg import orth from numpy import linalg as LA A = np.array([[1 + 3j, 2 - 1j], [3, 4 - 2j]]) data =orth(A) x, y = data[:, 0], data[:, 1] print("norm of x = %f" % LA.norm(x)) print("norm of y = %f" % LA.norm(y)) print("x dot y = ", np.vdot(x,y))
https://github.com/carstenblank/dc-qiskit-stochastics
carstenblank
# Copyright 2018-2022 Carsten Blank # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Optional, Dict, Any, Union import numpy as np import qiskit from dc_qiskit_algorithms import UniformRotationGate, QuantumFourierTransformGate from dc_qiskit_algorithms.MöttönenStatePreparation import get_alpha_y from dc_qiskit_algorithms.Qft import get_theta from hmmlearn import hmm from hmmlearn.hmm import MultinomialHMM from qiskit import QuantumRegister, QuantumCircuit from qiskit.circuit import Gate, Parameter from qiskit.circuit.library import RYGate, CU1Gate from scipy import sparse LOG = logging.basicConfig(format=logging.BASIC_FORMAT) class DraperAdder(Gate): num_qubits_a: int num_qubits_b: int def __init__(self, num_qubits_a: int, num_qubits_b: int, label: Optional[str] = None) -> None: super().__init__("draper", num_qubits_a + num_qubits_b, [], label) self.num_qubits_a = num_qubits_a self.num_qubits_b = num_qubits_b def _define(self): a = QuantumRegister(self.num_qubits_a, "a") b = QuantumRegister(self.num_qubits_b, "b") qc = QuantumCircuit(a, b, name=self.name) qc.append(QuantumFourierTransformGate(len(a)), a, []) for b_index in reversed(range(len(b))): theta_index = 1 for a_index in reversed(range(b_index + 1)): qc.append(CU1Gate(get_theta(theta_index)), [b[b_index], a[a_index]], []) theta_index += 1 qc.append(QuantumFourierTransformGate(len(a)).inverse(), a, []) self.definition = qc class RYGateSpecial(object): scaling: Parameter def __init__(self, scaling: Parameter): self.scaling = scaling def gate(self): return lambda phi: RYGate(self.scaling * (-phi)) class MultinomialHmmSpecial(MultinomialHMM): def __init__(self, n_components=1, startprob_prior=1.0, transmat_prior=1.0, algorithm="viterbi", random_state=None, n_iter=10, tol=1e-2, verbose=False, params="ste", init_params="ste"): super().__init__(n_components, startprob_prior, transmat_prior, algorithm, random_state, n_iter, tol, verbose, params, init_params) def emitted_symbol(self, state): return self.emissionprob_[state, :].argmax() def _generate_sample_from_state(self, state, random_state=None): most_likely_emmission = self.emitted_symbol(state) return [most_likely_emmission] class HiddenMarkovModel(object): emitted_symbols_map: Dict[int, float] accumulator_register: QuantumRegister state_register: QuantumRegister number_of_state_qubits: int number_of_level_qubits: int model: MultinomialHmmSpecial def __init__(self, model: MultinomialHmmSpecial, emitted_symbols_map: Optional[Dict[int, float]] = None) -> None: self.emitted_symbols_map = emitted_symbols_map or {} self.model = model self.number_of_state_qubits = int(np.ceil(np.log2(model.n_components))) self.number_of_level_qubits = int(np.ceil(np.log2(model.n_features))) self.state_register = QuantumRegister(size=self.number_of_state_qubits, name='state') self.accumulator_register = QuantumRegister(size=1, name='accumulator') def _create_index(self, level: int, scaling: Parameter): angles = {} for k in range(1, self.number_of_state_qubits + 1): size_of_vector = 2 ** (2 * self.number_of_state_qubits - k) vector = sparse.dok_matrix((size_of_vector, 1)) angles[k] = vector transition_matrix: np.ndarray = self.model.transmat_ for state in range(self.model.n_components): transitions: np.ndarray = transition_matrix[state] a = sparse.dok_matrix([transitions]).transpose() for k in range(1, self.number_of_state_qubits + 1): resulting_angles = angles[k] alpha_vector = get_alpha_y(a, self.number_of_state_qubits, k) offset = state * 2 ** (self.number_of_state_qubits - k) for key, alpha in alpha_vector.items(): resulting_angles[offset + key[0], key[1]] = alpha level_register = QuantumRegister(size=self.number_of_state_qubits, name=f'level_{level}') qc: QuantumCircuit = QuantumCircuit(self.state_register, level_register, name=f'circuit_level_{level}') for k in range(1, self.number_of_state_qubits + 1): alpha_angles = angles[k] control = list(self.state_register) + list(level_register)[0:self.number_of_state_qubits - k] target = level_register[self.number_of_state_qubits - k] # FIXME: scaling must be adjusted too! qc.append(UniformRotationGate(gate=RYGateSpecial(scaling).gate(), alpha=alpha_angles), control + [target], []) return qc def _create_accumulator_circuit(self, level: int, scaling: Parameter): angles: sparse.dok_matrix = sparse.dok_matrix((2 ** (2 * self.number_of_state_qubits), 1)) for state in range(self.model.n_components): for transition in range(self.model.n_components): index = state + transition * self.model.n_components # The emitted symbol that occurs when going from state to state + transition! target_state = (state + transition) % self.model.n_components # The problem with the HMM is that it associates to a state a random variable # FIXME: for epsilon-machines this is a state/target-state pair! emitted_symbol = self.model.emitted_symbol(target_state) angles[index, 0] = self.emitted_symbols_map.get(emitted_symbol, emitted_symbol) level_register = QuantumRegister(size=self.number_of_state_qubits, name=f'level_{level}') qc: QuantumCircuit = QuantumCircuit(self.state_register, level_register, self.accumulator_register, name=f'circuit_accumulator_{level}') control = list(self.state_register) + list(level_register) target = list(self.accumulator_register)[0] # FIXME: scaling must be adjusted too! qc.append( UniformRotationGate(gate=RYGateSpecial(scaling).gate(), alpha=angles), control + [target], [] ) return qc def _create_adder(self, level: int): level_register = QuantumRegister(size=self.number_of_state_qubits, name=f'level_{level}') qc: QuantumCircuit = QuantumCircuit(self.state_register, level_register, name=f'circuit_adder_{level}') control = list(self.state_register) + list(level_register) if self.number_of_state_qubits == 1: qc.cx(level_register, self.state_register) else: qc.append( DraperAdder(num_qubits_a=self.number_of_state_qubits, num_qubits_b=self.number_of_state_qubits), control, [] ) return qc if __name__ == "__main__": samples = 10*[[0], [1], [1], [1], [1], [2], [2], [0], [1], [1], [1], [0], [2]] model = hmm.MultinomialHMM(n_components=4) model.fit(samples) samples = model.sample(10) q_model = HiddenMarkovModel(model) qc: QuantumCircuit = QuantumCircuit(name='hmm_circuit') scaling_v: Parameter = Parameter('v') steps = 3 for level in range(1, steps + 1): level_qc = q_model._create_index(level, scaling_v) qc.extend(level_qc) # qc.barrier() acc_qc = q_model._create_accumulator_circuit(level, scaling_v) qc.extend(acc_qc) # qc.barrier() update_state_qc = q_model._create_adder(level) qc.extend(update_state_qc) qc.barrier() print(qc.draw(fold=-1)) transpiled_qc = qiskit.transpile( qc, optimization_level=3, basis_gates=[ 'u1', 'u2', 'u3', 'cx', 'id', # 'cu1', 'h' ] ) print(transpiled_qc.draw(fold=-1)) print(transpiled_qc.depth(), transpiled_qc.width())
https://github.com/QuSTaR/kaleidoscope
QuSTaR
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """A module for visualizing device coupling maps.""" import math from typing import List import numpy as np from qiskit.exceptions import MissingOptionalLibraryError, QiskitError from qiskit.providers.backend import BackendV2 from qiskit.tools.visualization import HAS_MATPLOTLIB, VisualizationError from qiskit.visualization.utils import matplotlib_close_if_inline def plot_gate_map( backend, figsize=None, plot_directed=False, label_qubits=True, qubit_size=None, line_width=4, font_size=None, qubit_color=None, qubit_labels=None, line_color=None, font_color="w", ax=None, filename=None, qubit_coordinates=None, ): """Plots the gate map of a device. Args: backend (BaseBackend): The backend instance that will be used to plot the device gate map. figsize (tuple): Output figure size (wxh) in inches. plot_directed (bool): Plot directed coupling map. label_qubits (bool): Label the qubits. qubit_size (float): Size of qubit marker. line_width (float): Width of lines. font_size (int): Font size of qubit labels. qubit_color (list): A list of colors for the qubits qubit_labels (list): A list of qubit labels line_color (list): A list of colors for each line from coupling_map. font_color (str): The font color for the qubit labels. ax (Axes): A Matplotlib axes instance. filename (str): file path to save image to. Returns: Figure: A Matplotlib figure instance. Raises: QiskitError: if tried to pass a simulator, or if the backend is None, but one of num_qubits, mpl_data, or cmap is None. MissingOptionalLibraryError: if matplotlib not installed. Example: .. jupyter-execute:: :hide-code: :hide-output: from qiskit.test.ibmq_mock import mock_get_backend mock_get_backend('FakeVigo') .. jupyter-execute:: from qiskit import QuantumCircuit, execute, IBMQ from qiskit.visualization import plot_gate_map %matplotlib inline provider = IBMQ.load_account() accountProvider = IBMQ.get_provider(hub='ibm-q') backend = accountProvider.get_backend('ibmq_vigo') plot_gate_map(backend) """ if not HAS_MATPLOTLIB: raise MissingOptionalLibraryError( libname="Matplotlib", name="plot_gate_map", pip_install="pip install matplotlib", ) if isinstance(backend, BackendV2): pass elif backend.configuration().simulator: raise QiskitError("Requires a device backend, not simulator.") qubit_coordinates_map = {} qubit_coordinates_map[1] = [[0, 0]] qubit_coordinates_map[5] = [[1, 0], [0, 1], [1, 1], [1, 2], [2, 1]] qubit_coordinates_map[7] = [[0, 0], [0, 1], [0, 2], [1, 1], [2, 0], [2, 1], [2, 2]] qubit_coordinates_map[20] = [ [0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], ] qubit_coordinates_map[15] = [ [0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [1, 7], [1, 6], [1, 5], [1, 4], [1, 3], [1, 2], [1, 1], [1, 0], ] qubit_coordinates_map[16] = [ [1, 0], [1, 1], [2, 1], [3, 1], [1, 2], [3, 2], [0, 3], [1, 3], [3, 3], [4, 3], [1, 4], [3, 4], [1, 5], [2, 5], [3, 5], [1, 6], ] qubit_coordinates_map[27] = [ [1, 0], [1, 1], [2, 1], [3, 1], [1, 2], [3, 2], [0, 3], [1, 3], [3, 3], [4, 3], [1, 4], [3, 4], [1, 5], [2, 5], [3, 5], [1, 6], [3, 6], [0, 7], [1, 7], [3, 7], [4, 7], [1, 8], [3, 8], [1, 9], [2, 9], [3, 9], [3, 10], ] qubit_coordinates_map[28] = [ [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [1, 2], [1, 6], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [3, 0], [3, 4], [3, 8], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], ] qubit_coordinates_map[53] = [ [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [1, 2], [1, 6], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [3, 0], [3, 4], [3, 8], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [5, 2], [5, 6], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [7, 0], [7, 4], [7, 8], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [9, 2], [9, 6], ] qubit_coordinates_map[65] = [ [0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [1, 0], [1, 4], [1, 8], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [3, 2], [3, 6], [3, 10], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [5, 0], [5, 4], [5, 8], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [7, 2], [7, 6], [7, 10], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], ] if isinstance(backend, BackendV2): num_qubits = backend.num_qubits coupling_map = backend.plot_coupling_map else: config = backend.configuration() num_qubits = config.n_qubits coupling_map = config.coupling_map # don't reference dictionary if provided as a parameter if qubit_coordinates is None: qubit_coordinates = qubit_coordinates_map.get(num_qubits) # try to adjust num_qubits to match the next highest hardcoded grid size if qubit_coordinates is None: if any([num_qubits < key for key in qubit_coordinates_map.keys()]): num_qubits_roundup = max(qubit_coordinates_map.keys()) for key in qubit_coordinates_map.keys(): if key < num_qubits_roundup and key > num_qubits: num_qubits_roundup = key qubit_coordinates = qubit_coordinates_map.get(num_qubits_roundup) return plot_coupling_map( num_qubits, qubit_coordinates, coupling_map, figsize, plot_directed, label_qubits, qubit_size, line_width, font_size, qubit_color, qubit_labels, line_color, font_color, ax, filename, ) def plot_coupling_map( num_qubits: int, qubit_coordinates: List[List[int]], coupling_map: List[List[int]], figsize=None, plot_directed=False, label_qubits=True, qubit_size=None, line_width=4, font_size=None, qubit_color=None, qubit_labels=None, line_color=None, font_color="w", ax=None, filename=None, ): """Plots an arbitrary coupling map of qubits (embedded in a plane). Args: num_qubits (int): The number of qubits defined and plotted. qubit_coordinates (List[List[int]]): A list of two-element lists, with entries of each nested list being the planar coordinates in a 0-based square grid where each qubit is located. coupling_map (List[List[int]]): A list of two-element lists, with entries of each nested list being the qubit numbers of the bonds to be plotted. figsize (tuple): Output figure size (wxh) in inches. plot_directed (bool): Plot directed coupling map. label_qubits (bool): Label the qubits. qubit_size (float): Size of qubit marker. line_width (float): Width of lines. font_size (int): Font size of qubit labels. qubit_color (list): A list of colors for the qubits qubit_labels (list): A list of qubit labels line_color (list): A list of colors for each line from coupling_map. font_color (str): The font color for the qubit labels. ax (Axes): A Matplotlib axes instance. filename (str): file path to save image to. Returns: Figure: A Matplotlib figure instance. Raises: MissingOptionalLibraryError: if matplotlib not installed. QiskitError: If length of qubit labels does not match number of qubits. Example: .. jupyter-execute:: from qiskit.visualization import plot_coupling_map %matplotlib inline num_qubits = 8 coupling_map = [[0, 1], [1, 2], [2, 3], [3, 5], [4, 5], [5, 6], [2, 4], [6, 7]] qubit_coordinates = [[0, 1], [1, 1], [1, 0], [1, 2], [2, 0], [2, 2], [2, 1], [3, 1]] plot_coupling_map(num_qubits, coupling_map, qubit_coordinates) """ if not HAS_MATPLOTLIB: raise MissingOptionalLibraryError( libname="Matplotlib", name="plot_coupling_map", pip_install="pip install matplotlib", ) import matplotlib.patches as mpatches import matplotlib.pyplot as plt input_axes = False if ax: input_axes = True if font_size is None: font_size = 12 if qubit_size is None: qubit_size = 24 if num_qubits > 20: qubit_size = 28 font_size = 10 if qubit_labels is None: qubit_labels = list(range(num_qubits)) else: if len(qubit_labels) != num_qubits: raise QiskitError("Length of qubit labels does not equal number of qubits.") if qubit_coordinates is not None: grid_data = qubit_coordinates else: if not input_axes: fig, ax = plt.subplots(figsize=(5, 5)) ax.axis("off") if filename: fig.savefig(filename) return fig x_max = max(d[1] for d in grid_data) y_max = max(d[0] for d in grid_data) max_dim = max(x_max, y_max) if figsize is None: if num_qubits == 1 or (x_max / max_dim > 0.33 and y_max / max_dim > 0.33): figsize = (5, 5) else: figsize = (9, 3) if ax is None: fig, ax = plt.subplots(figsize=figsize) ax.axis("off") # set coloring if qubit_color is None: qubit_color = ["#648fff"] * num_qubits if line_color is None: line_color = ["#648fff"] * len(coupling_map) if coupling_map else [] # Add lines for couplings if num_qubits != 1: for ind, edge in enumerate(coupling_map): is_symmetric = False if edge[::-1] in coupling_map: is_symmetric = True y_start = grid_data[edge[0]][0] x_start = grid_data[edge[0]][1] y_end = grid_data[edge[1]][0] x_end = grid_data[edge[1]][1] if is_symmetric: if y_start == y_end: x_end = (x_end - x_start) / 2 + x_start elif x_start == x_end: y_end = (y_end - y_start) / 2 + y_start else: x_end = (x_end - x_start) / 2 + x_start y_end = (y_end - y_start) / 2 + y_start ax.add_artist( plt.Line2D( [x_start, x_end], [-y_start, -y_end], color=line_color[ind], linewidth=line_width, zorder=0, ) ) if plot_directed: dx = x_end - x_start dy = y_end - y_start if is_symmetric: x_arrow = x_start + dx * 0.95 y_arrow = -y_start - dy * 0.95 dx_arrow = dx * 0.01 dy_arrow = -dy * 0.01 head_width = 0.15 else: x_arrow = x_start + dx * 0.5 y_arrow = -y_start - dy * 0.5 dx_arrow = dx * 0.2 dy_arrow = -dy * 0.2 head_width = 0.2 ax.add_patch( mpatches.FancyArrow( x_arrow, y_arrow, dx_arrow, dy_arrow, head_width=head_width, length_includes_head=True, edgecolor=None, linewidth=0, facecolor=line_color[ind], zorder=1, ) ) # Add circles for qubits for var, idx in enumerate(grid_data): # add check if num_qubits had been rounded up if var >= num_qubits: break _idx = [idx[1], -idx[0]] ax.add_artist( mpatches.Ellipse( _idx, qubit_size / 48, qubit_size / 48, # This is here so that the changes color=qubit_color[var], zorder=1, ) ) # to how qubits are plotted does if label_qubits: # not affect qubit size kwarg. ax.text( *_idx, s=qubit_labels[var], horizontalalignment="center", verticalalignment="center", color=font_color, size=font_size, weight="bold", ) ax.set_xlim([-1, x_max + 1]) ax.set_ylim([-(y_max + 1), 1]) ax.set_aspect("equal") if not input_axes: matplotlib_close_if_inline(fig) if filename: fig.savefig(filename) return fig return None def plot_circuit_layout(circuit, backend, view="virtual", qubit_coordinates=None): """Plot the layout of a circuit transpiled for a given target backend. Args: circuit (QuantumCircuit): Input quantum circuit. backend (BaseBackend): Target backend. view (str): Layout view: either 'virtual' or 'physical'. Returns: Figure: A matplotlib figure showing layout. Raises: QiskitError: Invalid view type given. VisualizationError: Circuit has no layout attribute. Example: .. jupyter-execute:: :hide-code: :hide-output: from qiskit.test.ibmq_mock import mock_get_backend mock_get_backend('FakeVigo') .. jupyter-execute:: import numpy as np from qiskit import QuantumCircuit, IBMQ, transpile from qiskit.visualization import plot_histogram, plot_gate_map, plot_circuit_layout from qiskit.tools.monitor import job_monitor import matplotlib.pyplot as plt %matplotlib inline IBMQ.load_account() ghz = QuantumCircuit(3, 3) ghz.h(0) for idx in range(1,3): ghz.cx(0,idx) ghz.measure(range(3), range(3)) provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_vigo') new_circ_lv3 = transpile(ghz, backend=backend, optimization_level=3) plot_circuit_layout(new_circ_lv3, backend) """ if circuit._layout is None: raise QiskitError("Circuit has no layout. Perhaps it has not been transpiled.") if isinstance(backend, BackendV2): num_qubits = backend.num_qubits else: num_qubits = backend.configuration().n_qubits qubits = [] qubit_labels = [None] * num_qubits bit_locations = { bit: {"register": register, "index": index} for register in circuit._layout.get_registers() for index, bit in enumerate(register) } for index, qubit in enumerate(circuit._layout.get_virtual_bits()): if qubit not in bit_locations: bit_locations[qubit] = {"register": None, "index": index} if view == "virtual": for key, val in circuit._layout.get_virtual_bits().items(): bit_register = bit_locations[key]["register"] if bit_register is None or bit_register.name != "ancilla": qubits.append(val) qubit_labels[val] = bit_locations[key]["index"] elif view == "physical": for key, val in circuit._layout.get_physical_bits().items(): bit_register = bit_locations[val]["register"] if bit_register is None or bit_register.name != "ancilla": qubits.append(key) qubit_labels[key] = key else: raise VisualizationError("Layout view must be 'virtual' or 'physical'.") qcolors = ["#648fff"] * num_qubits for k in qubits: qcolors[k] = "k" if isinstance(backend, BackendV2): cmap = backend.plot_coupling_map else: cmap = backend.configuration().coupling_map lcolors = ["#648fff"] * len(cmap) for idx, edge in enumerate(cmap): if edge[0] in qubits and edge[1] in qubits: lcolors[idx] = "k" fig = plot_gate_map( backend, qubit_color=qcolors, qubit_labels=qubit_labels, line_color=lcolors, qubit_coordinates=qubit_coordinates, ) return fig def plot_error_map(backend, figsize=(12, 9), show_title=True): """Plots the error map of a given backend. Args: backend (IBMQBackend): Given backend. figsize (tuple): Figure size in inches. show_title (bool): Show the title or not. Returns: Figure: A matplotlib figure showing error map. Raises: VisualizationError: Input is not IBMQ backend. VisualizationError: The backend does not provide gate errors for the 'sx' gate. MissingOptionalLibraryError: If seaborn is not installed Example: .. jupyter-execute:: :hide-code: :hide-output: from qiskit.test.ibmq_mock import mock_get_backend mock_get_backend('FakeVigo') .. jupyter-execute:: from qiskit import QuantumCircuit, execute, IBMQ from qiskit.visualization import plot_error_map %matplotlib inline IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_vigo') plot_error_map(backend) """ try: import seaborn as sns except ImportError as ex: raise MissingOptionalLibraryError( libname="seaborn", name="plot_error_map", pip_install="pip install seaborn", ) from ex if not HAS_MATPLOTLIB: raise MissingOptionalLibraryError( libname="Matplotlib", name="plot_error_map", pip_install="pip install matplotlib", ) import matplotlib import matplotlib.pyplot as plt from matplotlib import gridspec, ticker color_map = sns.cubehelix_palette(reverse=True, as_cmap=True) props = backend.properties().to_dict() config = backend.configuration().to_dict() num_qubits = config["n_qubits"] # sx error rates single_gate_errors = [0] * num_qubits for gate in props["gates"]: if gate["gate"] == "sx": _qubit = gate["qubits"][0] for param in gate["parameters"]: if param["name"] == "gate_error": single_gate_errors[_qubit] = param["value"] break else: raise VisualizationError( f"Backend '{backend}' did not supply an error for the 'sx' gate." ) # Convert to percent single_gate_errors = 100 * np.asarray(single_gate_errors) avg_1q_err = np.mean(single_gate_errors) single_norm = matplotlib.colors.Normalize( vmin=min(single_gate_errors), vmax=max(single_gate_errors) ) q_colors = [color_map(single_norm(err)) for err in single_gate_errors] cmap = config["coupling_map"] directed = False line_colors = [] if cmap: directed = False if num_qubits < 20: for edge in cmap: if [edge[1], edge[0]] not in cmap: directed = True break cx_errors = [] for line in cmap: for item in props["gates"]: if item["qubits"] == line: cx_errors.append(item["parameters"][0]["value"]) break else: continue # Convert to percent cx_errors = 100 * np.asarray(cx_errors) avg_cx_err = np.mean(cx_errors) cx_norm = matplotlib.colors.Normalize(vmin=min(cx_errors), vmax=max(cx_errors)) line_colors = [color_map(cx_norm(err)) for err in cx_errors] # Measurement errors read_err = [] for qubit in range(num_qubits): for item in props["qubits"][qubit]: if item["name"] == "readout_error": read_err.append(item["value"]) read_err = 100 * np.asarray(read_err) avg_read_err = np.mean(read_err) max_read_err = np.max(read_err) fig = plt.figure(figsize=figsize) gridspec.GridSpec(nrows=2, ncols=3) grid_spec = gridspec.GridSpec( 12, 12, height_ratios=[1] * 11 + [0.5], width_ratios=[2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2], ) left_ax = plt.subplot(grid_spec[2:10, :1]) main_ax = plt.subplot(grid_spec[:11, 1:11]) right_ax = plt.subplot(grid_spec[2:10, 11:]) bleft_ax = plt.subplot(grid_spec[-1, :5]) if cmap: bright_ax = plt.subplot(grid_spec[-1, 7:]) qubit_size = 28 if num_qubits <= 5: qubit_size = 20 plot_gate_map( backend, qubit_color=q_colors, line_color=line_colors, qubit_size=qubit_size, line_width=5, plot_directed=directed, ax=main_ax, ) main_ax.axis("off") main_ax.set_aspect(1) if cmap: single_cb = matplotlib.colorbar.ColorbarBase( bleft_ax, cmap=color_map, norm=single_norm, orientation="horizontal" ) tick_locator = ticker.MaxNLocator(nbins=5) single_cb.locator = tick_locator single_cb.update_ticks() single_cb.update_ticks() bleft_ax.set_title(f"H error rate (%) [Avg. = {round(avg_1q_err, 3)}]") if cmap is None: bleft_ax.axis("off") bleft_ax.set_title(f"H error rate (%) = {round(avg_1q_err, 3)}") if cmap: cx_cb = matplotlib.colorbar.ColorbarBase( bright_ax, cmap=color_map, norm=cx_norm, orientation="horizontal" ) tick_locator = ticker.MaxNLocator(nbins=5) cx_cb.locator = tick_locator cx_cb.update_ticks() bright_ax.set_title(f"CNOT error rate (%) [Avg. = {round(avg_cx_err, 3)}]") if num_qubits < 10: num_left = num_qubits num_right = 0 else: num_left = math.ceil(num_qubits / 2) num_right = num_qubits - num_left left_ax.barh(range(num_left), read_err[:num_left], align="center", color="#DDBBBA") left_ax.axvline(avg_read_err, linestyle="--", color="#212121") left_ax.set_yticks(range(num_left)) left_ax.set_xticks([0, round(avg_read_err, 2), round(max_read_err, 2)]) left_ax.set_yticklabels([str(kk) for kk in range(num_left)], fontsize=12) left_ax.invert_yaxis() left_ax.set_title("Readout Error (%)", fontsize=12) for spine in left_ax.spines.values(): spine.set_visible(False) if num_right: right_ax.barh( range(num_left, num_qubits), read_err[num_left:], align="center", color="#DDBBBA", ) right_ax.axvline(avg_read_err, linestyle="--", color="#212121") right_ax.set_yticks(range(num_left, num_qubits)) right_ax.set_xticks([0, round(avg_read_err, 2), round(max_read_err, 2)]) right_ax.set_yticklabels( [str(kk) for kk in range(num_left, num_qubits)], fontsize=12 ) right_ax.invert_yaxis() right_ax.invert_xaxis() right_ax.yaxis.set_label_position("right") right_ax.yaxis.tick_right() right_ax.set_title("Readout Error (%)", fontsize=12) else: right_ax.axis("off") for spine in right_ax.spines.values(): spine.set_visible(False) if show_title: fig.suptitle(f"{backend.name()} Error Map", fontsize=24, y=0.9) matplotlib_close_if_inline(fig) return fig
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import BasicAer from qiskit.compiler import transpile from qiskit.quantum_info.operators import Operator, Pauli from qiskit.quantum_info import process_fidelity from qiskit.extensions import RXGate, XGate, CXGate XX = Operator([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]]) XX XX.data input_dim, output_dim = XX.dim input_dim, output_dim op = Operator(np.random.rand(2 ** 1, 2 ** 2)) print('Input dimensions:', op.input_dims()) print('Output dimensions:', op.output_dims()) op = Operator(np.random.rand(6, 6)) print('Input dimensions:', op.input_dims()) print('Output dimensions:', op.output_dims()) # Force input dimension to be (4,) rather than (2, 2) op = Operator(np.random.rand(2 ** 1, 2 ** 2), input_dims=[4]) print('Input dimensions:', op.input_dims()) print('Output dimensions:', op.output_dims()) # Specify system is a qubit and qutrit op = Operator(np.random.rand(6, 6), input_dims=[2, 3], output_dims=[2, 3]) print('Input dimensions:', op.input_dims()) print('Output dimensions:', op.output_dims()) print('Dimension of input system 0:', op.input_dims([0])) print('Dimension of input system 1:', op.input_dims([1])) # Create an Operator from a Pauli object pauliXX = Pauli('XX') Operator(pauliXX) # Create an Operator for a Gate object Operator(CXGate()) # Create an operator from a parameterized Gate object Operator(RXGate(np.pi / 2)) # Create an operator from a QuantumCircuit object circ = QuantumCircuit(10) circ.h(0) for j in range(1, 10): circ.cx(j-1, j) # Convert circuit to an operator by implicit unitary simulation Operator(circ) # Create an operator XX = Operator(Pauli('XX')) # Add to a circuit circ = QuantumCircuit(2, 2) circ.append(XX, [0, 1]) circ.measure([0,1], [0,1]) circ.draw('mpl') backend = BasicAer.get_backend('qasm_simulator') circ = transpile(circ, backend, basis_gates=['u1','u2','u3','cx']) job = backend.run(circ) job.result().get_counts(0) # Add to a circuit circ2 = QuantumCircuit(2, 2) circ2.append(Pauli('XX'), [0, 1]) circ2.measure([0,1], [0,1]) circ2.draw() A = Operator(Pauli('X')) B = Operator(Pauli('Z')) A.tensor(B) A = Operator(Pauli('X')) B = Operator(Pauli('Z')) A.expand(B) A = Operator(Pauli('X')) B = Operator(Pauli('Z')) A.compose(B) A = Operator(Pauli('X')) B = Operator(Pauli('Z')) A.compose(B, front=True) # Compose XZ with an 3-qubit identity operator op = Operator(np.eye(2 ** 3)) XZ = Operator(Pauli('XZ')) op.compose(XZ, qargs=[0, 2]) # Compose YX in front of the previous operator op = Operator(np.eye(2 ** 3)) YX = Operator(Pauli('YX')) op.compose(XZ, qargs=[0, 2], front=True) XX = Operator(Pauli('XX')) YY = Operator(Pauli('YY')) ZZ = Operator(Pauli('ZZ')) op = 0.5 * (XX + YY - 3 * ZZ) op op.is_unitary() # Compose with a matrix passed as a list Operator(np.eye(2)).compose([[0, 1], [1, 0]]) Operator(Pauli('X')) == Operator(XGate()) Operator(XGate()) == np.exp(1j * 0.5) * Operator(XGate()) # Two operators which differ only by phase op_a = Operator(XGate()) op_b = np.exp(1j * 0.5) * Operator(XGate()) # Compute process fidelity F = process_fidelity(op_a, op_b) print('Process fidelity =', F) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright