repo
stringclasses
885 values
file
stringclasses
741 values
content
stringlengths
4
215k
https://github.com/unitaryfund/mitiq
unitaryfund
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=too-many-function-args, unexpected-keyword-arg """THIS FILE IS DEPRECATED AND WILL BE REMOVED IN RELEASE 0.9. """ import warnings from qiskit.converters import dag_to_circuit, circuit_to_dag from qiskit.transpiler import CouplingMap from qiskit import compiler from qiskit.transpiler.preset_passmanagers import (default_pass_manager_simulator, default_pass_manager) def transpile(circuits, backend=None, basis_gates=None, coupling_map=None, initial_layout=None, seed_mapper=None, pass_manager=None): """transpile one or more circuits. Args: circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile backend (BaseBackend): a backend to compile for basis_gates (list[str]): list of basis gate names supported by the target. Default: ['u1','u2','u3','cx','id'] coupling_map (list): coupling map (perhaps custom) to target in mapping initial_layout (Layout or dict or list): Initial position of virtual qubits on physical qubits. The final layout is not guaranteed to be the same, as the transpiler may permute qubits through swaps or other means. seed_mapper (int): random seed for the swap_mapper pass_manager (PassManager): a pass_manager for the transpiler stages Returns: QuantumCircuit or list[QuantumCircuit]: transpiled circuit(s). Raises: TranspilerError: in case of bad inputs to transpiler or errors in passes """ warnings.warn("qiskit.transpiler.transpile() has been deprecated and will be " "removed in the 0.9 release. Use qiskit.compiler.transpile() instead.", DeprecationWarning) return compiler.transpile(circuits=circuits, backend=backend, basis_gates=basis_gates, coupling_map=coupling_map, initial_layout=initial_layout, seed_transpiler=seed_mapper, pass_manager=pass_manager) def transpile_dag(dag, basis_gates=None, coupling_map=None, initial_layout=None, seed_mapper=None, pass_manager=None): """Deprecated - Use qiskit.compiler.transpile for transpiling from circuits to circuits. Transform a dag circuit into another dag circuit (transpile), through consecutive passes on the dag. Args: dag (DAGCircuit): dag circuit to transform via transpilation basis_gates (list[str]): list of basis gate names supported by the target. Default: ['u1','u2','u3','cx','id'] coupling_map (list): A graph of coupling:: [ [control0(int), target0(int)], [control1(int), target1(int)], ] eg. [[0, 2], [1, 2], [1, 3], [3, 4]} initial_layout (Layout or None): A layout object seed_mapper (int): random seed_mapper for the swap mapper pass_manager (PassManager): pass manager instance for the transpilation process If None, a default set of passes are run. Otherwise, the passes defined in it will run. If contains no passes in it, no dag transformations occur. Returns: DAGCircuit: transformed dag """ warnings.warn("transpile_dag has been deprecated and will be removed in the " "0.9 release. Circuits can be transpiled directly to other " "circuits with the transpile function.", DeprecationWarning) if basis_gates is None: basis_gates = ['u1', 'u2', 'u3', 'cx', 'id'] if pass_manager is None: # default set of passes # if a coupling map is given compile to the map if coupling_map: pass_manager = default_pass_manager(basis_gates, CouplingMap(coupling_map), initial_layout, seed_transpiler=seed_mapper) else: pass_manager = default_pass_manager_simulator(basis_gates) # run the passes specified by the pass manager # TODO return the property set too. See #1086 name = dag.name circuit = dag_to_circuit(dag) circuit = pass_manager.run(circuit) dag = circuit_to_dag(circuit) dag.name = name return dag
https://github.com/noamsgl/IBMAscolaChallenge
noamsgl
import csv import datetime import os from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-education', group='technion-Weinste') log_time = datetime.datetime.now() def write_log_to_file(csv_writer): for backend in provider.backends(): try: for qubit_idx, qubit_prop in enumerate(backend.properties().qubits): for prop in qubit_prop: csv_writer.writerow( [backend.name(), qubit_idx, prop.date.isoformat(), prop.name, prop.unit, prop.value, log_time.isoformat()]) id_gate = [i for i in backend.properties().gates if i.gate == 'id' and qubit_idx in i.qubits][0] id_gate_length = [p for p in id_gate.parameters if p.name == 'gate_length'][0] csv_writer.writerow([backend.name(), qubit_idx, id_gate_length.date.isoformat(), 'id_length', id_gate_length.unit, id_gate_length.value, log_time.isoformat()]) except Exception as e: print("Cannot add backend", backend.name(), e) path = '../docs/backend_properties/backend_properties_log.csv' if not os.path.isfile(path): with open(path, "w", newline='') as f: csv_writer = csv.writer(f) csv_writer.writerow(["backend", "qubit", "datetime", "name", "units", "value", "log_datetime"]) write_log_to_file(csv_writer) else: with open(path, "a", newline='') as f: write_log_to_file(csv.writer(f))
https://github.com/C2QA/bosonic-qiskit
C2QA
import math from pathlib import Path import pytest import random import c2qa import numpy as np import qiskit import qiskit_aer.noise as noise from qiskit_aer.noise.noiseerror import NoiseError from qiskit_aer.noise.passes.relaxation_noise_pass import RelaxationNoisePass from qiskit.visualization import plot_histogram def test_noise_model(capsys): with capsys.disabled(): num_qumodes = 1 num_qubits_per_qumode = 2 qmr = c2qa.QumodeRegister(num_qumodes, num_qubits_per_qumode) qr = qiskit.QuantumRegister(2) cr = qiskit.ClassicalRegister(size=1) circuit = c2qa.CVCircuit(qmr, qr, cr) for qumode in range(num_qumodes): circuit.cv_initialize(0, qmr[qumode]) circuit.initialize([0, 1], qr[1]) # qr[0] will init to zero alpha = random.random() circuit.cv_c_d(alpha, qmr[0], qr[0]) circuit.cv_c_d(-alpha, qmr[0], qr[0]) circuit.cv_c_d(-alpha, qmr[0], qr[1]) circuit.cv_c_d(alpha, qmr[0], qr[1]) photon_loss_rate = 1000000 # per second time = 5.0 # seconds kraus_operators = c2qa.kraus.calculate_kraus( photon_loss_rates=[photon_loss_rate, photon_loss_rate], time=time, circuit=circuit, op_qubits=[0, 1, 2], qumode_qubit_indices=[0, 1] ) print("kraus") print(kraus_operators) state, result, fock_counts = c2qa.util.simulate(circuit) def test_kraus_operators(capsys): with capsys.disabled(): num_qumodes = 1 num_qubits_per_qumode = 2 qmr = c2qa.QumodeRegister(num_qumodes, num_qubits_per_qumode) qr = qiskit.QuantumRegister(2) circuit = c2qa.CVCircuit(qmr, qr) photon_loss_rate = 1000000 # per second time = 1.0 # seconds kraus_operators = c2qa.kraus.calculate_kraus( photon_loss_rates=[photon_loss_rate, photon_loss_rate], time=time, circuit=circuit, op_qubits=[0, 1, 2], qumode_qubit_indices=[0, 1] ) kraus = qiskit.quantum_info.operators.channel.Kraus(kraus_operators) assert kraus.is_cp(), "Is not completely positive" print() print("Kraus Operators") accum = 0j for index, op in enumerate(kraus_operators): print(f"op {index}") print(op) op_dag = np.transpose(np.conj(op)) print(f"op_dag {index}") print(op_dag) op_dot = np.dot(op_dag, op) print(f"op_dot {index}") print(op_dot) accum += op_dot print() print("Sum") print(accum) is_identity = (accum.shape[0] == accum.shape[1]) and np.allclose( accum, np.eye(accum.shape[0]) ) print(f"Sum is identity {is_identity}") assert is_identity, "Sum is not identity" assert kraus.is_tp(), "Is not trace preserving" assert kraus.is_cptp(), "Is not CPTP" def test_beamsplitter_kraus_operators(capsys): with capsys.disabled(): num_qumodes = 2 qubits_per_mode = 2 qmr = c2qa.QumodeRegister(num_qumodes=num_qumodes, num_qubits_per_qumode=qubits_per_mode) circuit = c2qa.CVCircuit(qmr) circuit.cv_initialize(2, qmr[0]) circuit.cv_bs(1, qmr[1], qmr[0], duration=100, unit="ns") photon_loss_rate = 1000000 # per second time = 1.0 # seconds kraus_operators = c2qa.kraus.calculate_kraus( photon_loss_rates=[photon_loss_rate, photon_loss_rate], time=time, circuit=circuit, op_qubits=[2, 3, 0, 1], qumode_qubit_indices=[0, 1, 2, 3] ) kraus = qiskit.quantum_info.operators.channel.Kraus(kraus_operators) assert kraus.is_cp(), "Is not completely positive" print() print("Kraus Operators") accum = 0j for index, op in enumerate(kraus_operators): print(f"op {index}") print(op) op_dag = np.transpose(np.conj(op)) print(f"op_dag {index}") print(op_dag) op_dot = np.dot(op_dag, op) print(f"op_dot {index}") print(op_dot) accum += op_dot print() print("Sum") print(accum) is_identity = (accum.shape[0] == accum.shape[1]) and np.allclose( accum, np.eye(accum.shape[0]) ) print(f"Sum is identity {is_identity}") assert is_identity, "Sum is not identity" assert kraus.is_tp(), "Is not trace preserving" assert kraus.is_cptp(), "Is not CPTP" def test_invalid_photon_loss_rate_length(capsys): with pytest.raises(Exception), capsys.disabled(): num_qumodes = 2 qubits_per_mode = 2 qmr = c2qa.QumodeRegister(num_qumodes=num_qumodes, num_qubits_per_qumode=qubits_per_mode) init_circuit = c2qa.CVCircuit(qmr) init_circuit.cv_initialize(2, qmr[0]) init_circuit.cv_bs(1, qmr[1], qmr[0], duration=100, unit="ns") photon_loss_rates = [1,2,3] # Should only have two loss rates time_unit = "ns" # Should raise Exception for not having proper number of loss rates c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rates, circuit=init_circuit, time_unit=time_unit) def test_valid_photon_loss_rate_length(capsys): with capsys.disabled(): num_qumodes = 2 qubits_per_mode = 2 qmr = c2qa.QumodeRegister(num_qumodes=num_qumodes, num_qubits_per_qumode=qubits_per_mode) init_circuit = c2qa.CVCircuit(qmr) init_circuit.cv_initialize(2, qmr[0]) init_circuit.cv_bs(1, qmr[1], qmr[0], duration=100, unit="ns") photon_loss_rates = [1,2] # Should only have two loss rates time_unit = "ns" # Should not raise exception as has proper number of loss rates c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rates, circuit=init_circuit, time_unit=time_unit) def test_noise_with_beamsplitter(capsys): with capsys.disabled(): num_qumodes = 2 qubits_per_mode = 2 qmr = c2qa.QumodeRegister(num_qumodes=num_qumodes, num_qubits_per_qumode=qubits_per_mode) init_circuit = c2qa.CVCircuit(qmr) init_circuit.cv_initialize(2, qmr[0]) init_circuit.cv_bs(1, qmr[1], qmr[0], duration=100, unit="ns") photon_loss_rate = 0.01 time_unit = "ns" noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=init_circuit, time_unit=time_unit) state, result, fock_counts = c2qa.util.simulate(init_circuit, noise_passes=noise_pass) def test_noise_with_beamsplitter_diff_cutoff(capsys): with capsys.disabled(): qmr1 = c2qa.QumodeRegister(num_qumodes=1, num_qubits_per_qumode=2) qmr2 = c2qa.QumodeRegister(num_qumodes=1, num_qubits_per_qumode=3) init_circuit = c2qa.CVCircuit(qmr1, qmr2) init_circuit.cv_initialize(2, qmr1[0]) init_circuit.cv_initialize(2, qmr2[0]) init_circuit.cv_bs(1, qmr1[0], qmr2[0], duration=100, unit="ns") photon_loss_rate = 0.01 time_unit = "ns" noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=init_circuit, time_unit=time_unit) state, result, fock_counts = c2qa.util.simulate(init_circuit, noise_passes=noise_pass) @pytest.mark.skip(reason="This test takes nearly 30 minutes to pass on Github...") def test_noise_with_cbs_diff_cutoff(capsys): with capsys.disabled(): qmr1 = c2qa.QumodeRegister(num_qumodes=1, num_qubits_per_qumode=2) qmr2 = c2qa.QumodeRegister(num_qumodes=1, num_qubits_per_qumode=3) qbr = qiskit.QuantumRegister(1) init_circuit = c2qa.CVCircuit(qmr1, qmr2, qbr) init_circuit.cv_initialize(2, qmr1[0]) init_circuit.cv_initialize(2, qmr2[0]) init_circuit.cv_c_bs(1, qmr1[0], qmr2[0], qbr[0], duration=100, unit="ns") photon_loss_rate = 0.01 time_unit = "ns" noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=init_circuit, time_unit=time_unit) state, result, fock_counts = c2qa.util.simulate(init_circuit, noise_passes=noise_pass) def test_noise_with_sq2_diff_cutoff(capsys): with capsys.disabled(): qmr1 = c2qa.QumodeRegister(num_qumodes=1, num_qubits_per_qumode=2) qmr2 = c2qa.QumodeRegister(num_qumodes=1, num_qubits_per_qumode=3) init_circuit = c2qa.CVCircuit(qmr1, qmr2) init_circuit.cv_initialize(2, qmr1[0]) init_circuit.cv_initialize(2, qmr2[0]) init_circuit.cv_sq2(1, qmr1[0], qmr2[0], duration=100, unit="ns") photon_loss_rate = 0.01 time_unit = "ns" noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=init_circuit, time_unit=time_unit) state, result, fock_counts = c2qa.util.simulate(init_circuit, noise_passes=noise_pass) def test_noise_with_cnd_beamsplitter(capsys): with capsys.disabled(): num_qumodes = 2 qubits_per_mode = 2 num_qubits = 1 qmr = c2qa.QumodeRegister(num_qumodes=num_qumodes, num_qubits_per_qumode=qubits_per_mode) qbr = qiskit.QuantumRegister(size=num_qubits) init_circuit = c2qa.CVCircuit(qmr, qbr) init_circuit.cv_initialize(2, qmr[0]) init_circuit.cv_c_bs(1, qmr[1], qmr[0], qbr[0], duration=100, unit="ns") photon_loss_rate = 0.01 time_unit = "ns" noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=init_circuit, time_unit=time_unit) state, result, fock_counts = c2qa.util.simulate(init_circuit, noise_passes=noise_pass) def test_photon_loss_pass_with_conditional(capsys): with capsys.disabled(): num_qumodes = 1 qubits_per_mode = 2 num_qubits = 1 qmr = c2qa.QumodeRegister(num_qumodes=num_qumodes, num_qubits_per_qumode=qubits_per_mode) qbr = qiskit.QuantumRegister(size=num_qubits) init_circuit = c2qa.CVCircuit(qmr, qbr) init_circuit.cv_initialize(2, qmr[0]) init_circuit.cv_c_d(1, qmr[0], qbr[0], duration=100, unit="ns") photon_loss_rate = 0.01 time_unit = "ns" noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=init_circuit, time_unit=time_unit) state, result, fock_counts = c2qa.util.simulate(init_circuit, noise_passes=noise_pass) def test_photon_loss_pass_delay_without_unit(capsys): with capsys.disabled(): num_qumodes = 1 qubits_per_mode = 2 num_qubits = 1 qmr = c2qa.QumodeRegister(num_qumodes=num_qumodes, num_qubits_per_qumode=qubits_per_mode) qbr = qiskit.QuantumRegister(size=num_qubits) fail_circuit = c2qa.CVCircuit(qmr, qbr) fail_circuit.cv_initialize(2, qmr[0]) fail_circuit.delay(duration=100) #, unit="ns") fail_circuit.cv_c_d(1, qmr[0], qbr[0], duration=100, unit="ns") photon_loss_rate = 0.01 time_unit = "ns" noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=fail_circuit, time_unit=time_unit) state, result, fock_counts = c2qa.util.simulate(fail_circuit, noise_passes=noise_pass) assert result.success def test_photon_loss_pass_delay_with_unit(capsys): with capsys.disabled(): num_qumodes = 1 qubits_per_mode = 2 num_qubits = 1 qmr = c2qa.QumodeRegister(num_qumodes=num_qumodes, num_qubits_per_qumode=qubits_per_mode) qbr = qiskit.QuantumRegister(size=num_qubits) pass_circuit = c2qa.CVCircuit(qmr, qbr) pass_circuit.cv_initialize(2, qmr[0]) pass_circuit.delay(duration=100, unit="ns") pass_circuit.cv_c_d(1, qmr[0], qbr[0], duration=100, unit="ns") photon_loss_rate = 0.01 time_unit = "ns" noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=pass_circuit, time_unit=time_unit) state, result, fock_counts = c2qa.util.simulate(pass_circuit, noise_passes=noise_pass) assert result.success def test_animate_photon_loss_pass(capsys): with capsys.disabled(): num_qumodes = 1 num_qubits_per_qumode = 4 qmr = c2qa.QumodeRegister(num_qumodes, num_qubits_per_qumode) circuit = c2qa.CVCircuit(qmr) circuit.cv_initialize(3, qmr[0]) circuit.cv_d(0, qmr[0], duration=100, unit="ns") photon_loss_rate = 0.01 time_unit = "ns" noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=circuit, time_unit=time_unit) wigner_filename = "tests/test_animate_photon_loss_pass.gif" c2qa.animate.animate_wigner( circuit, animation_segments=10, file=wigner_filename, noise_passes=noise_pass, ) assert Path(wigner_filename).is_file() def test_animate_photon_loss_pass_with_epsilon(capsys): with capsys.disabled(): num_qumodes = 1 num_qubits_per_qumode = 4 qmr = c2qa.QumodeRegister(num_qumodes, num_qubits_per_qumode) circuit = c2qa.CVCircuit(qmr) circuit.cv_initialize(3, qmr[0]) circuit.cv_d(0, qmr[0], duration=100, unit="ns") photon_loss_rate = 0.01 time_unit = "ns" noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=circuit, time_unit=time_unit) wigner_filename = "tests/test_animate_photon_loss_pas_with_epsilon.gif" c2qa.animate.animate_wigner( circuit, discretize_epsilon=0.1, file=wigner_filename, noise_passes=noise_pass, ) assert Path(wigner_filename).is_file() @pytest.mark.skip(reason="GitHub actions build environments do not have ffmpeg") def test_photon_loss_pass_no_displacement(capsys): with capsys.disabled(): num_qumodes = 1 num_qubits_per_qumode = 4 qmr = c2qa.QumodeRegister(num_qumodes, num_qubits_per_qumode) circuit = c2qa.CVCircuit(qmr) circuit.cv_initialize(3, qmr[0]) circuit.cv_d(0, qmr[0], duration=100, unit="ns") photon_loss_rate = 0.01 time_unit = "ns" noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=circuit, time_unit=time_unit) # state, result, fock_counts = c2qa.util.simulate(circuit, noise_passes=noise_pass) wigner_filename = "tests/test_photon_loss_pass_no_displacement.mp4" c2qa.animate.animate_wigner( circuit, animation_segments=200, file=wigner_filename, noise_passes=noise_pass, ) @pytest.mark.skip(reason="GitHub actions build environments do not have ffmpeg") def test_photon_loss_pass_slow_displacement(capsys): with capsys.disabled(): num_qumodes = 1 num_qubits_per_qumode = 4 qmr = c2qa.QumodeRegister(num_qumodes, num_qubits_per_qumode) circuit = c2qa.CVCircuit(qmr) circuit.cv_initialize(3, qmr[0]) circuit.cv_d(1.5, qmr[0], duration=100, unit="ns") photon_loss_rate = 0.02 time_unit = "ns" noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=circuit, time_unit=time_unit) # state, result, fock_counts = c2qa.util.simulate(circuit, noise_passes=noise_pass) wigner_filename = "tests/test_photon_loss_pass_slow_displacement.mp4" c2qa.animate.animate_wigner( circuit, animation_segments=200, file=wigner_filename, noise_passes=noise_pass, # draw_grid=True ) @pytest.mark.skip(reason="GitHub actions build environments do not have ffmpeg") def test_photon_loss_pass_slow_conditional_displacement(capsys): with capsys.disabled(): num_qumodes = 1 num_qubits_per_qumode = 4 num_qubits = 1 qmr = c2qa.QumodeRegister(num_qumodes=num_qumodes, num_qubits_per_qumode=num_qubits_per_qumode) qbr = qiskit.QuantumRegister(size=num_qubits) circuit = c2qa.CVCircuit(qmr, qbr) circuit.cv_initialize(3, qmr[0]) circuit.cv_c_d(1, qmr[0], qbr[0], duration=100, unit="ns") photon_loss_rate = 0.02 time_unit = "ns" noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=circuit, time_unit=time_unit) # state, result, fock_counts = c2qa.util.simulate(circuit, noise_passes=noise_pass) wigner_filename = "tests/test_photon_loss_pass_slow_conditional_displacement.mp4" c2qa.animate.animate_wigner( circuit, animation_segments=200, file=wigner_filename, noise_passes=noise_pass, ) def test_photon_loss_instruction(capsys): with capsys.disabled(): num_qumodes = 2 num_qubits_per_qumode = 2 num_qubits = 1 qmr = c2qa.QumodeRegister(num_qumodes=num_qumodes, num_qubits_per_qumode=num_qubits_per_qumode) qbr = qiskit.QuantumRegister(size=num_qubits) circuit = c2qa.CVCircuit(qmr, qbr) circuit.cv_initialize(1, qmr[0]) circuit.cv_initialize(1, qmr[1]) circuit.cv_d(1, qmr[0], duration=100, unit="ns") circuit.cv_c_d(1, qmr[1], qbr[0], duration=100, unit="ns") photon_loss_rate = 0.02 time_unit = "ns" noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=circuit, time_unit=time_unit, instructions=["cD"]) state, result, fock_counts = c2qa.util.simulate(circuit, noise_passes=noise_pass) assert result.success def test_photon_loss_qumode(capsys): with capsys.disabled(): num_qumodes = 2 num_qubits_per_qumode = 2 num_qubits = 1 qmr = c2qa.QumodeRegister(num_qumodes=num_qumodes, num_qubits_per_qumode=num_qubits_per_qumode) qbr = qiskit.QuantumRegister(size=num_qubits) circuit = c2qa.CVCircuit(qmr, qbr) circuit.cv_initialize(1, qmr[0]) circuit.cv_d(1, qmr[0], duration=100, unit="ns") circuit.cv_c_d(1, qmr[1], qbr[0], duration=100, unit="ns") photon_loss_rate = 0.02 time_unit = "ns" noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=circuit, time_unit=time_unit, qumodes=qmr[1]) state, result, fock_counts = c2qa.util.simulate(circuit, noise_passes=noise_pass) assert result.success def test_photon_loss_instruction_qumode(capsys): with capsys.disabled(): num_qumodes = 2 num_qubits_per_qumode = 2 num_qubits = 1 qmr = c2qa.QumodeRegister(num_qumodes=num_qumodes, num_qubits_per_qumode=num_qubits_per_qumode) qbr = qiskit.QuantumRegister(size=num_qubits) circuit = c2qa.CVCircuit(qmr, qbr) circuit.cv_initialize(1, qmr[0]) circuit.cv_d(1, qmr[0], duration=100, unit="ns") circuit.cv_c_d(1, qmr[1], qbr[0], duration=100, unit="ns") photon_loss_rate = 0.02 time_unit = "ns" noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=circuit, time_unit=time_unit, instructions=["cD"], qumodes=qmr[0]) state, result, fock_counts = c2qa.util.simulate(circuit, noise_passes=noise_pass) assert result.success def test_photon_loss_and_phase_damping(capsys): with capsys.disabled(): state_a, result_a, fock_counts = _build_photon_loss_and_amp_damping_circuit(0.0) print(state_a) assert result_a.success state_b, result_b, fock_counts = _build_photon_loss_and_amp_damping_circuit(1.0) print(state_b) assert result_b.success assert not allclose(state_a, state_b) def _build_photon_loss_and_amp_damping_circuit(amp_damp = 0.3, photon_loss_rate = 0.01): num_qumodes = 1 qubits_per_mode = 2 num_qubits = 1 qmr = c2qa.QumodeRegister(num_qumodes=num_qumodes, num_qubits_per_qumode=qubits_per_mode) qbr = qiskit.QuantumRegister(size=num_qubits) circuit = c2qa.CVCircuit(qmr, qbr) circuit.cv_initialize(2, qmr[0]) circuit.x(qbr[0]) circuit.cv_d(1, qmr[0], duration=100, unit="ns") # Initialize phase damping NoiseModel noise_model = noise.NoiseModel() phase_error = noise.amplitude_damping_error(amp_damp) noise_model.add_quantum_error(phase_error, ["x"], [circuit.get_qubit_index(qbr[0])]) # Initialize PhotonLossNoisePass noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=circuit, time_unit="ns") return c2qa.util.simulate(circuit, noise_model=noise_model, noise_passes=noise_pass) def allclose(a, b) -> bool: """Convert SciPy sparse matrices to ndarray and test with Numpy""" # If a and b are SciPy sparse matrices, they'll have a "toarray()" function if hasattr(a, "toarray"): a = a.toarray() if hasattr(b, "toarray"): b = b.toarray() return np.allclose(a, b) def test_relaxation_noise_pass(capsys): with capsys.disabled(): num_qumodes = 1 num_qubits_per_qumode = 2 num_qubits = 1 qmr = c2qa.QumodeRegister(num_qumodes=num_qumodes, num_qubits_per_qumode=num_qubits_per_qumode) qbr = qiskit.QuantumRegister(size=num_qubits) circuit = c2qa.CVCircuit(qmr, qbr) circuit.cv_initialize(3, qmr[0]) circuit.cv_c_d(1, qmr[0], qbr[0], duration=100, unit="ns") t1s = np.ones(circuit.num_qubits).tolist() t2s = np.ones(circuit.num_qubits).tolist() noise_pass = RelaxationNoisePass(t1s, t2s) filename = "tests/test_relaxation_noise_pass.gif" c2qa.animate.animate_wigner( circuit, animation_segments=200, file=filename, noise_passes=noise_pass, ) assert Path(filename).is_file() def test_relaxation_and_photon_loss_noise_passes(capsys): with capsys.disabled(): num_qumodes = 1 num_qubits_per_qumode = 2 num_qubits = 1 qmr = c2qa.QumodeRegister(num_qumodes=num_qumodes, num_qubits_per_qumode=num_qubits_per_qumode) qbr = qiskit.QuantumRegister(size=num_qubits) circuit = c2qa.CVCircuit(qmr, qbr) circuit.cv_initialize(3, qmr[0]) circuit.cv_c_d(1, qmr[0], qbr[0], duration=100, unit="ns") noise_passes = [] t1s = np.ones(circuit.num_qubits).tolist() t2s = np.ones(circuit.num_qubits).tolist() noise_passes.append(RelaxationNoisePass(t1s, t2s)) photon_loss_rate = 0.02 noise_passes.append(c2qa.kraus.PhotonLossNoisePass(photon_loss_rates=photon_loss_rate, circuit=circuit, time_unit="ns")) filename = "tests/test_relaxation_and_photon_loss_noise_passes.gif" c2qa.animate.animate_wigner( circuit, animation_segments=200, file=filename, noise_passes=noise_passes, ) assert Path(filename).is_file() def test_multi_qumode_loss_probability(capsys): with capsys.disabled(): num_qumodes = 2 num_qubits_per_qumode = 2 qmr = c2qa.QumodeRegister(num_qumodes, num_qubits_per_qumode) circuit = c2qa.CVCircuit(qmr) circuit.cv_initialize(1, qmr[0]) circuit.cv_initialize(1, qmr[1]) circuit.cv_bs(np.pi/4, qmr[0], qmr[1], duration=100, unit="ns") circuit.cv_bs(-np.pi/4, qmr[0], qmr[1], duration=100, unit="ns") photon_loss_rate = 10000000 noise_pass = c2qa.kraus.PhotonLossNoisePass(photon_loss_rate, circuit) fifty_fifty = False print() for i in range(20): print("----------------------") print(f"Iteration {i}") state_vector, result, fock_counts = c2qa.util.simulate(circuit, noise_passes=noise_pass) # plot_histogram(result.get_counts(circuit), filename=f"tests/test_manual_validate_beamsplitter-{i}.png") occupation, fock_states = c2qa.util.stateread(state_vector, 0, num_qumodes, 2**num_qubits_per_qumode,verbose=True) for qumode_state, qubit_state, amplitude in fock_states: # print(f"{qumode_state} {qubit_state} {amplitude}") qumode1 = qumode_state[0] qumode2 = qumode_state[1] probability = amplitude**2 if (qumode1 == 1 and qumode2 == 0) or (qumode1 == 0 and qumode1 == 1) and math.isclose(probability, 0.5, 0.03): fifty_fifty = True assert fifty_fifty
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Gate cancellation pass testing""" import unittest import numpy as np from qiskit.test import QiskitTestCase from qiskit import QuantumRegister, QuantumCircuit from qiskit.circuit.library import U1Gate, RZGate, PhaseGate, CXGate, SXGate from qiskit.circuit.parameter import Parameter from qiskit.transpiler.target import Target from qiskit.transpiler import PassManager, PropertySet from qiskit.transpiler.passes import CommutationAnalysis, CommutativeCancellation, FixedPoint, Size from qiskit.quantum_info import Operator class TestCommutativeCancellation(QiskitTestCase): """Test the CommutativeCancellation pass.""" def setUp(self): super().setUp() self.com_pass_ = CommutationAnalysis() self.pass_ = CommutativeCancellation() self.pset = self.pass_.property_set = PropertySet() def test_all_gates(self): """Test all gates on 1 and 2 qubits q0:-[H]-[H]--[x]-[x]--[y]-[y]--[rz]-[rz]--[u1]-[u1]-[rx]-[rx]---.--.--.--.--.--.- | | | | | | q1:-------------------------------------------------------------X--X--Y--Y--.--.- = qr0:---[u1]--- qr1:---------- """ qr = QuantumRegister(2, "q") circuit = QuantumCircuit(qr) circuit.h(qr[0]) circuit.h(qr[0]) circuit.x(qr[0]) circuit.x(qr[0]) circuit.y(qr[0]) circuit.y(qr[0]) circuit.rz(0.5, qr[0]) circuit.rz(0.5, qr[0]) circuit.append(U1Gate(0.5), [qr[0]]) # TODO this should work with Phase gates too circuit.append(U1Gate(0.5), [qr[0]]) circuit.rx(0.5, qr[0]) circuit.rx(0.5, qr[0]) circuit.cx(qr[0], qr[1]) circuit.cx(qr[0], qr[1]) circuit.cy(qr[0], qr[1]) circuit.cy(qr[0], qr[1]) circuit.cz(qr[0], qr[1]) circuit.cz(qr[0], qr[1]) passmanager = PassManager() passmanager.append(CommutativeCancellation()) new_circuit = passmanager.run(circuit) expected = QuantumCircuit(qr) expected.append(RZGate(2.0), [qr[0]]) expected.rx(1.0, qr[0]) self.assertEqual(expected, new_circuit) def test_commutative_circuit1(self): """A simple circuit where three CNOTs commute, the first and the last cancel. qr0:----.---------------.-- qr0:------------ | | qr1:---(+)-----(+)-----(+)- = qr1:-------(+)-- | | qr2:---[H]------.---------- qr2:---[H]--.--- """ qr = QuantumRegister(3, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) circuit.h(qr[2]) circuit.cx(qr[2], qr[1]) circuit.cx(qr[0], qr[1]) passmanager = PassManager() passmanager.append(CommutativeCancellation()) new_circuit = passmanager.run(circuit) expected = QuantumCircuit(qr) expected.h(qr[2]) expected.cx(qr[2], qr[1]) self.assertEqual(expected, new_circuit) def test_consecutive_cnots(self): """A simple circuit equals identity qr0:----.- ----.-- qr0:------------ | | qr1:---(+)----(+)- = qr1:------------ """ qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) circuit.cx(qr[0], qr[1]) new_pm = PassManager(CommutativeCancellation()) new_circuit = new_pm.run(circuit) expected = QuantumCircuit(qr) self.assertEqual(expected, new_circuit) def test_consecutive_cnots2(self): """ Two CNOTs that equals identity, with rotation gates inserted. """ qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.rx(np.pi, qr[0]) circuit.cx(qr[0], qr[1]) circuit.cx(qr[0], qr[1]) circuit.rx(np.pi, qr[0]) passmanager = PassManager() passmanager.append( [CommutationAnalysis(), CommutativeCancellation(), Size(), FixedPoint("size")], do_while=lambda property_set: not property_set["size_fixed_point"], ) new_circuit = passmanager.run(circuit) expected = QuantumCircuit(qr) self.assertEqual(expected, new_circuit) def test_2_alternating_cnots(self): """A simple circuit where nothing should be cancelled. qr0:----.- ---(+)- qr0:----.----(+)- | | | | qr1:---(+)-----.-- = qr1:---(+)----.-- """ qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) circuit.cx(qr[1], qr[0]) new_pm = PassManager(CommutativeCancellation()) new_circuit = new_pm.run(circuit) expected = QuantumCircuit(qr) expected.cx(qr[0], qr[1]) expected.cx(qr[1], qr[0]) self.assertEqual(expected, new_circuit) def test_control_bit_of_cnot(self): """A simple circuit where nothing should be cancelled. qr0:----.------[X]------.-- qr0:----.------[X]------.-- | | | | qr1:---(+)-------------(+)- = qr1:---(+)-------------(+)- """ qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) circuit.x(qr[0]) circuit.cx(qr[0], qr[1]) new_pm = PassManager(CommutativeCancellation()) new_circuit = new_pm.run(circuit) expected = QuantumCircuit(qr) expected.cx(qr[0], qr[1]) expected.x(qr[0]) expected.cx(qr[0], qr[1]) self.assertEqual(expected, new_circuit) def test_control_bit_of_cnot1(self): """A simple circuit where the two cnots shoule be cancelled. qr0:----.------[Z]------.-- qr0:---[Z]--- | | qr1:---(+)-------------(+)- = qr1:--------- """ qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) circuit.z(qr[0]) circuit.cx(qr[0], qr[1]) new_pm = PassManager(CommutativeCancellation()) new_circuit = new_pm.run(circuit) expected = QuantumCircuit(qr) expected.z(qr[0]) self.assertEqual(expected, new_circuit) def test_control_bit_of_cnot2(self): """A simple circuit where the two cnots shoule be cancelled. qr0:----.------[T]------.-- qr0:---[T]--- | | qr1:---(+)-------------(+)- = qr1:--------- """ qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) circuit.t(qr[0]) circuit.cx(qr[0], qr[1]) new_pm = PassManager(CommutativeCancellation()) new_circuit = new_pm.run(circuit) expected = QuantumCircuit(qr) expected.t(qr[0]) self.assertEqual(expected, new_circuit) def test_control_bit_of_cnot3(self): """A simple circuit where the two cnots shoule be cancelled. qr0:----.------[Rz]------.-- qr0:---[Rz]--- | | qr1:---(+)-------- -----(+)- = qr1:---------- """ qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) circuit.rz(np.pi / 3, qr[0]) circuit.cx(qr[0], qr[1]) new_pm = PassManager(CommutativeCancellation()) new_circuit = new_pm.run(circuit) expected = QuantumCircuit(qr) expected.rz(np.pi / 3, qr[0]) self.assertEqual(expected, new_circuit) def test_control_bit_of_cnot4(self): """A simple circuit where the two cnots shoule be cancelled. qr0:----.------[T]------.-- qr0:---[T]--- | | qr1:---(+)-------------(+)- = qr1:--------- """ qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) circuit.t(qr[0]) circuit.cx(qr[0], qr[1]) new_pm = PassManager(CommutativeCancellation()) new_circuit = new_pm.run(circuit) expected = QuantumCircuit(qr) expected.t(qr[0]) self.assertEqual(expected, new_circuit) def test_target_bit_of_cnot(self): """A simple circuit where nothing should be cancelled. qr0:----.---------------.-- qr0:----.---------------.-- | | | | qr1:---(+)-----[Z]-----(+)- = qr1:---(+)----[Z]------(+)- """ qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) circuit.z(qr[1]) circuit.cx(qr[0], qr[1]) new_pm = PassManager(CommutativeCancellation()) new_circuit = new_pm.run(circuit) expected = QuantumCircuit(qr) expected.cx(qr[0], qr[1]) expected.z(qr[1]) expected.cx(qr[0], qr[1]) self.assertEqual(expected, new_circuit) def test_target_bit_of_cnot1(self): """A simple circuit where nothing should be cancelled. qr0:----.---------------.-- qr0:----.---------------.-- | | | | qr1:---(+)-----[T]-----(+)- = qr1:---(+)----[T]------(+)- """ qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) circuit.t(qr[1]) circuit.cx(qr[0], qr[1]) new_pm = PassManager(CommutativeCancellation()) new_circuit = new_pm.run(circuit) expected = QuantumCircuit(qr) expected.cx(qr[0], qr[1]) expected.t(qr[1]) expected.cx(qr[0], qr[1]) self.assertEqual(expected, new_circuit) def test_target_bit_of_cnot2(self): """A simple circuit where nothing should be cancelled. qr0:----.---------------.-- qr0:----.---------------.-- | | | | qr1:---(+)-----[Rz]----(+)- = qr1:---(+)----[Rz]-----(+)- """ qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) circuit.rz(np.pi / 3, qr[1]) circuit.cx(qr[0], qr[1]) new_pm = PassManager(CommutativeCancellation()) new_circuit = new_pm.run(circuit) expected = QuantumCircuit(qr) expected.cx(qr[0], qr[1]) expected.rz(np.pi / 3, qr[1]) expected.cx(qr[0], qr[1]) self.assertEqual(expected, new_circuit) def test_commutative_circuit2(self): """ A simple circuit where three CNOTs commute, the first and the last cancel, also two X gates cancel and two Rz gates combine. qr0:----.---------------.-------- qr0:------------- | | qr1:---(+)---(+)--[X]--(+)--[X]-- = qr1:--------(+)-- | | qr2:---[Rz]---.---[Rz]-[T]--[S]-- qr2:--[U1]---.--- """ qr = QuantumRegister(3, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) circuit.rz(np.pi / 3, qr[2]) circuit.cx(qr[2], qr[1]) circuit.rz(np.pi / 3, qr[2]) circuit.t(qr[2]) circuit.s(qr[2]) circuit.x(qr[1]) circuit.cx(qr[0], qr[1]) circuit.x(qr[1]) passmanager = PassManager() passmanager.append(CommutativeCancellation()) new_circuit = passmanager.run(circuit) expected = QuantumCircuit(qr) expected.append(RZGate(np.pi * 17 / 12), [qr[2]]) expected.cx(qr[2], qr[1]) expected.global_phase = (np.pi * 17 / 12 - (2 * np.pi / 3)) / 2 self.assertEqual(expected, new_circuit) def test_commutative_circuit3(self): """ A simple circuit where three CNOTs commute, the first and the last cancel, also two X gates cancel and two Rz gates combine. qr0:-------.------------------.------------- qr0:------------- | | qr1:------(+)------(+)--[X]--(+)-------[X]-- = qr1:--------(+)-- | | qr2:------[Rz]--.---.----.---[Rz]-[T]--[S]-- qr2:--[U1]---.--- | | qr3:-[Rz]--[X]-(+)------(+)--[X]-[Rz]------- qr3:--[Rz]------- """ qr = QuantumRegister(4, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) circuit.rz(np.pi / 3, qr[2]) circuit.rz(np.pi / 3, qr[3]) circuit.x(qr[3]) circuit.cx(qr[2], qr[3]) circuit.cx(qr[2], qr[1]) circuit.cx(qr[2], qr[3]) circuit.rz(np.pi / 3, qr[2]) circuit.t(qr[2]) circuit.x(qr[3]) circuit.rz(np.pi / 3, qr[3]) circuit.s(qr[2]) circuit.x(qr[1]) circuit.cx(qr[0], qr[1]) circuit.x(qr[1]) passmanager = PassManager() passmanager.append( [CommutationAnalysis(), CommutativeCancellation(), Size(), FixedPoint("size")], do_while=lambda property_set: not property_set["size_fixed_point"], ) new_circuit = passmanager.run(circuit) expected = QuantumCircuit(qr) expected.append(RZGate(np.pi * 17 / 12), [qr[2]]) expected.append(RZGate(np.pi * 2 / 3), [qr[3]]) expected.cx(qr[2], qr[1]) self.assertEqual( expected, new_circuit, msg=f"expected:\n{expected}\nnew_circuit:\n{new_circuit}" ) def test_cnot_cascade(self): """ A cascade of CNOTs that equals identity. """ qr = QuantumRegister(10, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) circuit.cx(qr[1], qr[2]) circuit.cx(qr[2], qr[3]) circuit.cx(qr[3], qr[4]) circuit.cx(qr[4], qr[5]) circuit.cx(qr[5], qr[6]) circuit.cx(qr[6], qr[7]) circuit.cx(qr[7], qr[8]) circuit.cx(qr[8], qr[9]) circuit.cx(qr[8], qr[9]) circuit.cx(qr[7], qr[8]) circuit.cx(qr[6], qr[7]) circuit.cx(qr[5], qr[6]) circuit.cx(qr[4], qr[5]) circuit.cx(qr[3], qr[4]) circuit.cx(qr[2], qr[3]) circuit.cx(qr[1], qr[2]) circuit.cx(qr[0], qr[1]) passmanager = PassManager() # passmanager.append(CommutativeCancellation()) passmanager.append( [CommutationAnalysis(), CommutativeCancellation(), Size(), FixedPoint("size")], do_while=lambda property_set: not property_set["size_fixed_point"], ) new_circuit = passmanager.run(circuit) expected = QuantumCircuit(qr) self.assertEqual(expected, new_circuit) def test_cnot_cascade1(self): """ A cascade of CNOTs that equals identity, with rotation gates inserted. """ qr = QuantumRegister(10, "qr") circuit = QuantumCircuit(qr) circuit.rx(np.pi, qr[0]) circuit.rx(np.pi, qr[1]) circuit.rx(np.pi, qr[2]) circuit.rx(np.pi, qr[3]) circuit.rx(np.pi, qr[4]) circuit.rx(np.pi, qr[5]) circuit.rx(np.pi, qr[6]) circuit.rx(np.pi, qr[7]) circuit.rx(np.pi, qr[8]) circuit.rx(np.pi, qr[9]) circuit.cx(qr[0], qr[1]) circuit.cx(qr[1], qr[2]) circuit.cx(qr[2], qr[3]) circuit.cx(qr[3], qr[4]) circuit.cx(qr[4], qr[5]) circuit.cx(qr[5], qr[6]) circuit.cx(qr[6], qr[7]) circuit.cx(qr[7], qr[8]) circuit.cx(qr[8], qr[9]) circuit.cx(qr[8], qr[9]) circuit.cx(qr[7], qr[8]) circuit.cx(qr[6], qr[7]) circuit.cx(qr[5], qr[6]) circuit.cx(qr[4], qr[5]) circuit.cx(qr[3], qr[4]) circuit.cx(qr[2], qr[3]) circuit.cx(qr[1], qr[2]) circuit.cx(qr[0], qr[1]) circuit.rx(np.pi, qr[0]) circuit.rx(np.pi, qr[1]) circuit.rx(np.pi, qr[2]) circuit.rx(np.pi, qr[3]) circuit.rx(np.pi, qr[4]) circuit.rx(np.pi, qr[5]) circuit.rx(np.pi, qr[6]) circuit.rx(np.pi, qr[7]) circuit.rx(np.pi, qr[8]) circuit.rx(np.pi, qr[9]) passmanager = PassManager() # passmanager.append(CommutativeCancellation()) passmanager.append( [CommutationAnalysis(), CommutativeCancellation(), Size(), FixedPoint("size")], do_while=lambda property_set: not property_set["size_fixed_point"], ) new_circuit = passmanager.run(circuit) expected = QuantumCircuit(qr) self.assertEqual(expected, new_circuit) def test_conditional_gates_dont_commute(self): """Conditional gates do not commute and do not cancel""" # ┌───┐┌─┐ # q_0: ┤ H ├┤M├───────────── # └───┘└╥┘ ┌─┐ # q_1: ──■───╫────■───┤M├─── # ┌─┴─┐ ║ ┌─┴─┐ └╥┘┌─┐ # q_2: ┤ X ├─╫──┤ X ├──╫─┤M├ # └───┘ ║ └─╥─┘ ║ └╥┘ # ║ ┌──╨──┐ ║ ║ # c: 2/══════╩═╡ 0x0 ╞═╩══╩═ # 0 └─────┘ 0 1 circuit = QuantumCircuit(3, 2) circuit.h(0) circuit.measure(0, 0) circuit.cx(1, 2) circuit.cx(1, 2).c_if(circuit.cregs[0], 0) circuit.measure([1, 2], [0, 1]) new_pm = PassManager(CommutativeCancellation()) new_circuit = new_pm.run(circuit) self.assertEqual(circuit, new_circuit) def test_basis_01(self): """Test basis priority change, phase gate""" circuit = QuantumCircuit(1) circuit.s(0) circuit.z(0) circuit.t(0) circuit.rz(np.pi, 0) passmanager = PassManager() passmanager.append(CommutativeCancellation(basis_gates=["cx", "p", "sx"])) new_circuit = passmanager.run(circuit) expected = QuantumCircuit(1) expected.rz(11 * np.pi / 4, 0) expected.global_phase = 11 * np.pi / 4 / 2 - np.pi / 2 self.assertEqual(new_circuit, expected) def test_target_basis_01(self): """Test basis priority change, phase gate, with target.""" circuit = QuantumCircuit(1) circuit.s(0) circuit.z(0) circuit.t(0) circuit.rz(np.pi, 0) theta = Parameter("theta") target = Target(num_qubits=2) target.add_instruction(CXGate()) target.add_instruction(PhaseGate(theta)) target.add_instruction(SXGate()) passmanager = PassManager() passmanager.append(CommutativeCancellation(target=target)) new_circuit = passmanager.run(circuit) expected = QuantumCircuit(1) expected.rz(11 * np.pi / 4, 0) expected.global_phase = 11 * np.pi / 4 / 2 - np.pi / 2 self.assertEqual(new_circuit, expected) def test_basis_02(self): """Test basis priority change, Rz gate""" circuit = QuantumCircuit(1) circuit.s(0) circuit.z(0) circuit.t(0) passmanager = PassManager() passmanager.append(CommutativeCancellation(basis_gates=["cx", "rz", "sx"])) new_circuit = passmanager.run(circuit) expected = QuantumCircuit(1) expected.rz(7 * np.pi / 4, 0) expected.global_phase = 7 * np.pi / 4 / 2 self.assertEqual(new_circuit, expected) def test_basis_03(self): """Test no specified basis""" circuit = QuantumCircuit(1) circuit.s(0) circuit.z(0) circuit.t(0) passmanager = PassManager() passmanager.append(CommutativeCancellation()) new_circuit = passmanager.run(circuit) expected = QuantumCircuit(1) expected.s(0) expected.z(0) expected.t(0) self.assertEqual(new_circuit, expected) def test_basis_global_phase_01(self): """Test no specified basis, rz""" circ = QuantumCircuit(1) circ.rz(np.pi / 2, 0) circ.p(np.pi / 2, 0) circ.p(np.pi / 2, 0) passmanager = PassManager() passmanager.append(CommutativeCancellation()) ccirc = passmanager.run(circ) self.assertEqual(Operator(circ), Operator(ccirc)) def test_basis_global_phase_02(self): """Test no specified basis, p""" circ = QuantumCircuit(1) circ.p(np.pi / 2, 0) circ.rz(np.pi / 2, 0) circ.p(np.pi / 2, 0) passmanager = PassManager() passmanager.append(CommutativeCancellation()) ccirc = passmanager.run(circ) self.assertEqual(Operator(circ), Operator(ccirc)) def test_basis_global_phase_03(self): """Test global phase preservation if cummulative z-rotation is 0""" circ = QuantumCircuit(1) circ.rz(np.pi / 2, 0) circ.p(np.pi / 2, 0) circ.z(0) passmanager = PassManager() passmanager.append(CommutativeCancellation()) ccirc = passmanager.run(circ) self.assertEqual(Operator(circ), Operator(ccirc)) def test_basic_classical_wires(self): """Test that transpile runs without internal errors when dealing with commutable operations with classical controls. Regression test for gh-8553.""" original = QuantumCircuit(2, 1) original.x(0).c_if(original.cregs[0], 0) original.x(1).c_if(original.cregs[0], 0) # This transpilation shouldn't change anything, but it should succeed. At one point it was # triggering an internal logic error and crashing. transpiled = PassManager([CommutativeCancellation()]).run(original) self.assertEqual(original, transpiled) def test_simple_if_else(self): """Test that the pass is not confused by if-else.""" base_test1 = QuantumCircuit(3, 3) base_test1.x(1) base_test1.cx(0, 1) base_test1.x(1) base_test2 = QuantumCircuit(3, 3) base_test2.rz(0.1, 1) base_test2.rz(0.1, 1) test = QuantumCircuit(3, 3) test.h(0) test.x(0) test.rx(0.2, 0) test.measure(0, 0) test.x(0) test.if_else( (test.clbits[0], True), base_test1.copy(), base_test2.copy(), test.qubits, test.clbits ) expected = QuantumCircuit(3, 3) expected.h(0) expected.rx(np.pi + 0.2, 0) expected.measure(0, 0) expected.x(0) expected_test1 = QuantumCircuit(3, 3) expected_test1.cx(0, 1) expected_test2 = QuantumCircuit(3, 3) expected_test2.rz(0.2, 1) expected.if_else( (expected.clbits[0], True), expected_test1.copy(), expected_test2.copy(), expected.qubits, expected.clbits, ) passmanager = PassManager([CommutationAnalysis(), CommutativeCancellation()]) new_circuit = passmanager.run(test) self.assertEqual(new_circuit, expected) def test_nested_control_flow(self): """Test that the pass does not add barrier into nested control flow.""" level2_test = QuantumCircuit(2, 1) level2_test.cz(0, 1) level2_test.cz(0, 1) level2_test.cz(0, 1) level2_test.measure(0, 0) level1_test = QuantumCircuit(2, 1) level1_test.for_loop((0,), None, level2_test.copy(), level1_test.qubits, level1_test.clbits) level1_test.h(0) level1_test.h(0) level1_test.measure(0, 0) test = QuantumCircuit(2, 1) test.while_loop((test.clbits[0], True), level1_test.copy(), test.qubits, test.clbits) test.measure(0, 0) level2_expected = QuantumCircuit(2, 1) level2_expected.cz(0, 1) level2_expected.measure(0, 0) level1_expected = QuantumCircuit(2, 1) level1_expected.for_loop( (0,), None, level2_expected.copy(), level1_expected.qubits, level1_expected.clbits ) level1_expected.measure(0, 0) expected = QuantumCircuit(2, 1) expected.while_loop( (expected.clbits[0], True), level1_expected.copy(), expected.qubits, expected.clbits ) expected.measure(0, 0) passmanager = PassManager([CommutationAnalysis(), CommutativeCancellation()]) new_circuit = passmanager.run(test) self.assertEqual(new_circuit, expected) def test_cancellation_not_crossing_block_boundary(self): """Test that the pass does cancel gates across control flow op block boundaries.""" test1 = QuantumCircuit(2, 2) test1.x(1) with test1.if_test((0, False)): test1.cx(0, 1) test1.x(1) passmanager = PassManager([CommutationAnalysis(), CommutativeCancellation()]) new_circuit = passmanager.run(test1) self.assertEqual(new_circuit, test1) def test_cancellation_not_crossing_between_blocks(self): """Test that the pass does cancel gates in different control flow ops.""" test2 = QuantumCircuit(2, 2) with test2.if_test((0, True)): test2.x(1) with test2.if_test((0, True)): test2.cx(0, 1) test2.x(1) passmanager = PassManager([CommutationAnalysis(), CommutativeCancellation()]) new_circuit = passmanager.run(test2) self.assertEqual(new_circuit, test2) if __name__ == "__main__": unittest.main()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.dagcircuit import DAGCircuit from qiskit.converters import circuit_to_dag from qiskit.circuit.library.standard_gates import CHGate, U2Gate, CXGate from qiskit.converters import dag_to_circuit q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.measure(q[0], c[0]) circ.rz(0.5, q[1]).c_if(c, 2) dag = circuit_to_dag(circ) circuit = dag_to_circuit(dag) circuit.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer, MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from docplex.mp.model import Model model = Model() x0 = model.binary_var(name="x0") x1 = model.binary_var(name="x1") x2 = model.binary_var(name="x2") model.minimize(-x0 + 2 * x1 - 3 * x2 - 2 * x0 * x2 - 1 * x1 * x2) qp = from_docplex_mp(model) print(qp.prettyprint()) grover_optimizer = GroverOptimizer(6, num_iterations=10, sampler=Sampler()) results = grover_optimizer.solve(qp) print(results.prettyprint()) exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qp) print(exact_result.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from sklearn.datasets import make_blobs # example dataset features, labels = make_blobs(n_samples=20, n_features=2, centers=2, random_state=3, shuffle=True) import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler features = MinMaxScaler(feature_range=(0, np.pi)).fit_transform(features) train_features, test_features, train_labels, test_labels = train_test_split( features, labels, train_size=15, shuffle=False ) # number of qubits is equal to the number of features num_qubits = 2 # number of steps performed during the training procedure tau = 100 # regularization parameter C = 1000 from qiskit import BasicAer from qiskit.circuit.library import ZFeatureMap from qiskit.utils import algorithm_globals from qiskit_machine_learning.kernels import FidelityQuantumKernel algorithm_globals.random_seed = 12345 feature_map = ZFeatureMap(feature_dimension=num_qubits, reps=1) qkernel = FidelityQuantumKernel(feature_map=feature_map) from qiskit_machine_learning.algorithms import PegasosQSVC pegasos_qsvc = PegasosQSVC(quantum_kernel=qkernel, C=C, num_steps=tau) # training pegasos_qsvc.fit(train_features, train_labels) # testing pegasos_score = pegasos_qsvc.score(test_features, test_labels) print(f"PegasosQSVC classification test score: {pegasos_score}") grid_step = 0.2 margin = 0.2 grid_x, grid_y = np.meshgrid( np.arange(-margin, np.pi + margin, grid_step), np.arange(-margin, np.pi + margin, grid_step) ) meshgrid_features = np.column_stack((grid_x.ravel(), grid_y.ravel())) meshgrid_colors = pegasos_qsvc.predict(meshgrid_features) import matplotlib.pyplot as plt plt.figure(figsize=(5, 5)) meshgrid_colors = meshgrid_colors.reshape(grid_x.shape) plt.pcolormesh(grid_x, grid_y, meshgrid_colors, cmap="RdBu", shading="auto") plt.scatter( train_features[:, 0][train_labels == 0], train_features[:, 1][train_labels == 0], marker="s", facecolors="w", edgecolors="r", label="A train", ) plt.scatter( train_features[:, 0][train_labels == 1], train_features[:, 1][train_labels == 1], marker="o", facecolors="w", edgecolors="b", label="B train", ) plt.scatter( test_features[:, 0][test_labels == 0], test_features[:, 1][test_labels == 0], marker="s", facecolors="r", edgecolors="r", label="A test", ) plt.scatter( test_features[:, 0][test_labels == 1], test_features[:, 1][test_labels == 1], marker="o", facecolors="b", edgecolors="b", label="B test", ) plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0) plt.title("Pegasos Classification") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/deadshot8086/quantum-grover-boolean-sat
deadshot8086
from qiskit import QuantumCircuit from qiskit.circuit.library.standard_gates.x import MCXGate # Class that creates and holds grover's circuit for some given expression class GroverOperator: def get_control_circuit(self, label="Grover"): grit = self.main_circuit.to_gate() grit.label = label return grit.control() def __init__(self, n, cnf_exp): self.n_bits = n eq = len(cnf_exp) self.total_bits = n + eq + 1 main_circuit = QuantumCircuit(self.total_bits) for i, e in enumerate(cnf_exp): state = '' target = n + i pos = [] for qbit in e: state += '0' if (qbit > 0) else '1' pos.append(abs(qbit) - 1) pos.append(target) state = state[::-1] main_circuit.append(MCXGate(len(e), None, state), pos) oracle_rev = main_circuit.reverse_ops() main_circuit.append(MCXGate(eq, None, '0' * eq), range(n, self.total_bits)) main_circuit = main_circuit.compose(oracle_rev) # main_circuit.barrier() main_circuit.h(range(n)) main_circuit.append(MCXGate(n, None, '0' * n), list(range(n)) + [self.total_bits - 1]) main_circuit.h(range(n)) # main_circuit.barrier() self.main_circuit = main_circuit self.control_circuit = self.get_control_circuit()
https://github.com/unitaryfund/mitiq
unitaryfund
# Copyright (C) Unitary Fund # # This source code is licensed under the GPL license (v3) found in the # LICENSE file in the root directory of this source tree. import json import cirq import numpy as np import pytest import qiskit from mitiq import QPROGRAM, SUPPORTED_PROGRAM_TYPES from mitiq.calibration import PEC_SETTINGS, ZNE_SETTINGS, Settings from mitiq.calibration.settings import ( BenchmarkProblem, MitigationTechnique, Strategy, ) from mitiq.pec import ( execute_with_pec, represent_operation_with_local_depolarizing_noise, ) from mitiq.raw import execute from mitiq.zne.inference import LinearFactory, RichardsonFactory from mitiq.zne.scaling import fold_global light_pec_settings = Settings( [ { "circuit_type": "mirror", "num_qubits": 1, "circuit_depth": 1, }, { "circuit_type": "mirror", "num_qubits": 2, "circuit_depth": 1, }, ], strategies=[ { "technique": "pec", "representation_function": ( represent_operation_with_local_depolarizing_noise ), "is_qubit_dependent": False, "noise_level": 0.001, "num_samples": 200, }, ], ) light_zne_settings = Settings( [ { "circuit_type": "mirror", "num_qubits": 1, "circuit_depth": 1, }, { "circuit_type": "mirror", "num_qubits": 2, "circuit_depth": 1, }, ], strategies=[ { "technique": "zne", "scale_noise": fold_global, "factory": LinearFactory([1.0, 2.0]), }, ], ) basic_settings = Settings( benchmarks=[ { "circuit_type": "ghz", "num_qubits": 2, "circuit_depth": 999, } ], strategies=[ { "technique": "zne", "scale_noise": fold_global, "factory": RichardsonFactory([1.0, 2.0, 3.0]), }, { "technique": "pec", "representation_function": ( represent_operation_with_local_depolarizing_noise ), "is_qubit_dependent": False, "noise_level": 0.001, "num_samples": 200, }, ], ) def test_MitigationTechnique(): pec_enum = MitigationTechnique.PEC assert pec_enum.mitigation_function == execute_with_pec assert pec_enum.name == "PEC" raw_enum = MitigationTechnique.RAW assert raw_enum.mitigation_function == execute assert raw_enum.name == "RAW" def test_BenchmarkProblem_make_problems(): settings = basic_settings problems = settings.make_problems() assert len(problems) == 1 ghz_problem = problems[0] assert len(ghz_problem.circuit) == 2 assert ghz_problem.two_qubit_gate_count == 1 assert ghz_problem.ideal_distribution == {"00": 0.5, "11": 0.5} def test_BenchmarkProblem_repr(): settings = basic_settings problems = settings.make_problems() problem_repr = repr(problems[0]).replace("'", '"') assert isinstance(json.loads(problem_repr), dict) def test_BenchmarkProblem_str(): settings = basic_settings circuits = settings.make_problems() problem = circuits[0] lines = str(problem).split("\n") problem_dict = problem.to_dict() for line in lines: [title, value] = line.split(":", 1) key = title.lower().replace(" ", "_") value = value.strip() assert key in problem_dict assert value == str(problem_dict[key]) assert "Ideal distribution: " not in str(problem) def test_Strategy_repr(): settings = basic_settings strategies = settings.make_strategies() strategy_repr = repr(strategies[0]).replace("'", '"') assert isinstance(json.loads(strategy_repr), dict) def test_Strategy_str(): settings = basic_settings strategies = settings.make_strategies() strategy_str = str(strategies[0]) strategy_pretty_dict = strategies[0].to_pretty_dict() for line in strategy_str.split("\n"): [title, value] = line.split(":") key = title.lower().replace(" ", "_") value = value.strip() assert key in strategy_pretty_dict assert value == str(strategy_pretty_dict[key]) def test_Strategy_pretty_dict(): settings = basic_settings strategies = settings.make_strategies() strategy_dict = strategies[0].to_dict() strategy_pretty_dict = strategies[0].to_pretty_dict() if strategy_pretty_dict["technique"] == "ZNE": assert strategy_pretty_dict["factory"] == strategy_dict["factory"][:-7] assert ( strategy_pretty_dict["scale_factors"] == str(strategy_dict["scale_factors"])[1:-1] ) elif strategy_pretty_dict["technique"] == "PEC": assert strategy_pretty_dict["noise_bias"] == strategy_dict.get( "noise_bias", "N/A" ) assert ( strategy_pretty_dict["representation_function"] == strategy_dict["representation_function"][25:] ) def test_make_circuits_rotated_rb_circuits(): settings = Settings( benchmarks=[ { "circuit_type": "rotated_rb", "num_qubits": 1, "circuit_depth": 10, "theta": np.pi / 3, } ], strategies=[ { "technique": "zne", "scale_noise": fold_global, "factory": RichardsonFactory([1.0, 2.0, 3.0]), }, ], ) problems = settings.make_problems() assert len(problems) == 1 assert problems[0].type == "rotated_rb" def test_make_circuits_rotated_rb_circuits_invalid_qubits(): settings = Settings( benchmarks=[ { "circuit_type": "rotated_rb", "num_qubits": 2, "circuit_depth": 10, "theta": np.pi / 3, } ], strategies=[ { "technique": "zne", "scale_noise": fold_global, "factory": RichardsonFactory([1.0, 2.0, 3.0]), }, ], ) with pytest.raises(NotImplementedError, match="rotated rb circuits"): settings.make_problems() def test_make_circuits_qv_circuits(): settings = Settings( [ { "circuit_type": "qv", "num_qubits": 2, "circuit_depth": 999, } ], strategies=[ { "technique": "zne", "scale_noise": fold_global, "factory": RichardsonFactory([1.0, 2.0, 3.0]), } ], ) with pytest.raises(NotImplementedError, match="quantum volume circuits"): settings.make_problems() def test_make_circuits_invalid_circuit_type(): settings = Settings( [{"circuit_type": "foobar", "num_qubits": 2, "circuit_depth": 999}], strategies=[ { "technique": "zne", "scale_noise": fold_global, "factory": RichardsonFactory([1.0, 2.0, 3.0]), } ], ) with pytest.raises( ValueError, match="invalid value passed for `circuit_types`" ): settings.make_problems() def test_make_strategies_invalid_technique(): with pytest.raises(KeyError, match="DESTROY"): Settings( [{"circuit_types": "shor", "num_qubits": 2, "circuit_depth": 999}], strategies=[ { "technique": "destroy_my_errors", "scale_noise": fold_global, "factory": RichardsonFactory([1.0, 2.0, 3.0]), } ], ) def test_unsupported_technique_error(): strategy = Strategy(1, MitigationTechnique.RAW, {}) with pytest.raises( ValueError, match="Specified technique is not supported by calibration.", ): strategy.mitigation_function() def test_ZNE_SETTINGS(): circuits = ZNE_SETTINGS.make_problems() strategies = ZNE_SETTINGS.make_strategies() repr_string = repr(circuits[0]) assert all( s in repr_string for s in ("type", "ideal_distribution", "num_qubits", "circuit_depth") ) assert len(circuits) == 4 assert len(strategies) == 2 * 2 * 2 def test_PEC_SETTINGS(): circuits = PEC_SETTINGS.make_problems() strategies = PEC_SETTINGS.make_strategies() repr_string = repr(circuits[0]) assert all( s in repr_string for s in ("type", "ideal_distribution", "num_qubits", "circuit_depth") ) assert len(circuits) == 4 assert len(strategies) == 2 @pytest.mark.parametrize("circuit_type", SUPPORTED_PROGRAM_TYPES) def test_benchmark_problem_class(circuit_type): qubit = cirq.LineQubit(0) circuit = cirq.Circuit(cirq.X(qubit)) circuit_with_measurements = circuit.copy() circuit_with_measurements.append(cirq.measure(qubit)) problem = BenchmarkProblem( id=7, circuit=circuit, type="", ideal_distribution={}, ) assert problem.circuit == circuit conv_circ = problem.converted_circuit(circuit_type) assert any([isinstance(conv_circ, q) for q in QPROGRAM.__args__]) # For at least one case, test the circuit is correct and has measurements if circuit_type == "qiskit": qreg = qiskit.QuantumRegister(1, name="q") creg = qiskit.ClassicalRegister(1, name="m0") expected = qiskit.QuantumCircuit(qreg, creg) expected.x(0) expected.measure(0, 0) assert conv_circ == expected def test_settings_make_problems(): """Test the `make_problems` method of `Settings`""" settings = Settings( [ { "circuit_type": "w", "num_qubits": 2, } ], strategies=[ { "technique": "zne", "scale_noise": fold_global, "factory": RichardsonFactory([1.0, 2.0, 3.0]), } ], ) problems = settings.make_problems() assert len(problems) == 1 ideal_distribution = {"01": 0.5, "10": 0.5} problem = problems[0] assert problem.ideal_distribution == ideal_distribution assert problem.two_qubit_gate_count == 2 assert problem.num_qubits == 2 assert problem.circuit_depth == 2 def test_to_dict(): pec_strategy = light_pec_settings.make_strategies()[0] assert pec_strategy.to_dict() == { "technique": "PEC", "representation_function": ( "represent_operation_with_local_depolarizing_noise" ), "is_qubit_dependent": False, "noise_level": 0.001, "noise_bias": 0, "num_samples": 200, } zne_strategy = light_zne_settings.make_strategies()[0] assert zne_strategy.to_dict() == { "technique": "ZNE", "scale_method": "fold_global", "factory": "LinearFactory", "scale_factors": [1.0, 2.0], } def test_num_circuits_required_raw_execution(): undefine_strategy = Strategy( id=1, technique=MitigationTechnique.RAW, technique_params={}, ) assert undefine_strategy.num_circuits_required() == 1
https://github.com/mcoggins96/Quantum-Computing-UK-Repository
mcoggins96
from qiskit import QuantumRegister, ClassicalRegister from qiskit import QuantumCircuit, execute,IBMQ from qiskit.tools.monitor import job_monitor from qiskit.circuit.library import QFT import numpy as np pi = np.pi IBMQ.enable_account(‘ENTER API KEY HERE’) provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_qasm_simulator') q = QuantumRegister(5,'q') c = ClassicalRegister(5,'c') circuit = QuantumCircuit(q,c) circuit.x(q[4]) circuit.x(q[2]) circuit.x(q[0]) circuit += QFT(num_qubits=5, approximation_degree=0, do_swaps=True, inverse=False, insert_barriers=False, name='qft') circuit.measure(q,c) circuit.draw(output='mpl', filename='qft1.png') print(circuit) job = execute(circuit, backend, shots=1000) job_monitor(job) counts = job.result().get_counts() print("\n QFT Output") print("-------------") print(counts) input() q = QuantumRegister(5,'q') c = ClassicalRegister(5,'c') circuit = QuantumCircuit(q,c) circuit.x(q[4]) circuit.x(q[2]) circuit.x(q[0]) circuit += QFT(num_qubits=5, approximation_degree=0, do_swaps=True, inverse=False, insert_barriers=True, name='qft') circuit += QFT(num_qubits=5, approximation_degree=0, do_swaps=True, inverse=True, insert_barriers=True, name='qft') circuit.measure(q,c) circuit.draw(output='mpl',filename='qft2.png') print(circuit) job = execute(circuit, backend, shots=1000) job_monitor(job) counts = job.result().get_counts() print("\n QFT with inverse QFT Output") print("------------------------------") print(counts) input()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/vm6502q/qiskit-qrack-provider
vm6502q
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Test circuits and reference outputs for snapshot state instructions. """ from numpy import array from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.providers.aer.extensions.snapshot_probabilities import * def snapshot_probabilities_labels_qubits(): """Dictionary of labels and qubits for 3-qubit probability snapshots""" return { "[0]": [0], "[1]": [1], "[2]": [2], "[0, 1]": [0, 1], "[1, 0]": [1, 0], "[0, 2]": [0, 2], "[2, 0]": [2, 0], "[1, 2]": [1, 2], "[2, 1]": [2, 1], "[0, 1, 2]": [0, 1, 2], "[1, 2, 0]": [1, 2, 0], "[2, 0, 1]": [2, 0, 1] } def snapshot_probabilities_circuits(post_measure=False): """Snapshot Probabilities test circuits with deterministic counts""" circuits = [] num_qubits = 3 qr = QuantumRegister(num_qubits) cr = ClassicalRegister(num_qubits) regs = (qr, cr) # State |01+> circuit = QuantumCircuit(*regs) circuit.h(0) circuit.x(1) if not post_measure: for label, qubits in snapshot_probabilities_labels_qubits().items(): circuit.snapshot_probabilities(label, qubits) circuit.barrier(qr) circuit.measure(qr, cr) circuit.barrier(qr) if post_measure: for label, qubits in snapshot_probabilities_labels_qubits().items(): circuit.snapshot_probabilities(label, qubits) circuits.append(circuit) # State |010> -i|101> circuit = QuantumCircuit(*regs) circuit.h(0) circuit.sdg(0) circuit.cx(0, 1) circuit.cx(0, 2) circuit.x(1) if not post_measure: for label, qubits in snapshot_probabilities_labels_qubits().items(): circuit.snapshot_probabilities(label, qubits) circuit.barrier(qr) circuit.measure(qr, cr) circuit.barrier(qr) if post_measure: for label, qubits in snapshot_probabilities_labels_qubits().items(): circuit.snapshot_probabilities(label, qubits) circuits.append(circuit) return circuits def snapshot_probabilities_counts(shots): """Snapshot Probabilities test circuits reference counts.""" targets = [] # State |01+> targets.append({'0x2': shots / 2, '0x3': shots / 2}) # State |010> -i|101> targets.append({'0x2': shots / 2, '0x5': shots / 2}) return targets def snapshot_probabilities_pre_meas_probs(): """Snapshot Probabilities test circuits reference final probs""" targets = [] # State |01+> probs = { "[0]": {'0x0': {'0x0': 0.5, '0x1': 0.5}}, "[1]": {'0x0': {'0x1': 1.0}}, "[2]": {'0x0': {'0x0': 1.0}}, "[0, 1]": {'0x0': {'0x2': 0.5, '0x3': 0.5}}, "[1, 0]": {'0x0': {'0x1': 0.5, '0x3': 0.5}}, "[0, 2]": {'0x0': {'0x0': 0.5, '0x1': 0.5}}, "[2, 0]": {'0x0': {'0x0': 0.5, '0x2': 0.5}}, "[1, 2]": {'0x0': {'0x1': 1.0}}, "[2, 1]": {'0x0': {'0x2': 1.0}}, "[0, 1, 2]": {'0x0': {'0x2': 0.5, '0x3': 0.5}}, "[1, 2, 0]": {'0x0': {'0x1': 0.5, '0x5': 0.5}}, "[2, 0, 1]": {'0x0': {'0x4': 0.5, '0x6': 0.5}}, } targets.append(probs) # State |010> -i|101> probs = { "[0]": {'0x0': {'0x0': 0.5, '0x1': 0.5}}, "[1]": {'0x0': {'0x0': 0.5, '0x1': 0.5}}, "[2]": {'0x0': {'0x0': 0.5, '0x1': 0.5}}, "[0, 1]": {'0x0': {'0x1': 0.5, '0x2': 0.5}}, "[1, 0]": {'0x0': {'0x1': 0.5, '0x2': 0.5}}, "[0, 2]": {'0x0': {'0x0': 0.5, '0x3': 0.5}}, "[2, 0]": {'0x0': {'0x0': 0.5, '0x3': 0.5}}, "[1, 2]": {'0x0': {'0x1': 0.5, '0x2': 0.5}}, "[2, 1]": {'0x0': {'0x1': 0.5, '0x2': 0.5}}, "[0, 1, 2]": {'0x0': {'0x2': 0.5, '0x5': 0.5}}, "[1, 2, 0]": {'0x0': {'0x1': 0.5, '0x6': 0.5}}, "[2, 0, 1]": {'0x0': {'0x3': 0.5, '0x4': 0.5}}, } targets.append(probs) return targets def snapshot_probabilities_post_meas_probs(): """Snapshot Probabilities test circuits reference final statevector""" targets = [] # State |01+> probs = { "[0]": {'0x2': {'0x0': 1.0}, '0x3': {'0x1': 1.0}}, "[1]": {'0x2': {'0x1': 1.0}, '0x3': {'0x1': 1.0}}, "[2]": {'0x2': {'0x0': 1.0}, '0x3': {'0x0': 1.0}}, "[0, 1]": {'0x2': {'0x2': 1.0}, '0x3': {'0x3': 1.0}}, "[1, 0]": {'0x2': {'0x1': 1.0}, '0x3': {'0x3': 1.0}}, "[0, 2]": {'0x2': {'0x0': 1.0}, '0x3': {'0x1': 1.0}}, "[2, 0]": {'0x2': {'0x0': 1.0}, '0x3': {'0x2': 1.0}}, "[1, 2]": {'0x2': {'0x1': 1.0}, '0x3': {'0x1': 1.0}}, "[2, 1]": {'0x2': {'0x2': 1.0}, '0x3': {'0x2': 1.0}}, "[0, 1, 2]": {'0x2': {'0x2': 1.0}, '0x3': {'0x3': 1.0}}, "[1, 2, 0]": {'0x2': {'0x1': 1.0}, '0x3': {'0x5': 1.0}}, "[2, 0, 1]": {'0x2': {'0x4': 1.0}, '0x3': {'0x6': 1.0}}, } targets.append(probs) # State |010> -i|101> probs = { "[0]": {'0x2': {'0x0': 1.0}, '0x5': {'0x1': 1.0}}, "[1]": {'0x2': {'0x1': 1.0}, '0x5': {'0x0': 1.0}}, "[2]": {'0x2': {'0x0': 1.0}, '0x5': {'0x1': 1.0}}, "[0, 1]": {'0x2': {'0x2': 1.0}, '0x5': {'0x1': 1.0}}, "[1, 0]": {'0x2': {'0x1': 1.0}, '0x5': {'0x2': 1.0}}, "[0, 2]": {'0x2': {'0x0': 1.0}, '0x5': {'0x3': 1.0}}, "[2, 0]": {'0x2': {'0x0': 1.0}, '0x5': {'0x3': 1.0}}, "[1, 2]": {'0x2': {'0x1': 1.0}, '0x5': {'0x2': 1.0}}, "[2, 1]": {'0x2': {'0x2': 1.0}, '0x5': {'0x1': 1.0}}, "[0, 1, 2]": {'0x2': {'0x2': 1.0}, '0x5': {'0x5': 1.0}}, "[1, 2, 0]": {'0x2': {'0x1': 1.0}, '0x5': {'0x6': 1.0}}, "[2, 0, 1]": {'0x2': {'0x4': 1.0}, '0x5': {'0x3': 1.0}}, } targets.append(probs) return targets
https://github.com/ronitd2002/IBM-Quantum-challenge-2024
ronitd2002
# qc-grader should be 0.18.10 (or higher) import qc_grader qc_grader.__version__ # Imports import numpy as np import matplotlib.pyplot as plt from qiskit.circuit.library import EfficientSU2 from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit_ibm_runtime import QiskitRuntimeService from qiskit_transpiler_service.transpiler_service import TranspilerService # Import for grader from qc_grader.challenges.iqc_2024 import grade_lab3_ait_ex1, grade_lab3_ait_ex2 NUM_QUBITS = 61 circuit = EfficientSU2(NUM_QUBITS, entanglement="circular", reps=1).decompose() print(f"Original circuit -> Depth: {circuit.depth()}, CNOTs: {circuit.num_nonlocal_gates()}") circuit.draw(fold=-1, output="mpl", style="iqp", scale=0.2) # Load saved credentials service = QiskitRuntimeService() transpiler_ai_false = TranspilerService( # Add your code here backend_name="ibm_brisbane", ai="false", optimization_level=3, ) # Submit your answer using following code grade_lab3_ait_ex1(transpiler_ai_false) # Expected result type: TranspilerService circuit_ai_false = transpiler_ai_false.run(circuit) print(f"Transpiled without AI -> Depth: {circuit_ai_false.depth()}, CNOTs: {circuit_ai_false.num_nonlocal_gates()}") circuit_ai_false.draw(fold=-1, output="mpl", scale=0.2) transpiler_ai_true = TranspilerService( # Add your code here backend_name="ibm_brisbane", ai="true", optimization_level=3, ) # Submit your answer using following code grade_lab3_ait_ex2(transpiler_ai_true) # Expected result type: TranspilerService circuit_ai_true = transpiler_ai_true.run(circuit) print(f"Transpiled with AI -> Depth: {circuit_ai_true.depth()}, CNOTs: {circuit_ai_true.num_nonlocal_gates()}") circuit_ai_true.draw(fold=-1, output="mpl", scale=0.2) # Transpiling locally using Qiskit SDK service = QiskitRuntimeService() backend = service.backend("ibm_sherbrooke") pm = generate_preset_pass_manager(backend=backend, optimization_level=3) # Run and compile results num_qubits = [11, 21, 41, 61, 81] num_cnots_local = [] num_cnots_with_ai = [] num_cnots_without_ai = [] for nq in num_qubits: circuit = EfficientSU2(nq, entanglement="circular", reps=1).decompose() # Using the Transpiler locally on Qiskit circuit_local = pm.run(circuit) # Using the transpiler service without AI circuit_without_ai = transpiler_ai_false.run(circuit) # Using the transpiler service with AI circuit_with_ai = transpiler_ai_true.run(circuit) num_cnots_local.append(circuit_local.num_nonlocal_gates()) num_cnots_without_ai.append(circuit_without_ai.num_nonlocal_gates()) num_cnots_with_ai.append(circuit_with_ai.num_nonlocal_gates()) plt.plot(num_qubits, num_cnots_with_ai, '.-') plt.plot(num_qubits, num_cnots_without_ai, '.-') plt.plot(num_qubits, num_cnots_local, '--') plt.xlabel("Number of qubits") plt.ylabel("CNOT count") plt.legend(["Qiskit Transpiler Service with AI", "Qiskit Transpiler Service without AI", "Qiskit SDK"])
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test Variational Quantum Imaginary Time Evolution algorithm.""" import unittest from test.python.algorithms import QiskitAlgorithmsTestCase from ddt import ddt import numpy as np from qiskit import QuantumCircuit from qiskit.circuit import Parameter from qiskit_algorithms.gradients import LinCombQGT, LinCombEstimatorGradient from qiskit.primitives import Estimator from qiskit.quantum_info import SparsePauliOp, Pauli from qiskit.utils import algorithm_globals from qiskit_algorithms import TimeEvolutionProblem, VarQITE from qiskit_algorithms.time_evolvers.variational import ( ImaginaryMcLachlanPrinciple, ) from qiskit.circuit.library import EfficientSU2 from qiskit.quantum_info import Statevector @ddt class TestVarQITE(QiskitAlgorithmsTestCase): """Test Variational Quantum Imaginary Time Evolution algorithm.""" def setUp(self): super().setUp() self.seed = 11 np.random.seed(self.seed) def test_run_d_1_with_aux_ops(self): """Test VarQITE for d = 1 and t = 1 with evaluating auxiliary operator and the Forward Euler solver..""" observable = SparsePauliOp.from_list( [ ("II", 0.2252), ("ZZ", 0.5716), ("IZ", 0.3435), ("ZI", -0.4347), ("YY", 0.091), ("XX", 0.091), ] ) aux_ops = [Pauli("XX"), Pauli("YZ")] d = 1 ansatz = EfficientSU2(observable.num_qubits, reps=d) parameters = list(ansatz.parameters) init_param_values = np.zeros(len(parameters)) for i in range(len(parameters)): init_param_values[i] = np.pi / 2 init_param_values[0] = 1 time = 1 evolution_problem = TimeEvolutionProblem(observable, time, aux_operators=aux_ops) thetas_expected = [ 0.87984606025879, 2.04681975664763, 2.68980594039104, 2.75915988512186, 2.38796546567171, 1.78144857115127, 2.13109162826101, 1.9259609596416, ] thetas_expected_shots = [ 0.9392668013702317, 1.8756706968454864, 2.6915067128662398, 2.655420131540562, 2.174687086978046, 1.6997059390911056, 1.8056912289547045, 1.939353810908912, ] with self.subTest(msg="Test exact backend."): algorithm_globals.random_seed = self.seed estimator = Estimator() qgt = LinCombQGT(estimator) gradient = LinCombEstimatorGradient(estimator) var_principle = ImaginaryMcLachlanPrinciple(qgt, gradient) var_qite = VarQITE( ansatz, init_param_values, var_principle, estimator, num_timesteps=25 ) evolution_result = var_qite.evolve(evolution_problem) aux_ops = evolution_result.aux_ops_evaluated parameter_values = evolution_result.parameter_values[-1] expected_aux_ops = (-0.2177982985749799, 0.2556790598588627) for i, parameter_value in enumerate(parameter_values): np.testing.assert_almost_equal( float(parameter_value), thetas_expected[i], decimal=2 ) np.testing.assert_array_almost_equal( [result[0] for result in aux_ops], expected_aux_ops ) with self.subTest(msg="Test shot-based backend."): algorithm_globals.random_seed = self.seed estimator = Estimator(options={"shots": 4096, "seed": self.seed}) qgt = LinCombQGT(estimator) gradient = LinCombEstimatorGradient(estimator) var_principle = ImaginaryMcLachlanPrinciple(qgt, gradient) var_qite = VarQITE( ansatz, init_param_values, var_principle, estimator, num_timesteps=25 ) evolution_result = var_qite.evolve(evolution_problem) aux_ops = evolution_result.aux_ops_evaluated parameter_values = evolution_result.parameter_values[-1] expected_aux_ops = (-0.24629853310903974, 0.2518122871921184) for i, parameter_value in enumerate(parameter_values): np.testing.assert_almost_equal( float(parameter_value), thetas_expected_shots[i], decimal=2 ) np.testing.assert_array_almost_equal( [result[0] for result in aux_ops], expected_aux_ops ) def test_run_d_1_t_7(self): """Test VarQITE for d = 1 and t = 7 with RK45 ODE solver.""" observable = SparsePauliOp.from_list( [ ("II", 0.2252), ("ZZ", 0.5716), ("IZ", 0.3435), ("ZI", -0.4347), ("YY", 0.091), ("XX", 0.091), ] ) d = 1 ansatz = EfficientSU2(observable.num_qubits, reps=d) parameters = list(ansatz.parameters) init_param_values = np.zeros(len(parameters)) for i in range(len(parameters)): init_param_values[i] = np.pi / 2 init_param_values[0] = 1 var_principle = ImaginaryMcLachlanPrinciple() time = 7 var_qite = VarQITE( ansatz, init_param_values, var_principle, ode_solver="RK45", num_timesteps=25 ) thetas_expected = [ 0.828917365718767, 1.88481074798033, 3.14111335991238, 3.14125849601269, 2.33768562678401, 1.78670990729437, 2.04214275514208, 2.04009918594422, ] self._test_helper(observable, thetas_expected, time, var_qite, 2) def test_run_d_2(self): """Test VarQITE for d = 2 and t = 1 with RK45 ODE solver.""" observable = SparsePauliOp.from_list( [ ("II", 0.2252), ("ZZ", 0.5716), ("IZ", 0.3435), ("ZI", -0.4347), ("YY", 0.091), ("XX", 0.091), ] ) d = 2 ansatz = EfficientSU2(observable.num_qubits, reps=d) parameters = list(ansatz.parameters) init_param_values = np.zeros(len(parameters)) for i in range(len(parameters)): init_param_values[i] = np.pi / 4 var_principle = ImaginaryMcLachlanPrinciple() time = 1 var_qite = VarQITE( ansatz, init_param_values, var_principle, ode_solver="RK45", num_timesteps=25 ) thetas_expected = [ 1.29495364023786, 1.08970061333559, 0.667488228710748, 0.500122687902944, 1.4377736672043, 1.22881086103085, 0.729773048146251, 1.01698854755226, 0.050807780587492, 0.294828474947149, 0.839305697704923, 0.663689581255428, ] self._test_helper(observable, thetas_expected, time, var_qite, 4) def test_run_d_1_time_dependent(self): """Test VarQITE for d = 1 and a time-dependent Hamiltonian with the Forward Euler solver.""" t_param = Parameter("t") time = 1 observable = SparsePauliOp(["I", "Z"], np.array([0, t_param])) x, y, z = [Parameter(s) for s in "xyz"] ansatz = QuantumCircuit(1) ansatz.rz(x, 0) ansatz.ry(y, 0) ansatz.rz(z, 0) parameters = list(ansatz.parameters) init_param_values = np.zeros(len(parameters)) x_val = 0 y_val = np.pi / 2 z_val = 0 init_param_values[0] = x_val init_param_values[1] = y_val init_param_values[2] = z_val evolution_problem = TimeEvolutionProblem(observable, time, t_param=t_param) thetas_expected = [1.83881002737137e-18, 2.43224994794434, -3.05311331771918e-18] thetas_expected_shots = [1.83881002737137e-18, 2.43224994794434, -3.05311331771918e-18] state_expected = Statevector([0.34849948 + 0.0j, 0.93730897 + 0.0j]).to_dict() # the expected final state is Statevector([0.34849948+0.j, 0.93730897+0.j]) with self.subTest(msg="Test exact backend."): algorithm_globals.random_seed = self.seed estimator = Estimator() var_principle = ImaginaryMcLachlanPrinciple() var_qite = VarQITE( ansatz, init_param_values, var_principle, estimator, num_timesteps=100 ) evolution_result = var_qite.evolve(evolution_problem) evolved_state = evolution_result.evolved_state parameter_values = evolution_result.parameter_values[-1] for key, evolved_value in Statevector(evolved_state).to_dict().items(): # np.allclose works with complex numbers self.assertTrue(np.allclose(evolved_value, state_expected[key], 1e-02)) for i, parameter_value in enumerate(parameter_values): np.testing.assert_almost_equal( float(parameter_value), thetas_expected[i], decimal=2 ) with self.subTest(msg="Test shot-based backend."): algorithm_globals.random_seed = self.seed estimator = Estimator(options={"shots": 4 * 4096, "seed": self.seed}) var_principle = ImaginaryMcLachlanPrinciple() var_qite = VarQITE( ansatz, init_param_values, var_principle, estimator, num_timesteps=100 ) evolution_result = var_qite.evolve(evolution_problem) evolved_state = evolution_result.evolved_state parameter_values = evolution_result.parameter_values[-1] for key, evolved_value in Statevector(evolved_state).to_dict().items(): # np.allclose works with complex numbers self.assertTrue(np.allclose(evolved_value, state_expected[key], 1e-02)) for i, parameter_value in enumerate(parameter_values): np.testing.assert_almost_equal( float(parameter_value), thetas_expected_shots[i], decimal=2 ) def _test_helper(self, observable, thetas_expected, time, var_qite, decimal): evolution_problem = TimeEvolutionProblem(observable, time) evolution_result = var_qite.evolve(evolution_problem) parameter_values = evolution_result.parameter_values[-1] for i, parameter_value in enumerate(parameter_values): np.testing.assert_almost_equal( float(parameter_value), thetas_expected[i], decimal=decimal ) if __name__ == "__main__": unittest.main()
https://github.com/CQCL/pytket-qiskit
CQCL
# Copyright 2019-2024 Quantinuum # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from collections import Counter from typing import List, Set, Union from math import pi import pytest from sympy import Symbol import numpy as np from qiskit import ( # type: ignore QuantumCircuit, QuantumRegister, ClassicalRegister, transpile, ) from qiskit.quantum_info import SparsePauliOp, Statevector, Operator # type: ignore from qiskit.transpiler import PassManager # type: ignore from qiskit.circuit.library import RYGate, MCMT, XXPlusYYGate, PauliEvolutionGate, UnitaryGate, RealAmplitudes # type: ignore import qiskit.circuit.library.standard_gates as qiskit_gates # type: ignore from qiskit.circuit import Parameter from qiskit.synthesis import SuzukiTrotter # type: ignore from qiskit_aer import Aer # type: ignore from qiskit.transpiler.passes import BasisTranslator # type: ignore from qiskit.circuit.equivalence_library import StandardEquivalenceLibrary # type: ignore from qiskit_ibm_runtime.fake_provider import FakeGuadalupe # type: ignore from qiskit.circuit.parameterexpression import ParameterExpression # type: ignore from qiskit.circuit.library import TwoLocal from qiskit import transpile from pytket.circuit import ( Circuit, CircBox, Unitary1qBox, Unitary2qBox, Unitary3qBox, OpType, Qubit, Bit, CustomGateDef, reg_eq, StatePreparationBox, ) from pytket.extensions.qiskit import tk_to_qiskit, qiskit_to_tk, IBMQBackend from pytket.extensions.qiskit.backends import qiskit_aer_backend from pytket.extensions.qiskit.qiskit_convert import _gate_str_2_optype from pytket.extensions.qiskit.tket_pass import TketPass, TketAutoPass from pytket.extensions.qiskit.result_convert import qiskit_result_to_backendresult from pytket.passes import ( RebaseTket, DecomposeBoxes, FullPeepholeOptimise, SequencePass, CliffordSimp, ) from pytket.utils.results import ( compare_statevectors, permute_rows_cols_in_unitary, compare_unitaries, ) skip_remote_tests: bool = os.getenv("PYTKET_RUN_REMOTE_TESTS") is None REASON = "PYTKET_RUN_REMOTE_TESTS not set (requires IBM configuration)" # helper function for testing def _get_qiskit_statevector(qc: QuantumCircuit) -> np.ndarray: """Given a QuantumCircuit, use aer_simulator_statevector to compute its statevector, return the vector with its endianness adjusted""" back = Aer.get_backend("aer_simulator_statevector") qc.save_state() job = back.run(qc) return np.array(job.result().data()["statevector"].reverse_qargs().data) def test_parameterised_circuit_global_phase() -> None: pass_1 = BasisTranslator( StandardEquivalenceLibrary, target_basis=FakeGuadalupe().configuration().basis_gates, ) pass_2 = CliffordSimp() qc = QuantumCircuit(2) qc.ryy(Parameter("MyParam"), 0, 1) pm = PassManager(pass_1) qc = pm.run(qc) tket_qc = qiskit_to_tk(qc) pass_2.apply(tket_qc) qc_2 = tk_to_qiskit(tket_qc) assert type(qc_2.global_phase) == ParameterExpression def test_classical_barrier_error() -> None: c = Circuit(1, 1) c.add_barrier([0], [0]) with pytest.raises(NotImplementedError): tk_to_qiskit(c) def test_convert_circuit_with_complex_params() -> None: with pytest.raises(ValueError): qiskit_op = SparsePauliOp(["Z"], coeffs=[1.0j]) evolved_op = PauliEvolutionGate( qiskit_op, time=1, synthesis=SuzukiTrotter(reps=1) ) evolution_circ = QuantumCircuit(1) evolution_circ.append(evolved_op, [0]) tk_circ = qiskit_to_tk(evolution_circ) DecomposeBoxes().apply(tk_circ) def get_test_circuit(measure: bool, reset: bool = True) -> QuantumCircuit: qr = QuantumRegister(4) cr = ClassicalRegister(4) qc = QuantumCircuit(qr, cr, name="test_circuit") qc.h(qr[0]) qc.cx(qr[1], qr[0]) qc.h(qr[0]) qc.cx(qr[0], qr[3]) qc.barrier(qr[3]) if reset: qc.reset(qr[3]) qc.rx(pi / 2, qr[3]) qc.ry(0, qr[1]) qc.z(qr[2]) qc.ccx(qr[0], qr[1], qr[2]) qc.ch(qr[0], qr[1]) qc.cp(pi / 4, qr[0], qr[1]) qc.cry(pi / 4, qr[0], qr[1]) qc.crz(pi / 4, qr[1], qr[2]) qc.cswap(qr[1], qr[2], qr[3]) qc.cp(pi / 5, qr[2], qr[3]) qc.cu(pi / 4, pi / 5, pi / 6, 0, qr[3], qr[0]) qc.cy(qr[0], qr[1]) qc.cz(qr[1], qr[2]) qc.ecr(qr[0], qr[1]) qc.id(qr[2]) qc.iswap(qr[3], qr[0]) qc.mcx([qr[0], qr[1], qr[2]], qr[3]) qc.mcx([qr[1], qr[2], qr[3]], qr[0]) qc.p(pi / 4, qr[1]) qc.r(pi / 5, pi / 6, qr[2]) qc.rxx(pi / 3, qr[2], qr[3]) qc.ryy(pi / 3, qr[3], qr[2]) qc.rz(pi / 4, qr[0]) qc.rzz(pi / 5, qr[1], qr[2]) qc.s(qr[3]) qc.sdg(qr[0]) qc.swap(qr[1], qr[2]) qc.t(qr[3]) qc.tdg(qr[0]) qc.u(pi / 3, pi / 4, pi / 5, qr[0]) qc.p(pi / 2, qr[1]) qc.u(pi / 2, pi / 2, pi / 3, qr[2]) qc.u(pi / 2, pi / 3, pi / 4, qr[3]) qc.x(qr[0]) qc.y(qr[1]) if measure: qc.measure(qr[0], cr[0]) qc.measure(qr[1], cr[1]) qc.measure(qr[2], cr[2]) qc.measure(qr[3], cr[3]) return qc def test_convert() -> None: qc = get_test_circuit(False) tkc = qiskit_to_tk(qc) assert qc.name == tkc.name qc1 = tk_to_qiskit(tkc) assert qc1.name == tkc.name backend = Aer.get_backend("aer_simulator_statevector") qc.save_state() qc = transpile(qc, backend) job = backend.run([qc]) state0 = job.result().get_statevector(qc) qc1.save_state() qc1 = transpile(qc1, backend) job1 = backend.run([qc1]) state1 = job1.result().get_statevector(qc1) assert np.allclose(state0, state1, atol=1e-10) def test_symbolic() -> None: pi2 = Symbol("pi2") pi3 = Symbol("pi3") pi0 = Symbol("pi0") tkc = Circuit(3, 3, name="test").Ry(pi2, 1).Rx(pi3, 1).CX(1, 0) tkc.add_phase(Symbol("pi0") * 2) RebaseTket().apply(tkc) qc = tk_to_qiskit(tkc) tkc2 = qiskit_to_tk(qc) assert tkc2.free_symbols() == {pi2, pi3, pi0} tkc2.symbol_substitution({pi2: pi / 2, pi3: pi / 3, pi0: 0.1}) backend = Aer.get_backend("aer_simulator_statevector") qc = tk_to_qiskit(tkc2) assert qc.name == tkc.name qc.save_state() job = backend.run([qc]) state1 = job.result().get_statevector(qc) state0 = np.array( [ 0.41273953 - 0.46964269j, 0.0 + 0.0j, -0.0 + 0.0j, -0.49533184 + 0.60309882j, 0.0 + 0.0j, 0.0 + 0.0j, -0.0 + 0.0j, -0.0 + 0.0j, ] ) assert np.allclose(state0, state1, atol=1e-10) def test_measures() -> None: qc = get_test_circuit(True) backend = qiskit_aer_backend("aer_simulator") qc = transpile(qc, backend) job = backend.run([qc], seed_simulator=7) counts0 = job.result().get_counts(qc) tkc = qiskit_to_tk(qc) qc = tk_to_qiskit(tkc) qc = transpile(qc, backend) job = backend.run([qc], seed_simulator=7) counts1 = job.result().get_counts(qc) for result, count in counts1.items(): result_str = result.replace(" ", "") if counts0[result_str] != count: assert False def test_boxes() -> None: c = Circuit(2) c.S(0) c.H(1) c.CX(0, 1) cbox = CircBox(c) d = Circuit(3, name="d") d.add_circbox(cbox, [0, 1]) d.add_circbox(cbox, [1, 2]) u = np.asarray([[0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0]]) ubox = Unitary2qBox(u) d.add_unitary2qbox(ubox, 0, 1) qsc = tk_to_qiskit(d) d1 = qiskit_to_tk(qsc) assert len(d1.get_commands()) == 3 DecomposeBoxes().apply(d) DecomposeBoxes().apply(d1) assert d == d1 def test_Unitary1qBox() -> None: c = Circuit(1) u = np.asarray([[0, 1], [1, 0]]) ubox = Unitary1qBox(u) c.add_unitary1qbox(ubox, 0) # Convert to qiskit qc = tk_to_qiskit(c) # Verify that unitary from simulator is correct back = Aer.get_backend("aer_simulator_unitary") qc.save_unitary() job = back.run(qc).result() a = job.get_unitary(qc) u1 = np.asarray(a) assert np.allclose(u1, u) def test_Unitary2qBox() -> None: c = Circuit(2) u = np.asarray([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) ubox = Unitary2qBox(u) c.add_unitary2qbox(ubox, 0, 1) # Convert to qiskit qc = tk_to_qiskit(c) # Verify that unitary from simulator is correct back = Aer.get_backend("aer_simulator_unitary") qc.save_unitary() job = back.run(qc).result() a = job.get_unitary(qc) u1 = permute_rows_cols_in_unitary(np.asarray(a), (1, 0)) # correct for endianness assert np.allclose(u1, u) def test_Unitary3qBox() -> None: c = Circuit(3) u = np.asarray( [ [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 1, 0, 0, 0, 0], ] ) ubox = Unitary3qBox(u) c.add_unitary3qbox(ubox, 0, 1, 2) # Convert to qiskit qc = tk_to_qiskit(c) # Verify that unitary from simulator is correct back = Aer.get_backend("aer_simulator_unitary") qc.save_unitary() job = back.run(qc).result() a = job.get_unitary(qc) u1 = permute_rows_cols_in_unitary( np.asarray(a), (2, 1, 0) ) # correct for endianness assert np.allclose(u1, u) def test_gates_phase() -> None: c = Circuit(4).SX(0).V(1).V(2).Vdg(3).Phase(0.5) qc = tk_to_qiskit(c) qr = QuantumRegister(4, "q") qc_correct = QuantumCircuit(qr) qc_correct.sx(qr[0]) qc_correct.sx(qr[1]) qc_correct.sx(qr[2]) qc_correct.sxdg(qr[3]) qc_correct.global_phase = pi / 4 assert qc == qc_correct def test_tketpass() -> None: qc = get_test_circuit(False, False) tkpass = FullPeepholeOptimise() back = Aer.get_backend("aer_simulator_unitary") for _ in range(12): tkc = qiskit_to_tk(qc) tkpass.apply(tkc) qc1 = tk_to_qiskit(tkc) qc1.save_unitary() res = back.run(qc1).result() u1 = res.get_unitary(qc1) qispass = TketPass(tkpass) pm = PassManager(qispass) qc2 = pm.run(qc) qc2.save_unitary() res = back.run(qc2).result() u2 = res.get_unitary(qc2) assert np.allclose(u1, u2) @pytest.mark.timeout(None) @pytest.mark.skipif(skip_remote_tests, reason=REASON) def test_tketautopass(brisbane_backend: IBMQBackend) -> None: backends = [ Aer.get_backend("aer_simulator_statevector"), qiskit_aer_backend("aer_simulator"), Aer.get_backend("aer_simulator_unitary"), ] backends.append(brisbane_backend._backend) for back in backends: for o_level in range(3): tkpass = TketAutoPass( back, o_level, token=os.getenv("PYTKET_REMOTE_QISKIT_TOKEN") ) qc = get_test_circuit(True) pm = PassManager(passes=tkpass) pm.run(qc) def test_instruction() -> None: # TKET-446 op = SparsePauliOp(["XXI", "YYI", "ZZZ"], [0.3, 0.5, -0.4]) evo_instr = PauliEvolutionGate(op, time=1.2, synthesis=SuzukiTrotter(reps=1)) evolution_circ = QuantumCircuit(3) evolution_circ.append(evo_instr, [0, 1, 2]) tk_circ = qiskit_to_tk(evolution_circ) cmds = tk_circ.get_commands() assert len(cmds) == 1 assert cmds[0].op.type == OpType.CircBox def test_conditions() -> None: box_c = Circuit(2, 2) box_c.Z(0) box_c.Y(1, condition_bits=[0, 1], condition_value=1) box_c.Measure(0, 0, condition_bits=[0, 1], condition_value=0) box = CircBox(box_c) u = np.asarray([[0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0]]) ubox = Unitary2qBox(u) c = Circuit(2, 2, name="c") b = c.add_c_register("b", 1) c.add_circbox( box, [Qubit(0), Qubit(1), Bit(0), Bit(1)], condition_bits=[b[0]], condition_value=1, ) c.add_unitary2qbox( ubox, Qubit(0), Qubit(1), condition_bits=[b[0]], condition_value=0 ) c2 = c.copy() qc = tk_to_qiskit(c) c1 = qiskit_to_tk(qc) assert len(c1.get_commands()) == 2 DecomposeBoxes().apply(c) DecomposeBoxes().apply(c1) assert c == c1 c2.Z(1, condition=reg_eq(b, 1)) qc = tk_to_qiskit(c2) c1 = qiskit_to_tk(qc) assert len(c1.get_commands()) == 3 # conversion loses rangepredicates so equality comparison not valid def test_condition_errors() -> None: with pytest.raises(Exception) as errorinfo: c = Circuit(2, 2) b = c.add_c_register("b", 2) c.X(Qubit(0), condition_bits=[b[0], Bit(0)], condition_value=1) tk_to_qiskit(c) assert "Conditions can only use a single register" in str(errorinfo.value) with pytest.raises(Exception) as errorinfo: c = Circuit(2, 2) c.X(0, condition_bits=[1, 0], condition_value=1) tk_to_qiskit(c) assert "Conditions must be an entire register in order" in str(errorinfo.value) def test_correction() -> None: checked_x = Circuit(2, 1) checked_x.CX(0, 1) checked_x.X(0) checked_x.CX(0, 1) checked_x.Measure(1, 0) x_box = CircBox(checked_x) c = Circuit() target = Qubit("t", 0) ancilla = Qubit("a", 0) success = Bit("s", 0) c.add_qubit(target) c.add_qubit(ancilla) c.add_bit(success) c.add_circbox(x_box, args=[target, ancilla, success]) c.add_circbox( x_box, args=[target, ancilla, success], condition_bits=[success], condition_value=0, ) comp_pass = SequencePass([DecomposeBoxes(), RebaseTket()]) comp_pass.apply(c) tk_to_qiskit(c) def test_cnx() -> None: qr = QuantumRegister(5) qc = QuantumCircuit(qr, name="cnx_circuit") qc.mcx([0, 1, 2, 3], 4) c = qiskit_to_tk(qc) cmds = c.get_commands() assert len(cmds) == 1 cmd = cmds[0] assert cmd.op.type == OpType.CnX assert len(cmd.qubits) == 5 qregname = qc.qregs[0].name assert cmd.qubits[4] == Qubit(qregname, 4) def test_gate_str_2_optype() -> None: samples = { "barrier": OpType.Barrier, "cx": OpType.CX, "mcx": OpType.CnX, "x": OpType.X, } print([(_gate_str_2_optype[key], val) for key, val in samples.items()]) assert all(_gate_str_2_optype[key] == val for key, val in samples.items()) def test_customgate() -> None: a = Symbol("a") def_circ = Circuit(2) def_circ.CZ(0, 1) def_circ.Rx(a, 1) gate_def = CustomGateDef.define("MyCRx", def_circ, [a]) circ = Circuit(3) circ.Rx(0.1, 0) circ.Rx(0.4, 2) circ.add_custom_gate(gate_def, [0.2], [0, 1]) qc1 = tk_to_qiskit(circ) newcirc = qiskit_to_tk(qc1) print(repr(newcirc)) qc2 = tk_to_qiskit(newcirc) correct_circ = Circuit(3).Rx(0.1, 0).Rx(0.4, 2).CZ(0, 1).Rx(0.2, 1) correct_qc = tk_to_qiskit(correct_circ) backend = Aer.get_backend("aer_simulator_statevector") states = [] for qc in (qc1, qc2, correct_qc): qc.save_state() qc = transpile(qc, backend) job = backend.run([qc]) states.append(job.result().get_statevector(qc)) assert compare_statevectors(states[0], states[1]) assert compare_statevectors(states[1], states[2]) def test_convert_result() -> None: # testing fix to register order bug TKET-752 qr1 = QuantumRegister(1, name="q1") qr2 = QuantumRegister(2, name="q2") cr = ClassicalRegister(5, name="z") cr2 = ClassicalRegister(2, name="b") qc = QuantumCircuit(qr1, qr2, cr, cr2) qc.x(qr1[0]) qc.x(qr2[1]) # check statevector simulator = Aer.get_backend("aer_simulator_statevector") qc1 = qc.copy() qc1.save_state() qisk_result = simulator.run(qc1, shots=10).result() tk_res = next(qiskit_result_to_backendresult(qisk_result)) state = tk_res.get_state([Qubit("q2", 1), Qubit("q1", 0), Qubit("q2", 0)]) correct_state = np.zeros(1 << 3, dtype=complex) correct_state[6] = 1 + 0j assert compare_statevectors(state, correct_state) # check measured qc.measure(qr1[0], cr[0]) qc.measure(qr2[1], cr2[0]) simulator = qiskit_aer_backend("aer_simulator") qisk_result = simulator.run(qc, shots=10).result() tk_res = next(qiskit_result_to_backendresult(qisk_result)) one_bits = [Bit("z", 0), Bit("b", 0)] zero_bits = [Bit("z", i) for i in range(1, 5)] + [Bit("b", 1)] assert tk_res.get_counts(one_bits) == Counter({(1, 1): 10}) assert tk_res.get_counts(zero_bits) == Counter({(0, 0, 0, 0, 0): 10}) def add_x( qbit: int, qr: QuantumRegister, circuits: List[Union[Circuit, QuantumCircuit]] ) -> None: """Add an x gate to each circuit in a list, each one being either a tket or qiskit circuit.""" for circ in circuits: if isinstance(circ, Circuit): circ.add_gate(OpType.X, [qbit]) else: circ.x(qr[qbit]) def add_cnry( param: float, qbits: List[int], qr: QuantumRegister, circuits: List[Union[Circuit, QuantumCircuit]], ) -> None: """Add a CnRy gate to each circuit in a list, each one being either a tket or qiskit circuit.""" assert len(qbits) >= 2 for circ in circuits: if isinstance(circ, Circuit): circ.add_gate(OpType.CnRy, param, qbits) else: # param was "raw", so needs an extra PI. new_ry_gate = RYGate(param * pi) new_gate = MCMT( gate=new_ry_gate, num_ctrl_qubits=len(qbits) - 1, num_target_qubits=1 ) circ.append(new_gate, [qr[nn] for nn in qbits]) def assert_tket_circuits_identical(circuits: List[Circuit]) -> None: """Apart from the circuit names and qubit labels, assert that all circuits in the list are identical (i.e., identical gates), not just equivalent (having the same unitary matrix).""" if len(circuits) <= 1: return circ_copies = [] for nn in range(len(circuits)): assert type(circuits[nn]) == Circuit circ = circuits[nn].copy() circ.name = "tk_circ_must_be_same_name" qbs = circ.qubits qubit_map = {qbs[mm]: Qubit("node", mm) for mm in range(len(qbs))} circ.rename_units(qubit_map) # type: ignore circ_copies.append(circ) for nn in range(1, len(circ_copies)): assert circ_copies[0] == circ_copies[nn] def assert_equivalence( circuits: List[Union[Circuit, QuantumCircuit]], require_qk_conversions_equality: bool = True, require_tk_equality: bool = True, ) -> None: """Given a list of circuits (either tket or qiskit), simulate them to calculate unitary matrices, and fail if they are not all almost equal. Also, (unless require_tk_equality is false), assert that all tket circuits are equal. If require_qk_conversions_equality is true, treat qk->tk conversions as if they were originally tk circuits and test for equality (rather than just equivalence), if require_tk_equality is true. """ assert len(circuits) >= 2 tk_circuits = [] # We want unique circuit names, otherwise it confuses the Qiskit backend. names: Set[str] = set() for nn in range(len(circuits)): if isinstance(circuits[nn], Circuit): if require_tk_equality: tk_circuits.append(circuits[nn]) # Of course, use the tket simulator directly once available. # But not yet, so need to convert to qiskit circuits. circuits[nn] = tk_to_qiskit(circuits[nn]) elif require_qk_conversions_equality and require_tk_equality: tk_circuits.append(qiskit_to_tk(circuits[nn])) names.add(circuits[nn].name) # type: ignore assert len(names) == len(circuits) assert_tket_circuits_identical(tk_circuits) backend = Aer.get_backend("aer_simulator_unitary") unitaries = [] for circ in circuits: assert isinstance(circ, QuantumCircuit) circ1 = circ.copy() circ1.save_unitary() circ1 = transpile(circ1, backend) job = backend.run(circ1) unitaries.append(job.result().get_unitary(circ1)) for nn in range(1, len(circuits)): # Default np.allclose is very lax here, so use strict tolerances assert np.allclose(unitaries[0], unitaries[nn], atol=1e-14, rtol=0.0) def qcirc_to_tcirc(qcirc: QuantumCircuit) -> Circuit: """Changes the name also, to avoid backend result clashes.""" tcirc = qiskit_to_tk(qcirc) tcirc.name = "new tket circ from " + qcirc.name return tcirc def test_cnry_conversion() -> None: """This is for TKET-991. Maintain parallel circuits, check equivalence at each stage. It would be good to subsume this as part of general randomised tests, where we add random gates in sequence.""" tcirc = Circuit(3, name="parallel tcirc") qr = QuantumRegister(3, "q") qcirc = QuantumCircuit(qr, name="parallel qcirc") add_x(0, qr, [tcirc, qcirc]) add_x(1, qr, [tcirc, qcirc]) # It seems like we can test tket circuits for equality, # but not equivalence (since a direct tket simulator, with a # circuit->unitary function, is not yet available in pytket. # When it is available, we should add it here). # # Amusingly enough, it seems like we can test Qiskit circuits # for equivalence, but not for equality! # # Note that loops tk->qk->tk and qk->tk->qk should preserve # equivalence, but need not preserve equality because of different # gate sets. assert_equivalence([tcirc, qcirc]) add_x(2, qr, [tcirc, qcirc]) assert_equivalence([tcirc, qcirc]) new_tcirc = qcirc_to_tcirc(qcirc) assert_equivalence([tcirc, qcirc, new_tcirc]) add_x(0, qr, [tcirc, qcirc, new_tcirc]) assert_equivalence([tcirc, qcirc, new_tcirc]) add_cnry(0.1, [0, 1], qr, [tcirc, qcirc, new_tcirc]) add_x(2, qr, [tcirc, qcirc, new_tcirc]) # Because adding the CnRy gate to Qiskit circuits involves # circ.append(new_gate, ...), # converting back to tket produces a CircBox rather than a CnRy gate. # So we cannot get tket equality, even though we have equivalence assert_equivalence([tcirc, qcirc, new_tcirc], require_qk_conversions_equality=False) add_x(0, qr, [qcirc, tcirc, new_tcirc]) assert_equivalence([tcirc, qcirc, new_tcirc], require_qk_conversions_equality=False) add_cnry(0.2, [1, 0, 2], qr, [tcirc, qcirc, new_tcirc]) assert_equivalence([tcirc, qcirc, new_tcirc], require_qk_conversions_equality=False) add_x(2, qr, [tcirc, qcirc, new_tcirc]) add_x(1, qr, [tcirc, qcirc, new_tcirc]) add_x(0, qr, [tcirc, qcirc, new_tcirc]) assert_equivalence([tcirc, qcirc, new_tcirc], require_qk_conversions_equality=False) new_tcirc = qcirc_to_tcirc(qcirc) assert_equivalence( [tcirc, qcirc, new_tcirc], require_qk_conversions_equality=False, # We've done qk->tk conversion to get new_tcirc, so # we do not expect equality between new_tcirc and tcirc. require_tk_equality=False, ) # pytket-extensions issue #72 def test_parameter_equality() -> None: param_a = Parameter("a") param_b = Parameter("b") circ = QuantumCircuit(2) circ.rx(param_a, 0) circ.ry(param_b, 1) circ.cx(0, 1) # fails with preserve_param_uuid=False # as Parameter uuid attribute is not preserved # and so fails equality check at assign_parameters pytket_circ = qiskit_to_tk(circ, preserve_param_uuid=True) final_circ = tk_to_qiskit(pytket_circ) assert final_circ.parameters == circ.parameters param_dict = dict(zip([param_a, param_b], [1, 2])) final_circ.assign_parameters(param_dict, inplace=True) assert len(final_circ.parameters) == 0 # https://github.com/CQCL/pytket-extensions/issues/275 def test_convert_multi_c_reg() -> None: c = Circuit() q0, q1 = c.add_q_register("q", 2) c.add_c_register("c", 2) [m0] = c.add_c_register("m", 1) c.add_gate(OpType.X, [], [q1], condition_bits=[m0], condition_value=1) c.CX(q0, q1) c.add_gate(OpType.TK1, [0.5, 0.5, 0.5], [q0]) qcirc = tk_to_qiskit(c) circ = qiskit_to_tk(qcirc) assert circ.get_commands()[0].args == [m0, q1] # test that tk_to_qiskit works after adding OpType.CRx and OpType.CRy def test_crx_and_cry() -> None: tk_circ = Circuit(2) tk_circ.CRx(0.5, 0, 1) tk_circ.CRy(0.2, 1, 0) qiskit_circ = tk_to_qiskit(tk_circ) ops_dict = qiskit_circ.count_ops() assert ops_dict["crx"] == 1 and ops_dict["cry"] == 1 # test that tk_to_qiskit works for gates which don't have # an exact substitution in qiskit e.g. ZZMax # See issue "Add support for ZZMax gate in converters" #486 def test_rebased_conversion() -> None: tket_circzz = Circuit(3) tket_circzz.V(0).H(1).Vdg(2) tket_circzz.CV(0, 2) tket_circzz.add_gate(OpType.ZZMax, [0, 1]) tket_circzz.add_gate(OpType.TK1, [0.1, 0.2, 0.3], [2]) tket_circzz.add_gate(OpType.PhasedISWAP, [0.25, -0.5], [0, 2]) qiskit_circzz = tk_to_qiskit(tket_circzz) tket_circzz2 = qiskit_to_tk(qiskit_circzz) u1 = tket_circzz.get_unitary() u2 = tket_circzz2.get_unitary() assert compare_unitaries(u1, u2) @pytest.mark.xfail(reason="PauliEvolutionGate with symbolic parameter not supported") def test_parametrized_evolution() -> None: operator = SparsePauliOp(["XXZ", "YXY"], coeffs=[1.0, 0.5]) * Parameter("x") evolved_circ_op = PauliEvolutionGate( operator, time=1, synthesis=SuzukiTrotter(reps=2, order=4) ) qc = QuantumCircuit(3) qc.append(evolved_circ_op, [0, 1, 2]) tk_qc: Circuit = qiskit_to_tk(qc) assert len(tk_qc.free_symbols()) == 1 def test_multicontrolled_gate_conversion() -> None: my_qc = QuantumCircuit(4) my_qc.append(qiskit_gates.YGate().control(3), [0, 1, 2, 3]) my_qc.append(qiskit_gates.RYGate(0.25).control(3), [0, 1, 2, 3]) my_qc.append(qiskit_gates.ZGate().control(3), [0, 1, 2, 3]) my_tkc = qiskit_to_tk(my_qc) my_tkc.add_gate(OpType.CnRy, [0.95], [0, 1, 2, 3]) my_tkc.add_gate(OpType.CnZ, [1, 2, 3, 0]) my_tkc.add_gate(OpType.CnY, [0, 1, 3, 2]) unitary_before = my_tkc.get_unitary() assert my_tkc.n_gates_of_type(OpType.CnY) == 2 assert my_tkc.n_gates_of_type(OpType.CnZ) == 2 assert my_tkc.n_gates_of_type(OpType.CnRy) == 2 my_new_qc = tk_to_qiskit(my_tkc) qiskit_ops = my_new_qc.count_ops() assert qiskit_ops["c3y"] and qiskit_ops["c3z"] and qiskit_ops["c3ry"] == 2 tcirc = qiskit_to_tk(my_new_qc) unitary_after = tcirc.get_unitary() assert compare_unitaries(unitary_before, unitary_after) def test_qcontrolbox_conversion() -> None: qr = QuantumRegister(3) qc = QuantumCircuit(qr) c2h_gate = qiskit_gates.HGate().control(2) qc.append(c2h_gate, qr) c = qiskit_to_tk(qc) assert c.n_gates == 1 assert c.n_gates_of_type(OpType.QControlBox) == 1 c3rx_gate = qiskit_gates.RXGate(0.7).control(3) c3rz_gate = qiskit_gates.RZGate(pi / 4).control(3) c2rzz_gate = qiskit_gates.RZZGate(pi / 3).control(2) qc2 = QuantumCircuit(4) qc2.append(c3rz_gate, [0, 1, 3, 2]) qc2.append(c3rx_gate, [0, 1, 2, 3]) qc2.append(c2rzz_gate, [0, 1, 2, 3]) tkc2 = qiskit_to_tk(qc2) assert tkc2.n_gates == 3 assert tkc2.n_gates_of_type(OpType.QControlBox) == 3 # Ensures that the tk_to_qiskit converter does not cancel redundant gates def test_tk_to_qiskit_redundancies() -> None: h_circ = Circuit(1).H(0).H(0) qc_h = tk_to_qiskit(h_circ) assert qc_h.count_ops()["h"] == 2 def test_ccx_conversion() -> None: # https://github.com/CQCL/pytket-qiskit/issues/117 c00 = QuantumCircuit(3) c00.ccx(0, 1, 2, 0) # 0 = "00" (little-endian) assert compare_unitaries( qiskit_to_tk(c00).get_unitary(), Circuit(3).X(0).X(1).CCX(0, 1, 2).X(0).X(1).get_unitary(), ) c10 = QuantumCircuit(3) c10.ccx(0, 1, 2, 1) # 1 = "10" (little-endian) assert compare_unitaries( qiskit_to_tk(c10).get_unitary(), Circuit(3).X(1).CCX(0, 1, 2).X(1).get_unitary(), ) c01 = QuantumCircuit(3) c01.ccx(0, 1, 2, 2) # 2 = "01" (little-endian) assert compare_unitaries( qiskit_to_tk(c01).get_unitary(), Circuit(3).X(0).CCX(0, 1, 2).X(0).get_unitary(), ) c11 = QuantumCircuit(3) c11.ccx(0, 1, 2, 3) # 3 = "11" (little-endian) assert compare_unitaries( qiskit_to_tk(c11).get_unitary(), Circuit(3).CCX(0, 1, 2).get_unitary(), ) def test_conditional_conversion() -> None: c = Circuit(1, 2, "conditional_circ") c.X(0, condition_bits=[0], condition_value=1) c_qiskit = tk_to_qiskit(c) c_tket = qiskit_to_tk(c_qiskit) assert c_tket.to_dict() == c.to_dict() def test_conditional_conversion_2() -> None: c = Circuit(1, 2, "conditional_circ_2") c.X(0, condition_bits=[1], condition_value=1) c_qiskit = tk_to_qiskit(c) c_tket = qiskit_to_tk(c_qiskit) assert c_tket.to_dict() == c.to_dict() # https://github.com/CQCL/pytket-qiskit/issues/100 def test_state_prep_conversion_array_or_list() -> None: # State prep with list of real amplitudes ghz_state_permuted = np.array([0, 0, 1 / np.sqrt(2), 0, 0, 0, 0, 1 / np.sqrt(2)]) qc_sp = QuantumCircuit(3) qc_sp.prepare_state(ghz_state_permuted) tk_sp = qiskit_to_tk(qc_sp) assert tk_sp.n_gates_of_type(OpType.StatePreparationBox) == 1 assert tk_sp.n_gates == 1 assert compare_statevectors(tk_sp.get_statevector(), ghz_state_permuted) # State prep with ndarray of complex amplitudes qc_sp2 = QuantumCircuit(2) complex_statvector = np.array([1 / np.sqrt(2), 0, -1.0j / np.sqrt(2), 0]) qc_sp2.initialize(complex_statvector, qc_sp2.qubits) tk_sp2 = qiskit_to_tk(qc_sp2) assert tk_sp2.n_gates_of_type(OpType.StatePreparationBox) == 1 assert tk_sp2.n_gates == 1 # test tket -> qiskit conversion converted_qiskit_qc = tk_to_qiskit(tk_sp2) assert converted_qiskit_qc.count_ops()["initialize"] == 1 tk_sp3 = qiskit_to_tk(converted_qiskit_qc) # check circuit decomposes as expected DecomposeBoxes().apply(tk_sp3) assert tk_sp3.n_gates_of_type(OpType.Reset) == 2 state_arr = 1 / np.sqrt(2) * np.array([1, 1, 0, 0]) sv = Statevector(state_arr) qc_2 = QuantumCircuit(2) qc_2.prepare_state(sv, [0, 1]) tkc_2 = qiskit_to_tk(qc_2) assert tkc_2.n_gates_of_type(OpType.StatePreparationBox) == 1 def test_state_prep_conversion_with_int() -> None: qc = QuantumCircuit(4) qc.prepare_state(7, qc.qubits) tkc7 = qiskit_to_tk(qc) assert tkc7.n_gates_of_type(OpType.X) == 3 qc_sv = _get_qiskit_statevector(qc.decompose()) assert compare_statevectors(tkc7.get_statevector(), qc_sv) int_statevector = Statevector.from_int(5, 8) qc_s = QuantumCircuit(3) qc_s.prepare_state(int_statevector) # unfortunately Aer doesn't support state_preparation # instructions so we decompose first d_qc_s = qc_s.decompose(reps=5) sv_int = _get_qiskit_statevector(d_qc_s) tkc_int = qiskit_to_tk(qc_s) tkc_int_sv = tkc_int.get_statevector() assert compare_statevectors(tkc_int_sv, sv_int) def test_state_prep_conversion_with_str() -> None: qc = QuantumCircuit(5) qc.initialize("rl+-1") tk_circ = qiskit_to_tk(qc) assert tk_circ.n_gates_of_type(OpType.Reset) == 5 assert tk_circ.n_gates_of_type(OpType.H) == 4 assert tk_circ.n_gates_of_type(OpType.X) == 2 qc_string_sp = QuantumCircuit(3) qc_string_sp.prepare_state("r-l") decomposed_qc = qc_string_sp.decompose(reps=4) qiskit_sv = _get_qiskit_statevector(decomposed_qc) tk_string_sp = qiskit_to_tk(qc_string_sp) assert tk_string_sp.n_gates_of_type(OpType.H) == 3 assert tk_string_sp.n_gates_of_type(OpType.Sdg) == 1 assert compare_statevectors(qiskit_sv, tk_string_sp.get_statevector()) sv_str = Statevector.from_label("rr+-") sv_qc = QuantumCircuit(4) sv_qc.prepare_state(sv_str) decomposed_sv_qc = sv_qc.decompose(reps=6) sv_array = _get_qiskit_statevector(decomposed_sv_qc) tkc_sv = qiskit_to_tk(sv_qc) assert compare_statevectors(sv_array, tkc_sv.get_statevector()) def test_conversion_to_tket_with_and_without_resets() -> None: test_state = 1 / np.sqrt(3) * np.array([1, 1, 0, 0, 0, 0, 1, 0]) tket_sp_reset = StatePreparationBox(test_state, with_initial_reset=True) tk_circ_reset = Circuit(3).add_gate(tket_sp_reset, [0, 1, 2]) qiskit_qc_init = tk_to_qiskit(tk_circ_reset) assert qiskit_qc_init.count_ops()["initialize"] == 1 tket_sp_no_reset = StatePreparationBox(test_state, with_initial_reset=False) tket_circ_no_reset = Circuit(3).add_gate(tket_sp_no_reset, [0, 1, 2]) tkc_sv = tket_circ_no_reset.get_statevector() qiskit_qc_sp = tk_to_qiskit(tket_circ_no_reset) assert qiskit_qc_sp.count_ops()["state_preparation"] == 1 decomp_qc = qiskit_qc_sp.decompose(reps=5) qiskit_state = _get_qiskit_statevector(decomp_qc) assert compare_statevectors(tkc_sv, qiskit_state) def test_unitary_gate() -> None: # https://github.com/CQCL/pytket-qiskit/issues/122 qkc = QuantumCircuit(3) for n in range(4): u = np.eye(1 << n, dtype=complex) gate = UnitaryGate(u) qkc.append(gate, list(range(n))) tkc = qiskit_to_tk(qkc) cmds = tkc.get_commands() assert len(cmds) == 3 assert cmds[0].op.type == OpType.Unitary1qBox assert cmds[1].op.type == OpType.Unitary2qBox assert cmds[2].op.type == OpType.Unitary3qBox def test_ccz_conversion() -> None: qc_ccz = QuantumCircuit(4) qc_ccz.append(qiskit_gates.CCZGate(), [0, 1, 2]) qc_ccz.append(qiskit_gates.CCZGate(), [3, 1, 0]) tkc_ccz = qiskit_to_tk(qc_ccz) assert tkc_ccz.n_gates_of_type(OpType.CnZ) == tkc_ccz.n_gates == 2 # bidirectional CnZ conversion already supported qc_ccz2 = tk_to_qiskit(tkc_ccz) assert qc_ccz2.count_ops()["ccz"] == 2 tkc_ccz2 = qiskit_to_tk(qc_ccz2) assert compare_unitaries(tkc_ccz.get_unitary(), tkc_ccz2.get_unitary()) def test_csx_conversion() -> None: qc_csx = QuantumCircuit(2) qc_csx.append(qiskit_gates.CSXGate(), [0, 1]) qc_csx.append(qiskit_gates.CSXGate(), [1, 0]) converted_tkc = qiskit_to_tk(qc_csx) assert converted_tkc.n_gates == 2 assert converted_tkc.n_gates_of_type(OpType.CSX) == 2 u1 = converted_tkc.get_unitary() new_tkc_csx = Circuit(2) new_tkc_csx.add_gate(OpType.CSX, [0, 1]).add_gate(OpType.CSX, [1, 0]) u2 = new_tkc_csx.get_unitary() assert compare_unitaries(u1, u2) converted_qc = tk_to_qiskit(new_tkc_csx) assert converted_qc.count_ops()["csx"] == 2 qc_c3sx = QuantumCircuit(4) qc_c3sx.append(qiskit_gates.C3SXGate(), [0, 1, 2, 3]) tkc_c3sx = qiskit_to_tk(qc_c3sx) assert tkc_c3sx.n_gates == tkc_c3sx.n_gates_of_type(OpType.QControlBox) == 1 def test_CS_and_CSdg() -> None: qiskit_qc = QuantumCircuit(2) qiskit_qc.append(qiskit_gates.CSGate(), [0, 1]) qiskit_qc.append(qiskit_gates.CSdgGate(), [0, 1]) qiskit_qc.append(qiskit_gates.CSGate(), [1, 0]) qiskit_qc.append(qiskit_gates.CSdgGate(), [1, 0]) tkc = qiskit_to_tk(qiskit_qc) assert tkc.n_gates_of_type(OpType.QControlBox) == 4 def test_failed_conversion_error() -> None: qc = QuantumCircuit(2) qc.append(XXPlusYYGate(0.1), [0, 1]) # add unsupported gate with pytest.raises( NotImplementedError, match=r"Conversion of qiskit's xx_plus_yy instruction" ): qiskit_to_tk(qc) # https://github.com/CQCL/pytket-qiskit/issues/200 def test_RealAmplitudes_numeric_params() -> None: qc = QuantumCircuit(3) params = [np.pi / 2] * 9 real_amps1 = RealAmplitudes(3, reps=2) real_amps2 = real_amps1.assign_parameters(params) qc.compose(real_amps2, qubits=[0, 1, 2], inplace=True) # Unitary operator of the qiskit circuit. Order reversed from little -> big endian. # The reversal means we can check it for equivalence with a tket unitary qiskit_unitary = Operator(qc.reverse_bits()).data converted_tkc = qiskit_to_tk(qc) assert converted_tkc.n_gates == 1 assert converted_tkc.n_gates_of_type(OpType.CircBox) == 1 circbox_op = converted_tkc.get_commands()[0].op assert isinstance(circbox_op, CircBox) assert circbox_op.get_circuit().name == "RealAmplitudes" DecomposeBoxes().apply(converted_tkc) assert converted_tkc.n_gates_of_type(OpType.CX) == 4 assert converted_tkc.n_gates_of_type(OpType.Ry) == 9 unitary1 = converted_tkc.get_unitary() qc2 = tk_to_qiskit(converted_tkc) tkc2 = qiskit_to_tk(qc2) unitary2 = tkc2.get_unitary() assert compare_unitaries(qiskit_unitary, unitary1) assert compare_unitaries(unitary1, unitary2) # https://github.com/CQCL/pytket-qiskit/issues/256 def test_symbolic_param_conv() -> None: qc = TwoLocal(1, "ry", "cz", reps=1, entanglement="linear") qc_transpiled = transpile( qc, basis_gates=["sx", "rz", "cx", "x"], optimization_level=3 ) tket_qc = qiskit_to_tk(qc_transpiled) CliffordSimp().apply(tket_qc) transformed_qc = tk_to_qiskit(tket_qc) qc_transpiled_again = transpile(transformed_qc, basis_gates=["sx", "rz", "cx", "x"]) qc_transpiled_again = qc_transpiled_again.assign_parameters( { qc_transpiled_again.parameters[i]: 0 for i in range(len(qc_transpiled_again.parameters)) } ) # https://github.com/CQCL/pytket-qiskit/issues/337 def test_nonregister_bits() -> None: c = Circuit(1).X(0).measure_all() c.rename_units({Bit(0): Bit(1)}) with pytest.raises(NotImplementedError): tk_to_qiskit(c)
https://github.com/unitaryfund/mitiq
unitaryfund
import numpy as np from pyquil import get_qc, Program from pyquil.gates import RX, RY, S, T, Z, CNOT, MEASURE from pyquil.paulis import PauliTerm, PauliSum, sZ from pyquil.noise import pauli_kraus_map, append_kraus_to_gate from typing import List, Union from collections import Counter from matplotlib import pyplot as plt from scipy import optimize import mitiq from mitiq import zne from mitiq.zne.scaling.folding import fold_gates_at_random backend = get_qc("2q-qvm") program = Program() theta = program.declare("theta", memory_type="REAL") program += RX(theta, 0) program += T(0) program += CNOT(1, 0) program += S(0) program += Z(0) def add_noise_to_circuit(quil_prog): """Define pyQuil gates with a custom noise model via Kraus operators: 1. Generate Kraus operators at given survival probability 2. Append Kraus operators to the gate matrices 3. Add custom gates to circuit Args: quil_prog: the pyQuil quantum program to which the noise model will be added Returns: A quantum program with depolarizing noise on the static gates. """ prob = 0.8 num_qubits = 1 d = 4 ** num_qubits d_sq = d ** 2 kraus_list = [(1 - prob) / d] * d kraus_list[0] += prob kraus_ops = pauli_kraus_map(kraus_list) k_list = [(1 - prob) / d_sq] * d_sq k_list[0] += prob k_ops = pauli_kraus_map(k_list) T_gate = np.array([[1, 0], [0, np.exp(1j * np.pi / 4)]]) CNOT_gate = np.block( [[np.eye(2), np.zeros((2, 2))], [np.zeros((2, 2)), np.flip(np.eye(2), 1)]] ) S_gate = np.array([[1, 0], [0, 1j]]) Z_gate = np.array([[1, 0], [0, -1]]) quil_prog.define_noisy_gate("T", [0], append_kraus_to_gate(kraus_ops, T_gate)) quil_prog.define_noisy_gate("CNOT", [1, 0], append_kraus_to_gate(k_ops, CNOT_gate)) quil_prog.define_noisy_gate("S", [0], append_kraus_to_gate(kraus_ops, S_gate)) quil_prog.define_noisy_gate("Z", [0], append_kraus_to_gate(kraus_ops, Z_gate)) return quil_prog hamiltonian = sZ(0) pauli_sum = PauliSum([hamiltonian]) for j, term in enumerate(pauli_sum.terms): meas_basis_change = Program() marked_qubits = [] for index, gate in term: marked_qubits.append(index) if gate == "X": meas_basis_change.inst(RY(-np.pi / 2, index)) elif gate == "Y": meas_basis_change.inst(RX(np.pi / 2, index)) program += meas_basis_change readout_qubit = program.declare("ro", "BIT", max(marked_qubits) + 1) samples = 3000 program.wrap_in_numshots_loop(samples) def executor( theta, backend, readout_qubit, samples: int, pauli_sum: Union[PauliSum, PauliTerm, np.ndarray], pyquil_prog: Program, ) -> float: """ Compute the expectation value of pauli_sum over the distribution generated from pyquil_prog. """ noisy = pyquil_prog.copy() noisy += [ MEASURE(qubit, r) for qubit, r in zip(list(range(max(marked_qubits) + 1)), readout_qubit) ] noisy = add_noise_to_circuit(noisy) expectation = 0.0 pauli_sum = PauliSum([pauli_sum]) for j, term in enumerate(pauli_sum.terms): qubits_to_measure = [] for index, gate in term: qubits_to_measure.append(index) meas_outcome = expectation_from_sampling( theta, noisy, qubits_to_measure, backend, samples ) expectation += term.coefficient * meas_outcome return expectation.real def expectation_from_sampling( theta, executable: Program, marked_qubits: List[int], backend, samples: int ) -> float: """Calculate the expectation value of the Zi operator where i ranges over all qubits given in marked_qubits. """ bitstring_samples = backend.run( executable.write_memory(region_name="theta", value=theta) ).readout_data.get("ro") bitstring_tuples = list(map(tuple, bitstring_samples)) freq = Counter(bitstring_tuples) exp_val = 0 for bitstring, count in freq.items(): bitstring_int = int("".join([str(x) for x in bitstring[::-1]]), 2) if parity_even_p(bitstring_int, marked_qubits): exp_val += float(count) / samples else: exp_val -= float(count) / samples return exp_val def parity_even_p(state, marked_qubits): mask = 0 for q in marked_qubits: mask |= 1 << q return bin(mask & state).count("1") % 2 == 0 thetas = np.linspace(0, 2 * np.pi, 51) results = [] for theta in thetas: results.append(executor(theta, backend, readout_qubit, samples, hamiltonian, program)) init_angle = [3.0] res = optimize.minimize( executor, init_angle, args=(backend, readout_qubit, samples, hamiltonian, program), method="Nelder-Mead", options={"xatol": 1.0e-3, "fatol": 1.0e-2}, ) print(res) def mitigated_expectation( thetas, backend, readout_qubit, samples, pauli_sum, executable: Program, factory ) -> float: """ This function is the ZNE-wrapped executor, which outputs the error-mitigated expectation value. Args: thetas: the input parameter for the optimization backend: the quantum computer that runs the quantum program readout_qubit: declared memory for the readout samples: number of times the experiment (or simulation) will be run pauli_sum: the Hamiltonian expressed as executable: the pyQuil quantum program factory: factory object containing the type of inference and scaling parameters Returns: The error-mitigated expectation value as a float. """ mitigated_exp = zne.execute_with_zne( executable, lambda p: executor(thetas, backend, readout_qubit, samples, pauli_sum, p), factory=factory, scale_noise=fold_gates_at_random, ) return mitigated_exp fac = mitiq.zne.inference.LinearFactory(scale_factors=[1.0, 3.0]) results_zne = [] for theta in thetas: results_zne.append( mitigated_expectation(theta, backend, readout_qubit, samples, hamiltonian, program, fac) ) _ = plt.figure() _ = plt.plot(thetas, np.cos(thetas), "o-", label="Ideal landscape") _ = plt.plot(thetas, results, "o-", label="Noisy landscape") _ = plt.plot(thetas, results_zne, "o-", label="Mitigated landscape") _ = plt.xlabel(r"$\theta$", fontsize=18) _ = plt.ylabel(r"$\langle \Psi(\theta) | Z | \Psi(\theta) \rangle$", fontsize=18) _ = plt.legend() _ = plt.title("Mitigated Energy Landscape") plt.show() res_zne = optimize.minimize( mitigated_expectation, init_angle, args=(backend, readout_qubit, samples, hamiltonian, program, fac), method="Nelder-Mead", options={"xatol": 1.0e-3, "fatol": 1.0e-2}, ) print(res_zne) mitiq.about()
https://github.com/DRA-chaos/Solutions-to-the-Lab-Exercises---IBM-Qiskit-Summer-School-2021
DRA-chaos
# General Imports import numpy as np # Visualisation Imports import matplotlib.pyplot as plt # Scikit Imports from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler, MinMaxScaler # Qiskit Imports from qiskit import Aer, execute from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector from qiskit.circuit.library import PauliFeatureMap, ZFeatureMap, ZZFeatureMap from qiskit.circuit.library import TwoLocal, NLocal, RealAmplitudes, EfficientSU2 from qiskit.circuit.library import HGate, RXGate, RYGate, RZGate, CXGate, CRXGate, CRZGate from qiskit_machine_learning.kernels import QuantumKernel # Load digits dataset digits = datasets.load_digits(n_class=2) # Plot example '0' and '1' fig, axs = plt.subplots(1, 2, figsize=(6,3)) axs[0].set_axis_off() axs[0].imshow(digits.images[0], cmap=plt.cm.gray_r, interpolation='nearest') axs[1].set_axis_off() axs[1].imshow(digits.images[1], cmap=plt.cm.gray_r, interpolation='nearest') plt.show() # Split dataset sample_train, sample_test, label_train, label_test = train_test_split( digits.data, digits.target, test_size=0.2, random_state=22) # Reduce dimensions n_dim = 4 pca = PCA(n_components=n_dim).fit(sample_train) sample_train = pca.transform(sample_train) sample_test = pca.transform(sample_test) # Normalise std_scale = StandardScaler().fit(sample_train) sample_train = std_scale.transform(sample_train) sample_test = std_scale.transform(sample_test) # Scale samples = np.append(sample_train, sample_test, axis=0) minmax_scale = MinMaxScaler((-1, 1)).fit(samples) sample_train = minmax_scale.transform(sample_train) sample_test = minmax_scale.transform(sample_test) # Select train_size = 100 sample_train = sample_train[:train_size] label_train = label_train[:train_size] test_size = 20 sample_test = sample_test[:test_size] label_test = label_test[:test_size] print(sample_train[0], label_train[0]) print(sample_test[0], label_test[0]) # 3 features, depth 2 map_z = ZFeatureMap(feature_dimension=3, reps=2) map_z.draw('mpl') # 3 features, depth 1 map_zz = ZZFeatureMap(feature_dimension=3, reps=1) map_zz.draw('mpl') # 3 features, depth 1, linear entanglement map_zz = ZZFeatureMap(feature_dimension=3, reps=1, entanglement='linear') map_zz.draw('mpl') # 3 features, depth 1, circular entanglement map_zz = ZZFeatureMap(feature_dimension=3, reps=1, entanglement='circular') map_zz.draw('mpl') # 3 features, depth 1 map_pauli = PauliFeatureMap(feature_dimension=3, reps=1, paulis = ['X', 'Y', 'ZZ']) map_pauli.draw('mpl') def custom_data_map_func(x): coeff = x[0] if len(x) == 1 else reduce(lambda m, n: m * n, np.sin(np.pi - x)) return coeff map_customdatamap = PauliFeatureMap(feature_dimension=3, reps=1, paulis=['Z','ZZ'], data_map_func=custom_data_map_func) #map_customdatamap.draw() # qiskit isn't able to draw the circuit with np.sin in the custom data map twolocal = TwoLocal(num_qubits=3, reps=2, rotation_blocks=['ry','rz'], entanglement_blocks='cx', entanglement='circular', insert_barriers=True) twolocal.draw('mpl') twolocaln = NLocal(num_qubits=3, reps=2, rotation_blocks=[RYGate(Parameter('a')), RZGate(Parameter('a'))], entanglement_blocks=CXGate(), entanglement='circular', insert_barriers=True) twolocaln.draw('mpl') # rotation block: rot = QuantumCircuit(2) params = ParameterVector('r', 2) rot.ry(params[0], 0) rot.rz(params[1], 1) # entanglement block: ent = QuantumCircuit(4) params = ParameterVector('e', 3) ent.crx(params[0], 0, 1) ent.crx(params[1], 1, 2) ent.crx(params[2], 2, 3) nlocal = NLocal(num_qubits=6, rotation_blocks=rot, entanglement_blocks=ent, entanglement='linear', insert_barriers=True) nlocal.draw('mpl') qubits = 3 repeats = 2 x = ParameterVector('x', length=qubits) var_custom = QuantumCircuit(qubits) for _ in range(repeats): for i in range(qubits): var_custom.rx(x[i], i) for i in range(qubits): for j in range(i + 1, qubits): var_custom.cx(i, j) var_custom.p(x[i] * x[j], j) var_custom.cx(i, j) var_custom.barrier() var_custom.draw('mpl') print(sample_train[0]) encode_map = ZZFeatureMap(feature_dimension=4, reps=2, entanglement='linear', insert_barriers=True) encode_circuit = encode_map.bind_parameters(sample_train[0]) encode_circuit.draw(output='mpl') x = [-0.1,0.2] # YOUR CODE HERE encode_map_x =ZZFeatureMap(feature_dimension=2, reps=4) ex1_circuit =encode_map_x.bind_parameters(x) ex1_circuit.draw(output='mpl') from qc_grader import grade_lab3_ex1 # Note that the grading function is expecting a quantum circuit grade_lab3_ex1(ex1_circuit) zz_map = ZZFeatureMap(feature_dimension=4, reps=2, entanglement='linear', insert_barriers=True) zz_kernel = QuantumKernel(feature_map=zz_map, quantum_instance=Aer.get_backend('statevector_simulator')) print(sample_train[0]) print(sample_train[1]) zz_circuit = zz_kernel.construct_circuit(sample_train[0], sample_train[1]) zz_circuit.decompose().decompose().draw(output='mpl') backend = Aer.get_backend('qasm_simulator') job = execute(zz_circuit, backend, shots=8192, seed_simulator=1024, seed_transpiler=1024) counts = job.result().get_counts(zz_circuit) counts['0000']/sum(counts.values()) matrix_train = zz_kernel.evaluate(x_vec=sample_train) matrix_test = zz_kernel.evaluate(x_vec=sample_test, y_vec=sample_train) fig, axs = plt.subplots(1, 2, figsize=(10, 5)) axs[0].imshow(np.asmatrix(matrix_train), interpolation='nearest', origin='upper', cmap='Blues') axs[0].set_title("training kernel matrix") axs[1].imshow(np.asmatrix(matrix_test), interpolation='nearest', origin='upper', cmap='Reds') axs[1].set_title("testing kernel matrix") plt.show() x = [-0.1,0.2] y = [0.4,-0.6] # YOUR CODE HERE encode_map_x2 = ZZFeatureMap(feature_dimension=2, reps=4) zz_kernel_x2 =QuantumKernel(feature_map=encode_map_x2,quantum_instance=Aer.get_backend('statevector_simulator')) zz_circuit_x2 =zz_kernel_x2.construct_circuit(x,y) backend =Aer.get_backend('qasm_simulator') job = execute(zz_circuit_x2,backend,shots=8192, seed_simulator=1024, seed_transpiler=1024) counts_x2 = job.result().get_counts(zz_circuit_x2) amplitude= counts_x2['00']/sum(counts_x2.values()) from qc_grader import grade_lab3_ex2 # Note that the grading function is expecting a floating point number grade_lab3_ex2(amplitude) zzpc_svc = SVC(kernel='precomputed') zzpc_svc.fit(matrix_train, label_train) zzpc_score = zzpc_svc.score(matrix_test, label_test) print(f'Precomputed kernel classification test score: {zzpc_score}') zzcb_svc = SVC(kernel=zz_kernel.evaluate) zzcb_svc.fit(sample_train, label_train) zzcb_score = zzcb_svc.score(sample_test, label_test) print(f'Callable kernel classification test score: {zzcb_score}') classical_kernels = ['linear', 'poly', 'rbf', 'sigmoid'] for kernel in classical_kernels: classical_svc = SVC(kernel=kernel) classical_svc.fit(sample_train, label_train) classical_score = classical_svc.score(sample_test, label_test) print('%s kernel classification test score: %0.2f' % (kernel, classical_score))
https://github.com/Tojarieh97/VQE
Tojarieh97
%load_ext autoreload %autoreload 2 import nbimporter from typing import Dict, Tuple, List import numpy as np from tqdm import tqdm QUBITS_NUM = 4 N = 2**QUBITS_NUM NUM_SHOTS = 1024 NUM_ITERATIONS = 100 CIRCUIT_DEPTH = 3 PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1) from qiskit import Aer from qiskit.utils import QuantumInstance, algorithm_globals seed = 50 algorithm_globals.random_seed = seed simulator_backend = Aer.get_backend('qasm_simulator') from scipy.optimize import minimize from linear_entangelment_and_full_entangelment_ansatz_circuits import * def get_ansatz_state(thetas, ansatz_entangelment, input_state): if ansatz_entangelment=="full": return get_full_entangelment_ansatz(QUBITS_NUM, thetas, input_state) if ansatz_entangelment=="linear": return get_linear_entangelment_ansatz(QUBITS_NUM, thetas, input_state) def transfrom_hamiltonian_into_pauli_strings(hamiltonian) -> List: pauli_operators = hamiltonian.to_pauli_op().settings['oplist'] pauli_coeffs = list(map(lambda pauli_operator: pauli_operator.coeff, pauli_operators)) pauli_strings = list(map(lambda pauli_operator: pauli_operator.primitive, pauli_operators)) return pauli_coeffs, pauli_strings from qiskit.circuit.library.standard_gates import HGate, SGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister reducing_to_pauli_z_mapping = { 'I': 'I', 'Z': 'Z', 'X': 'Z', 'Y': 'Z' } def reduce_pauli_matrixes_into_sigma_z(pauli_string) -> str: reduced_pauli_string = "" for matrix_index in range(QUBITS_NUM): pauli_matrix = str(pauli_string[matrix_index]) reduced_pauli_matrix = reducing_to_pauli_z_mapping[pauli_matrix] reduced_pauli_string = reduced_pauli_matrix + reduced_pauli_string return reduced_pauli_string def add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string, quantum_circuit): quantum_registers = QuantumRegister(QUBITS_NUM, name="qubit") additional_circuit_layer = QuantumCircuit(quantum_registers) for quantum_register_index, pauli_matrix in enumerate(pauli_string): if pauli_matrix == "X": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) if pauli_string == "Y": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) additional_circuit_layer.append(SGate(), [quantum_registers[quantum_register_index]]) extended_quantum_circuit = quantum_circuit.compose(additional_circuit_layer) return extended_quantum_circuit def get_probability_distribution(counts: Dict) -> Dict: proba_distribution = {state: (count / NUM_SHOTS) for state, count in counts.items()} return proba_distribution def calculate_probabilities_of_measurments_in_computational_basis(quantum_state_circuit) -> Dict: quantum_state_circuit.measure_all() transpiled_quantum_state_circuit = transpile(quantum_state_circuit, simulator_backend) Qobj = assemble(transpiled_quantum_state_circuit) result = simulator_backend.run(Qobj).result() counts = result.get_counts(quantum_state_circuit) return get_probability_distribution(counts) def sort_probas_dict_by_qubits_string_keys(proba_distribution: Dict) -> Dict: return dict(sorted(proba_distribution.items())) def reset_power_of_minus_1(power_of_minus_1): power_of_minus_1 = 0 return power_of_minus_1 def convert_pauli_string_into_str(pauli_string) -> str: return str(pauli_string) def calculate_expectation_value_of_pauli_string_by_measurments_probas(pauli_string, ansatz_circuit): pauli_string_expectation_value = 0 power_of_minus_1 = 0 pauli_string_str = convert_pauli_string_into_str(pauli_string) extended_ansatz_circuit = add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string_str, ansatz_circuit) probas_distribution = calculate_probabilities_of_measurments_in_computational_basis(extended_ansatz_circuit) reduced_pauli_string = reduce_pauli_matrixes_into_sigma_z(pauli_string) sorted_probas_distribuition = sort_probas_dict_by_qubits_string_keys(probas_distribution) for qubits_string, proba in sorted_probas_distribuition.items(): for string_index in range(QUBITS_NUM): if(str(qubits_string[string_index])=="1" and str(reduced_pauli_string[string_index])=="Z"): power_of_minus_1 += 1 pauli_string_expectation_value += pow(-1, power_of_minus_1)*proba power_of_minus_1 = reset_power_of_minus_1(power_of_minus_1) return pauli_string_expectation_value def get_expectation_value(ansatz_circuit, pauli_coeffs, pauli_strings): total_expection_value = 0 for pauli_coeff, pauli_string in tqdm(zip(pauli_coeffs, pauli_strings)): total_expection_value += pauli_coeff*calculate_expectation_value_of_pauli_string_by_measurments_probas( pauli_string, ansatz_circuit) return total_expection_value from qiskit import assemble, transpile def cost_function(thetas, hamiltonian, ansatz_entangelment): initial_eigenvector = np.identity(N)[0] pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) ansatz_state = get_ansatz_state(thetas, ansatz_entangelment, initial_eigenvector) L = get_expectation_value(ansatz_state, pauli_coeffs, pauli_strings) insert_approximated_energy_to_list_of_all_approximated_energies(L) return L def get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian, ansatz_entangelment): initial_thetas = np.random.uniform(low=0, high=360, size=PARAMS_NUM) optimizer_result = minimize(cost_function, x0=initial_thetas, args=(hamiltonian, ansatz_entangelment), method="COBYLA", options={"maxiter":NUM_ITERATIONS, "disp": True}) optimal_thetas = optimizer_result.x return optimal_thetas def get_approximated_eigenvalue_of_hamiltonian(hamiltonian, ansatz_entangelment): optimal_thetas = get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian, ansatz_entangelment) print(optimal_thetas) initial_eigenvector = np.identity(N)[0] optimal_ansatz_state = get_ansatz_state(optimal_thetas, ansatz_entangelment, initial_eigenvector) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) approximated_eigenvalue = get_expectation_value(optimal_ansatz_state, pauli_coeffs, pauli_strings) return approximated_eigenvalue from numpy import linalg as LA def get_approximation_error(exact_eigenvalue, approximated_eigenvalue): return abs(abs(exact_eigenvalue)-abs(approximated_eigenvalue))/abs(exact_eigenvalue) def get_minimum_exact_eigenvalue_of_hamiltonian(hamiltonian): eigen_values = LA.eigvals(hamiltonian.to_matrix()) print(sorted(eigen_values)) return min(sorted(eigen_values)) def compare_exact_and_approximated_eigenvalue(hamiltonian, approximated_eigenvalue): exact_eigenvalue = get_minimum_exact_eigenvalue_of_hamiltonian(hamiltonian) print("Exact Eigenvalue:") print(exact_eigenvalue) print("\nApproximated Eigenvalue:") print(approximated_eigenvalue) print("\nApproximation Error") print(get_approximation_error(exact_eigenvalue, approximated_eigenvalue)) plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin=3) approximated_energies = [] def insert_approximated_energy_to_list_of_all_approximated_energies(energy): approximated_energies.append(energy) import matplotlib.pyplot as plt def plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin): plt.title("convergence of optimization process to the exact eigenvalue") plt.margins(0, margin) plt.plot(approximated_energies[-NUM_ITERATIONS:]) plt.axhline(y = exact_eigenvalue, color = 'r', linestyle = '-') plt.grid() plt.xlabel("# of iterations") plt.ylabel("Energy") def plot_fidelity(): plt.plot(LiH_approximated_energies) plt.xlabel("# of iterations") plt.ylabel("Energy") from qiskit.opflow import X, Z, I, H, Y LiH_molecule_4_qubits = -7.49894690201071*(I^I^I^I) + \ -0.0029329964409502266*(X^X^Y^Y) + \ 0.0029329964409502266*(X^Y^Y^X) + \ 0.01291078027311749*(X^Z^X^I) + \ -0.0013743761078958677*(X^Z^X^Z) + \ 0.011536413200774975*(X^I^X^I) + \ 0.0029329964409502266*(Y^X^X^Y) + \ -0.0029329964409502266*(Y^Y^X^X) + \ 0.01291078027311749*(Y^Z^Y^I) + \ -0.0013743761078958677*(Y^Z^Y^Z) + \ 0.011536413200774975*(Y^I^Y^I) + \ 0.16199475388004184*(Z^I^I^I) + \ 0.011536413200774975*(Z^X^Z^X) + \ 0.011536413200774975*(Z^Y^Z^Y) + \ 0.12444770133137588*(Z^Z^I^I) + \ 0.054130445793298836*(Z^I^Z^I) + \ 0.05706344223424907*(Z^I^I^Z) + \ 0.012910780273117487*(I^X^Z^X) + \ -0.0013743761078958677*(I^X^I^X) + \ 0.012910780273117487*(I^Y^Z^Y) + \ -0.0013743761078958677*(I^Y^I^Y) + \ 0.16199475388004186*(I^Z^I^I) + \ 0.05706344223424907*(I^Z^Z^I) + \ 0.054130445793298836*(I^Z^I^Z) + \ -0.013243698330265966*(I^I^Z^I) + \ 0.08479609543670981*(I^I^Z^Z) + \ -0.013243698330265952*(I^I^I^Z) %%time LiH_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(LiH_molecule_4_qubits, "linear") compare_exact_and_approximated_eigenvalue(LiH_molecule_4_qubits, LiH_approximated_eigenvalue) %%time LiH_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(LiH_molecule_4_qubits, "full") compare_exact_and_approximated_eigenvalue(LiH_molecule_4_qubits, LiH_approximated_eigenvalue) H2_molecule_Hamiltonian_4_qubits = -0.8105479805373279 * (I^I^I^I) \ + 0.1721839326191554 * (I^I^I^Z) \ - 0.22575349222402372 * (I^I^Z^I) \ + 0.17218393261915543 * (I^Z^I^I) \ - 0.2257534922240237 * (Z^I^I^I) \ + 0.12091263261776627 * (I^I^Z^Z) \ + 0.16892753870087907 * (I^Z^I^Z) \ + 0.045232799946057826 * (Y^Y^Y^Y) \ + 0.045232799946057826 * (X^X^Y^Y) \ + 0.045232799946057826 * (Y^Y^X^X) \ + 0.045232799946057826 * (X^X^X^X) \ + 0.1661454325638241 * (Z^I^I^Z) \ + 0.1661454325638241 * (I^Z^Z^I) \ + 0.17464343068300453 * (Z^I^Z^I) \ + 0.12091263261776627 * (Z^Z^I^I) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits, "linear") compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_4_qubits, H2_approximated_eigenvalue) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits, "full") compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_4_qubits, H2_approximated_eigenvalue) transverse_ising_4_qubits = 0.0 * (I^I^I^I) \ + 0.8398088405253477 * (X^I^I^I) \ + 0.7989496312070936 * (I^X^I^I) \ + 0.38189710487113193 * (Z^Z^I^I) \ + 0.057753122422666725 * (I^I^X^I) \ + 0.5633292636970458 * (Z^I^Z^I) \ + 0.3152740621483513 * (I^Z^Z^I) \ + 0.07209487981989715 * (I^I^I^X) \ + 0.17892334004292654 * (Z^I^I^Z) \ + 0.2273896497668042 * (I^Z^I^Z) \ + 0.09762902934216211 * (I^I^Z^Z) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_4_qubits, "linear") compare_exact_and_approximated_eigenvalue(transverse_ising_4_qubits, TI_approximated_eigenvalue) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_4_qubits, "full") compare_exact_and_approximated_eigenvalue(transverse_ising_4_qubits, TI_approximated_eigenvalue) QUBITS_NUM = 3 N = 2**QUBITS_NUM NUM_SHOTS = 1024 NUM_ITERATIONS = 100 CIRCUIT_DEPTH = 3 PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1) from qiskit.opflow import X, Z, I transverse_ising_3_qubits = 0.0 * (I^I^I) \ + 0.012764169333459807 * (X^I^I) \ + 0.7691573729160869 * (I^X^I) \ + 0.398094746026449 * (Z^Z^I) \ + 0.15250261906586637 * (I^I^X) \ + 0.2094051920882264 * (Z^I^Z) \ + 0.5131291860752999 * (I^Z^Z) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_3_qubits, "linear") compare_exact_and_approximated_eigenvalue(transverse_ising_3_qubits, TI_approximated_eigenvalue) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_3_qubits, "full") compare_exact_and_approximated_eigenvalue(transverse_ising_3_qubits, TI_approximated_eigenvalue) QUBITS_NUM = 2 N = 2**QUBITS_NUM NUM_SHOTS = 1024 NUM_ITERATIONS = 100 CIRCUIT_DEPTH = 3 PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1) transverse_ising_2_qubits = 0.13755727363376802 * (I^X) \ + 0.43305656297810435 * (X^I) \ + 0.8538597608997253 * (Z^Z) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_2_qubits, "linear") compare_exact_and_approximated_eigenvalue(transverse_ising_2_qubits, TI_approximated_eigenvalue) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_2_qubits, "full") compare_exact_and_approximated_eigenvalue(transverse_ising_2_qubits, TI_approximated_eigenvalue) from qiskit.opflow import X, Z, I H2_molecule_Hamiltonian_2_qubits = -0.5053051899926562*(I^I) + \ -0.3277380754984016*(Z^I) + \ 0.15567463610622564*(Z^Z) + \ -0.3277380754984016*(I^Z) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_2_qubits, "linear") compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_2_qubits, H2_approximated_eigenvalue) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_2_qubits, "full") compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_2_qubits, H2_approximated_eigenvalue)
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# Testing Circuits import warnings warnings.simplefilter("ignore") %run "mpl/circuit/test_circuit_matplotlib_drawer.py" # Testing Graphs %run "mpl/graph/test_graph_matplotlib_drawer.py" %run -i "results.py" RESULTS_CIRCUIT RESULTS_GRAPH
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_state_qsphere qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) state = Statevector(qc) plot_state_qsphere(state)
https://github.com/taalexander/IEEE-Quantum-Week-2021
taalexander
import os from typing import Any, List, Dict, Union import numpy as np import matplotlib.pyplot as plt from qiskit import IBMQ, Aer, QuantumCircuit, QuantumRegister, ClassicalRegister, transpile, execute from qiskit.tools.visualization import plot_histogram from qiskit.result import marginal_counts import qiskit.tools.jupyter from run_openqasm3 import run_openqasm3 %matplotlib inline import warnings warnings.filterwarnings("ignore") pi = np.pi backend_sim = Aer.get_backend('aer_simulator') hub = 'ibm-q-community' group = 'ieee-session' project = 'event-2021' backend_name = 'ibm_perth' IBMQ.load_account() provider = IBMQ.get_provider(hub=hub, group=group, project=project) backend_real = provider.get_backend(backend_name) basis_gates = backend_real.configuration().basis_gates import qiskit.tools.jupyter backend_real from qiskit import qasm3 def dump_qasm3(circuit, backend=backend_real): return qasm3.Exporter(includes=[], basis_gates=basis_gates+["reset"], disable_constants=True).dumps(circuit) q = QuantumRegister(1,'q') c = ClassicalRegister(1,'c') qc = QuantumCircuit(q, c) qc.h(0) qc.measure(0,0) qc.x(0).c_if(c, 0) qc.draw(output='mpl') q = QuantumRegister(3,'q') c = ClassicalRegister(3,'c') qc = QuantumCircuit(q, c) qc.h(q[0]) qc.h(q[1]) qc.h(q[2]) qc.barrier() qc.measure(q,c) qc.draw('mpl') print(bin(3)) print(bin(7)) q = QuantumRegister(3,'q') c = ClassicalRegister(3,'c') qc = QuantumCircuit(q, c) qc.h(0) qc.h(1) qc.h(2) qc.barrier() qc.measure(q,c) qc.x(2).c_if(c, 3) # for the 011 case qc.x(2).c_if(c, 7) # for the 111 case qc.draw(output='mpl') qubits = [1, 2] def reset_conditional(qc, q, reset_reg): """Implement the conditional reset on the input circuit, qubit and classical register using c_if.""" qc.barrier(q) # Add reset here qc.barrier(q) qr = QuantumRegister(2) reset_reg0 = ClassicalRegister(1, "reset_reg0") reset_reg1 = ClassicalRegister(1, "reset_reg1") cr0 = ClassicalRegister(1, "reset_result0") cr1 = ClassicalRegister(1, "reset_result1") qc_reset = QuantumCircuit(qr, reset_reg0, reset_reg1, cr0, cr1) reset_conditional(qc_reset, qr[0], reset_reg0) reset_conditional(qc_reset, qr[1], reset_reg1) qc_reset.measure(0, cr0) qc_reset.measure(0, cr1) qc_reset = transpile(qc_reset, backend_real, initial_layout=qubits) qc_reset.draw(output="mpl") # Hint use qiskit.result.marginal_counts to remove the first three classical register results # from your counts def pad_counts(counts): new_counts = {} for k, v in counts.items(): if len(k) < 4: for _ in range(4-len(k)): k = "0"+k new_counts[k] = v return new_counts def remove_reset_results(counts): return marginal_counts(pad_counts(counts), indices=[0, 1]) reset_job = run_openqasm3(qc_reset, backend_real, verbose=False) print(f"Reset job id: {reset_job.job_id()}") reset_result = reset_job.result() reset_counts = remove_reset_results(reset_result.get_counts(0)) print(f"The results of your reset circuit are {reset_counts}") assert reset_counts["00"] > 700 def init(qc, q): """Implement a qubit initialization using three rounds of qubit reset.""" qc.barrier(q) # Add init here qc.barrier(q) qr = QuantumRegister(2) cr0 = ClassicalRegister(1, "reset_result0") cr1 = ClassicalRegister(1, "reset_result1") qc_init = QuantumCircuit(qr, cr0, cr1) init(qc_init, qr[0]) init(qc_init, qr[1]) qc_init.measure(0, cr0) qc_init.measure(0, cr1) qc_init = transpile(qc_init, backend_real, initial_layout=qubits) qc_init.draw(output="mpl") init_job = run_openqasm3(qc_init, backend_real, verbose=False) print(f"Qubit init job id: {init_job.job_id()}") init_result = init_job.result() init_counts = init_result.get_counts() print(f"The results of your reset circuit are {init_counts}") assert init_counts["0 0"] > 900 # Compare your counts here. q = QuantumRegister(nq,'q') c0 = ClassicalRegister(1,'c0') c1 = ClassicalRegister(1, 'c1') qc_S = QuantumCircuit(q, c0, c1) def init_ipe_circuit(qc): """Initialize the qubits in your IPE circuit.""" qc.barrier(0, 1) # Place your code here qc.barrier(0, 1) init_ipe_circuit(qc_S) qc_S.draw(output="mpl") def initialize_eigenstate(qc): """Initialize the eigenstate and prepare our ancilla qubit""" pass initialize_eigenstate(qc_S) qc_S.draw('mpl') cu_circ = QuantumCircuit(2) cu_circ.cp(theta,0,1) cu_circ.draw('mpl') theta = 1 * np.pi / 2 for _ in range(2**(m-1)): qc_S.cp(theta,0,1) qc_S.draw('mpl') def x_measurement(qc, qubit, cbit): """Measure 'qubit' in the X-basis, and store the result in 'cbit'""" pass x_measurement(qc_S, q[0], c0) qc_S.draw('mpl') def reset_auxiliary(qc): """Reset your auxiliary qubit and then reinitialize it to |+>.""" pass reset_auxiliary(qc_S) qc_S.draw('mpl') qc_S.p(-np.pi/2,0).c_if(c0, 1) qc_S.draw('mpl') nq = 2 m = 2 ## 2^t c-U operations (with t=m-2) for _ in range(2**(m-2)): qc_S.cp(theta,0,1) x_measurement(qc_S, q[0], c1) qc_S.draw('mpl') count = execute(qc_S, backend_sim).result().get_counts() count count0 = remove_reset_results(execute(qc_S, backend_sim).result().get_counts()) key_new = [str(int(key,2)/2**m) for key in list(count0.keys())] count1 = dict(zip(key_new, count0.values())) fig, ax = plt.subplots(1,2) plot_histogram(count0, ax=ax[0]) plot_histogram(count1, ax=ax[1]) plt.tight_layout() qc_S_backend = transpile(qc_S, backend_real, initial_layout=qubits, optimization_level=3) qc_S_backend.draw(output="mpl") real_ipe_job = run_openqasm3(qc_S_backend, backend_real, verbose=False) real_counts0 = remove_reset_results(real_ipe_job.result().get_counts()) real_key_new = [str(int(key,2)/2**m) for key in list(real_counts0.keys())] real_counts1 = dict(zip(real_key_new, real_counts0.values())) fig, ax = plt.subplots(1,2) plot_histogram(real_counts0, ax=ax[0]) plot_histogram(real_counts1, ax=ax[1]) plt.tight_layout() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/InvictusWingsSRL/QiskitTutorials
InvictusWingsSRL
#Libraries needed to implement and simulate quantum circuits from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, transpile, qasm2, qasm3 from qiskit_aer import Aer from qiskit.primitives import BackendSampler #Custem functions to simplify answers import Our_Qiskit_Functions as oq #a part of the library presented in arXiv:1903.04359v1. import numpy as np import math as m #Initialize backends simulators to visualize circuits S_simulator = Aer.backends(name='statevector_simulator')[0] M_simulator = Aer.backends(name='qasm_simulator')[0] q = QuantumRegister(1, name='q') qc = QuantumCircuit(1, name='qc') qc.h(q[0]) oq.Wavefunction(qc); q = QuantumRegister(1, name='q') qc = QuantumCircuit(1, name='qc') qc.x(q[0]) qc.h(q[0]) oq.Wavefunction(qc); qc.x(q[0]) oq.Wavefunction(qc); q = QuantumRegister(3, name='q') anc = QuantumRegister(1, name='anc') DJ_qc = QuantumCircuit(q, anc, name='qc') DJ_qc.h(q[0]) DJ_qc.h(q[1]) DJ_qc.h(q[2]) DJ_qc.x(anc[0]) print('___________Before g___________________') oq.Wavefunction(DJ_qc, systems=[3,1], show_systems=[True,False]) DJ_qc.h(anc[0]) f = oq.Blackbox_g_DJ(3, DJ_qc, q, anc) if f[0] == 'constant': A = 1 else: A = 2 DJ_qc.h(anc[0]) print('\n______________After g___________') oq.Wavefunction(DJ_qc, systems=[3,A], show_systems=[True,False]) print('\nf type: ', f[0]) if len(f) > 1: print('States mapped to 1: ', f[1:]) q = QuantumRegister(3, name='q') anc = QuantumRegister(1, name='anc') c = ClassicalRegister(3, name='c') DJ_qc = QuantumCircuit(q, anc, c, name='qc') DJ_qc.h(q[0]) DJ_qc.h(q[1]) DJ_qc.h(q[2]) DJ_qc.x(anc[0]) print('___________Before g___________________') oq.Wavefunction(DJ_qc, systems=[3,1], show_systems=[True,False]) DJ_qc.h(anc[0]) f = oq.Blackbox_g_DJ(3, DJ_qc, q, anc) if f[0] == 'constant': A = 1 else: A = 2 DJ_qc.h(anc[0]) print('\n______________After g___________') oq.Wavefunction(DJ_qc, systems=[3,A], show_systems=[True,False]) print('\nf type: ', f[0]) if len(f) > 1: print('States mapped to 1: ', f[1:]) DJ_qc.h(q[0]) DJ_qc.h(q[1]) DJ_qc.h(q[2]) print('\n______________After H^3___________') oq.Wavefunction(DJ_qc, systems=[3,A], show_systems=[True,False]) DJ_qc.measure(q, c) print('\n______________Measured State____________') oq.Measurement(DJ_qc, shots=1) q = QuantumRegister(3, name='q') anc = QuantumRegister(1, name='anc') con1_qc = QuantumCircuit(q, anc, name='qc1') con2_qc = QuantumCircuit(q, anc, name='qc2') for i in range(2): con1_qc.h(q[i]) con2_qc.h(q[i]) con1_qc.h(anc[0]) con1_qc.x(anc[0]) con2_qc.x(anc[0]) con2_qc.h(anc[0]) print('___________Before g___________________') oq.Wavefunction(con1_qc) con2_qc.x(q[0]) con2_qc.x(q[1]) con2_qc.x(anc[0]) print('\n______________After g, f type: balanced___________') oq.Wavefunction(con1_qc) print(' '); oq.Wavefunction(con2_qc) for i in range(2): con1_qc.h(q[i]) con2_qc.h(q[i]) con1_qc.h(anc[0]) con2_qc.h(anc[0]) print('\n______________After H^3___________') oq.Wavefunction(con1_qc) print(' '); oq.Wavefunction(con2_qc); q = QuantumRegister(3, name='q') anc = QuantumRegister(1, name='anc') DJ_qc = QuantumCircuit(q, anc, name='qc') DJ_qc.h(q[0]) DJ_qc.h(q[1]) DJ_qc.h(q[2]) DJ_qc.x(anc[0]) print('___________Before g___________________') oq.Wavefunction(DJ_qc, systems=[3,1], show_systems=[True,False]) DJ_qc.h(anc[0]) f = oq.Blackbox_g_DJ(3, DJ_qc, q, anc) if f[0] == 'constant': A = 1 else: A = 2 DJ_qc.h(anc[0]) print('\n______________After g___________') oq.Wavefunction(DJ_qc, systems=[3,A], show_systems=[True,False]) DJ_qc.h(q[0]) DJ_qc.h(q[1]) DJ_qc.h(q[2]) print('\n______________After H^3___________') oq.Wavefunction(DJ_qc, systems=[3,A], show_systems=[True,False]) print('\nf type: ', f[0]) if len(f) > 1: print('States mapped to 1: ', f[1:]) print('Note that the state |000> is not in our final system!') # example for |010> q = QuantumRegister(3, name='q') trgt = QuantumRegister(1, name='trgt') anc = QuantumRegister(1, name='anc') qc_010 = QuantumCircuit(q, trgt, anc, name='qc') qc_010.h(q[1]) qc_010.x(trgt[0]) qc_010.h(trgt[0]) print('___________Initial state___________________') oq.Wavefunction(qc_010, systems=[3,1,1], show_systems=[True,True,False]) qc_010.x(q[0]) qc_010.x(q[2]) oq.n_NOT(qc_010, q, trgt[0], anc) qc_010.x(q[0]) qc_010.x(q[2]) print('\n______________After n_NOT____________') oq.Wavefunction(qc_010, systems=[3,1,1], show_systems=[True,True,False]); Q = 5 q = QuantumRegister(Q, name='q') anc = QuantumRegister(1, name='anc') c = ClassicalRegister(Q, name='c') DJ_qc = QuantumCircuit(q, anc, c, name='qc') DJ_qc.x(anc[0]) f = oq.Deutsch_Josza(Q, DJ_qc, q, anc) DJ_qc.measure(q, c) print('_______Measured state_______________') M = oq.Measurement(DJ_qc, shots = 1, return_M=True) M = list(list(M.keys())[0]) con = True for i in range(len(M)): if (list(M)[i] == '1'): con = False print(' ') if con: print('Conclusion: f is a constant function') else: print('Conclusion: f is a balanced function') print(' ') print('sneak peak: f is ', f[0]) q = QuantumRegister(3, name='q') anc = QuantumRegister(1, name='anc') BV_qc = QuantumCircuit(q, anc, name='qc') for i in range(3): BV_qc.h(q[i]) print('___________Before g___________________') oq.Wavefunction(BV_qc, systems=[3,1], show_systems=[True,False]) BV_qc.x(anc[0]) BV_qc.h(anc[0]) a = oq.Blackbox_g_BV(3, BV_qc, q, anc) BV_qc.h(anc[0]) print('\n______________After g___________') oq.Wavefunction(BV_qc, systems=[3,2], show_systems=[True,False]) for i in range(3): BV_qc.h(q[i]) print('\n______________After H^3___________') oq.Wavefunction(BV_qc, systems=[3,2], show_systems=[True,False]) print(' ') print('Hidden string a = ', a) q = QuantumRegister(3, name='q') H3_qc = QuantumCircuit(q, name='qc') state=[1,0,1] print('Quantum State: ',state) print(' '); for i in range(len(state)): if state[i] == 1: H3_qc.x(q[i]) H3_qc.h(q[i]) print('_____________Corresponding H^3 state_______________') oq.Wavefunction(H3_qc); Q = 4 q = QuantumRegister(Q, name='q') anc = QuantumRegister(1, name='anc') c = ClassicalRegister(Q, name='c') BV_qc = QuantumCircuit(q, anc, c, name='qc') BV_qc.x(anc[0]) a = oq.Bernstein_Vazirani(Q, BV_qc, q, anc) BV_qc.measure(q, c) print('_______Measured state_______________') oq.Measurement(BV_qc, shots = 1) print('\nsneak peak: a = ', a)
https://github.com/abbarreto/qiskit2
abbarreto
import numpy as np import matplotlib from matplotlib import pyplot as plt import math th = np.arange(0, 2*math.pi, 0.1) prE3 = 2*(1-(math.sqrt(2)*(np.sin(th/2)**2))/(1+math.sqrt(2))) matplotlib.rcParams.update({'font.size':10}) plt.figure(figsize = (5,3), dpi = 100) plt.plot(th, prE3) plt.xlabel(r'$\theta$') plt.ylabel(r'$Pr(E_{3})$') plt.show()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
import qiskit import numpy as np from qiskit import( IBMQ, QuantumCircuit, ClassicalRegister, QuantumRegister, execute, QuantumCircuit, execute, Aer) from qiskit.visualization import plot_histogram, plot_state_city import matplotlib.pyplot as plt def increment_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): circuit.mct([qcoin[0]]+qpos[i+1:], qpos[i], None, mode='noancilla') def decrement_gate(circuit, qpos, qcoin): n = len(qpos) circuit.x(qcoin[0]) for i in range(n): if i+1 < n: circuit.x(qpos[i+1:]) circuit.mct([qcoin[0]]+qpos[i+1:], qpos[i], None, mode='noancilla') if i+1 < n: circuit.x(qpos[i+1:]) def step(circuit, qpos, qcoin): circuit.h(qcoin) circuit.barrier() increment_gate(circuit, qpos, qcoin) circuit.barrier() decrement_gate(circuit, qpos, qcoin) circuit.barrier() n=2 simulator = Aer.get_backend('qasm_simulator') qpos = QuantumRegister(n,'qc') qcoin = QuantumRegister(1,'qanc') cpos = ClassicalRegister(n,'cr') circuit = QuantumCircuit(qpos, qcoin, cpos) step(circuit, qpos, qcoin) step(circuit, qpos, qcoin) # # Map the quantum measurement to the classical bits circuit.measure(qpos,cpos) # # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # # Grab results from the job result = job.result() # # Returns counts counts = result.get_counts(circuit) print("\nTotal count for 00 and 11 are:",counts) # Draw the circuit circuit.draw(output='mpl') # Plot a histogram plot_histogram(counts) counts
https://github.com/Qiskit/feedback
Qiskit
from qiskit import QuantumCircuit, transpile from qiskit.opflow import PauliSumOp from qiskit.circuit.library import PauliEvolutionGate from qiskit.transpiler import Layout, CouplingMap, PassManager from qiskit.transpiler.passes import FullAncillaAllocation from qiskit.transpiler.passes import EnlargeWithAncilla from qiskit.transpiler.passes import ApplyLayout from qiskit.transpiler.passes import SetLayout from qiskit.transpiler.passes.routing.commuting_2q_gate_routing import ( SwapStrategy, FindCommutingPauliEvolutions, Commuting2qGateRouter, ) # Define the circuit on logical qubits op = PauliSumOp.from_list([("IZZI", 1), ("ZIIZ", 2), ("ZIZI", 3)]) circ = QuantumCircuit(4) circ.append(PauliEvolutionGate(op, 1), range(4)) circ.draw("mpl") PassManager([FindCommutingPauliEvolutions()]).run(circ).draw("mpl") swap_layers = ( ((1, 3), ), # Layer 1: swap qubits 1 & 3 ((0, 1), (3, 4)), # Layer 2: simultaneouosly swap qubits 0 & 1 and 3 & 4 ((1, 3), ) # Layer 3: swap qubits 1 & 3 ) cmap = CouplingMap(couplinglist=[(0, 1), (1, 2), (1, 3), (3, 4)]) swap_strat = SwapStrategy(cmap, swap_layers) print(f"Missing connectivity: {swap_strat.missing_couplings}") backend_cmap = CouplingMap(couplinglist=[(0, 1), (1, 2), (1, 3), (3, 4)]) def make_passmanager(cmap, swap_strat, initial_layout): """Creates the passes needed.""" return PassManager( [ FindCommutingPauliEvolutions(), Commuting2qGateRouter(swap_strat), SetLayout(initial_layout), FullAncillaAllocation(backend_cmap), EnlargeWithAncilla(), ApplyLayout(), ] ) # Define the swap strategy on qubits before the initial_layout is applied. swap_cmap = CouplingMap(couplinglist=[(0, 1), (1, 2), (2, 3)]) swap_strat = SwapStrategy(swap_cmap, swap_layers=[[(1, 2)], [(0, 1), (2, 3)]]) # Chose qubits 0, 1, 3, and 4 from the backend coupling map shown above. backend_cmap = CouplingMap(couplinglist=[(0, 1), (1, 2), (1, 3), (3, 4)]) initial_layout = Layout.from_intlist([0, 1, 3, 4], *circ.qregs) pm = make_passmanager(backend_cmap, swap_strat, initial_layout) # Insert swap gates, map to initial_layout and finally enlarge with ancilla. pm.run(circ).draw("mpl") pm.run(circ).decompose().decompose().draw("mpl") op = PauliSumOp.from_list( [ ("IIIZZ", 1), ("IIZIZ", 1), ("IZIIZ", 1), ("ZIIIZ", 2), ("IIZZI", 3), ("IZIZI", 3), ("ZIIZI", 4), ("IZZII", 1), ("ZIZII", 2), ("ZZIII", 2), ] ) circ = QuantumCircuit(5) circ.append(PauliEvolutionGate(op, 1), range(5)) circ.draw("mpl") swap_cmap = CouplingMap(couplinglist=[(0, 1), (1, 2), (1, 3), (3, 4)]) swap_strat = SwapStrategy(swap_cmap, swap_layers=[[(1, 3)], [(0, 1), (3, 4)], [(1, 3)]]) swap_strat.missing_couplings initial_layout = Layout.from_intlist([0, 1, 2, 3, 4], *circ.qregs) pm = make_passmanager(backend_cmap, swap_strat, initial_layout) swapped_circ = pm.run(circ) swapped_circ.draw("mpl") tswapped = transpile(swapped_circ, basis_gates=["rz", "cx"], optimization_level=2) n_cx = tswapped.count_ops()["cx"] n_xsx = tswapped.count_ops().get("sx", 0) + tswapped.count_ops().get("x", 0) print(f"Number of CNOTs: {n_cx}\nNumber of X and SX: {n_xsx}.") print(f"Depth {tswapped.depth()}.") tswapped.draw("mpl", fold=False) opt3_circ = transpile(circ, basis_gates=["rz", "cx", "sx", "x"], optimization_level=3, coupling_map=backend_cmap) n_cx = opt3_circ.count_ops()["cx"] n_xsx = opt3_circ.count_ops().get("sx", 0) + tswapped.count_ops().get("x", 0) print(f"Number of CNOTs: {n_cx}\nNumber of X and SX: {n_xsx}.") print(f"Depth {opt3_circ.depth()}.") opt3_circ.draw("mpl")
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.timeline import draw from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) qc = transpile(qc, FakeBoeblingen(), scheduling_method='alap', layout_method='trivial') draw(qc)
https://github.com/SaashaJoshi/IBM-Qiskit-Summer-School-2020
SaashaJoshi
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit qc = QuantumCircuit(12) for idx in range(5): qc.h(idx) qc.cx(idx, idx+5) qc.cx(1, 7) qc.x(8) qc.cx(1, 9) qc.x(7) qc.cx(1, 11) qc.swap(6, 11) qc.swap(6, 9) qc.swap(6, 10) qc.x(6) qc.draw('mpl')
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Prepare a quantum state from the state where all qubits are 0.""" from typing import Union, Optional import math import numpy as np from qiskit.exceptions import QiskitError from qiskit.circuit import QuantumCircuit, QuantumRegister, Qubit from qiskit.circuit.gate import Gate from qiskit.circuit.library.standard_gates.x import CXGate, XGate from qiskit.circuit.library.standard_gates.h import HGate from qiskit.circuit.library.standard_gates.s import SGate, SdgGate from qiskit.circuit.library.standard_gates.ry import RYGate from qiskit.circuit.library.standard_gates.rz import RZGate from qiskit.circuit.exceptions import CircuitError from qiskit.quantum_info import Statevector _EPS = 1e-10 # global variable used to chop very small numbers to zero class StatePreparation(Gate): """Complex amplitude state preparation. Class that implements the (complex amplitude) state preparation of some flexible collection of qubit registers. """ def __init__( self, params: Union[str, list, int, Statevector], num_qubits: Optional[int] = None, inverse: bool = False, label: Optional[str] = None, normalize: bool = False, ): r""" Args: params: * Statevector: Statevector to initialize to. * list: vector of complex amplitudes to initialize to. * string: labels of basis states of the Pauli eigenstates Z, X, Y. See :meth:`.Statevector.from_label`. Notice the order of the labels is reversed with respect to the qubit index to be applied to. Example label '01' initializes the qubit zero to :math:`|1\rangle` and the qubit one to :math:`|0\rangle`. * int: an integer that is used as a bitmap indicating which qubits to initialize to :math:`|1\rangle`. Example: setting params to 5 would initialize qubit 0 and qubit 2 to :math:`|1\rangle` and qubit 1 to :math:`|0\rangle`. num_qubits: This parameter is only used if params is an int. Indicates the total number of qubits in the `initialize` call. Example: `initialize` covers 5 qubits and params is 3. This allows qubits 0 and 1 to be initialized to :math:`|1\rangle` and the remaining 3 qubits to be initialized to :math:`|0\rangle`. inverse: if True, the inverse state is constructed. label: An optional label for the gate normalize (bool): Whether to normalize an input array to a unit vector. Raises: QiskitError: ``num_qubits`` parameter used when ``params`` is not an integer When a Statevector argument is passed the state is prepared using a recursive initialization algorithm, including optimizations, from [1], as well as some additional optimizations including removing zero rotations and double cnots. **References:** [1] Shende, Bullock, Markov. Synthesis of Quantum Logic Circuits (2004) [`https://arxiv.org/abs/quant-ph/0406176v5`] """ self._params_arg = params self._inverse = inverse self._name = "state_preparation_dg" if self._inverse else "state_preparation" if label is None: self._label = "State Preparation Dg" if self._inverse else "State Preparation" else: self._label = f"{label} Dg" if self._inverse else label if isinstance(params, Statevector): params = params.data if not isinstance(params, int) and num_qubits is not None: raise QiskitError( "The num_qubits parameter to StatePreparation should only be" " used when params is an integer" ) self._from_label = isinstance(params, str) self._from_int = isinstance(params, int) # if initialized from a vector, check that the parameters are normalized if not self._from_label and not self._from_int: norm = np.linalg.norm(params) if normalize: params = np.array(params, dtype=np.complex128) / norm elif not math.isclose(norm, 1.0, abs_tol=_EPS): raise QiskitError(f"Sum of amplitudes-squared is not 1, but {norm}.") num_qubits = self._get_num_qubits(num_qubits, params) params = [params] if isinstance(params, int) else params super().__init__(self._name, num_qubits, params, label=self._label) def _define(self): if self._from_label: self.definition = self._define_from_label() elif self._from_int: self.definition = self._define_from_int() else: self.definition = self._define_synthesis() def _define_from_label(self): q = QuantumRegister(self.num_qubits, "q") initialize_circuit = QuantumCircuit(q, name="init_def") for qubit, param in enumerate(reversed(self.params)): if param == "1": initialize_circuit.append(XGate(), [q[qubit]]) elif param == "+": initialize_circuit.append(HGate(), [q[qubit]]) elif param == "-": initialize_circuit.append(XGate(), [q[qubit]]) initialize_circuit.append(HGate(), [q[qubit]]) elif param == "r": # |+i> initialize_circuit.append(HGate(), [q[qubit]]) initialize_circuit.append(SGate(), [q[qubit]]) elif param == "l": # |-i> initialize_circuit.append(HGate(), [q[qubit]]) initialize_circuit.append(SdgGate(), [q[qubit]]) if self._inverse: initialize_circuit = initialize_circuit.inverse() return initialize_circuit def _define_from_int(self): q = QuantumRegister(self.num_qubits, "q") initialize_circuit = QuantumCircuit(q, name="init_def") # Convert to int since QuantumCircuit converted to complex # and make a bit string and reverse it intstr = f"{int(np.real(self.params[0])):0{self.num_qubits}b}"[::-1] # Raise if number of bits is greater than num_qubits if len(intstr) > self.num_qubits: raise QiskitError( "StatePreparation integer has %s bits, but this exceeds the" " number of qubits in the circuit, %s." % (len(intstr), self.num_qubits) ) for qubit, bit in enumerate(intstr): if bit == "1": initialize_circuit.append(XGate(), [q[qubit]]) # note: X is it's own inverse, so even if self._inverse is True, # we don't need to invert anything return initialize_circuit def _define_synthesis(self): """Calculate a subcircuit that implements this initialization Implements a recursive initialization algorithm, including optimizations, from "Synthesis of Quantum Logic Circuits" Shende, Bullock, Markov https://arxiv.org/abs/quant-ph/0406176v5 Additionally implements some extra optimizations: remove zero rotations and double cnots. """ # call to generate the circuit that takes the desired vector to zero disentangling_circuit = self._gates_to_uncompute() # invert the circuit to create the desired vector from zero (assuming # the qubits are in the zero state) if self._inverse is False: initialize_instr = disentangling_circuit.to_instruction().inverse() else: initialize_instr = disentangling_circuit.to_instruction() q = QuantumRegister(self.num_qubits, "q") initialize_circuit = QuantumCircuit(q, name="init_def") initialize_circuit.append(initialize_instr, q[:]) return initialize_circuit def _get_num_qubits(self, num_qubits, params): """Get number of qubits needed for state preparation""" if isinstance(params, str): num_qubits = len(params) elif isinstance(params, int): if num_qubits is None: num_qubits = int(math.log2(params)) + 1 else: num_qubits = math.log2(len(params)) # Check if param is a power of 2 if num_qubits == 0 or not num_qubits.is_integer(): raise QiskitError("Desired statevector length not a positive power of 2.") num_qubits = int(num_qubits) return num_qubits def inverse(self): """Return inverted StatePreparation""" label = ( None if self._label in ("State Preparation", "State Preparation Dg") else self._label ) return StatePreparation(self._params_arg, inverse=not self._inverse, label=label) def broadcast_arguments(self, qargs, cargs): flat_qargs = [qarg for sublist in qargs for qarg in sublist] if self.num_qubits != len(flat_qargs): raise QiskitError( "StatePreparation parameter vector has %d elements, therefore expects %s " "qubits. However, %s were provided." % (2**self.num_qubits, self.num_qubits, len(flat_qargs)) ) yield flat_qargs, [] def validate_parameter(self, parameter): """StatePreparation instruction parameter can be str, int, float, and complex.""" # StatePreparation instruction parameter can be str if isinstance(parameter, str): if parameter in ["0", "1", "+", "-", "l", "r"]: return parameter raise CircuitError( "invalid param label {} for instruction {}. Label should be " "0, 1, +, -, l, or r ".format(type(parameter), self.name) ) # StatePreparation instruction parameter can be int, float, and complex. if isinstance(parameter, (int, float, complex)): return complex(parameter) elif isinstance(parameter, np.number): return complex(parameter.item()) else: raise CircuitError(f"invalid param type {type(parameter)} for instruction {self.name}") def _return_repeat(self, exponent: float) -> "Gate": return Gate(name=f"{self.name}*{exponent}", num_qubits=self.num_qubits, params=[]) def _gates_to_uncompute(self): """Call to create a circuit with gates that take the desired vector to zero. Returns: QuantumCircuit: circuit to take self.params vector to :math:`|{00\\ldots0}\\rangle` """ q = QuantumRegister(self.num_qubits) circuit = QuantumCircuit(q, name="disentangler") # kick start the peeling loop, and disentangle one-by-one from LSB to MSB remaining_param = self.params for i in range(self.num_qubits): # work out which rotations must be done to disentangle the LSB # qubit (we peel away one qubit at a time) (remaining_param, thetas, phis) = StatePreparation._rotations_to_disentangle( remaining_param ) # perform the required rotations to decouple the LSB qubit (so that # it can be "factored" out, leaving a shorter amplitude vector to peel away) add_last_cnot = True if np.linalg.norm(phis) != 0 and np.linalg.norm(thetas) != 0: add_last_cnot = False if np.linalg.norm(phis) != 0: rz_mult = self._multiplex(RZGate, phis, last_cnot=add_last_cnot) circuit.append(rz_mult.to_instruction(), q[i : self.num_qubits]) if np.linalg.norm(thetas) != 0: ry_mult = self._multiplex(RYGate, thetas, last_cnot=add_last_cnot) circuit.append(ry_mult.to_instruction().reverse_ops(), q[i : self.num_qubits]) circuit.global_phase -= np.angle(sum(remaining_param)) return circuit @staticmethod def _rotations_to_disentangle(local_param): """ Static internal method to work out Ry and Rz rotation angles used to disentangle the LSB qubit. These rotations make up the block diagonal matrix U (i.e. multiplexor) that disentangles the LSB. [[Ry(theta_1).Rz(phi_1) 0 . . 0], [0 Ry(theta_2).Rz(phi_2) . 0], . . 0 0 Ry(theta_2^n).Rz(phi_2^n)]] """ remaining_vector = [] thetas = [] phis = [] param_len = len(local_param) for i in range(param_len // 2): # Ry and Rz rotations to move bloch vector from 0 to "imaginary" # qubit # (imagine a qubit state signified by the amplitudes at index 2*i # and 2*(i+1), corresponding to the select qubits of the # multiplexor being in state |i>) (remains, add_theta, add_phi) = StatePreparation._bloch_angles( local_param[2 * i : 2 * (i + 1)] ) remaining_vector.append(remains) # rotations for all imaginary qubits of the full vector # to move from where it is to zero, hence the negative sign thetas.append(-add_theta) phis.append(-add_phi) return remaining_vector, thetas, phis @staticmethod def _bloch_angles(pair_of_complex): """ Static internal method to work out rotation to create the passed-in qubit from the zero vector. """ [a_complex, b_complex] = pair_of_complex # Force a and b to be complex, as otherwise numpy.angle might fail. a_complex = complex(a_complex) b_complex = complex(b_complex) mag_a = abs(a_complex) final_r = np.sqrt(mag_a**2 + np.absolute(b_complex) ** 2) if final_r < _EPS: theta = 0 phi = 0 final_r = 0 final_t = 0 else: theta = 2 * np.arccos(mag_a / final_r) a_arg = np.angle(a_complex) b_arg = np.angle(b_complex) final_t = a_arg + b_arg phi = b_arg - a_arg return final_r * np.exp(1.0j * final_t / 2), theta, phi def _multiplex(self, target_gate, list_of_angles, last_cnot=True): """ Return a recursive implementation of a multiplexor circuit, where each instruction itself has a decomposition based on smaller multiplexors. The LSB is the multiplexor "data" and the other bits are multiplexor "select". Args: target_gate (Gate): Ry or Rz gate to apply to target qubit, multiplexed over all other "select" qubits list_of_angles (list[float]): list of rotation angles to apply Ry and Rz last_cnot (bool): add the last cnot if last_cnot = True Returns: DAGCircuit: the circuit implementing the multiplexor's action """ list_len = len(list_of_angles) local_num_qubits = int(math.log2(list_len)) + 1 q = QuantumRegister(local_num_qubits) circuit = QuantumCircuit(q, name="multiplex" + str(local_num_qubits)) lsb = q[0] msb = q[local_num_qubits - 1] # case of no multiplexing: base case for recursion if local_num_qubits == 1: circuit.append(target_gate(list_of_angles[0]), [q[0]]) return circuit # calc angle weights, assuming recursion (that is the lower-level # requested angles have been correctly implemented by recursion angle_weight = np.kron([[0.5, 0.5], [0.5, -0.5]], np.identity(2 ** (local_num_qubits - 2))) # calc the combo angles list_of_angles = angle_weight.dot(np.array(list_of_angles)).tolist() # recursive step on half the angles fulfilling the above assumption multiplex_1 = self._multiplex(target_gate, list_of_angles[0 : (list_len // 2)], False) circuit.append(multiplex_1.to_instruction(), q[0:-1]) # attach CNOT as follows, thereby flipping the LSB qubit circuit.append(CXGate(), [msb, lsb]) # implement extra efficiency from the paper of cancelling adjacent # CNOTs (by leaving out last CNOT and reversing (NOT inverting) the # second lower-level multiplex) multiplex_2 = self._multiplex(target_gate, list_of_angles[(list_len // 2) :], False) if list_len > 1: circuit.append(multiplex_2.to_instruction().reverse_ops(), q[0:-1]) else: circuit.append(multiplex_2.to_instruction(), q[0:-1]) # attach a final CNOT if last_cnot: circuit.append(CXGate(), [msb, lsb]) return circuit def prepare_state(self, state, qubits=None, label=None, normalize=False): r"""Prepare qubits in a specific state. This class implements a state preparing unitary. Unlike :class:`qiskit.extensions.Initialize` it does not reset the qubits first. Args: state (str or list or int or Statevector): * Statevector: Statevector to initialize to. * str: labels of basis states of the Pauli eigenstates Z, X, Y. See :meth:`.Statevector.from_label`. Notice the order of the labels is reversed with respect to the qubit index to be applied to. Example label '01' initializes the qubit zero to :math:`|1\rangle` and the qubit one to :math:`|0\rangle`. * list: vector of complex amplitudes to initialize to. * int: an integer that is used as a bitmap indicating which qubits to initialize to :math:`|1\rangle`. Example: setting params to 5 would initialize qubit 0 and qubit 2 to :math:`|1\rangle` and qubit 1 to :math:`|0\rangle`. qubits (QuantumRegister or Qubit or int): * QuantumRegister: A list of qubits to be initialized [Default: None]. * Qubit: Single qubit to be initialized [Default: None]. * int: Index of qubit to be initialized [Default: None]. * list: Indexes of qubits to be initialized [Default: None]. label (str): An optional label for the gate normalize (bool): Whether to normalize an input array to a unit vector. Returns: qiskit.circuit.Instruction: a handle to the instruction that was just initialized Examples: Prepare a qubit in the state :math:`(|0\rangle - |1\rangle) / \sqrt{2}`. .. code-block:: import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(1) circuit.prepare_state([1/np.sqrt(2), -1/np.sqrt(2)], 0) circuit.draw() output: .. parsed-literal:: ┌─────────────────────────────────────┐ q_0: ┤ State Preparation(0.70711,-0.70711) ├ └─────────────────────────────────────┘ Prepare from a string two qubits in the state :math:`|10\rangle`. The order of the labels is reversed with respect to qubit index. More information about labels for basis states are in :meth:`.Statevector.from_label`. .. code-block:: import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(2) circuit.prepare_state('01', circuit.qubits) circuit.draw() output: .. parsed-literal:: ┌─────────────────────────┐ q_0: ┤0 ├ │ State Preparation(0,1) │ q_1: ┤1 ├ └─────────────────────────┘ Initialize two qubits from an array of complex amplitudes .. code-block:: import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(2) circuit.prepare_state([0, 1/np.sqrt(2), -1.j/np.sqrt(2), 0], circuit.qubits) circuit.draw() output: .. parsed-literal:: ┌───────────────────────────────────────────┐ q_0: ┤0 ├ │ State Preparation(0,0.70711,-0.70711j,0) │ q_1: ┤1 ├ └───────────────────────────────────────────┘ """ if qubits is None: qubits = self.qubits elif isinstance(qubits, (int, np.integer, slice, Qubit)): qubits = [qubits] num_qubits = len(qubits) if isinstance(state, int) else None return self.append( StatePreparation(state, num_qubits, label=label, normalize=normalize), qubits ) QuantumCircuit.prepare_state = prepare_state
https://github.com/tstopa/Qiskit_for_high_schools
tstopa
from qiskit import * provider = IBMQ.load_account() backend = provider.get_backend('ibmq_valencia') import pprint pprint.pprint(backend.configuration().coupling_map) from qiskit.tools.visualization import plot_error_map plot_error_map(backend)
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import numpy as np from qiskit import BasicAer from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import Simon from qiskit.aqua.components.oracles import TruthTableOracle bitmaps = [ '01101001', '10011001', '01100110' ] oracle = TruthTableOracle(bitmaps) def compute_mask(input_bitmaps): vals = list(zip(*input_bitmaps))[::-1] def find_pair(): for i in range(len(vals)): for j in range(i + 1, len(vals)): if vals[i] == vals[j]: return i, j return 0, 0 k1, k2 = find_pair() return np.binary_repr(k1 ^ k2, int(np.log2(len(input_bitmaps[0])))) mask = compute_mask(bitmaps) print(f'The groundtruth mask is {mask}.') simon = Simon(oracle) backend = BasicAer.get_backend('qasm_simulator') result = simon.run(QuantumInstance(backend, shots=1024)) print('The mask computed using Simon is {}.'.format(result['result'])) assert(result['result'] == mask) bitmaps = [ '00011110', '01100110', '10101010' ] mask = compute_mask(bitmaps) print(f'The groundtruth mask is {mask}.') oracle = TruthTableOracle(bitmaps) simon = Simon(oracle) result = simon.run(QuantumInstance(backend, shots=1024)) print('The mask computed using Simon is {}.'.format(result['result'])) assert(result['result'] == mask)
https://github.com/acfilok96/Quantum-Computation
acfilok96
import qiskit from qiskit import * print(qiskit.__version__) %matplotlib inline from qiskit.tools.visualization import plot_histogram from qiskit.providers.aer import QasmSimulator # use Aer's qasm_simulator simulator = QasmSimulator() # create quantum circute acting on the q register circuit = QuantumCircuit(2,2) # add a H gate on qubit 0 circuit.h(0) # add a cx (CNOT) gate on control qubit 0 and target qubit 1 circuit.cx(0,1) # map the quantum measurement to the classical bits circuit.measure([0,1],[0,1]) # compile the circuit down to low-level QASM instructions # supported by the backend (not needed for simple circuits) compiled_circuit = transpile(circuit, simulator) # execute the circuit on the qasm simulator job = simulator.run(compiled_circuit, shots=1024) # grad results from the job result = job.result() # return counts counts = result.get_counts(compiled_circuit) print('total count for 00 and 11 are: ',counts) # draw circuit circuit.draw(output='mpl') # plot histogram plot_histogram(counts) from qiskit.circuit import QuantumCircuit, Parameter from qiskit.providers.aer import AerSimulator backend = AerSimulator() circuit = QuantumCircuit(2) theta = Parameter('theta') circuit.rx(234, 0) circuit.draw(output='mpl') backend = AerSimulator() circuit = QuantumCircuit(2) # theta = Parameter('theta') circuit.rx(20, 0) circuit.x(0) circuit.h(1) result = execute(circuit, backend=backend, shots=1024).result() # counts=result.get_counts() # print(counts) circuit.draw(output='mpl')
https://github.com/qiskit-community/qiskit-alt
qiskit-community
import qiskit_alt #geometry = [['H', [0., 0., 0.]], ['H', [0., 0., 0.7414]]] geometry = [['O', [0., 0., 0.]], ['H', [0.757, 0.586, 0.]], ['H', [-0.757, 0.586, 0.]]] #basis = 'sto3g' #basis = '631g' basis = 'dzvp2' pauli_op = qiskit_alt.jordan_wigner(geometry, basis)
https://github.com/codigoscupom/QuantumAlgs
codigoscupom
import qiskit as q from qiskit.visualization import plot_histogram, plot_bloch_multivector import math qasm_sim = q.Aer.get_backend('qasm_simulator') statevec_sim = q.Aer.get_backend("statevector_simulator") c = q.QuantumCircuit(2,2) c.ry(math.pi/4,0) c.ry(math.pi/4,1) orig_statevec = q.execute(c, backend=statevec_sim).result().get_statevector() c.measure([0,1], [0,1]) # measuring qubit 3, which is impacted by those cnots: orig_counts = q.execute(c, backend=qasm_sim, shots=1024).result().get_counts() plot_bloch_multivector(orig_statevec)
https://github.com/108mk/Quantum_Algorithms_and_Qiskit
108mk
import qiskit qiskit.__qiskit_version__ import qiskit qiskit.__qiskit_version__ # useful additional packages import numpy as np import matplotlib.pyplot as plt %matplotlib inline # importing Qiskit from qiskit import BasicAer, IBMQ from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.compiler import transpile from qiskit.tools.monitor import job_monitor # import basic plot tools from qiskit.tools.visualization import plot_histogram '''# Load our saved IBMQ accounts IBMQ.load_account()''' n = 13 # the length of the first register for querying the oracle # Choose a type of oracle at random. With probability half it is constant, # and with the same probability it is balanced oracleType, oracleValue = np.random.randint(2), np.random.randint(2) if oracleType == 0: print("The oracle returns a constant value ", oracleValue) else: print("The oracle returns a balanced function") a = np.random.randint(1,2**n) # this is a hidden parameter for balanced oracle. # Creating registers # n qubits for querying the oracle and one qubit for storing the answer qr = QuantumRegister(n+1) #all qubits are initialized to zero # for recording the measurement on the first register cr = ClassicalRegister(n) circuitName = "DeutschJozsa" djCircuit = QuantumCircuit(qr, cr) # Create the superposition of all input queries in the first register by applying the Hadamard gate to each qubit. for i in range(n): djCircuit.h(qr[i]) # Flip the second register and apply the Hadamard gate. djCircuit.x(qr[n]) djCircuit.h(qr[n]) # Apply barrier to mark the beginning of the oracle djCircuit.barrier() if oracleType == 0:#If the oracleType is "0", the oracle returns oracleValue for all input. if oracleValue == 1: djCircuit.x(qr[n]) else: djCircuit.iden(qr[n]) else: # Otherwise, it returns the inner product of the input with a (non-zero bitstring) for i in range(n): if (a & (1 << i)): djCircuit.cx(qr[i], qr[n]) # Apply barrier to mark the end of the oracle djCircuit.barrier() # Apply Hadamard gates after querying the oracle for i in range(n): djCircuit.h(qr[i]) # Measurement djCircuit.barrier() for i in range(n): djCircuit.measure(qr[i], cr[i]) #draw the circuit djCircuit.draw(output='mpl',scale=0.5) backend = BasicAer.get_backend('qasm_simulator') shots = 1000 job = execute(djCircuit, backend=backend, shots=shots) results = job.result() answer = results.get_counts() plot_histogram(answer) backend = IBMQ.get_backend('ibmq_16_melbourne') djCompiled = transpile(djCircuit, backend=backend, optimization_level=1) djCompiled.draw(output='mpl',scale=0.5) job = execute(djCompiled, backend=backend, shots=1024) job_monitor(job) results = job.result() answer = results.get_counts() threshold = int(0.01 * shots) # the threshold of plotting significant measurements filteredAnswer = {k: v for k,v in answer.items() if v >= threshold} # filter the answer for better view of plots removedCounts = np.sum([ v for k,v in answer.items() if v < threshold ]) # number of counts removed filteredAnswer['other_bitstrings'] = removedCounts # the removed counts are assigned to a new index plot_histogram(filteredAnswer) print(filteredAnswer)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import BasicAer, transpile, QuantumRegister, ClassicalRegister, QuantumCircuit qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) qc.h(0) qc.measure(0, 0) qc.draw('mpl')
https://github.com/SaashaJoshi/IBM-Qiskit-Summer-School-2020
SaashaJoshi
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """mpl circuit visualization style.""" import json import os from warnings import warn from qiskit import user_config class DefaultStyle: """Creates a Default Style dictionary **Style Dict Details** The style dict contains numerous options that define the style of the output circuit visualization. The style dict is used by the `mpl` or `latex` output. The options available in the style dict are defined below: name (str): the name of the style. The name can be set to ``iqx``, ``iqx-dark``, ``textbook``, ``bw``, ``default``, or the name of a user-created json file. This overrides the setting in the user config file (usually ``~/.qiskit/settings.conf``). textcolor (str): the color code to use for all text not inside a gate. Defaults to ``#000000`` subtextcolor (str): the color code to use for subtext. Defaults to ``#000000`` linecolor (str): the color code to use for lines. Defaults to ``#000000`` creglinecolor (str): the color code to use for classical register lines. Defaults to ``#778899`` gatetextcolor (str): the color code to use for gate text. Defaults to ``#000000`` gatefacecolor (str): the color code to use for a gate if no color specified in the 'displaycolor' dict. Defaults to ``#BB8BFF`` barrierfacecolor (str): the color code to use for barriers. Defaults to ``#BDBDBD`` backgroundcolor (str): the color code to use for the background. Defaults to ``#FFFFFF`` edgecolor (str): the color code to use for gate edges when using the `bw` style. Defaults to ``#000000``. fontsize (int): the font size to use for text. Defaults to 13. subfontsize (int): the font size to use for subtext. Defaults to 8. showindex (bool): if set to True, show the index numbers at the top. Defaults to False. figwidth (int): the maximum width (in inches) for the output figure. If set to -1, the maximum displayable width will be used. Defaults to -1. dpi (int): the DPI to use for the output image. Defaults to 150. margin (list): a list of margin values to adjust spacing around output image. Takes a list of 4 ints: [x left, x right, y bottom, y top]. Defaults to [2.0, 0.1, 0.1, 0.3]. creglinestyle (str): The style of line to use for classical registers. Choices are ``solid``, ``doublet``, or any valid matplotlib `linestyle` kwarg value. Defaults to ``doublet``. displaytext (dict): a dictionary of the text to use for certain element types in the output visualization. These items allow the use of LaTeX formatting for gate names. The 'displaytext' dict can contain any number of elements. User created names and labels may be used as keys, which allow these to have Latex formatting. The default values are (`default.json`):: { 'u1': 'U_1', 'u2': 'U_2', 'u3': 'U_3', 'sdg': 'S^\\dagger', 'sx': '\\sqrt{X}', 'sxdg': '\\sqrt{X}^\\dagger', 't': 'T', 'tdg': 'T^\\dagger', 'dcx': 'Dcx', 'iswap': 'Iswap', 'ms': 'MS', 'rx': 'R_X', 'ry': 'R_Y', 'rz': 'R_Z', 'rxx': 'R_{XX}', 'ryy': 'R_{YY}', 'rzx': 'R_{ZX}', 'rzz': 'ZZ', 'reset': '\\left|0\\right\\rangle', 'initialize': '|\\psi\\rangle' } displaycolor (dict): the color codes to use for each circuit element in the form (gate_color, text_color). Colors can also be entered without the text color, such as 'u1': '#FA74A6', in which case the text color will always be `gatetextcolor`. The `displaycolor` dict can contain any number of elements. User names and labels may be used as keys, which allows for custom colors for user-created gates. The default values are (`default.json`):: { 'u1': ('#FA74A6', '#000000'), 'u2': ('#FA74A6', '#000000'), 'u3': ('#FA74A6', '#000000'), 'id': ('#05BAB6', '#000000'), 'u': ('#BB8BFF', '#000000'), 'p': ('#BB8BFF', '#000000'), 'x': ('#05BAB6', '#000000'), 'y': ('#05BAB6', '#000000'), 'z': ('#05BAB6', '#000000'), 'h': ('#6FA4FF', '#000000'), 'cx': ('#6FA4FF', '#000000'), 'ccx': ('#BB8BFF', '#000000'), 'mcx': ('#BB8BFF', '#000000'), 'mcx_gray': ('#BB8BFF', '#000000'), 'cy': ('#6FA4FF', '#000000'), 'cz': ('#6FA4FF', '#000000'), 'swap': ('#6FA4FF', '#000000'), 'cswap': ('#BB8BFF', '#000000'), 'ccswap': ('#BB8BFF', '#000000'), 'dcx': ('#6FA4FF', '#000000'), 'cdcx': ('#BB8BFF', '#000000'), 'ccdcx': ('#BB8BFF', '#000000'), 'iswap': ('#6FA4FF', '#000000'), 's': ('#6FA4FF', '#000000'), 'sdg': ('#6FA4FF', '#000000'), 't': ('#BB8BFF', '#000000'), 'tdg': ('#BB8BFF', '#000000'), 'sx': ('#6FA4FF', '#000000'), 'sxdg': ('#6FA4FF', '#000000') 'r': ('#BB8BFF', '#000000'), 'rx': ('#BB8BFF', '#000000'), 'ry': ('#BB8BFF', '#000000'), 'rz': ('#BB8BFF', '#000000'), 'rxx': ('#BB8BFF', '#000000'), 'ryy': ('#BB8BFF', '#000000'), 'rzx': ('#BB8BFF', '#000000'), 'reset': ('#000000', '#FFFFFF'), 'target': ('#FFFFFF', '#FFFFFF'), 'measure': ('#000000', '#FFFFFF'), } """ def __init__(self): colors = { "### Default Colors": "Default Colors", "basis": "#FA74A6", # Red "clifford": "#6FA4FF", # Light Blue "pauli": "#05BAB6", # Green "def_other": "#BB8BFF", # Purple "### IQX Colors": "IQX Colors", "classical": "#002D9C", # Dark Blue "phase": "#33B1FF", # Cyan "hadamard": "#FA4D56", # Light Red "non_unitary": "#A8A8A8", # Medium Gray "iqx_other": "#9F1853", # Dark Red "### B/W": "B/W", "black": "#000000", "white": "#FFFFFF", "dark_gray": "#778899", "light_gray": "#BDBDBD", } self.style = { "name": "default", "tc": colors["black"], # Non-gate Text Color "gt": colors["black"], # Gate Text Color "sc": colors["black"], # Gate Subtext Color "lc": colors["black"], # Line Color "cc": colors["dark_gray"], # creg Line Color "gc": colors["def_other"], # Default Gate Color "bc": colors["light_gray"], # Barrier Color "bg": colors["white"], # Background Color "ec": None, # Edge Color (B/W only) "fs": 13, # Gate Font Size "sfs": 8, # Subtext Font Size "index": False, "figwidth": -1, "dpi": 150, "margin": [2.0, 0.1, 0.1, 0.3], "cline": "doublet", "disptex": { "u1": "U_1", "u2": "U_2", "u3": "U_3", "id": "I", "sdg": "S^\\dagger", "sx": "\\sqrt{X}", "sxdg": "\\sqrt{X}^\\dagger", "tdg": "T^\\dagger", "ms": "MS", "rx": "R_X", "ry": "R_Y", "rz": "R_Z", "rxx": "R_{XX}", "ryy": "R_{YY}", "rzx": "R_{ZX}", "rzz": "ZZ", "reset": "\\left|0\\right\\rangle", "initialize": "$|\\psi\\rangle$", }, "dispcol": { "u1": (colors["basis"], colors["black"]), "u2": (colors["basis"], colors["black"]), "u3": (colors["basis"], colors["black"]), "u": (colors["def_other"], colors["black"]), "p": (colors["def_other"], colors["black"]), "id": (colors["pauli"], colors["black"]), "x": (colors["pauli"], colors["black"]), "y": (colors["pauli"], colors["black"]), "z": (colors["pauli"], colors["black"]), "h": (colors["clifford"], colors["black"]), "cx": (colors["clifford"], colors["black"]), "ccx": (colors["def_other"], colors["black"]), "mcx": (colors["def_other"], colors["black"]), "mcx_gray": (colors["def_other"], colors["black"]), "cy": (colors["clifford"], colors["black"]), "cz": (colors["clifford"], colors["black"]), "swap": (colors["clifford"], colors["black"]), "cswap": (colors["def_other"], colors["black"]), "ccswap": (colors["def_other"], colors["black"]), "dcx": (colors["clifford"], colors["black"]), "cdcx": (colors["def_other"], colors["black"]), "ccdcx": (colors["def_other"], colors["black"]), "iswap": (colors["clifford"], colors["black"]), "s": (colors["clifford"], colors["black"]), "sdg": (colors["clifford"], colors["black"]), "t": (colors["def_other"], colors["black"]), "tdg": (colors["def_other"], colors["black"]), "sx": (colors["clifford"], colors["black"]), "sxdg": (colors["clifford"], colors["black"]), "r": (colors["def_other"], colors["black"]), "rx": (colors["def_other"], colors["black"]), "ry": (colors["def_other"], colors["black"]), "rz": (colors["def_other"], colors["black"]), "rxx": (colors["def_other"], colors["black"]), "ryy": (colors["def_other"], colors["black"]), "rzx": (colors["def_other"], colors["black"]), "reset": (colors["black"], colors["white"]), "target": (colors["white"], colors["white"]), "measure": (colors["black"], colors["white"]), }, } def load_style(style): """Utility function to load style from json files and call set_style.""" current_style = DefaultStyle().style style_name = "default" def_font_ratio = current_style["fs"] / current_style["sfs"] config = user_config.get_config() if style is None: if config: style = config.get("circuit_mpl_style", "default") else: style = "default" if style is False: style_name = "bw" elif isinstance(style, dict) and "name" in style: style_name = style["name"] elif isinstance(style, str): style_name = style elif not isinstance(style, (str, dict)): warn( f"style parameter '{style}' must be a str or a dictionary. Will use default style.", UserWarning, 2, ) if style_name.endswith(".json"): style_name = style_name[:-5] # Search for file in 'styles' dir, then config_path, and finally 'cwd' style_path = [] if style_name != "default": style_name = style_name + ".json" spath = os.path.dirname(os.path.abspath(__file__)) style_path.append(os.path.join(spath, "styles", style_name)) if config: config_path = config.get("circuit_mpl_style_path", "") if config_path: for path in config_path: style_path.append(os.path.normpath(os.path.join(path, style_name))) style_path.append(os.path.normpath(os.path.join("", style_name))) for path in style_path: exp_user = os.path.expanduser(path) if os.path.isfile(exp_user): try: with open(exp_user) as infile: json_style = json.load(infile) set_style(current_style, json_style) break except json.JSONDecodeError as err: warn( f"Could not decode JSON in file '{path}': {str(err)}. " "Will use default style.", UserWarning, 2, ) break except (OSError, FileNotFoundError): warn( f"Error loading JSON file '{path}'. Will use default style.", UserWarning, 2, ) break else: warn( f"Style JSON file '{style_name}' not found in any of these locations: " f"{', '.join(style_path)}. " "Will use default style.", UserWarning, 2, ) if isinstance(style, dict): set_style(current_style, style) return current_style, def_font_ratio def set_style(current_style, new_style): """Utility function to take elements in new_style and write them into current_style. """ valid_fields = { "name", "textcolor", "gatetextcolor", "subtextcolor", "linecolor", "creglinecolor", "gatefacecolor", "barrierfacecolor", "backgroundcolor", "edgecolor", "fontsize", "subfontsize", "showindex", "figwidth", "dpi", "margin", "creglinestyle", "displaytext", "displaycolor", } current_style.update(new_style) current_style["tc"] = current_style.get("textcolor", current_style["tc"]) current_style["gt"] = current_style.get("gatetextcolor", current_style["gt"]) current_style["sc"] = current_style.get("subtextcolor", current_style["sc"]) current_style["lc"] = current_style.get("linecolor", current_style["lc"]) current_style["cc"] = current_style.get("creglinecolor", current_style["cc"]) current_style["gc"] = current_style.get("gatefacecolor", current_style["gc"]) current_style["bc"] = current_style.get("barrierfacecolor", current_style["bc"]) current_style["bg"] = current_style.get("backgroundcolor", current_style["bg"]) current_style["ec"] = current_style.get("edgecolor", current_style["ec"]) current_style["fs"] = current_style.get("fontsize", current_style["fs"]) current_style["sfs"] = current_style.get("subfontsize", current_style["sfs"]) current_style["index"] = current_style.get("showindex", current_style["index"]) current_style["cline"] = current_style.get("creglinestyle", current_style["cline"]) current_style["disptex"] = {**current_style["disptex"], **new_style.get("displaytext", {})} current_style["dispcol"] = {**current_style["dispcol"], **new_style.get("displaycolor", {})} unsupported_keys = set(new_style) - valid_fields if unsupported_keys: warn( f"style option/s ({', '.join(unsupported_keys)}) is/are not supported", UserWarning, 2, )
https://github.com/qiskit-community/qiskit-alt
qiskit-community
# Benchmark qiskit_alt constructing Fermionic operators from pyscf integrals. import qiskit_alt qiskit_alt.project.ensure_init() import timeit def make_setup_code(basis, geometry): return f""" import qiskit_alt h2_geometry = [['H', [0., 0., 0.]], ['H', [0., 0., 0.7414]]] h2o_geometry = [['O', [0., 0., 0.]], ['H', [0.757, 0.586, 0.]], ['H', [-0.757, 0.586, 0.]]] from qiskit_alt.electronic_structure import fermionic_hamiltonian fermionic_hamiltonian({geometry}, {basis}) #qiskit_alt.fermionic_hamiltonian({geometry}, {basis}) """ def run_one_basis(basis, geometry, num_repetitions): setup_code = make_setup_code(basis, geometry) bench_code = f"fermionic_hamiltonian({geometry}, {basis})" time = timeit.timeit(stmt=bench_code, setup=setup_code, number=num_repetitions) t = 1000 * time / num_repetitions print(f"geometry={geometry}, basis={basis} {t:0.2f}", "ms") return t def run_benchmarks(): alt_times = [] for basis, geometry, num_repetitions in (("'sto3g'", "h2_geometry", 10), ("'631g'", "h2_geometry", 10), ("'631++g'", "h2_geometry", 10), ("'sto3g'", "h2o_geometry", 10), ("'631g'", "h2o_geometry", 5)): t = run_one_basis(basis, geometry, num_repetitions) alt_times.append(t) return alt_times if __name__ == '__main__': alt_times = run_benchmarks()
https://github.com/mballarin97/mps_qnn
mballarin97
# This code is part of qcircha. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Here we preprocess and produce the data for real work datasets, i.e. the wine and breast cancer datasets """ import os import numpy as np from qcircha.circuit_selector import _select_circ from qiskit import QuantumCircuit import qmatchatea as qmt from qmatchatea.qk_utils import qk_transpilation_params import qtealeaves.observables as obs from qtealeaves.emulator import MPS from sklearn import preprocessing from tqdm import tqdm depth = 14 dataset_name = "breast" if dataset_name == "wine": dir_name = f"data/datasets/wine/" input_file = "datasets/wine.data" num_qubits = 13 else: dir_name = f"data/datasets/breast_cancer/" input_file = "datasets/breast-cancer.data" num_qubits = 9 num_reps = 1 num_avg = 10 max_bond_dim = 128 if not os.path.isdir(dir_name): os.makedirs(dir_name) observables = obs.TNObservables() observables += obs.TNObsBondEntropy() observables += obs.TNState2File('mps_state.txt', 'F') conv_params = qmt.QCConvergenceParameters(int(max_bond_dim), singval_mode="C") backend = qmt.QCBackend() trans_params = qk_transpilation_params(linearize=True) feature_map = _select_circ(num_qubits, "zzfeaturemap") ansatz = _select_circ(num_qubits, "twolocal") # Load dataset and remove dataset = np.loadtxt(input_file, delimiter=",", dtype=str)[:, 1:] if dataset_name == "breast": new_dataset = [] for features in dataset.T: new_dataset.append( preprocessing.LabelEncoder().fit_transform(features) ) dataset = np.array(new_dataset).T min_max_scaler = preprocessing.MinMaxScaler() dataset = min_max_scaler.fit_transform(dataset)*np.pi idx = 0 for data in tqdm((dataset)): binded_fmap = feature_map.bind_parameters(data) for _ in range(num_avg): initial_state = "Vacuum" entanglement_total = [] singvals_cut_total = [] states_total = [] for num_reps in range(depth): #print(f"\n__Reps {num_reps}/{depth}") random_params = np.pi * np.random.rand(len(ansatz.parameters)) binded_ansatz = ansatz.bind_parameters(random_params) # Pick a PQC (modify the function) qc = QuantumCircuit(num_qubits) qc = qc.compose(binded_fmap) qc = qc.compose(binded_ansatz) io_info = qmt.QCIO(initial_state=initial_state) results = qmt.run_simulation(qc, convergence_parameters=conv_params, transpilation_parameters=trans_params, backend=backend, observables=observables, io_info=io_info) entanglement = np.array(list(results.entanglement.values())) initial_state = results.mps entanglement_total.append(entanglement) states_total.append(results.singular_values_cut) initial_state = MPS.from_tensor_list(initial_state) np.save( os.path.join(dir_name, f"entanglement_{idx}.npy"), entanglement_total, allow_pickle=True) #np.save( os.path.join(dir_name, f"states_{idx}.npy"), states_total, allow_pickle=True) idx += 1
https://github.com/indian-institute-of-science-qc/qiskit-aakash
indian-institute-of-science-qc
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-docstring import os import configparser as cp from uuid import uuid4 from unittest import mock from qiskit import exceptions from qiskit.test import QiskitTestCase from qiskit import user_config class TestUserConfig(QiskitTestCase): def setUp(self): super().setUp() self.file_path = "test_%s.conf" % uuid4() def test_empty_file_read(self): config = user_config.UserConfig(self.file_path) config.read_config_file() self.assertEqual({}, config.settings) def test_invalid_optimization_level(self): test_config = """ [default] transpile_optimization_level = 76 """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) self.assertRaises(exceptions.QiskitUserConfigError, config.read_config_file) def test_invalid_circuit_drawer(self): test_config = """ [default] circuit_drawer = MSPaint """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) self.assertRaises(exceptions.QiskitUserConfigError, config.read_config_file) def test_circuit_drawer_valid(self): test_config = """ [default] circuit_drawer = latex """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) config.read_config_file() self.assertEqual({"circuit_drawer": "latex"}, config.settings) def test_invalid_circuit_reverse_bits(self): test_config = """ [default] circuit_reverse_bits = Neither """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) self.assertRaises(exceptions.QiskitUserConfigError, config.read_config_file) def test_circuit_reverse_bits_valid(self): test_config = """ [default] circuit_reverse_bits = false """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) config.read_config_file() self.assertEqual({"circuit_reverse_bits": False}, config.settings) def test_optimization_level_valid(self): test_config = """ [default] transpile_optimization_level = 1 """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) config.read_config_file() self.assertEqual({"transpile_optimization_level": 1}, config.settings) def test_invalid_num_processes(self): test_config = """ [default] num_processes = -256 """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) self.assertRaises(exceptions.QiskitUserConfigError, config.read_config_file) def test_valid_num_processes(self): test_config = """ [default] num_processes = 31 """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) config.read_config_file() self.assertEqual({"num_processes": 31}, config.settings) def test_valid_parallel(self): test_config = """ [default] parallel = False """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) config.read_config_file() self.assertEqual({"parallel_enabled": False}, config.settings) def test_all_options_valid(self): test_config = """ [default] circuit_drawer = latex circuit_mpl_style = default circuit_mpl_style_path = ~:~/.qiskit circuit_reverse_bits = false transpile_optimization_level = 3 suppress_packaging_warnings = true parallel = false num_processes = 15 """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) config.read_config_file() self.assertEqual( { "circuit_drawer": "latex", "circuit_mpl_style": "default", "circuit_mpl_style_path": ["~", "~/.qiskit"], "circuit_reverse_bits": False, "transpile_optimization_level": 3, "num_processes": 15, "parallel_enabled": False, }, config.settings, ) def test_set_config_all_options_valid(self): self.addCleanup(os.remove, self.file_path) user_config.set_config("circuit_drawer", "latex", file_path=self.file_path) user_config.set_config("circuit_mpl_style", "default", file_path=self.file_path) user_config.set_config("circuit_mpl_style_path", "~:~/.qiskit", file_path=self.file_path) user_config.set_config("circuit_reverse_bits", "false", file_path=self.file_path) user_config.set_config("transpile_optimization_level", "3", file_path=self.file_path) user_config.set_config("parallel", "false", file_path=self.file_path) user_config.set_config("num_processes", "15", file_path=self.file_path) config_settings = None with mock.patch.dict(os.environ, {"QISKIT_SETTINGS": self.file_path}, clear=True): config_settings = user_config.get_config() self.assertEqual( { "circuit_drawer": "latex", "circuit_mpl_style": "default", "circuit_mpl_style_path": ["~", "~/.qiskit"], "circuit_reverse_bits": False, "transpile_optimization_level": 3, "num_processes": 15, "parallel_enabled": False, }, config_settings, ) def test_set_config_multiple_sections(self): self.addCleanup(os.remove, self.file_path) user_config.set_config("circuit_drawer", "latex", file_path=self.file_path) user_config.set_config("circuit_mpl_style", "default", file_path=self.file_path) user_config.set_config("transpile_optimization_level", "3", file_path=self.file_path) user_config.set_config("circuit_drawer", "latex", section="test", file_path=self.file_path) user_config.set_config("parallel", "false", section="test", file_path=self.file_path) user_config.set_config("num_processes", "15", section="test", file_path=self.file_path) config = cp.ConfigParser() config.read(self.file_path) self.assertEqual(config.sections(), ["default", "test"]) self.assertEqual( { "circuit_drawer": "latex", "circuit_mpl_style": "default", "transpile_optimization_level": "3", }, dict(config.items("default")), )
https://github.com/Qiskit-Extensions/circuit-knitting-toolbox
Qiskit-Extensions
# This code is a Qiskit project. # (C) Copyright IBM 2024. # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """End to end tests for the cut finder workflow.""" from __future__ import annotations import numpy as np import unittest from pytest import raises from qiskit import QuantumCircuit from qiskit.circuit.library import EfficientSU2 from circuit_knitting.cutting.cut_finding.cco_utils import qc_to_cco_circuit from circuit_knitting.cutting.cut_finding.circuit_interface import ( SimpleGateList, ) from circuit_knitting.cutting.cut_finding.optimization_settings import ( OptimizationSettings, ) from circuit_knitting.cutting.automated_cut_finding import DeviceConstraints from circuit_knitting.cutting.cut_finding.disjoint_subcircuits_state import ( get_actions_list, SingleWireCutIdentifier, WireCutLocation, CutIdentifier, CutLocation, ) from circuit_knitting.cutting.cut_finding.lo_cuts_optimizer import ( LOCutsOptimizer, ) from circuit_knitting.cutting.cut_finding.cut_optimization import CutOptimization class TestCuttingFourQubitCircuit(unittest.TestCase): def setUp(self): qc = EfficientSU2(4, entanglement="linear", reps=2).decompose() qc.assign_parameters([0.4] * len(qc.parameters), inplace=True) self.circuit_internal = qc_to_cco_circuit(qc) def test_four_qubit_cutting_workflow(self): with self.subTest("No cuts needed"): qubits_per_subcircuit = 4 interface = SimpleGateList(self.circuit_internal) settings = OptimizationSettings(seed=12345, gate_lo=True, wire_lo=True) settings.set_engine_selection("CutOptimization", "BestFirst") constraint_obj = DeviceConstraints(qubits_per_subcircuit) optimization_pass = LOCutsOptimizer(interface, settings, constraint_obj) output = optimization_pass.optimize(interface, settings, constraint_obj) assert get_actions_list(output.actions) == [] # no cutting. assert ( interface.export_subcircuits_as_string(name_mapping="default") == "AAAA" ) with self.subTest("No cuts found when all flags set to False"): qubits_per_subcircuit = 3 interface = SimpleGateList(self.circuit_internal) settings = OptimizationSettings(seed=12345, gate_lo=False, wire_lo=False) settings.set_engine_selection("CutOptimization", "BestFirst") constraint_obj = DeviceConstraints(qubits_per_subcircuit) optimization_pass = LOCutsOptimizer(interface, settings, constraint_obj) with raises(ValueError) as e_info: optimization_pass.optimize(interface, settings, constraint_obj) assert ( e_info.value.args[0] == "None state encountered: no cut state satisfying the specified constraints and settings could be found." ) with self.subTest( "No separating cuts possible if one qubit per qpu and only wire cuts allowed" ): settings = OptimizationSettings(seed=12345, gate_lo=False, wire_lo=True) settings.set_engine_selection("CutOptimization", "BestFirst") interface = SimpleGateList(self.circuit_internal) qubits_per_subcircuit = 1 constraint_obj = DeviceConstraints(qubits_per_subcircuit) optimization_pass = LOCutsOptimizer(interface, settings, constraint_obj) with raises(ValueError) as e_info: optimization_pass.optimize(interface, settings, constraint_obj) assert ( e_info.value.args[0] == "None state encountered: no cut state satisfying the specified constraints and settings could be found." ) with self.subTest("Gate cuts to get three qubits per subcircuit"): # QPU with 3 qubits for a 4 qubit circuit enforces cutting. qubits_per_subcircuit = 3 interface = SimpleGateList(self.circuit_internal) settings = OptimizationSettings(seed=12345, gate_lo=True, wire_lo=True) settings.set_engine_selection("CutOptimization", "BestFirst") constraint_obj = DeviceConstraints(qubits_per_subcircuit) optimization_pass = LOCutsOptimizer(interface, settings, constraint_obj) output = optimization_pass.optimize() cut_actions_list = output.cut_actions_sublist() assert cut_actions_list == [ CutIdentifier( cut_action="CutTwoQubitGate", cut_location=CutLocation( instruction_id=17, gate_name="cx", qubits=[2, 3] ), ), CutIdentifier( cut_action="CutTwoQubitGate", cut_location=CutLocation( instruction_id=25, gate_name="cx", qubits=[2, 3] ), ), ] best_result = optimization_pass.get_results() assert ( output.upper_bound_gamma() == best_result.gamma_UB == 9 ) # 2 LO cnot cuts. assert ( optimization_pass.minimum_reached() is True ) # matches optimal solution. assert ( interface.export_subcircuits_as_string(name_mapping="default") == "AAAB" ) # circuit separated into 2 subcircuits. with self.subTest("Gate cuts to get two qubits per subcircuit"): qubits_per_subcircuit = 2 interface = SimpleGateList(self.circuit_internal) settings = OptimizationSettings(seed=12345, gate_lo=True, wire_lo=True) settings.set_engine_selection("CutOptimization", "BestFirst") constraint_obj = DeviceConstraints(qubits_per_subcircuit) optimization_pass = LOCutsOptimizer(interface, settings, constraint_obj) output = optimization_pass.optimize() cut_actions_list = output.cut_actions_sublist() assert cut_actions_list == [ CutIdentifier( cut_action="CutTwoQubitGate", cut_location=CutLocation( instruction_id=9, gate_name="cx", qubits=[1, 2] ), ), CutIdentifier( cut_action="CutTwoQubitGate", cut_location=CutLocation( instruction_id=20, gate_name="cx", qubits=[1, 2] ), ), ] best_result = optimization_pass.get_results() assert ( output.upper_bound_gamma() == best_result.gamma_UB == 9 ) # 2 LO cnot cuts. assert optimization_pass.minimum_reached() is True # matches optimal solution. assert ( interface.export_subcircuits_as_string(name_mapping="default") == "AABB" ) # circuit separated into 2 subcircuits. assert ( optimization_pass.get_stats()["CutOptimization"].backjumps <= settings.max_backjumps ) with self.subTest("Cut both wires instance"): qubits_per_subcircuit = 2 interface = SimpleGateList(self.circuit_internal) settings = OptimizationSettings(seed=12345, gate_lo=False, wire_lo=True) settings.set_engine_selection("CutOptimization", "BestFirst") constraint_obj = DeviceConstraints(qubits_per_subcircuit) optimization_pass = LOCutsOptimizer(interface, settings, constraint_obj) output = optimization_pass.optimize() cut_actions_list = output.cut_actions_sublist() assert cut_actions_list == [ SingleWireCutIdentifier( cut_action="CutLeftWire", wire_cut_location=WireCutLocation( instruction_id=9, gate_name="cx", qubits=[1, 2], input=1 ), ), CutIdentifier( cut_action="CutBothWires", cut_location=CutLocation( instruction_id=12, gate_name="cx", qubits=[0, 1] ), ), SingleWireCutIdentifier( cut_action="CutLeftWire", wire_cut_location=WireCutLocation( instruction_id=17, gate_name="cx", qubits=[2, 3], input=1 ), ), CutIdentifier( cut_action="CutBothWires", cut_location=CutLocation( instruction_id=20, gate_name="cx", qubits=[1, 2] ), ), CutIdentifier( cut_action="CutBothWires", cut_location=CutLocation( instruction_id=25, gate_name="cx", qubits=[2, 3] ), ), ] best_result = optimization_pass.get_results() assert output.upper_bound_gamma() == best_result.gamma_UB == 65536 assert ( interface.export_subcircuits_as_string(name_mapping="default") == "ADABDEBCEFCF" ) with self.subTest("Wire cuts to get to 3 qubits per subcircuit"): qubits_per_subcircuit = 3 interface = SimpleGateList(self.circuit_internal) settings = OptimizationSettings(seed=12345, gate_lo=False, wire_lo=True) settings.set_engine_selection("CutOptimization", "BestFirst") constraint_obj = DeviceConstraints(qubits_per_subcircuit) optimization_pass = LOCutsOptimizer(interface, settings, constraint_obj) output = optimization_pass.optimize() cut_actions_list = output.cut_actions_sublist() assert cut_actions_list == [ SingleWireCutIdentifier( cut_action="CutLeftWire", wire_cut_location=WireCutLocation( instruction_id=17, gate_name="cx", qubits=[2, 3], input=1 ), ), SingleWireCutIdentifier( cut_action="CutLeftWire", wire_cut_location=WireCutLocation( instruction_id=20, gate_name="cx", qubits=[1, 2], input=1 ), ), ] best_result = optimization_pass.get_results() assert ( output.upper_bound_gamma() == best_result.gamma_UB == 16 ) # 2 LO wire cuts. assert ( interface.export_subcircuits_as_string(name_mapping="default") == "AABABB" ) # circuit separated into 2 subcircuits. with self.subTest("Search engine not supported"): # Check if unspported search engine is flagged qubits_per_subcircuit = 4 interface = SimpleGateList(self.circuit_internal) settings = OptimizationSettings(seed=12345, gate_lo=True, wire_lo=True) settings.set_engine_selection("CutOptimization", "BeamSearch") search_engine = settings.get_engine_selection("CutOptimization") constraint_obj = DeviceConstraints(qubits_per_subcircuit) optimization_pass = LOCutsOptimizer(interface, settings, constraint_obj) with raises(ValueError) as e_info: _ = optimization_pass.optimize() assert ( e_info.value.args[0] == f"Search engine {search_engine} is not supported." ) with self.subTest("Greedy search gate cut warm start test"): # Even if the input cost bounds are too stringent, greedy_cut_optimization # is able to return a solution. qubits_per_subcircuit = 3 interface = SimpleGateList(self.circuit_internal) settings = OptimizationSettings(seed=12345, gate_lo=True, wire_lo=False) settings.set_engine_selection("CutOptimization", "BestFirst") constraint_obj = DeviceConstraints(qubits_per_subcircuit) # Impose a stringent cost upper bound, insist gamma <=2. cut_opt = CutOptimization(interface, settings, constraint_obj) cut_opt.update_upperbound_cost((2, 4)) state, cost = cut_opt.optimization_pass() # 2 cnot cuts are still found assert state is not None assert cost[0] == 9 with self.subTest("Greedy search wire cut warm start test"): # Even if the input cost bounds are too stringent, greedy_cut_optimization # is able to return a solution. qubits_per_subcircuit = 3 interface = SimpleGateList(self.circuit_internal) settings = OptimizationSettings(seed=12345, gate_lo=False, wire_lo=True) settings.set_engine_selection("CutOptimization", "BestFirst") constraint_obj = DeviceConstraints(qubits_per_subcircuit) # Impose a stringent cost upper bound, insist gamma <=2. cut_opt = CutOptimization(interface, settings, constraint_obj) cut_opt.update_upperbound_cost((2, 4)) state, cost = cut_opt.optimization_pass() # 2 LO wire cuts are still found assert state is not None assert cost[0] == 16 class TestCuttingSevenQubitCircuit(unittest.TestCase): def setUp(self): qc = QuantumCircuit(7) for i in range(7): qc.rx(np.pi / 4, i) qc.cx(0, 3) qc.cx(1, 3) qc.cx(2, 3) qc.cx(3, 4) qc.cx(3, 5) qc.cx(3, 6) self.circuit_internal = qc_to_cco_circuit(qc) def test_seven_qubit_workflow(self): with self.subTest("Two qubits per subcircuit"): qubits_per_subcircuit = 2 interface = SimpleGateList(self.circuit_internal) settings = OptimizationSettings(seed=12345, gate_lo=True, wire_lo=True) settings.set_engine_selection("CutOptimization", "BestFirst") constraint_obj = DeviceConstraints(qubits_per_subcircuit) optimization_pass = LOCutsOptimizer(interface, settings, constraint_obj) output = optimization_pass.optimize() cut_actions_list = output.cut_actions_sublist() assert cut_actions_list == [ CutIdentifier( cut_action="CutTwoQubitGate", cut_location=CutLocation( instruction_id=7, gate_name="cx", qubits=[0, 3] ), ), CutIdentifier( cut_action="CutTwoQubitGate", cut_location=CutLocation( instruction_id=8, gate_name="cx", qubits=[1, 3] ), ), CutIdentifier( cut_action="CutTwoQubitGate", cut_location=CutLocation( instruction_id=9, gate_name="cx", qubits=[2, 3] ), ), CutIdentifier( cut_action="CutTwoQubitGate", cut_location=CutLocation( instruction_id=11, gate_name="cx", qubits=[3, 5] ), ), CutIdentifier( cut_action="CutTwoQubitGate", cut_location=CutLocation( instruction_id=12, gate_name="cx", qubits=[3, 6] ), ), ] best_result = optimization_pass.get_results() assert ( output.upper_bound_gamma() == best_result.gamma_UB == 243 ) # 5 LO cnot cuts. assert ( optimization_pass.minimum_reached() is True ) # matches optimal solution. assert ( interface.export_subcircuits_as_string(name_mapping="default") == "ABCDDEF" ) # circuit separated into 2 subcircuits. with self.subTest("Single wire cut"): qubits_per_subcircuit = 4 interface = SimpleGateList(self.circuit_internal) settings = OptimizationSettings(seed=12345, gate_lo=True, wire_lo=True) settings.set_engine_selection("CutOptimization", "BestFirst") constraint_obj = DeviceConstraints(qubits_per_subcircuit) optimization_pass = LOCutsOptimizer(interface, settings, constraint_obj) output = optimization_pass.optimize() cut_actions_list = output.cut_actions_sublist() assert cut_actions_list == [ SingleWireCutIdentifier( cut_action="CutLeftWire", wire_cut_location=WireCutLocation( instruction_id=10, gate_name="cx", qubits=[3, 4], input=1 ), ) ] assert ( interface.export_subcircuits_as_string(name_mapping="default") == "AAAABBBB" ) # extra wires because of wire cuts # and no qubit reuse. best_result = optimization_pass.get_results() assert ( output.upper_bound_gamma() == best_result.gamma_UB == 4 ) # One LO wire cut. assert ( optimization_pass.minimum_reached() is True ) # matches optimal solution with self.subTest("Two single wire cuts"): qubits_per_subcircuit = 3 interface = SimpleGateList(self.circuit_internal) settings = OptimizationSettings(seed=12345, gate_lo=True, wire_lo=True) settings.set_engine_selection("CutOptimization", "BestFirst") constraint_obj = DeviceConstraints(qubits_per_subcircuit) optimization_pass = LOCutsOptimizer(interface, settings, constraint_obj) output = optimization_pass.optimize() cut_actions_list = output.cut_actions_sublist() assert cut_actions_list == [ SingleWireCutIdentifier( cut_action="CutRightWire", wire_cut_location=WireCutLocation( instruction_id=9, gate_name="cx", qubits=[2, 3], input=2 ), ), SingleWireCutIdentifier( cut_action="CutLeftWire", wire_cut_location=WireCutLocation( instruction_id=11, gate_name="cx", qubits=[3, 5], input=1 ), ), ] assert ( interface.export_subcircuits_as_string(name_mapping="default") == "AABABCBCC" ) # extra wires because of wire cuts # and no qubit reuse. In the string above, # {A: wire 0, A:wire 1, B:wire 2, A: wire 3, # B: first cut on wire 3, C: second cut on wire 3, # B: wire 4, C: wire 5, C: wire 6}. best_result = optimization_pass.get_results() assert ( output.upper_bound_gamma() == best_result.gamma_UB == 16 ) # Two LO wire cuts. assert optimization_pass.minimum_reached() is True # matches optimal solution class TestCuttingMultiQubitGates(unittest.TestCase): def setUp(self): qc = QuantumCircuit(3) qc.ccx(0, 1, 2) circuit_internal = qc_to_cco_circuit(qc) self.interface = SimpleGateList(circuit_internal) self.settings = OptimizationSettings(seed=12345) self.settings.set_engine_selection("CutOptimization", "BestFirst") def no_cutting_multiqubit_gates(self): # The cutting of multiqubit gates is not supported at present. qubits_per_subcircuit = 2 constraint_obj = DeviceConstraints(qubits_per_subcircuit) optimization_pass = LOCutsOptimizer( self.interface, self.settings, constraint_obj ) with raises(ValueError) as e_info: _ = optimization_pass.optimize() assert e_info.value.args[0] == ( "The input circuit must contain only single and two-qubits gates. " "Found 3-qubit gate: (ccx)." )
https://github.com/rohitgit1/Quantum-Computing-Summer-School
rohitgit1
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from scipy.interpolate import griddata %matplotlib inline import numpy as np from qiskit import QuantumRegister, QuantumCircuit, AncillaRegister, transpile from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import WeightedAdder, LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits per dimension to represent the uncertainty num_uncertainty_qubits = 2 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # map to higher dimensional distribution # for simplicity assuming dimensions are independent and identically distributed) dimension = 2 num_qubits = [num_uncertainty_qubits] * dimension low = low * np.ones(dimension) high = high * np.ones(dimension) mu = mu * np.ones(dimension) cov = sigma**2 * np.eye(dimension) # construct circuit u = LogNormalDistribution(num_qubits=num_qubits, mu=mu, sigma=cov, bounds=list(zip(low, high))) # plot PDF of uncertainty model x = [v[0] for v in u.values] y = [v[1] for v in u.values] z = u.probabilities # z = map(float, z) # z = list(map(float, z)) resolution = np.array([2**n for n in num_qubits]) * 1j grid_x, grid_y = np.mgrid[min(x) : max(x) : resolution[0], min(y) : max(y) : resolution[1]] grid_z = griddata((x, y), z, (grid_x, grid_y)) plt.figure(figsize=(10, 8)) ax = plt.axes(projection="3d") ax.plot_surface(grid_x, grid_y, grid_z, cmap=plt.cm.Spectral) ax.set_xlabel("Spot Price $S_T^1$ (\$)", size=15) ax.set_ylabel("Spot Price $S_T^2$ (\$)", size=15) ax.set_zlabel("Probability (\%)", size=15) plt.show() # determine number of qubits required to represent total loss weights = [] for n in num_qubits: for i in range(n): weights += [2**i] # create aggregation circuit agg = WeightedAdder(sum(num_qubits), weights) n_s = agg.num_sum_qubits n_aux = agg.num_qubits - n_s - agg.num_state_qubits # number of additional qubits # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 3.5 # map strike price from [low, high] to {0, ..., 2^n-1} max_value = 2**n_s - 1 low_ = low[0] high_ = high[0] mapped_strike_price = ( (strike_price - dimension * low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1) ) # set the approximation scaling for the payoff function c_approx = 0.25 # setup piecewise linear objective fcuntion breakpoints = [0, mapped_strike_price] slopes = [0, 1] offsets = [0, 0] f_min = 0 f_max = 2 * (2**num_uncertainty_qubits - 1) - mapped_strike_price basket_objective = LinearAmplitudeFunction( n_s, slopes, offsets, domain=(0, max_value), image=(f_min, f_max), rescaling_factor=c_approx, breakpoints=breakpoints, ) # define overall multivariate problem qr_state = QuantumRegister(u.num_qubits, "state") # to load the probability distribution qr_obj = QuantumRegister(1, "obj") # to encode the function values ar_sum = AncillaRegister(n_s, "sum") # number of qubits used to encode the sum ar = AncillaRegister(max(n_aux, basket_objective.num_ancillas), "work") # additional qubits objective_index = u.num_qubits basket_option = QuantumCircuit(qr_state, qr_obj, ar_sum, ar) basket_option.append(u, qr_state) basket_option.append(agg, qr_state[:] + ar_sum[:] + ar[:n_aux]) basket_option.append(basket_objective, ar_sum[:] + qr_obj[:] + ar[: basket_objective.num_ancillas]) print(basket_option.draw()) print("objective qubit index", objective_index) # plot exact payoff function (evaluated on the grid of the uncertainty model) x = np.linspace(sum(low), sum(high)) y = np.maximum(0, x - strike_price) plt.plot(x, y, "r-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Sum of Spot Prices ($S_T^1 + S_T^2)$", size=15) plt.ylabel("Payoff", size=15) plt.xticks(size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value sum_values = np.sum(u.values, axis=1) exact_value = np.dot( u.probabilities[sum_values >= strike_price], sum_values[sum_values >= strike_price] - strike_price, ) print("exact expected value:\t%.4f" % exact_value) num_state_qubits = basket_option.num_qubits - basket_option.num_ancillas print("state qubits: ", num_state_qubits) transpiled = transpile(basket_option, basis_gates=["u", "cx"]) print("circuit width:", transpiled.width()) print("circuit depth:", transpiled.depth()) basket_option_measure = basket_option.measure_all(inplace=False) sampler = Sampler() job = sampler.run(basket_option_measure) # evaluate the result value = 0 probabilities = job.result().quasi_dists[0].binary_probabilities() for i, prob in probabilities.items(): if prob > 1e-4 and i[-num_state_qubits:][0] == "1": value += prob # map value to original range mapped_value = ( basket_objective.post_processing(value) / (2**num_uncertainty_qubits - 1) * (high_ - low_) ) print("Exact Operator Value: %.4f" % value) print("Mapped Operator value: %.4f" % mapped_value) print("Exact Expected Payoff: %.4f" % exact_value) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=basket_option, objective_qubits=[objective_index], post_processing=basket_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = ( np.array(result.confidence_interval_processed) / (2**num_uncertainty_qubits - 1) * (high_ - low_) ) print("Exact value: \t%.4f" % exact_value) print( "Estimated value: \t%.4f" % (result.estimation_processed / (2**num_uncertainty_qubits - 1) * (high_ - low_)) ) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/rubenandrebarreiro/ibm-qiskit-quantum-explorers-2023-2024
rubenandrebarreiro
# build your code here password = "Experiment%" # submit your answer using following code # import the grader for the badge 3 of # the IBM Qiskit's Quantum Explorers 2023-2024 from qc_grader.challenges.quantum_explorers23 import grade_badge3_ex1 # expected result type: string grade_badge3_ex1(password)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse dc = pulse.DriveChannel d0, d1, d2, d3, d4 = dc(0), dc(1), dc(2), dc(3), dc(4) with pulse.build(name='pulse_programming_in') as pulse_prog: pulse.play([1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1], d0) pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], d1) pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0], d2) pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], d3) pulse.play([1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0], d4) pulse_prog.draw()
https://github.com/tomtuamnuq/compare-qiskit-ocean
tomtuamnuq
from collections import OrderedDict import time from qiskit import BasicAer from qiskit.aqua import QuantumInstance, aqua_globals from qiskit.aqua.algorithms import QAOA from qiskit.aqua.components.optimizers import COBYLA from qiskit.optimization.algorithms import MinimumEigenOptimizer, CplexOptimizer from qiskit.optimization.algorithms.optimization_algorithm import OptimizationResultStatus from random_lp.lp_random_gen import create_models DIR = 'TEST_DATA' + "/" + time.strftime("%d_%m_%Y") + "/DENSE/" # 12.03.2021 Q_SEED = 10598 # as used in most issues aqua_globals.random_seed = Q_SEED shots = 4096 qps = create_models(DIR) optimizer = COBYLA() cplex = CplexOptimizer() backend = BasicAer.get_backend('qasm_simulator') max_qubits = backend.configuration().to_dict()['n_qubits'] quantum_instance = QuantumInstance(backend, seed_simulator=Q_SEED, seed_transpiler=Q_SEED, shots=shots) qaoa_mes = QAOA(quantum_instance=quantum_instance, optimizer=optimizer) results = OrderedDict() for qp_name, qp in qps.items() : print(qp_name) print("number of qubits: ", qp.qubo.get_num_vars()) if qp.qubo.get_num_vars() > max_qubits: break qaoa = MinimumEigenOptimizer(qaoa_mes) res = qaoa.solve(qp) results[qp_name] = res if res.status == OptimizationResultStatus.SUCCESS: print("success") cres = cplex.solve(qp) if res.fval != cres.fval: print("\n optimal value QAOA "+str(res.fval) + " , cplex:"+ str(cres.fval)) # see Class SubstituteVariables in https://qiskit.org/documentation/_modules/qiskit/optimization/problems/quadratic_program.html#QuadraticProgram # for logger warning constraint A0_leb0 is infeasible due to substitution # Afterwards a check for feasability of substituted solution is done (line 227 in meo result class) to set OptimizationResultStatus res_7 = results["test_7"] print(res_7) qps["test_7"].is_feasible(res_7.x) qps["test_8"].is_feasible(results["test_8"].x) qps["test_8"].to_docplex().prettyprint()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.mappers import ParityMapper from qiskit_nature.second_q.properties import ParticleNumber from qiskit_nature.second_q.transformers import ActiveSpaceTransformer bond_distance = 2.5 # in Angstrom # specify driver driver = PySCFDriver( atom=f"Li 0 0 0; H 0 0 {bond_distance}", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() # specify active space transformation active_space_trafo = ActiveSpaceTransformer( num_electrons=problem.num_particles, num_spatial_orbitals=3 ) # transform the electronic structure problem problem = active_space_trafo.transform(problem) # construct the parity mapper with 2-qubit reduction qubit_mapper = ParityMapper(num_particles=problem.num_particles) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms.ground_state_solvers import GroundStateEigensolver np_solver = NumPyMinimumEigensolver() np_groundstate_solver = GroundStateEigensolver(qubit_mapper, np_solver) np_result = np_groundstate_solver.solve(problem) target_energy = np_result.total_energies[0] print(np_result) from qiskit.circuit.library import EfficientSU2 ansatz = EfficientSU2(num_qubits=4, reps=1, entanglement="linear", insert_barriers=True) ansatz.decompose().draw("mpl", style="iqx") import numpy as np from qiskit.utils import algorithm_globals # fix random seeds for reproducibility np.random.seed(5) algorithm_globals.random_seed = 5 from qiskit.algorithms.optimizers import SPSA optimizer = SPSA(maxiter=100) initial_point = np.random.random(ansatz.num_parameters) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.primitives import Estimator estimator = Estimator() local_vqe = VQE( estimator, ansatz, optimizer, initial_point=initial_point, ) local_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, local_vqe) local_vqe_result = local_vqe_groundstate_solver.solve(problem) print(local_vqe_result) from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(group="open") # replace by your runtime provider backend = provider.get_backend("ibmq_qasm_simulator") # select a backend that supports the runtime from qiskit_nature.runtime import VQEClient runtime_vqe = VQEClient( ansatz=ansatz, optimizer=optimizer, initial_point=initial_point, provider=provider, backend=backend, shots=1024, measurement_error_mitigation=True, ) # use a complete measurement fitter for error mitigation runtime_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, runtime_vqe) runtime_vqe_result = runtime_vqe_groundstate_solver.solve(problem) print(runtime_vqe_result) runtime_result = runtime_vqe_result.raw_result history = runtime_result.optimizer_history loss = history["energy"] import matplotlib.pyplot as plt plt.rcParams["font.size"] = 14 # plot loss and reference value plt.figure(figsize=(12, 6)) plt.plot(loss + runtime_vqe_result.nuclear_repulsion_energy, label="Runtime VQE") plt.axhline(y=target_energy + 0.2, color="tab:red", ls=":", label="Target + 200mH") plt.axhline(y=target_energy, color="tab:red", ls="--", label="Target") plt.legend(loc="best") plt.xlabel("Iteration") plt.ylabel("Energy [H]") plt.title("VQE energy"); import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/rubenandrebarreiro/fct-nova-introduction-to-operations-research-labs
rubenandrebarreiro
# Import Scipy Python's Library and, # its Optimisation Module and Linear Programming Sub-Module from scipy.optimize import linprog # Import the NumPy Python's Library, with the alias 'np' import numpy as np # Import the matplotlib Python's Library, with the alias 'plt' import matplotlib.pyplot as plt %matplotlib inline # Construct Graphic Lines # Steps for Implementation in Python: # - 1) Set the Lines for the Bounds, as equalities: # - The variable x is set indenpendindependently; # - The variable y is set as one of yi's, in this case the y0; # - 2) Set the Lines for the Constraints, as equalities: # - All the equations always are solvable, in order to yi; # - 3) Build the Graphic and Plot the Lines; # - 4) Fill the Feasible Region: # - Set the Maximum and Minimum of the Feasible Region, # where, usually the inequations with '>=' are the maximums # and the inequations with '<=' are the minimums; # - Then, fill the Feasible Region; # 1) Set the Lines for the Bounds, as equalities: # a) x >= 0 x = np.linspace(0, 20, 2000) # b) y >= 0 y0 = (x*0) # 2) Set the Lines for the Constraints, as equalities: # a) x + y <= 3 (=) y <= 3 - x y1 = ( 3 - x ) # b) x + 4y >= 4 (=) 4y >= 4 - x (=) y >= (4 - x) / 4 y2 = ( 4 - x ) / 4 # c) -x + y <= 0 (=) y <= x y3 = x # 3) Build the Graphic and Plot the Lines: plt.plot(x, y0, label=r'$ y \geq 0 $') plt.plot(x, y1, label=r'$ x + y \leq 3 $') plt.plot(x, y2, label=r'$ x + 4y \geq 4 $') plt.plot(x, y3, label=r'$ -x + y \leq 0 $') plt.xlim((0, 4.5)) plt.ylim((0, 4.5)) plt.xlabel(r'$x$') plt.ylabel(r'$y$') # 4) Fill the Feasible Region: y4 = np.minimum(y1, y3) y5 = np.maximum(y0, y2) plt.fill_between(x, y4, y5, where=y4>y5, color='grey', alpha=0.5) # Extras: # - Add a Title to the Graphic Plot: plt.title('Feasible Region for Exercise 1') # - Add a Legend to the Graphic Plot: plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0) # - Adjust the size of the Graphic Plot: plt.figure(figsize=(80,80)) # - Save the Graphic Plot, in PNG format: #plt.savefig('exercise-1.png') ##### Extra: Building the Linear Programming Model objective_function = [-1, -2] # ─┬ ─┬ # │ └┤ Coefficient for y # └────┤ Coefficient for x constraints_inequalities = [ [ 1 , 1 ], # Constraint #1 [ 1 , 4 ], # Constraint #2 [ -1 , 1 ] ] # Constraint #3 constraints_function_values = [ 3, # Function Value for Constraint #1 4, # Function Value for Constraint #2 0 ] # Function Value for Constraint #3 variable_bounds = [ (0, float("inf")), # Bounds of x (0, float("inf")) ] # Bounds of y optimization_problem = linprog(c=objective_function, A_ub=constraints_inequalities, b_ub = constraints_function_values, bounds=variable_bounds, method="revised simplex") optimization_problem optimization_problem.fun optimization_problem.success optimization_problem.x
https://github.com/qiskit-community/qiskit-dell-runtime
qiskit-community
from dell_runtime import DellRuntimeProvider from qiskit import QuantumCircuit import logging import requests import time import os RUNTIME_PROGRAM = """ # This code is part of qiskit-runtime. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. from qiskit.compiler import transpile, schedule def main( backend, user_messenger, circuits, **kwargs, ): circuits = transpile( circuits, ) if not isinstance(circuits, list): circuits = [circuits] # Compute raw results result = backend.run(circuits, **kwargs).result() user_messenger.publish(result.to_dict(), final=True) """ RUNTIME_PROGRAM_METADATA = { "max_execution_time": 600, "description": "Qiskit test program" } PROGRAM_PREFIX = 'qiskit-test' REMOTE_RUNTIME = os.getenv("SERVER_URL") def main(): print("Starting...") logging.basicConfig(level=logging.DEBUG) provider = DellRuntimeProvider() provider.remote(REMOTE_RUNTIME) program_id = provider.runtime.upload_program(RUNTIME_PROGRAM, metadata=RUNTIME_PROGRAM_METADATA) print(f"PROGRAM ID: {program_id}") qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0, 1) qc.measure([0, 1], [0, 1]) program_inputs = { 'circuits': qc, } job = provider.runtime.run(program_id, options=None, inputs=program_inputs) # job.stream_results(print) results = job.result(timeout=60) print(results) if __name__ == "__main__": main()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.mappers import ParityMapper from qiskit_nature.second_q.properties import ParticleNumber from qiskit_nature.second_q.transformers import ActiveSpaceTransformer bond_distance = 2.5 # in Angstrom # specify driver driver = PySCFDriver( atom=f"Li 0 0 0; H 0 0 {bond_distance}", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() # specify active space transformation active_space_trafo = ActiveSpaceTransformer( num_electrons=problem.num_particles, num_spatial_orbitals=3 ) # transform the electronic structure problem problem = active_space_trafo.transform(problem) # construct the parity mapper with 2-qubit reduction qubit_mapper = ParityMapper(num_particles=problem.num_particles) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms.ground_state_solvers import GroundStateEigensolver np_solver = NumPyMinimumEigensolver() np_groundstate_solver = GroundStateEigensolver(qubit_mapper, np_solver) np_result = np_groundstate_solver.solve(problem) target_energy = np_result.total_energies[0] print(np_result) from qiskit.circuit.library import EfficientSU2 ansatz = EfficientSU2(num_qubits=4, reps=1, entanglement="linear", insert_barriers=True) ansatz.decompose().draw("mpl", style="iqx") import numpy as np from qiskit.utils import algorithm_globals # fix random seeds for reproducibility np.random.seed(5) algorithm_globals.random_seed = 5 from qiskit.algorithms.optimizers import SPSA optimizer = SPSA(maxiter=100) initial_point = np.random.random(ansatz.num_parameters) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.primitives import Estimator estimator = Estimator() local_vqe = VQE( estimator, ansatz, optimizer, initial_point=initial_point, ) local_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, local_vqe) local_vqe_result = local_vqe_groundstate_solver.solve(problem) print(local_vqe_result) from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(group="open") # replace by your runtime provider backend = provider.get_backend("ibmq_qasm_simulator") # select a backend that supports the runtime from qiskit_nature.runtime import VQEClient runtime_vqe = VQEClient( ansatz=ansatz, optimizer=optimizer, initial_point=initial_point, provider=provider, backend=backend, shots=1024, measurement_error_mitigation=True, ) # use a complete measurement fitter for error mitigation runtime_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, runtime_vqe) runtime_vqe_result = runtime_vqe_groundstate_solver.solve(problem) print(runtime_vqe_result) runtime_result = runtime_vqe_result.raw_result history = runtime_result.optimizer_history loss = history["energy"] import matplotlib.pyplot as plt plt.rcParams["font.size"] = 14 # plot loss and reference value plt.figure(figsize=(12, 6)) plt.plot(loss + runtime_vqe_result.nuclear_repulsion_energy, label="Runtime VQE") plt.axhline(y=target_energy + 0.2, color="tab:red", ls=":", label="Target + 200mH") plt.axhline(y=target_energy, color="tab:red", ls="--", label="Target") plt.legend(loc="best") plt.xlabel("Iteration") plt.ylabel("Energy [H]") plt.title("VQE energy"); import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/TuomasLe/Extended-basis-encoding-and-amplitude-encoding-algorithms-for-Qiskit
TuomasLe
from qiskit import IBMQ IBMQ.load_account() %matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.circuit.library.standard_gates import RYGate from qiskit.circuit import Parameter provider = IBMQ.load_account() from qiskit import QuantumCircuit, IBMQ, execute, Aer, QuantumRegister, ClassicalRegister from qiskit.providers.ibmq import least_busy from qiskit.tools.monitor import job_monitor,backend_overview from qiskit.visualization import plot_histogram import math def parabola(l): data_ = [] for i in range(l): value = math.pow(l/2, 2) - math.pow(abs(i - l/2), 2) print(value) data_.append(value) return data_ def sine(l): data_ = [] for i in range(l): value = 1 + math.sin(((i/(l/720)) / 180) * math.pi) print(value) data_.append(value) return data_ def pi(l): the_pi = "3141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420198938095257201065485863278865936153381827968230301952035301852968995773622599413891249721775283479131515574857242454150695950829533116861727855889075098381754637464939319255060400927701671139009848824012858361603563707660104710181942955596198946767" data_ = [] for i in range(l): value = int(the_pi[i]) data_.append(value) return data_ def normalizeData(data_points): divider = 0 sum = 0 print("Amplitudes: ") for point in data_points: divider += math.pow(point, 2) divider = math.sqrt(divider) normalized = [] for i in range(len(data_points)): x = data_points[i] / divider x2 = math.pow(data_points[i] / divider, 2) print(round(x2, 3)) sum += x2 normalized.append(x) return (normalized, divider) def gen_angles(data): if len(data) > 1: new_length = int(len(data) / 2) new_data = [] for k in range(new_length): new_data.append(math.sqrt(math.pow(data[2*k], 2) + math.pow(data[2*k + 1], 2))) #print("value") #print(new_data) inner_angles:List[float] = gen_angles(new_data) angles = [] for k in range(len(new_data)): if new_data[k] != 0: inside = data[2*k + 1] / new_data[k] print(round(inside, 4)) if (data[2*k] > 0): angles.append(2 * math.asin(inside)) else: angles.append(2 * math.pi - 2 * math.asin(inside)) else: angles.append(0.0) angles = inner_angles + angles return angles else: return [] def getCtrlState(level, k): ctrl_decimal = int(abs(k - (math.pow(2, level) - 1))) ctrl_bin = str(bin(ctrl_decimal)) ctrl_str = ctrl_bin.split('b')[1].zfill(level) ctrl_str = ''.join(reversed(ctrl_str)) ### Reverse because of Qiskit's most significant bit convention return ctrl_str ### Main program pi_result = True # change to true if using pi() function data_length = 32 # this must be powers of two data_points = pi(data_length) # 2^n long data vector, can also be changed manually or using the test functions pair = normalizeData(data_points) data = pair[0] key = pair[1] print("Key") print(key) print("") print("Angles: ") angles = gen_angles(data) nqubits = int(math.log2(len(data_points))) nclassical = nqubits q = QuantumRegister(nqubits) c = ClassicalRegister(nclassical) circ = QuantumCircuit(q, c) a = Parameter('a') CCRY = RYGate(a).control(2, ctrl_state = '10') # example how to create multi-qubit controlled ry gate print("Levels:") for k in range(len(angles)): j = 0 if (k > 0): j = int(math.log2(k + 1)) # level in the binary tree print(j) if (j == 0): circ.ry(angles[k], nqubits - 1 - j) if (k == 1): circ.cry(angles[k], nqubits - 1, nqubits - 1 - j, ctrl_state = 0) elif(k == 2): circ.cry(angles[k], nqubits - 1, nqubits - 1 - j, ctrl_state = 1) elif(k > 2): ctrl = getCtrlState(j, k) CCRY = RYGate(angles[k]).control(j, ctrl_state = ctrl) qubits = [] for i in range(j + 1): qubits.append(nqubits - 1 - i) circ.append(CCRY, qubits) circ.barrier() circ.measure(q, c) circ.draw(output='mpl') provider = IBMQ.get_provider() provider.backends() local_sim_backend = Aer.get_backend('qasm_simulator') sim_backend = provider.get_backend('ibmq_qasm_simulator') real_backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= nqubits and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", real_backend) print(real_backend) job1 = execute(circ,local_sim_backend) job2 = execute(circ,sim_backend) job3 = execute(circ,real_backend) job_monitor(job3) counts1 = job1.result().get_counts() counts2 = job2.result().get_counts() counts3 = job3.result().get_counts() test_job = job2 # the job which results get printed test_counts = counts2 # the counts for the same job as above shots = test_job.result().to_dict()["results"][0]["shots"] time_taken = test_job.result().time_taken print("Time taken: ", time_taken) measured_results = [] binaries = sorted(test_counts.keys()) if (pi_result): for dict_key in binaries: binary_state = dict_key print(binary_state, end = ' | ') measured_result = math.sqrt(test_counts[''.join(binary_state)] / shots) * key measured_results.append(measured_result) print("%3.3f" % measured_result, end = ' \n') str_result = "" for k in range(len(measured_results)): if (k == 0): str_result = str_result + str(round(measured_results[k])) str_result = str_result + "." else: str_result = str_result + str(round(measured_results[k])) print(str_result) legend = ['Local simulator', 'Remote simulator', 'Real processor'] circ.draw() plot_histogram([counts1, counts2, counts3], legend=legend, bar_labels = True) the_pi = "3.141592653589793238462643383279502884197169399"
https://github.com/jayeshparashar/Bloch-sphere-
jayeshparashar
from qiskit import * import numpy as np import math from qiskit.visualization import plot_bloch_multivector, plot_state_qsphere, plot_histogram # Define a function which will return a gate equivalent to (control-Z)^n, this gate is used in a below circuit to change # the phase of control qubits by various powers of 2. def CU_Z(power) : circ = QuantumCircuit(2) circ.cz(0,1) Unitary = circ.to_gate() ret_unitary = Unitary.power(power) return ret_unitary # Define a function which will return a gate equivalent to (control-RZ(pi))^n, it is used in below circuit to change # the phase of control qubits by powers of 2, such that the control qubits carries the value of global phase introduced # by a single RZ(pi) in fourier (phase) basis. def CU_RZ(power) : circ = QuantumCircuit(2) circ.crz(np.pi, 0,1) Unitary = circ.to_gate() ret_unitary = Unitary.power(power) return ret_unitary # define a function that will convert the information from phase basis to computational basis def inv_qft(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) # you don't need this step if you apply control Ops on qubits in reversed order for j in range(n): for m in range(j): circuit.cp(-math.pi/float(2**(j-m)), m, j) circuit.h(j) # Run a circuit to calculate global phase introduced by a Rz(pi) gate nqubits = 3 qc = QuantumCircuit(nqubits + 1, nqubits) qc.h(range(nqubits)) # set control qubits to phase basis qc.x(nqubits) # comment this line to choose |0> eigen vector, it will not change the results qc.append(CU_RZ(1), [0, nqubits]) # Kickback a phase introduced by Rz(pi) times 2^0 to 0th control qubit qc.append(CU_RZ(2), [1, nqubits]) # Kickback the phase introduced by Rz(pi) times 2^1 to 1st control qubit qc.append(CU_RZ(4), [2, nqubits]) # Kickback the phase introduced by Rz(pi) times 2^2 to 2nd control qubit qc.draw() # print qubits on Bloch sphere to witness the global phase introduced by a Rz(pi) rotation bkend = Aer.get_backend('statevector_simulator') job = execute(qc, bkend) sv1 = job.result().get_statevector(qc) #print(sv1) plot_bloch_multivector(sv1) # apply inverse qft to read convert infomration coded in phase basis to computational basis inv_qft(qc, nqubits) qc.measure(range(nqubits), range(nqubits)) qc.draw() # Run circuit with qasm simulator or real quantum computer on cloud to obtain the value of global phase using IQFT # We only have to measure first three qubits from LSB as the state on MSB qubit will remain unchanged bkend = Aer.get_backend('qasm_simulator') job = execute(qc, bkend, shots=100) cnt1 = job.result().get_counts(qc) print(cnt1) max_val = max(cnt1, key=cnt1.get) max_val_dec = int(max_val, 2) print('Global Phase introduced by Rz(pi) gate is = ', (2*np.pi)/(2**nqubits) * max_val_dec, ' radians and ', (360/(2**nqubits) * max_val_dec), ' Degrees.') plot_histogram(cnt1) #### Lets run same routine with Z gate that rotate the state vector on bloch sphere by pi radians around Z axis # Run below circuit to calculate the global phase introduced by Z gate nqubits = 3 qc_z = QuantumCircuit(nqubits + 1, nqubits) qc_z.h(range(nqubits)) qc_z.x(nqubits) qc_z.append(CU_Z(1), [0, nqubits]) #Kickback the phase introduced by a Z gate times 2^0 to 0th control qubit qc_z.append(CU_Z(2), [1, nqubits]) #Kickback a phase introduced by a Z gate times 2^1 to 0th control qubit qc_z.append(CU_Z(4), [2, nqubits]) #Kickback a phase introduced by a Z gate times 2^2 to 0th control qubit qc_z.draw() # print qubits on Bloch Sphere to get the global phase introduced by a Z gate bkend = Aer.get_backend('statevector_simulator') job = execute(qc_z, bkend) sv2 = job.result().get_statevector(qc_z) #print(sv2) plot_bloch_multivector(sv2) # apply inverse qft to read convert information coded in phase basis to computational basis inv_qft(qc_z, nqubits) qc_z.measure(range(nqubits), range(nqubits)) qc_z.draw() # Run circuit with qasm simulator or real quantum computer on cloud to extract and print the value of global phase # using IQFT introduced by a Z gate, We only have to measure the first three qubits from LSB as the state on MSB qubit # will remain unchanged bkend = Aer.get_backend('qasm_simulator') job = execute(qc_z, bkend, shots=100) cnt2 = job.result().get_counts(qc_z) print(cnt2) max_val = max(cnt2, key=cnt2.get) max_val_dec = int(max_val, 2) print('Global Phase introduced by a Z gate is = ', (2*np.pi)/(2**nqubits) * max_val_dec, ' radians and ', (360/(2**nqubits) * max_val_dec), ' Degrees.') plot_histogram(cnt2) # end of program
https://github.com/kosakhro/QAOA-for-exact-cover
kosakhro
from qiskit import * from qiskit.visualization import plot_bloch_multivector from qiskit.visualization import plot_histogram import numpy as np import matplotlib.pyplot as plt import seaborn as sns IBMQ.load_account() matplotlib inline my_provider = IBMQ.get_provider() my_provider.backends() simulator = my_provider.get_backend('ibmq_5_yorktown') # Making the quantum circuit def circuitI(gamma, beta, J, h1, h2): qc = QuantumCircuit(2, 2) qc.h([0, 1]) qc.h(1) qc.cz(0,1) qc.rx(2*gamma*J, 1) qc.cz(0,1) qc.h(1) qc.i(0) qc.rz(2*gamma*h1, 0) qc.rz(2*gamma*h2, 1) qc.rx(2*beta, 0) qc.rx(2*beta, 1) qc.measure([0,1], [0,1]) return qc # Initializing the variables for C. J = 0 h1 = -0.5 h2 = -0.5 #Setting the dimesions of the pasephase. The amount of simulated points = n**2 n = 61 p = np.pi/(n-1) res = np.zeros([n, n, 4]) # Running a simulation for each point for i in range(n): qc_list = [] gamma = i*p for j in range(n): beta = j*p qc = circuitI(gamma, beta, J, h1, h2) qc_list.append(qc) transpiled_circs = transpile(qc_list, backend=simulator) job = execute(transpiled_circs, backend = simulator, shots=1000 ) for circ_index in range(len(transpiled_circs)): counts = job.result().get_counts(qc_list[circ_index]) res[i][circ_index][:] = np.array([int(counts.get('00', 0)), int(counts.get('01', 0)), int(counts.get('10', 0)), int(counts.get('11', 0))]) print(res) #Draw the current circuit qc.draw(output='mpl') transpiled_circs[0].draw(output='mpl') # Making a heatmap plot sns.heatmap(res[:, :, 3])
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse dc = pulse.DriveChannel d0, d1, d2, d3, d4 = dc(0), dc(1), dc(2), dc(3), dc(4) with pulse.build(name='pulse_programming_in') as pulse_prog: pulse.play([1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1], d0) pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], d1) pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0], d2) pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], d3) pulse.play([1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0], d4) pulse_prog.draw()
https://github.com/urwin419/QiskitChecker
urwin419
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) qc.cx(1, 0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1, 0) ### removed h gate ### return qc
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector qc = QuantumCircuit(2) qc.h(0) qc.x(1) # You can reverse the order of the qubits. from qiskit.quantum_info import DensityMatrix qc = QuantumCircuit(2) qc.h([0, 1]) qc.t(1) qc.s(0) qc.cx(0,1) matrix = DensityMatrix(qc) plot_bloch_multivector(matrix, title='My Bloch Spheres', reverse_bits=True)
https://github.com/mcoggins96/Quantum-Computing-UK-Repository
mcoggins96
print('\nShor Code') print('--------------') from qiskit import QuantumRegister from qiskit import ClassicalRegister from qiskit import QuantumCircuit, execute,IBMQ from qiskit.tools.monitor import job_monitor IBMQ.enable_account(‘ENTER API KEY HERE') provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_qasm_simulator') q = QuantumRegister(1,'q') c = ClassicalRegister(1,'c') circuit = QuantumCircuit(q,c) circuit.h(q[0]) ####error here############ circuit.x(q[0])#Bit flip error circuit.z(q[0])#Phase flip error ############################ circuit.h(q[0]) circuit.barrier(q) circuit.measure(q[0],c[0]) job = execute(circuit, backend, shots=1000) job_monitor(job) counts = job.result().get_counts() print("\n Uncorrected bit flip and phase error") print("--------------------------------------") print(counts) #####Shor code starts here ######## q = QuantumRegister(9,'q') c = ClassicalRegister(1,'c') circuit = QuantumCircuit(q,c) circuit.cx(q[0],q[3]) circuit.cx(q[0],q[6]) circuit.h(q[0]) circuit.h(q[3]) circuit.h(q[6]) circuit.cx(q[0],q[1]) circuit.cx(q[3],q[4]) circuit.cx(q[6],q[7]) circuit.cx(q[0],q[2]) circuit.cx(q[3],q[5]) circuit.cx(q[6],q[8]) circuit.barrier(q) ####error here############ circuit.x(q[0])#Bit flip error circuit.z(q[0])#Phase flip error ############################ circuit.barrier(q) circuit.cx(q[0],q[1]) circuit.cx(q[3],q[4]) circuit.cx(q[6],q[7]) circuit.cx(q[0],q[2]) circuit.cx(q[3],q[5]) circuit.cx(q[6],q[8]) circuit.ccx(q[1],q[2],q[0]) circuit.ccx(q[4],q[5],q[3]) circuit.ccx(q[8],q[7],q[6]) circuit.h(q[0]) circuit.h(q[3]) circuit.h(q[6]) circuit.cx(q[0],q[3]) circuit.cx(q[0],q[6]) circuit.ccx(q[6],q[3],q[0]) circuit.barrier(q) circuit.measure(q[0],c[0]) circuit.draw(output='mpl',filename='shorcode.png') #Draws an image of the circuit job = execute(circuit, backend, shots=1000) job_monitor(job) counts = job.result().get_counts() print("\nShor code with bit flip and phase error") print("----------------------------------------") print(counts) input()
https://github.com/acfilok96/Quantum-Computation
acfilok96
from qiskit import * from qiskit.tools.visualization import plot_bloch_multivector circuit = QuantumCircuit(1,1) circuit.x(0) simulator = Aer.get_backend('statevector_simulator') result = execute(circuit, backend=simulator).result() statevector = result.get_statevector() print(statevector) %matplotlib inline circuit.draw(output='mpl') # bloch sphere plot_bloch_multivector(statevector) # measurement circuit.measure([0],[0]) backend = Aer.get_backend('qasm_simulator') result = execute(circuit, backend=backend, shots=1024).result() counts = result.get_counts() from qiskit.tools.visualization import plot_histogram plot_histogram(counts) circuit = QuantumCircuit(1,1) circuit.x(0) simulator = Aer.get_backend('unitary_simulator') result = execute(circuit, backend=simulator).result() unitary = result.get_unitary() print(unitary) %matplotlib inline circuit.draw(output='mpl') # bloch sphere plot_bloch_multivector(unitary)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.pulse_v2 import draw, IQXDebugging from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.measure_all() qc = transpile(qc, FakeBoeblingen(), layout_method='trivial') sched = schedule(qc, FakeBoeblingen()) draw(sched, style=IQXDebugging(), backend=FakeBoeblingen())
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver() problem = driver.run() print(problem) from qiskit_nature.second_q.problems import ElectronicBasis driver.run_pyscf() problem = driver.to_problem(basis=ElectronicBasis.MO, include_dipole=True) print(problem.basis) ao_problem = driver.to_problem(basis=ElectronicBasis.AO) print(ao_problem.basis) from qiskit_nature.second_q.formats.qcschema_translator import qcschema_to_problem qcschema = driver.to_qcschema() ao_problem = qcschema_to_problem(qcschema, basis=ElectronicBasis.AO) from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema basis_transformer = get_ao_to_mo_from_qcschema(qcschema) mo_problem = basis_transformer.transform(ao_problem) print(mo_problem.basis) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/bibscore/qiskit_kindergarten
bibscore
from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, transpile, assemble from qiskit.tools.monitor import job_monitor import matplotlib as mpl import numpy as np # import basic plot tools from qiskit.visualization import plot_histogram # length of the n-bit string n = 4 constant_oracle = QuantumCircuit(n+1) constant_oracle.clear() output = np.random.randint(2) # random no. 0/1 as output if output == 1: constant_oracle.x(n) balance_oracle = QuantumCircuit(n+1) balance_oracle.clear() b_str = "1000" # implementing x-gates for i in range(len(b_str)): if b_str[i] == '1': balance_oracle.x(i) balance_oracle.barrier() # implementing cnot gates for qubit in range(n): balance_oracle.cx(qubit, n) balance_oracle.barrier() balance_oracle.draw() # implemneting x-gates for i in range (len(b_str)): if b_str[i] == '1': balance_oracle.x(i) balance_oracle.barrier() dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit = dj_circuit.compose(constant_oracle) # Repeat H-gates for qubit in range(n): dj_circuit.h(qubit) dj_circuit.barrier() # Measure for i in range(n): dj_circuit.measure(i, i) dj_circuit.draw('mpl') aer_sim = Aer.get_backend('aer_simulator') #Local Simulator shots = 1024 #No. of times the circuit is running qobj = assemble(dj_circuit, shots = shots) results = aer_sim.run(qobj).result() counts = results.get_counts() plot_histogram(counts)
https://github.com/indian-institute-of-science-qc/qiskit-aakash
indian-institute-of-science-qc
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test the EnlargeWithAncilla pass""" import unittest from qiskit import QuantumRegister, QuantumCircuit from qiskit.transpiler import Layout from qiskit.transpiler.passes import EnlargeWithAncilla from qiskit.converters import circuit_to_dag from qiskit.test import QiskitTestCase class TestEnlargeWithAncilla(QiskitTestCase): """Tests the EnlargeWithAncilla pass.""" def setUp(self): super().setUp() self.qr3 = QuantumRegister(3, "qr") circuit = QuantumCircuit(self.qr3) circuit.h(self.qr3) self.dag = circuit_to_dag(circuit) def test_no_extension(self): """There are no virtual qubits to extend.""" layout = Layout({self.qr3[0]: 0, self.qr3[1]: 1, self.qr3[2]: 2}) pass_ = EnlargeWithAncilla() pass_.property_set["layout"] = layout after = pass_.run(self.dag) qregs = list(after.qregs.values()) self.assertEqual(1, len(qregs)) self.assertEqual(self.qr3, qregs[0]) def test_with_extension(self): """There are 2 virtual qubit to extend.""" ancilla = QuantumRegister(2, "ancilla") layout = Layout( {0: self.qr3[0], 1: ancilla[0], 2: self.qr3[1], 3: ancilla[1], 4: self.qr3[2]} ) layout.add_register(ancilla) pass_ = EnlargeWithAncilla() pass_.property_set["layout"] = layout after = pass_.run(self.dag) qregs = list(after.qregs.values()) self.assertEqual(2, len(qregs)) self.assertEqual(self.qr3, qregs[0]) self.assertEqual(ancilla, qregs[1]) if __name__ == "__main__": unittest.main()
https://github.com/epelaaez/QuantumLibrary
epelaaez
# Do the necessary imports import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import IBMQ, Aer, transpile, assemble from qiskit.visualization import plot_histogram, plot_bloch_multivector, array_to_latex from qiskit.extensions import Initialize from qiskit.ignis.verification import marginal_counts from qiskit.quantum_info import random_statevector # Loading your IBM Quantum account(s) provider = IBMQ.load_account() ## SETUP # Protocol uses 3 qubits and 2 classical bits in 2 different registers qr = QuantumRegister(3, name="q") # Protocol uses 3 qubits crz = ClassicalRegister(1, name="crz") # and 2 classical bits crx = ClassicalRegister(1, name="crx") # in 2 different registers teleportation_circuit = QuantumCircuit(qr, crz, crx) def create_bell_pair(qc, a, b): qc.h(a) qc.cx(a,b) qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.draw() def alice_gates(qc, psi, a): qc.cx(psi, a) qc.h(psi) qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) ## STEP 1 create_bell_pair(teleportation_circuit, 1, 2) ## STEP 2 teleportation_circuit.barrier() # Use barrier to separate steps alice_gates(teleportation_circuit, 0, 1) teleportation_circuit.draw() def measure_and_send(qc, a, b): """Measures qubits a & b and 'sends' the results to Bob""" qc.barrier() qc.measure(a,0) qc.measure(b,1) qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.barrier() # Use barrier to separate steps alice_gates(teleportation_circuit, 0, 1) measure_and_send(teleportation_circuit, 0 ,1) teleportation_circuit.draw() def bob_gates(qc, qubit, crz, crx): qc.x(qubit).c_if(crx, 1) # Apply gates if the registers qc.z(qubit).c_if(crz, 1) # are in the state '1' qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) ## STEP 1 create_bell_pair(teleportation_circuit, 1, 2) ## STEP 2 teleportation_circuit.barrier() # Use barrier to separate steps alice_gates(teleportation_circuit, 0, 1) ## STEP 3 measure_and_send(teleportation_circuit, 0, 1) ## STEP 4 teleportation_circuit.barrier() # Use barrier to separate steps bob_gates(teleportation_circuit, 2, crz, crx) teleportation_circuit.draw() # Create random 1-qubit state psi = random_statevector(2) # Display it nicely display(array_to_latex(psi, prefix="|\\psi\\rangle =")) # Show it on a Bloch sphere plot_bloch_multivector(psi) init_gate = Initialize(psi) init_gate.label = "init" ## SETUP qr = QuantumRegister(3, name="q") # Protocol uses 3 qubits crz = ClassicalRegister(1, name="crz") # and 2 classical registers crx = ClassicalRegister(1, name="crx") qc = QuantumCircuit(qr, crz, crx) ## STEP 0 # First, let's initialize Alice's q0 qc.append(init_gate, [0]) qc.barrier() ## STEP 1 # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() ## STEP 2 # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) ## STEP 3 # Alice then sends her classical bits to Bob measure_and_send(qc, 0, 1) ## STEP 4 # Bob decodes qubits bob_gates(qc, 2, crz, crx) # Display the circuit qc.draw() sim = Aer.get_backend('aer_simulator') qc.save_statevector() out_vector = sim.run(qc).result().get_statevector() plot_bloch_multivector(out_vector)
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit qrx = QuantumRegister(3, 'x') qry = QuantumRegister(1, 'y') cr = ClassicalRegister(3, 'c') qc = QuantumCircuit(qrx, qry, cr) qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() qc.x(qry) qc.barrier() qc.h(qrx) qc.h(qry) qc.measure(qrx, cr) qc.draw("mpl")
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, QuantumRegister from qiskit.circuit.library.standard_gates import HGate qr = QuantumRegister(3) qc = QuantumCircuit(qr) c3h_gate = HGate().control(2) qc.append(c3h_gate, qr) qc.draw('mpl')
https://github.com/sanori/quantum-docker
sanori
import cirq cirq.__version__ import cirq_google print(cirq_google.Sycamore23) from cirq.contrib.svg import SVGCircuit # Create a circuit to generate a Bell State: # sqrt(2) * ( |00> + |11> ) bell_circuit = cirq.Circuit() q0, q1 = cirq.LineQubit.range(2) bell_circuit.append(cirq.H(q0)) bell_circuit.append(cirq.CNOT(q0,q1)) SVGCircuit(bell_circuit) # Initialize Simulator s=cirq.Simulator() # Simulate the circuit results=s.simulate(bell_circuit) print(results) # For sampling, we need to add a measurement at the end bell_circuit.append(cirq.measure(q0, q1, key='result')) # Sample the circuit samples=s.run(bell_circuit, repetitions=1000) # Print a histogram of results print(samples.histogram(key='result')) SVGCircuit(bell_circuit)
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test the functional Pauli rotations.""" import unittest from collections import defaultdict import numpy as np from ddt import ddt, data, unpack from qiskit.test.base import QiskitTestCase from qiskit import BasicAer, execute from qiskit.circuit import QuantumCircuit from qiskit.circuit.library import ( LinearPauliRotations, PolynomialPauliRotations, PiecewiseLinearPauliRotations, ) @ddt class TestFunctionalPauliRotations(QiskitTestCase): """Test the functional Pauli rotations.""" def assertFunctionIsCorrect(self, function_circuit, reference): """Assert that ``function_circuit`` implements the reference function ``reference``.""" num_state_qubits = function_circuit.num_qubits - function_circuit.num_ancillas - 1 num_ancilla_qubits = function_circuit.num_ancillas circuit = QuantumCircuit(num_state_qubits + 1 + num_ancilla_qubits) circuit.h(list(range(num_state_qubits))) circuit.append(function_circuit.to_instruction(), list(range(circuit.num_qubits))) backend = BasicAer.get_backend("statevector_simulator") statevector = execute(circuit, backend).result().get_statevector() probabilities = defaultdict(float) for i, statevector_amplitude in enumerate(statevector): i = bin(i)[2:].zfill(circuit.num_qubits)[num_ancilla_qubits:] probabilities[i] += np.real(np.abs(statevector_amplitude) ** 2) unrolled_probabilities = [] unrolled_expectations = [] for i, probability in probabilities.items(): x, last_qubit = int(i[1:], 2), i[0] if last_qubit == "0": expected_amplitude = np.cos(reference(x)) / np.sqrt(2**num_state_qubits) else: expected_amplitude = np.sin(reference(x)) / np.sqrt(2**num_state_qubits) unrolled_probabilities += [probability] unrolled_expectations += [np.real(np.abs(expected_amplitude) ** 2)] np.testing.assert_almost_equal(unrolled_probabilities, unrolled_expectations) @data( ([1, 0.1], 3), ([0, 0.4, 2], 2), ([1, 0.5, 0.2, -0.2, 0.4, 2.5], 5), ) @unpack def test_polynomial_function(self, coeffs, num_state_qubits): """Test the polynomial rotation.""" def poly(x): res = sum(coeff * x**i for i, coeff in enumerate(coeffs)) return res polynome = PolynomialPauliRotations(num_state_qubits, [2 * coeff for coeff in coeffs]) self.assertFunctionIsCorrect(polynome, poly) def test_polynomial_rotations_mutability(self): """Test the mutability of the linear rotations circuit.""" polynomial_rotations = PolynomialPauliRotations() with self.subTest(msg="missing number of state qubits"): with self.assertRaises(AttributeError): # no state qubits set print(polynomial_rotations.draw()) with self.subTest(msg="default setup, just setting number of state qubits"): polynomial_rotations.num_state_qubits = 2 self.assertFunctionIsCorrect(polynomial_rotations, lambda x: x / 2) with self.subTest(msg="setting non-default values"): polynomial_rotations.coeffs = [0, 1.2 * 2, 0.4 * 2] self.assertFunctionIsCorrect(polynomial_rotations, lambda x: 1.2 * x + 0.4 * x**2) with self.subTest(msg="changing of all values"): polynomial_rotations.num_state_qubits = 4 polynomial_rotations.coeffs = [1 * 2, 0, 0, -0.5 * 2] self.assertFunctionIsCorrect(polynomial_rotations, lambda x: 1 - 0.5 * x**3) @data( (2, 0.1, 0), (4, -2, 2), (1, 0, 0), ) @unpack def test_linear_function(self, num_state_qubits, slope, offset): """Test the linear rotation arithmetic circuit.""" def linear(x): return offset + slope * x linear_rotation = LinearPauliRotations(num_state_qubits, slope * 2, offset * 2) self.assertFunctionIsCorrect(linear_rotation, linear) def test_linear_rotations_mutability(self): """Test the mutability of the linear rotations circuit.""" linear_rotation = LinearPauliRotations() with self.subTest(msg="missing number of state qubits"): with self.assertRaises(AttributeError): # no state qubits set print(linear_rotation.draw()) with self.subTest(msg="default setup, just setting number of state qubits"): linear_rotation.num_state_qubits = 2 self.assertFunctionIsCorrect(linear_rotation, lambda x: x / 2) with self.subTest(msg="setting non-default values"): linear_rotation.slope = -2.3 * 2 linear_rotation.offset = 1 * 2 self.assertFunctionIsCorrect(linear_rotation, lambda x: 1 - 2.3 * x) with self.subTest(msg="changing all values"): linear_rotation.num_state_qubits = 4 linear_rotation.slope = 0.2 * 2 linear_rotation.offset = 0.1 * 2 self.assertFunctionIsCorrect(linear_rotation, lambda x: 0.1 + 0.2 * x) @data( (1, [0], [1], [0]), (2, [0, 2], [-0.5, 1], [2, 1]), (3, [0, 2, 5], [1, 0, -1], [0, 2, 2]), (2, [1, 2], [1, -1], [2, 1]), (3, [0, 1], [1, 0], [0, 1]), ) @unpack def test_piecewise_linear_function(self, num_state_qubits, breakpoints, slopes, offsets): """Test the piecewise linear rotations.""" def pw_linear(x): for i, point in enumerate(reversed(breakpoints)): if x >= point: return offsets[-(i + 1)] + slopes[-(i + 1)] * (x - point) return 0 pw_linear_rotations = PiecewiseLinearPauliRotations( num_state_qubits, breakpoints, [2 * slope for slope in slopes], [2 * offset for offset in offsets], ) self.assertFunctionIsCorrect(pw_linear_rotations, pw_linear) def test_piecewise_linear_rotations_mutability(self): """Test the mutability of the linear rotations circuit.""" pw_linear_rotations = PiecewiseLinearPauliRotations() with self.subTest(msg="missing number of state qubits"): with self.assertRaises(AttributeError): # no state qubits set print(pw_linear_rotations.draw()) with self.subTest(msg="default setup, just setting number of state qubits"): pw_linear_rotations.num_state_qubits = 2 self.assertFunctionIsCorrect(pw_linear_rotations, lambda x: x / 2) with self.subTest(msg="setting non-default values"): pw_linear_rotations.breakpoints = [0, 2] pw_linear_rotations.slopes = [-1 * 2, 1 * 2] pw_linear_rotations.offsets = [0, -1.2 * 2] self.assertFunctionIsCorrect( pw_linear_rotations, lambda x: -1.2 + (x - 2) if x >= 2 else -x ) with self.subTest(msg="changing all values"): pw_linear_rotations.num_state_qubits = 4 pw_linear_rotations.breakpoints = [1, 3, 6] pw_linear_rotations.slopes = [-1 * 2, 1 * 2, -0.2 * 2] pw_linear_rotations.offsets = [0, -1.2 * 2, 2 * 2] def pw_linear(x): if x >= 6: return 2 - 0.2 * (x - 6) if x >= 3: return -1.2 + (x - 3) if x >= 1: return -(x - 1) return 0 self.assertFunctionIsCorrect(pw_linear_rotations, pw_linear) if __name__ == "__main__": unittest.main()
https://github.com/epelaaez/QuantumLibrary
epelaaez
import numpy as np from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_bloch_multivector, array_to_latex from grader import * language(False) phi_plus = QuantumCircuit(2) phi_plus.h(0) phi_plus.cnot(0, 1) phi_plus.draw('mpl') # Let's see the result backend = Aer.get_backend('statevector_simulator') result = execute(phi_plus, backend).result().get_statevector() array_to_latex(result) phi_minus = QuantumCircuit(2) ##### ================================== # Write your solution in here. ##### ================================== phi_minus.draw('mpl') # This cell will tell you if what you did gives the correct result. # Just take it as an indication, the tests do not take into consideration every possible option # If you think that your answer is (in)correct and the grader says different, just ask me please # Don't try to tamper with the code, please :) ex1_grader(phi_minus) psi_plus = QuantumCircuit(2) ##### ================================== # Write your solution in here. ##### ================================== psi_plus.draw('mpl') ex2_grader(psi_plus) psi_minus = QuantumCircuit(2) ##### ================================== # Write your solution in here. ##### ================================== psi_minus.draw('mpl') ex3_grader(psi_minus) GHZ = QuantumCircuit(3) ##### ================================== # Write your solution in here. ##### ================================== GHZ.draw('mpl') ex4_grader(GHZ) Even = QuantumCircuit(3) ##### ================================== # Write your solution in here. ##### ================================== Even.draw('mpl') ex5_grader(Even) Odd = QuantumCircuit(3) ##### ================================== # Write your solution in here. ##### ================================== Odd.draw('mpl') ex6_grader(Odd) def measure_z_axis(qc, qubit, cbit): #Measurements have to be saved in classical bits qc.measure(qubit, cbit) def measure_x_axis(qc, qubit, cbit): ##### ================================== # Write your solution in here. ##### ================================== ex7_grader(measure_x_axis) def expectation_value_single_qubit(qc, nshots=8092): # Run the given circuit that is already measuring the selected basis backend_shots = Aer.get_backend('qasm_simulator') counts = execute(qc, backend_shots, shots=nshots).result().get_counts() #Counts is a dictionary that contains the number of zeros and the number of ones measured # This is just to make things easier in your solution if '1' not in counts.keys(): counts['1'] = 0 if '0' not in counts.keys(): counts['0'] = 0 # Get the number of times that 0 and 1 were measured n_zeros = counts['0'] n_ones = counts['1'] # Compute the probabilities p_0 = n_zeros/nshots p_1 = n_ones/nshots #OR 1-p_0 expectation_value = 1*p_0+(-1)*p_1 return expectation_value # Measure <Z> over a state that you like qc_z = QuantumCircuit(1,1) measure_z_axis(qc_z, 0, 0) print('<Z>=', expectation_value_single_qubit(qc_z)) qc_z.draw('mpl') # Measure <X> over a state that you like qc_x = QuantumCircuit(1,1) measure_x_axis(qc_x, 0, 0) print('<X>=', expectation_value_single_qubit(qc_x)) qc_x.draw('mpl') ##### ================================== # Write your solution in here. # Create bell state circuit # For each of the operators that we want to measure (ZZ, ZX, XZ and XX) create a new circuit (maybe using qc.copy()) # that measures along that axis. chsh_circuits = [] ##### ================================== chsh_circuits[0].draw('mpl') chsh_circuits[1].draw('mpl') chsh_circuits[2].draw('mpl') chsh_circuits[3].draw('mpl') # I couldn't come up with tests that would not give the answer away if you looked at the code so you are on your own here! # We can run all the circuits at the same time and then post process the data nshots = 8092 # The more shots, the less error backend_shots = Aer.get_backend('qasm_simulator') counts_list = execute(chsh_circuits, backend_shots, shots=nshots).result().get_counts() counts_list ##### ================================== # Write your solution in here. # For each of the circuits, take the counts that you got from that circuit, compute the probability # of each state and combine them together being very careful of which sign goes with which term # You might want to take some inspiration from the function expectation_value_single_qubit # If you are completely lost and don't know how to solve this, just ask ##### ================================== # If you don't know if your answer is correct you can compute the results by hand # (it's probably easier than doing this) and check if everything is working ##### ================================== # Write your solution in here. exp_AB = exp_Ab = exp_aB = exp_ab = CHSH = ##### ================================== print('Your result is <CHSH>=', CHSH) print('The correct result is <CHSH>=', 2*np.sqrt(2)) ##### ================================== # Write your solution in here. Can_entanglement_be_teleported = #Write True or False :D ##### ================================== # There is no grader for this question hehe ##### ================================== # Write your solution in here. Where_did_the_bell_pair_go = 'Write where you think they went' ##### ================================== # There is no grader for this question hehe ##### ================================== # Write your solution in here. ##### ================================== import qiskit.tools.jupyter %qiskit_version_table
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from sklearn.datasets import load_iris iris_data = load_iris() print(iris_data.DESCR) features = iris_data.data labels = iris_data.target from sklearn.preprocessing import MinMaxScaler features = MinMaxScaler().fit_transform(features) import pandas as pd import seaborn as sns df = pd.DataFrame(iris_data.data, columns=iris_data.feature_names) df["class"] = pd.Series(iris_data.target) sns.pairplot(df, hue="class", palette="tab10") from sklearn.model_selection import train_test_split from qiskit.utils import algorithm_globals algorithm_globals.random_seed = 123 train_features, test_features, train_labels, test_labels = train_test_split( features, labels, train_size=0.8, random_state=algorithm_globals.random_seed ) from sklearn.svm import SVC svc = SVC() _ = svc.fit(train_features, train_labels) # suppress printing the return value train_score_c4 = svc.score(train_features, train_labels) test_score_c4 = svc.score(test_features, test_labels) print(f"Classical SVC on the training dataset: {train_score_c4:.2f}") print(f"Classical SVC on the test dataset: {test_score_c4:.2f}") from qiskit.circuit.library import ZZFeatureMap num_features = features.shape[1] feature_map = ZZFeatureMap(feature_dimension=num_features, reps=1) feature_map.decompose().draw(output="mpl", fold=20) from qiskit.circuit.library import RealAmplitudes ansatz = RealAmplitudes(num_qubits=num_features, reps=3) ansatz.decompose().draw(output="mpl", fold=20) from qiskit.algorithms.optimizers import COBYLA optimizer = COBYLA(maxiter=100) from qiskit.primitives import Sampler sampler = Sampler() from matplotlib import pyplot as plt from IPython.display import clear_output objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) def callback_graph(weights, obj_func_eval): clear_output(wait=True) objective_func_vals.append(obj_func_eval) plt.title("Objective function value against iteration") plt.xlabel("Iteration") plt.ylabel("Objective function value") plt.plot(range(len(objective_func_vals)), objective_func_vals) plt.show() import time from qiskit_machine_learning.algorithms.classifiers import VQC vqc = VQC( sampler=sampler, feature_map=feature_map, ansatz=ansatz, optimizer=optimizer, callback=callback_graph, ) # clear objective value history objective_func_vals = [] start = time.time() vqc.fit(train_features, train_labels) elapsed = time.time() - start print(f"Training time: {round(elapsed)} seconds") train_score_q4 = vqc.score(train_features, train_labels) test_score_q4 = vqc.score(test_features, test_labels) print(f"Quantum VQC on the training dataset: {train_score_q4:.2f}") print(f"Quantum VQC on the test dataset: {test_score_q4:.2f}") from sklearn.decomposition import PCA features = PCA(n_components=2).fit_transform(features) plt.rcParams["figure.figsize"] = (6, 6) sns.scatterplot(x=features[:, 0], y=features[:, 1], hue=labels, palette="tab10") train_features, test_features, train_labels, test_labels = train_test_split( features, labels, train_size=0.8, random_state=algorithm_globals.random_seed ) svc.fit(train_features, train_labels) train_score_c2 = svc.score(train_features, train_labels) test_score_c2 = svc.score(test_features, test_labels) print(f"Classical SVC on the training dataset: {train_score_c2:.2f}") print(f"Classical SVC on the test dataset: {test_score_c2:.2f}") num_features = features.shape[1] feature_map = ZZFeatureMap(feature_dimension=num_features, reps=1) ansatz = RealAmplitudes(num_qubits=num_features, reps=3) optimizer = COBYLA(maxiter=40) vqc = VQC( sampler=sampler, feature_map=feature_map, ansatz=ansatz, optimizer=optimizer, callback=callback_graph, ) # clear objective value history objective_func_vals = [] # make the objective function plot look nicer. plt.rcParams["figure.figsize"] = (12, 6) start = time.time() vqc.fit(train_features, train_labels) elapsed = time.time() - start print(f"Training time: {round(elapsed)} seconds") train_score_q2_ra = vqc.score(train_features, train_labels) test_score_q2_ra = vqc.score(test_features, test_labels) print(f"Quantum VQC on the training dataset using RealAmplitudes: {train_score_q2_ra:.2f}") print(f"Quantum VQC on the test dataset using RealAmplitudes: {test_score_q2_ra:.2f}") from qiskit.circuit.library import EfficientSU2 ansatz = EfficientSU2(num_qubits=num_features, reps=3) optimizer = COBYLA(maxiter=40) vqc = VQC( sampler=sampler, feature_map=feature_map, ansatz=ansatz, optimizer=optimizer, callback=callback_graph, ) # clear objective value history objective_func_vals = [] start = time.time() vqc.fit(train_features, train_labels) elapsed = time.time() - start print(f"Training time: {round(elapsed)} seconds") train_score_q2_eff = vqc.score(train_features, train_labels) test_score_q2_eff = vqc.score(test_features, test_labels) print(f"Quantum VQC on the training dataset using EfficientSU2: {train_score_q2_eff:.2f}") print(f"Quantum VQC on the test dataset using EfficientSU2: {test_score_q2_eff:.2f}") print(f"Model | Test Score | Train Score") print(f"SVC, 4 features | {train_score_c4:10.2f} | {test_score_c4:10.2f}") print(f"VQC, 4 features, RealAmplitudes | {train_score_q4:10.2f} | {test_score_q4:10.2f}") print(f"----------------------------------------------------------") print(f"SVC, 2 features | {train_score_c2:10.2f} | {test_score_c2:10.2f}") print(f"VQC, 2 features, RealAmplitudes | {train_score_q2_ra:10.2f} | {test_score_q2_ra:10.2f}") print(f"VQC, 2 features, EfficientSU2 | {train_score_q2_eff:10.2f} | {test_score_q2_eff:10.2f}") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.pulse_v2 import draw from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.measure_all() qc = transpile(qc, FakeBoeblingen(), layout_method='trivial') sched = schedule(qc, FakeBoeblingen()) draw(sched, backend=FakeBoeblingen())
https://github.com/qiskit-community/qopt-best-practices
qiskit-community
from demo_src.graph import generate_demo_graph, draw_graph demo_graph = generate_demo_graph() draw_graph(demo_graph) from demo_src.map import map_graph_to_qubo qubo = map_graph_to_qubo(demo_graph) print(qubo.prettyprint()) from demo_src.map import map_qubo_to_ising cost_hamiltonian, offset = map_qubo_to_ising(qubo) print("Offset:", offset) print("Cost Function Hamiltonian:", cost_hamiltonian) from demo_src.map import map_ising_to_circuit circuit = map_ising_to_circuit(cost_hamiltonian, num_layers=1) circuit.draw('mpl') circuit.parameters # IBM Quantum devices are named after cities # For the purpose of the first part of this demo, we will # use a simulated device from the "fake_provider" from qiskit_ibm_runtime.fake_provider import FakeVigoV2 backend = FakeVigoV2() from demo_src.transpile import optimize_circuit opt_circuit = optimize_circuit(circuit, backend) opt_circuit.draw('mpl', fold=False) optimal_gamma = 5.11350346 optimal_beta = 5.52673212 candidate_circuit = opt_circuit.assign_parameters([optimal_gamma, optimal_beta]) candidate_circuit.draw('mpl', fold=False) # For the purpose of the first part of this demo, we will # use a simulated device from the "fake_provider" from qiskit_ibm_runtime.fake_provider import FakeVigoV2 from qiskit.primitives import BackendSampler backend = FakeVigoV2() sampler = BackendSampler(backend=backend) final_distribution = sampler.run(candidate_circuit, shots=int(1e4)).result().quasi_dists[0] print(final_distribution) from demo_src.post import sample_most_likely best_result = sample_most_likely(final_distribution, len(demo_graph)) print("Result bitstring:", best_result) from demo_src.post import plot_distribution plot_distribution(final_distribution) from demo_src.post import plot_result plot_result(demo_graph, best_result) with open("data/125node_example.lp", "r") as file: problem = file.read() print(problem) with open("data/125node_example_ising.txt") as input_file: for _ in range(10): print(str(next(input_file)).replace("\n", "")) team = 1 # Fill in your team here, either 1 or 2 from qiskit import qpy # QPY is the circuit serializer in Qiskit. # Load the circuits if team == 1: backend_type = "eagle" elif team == 2: backend_type = "heron" else: raise ValueError("team should be 1 or 2.") # Depth zero-circuit with open(f"data/125node_{backend_type}_depth_zero.qpy", "rb") as fd: depth_zero_circuit = qpy.load(fd)[0] # Depth one-circuit with open(f"data/125node_{backend_type}_depth_one.qpy", "rb") as fd: depth_one_circuit = qpy.load(fd)[0] depth_one_circuit.draw('mpl', fold=False) from qiskit_ibm_runtime import QiskitRuntimeService # QiskitRuntimeService.save_account(channel="ibm_quantum", token="<MY_IBM_QUANTUM_TOKEN>", overwrite=True, set_as_default=True) if team == 1: # Eagle = Osaka service = QiskitRuntimeService(channel='ibm_quantum') backend = service.get_backend('ibm_osaka') elif team == 2: # Heron = Torino service = QiskitRuntimeService(channel='ibm_quantum') backend = service.get_backend('ibm_torino') from qiskit_ibm_runtime import Sampler, Options # Since we have already done the transpilation we can skip it. options = Options() options.transpilation.skip_transpilation = True sampler = Sampler(backend=backend, options=options) depth_one_circuit.parameters depth_one_bound_circuit = depth_one_circuit.assign_parameters([0.3927, 0.3927], inplace=False) #sampler_job = sampler.run([depth_one_bound_circuit, depth_zero_circuit]) #sampler_job.job_id() #sampler_job.status() from demo_src.run import save_result # save_result(sampler_job.result(), backend_type, path="sampler_data") from demo_src.post import load_data, samples_to_objective_values, load_qp, plot_cdf import matplotlib.pyplot as plt qp, max_cut, min_cut = load_qp() depth_one_heron, depth_zero_heron, depth_one_eagle, depth_zero_eagle = load_data(qp) if team == 1: depth_zero = depth_zero_eagle depth_one = depth_one_eagle elif team ==2: depth_zero = depth_zero_heron depth_one = depth_one_heron fig, ax = plt.subplots(1, 1) plot_cdf(depth_zero, depth_one, max_cut, min_cut, ax, "Approximation ratio:") fig, ax = plt.subplots(1, 2, figsize=(15, 6)) plot_cdf(depth_zero_eagle, depth_one_eagle, max_cut, min_cut, ax[0], "Approximation ratio Eagle:") plot_cdf(depth_zero_heron, depth_one_heron, max_cut, min_cut, ax[1], "Approximation ratio Heron:")
https://github.com/KathrinKoenig/QuantumTopologicalDataAnalysis
KathrinKoenig
import numpy as np import qtda_module as qtda from qiskit.visualization import plot_histogram import matplotlib.pyplot as plt from scipy.spatial import distance_matrix from qiskit import ClassicalRegister, Aer, execute def generate_circles(): phi_values = np.linspace(0, 2*np.pi, 10) small_circle = [[np.cos(phi), np.sin(phi)] for phi in phi_values] phi_values = np.linspace(0, 2*np.pi, 12) large_circle = [[3 + 2*np.cos(phi), 2*np.sin(phi)] for phi in phi_values] return np.array(small_circle + large_circle) point_data = generate_circles() plt.scatter(point_data[:,0], point_data[:,1]) # alternatively a distance matrix (here generated from the point data for exemplification) # can be used dist_mat = distance_matrix(point_data, point_data) filtration = qtda.DataFiltration( data=point_data, # distance_matrix=dist_mat, max_dimension=4, max_edge_length=10 ) filtration.plot_persistence_diagram() n_vertices = 4 # number of qubits to represent the simplicial complex num_eval_qubits = 5 # number of numerical evaluation qubits for the QPE algorithm S0 = [(0,0,0,1),(0,0,1,0), (0,1,0,0),(1,0,0,0)] # 0-simplex: points in the graph S1 = [(0,0,1,1),(0,1,1,0),(1,1,0,0),(1,0,0,1),(1,0,1,0)] # 1-simplex: connection lines between points S2 = [(1,0,1,1)] # 2-simplex: filled triangle S3 = [] state_dict = {0: S0, 1: S1, 2: S2, 3: S3} k = 1 # order of the combinatorial Laplacian qc = qtda.QTDAalgorithm(num_eval_qubits, k, state_dict) qc.draw('mpl') qc.add_register(ClassicalRegister(num_eval_qubits)) #add classical register to measure evaluation qubits for q in qc.eval_qubits: qc.measure(q,q) shots = 1000 backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=shots) counts = job.result().get_counts(qc) dim = len(state_dict[1]) # dimension of 1-simplex space prob = counts.get("0"*num_eval_qubits)/shots # probability of eigenvalue 0 print('The number of 1-holes is', dim * prob) plot_histogram(counts) shots = 1000 num_eval_qubits = 10 data = qtda.Q_top_spectra(state_dict, num_eval_qubits, shots) spectra = data.get_spectra() for top_order in spectra.keys(): print() print('Topological order: ', top_order) print('Number of holes: ', spectra[top_order][0.0]) print('Dimension of the k-simplex subspace: ', len(data.state_dict[top_order])) print('Eigenvalues of the combinatorial laplacian with dimension of corresponding eigenspaces: ') print(spectra[top_order]) display(plot_histogram(data.get_counts()[top_order])) n_vertices = 4 S0 = [(0,0,0,1),(0,0,1,0), (0,1,0,0),(1,0,0,0)] S1 = [(0,0,1,1),(0,1,1,0),(1,1,0,0),(1,0,0,1),(1,0,1,0)] S2 = [] S3 = [] state_dict = {0: S0, 1: S1, 2: S2, 3: S3} shots = 1000 num_eval_qubits = 10 data = qtda.Q_top_spectra(state_dict, num_eval_qubits, shots) spectra = data.get_spectra() for top_order in spectra.keys(): print() print('Topological order: ', top_order) print('Number of holes: ', spectra[top_order][0.0]) print('Dimension of the k-simplex subspace: ', len(data.state_dict[top_order])) print('Eigenvalues of the combinatorial laplacian with dimension of corresponding eigenspaces: ') print(spectra[top_order]) display(plot_histogram(data.get_counts()[top_order])) import qiskit qiskit.__qiskit_version__
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.problems import BaseProblem dummy_hamiltonian = None base_problem = BaseProblem(dummy_hamiltonian) print(base_problem.properties) from qiskit_nature.second_q.properties import AngularMomentum print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Adding AngularMomentum to problem.properties...") base_problem.properties.add(AngularMomentum(2)) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Discarding AngularMomentum from problem.properties...") base_problem.properties.discard(AngularMomentum) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) from qiskit_nature.second_q.drivers import PySCFDriver es_problem = PySCFDriver().run() print(es_problem.properties.particle_number) print(es_problem.properties.angular_momentum) print(es_problem.properties.magnetization) print(es_problem.properties.electronic_dipole_moment) print(es_problem.properties.electronic_density) from qiskit_nature.second_q.properties import ElectronicDensity density = ElectronicDensity.from_orbital_occupation( es_problem.orbital_occupations, es_problem.orbital_occupations_b, ) es_problem.properties.electronic_density = density import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/intrinsicvardhan/QuantumComputingAlgos
intrinsicvardhan
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive. For more details see https://docs.quantum.ibm.com/run/primitives # result = Sampler().run(circuits).result() def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) qc.cx(1,0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set(msg).issubset({"0","1"}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1,0) qc.h(1) return qc # Charlie creates the entangled pair between Alice and Bob qc = create_bell_pair() # We'll add a barrier for visual separation qc.barrier() message = '11' qc = encode_message(qc, 1, message) qc.barrier() # Alice then sends her qubit to Bob. # After receiving qubit 0, Bob applies the recovery protocol: qc = decode_message(qc) # Finally, Bob measures his qubits to read Alice's message qc.measure_all() # Draw our output qc.draw() from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from numpy import pi qreg_q = QuantumRegister(3, 'q') creg_c0 = ClassicalRegister(1, 'c0') creg_c1 = ClassicalRegister(1, 'c1') creg_c2 = ClassicalRegister(1, 'c2') circuit = QuantumCircuit(qreg_q, creg_c0, creg_c1, creg_c2) #quantum teleportation example circuit.u(0.3, 0.2, 0.1, qreg_q[0]) #creating the first qubit change the values of theta, phi and lambda to create a different qubit circuit.h(qreg_q[1]) circuit.cx(qreg_q[1], qreg_q[2]) circuit.barrier(qreg_q) circuit.cx(qreg_q[0], qreg_q[1]) circuit.h(qreg_q[0]) circuit.measure(qreg_q[0], creg_c0[0]) circuit.measure(qreg_q[1], creg_c1[0]) circuit.z(qreg_q[2]).c_if(creg_c0, 1) circuit.x(qreg_q[2]).c_if(creg_c1, 1) circuit.measure(qreg_q[2], creg_c2[0]) circuit.draw() from qiskit_aer import Aer, AerSimulator from qiskit.compiler import assemble qc = QuantumCircuit(2) qc.h(0) qc.h(1) qc.cx(0,1) qc.h(0) qc.h(1) display(qc.draw()) qc.save_unitary() usim = Aer.get_backend('aer_simulator') qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Circuit = }\n") qc = QuantumCircuit(2) qc.cx(1,0) display(qc.draw()) qc.save_unitary() qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Circuit = }\n") qc = QuantumCircuit(2) qc.cp(pi/4, 0, 1) display(qc.draw()) # See Results: qc.save_unitary() qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Controlled-T} = \n")
https://github.com/HuangJunye/Qiskit-for-GameDev
HuangJunye
string qasmStr = "" qasmStr print(qasmStr)
https://github.com/mspronesti/qlearnkit
mspronesti
import logging import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister logger = logging.getLogger(__name__) def _map_function(x): r""" We map data feature values to :math:`\theta` and :math:`\phi` values using the following eqaution: .. math:: \phi = (x + 1) \frac{\pi}{2} where :math:`\phi` is the phase and :math:`\theta` the angle """ return (x + 1) * np.pi / 2 def _map_features(input_point, centroids, n_centroids: int): r""" Map the input point and the centroids to :math:`\theta` and :math:`\phi` values via the :func:`_map_function` method. Args: input_point: Input point to map. centroids: Array of points to map. n_centroids: Number of centroids. Returns: Tuple containing input point and centroids mapped. """ phi_centroids_list = [] theta_centroids_list = [] phi_input = _map_function(input_point[0]) theta_input = _map_function(input_point[1]) for i in range(0, n_centroids): phi_centroids_list.append(_map_function(centroids[i][0])) theta_centroids_list.append(_map_function(centroids[i][1])) return phi_input, theta_input, phi_centroids_list, theta_centroids_list def construct_circuit(input_point: np.ndarray, centroids: np.ndarray, k: int) -> QuantumCircuit: """ Apply a Hadamard to the ancillary qubit and our mapped data points. Encode data points using U3 gate. Perform controlled swap to entangle the state with the ancillary qubit Apply another Hadamard gate to the ancillary qubit. .. parsed-literal:: ┌───┐ ┌───┐ |0anc>: ┤ H ├────────────■──────┤ H ├────────M └───┘ | └───┘ ┌───┐ ┌────┐ | |0>: ───┤ H ├───┤ U3 ├───X────────── └───┘ └────┘ | ┌───┐ ┌────┐ | |0>: ───┤ H ├───┤ U3 ├───X────────── └───┘ └────┘ Args: input_point: Input point from which calculate the distance. centroids: Array of points representing the centroids to calculate the distance to k: Number of centroids Returns: The quantum circuit created """ phi_input, theta_input, phi_centroids_list, theta_centroids_list = \ _map_features(input_point, centroids, k) # We need 3 quantum registers, of size k one for a data point (input), # one for each centroid and one for each ancillary qreg_input = QuantumRegister(k, name='qreg_input') qreg_centroid = QuantumRegister(k, name='qreg_centroid') qreg_psi = QuantumRegister(k, name='qreg_psi') # Create a k bit ClassicalRegister to hold the result # of the measurements creg = ClassicalRegister(k, 'creg') # Create the quantum circuit containing our registers qc = QuantumCircuit(qreg_input, qreg_centroid, qreg_psi, creg, name='qc') for i in range(0, k): # Apply Hadamard qc.h(qreg_psi[i]) qc.h(qreg_input[i]) qc.h(qreg_centroid[i]) # Encode new point and centroid qc.u(theta_input, phi_input, 0, qreg_input[i]) qc.u(theta_centroids_list[i], phi_centroids_list[i], 0, qreg_centroid[i]) # Perform controlled swap qc.cswap(qreg_psi[i], qreg_input[i], qreg_centroid[i]) # Apply second Hadamard to ancillary qc.h(qreg_psi[i]) # Measure ancillary qc.measure(qreg_psi[i], creg[i]) return qc
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import BasicAer, transpile, QuantumRegister, ClassicalRegister, QuantumCircuit qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) qc.h(0) qc.measure(0, 0) qc.x(0).c_if(cr, 0) qc.measure(0, 0) qc.draw('mpl')
https://github.com/hritiksauw199/Qiskit-textbook-solutions
hritiksauw199
import numpy as np from numpy import pi from qiskit import QuantumCircuit, transpile, assemble, Aer, IBMQ from qiskit.providers.ibmq import least_busy from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram, plot_bloch_multivector def qft(circuit, n): """QFT on the first n qubits in circuit""" qft_rotations(circuit, n) swap_registers(circuit, n) return circuit def qft_rotations(circuit, n): if n == 0: # Exit function if circuit is empty return circuit n -= 1 # Indexes start from 0 circuit.h(n) # Apply the H-gate to the most significant qubit for qubit in range(n): # For each less significant qubit, we need to do a # smaller-angled controlled rotation: circuit.cp(pi/2**(n-qubit), qubit, n) # At the end of our function, we call the same function again on # the next qubits (we reduced n by one earlier in the function) qft_rotations(circuit, n) def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def inverse_qft(circuit, n): """Does the inverse QFT on the first n qubits in circuit""" # First we create a QFT circuit of the correct size: qft_circ = qft(QuantumCircuit(n), n) # Then we take the inverse of this circuit invqft_circ = qft_circ.inverse() # And add it to the first n qubits in our existing circuit circuit.append(invqft_circ, circuit.qubits[:n]) return circuit.decompose() # .decompose() allows us to see the individual gates # Putting the qubit in the state |4> nqubits = 3 number = 4 qc = QuantumCircuit(nqubits) for qubit in range(nqubits): qc.h(qubit) qc.p(number*pi/4,0) qc.p(number*pi/2,1) qc.p(number*pi,2) qc.draw() qc_init = qc.copy() qc_init.save_statevector() sim = Aer.get_backend("aer_simulator") statevector = sim.run(qc_init).result().get_statevector() plot_bloch_multivector(statevector) qc = inverse_qft(qc, nqubits) qc.measure_all() qc.draw() # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to nqubits IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= nqubits and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) shots = 1024 transpiled_qc = transpile(qc, backend, optimization_level=3) job = backend.run(transpiled_qc, shots=shots) job_monitor(job) counts = job.result().get_counts() plot_histogram(counts) # Putting the qubit in the state |4> nqubits = 3 number = 3 qc = QuantumCircuit(nqubits) for qubit in range(nqubits): qc.h(qubit) qc.p(number*pi/4,0) qc.p(number*pi/2,1) qc.p(number*pi,2) qc.draw() qc_init = qc.copy() qc_init.save_statevector() sim = Aer.get_backend("aer_simulator") statevector = sim.run(qc_init).result().get_statevector() plot_bloch_multivector(statevector) qc = inverse_qft(qc, nqubits) qc.measure_all() qc.draw() # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to nqubits IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= nqubits and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) shots = 1024 transpiled_qc = transpile(qc, backend, optimization_level=3) job = backend.run(transpiled_qc, shots=shots) job_monitor(job) counts = job.result().get_counts() plot_histogram(counts)
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-function-docstring """Tests basic functionality of the sequence function""" import unittest from qiskit import QuantumCircuit, pulse from qiskit.compiler import sequence, transpile, schedule from qiskit.pulse.transforms import pad from qiskit.providers.fake_provider import FakeParis from qiskit.test import QiskitTestCase class TestSequence(QiskitTestCase): """Test sequence function.""" def setUp(self): super().setUp() self.backend = FakeParis() def test_sequence_empty(self): self.assertEqual(sequence([], self.backend), []) def test_transpile_and_sequence_agree_with_schedule(self): qc = QuantumCircuit(2, name="bell") qc.h(0) qc.cx(0, 1) qc.measure_all() sc = transpile(qc, self.backend, scheduling_method="alap") actual = sequence(sc, self.backend) expected = schedule(transpile(qc, self.backend), self.backend) self.assertEqual(actual, pad(expected)) def test_transpile_and_sequence_agree_with_schedule_for_circuit_with_delay(self): qc = QuantumCircuit(1, 1, name="t2") qc.h(0) qc.delay(500, 0, unit="ns") qc.h(0) qc.measure(0, 0) sc = transpile(qc, self.backend, scheduling_method="alap") actual = sequence(sc, self.backend) expected = schedule(transpile(qc, self.backend), self.backend) self.assertEqual( actual.exclude(instruction_types=[pulse.Delay]), expected.exclude(instruction_types=[pulse.Delay]), ) @unittest.skip("not yet determined if delays on ancilla should be removed or not") def test_transpile_and_sequence_agree_with_schedule_for_circuits_without_measures(self): qc = QuantumCircuit(2, name="bell_without_measurement") qc.h(0) qc.cx(0, 1) sc = transpile(qc, self.backend, scheduling_method="alap") actual = sequence(sc, self.backend) expected = schedule(transpile(qc, self.backend), self.backend) self.assertEqual(actual, pad(expected))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import matplotlib.pyplot as plt import itertools plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts # Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z) from qiskit.opflow import Zero, One, I, X, Y, Z from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer from qiskit.providers.aer import QasmSimulator from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter # Import QREM package from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter # Import mitiq for zne import mitiq # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.quantum_info import state_fidelity # Suppress warnings import warnings warnings.filterwarnings('ignore') def trotter_gate(dt, to_instruction = True): qc = QuantumCircuit(2) qc.rx(2*dt,0) qc.rz(2*dt,1) qc.h(1) qc.cx(1,0) qc.rz(-2*dt, 0) qc.rx(-2*dt, 1) qc.rz(2*dt, 1) qc.cx(1,0) qc.h(1) qc.rz(2*dt, 0) return qc.to_instruction() if to_instruction else qc trotter_gate(np.pi / 6, to_instruction=False).draw("mpl") # Combine subcircuits into a single multiqubit gate representing a single trotter step num_qubits = 3 # The final time of the state evolution target_time = np.pi # Parameterize variable t to be evaluated at t=pi later dt = Parameter('t') # Convert custom quantum circuit into a gate Trot_gate = trotter_gate(dt) from qiskit.test.mock import FakeJakarta backend = FakeJakarta() # backend = Aer.get_backend("qasm_simulator") # backend = provider.get_backend("ibmq_jakarta") jobs = [] st_qcs_list = [] shots = 1 << 13 # Number of trotter steps trotter_steps = 120 ### CAN BE >= 4 for num_steps in range(1, trotter_steps + 1, 10): print("trotter step: ", num_steps) # Initialize quantum circuit for 3 qubits qr = QuantumRegister(7) qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>) qc.x([5]) # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) # Simulate time evolution under H_heis3 Hamiltonian for _ in range(num_steps): qc.append(Trot_gate, [qr[3], qr[5]]) qc.cx(qr[3], qr[1]) qc.cx(qr[5], qr[3]) # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({dt: target_time/num_steps}) t3_qc = transpile(qc, optimization_level=3, basis_gates=["sx", "cx", "rz"]) # Generate state tomography circuits to evaluate fidelity of simulation st_qcs = state_tomography_circuits(t3_qc, [qr[1], qr[3], qr[5]]) st_qcs_list.append(st_qcs) # execute job = execute(st_qcs, backend, shots=shots) print('Job ID', job.job_id()) jobs.append(job) print() # QREM qr = QuantumRegister(num_qubits) meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3) cal_results = cal_job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') results = [] for job in jobs: results.append( job.result() ) mit_results = [] for job in jobs: mit_results.append( meas_fitter.filter.apply(job.result()) ) len(results), len(mit_results) # Compute the state tomography based on the st_qcs quantum circuits and the results from those ciricuits def state_tomo(result, st_qcs): # The expected final state; necessary to determine state tomography fidelity target_state = (One^One^Zero).to_matrix() # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) # Fit state tomography results tomo_fitter = StateTomographyFitter(result, st_qcs) rho_fit = tomo_fitter.fit(method='lstsq') # Compute fidelity fid = state_fidelity(rho_fit, target_state) return fid # Compute tomography fidelities for each repetition raw_fids = [] for result in results: fid = state_tomo(result, st_qcs) raw_fids.append(fid) # print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids))) # Compute tomography fidelities for each repetition fids = [] for result in mit_results: fid = state_tomo(result, st_qcs) fids.append(fid) # print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids))) plt.clf() plt.title("fidelity with QREM") plt.plot(range(1, trotter_steps + 1, 10), raw_fids) plt.plot(range(1, trotter_steps + 1, 10), fids) plt.xlabel("number of trotter steps") plt.ylabel("fidelity") for i, fid in enumerate(raw_fids): print(i+1, fid) for i, fid in enumerate(fids): print(i+1, fid) st_qcs_list[-1][-1].draw("mpl") st_qcs_list[-2][-1].draw("mpl")
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/soultanis/Quantum-SAT-Solver
soultanis
# Import the Qiskit SDK. from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import available_backends, execute, Aer from qiskit.tools.visualization import plot_histogram, circuit_drawer, plot_state # Define the number of n-qbits. n = 6 # Create a Quantum Register with n-qbits. q = QuantumRegister(n) # Create a Classical Register with n-bits. c = ClassicalRegister(n) # Create a Quantum Circuit qc = QuantumCircuit(q, c) # Init with |1> qc.x(q[0]) qc.x(q[1]) # Add H-gate to get superposition. qc.h(q[0]) qc.h(q[1]) # Apply the oracle 11. qc.cx(q[0],q[1],q[2]) qc.x(q[0]) qc.x(q[1]) qc.cx(q[0],q[1],q[3]) qc.x(q[0]) qc.x(q[1]) qc.x(q[0]) qc.cx(q[0],q[4]) qc.x(q[0]) qc.x(q[2]) qc.x(q[3]) qc.x(q[4]) qc.x(q[5]) qc.cx(q[2],q[3],q[4],q[5]) qc.x(q[2]) qc.x(q[3]) qc.x(q[4]) qc.x(q[5]) qc.z(q[5]) qc.x(q[2]) qc.x(q[3]) qc.x(q[4]) qc.x(q[5]) qc.cx(q[2],q[3],q[4],q[5]) qc.x(q[2]) qc.x(q[3]) qc.x(q[4]) qc.x(q[5]) qc.x(q[0]) qc.cx(q[0],q[4]) qc.x(q[0]) qc.x(q[0]) qc.x(q[1]) qc.cx(q[0],q[1],q[3]) qc.x(q[0]) qc.x(q[1]) qc.cx(q[0],q[1],q[2]) # Apply the grover-algorithm 11 # Measure qubit to bit. . qc.measure(q, c) # Get Aer backend. backend_sim = Aer.get_backend('qasm_simulator') # Compile and run the Quantum circuit on a simulator backend. sim_result1 = execute(qc, backend_sim, shots=1000).result() counts1 = sim_result1.get_counts(qc) # Show the results as text and plot. print("Simulation: ", sim_result1) print("Output: ", counts1) plot_histogram(counts1) circuit_drawer(qc)
https://github.com/Juan-Varela11/BNL_2020_Summer_Internship
Juan-Varela11
from qiskit.aqua.operators import WeightedPauliOperator from qiskit.chemistry import FermionicOperator from qiskit.chemistry.drivers import PySCFDriver, UnitsType from qiskit.aqua.components.initial_states import Zero from qiskit.chemistry.components.initial_states import HartreeFock from qiskit.chemistry.components.variational_forms import UCCSD from qiskit.aqua.operators import Z2Symmetries from qiskit.aqua.components.variational_forms import RY, RYRZ, swaprz from qiskit import BasicAer from qiskit.aqua.components.optimizers import COBYLA, L_BFGS_B, SLSQP import numpy as np from qiskit.aqua import QuantumInstance, aqua_globals from qiskit.aqua.algorithms.adaptive import VQE from qiskit.aqua.algorithms.classical import ExactEigensolver import pylab import matplotlib.pyplot as plt pauli_dict = { 'paulis': [{"coeff": {"imag": 0.0, "real": -1.052373245772859}, "label": "II"}, {"coeff": {"imag": 0.0, "real": 0.39793742484318045}, "label": "ZI"}, {"coeff": {"imag": 0.0, "real": -0.39793742484318045}, "label": "IZ"}, {"coeff": {"imag": 0.0, "real": -0.01128010425623538}, "label": "ZZ"}, {"coeff": {"imag": 0.0, "real": 0.18093119978423156}, "label": "XX"} ] } qubit_op = WeightedPauliOperator.from_dict(pauli_dict) num_qubits = qubit_op.num_qubits print('Number of qubits: {}'.format(num_qubits)) # using driver to get fermionic Hamiltonian # PySCF example driver = PySCFDriver(atom='Li .0 .0 .0; H .0 .0 1.6', unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g') molecule = driver.run() # please be aware that the idx here with respective to original idx freeze_list = [0] remove_list = [-3, -2] # negative number denotes the reverse order map_type = 'parity' h1 = molecule.one_body_integrals h2 = molecule.two_body_integrals nuclear_repulsion_energy = molecule.nuclear_repulsion_energy num_particles = molecule.num_alpha + molecule.num_beta num_spin_orbitals = molecule.num_orbitals * 2 print("HF energy: {}".format(molecule.hf_energy - molecule.nuclear_repulsion_energy)) print("# of electrons: {}".format(num_particles)) print("# of spin orbitals: {}".format(num_spin_orbitals)) # prepare full idx of freeze_list and remove_list # convert all negative idx to positive remove_list = [x % molecule.num_orbitals for x in remove_list] freeze_list = [x % molecule.num_orbitals for x in freeze_list] # update the idx in remove_list of the idx after frozen, since the idx of orbitals are changed after freezing remove_list = [x - len(freeze_list) for x in remove_list] remove_list += [x + molecule.num_orbitals - len(freeze_list) for x in remove_list] freeze_list += [x + molecule.num_orbitals for x in freeze_list] # prepare fermionic hamiltonian with orbital freezing and eliminating, and then map to qubit hamiltonian # and if PARITY mapping is selected, reduction qubits energy_shift = 0.0 qubit_reduction = True if map_type == 'parity' else False ferOp = FermionicOperator(h1=h1, h2=h2) if len(freeze_list) > 0: ferOp, energy_shift = ferOp.fermion_mode_freezing(freeze_list) num_spin_orbitals -= len(freeze_list) num_particles -= len(freeze_list) if len(remove_list) > 0: ferOp = ferOp.fermion_mode_elimination(remove_list) num_spin_orbitals -= len(remove_list) qubit_op = ferOp.mapping(map_type=map_type) qubit_op = Z2Symmetries.two_qubit_reduction(qubit_op, num_particles) if qubit_reduction else qubitOp qubit_op.chop(10**-10) # print(qubit_op.print_operators()) print(qubit_op) print(qubit_op.num_qubits) num_qubits = qubit_op.num_qubits init_state_UCCSD = HartreeFock(qubit_op.num_qubits, num_spin_orbitals, num_particles, map_type, qubit_reduction) init_state_Zero = Zero(num_qubits) UCCSD_var_form = UCCSD(num_qubits,depth=1, num_orbitals=num_spin_orbitals,num_particles=num_particles, initial_state=init_state_UCCSD) ## Some code that extract the variational form. Ideally it will draw it out as well. init_state = Zero(num_qubits) var_form = RY(num_qubits, initial_state=init_state_Zero) backend = BasicAer.get_backend('statevector_simulator') optimizers = [COBYLA, SLSQP] converge_cnts = np.empty([len(optimizers)], dtype=object) converge_vals = np.empty([len(optimizers)], dtype=object) param_vals = np.empty([len(optimizers)], dtype=object) num_qubits = qubit_op.num_qubits for i in range(len(optimizers)): aqua_globals.random_seed = 250 optimizer = optimizers[i]() print('\rOptimizer: {} '.format(type(optimizer).__name__), end='') counts = [] values = [] params = [] def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) params.append(parameters) algo = VQE(qubit_op, UCCSD_var_form, optimizer, callback=store_intermediate_result) quantum_instance = QuantumInstance(backend=backend) algo_result = algo.run(quantum_instance) converge_cnts[i] = np.asarray(counts) converge_vals[i] = np.asarray(values) param_vals[i] = np.asarray(params) print('\rOptimization complete '); ee = ExactEigensolver(qubit_op) result = ee.run() ref = result['energy'] print('Reference value: {}'.format(ref)) plt.figure(figsize=(10,5)) for i in range(len(optimizers)): plt.plot(converge_cnts[i], abs(ref - converge_vals[i]), label=optimizers[i].__name__) plt.xlabel('Eval count') plt.ylabel('Energy difference from solution reference value') plt.title('Energy convergence for various optimizers') plt.yscale('log') plt.legend(loc='upper right') optimizers = [COBYLA, SLSQP] converge_cnts = np.empty([len(optimizers)], dtype=object) converge_vals = np.empty([len(optimizers)], dtype=object) param_vals = np.empty([len(optimizers)], dtype=object) num_qubits = qubit_op.num_qubits for i in range(len(optimizers)): aqua_globals.random_seed = 250 optimizer = optimizers[i]() print('\rOptimizer: {} '.format(type(optimizer).__name__), end='') counts = [] values = [] params = [] def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) params.append(parameters) algo = VQE(qubit_op, var_form, optimizer, callback=store_intermediate_result) quantum_instance = QuantumInstance(backend=backend) algo_result = algo.run(quantum_instance) converge_cnts[i] = np.asarray(counts) converge_vals[i] = np.asarray(values) param_vals[i] = np.asarray(params) print('\rOptimization complete '); test = 0 interesting_pt = param_vals[1][test] circuit = algo.construct_circuit(interesting_pt) circuit[0].draw() ee = ExactEigensolver(qubit_op) result = ee.run() ref = result['energy'] print('Reference value: {}'.format(ref)) plt.figure(figsize=(10,5)) for i in range(len(optimizers)): plt.plot(converge_cnts[i], abs(ref - converge_vals[i]), label=optimizers[i].__name__) plt.xlabel('Eval count') plt.ylabel('Energy difference from solution reference value') plt.title('Energy convergence for various optimizers') plt.yscale('log') plt.legend(loc='upper right')
https://github.com/JoelHBierman/SSVQE
JoelHBierman
# This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import numpy as np import textwrap from typing import Union from functools import partial from qiskit import QuantumCircuit from qiskit.opflow import OperatorBase, ListOp, PrimitiveOp, PauliOp from qiskit.opflow import I, Z from qiskit.circuit.library import TwoLocal from qiskit.algorithms.optimizers import Optimizer from qiskit.utils import QuantumInstance from qiskit.providers import BaseBackend from volta.observables import sample_hamiltonian class SSVQE(object): """Subspace-search variational quantum eigensolver for excited states algorithm class. Based on https://arxiv.org/abs/1810.09434 """ def __init__( self, hamiltonian: Union[OperatorBase, ListOp, PrimitiveOp, PauliOp], ansatz: QuantumCircuit, backend: Union[BaseBackend, QuantumInstance], optimizer: Optimizer, n_excited: int, debug: bool = False, ) -> None: """Initialize the class. Args: hamiltonian (Union[OperatorBase, ListOp, PrimitiveOp, PauliOp]): Hamiltonian constructed using qiskit's aqua operators. ansatz (QuantumCircuit): Anstaz that you want to run VQD. optimizer (qiskit.aqua.components.optimizers.Optimizer): Classical Optimizers from aqua components. backend (Union[BaseBackend, QuantumInstance]): Backend for running the algorithm. """ # Input parameters self.hamiltonian = hamiltonian self.n_qubits = hamiltonian.num_qubits self.optimizer = optimizer self.backend = backend # Helper Parameters self.ansatz = ansatz self.n_parameters = self._get_num_parameters self._debug = debug self._ansatz_1_params = None self._first_optimization = False self._n_excited = n_excited # Running inate functions self._inate_optimizer_run() def _create_blank_circuit(self) -> list: return [QuantumCircuit(self.n_qubits) for _ in range(self._n_excited)] def _copy_unitary(self, list_states: list) -> list: out_states = [] for state in list_states: out_states.append(state.copy()) return out_states def _apply_initialization(self, list_states: list) -> None: for ind, state in enumerate(list_states): b = bin(ind)[2:] if len(b) != self.n_qubits: b = "0" * (self.n_qubits - len(b)) + b spl = textwrap.wrap(b, 1) for qubit, val in enumerate(spl): if val == "1": state.x(qubit) @property def _get_num_parameters(self) -> int: """Get the number of parameters in a given ansatz. Returns: int: Number of parameters of the given ansatz. """ return len(self.ansatz.parameters) def _apply_varform_params(self, ansatz, params: list): """Get an hardware-efficient ansatz for n_qubits given parameters. """ # Define variational Form var_form = ansatz # Get Parameters from the variational form var_form_params = sorted(var_form.parameters, key=lambda p: p.name) # Check if the number of parameters is compatible assert len(var_form_params) == len( params ), "The number of parameters don't match" # Create a dictionary with the parameters and values param_dict = dict(zip(var_form_params, params)) # Assing those values for the ansatz wave_function = var_form.assign_parameters(param_dict) return wave_function def _apply_ansatz(self, list_states: list, name: str = None) -> None: for states in list_states: if name: self.ansatz.name = name states.append(self.ansatz, range(self.n_qubits)) def _construct_states(self): circuit = self._create_blank_circuit() self._apply_initialization(circuit) self._apply_ansatz(circuit) return circuit def _cost_function_1(self, params: list) -> float: """Evaluate the first cost function of SSVQE. Args: params (list): Parameter values for the ansatz. Returns: float: Cost function value. """ # Construct states states = self._construct_states() cost = 0 w = np.arange(len(states), 0, -1) for i, state in enumerate(states): qc = self._apply_varform_params(state, params) # Hamiltonian hamiltonian_eval = sample_hamiltonian( hamiltonian=self.hamiltonian, ansatz=qc, backend=self.backend ) cost += w[i] * hamiltonian_eval return cost def _inate_optimizer_run(self): # Random initialization params = np.random.rand(self.n_parameters) optimal_params, energy, n_iters = self.optimizer.optimize( num_vars=self.n_parameters, objective_function=self._cost_function_1, initial_point=params, ) self._ansatz_1_params = optimal_params self._first_optimization = True def _cost_excited_state(self, ind: int, params: list): cost = 0 # Construct states states = self._construct_states() # Define Ansatz qc = self._apply_varform_params(states[ind], params) # Hamiltonian hamiltonian_eval = sample_hamiltonian( hamiltonian=self.hamiltonian, ansatz=qc, backend=self.backend ) cost += hamiltonian_eval return cost, qc def run(self, index: int) -> (float, QuantumCircuit): """Run SSVQE for a given index. Args: index(int): Index of the given excited state. Returns: Energy: Energy of such excited state. State: State for such energy. """ energy, state = self._cost_excited_state(index, self._ansatz_1_params) return energy, state if __name__ == "__main__": import qiskit from qiskit import BasicAer optimizer = qiskit.algorithms.optimizers.COBYLA(maxiter=100) backend = QuantumInstance( backend=BasicAer.get_backend("qasm_simulator"), shots=10000 ) hamiltonian = 1 / 2 * (Z ^ I) + 1 / 2 * (Z ^ Z) ansatz = TwoLocal(hamiltonian.num_qubits, ["ry", "rz"], "cx", reps=1) algo = SSVQE(hamiltonian, ansatz, backend, optimizer) energy, state = algo.run(1) print(energy) print(state)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub="ibm-q", group="open", project="main") program_id = "qaoa" qaoa_program = provider.runtime.program(program_id) print(f"Program name: {qaoa_program.name}, Program id: {qaoa_program.program_id}") print(qaoa_program.parameters()) import numpy as np from qiskit.tools import job_monitor from qiskit.opflow import PauliSumOp, Z, I from qiskit.algorithms.optimizers import SPSA # Define the cost operator to run. op = ( (Z ^ Z ^ I ^ I ^ I) - (I ^ I ^ Z ^ Z ^ I) + (I ^ I ^ Z ^ I ^ Z) - (Z ^ I ^ Z ^ I ^ I) - (I ^ Z ^ Z ^ I ^ I) + (I ^ Z ^ I ^ Z ^ I) + (I ^ I ^ I ^ Z ^ Z) ) # SPSA helps deal with noisy environments. optimizer = SPSA(maxiter=100) # We will run a depth two QAOA. reps = 2 # The initial point for the optimization, chosen at random. initial_point = np.random.random(2 * reps) # The backend that will run the programm. options = {"backend_name": "ibmq_qasm_simulator"} # The inputs of the program as described above. runtime_inputs = { "operator": op, "reps": reps, "optimizer": optimizer, "initial_point": initial_point, "shots": 2**13, # Set to True when running on real backends to reduce circuit # depth by leveraging swap strategies. If False the # given optimization_level (default is 1) will be used. "use_swap_strategies": False, # Set to True when optimizing sparse problems. "use_initial_mapping": False, # Set to true when using echoed-cross-resonance hardware. "use_pulse_efficient": False, } job = provider.runtime.run( program_id=program_id, options=options, inputs=runtime_inputs, ) job_monitor(job) print(f"Job id: {job.job_id()}") print(f"Job status: {job.status()}") result = job.result() from collections import defaultdict def op_adj_mat(op: PauliSumOp) -> np.array: """Extract the adjacency matrix from the op.""" adj_mat = np.zeros((op.num_qubits, op.num_qubits)) for pauli, coeff in op.primitive.to_list(): idx = tuple([i for i, c in enumerate(pauli[::-1]) if c == "Z"]) # index of Z adj_mat[idx[0], idx[1]], adj_mat[idx[1], idx[0]] = np.real(coeff), np.real(coeff) return adj_mat def get_cost(bit_str: str, adj_mat: np.array) -> float: """Return the cut value of the bit string.""" n, x = len(bit_str), [int(bit) for bit in bit_str[::-1]] cost = 0 for i in range(n): for j in range(n): cost += adj_mat[i, j] * x[i] * (1 - x[j]) return cost def get_cut_distribution(result) -> dict: """Extract the cut distribution from the result. Returns: A dict of cut value: probability. """ adj_mat = op_adj_mat(PauliSumOp.from_list(result["inputs"]["operator"])) state_results = [] for bit_str, amp in result["eigenstate"].items(): state_results.append((bit_str, get_cost(bit_str, adj_mat), amp**2 * 100)) vals = defaultdict(int) for res in state_results: vals[res[1]] += res[2] return dict(vals) import matplotlib.pyplot as plt cut_vals = get_cut_distribution(result) fig, axs = plt.subplots(1, 2, figsize=(14, 5)) axs[0].plot(result["optimizer_history"]["energy"]) axs[1].bar(list(cut_vals.keys()), list(cut_vals.values())) axs[0].set_xlabel("Energy evaluation number") axs[0].set_ylabel("Energy") axs[1].set_xlabel("Cut value") axs[1].set_ylabel("Probability") from qiskit_optimization.runtime import QAOAClient from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization import QuadraticProgram qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) qaoa_mes = QAOAClient( provider=provider, backend=provider.get_backend("ibmq_qasm_simulator"), reps=2, alpha=0.75 ) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(qubo) print(result.prettyprint()) from qiskit.transpiler import PassManager from qiskit.circuit.library.standard_gates.equivalence_library import ( StandardEquivalenceLibrary as std_eqlib, ) from qiskit.transpiler.passes import ( Collect2qBlocks, ConsolidateBlocks, UnrollCustomDefinitions, BasisTranslator, Optimize1qGatesDecomposition, ) from qiskit.transpiler.passes.calibration.builders import RZXCalibrationBuilderNoEcho from qiskit.transpiler.passes.optimization.echo_rzx_weyl_decomposition import ( EchoRZXWeylDecomposition, ) from qiskit.test.mock import FakeBelem backend = FakeBelem() inst_map = backend.defaults().instruction_schedule_map channel_map = backend.configuration().qubit_channel_mapping rzx_basis = ["rzx", "rz", "x", "sx"] pulse_efficient = PassManager( [ # Consolidate consecutive two-qubit operations. Collect2qBlocks(), ConsolidateBlocks(basis_gates=["rz", "sx", "x", "rxx"]), # Rewrite circuit in terms of Weyl-decomposed echoed RZX gates. EchoRZXWeylDecomposition(backend.defaults().instruction_schedule_map), # Attach scaled CR pulse schedules to the RZX gates. RZXCalibrationBuilderNoEcho( instruction_schedule_map=inst_map, qubit_channel_mapping=channel_map ), # Simplify single-qubit gates. UnrollCustomDefinitions(std_eqlib, rzx_basis), BasisTranslator(std_eqlib, rzx_basis), Optimize1qGatesDecomposition(rzx_basis), ] ) from qiskit import QuantumCircuit circ = QuantumCircuit(3) circ.h([0, 1, 2]) circ.rzx(0.5, 0, 1) circ.swap(0, 1) circ.cx(2, 1) circ.rz(0.4, 1) circ.cx(2, 1) circ.rx(1.23, 2) circ.cx(2, 1) circ.draw("mpl") pulse_efficient.run(circ).draw("mpl", fold=False) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/shantomborah/Quantum-Algorithms
shantomborah
import numpy as np import matplotlib.pyplot as plt from qiskit import QuantumCircuit from qiskit import QuantumRegister from qiskit.quantum_info import Operator from qiskit.circuit.library.standard_gates import XGate class ThreeQubitCode: def __init__(self): # Initialize Registers self.code = QuantumRegister(3, name="code") self.syndrm = QuantumRegister(2, name="syndrome") # Build Circuit Components self.encoder_ckt = self.build_encoder() self.syndrome_ckt = self.build_syndrome() self.correction_ckt = self.build_correction() # Build Noisy Channel self.noise_ckt = QuantumCircuit(self.code, self.syndrm) self.noise_ckt.unitary(Operator(np.eye(2)), [self.code[0]], label='noise') self.noise_ckt.unitary(Operator(np.eye(2)), [self.code[1]], label='noise') self.noise_ckt.unitary(Operator(np.eye(2)), [self.code[2]], label='noise') # Compose Full Circuit circ = QuantumCircuit(self.code, self.syndrm) circ.barrier() self.circuit = self.encoder_ckt + circ + self.noise_ckt + circ + self.syndrome_ckt + circ + self.correction_ckt def build_encoder(self): # Build Encoder Circuit circ = QuantumCircuit(self.code, self.syndrm, name="Encoder Circuit") circ.cx(self.code[0], self.code[1]) circ.cx(self.code[0], self.code[2]) return circ def build_syndrome(self): # Build Syndrome Circuit circ = QuantumCircuit(self.code, self.syndrm, name="Syndrome Circuit") circ.h(self.syndrm) circ.barrier() circ.cz(self.syndrm[1], self.code[2]) circ.cz(self.syndrm[1], self.code[1]) circ.cz(self.syndrm[0], self.code[1]) circ.cz(self.syndrm[0], self.code[0]) circ.barrier() circ.h(self.syndrm) return circ def build_correction(self): # Build Correction Circuit circ = QuantumCircuit(self.code, self.syndrm) circ.append(XGate().control(2, ctrl_state=2), [self.syndrm[0], self.syndrm[1], self.code[2]]) circ.append(XGate().control(2, ctrl_state=3), [self.syndrm[0], self.syndrm[1], self.code[1]]) circ.append(XGate().control(2, ctrl_state=1), [self.syndrm[0], self.syndrm[1], self.code[0]]) return circ def visualize(self): # Draw Circuits self.encoder_ckt.draw('mpl', reverse_bits=True).suptitle('Encoder Circuit', fontsize=16) self.syndrome_ckt.draw('mpl', reverse_bits=True).suptitle('Syndrome Circuit', fontsize=16) self.correction_ckt.draw('mpl', reverse_bits=True).suptitle('Error Correction', fontsize=16) self.circuit.draw('mpl', reverse_bits=True).suptitle('Three Qubit Error Correction', fontsize=16) plt.show()
https://github.com/if-quantum/pairwise-tomography
if-quantum
from qiskit import execute, Aer from qiskit import QuantumCircuit, QuantumRegister from qiskit.providers import JobStatus from qiskit.tools.qi.qi import partial_trace from qiskit.quantum_info import state_fidelity from qiskit.compiler import transpile from qiskit.quantum_info.random.utils import random_state import time from pairwise_tomography.pairwise_state_tomography_circuits import pairwise_state_tomography_circuits from pairwise_tomography.pairwise_fitter import PairwiseStateTomographyFitter from pairwise_tomography.utils import concurrence backend = Aer.get_backend('qasm_simulator') nq = 5 q = QuantumRegister(nq) qc = QuantumCircuit(q) qc.ry(3., q[0]) qc.cx(q[0], q[1]) qc.x(q[1]) qc.ry(2.1, q[2]) qc.cx(q[2], q[3]) qc.h(q[4]) qc.cx(q[4], q[1]) qc.cx(q[1], q[4]) qc.cx(q[4], q[3]) qc.cx(q[3], q[4]) qc.draw(output='mpl') pw_tomo_circs = pairwise_state_tomography_circuits(qc, q) print(len(pw_tomo_circs)) pw_tomo_circs[10].draw(output='mpl') job = execute(pw_tomo_circs, Aer.get_backend('qasm_simulator'), shots=8192) fitter = PairwiseStateTomographyFitter(job.result(), pw_tomo_circs, q) fit_result = fitter.fit() print(fit_result[(0,1)]) pairwise_entanglement = {key: concurrence(value) for key, value in fit_result.items()} print(pairwise_entanglement) from pairwise_tomography.visualization import draw_entanglement_graph draw_entanglement_graph(pairwise_entanglement)
https://github.com/vindem/quantumMD
vindem
from qiskit import IBMQ, Aer from CSWAPCircuit import CSWAPCircuit import random from scipy.spatial import distance from sklearn.metrics import mean_squared_error random.seed(42) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-research-2', group='vienna-uni-tech-1', project='main') backend_sim = provider.backend.ibmq_qasm_simulator def generate_random_vector(n_points): vec = [] for i in range(n_points): vec.append([random.uniform(0, 1) for j in range(3)]) return vec backend = Aer.get_backend('qasm_simulator') for num_qubits in range(0,5): quantum_distances = [] classic_distances = [] for i in range(10): A = generate_random_vector(2**num_qubits) B = generate_random_vector(2**num_qubits) cswap_circuit = CSWAPCircuit(1, 1, 3, 1, backend_sim, 8192) quantum_ED = cswap_circuit.execute_swap_test(A, B) classic_ED = [distance.euclidean(A[i], B[i]) for i in range(len(A))] quantum_distances.append(quantum_ED) classic_distances.append(classic_ED) mse = mean_squared_error(quantum_distances, classic_distances) print(mse)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# External imports from pylab import cm from sklearn import metrics import numpy as np import matplotlib.pyplot as plt # Qiskit imports from qiskit import QuantumCircuit from qiskit.circuit import ParameterVector from qiskit.visualization import circuit_drawer from qiskit.algorithms.optimizers import SPSA from qiskit.circuit.library import ZZFeatureMap from qiskit_machine_learning.kernels import TrainableFidelityQuantumKernel from qiskit_machine_learning.kernels.algorithms import QuantumKernelTrainer from qiskit_machine_learning.algorithms import QSVC from qiskit_machine_learning.datasets import ad_hoc_data class QKTCallback: """Callback wrapper class.""" def __init__(self) -> None: self._data = [[] for i in range(5)] def callback(self, x0, x1=None, x2=None, x3=None, x4=None): """ Args: x0: number of function evaluations x1: the parameters x2: the function value x3: the stepsize x4: whether the step was accepted """ self._data[0].append(x0) self._data[1].append(x1) self._data[2].append(x2) self._data[3].append(x3) self._data[4].append(x4) def get_callback_data(self): return self._data def clear_callback_data(self): self._data = [[] for i in range(5)] adhoc_dimension = 2 X_train, y_train, X_test, y_test, adhoc_total = ad_hoc_data( training_size=20, test_size=5, n=adhoc_dimension, gap=0.3, plot_data=False, one_hot=False, include_sample_total=True, ) plt.figure(figsize=(5, 5)) plt.ylim(0, 2 * np.pi) plt.xlim(0, 2 * np.pi) plt.imshow( np.asmatrix(adhoc_total).T, interpolation="nearest", origin="lower", cmap="RdBu", extent=[0, 2 * np.pi, 0, 2 * np.pi], ) plt.scatter( X_train[np.where(y_train[:] == 0), 0], X_train[np.where(y_train[:] == 0), 1], marker="s", facecolors="w", edgecolors="b", label="A train", ) plt.scatter( X_train[np.where(y_train[:] == 1), 0], X_train[np.where(y_train[:] == 1), 1], marker="o", facecolors="w", edgecolors="r", label="B train", ) plt.scatter( X_test[np.where(y_test[:] == 0), 0], X_test[np.where(y_test[:] == 0), 1], marker="s", facecolors="b", edgecolors="w", label="A test", ) plt.scatter( X_test[np.where(y_test[:] == 1), 0], X_test[np.where(y_test[:] == 1), 1], marker="o", facecolors="r", edgecolors="w", label="B test", ) plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0) plt.title("Ad hoc dataset for classification") plt.show() # Create a rotational layer to train. We will rotate each qubit the same amount. training_params = ParameterVector("θ", 1) fm0 = QuantumCircuit(2) fm0.ry(training_params[0], 0) fm0.ry(training_params[0], 1) # Use ZZFeatureMap to represent input data fm1 = ZZFeatureMap(2) # Create the feature map, composed of our two circuits fm = fm0.compose(fm1) print(circuit_drawer(fm)) print(f"Trainable parameters: {training_params}") # Instantiate quantum kernel quant_kernel = TrainableFidelityQuantumKernel(feature_map=fm, training_parameters=training_params) # Set up the optimizer cb_qkt = QKTCallback() spsa_opt = SPSA(maxiter=10, callback=cb_qkt.callback, learning_rate=0.05, perturbation=0.05) # Instantiate a quantum kernel trainer. qkt = QuantumKernelTrainer( quantum_kernel=quant_kernel, loss="svc_loss", optimizer=spsa_opt, initial_point=[np.pi / 2] ) # Train the kernel using QKT directly qka_results = qkt.fit(X_train, y_train) optimized_kernel = qka_results.quantum_kernel print(qka_results) # Use QSVC for classification qsvc = QSVC(quantum_kernel=optimized_kernel) # Fit the QSVC qsvc.fit(X_train, y_train) # Predict the labels labels_test = qsvc.predict(X_test) # Evalaute the test accuracy accuracy_test = metrics.balanced_accuracy_score(y_true=y_test, y_pred=labels_test) print(f"accuracy test: {accuracy_test}") plot_data = cb_qkt.get_callback_data() # callback data K = optimized_kernel.evaluate(X_train) # kernel matrix evaluated on the training samples plt.rcParams["font.size"] = 20 fig, ax = plt.subplots(1, 2, figsize=(14, 5)) ax[0].plot([i + 1 for i in range(len(plot_data[0]))], np.array(plot_data[2]), c="k", marker="o") ax[0].set_xlabel("Iterations") ax[0].set_ylabel("Loss") ax[1].imshow(K, cmap=cm.get_cmap("bwr", 20)) fig.tight_layout() plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/anirban-m/qiskit-superstaq
anirban-m
import json from typing import Any, Dict import pytest import qiskit import requests import qiskit_superstaq as qss class MockConfiguration: backend_name = "superstaq_backend" backend_version = qss.API_VERSION class MockProvider(qss.superstaq_provider.SuperstaQProvider): def __init__(self) -> None: self.access_token = "very.tech" class MockDevice(qss.superstaq_backend.SuperstaQBackend): def __init__(self) -> None: self._provider = MockProvider() self.diff = "" _configuration = MockConfiguration() url = "super.tech" class MockJob(qss.superstaq_job.SuperstaQJob): def __init__(self) -> None: self._backend = MockDevice() self._job_id = "123abc" self.qobj = None class MockJobs(qss.superstaq_job.SuperstaQJob): def __init__(self) -> None: self._backend = MockDevice() self._job_id = "123abc,456def" self.qobj = None class MockResponse: def __init__(self, status_str: str) -> None: self.content = json.dumps({"status": status_str, "samples": None, "shots": 100}) def json(self) -> Dict: return json.loads(self.content) def test_wait_for_results(monkeypatch: Any) -> None: job = MockJob() monkeypatch.setattr(requests, "get", lambda *_, **__: MockResponse("Done")) assert job._wait_for_results() == [{"status": "Done", "samples": None, "shots": 100}] monkeypatch.setattr(requests, "get", lambda *_, **__: MockResponse("Error")) with pytest.raises(qiskit.providers.JobError, match="API returned error"): job._wait_for_results() jobs = MockJobs() monkeypatch.setattr(requests, "get", lambda *_, **__: MockResponse("Done")) assert jobs._wait_for_results() == [ {"status": "Done", "samples": None, "shots": 100}, {"status": "Done", "samples": None, "shots": 100}, ] def test_result(monkeypatch: Any) -> None: job = MockJob() monkeypatch.setattr(requests, "get", lambda *_, **__: MockResponse("Done")) expected_results = [{"success": True, "shots": 100, "data": {"counts": None}}] expected = qiskit.result.Result.from_dict( { "results": expected_results, "qobj_id": -1, "backend_name": "superstaq_backend", "backend_version": qss.API_VERSION, "success": True, "job_id": "123abc", } ) ans = job.result() assert ans.backend_name == expected.backend_name assert ans.job_id == expected.job_id def test_status(monkeypatch: Any) -> None: job = MockJob() monkeypatch.setattr(requests, "get", lambda *_, **__: MockResponse("Queued")) assert job.status() == qiskit.providers.JobStatus.QUEUED monkeypatch.setattr(requests, "get", lambda *_, **__: MockResponse("Running")) assert job.status() == qiskit.providers.JobStatus.RUNNING monkeypatch.setattr(requests, "get", lambda *_, **__: MockResponse("Done")) assert job.status() == qiskit.providers.JobStatus.DONE def test_submit() -> None: job = qss.superstaq_job.SuperstaQJob(backend=MockDevice(), job_id="12345") with pytest.raises(NotImplementedError, match="Submit through SuperstaQBackend"): job.submit() def test_eq() -> None: job = qss.superstaq_job.SuperstaQJob(backend=MockDevice(), job_id="12345") assert job != "super.tech" job2 = qss.superstaq_job.SuperstaQJob(backend=MockDevice(), job_id="123456") assert job != job2 job3 = qss.superstaq_job.SuperstaQJob(backend=MockDevice(), job_id="12345") assert job == job3
https://github.com/gustavomirapalheta/Quantum-Computing-with-Qiskit
gustavomirapalheta
!pip install qutip -q !pip install qiskit -q !pip install qiskit[visualization] -q !pip install git+https://github.com/qiskit-community/qiskit-textbook.git#subdirectory=qiskit-textbook-src -q import numpy as np np.set_printoptions(precision=3, suppress=True) import qutip as qt from matplotlib import pyplot as plt %matplotlib inline import pandas as pd import sklearn as sk import qiskit as qk !pip install qutip -q !pip install qiskit -q !pip install qiskit[visualization] -q !pip install git+https://github.com/qiskit-community/qiskit-textbook.git#subdirectory=qiskit-textbook-src -q import numpy as np np.set_printoptions(precision=3, suppress=True) import qutip as qt from matplotlib import pyplot as plt %matplotlib inline import pandas as pd import sklearn as sk import qiskit as qk # Remember that qiskit has to be already installed in the Python environment. # Otherwise the import command will fail import qiskit as qk # A circuit composed of just one qubit qc = qk.QuantumCircuit(1) qc.draw('mpl') import qiskit as qiskit # A qubit initialized in the state |0> qc = qk.QuantumCircuit(1) qc.initialize([1,0]) qc.draw('mpl') import qiskit as qk # A qubit initialized in |0> and a measurement qc = qk.QuantumCircuit(1) qc.initialize([1,0]) qc.measure_all() qc.draw('mpl') import qiskit as qk # A list of possible measurements. The results of measurements are obtained # by executing an object called backend a = [print(i) for i in qk.Aer.backends()] import qiskit as qk qc = qk.QuantumCircuit(1) qc.initialize([1,0],0) qc.measure_all() # Let's choose the statevector simulator from the Aer backend backend = qk.Aer.get_backend('statevector_simulator') # And execute the circuit qc in the simulator backend # getting as final result the counts from 1.000 measures # of the qubit state result = qk.execute(qc, backend, shots=1000).result().get_counts() result import qiskit as qk qc = qk.QuantumCircuit(1) qc.initialize([1,0],0) qc.measure_all() backend = qk.Aer.get_backend('statevector_simulator') result = qk.execute(qc, backend, shots=1000).result().get_counts() qk.visualization.plot_histogram(result) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr, cr) qc.initialize([1,0],0) qc.measure(0,0) qc.draw('mpl') backend = qk.Aer.get_backend('statevector_simulator') result = qk.execute(qc, backend, shots=1000).result().get_counts() qk.visualization.plot_histogram(result) import numpy as np v0 = np.array([[1],[0]]);v0 v1 = np.array([[0],[1]]); v1 X = np.array([[0,1],[1,0]]); X X.dot(v0) X.dot(v1) import qiskit as qk qr = qk.QuantumRegister(1,"q0") cr = qk.ClassicalRegister(1,"c0") qc = qk.QuantumCircuit(qr, cr) qc.initialize([1,0],0) qc.x(0) qc.measure(qr[0], cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc, simulator, shots=1000).result().get_counts() results qk.visualization.plot_histogram(results) import numpy as np # Notice that we are creating the v0 matrix using the transpose operation v0 = np.array([[1,0]]).T; v0 # Here it is created again de X matrix X = np.array([[0,1],[1,0]]); X # Multiplying v0 by the X matrix twice you get again v0 X.dot(X).dot(v0) # Multiplying the X matrix by itself you get the Identity matrix X.dot(X) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr, cr) qc.initialize([1,0],0) qc.x(0) qc.x(0) qc.measure(qr[0],cr[0]) qc.draw('mpl') # The result of 1000 measures of the qubit above gives the |0> state as result # in all measures simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=1000).result().get_counts() results qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr,cr) qc.initialize([2**-0.5,2**-0.5],0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np v0 = np.array([[1,0]]).T; v0 H = np.array([[1,1],[1,-1]])/np.sqrt(2); H H.dot(v0) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.h(qr[0]) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc, simulator, shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr,cr) qc.initialize([2**-0.5,-(2**-0.5)],0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr,cr) qc.initialize([2**-0.5,-(2**-0.5)],0) qc.h(0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr,cr) qc.initialize([0,1],0) qc.h(0) qc.h(0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np # First let's start with the qubit in the state |psi> = (|0> - |1>)/sqrt(2) psi = np.array([[1,-1]]).T/(2**0.5); psi H = np.array([[1,1],[1,-1]])/2**0.5; H # Now let's pass the qubit Psi through an Hadamard gate. # The result is a qubit in the state |1> H.dot(psi) # Let's start with a qubit in the state |1>, pass it through a # a hadamard gate twice and check the result v0 = np.array([[0,1]]).T; v0 H.dot(H).dot(v0) # This means that if we multiply the H gate by itself the result # will be an Identity matrix. Let's check it. H.dot(H) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np psi1 = np.array([[1,0]]).T; psi1 psi2 = np.array([[1,0]]).T; psi2 # In numpy the tensor product is calculated with the function kron np.kron(psi1,psi2) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.h(0) qc.h(1) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np psi1 = np.array([[1,0]]).T;psi1 psi2 = np.array([[1,0]]).T;psi2 H = np.array([[1,1],[1,-1]])/2**0.5;H # When we want to combine two vector states or gate matrices we tensor product them. psi3 = np.kron(psi1,psi2);psi3 H2 = np.kron(H,H);H2 # When we want to pass a vetor through a gate we calculate the dot product # of the total gate matrix with the total vector. # As we have predicted, the resulting vector state has a=b=c=d=1/2 psi4 = H2.dot(psi3); psi4 import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([0,1],0) qc.initialize([0,1],1) qc.h(0) qc.h(1) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np psi1 = np.array([[0,1]]).T;psi1 psi2 = np.array([[0,1]]).T;psi2 H = np.array([[1,1],[1,-1]])/2**0.5;H # When we want to combine two vector states or gate matrices we tensor product them. psi3 = np.kron(psi1,psi2);psi3 H2 = np.kron(H,H);H2 # When we want to pass a vetor through a gate we calculate the dot product # of the total gate matrix with the total vector. # As we have predicted, the resulting vector state has a=b=c=d=1/2 psi4 = H2.dot(psi3); psi4 import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.cnot(0,1) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc, simulator, shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C v00 = np.array([[1,0,0,0]]).T;v00 # C.v00 = v00 C.dot(v00) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([0,1],1) qc.cnot(0,1) qc.measure(qr,cr) qc.draw('mpl') # Please notice that Qiskit's qubits presentation order is reversed. # Therefore 10 in the histogram's x axis should be read as 01 (from # inside out or right to left). simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc, simulator, shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C v01 = np.array([[0,1,0,0]]).T;v01 # C.v01 = v01 C.dot(v01) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([0,1],0) qc.initialize([1,0],1) qc.cnot(0,1) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc, simulator, shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C v10 = np.array([[0,0,1,0]]).T; v10 # C.v10 = v11 C.dot(v10) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([0,1],0) qc.initialize([0,1],1) qc.cnot(0,1) qc.measure(qr,cr) qc.draw('mpl') # Again remember to read qiskit qubits state presentation order # from right to left. Therefore 01 in the x axis is in fact 10 simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc, simulator, shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C v11 = np.array([[0,0,0,1]]).T; v11 # C.v11 = v10 C.dot(v11) import qiskit as qk qr = qk.QuantumRegister(2, 'q') cr = qk.ClassicalRegister(2, 'c') qc = qk.QuantumCircuit(qr, cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.h(qr[0]) qc.cx(qr[0],qr[1]) qc.measure(qr, cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np va = np.array([[1,0]]).T; va vb = np.array([[1,0]]).T; vb H = np.array([[1,1],[1,-1]])/2**0.5;H vaH = H.dot(va); vaH vaHvb = np.kron(vaH,vb); vaHvb C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C vout = C.dot(vaHvb); vout import qiskit as qk qr = qk.QuantumRegister(2, 'q') cr = qk.ClassicalRegister(2, 'c') qc = qk.QuantumCircuit(qr, cr) qc.initialize([0,1],0) qc.initialize([1,0],1) qc.h(qr[0]) qc.cx(qr[0],qr[1]) qc.measure(qr, cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np va = np.array([[0,1]]).T; va vb = np.array([[1,0]]).T; vb H = np.array([[1,1],[1,-1]])/2**0.5;H vaH = H.dot(va); vaH vaHvb = np.kron(vaH,vb); vaHvb C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C vout = C.dot(vaHvb); vout # Get the IBM API key in: https://quantum-computing.ibm.com # chave = 'My key is already saved in this environment' # qk.IBMQ.save_account(chave) # Load the account in the active session qk.IBMQ.load_account() # The default provider is é hub='ibm-q', group='open, project='main' # The code below is executed as an example provider_1 = qk.IBMQ.get_provider(hub='ibm-q', group='open', project='main') # In the public provider we will use a cloud simulator. backend_1 = provider_1.get_backend('ibmq_qasm_simulator') # The provider listed below has unlimited jobs provider_2 = qk.IBMQ.get_provider(hub='ibm-q-education', group='fgv-1', project='ml-business-app') # For this provider we will use the ibmq_jakarta machine backend_2 = provider_2.get_backend('ibmq_jakarta') # With n Qubits we can generate a random number from 0 to 2^n - 1 n = 3 qr = qk.QuantumRegister(n,'q') cr = qk.ClassicalRegister(n,'c') qc = qk.QuantumCircuit(qr, cr) # Applying a Hadamard to each of the three qubits for i in range(n): qc.h(q[i]) # Measuring the three qubits qc.measure(q,c) # Visualizing the circuit qc.draw('mpl') # qk.execute envia para o backend. Conferindo no iqmq explorer aparece o job new_job = qk.execute(circ, backend_2, shots=1) # this result is stored on the local machine. However, it will only be available # after the job has been executed. It returns a python dictionary. new_job.result().get_counts() int(list(new_job.result().get_counts().keys())[0],2) from qiskit import QuantumCircuit circuit = QuantumCircuit(2, 2) circuit.h(0) circuit.cx(0,1) circuit.measure([0,1], [0,1]) display(circuit.draw('mpl')) from qiskit.providers.aer import AerSimulator print(AerSimulator().run(circuit, shots=1000).result().get_counts()) print(AerSimulator().run(circuit, shots=1000).result().get_counts()) from qiskit import QuantumCircuit circuito = QuantumCircuit(3,3) for i in range(3): circuito.h(i) circuito.measure(i,i) display(circuito.draw('mpl')) from qiskit.providers.aer import AerSimulator AerSimulator().run(circuito, shots = 1000).result().get_counts() from qiskit import QuantumCircuit qc = QuantumCircuit(4,4) qc.x([0,1]) qc.cx([0,1],[2,2]) qc.ccx(0,1,3) qc.measure([0,1,2,3],[0,1,2,3]) display(qc.draw(output='mpl')) from qiskit.providers.aer import AerSimulator AerSimulator().run(qc, shots = 10000).result().get_counts() import qiskit as qk qr = qk.QuantumRegister(1,'q') cr = qk.ClassicalRegister(1,'c') qc = qk.QuantumCircuit(qr, cr) qc.initialize([1,0],0) print("Circuit 1 - Registers Only") display(qc.draw('mpl')) qc.x(qr) print("Circuit 1 - Quantum Register with a Gate X ") display(qc.draw('mpl')) job = qk.execute(experiments = qc, backend = qk.Aer.get_backend('statevector_simulator')) result1 = job.result().get_statevector() print("Quantum Register Vector State") from qiskit.tools.visualization import plot_bloch_multivector display(plot_bloch_multivector(result1)) job = qk.execute(experiments = qc, backend = qk.Aer.get_backend('unitary_simulator')) print("Transformation Matrix (up to this stage)") print(job.result().get_unitary()) qc.measure(qr, cr) print() print("Circuit 1 - Registers, Gate X and Quantum Register Measure") display(qc.draw('mpl')) print("Quantum Register Thousand Measures") job = qk.execute(experiments = qc, backend = qk.Aer.get_backend('statevector_simulator'), shots = 1000) print(job.result().get_counts()) print() print("Result's Histogram") from qiskit.tools.visualization import plot_histogram plot_histogram(data = job.result().get_counts(), figsize=(4,3)) import qiskit as qk from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector qr = qk.QuantumRegister(3,'q') cr = qk.ClassicalRegister(3,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.initialize([1,0],2) display(qc.draw('mpl')) sv = Statevector.from_label('000') state_data = lambda qc,sv: np.round(np.asarray(sv.evolve(qc).data),4) state_bloch = lambda qc,sv: plot_bloch_multivector(sv.evolve(qc).data, reverse_bits=True) print(state_data(qc,sv)) state_bloch(qc,sv) qc.x(0) qc.barrier() display(qc.draw('mpl')) print(state_data(qc,sv)) display(state_bloch(qc,sv)) qc.h(1) display(qc.draw('mpl')) print(state_data(qc,sv)) state_bloch(qc,sv) qc.cnot(1,2) display(qc.draw("mpl")) state_data(qc,sv) state_bloch(qc,sv) qc.cnot(0,1) display(qc.draw('mpl')) state_data(qc,sv) qc.h(0) qc.barrier() display(qc.draw('mpl')) state_data(qc,sv) qc.measure(0,0) qc.measure(1,1) qc.barrier() qc.cnot(1,2) qc.cz(0,2) qc.measure(2,2) display(qc.draw('mpl')) simulador = qk.Aer.get_backend('statevector_simulator') resultado = qk.execute(qc, simulador, shots=10000).result() qk.visualization.plot_histogram(resultado.get_counts()) import numpy as np V = np.array([[3+2j],[4-2j]]) modV = np.real(V.T.conjugate().dot(V)[0,0])**0.5 Vn = V/modV; Vn v0 = np.array([[1,0]]).T v1 = np.array([[0,1]]).T Vn[0,0]*v0 + Vn[1,0]*v1 import qiskit as qk qr = qk.QuantumRegister(1,'q') cr = qk.ClassicalRegister(1,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([Vn[0,0],Vn[1,0]],0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) Vn[0,0].conjugate()*Vn[0,0] Vn[1,0].conjugate()*Vn[1,0] import numpy as np CNOT = np.array([[1,0,0,0], [0,1,0,0], [0,0,0,1], [0,0,1,0]]) CNOT.dot(CNOT) import numpy as np H = np.array([[1,1],[1,-1]])/2**0.5 H.dot(H) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.h(0) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.h(0) qc.cnot(qr[0],qr[1]) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.h(0) qc.cnot(qr[0],qr[1]) qc.cnot(qr[0],qr[1]) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.h(0) qc.cnot(qr[0],qr[1]) qc.cnot(qr[0],qr[1]) qc.h(0) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np X = np.array([[0,1], [1,0]]) X X.conj().T.dot(X) Y = np.array([[0,-1j], [1j,0]]) Y Y.conj().T.dot(Y) Z = np.array([[1,0], [0,-1]]) Z Z.conj().T.dot(Z) H = (X+Z)/np.sqrt(2); H H.dot(Z).dot(H) H.dot(X).dot(H) -H.dot(Y).dot(H) import numpy as np S = np.array([[1,0], [0,1j]]) S S.conj().T.dot(S) T = np.array([[1,0], [0,np.exp(1j*np.pi/4)]]) T T.conj().T.dot(T) S = np.array([[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]); S S.dot(v00) S.dot(v01) S.dot(v10) S.dot(v11) C = np.array([[1,0,0,0], [0,1,0,0], [0,0,0,1], [0,0,1,0]]);C C_ = np.array([[1,0,0,0], [0,0,0,1], [0,0,1,0], [0,1,0,0]]);C_ C.dot(C_).dot(C) v = v0 + v1; v n = np.array([[0,0],[0,1]]); n n.dot(v) n_ = np.array([[1,0],[0,0]]);n_ I2 = np.identity(2); I2 I2 - n n_.dot(v) n.dot(n) n_.dot(n_) n.dot(n_) n_.dot(n) n+n_ n.dot(X) X.dot(n_) import numpy as np n = np.array([[0,0],[0,1]]); n n_ = np.array([[1,0],[0,0]]);n_ # ni nj operam em bits distintos. Como cada operador n atua em um vetor de # 2 dimensões, ni nj é um operador de 4 dimensões. Sendo assim, fica implícito # pelos subscritos que ni nj é um produto tensorial. np.kron(n,n) # O mesmo vale para n'i n'j np.kron(n_,n_) # Para ni n'j np.kron(n,n_) # E para n'i nj np.kron(n_,n) # Xi Xj são dois operadores 2x2 de inversão, cada um atuando em um bit # distinto. Sendo assim, fazemos o produto tensorial entre ambos # para obter XiXj np.kron(X,X) # No caso da expressão XiXj(ninj' + ni'nj) temos entre parênteses duas # matrizes 4x4 (ninj'+ni'nj) e fora dos parênteses uma matriz 4x4 (XiXj) # Sendo assim fazemos neste caso o produto matricial normal para # calcular esta expressão. np.kron(X,X).dot(np.kron(n,n_)+np.kron(n_,n)) # E por último somamos com o resultado inicial de ninj + ni'nj' # Como pode-se ver, esta expressão gera o operador de SWAP np.kron(n,n) + np.kron(n_,n_) + np.kron(X,X).dot(np.kron(n,n_)+np.kron(n_,n)) # É importante observar que ninj forma um operador que projeta um vetor de # 4 dimensões (00, 01, 10, 11) em sua componente 11 np.kron(n,n) # De maneira similar ni'nj' projeta um vetor de 4 dimensões em sua componente 00 np.kron(n_,n_) # ni'nj projeta em 01 np.kron(n_,n) # Assim como ninj' projeta em 10 np.kron(n,n_) # E por último vemos que ni'nj' + ni'nj + ninj' + ninj = I nn = np.kron(n,n) nn_ = np.kron(n,n_) n_n = np.kron(n_,n) n_n_ = np.kron(n_,n_) nn + nn_ + n_n + n_n_ import numpy as np n = np.array([[0,0],[0,1]]); n n_ = np.array([[1,0],[0,0]]);n_ # (n x n).(n_ x n_) np.kron(n,n).dot(np.kron(n_,n_)) # Faz sentido que (ni x nj).(ni_ x nj_) seja o vetor nulo pois: # ni_ x nj_ é um operador que recebe um vetor de 4 dimensões e # produz como resultado apenas sua componente |00>. Por sua # vez ni x nj é um operador que recebe um vetor de 4 dimensões # e produz como resultado apenas sua componente |11>. Esta # componente foi zerada pelo primeiro operador, logo o resultado # será nulo. Isto vai acontecer sempre que a componente não # zerada do primeiro operador for diferente da do segundo em # outras palavras sempre que ij do primeiro for diferente de ij # do segundo. np.kron(n,n).dot(np.kron(n_,n_)) # Outra forma de entender é transformar (n x n).(n_ x n_) em # (n.n_) x (n.n_). Como n é ortogonal a n_, a projeção de n # em n_ dará zero também. np.kron(n.dot(n_),n.dot(n_)) nn.dot(n_n_) # (n_ x n).(n x n_) np.kron(n_,n).dot(np.kron(n,n_)) n_n.dot(nn_) # (n x n_).(n_ x n) np.kron(n, n_).dot(np.kron(n_,n)) nn_.dot(n_n) # (n_ x n_).(n x n) np.kron(n_, n_).dot(np.kron(n, n)) n_n_.dot(nn) NOT = np.array([[0,1],[1,0]]); NOT NOT.dot(D0) NOT.dot(D1) AND = np.array([[1,1,1,0],[0,0,0,1]]); AND AND.dot(np.kron(D0,D0)) AND.dot(np.kron(D0,D1)) AND.dot(np.kron(D1,D0)) AND.dot(np.kron(D1,D1)) OR = np.array([[1,0,0,0],[0,1,1,1]]); OR OR.dot(np.kron(D0,D0)) OR.dot(np.kron(D0,D1)) OR.dot(np.kron(D1,D0)) OR.dot(np.kron(D1,D1)) NAND = np.array([[0,0,0,1],[1,1,1,0]]); NAND NOT.dot(AND) NOR = np.array([[0,1,1,1],[1,0,0,0]]);NOR NOT.dot(OR) np.kron(NOT,AND) OR.dot(np.kron(NOT,AND)) NOT.dot(AND).dot(np.kron(NOT,NOT)) OR NOT.dot(OR).dot(np.kron(NOT,NOT)) AND import numpy as np k = np.kron XOR = np.array([[1,0,0,1], [0,1,1,0]]) AND = np.array(([1,1,1,0], [0,0,0,1])) k(XOR,AND) def criaCompat(nbits,nvezes): nlins = 2**(nbits*nvezes) ncols = 2**nbits compat = np.zeros(nlins*ncols).reshape(nlins,ncols) for i in range(ncols): formato = "0" + str(nbits) + "b" binario = format(i,formato)*nvezes decimal = int(binario,2) compat[decimal,i] = 1 return(compat) criaCompat(2,2) k(XOR,AND).dot(criaCompat(2,2)) import numpy as np k = np.kron def criaCompat(nbits,nvezes): nlins = 2**(nbits*nvezes) ncols = 2**nbits compat = np.zeros(nlins*ncols).reshape(nlins,ncols) for i in range(ncols): formato = "0" + str(nbits) + "b" binario = format(i,formato)*nvezes decimal = int(binario,2) compat[decimal,i] = 1 return(compat) criaCompat(2,2) NOT = np.array([[0,1], [1,0]]) AND3 = np.array([[1,1,1,1,1,1,1,0], [0,0,0,0,0,0,0,1]]) OR4 = np.array([[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]) I2 = np.array([[1,0], [0,1]]) t1z = k(NOT,k(NOT,I2)) t2z = k(NOT,k(I2,NOT)) t3z = k(I2,k(NOT,NOT)) t4z = k(I2,k(I2,I2)) ORz = k(AND3,k(AND3,k(AND3,AND3))) ORz = OR4.dot(ORz).dot(k(t1z,k(t2z,k(t3z,t4z)))) t1c = k(NOT,k(I2,I2)) t2c = k(I2,k(NOT,I2)) t3c = k(I2,k(I2,NOT)) t4c = k(I2,k(I2,I2)) ORc = k(AND3,k(AND3,k(AND3,AND3))) ORc = OR4.dot(ORc).dot(k(t1c,k(t2c,k(t3c,t4c)))) compat = criaCompat(3,8) k(ORz,ORc).dot(compat) import numpy as np TOFFOLI = np.array([[1,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0], [0,0,1,0,0,0,0,0], [0,0,0,1,0,0,0,0], [0,0,0,0,1,0,0,0], [0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,1,0]]) TOFFOLI.dot(TOFFOLI) Z1 = np.array([[0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1]]) Z1 Z1I4 = np.array([[0,0,0,0], [1,0,0,0], [0,0,0,0], [0,1,0,0], [0,0,0,0], [0,0,1,0], [0,0,0,0], [0,0,0,1]]) TOFFOLI.dot(ZpY).dot(TOFFOLI).dot(Z1I4) ZpY = np.zeros([8,8]) ZpY[0,0] = 1; ZpY[1,2] = 1; ZpY[2,1] = 1; ZpY[3,3] = 1 ZpY[4,4] = 1; ZpY[5,6] = 1; ZpY[6,5] = 1; ZpY[7,7] = 1 ZpY Zfim = np.array([[1,0,1,0,1,0,1,0], [0,1,0,1,0,1,0,1]]) Zfim.dot(TOFFOLI).dot(ZpY).dot(TOFFOLI).dot(Z1I4) import numpy as np fred = np.identity(8) fred[5,5] = 0; fred[5,6] = 1 fred[6,5] = 1; fred[6,6] = 0 fred fred.dot(fred) import numpy as np Fy0 = np.zeros([8,4]) Fy0[0,0] = 1; Fy0[1,1] = 1; Fy0[4,2] = 1; Fy0[5,3] = 1 Fy0 xYz = np.array([[1,1,0,0,1,1,0,0], [0,0,1,1,0,0,1,1]]) xYz.dot(fred).dot(Fy0) import numpy as np q0 = np.array([[1,0]]).T; q0 q1 = np.array([[0,1]]).T; q1 q01 = np.kron(q0,q1); q01 H = np.array([[1,1],[1,-1]])/np.sqrt(2); H H2 = np.kron(H,H); H2 H2.dot(q01) I4 = np.eye(4); I4 I4.dot(H2).dot(q01) I2 = np.eye(2); I2 HI2 = np.kron(H,I2); HI2 HI2.dot(I4).dot(H2).dot(q01) X = np.array([[0,1],[1,0]]); X I2 = np.eye(2); I2 I2X = np.kron(I2,X); I2X HI2.dot(I2X).dot(H2).dot(q01) CNOT = np.array([[1,0,0,0], [0,1,0,0], [0,0,0,1], [0,0,1,0]]) CNOT HI2.dot(CNOT).dot(H2).dot(q01) X = np.array([[0,1],[1,0]]); X I2 = np.eye(2); I2 XI2 = np.kron(X,I2); XI2 CNOT = np.array([[1,0,0,0], [0,1,0,0], [0,0,0,1], [0,0,1,0]]) CNOT CNOT.dot(XI2) HI2.dot(CNOT).dot(XI2).dot(H2).dot(q01) import qiskit as qk import numpy as np qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(1,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([0,1],1) qc.h(0) qc.h(1) qc.barrier() qc.barrier() qc.h(0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend("statevector_simulator") results = qk.execute(qc, simulator).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk import numpy as np qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(1,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([0,1],1) qc.h(0) qc.h(1) qc.barrier() qc.x(1) qc.barrier() qc.h(0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend("statevector_simulator") results = qk.execute(qc, simulator).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk import numpy as np qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(1,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([0,1],1) qc.h(0) qc.h(1) qc.barrier() qc.cx(0,1) qc.barrier() qc.h(0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend("statevector_simulator") results = qk.execute(qc, simulator).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk import numpy as np qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(1,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([0,1],1) qc.h(0) qc.h(1) qc.barrier() qc.x(0) qc.cx(0,1) qc.barrier() qc.h(0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend("statevector_simulator") results = qk.execute(qc, simulator).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qc = qk.QuantumCircuit(3,3) qc.barrier() qc.cnot(1,2) qc.barrier() qc.draw('mpl') import qiskit as qk qc = qk.QuantumCircuit(3,3) qc.initialize([0,0,0,0,1,0,0,0],[0,1,2]) qc.h([0,1,2]) qc.barrier() qc.cnot(1,2) qc.barrier() qc.h([0,1]) qc.measure([0,1],[0,1]) qc.draw('mpl') def histograma(qc): import qiskit as qk from qiskit.visualization import plot_histogram simulador = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulador,shots=10000).result().get_counts() grafico = plot_histogram(results) return(grafico) histograma(qc) import numpy as np x1 = np.array([[1,0]]).T x0 = np.array([[1,0]]).T y = np.array([[0,1]]).T psi0 = np.kron(y,np.kron(x1,x0)); psi0.T import numpy as np H = np.array([[1, 1], [1,-1]])/np.sqrt(2) H3 = np.kron(H,np.kron(H,H)); np.round(H3,3) psi0 = np.array([[0,0,0,0,1,0,0,0]]).T psi1 = H3.dot(psi0); psi1.T CNOTsm = np.array([[1,0,0,0], [0,0,0,1], [0,0,1,0], [0,1,0,0]]) I2 = np.array([[1,0], [0,1]]) CNOTsm_I2 = np.kron(CNOTsm,I2) psi0 = np.array([[0,0,0,0,1,0,0,0]]).T CNOTsm_I2.dot(H3).dot(psi0).T psi = np.array([[1,1,-1,-1]]).T/2 H = np.array([[1,1],[1,-1]])/np.sqrt(2) H2 = np.kron(H,H) H2.dot(psi) import qiskit as qk qc = qk.QuantumCircuit(3,3) qc.initialize([0,0,0,0,1,0,0,0],[0,1,2]) qc.h([0,1,2]) qc.barrier() qc.cnot(0,2) qc.barrier() qc.h([0,1]) qc.measure([0,1],[0,1]) display(qc.draw('mpl')) histograma(qc) import numpy as np v0 = np.array([[0,0,0,0,1,0,0,0]]).T; v0.T H = np.array([[1,1],[1,-1]])/np.sqrt(2) H2 = np.kron(H,H); H3 = np.kron(H2,H) H3.dot(v0).T CNOTs_I_m = np.array([[1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0], [0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1], [0,0,0,0,1,0,0,0], [0,1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0], [0,0,0,1,0,0,0,0]]) v0 = np.array([[0,0,0,0,1,0,0,0]]).T CNOTs_I_m.dot(H3).dot(v0).T psi = np.array([[+1,-1,+1,-1]]).T/2 H = np.array([[1,1],[1,-1]])/np.sqrt(2) H2 = np.kron(H,H) H2.dot(psi) import qiskit as qk qc = qk.QuantumCircuit(3,3) qc.initialize([0,0,0,0,1,0,0,0],[0,1,2]) qc.h([0,1,2]) qc.barrier() qc.cnot(0,1) qc.cnot(1,2) qc.cnot(0,1) qc.barrier() qc.h([0,1]) qc.measure([0,1],[0,1]) display(qc.draw('mpl')) histograma(qc) v0 = np.array([[0,0,0,0,1,0,0,0]]).T H = np.array([[1,1],[1,-1]])/np.sqrt(2) H2 = np.kron(H,H); H3 = np.kron(H2,H) H3.dot(v0).T CNOT_CNOT = np.array([[1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0], [0,0,0,0,0,0,1,0], [0,0,0,1,0,0,0,0], [0,0,0,0,1,0,0,0], [0,1,0,0,0,0,0,0], [0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1]]) v0 = np.array([[0,0,0,0,1,0,0,0]]).T H = np.array([[1,1],[1,-1]])/np.sqrt(2) H2 = np.kron(H,H); H3 = np.kron(H2,H) CNOT_CNOT.dot(H3).dot(v0).T psi = np.array([[+1,-1,-1,+1]]).T/2 H = np.array([[1,1],[1,-1]])/np.sqrt(2) H2 = np.kron(H,H) H2.dot(psi) import numpy as np CNOTsm = np.array([[1,0,0,0], [0,0,0,1], [0,0,1,0], [0,1,0,0]]) I = np.array([[1,0], [0,1]]) ISM = np.kron(I,CNOTsm) SMI = np.kron(CNOTsm,I) H = np.array([[1, 1], [1,-1]])/np.sqrt(2) H2 = np.kron(H,H) H3 = np.kron(H2,H) IH2 = np.kron(I,H2) v0 = np.array([[0,0,0,0,1,0,0,0]]).T IH2.dot(ISM).dot(SMI).dot(ISM).dot(H3).dot(v0).round(3) CNOT_CNOT = np.array([[1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0], [0,0,0,0,0,0,1,0], [0,0,0,1,0,0,0,0], [0,0,0,0,1,0,0,0], [0,1,0,0,0,0,0,0], [0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1]]) ISM.dot(SMI).dot(ISM) import qiskit as qk from qiskit.quantum_info import Statevector from qiskit.visualization import plot_histogram qr = qk.QuantumRegister(3,'q') cr = qk.ClassicalRegister(3,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.initialize([0,1],2) qc.h(0) qc.h(1) qc.h(2) qc.barrier() qc.barrier() qc.h(0) qc.h(1) qc.measure(0,0) qc.measure(1,1) display(qc.draw('mpl')) histograma(qc) psi = np.array([[1,1,1,1]]).T/2 H = np.array([[1,1],[1,-1]])/np.sqrt(2) H2 = np.kron(H,H) H2.dot(psi) import qiskit as qk from qiskit.quantum_info import Statevector from qiskit.visualization import plot_histogram qr = qk.QuantumRegister(3,'q') cr = qk.ClassicalRegister(3,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.initialize([0,1],2) qc.h(0) qc.h(1) qc.h(2) qc.barrier() qc.x(2) qc.barrier() qc.h(0) qc.h(1) qc.measure(0,0) qc.measure(1,1) display(qc.draw('mpl')) histograma(qc) psi = np.array([[1,1,1,1]]).T/2 H = np.array([[1,1],[1,-1]])/np.sqrt(2) H2 = np.kron(H,H) H2.dot(psi) import qiskit as qk from qiskit.quantum_info import Statevector from qiskit.visualization import plot_histogram qr = qk.QuantumRegister(3,'q') cr = qk.ClassicalRegister(3,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.initialize([0,1],2) qc.h(0) qc.h(1) qc.h(2) qc.barrier() qc.ccx(0,1,2) qc.barrier() qc.h(0) qc.h(1) qc.measure(0,0) qc.measure(1,1) display(qc.draw('mpl')) histograma(qc) import qiskit as qk qrx = qk.QuantumRegister(2,'x') qry = qk.QuantumRegister(2,'y') qc = qk.QuantumCircuit(qrx,qry) qc.barrier() qc.cx(0,2) qc.cx(0,3) qc.cx(1,2) qc.cx(1,3) qc.barrier() qc.draw('mpl') def histograma(qc): simulador = qk.Aer.get_backend('statevector_simulator') resultado = qk.execute(qc,simulador,shots=10000).result() contagens = resultado.get_counts() grafico = qk.visualization.plot_histogram(contagens) return(grafico) def simon(initial_y, initial_x): import qiskit as qk qrx = qk.QuantumRegister(2,'x') crx = qk.ClassicalRegister(4,'c') qry = qk.QuantumRegister(2,'y') qc = qk.QuantumCircuit(qrx,qry,crx) qc.initialize(initial_x,qrx) qc.initialize(initial_y,qry) qc.barrier() qc.cx(0,2) qc.cx(0,3) qc.cx(1,2) qc.cx(1,3) qc.barrier() qc.measure([0,1,2,3],[0,1,2,3]) display(qc.draw('mpl')) grafico = histograma(qc) return(grafico) simon([1,0,0,0],[1,0,0,0]) simon([1,0,0,0],[0,0,0,1]) simon([1,0,0,0],[0,1,0,0]) simon([1,0,0,0],[0,0,1,0]) import qiskit as qk qrx = qk.QuantumRegister(2,'x') crx = qk.ClassicalRegister(2,'c') qry = qk.QuantumRegister(2,'y') qc = qk.QuantumCircuit(qrx,qry,crx) qc.initialize([1,0,0,0],qrx) qc.initialize([1,0,0,0],qry) qc.h([0,1]) qc.barrier() qc.cx(0,2) qc.cx(0,3) qc.cx(1,2) qc.cx(1,3) qc.barrier() qc.h([0,1]) qc.measure([0,1],[0,1]) display(qc.draw('mpl')) histograma(qc) import numpy as np x0 = np.array([[1,0]]).T x1 = np.array([[1,0]]).T x1x0 = np.kron(x1,x0) y0 = np.array([[1,0]]).T y1 = np.array([[1,0]]).T y1y0 = np.kron(y1,y0) psi0 = np.kron(y1y0,x1x0) psi0.T H = np.array([[1,1],[1,-1]],dtype='int') H2 = np.kron(H,H) I2 = np.eye(4) I2H2 = np.kron(I2,H2) psi1 = I2H2.dot(psi0)/(np.sqrt(2)*np.sqrt(2)) I2H2.dot(psi0).T Tf1_2 = np.eye(16) Tf1_2 = Tf1_2[:,[0,5,2,7,4,1,6,3,8,9,10,11,12,13,14,15]] psi2 = Tf1_2.dot(psi1); psi2.T*2 Tf2_3 = np.eye(16) Tf2_3 = Tf2_3[:,[0,1,2,3,4,13,6,15,8,9,10,11,12,5,14,7]] psi3 = Tf2_3.dot(psi2); psi3.T*2 Tf3_4 = np.eye(16) Tf3_4 = Tf3_4[:,[0,1,6,3,4,5,2,7,8,9,10,15,12,13,14,11]] psi4 = Tf3_4.dot(psi3); psi4.T*2 Tf4_5 = np.eye(16) Tf4_5 = Tf4_5[:,[0,1,2,11,4,5,14,7,8,9,10,3,12,13,6,15]] psi5 = Tf4_5.dot(psi4); psi5.T*2 I2 = np.eye(4) H = np.array([[1,1],[1,-1]])/np.sqrt(2) H2 = np.kron(H,H) I2H2 = np.kron(I2,H2) psi6 = I2H2.dot(psi5) print(psi6.T*2) import numpy as np I2 = np.eye(4, dtype='int'); H2 = np.array([[1, 1, 1, 1], [1,-1, 1,-1], [1, 1,-1,-1], [1,-1,-1, 1]])/2; I2H2 = np.kron(I2,H2); print(I2H2*2) import numpy as np x0 = np.array([[1,0]]).T x1 = np.array([[1,0]]).T x2 = np.array([[1,0]]).T x2x1x0 = np.kron(x2,np.kron(x1,x0)) x2x1x0.T y0 = np.array([[1,0]]).T y1 = np.array([[1,0]]).T y2 = np.array([[1,0]]).T y2y1y0 = np.kron(y2,np.kron(y1,y0)) y2y1y0.T psi0 = np.kron(y2y1y0,x2x1x0) psi0.T I3 = np.eye(2**3) H = np.array([[1,1],[1,-1]])/np.sqrt(2) H2 = np.kron(H,H) H3 = np.kron(H,H2) I3H3 = np.kron(I3,H3) psi1 = I3H3.dot(psi0) psi1.T.round(2) n = 2*3 # 2 números de 3 digitos cada Uf = np.eye(2**n) # 2^6 = 64 posições Uf = Uf[:,[ 0, 9,18,27,12, 5,30,23, 8, 1,10,11, 4,13,14,15, 16,17, 2,19,20,21,22, 7, 24,25,26, 3,28,29, 6,31, 32,33,34,35,36,37,38,39, 40,41,42,43,44,45,46,47, 48,49,50,51,52,53,54,55, 56,57,58,59,60,61,62,63]] psi5 = Uf.dot(psi1) psi5.T.round(2) psi6 = I3H3.dot(psi5) psi6.T np.where(psi6 > 0)[0] [format(i,'#08b')[2:] for i in np.where(psi6 > 0)[0]] import numpy as np CCNOT = np.eye(8) CCNOT = CCNOT[:,[0,1,2,7,4,5,6,3]] CCNOT.dot(CCNOT) import qiskit as qk def qNAND(y0,x0): x = qk.QuantumRegister(1,"x") y = qk.QuantumRegister(1,"y") z = qk.QuantumRegister(1,"z") u = qk.QuantumRegister(1,"u") c = qk.ClassicalRegister(3,'c') qc = qk.QuantumCircuit(x,y,z,u,c) # Put qubits u and z in state |0> qc.initialize([1,0],z) qc.initialize([1,0],u) qc.initialize(y0,y) qc.initialize(x0,x) # Perform computation qc.barrier() qc.ccx(x,y,z) qc.x(z) # Copy CLASSICALY state of z to u qc.cx(z,u) qc.barrier() # Reverse computation qc.x(z) qc.ccx(x,y,z) qc.barrier() # Measure results qc.measure(x,c[0]) qc.measure(y,c[1]) qc.measure(u,c[2]) display(qc.draw('mpl')) simulator = qk.Aer.get_backend("statevector_simulator") results = qk.execute(qc, simulator, shots=10000).result().get_counts() grafico = qk.visualization.plot_histogram(results) return(grafico) print("0 NAND 0 = 1") qNAND([1,0],[1,0]) print("0 NAND 1 = 1") qNAND([1,0],[0,1]) print("1 NAND 0 = 1") qNAND([0,1],[1,0]) print("1 NAND 1 = 0") qNAND([0,1],[0,1]) import qiskit as qk def qOR(y0,x0): x = qk.QuantumRegister(1,"x") y = qk.QuantumRegister(1,"y") z = qk.QuantumRegister(1,"z") u = qk.QuantumRegister(1,"u") c = qk.ClassicalRegister(3,'c') # Initialize qubits qc = qk.QuantumCircuit(x,y,z,u,c) qc.initialize(x0,x) qc.initialize(y0,y) qc.initialize([1,0],z) qc.initialize([1,0],u) # Compute function qc.barrier() qc.x(x) qc.x(y) qc.ccx(x,y,z) qc.x(z) qc.cx(z,u) qc.barrier() # Reverse computation qc.x(z) qc.ccx(x,y,z) qc.x(y) qc.x(x) qc.barrier() # Measure results qc.measure(x,c[0]) qc.measure(y,c[1]) qc.measure(u,c[2]) display(qc.draw('mpl')) # Simulate circuit simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() grafico = qk.visualization.plot_histogram(results) return(grafico) qOR([1,0],[1,0]) qOR([1,0],[0,1]) qOR([0,1],[1,0]) qOR([0,1],[0,1]) import qiskit as qk def qNXOR(y0,x0,calc=True,show=False): ################################################## # Create registers # ################################################## # Base registers x = qk.QuantumRegister(1,"x") y = qk.QuantumRegister(1,"y") # Auxiliary register (for x and y) z = qk.QuantumRegister(1,"z") # Auxiliary register (to store x AND y) a1 = qk.QuantumRegister(1,"a1") # Auxiliary register (to store NOT(x) AND NOT(y)) a2 = qk.QuantumRegister(1,"a2") # Auxiliary register (for a1 and a2) b1 = qk.QuantumRegister(1,"b1") # Auxiliary register (to store a1 OR a2) b2 = qk.QuantumRegister(1,"b2") # Classical Registers to store x,y and final measurement c = qk.ClassicalRegister(3,"c") ################################################## # Create Circuit # ################################################## qc = qk.QuantumCircuit(x,y,z,a1,a2,b1,b2,c) ################################################## # Initialize registers # ################################################## qc.initialize(x0,x) qc.initialize(y0,y) qc.initialize([1,0],z) qc.initialize([1,0],a1) qc.initialize([1,0],a2) qc.initialize([1,0],b1) qc.initialize([1,0],b2) ################################################### # Calculate x AND y. Copy result to a1. Reverse z # ################################################### qc.barrier() qc.ccx(x,y,z) qc.cx(z,a1) qc.ccx(x,y,z) qc.barrier() ######################################################### # Calc. NOT(x) AND NOT(y). Copy result to a2. Reverse z # ######################################################### qc.barrier() qc.x(x) qc.x(y) qc.ccx(x,y,z) qc.cx(z,a2) qc.ccx(x,y,z) qc.x(y) qc.x(x) qc.barrier() ################################################# # Calc. a1 OR a2. Copy result to b2. Reverse b1 # ################################################# qc.barrier() qc.x(a1) qc.x(a2) qc.ccx(a1,a2,b1) qc.x(b1) qc.cx(b1,b2) qc.x(b1) qc.ccx(a1,a2,b1) qc.barrier() ################################################# # Measure b2 # ################################################# qc.measure(x,c[0]) qc.measure(y,c[1]) qc.measure(b2,c[2]) ################################################# # Draw circuit # ################################################# if show: display(qc.draw("mpl")) ################################################# # Run circuit. Collect results # ################################################# if calc: simulator = qk.Aer.get_backend("statevector_simulator") results = qk.execute(qc,simulator,shots=10000).result().get_counts() grafico = qk.visualization.plot_histogram(results) return(grafico) else: return() qNXOR([1,0],[1,0],False,True) qNXOR([1,0],[1,0]) qNXOR([1,0],[0,1]) qNXOR([0,1],[1,0]) qNXOR([0,1],[0,1]) x0 = np.array([1,1])/np.sqrt(2) y0 = np.array([1,1])/np.sqrt(2) qNXOR(y0,x0) import qiskit as qk from qiskit.quantum_info.operators import Operator qr = qk.QuantumRegister(6,"q") cr = qk.ClassicalRegister(6,"c") qc = qk.QuantumCircuit(qr,cr) for i in range(6): qc.initialize([1,0],i) for i in range(3): qc.h(i) oracle = np.eye(2**6) oracle[:,[ 0, 0]] = oracle[:,[ 0, 0]] oracle[:,[ 1, 9]] = oracle[:,[ 9, 1]] oracle[:,[ 2, 18]] = oracle[:,[ 18, 2]] oracle[:,[ 3, 27]] = oracle[:,[ 27, 3]] oracle[:,[ 4, 12]] = oracle[:,[ 12, 4]] oracle[:,[ 5, 5]] = oracle[:,[ 5, 5]] oracle[:,[ 6, 30]] = oracle[:,[ 30, 6]] oracle[:,[ 7, 23]] = oracle[:,[ 23, 7]] oracle = Operator(oracle) qc.append(oracle,qr) for i in range(3): qc.h(i) qc.barrier() for i in range(3): qc.measure(i,i) display(qc.draw("mpl")) simulator = qk.Aer.get_backend("statevector_simulator") results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np oracle = np.eye(8) oracle[:,[2,6]] = oracle[:,[6,2]] oracle import numpy as np x0 = np.array([[1,0]]).T x1 = np.array([[1,0]]).T psi0 = np.kron(x1,x0) H = np.array([[1,1],[1,-1]])/np.sqrt(2) H2 = np.kron(H,H) psi1 = H2.dot(psi0) psi1.T # Initialize a qubit y in state |1> y = np.array([[0,1]]).T # Pass it through a Hadamard gate and obtain state psi2a H = np.array([[1,1],[1,-1]])/np.sqrt(2) psi2a = H.dot(y) psi2a.T psi2 = np.kron(psi2a,psi1) psi2.T oracle = np.eye(8) oracle[:,[2,6]] = oracle[:,[6,2]] oracle psi3 = oracle.dot(psi2) psi3.T v0 = np.array([[10,20,-30,40,50]]).T mu = np.mean(v0) v0.T, mu D = v0 - mu D.T v1 = 2*np.mean(v0)-v0 v1.T import numpy as np A = np.ones(5**2).reshape(5,5) A = A/5 I = np.eye(5) R = 2*A-I R R.dot(R) n = 4 I = np.eye(n) A = np.ones(n**2).reshape(n,n)/n R = 2*A-I R I2 = np.eye(2) I2R = np.kron(I2,R) I2R psi4 = I2R.dot(psi3) psi4.T import qiskit as qk import numpy as np from qiskit.quantum_info.operators import Operator q = qk.QuantumRegister(3,'q') c = qk.ClassicalRegister(3,'c') qc = qk.QuantumCircuit(q,c) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.h(0) qc.h(1) qc.initialize([0,1],2) qc.h(2) qc.barrier() oracle = np.eye(8) oracle[:,[2,6]] = oracle[:,[6,2]] oracle = Operator(oracle) qc.append(oracle,q) # n = 2 (two digits number to look for) A = np.ones(4*4).reshape(4,4)/4 I4 = np.eye(4) R = 2*A - I4 I2 = np.eye(2) boost = np.kron(I2,R) boost = Operator(boost) qc.append(boost,q) qc.barrier() qc.measure(q[:2],c[:2]) display(qc.draw('mpl')) simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=1000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np x0 = np.array([[1,0]]).T x1 = np.array([[1,0]]).T x2 = np.array([[1,0]]).T x2x1x0 = np.kron(x2,np.kron(x1,x0)) x2x1x0.T H = np.array([[1,1],[1,-1]])/np.sqrt(2) H2 = np.kron(H,H) H3 = np.kron(H,H2) x = H3.dot(x2x1x0) x.T y0 = np.array([[0,1]]).T y0.T H = np.array([[1,1],[1,-1]])/np.sqrt(2) y = H.dot(y0) y.T psi0 = np.kron(y,x) psi0.T oracle = np.eye(16) oracle[:,[5,13]] = oracle[:,[13,5]] psi1 = oracle.dot(psi0) psi1.T # n = 8 A = np.ones(8*8).reshape(8,8)/8 I8 = np.eye(8) R = 2*A-I8 R I2 = np.eye(2) I2R = np.kron(I2,R) psi2 = I2R.dot(psi1) psi2.T 0.625**2 + 0.625**2 psi3 = I2R.dot(oracle).dot(psi2) psi3.T 0.687**2 + 0.687**2 I2R.dot(oracle).dot(psi3).T T = I2R.dot(oracle) psi = psi1 prob = [] for i in range(25): prob.append(psi[5,0]**2 + psi[13,0]**2) psi = T.dot(psi) from matplotlib import pyplot as plt plt.plot(list(range(25)), prob); import qiskit as qk import numpy as np from qiskit.quantum_info.operators import Operator q = qk.QuantumRegister(4,'q') c = qk.ClassicalRegister(4,'c') qc = qk.QuantumCircuit(q,c) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.initialize([1,0],2) qc.h(0) qc.h(1) qc.h(2) qc.initialize([0,1],3) qc.h(3) qc.barrier() # Create oracle matrix oracle = np.eye(16) oracle[:,[5,13]] = oracle[:,[13,5]] # Create rotation about the mean matrix # n = 3 (three digits number to look for) A = np.ones(8*8).reshape(8,8)/8 I8 = np.eye(8) R = 2*A - I8 # Identity matrix to leave fourth qubit undisturbed I2 = np.eye(2) # Create second transformation matrix boost = np.kron(I2,R) # Combine oracle with second transformation matrix in # an unique operator T = boost.dot(oracle) T = Operator(T) # Apply operator twice (2 phase inversions and # rotations about the mean) qc.append(T,q) qc.append(T,q) qc.barrier() qc.measure(q[:3],c[:3]) display(qc.draw('mpl')) simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=1000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk import numpy as np from qiskit.quantum_info.operators import Operator q = qk.QuantumRegister(5,'q') c = qk.ClassicalRegister(5,'c') qc = qk.QuantumCircuit(q,c) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.initialize([1,0],2) qc.initialize([1,0],3) qc.h(0) qc.h(1) qc.h(2) qc.h(3) qc.initialize([0,1],4) qc.h(4) qc.barrier() # Create oracle matrix oracle = np.eye(32) oracle[:,[13,29]] = oracle[:,[29,13]] # Create rotation about the mean matrix # n = 4 (four digits number to look for) A = np.ones(16*16).reshape(16,16)/16 I16 = np.eye(16) R = 2*A - I16 # Identity matrix to leave fifth qubit undisturbed I2 = np.eye(2) # Create second transformation matrix boost = np.kron(I2,R) # Combine oracle with second transformation matrix in # an unique operator T = boost.dot(oracle) # n = 4. Therefore it will be necessary 4 T operations # to get maximum probability. Tn = T.dot(T).dot(T) Tn = Operator(Tn) # Apply operator Tn once (n phase inversions and # rotations about the mean) qc.append(Tn,q) qc.barrier() qc.measure(q[:4],c[:4]) display(qc.draw('mpl')) simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=1000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np import pandas as pd N = 35; a = 6 GCD = pd.DataFrame({'N':[N], 'a':[a], 'N-a':[N-a]}) while GCD.iloc[-1,2] != 0: temp = GCD.iloc[-1].values temp = np.sort(temp); temp[-1] = temp[-2] - temp[-3] temp = pd.DataFrame(data = temp.reshape(-1,3), columns = ['N','a','N-a']) GCD = GCD.append(temp, ignore_index=True) GCD import numpy as np import pandas as pd N = 15; a = 9 GCD = pd.DataFrame({'N':[N], 'a':[a], 'N-a':[N-a]}) while GCD.iloc[-1,2] != 0: temp = GCD.iloc[-1].values temp = np.sort(temp); temp[-1] = temp[-2] - temp[-3] temp = pd.DataFrame(data = temp.reshape(-1,3), columns = ['N','a','N-a']) GCD = GCD.append(temp, ignore_index=True) GCD import numpy as np np.gcd(6,35), np.gcd(9,15) import numpy as np np.gcd(215,35), np.gcd(217,35) 20 % 7 import numpy as np f = lambda x,a,N: a**x % N [f(x,2,15) for x in range(10)] import numpy as np (13*35)%11, ((2%11)*(24%11))%11 import numpy as np def f(x,a,N): a0 = 1 for i in range(x): a0 = ((a%N)*(a0))%N return(a0) [f(x,2,371) for x in range(8)] [f(x,2,371) for x in range(154,159)] [f(x,24,371) for x in range(77,81)] import numpy as np def fr(a,N): ax = ((a%N)*(1))%N x = 1 while ax != 1: ax = ((a%N)*(ax))%N x = x+1 return(x) fr(2,371), fr(6,371), fr(24,371) import numpy as np def fr(a,N): a0 = 1 a0 = ((a%N)*a0)%N x = 2 find = False while find==False: a0 = ((a%N)*(a0))%N if a0 == 1: find = True x = x+1 return(x-1) N = 35 a = 2 fr(a,N) 2**(12/2)-1, 2**(12/2)+1 np.gcd(63,35), np.gcd(65,35) import numpy as np # Function to calculate the period of f(x) = a^x MOD N def fr(a,N): a1 = ((a%N)*(1))%N x = 1 while a1 != 1: a1 = ((a%N)*a1)%N x = x+1 return(x) # Function to factor N based on a def factor(N, a=2): r = fr(a,N) g1 = a**(int(r/2)) - 1 g2 = a**(int(r/2)) + 1 f1 = np.gcd(g1,N) f2 = np.gcd(g2,N) return(f1,f2, f1*f2) factor(247) factor(1045) import numpy as np N = 15 # number to be factored n = 4 # number of bits necessary to represent N m = 8 # number of bits necessary to represent N^2 x = np.zeros(2**m).reshape(-1,1) x[0,0] = 1 x.shape # since x is a 2^8 = 256 positions vector it will not be showed here y = np.zeros(2**n).reshape(-1,1) y[0,0] = 1; y.T # y is a 2^4 = 16 positions vector shown below psi0 = np.kron(y,x) psi0.shape # psi0 is a 256 x 16 = 4.096 positions vector In = np.eye(2**n); In.shape H = np.array([[1,1],[1,-1]])/np.sqrt(2) Hm = H.copy() for i in range(1,m): Hm = np.kron(Hm,H) Hm.shape psi1 = np.kron(In,Hm).dot(psi0); psi1.shape
https://github.com/cjsproject/qiskit_learning
cjsproject
import numpy as np from matplotlib.image import imread import matplotlib.pyplot as plt import torch from torchvision import transforms from torchvision.datasets import MNIST # the data is not normalized, and needs to be converted to a np array... digits = MNIST('data', train=True, download=False) # converting to np array and normalizing by val/max(arr) digits = digits.data.numpy() digits = digits/np.max(digits) #displaying image display = plt.imshow(digits[0]) display.set_cmap('gray') print(digits[0].shape) # grab 4x4 squares of the image im1 = digits[0] stride = 1 mat_sq = np.zeros([28,28,4,4]) for i in range(0, len(im1)-4, stride): for j in range(0, len(im1[i])-4, stride): cube = im1[i:i+4, j:j+4] mat_sq[i, j] = cube # creates a 2d collection of matrices, where each [i, j] index contains a 4x4 matrix print(mat_sq[14, 14]) display = plt.imshow(mat_sq[14, 14]) display.set_cmap('gray') # find SVD of each submatrix, make unitary and assign to uni uni = np.zeros([28,28,4,4]) for i in range(len(mat_sq)): for j in range(len(mat_sq[i])): U, S, VT = np.linalg.svd(mat_sq[i, j]) uni[i, j] = np.dot(U, VT) #print(f"U =\n{U}\n S =\n{S}\n VT=\n{VT}\n") test = uni[14,14] # comparing unitary, they aren't the same :( print(f"U*VT:\n{uni[14, 14]}\nOriginal:\n{mat_sq[14, 14]}") # try graham schmidt, they're just about the same! # seems to have detected an edge. Q, R = np.linalg.qr(mat_sq[14, 14]) print(f"Q:\n{Q}\nOriginal:\n{mat_sq[14, 14]}\nIs Q Unitary:\n{np.matmul(Q, Q.transpose(0, 1)).round()}") display = plt.imshow(Q) display.set_cmap('gray')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit.random import random_circuit circuit = random_circuit(2, 2, seed=0, measure=True).decompose(reps=1) display(circuit.draw("mpl")) from qiskit.primitives import Sampler sampler = Sampler() job = sampler.run(circuit) print(f">>> Job ID: {job.job_id()}") print(f">>> Job Status: {job.status()}") result = job.result() print(f">>> {result}") print(f" > Quasi-distribution: {result.quasi_dists[0]}") circuit = random_circuit(2, 2, seed=1, measure=True).decompose(reps=1) job = sampler.run(circuit) result = job.result() display(circuit.draw("mpl")) print(f">>> Quasi-distribution: {result.quasi_dists[0]}") circuits = ( random_circuit(2, 2, seed=0, measure=True).decompose(reps=1), random_circuit(2, 2, seed=1, measure=True).decompose(reps=1), ) job = sampler.run(circuits) result = job.result() [display(cir.draw("mpl")) for cir in circuits] print(f">>> Quasi-distribution: {result.quasi_dists}") from qiskit.circuit.library import RealAmplitudes circuit = RealAmplitudes(num_qubits=2, reps=2).decompose(reps=1) circuit.measure_all() parameter_values = [0, 1, 2, 3, 4, 5] job = sampler.run(circuit, parameter_values) result = job.result() display(circuit.draw("mpl")) print(f">>> Parameter values: {parameter_values}") print(f">>> Quasi-distribution: {result.quasi_dists[0]}") from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService(channel="ibm_quantum") backend = service.backend("ibmq_qasm_simulator") from qiskit.circuit.random import random_circuit circuit = random_circuit(2, 2, seed=0, measure=True).decompose(reps=1) display(circuit.draw("mpl")) from qiskit_ibm_runtime import Sampler sampler = Sampler(session=backend) job = sampler.run(circuit) print(f">>> Job ID: {job.job_id()}") print(f">>> Job Status: {job.status()}") result = job.result() print(f">>> {result}") print(f" > Quasi-distribution: {result.quasi_dists[0]}") print(f" > Metadata: {result.metadata[0]}") from qiskit_ibm_runtime import Options options = Options(optimization_level=3, environment={"log_level": "INFO"}) from qiskit_ibm_runtime import Options options = Options() options.resilience_level = 1 options.execution.shots = 2048 sampler = Sampler(session=backend, options=options) result = sampler.run(circuit).result() print(f">>> Metadata: {result.metadata[0]}") sampler = Sampler(session=backend, options=options) result = sampler.run(circuit, shots=1024).result() print(f">>> Metadata: {result.metadata[0]}") from qiskit_ibm_runtime import Options # optimization_level=3 adds dynamical decoupling # resilience_level=1 adds readout error mitigation options = Options(optimization_level=3, resilience_level=1) sampler = Sampler(session=backend, options=options) result = sampler.run(circuit).result() print(f">>> Quasi-distribution: {result.quasi_dists[0]}") print(f">>> Metadata: {result.metadata[0]}") from qiskit_ibm_runtime import Session, Estimator with Session(backend=backend, max_time="1h"): sampler = Sampler() result = sampler.run(circuit).result() print(f">>> Quasi-distribution from the first run: {result.quasi_dists[0]}") result = sampler.run(circuit).result() print(f">>> Quasi-distribution from the second run: {result.quasi_dists[0]}") from qiskit.circuit.random import random_circuit from qiskit.quantum_info import SparsePauliOp estimator_circuit = random_circuit(2, 2, seed=0).decompose(reps=1) display(estimator_circuit.draw("mpl")) observable = SparsePauliOp("XZ") print(f">>> Observable: {observable.paulis}") from qiskit_ibm_runtime import Session, Sampler, Estimator with Session(backend=backend): sampler = Sampler() estimator = Estimator() result = sampler.run(circuit).result() print(f">>> Quasi Distribution from the sampler job: {result.quasi_dists[0]}") result = estimator.run(estimator_circuit, observable).result() print(f">>> Expectation value from the estimator job: {result.values[0]}") from qiskit_ibm_runtime import Session, Sampler, Estimator with Session(backend=backend): sampler = Sampler() estimator = Estimator() sampler_job = sampler.run(circuit) estimator_job = estimator.run(estimator_circuit, observable) print(f">>> Quasi Distribution from the sampler job: {sampler_job.result().quasi_dists[0]}") print(f">>> Expectation value from the estimator job: {estimator_job.result().values[0]}") from qiskit_ibm_runtime import QiskitRuntimeService, Session, Sampler, Estimator, Options # 1. Initialize account service = QiskitRuntimeService(channel="ibm_quantum") # 2. Specify options, such as enabling error mitigation options = Options(resilience_level=1) # 3. Select a backend. backend = service.backend("ibmq_qasm_simulator") # 4. Create a session with Session(backend=backend): # 5. Create primitive instances sampler = Sampler(options=options) estimator = Estimator(options=options) # 6. Submit jobs sampler_job = sampler.run(circuit) estimator_job = estimator.run(estimator_circuit, observable) # 7. Get results print(f">>> Quasi Distribution from the sampler job: {sampler_job.result().quasi_dists[0]}") print(f">>> Expectation value from the estimator job: {estimator_job.result().values[0]}") import qiskit_ibm_runtime qiskit_ibm_runtime.version.get_version_info() from qiskit.tools.jupyter import * %qiskit_version_table %qiskit_copyright
https://github.com/ronitd2002/IBM-Quantum-challenge-2024
ronitd2002
from qiskit.circuit.library import RealAmplitudes ansatz = RealAmplitudes(num_qubits=2, reps=1, entanglement='linear') ansatz.draw('mpl', style='iqx') from qiskit.opflow import Z, I hamiltonian = Z ^ Z from qiskit.opflow import StateFn expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(ansatz) import numpy as np point = np.random.random(ansatz.num_parameters) index = 2 from qiskit import Aer from qiskit.utils import QuantumInstance backend = Aer.get_backend('qasm_simulator') q_instance = QuantumInstance(backend, shots = 8192, seed_simulator = 2718, seed_transpiler = 2718) from qiskit.circuit import QuantumCircuit from qiskit.opflow import Z, X H = X ^ X U = QuantumCircuit(2) U.h(0) U.cx(0, 1) # YOUR CODE HERE expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(U) matmult_result =expectation.eval() from qc_grader import grade_lab4_ex1 # Note that the grading function is expecting a complex number grade_lab4_ex1(matmult_result) from qiskit.opflow import CircuitSampler, PauliExpectation sampler = CircuitSampler(q_instance) # YOUR CODE HERE sampler = CircuitSampler(q_instance) # q_instance is the QuantumInstance from the beginning of the notebook expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(U) in_pauli_basis = PauliExpectation().convert(expectation) shots_result = sampler.convert(in_pauli_basis).eval() from qc_grader import grade_lab4_ex2 # Note that the grading function is expecting a complex number grade_lab4_ex2(shots_result) from qiskit.opflow import PauliExpectation, CircuitSampler expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(ansatz) in_pauli_basis = PauliExpectation().convert(expectation) sampler = CircuitSampler(q_instance) def evaluate_expectation(x): value_dict = dict(zip(ansatz.parameters, x)) result = sampler.convert(in_pauli_basis, params=value_dict).eval() return np.real(result) eps = 0.2 e_i = np.identity(point.size)[:, index] # identity vector with a 1 at index ``index``, otherwise 0 plus = point + eps * e_i minus = point - eps * e_i finite_difference = (evaluate_expectation(plus) - evaluate_expectation(minus)) / (2 * eps) print(finite_difference) from qiskit.opflow import Gradient expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(ansatz) shifter = Gradient('fin_diff', analytic=False, epsilon=eps) grad = shifter.convert(expectation, params=ansatz.parameters[index]) print(grad) value_dict = dict(zip(ansatz.parameters, point)) sampler.convert(grad, value_dict).eval().real eps = np.pi / 2 e_i = np.identity(point.size)[:, index] # identity vector with a 1 at index ``index``, otherwise 0 plus = point + eps * e_i minus = point - eps * e_i finite_difference = (evaluate_expectation(plus) - evaluate_expectation(minus)) / 2 print(finite_difference) expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(ansatz) shifter = Gradient() # parameter-shift rule is the default grad = shifter.convert(expectation, params=ansatz.parameters[index]) sampler.convert(grad, value_dict).eval().real expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(ansatz) shifter = Gradient('lin_comb') # parameter-shift rule is the default grad = shifter.convert(expectation, params=ansatz.parameters[index]) sampler.convert(grad, value_dict).eval().real # initial_point = np.random.random(ansatz.num_parameters) initial_point = np.array([0.43253681, 0.09507794, 0.42805949, 0.34210341]) expectation = StateFn(hamiltonian, is_measurement=True).compose(StateFn(ansatz)) gradient = Gradient().convert(expectation) gradient_in_pauli_basis = PauliExpectation().convert(gradient) sampler = CircuitSampler(q_instance) def evaluate_gradient(x): value_dict = dict(zip(ansatz.parameters, x)) result = sampler.convert(gradient_in_pauli_basis, params=value_dict).eval() # add parameters in here! return np.real(result) # Note: The GradientDescent class will be released with Qiskit 0.28.0 and can then be imported as: # from qiskit.algorithms.optimizers import GradientDescent from qc_grader.gradient_descent import GradientDescent gd_loss = [] def gd_callback(nfevs, x, fx, stepsize): gd_loss.append(fx) gd = GradientDescent(maxiter=300, learning_rate=0.01, callback=gd_callback) x_opt, fx_opt, nfevs = gd.optimize(initial_point.size, # number of parameters evaluate_expectation, # function to minimize gradient_function=evaluate_gradient, # function to evaluate the gradient initial_point=initial_point) # initial point import matplotlib import matplotlib.pyplot as plt matplotlib.rcParams['font.size'] = 14 plt.figure(figsize=(12, 6)) plt.plot(gd_loss, label='vanilla gradient descent') plt.axhline(-1, ls='--', c='tab:red', label='target') plt.ylabel('loss') plt.xlabel('iterations') plt.legend(); from qiskit.opflow import NaturalGradient expectation = StateFn(hamiltonian, is_measurement=True).compose(StateFn(ansatz)) natural_gradient = NaturalGradient(regularization='ridge').convert(expectation) natural_gradient_in_pauli_basis = PauliExpectation().convert(natural_gradient) sampler = CircuitSampler(q_instance, caching="all") def evaluate_natural_gradient(x): value_dict = dict(zip(ansatz.parameters, x)) result = sampler.convert(natural_gradient, params=value_dict).eval() return np.real(result) print('Vanilla gradient:', evaluate_gradient(initial_point)) print('Natural gradient:', evaluate_natural_gradient(initial_point)) qng_loss = [] def qng_callback(nfevs, x, fx, stepsize): qng_loss.append(fx) qng = GradientDescent(maxiter=300, learning_rate=0.01, callback=qng_callback) x_opt, fx_opt, nfevs = qng.optimize(initial_point.size, evaluate_expectation, gradient_function=evaluate_natural_gradient, initial_point=initial_point) def plot_loss(): plt.figure(figsize=(12, 6)) plt.plot(gd_loss, 'tab:blue', label='vanilla gradient descent') plt.plot(qng_loss, 'tab:green', label='quantum natural gradient') plt.axhline(-1, c='tab:red', ls='--', label='target') plt.ylabel('loss') plt.xlabel('iterations') plt.legend() plot_loss() from qc_grader.spsa import SPSA spsa_loss = [] def spsa_callback(nfev, x, fx, stepsize, accepted): spsa_loss.append(fx) spsa = SPSA(maxiter=300, learning_rate=0.01, perturbation=0.01, callback=spsa_callback) x_opt, fx_opt, nfevs = spsa.optimize(initial_point.size, evaluate_expectation, initial_point=initial_point) def plot_loss(): plt.figure(figsize=(12, 6)) plt.plot(gd_loss, 'tab:blue', label='vanilla gradient descent') plt.plot(qng_loss, 'tab:green', label='quantum natural gradient') plt.plot(spsa_loss, 'tab:blue', ls='--', label='SPSA') plt.axhline(-1, c='tab:red', ls='--', label='target') plt.ylabel('loss') plt.xlabel('iterations') plt.legend() plot_loss() # Note: The QNSPSA class will be released with Qiskit 0.28.0 and can then be imported as: # from qiskit.algorithms.optimizers import QNSPSA from qc_grader.qnspsa import QNSPSA qnspsa_loss = [] def qnspsa_callback(nfev, x, fx, stepsize, accepted): qnspsa_loss.append(fx) fidelity = QNSPSA.get_fidelity(ansatz, q_instance, expectation=PauliExpectation()) qnspsa = QNSPSA(fidelity, maxiter=300, learning_rate=0.01, perturbation=0.01, callback=qnspsa_callback) x_opt, fx_opt, nfevs = qnspsa.optimize(initial_point.size, evaluate_expectation, initial_point=initial_point) def plot_loss(): plt.figure(figsize=(12, 6)) plt.plot(gd_loss, 'tab:blue', label='vanilla gradient descent') plt.plot(qng_loss, 'tab:green', label='quantum natural gradient') plt.plot(spsa_loss, 'tab:blue', ls='--', label='SPSA') plt.plot(qnspsa_loss, 'tab:green', ls='--', label='QN-SPSA') plt.axhline(-1, c='tab:red', ls='--', label='target') plt.ylabel('loss') plt.xlabel('iterations') plt.legend() plot_loss() autospsa_loss = [] def autospsa_callback(nfev, x, fx, stepsize, accepted): autospsa_loss.append(fx) autospsa = SPSA(maxiter=300, learning_rate=None, perturbation=None, callback=autospsa_callback) x_opt, fx_opt, nfevs = autospsa.optimize(initial_point.size, evaluate_expectation, initial_point=initial_point) def plot_loss(): plt.figure(figsize=(12, 6)) plt.plot(gd_loss, 'tab:blue', label='vanilla gradient descent') plt.plot(qng_loss, 'tab:green', label='quantum natural gradient') plt.plot(spsa_loss, 'tab:blue', ls='--', label='SPSA') plt.plot(qnspsa_loss, 'tab:green', ls='--', label='QN-SPSA') plt.plot(autospsa_loss, 'tab:red', label='Powerlaw SPSA') plt.axhline(-1, c='tab:red', ls='--', label='target') plt.ylabel('loss') plt.xlabel('iterations') plt.legend() plot_loss() H_tfi = -(Z^Z^I)-(I^Z^Z)-(X^I^I)-(I^X^I)-(I^I^X) from qc_grader import grade_lab4_ex3 # Note that the grading function is expecting a Hamiltonian grade_lab4_ex3(H_tfi) from qiskit.circuit.library import EfficientSU2 efficient_su2 = EfficientSU2(3, entanglement="linear", reps=2) tfi_sampler = CircuitSampler(q_instance) def evaluate_tfi(parameters): exp = StateFn(H_tfi, is_measurement=True).compose(StateFn(efficient_su2)) value_dict = dict(zip(efficient_su2.parameters, parameters)) result = tfi_sampler.convert(PauliExpectation().convert(exp), params=value_dict).eval() return np.real(result) # target energy tfi_target = -3.4939592074349326 # initial point for reproducibility tfi_init = np.array([0.95667807, 0.06192812, 0.47615196, 0.83809827, 0.89022282, 0.27140831, 0.9540853 , 0.41374024, 0.92595507, 0.76150126, 0.8701938 , 0.05096063, 0.25476016, 0.71807858, 0.85661325, 0.48311132, 0.43623886, 0.6371297 ]) tfi_result = SPSA(maxiter=300, learning_rate=None, perturbation=None) tfi_result = tfi_result.optimize(tfi_init.size, evaluate_tfi, initial_point=tfi_init) tfi_minimum = tfi_result[1] print("Error:", np.abs(tfi_result[1] - tfi_target)) from qc_grader import grade_lab4_ex4 # Note that the grading function is expecting a floating point number grade_lab4_ex4(tfi_minimum) from qiskit_machine_learning.datasets import ad_hoc_data training_features, training_labels, test_features, test_labels = ad_hoc_data( training_size=20, test_size=10, n=2, one_hot=False, gap=0.5 ) # the training labels are in {0, 1} but we'll use {-1, 1} as class labels! training_labels = 2 * training_labels - 1 test_labels = 2 * test_labels - 1 def plot_sampled_data(): from matplotlib.patches import Patch from matplotlib.lines import Line2D import matplotlib.pyplot as plt plt.figure(figsize=(12,6)) for feature, label in zip(training_features, training_labels): marker = 'o' color = 'tab:green' if label == -1 else 'tab:blue' plt.scatter(feature[0], feature[1], marker=marker, s=100, color=color) for feature, label in zip(test_features, test_labels): marker = 's' plt.scatter(feature[0], feature[1], marker=marker, s=100, facecolor='none', edgecolor='k') legend_elements = [ Line2D([0], [0], marker='o', c='w', mfc='tab:green', label='A', ms=15), Line2D([0], [0], marker='o', c='w', mfc='tab:blue', label='B', ms=15), Line2D([0], [0], marker='s', c='w', mfc='none', mec='k', label='test features', ms=10) ] plt.legend(handles=legend_elements, bbox_to_anchor=(1, 0.6)) plt.title('Training & test data') plt.xlabel('$x$') plt.ylabel('$y$') plot_sampled_data() from qiskit.circuit.library import ZZFeatureMap dim = 2 feature_map = ZZFeatureMap(dim, reps=1) # let's keep it simple! feature_map.draw('mpl', style='iqx') ansatz = RealAmplitudes(num_qubits=dim, entanglement='linear', reps=1) # also simple here! ansatz.draw('mpl', style='iqx') circuit = feature_map.compose(ansatz) circuit.draw('mpl', style='iqx') hamiltonian = Z ^ Z # global Z operators gd_qnn_loss = [] def gd_qnn_callback(*args): gd_qnn_loss.append(args[2]) gd = GradientDescent(maxiter=100, learning_rate=0.01, callback=gd_qnn_callback) from qiskit_machine_learning.neural_networks import OpflowQNN qnn_expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(circuit) qnn = OpflowQNN(qnn_expectation, input_params=list(feature_map.parameters), weight_params=list(ansatz.parameters), exp_val=PauliExpectation(), gradient=Gradient(), # <-- Parameter-Shift gradients quantum_instance=q_instance) from qiskit_machine_learning.algorithms import NeuralNetworkClassifier #initial_point = np.array([0.2, 0.1, 0.3, 0.4]) classifier = NeuralNetworkClassifier(qnn, optimizer=gd) classifier.fit(training_features, training_labels); predicted = classifier.predict(test_features) def plot_predicted(): from matplotlib.lines import Line2D plt.figure(figsize=(12, 6)) for feature, label in zip(training_features, training_labels): marker = 'o' color = 'tab:green' if label == -1 else 'tab:blue' plt.scatter(feature[0], feature[1], marker=marker, s=100, color=color) for feature, label, pred in zip(test_features, test_labels, predicted): marker = 's' color = 'tab:green' if pred == -1 else 'tab:blue' if label != pred: # mark wrongly classified plt.scatter(feature[0], feature[1], marker='o', s=500, linewidths=2.5, facecolor='none', edgecolor='tab:red') plt.scatter(feature[0], feature[1], marker=marker, s=100, color=color) legend_elements = [ Line2D([0], [0], marker='o', c='w', mfc='tab:green', label='A', ms=15), Line2D([0], [0], marker='o', c='w', mfc='tab:blue', label='B', ms=15), Line2D([0], [0], marker='s', c='w', mfc='tab:green', label='predict A', ms=10), Line2D([0], [0], marker='s', c='w', mfc='tab:blue', label='predict B', ms=10), Line2D([0], [0], marker='o', c='w', mfc='none', mec='tab:red', label='wrongly classified', mew=2, ms=15) ] plt.legend(handles=legend_elements, bbox_to_anchor=(1, 0.7)) plt.title('Training & test data') plt.xlabel('$x$') plt.ylabel('$y$') plot_predicted() qng_qnn_loss = [] def qng_qnn_callback(*args): qng_qnn_loss.append(args[2]) gd = GradientDescent(maxiter=100, learning_rate=0.01, callback=qng_qnn_callback) qnn = OpflowQNN(qnn_expectation, input_params=list(feature_map.parameters), weight_params=list(ansatz.parameters), gradient=NaturalGradient(regularization='ridge'), # <-- using Natural Gradients! quantum_instance=q_instance) classifier = NeuralNetworkClassifier(qnn, optimizer=gd)#, initial_point=initial_point) classifier.fit(training_features, training_labels); def plot_losses(): plt.figure(figsize=(12, 6)) plt.plot(gd_qnn_loss, 'tab:blue', marker='o', label='vanilla gradients') plt.plot(qng_qnn_loss, 'tab:green', marker='o', label='natural gradients') plt.xlabel('iterations') plt.ylabel('loss') plt.legend(loc='best') plot_losses() from qiskit.opflow import I def sample_gradients(num_qubits, reps, local=False): """Sample the gradient of our model for ``num_qubits`` qubits and ``reps`` repetitions. We sample 100 times for random parameters and compute the gradient of the first RY rotation gate. """ index = num_qubits - 1 # you can also exchange this for a local operator and observe the same! if local: operator = Z ^ Z ^ (I ^ (num_qubits - 2)) else: operator = Z ^ num_qubits # real amplitudes ansatz ansatz = RealAmplitudes(num_qubits, entanglement='linear', reps=reps) # construct Gradient we want to evaluate for different values expectation = StateFn(operator, is_measurement=True).compose(StateFn(ansatz)) grad = Gradient().convert(expectation, params=ansatz.parameters[index]) # evaluate for 100 different, random parameter values num_points = 100 grads = [] for _ in range(num_points): # points are uniformly chosen from [0, pi] point = np.random.uniform(0, np.pi, ansatz.num_parameters) value_dict = dict(zip(ansatz.parameters, point)) grads.append(sampler.convert(grad, value_dict).eval()) return grads num_qubits = list(range(2, 13)) reps = num_qubits # number of layers = numbers of qubits gradients = [sample_gradients(n, r) for n, r in zip(num_qubits, reps)] fit = np.polyfit(num_qubits, np.log(np.var(gradients, axis=1)), deg=1) x = np.linspace(num_qubits[0], num_qubits[-1], 200) plt.figure(figsize=(12, 6)) plt.semilogy(num_qubits, np.var(gradients, axis=1), 'o-', label='measured variance') plt.semilogy(x, np.exp(fit[0] * x + fit[1]), 'r--', label=f'exponential fit w/ {fit[0]:.2f}') plt.xlabel('number of qubits') plt.ylabel(r'$\mathrm{Var}[\partial_{\theta 1} \langle E(\theta) \rangle]$') plt.legend(loc='best'); from qiskit.opflow import NaturalGradient def sample_natural_gradients(num_qubits, reps): index = num_qubits - 1 operator = Z ^ num_qubits ansatz = RealAmplitudes(num_qubits, entanglement='linear', reps=reps) expectation = StateFn(operator, is_measurement=True).compose(StateFn(ansatz)) grad = # TODO: ``grad`` should be the natural gradient for the parameter at index ``index``. # Hint: Check the ``sample_gradients`` function, this one is almost the same. grad = NaturalGradient().convert(expectation, params=ansatz.parameters[index]) num_points = 100 grads = [] for _ in range(num_points): point = np.random.uniform(0, np.pi, ansatz.num_parameters) value_dict = dict(zip(ansatz.parameters, point)) grads.append(sampler.convert(grad, value_dict).eval()) return grads num_qubits = list(range(2, 13)) reps = num_qubits # number of layers = numbers of qubits natural_gradients = [sample_natural_gradients(n, r) for n, r in zip(num_qubits, reps)] fit = np.polyfit(num_qubits, np.log(np.var(natural_gradients, axis=1)), deg=1) x = np.linspace(num_qubits[0], num_qubits[-1], 200) plt.figure(figsize=(12, 6)) plt.semilogy(num_qubits, np.var(gradients, axis=1), 'o-', label='vanilla gradients') plt.semilogy(num_qubits, np.var(natural_gradients, axis=1), 's-', label='natural gradients') plt.semilogy(x, np.exp(fit[0] * x + fit[1]), 'r--', label=f'exponential fit w/ {float(fit[0]):.2f}') plt.xlabel('number of qubits') plt.ylabel(r'$\mathrm{Var}[\partial_{\theta 1} \langle E(\theta) \rangle]$') plt.legend(loc='best'); num_qubits = list(range(2, 13)) fixed_depth_global_gradients = [sample_gradients(n, 1) for n in num_qubits] fit = np.polyfit(num_qubits, np.log(np.var(fixed_depth_global_gradients, axis=1)), deg=1) x = np.linspace(num_qubits[0], num_qubits[-1], 200) plt.figure(figsize=(12, 6)) plt.semilogy(num_qubits, np.var(gradients, axis=1), 'o-', label='global cost, linear depth') plt.semilogy(num_qubits, np.var(fixed_depth_global_gradients, axis=1), 'o-', label='global cost, constant depth') plt.semilogy(x, np.exp(fit[0] * x + fit[1]), 'r--', label=f'exponential fit w/ {fit[0]:.2f}') plt.xlabel('number of qubits') plt.ylabel(r'$\mathrm{Var}[\partial_{\theta 1} \langle E(\theta) \rangle]$') plt.legend(loc='best'); num_qubits = list(range(2, 13)) linear_depth_local_gradients = [sample_gradients(n, n, local=True) for n in num_qubits] fit = np.polyfit(num_qubits, np.log(np.var(linear_depth_local_gradients, axis=1)), deg=1) x = np.linspace(num_qubits[0], num_qubits[-1], 200) plt.figure(figsize=(12, 6)) plt.semilogy(num_qubits, np.var(gradients, axis=1), 'o-', label='global cost, linear depth') plt.semilogy(num_qubits, np.var(fixed_depth_global_gradients, axis=1), 'o-', label='global cost, constant depth') plt.semilogy(num_qubits, np.var(linear_depth_local_gradients, axis=1), 'o-', label='local cost, linear depth') plt.semilogy(x, np.exp(fit[0] * x + fit[1]), 'r--', label=f'exponential fit w/ {fit[0]:.2f}') plt.xlabel('number of qubits') plt.ylabel(r'$\mathrm{Var}[\partial_{\theta 1} \langle E(\theta) \rangle]$') plt.legend(loc='best'); num_qubits = list(range(2, 13)) fixed_depth_local_gradients = [sample_gradients(n, 1, local=True) for n in num_qubits] fit = np.polyfit(num_qubits, np.log(np.var(fixed_depth_local_gradients, axis=1)), deg=1) x = np.linspace(num_qubits[0], num_qubits[-1], 200) plt.figure(figsize=(12, 6)) plt.semilogy(num_qubits, np.var(gradients, axis=1), 'o-', label='global cost, linear depth') plt.semilogy(num_qubits, np.var(fixed_depth_global_gradients, axis=1), 'o-', label='global cost, constant depth') plt.semilogy(num_qubits, np.var(linear_depth_local_gradients, axis=1), 'o-', label='local cost, linear depth') plt.semilogy(num_qubits, np.var(fixed_depth_local_gradients, axis=1), 'o-', label='local cost, constant depth') plt.semilogy(x, np.exp(fit[0] * x + fit[1]), 'r--', label=f'exponential fit w/ {fit[0]:.2f}') plt.xlabel('number of qubits') plt.ylabel(r'$\mathrm{Var}[\partial_{\theta 1} \langle E(\theta) \rangle]$') plt.legend(loc='best'); num_qubits = 6 operator = Z ^ Z ^ (I ^ (num_qubits - 4)) def minimize(circuit, optimizer): initial_point = np.random.random(circuit.num_parameters) exp = StateFn(operator, is_measurement=True) @ StateFn(circuit) grad = Gradient().convert(exp) # pauli basis exp = PauliExpectation().convert(exp) grad = PauliExpectation().convert(grad) sampler = CircuitSampler(q_instance, caching="all") def loss(x): values_dict = dict(zip(circuit.parameters, x)) return np.real(sampler.convert(exp, values_dict).eval()) def gradient(x): values_dict = dict(zip(circuit.parameters, x)) return np.real(sampler.convert(grad, values_dict).eval()) return optimizer.optimize(circuit.num_parameters, loss, gradient, initial_point=initial_point) circuit = RealAmplitudes(4, reps=1, entanglement='linear') circuit.draw('mpl', style='iqx') circuit.reps = 5 circuit.draw('mpl', style='iqx') def layerwise_training(ansatz, max_num_layers, optimizer): optimal_parameters = [] fopt = None for reps in range(1, max_num_layers): ansatz.reps = reps # bind already optimized parameters values_dict = dict(zip(ansatz.parameters, optimal_parameters)) partially_bound = ansatz.bind_parameters(values_dict) xopt, fopt, _ = minimize(partially_bound, optimizer) print('Circuit depth:', ansatz.depth(), 'best value:', fopt) optimal_parameters += list(xopt) return fopt, optimal_parameters ansatz = RealAmplitudes(4, entanglement='linear') optimizer = GradientDescent(maxiter=50) np.random.seed(12) fopt, optimal_parameters = layerwise_training(ansatz, 4, optimizer)
https://github.com/GIRISHBELANI/QC_Benchmarks_using_dm-simulator
GIRISHBELANI
""" Quantum Fourier Transform Benchmark Program - QSim """ import math import sys import time import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.circuit.library import QFT sys.path[1:1] = [ "_common", "_common/qsim" ] sys.path[1:1] = [ "../../_common", "../../_common/qsim" ] import execute as ex import metrics as metrics from execute import BenchmarkResult # Benchmark Name benchmark_name = "Quantum Fourier Transform" np.random.seed(0) verbose = False # saved circuits for display num_gates = 0 depth = 0 QC_ = None QFT_ = None QFTI_ = None ############### Circuit Definition def QuantumFourierTransform (num_qubits, secret_int, method=1): global num_gates, depth # Size of input is one less than available qubits input_size = num_qubits num_gates = 0 depth = 0 # allocate qubits qr = QuantumRegister(num_qubits); cr = ClassicalRegister(num_qubits); qc = QuantumCircuit(qr, cr, name=f"qft({method})-{num_qubits}-{secret_int}") if method==1: # Perform X on each qubit that matches a bit in the secret string s = ('{0:0'+str(input_size)+'b}').format(secret_int) for i_qubit in range(input_size): if s[input_size-1-i_qubit]=='1': qc.x(qr[i_qubit]) num_gates += 1 depth += 1 qc.barrier() # perform QFT on the input qc.append(qft_gate(input_size).to_instruction(), qr) # End with Hadamard on all qubits (to measure the z rotations) ''' don't do this unless NOT doing the inverse afterwards for i_qubit in range(input_size): qc.h(qr[i_qubit]) qc.barrier() ''' qc.barrier() # some compilers recognize the QFT and IQFT in series and collapse them to identity; # perform a set of rotations to add one to the secret_int to avoid this collapse for i_q in range(0, num_qubits): divisor = 2 ** (i_q) qc.rz( 1 * math.pi / divisor , qr[i_q]) num_gates+=1 qc.barrier() # to revert back to initial state, apply inverse QFT qc.append(inv_qft_gate(input_size).to_instruction(), qr) qc.barrier() elif method == 2: for i_q in range(0, num_qubits): qc.h(qr[i_q]) num_gates += 1 for i_q in range(0, num_qubits): divisor = 2 ** (i_q) qc.rz(secret_int * math.pi / divisor, qr[i_q]) num_gates += 1 depth += 1 qc.append(inv_qft_gate(input_size).to_instruction(), qr) # This method is a work in progress elif method==3: for i_q in range(0, secret_int): qc.h(qr[i_q]) num_gates+=1 for i_q in range(secret_int, num_qubits): qc.x(qr[i_q]) num_gates+=1 depth += 1 qc.append(inv_qft_gate(input_size).to_instruction(), qr) else: exit("Invalid QFT method") # measure all qubits qc.measure(qr, cr) # to get the partial_probability # qc.measure(qr, cr, basis='Ensemble', add_param='Z') # to get the ensemble_probability # However, Qiskit's measure method might not directly support the 'Ensemble' basis with 'Z' parameter. # The basis parameter is typically used for different bases such as 'X', 'Y', or 'Z', but 'Ensemble' might not be directly supported. num_gates += num_qubits depth += 1 # save smaller circuit example for display global QC_ if QC_ == None or num_qubits <= 5: if num_qubits < 9: QC_ = qc # return a handle on the circuit return qc ############### QFT Circuit def qft_gate(input_size): global QFT_, num_gates, depth qr = QuantumRegister(input_size); qc = QuantumCircuit(qr, name="qft") # Generate multiple groups of diminishing angle CRZs and H gate for i_qubit in range(0, input_size): # start laying out gates from highest order qubit (the hidx) hidx = input_size - i_qubit - 1 # if not the highest order qubit, add multiple controlled RZs of decreasing angle if hidx < input_size - 1: num_crzs = i_qubit for j in range(0, num_crzs): divisor = 2 ** (num_crzs - j) qc.crz( math.pi / divisor , qr[hidx], qr[input_size - j - 1]) num_gates += 1 depth += 1 # followed by an H gate (applied to all qubits) qc.h(qr[hidx]) num_gates += 1 depth += 1 qc.barrier() if QFT_ == None or input_size <= 8: if input_size < 9: QFT_ = qc return qc ############### Inverse QFT Circuit def inv_qft_gate(input_size): global QFTI_, num_gates, depth qr = QuantumRegister(input_size); qc = QuantumCircuit(qr, name="inv_qft") # Generate multiple groups of diminishing angle CRZs and H gate for i_qubit in reversed(range(0, input_size)): # start laying out gates from highest order qubit (the hidx) hidx = input_size - i_qubit - 1 # precede with an H gate (applied to all qubits) qc.h(qr[hidx]) num_gates += 1 depth += 1 # if not the highest order qubit, add multiple controlled RZs of decreasing angle if hidx < input_size - 1: num_crzs = i_qubit for j in reversed(range(0, num_crzs)): divisor = 2 ** (num_crzs - j) qc.crz( -math.pi / divisor , qr[hidx], qr[input_size - j - 1]) num_gates += 1 depth += 1 qc.barrier() if QFTI_ == None or input_size <= 8: if input_size < 9: QFTI_= qc return qc # Define expected distribution calculated from applying the iqft to the prepared secret_int state def expected_dist(num_qubits, secret_int, counts): dist = {} s = num_qubits - secret_int for key in counts.keys(): if key[(num_qubits-secret_int):] == ''.zfill(secret_int): dist[key] = 1/(2**s) return dist ############### Result Data Analysis # Analyze and print measured results def analyze_and_print_result (qc, result, num_qubits, secret_int, num_shots, method): # obtain probs from the result object if result.backend_name == 'dm_simulator': benchmark_result = BenchmarkResult(result, num_shots) probs = benchmark_result.get_probs(num_shots) # get results as measured probability else: probs = result.get_counts(qc) # get results as measured counts # For method 1, expected result is always the secret_int if method==1: # add one to the secret_int to compensate for the extra rotations done between QFT and IQFT secret_int_plus_one = (secret_int + 1) % (2 ** num_qubits) # print("secret_int_plus_one =====", secret_int_plus_one) # create the key that is expected to have all the measurements (for this circuit) key = format(secret_int_plus_one, f"0{num_qubits}b") # format is in big-endian since it was for counts # print(f"keys ===== {key}") # correct distribution is measuring the key 100% of the time correct_dist = {key: 1.0} # For method 2, expected result is always the secret_int elif method==2: # create the key that is expected to have all the measurements (for this circuit) key = format(secret_int, f"0{num_qubits}b") # correct distribution is measuring the key 100% of the time correct_dist = {key: 1.0} # For method 3, correct_dist is a distribution with more than one value elif method==3: # correct_dist is from the expected dist correct_dist = expected_dist(num_qubits, secret_int, probs) # print(f"\ncorrect_dist ===== {correct_dist}") # print(f"\nsecret_int ====== {secret_int} ") # use our polarization fidelity rescaling fidelity = metrics.polarization_fidelity(probs, correct_dist) if verbose: print(f"For secret int {secret_int} measured: {probs} fidelity: {fidelity}") print(f"Fidelity :::::::: {fidelity}") return probs, fidelity ################ Benchmark Loop # Execute program with default parameters (try for both with and without noise by changing in execute.py) def run (min_qubits = 2, max_qubits = 8, max_circuits = 3, skip_qubits=1, num_shots = 100, # increasing max_circuits to ensure a better exploration of the possibilities. method=1, backend_id='dm_simulator', provider_backend=None, #hub="ibm-q", group="open", project="main", exec_options=None, context=None): print(f"{benchmark_name} ({method}) Benchmark Program - QSim") # validate parameters (smallest circuit is 2 qubits) max_qubits = max(3, max_qubits) min_qubits = min(max(2, min_qubits), max_qubits) skip_qubits = max(1, skip_qubits) #print(f"min, max qubits = {min_qubits} {max_qubits}") # create context identifier if context is None: context = f"{benchmark_name} ({method}) Benchmark" ########## # Initialize metrics module metrics.init_metrics() # Define custom result handler def execution_handler (qc, result, input_size, s_int, num_shots): # determine fidelity of result set num_qubits = int(input_size) counts, fidelity = analyze_and_print_result(qc, result, num_qubits, int(s_int), num_shots, method) metrics.store_metric(input_size, s_int, 'fidelity', fidelity) # Initialize execution module using the execution result handler above and specified backend_id ex.init_execution(execution_handler) ex.set_execution_target(backend_id, provider_backend=provider_backend, # hub=hub, group=group, project=project, exec_options=exec_options, context=context) ########## # Execute Benchmark Program N times for multiple circuit sizes # Accumulate metrics asynchronously as circuits complete for input_size in range(min_qubits, max_qubits + 1, skip_qubits): # reset random seed np.random.seed(0) # when you need reproducibility, for example, when debugging or testing algorithms where you want the same sequence of random numbers for consistency. num_qubits = input_size # determine number of circuits to execute for this group # and determine range of secret strings to loop over if method == 1 or method == 2: num_circuits = min(2**(input_size), max_circuits) if 2**(input_size) <= max_circuits: s_range = list(range(num_circuits)) # print("if ============ if") else: s_range = np.random.choice(range(2**(input_size)), num_circuits, False) # print("else ============== else") print(f"s_range === {s_range}") elif method == 3: num_circuits = min(input_size, max_circuits) if input_size <= max_circuits: s_range = list(range(num_circuits)) else: s_range = np.random.choice(range(input_size), num_circuits, False) else: sys.exit("Invalid QFT method") print(f"************\nExecuting [{num_circuits}] circuits with num_qubits = {num_qubits}") # loop over limited # of secret strings for this for s_int in s_range: # create the circuit for given qubit size and secret string, store time metric ts = time.time() qc = QuantumFourierTransform(num_qubits, s_int, method=method).reverse_bits() #check qiskit-aakash/releasenotes/notes/0.17/qft-little-endian-d232c93e044f0063.yaml metrics.store_metric(input_size, s_int, 'create_time', time.time()-ts) # collapse the sub-circuits used in this benchmark (for qiskit) qc2 = qc.decompose() # submit circuit for execution on target (simulator, cloud simulator, or hardware) ex.submit_circuit(qc2, input_size, s_int, num_shots) print(qc) print(f"... number of gates, depth = {num_gates}, {depth}") # Wait for some active circuits to complete; report metrics when groups complete ex.throttle_execution(metrics.finalize_group) # Wait for all active circuits to complete; report metrics when groups complete ex.finalize_execution(metrics.finalize_group) ########## # print a sample circuit created (if not too large) print("Sample Circuit:"); print(QC_ if QC_ != None else " ... too large!") if method==1: print("\nQFT Circuit ="); print(QFT_) print("\nInverse QFT Circuit ="); print(QFTI_) # Plot metrics for all circuit sizes metrics.plot_metrics(f"Benchmark Results - {benchmark_name} ({method}) - QSim") # if main, execute method 1 if __name__ == '__main__': run()
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * nshots = 8192 qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') simulator = Aer.get_backend('qasm_simulator') device = provider.get_backend('ibmq_bogota') from qiskit.tools.visualization import plot_histogram from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.tools.monitor import job_monitor, backend_overview, backend_monitor def qc_df(): qc = QuantumCircuit(1, name = 'DF') qc.s(0); qc.h(0); qc.s(0) return qc qc_df_ = qc_df(); qc_df_.draw(output = 'mpl') def qc_bomb(): qc = QuantumCircuit(2, name = 'bomba') qc.cx(0,1) return qc qc_bomb_ = qc_bomb(); qc_bomb_.draw(output = 'mpl') def qc_espelho(): qc = QuantumCircuit(1, name = 'espelho') qc.z(0); qc.y(0) return qc qc_espelho_ = qc_espelho(); qc_espelho_.draw(output = 'mpl') qc = QuantumCircuit(2, 2) qc_df_ = qc_df(); qc.append(qc_df_, [0]) qc_espelho_ = qc_espelho(); qc.append(qc_espelho_, [0]) qc_bomb_ = qc_bomb(); qc.append(qc_bomb_, [0,1]) qc.append(qc_df_, [0]); qc.barrier() qc.measure([0,1],[0,1]) qc.draw(output = 'mpl') job = qiskit.execute(qc, backend = simulator, shots = nshots) plot_histogram(job.result().get_counts(qc)) job = qiskit.execute(qc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) plot_histogram(job.result().get_counts(qc)) T, R = symbols('T R'); Udfg = Matrix([[T,1j*R],[1j*R,T]]); Udfgd = Matrix([[T,-1j*R],[-1j*R,T]]) Udfg*Udfgd, Udfgd*Udfg # ok, é unitária def qc_dfg(th): qc = QuantumCircuit(1, name = 'DFG') qc.rx(-2*th, 0) return qc qc_dfg_ = qc_dfg(math.pi); qc_dfg_.draw(output = 'mpl') def qc_imzg(th, ph): qc = QuantumCircuit(1, name = 'IMZG') qc_dfg_ = qc_dfg(th); qc.append(qc_dfg_, [0]) qc_espelho_ = qc_espelho(); qc.append(qc_espelho_, [0]) qc.p(ph, 0) qc_dfg_ = qc_dfg(th); qc.append(qc_dfg_, [0]) return qc qc_imzg_ = qc_imzg(math.pi, math.pi/2); qc_imzg_.draw(output = 'mpl') phmax = 2*math.pi; dph = phmax/20; ph = np.arange(0, phmax+dph, dph)#; ph th = math.pi/8 print('T = ', math.cos(th), ', R = ', math.sin(th)) d = ph.shape[0]; PD0teo = np.zeros(d); PD0sim = np.zeros(d); for j in range(0, d): PD0teo[j] = 2*math.sin(th)**2*math.cos(th)**2*(1+math.cos(ph[j])) # theoretical qc = QuantumCircuit(1) qc_imzg_ = qc_imzg(th, ph[j]); qc.append(qc_imzg_, [0]) qstc = state_tomography_circuits(qc, [0]) # circuit for state tomography job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) qstf = StateTomographyFitter(job.result(), qstc); rho = qstf.fit(method='lstsq') PD0sim[j] = rho[0,0].real matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100) plt.plot(ph, PD0teo, label = r'$P_{teo}(D_{0})$') plt.plot(ph, PD0sim, 'o', label = r'$P_{sim}(D_{0})$') #plt.plot(ph, PD0exp, '*', label = r'$P_{exp}(D_{0})$') plt.legend(); plt.xlabel(r'$\phi$'); plt.show() def V(pd): return (np.max(pd)-np.min(pd))/(np.max(pd)+np.min(pd)) def Vt(pd): return np.max(pd)*(np.max(pd)-np.min(pd))/(np.max(pd)+np.min(pd)) def pd_ph(th): phmax = 2*math.pi; dph = phmax/100; ph = np.arange(0, phmax+dph, dph) return 2*math.sin(th)**2*math.cos(th)**2*(1+np.cos(ph)) dth = 0.05; th = np.arange(dth, math.pi/2, dth); d = th.shape[0] Vis = np.zeros(d); VisT= np.zeros(d); Vteo = np.zeros(d) for j in range(0, d): Vteo[j] = 4*math.cos(th[j])**2*math.sin(th[j])**2 pd = pd_ph(th[j]); Vis[j] = V(pd); VisT[j] = Vt(pd) matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100) plt.plot(th, Vis, label = r'$V$'); plt.plot(th, VisT, label = r'$\tilde{V}$') plt.plot(th, Vteo, '*', label = r'$V_{teo}$') plt.xlabel(r'$\theta$'); plt.legend(); plt.show() float(cos(pi/12)**2) float((cos(pi/12)**2)**6), float((cos(pi/24)**2)**12), float((cos(pi/48)**2)**24), float((cos(pi/96)**2)**48) Udf = (1/sqrt(2))*Matrix([[1,1j],[1j,1]]); Ue = Matrix([[0,1j],[1j,0]]); Udf*Ue*Udf T = cos(math.pi/12); T th = +pi-pi/6; float((sin(th/2)**2)**6) T = cos(th); R = sin(th); print('T = ', float(T), ', R = ', float(R)) # ?????????????? N = 6; th = math.pi-math.pi/N; qc = QuantumCircuit(2, N) for j in range(0, N-1): qc.rx(th, 0) qc_espelho_ = qc_espelho(); qc.append(qc_espelho_, [0]) qc.cx(0, 1); qc.measure(1, j); qc.reset(1) qc.barrier() qc.rx(th, 0) # o último DFG é colocado só na última volta qc.measure(0, N-1) #qc.draw(output = 'mpl') qc.decompose().draw(output = 'mpl') matplotlib.rcParams.update({'font.size':12}) #plt.figure(figsize = (6,4), dpi = 100) result = execute(qc, backend = simulator, shots = nshots).result() plot_histogram(result.get_counts(qc)) job = execute(qc, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc)) import numpy as np for j in range(0,20): print(np.random.randint(11))