repo
stringclasses
885 values
file
stringclasses
741 values
content
stringlengths
4
215k
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) with pulse.build() as pulse_prog: with pulse.align_right(): # this pulse will start at t=0 pulse.play(pulse.Constant(100, 1.0), d0) # this pulse will start at t=80 pulse.play(pulse.Constant(20, 1.0), d1) pulse_prog.draw()
https://github.com/urwin419/QiskitChecker
urwin419
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) ### added h gate ### qc.h(1) qc.cx(1, 0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1, 0) qc.h(1) return qc
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.quantum_info import SparsePauliOp H2_op = SparsePauliOp.from_list( [ ("II", -1.052373245772859), ("IZ", 0.39793742484318045), ("ZI", -0.39793742484318045), ("ZZ", -0.01128010425623538), ("XX", 0.18093119978423156), ] ) print(f"Number of qubits: {H2_op.num_qubits}") from qiskit.algorithms import NumPyMinimumEigensolver from qiskit.opflow import PauliSumOp numpy_solver = NumPyMinimumEigensolver() result = numpy_solver.compute_minimum_eigenvalue(operator=PauliSumOp(H2_op)) ref_value = result.eigenvalue.real print(f"Reference value: {ref_value:.5f}") # define ansatz and optimizer from qiskit.circuit.library import TwoLocal from qiskit.algorithms.optimizers import SPSA iterations = 125 ansatz = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz") spsa = SPSA(maxiter=iterations) # define callback # note: Re-run this cell to restart lists before training counts = [] values = [] def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) # define Aer Estimator for noiseless statevector simulation from qiskit.utils import algorithm_globals from qiskit_aer.primitives import Estimator as AerEstimator seed = 170 algorithm_globals.random_seed = seed noiseless_estimator = AerEstimator( run_options={"seed": seed, "shots": 1024}, transpile_options={"seed_transpiler": seed}, ) # instantiate and run VQE from qiskit.algorithms.minimum_eigensolvers import VQE vqe = VQE( noiseless_estimator, ansatz, optimizer=spsa, callback=store_intermediate_result ) result = vqe.compute_minimum_eigenvalue(operator=H2_op) print(f"VQE on Aer qasm simulator (no noise): {result.eigenvalue.real:.5f}") print( f"Delta from reference energy value is {(result.eigenvalue.real - ref_value):.5f}" ) import pylab pylab.rcParams["figure.figsize"] = (12, 4) pylab.plot(counts, values) pylab.xlabel("Eval count") pylab.ylabel("Energy") pylab.title("Convergence with no noise") from qiskit_aer.noise import NoiseModel from qiskit.providers.fake_provider import FakeVigo # fake providers contain data from real IBM Quantum devices stored in Qiskit Terra, # and are useful for extracting realistic noise models. device = FakeVigo() coupling_map = device.configuration().coupling_map noise_model = NoiseModel.from_backend(device) print(noise_model) noisy_estimator = AerEstimator( backend_options={ "method": "density_matrix", "coupling_map": coupling_map, "noise_model": noise_model, }, run_options={"seed": seed, "shots": 1024}, transpile_options={"seed_transpiler": seed}, ) # re-start callback variables counts = [] values = [] vqe.estimator = noisy_estimator result1 = vqe.compute_minimum_eigenvalue(operator=H2_op) print(f"VQE on Aer qasm simulator (with noise): {result1.eigenvalue.real:.5f}") print( f"Delta from reference energy value is {(result1.eigenvalue.real - ref_value):.5f}" ) if counts or values: pylab.rcParams["figure.figsize"] = (12, 4) pylab.plot(counts, values) pylab.xlabel("Eval count") pylab.ylabel("Energy") pylab.title("Convergence with noise") print(f"Reference value: {ref_value:.5f}") print(f"VQE on Aer qasm simulator (no noise): {result.eigenvalue.real:.5f}") print(f"VQE on Aer qasm simulator (with noise): {result1.eigenvalue.real:.5f}") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/Pitt-JonesLab/slam_decomposition
Pitt-JonesLab
# need to make figure which shows curved path to build CX and SWAP # ideally on the same weyl chamber plot from slam.utils.pd_playground import ParallelDrivenGateWidget, ImprovedCX, ImprovedSWAP import numpy as np from slam.utils.visualize import coordinate_2dlist_weyl from weylchamber import c1c2c3 cx = ImprovedCX() fig = coordinate_2dlist_weyl(*cx.coordinate_list, c="cyan", no_bar=1); %matplotlib widget cx = ImprovedCX() swap = ImprovedSWAP() # unoptimized together fig = coordinate_2dlist_weyl(*cx.baseline_coords, c="cyan", no_bar=1); # fig = coordinate_2dlist_weyl(*swap.baseline_coords, c='magenta', no_bar=1, fig=fig); from slam.utils.visualize import fpath_images # save fig as pdf cx.fig.savefig(f"{fpath_images}/optimimzed_cx.pdf")
https://github.com/SaashaJoshi/IBM-Qiskit-Summer-School-2020
SaashaJoshi
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/qiskit-community/qiskit-aqt-provider
qiskit-community
# This code is part of Qiskit. # # (C) Copyright Alpine Quantum Technologies GmbH 2023 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Trivial minimization example using a quantum approximate optimization algorithm (QAOA). This is the same example as in vqe.py, but uses QAOA instead of VQE as solver. """ from typing import Final import qiskit_algorithms from qiskit.quantum_info import SparsePauliOp from qiskit_algorithms.minimum_eigensolvers import QAOA from qiskit_algorithms.optimizers import COBYLA from qiskit_aqt_provider import AQTProvider from qiskit_aqt_provider.primitives import AQTSampler RANDOM_SEED: Final = 0 if __name__ == "__main__": backend = AQTProvider("token").get_backend("offline_simulator_no_noise") sampler = AQTSampler(backend) # fix the random seeds such that the example is reproducible qiskit_algorithms.utils.algorithm_globals.random_seed = RANDOM_SEED backend.simulator.options.seed_simulator = RANDOM_SEED # Hamiltonian: Ising model on two spin 1/2 without external field J = 1.23456789 hamiltonian = SparsePauliOp.from_list([("ZZ", 3 * J)]) # Find the ground-state energy with QAOA optimizer = COBYLA(maxiter=100, tol=0.01) qaoa = QAOA(sampler, optimizer) result = qaoa.compute_minimum_eigenvalue(operator=hamiltonian) assert result.eigenvalue is not None # noqa: S101 print(f"Optimizer run time: {result.optimizer_time:.2f} s") print("Cost function evaluations:", result.cost_function_evals) print("Deviation from expected ground-state energy:", abs(result.eigenvalue - (-3 * J)))
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test dynamical decoupling insertion pass.""" import unittest import numpy as np from numpy import pi from ddt import ddt, data from qiskit.circuit import QuantumCircuit, Delay, Measure, Reset, Parameter from qiskit.circuit.library import XGate, YGate, RXGate, UGate, CXGate, HGate from qiskit.quantum_info import Operator from qiskit.transpiler.instruction_durations import InstructionDurations from qiskit.transpiler.passes import ( ASAPScheduleAnalysis, ALAPScheduleAnalysis, PadDynamicalDecoupling, ) from qiskit.transpiler.passmanager import PassManager from qiskit.transpiler.exceptions import TranspilerError from qiskit.transpiler.target import Target, InstructionProperties from qiskit import pulse from qiskit.test import QiskitTestCase @ddt class TestPadDynamicalDecoupling(QiskitTestCase): """Tests PadDynamicalDecoupling pass.""" def setUp(self): """Circuits to test DD on. ┌───┐ q_0: ┤ H ├──■──────────── └───┘┌─┴─┐ q_1: ─────┤ X ├──■─────── └───┘┌─┴─┐ q_2: ──────────┤ X ├──■── └───┘┌─┴─┐ q_3: ───────────────┤ X ├ └───┘ ┌──────────┐ q_0: ──■──┤ U(π,0,π) ├──────────■── ┌─┴─┐└──────────┘ ┌─┴─┐ q_1: ┤ X ├─────■───────────■──┤ X ├ └───┘ ┌─┴─┐ ┌─┐┌─┴─┐└───┘ q_2: ────────┤ X ├────┤M├┤ X ├───── └───┘ └╥┘└───┘ c: 1/══════════════════╩═══════════ 0 """ super().setUp() self.ghz4 = QuantumCircuit(4) self.ghz4.h(0) self.ghz4.cx(0, 1) self.ghz4.cx(1, 2) self.ghz4.cx(2, 3) self.midmeas = QuantumCircuit(3, 1) self.midmeas.cx(0, 1) self.midmeas.cx(1, 2) self.midmeas.u(pi, 0, pi, 0) self.midmeas.measure(2, 0) self.midmeas.cx(1, 2) self.midmeas.cx(0, 1) self.durations = InstructionDurations( [ ("h", 0, 50), ("cx", [0, 1], 700), ("cx", [1, 2], 200), ("cx", [2, 3], 300), ("x", None, 50), ("y", None, 50), ("u", None, 100), ("rx", None, 100), ("measure", None, 1000), ("reset", None, 1500), ] ) def test_insert_dd_ghz(self): """Test DD gates are inserted in correct spots. ┌───┐ ┌────────────────┐ ┌───┐ » q_0: ──────┤ H ├─────────■──┤ Delay(100[dt]) ├──────┤ X ├──────» ┌─────┴───┴─────┐ ┌─┴─┐└────────────────┘┌─────┴───┴─────┐» q_1: ┤ Delay(50[dt]) ├─┤ X ├────────■─────────┤ Delay(50[dt]) ├» ├───────────────┴┐└───┘ ┌─┴─┐ └───────────────┘» q_2: ┤ Delay(750[dt]) ├───────────┤ X ├───────────────■────────» ├────────────────┤ └───┘ ┌─┴─┐ » q_3: ┤ Delay(950[dt]) ├─────────────────────────────┤ X ├──────» └────────────────┘ └───┘ » « ┌────────────────┐ ┌───┐ ┌────────────────┐ «q_0: ┤ Delay(200[dt]) ├──────┤ X ├───────┤ Delay(100[dt]) ├───────────────── « └─────┬───┬──────┘┌─────┴───┴──────┐└─────┬───┬──────┘┌───────────────┐ «q_1: ──────┤ X ├───────┤ Delay(100[dt]) ├──────┤ X ├───────┤ Delay(50[dt]) ├ « └───┘ └────────────────┘ └───┘ └───────────────┘ «q_2: ─────────────────────────────────────────────────────────────────────── « «q_3: ─────────────────────────────────────────────────────────────────────── « """ dd_sequence = [XGate(), XGate()] pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence), ] ) ghz4_dd = pm.run(self.ghz4) expected = self.ghz4.copy() expected = expected.compose(Delay(50), [1], front=True) expected = expected.compose(Delay(750), [2], front=True) expected = expected.compose(Delay(950), [3], front=True) expected = expected.compose(Delay(100), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(200), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(100), [0]) expected = expected.compose(Delay(50), [1]) expected = expected.compose(XGate(), [1]) expected = expected.compose(Delay(100), [1]) expected = expected.compose(XGate(), [1]) expected = expected.compose(Delay(50), [1]) self.assertEqual(ghz4_dd, expected) def test_insert_dd_ghz_with_target(self): """Test DD gates are inserted in correct spots. ┌───┐ ┌────────────────┐ ┌───┐ » q_0: ──────┤ H ├─────────■──┤ Delay(100[dt]) ├──────┤ X ├──────» ┌─────┴───┴─────┐ ┌─┴─┐└────────────────┘┌─────┴───┴─────┐» q_1: ┤ Delay(50[dt]) ├─┤ X ├────────■─────────┤ Delay(50[dt]) ├» ├───────────────┴┐└───┘ ┌─┴─┐ └───────────────┘» q_2: ┤ Delay(750[dt]) ├───────────┤ X ├───────────────■────────» ├────────────────┤ └───┘ ┌─┴─┐ » q_3: ┤ Delay(950[dt]) ├─────────────────────────────┤ X ├──────» └────────────────┘ └───┘ » « ┌────────────────┐ ┌───┐ ┌────────────────┐ «q_0: ┤ Delay(200[dt]) ├──────┤ X ├───────┤ Delay(100[dt]) ├───────────────── « └─────┬───┬──────┘┌─────┴───┴──────┐└─────┬───┬──────┘┌───────────────┐ «q_1: ──────┤ X ├───────┤ Delay(100[dt]) ├──────┤ X ├───────┤ Delay(50[dt]) ├ « └───┘ └────────────────┘ └───┘ └───────────────┘ «q_2: ─────────────────────────────────────────────────────────────────────── « «q_3: ─────────────────────────────────────────────────────────────────────── « """ target = Target(num_qubits=4, dt=1) target.add_instruction(HGate(), {(0,): InstructionProperties(duration=50)}) target.add_instruction( CXGate(), { (0, 1): InstructionProperties(duration=700), (1, 2): InstructionProperties(duration=200), (2, 3): InstructionProperties(duration=300), }, ) target.add_instruction( XGate(), {(x,): InstructionProperties(duration=50) for x in range(4)} ) target.add_instruction( YGate(), {(x,): InstructionProperties(duration=50) for x in range(4)} ) target.add_instruction( UGate(Parameter("theta"), Parameter("phi"), Parameter("lambda")), {(x,): InstructionProperties(duration=100) for x in range(4)}, ) target.add_instruction( RXGate(Parameter("theta")), {(x,): InstructionProperties(duration=100) for x in range(4)}, ) target.add_instruction( Measure(), {(x,): InstructionProperties(duration=1000) for x in range(4)} ) target.add_instruction( Reset(), {(x,): InstructionProperties(duration=1500) for x in range(4)} ) target.add_instruction(Delay(Parameter("t")), {(x,): None for x in range(4)}) dd_sequence = [XGate(), XGate()] pm = PassManager( [ ALAPScheduleAnalysis(target=target), PadDynamicalDecoupling(target=target, dd_sequence=dd_sequence), ] ) ghz4_dd = pm.run(self.ghz4) expected = self.ghz4.copy() expected = expected.compose(Delay(50), [1], front=True) expected = expected.compose(Delay(750), [2], front=True) expected = expected.compose(Delay(950), [3], front=True) expected = expected.compose(Delay(100), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(200), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(100), [0]) expected = expected.compose(Delay(50), [1]) expected = expected.compose(XGate(), [1]) expected = expected.compose(Delay(100), [1]) expected = expected.compose(XGate(), [1]) expected = expected.compose(Delay(50), [1]) self.assertEqual(ghz4_dd, expected) def test_insert_dd_ghz_one_qubit(self): """Test DD gates are inserted on only one qubit. ┌───┐ ┌────────────────┐ ┌───┐ » q_0: ──────┤ H ├─────────■──┤ Delay(100[dt]) ├──────┤ X ├───────» ┌─────┴───┴─────┐ ┌─┴─┐└────────────────┘┌─────┴───┴──────┐» q_1: ┤ Delay(50[dt]) ├─┤ X ├────────■─────────┤ Delay(300[dt]) ├» ├───────────────┴┐└───┘ ┌─┴─┐ └────────────────┘» q_2: ┤ Delay(750[dt]) ├───────────┤ X ├───────────────■─────────» ├────────────────┤ └───┘ ┌─┴─┐ » q_3: ┤ Delay(950[dt]) ├─────────────────────────────┤ X ├───────» └────────────────┘ └───┘ » meas: 4/═══════════════════════════════════════════════════════════» » « ┌────────────────┐┌───┐┌────────────────┐ ░ ┌─┐ « q_0: ┤ Delay(200[dt]) ├┤ X ├┤ Delay(100[dt]) ├─░─┤M├───────── « └────────────────┘└───┘└────────────────┘ ░ └╥┘┌─┐ « q_1: ──────────────────────────────────────────░──╫─┤M├────── « ░ ║ └╥┘┌─┐ « q_2: ──────────────────────────────────────────░──╫──╫─┤M├─── « ░ ║ ║ └╥┘┌─┐ « q_3: ──────────────────────────────────────────░──╫──╫──╫─┤M├ « ░ ║ ║ ║ └╥┘ «meas: 4/═════════════════════════════════════════════╩══╩══╩══╩═ « 0 1 2 3 """ dd_sequence = [XGate(), XGate()] pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence, qubits=[0]), ] ) ghz4_dd = pm.run(self.ghz4.measure_all(inplace=False)) expected = self.ghz4.copy() expected = expected.compose(Delay(50), [1], front=True) expected = expected.compose(Delay(750), [2], front=True) expected = expected.compose(Delay(950), [3], front=True) expected = expected.compose(Delay(100), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(200), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(100), [0]) expected = expected.compose(Delay(300), [1]) expected.measure_all() self.assertEqual(ghz4_dd, expected) def test_insert_dd_ghz_everywhere(self): """Test DD gates even on initial idle spots. ┌───┐ ┌────────────────┐┌───┐┌────────────────┐┌───┐» q_0: ──────┤ H ├─────────■──┤ Delay(100[dt]) ├┤ Y ├┤ Delay(200[dt]) ├┤ Y ├» ┌─────┴───┴─────┐ ┌─┴─┐└────────────────┘└───┘└────────────────┘└───┘» q_1: ┤ Delay(50[dt]) ├─┤ X ├───────────────────────────────────────────■──» ├───────────────┴┐├───┤┌────────────────┐┌───┐┌────────────────┐┌─┴─┐» q_2: ┤ Delay(162[dt]) ├┤ Y ├┤ Delay(326[dt]) ├┤ Y ├┤ Delay(162[dt]) ├┤ X ├» ├────────────────┤├───┤├────────────────┤├───┤├────────────────┤└───┘» q_3: ┤ Delay(212[dt]) ├┤ Y ├┤ Delay(426[dt]) ├┤ Y ├┤ Delay(212[dt]) ├─────» └────────────────┘└───┘└────────────────┘└───┘└────────────────┘ » « ┌────────────────┐ «q_0: ┤ Delay(100[dt]) ├───────────────────────────────────────────── « ├───────────────┬┘┌───┐┌────────────────┐┌───┐┌───────────────┐ «q_1: ┤ Delay(50[dt]) ├─┤ Y ├┤ Delay(100[dt]) ├┤ Y ├┤ Delay(50[dt]) ├ « └───────────────┘ └───┘└────────────────┘└───┘└───────────────┘ «q_2: ────────■────────────────────────────────────────────────────── « ┌─┴─┐ «q_3: ──────┤ X ├──────────────────────────────────────────────────── « └───┘ """ dd_sequence = [YGate(), YGate()] pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence, skip_reset_qubits=False), ] ) ghz4_dd = pm.run(self.ghz4) expected = self.ghz4.copy() expected = expected.compose(Delay(50), [1], front=True) expected = expected.compose(Delay(162), [2], front=True) expected = expected.compose(YGate(), [2], front=True) expected = expected.compose(Delay(326), [2], front=True) expected = expected.compose(YGate(), [2], front=True) expected = expected.compose(Delay(162), [2], front=True) expected = expected.compose(Delay(212), [3], front=True) expected = expected.compose(YGate(), [3], front=True) expected = expected.compose(Delay(426), [3], front=True) expected = expected.compose(YGate(), [3], front=True) expected = expected.compose(Delay(212), [3], front=True) expected = expected.compose(Delay(100), [0]) expected = expected.compose(YGate(), [0]) expected = expected.compose(Delay(200), [0]) expected = expected.compose(YGate(), [0]) expected = expected.compose(Delay(100), [0]) expected = expected.compose(Delay(50), [1]) expected = expected.compose(YGate(), [1]) expected = expected.compose(Delay(100), [1]) expected = expected.compose(YGate(), [1]) expected = expected.compose(Delay(50), [1]) self.assertEqual(ghz4_dd, expected) def test_insert_dd_ghz_xy4(self): """Test XY4 sequence of DD gates. ┌───┐ ┌───────────────┐ ┌───┐ ┌───────────────┐» q_0: ──────┤ H ├─────────■──┤ Delay(37[dt]) ├──────┤ X ├──────┤ Delay(75[dt]) ├» ┌─────┴───┴─────┐ ┌─┴─┐└───────────────┘┌─────┴───┴─────┐└─────┬───┬─────┘» q_1: ┤ Delay(50[dt]) ├─┤ X ├────────■────────┤ Delay(12[dt]) ├──────┤ X ├──────» ├───────────────┴┐└───┘ ┌─┴─┐ └───────────────┘ └───┘ » q_2: ┤ Delay(750[dt]) ├───────────┤ X ├──────────────■─────────────────────────» ├────────────────┤ └───┘ ┌─┴─┐ » q_3: ┤ Delay(950[dt]) ├────────────────────────────┤ X ├───────────────────────» └────────────────┘ └───┘ » « ┌───┐ ┌───────────────┐ ┌───┐ ┌───────────────┐» «q_0: ──────┤ Y ├──────┤ Delay(76[dt]) ├──────┤ X ├──────┤ Delay(75[dt]) ├» « ┌─────┴───┴─────┐└─────┬───┬─────┘┌─────┴───┴─────┐└─────┬───┬─────┘» «q_1: ┤ Delay(25[dt]) ├──────┤ Y ├──────┤ Delay(26[dt]) ├──────┤ X ├──────» « └───────────────┘ └───┘ └───────────────┘ └───┘ » «q_2: ────────────────────────────────────────────────────────────────────» « » «q_3: ────────────────────────────────────────────────────────────────────» « » « ┌───┐ ┌───────────────┐ «q_0: ──────┤ Y ├──────┤ Delay(37[dt]) ├───────────────── « ┌─────┴───┴─────┐└─────┬───┬─────┘┌───────────────┐ «q_1: ┤ Delay(25[dt]) ├──────┤ Y ├──────┤ Delay(12[dt]) ├ « └───────────────┘ └───┘ └───────────────┘ «q_2: ─────────────────────────────────────────────────── « «q_3: ─────────────────────────────────────────────────── """ dd_sequence = [XGate(), YGate(), XGate(), YGate()] pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence), ] ) ghz4_dd = pm.run(self.ghz4) expected = self.ghz4.copy() expected = expected.compose(Delay(50), [1], front=True) expected = expected.compose(Delay(750), [2], front=True) expected = expected.compose(Delay(950), [3], front=True) expected = expected.compose(Delay(37), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(75), [0]) expected = expected.compose(YGate(), [0]) expected = expected.compose(Delay(76), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(75), [0]) expected = expected.compose(YGate(), [0]) expected = expected.compose(Delay(37), [0]) expected = expected.compose(Delay(12), [1]) expected = expected.compose(XGate(), [1]) expected = expected.compose(Delay(25), [1]) expected = expected.compose(YGate(), [1]) expected = expected.compose(Delay(26), [1]) expected = expected.compose(XGate(), [1]) expected = expected.compose(Delay(25), [1]) expected = expected.compose(YGate(), [1]) expected = expected.compose(Delay(12), [1]) self.assertEqual(ghz4_dd, expected) def test_insert_midmeas_hahn_alap(self): """Test a single X gate as Hahn echo can absorb in the downstream circuit. global phase: 3π/2 ┌────────────────┐ ┌───┐ ┌────────────────┐» q_0: ────────■─────────┤ Delay(625[dt]) ├───────┤ X ├───────┤ Delay(625[dt]) ├» ┌─┴─┐ └────────────────┘┌──────┴───┴──────┐└────────────────┘» q_1: ──────┤ X ├───────────────■─────────┤ Delay(1000[dt]) ├────────■─────────» ┌─────┴───┴──────┐ ┌─┴─┐ └───────┬─┬───────┘ ┌─┴─┐ » q_2: ┤ Delay(700[dt]) ├──────┤ X ├───────────────┤M├──────────────┤ X ├───────» └────────────────┘ └───┘ └╥┘ └───┘ » c: 1/═════════════════════════════════════════════╩═══════════════════════════» 0 » « ┌───────────────┐ «q_0: ┤ U(0,π/2,-π/2) ├───■── « └───────────────┘ ┌─┴─┐ «q_1: ──────────────────┤ X ├ « ┌────────────────┐└───┘ «q_2: ┤ Delay(700[dt]) ├───── « └────────────────┘ «c: 1/═══════════════════════ """ dd_sequence = [XGate()] pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence), ] ) midmeas_dd = pm.run(self.midmeas) combined_u = UGate(0, -pi / 2, pi / 2) expected = QuantumCircuit(3, 1) expected.cx(0, 1) expected.delay(625, 0) expected.x(0) expected.delay(625, 0) expected.compose(combined_u, [0], inplace=True) expected.delay(700, 2) expected.cx(1, 2) expected.delay(1000, 1) expected.measure(2, 0) expected.cx(1, 2) expected.cx(0, 1) expected.delay(700, 2) expected.global_phase = pi / 2 self.assertEqual(midmeas_dd, expected) # check the absorption into U was done correctly self.assertEqual(Operator(combined_u), Operator(XGate()) & Operator(XGate())) def test_insert_midmeas_hahn_asap(self): """Test a single X gate as Hahn echo can absorb in the upstream circuit. ┌──────────────────┐ ┌────────────────┐┌─────────┐» q_0: ────────■─────────┤ U(3π/4,-π/2,π/2) ├─┤ Delay(600[dt]) ├┤ Rx(π/4) ├» ┌─┴─┐ └──────────────────┘┌┴────────────────┤└─────────┘» q_1: ──────┤ X ├────────────────■──────────┤ Delay(1000[dt]) ├─────■─────» ┌─────┴───┴──────┐ ┌─┴─┐ └───────┬─┬───────┘ ┌─┴─┐ » q_2: ┤ Delay(700[dt]) ├───────┤ X ├────────────────┤M├───────────┤ X ├───» └────────────────┘ └───┘ └╥┘ └───┘ » c: 1/═══════════════════════════════════════════════╩════════════════════» 0 » « ┌────────────────┐ «q_0: ┤ Delay(600[dt]) ├──■── « └────────────────┘┌─┴─┐ «q_1: ──────────────────┤ X ├ « ┌────────────────┐└───┘ «q_2: ┤ Delay(700[dt]) ├───── « └────────────────┘ «c: 1/═══════════════════════ « """ dd_sequence = [RXGate(pi / 4)] pm = PassManager( [ ASAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence), ] ) midmeas_dd = pm.run(self.midmeas) combined_u = UGate(3 * pi / 4, -pi / 2, pi / 2) expected = QuantumCircuit(3, 1) expected.cx(0, 1) expected.compose(combined_u, [0], inplace=True) expected.delay(600, 0) expected.rx(pi / 4, 0) expected.delay(600, 0) expected.delay(700, 2) expected.cx(1, 2) expected.delay(1000, 1) expected.measure(2, 0) expected.cx(1, 2) expected.cx(0, 1) expected.delay(700, 2) self.assertEqual(midmeas_dd, expected) # check the absorption into U was done correctly self.assertTrue( Operator(XGate()).equiv( Operator(UGate(3 * pi / 4, -pi / 2, pi / 2)) & Operator(RXGate(pi / 4)) ) ) def test_insert_ghz_uhrig(self): """Test custom spacing (following Uhrig DD [1]). [1] Uhrig, G. "Keeping a quantum bit alive by optimized π-pulse sequences." Physical Review Letters 98.10 (2007): 100504. ┌───┐ ┌──────────────┐ ┌───┐ ┌──────────────┐┌───┐» q_0: ──────┤ H ├─────────■──┤ Delay(3[dt]) ├──────┤ X ├───────┤ Delay(8[dt]) ├┤ X ├» ┌─────┴───┴─────┐ ┌─┴─┐└──────────────┘┌─────┴───┴──────┐└──────────────┘└───┘» q_1: ┤ Delay(50[dt]) ├─┤ X ├───────■────────┤ Delay(300[dt]) ├─────────────────────» ├───────────────┴┐└───┘ ┌─┴─┐ └────────────────┘ » q_2: ┤ Delay(750[dt]) ├──────────┤ X ├──────────────■──────────────────────────────» ├────────────────┤ └───┘ ┌─┴─┐ » q_3: ┤ Delay(950[dt]) ├───────────────────────────┤ X ├────────────────────────────» └────────────────┘ └───┘ » « ┌───────────────┐┌───┐┌───────────────┐┌───┐┌───────────────┐┌───┐┌───────────────┐» «q_0: ┤ Delay(13[dt]) ├┤ X ├┤ Delay(16[dt]) ├┤ X ├┤ Delay(20[dt]) ├┤ X ├┤ Delay(16[dt]) ├» « └───────────────┘└───┘└───────────────┘└───┘└───────────────┘└───┘└───────────────┘» «q_1: ───────────────────────────────────────────────────────────────────────────────────» « » «q_2: ───────────────────────────────────────────────────────────────────────────────────» « » «q_3: ───────────────────────────────────────────────────────────────────────────────────» « » « ┌───┐┌───────────────┐┌───┐┌──────────────┐┌───┐┌──────────────┐ «q_0: ┤ X ├┤ Delay(13[dt]) ├┤ X ├┤ Delay(8[dt]) ├┤ X ├┤ Delay(3[dt]) ├ « └───┘└───────────────┘└───┘└──────────────┘└───┘└──────────────┘ «q_1: ──────────────────────────────────────────────────────────────── « «q_2: ──────────────────────────────────────────────────────────────── « «q_3: ──────────────────────────────────────────────────────────────── « """ n = 8 dd_sequence = [XGate()] * n # uhrig specifies the location of the k'th pulse def uhrig(k): return np.sin(np.pi * (k + 1) / (2 * n + 2)) ** 2 # convert that to spacing between pulses (whatever finite duration pulses have) spacing = [] for k in range(n): spacing.append(uhrig(k) - sum(spacing)) spacing.append(1 - sum(spacing)) pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence, qubits=[0], spacing=spacing), ] ) ghz4_dd = pm.run(self.ghz4) expected = self.ghz4.copy() expected = expected.compose(Delay(50), [1], front=True) expected = expected.compose(Delay(750), [2], front=True) expected = expected.compose(Delay(950), [3], front=True) expected = expected.compose(Delay(3), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(8), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(13), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(16), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(20), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(16), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(13), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(8), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(3), [0]) expected = expected.compose(Delay(300), [1]) self.assertEqual(ghz4_dd, expected) def test_asymmetric_xy4_in_t2(self): """Test insertion of XY4 sequence with unbalanced spacing. global phase: π ┌───┐┌───┐┌────────────────┐┌───┐┌────────────────┐┌───┐┌────────────────┐» q_0: ┤ H ├┤ X ├┤ Delay(450[dt]) ├┤ Y ├┤ Delay(450[dt]) ├┤ X ├┤ Delay(450[dt]) ├» └───┘└───┘└────────────────┘└───┘└────────────────┘└───┘└────────────────┘» « ┌───┐┌────────────────┐┌───┐ «q_0: ┤ Y ├┤ Delay(450[dt]) ├┤ H ├ « └───┘└────────────────┘└───┘ """ dd_sequence = [XGate(), YGate()] * 2 spacing = [0] + [1 / 4] * 4 pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence, spacing=spacing), ] ) t2 = QuantumCircuit(1) t2.h(0) t2.delay(2000, 0) t2.h(0) expected = QuantumCircuit(1) expected.h(0) expected.x(0) expected.delay(450, 0) expected.y(0) expected.delay(450, 0) expected.x(0) expected.delay(450, 0) expected.y(0) expected.delay(450, 0) expected.h(0) expected.global_phase = pi t2_dd = pm.run(t2) self.assertEqual(t2_dd, expected) # check global phase is correct self.assertEqual(Operator(t2), Operator(expected)) def test_dd_after_reset(self): """Test skip_reset_qubits option works. ┌─────────────────┐┌───┐┌────────────────┐┌───┐┌─────────────────┐» q_0: ─|0>─┤ Delay(1000[dt]) ├┤ H ├┤ Delay(190[dt]) ├┤ X ├┤ Delay(1710[dt]) ├» └─────────────────┘└───┘└────────────────┘└───┘└─────────────────┘» « ┌───┐┌───┐ «q_0: ┤ X ├┤ H ├ « └───┘└───┘ """ dd_sequence = [XGate(), XGate()] spacing = [0.1, 0.9] pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling( self.durations, dd_sequence, spacing=spacing, skip_reset_qubits=True ), ] ) t2 = QuantumCircuit(1) t2.reset(0) t2.delay(1000) t2.h(0) t2.delay(2000, 0) t2.h(0) expected = QuantumCircuit(1) expected.reset(0) expected.delay(1000) expected.h(0) expected.delay(190, 0) expected.x(0) expected.delay(1710, 0) expected.x(0) expected.h(0) t2_dd = pm.run(t2) self.assertEqual(t2_dd, expected) def test_insert_dd_bad_sequence(self): """Test DD raises when non-identity sequence is inserted.""" dd_sequence = [XGate(), YGate()] pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence), ] ) with self.assertRaises(TranspilerError): pm.run(self.ghz4) @data(0.5, 1.5) def test_dd_with_calibrations_with_parameters(self, param_value): """Check that calibrations in a circuit with parameters work fine.""" circ = QuantumCircuit(2) circ.x(0) circ.cx(0, 1) circ.rx(param_value, 1) rx_duration = int(param_value * 1000) with pulse.build() as rx: pulse.play(pulse.Gaussian(rx_duration, 0.1, rx_duration // 4), pulse.DriveChannel(1)) circ.add_calibration("rx", (1,), rx, params=[param_value]) durations = InstructionDurations([("x", None, 100), ("cx", None, 300)]) dd_sequence = [XGate(), XGate()] pm = PassManager( [ALAPScheduleAnalysis(durations), PadDynamicalDecoupling(durations, dd_sequence)] ) self.assertEqual(pm.run(circ).duration, rx_duration + 100 + 300) def test_insert_dd_ghz_xy4_with_alignment(self): """Test DD with pulse alignment constraints. ┌───┐ ┌───────────────┐ ┌───┐ ┌───────────────┐» q_0: ──────┤ H ├─────────■──┤ Delay(40[dt]) ├──────┤ X ├──────┤ Delay(70[dt]) ├» ┌─────┴───┴─────┐ ┌─┴─┐└───────────────┘┌─────┴───┴─────┐└─────┬───┬─────┘» q_1: ┤ Delay(50[dt]) ├─┤ X ├────────■────────┤ Delay(20[dt]) ├──────┤ X ├──────» ├───────────────┴┐└───┘ ┌─┴─┐ └───────────────┘ └───┘ » q_2: ┤ Delay(750[dt]) ├───────────┤ X ├──────────────■─────────────────────────» ├────────────────┤ └───┘ ┌─┴─┐ » q_3: ┤ Delay(950[dt]) ├────────────────────────────┤ X ├───────────────────────» └────────────────┘ └───┘ » « ┌───┐ ┌───────────────┐ ┌───┐ ┌───────────────┐» «q_0: ──────┤ Y ├──────┤ Delay(70[dt]) ├──────┤ X ├──────┤ Delay(70[dt]) ├» « ┌─────┴───┴─────┐└─────┬───┬─────┘┌─────┴───┴─────┐└─────┬───┬─────┘» «q_1: ┤ Delay(20[dt]) ├──────┤ Y ├──────┤ Delay(20[dt]) ├──────┤ X ├──────» « └───────────────┘ └───┘ └───────────────┘ └───┘ » «q_2: ────────────────────────────────────────────────────────────────────» « » «q_3: ────────────────────────────────────────────────────────────────────» « » « ┌───┐ ┌───────────────┐ «q_0: ──────┤ Y ├──────┤ Delay(50[dt]) ├───────────────── « ┌─────┴───┴─────┐└─────┬───┬─────┘┌───────────────┐ «q_1: ┤ Delay(20[dt]) ├──────┤ Y ├──────┤ Delay(20[dt]) ├ « └───────────────┘ └───┘ └───────────────┘ «q_2: ─────────────────────────────────────────────────── « «q_3: ─────────────────────────────────────────────────── « """ dd_sequence = [XGate(), YGate(), XGate(), YGate()] pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling( self.durations, dd_sequence, pulse_alignment=10, extra_slack_distribution="edges", ), ] ) ghz4_dd = pm.run(self.ghz4) expected = self.ghz4.copy() expected = expected.compose(Delay(50), [1], front=True) expected = expected.compose(Delay(750), [2], front=True) expected = expected.compose(Delay(950), [3], front=True) expected = expected.compose(Delay(40), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(70), [0]) expected = expected.compose(YGate(), [0]) expected = expected.compose(Delay(70), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(70), [0]) expected = expected.compose(YGate(), [0]) expected = expected.compose(Delay(50), [0]) expected = expected.compose(Delay(20), [1]) expected = expected.compose(XGate(), [1]) expected = expected.compose(Delay(20), [1]) expected = expected.compose(YGate(), [1]) expected = expected.compose(Delay(20), [1]) expected = expected.compose(XGate(), [1]) expected = expected.compose(Delay(20), [1]) expected = expected.compose(YGate(), [1]) expected = expected.compose(Delay(20), [1]) self.assertEqual(ghz4_dd, expected) def test_dd_can_sequentially_called(self): """Test if sequentially called DD pass can output the same circuit. This test verifies: - if global phase is properly propagated from the previous padding node. - if node_start_time property is properly updated for new dag circuit. """ dd_sequence = [XGate(), YGate(), XGate(), YGate()] pm1 = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence, qubits=[0]), PadDynamicalDecoupling(self.durations, dd_sequence, qubits=[1]), ] ) circ1 = pm1.run(self.ghz4) pm2 = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence, qubits=[0, 1]), ] ) circ2 = pm2.run(self.ghz4) self.assertEqual(circ1, circ2) def test_respect_target_instruction_constraints(self): """Test if DD pass does not pad delays for qubits that do not support delay instructions and does not insert DD gates for qubits that do not support necessary gates. See: https://github.com/Qiskit/qiskit-terra/issues/9993 """ qc = QuantumCircuit(3) qc.cx(0, 1) qc.cx(1, 2) target = Target(dt=1) # Y is partially supported (not supported on qubit 2) target.add_instruction( XGate(), {(q,): InstructionProperties(duration=100) for q in range(2)} ) target.add_instruction( CXGate(), { (0, 1): InstructionProperties(duration=1000), (1, 2): InstructionProperties(duration=1000), }, ) # delays are not supported # No DD instructions nor delays are padded due to no delay support in the target pm_xx = PassManager( [ ALAPScheduleAnalysis(target=target), PadDynamicalDecoupling(dd_sequence=[XGate(), XGate()], target=target), ] ) scheduled = pm_xx.run(qc) self.assertEqual(qc, scheduled) # Fails since Y is not supported in the target with self.assertRaises(TranspilerError): PassManager( [ ALAPScheduleAnalysis(target=target), PadDynamicalDecoupling( dd_sequence=[XGate(), YGate(), XGate(), YGate()], target=target ), ] ) # Add delay support to the target target.add_instruction(Delay(Parameter("t")), {(q,): None for q in range(3)}) # No error but no DD on qubit 2 (just delay is padded) since X is not supported on it scheduled = pm_xx.run(qc) expected = QuantumCircuit(3) expected.delay(1000, [2]) expected.cx(0, 1) expected.cx(1, 2) expected.delay(200, [0]) expected.x([0]) expected.delay(400, [0]) expected.x([0]) expected.delay(200, [0]) self.assertEqual(expected, scheduled) if __name__ == "__main__": unittest.main()
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
from qiskit import * %matplotlib inline from qiskit.tools.visualization import plot_histogram secret_number = '101001' qc = QuantumCircuit(6+1, 6) qc.h([0, 1, 2, 3, 4, 5]) qc.x(6) qc.h(6) qc.barrier() qc.draw(output='mpl') # building box of secret number qc.cx(5, 6) qc.cx(3, 6) qc.cx(0, 6) qc.draw(output='mpl') qc.barrier() qc.h([0, 1, 2, 3, 4, 5]) qc.barrier() qc.measure([0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]) qc.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend=simulator, shots=1).result() counts = result.get_counts() print(counts) secret_number = '1000100110010101001' qc = QuantumCircuit(len(secret_number)+1, len(secret_number)) qc.h(range(len(secret_number))) qc.x(len(secret_number)) qc.h(len(secret_number)) qc.barrier() for ii, yesno in enumerate(reversed(secret_number)): if yesno == '1': qc.cx(ii, len(secret_number)) qc.barrier() qc.h(range(len(secret_number))) qc.barrier() qc.measure(range(len(secret_number)), range(len(secret_number))) qc.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend=simulator, shots=1).result() counts = result.get_counts() print(counts)
https://github.com/acfilok96/Quantum-Computation
acfilok96
from qiskit import * qr = QuantumRegister(2) cr = ClassicalRegister(2) circuit = QuantumCircuit(qr, cr) %matplotlib inline circuit.draw() circuit.h(qr[0]) circuit.draw(output = 'mpl') circuit.cx(qr[0], qr[1]) circuit.draw(output='mpl') circuit.measure(qr, cr) circuit.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') execute(circuit, backend=simulator) result = execute(circuit, backend=simulator).result() from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(circuit)) # plot_histogram provider = IBMQ.get_provider('ibm-q') backend = provider.get_backend('ibmq_16_melbourne') job =execute(circuit, backend= backend) from qiskit.tools.monitor import job_monitor job_monitor(job) result = job.result() plot_histogram(result.get_counts(circuit))
https://github.com/abhik-99/Qiskit-Summer-School
abhik-99
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """A collection of discrete probability metrics.""" from __future__ import annotations import numpy as np def hellinger_distance(dist_p: dict, dist_q: dict) -> float: """Computes the Hellinger distance between two counts distributions. Parameters: dist_p (dict): First dict of counts. dist_q (dict): Second dict of counts. Returns: float: Distance References: `Hellinger Distance @ wikipedia <https://en.wikipedia.org/wiki/Hellinger_distance>`_ """ p_sum = sum(dist_p.values()) q_sum = sum(dist_q.values()) p_normed = {} for key, val in dist_p.items(): p_normed[key] = val / p_sum q_normed = {} for key, val in dist_q.items(): q_normed[key] = val / q_sum total = 0 for key, val in p_normed.items(): if key in q_normed: total += (np.sqrt(val) - np.sqrt(q_normed[key])) ** 2 del q_normed[key] else: total += val total += sum(q_normed.values()) dist = np.sqrt(total) / np.sqrt(2) return dist def hellinger_fidelity(dist_p: dict, dist_q: dict) -> float: """Computes the Hellinger fidelity between two counts distributions. The fidelity is defined as :math:`\\left(1-H^{2}\\right)^{2}` where H is the Hellinger distance. This value is bounded in the range [0, 1]. This is equivalent to the standard classical fidelity :math:`F(Q,P)=\\left(\\sum_{i}\\sqrt{p_{i}q_{i}}\\right)^{2}` that in turn is equal to the quantum state fidelity for diagonal density matrices. Parameters: dist_p (dict): First dict of counts. dist_q (dict): Second dict of counts. Returns: float: Fidelity Example: .. code-block:: from qiskit import QuantumCircuit, execute, BasicAer from qiskit.quantum_info.analysis import hellinger_fidelity qc = QuantumCircuit(5, 5) qc.h(2) qc.cx(2, 1) qc.cx(2, 3) qc.cx(3, 4) qc.cx(1, 0) qc.measure(range(5), range(5)) sim = BasicAer.get_backend('qasm_simulator') res1 = execute(qc, sim).result() res2 = execute(qc, sim).result() hellinger_fidelity(res1.get_counts(), res2.get_counts()) References: `Quantum Fidelity @ wikipedia <https://en.wikipedia.org/wiki/Fidelity_of_quantum_states>`_ `Hellinger Distance @ wikipedia <https://en.wikipedia.org/wiki/Hellinger_distance>`_ """ dist = hellinger_distance(dist_p, dist_q) return (1 - dist**2) ** 2
https://github.com/jcylim/QiskitProject
jcylim
# useful additional packages import matplotlib.pyplot as plt #%matplotlib inline import numpy as np from pprint import pprint # importing QISKit from qiskit import QuantumProgram, QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import available_backends, execute, register, least_busy # import basic plot tools from qiskit.tools.visualization import plot_histogram, circuit_drawer qx_config = { "APItoken": 'dcdb2d9414a625c1f57373c544add3711c78c3d7faf39397fe2c41887110e8b59caf81bcb2bc32714d936da41a261fea510f96df379afcbdfa9df6cc6bfe3829', "url": 'https://quantumexperience.ng.bluemix.net/api' } backend = 'local_qasm_simulator' # run on local simulator by default # register(qx_config['APItoken'], qx_config['url']) # backend = least_busy(available_backends({'simulator': False, 'local': False})) # print("the best backend is " + backend) # Creating registers sdq = QuantumRegister(2) sdc = ClassicalRegister(2) # Quantum circuit to make the shared entangled state superdense = QuantumCircuit(sdq, sdc) superdense.h(sdq[0]) superdense.cx(sdq[0], sdq[1]) # For 00, do nothing # For 01, apply $X$ #shared.x(q[0]) # For 01, apply $Z$ #shared.z(q[0]) # For 11, apply $XZ$ superdense.z(sdq[0]) superdense.x(sdq[0]) superdense.barrier() superdense.cx(sdq[0], sdq[1]) superdense.h(sdq[0]) superdense.measure(sdq[0], sdc[0]) superdense.measure(sdq[1], sdc[1]) superdense_job = execute(superdense, backend) superdense_result = superdense_job.result() plot_histogram(superdense_result.get_counts(superdense))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import IBMQ, transpile from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit.tools.visualization import plot_histogram from qiskit.providers.fake_provider import FakeVigo device_backend = FakeVigo() # Construct quantum circuit circ = QuantumCircuit(3, 3) circ.h(0) circ.cx(0, 1) circ.cx(1, 2) circ.measure([0, 1, 2], [0, 1, 2]) sim_ideal = AerSimulator() # Execute and get counts result = sim_ideal.run(transpile(circ, sim_ideal)).result() counts = result.get_counts(0) plot_histogram(counts, title='Ideal counts for 3-qubit GHZ state') sim_vigo = AerSimulator.from_backend(device_backend) # Transpile the circuit for the noisy basis gates tcirc = transpile(circ, sim_vigo) # Execute noisy simulation and get counts result_noise = sim_vigo.run(tcirc).result() counts_noise = result_noise.get_counts(0) plot_histogram(counts_noise, title="Counts for 3-qubit GHZ state with device noise model") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# You can choose different colors for the real and imaginary parts of the density matrix. from qiskit import QuantumCircuit from qiskit.quantum_info import DensityMatrix from qiskit.visualization import plot_state_city qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) state = DensityMatrix(qc) plot_state_city(state, color=['midnightblue', 'crimson'], title="New State City")
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Testing naming functionality of transpiled circuits""" import unittest from qiskit.circuit import QuantumCircuit from qiskit.compiler import transpile from qiskit import BasicAer from qiskit.transpiler.exceptions import TranspilerError from qiskit.test import QiskitTestCase class TestNamingTranspiledCircuits(QiskitTestCase): """Testing the naming fuctionality for transpiled circuits.""" def setUp(self): super().setUp() self.basis_gates = ["u1", "u2", "u3", "cx"] self.backend = BasicAer.get_backend("qasm_simulator") self.circuit0 = QuantumCircuit(name="circuit0") self.circuit1 = QuantumCircuit(name="circuit1") self.circuit2 = QuantumCircuit(name="circuit2") self.circuit3 = QuantumCircuit(name="circuit3") def test_single_circuit_name_singleton(self): """Test output_name with a single circuit Given a single circuit and a output name in form of a string, this test checks whether that string name is assigned to the transpiled circuit. """ trans_cirkie = transpile( self.circuit0, basis_gates=self.basis_gates, output_name="transpiled-cirkie" ) self.assertEqual(trans_cirkie.name, "transpiled-cirkie") def test_single_circuit_name_list(self): """Test singleton output_name and a single circuit Given a single circuit and an output name in form of a single element list, this test checks whether the transpiled circuit is mapped with that assigned name in the list. If list has more than one element, then test checks whether the Transpile function raises an error. """ trans_cirkie = transpile( self.circuit0, basis_gates=self.basis_gates, output_name=["transpiled-cirkie"] ) self.assertEqual(trans_cirkie.name, "transpiled-cirkie") def test_single_circuit_and_multiple_name_list(self): """Test multiple output_name and a single circuit""" # If List has multiple elements, transpile function must raise error with self.assertRaises(TranspilerError): transpile( self.circuit0, basis_gates=self.basis_gates, output_name=["cool-cirkie", "new-cirkie", "dope-cirkie", "awesome-cirkie"], ) def test_multiple_circuits_name_singleton(self): """Test output_name raise error if a single name is provided to a list of circuits Given multiple circuits and a single string as a name, this test checks whether the Transpile function raises an error. """ # Raise Error if single name given to multiple circuits with self.assertRaises(TranspilerError): transpile([self.circuit1, self.circuit2], self.backend, output_name="circ") def test_multiple_circuits_name_list(self): """Test output_name with a list of circuits Given multiple circuits and a list for output names, if len(list)=len(circuits), then test checks whether transpile func assigns each element in list to respective circuit. If lengths are not equal, then test checks whether transpile func raises error. """ # combining multiple circuits circuits = [self.circuit1, self.circuit2, self.circuit3] # equal lengths names = ["awesome-circ1", "awesome-circ2", "awesome-circ3"] trans_circuits = transpile(circuits, self.backend, output_name=names) self.assertEqual(trans_circuits[0].name, "awesome-circ1") self.assertEqual(trans_circuits[1].name, "awesome-circ2") self.assertEqual(trans_circuits[2].name, "awesome-circ3") def test_greater_circuits_name_list(self): """Test output_names list greater than circuits list""" # combining multiple circuits circuits = [self.circuit1, self.circuit2, self.circuit3] # names list greater than circuits list names = ["awesome-circ1", "awesome-circ2", "awesome-circ3", "awesome-circ4"] with self.assertRaises(TranspilerError): transpile(circuits, self.backend, output_name=names) def test_smaller_circuits_name_list(self): """Test output_names list smaller than circuits list""" # combining multiple circuits circuits = [self.circuit1, self.circuit2, self.circuit3] # names list smaller than circuits list names = ["awesome-circ1", "awesome-circ2"] with self.assertRaises(TranspilerError): transpile(circuits, self.backend, output_name=names) if __name__ == "__main__": unittest.main()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit qc = QuantumCircuit(12) for idx in range(5): qc.h(idx) qc.cx(idx, idx+5) qc.cx(1, 7) qc.x(8) qc.cx(1, 9) qc.x(7) qc.cx(1, 11) qc.swap(6, 11) qc.swap(6, 9) qc.swap(6, 10) qc.x(6) qc.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from qiskit import QuantumCircuit, transpile from qiskit.providers.fake_provider import FakeAuckland backend = FakeAuckland() ghz = QuantumCircuit(15) ghz.h(0) ghz.cx(0, range(1, 15)) depths = [] gate_counts = [] non_local_gate_counts = [] levels = [str(x) for x in range(4)] for level in range(4): circ = transpile(ghz, backend, optimization_level=level) depths.append(circ.depth()) gate_counts.append(sum(circ.count_ops().values())) non_local_gate_counts.append(circ.num_nonlocal_gates()) fig, (ax1, ax2) = plt.subplots(2, 1) ax1.bar(levels, depths, label='Depth') ax1.set_xlabel("Optimization Level") ax1.set_ylabel("Depth") ax1.set_title("Output Circuit Depth") ax2.bar(levels, gate_counts, label='Number of Circuit Operations') ax2.bar(levels, non_local_gate_counts, label='Number of non-local gates') ax2.set_xlabel("Optimization Level") ax2.set_ylabel("Number of gates") ax2.legend() ax2.set_title("Number of output circuit gates") fig.tight_layout() plt.show()
https://github.com/bayesian-randomized-benchmarking/qiskit-advocates-bayes-RB
bayesian-randomized-benchmarking
#Import general libraries (needed for functions) import numpy as np import matplotlib.pyplot as plt #from IPython import display #Import Qiskit classes import qiskit from qiskit.tools.monitor import job_monitor from qiskit import Aer from qiskit.providers.aer.noise import NoiseModel from qiskit import QuantumRegister, QuantumCircuit #Import the RB Functions import qiskit.ignis.verification.randomized_benchmarking as rb # import the bayesian packages import pymc3 as pm import arviz as az from scipy.optimize import curve_fit import bayesian_fitter as bf # initialize the Bayesian extension %config InlineBackend.figure_format = 'retina' # Initialize random number generator RANDOM_SEED = 8927 np.random.seed(RANDOM_SEED) az.style.use("arviz-darkgrid") RB_process = "1_Q RB" if RB_process in ["3_Q RB","2-3_Q RB"] : #Number of qubits nQ = 3 #There are 3 qubits: Q0,Q1,Q2. #2Q RB on Q0,Q2 and 1Q RB on Q1 rb_pattern = [[1,2],[3]] # because 3 qubits #Do three times as many 1Q Cliffords length_multiplier = [1,3] #Interleaved Clifford gates (2-qubits and 1-qubit) interleaved_gates = [['cx 0 1'],['x 2']] elif RB_process == "2_Q RB": #Number of qubits nQ = 2 #There are 2 qubits: Q0,Q1. #2Q RB Q0,Q1 rb_pattern = [[0,1]] length_multiplier = 1 interleaved_gates = [['cx 0,1']] elif RB_process == "1_Q RB": #Number of qubits nQ = 1 #There is 1 qubit: Q0 rb_pattern = [[0]] length_multiplier = 1 interleaved_gates = [['x 0']] #Number of Cliffords in the sequence (start, stop, steps) nCliffs = [1, 50, 100, 200, 400, 600, 800, 1000, 1300, 1600] #Number of seeds (random sequences) nseeds=8 scale = (2 ** len(rb_pattern[0]) - 1) / (2 ** len(rb_pattern[0])) from qiskit import IBMQ from qiskit import Aer IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') device = provider.get_backend('ibmq_lima') # type here hardware backend properties = device.properties() coupling_map = device.configuration().coupling_map # use a noise model corresponding to the chosen real device backend basis_gates = ['id', 'rz', 'sx', 'x', 'cx', 'reset'] hardware = device.name() backend = Aer.get_backend('qasm_simulator') shots = 2**9 noise_model = NoiseModel.from_backend(properties) qregs_02 = QuantumRegister(2) circ_02 = QuantumCircuit(qregs_02, name='circ_02') #circ_02.h(qregs_02[0]) # booptrap! WIP! circ_02.cx(qregs_02[0], qregs_02[1]) circ_02.draw() qregs_1 = QuantumRegister(1) circ_1 = QuantumCircuit(qregs_1, name='circ_1') circ_1.x(qregs_1[0]) # booptrap! WIP! circ_1.draw() rb_opts = {} rb_opts['rand_seed'] = 61946 rb_opts['length_vector'] = nCliffs rb_opts['nseeds'] = nseeds rb_opts['rb_pattern'] = rb_pattern rb_opts['length_multiplier'] = length_multiplier #rb_opts['align_cliffs'] = True if RB_process in ["3_Q RB","2-3_Q RB"]: rb_opts['interleaved_elem'] = [circ_02, circ_1] elif RB_process == "2_Q RB": rb_opts['interleaved_elem'] = [circ_02] elif RB_process == "1_Q RB": rb_opts['interleaved_elem'] = [circ_1] rb_original_circs, xdata, rb_interleaved_circs = rb.randomized_benchmarking_seq(**rb_opts) #Original RB circuits print (rb_original_circs[0][0]) #Interleaved RB circuits print (rb_interleaved_circs[0][0]) retrieve_list = [] original_result_list, original_transpile_list = bf.get_and_run_seeds(rb_circs=rb_original_circs, shots=shots, backend = backend, coupling_map = coupling_map, basis_gates = basis_gates, noise_model = noise_model, retrieve_list=retrieve_list) retrieve_list = [] interleaved_result_list, interleaved_transpile_list = bf.get_and_run_seeds(rb_circs=rb_interleaved_circs, shots=shots, backend = backend, coupling_map = coupling_map, basis_gates = basis_gates, noise_model = noise_model, retrieve_list=retrieve_list) # retrieve counts; skip if model rerun # if model rerun, recuperate output data by running Y1 and Y2 = np.printed_array instead of this cell Y1 = bf.get_count_data(original_result_list, nCliffs=nCliffs ) Y2 = bf.get_count_data(interleaved_result_list, nCliffs=nCliffs) # output np.array Y1; skip if model rerun Y1 # output np.array Y1; skip if model rerun Y2 # skip if no model rerun Y1 =np.array([[509, 504, 493, 474, 448, 417, 406, 391, 392, 367], [507, 498, 495, 485, 461, 440, 421, 370, 382, 353], [507, 499, 491, 469, 437, 433, 400, 395, 373, 359], [507, 500, 484, 477, 451, 435, 399, 365, 374, 355], [508, 500, 494, 477, 446, 429, 401, 394, 365, 369], [506, 493, 496, 484, 457, 430, 401, 413, 374, 372], [506, 500, 490, 472, 444, 435, 389, 389, 372, 337], [506, 498, 492, 485, 462, 427, 392, 385, 368, 359]]) # skip if no model rerun Y2 = np.array([[505, 488, 482, 444, 406, 377, 330, 310, 327, 270], [507, 487, 485, 460, 414, 363, 354, 346, 297, 296], [509, 498, 476, 444, 414, 386, 355, 347, 312, 291], [509, 486, 478, 453, 413, 368, 354, 334, 306, 304], [509, 494, 483, 445, 405, 366, 338, 356, 278, 268], [508, 492, 474, 466, 417, 357, 340, 327, 321, 284], [507, 490, 483, 452, 419, 390, 359, 341, 306, 293], [509, 494, 477, 441, 392, 368, 357, 331, 324, 278]]) # function to optimize def lsf(x, a, alpha, b): return a * alpha ** x + b # curve fit popt_s,pcov_s = curve_fit(lsf, np.array(nseeds*list(nCliffs)), np.ravel(Y1)/shots, bounds = ([scale-0.15,.9,1-scale-.15], [scale+0.15,1.0,1-scale+.15])) perr_s= np.sqrt(np.diag(pcov_s)) # get EPC and EPC sigma for LSF accelerated alpha_f = popt_s[1] alpha_f_err = perr_s[1] popt_s,perr_s # curve fit popt_i,pcov_i = curve_fit(lsf, np.array(nseeds*list(nCliffs)), np.ravel(Y2)/shots, bounds = ([scale-0.15,.9,1-scale-.15], [scale+0.15,1.0,1-scale+.15])) perr_i= np.sqrt(np.diag(pcov_i)) # get EPC and EPC sigma for LSF accelerated alphC_f = popt_i[1] alphC_f_err = perr_i[1] popt_i,perr_i epc_est_f = scale*(1 - alphC_f/alpha_f) epc_est_f_err = scale*(alphC_f/alpha_f)*(np.sqrt(alpha_f_err**2 + alphC_f_err**2)) # function to optimize def lsmf(x, a, alpha, p_tilde_m, b): return x[1]*(a * alpha ** x[0] + b) + x[2]*(a * (alpha*p_tilde_m) ** x[0] + b) # obtain the data m_len = len(nCliffs)*nseeds x0_lsmf = np.array(nseeds*2*list(nCliffs)) x1_lsmf = np.hstack((np.ones(m_len),np.zeros(m_len))) x2_lsmf = np.hstack((np.zeros(m_len),np.ones(m_len))) x_lsmf = np.vstack((x0_lsmf,x1_lsmf,x2_lsmf)) y_lsmf=np.hstack((np.ravel(Y1),np.ravel(Y2)))/shots # curve fit popt_m,pcov_m = curve_fit(lsmf, x_lsmf, y_lsmf, bounds = ([scale-0.15,.9,.9,1-scale-.15], [scale+0.15,1.0,1.0,1-scale+.15])) perr_m = np.sqrt(np.diag(pcov_m)) # get EPC and EPC sigma for LSF accelerated alpha_fm = popt_m[1] p_tilde_m = popt_m[2] alpha_fm_err = perr_m[1] p_tilde_m_err = perr_m[2] popt_m,perr_m epc_est_fm = scale*(1 - p_tilde_m) epc_est_fm_err = scale*p_tilde_m_err original_model = bf.get_bayesian_model(model_type="pooled",Y=Y1,shots=shots,m_gates=nCliffs, mu_AB=[popt_s[0],popt_s[2]],cov_AB=[perr_s[0],perr_s[2]], alpha_ref=alpha_f, alpha_upper=.999999, p_upper=.999999) pm.model_to_graphviz(original_model) trace_o = bf.get_trace(original_model, target_accept = .95) azo_summary = bf.get_summary(original_model, trace_o) azo_summary alpha_original_p = azo_summary['mean']['alpha'] alpha_original_p_err = azo_summary['sd']['alpha'] interleaved_model = bf.get_bayesian_model(model_type="pooled",Y=Y2,shots=shots,m_gates=nCliffs, mu_AB=[popt_i[0],popt_i[2]],cov_AB=[perr_i[0],perr_i[2]], alpha_ref=alpha_f, alpha_upper=.999999, p_upper=.999999) pm.model_to_graphviz(interleaved_model) trace_i = bf.get_trace(interleaved_model, target_accept = .95) azi_summary = bf.get_summary(interleaved_model, trace_i) azi_summary alpha_c_p = azi_summary['mean']['alpha'] alpha_c_p_err = azi_summary['sd']['alpha'] epc_est_p = scale*(1 - alpha_c_p/alpha_original_p) epc_est_p_err = scale*(alpha_c_p/alpha_original_p)*(np.sqrt(alpha_original_p_err**2 + alpha_c_p_err**2)) Y = np.vstack((Y1,Y2)) RvsI = np.vstack((np.ones_like(Y1),np.zeros_like(Y2))) IvsR = np.vstack((np.zeros_like(Y1),np.ones_like(Y2))) tilde =bf.get_bayesian_model("tilde",Y=Y,shots=shots, m_gates=nCliffs, alpha_ref=alpha_fm, p_testval= p_tilde_m, mu_AB=[popt_m[0],popt_m[3]],cov_AB=[perr_m[0],perr_m[3]], RvsI=RvsI,IvsR=IvsR, alpha_upper=.999999, p_upper=.999999) pm.model_to_graphviz(tilde) trace_t = bf.get_trace(tilde, target_accept = .95) azt_summary = bf.get_summary(tilde, trace_t) azt_summary epc_est_a = scale*(1 - azt_summary['mean']['p_tilde']) epc_est_a_err = scale* (azt_summary['sd']['p_tilde']) epc_calib = 3.364E-04 # not for simulation # compare LSF and SMC print("Model: Frequentist Bayesian ") print(" two-run accelerated two-run accelerated ") print("EPC {0:.5f} {1:.5f} {2:.5f} {3:.5f} " .format(epc_est_f, epc_est_fm, epc_est_p, epc_est_a)) print("± sigma ± {0:.5f} ± {1:.5f} ± {2:.5f} ± {3:.5f} " .format(epc_est_f_err, epc_est_fm_err, epc_est_p_err, epc_est_a_err)) # obtain EPC from alpha (used by plot_posterior) def alpha_to_EPC(alpha): return scale*(1-alpha) # for refering the interleaved gate in the title of the graphs intl_g=str(interleaved_gates[0][0][0:2])+str(rb_pattern[0][0:2]) if RB_process in ["3_Q RB","2-3_Q RB"] : intl_g=intl_g+"<"+str(interleaved_gates[1][0][0:1]+str(rb_pattern[1][0:2])) import matplotlib.pyplot as plt # seems we need to reimport for replot WIP with tilde: ax = az.plot_posterior(trace_t, var_names=['p_tilde'], round_to=4, point_estimate=None, transform = alpha_to_EPC) ax.set_xlim(0.0, 0.0005) plt.axvline(x=epc_est_fm,color='red',ls="-") plt.axvline(x=epc_est_p,color='orange',ls="-") plt.axvline(x=epc_est_f,color='cyan',ls="-") if epc_calib > 0.0: plt.axvline(x=epc_calib,color='green',ls=":") plt.axvline(x=epc_est_a,color='blue',ls=":") plt.title(RB_process +' $accelerated$, gate: ' + intl_g\ +", "+hardware+', backend: '+backend.name(), fontsize=12) Bayes_legend = "EPC Accelerated SMC: {0:1.3e} ({1:1.3e})".format(epc_est_a, epc_est_a_err) Bayes2_legend = "EPC SMC 2-runs: {0:1.3e} ({1:1.3e})".format(epc_est_p, epc_est_p_err) Fitter_legend = "EPC LSF 2-runs: {0:1.3e} ({1:1.3e})".format(epc_est_f, epc_est_f_err) LSM_legend = "EPC Accelerated LSF: {0:1.3e} ({1:1.3e})".format(epc_est_fm, epc_est_fm_err) Cal_legend = "EPC Calibration: {0:1.3e}".format(epc_calib) if epc_calib > 0.0: plt.legend((Bayes_legend, "$Higher\; density\; interval$ HDI", LSM_legend,Bayes2_legend, Fitter_legend,Cal_legend), fontsize=10 ) else: plt.legend((Bayes_legend, "$Higher\; density\; interval$ HDI", LSM_legend, Bayes2_legend, Fitter_legend), fontsize=10 ) import matplotlib.pyplot as plt # seems we need to reimport for replot WIP fig, plt = plt.subplots(1, 1) plt.set_ylabel("Ground State Population") plt.set_xlabel("Number of Cliffords") for i_seed in range(nseeds): plt.scatter(nCliffs, Y1[i_seed,:]/shots, label = "data", marker="x",color="b") plt.scatter(nCliffs, Y2[i_seed,:]/shots, label = "data", marker="+",color="r") plt.plot(nCliffs,azt_summary['mean']['AB[0]']*azt_summary['mean']['alpha']**nCliffs+\ azt_summary['mean']['AB[1]'],'--',color="b") plt.plot(nCliffs,azt_summary['mean']['AB[0]']*(azt_summary['mean']['alpha']*azt_summary['mean']['p_tilde'])**\ nCliffs+azt_summary['mean']['AB[1]'],'--',color="r") plt.legend(("Standard", "Interleaved")) plt.set_title(RB_process +' SMC $accelerated$, gate: ' + intl_g\ +", "+hardware+', backend: '+backend.name(), fontsize=14); import qiskit.tools.jupyter %qiskit_version_table
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0, 1) qc.measure([0, 1], [0, 1]) qc.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.72" # Two Hydrogen atoms, 0.72 Angstrom apart ) molecule = driver.run() from qiskit_nature.second_q.mappers import QubitConverter, ParityMapper qubit_converter = QubitConverter(ParityMapper()) hamiltonian = qubit_converter.convert(molecule.second_q_ops()[0]) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver sol = NumPyMinimumEigensolver().compute_minimum_eigenvalue(hamiltonian) real_solution = molecule.interpret(sol) real_solution.groundenergy from qiskit_ibm_runtime import QiskitRuntimeService, Estimator, Session, Options service = QiskitRuntimeService() backend = "ibmq_qasm_simulator" from qiskit.algorithms.minimum_eigensolvers import VQE # Use RealAmplitudes circuit to create trial states from qiskit.circuit.library import RealAmplitudes ansatz = RealAmplitudes(num_qubits=2, reps=2) # Search for better states using SPSA algorithm from qiskit.algorithms.optimizers import SPSA optimizer = SPSA(150) # Set a starting point for reproduceability import numpy as np np.random.seed(6) initial_point = np.random.uniform(-np.pi, np.pi, 12) # Create an object to store intermediate results from dataclasses import dataclass @dataclass class VQELog: values: list parameters: list def update(self, count, parameters, mean, _metadata): self.values.append(mean) self.parameters.append(parameters) print(f"Running circuit {count} of ~350", end="\r", flush=True) log = VQELog([],[]) # Main calculation with Session(service=service, backend=backend) as session: options = Options() options.optimization_level = 3 vqe = VQE(Estimator(session=session, options=options), ansatz, optimizer, callback=log.update, initial_point=initial_point) result = vqe.compute_minimum_eigenvalue(hamiltonian) print("Experiment complete.".ljust(30)) print(f"Raw result: {result.optimal_value}") if 'simulator' not in backend: # Run once with ZNE error mitigation options.resilience_level = 2 vqe = VQE(Estimator(session=session, options=options), ansatz, SPSA(1), initial_point=result.optimal_point) result = vqe.compute_minimum_eigenvalue(hamiltonian) print(f"Mitigated result: {result.optimal_value}") import matplotlib.pyplot as plt plt.rcParams["font.size"] = 14 # Plot energy and reference value plt.figure(figsize=(12, 6)) plt.plot(log.values, label="Estimator VQE") plt.axhline(y=real_solution.groundenergy, color="tab:red", ls="--", label="Target") plt.legend(loc="best") plt.xlabel("Iteration") plt.ylabel("Energy [H]") plt.title("VQE energy") plt.show() import qiskit_ibm_runtime qiskit_ibm_runtime.version.get_version_info() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Tests for Layer1Q implementation. """ import unittest from random import randint import test.python.transpiler.aqc.fast_gradient.utils_for_testing as tut import numpy as np import qiskit.transpiler.synthesis.aqc.fast_gradient.layer as lr from qiskit.transpiler.synthesis.aqc.fast_gradient.pmatrix import PMatrix from qiskit.test import QiskitTestCase class TestLayer1q(QiskitTestCase): """ Tests for Layer1Q class. """ max_num_qubits = 5 # maximum number of qubits in tests num_repeats = 50 # number of repetitions in tests def setUp(self): super().setUp() np.random.seed(0x0696969) def test_layer1q_matrix(self): """ Tests: (1) the correctness of Layer2Q matrix construction; (2) matrix multiplication interleaved with permutations. """ mat_kind = "complex" eps = 100.0 * np.finfo(float).eps max_rel_err = 0.0 for n in range(2, self.max_num_qubits + 1): dim = 2**n iden = tut.eye_int(n) for k in range(n): m_mat = tut.rand_matrix(dim=dim, kind=mat_kind) t_mat, g_mat = tut.make_test_matrices2x2(n=n, k=k, kind=mat_kind) lmat = lr.Layer1Q(num_qubits=n, k=k, g2x2=g_mat) g2, perm, inv_perm = lmat.get_attr() self.assertTrue(m_mat.dtype == t_mat.dtype == g_mat.dtype == g2.dtype) self.assertTrue(np.all(g_mat == g2)) self.assertTrue(np.all(iden[perm].T == iden[inv_perm])) g_mat = np.kron(tut.eye_int(n - 1), g_mat) # T == P^t @ G @ P. err = tut.relative_error(t_mat, iden[perm].T @ g_mat @ iden[perm]) self.assertLess(err, eps, "err = {:0.16f}".format(err)) max_rel_err = max(max_rel_err, err) # Multiplication by permutation matrix of the left can be # replaced by row permutations. tm = t_mat @ m_mat err1 = tut.relative_error(iden[perm].T @ g_mat @ m_mat[perm], tm) err2 = tut.relative_error((g_mat @ m_mat[perm])[inv_perm], tm) # Multiplication by permutation matrix of the right can be # replaced by column permutations. mt = m_mat @ t_mat err3 = tut.relative_error(m_mat @ iden[perm].T @ g_mat @ iden[perm], mt) err4 = tut.relative_error((m_mat[:, perm] @ g_mat)[:, inv_perm], mt) self.assertTrue( err1 < eps and err2 < eps and err3 < eps and err4 < eps, "err1 = {:f}, err2 = {:f}, " "err3 = {:f}, err4 = {:f}".format(err1, err2, err3, err4), ) max_rel_err = max(max_rel_err, err1, err2, err3, err4) def test_pmatrix_class(self): """ Test the class PMatrix. """ _eps = 100.0 * np.finfo(float).eps mat_kind = "complex" max_rel_err = 0.0 for n in range(2, self.max_num_qubits + 1): dim = 2**n tmp1 = np.ndarray((dim, dim), dtype=np.cfloat) tmp2 = tmp1.copy() for _ in range(self.num_repeats): k0 = randint(0, n - 1) k1 = randint(0, n - 1) k2 = randint(0, n - 1) k3 = randint(0, n - 1) k4 = randint(0, n - 1) t0, g0 = tut.make_test_matrices2x2(n=n, k=k0, kind=mat_kind) t1, g1 = tut.make_test_matrices2x2(n=n, k=k1, kind=mat_kind) t2, g2 = tut.make_test_matrices2x2(n=n, k=k2, kind=mat_kind) t3, g3 = tut.make_test_matrices2x2(n=n, k=k3, kind=mat_kind) t4, g4 = tut.make_test_matrices2x2(n=n, k=k4, kind=mat_kind) c0 = lr.Layer1Q(num_qubits=n, k=k0, g2x2=g0) c1 = lr.Layer1Q(num_qubits=n, k=k1, g2x2=g1) c2 = lr.Layer1Q(num_qubits=n, k=k2, g2x2=g2) c3 = lr.Layer1Q(num_qubits=n, k=k3, g2x2=g3) c4 = lr.Layer1Q(num_qubits=n, k=k4, g2x2=g4) m_mat = tut.rand_matrix(dim=dim, kind=mat_kind) ttmtt = t0 @ t1 @ m_mat @ np.conj(t2).T @ np.conj(t3).T pmat = PMatrix(n) pmat.set_matrix(m_mat) pmat.mul_left_q1(layer=c1, temp_mat=tmp1) pmat.mul_left_q1(layer=c0, temp_mat=tmp1) pmat.mul_right_q1(layer=c2, temp_mat=tmp1, dagger=True) pmat.mul_right_q1(layer=c3, temp_mat=tmp1, dagger=True) alt_ttmtt = pmat.finalize(temp_mat=tmp1) err1 = tut.relative_error(alt_ttmtt, ttmtt) self.assertLess(err1, _eps, "relative error: {:f}".format(err1)) prod = np.cfloat(np.trace(ttmtt @ t4)) alt_prod = pmat.product_q1(layer=c4, tmp1=tmp1, tmp2=tmp2) err2 = abs(alt_prod - prod) / abs(prod) self.assertLess(err2, _eps, "relative error: {:f}".format(err2)) max_rel_err = max(max_rel_err, err1, err2) if __name__ == "__main__": unittest.main()
https://github.com/jeevesh2002/QuantumKatasQiskit
jeevesh2002
# Run this cell using Ctrl+Enter (⌘+Enter on Mac). from testing import exercise from typing import Tuple import math Complex = Tuple[float, float] Polar = Tuple[float, float] @exercise def imaginary_power(n : int) -> int: # If n is divisible by 4 if n % 4 == 0: return 1 else: return -1 @exercise def complex_add(x : Complex, y : Complex) -> Complex: # You can extract elements from a tuple like this a = x[0] b = x[1] c = y[0] d = y[1] # This creates a new variable and stores the real component into it real = a + c # Replace the ... with code to calculate the imaginary component imaginary = b + d # You can create a tuple like this, with the real and imaginary part of the number ans = (real, imaginary) return ans @exercise def complex_mult(x : Complex, y : Complex) -> Complex: # Here is another, more compact way of extracting the parts of the complex number: (a, b) = x (c, d) = y real = (a * c) - (b * d) imaginary = (a * d) + (c * b) # Instead of creating a separate tuple with the result, we return the tuple directly return (real, imaginary) @exercise def conjugate(x : Complex) -> Complex: real = x[0] # The sign can be easily flipped with the unary minus operator imaginary = - x[1] return (real, imaginary) @exercise def complex_div(x : Complex, y : Complex) -> Complex: (a, b) = x (c, d) = y # We will use the denominator multiple times, so we'll store the value in a separate variable, # to make the code easier to use and less error prone. # Here we use ** to raise c and d to the second power. denominator = (c ** 2) + (d ** 2) real = ((a * c) + (b * d)) / denominator imaginary = ((a * (-d) ) + (c * b)) / denominator return (real, imaginary) @exercise def modulus(x : Complex) -> float: return math.sqrt(x[0] ** 2 + x[1] ** 2) @exercise def complex_exp(x : Complex) -> Complex: (a, b) = x expa = math.e ** a real = expa * math.cos(b) imaginary = expa * math.sin(b) return (real, imaginary) @exercise def complex_exp_real(r : float, x : Complex) -> Complex: # Since ln(r) is only defined for positive numbers, we check for this special case. # If r = 0, raising it to any power will give 0. # Calling return before the end of the function will not execute the rest of the function. if (r == 0): return (0,0) (a, b) = x # Raise r to the power of a ra = r ** a # Natural logarithm of r lnr = math.log(r) real = ra * math.cos(b * lnr) imaginary = ra * math.sin(b * lnr) return (real, imaginary) @exercise def polar_convert(x : Complex) -> Polar: (a, b) = x r = math.sqrt(a**2 + b **2) theta = math.atan2(b, a) return (r, theta) @exercise def cartesian_convert(x : Polar) -> Complex: (r, theta) = x real = r * math.cos(theta) imaginary = r * math.sin(theta) return (real, imaginary) @exercise def polar_mult(x : Polar, y : Polar) -> Polar: (r1, theta1) = x (r2, theta2) = y radius = r1 * r2 angle = theta1 + theta2 # If the calculated angle is larger then pi, we will subtract 2pi if (angle > math.pi): # Reassign the value for angle angle = angle - 2.0 * math.pi # If the calculated angle is smaller then -pi, we will add 2 pi elif (angle <= -math.pi): angle = angle + 2.0 * math.pi return (radius, angle) @exercise def complex_exp_arbitrary(x : Complex, y : Complex) -> Complex: (a, b) = x (c, d) = y # Convert x to polar form r = math.sqrt(a ** 2 + b ** 2) theta = math.atan2(b, a) # Special case for r = 0 if (r == 0): return (0, 0) lnr = math.log(r) exponent = math.exp(lnr * c - d * theta) real = exponent * (math.cos(lnr * d + theta * c )) imaginary = exponent * (math.sin(lnr * d + theta * c)) return (real, imaginary)
https://github.com/UST-QuAntiL/qiskit-service
UST-QuAntiL
# ****************************************************************************** # Copyright (c) 2021 University of Stuttgart # # See the NOTICE file(s) distributed with this work for additional # information regarding copyright ownership. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** import unittest import os from app.config import basedir from app import app, db import qiskit class TranspileTestCase(unittest.TestCase): def setUp(self): # setup environment variables for testing app.config['TESTING'] = True app.config['WTF_CSRF_ENABLED'] = False app.config['SQLALCHEMY_DATABASE_URI'] = "sqlite:///" + os.path.join(basedir, 'test.db') self.client = app.test_client() db.create_all() def tearDown(self): db.session.remove() db.drop_all() def test_version(self): response = self.client.get('/qiskit-service/api/v1.0/version') self.assertEqual(response.status_code, 200) json_data = response.get_json() self.assertTrue("version" in json_data) self.assertEqual(json_data['version'], "1.0") @unittest.skip("Has to be adapted as the benchmarking via Qiskit ignis is deprecated") def test_randomize_full_request(self): # prepare the request request = { 'qpu-name': 'ibmq_qasm_simulator', 'number-of-qubits': 1, 'min-depth-of-circuit': 1, 'max-depth-of-circuit': 1, 'number-of-circuits': 1, 'clifford': False, 'shots': 1024, 'token': os.environ["QISKIT_TOKEN"] } # send the request response = self.client.post('/qiskit-service/api/v1.0/randomize', json=request) self.assertEqual(response.status_code, 200) json_data = response.get_json() self.assertEqual(1, len(json_data)) self.assertEqual(3, len(json_data[0])) print(json_data[0]) self.assertIn("result-benchmark", json_data[0]) self.assertIn("result-simulator", json_data[0]) self.assertIn("result-real-backend", json_data[0]) @unittest.skip("Has to be adapted as the benchmarking via Qiskit ignis is deprecated") def test_randomize_no_shots_request(self): # prepare the request request = { 'qpu-name': 'ibmq_qasm_simulator', 'number-of-qubits': 1, 'min-depth-of-circuit': 1, 'max-depth-of-circuit': 1, 'number-of-circuits': 1, 'clifford': False, 'token': os.environ["QISKIT_TOKEN"] } # send the request response = self.client.post('/qiskit-service/api/v1.0/randomize', json=request) self.assertEqual(response.status_code, 200) json_data = response.get_json() self.assertEqual(1, len(json_data)) self.assertEqual(3, len(json_data[0])) self.assertIn("result-benchmark", json_data[0]) self.assertIn("result-simulator", json_data[0]) self.assertIn("result-real-backend", json_data[0]) @unittest.skip("Has to be adapted as the benchmarking via Qiskit ignis is deprecated") def test_randomize_no_clifford_request(self): # prepare the request request = { 'qpu-name': 'ibmq_qasm_simulator', 'number-of-qubits': 1, 'min-depth-of-circuit': 1, 'max-depth-of-circuit': 1, 'number-of-circuits': 1, 'token': os.environ["QISKIT_TOKEN"] } # send the request response = self.client.post('/qiskit-service/api/v1.0/randomize', json=request) self.assertEqual(response.status_code, 200) json_data = response.get_json() self.assertEqual(1, len(json_data)) self.assertEqual(3, len(json_data[0])) self.assertIn("result-benchmark", json_data[0]) self.assertIn("result-simulator", json_data[0]) self.assertIn("result-real-backend", json_data[0]) @unittest.skip("Has to be adapted as the benchmarking via Qiskit ignis is deprecated") def test_randomize_clifford_full_request(self): # prepare the request request = { 'qpu-name': 'ibmq_qasm_simulator', 'number-of-qubits': 1, 'min-depth-of-circuit': 1, 'max-depth-of-circuit': 1, 'number-of-circuits': 1, 'clifford': True, 'token': os.environ["QISKIT_TOKEN"] } # send the request response = self.client.post('/qiskit-service/api/v1.0/randomize', json=request) self.assertEqual(response.status_code, 200) json_data = response.get_json() self.assertEqual(1, len(json_data)) self.assertEqual(3, len(json_data[0])) self.assertIn("result-benchmark", json_data[0]) self.assertIn("result-simulator", json_data[0]) self.assertIn("result-real-backend", json_data[0]) if __name__ == "__main__": unittest.main()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit_nature.second_q.hamiltonians import QuadraticHamiltonian # create Hamiltonian hermitian_part = np.array( [ [1.0, 2.0, 0.0, 0.0], [2.0, 1.0, 2.0, 0.0], [0.0, 2.0, 1.0, 2.0], [0.0, 0.0, 2.0, 1.0], ] ) antisymmetric_part = np.array( [ [0.0, 3.0, 0.0, 0.0], [-3.0, 0.0, 3.0, 0.0], [0.0, -3.0, 0.0, 3.0], [0.0, 0.0, -3.0, 0.0], ] ) constant = 4.0 hamiltonian = QuadraticHamiltonian( hermitian_part=hermitian_part, antisymmetric_part=antisymmetric_part, constant=constant, ) # convert it to a FermionicOp and print it hamiltonian_ferm = hamiltonian.second_q_op() print(hamiltonian_ferm) # get the transformation matrix W and orbital energies {epsilon_j} ( transformation_matrix, orbital_energies, transformed_constant, ) = hamiltonian.diagonalizing_bogoliubov_transform() print(f"Shape of matrix W: {transformation_matrix.shape}") print(f"Orbital energies: {orbital_energies}") print(f"Transformed constant: {transformed_constant}") from qiskit_nature.second_q.circuit.library import FermionicGaussianState occupied_orbitals = (0, 2) eig = np.sum(orbital_energies[list(occupied_orbitals)]) + transformed_constant print(f"Eigenvalue: {eig}") circuit = FermionicGaussianState(transformation_matrix, occupied_orbitals=occupied_orbitals) circuit.draw("mpl") from qiskit.quantum_info import Statevector from qiskit_nature.second_q.mappers import JordanWignerMapper # simulate the circuit to get the final state state = np.array(Statevector(circuit)) # convert the Hamiltonian to a matrix hamiltonian_jw = JordanWignerMapper().map(hamiltonian_ferm).to_matrix() # check that the state is an eigenvector with the expected eigenvalue np.testing.assert_allclose(hamiltonian_jw @ state, eig * state, atol=1e-8) # create Hamiltonian hermitian_part = np.array( [ [1.0, 2.0, 0.0, 0.0], [2.0, 1.0, 2.0, 0.0], [0.0, 2.0, 1.0, 2.0], [0.0, 0.0, 2.0, 1.0], ] ) constant = 4.0 hamiltonian = QuadraticHamiltonian( hermitian_part=hermitian_part, constant=constant, ) print(f"Hamiltonian conserves particle number: {hamiltonian.conserves_particle_number()}") # get the transformation matrix W and orbital energies {epsilon_j} ( transformation_matrix, orbital_energies, transformed_constant, ) = hamiltonian.diagonalizing_bogoliubov_transform() print(f"Shape of matrix W: {transformation_matrix.shape}") print(f"Orbital energies: {orbital_energies}") print(f"Transformed constant: {transformed_constant}") from qiskit_nature.second_q.circuit.library import SlaterDeterminant occupied_orbitals = (0, 2) eig = np.sum(orbital_energies[list(occupied_orbitals)]) + transformed_constant print(f"Eigenvalue: {eig}") circuit = SlaterDeterminant(transformation_matrix[list(occupied_orbitals)]) circuit.draw("mpl") from qiskit_nature.second_q.circuit.library import BogoliubovTransform from qiskit import QuantumCircuit, QuantumRegister from qiskit.quantum_info import random_hermitian, random_statevector, state_fidelity from scipy.linalg import expm # create Hamiltonian n_modes = 5 hermitian_part = np.array(random_hermitian(n_modes)) hamiltonian = QuadraticHamiltonian(hermitian_part=hermitian_part) # diagonalize Hamiltonian ( transformation_matrix, orbital_energies, _, ) = hamiltonian.diagonalizing_bogoliubov_transform() # set simulation time and construct time evolution circuit time = 1.0 register = QuantumRegister(n_modes) circuit = QuantumCircuit(register) bog_circuit = BogoliubovTransform(transformation_matrix) # change to the diagonal basis of the Hamiltonian circuit.append(bog_circuit.inverse(), register) # perform time evolution by applying z rotations for q, energy in zip(register, orbital_energies): circuit.rz(-energy * time, q) # change back to the original basis circuit.append(bog_circuit, register) # simulate the circuit initial_state = random_statevector(2**n_modes) final_state = initial_state.evolve(circuit) # compute the correct state by direct exponentiation hamiltonian_jw = JordanWignerMapper().map(hamiltonian.second_q_op()).to_matrix() exact_evolution_op = expm(-1j * time * hamiltonian_jw) expected_state = exact_evolution_op @ np.array(initial_state) # check that the simulated state is correct fidelity = state_fidelity(final_state, expected_state) np.testing.assert_allclose(fidelity, 1.0, atol=1e-8) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/tomtuamnuq/compare-qiskit-ocean
tomtuamnuq
import time from dwave.system import DWaveCliqueSampler, LeapHybridSampler from qiskit.optimization.algorithms import CplexOptimizer from random_lp.lp_random_gen import create_models from utilities.helpers import create_dwave_meo DIR = 'TEST_DATA' + "/" + "14_03_2021" + "/DENSE/" # select linear program to solve qps = create_models(DIR) qp = qps['test_10'] # init Optimizers cplex = CplexOptimizer() leap = create_dwave_meo(LeapHybridSampler()) clique = create_dwave_meo(DWaveCliqueSampler()) # solve classically cplex.solve(qp) # solve hybrid res_leap = leap.solve(qp) res_leap # solve quantum res_clique = clique.solve(qp) res_clique qp.to_docplex().prettyprint()
https://github.com/swe-train/qiskit__qiskit
swe-train
# Copyright 2022-2023 Ohad Lev. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0, # or in the root directory of this package("LICENSE.txt"). # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ `SATInterface` class. """ import os import json from typing import List, Tuple, Union, Optional, Dict, Any from sys import stdout from datetime import datetime from hashlib import sha256 from qiskit import transpile, QuantumCircuit, qpy from qiskit.result.counts import Counts from qiskit.visualization.circuit.text import TextDrawing from qiskit.providers.backend import Backend from qiskit.transpiler.passes import RemoveBarriers from IPython import display from matplotlib.figure import Figure from sat_circuits_engine.util import timer_dec, timestamp, flatten_circuit from sat_circuits_engine.util.settings import DATA_PATH, TRANSPILE_KWARGS from sat_circuits_engine.circuit import GroverConstraintsOperator, SATCircuit from sat_circuits_engine.constraints_parse import ParsedConstraints from sat_circuits_engine.interface.circuit_decomposition import decompose_operator from sat_circuits_engine.interface.counts_visualization import plot_histogram from sat_circuits_engine.interface.translator import ConstraintsTranslator from sat_circuits_engine.classical_processing import ( find_iterations_unknown, calc_iterations, ClassicalVerifier, ) from sat_circuits_engine.interface.interactive_inputs import ( interactive_operator_inputs, interactive_solutions_num_input, interactive_run_input, interactive_backend_input, interactive_shots_input, ) # Local globlas for visualization of charts and diagrams IFRAME_WIDTH = "100%" IFRAME_HEIGHT = "700" class SATInterface: """ An interface for building, running and mining data from n-SAT problems quantum circuits. There are 2 options to use this class: (1) Using an interactive interface (intuitive but somewhat limited) - for this just initiate a bare instance of this class: `SATInterface()`. (2) Using the API defined by this class, that includes the following methods: * The following descriptions are partial, for full annotations see the methods' docstrings. - `__init__`: an instance of `SATInterface must be initiated with exactly 1 combination: (a) (high_level_constraints_string + high_level_vars) - for constraints in a high-level format. (b) (num_input_qubits + constraints_string) - for constraints in a low-level foramt. * For formats annotations see `constriants_format.ipynb` in the main directory. - `obtain_grover_operator`: obtains the suitable grover operator for the constraints. - `save_display_grover_operator`: saves and displays data generated by the `obtain_grover_operator` method. - `obtain_overall_circuit`: obtains the suitable overall SAT circuit. - `save_display_overall_circuit: saves and displays data generated by the `obtain_overall_circuit` method. - `run_overall_circuit`: executes the overall SAT circuit. - `save_display_results`: saves and displays data generated by the `run_overall_circuit` method. It is very recommended to go through `demos.ipynb` that demonstrates the various optional uses of this class, in addition to reading `constraints_format.ipynb`, which is a must for using this package properly. Both notebooks are in ther main directory. """ def __init__( self, num_input_qubits: Optional[int] = None, constraints_string: Optional[str] = None, high_level_constraints_string: Optional[str] = None, high_level_vars: Optional[Dict[str, int]] = None, name: Optional[str] = None, save_data: Optional[bool] = True, ) -> None: """ Accepts the combination of paramters: (high_level_constraints_string + high_level_vars) or (num_input_qubits + constraints_string). Exactly one combination is accepted. In other cases either an iteractive user interface will be called to take user's inputs, or an exception will be raised due to misuse of the API. Args: num_input_qubits (Optional[int] = None): number of input qubits. constraints_string (Optional[str] = None): a string of constraints in a low-level format. high_level_constraints_string (Optional[str] = None): a string of constraints in a high-level format. high_level_vars (Optional[Dict[str, int]] = None): a dictionary that configures the high-level variables - keys are names and values are bits-lengths. name (Optional[str] = None): a name for this object, if None than the generic name "SAT" is given automatically. save_data (Optional[bool] = True): if True, saves all data and metadata generated by this class to a unique data folder (by using the `save_XXX` methods of this class). Raises: SyntaxError - if a forbidden combination of arguments has been provided. """ if name is None: name = "SAT" self.name = name # Creating a directory for data to be saved if save_data: self.time_created = timestamp(datetime.now()) self.dir_path = f"{DATA_PATH}{self.time_created}_{self.name}/" os.mkdir(self.dir_path) print(f"Data will be saved into '{self.dir_path}'.") # Initial metadata, more to be added by this class' `save_XXX` methods self.metadata = { "name": self.name, "datetime": self.time_created, "num_input_qubits": num_input_qubits, "constraints_string": constraints_string, "high_level_constraints_string": high_level_constraints_string, "high_level_vars": high_level_vars, } self.update_metadata() # Identifying user's platform, for visualization purposes self.identify_platform() # In the case of low-level constraints format, that is the default value self.high_to_low_map = None # Case A - interactive interface if (num_input_qubits is None or constraints_string is None) and ( high_level_constraints_string is None or high_level_vars is None ): self.interactive_interface() # Case B - API else: self.high_level_constraints_string = high_level_constraints_string self.high_level_vars = high_level_vars # Case B.1 - high-level format constraints inputs if num_input_qubits is None or constraints_string is None: self.num_input_qubits = sum(self.high_level_vars.values()) self.high_to_low_map, self.constraints_string = ConstraintsTranslator( self.high_level_constraints_string, self.high_level_vars ).translate() # Case B.2 - low-level format constraints inputs elif num_input_qubits is not None and constraints_string is not None: self.num_input_qubits = num_input_qubits self.constraints_string = constraints_string # Misuse else: raise SyntaxError( "SATInterface accepts the combination of paramters:" "(high_level_constraints_string + high_level_vars) or " "(num_input_qubits + constraints_string). " "Exactly one combination is accepted, not both." ) self.parsed_constraints = ParsedConstraints( self.constraints_string, self.high_level_constraints_string ) def update_metadata(self, update_metadata: Optional[Dict[str, Any]] = None) -> None: """ Updates the metadata file (in the unique data folder of a given `SATInterface` instance). Args: update_metadata (Optional[Dict[str, Any]] = None): - If None - just dumps `self.metadata` into the metadata JSON file. - If defined - updates the `self.metadata` attribute and then dumps it. """ if update_metadata is not None: self.metadata.update(update_metadata) with open(f"{self.dir_path}metadata.json", "w") as metadata_file: json.dump(self.metadata, metadata_file, indent=4) def identify_platform(self) -> None: """ Identifies user's platform. Writes True to `self.jupyter` for Jupyter notebook, False for terminal. """ # If True then the platform is a terminal/command line/shell if stdout.isatty(): self.jupyter = False # If False, we assume the platform is a Jupyter notebook else: self.jupyter = True def output_to_platform( self, *, title: str, output_terminal: Union[TextDrawing, str], output_jupyter: Union[Figure, str], display_both_on_jupyter: Optional[bool] = False, ) -> None: """ Displays output to user's platform. Args: title (str): a title for the output. output_terminal (Union[TextDrawing, str]): text to print for a terminal platform. output_jupyter: (Union[Figure, str]): objects to display for a Jupyter notebook platform. can handle `Figure` matplotlib objects or strings of paths to IFrame displayable file, e.g PDF files. display_both_on_jupyter (Optional[bool] = False): if True, displays both `output_terminal` and `output_jupyter` in a Jupyter notebook platform. Raises: TypeError - in the case of misusing the `output_jupyter` argument. """ print() print(title) if self.jupyter: if isinstance(output_jupyter, str): display.display(display.IFrame(output_jupyter, width=IFRAME_WIDTH, height=IFRAME_HEIGHT)) elif isinstance(output_jupyter, Figure): display.display(output_jupyter) else: raise TypeError("output_jupyter must be an str (path to image file) or a Figure object.") if display_both_on_jupyter: print(output_terminal) else: print(output_terminal) def interactive_interface(self) -> None: """ An interactive CLI that allows exploiting most (but not all) of the package's features. Uses functions of the form `interactive_XXX_inputs` from the `interactive_inputs.py` module. Divided into 3 main stages: 1. Obtaining Grover's operator for the SAT problem. 2. Obtaining the overall SAT cirucit. 3. Executing the circuit and parsing the results. The interface is built in a modular manner such that a user can halt at any stage. The defualt settings for the interactive user intreface are: 1. `name = "SAT"`. 2. `save_data = True`. 3. `display = True`. 4. `transpile_kwargs = {'basis_gates': ['u', 'cx'], 'optimization_level': 3}`. 5. Backends are limited to those defined in the global-constant-like function `BACKENDS`: - Those are the local `aer_simulator` and the remote `ibmq_qasm_simulator` for now. Due to these default settings the interactive CLI is somewhat restrictive, for full flexibility a user should use the API and not the CLI. """ # Handling operator part operator_inputs = interactive_operator_inputs() self.num_input_qubits = operator_inputs["num_input_qubits"] self.high_to_low_map = operator_inputs["high_to_low_map"] self.constraints_string = operator_inputs["constraints_string"] self.high_level_constraints_string = operator_inputs["high_level_constraints_string"] self.high_level_vars = operator_inputs["high_level_vars"] self.parsed_constraints = ParsedConstraints( self.constraints_string, self.high_level_constraints_string ) self.update_metadata( { "num_input_qubits": self.num_input_qubits, "constraints_string": self.constraints_string, "high_level_constraints_string": self.high_level_constraints_string, "high_level_vars": self.high_level_vars, } ) obtain_grover_operator_output = self.obtain_grover_operator() self.save_display_grover_operator(obtain_grover_operator_output) # Handling overall circuit part solutions_num = interactive_solutions_num_input() if solutions_num is not None: backend = None if solutions_num == -1: backend = interactive_backend_input() overall_circuit_data = self.obtain_overall_sat_circuit( obtain_grover_operator_output["operator"], solutions_num, backend ) self.save_display_overall_circuit(overall_circuit_data) # Handling circuit execution part if interactive_run_input(): if backend is None: backend = interactive_backend_input() shots = interactive_shots_input() counts_parsed = self.run_overall_sat_circuit( overall_circuit_data["circuit"], backend, shots ) self.save_display_results(counts_parsed) print() print(f"Done saving data into '{self.dir_path}'.") def obtain_grover_operator( self, transpile_kwargs: Optional[Dict[str, Any]] = None ) -> Dict[str, Union[GroverConstraintsOperator, QuantumCircuit]]: """ Obtains the suitable `GroverConstraintsOperator` object for the constraints, decomposes it using the `circuit_decomposition.py` module and transpiles it according to `transpile_kwargs`. Args: transpile_kwargs (Optional[Dict[str, Any]]): kwargs for Qiskit's transpile function. The defualt is set to the global constant `TRANSPILE_KWARGS`. Returns: (Dict[str, Union[GroverConstraintsOperator, QuantumCircuit, Dict[str, List[int]]]]): - 'operator' (GroverConstraintsOperator):the high-level blocks operator. - 'decomposed_operator' (QuantumCircuit): decomposed to building-blocks operator. * For annotations regarding the decomposition method see the `circuit_decomposition` module. - 'transpiled_operator' (QuantumCircuit): the transpiled operator. *** The high-level operator and the decomposed operator are generated with barriers between constraints as default for visualizations purposes. The barriers are stripped off before transpiling so the the transpiled operator object contains no barriers. *** - 'high_level_to_bit_indexes_map' (Optional[Dict[str, List[int]]] = None): A map of high-level variables with their allocated bit-indexes in the input register. """ print() print( "The system synthesizes and transpiles a Grover's " "operator for the given constraints. Please wait.." ) if transpile_kwargs is None: transpile_kwargs = TRANSPILE_KWARGS self.transpile_kwargs = transpile_kwargs operator = GroverConstraintsOperator( self.parsed_constraints, self.num_input_qubits, insert_barriers=True ) decomposed_operator = decompose_operator(operator) no_baerriers_operator = RemoveBarriers()(operator) transpiled_operator = transpile(no_baerriers_operator, **transpile_kwargs) print("Done.") return { "operator": operator, "decomposed_operator": decomposed_operator, "transpiled_operator": transpiled_operator, "high_level_to_bit_indexes_map": self.high_to_low_map, } def save_display_grover_operator( self, obtain_grover_operator_output: Dict[str, Union[GroverConstraintsOperator, QuantumCircuit]], display: Optional[bool] = True, ) -> None: """ Handles saving and displaying data generated by the `self.obtain_grover_operator` method. Args: obtain_grover_operator_output(Dict[str, Union[GroverConstraintsOperator, QuantumCircuit]]): the dictionary returned upon calling the `self.obtain_grover_operator` method. display (Optional[bool] = True) - If true, displays objects to user's platform. """ # Creating a directory to save operator's data operator_dir_path = f"{self.dir_path}grover_operator/" os.mkdir(operator_dir_path) # Titles for displaying objects, by order of `obtain_grover_operator_output` titles = [ "The operator diagram - high level blocks:", "The operator diagram - decomposed:", f"The transpiled operator diagram saved into '{operator_dir_path}'.\n" f"It's not presented here due to its complexity.\n" f"Please note that barriers appear in the high-level diagrams above only for convenient\n" f"visual separation between constraints.\n" f"Before transpilation all barriers are removed to avoid redundant inefficiencies.", ] for index, (op_name, op_obj) in enumerate(obtain_grover_operator_output.items()): # Generic path and name for files to be saved files_path = f"{operator_dir_path}{op_name}" # Generating a circuit diagrams figure figure_path = f"{files_path}.pdf" op_obj.draw("mpl", filename=figure_path, fold=-1) # Generating a QPY serialization file for the circuit object qpy_file_path = f"{files_path}.qpy" with open(qpy_file_path, "wb") as qpy_file: qpy.dump(op_obj, qpy_file) # Original high-level operator and decomposed operator if index < 2 and display: # Displaying to user self.output_to_platform( title=titles[index], output_terminal=op_obj.draw("text"), output_jupyter=figure_path ) # Transpiled operator elif index == 2: # Output to user, not including the circuit diagram print() print(titles[index]) print() print(f"The transpilation kwargs are: {self.transpile_kwargs}.") transpiled_operator_depth = op_obj.depth() transpiled_operator_gates_count = op_obj.count_ops() print(f"Transpiled operator depth: {transpiled_operator_depth}.") print(f"Transpiled operator gates count: {transpiled_operator_gates_count}.") print(f"Total number of qubits: {op_obj.num_qubits}.") # Generating QASM 2.0 file only for the (flattened = no registers) tranpsiled operator qasm_file_path = f"{files_path}.qasm" flatten_circuit(op_obj).qasm(filename=qasm_file_path) # Index 3 is 'high_level_to_bit_indexes_map' so it's time to break from the loop break # Mapping from high-level variables to bit-indexes will be displayed as well mapping = obtain_grover_operator_output["high_level_to_bit_indexes_map"] if mapping: print() print(f"The high-level variables mapping to bit-indexes:\n{mapping}") print() print( f"Saved into '{operator_dir_path}':\n", " Circuit diagrams for all levels.\n", " QPY serialization exports for all levels.\n", " QASM 2.0 export only for the transpiled level.", ) with open(f"{operator_dir_path}operator.qpy", "rb") as qpy_file: operator_qpy_sha256 = sha256(qpy_file.read()).hexdigest() self.update_metadata( { "high_level_to_bit_indexes_map": self.high_to_low_map, "transpile_kwargs": self.transpile_kwargs, "transpiled_operator_depth": transpiled_operator_depth, "transpiled_operator_gates_count": transpiled_operator_gates_count, "operator_qpy_sha256": operator_qpy_sha256, } ) def obtain_overall_sat_circuit( self, grover_operator: GroverConstraintsOperator, solutions_num: int, backend: Optional[Backend] = None, ) -> Dict[str, SATCircuit]: """ Obtains the suitable `SATCircuit` object (= the overall SAT circuit) for the SAT problem. Args: grover_operator (GroverConstraintsOperator): Grover's operator for the SAT problem. solutions_num (int): number of solutions for the SAT problem. In the case the number of solutions is unknown, specific negative values are accepted: * '-1' - for launching a classical iterative stochastic process that finds an adequate number of iterations - by calling the `find_iterations_unknown` function (see its docstrings for more information). * '-2' - for generating a dynamic circuit that iterates over Grover's iterator until a solution is obtained, using weak measurements. TODO - this feature isn't ready yet. backend (Optional[Backend] = None): in the case of a '-1' value given to `solutions_num`, a backend object to execute the depicted iterative prcess upon should be provided. Returns: (Dict[str, SATCircuit]): - 'circuit' key for the overall SAT circuit. - 'concise_circuit' key for the overall SAT circuit, with only 1 iteration over Grover's iterator (operator + diffuser). Useful for visualization purposes. *** The concise circuit is generated with barriers between segments as default for visualizations purposes. In the actual circuit there no barriers. *** """ # -1 = Unknown number of solutions - iterative stochastic process print() if solutions_num == -1: assert backend is not None, "Need to specify a backend if `solutions_num == -1`." print("Please wait while the system checks various solutions..") circuit, iterations = find_iterations_unknown( self.num_input_qubits, grover_operator, self.parsed_constraints, precision=10, backend=backend, ) print() print(f"An adequate number of iterations found = {iterations}.") # -2 = Unknown number of solutions - implement a dynamic circuit # TODO this feature isn't fully implemented yet elif solutions_num == -2: print("The system builds a dynamic circuit..") circuit = SATCircuit(self.num_input_qubits, grover_operator, iterations=None) circuit.add_input_reg_measurement() iterations = None # Known number of solutions else: print("The system builds the overall circuit..") iterations = calc_iterations(self.num_input_qubits, solutions_num) print(f"\nFor {solutions_num} solutions, {iterations} iterations needed.") circuit = SATCircuit( self.num_input_qubits, grover_operator, iterations, insert_barriers=False ) circuit.add_input_reg_measurement() self.iterations = iterations # Obtaining a SATCircuit object with one iteration for concise representation concise_circuit = SATCircuit( self.num_input_qubits, grover_operator, iterations=1, insert_barriers=True ) concise_circuit.add_input_reg_measurement() return {"circuit": circuit, "concise_circuit": concise_circuit} def save_display_overall_circuit( self, obtain_overall_sat_circuit_output: Dict[str, SATCircuit], display: Optional[bool] = True ) -> None: """ Handles saving and displaying data generated by the `self.obtain_overall_sat_circuit` method. Args: obtain_overall_sat_circuit_output(Dict[str, SATCircuit]): the dictionary returned upon calling the `self.obtain_overall_sat_circuit` method. display (Optional[bool] = True) - If true, displays objects to user's platform. """ circuit = obtain_overall_sat_circuit_output["circuit"] concise_circuit = obtain_overall_sat_circuit_output["concise_circuit"] # Creating a directory to save overall circuit's data overall_circuit_dir_path = f"{self.dir_path}overall_circuit/" os.mkdir(overall_circuit_dir_path) # Generating a figure of the overall SAT circuit with just 1 iteration (i.e "concise") concise_circuit_fig_path = f"{overall_circuit_dir_path}overall_circuit_1_iteration.pdf" concise_circuit.draw("mpl", filename=concise_circuit_fig_path, fold=-1) # Displaying the concise circuit to user if display: if self.iterations: self.output_to_platform( title=( f"The high level circuit contains {self.iterations}" f" iterations of the following form:" ), output_terminal=concise_circuit.draw("text"), output_jupyter=concise_circuit_fig_path, ) # Dynamic circuit case - TODO NOT FULLY IMPLEMENTED YET else: dynamic_circuit_fig_path = f"{overall_circuit_dir_path}overall_circuit_dynamic.pdf" circuit.draw("mpl", filename=dynamic_circuit_fig_path, fold=-1) self.output_to_platform( title="The dynamic circuit diagram:", output_terminal=circuit.draw("text"), output_jupyter=dynamic_circuit_fig_path, ) if self.iterations: transpiled_overall_circuit = transpile(flatten_circuit(circuit), **self.transpile_kwargs) print() print(f"The transpilation kwargs are: {self.transpile_kwargs}.") transpiled_overall_circuit_depth = transpiled_overall_circuit.depth() transpiled_overall_circuit_gates_count = transpiled_overall_circuit.count_ops() print(f"Transpiled overall-circuit depth: {transpiled_overall_circuit_depth}.") print(f"Transpiled overall-circuit gates count: {transpiled_overall_circuit_gates_count}.") print(f"Total number of qubits: {transpiled_overall_circuit.num_qubits}.") print() print("Exporting the full overall SAT circuit object..") export_files_path = f"{overall_circuit_dir_path}overall_circuit" with open(f"{export_files_path}.qpy", "wb") as qpy_file: qpy.dump(circuit, qpy_file) if self.iterations: transpiled_overall_circuit.qasm(filename=f"{export_files_path}.qasm") print() print( f"Saved into '{overall_circuit_dir_path}':\n", " A concised (1 iteration) circuit diagram of the high-level overall SAT circuit.\n", " QPY serialization export for the full overall SAT circuit object.", ) if self.iterations: print(" QASM 2.0 export for the transpiled full overall SAT circuit object.") metadata_update = { "num_total_qubits": circuit.num_qubits, "num_iterations": circuit.iterations, } if self.iterations: metadata_update["transpiled_overall_circuit_depth"] = (transpiled_overall_circuit_depth,) metadata_update[ "transpiled_overall_circuit_gates_count" ] = transpiled_overall_circuit_gates_count self.update_metadata(metadata_update) @timer_dec("Circuit simulation execution time = ") def run_overall_sat_circuit( self, circuit: QuantumCircuit, backend: Backend, shots: int ) -> Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]: """ Executes a `circuit` on `backend` transpiled w.r.t backend, `shots` times. Args: circuit (QuantumCircuit): `QuantumCircuit` object or child-object (a.k.a `SATCircuit`) to execute. backend (Backend): backend to execute `circuit` upon. shots (int): number of execution shots. Returns: (Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]): dict object returned by `self.parse_counts` - see this method's docstrings for annotations. """ # Defines also instance attributes to use in other methods self.backend = backend self.shots = shots print() print(f"The system is running the circuit {shots} times on {backend}, please wait..") print("This process might take a while.") job = backend.run(transpile(circuit, backend), shots=shots) counts = job.result().get_counts() print("Done.") parsed_counts = self.parse_counts(counts) return parsed_counts def parse_counts( self, counts: Counts ) -> Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]: """ Parses a `Counts` object into several desired datas (see 'Returns' section). Args: counts (Counts): the `Counts` object to parse. Returns: (Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]): 'counts' (Counts) - the original `Counts` object. 'counts_sorted' (List[Tuple[Union[str, int]]]) - results sorted in a descending order. 'distilled_solutions' (List[str]): list of solutions (bitstrings). 'high_level_vars_values' (List[Dict[str, int]]): list of solutions (each solution is a dictionary with variable-names as keys and their integer values as values). """ # Sorting results in an a descending order counts_sorted = sorted(counts.items(), key=lambda x: x[1], reverse=True) # Generating a set of distilled verified-only solutions verifier = ClassicalVerifier(self.parsed_constraints) distilled_solutions = set() for count_item in counts_sorted: if not verifier.verify(count_item[0]): break distilled_solutions.add(count_item[0]) # In the case of high-level format in use, translating `distilled_solutions` into integer values high_level_vars_values = None if self.high_level_constraints_string and self.high_level_vars: # Container for dictionaries with variables integer values high_level_vars_values = [] for solution in distilled_solutions: # Keys are variable-names and values are their integer values solution_vars = {} for var, bits_bundle in self.high_to_low_map.items(): reversed_solution = solution[::-1] var_bitstring = "" for bit_index in bits_bundle: var_bitstring += reversed_solution[bit_index] # Translating to integer value solution_vars[var] = int(var_bitstring, 2) high_level_vars_values.append(solution_vars) return { "counts": counts, "counts_sorted": counts_sorted, "distilled_solutions": distilled_solutions, "high_level_vars_values": high_level_vars_values, } def save_display_results( self, run_overall_sat_circuit_output: Dict[ str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]] ], display: Optional[bool] = True, ) -> None: """ Handles saving and displaying data generated by the `self.run_overall_sat_circuit` method. Args: run_overall_sat_circuit_output (Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]): the dictionary returned upon calling the `self.run_overall_sat_circuit` method. display (Optional[bool] = True) - If true, displays objects to user's platform. """ counts = run_overall_sat_circuit_output["counts"] counts_sorted = run_overall_sat_circuit_output["counts_sorted"] distilled_solutions = run_overall_sat_circuit_output["distilled_solutions"] high_level_vars_values = run_overall_sat_circuit_output["high_level_vars_values"] # Creating a directory to save results data results_dir_path = f"{self.dir_path}results/" os.mkdir(results_dir_path) # Defining custom dimensions for the custom `plot_histogram` of this package histogram_fig_width = max((len(counts) * self.num_input_qubits * (10 / 72)), 7) histogram_fig_height = 5 histogram_figsize = (histogram_fig_width, histogram_fig_height) histogram_path = f"{results_dir_path}histogram.pdf" plot_histogram(counts, figsize=histogram_figsize, sort="value_desc", filename=histogram_path) if display: # Basic output text output_text = ( f"All counts:\n{counts_sorted}\n" f"\nDistilled solutions ({len(distilled_solutions)} total):\n" f"{distilled_solutions}" ) # Additional outputs for a high-level constraints format if high_level_vars_values: # Mapping from high-level variables to bit-indexes will be displayed as well output_text += ( f"\n\nThe high-level variables mapping to bit-indexes:" f"\n{self.high_to_low_map}" ) # Actual integer solutions will be displayed as well additional_text = "" for solution_index, solution in enumerate(high_level_vars_values): additional_text += f"Solution {solution_index + 1}: " for var_index, (var, value) in enumerate(solution.items()): additional_text += f"{var} = {value}" if var_index != len(solution) - 1: additional_text += ", " else: additional_text += "\n" output_text += f"\n\nHigh-level format solutions: \n{additional_text}" self.output_to_platform( title=f"The results for {self.shots} shots are:", output_terminal=output_text, output_jupyter=histogram_path, display_both_on_jupyter=True, ) results_dict = { "high_level_to_bit_indexes_map": self.high_to_low_map, "solutions": list(distilled_solutions), "high_level_solutions": high_level_vars_values, "counts": counts_sorted, } with open(f"{results_dir_path}results.json", "w") as results_file: json.dump(results_dict, results_file, indent=4) self.update_metadata( { "num_solutions": len(distilled_solutions), "backend": str(self.backend), "shots": self.shots, } )
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver() problem = driver.run() fermionic_op = problem.hamiltonian.second_q_op() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() qubit_jw_op = mapper.map(fermionic_op) print(qubit_jw_op) from qiskit_nature.second_q.mappers import ParityMapper mapper = ParityMapper() qubit_p_op = mapper.map(fermionic_op) print(qubit_p_op) mapper = ParityMapper(num_particles=problem.num_particles) qubit_op = mapper.map(fermionic_op) print(qubit_op) tapered_mapper = problem.get_tapered_mapper(mapper) print(type(tapered_mapper)) qubit_op = tapered_mapper.map(fermionic_op) print(qubit_op) from qiskit_nature.second_q.circuit.library import HartreeFock hf_state = HartreeFock(2, (1, 1), JordanWignerMapper()) hf_state.draw() from qiskit_nature.second_q.mappers import InterleavedQubitMapper interleaved_mapper = InterleavedQubitMapper(JordanWignerMapper()) hf_state = HartreeFock(2, (1, 1), interleaved_mapper) hf_state.draw() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, execute from qiskit.visualization import plot_error_map from qiskit.providers.fake_provider import FakeVigoV2 backend = FakeVigoV2() plot_error_map(backend)
https://github.com/Qubit-MU/Qiskit_Fall_Fest_2023
Qubit-MU
######################################## # ENTER YOUR NAME AND WISC EMAIL HERE: # ######################################## # Name: Rochelle Li # Email: rli484@wisc.edu ## Run this cell to make sure your grader is setup correctly %set_env QC_GRADE_ONLY=true %set_env QC_GRADING_ENDPOINT=https://qac-grading.quantum-computing.ibm.com from qiskit import QuantumCircuit qc = QuantumCircuit(3, 3) ## Write your code below this line ## qc.h(0) qc.h(2) qc.cx(0,1) ## Do not change the code below here ## answer1 = qc qc.draw() # Grader Cell: Run this to submit your answer from qc_grader.challenges.fall_fest23 import grade_ex2a grade_ex2a(answer1) from qiskit import QuantumCircuit qc = QuantumCircuit(3, 3) qc.barrier(0, 1, 2) ## Write your code below this line ## qc.cx(1,2) qc.x(2) qc.cx(2,0) qc.x(2) ## Do not change the code below this line ## answer2 = qc qc.draw() # Grader Cell: Run this to submit your answer from qc_grader.challenges.fall_fest23 import grade_ex2b grade_ex2b(answer2) answer3: bool ## Quiz: evaluate the results and decide if the following statement is True or False q0 = 1 q1 = 0 q2 = 1 ## Based on this, is it TRUE or FALSE that the Guard on the left is a liar? ## Assign your answer, either True or False, to answer3 below answer3 = True from qc_grader.challenges.fall_fest23 import grade_ex2c grade_ex2c(answer3) ## Quiz: Fill in the correct numbers to make the following statement true: ## The treasure is on the right, and the Guard on the left is the liar q0 = 0 q1 = 1 q2 = 1 ## HINT - Remember that Qiskit uses little-endian ordering answer4 = [q0, q1, q2] # Grader Cell: Run this to submit your answer from qc_grader.challenges.fall_fest23 import grade_ex2d grade_ex2d(answer4) from qiskit import QuantumCircuit qc = QuantumCircuit(3) ## in the code below, fill in the missing gates. Run the cell to see a drawing of the current circuit ## qc.h(0) qc.h(2) qc.cx(0,1) qc.barrier(0, 1, 2) qc.cx(2, 1) qc.x(2) qc.cx(2, 0) qc.x(2) qc.barrier(0, 1, 2) qc.swap(0,1) qc.x(0) qc.x(1) qc.cx(2,1) qc.x(2) qc.cx(2,0) qc.x(2) ## Do not change any of the code below this line ## answer5 = qc qc.draw(output="mpl") # Grader Cell: Run this to submit your answer from qc_grader.challenges.fall_fest23 import grade_ex2e grade_ex2e(answer5) from qiskit import QuantumCircuit, Aer, transpile from qiskit.visualization import plot_histogram ## This is the full version of the circuit. Run it to see the results ## quantCirc = QuantumCircuit(3) quantCirc.h(0), quantCirc.h(2), quantCirc.cx(0, 1), quantCirc.barrier(0, 1, 2), quantCirc.cx(2, 1), quantCirc.x(2), quantCirc.cx(2, 0), quantCirc.x(2) quantCirc.barrier(0, 1, 2), quantCirc.swap(0, 1), quantCirc.x(1), quantCirc.cx(2, 1), quantCirc.x(0), quantCirc.x(2), quantCirc.cx(2, 0), quantCirc.x(2) # Execute the circuit and draw the histogram measured_qc = quantCirc.measure_all(inplace=False) backend = Aer.get_backend('qasm_simulator') # the device to run on result = backend.run(transpile(measured_qc, backend), shots=1000).result() counts = result.get_counts(measured_qc) plot_histogram(counts) from qiskit.primitives import Sampler from qiskit.visualization import plot_distribution sampler = Sampler() result = sampler.run(measured_qc, shots=1000).result() probs = result.quasi_dists[0].binary_probabilities() plot_distribution(probs)
https://github.com/AllenGabrielMarchen/HHL_implementation
AllenGabrielMarchen
#setup.py import numpy as np from scipy.linalg import expm from qiskit.extensions import UnitaryGate from qiskit.circuit.add_control import add_control from qiskit import Aer import circuit import hhl import tools #참고 논문 :Low Complexity Quantum Matrix Inversion A기gorithm for non-Hermitian Matrices def main(A,b,backend,shots,t,n_l,delta): #Check if Hermitian if np.allclose(A,A.T) == False: print("Given A matrice is not Hermitian.") print("Given Matrices will be transformed into Hermitian formation.") A = np.vstack((np.hstack((np.zeros_like(A),A)),np.hstack((A.T, np.zeros_like(A))))) # Hermitian의 꼴로 바꿈 b = np.hstack((b,np.zeros_like((np.shape(A)[0]-np.shape(b)[0],1)))) #A의 shape와 동일한 zero array를 생성하고, A의 왼쪽에 배치, horizontal 방향도 마찬가지. i = complex(0,1) #complex(real part, imaginary part) U = expm(i*A*t) #여기서 A가 행렬로 주어졌기 때문에, 행렬을 exp에 올리기 위해서는 expm이라는 scipy 패키지가 필요함. U_gate = UnitaryGate(U) #위에서 구성한 U라는 행렬로써 Unitary gate를 구성할 수 있음. (4*4) 행렬 CU = add_control(U_gate,1,ctrl_state=None, label="CU") #CU라는 게이트 이름을 label에 저장 #control 되는 경우의 state를 지정 -> 해당사항 없음 #두번째 인자는 컨트롤 큐빗의 개수를 지정함. n_b = int(np.log2(U.shape[0])) #Ax =b의 꼴이고, b는 4*1의 shape이므로, A의 행의 개수와 동일함. 따라서, U의 행렬의 행의 개수와 동일함. #행의 개수에 log2를 취하면 필요한 n_b의 값을 구할 수 있음. My_HHL_result = hhl.My_HHL(CU,b,n_l,n_b,backend,delta,shots,A,details = True,chevyshev = False) print("\n") qiskit_result = hhl.qiskit_HHL(A,b,backend) print("\n") classical_result = hhl.classical_HHL(A,b) print("\n") #For normalized answer print("<Un - normalized Case Comparision>") print('Qiskit Error : {0}'.format(np.linalg.norm(qiskit_result[1]-classical_result[1]))) print('My HHL Error : {0}'.format(np.linalg.norm(My_HHL_result[1]-classical_result[1]))) print("\n") print("<Normalized Case Comparision>") print('Qiskit Error : {0}'.format(np.linalg.norm(qiskit_result[0]-classical_result[0]))) print('My HHL Error : {0}'.format(np.linalg.norm(My_HHL_result[0]-classical_result[0]))) if __name__ == "__main__": #setups A = np.array([[2,-1],[1,4]]) #non-Hermitian인 경우의 행렬에 대한 저장 b = np.array([1,1]) backend = Aer.get_backend('aer_simulator') shots = 8192 t = np.pi*2/16 n_l = 3 #QPE 상에서 n_ㅣ는 하다마드로 초기화 되는 부분 delta = 1/16*(2**(n_l-1)) main(A,b,backend,shots,t,n_l,delta)
https://github.com/ttlion/ShorAlgQiskit
ttlion
""" This file allows to test the Multiplication blocks Ua. This blocks, when put together as explain in the report, do the exponentiation. The user can change N, n, a and the input state, to create the circuit: up_reg |+> ---------------------|----------------------- |+> | | | -------|--------- ------------ | | ------------ down_reg |x> ------------ | Mult | ------------ |(x*a) mod N> ------------ | | ------------ ----------------- Where |x> has n qubits and is the input state, the user can change it to whatever he wants This file uses as simulator the local simulator 'statevector_simulator' because this simulator saves the quantum state at the end of the circuit, which is exactly the goal of the test file. This simulator supports sufficient qubits to the size of the QFTs that are going to be used in Shor's Algorithm because the IBM simulator only supports up to 32 qubits """ """ Imports from qiskit""" from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute, IBMQ, BasicAer """ Imports to Python functions """ import math import time """ Local Imports """ from qfunctions import create_QFT, create_inverse_QFT from qfunctions import cMULTmodN """ Function to properly get the final state, it prints it to user """ """ This is only possible in this way because the program uses the statevector_simulator """ def get_final(results, number_aux, number_up, number_down): i=0 """ Get total number of qubits to go through all possibilities """ total_number = number_aux + number_up + number_down max = pow(2,total_number) print('|aux>|top_register>|bottom_register>\n') while i<max: binary = bin(i)[2:].zfill(total_number) number = results.item(i) number = round(number.real, 3) + round(number.imag, 3) * 1j """ If the respective state is not zero, then print it and store the state of the register where the result we are looking for is. This works because that state is the same for every case where number !=0 """ if number!=0: print('|{0}>|{1}>|{2}>'.format(binary[0:number_aux],binary[number_aux:(number_aux+number_up)],binary[(number_aux+number_up):(total_number)]),number) if binary[number_aux:(number_aux+number_up)]=='1': store = binary[(number_aux+number_up):(total_number)] i=i+1 print(' ') return int(store, 2) """ Main program """ if __name__ == '__main__': """ Select number N to do modN""" N = int(input('Please insert integer number N: ')) print(' ') """ Get n value used in QFT, to know how many qubits are used """ n = math.ceil(math.log(N,2)) """ Select the value for 'a' """ a = int(input('Please insert integer number a: ')) print(' ') """ Please make sure the a and N are coprime""" if math.gcd(a,N)!=1: print('Please make sure the a and N are coprime. Exiting program.') exit() print('Total number of qubits used: {0}\n'.format(2*n+3)) print('Please check source file to change input quantum state. By default is |2>.\n') ts = time.time() """ Create quantum and classical registers """ aux = QuantumRegister(n+2) up_reg = QuantumRegister(1) down_reg = QuantumRegister(n) aux_classic = ClassicalRegister(n+2) up_classic = ClassicalRegister(1) down_classic = ClassicalRegister(n) """ Create Quantum Circuit """ circuit = QuantumCircuit(down_reg , up_reg , aux, down_classic, up_classic, aux_classic) """ Initialize with |+> to also check if the control is working""" circuit.h(up_reg[0]) """ Put the desired input state in the down quantum register. By default we put |2> """ circuit.x(down_reg[1]) """ Apply multiplication""" cMULTmodN(circuit, up_reg[0], down_reg, aux, int(a), N, n) """ show results of circuit creation """ create_time = round(time.time()-ts, 3) if n < 8: print(circuit) print(f"... circuit creation time = {create_time}") ts = time.time() """ Simulate the created Quantum Circuit """ simulation = execute(circuit, backend=BasicAer.get_backend('statevector_simulator'),shots=1) """ Get the results of the simulation in proper structure """ sim_result=simulation.result() """ Get the statevector of the final quantum state """ outputstate = sim_result.get_statevector(circuit, decimals=3) """ Show the final state after the multiplication """ after_exp = get_final(outputstate, n+2, 1, n) """ show execution time """ exec_time = round(time.time()-ts, 3) print(f"... circuit execute time = {exec_time}") """ Print final quantum state to user """ print('When control=1, value after exponentiation is in bottom quantum register: |{0}>'.format(after_exp))
https://github.com/MadhavJivrajani/pyQSR
MadhavJivrajani
# -*- coding: utf-8 -*- # pylint: disable=no-member """An IBM Qiskit implementation of quantum shift registers.""" __author__ = "Madhav Jivrajani" from qiskit import QuantumCircuit, execute, Aer from qiskit.circuit.exceptions import CircuitError class QuantumLeftShift: """Circuit to implement a quantum shift register. Two types of shift registers can be implemented: 1. Left shift register. 2. Circular left shift register. Reference: [1] Jae-weon Lee and Eok Kyun Lee and Jaewan Kim and Soonchil Lee, Quantum Shift Register, 2001. https://arxiv.org/abs/quant-ph/0112107 """ def __init__(self, data_qubits: int, seed: str, circular: bool = False) -> None: """Initializes a circuit for quantum shift register. - Encodes qubits according to the initial seed. To perform a shift operation on n data qubits, atleast n ancillary qubits are required to store information. Therefore, a circuit will have a total of 2*n qubits. An extra qubit apart from the 2*n qubits is required to store information about whether the circuit should behave as a left shift register or a circular left shift register. Args: data_qubits : The number of data qubits to be alloted. Needs to be equal to length of seed. seed : Initial value the quantum shift register should start with. circular : Flag to indicate if the shifts are circular in nature or not. Raises: CircuitError : If the number of data qubits is not equal to the length of the seed. """ self.seed_string = seed #to follow qiskit's little endian encoding. self.seed = list(map(int, list(seed)))[::-1] self.num_data_qubits = data_qubits if len(seed) != self.num_data_qubits: raise CircuitError("Length of seed should be equal to number of data qubits.") self.shift_circuit = QuantumCircuit(self.num_data_qubits + self.num_data_qubits + 1, self.num_data_qubits) self.shifts_done = 0 self.circular = circular self.__prepare_circuit() self.shift_gate = self.construct_shift_gate() def __repr__(self): return ("QuantumShiftLeft(data_qubits = %d, " "seed = \"%s\", " "circular = %s)") % (self.num_data_qubits, self.seed_string, str(self.circular)) def __str__(self): print(self.shift_circuit) return ("Data qubits: %d\n" "Initial seed: %s\n" "Shifts performed: %d\n" "Circular: %s") % (self.num_data_qubits, self.seed_string, self.shifts_done, str(self.circular)) def __prepare_circuit(self): """Encodes qubits according to initial seed and the flag: circular""" for i in range(len(self.seed)): if self.seed[i] == 1: self.shift_circuit.x(i) if self.circular: self.shift_circuit.x(self.num_data_qubits + self.num_data_qubits) self.shift_circuit.barrier(range(self.num_data_qubits + self.num_data_qubits + 1)) def construct_shift_gate(self): """Constructs a left/circular left shift circuit and returns the circuit as a Gate object. """ if self.circular: name = "Circular Left Shift" else: name = "Left Shift" shift_circ = QuantumCircuit(self.num_data_qubits + self.num_data_qubits + 1, name=name) for qubit in range(1, self.num_data_qubits + self.num_data_qubits)[::-1]: shift_circ.swap(qubit, qubit - 1) shift_circ.cx(0, self.num_data_qubits) shift_circ.toffoli(self.num_data_qubits + self.num_data_qubits, self.num_data_qubits, 0) shift_circ.cx(0, self.num_data_qubits) shift_gate = shift_circ.to_gate() return shift_gate def shift(self): """Performs a single shift operation on the values of the data qubits.""" self.shifts_done += 1 self.shift_circuit.append(self.shift_gate, range(self.num_data_qubits + self.num_data_qubits + 1)) def get_register_state(self): """Performs a measurement in the |0> basis on each of the data qubits and returns the counts of the measurement. """ self.shift_circuit.barrier(range(self.num_data_qubits + self.num_data_qubits + 1)) self.shift_circuit.measure(range(self.num_data_qubits), range(self.num_data_qubits)) self.shift_circuit.barrier(range(self.num_data_qubits + self.num_data_qubits + 1)) backend = Aer.get_backend('statevector_simulator') register_state = execute(self.shift_circuit, backend, shots=1024).result().get_counts() return register_state
https://github.com/BOBO1997/osp_solutions
BOBO1997
import sys, time sys.path.append("../") import Qconfig qx_config = { "APItoken": Qconfig.APItoken, "url": Qconfig.config['url']} print('Qconfig loaded from %s.' % Qconfig.__file__) # Imports import qiskit as qk from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import available_backends, execute, register, least_busy from qiskit.tools.visualization import plot_histogram from qiskit import IBMQ from qiskit import Aer from math import pi print(qk.__version__) qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr,cr) # circuit construction # preparing the wavefunction qc.h(qr[0]) qc.barrier() qc.cx(qr[0], qr[1]) qc.barrier() qc.u3(1.2309,0,0,qr[0]) qc.barrier() # if we apply phase shift gate qc.u1((2.0/3)*pi,qr[0]) qc.u1((2.0/3)*pi,qr[1]) qc.barrier() # rotating the axis for measurement #qc.cx(qr[0],qr[1]) # THE IMPLEMENTATION PROVIDED BY THE AUTHORS SKIPS THIS CNOT APPLICATION!!! it shouldn't be # it shouldn't be there. Improves accuracy #qc.barrier() qc.u3(2.1862,6.5449,pi,qr[0]) qc.u3(0.9553,2*pi,pi,qr[1]) qc.barrier() qc.measure(qr,cr) # Running locally IBM backends respond too slowly print(Aer.backends()) backend = Aer.get_backend('qasm_simulator') job = execute(qc,backend) job.status result = job.result() counts = result.get_counts(qc) print(counts) plot_histogram(counts) performance = { 'success':(counts['01']+counts['10'])/1024, 'failure':1 - (counts['01']+counts['10'])/1024 } plot_histogram(performance) IBMQ.load_accounts() # checking the backends large_enough_devices = IBMQ.backends(filters=lambda x: x.configuration()['n_qubits'] > 1 and not x.configuration()['simulator']) print(large_enough_devices) backend = IBMQ.get_backend('ibmqx4') job = execute(qc,backend,max_credits=3) job.status result = job.result() counts = result.get_counts(qc) print(counts) plot_histogram(counts) performance = { 'success':(counts['01']+counts['10'])/1024, 'failure':(counts['00']+counts['11'])/1024 } plot_histogram(performance) sqr = QuantumRegister(1) scr = ClassicalRegister(1) sqc = QuantumCircuit(sqr,scr) # constructing the circuit sqc.u3(1.1503,6.4850,2.2555,sqr[0]) sqc.barrier() # unidentified gate -- now assumed to be R2pi3. if identity then use qc.u1(0,q[0]) sqc.u1((2.0/3)*pi,sqr[0]) sqc.barrier() sqc.u3(1.231,0,0,sqr[0]) # X sqc.barrier() sqc.u1((2.0/3)*pi,sqr[0]) # U (unidentified gate) sqc.barrier() # measurement sqc.u3(0.7854,6.0214,6.1913,sqr[0]) sqc.barrier() sqc.measure(sqr,scr) # Running on local simulator backend = Aer.get_backend('qasm_simulator') job = execute(sqc,backend) result = job.result() counts = result.get_counts(sqc) print(counts) plot_histogram(counts) # Running on IBM backend = IBMQ.get_backend('ibmqx4') job = execute(sqc,backend,max_credits=3) result = job.result() counts = result.get_counts(sqc) print(counts) plot_histogram(counts)
https://github.com/quantumjim/qreative
quantumjim
from qiskit import IBMQ IBMQ.save_account('MY_API_TOKEN') from qiskit import IBMQ IBMQ.load_accounts() from qiskit import IBMQ IBMQ.enable_account('MY_API_TOKEN') IBMQ.backends() import CreativeQiskit result = CreativeQiskit.bell_correlation('ZZ',device='ibmq_16_melbourne') print(' Probability of agreement =',result['P'])
https://github.com/urwin419/QiskitChecker
urwin419
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) ### added y gate ### qc.cx(0, 1) qc.cx(1, 0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1, 0) qc.h(1) ### added h gate ### qc.h(0) return qc
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.quantum_info import DensityMatrix from qiskit.visualization import plot_state_city qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) # plot using a DensityMatrix state = DensityMatrix(qc) plot_state_city(state)
https://github.com/agneya-1402/Quantum-HalfAdder
agneya-1402
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit import * # Loading your IBM Quantum account(s) #provider = IBMQ.load_account() qc_ha = QuantumCircuit(4,2) qc_ha.x(0) qc_ha.x(1) qc_ha.barrier() qc_ha.cx(0,2) qc_ha.cx(1,2) qc_ha.ccx(0,1,3) qc_ha.barrier() qc_ha.measure(2,0) qc_ha.measure(3,1) qc_ha.draw() sim = Aer.get_backend('qasm_simulator') qobj = assemble(qc_ha) counts = sim.run(qobj).result().get_counts() plot_histogram(counts)
https://github.com/Herbrant/shor-algorithm-qiskit
Herbrant
"""The following is python code utilizing the qiskit library that can be run on extant quantum hardware using 5 qubits for factoring the integer 15 into 3 and 5. Using period finding, for a^r mod N = 1, where a = 11 and N = 15 (the integer to be factored) the problem is to find r values for this identity such that one can find the prime factors of N. For 11^r mod(15) =1, results (as shown in fig 1.) correspond with period r = 4 (|00100>) and r = 0 (|00000>). To find the factor, use the equivalence a^r mod 15. From this: (a^r -1) mod 15 = (a^(r/2) + 1)(a^(r/2) - 1) mod 15.In this case, a = 11. Plugging in the two r values for this a value yields (11^(0/2) +1)(11^(4/2) - 1) mod 15 = 2*(11 +1)(11-1) mod 15 Thus, we find (24)(20) mod 15. By finding the greatest common factor between the two coefficients, gcd(24,15) and gcd(20,15), yields 3 and 5 respectively. These are the prime factors of 15, so the result of running shors algorithm to find the prime factors of an integer using quantum hardware are demonstrated. Note, this is not the same as the technical implementation of shor's algorithm described in this section for breaking the discrete log hardness assumption, though the proof of concept remains.""" # Import libraries from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from numpy import pi from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.visualization import plot_histogram # Initialize qubit registers qreg_q = QuantumRegister(5, 'q') creg_c = ClassicalRegister(5, 'c') circuit = QuantumCircuit(qreg_q, creg_c) circuit.reset(qreg_q[0]) circuit.reset(qreg_q[1]) circuit.reset(qreg_q[2]) circuit.reset(qreg_q[3]) circuit.reset(qreg_q[4]) # Apply Hadamard transformations to qubit registers circuit.h(qreg_q[0]) circuit.h(qreg_q[1]) circuit.h(qreg_q[2]) # Apply first QFT, modular exponentiation, and another QFT circuit.h(qreg_q[1]) circuit.cx(qreg_q[2], qreg_q[3]) circuit.crx(pi/2, qreg_q[0], qreg_q[1]) circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4]) circuit.h(qreg_q[0]) circuit.rx(pi/2, qreg_q[2]) circuit.crx(pi/2, qreg_q[1], qreg_q[2]) circuit.crx(pi/2, qreg_q[1], qreg_q[2]) circuit.cx(qreg_q[0], qreg_q[1]) # Measure the qubit registers 0-2 circuit.measure(qreg_q[2], creg_c[2]) circuit.measure(qreg_q[1], creg_c[1]) circuit.measure(qreg_q[0], creg_c[0]) # Get least busy quantum hardware backend to run on provider = IBMQ.load_account() device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("Running on current least busy device: ", device) # Run the circuit on available quantum hardware and plot histogram from qiskit.tools.monitor import job_monitor job = execute(circuit, backend=device, shots=1024, optimization_level=3) job_monitor(job, interval = 2) results = job.result() answer = results.get_counts(circuit) plot_histogram(answer) #largest amplitude results correspond with r values used to find the prime factor of N.
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile from qiskit.visualization import plot_circuit_layout from qiskit.providers.fake_provider import FakeVigo backend = FakeVigo() ghz = QuantumCircuit(3, 3) ghz.h(0) ghz.cx(0,range(1,3)) ghz.barrier() ghz.measure(range(3), range(3)) new_circ_lv0 = transpile(ghz, backend=backend, optimization_level=0) plot_circuit_layout(new_circ_lv0, backend)
https://github.com/lancecarter03/QiskitLearning
lancecarter03
from qiskit import * from qiskit.tools.visualization import plot_histogram qr = QuantumRegister(2) cr = ClassicalRegister(2) circuit = QuantumCircuit(qr,cr) circuit.decompose().draw(output="mpl", initial_state=True) circuit.h(qr[0]) circuit.draw(output="mpl") circuit.cx(qr[0],qr[1]) circuit.draw(output="mpl") circuit.measure(qr,cr) circuit.draw(output="mpl") simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, backend = simulator).result() plot_histogram(result.get_counts(circuit))
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit import math qc = QuantumCircuit(3) qc.rx(math.pi/2, 0) qc.ry(math.pi/2, 1) qc.rz(math.pi/2, 2) qc.draw("mpl")
https://github.com/sebasmos/QuantumVE
sebasmos
import sys sys.path.insert(0,'../') from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR from torch.utils.data import random_split from torch.utils.data import Subset, DataLoader, random_split from torchvision import datasets, transforms import torch.optim as optim from torch.optim.lr_scheduler import StepLR import matplotlib.pyplot as plt import os import numpy as np from sklearn.metrics import confusion_matrix, classification_report import pandas as pd # from MAE code from util.datasets import build_dataset import argparse import util.misc as misc import argparse import datetime import json import numpy as np import os import time from pathlib import Path import torch import torch.backends.cudnn as cudnn from torch.utils.tensorboard import SummaryWriter import timm assert timm.__version__ == "0.3.2" # version check from timm.models.layers import trunc_normal_ from timm.data.mixup import Mixup from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy import util.lr_decay as lrd import util.misc as misc from util.datasets import build_dataset from util.pos_embed import interpolate_pos_embed from util.misc import NativeScalerWithGradNormCount as NativeScaler import models_vit import sys import os import torch import numpy as np import matplotlib.pyplot as plt from PIL import Image import models_mae import torch; print(f'numpy version: {np.__version__}\nCUDA version: {torch.version.cuda} - Torch versteion: {torch.__version__} - device count: {torch.cuda.device_count()}') from engine_finetune import train_one_epoch, evaluate from timm.data import Mixup from timm.utils import accuracy from sklearn.metrics import confusion_matrix, classification_report import seaborn as sns from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt from itertools import cycle import numpy as np from sklearn.metrics import precision_score, recall_score, f1_score import torch.optim as optim imagenet_mean = np.array([0.485, 0.456, 0.406]) imagenet_std = np.array([0.229, 0.224, 0.225]) def show_image(image, title=''): # image is [H, W, 3] assert image.shape[2] == 3 plt.imshow(torch.clip((image * imagenet_std + imagenet_mean) * 255, 0, 255).int()) plt.title(title, fontsize=16) plt.axis('off') return def prepare_model(chkpt_dir, arch='mae_vit_large_patch16'): # build model model = getattr(models_mae, arch)() # load model checkpoint = torch.load(chkpt_dir, map_location='cpu') msg = model.load_state_dict(checkpoint['model'], strict=False) print(msg) return model def run_one_image(img, model): x = torch.tensor(img) # make it a batch-like x = x.unsqueeze(dim=0) x = torch.einsum('nhwc->nchw', x) # run MAE loss, y, mask = model(x.float(), mask_ratio=0.75) y = model.unpatchify(y) y = torch.einsum('nchw->nhwc', y).detach().cpu() # visualize the mask mask = mask.detach() mask = mask.unsqueeze(-1).repeat(1, 1, model.patch_embed.patch_size[0]**2 *3) # (N, H*W, p*p*3) mask = model.unpatchify(mask) # 1 is removing, 0 is keeping mask = torch.einsum('nchw->nhwc', mask).detach().cpu() x = torch.einsum('nchw->nhwc', x) # masked image im_masked = x * (1 - mask) # MAE reconstruction pasted with visible patches im_paste = x * (1 - mask) + y * mask # make the plt figure larger plt.rcParams['figure.figsize'] = [24, 24] plt.subplot(1, 4, 1) show_image(x[0], "original") plt.subplot(1, 4, 2) show_image(im_masked[0], "masked") plt.subplot(1, 4, 3) show_image(y[0], "reconstruction") plt.subplot(1, 4, 4) show_image(im_paste[0], "reconstruction + visible") plt.show() # Set the seed for PyTorch torch.manual_seed(42) # !pip install qiskit_machine_learning # !pip install qiskit torch torchvision matplotlib # !pip install qiskit-machine-learning # !pip install torchviz # !pip install qiskit[all] # !pip install qiskit == 0.45.2 # !pip install qiskit_algorithms == 0.7.1 # !pip install qiskit-ibm-runtime == 0.17.0 # !pip install qiskit-aer == 0.13.2 # #Quentum net draw # !pip install pylatexenc from qiskit_machine_learning.connectors import TorchConnector from qiskit_machine_learning.neural_networks.estimator_qnn import EstimatorQNN from qiskit_machine_learning.circuit.library import QNNCircuit parser = argparse.ArgumentParser('MAE fine-tuning for image classification', add_help=False) parser.add_argument('--batch_size', default=256, type=int, help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus') parser.add_argument('--epochs', default=10, type=int) parser.add_argument('--accum_iter', default=4, type=int, help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)') # Model parameters parser.add_argument('--model', default='mobilenet_v3', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--input_size', default=224, type=int, help='images input size') parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') # Optimizer parameters parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)') parser.add_argument('--blr', type=float, default=5e-4, metavar='LR', help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') parser.add_argument('--layer_decay', type=float, default=0.65, help='layer-wise lr decay from ELECTRA/BEiT') parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0') parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', help='epochs to warmup LR') # Augmentation parameters parser.add_argument('--color_jitter', type=float, default=None, metavar='PCT', help='Color jitter factor (enabled only when not using Auto/RandAug)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'), parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') # * Random Erase params parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') # * Mixup params parser.add_argument('--mixup', type=float, default=0.8, help='mixup alpha, mixup enabled if > 0.') parser.add_argument('--cutmix', type=float, default=1.0, help='cutmix alpha, cutmix enabled if > 0.') parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup_prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup_switch_prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup_mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') # * Finetuning params parser.add_argument('--finetune', default='mae_pretrain_vit_base.pth', help='finetune from checkpoint') parser.add_argument('--global_pool', action='store_true') parser.set_defaults(global_pool=True) parser.add_argument('--cls_token', action='store_false', dest='global_pool', help='Use class token instead of global pool for classification') # Dataset parameters parser.add_argument('--data_path', default='/media/enc/vera1/sebastian/data/ABGQI_mel_spectrograms', type=str, help='dataset path') parser.add_argument('--nb_classes', default=5, type=int, help='number of the classification types') parser.add_argument('--output_dir', default='quinn_5_classes', help='path where to save, empty for no saving') parser.add_argument('--log_dir', default='./output_dir', help='path where to tensorboard log') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default="/media/enc/vera1/sebastian_hdd/codes/classifiers/mae/MobileNet/quinn_5_classes/checkpoint-49.pth", help='resume from checkpoint') parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval',default=True, action='store_true', help='Perform evaluation only') parser.add_argument('--dist_eval', action='store_true', default=False, help='Enabling distributed evaluation (recommended during training for faster monitor') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') args, unknown = parser.parse_known_args() misc.init_distributed_mode(args) print("{}".format(args).replace(', ', ',\n')) os.makedirs(args.output_dir, exist_ok=True) device = torch.device(args.device) # from torchvision.models import mobilenet_v3_large # model_ft = mobilenet_v3_large(pretrained=True, progress=True) # model_ft.classifier[-1] = nn.Linear(1280, args.nb_classes) # base_model = torch.hub.load('pytorch/vision:v0.10.0', 'mobilenet_v2', pretrained=True) # Remove FC and Global pooling layers to allow for ABGQI fine-tuning # base_model_output = nn.Sequential(*list(base_model.children())[:-3]) # Remove the last 3 layers # print(base_model_output) from torch.nn import Module, Linear from qiskit_machine_learning.connectors.torch_connector import TorchConnector from torch import Tensor from torch.nn import Linear, CrossEntropyLoss, MSELoss from torch.optim import LBFGS # from qiskit_machine_learning.neural_networks import CircuitQNN from qiskit_machine_learning.circuit.library import QNNCircuit from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit import QuantumCircuit from qiskit.circuit import Parameter from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit_algorithms.utils import algorithm_globals from qiskit_machine_learning.neural_networks import SamplerQNN, EstimatorQNN from qiskit_machine_learning.connectors import TorchConnector from qiskit_machine_learning.circuit.library import QNNCircuit def create_qnn(): feature_map = ZZFeatureMap(5) ansatz = RealAmplitudes(5, reps=1) qc = QNNCircuit(5) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) # Create a Quantum Neural Network (QNN) with 5 output neurons qnn = QNNCircuit(circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, output_shape=(5,), output_params=[Parameter(f"theta_{i}") for i in range(5)], measurement_error_mitigation=True) return qnn qnn = create_qnn() class qNet(Module): def __init__(self, qnn): super(qNet, self).__init__() # Load the pre-trained MobileNetV3 model self.mobilenet = models.mobilenet_v3_large(pretrained=True, progress=True) # Freeze all layers except the classifier for param in self.mobilenet.parameters(): param.requires_grad = False num_classes = args.nb_classes in_features = self.mobilenet.classifier[-1].in_features self.mobilenet.classifier[-1] = nn.Linear(in_features, num_classes) num_layers_unfreeze = 50 # Unfreeze the last layer for fine-tuning for param in self.mobilenet.classifier[-num_layers_unfreeze:].parameters(): param.requires_grad = True # Ensure that qnn is a PyTorch neural network object self.qnn = TorchConnector(qnn) self.fc1 = nn.Linear(num_classes, num_classes) def forward(self, x): # Pass the input through the MobileNetV3 model x = self.mobilenet(x) # Apply the quantum network in the forward section x = self.qnn(x) x = x.view(x.size(0), -1) # Flatten the output return self.fc1(x) # # # Create random input data batch_size = 1 channels = 3 height = 224 width = 224 random_input = torch.randn(batch_size, channels, height, width) model = qNet(qnn) output = model(random_input) print("Output shape:", output.shape) model model model(random_input) misc.init_distributed_mode(args) # print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) print("{}".format(args).replace(', ', ',\n')) device = torch.device(args.device) seed = args.seed + misc.get_rank() torch.manual_seed(seed) np.random.seed(seed) cudnn.benchmark = True dataset_train = build_dataset(is_train=True, args=args) dataset_val = build_dataset(is_train=False, args=args) if True: # args.distributed: num_tasks = misc.get_world_size() global_rank = misc.get_rank() sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) print("Sampler_train = %s" % str(sampler_train)) if args.dist_eval: if len(dataset_val) % num_tasks != 0: print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True) # shuffle=True to reduce monitor bias else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) if global_rank == 0 and args.log_dir is not None and not args.eval: os.makedirs(args.log_dir, exist_ok=True) log_writer = SummaryWriter(log_dir=args.log_dir) else: log_writer = None data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False ) mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: print("Mixup is activated!") mixup_fn = Mixup( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.nb_classes) # model = models_vit.__dict__[args.model]( # num_classes=args.nb_classes, # drop_path_rate=args.drop_path, # global_pool=args.global_pool, # ) model = stage_1_model if args.finetune and not args.eval: print("args.finetune and not args.eval") checkpoint = torch.load(args.finetune, map_location='cpu') print("Load pre-trained checkpoint from: %s" % args.finetune) checkpoint_model = checkpoint['model'] state_dict = model.state_dict() for k in ['head.weight', 'head.bias']: if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] # interpolate position embedding interpolate_pos_embed(model, checkpoint_model) # load pre-trained model msg = model.load_state_dict(checkpoint_model, strict=False) print(msg) if args.global_pool: assert set(msg.missing_keys) == {'head.weight', 'head.bias', 'fc_norm.weight', 'fc_norm.bias'} else: assert set(msg.missing_keys) == {'head.weight', 'head.bias'} # manually initialize fc layer trunc_normal_(model.head.weight, std=2e-5) model.to(device) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print('number of params (M): %.2f' % (n_parameters / 1.e6)) eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() if args.lr is None: # only base_lr is specified args.lr = args.blr * eff_batch_size / 256 print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) print("actual lr: %.2e" % args.lr) print("accumulate grad iterations: %d" % args.accum_iter) print("effective batch size: %d" % eff_batch_size) if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module optimizer = optim.Adam(model.parameters(), lr=args.lr)#SEB # optimizer = torch.optim.AdamW(param_groups, lr=args.lr) loss_scaler = NativeScaler() if mixup_fn is not None: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif args.smoothing > 0.: criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing) else: criterion = torch.nn.CrossEntropyLoss() print("criterion = %s" % str(criterion)) misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) if args.eval: test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") # exit(0) train = True if train: print(f"Start training for {args.epochs} epochs with batch size of {args.batch_size}") start_time = time.time() max_accuracy = 0.0 for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, mixup_fn, log_writer=log_writer, args=args ) if args.output_dir: misc.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch) test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") max_accuracy = max(max_accuracy, test_stats["acc1"]) print(f'Max accuracy: {max_accuracy:.2f}%') if log_writer is not None: log_writer.add_scalar('perf/test_acc1', test_stats['acc1'], epoch) log_writer.add_scalar('perf/test_acc5', test_stats['acc5'], epoch) log_writer.add_scalar('perf/test_loss', test_stats['loss'], epoch) log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} if args.output_dir and misc.is_main_process(): if log_writer is not None: log_writer.flush() with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) EXPERIMENT_NAME = "mobileNet" saving_model = f"{EXPERIMENT_NAME}/models" os.makedirs(saving_model, exist_ok = True) os.makedirs(EXPERIMENT_NAME, exist_ok=True) if args.eval: test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") @torch.no_grad() def evaluate_test(data_loader, model, device): criterion = torch.nn.CrossEntropyLoss() metric_logger = misc.MetricLogger(delimiter=" ") header = 'Test:' # switch to evaluation mode model.eval() all_predictions = [] all_labels = [] for batch in metric_logger.log_every(data_loader, 10, header): images = batch[0] target = batch[-1] images = images.to(device, non_blocking=True) target = target.to(device, non_blocking=True) # compute output with torch.cuda.amp.autocast(): output = model(images) loss = criterion(output, target)# pred = output.argmax(dim=1) all_predictions.append(pred.cpu().numpy())# ADDED all_labels.append(target.cpu().numpy())# ADDED acc1, acc5 = accuracy(output, target, topk=(1, 5)) batch_size = images.shape[0] metric_logger.update(loss=loss.item()) metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) all_predictions = np.array(all_predictions)#.squeeze(0) all_labels = np.array(all_labels)#.squeeze(0) # gather the stats from all processes metric_logger.synchronize_between_processes() print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}' .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss)) # return return {k: meter.global_avg for k, meter in metric_logger.meters.items()}, np.concatenate(all_predictions, axis=0), np.concatenate(all_labels, axis=0) metrics, all_predictions, all_labels = evaluate_test(data_loader_val, model, device) # print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") metrics all_predictions unique_classes = np.unique(np.concatenate((all_labels, all_predictions))) unique_classes confusion_mat = confusion_matrix(all_labels, all_predictions, labels=unique_classes) conf_matrix = pd.DataFrame(confusion_mat, index=unique_classes, columns=unique_classes) conf_matrix unique_classes = np.unique(np.concatenate((all_labels, all_predictions))) confusion_mat = confusion_matrix(all_labels, all_predictions, labels=unique_classes) conf_matrix = pd.DataFrame(confusion_mat, index=unique_classes, columns=unique_classes) # Plot the confusion matrix using seaborn plt.figure(figsize=(5, 4)) ax = sns.heatmap(conf_matrix, annot=True, fmt='.1f', cmap=sns.cubehelix_palette(as_cmap=True), linewidths=0.1, cbar=True) # Set labels and ticks ax.set_xlabel('Predicted Labels') ax.set_ylabel('True Labels') # Set x and y ticks using the unique classes ax.set_xticks(range(len(unique_classes))) ax.set_yticks(range(len(unique_classes))) # Set x and y ticks at the center of the cells ax.set_xticks([i + 0.5 for i in range(len(unique_classes))]) ax.set_yticks([i + 0.5 for i in range(len(unique_classes))]) plt.show() def plot_multiclass_roc_curve(all_labels, all_predictions, EXPERIMENT_NAME="."): # Step 1: Label Binarization label_binarizer = LabelBinarizer() y_onehot = label_binarizer.fit_transform(all_labels) all_predictions_hot = label_binarizer.transform(all_predictions) # Step 2: Calculate ROC curves fpr = dict() tpr = dict() roc_auc = dict() unique_classes = range(y_onehot.shape[1]) for i in unique_classes: fpr[i], tpr[i], _ = roc_curve(y_onehot[:, i], all_predictions_hot[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Step 3: Plot ROC curves fig, ax = plt.subplots(figsize=(8, 8)) # Micro-average ROC curve fpr_micro, tpr_micro, _ = roc_curve(y_onehot.ravel(), all_predictions_hot.ravel()) roc_auc_micro = auc(fpr_micro, tpr_micro) plt.plot( fpr_micro, tpr_micro, label=f"micro-average ROC curve (AUC = {roc_auc_micro:.2f})", color="deeppink", linestyle=":", linewidth=4, ) # Macro-average ROC curve all_fpr = np.unique(np.concatenate([fpr[i] for i in unique_classes])) mean_tpr = np.zeros_like(all_fpr) for i in unique_classes: mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) mean_tpr /= len(unique_classes) fpr_macro = all_fpr tpr_macro = mean_tpr roc_auc_macro = auc(fpr_macro, tpr_macro) plt.plot( fpr_macro, tpr_macro, label=f"macro-average ROC curve (AUC = {roc_auc_macro:.2f})", color="navy", linestyle=":", linewidth=4, ) # Individual class ROC curves with unique colors colors = plt.cm.rainbow(np.linspace(0, 1, len(unique_classes))) for class_id, color in zip(unique_classes, colors): plt.plot( fpr[class_id], tpr[class_id], color=color, label=f"ROC curve for Class {class_id} (AUC = {roc_auc[class_id]:.2f})", linewidth=2, ) plt.plot([0, 1], [0, 1], color='gray', linestyle='--', linewidth=2) # Add diagonal line for reference plt.axis("equal") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Extension of Receiver Operating Characteristic\n to One-vs-Rest multiclass") plt.legend() plt.savefig(f'{EXPERIMENT_NAME}/roc_curve.png') plt.show() # Example usage: plot_multiclass_roc_curve(all_labels, all_predictions, EXPERIMENT_NAME) # def visualize_predictions(model, val_loader, device, type_label=None, dataset_type=1, unique_classes=np.array([0, 1, 2, 3, 4, 5, 6])): # criterion = torch.nn.CrossEntropyLoss() # metric_logger = misc.MetricLogger(delimiter=" ") # header = 'Test:' # # switch to evaluation mode # model.eval() # all_predictions = [] # all_labels = [] # for batch in metric_logger.log_every(val_loader, 10, header): # images = batch[0] # target = batch[-1] # images = images.to(device, non_blocking=True) # target = target.to(device, non_blocking=True) # # compute output # with torch.cuda.amp.autocast(): # output = model(images) # loss = criterion(output, target)# # pred = output.argmax(dim=1) # all_predictions.append(pred.cpu().numpy())# ADDED # all_labels.append(target.cpu().numpy())# ADDED # acc1, acc5 = accuracy(output, target, topk=(1, 5)) # batch_size = images.shape[0] # metric_logger.update(loss=loss.item()) # metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) # metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) # all_predictions = np.array(all_predictions)#.squeeze(0) # all_labels = np.array(all_labels)#.squeeze(0) # if type_label is None: # type_label = unique_classes # # Create a 4x4 grid for visualization # num_rows = 4 # num_cols = 4 # plt.figure(figsize=(12, 12)) # for i in range(num_rows * num_cols): # plt.subplot(num_rows, num_cols, i + 1) # idx = np.random.randint(len(all_labels)) # import pdb;pdb.set_trace() # plt.imshow(images[idx].cpu().numpy().squeeze(), cmap='gray') # # Use the class names instead of numeric labels for Fashion MNIST # if dataset_type == 1: # class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] # predicted_class = class_names[all_predictions[idx]] # actual_class = class_names[all_labels[idx]] # else: # predicted_class = all_predictions[idx] # actual_class = all_labels[idx] # plt.title(f'Pred: {predicted_class}\nActual: {actual_class}') # plt.axis('off') # plt.tight_layout() # plt.show() # visualize_predictions(model, data_loader_val, device, dataset_type=2, unique_classes=unique_classes) unique_classes report = classification_report(all_labels, all_predictions, target_names=unique_classes,output_dict=True)# Mostrar el informe de df = pd.DataFrame(report).transpose() df.to_csv(os.path.join(EXPERIMENT_NAME, "confusion_matrix.csv")) print(df) df # Calculate precision, recall, and specificity (micro-averaged) precision = precision_score(all_labels, all_predictions, average='micro') recall = recall_score(all_labels, all_predictions, average='micro') # Calculate true negatives, false positives, and specificity (micro-averaged) tn = np.sum((all_labels != 1) & (all_predictions != 1)) fp = np.sum((all_labels != 1) & (all_predictions == 1)) specificity = tn / (tn + fp) # Calculate F1 score (weighted average) f1 = f1_score(all_labels, all_predictions, average='weighted') evaluation_metrics = { "Acc1": metrics['acc1'], # Add acc1 metric "Acc5": metrics['acc5'], # Add acc5 metric "loss": metrics['loss'], # Add acc5 metric "F1 Score": [f1], "Precision": [precision], "Recall": [recall], "Specificity": [specificity] } evaluation_metrics # Create a DataFrame from the dictionary df = pd.DataFrame(evaluation_metrics) # Save the DataFrame to a CSV file df.to_csv(f'{EXPERIMENT_NAME}/evaluation_metrics_for_table.csv', index=False) df
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test Qiskit's QuantumCircuit class for multiple registers.""" from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.converters.circuit_to_dag import circuit_to_dag from qiskit.test import QiskitTestCase from qiskit.circuit.exceptions import CircuitError class TestCircuitMultiRegs(QiskitTestCase): """QuantumCircuit Qasm tests.""" def test_circuit_multi(self): """Test circuit multi regs declared at start.""" qreg0 = QuantumRegister(2, "q0") creg0 = ClassicalRegister(2, "c0") qreg1 = QuantumRegister(2, "q1") creg1 = ClassicalRegister(2, "c1") circ = QuantumCircuit(qreg0, qreg1, creg0, creg1) circ.x(qreg0[1]) circ.x(qreg1[0]) meas = QuantumCircuit(qreg0, qreg1, creg0, creg1) meas.measure(qreg0, creg0) meas.measure(qreg1, creg1) qc = circ.compose(meas) circ2 = QuantumCircuit() circ2.add_register(qreg0) circ2.add_register(qreg1) circ2.add_register(creg0) circ2.add_register(creg1) circ2.x(qreg0[1]) circ2.x(qreg1[0]) meas2 = QuantumCircuit() meas2.add_register(qreg0) meas2.add_register(qreg1) meas2.add_register(creg0) meas2.add_register(creg1) meas2.measure(qreg0, creg0) meas2.measure(qreg1, creg1) qc2 = circ2.compose(meas2) dag_qc = circuit_to_dag(qc) dag_qc2 = circuit_to_dag(qc2) dag_circ2 = circuit_to_dag(circ2) dag_circ = circuit_to_dag(circ) self.assertEqual(dag_qc, dag_qc2) self.assertEqual(dag_circ, dag_circ2) def test_circuit_multi_name_collision(self): """Test circuit multi regs, with name collision.""" qreg0 = QuantumRegister(2, "q") qreg1 = QuantumRegister(3, "q") self.assertRaises(CircuitError, QuantumCircuit, qreg0, qreg1)
https://github.com/MonitSharma/Qiskit-Summer-School-and-Quantum-Challenges
MonitSharma
# General Imports import numpy as np # Visualisation Imports import matplotlib.pyplot as plt # Scikit Imports from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler, MinMaxScaler # Qiskit Imports from qiskit import Aer, execute from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector from qiskit.circuit.library import PauliFeatureMap, ZFeatureMap, ZZFeatureMap from qiskit.circuit.library import TwoLocal, NLocal, RealAmplitudes, EfficientSU2 from qiskit.circuit.library import HGate, RXGate, RYGate, RZGate, CXGate, CRXGate, CRZGate from qiskit_machine_learning.kernels import QuantumKernel # Load digits dataset digits = datasets.load_digits(n_class=2) # Plot example '0' and '1' fig, axs = plt.subplots(1, 2, figsize=(6,3)) axs[0].set_axis_off() axs[0].imshow(digits.images[0], cmap=plt.cm.gray_r, interpolation='nearest') axs[1].set_axis_off() axs[1].imshow(digits.images[1], cmap=plt.cm.gray_r, interpolation='nearest') plt.show() # Split dataset sample_train, sample_test, label_train, label_test = train_test_split( digits.data, digits.target, test_size=0.2, random_state=22) # Reduce dimensions n_dim = 4 pca = PCA(n_components=n_dim).fit(sample_train) sample_train = pca.transform(sample_train) sample_test = pca.transform(sample_test) # Normalise std_scale = StandardScaler().fit(sample_train) sample_train = std_scale.transform(sample_train) sample_test = std_scale.transform(sample_test) # Scale samples = np.append(sample_train, sample_test, axis=0) minmax_scale = MinMaxScaler((-1, 1)).fit(samples) sample_train = minmax_scale.transform(sample_train) sample_test = minmax_scale.transform(sample_test) # Select train_size = 100 sample_train = sample_train[:train_size] label_train = label_train[:train_size] test_size = 20 sample_test = sample_test[:test_size] label_test = label_test[:test_size] print(sample_train[0], label_train[0]) print(sample_test[0], label_test[0]) # 3 features, depth 2 map_z = ZFeatureMap(feature_dimension=3, reps=2) map_z.draw('mpl') # 3 features, depth 1 map_zz = ZZFeatureMap(feature_dimension=3, reps=1) map_zz.draw('mpl') # 3 features, depth 1, linear entanglement map_zz = ZZFeatureMap(feature_dimension=3, reps=1, entanglement='linear') map_zz.draw('mpl') # 3 features, depth 1, circular entanglement map_zz = ZZFeatureMap(feature_dimension=3, reps=1, entanglement='circular') map_zz.draw('mpl') # 3 features, depth 1 map_pauli = PauliFeatureMap(feature_dimension=3, reps=1, paulis = ['X', 'Y', 'ZZ']) map_pauli.draw('mpl') def custom_data_map_func(x): coeff = x[0] if len(x) == 1 else reduce(lambda m, n: m * n, np.sin(np.pi - x)) return coeff map_customdatamap = PauliFeatureMap(feature_dimension=3, reps=1, paulis=['Z','ZZ'], data_map_func=custom_data_map_func) #map_customdatamap.draw() # qiskit isn't able to draw the circuit with np.sin in the custom data map twolocal = TwoLocal(num_qubits=3, reps=2, rotation_blocks=['ry','rz'], entanglement_blocks='cx', entanglement='circular', insert_barriers=True) twolocal.draw('mpl') twolocaln = NLocal(num_qubits=3, reps=2, rotation_blocks=[RYGate(Parameter('a')), RZGate(Parameter('a'))], entanglement_blocks=CXGate(), entanglement='circular', insert_barriers=True) twolocaln.draw('mpl') # rotation block: rot = QuantumCircuit(2) params = ParameterVector('r', 2) rot.ry(params[0], 0) rot.rz(params[1], 1) # entanglement block: ent = QuantumCircuit(4) params = ParameterVector('e', 3) ent.crx(params[0], 0, 1) ent.crx(params[1], 1, 2) ent.crx(params[2], 2, 3) nlocal = NLocal(num_qubits=6, rotation_blocks=rot, entanglement_blocks=ent, entanglement='linear', insert_barriers=True) nlocal.draw('mpl') qubits = 3 repeats = 2 x = ParameterVector('x', length=qubits) var_custom = QuantumCircuit(qubits) for _ in range(repeats): for i in range(qubits): var_custom.rx(x[i], i) for i in range(qubits): for j in range(i + 1, qubits): var_custom.cx(i, j) var_custom.p(x[i] * x[j], j) var_custom.cx(i, j) var_custom.barrier() var_custom.draw('mpl') print(sample_train[0]) encode_map = ZZFeatureMap(feature_dimension=4, reps=2, entanglement='linear', insert_barriers=True) encode_circuit = encode_map.bind_parameters(sample_train[0]) encode_circuit.draw(output='mpl') x = [-0.1,0.2] # YOUR CODE HERE encode_map_x =ZZFeatureMap(feature_dimension=2, reps=4) ex1_circuit =encode_map_x.bind_parameters(x) ex1_circuit.draw(output='mpl') from qc_grader import grade_lab3_ex1 # Note that the grading function is expecting a quantum circuit grade_lab3_ex1(ex1_circuit) zz_map = ZZFeatureMap(feature_dimension=4, reps=2, entanglement='linear', insert_barriers=True) zz_kernel = QuantumKernel(feature_map=zz_map, quantum_instance=Aer.get_backend('statevector_simulator')) print(sample_train[0]) print(sample_train[1]) zz_circuit = zz_kernel.construct_circuit(sample_train[0], sample_train[1]) zz_circuit.decompose().decompose().draw(output='mpl') backend = Aer.get_backend('qasm_simulator') job = execute(zz_circuit, backend, shots=8192, seed_simulator=1024, seed_transpiler=1024) counts = job.result().get_counts(zz_circuit) counts['0000']/sum(counts.values()) matrix_train = zz_kernel.evaluate(x_vec=sample_train) matrix_test = zz_kernel.evaluate(x_vec=sample_test, y_vec=sample_train) fig, axs = plt.subplots(1, 2, figsize=(10, 5)) axs[0].imshow(np.asmatrix(matrix_train), interpolation='nearest', origin='upper', cmap='Blues') axs[0].set_title("training kernel matrix") axs[1].imshow(np.asmatrix(matrix_test), interpolation='nearest', origin='upper', cmap='Reds') axs[1].set_title("testing kernel matrix") plt.show() x = [-0.1,0.2] y = [0.4,-0.6] # YOUR CODE HERE encode_map_x2 = ZZFeatureMap(feature_dimension=2, reps=4) zz_kernel_x2 =QuantumKernel(feature_map=encode_map_x2,quantum_instance=Aer.get_backend('statevector_simulator')) zz_circuit_x2 =zz_kernel_x2.construct_circuit(x,y) backend =Aer.get_backend('qasm_simulator') job = execute(zz_circuit_x2,backend,shots=8192, seed_simulator=1024, seed_transpiler=1024) counts_x2 = job.result().get_counts(zz_circuit_x2) amplitude= counts_x2['00']/sum(counts_x2.values()) from qc_grader import grade_lab3_ex2 # Note that the grading function is expecting a floating point number grade_lab3_ex2(amplitude) zzpc_svc = SVC(kernel='precomputed') zzpc_svc.fit(matrix_train, label_train) zzpc_score = zzpc_svc.score(matrix_test, label_test) print(f'Precomputed kernel classification test score: {zzpc_score}') zzcb_svc = SVC(kernel=zz_kernel.evaluate) zzcb_svc.fit(sample_train, label_train) zzcb_score = zzcb_svc.score(sample_test, label_test) print(f'Callable kernel classification test score: {zzcb_score}') classical_kernels = ['linear', 'poly', 'rbf', 'sigmoid'] for kernel in classical_kernels: classical_svc = SVC(kernel=kernel) classical_svc.fit(sample_train, label_train) classical_score = classical_svc.score(sample_test, label_test) print('%s kernel classification test score: %0.2f' % (kernel, classical_score))