repo
stringclasses
885 values
file
stringclasses
741 values
content
stringlengths
4
215k
https://github.com/Interlin-q/diskit
Interlin-q
import numpy as np from numpy import pi # importing Qiskit from qiskit import QuantumCircuit, transpile, assemble, Aer from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(3) qc.h(2) qc.cp(pi/2, 1, 2) qc.cp(pi/4, 0, 2) qc.h(1) qc.cp(pi/2, 0, 1) qc.h(0) qc.swap(0, 2) qc.draw() def qft_rotations(circuit, n): if n == 0: return circuit n -= 1 circuit.h(n) for qubit in range(n): circuit.cp(pi/2**(n-qubit), qubit, n) qft_rotations(circuit, n) def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft(circuit, n): qft_rotations(circuit, n) swap_registers(circuit, n) return circuit qc = QuantumCircuit(4) qft(qc,4) qc.draw() # Create the circuit qc = QuantumCircuit(3) # Encode the state 5 (101 in binary) qc.x(0) qc.x(2) qc.draw() sim = Aer.get_backend("aer_simulator") qc_init = qc.copy() qc_init.save_statevector() statevector = sim.run(qc_init).result().get_statevector() plot_bloch_multivector(statevector) qft(qc, 3) qc.draw() qc.save_statevector() statevector = sim.run(qc).result().get_statevector() plot_bloch_multivector(statevector)
https://github.com/qclib/qclib
qclib
# Copyright 2021 qclib project. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for the topdown.py module. """ from unittest import TestCase import numpy as np from qiskit import ClassicalRegister, transpile from qiskit_aer import AerSimulator from qclib.state_preparation import TopDownInitialize from qclib.util import get_state, measurement # pylint: disable=missing-function-docstring # pylint: disable=missing-class-docstring backend = AerSimulator() SHOTS = 8192 class TestTopDown(TestCase): @staticmethod def measurement(circuit, n_qubits, classical_reg): circuit.measure(list(range(n_qubits)), classical_reg) job = backend.run( transpile(circuit, backend), shots=SHOTS, optimization_level=3 ) counts = job.result().get_counts(circuit) sum_values = sum(counts.values()) counts2 = {} for i in range(2**n_qubits): pattern = f'{i:0{n_qubits}b}' if pattern in counts: counts2[pattern] = counts[pattern] else: counts2[pattern] = 0.0 return [ value/sum_values for (key, value) in counts2.items() ] @staticmethod def topdown_experiment(state): circuit = TopDownInitialize(state).definition n_qubits = int(np.log2(len(state))) classical_reg = ClassicalRegister(n_qubits) circuit.add_register(classical_reg) return measurement(circuit, n_qubits, classical_reg, backend, SHOTS) def test_topdown_state_real(self): state_vector = np.random.rand(32) state_vector = state_vector / np.linalg.norm(state_vector) circuit = TopDownInitialize(state_vector).definition state = get_state(circuit) self.assertTrue(np.allclose(state_vector, state)) def test_topdown_state_complex(self): state_vector = np.random.rand(32) + np.random.rand(32) * 1j state_vector = state_vector / np.linalg.norm(state_vector) circuit = TopDownInitialize(state_vector).definition state = get_state(circuit) self.assertTrue(np.allclose(state_vector, state)) def test_topdown_measure(self): state_vector = np.random.rand(32) + np.random.rand(32) * 1j state_vector = state_vector / np.linalg.norm(state_vector) state = TestTopDown.topdown_experiment(state_vector) self.assertTrue(np.allclose(np.power(np.abs(state_vector), 2), state, rtol=1e-01, atol=0.005)) def test_topdown_fixed_state(self): state_vector = [ 0, np.sqrt(2 / 8) * np.exp(-1.0j * np.pi / 7), np.sqrt(3 / 8) * np.exp(-1.0j * np.pi / 3), 0, 0, 0, np.sqrt(3 / 8), 0 ] circuit = TopDownInitialize(state_vector).definition state = get_state(circuit) self.assertTrue(np.allclose(state_vector, state))
https://github.com/zeynepCankara/Introduction-Quantum-Programming
zeynepCankara
# %%writefile FILENAME.py # your function is here from math import cos, sin, pi from random import randrange def random_quantum_state2(): # # your codes are here # # randomly create quantum states angle_random = randrange(361) # get the angles cos, sin angle_random_radian = (2 * pi * angle_random)/(360) return [cos(angle_random_radian), sin(angle_random_radian)] # visually test your function %run qlatvia.py draw_qubit() # # your solution is here # for i in range(100): [x, y] = random_quantum_state2() draw_quantum_state(x,y,"")
https://github.com/abbarreto/qiskit4
abbarreto
%run init.ipynb
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
input_3sat_instance = ''' c example DIMACS-CNF 3-SAT p cnf 3 5 -1 -2 -3 0 1 -2 3 0 1 2 -3 0 1 -2 -3 0 -1 2 3 0 ''' import os import tempfile from qiskit.exceptions import MissingOptionalLibraryError from qiskit.circuit.library.phase_oracle import PhaseOracle fp = tempfile.NamedTemporaryFile(mode='w+t', delete=False) fp.write(input_3sat_instance) file_name = fp.name fp.close() oracle = None try: oracle = PhaseOracle.from_dimacs_file(file_name) except MissingOptionalLibraryError as ex: print(ex) finally: os.remove(file_name) from qiskit.algorithms import AmplificationProblem problem = None if oracle is not None: problem = AmplificationProblem(oracle, is_good_state=oracle.evaluate_bitstring) from qiskit.algorithms import Grover from qiskit.primitives import Sampler grover = Grover(sampler=Sampler()) result = None if problem is not None: result = grover.amplify(problem) print(result.assignment) from qiskit.tools.visualization import plot_histogram if result is not None: display(plot_histogram(result.circuit_results[0])) expression = '(w ^ x) & ~(y ^ z) & (x & y & z)' try: oracle = PhaseOracle(expression) problem = AmplificationProblem(oracle, is_good_state=oracle.evaluate_bitstring) grover = Grover(sampler=Sampler()) result = grover.amplify(problem) display(plot_histogram(result.circuit_results[0])) except MissingOptionalLibraryError as ex: print(ex) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/microsoft/qiskit-qir
microsoft
## # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. ## from typing import List, Optional, Union from pyqir import Module, Context from qiskit import ClassicalRegister, QuantumRegister from qiskit.circuit.bit import Bit from qiskit.circuit.quantumcircuit import QuantumCircuit, Instruction from abc import ABCMeta, abstractmethod class _QuantumCircuitElement(metaclass=ABCMeta): @classmethod def from_element_list(cls, elements): return [cls(elem) for elem in elements] @abstractmethod def accept(self, visitor): pass class _Register(_QuantumCircuitElement): def __init__(self, register: Union[QuantumRegister, ClassicalRegister]): self._register: Union[QuantumRegister, ClassicalRegister] = register def accept(self, visitor): visitor.visit_register(self._register) class _Instruction(_QuantumCircuitElement): def __init__(self, instruction: Instruction, qargs: List[Bit], cargs: List[Bit]): self._instruction: Instruction = instruction self._qargs = qargs self._cargs = cargs def accept(self, visitor): visitor.visit_instruction(self._instruction, self._qargs, self._cargs) class QiskitModule: def __init__( self, circuit: QuantumCircuit, name: str, module: Module, num_qubits: int, num_clbits: int, reg_sizes: List[int], elements: List[_QuantumCircuitElement], ): self._circuit = circuit self._name = name self._module = module self._elements = elements self._num_qubits = num_qubits self._num_clbits = num_clbits self.reg_sizes = reg_sizes @property def circuit(self) -> QuantumCircuit: return self._circuit @property def name(self) -> str: return self._name @property def module(self) -> Module: return self._module @property def num_qubits(self) -> int: return self._num_qubits @property def num_clbits(self) -> int: return self._num_clbits @classmethod def from_quantum_circuit( cls, circuit: QuantumCircuit, module: Optional[Module] = None ) -> "QiskitModule": """Create a new QiskitModule from a qiskit.QuantumCircuit object.""" elements: List[_QuantumCircuitElement] = [] reg_sizes = [len(creg) for creg in circuit.cregs] # Registers elements.extend(_Register.from_element_list(circuit.qregs)) elements.extend(_Register.from_element_list(circuit.cregs)) # Instructions for instruction, qargs, cargs in circuit._data: elements.append(_Instruction(instruction, qargs, cargs)) if module is None: module = Module(Context(), circuit.name) return cls( circuit=circuit, name=circuit.name, module=module, num_qubits=circuit.num_qubits, num_clbits=circuit.num_clbits, reg_sizes=reg_sizes, elements=elements, ) def accept(self, visitor): visitor.visit_qiskit_module(self) for element in self._elements: element.accept(visitor) visitor.record_output(self) visitor.finalize()
https://github.com/qiskit-community/qiskit-cold-atom
qiskit-community
from qiskit import QuantumRegister from qiskit.circuit import QuantumCircuit, Parameter from qiskit_cold_atom.spins.spins_gate_library import RydbergFull from qiskit_cold_atom.spins import SpinSimulator import numpy as np import matplotlib.pyplot as plt Nwires = 2 backend = SpinSimulator() qc_rabi = QuantumCircuit(QuantumRegister(Nwires, "spin")) all_modes=range(Nwires) omega_t = Parameter("ω") qc_rabi.rlx(omega_t, [0, 1]) qc_rabi.measure_all() qc_rabi.draw(output='mpl', style='clifford') phases = np.linspace(0, 2*np.pi, 15) rabi_list = [ qc_rabi.assign_parameters( {omega_t: phase}, inplace=False, ) for phase in phases ] n_shots = 500 job_rabi = backend.run(rabi_list, shots=n_shots) result_rabi = job_rabi.result() counts_rabi = result_rabi.get_counts() sum_rabi = [] for i, _ in enumerate(phases): counts_up = 0 for outcome, count in counts_rabi[i].items(): if outcome[0] == "1": counts_up += count if outcome[-1] == "1": counts_up += count sum_rabi.append(counts_up/n_shots) f, ax = plt.subplots() ax.plot(phases, sum_rabi, 'o') ax.set_xlabel('phase') ax.set_ylabel('sum of spins up') Nwires = 2 backend = SpinSimulator() qc_block = QuantumCircuit(QuantumRegister(Nwires, "spin")) all_modes=range(Nwires) omega_t = Parameter("ω") phi_t = Parameter("φ") qc_block.rydberg_full(omega=omega_t, delta=0, phi=phi_t, modes=all_modes) qc_block.measure_all() qc_block.draw(output='mpl', style='clifford') phases = np.linspace(0., 2*np.pi, 15) block_list = [ qc_block.assign_parameters( {omega_t: phase, phi_t: phase*10}, inplace=False, ) for phase in phases ] job_block = backend.run(block_list, shots=n_shots) result_block = job_block.result() counts_block = job_block.result().get_counts() sum_block = [] for i, _ in enumerate(phases): counts_up = 0 for outcome, count in counts_block[i].items(): if outcome[0] == "1": counts_up += count if outcome[-1] == "1": counts_up += count sum_block.append(counts_up/n_shots) f, ax = plt.subplots() ax.plot(phases, sum_rabi, 'o', label= 'Rabi') ax.plot(phases, sum_block, 'o', label= 'Blockade') ax.plot(phases, (1-np.cos(np.sqrt(2)*phases))/2, '-', color = "C1", alpha = 0.5, linewidth = 3, label= 'blocked theory') ax.legend() ax.set_xlabel('phase') ax.set_ylabel('sum of spins up') Nwires = 2 backend = SpinSimulator() qc_entangle = QuantumCircuit(QuantumRegister(Nwires, "spin")) all_modes=range(Nwires) qc_entangle.rlx(np.pi/2, all_modes) qc_entangle.rydberg_block(np.pi, modes=all_modes) qc_entangle.rly(np.pi/2, 0) qc_entangle.rly(np.pi/2, 1) qc_entangle.measure_all() qc_entangle.draw(output='mpl', style='clifford') job_entangle = backend.run(qc_entangle, shots=500) result_entangle = job_entangle.result() print(result_entangle.get_counts()) Nwires = 5 backend = SpinSimulator() qc_rabi = QuantumCircuit(QuantumRegister(Nwires, "spin")) all_modes=range(Nwires) omega_t = Parameter("ω") qc_rabi.rlx(omega_t, all_modes) qc_rabi.measure_all() qc_rabi.draw(output='mpl', style='clifford') phases = np.linspace(0, 2*np.pi, 15) rabi_list = [ qc_rabi.assign_parameters( {omega_t: phase}, inplace=False, ) for phase in phases ] job_rabi = backend.run(rabi_list, shots=500) result_rabi = job_rabi.result() outcomes_rabi = [result_rabi.get_memory(i) for i in range(len(rabi_list))] for i, outcome in enumerate(outcomes_rabi): for j, run in enumerate(outcome): outcomes_rabi[i][j] = np.array(run.split(' '), dtype = int) outcomes_rabi = np.array(outcomes_rabi) means_rabi = outcomes_rabi.mean(axis=1) f, ax = plt.subplots() im = ax.pcolormesh(phases, np.arange(Nwires), means_rabi.T) f.colorbar(im, ax=ax) ax.set_ylabel('site') ax.set_xlabel('time') Nwires = 7 backend = SpinSimulator() qc_block = QuantumCircuit(QuantumRegister(Nwires, "spin")) all_modes=range(Nwires) omega_t = Parameter("ω") phi_t = Parameter("φ") qc_block.rydberg_full(omega=omega_t, delta=0, phi=phi_t, modes=all_modes) qc_block.measure_all() qc_block.draw(output='mpl', style='clifford') phases = np.linspace(0, 2*np.pi, 15) block_list = [ qc_block.assign_parameters( {omega_t: phase, phi_t: phase*5}, inplace=False, ) for phase in phases ] job_block = backend.run(block_list, shots=500) result_block = job_block.result() outcomes = [result_block.get_memory(i) for i in range(len(block_list))] for i, outcome in enumerate(outcomes): for j, run in enumerate(outcome): outcomes[i][j] = np.array(run.split(' '), dtype = int) outcomes = np.array(outcomes) means_block = outcomes.mean(axis=1) f, ax = plt.subplots() im = ax.pcolormesh(phases, np.arange(Nwires), means_block.T) f.colorbar(im, ax=ax) ax.set_ylabel('site') ax.set_xlabel('time') from qiskit_cold_atom.providers import ColdAtomProvider from pprint import pprint #provider = ColdAtomProvider.save_account( # url=[ # "https://qlued.alqor.io/api/v2/singlequdit", # "https://qlued.alqor.io/api/v2/multiqudit", # "https://qlued.alqor.io/api/v2/fermions", # "https://qlued.alqor.io/api/v2/rydberg", # ], # username="name", # token="token", # overwrite=True #) provider = ColdAtomProvider.load_account() spin_device_backend = provider.get_backend("alqor_rydberg_simulator") pprint(spin_device_backend.configuration().supported_instructions) Nwires = 5 qc_rabi = QuantumCircuit(5) all_modes=range(Nwires) omega_t = Parameter("ω") qc_rabi.rlx( omega_t, all_modes) qc_rabi.measure_all() qc_rabi.draw(output='mpl') phases = np.linspace(0, 2*np.pi,15) remote_rabi_list = [ qc_rabi.assign_parameters( {omega_t: phase}, inplace=False, ) for phase in phases ] job_remote_rabi = spin_device_backend.run(remote_rabi_list, shots=500) job_remote_rabi.job_id() job_rabi_retrieved = spin_device_backend.retrieve_job(job_id=job_remote_rabi.job_id()) print("job status: ", job_rabi_retrieved.status()) result_remote_rabi = job_rabi_retrieved.result() outcomes = [result_remote_rabi.get_memory(i) for i in range(len(remote_rabi_list))] for i, outcome in enumerate(outcomes): for j, run in enumerate(outcome): outcomes[i][j] = np.array(run.split(' '), dtype = int) outcomes = np.array(outcomes) means_remote_rabi = outcomes.mean(axis=1) f, ax = plt.subplots() im = ax.pcolormesh(phases,np.arange(5), means_remote_rabi.T) f.colorbar(im, ax=ax) ax.set_ylabel('site') ax.set_xlabel('time') Nwires = 5 qc2 = QuantumCircuit(5) all_modes=range(Nwires) alpha = Parameter("α") beta = Parameter("β") qc2.rydberg_full(omega = alpha, delta =0, phi = beta, modes=all_modes) qc2.measure_all() qc2.draw(output='mpl') phases = np.linspace(0, 2*np.pi,15) circuit2_list = [ qc2.assign_parameters( {alpha: phase, beta: phase*2}, inplace=False, ) for phase in phases ] job2 = spin_device_backend.run(circuit2_list, shots=500) job2.job_id() job_retrieved2 = spin_device_backend.retrieve_job(job_id=job2.job_id()) print("job status: ", job_retrieved2.status()) result2 = job_retrieved2.result() outcomes = [result2.get_memory(i) for i in range(len(circuit2_list))] for i, outcome in enumerate(outcomes): for j, run in enumerate(outcome): outcomes[i][j] = np.array(run.split(' '), dtype = int) outcomes = np.array(outcomes) means_1 = outcomes.mean(axis=1) means_1.shape f, ax = plt.subplots() im = ax.pcolormesh(phases,np.arange(5), means_1.T) f.colorbar(im, ax=ax) ax.set_ylabel('site') ax.set_xlabel('time') import qiskit.tools.jupyter %qiskit_version_table
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
""" This file allows to test the various QFT implemented. The user must specify: 1) The number of qubits it wants the QFT to be implemented on 2) The kind of QFT want to implement, among the options: -> Normal QFT with SWAP gates at the end -> Normal QFT without SWAP gates at the end -> Inverse QFT with SWAP gates at the end -> Inverse QFT without SWAP gates at the end The user must can also specify, in the main function, the input quantum state. By default is a maximal superposition state This file uses as simulator the local simulator 'statevector_simulator' because this simulator saves the quantum state at the end of the circuit, which is exactly the goal of the test file. This simulator supports sufficient qubits to the size of the QFTs that are going to be used in Shor's Algorithm because the IBM simulator only supports up to 32 qubits """ """ Imports from qiskit""" from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute, IBMQ, BasicAer """ Imports to Python functions """ import time """ Local Imports """ from qfunctions import create_QFT, create_inverse_QFT """ Function to properly print the final state of the simulation """ """ This is only possible in this way because the program uses the statevector_simulator """ def show_good_coef(results, n): i=0 max = pow(2,n) if max > 100: max = 100 """ Iterate to all possible states """ while i<max: binary = bin(i)[2:].zfill(n) number = results.item(i) number = round(number.real, 3) + round(number.imag, 3) * 1j """ Print the respective component of the state if it has a non-zero coefficient """ if number!=0: print('|{}>'.format(binary),number) i=i+1 """ Main program """ if __name__ == '__main__': """ Select how many qubits want to apply the QFT on """ n = int(input('\nPlease select how many qubits want to apply the QFT on: ')) """ Select the kind of QFT to apply using the variable what_to_test: what_to_test = 0: Apply normal QFT with the SWAP gates at the end what_to_test = 1: Apply normal QFT without the SWAP gates at the end what_to_test = 2: Apply inverse QFT with the SWAP gates at the end what_to_test = 3: Apply inverse QFT without the SWAP gates at the end """ print('\nSelect the kind of QFT to apply:') print('Select 0 to apply normal QFT with the SWAP gates at the end') print('Select 1 to apply normal QFT without the SWAP gates at the end') print('Select 2 to apply inverse QFT with the SWAP gates at the end') print('Select 3 to apply inverse QFT without the SWAP gates at the end\n') what_to_test = int(input('Select your option: ')) if what_to_test<0 or what_to_test>3: print('Please select one of the options') exit() print('\nTotal number of qubits used: {0}\n'.format(n)) print('Please check source file to change input quantum state. By default is a maximal superposition state with |+> in every qubit.\n') ts = time.time() """ Create quantum and classical registers """ quantum_reg = QuantumRegister(n) classic_reg = ClassicalRegister(n) """ Create Quantum Circuit """ circuit = QuantumCircuit(quantum_reg, classic_reg) """ Create the input state desired Please change this as you like, by default we put H gates in every qubit, initializing with a maximimal superposition state """ #circuit.h(quantum_reg) """ Test the right QFT according to the variable specified before""" if what_to_test == 0: create_QFT(circuit,quantum_reg,n,1) elif what_to_test == 1: create_QFT(circuit,quantum_reg,n,0) elif what_to_test == 2: create_inverse_QFT(circuit,quantum_reg,n,1) elif what_to_test == 3: create_inverse_QFT(circuit,quantum_reg,n,0) else: print('Noting to implement, exiting program') exit() """ show results of circuit creation """ create_time = round(time.time()-ts, 3) if n < 8: print(circuit) print(f"... circuit creation time = {create_time}") ts = time.time() """ Simulate the created Quantum Circuit """ simulation = execute(circuit, backend=BasicAer.get_backend('statevector_simulator'),shots=1) """ Get the results of the simulation in proper structure """ sim_result=simulation.result() """ Get the statevector of the final quantum state """ outputstate = sim_result.get_statevector(circuit, decimals=3) """ show execution time """ exec_time = round(time.time()-ts, 3) print(f"... circuit execute time = {exec_time}") """ Print final quantum state to user """ print('The final state after applying the QFT is:\n') show_good_coef(outputstate,n)
https://github.com/weiT1993/qiskit_helper_functions
weiT1993
import random, pickle, os, copy, random, qiskit_aer, psutil from qiskit import QuantumCircuit from qiskit.converters import circuit_to_dag, dag_to_circuit from qiskit.dagcircuit.dagcircuit import DAGCircuit from qiskit.quantum_info import Statevector import numpy as np from qiskit_helper_functions.conversions import dict_to_array def scrambled(orig): dest = orig[:] random.shuffle(dest) return dest def read_dict(filename): if os.path.isfile(filename): f = open(filename, "rb") file_content = {} while 1: try: file_content.update(pickle.load(f)) except EOFError: break f.close() else: file_content = {} return file_content def apply_measurement(circuit, qubits): measured_circuit = QuantumCircuit(circuit.num_qubits, len(qubits)) for circuit_inst, circuit_qubits, circuit_clbits in circuit.data: measured_circuit.append(circuit_inst, circuit_qubits, circuit_clbits) measured_circuit.barrier(qubits) measured_circuit.measure(qubits, measured_circuit.clbits) return measured_circuit def evaluate_circ(circuit, backend, options=None): circuit = copy.deepcopy(circuit) max_memory_mb = psutil.virtual_memory().total >> 20 max_memory_mb = int(max_memory_mb / 4 * 3) if backend == "statevector_simulator": simulator = qiskit_aer.StatevectorSimulator() result = simulator.run(circuits=[circuit]).result() statevector = result.get_statevector(circuit) prob_vector = Statevector(statevector).probabilities() return prob_vector elif backend == "noiseless_qasm_simulator": simulator = qiskit_aer.AerSimulator(max_memory_mb=max_memory_mb) if isinstance(options, dict) and "num_shots" in options: num_shots = options["num_shots"] else: num_shots = max(1024, 2**circuit.num_qubits) if isinstance(options, dict) and "memory" in options: memory = options["memory"] else: memory = False if circuit.num_clbits == 0: circuit.measure_all() result = simulator.run(circuit, shots=num_shots, memory=memory).result() if memory: qasm_memory = np.array(result.get_memory(circuit)) assert len(qasm_memory) == num_shots return qasm_memory else: noiseless_counts = result.get_counts(circuit) assert sum(noiseless_counts.values()) == num_shots noiseless_counts = dict_to_array( distribution_dict=noiseless_counts, force_prob=True ) return noiseless_counts else: raise NotImplementedError def circuit_stripping(circuit): # Remove all single qubit gates and barriers in the circuit dag = circuit_to_dag(circuit) stripped_dag = DAGCircuit() [stripped_dag.add_qreg(x) for x in circuit.qregs] for vertex in dag.topological_op_nodes(): if len(vertex.qargs) == 2 and vertex.op.name != "barrier": stripped_dag.apply_operation_back(op=vertex.op, qargs=vertex.qargs) return dag_to_circuit(stripped_dag) def dag_stripping(dag, max_gates): """ Remove all single qubit gates and barriers in the DAG Only leaves the first max_gates gates If max_gates is None, do all gates """ stripped_dag = DAGCircuit() [stripped_dag.add_qreg(dag.qregs[qreg_name]) for qreg_name in dag.qregs] vertex_added = 0 for vertex in dag.topological_op_nodes(): within_gate_count = max_gates is None or vertex_added < max_gates if vertex.op.name != "barrier" and len(vertex.qargs) == 2 and within_gate_count: stripped_dag.apply_operation_back(op=vertex.op, qargs=vertex.qargs) vertex_added += 1 return stripped_dag def _calc_exp_val(num_qubits: int, observable: str, state: int, prob: float) -> float: """Calculate the weighted eigen value of a state and its given prob Z|0> = |0> Z|1> = -|1> I|0> = |0> I|1> = |1> Args: num_qubits (int): _description_ observable (str): _description_ state_prob (Tuple[int, float]): _description_ Returns: float: _description_ """ eigenvals = {"Z": {"0": 1, "1": -1}, "I": {"0": 1, "1": 1}} bin_state = bin(state)[2:].zfill(num_qubits) eigenval = 1 for bit, base in zip(bin_state, observable): eigenval *= eigenvals[base][bit] return prob * eigenval def expectation_val(prob_vector: np.ndarray, observable: str) -> float: """Calculate the expectation value of a given probability vector Args: prob_vector (np.ndarray): input probability vector observable (str): Z or I observables Returns: float: expectation value """ num_qubits = len(observable) exp_val = 0 for state, prob in enumerate(prob_vector): exp_val += _calc_exp_val(num_qubits, observable, state, prob) return exp_val
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.pulse_v2 import draw, IQXDebugging from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.measure_all() qc = transpile(qc, FakeBoeblingen(), layout_method='trivial') sched = schedule(qc, FakeBoeblingen()) draw(sched, style=IQXDebugging(), backend=FakeBoeblingen())
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test the RemoveBarriers pass""" import unittest from qiskit.transpiler.passes import RemoveBarriers from qiskit.converters import circuit_to_dag from qiskit import QuantumCircuit from qiskit.test import QiskitTestCase class TestMergeAdjacentBarriers(QiskitTestCase): """Test the MergeAdjacentBarriers pass""" def test_remove_barriers(self): """Remove all barriers""" circuit = QuantumCircuit(2) circuit.barrier() circuit.barrier() pass_ = RemoveBarriers() result_dag = pass_.run(circuit_to_dag(circuit)) self.assertEqual(result_dag.size(), 0) def test_remove_barriers_other_gates(self): """Remove all barriers, leave other gates intact""" circuit = QuantumCircuit(1) circuit.barrier() circuit.x(0) circuit.barrier() circuit.h(0) pass_ = RemoveBarriers() result_dag = pass_.run(circuit_to_dag(circuit)) op_nodes = result_dag.op_nodes() self.assertEqual(result_dag.size(), 2) for ii, name in enumerate(["x", "h"]): self.assertEqual(op_nodes[ii].name, name) def test_simple_if_else(self): """Test that the pass recurses into an if-else.""" pass_ = RemoveBarriers() base_test = QuantumCircuit(1, 1) base_test.barrier() base_test.measure(0, 0) base_expected = QuantumCircuit(1, 1) base_expected.measure(0, 0) test = QuantumCircuit(1, 1) test.if_else( (test.clbits[0], True), base_test.copy(), base_test.copy(), test.qubits, test.clbits ) expected = QuantumCircuit(1, 1) expected.if_else( (expected.clbits[0], True), base_expected.copy(), base_expected.copy(), expected.qubits, expected.clbits, ) self.assertEqual(pass_(test), expected) def test_nested_control_flow(self): """Test that the pass recurses into nested control flow.""" pass_ = RemoveBarriers() base_test = QuantumCircuit(1, 1) base_test.barrier() base_test.measure(0, 0) base_expected = QuantumCircuit(1, 1) base_expected.measure(0, 0) body_test = QuantumCircuit(1, 1) body_test.for_loop((0,), None, base_expected.copy(), body_test.qubits, body_test.clbits) body_expected = QuantumCircuit(1, 1) body_expected.for_loop( (0,), None, base_expected.copy(), body_expected.qubits, body_expected.clbits ) test = QuantumCircuit(1, 1) test.while_loop((test.clbits[0], True), body_test, test.qubits, test.clbits) expected = QuantumCircuit(1, 1) expected.while_loop( (expected.clbits[0], True), body_expected, expected.qubits, expected.clbits ) self.assertEqual(pass_(test), expected) if __name__ == "__main__": unittest.main()
https://github.com/alvinli04/Quantum-Steganography
alvinli04
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, AncillaRegister from qiskit import execute from qiskit import Aer from qiskit import IBMQ from qiskit.compiler import transpile import neqr import random import steganography def arraynxn(n): return [[random.randint(0,255) for i in range(n)] for j in range(n)] ''' NEQR Unit Tests ''' def convert_to_bits_test(): array2x2 = [[random.randint(0, 255), random.randint(0, 255)], [random.randint(0, 255), random.randint(0, 255)]] print(array2x2) bits_arr = neqr.convert_to_bits(array2x2) print(bits_arr) def neqr_test(): testarr = arraynxn(4) print('test array:') print(testarr) flattened_array = neqr.convert_to_bits(testarr) print([''.join([str(b) for i,b in enumerate(a)]) for a in flattened_array]) idx = QuantumRegister(4) intensity = QuantumRegister(8) result_circuit = QuantumCircuit(intensity, idx) neqr.neqr(flattened_array, result_circuit, idx, intensity) backend = Aer.get_backend('statevector_simulator') job = execute(result_circuit, backend=backend, shots=1, memory=True) job_result = job.result() statevec = job_result.get_statevector(result_circuit) for i in range(len(statevec)): if statevec[i] != 0: print(f"{format(i, '012b')}: {statevec[i].real}") print(result_circuit) ############################################################################################################################ ''' Steganography Unit Tests ''' def comparator_test(): #creating registers and adding them to circuit regX = QuantumRegister(4) regY = QuantumRegister(4) circuit = QuantumCircuit(regX, regY) cr = ClassicalRegister(2) #changing registers to make them different circuit.x(regX[0]) circuit.x(regX[2]) circuit.x(regY[1]) circuit.x(regY[3]) result = QuantumRegister(2) circuit.add_register(result) circuit.add_register(cr) #comparator returns the circuit steganography.comparator(regY, regX, circuit, result) #result --> ancillas from function circuit.measure(result, cr) #measuring simulator = Aer.get_backend('aer_simulator') simulation = execute(circuit, simulator, shots=1, memory=True) simResult = simulation.result() counts = simResult.get_counts(circuit) for(state, count) in counts.items(): big_endian_state = state[::-1] print(big_endian_state) def coordinate_comparator_test(): regXY = QuantumRegister(2) regAB = QuantumRegister(2) result = QuantumRegister(1) circuit = QuantumCircuit(regXY, regAB, result) #uncomment this to make the registers different #regXY is in |00> and regAB in |01> #circuit.x(regAB[1]) #circuit.x(regXY[1]) steganography.coordinate_comparator(circuit, result, regXY, regAB) print(circuit) backend = Aer.get_backend('statevector_simulator') simulation = execute(circuit, backend=backend, shots=1, memory=True) simResult = simulation.result() statevec = simResult.get_statevector(circuit) for state in range(len(statevec)): if statevec[state] != 0: #note: output is in little endian print(f"{format(state, '05b')}: {statevec[state].real}") def difference_test(): regY = QuantumRegister(4, "regY") regX = QuantumRegister(4, "regX") difference = QuantumRegister(4, 'difference') cr = ClassicalRegister(4, 'measurement') circuit = QuantumCircuit(regY, regX, difference, cr) circuit.barrier() steganography.difference(circuit, regY, regX, difference) #print(circuit.draw()) circuit.measure(difference, cr) simulator = Aer.get_backend('aer_simulator') simulation = execute(circuit, simulator, shots=1) result = simulation.result() counts = result.get_counts(circuit) for(state, count) in counts.items(): big_endian_state = state[::-1] print(big_endian_state) def get_secret_image_test(): test_arr = [[[random.randint(0,1) for i in range(4)] for j in range(4)] for k in range(5)] test_result = steganography.get_secret_image(5, test_arr) for a in test_arr: print(a) print(f'result:\n {test_result}') def invert_test(): test_arr = arraynxn(4) print(neqr.convert_to_bits(test_arr)) idx = QuantumRegister(4) intensity = QuantumRegister(8) inverse = QuantumRegister(8) circuit = QuantumCircuit(inverse, intensity, idx) neqr.neqr(neqr.convert_to_bits(test_arr), circuit, idx, intensity) steganography.invert(circuit, intensity, inverse) backend = Aer.get_backend('statevector_simulator') simulation = execute(circuit, backend=backend, shots=1, memory=True) simResult = simulation.result() statevec = simResult.get_statevector(circuit) for state in range(len(statevec)): if statevec[state] != 0: #note: output is in little endian #only have to look at first bit print(f"{format(state, '012b')}: {statevec[state].real}") def get_key_test(): test_cover = arraynxn(2) test_secret = arraynxn(2) print(f'cover:\n {test_cover} \nsecret:\n{test_secret}') sz = 4 cover_idx, cover_intensity = QuantumRegister(2), QuantumRegister(8) cover = QuantumCircuit(cover_intensity, cover_idx) secret_idx, secret_intensity = QuantumRegister(2), QuantumRegister(8) secret = QuantumCircuit(secret_intensity, secret_idx) neqr.neqr(neqr.convert_to_bits(test_cover), cover, cover_idx, cover_intensity) neqr.neqr(neqr.convert_to_bits(test_secret), secret, secret_idx, secret_intensity) key_idx, key_result = QuantumRegister(2), QuantumRegister(1) inv = QuantumRegister(8) diff1 = QuantumRegister(8) diff2 = QuantumRegister(8) comp_res = QuantumRegister(2) key_mes = ClassicalRegister(3) circuit = QuantumCircuit(cover_intensity, cover_idx, secret_intensity, secret_idx, key_idx, key_result, inv, diff1, diff2, comp_res, key_mes) steganography.invert(circuit, secret_intensity, inv) steganography.get_key(circuit, key_idx, key_result, cover_intensity, secret_intensity, inv, diff1, diff2, comp_res, sz) circuit.measure(key_result[:] + key_idx[:], key_mes) provider = IBMQ.load_account() simulator = provider.get_backend('simulator_mps') simulation = execute(circuit, simulator, shots=1024) result = simulation.result() counts = result.get_counts(circuit) for(state, count) in counts.items(): big_endian_state = state[::-1] print(f"Measured {big_endian_state} {count} times.") def load_test(): idx = QuantumRegister(2) odx = QuantumRegister(1) cr = ClassicalRegister(3) qc = QuantumCircuit(idx, odx, cr) qc.h(idx) qc.measure(idx[:] + odx[:], cr) simulator = Aer.get_backend("aer_simulator") simulation = execute(qc, simulator, shots=1024) result = simulation.result() counts = result.get_counts(qc) for(state, count) in counts.items(): big_endian_state = state[::-1] print(f"Measured {big_endian_state} {count} times.") def main(): get_key_test() if __name__ == '__main__': main()
https://github.com/qiskit-community/community.qiskit.org
qiskit-community
from qiskit import * from qiskit.tools.visualization import plot_histogram from qiskit.providers.aer import noise from qiskit.compiler import transpile import numpy as np coupling_map = [[1, 0], [2, 0], [2, 1], [3, 2], [3, 4], [4, 2]] noise_dict = {'errors': [{'type': 'qerror', 'operations': ['u2'], 'instructions': [[{'name': 'x', 'qubits': [0]}], [{'name': 'y', 'qubits': [0]}], [{'name': 'z', 'qubits': [0]}], [{'name': 'id', 'qubits': [0]}]], 'probabilities': [0.0004721766167523067, 0.0004721766167523067, 0.0004721766167523067, 0.9985834701497431], 'gate_qubits': [[0]]}, {'type': 'qerror', 'operations': ['u2'], 'instructions': [[{'name': 'x', 'qubits': [0]}], [{'name': 'y', 'qubits': [0]}], [{'name': 'z', 'qubits': [0]}], [{'name': 'id', 'qubits': [0]}]], 'probabilities': [0.0005151090708174488, 0.0005151090708174488, 0.0005151090708174488, 0.9984546727875476], 'gate_qubits': [[1]]}, {'type': 'qerror', 'operations': ['u2'], 'instructions': [[{'name': 'x', 'qubits': [0]}], [{'name': 'y', 'qubits': [0]}], [{'name': 'z', 'qubits': [0]}], [{'name': 'id', 'qubits': [0]}]], 'probabilities': [0.0005151090708174488, 0.0005151090708174488, 0.0005151090708174488, 0.9984546727875476], 'gate_qubits': [[2]]}, {'type': 'qerror', 'operations': ['u2'], 'instructions': [[{'name': 'x', 'qubits': [0]}], [{'name': 'y', 'qubits': [0]}], [{'name': 'z', 'qubits': [0]}], [{'name': 'id', 'qubits': [0]}]], 'probabilities': [0.000901556048412383, 0.000901556048412383, 0.000901556048412383, 0.9972953318547628], 'gate_qubits': [[3]]}, {'type': 'qerror', 'operations': ['u2'], 'instructions': [[{'name': 'x', 'qubits': [0]}], [{'name': 'y', 'qubits': [0]}], [{'name': 'z', 'qubits': [0]}], [{'name': 'id', 'qubits': [0]}]], 'probabilities': [0.0011592423249461303, 0.0011592423249461303, 0.0011592423249461303, 0.9965222730251616], 'gate_qubits': [[4]]}, {'type': 'qerror', 'operations': ['u3'], 'instructions': [[{'name': 'x', 'qubits': [0]}], [{'name': 'y', 'qubits': [0]}], [{'name': 'z', 'qubits': [0]}], [{'name': 'id', 'qubits': [0]}]], 'probabilities': [0.0009443532335046134, 0.0009443532335046134, 0.0009443532335046134, 0.9971669402994862], 'gate_qubits': [[0]]}, {'type': 'qerror', 'operations': ['u3'], 'instructions': [[{'name': 'x', 'qubits': [0]}], [{'name': 'y', 'qubits': [0]}], [{'name': 'z', 'qubits': [0]}], [{'name': 'id', 'qubits': [0]}]], 'probabilities': [0.0010302181416348977, 0.0010302181416348977, 0.0010302181416348977, 0.9969093455750953], 'gate_qubits': [[1]]}, {'type': 'qerror', 'operations': ['u3'], 'instructions': [[{'name': 'x', 'qubits': [0]}], [{'name': 'y', 'qubits': [0]}], [{'name': 'z', 'qubits': [0]}], [{'name': 'id', 'qubits': [0]}]], 'probabilities': [0.0010302181416348977, 0.0010302181416348977, 0.0010302181416348977, 0.9969093455750953], 'gate_qubits': [[2]]}, {'type': 'qerror', 'operations': ['u3'], 'instructions': [[{'name': 'x', 'qubits': [0]}], [{'name': 'y', 'qubits': [0]}], [{'name': 'z', 'qubits': [0]}], [{'name': 'id', 'qubits': [0]}]], 'probabilities': [0.001803112096824766, 0.001803112096824766, 0.001803112096824766, 0.9945906637095256], 'gate_qubits': [[3]]}, {'type': 'qerror', 'operations': ['u3'], 'instructions': [[{'name': 'x', 'qubits': [0]}], [{'name': 'y', 'qubits': [0]}], [{'name': 'z', 'qubits': [0]}], [{'name': 'id', 'qubits': [0]}]], 'probabilities': [0.0023184846498922607, 0.0023184846498922607, 0.0023184846498922607, 0.9930445460503232], 'gate_qubits': [[4]]}, {'type': 'qerror', 'operations': ['cx'], 'instructions': [[{'name': 'x', 'qubits': [0]}], [{'name': 'y', 'qubits': [0]}], [{'name': 'z', 'qubits': [0]}], [{'name': 'x', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'y', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'z', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'id', 'qubits': [0]}]], 'probabilities': [0.002182844139394187, 0.002182844139394187, 0.002182844139394187, 0.002182844139394187, 0.002182844139394187, 0.002182844139394187, 0.002182844139394187, 0.002182844139394187, 0.002182844139394187, 0.002182844139394187, 0.002182844139394187, 0.002182844139394187, 0.002182844139394187, 0.002182844139394187, 0.002182844139394187, 0.9672573379090872], 'gate_qubits': [[1, 0]]}, {'type': 'qerror', 'operations': ['cx'], 'instructions': [[{'name': 'x', 'qubits': [0]}], [{'name': 'y', 'qubits': [0]}], [{'name': 'z', 'qubits': [0]}], [{'name': 'x', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'y', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'z', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'id', 'qubits': [0]}]], 'probabilities': [0.0020007412998552473, 0.0020007412998552473, 0.0020007412998552473, 0.0020007412998552473, 0.0020007412998552473, 0.0020007412998552473, 0.0020007412998552473, 0.0020007412998552473, 0.0020007412998552473, 0.0020007412998552473, 0.0020007412998552473, 0.0020007412998552473, 0.0020007412998552473, 0.0020007412998552473, 0.0020007412998552473, 0.9699888805021712], 'gate_qubits': [[2, 0]]}, {'type': 'qerror', 'operations': ['cx'], 'instructions': [[{'name': 'x', 'qubits': [0]}], [{'name': 'y', 'qubits': [0]}], [{'name': 'z', 'qubits': [0]}], [{'name': 'x', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'y', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'z', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'id', 'qubits': [0]}]], 'probabilities': [0.002485439516158936, 0.002485439516158936, 0.002485439516158936, 0.002485439516158936, 0.002485439516158936, 0.002485439516158936, 0.002485439516158936, 0.002485439516158936, 0.002485439516158936, 0.002485439516158936, 0.002485439516158936, 0.002485439516158936, 0.002485439516158936, 0.002485439516158936, 0.002485439516158936, 0.9627184072576159], 'gate_qubits': [[2, 1]]}, {'type': 'qerror', 'operations': ['cx'], 'instructions': [[{'name': 'x', 'qubits': [0]}], [{'name': 'y', 'qubits': [0]}], [{'name': 'z', 'qubits': [0]}], [{'name': 'x', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'y', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'z', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'id', 'qubits': [0]}]], 'probabilities': [0.0037502825428055767, 0.0037502825428055767, 0.0037502825428055767, 0.0037502825428055767, 0.0037502825428055767, 0.0037502825428055767, 0.0037502825428055767, 0.0037502825428055767, 0.0037502825428055767, 0.0037502825428055767, 0.0037502825428055767, 0.0037502825428055767, 0.0037502825428055767, 0.0037502825428055767, 0.0037502825428055767, 0.9437457618579164], 'gate_qubits': [[3, 2]]}, {'type': 'qerror', 'operations': ['cx'], 'instructions': [[{'name': 'x', 'qubits': [0]}], [{'name': 'y', 'qubits': [0]}], [{'name': 'z', 'qubits': [0]}], [{'name': 'x', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'y', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'z', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'id', 'qubits': [0]}]], 'probabilities': [0.004401224333760022, 0.004401224333760022, 0.004401224333760022, 0.004401224333760022, 0.004401224333760022, 0.004401224333760022, 0.004401224333760022, 0.004401224333760022, 0.004401224333760022, 0.004401224333760022, 0.004401224333760022, 0.004401224333760022, 0.004401224333760022, 0.004401224333760022, 0.004401224333760022, 0.9339816349935997], 'gate_qubits': [[3, 4]]}, {'type': 'qerror', 'operations': ['cx'], 'instructions': [[{'name': 'x', 'qubits': [0]}], [{'name': 'y', 'qubits': [0]}], [{'name': 'z', 'qubits': [0]}], [{'name': 'x', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'x', 'qubits': [1]}], [{'name': 'y', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'y', 'qubits': [1]}], [{'name': 'z', 'qubits': [1]}], [{'name': 'x', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'y', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'z', 'qubits': [0]}, {'name': 'z', 'qubits': [1]}], [{'name': 'id', 'qubits': [0]}]], 'probabilities': [0.0046188825262438934, 0.0046188825262438934, 0.0046188825262438934, 0.0046188825262438934, 0.0046188825262438934, 0.0046188825262438934, 0.0046188825262438934, 0.0046188825262438934, 0.0046188825262438934, 0.0046188825262438934, 0.0046188825262438934, 0.0046188825262438934, 0.0046188825262438934, 0.0046188825262438934, 0.0046188825262438934, 0.9307167621063416], 'gate_qubits': [[4, 2]]}, {'type': 'roerror', 'operations': ['measure'], 'probabilities': [[0.9372499999999999, 0.06275000000000008], [0.06275000000000008, 0.9372499999999999]], 'gate_qubits': [[0]]}, {'type': 'roerror', 'operations': ['measure'], 'probabilities': [[0.9345, 0.0655], [0.0655, 0.9345]], 'gate_qubits': [[1]]}, {'type': 'roerror', 'operations': ['measure'], 'probabilities': [[0.97075, 0.029249999999999998], [0.029249999999999998, 0.97075]], 'gate_qubits': [[2]]}, {'type': 'roerror', 'operations': ['measure'], 'probabilities': [[0.9742500000000001, 0.02574999999999994], [0.02574999999999994, 0.9742500000000001]], 'gate_qubits': [[3]]}, {'type': 'roerror', 'operations': ['measure'], 'probabilities': [[0.8747499999999999, 0.12525000000000008], [0.12525000000000008, 0.8747499999999999]], 'gate_qubits': [[4]]}], 'x90_gates': []} noise_model = noise.noise_model.NoiseModel.from_dict( noise_dict ) qr = QuantumRegister(5, 'qr') cr = ClassicalRegister(1, 'cr') backend = Aer.get_backend('qasm_simulator') def AND (input1,input2, q_1=0,q_2=1,q_out=2): # The keyword q_1 specifies the qubit used to encode input1 # The keyword q_2 specifies qubit used to encode input2 # The keyword q_out specifies qubit to be as output qc = QuantumCircuit(qr, cr) # prepare input on qubits q1 and q2 if input1=='1': qc.x( qr[ q_1 ] ) if input2=='1': qc.x( qr[ q_2 ] ) qc.ccx(qr[ q_1 ],qr[ q_2 ],qr[ q_out ]) # the AND just needs a c qc.measure(qr[ q_out ],cr[0]) # output from qubit 1 is measured # the circuit is run on a simulator, but we do it so that the noise and connectivity of Tenerife are also reproduced job = execute(qc, backend, shots=10000, noise_model=noise_model, coupling_map=coupling_map, basis_gates=noise_model.basis_gates) output = job.result().get_counts() return output result = AND('0','0') print( result ) plot_histogram( result ) worst = 1 for input1 in ['0','1']: for input2 in ['0','1']: print('\nProbability of correct answer for inputs',input1,input2) prob = AND(input1,input2, q_1=0,q_2=1,q_out=2)[str(int( input1=='1' and input2=='1' ))]/10000 print( prob ) worst = min(worst,prob) print('\nThe lowest of these probabilities was',worst) for j in range(5): qc = QuantumCircuit(qr, cr) qc.measure(qr[j],cr[0]) job = execute(qc, backend, shots=10000, noise_model=noise_model, coupling_map=coupling_map, basis_gates=noise_model.basis_gates) output = job.result().get_counts() print('Probability of incorrect output for qubit',j,'is',output['1']/10000) worst = 1 for input1 in ['0','1']: for input2 in ['0','1']: print('\nProbability of correct answer for inputs',input1,input2) prob = AND(input1,input2, q_1=3,q_2=4,q_out=2)[str(int( input1=='1' and input2=='1' ))]/10000 print( prob ) worst = min(worst,prob) print('\nThe lowest of these probabilities was',worst) def AND (input1,input2, q_1=0,q_2=1,q_out=2): # The keyword q_1 specifies the qubit used to encode input1 # The keyword q_2 specifies qubit used to encode input2 # The keyword q_out specifies qubit to be as output qc = QuantumCircuit(qr, cr) # prepare input on qubits q1 and q2 if input1=='1': qc.x( qr[ q_1 ] ) if input2=='1': qc.x( qr[ q_2 ] ) qc.ch(qr[q_1],qr[q_out]) qc.cz(qr[q_2],qr[q_out]) qc.ch(qr[q_1],qr[q_out]) qc.measure(qr[ q_out ],cr[0]) # output from qubit 1 is measured # the circuit is run on a simulator, but we do it so that the noise and connectivity of Tenerife are also reproduced job = execute(qc, backend, shots=10000, noise_model=noise_model, coupling_map=coupling_map, basis_gates=noise_model.basis_gates) output = job.result().get_counts() return output worst = 1 for input1 in ['0','1']: for input2 in ['0','1']: print('\nProbability of correct answer for inputs',input1,input2) prob = AND(input1,input2, q_1=0,q_2=1,q_out=2)[str(int( input1=='1' and input2=='1' ))]/10000 print( prob ) worst = min(worst,prob) print('\nThe lowest of these probabilities was',worst) qc = QuantumCircuit(qr, cr) qc.ch(qr[1],qr[0]) print('Original circuit') print(qc) print('Compiled circuit') qc_compiled = transpile(qc,backend=backend) print(qc_compiled) def AND (input1,input2, q_1=0,q_2=1,q_out=2): # The keyword q_1 specifies the qubit used to encode input1 # The keyword q_2 specifies qubit used to encode input2 # The keyword q_out specifies qubit to be as output qc = QuantumCircuit(qr, cr) # prepare input on qubits q1 and q2 if input1=='1': qc.x( qr[ q_1 ] ) if input2=='1': qc.x( qr[ q_2 ] ) qc.ry(-np.pi/4,qr[q_out]) qc.cx(qr[q_1],qr[q_out]) qc.ry(np.pi/4,qr[q_out]) qc.cz(qr[q_2],qr[q_out]) qc.ry(-np.pi/4,qr[q_out]) qc.cx(qr[q_1],qr[q_out]) qc.ry(np.pi/4,qr[q_out]) qc.measure(qr[ q_out ],cr[0]) # output from qubit 1 is measured # the circuit is run on a simulator, but we do it so that the noise and connectivity of Tenerife are also reproduced job = execute(qc, backend, shots=10000, noise_model=noise_model, coupling_map=coupling_map, basis_gates=noise_model.basis_gates) output = job.result().get_counts() return output worst = 1 for input1 in ['0','1']: for input2 in ['0','1']: print('\nProbability of correct answer for inputs',input1,input2) prob = AND(input1,input2, q_1=0,q_2=1,q_out=2)[str(int( input1=='1' and input2=='1' ))]/10000 print( prob ) worst = min(worst,prob) print('\nThe lowest of these probabilities was',worst)
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import pandas as pd import itertools import cma import os import sys import argparse import pickle import random import re from pprint import pprint import qiskit from qiskit import * from qiskit import Aer from qiskit import IBMQ from qiskit.providers.aer.noise.noise_model import NoiseModel from qiskit.test.mock import * from qiskit.providers.aer import AerSimulator, QasmSimulator from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter import mitiq IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst') provider = IBMQ.get_provider(hub='', group='internal', project='hirashi-jst') print("provider:", provider) L = 3 p = 2 dt = 1.0 tf = 20 shots = 8192 def TwirlCircuit(circ: str) -> QuantumCircuit: """ そのまま使う: 修正は後回し """ #! qasm ベタ書き def apply_pauli(num: int, qb: int) -> str: if (num == 0): return f'id q[{qb}];\n' elif (num == 1): return f'x q[{qb}];\n' elif (num == 2): return f'y q[{qb}];\n' else: return f'z q[{qb}];\n' paulis = [(i,j) for i in range(0,4) for j in range(0,4)] paulis.remove((0,0)) paulis_map = [(0, 1), (3, 2), (3, 3), (1, 1), (1, 0), (2, 3), (2, 2), (2, 1), (2, 0), (1, 3), (1, 2), (3, 0), (3, 1), (0, 2), (0, 3)] new_circ = '' ops = circ.qasm().splitlines(True) #! 生のqasmコードを持ってきてる: オペレータに分解 for op in ops: if (op[:2] == 'cx'): # can add for cz, etc. num = random.randrange(len(paulis)) #! permute paulis qbs = re.findall('q\[(.)\]', op) new_circ += apply_pauli(paulis[num][0], qbs[0]) new_circ += apply_pauli(paulis[num][1], qbs[1]) new_circ += op new_circ += apply_pauli(paulis_map[num][0], qbs[0]) new_circ += apply_pauli(paulis_map[num][1], qbs[1]) else: new_circ += op return qiskit.circuit.QuantumCircuit.from_qasm_str(new_circ) # とりあえずOK def evolve(alpha: float, q0: Union[int, QuantumRegister], q1: Union[int, QuantumRegister]) -> QuantumCircuit: """ The implementation of Fig. 4 in https://arxiv.org/abs/2112.12654 """ qc = QuantumCircuit(2) qc.rz(-np.pi / 2, q1) qc.cnot(q1, q0) qc.rz(alpha - np.pi / 2, q0) qc.ry(np.pi / 2 - alpha, q1) qc.cnot(q0, q1) qc.ry(alpha - np.pi / 2, q1) qc.cnot(q1, q0) qc.rz(np.pi / 2, q0) return qc # とりあえずOK def make_ansatz_circuit(num_qubits: int, ansatz_depth: int, parameters: np.array) -> QuantumCircuit: """ Prepare ansatz circuit code reference: https://gitlab.com/QANED/heis_dynamics method reference: https://arxiv.org/abs/1906.06343 == AnsatzCircuit(param, p) -> QuantumCircuit Args: parameters: 1d array (for 2d parameters on circuit) """ qc = QuantumCircuit(num_qubits) for l in range(ansatz_depth): if num_qubits & 1: for i in range(0, num_qubits, 2): # linear condition qc.compose(evolve(parameters[l * ansatz_depth + i] / 4), [i, i + 1], inplace = True) #! we do not have to divide the angle by 4 for i in range(1, num_qubits - 1, 2): # linear condition # ! we do not have to divide the angle by 4 qc.compose(evolve(parameters[l * ansatz_depth + i] / 4), [i, i + 1], inplace=True) else: for i in range(0, num_qubits - 1, 2): # linear condition # ! we do not have to divide the angle by 4 qc.compose(evolve(parameters[l * ansatz_depth + i]), [i, i + 1], inplace=True) for i in range(1, num_qubits - 1, 2): # linear condition # ! we do not have to divide the angle by 4 qc.compose(evolve(parameters[l * ansatz_depth + i]), [i, i + 1], inplace=True) return qc # とりあえずOK def make_trotter_circuit(num_qubits: int, time_interval: float) -> QuantumCircuit: """ Prepare Trotter circuit code reference: https://gitlab.com/QANED/heis_dynamics method reference: https://arxiv.org/abs/1906.06343 == TrotterEvolveCircuit(dt, nt, init) -> QuantumCircuit """ qc = QuantumCircuit(num_qubits) for n in range(trotter_steps): #! time_interval の符号に注意 if num_qubits & 1: for i in range(0, num_qubits, 2): # linear condition qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) #! we do not have to divide the angle by 4 for i in range(1, num_qubits - 1, 2): # linear condition qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) # ! we do not have to divide the angle by 4 else: for i in range(0, num_qubits - 1, 2): # linear condition qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) #! we do not have to divide the angle by 4 for i in range(1, num_qubits - 1, 2): # linear condition qc.compose(evolve(time_interval / 4), [i, i + 1], inplace = True) # ! we do not have to divide the angle by 4 return qc #TODO VTCとは別実装?→ no, 同じ実装に。 def SimulateAndReorder(circ): """ #! execution wrapper Executes a circuit using the statevector simulator and reorders basis to match with standard """ backend = Aer.get_backend('statevector_simulator') return execute(circ.reverse_bits(), backend).result().get_statevector() def Simulate(circ): """ #! execution wrapper Executes a circuit using the statevector simulator. Doesn't reorder -- which is needed for intermediate steps in the VTC """ backend = Aer.get_backend('statevector_simulator') return execute(circ, backend).result().get_statevector() #TODO def LoschmidtEchoExecutor(circuits, backend, shots, filter): """ #! 回路を実行 Returns the expectation value to be mitigated. :param circuit: Circuit to run. #! ここでのcircuitsは :param backend: backend to run the circuit on :param shots: Number of times to execute the circuit to compute the expectation value. :param fitter: measurement error mitigator """ # circuits = [TwirlCircuit(circ) for circ in circuits] scale_factors = [1.0, 2.0, 3.0] #! ZNEのノイズスケーリングパラメタ folded_circuits = [] #! ZNE用の回路 for circuit in circuits: folded_circuits.append([mitiq.zne.scaling.fold_gates_at_random(circuit, scale) for scale in scale_factors]) #! ここでmitiqを使用 folded_circuits = list(itertools.chain(*folded_circuits)) #! folded_circuitsを平坦化 folded_circuits = [TwirlCircuit(circ) for circ in folded_circuits] #! 後からPauli Twirlingを施す! print("length of circuit in job", len(folded_circuits)) #! jobを投げる job = qiskit.execute( experiments=folded_circuits, backend=backend, optimization_level=0, shots=shots ) print("casted job") #! fidelity測定用(VTCをしないなら、ここはtomographyで良い) c = ['1','1','0'] #! これをpermutationする # c = [str((1 + (-1)**(i+1)) // 2) for i in range(L)] c = ''.join(c)[::-1] #! endianを反転 (big endianへ) res = job.result() if (filter is not None): #! QREM res = filter.apply(res) print("retrieved job") all_counts = [job.result().get_counts(i) for i in range(len(folded_circuits))] expectation_values = [] for counts in all_counts: total_allowed_shots = [counts.get(''.join(p)) for p in set(itertools.permutations(c))] #! ここでcをpermutationしている total_allowed_shots = sum([0 if x is None else x for x in total_allowed_shots]) if counts.get(c) is None: expectation_values.append(0) else: expectation_values.append(counts.get(c)/total_allowed_shots) # expectation_values = [counts.get(c) / shots for counts in all_counts] zero_noise_values = [] if isinstance(backend, qiskit.providers.aer.backends.qasm_simulator.QasmSimulator): # exact_sim for i in range(len(circuits)): zero_noise_values.append(np.mean(expectation_values[i*len(scale_factors):(i+1)*len(scale_factors)])) else: #device_sim, real_device fac = mitiq.zne.inference.LinearFactory(scale_factors) for i in range(len(circuits)): zero_noise_values.append(fac.extrapolate(scale_factors, expectation_values[i*len(scale_factors):(i+1)*len(scale_factors)])) print("zero_noise_values") pprint(zero_noise_values) print() return zero_noise_values #TODO def LoschmidtEchoCircuit(params, U_v, U_trot, init, p): """ #! 回路を作成 Cost function using the Loschmidt Echo. Just using statevectors currently -- can rewrite using shots :param params: parameters new variational circuit that represents U_trot U_v | init >. Need dagger for cost function :param U_v: variational circuit that stores the state before the trotter step :param U_trot: trotter step :param init: initial state :param p: number of ansatz steps """ U_v_prime = AnsatzCircuit(params, p) circ = init + U_v + U_trot + U_v_prime.inverse() circ.measure_all() return circ def LoschmidtEcho(params, U_v, U_trot, init, p, backend, shots, filter): """ #! 実行パート """ circs = [] for param in params: circs.append(LoschmidtEchoCircuit(param, U_v, U_trot, init, p)) #! 回路を作成 print("length of circuits without zne:", len(circs)) res = LoschmidtEchoExecutor(circs, backend, shots, filter) #! 回路を実行 return abs(1 - np.array(res)) def LoschmidtEchoExact(params, U_v, U_trot, init, p): """ #! unused function """ U_v_prime = AnsatzCircuit(params, p) circ = init + U_v + U_trot + U_v_prime.inverse() circ_vec = Simulate(circ) init_vec = Simulate(init) return 1 - abs(np.conj(circ_vec) @ init_vec)**2 def CMAES(U_v, U_trot, init, p, backend, shots, filter): """ #! 実行 + 最適化パート """ init_params = np.random.uniform(0, 2*np.pi, (L-1)*p) es = cma.CMAEvolutionStrategy(init_params, np.pi/2) es.opts.set({'ftarget':5e-3, 'maxiter':1000}) # es = pickle.load(open(f'./results_{L}/optimizer_dump', 'rb')) while not es.stop(): #! 最適化パート # solutions = es.ask(25) # ! 25 = number of returned solutions solutions = es.ask(10) print("solutions") pprint(solutions) es.tell(solutions, LoschmidtEcho(solutions, U_v, U_trot, init, p, backend, shots, filter)) #! 実行パート # es.tell(solutions, LoschmidtEchoExact(solutions, U_v, U_trot, init, p)) #! 実行パート es.disp() open(f'./results_{L}/optimizer_dump', 'wb').write(es.pickle_dumps()) return es.result_pretty() def VTC(tf, dt, p, init, backend, shots, filter): """ #! tf: 総経過時間 #! dt: trotter step size: 時間間隔 #! p: ansatzのステップ数 """ VTCParamList = [np.zeros((L-1)*p)] #! デフォルトのパラメタ(初期値) VTCStepList = [SimulateAndReorder(init.copy())] #! type: List[Statevector] # TrotterFixStepList = [init] TimeStep = [0] if (os.path.exists(f'./results_{L}/VTD_params_{tf}_{L}_{p}_{dt}_{shots}.csv')): #! 2巡目からこっち VTCParamList = pd.read_csv(f'./results_{L}/VTD_params_{tf}_{L}_{p}_{dt}_{shots}.csv', index_col=0) VTCStepList = pd.read_csv(f'./results_{L}/VTD_results_{tf}_{L}_{p}_{dt}_{shots}.csv', index_col=0) temp = VTCParamList.iloc[-1] print(temp, "th time interval") U_v = AnsatzCircuit(temp, p) else: #! 最初はこっちに入る VTCParamList = pd.DataFrame(np.array(VTCParamList), index=np.array(TimeStep)) VTCStepList = pd.DataFrame(np.array(VTCStepList), index=np.array(TimeStep)) print("0 th time interval") print() U_v = QuantumCircuit(L) ts = VTCParamList.index #! 時間間隔 U_trot = TrotterEvolveCircuit(dt, p, QuantumCircuit(L)) #! Trotter分解のunitaryを作る print() print("start CMAES") print() res = CMAES(U_v, U_trot, init, p, backend, shots, filter) #! ここでプロセスを実行!!!! print() print("res") pprint(res) #! 新しいループ結果を追加し、tsを更新 res = res.xbest # ! best solution evaluated print("res.xbest") pprint(res) VTCParamList.loc[ts[-1]+(dt*p)] = np.array(res) VTCStepList.loc[ts[-1]+(dt*p)] = np.array(SimulateAndReorder(init + AnsatzCircuit(res, p))) ts = VTCParamList.index # VTCParamList = pd.DataFrame(np.array(VTCParamList), index=np.array(TimeStep)) # VTCStepList = pd.DataFrame(np.array(VTCStepList), index=np.array(TimeStep)) #! csvファイルを更新 VTCParamList.to_csv(f'./results_{L}/VTD_params_{tf}_{L}_{p}_{dt}_{shots}.csv') VTCStepList.to_csv(f'./results_{L}/VTD_results_{tf}_{L}_{p}_{dt}_{shots}.csv') if (ts[-1] >= tf): return else: print("next step") VTC(tf, dt, p, init, backend, shots, filter) #! ここからQREM回路 qr = QuantumRegister(L) meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') # device_backend = FakeJakarta() # device_sim = AerSimulator.from_backend(device_backend) real_device = provider.get_backend('ibmq_jakarta') noise_model = NoiseModel.from_backend(real_device) device_sim = QasmSimulator(method='statevector', noise_model=noise_model) exact_sim = Aer.get_backend('qasm_simulator') # QasmSimulator(method='statevector') t_qc = transpile(meas_calibs) qobj = assemble(t_qc, shots=8192) # cal_results = real_device.run(qobj, shots=8192).result() cal_results = device_sim.run(qobj, shots=8192).result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') print("qrem done") # np.around(meas_fitter.cal_matrix, decimals=2) init = QuantumCircuit(L) # c = [str((1 + (-1)**(i+1)) // 2) for i in range(L)] c = ['1','1','0'] #! なぜinitial stateが110なの??????? もしかしてopen science prizeを意識??? #! けどループでこのプログラムが実行されるたびにここが|110>だとおかしくないか? for q in range(len(c)): if (c[q] == '1'): init.x(q) #! ここまでQREM回路 nt = int(np.ceil(tf / (dt * p))) # f = open(f'./results_{L}/logging.txt', 'a') # sys.stdout = f #! tf: シミュレーションの(経過)時間 #! dt: trotter分解のステップ数 #! p: ansatzのステップ数 (論文中のL) # VTC(tf, dt, p, init, real_device, shots, meas_fitter.filter) #! mainの処理 print("vtc start!!!! \n\n\n") VTC(tf, dt, p, init, device_sim, shots, meas_fitter.filter) #! mainの処理 # f.close()
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * # Para representar o qubit em uma esfera de bloch devemos pensar nele na seguinte forma: # Depois de encontrar o theta, phi que desejamos, vamos ter os valores necessários para plotar nossa # esfera de bloch # Para plotar precisamos chamar a função plot_bloch_vector_spherical() que leva como parâmetro # o vetor de bloch # para encontrar o vetor de bloch seguimos a fórmula # Para o exemplo vamos usar o qubit no estado |+> que fica da seguinte forma: # Para conseguir representar esse estado no formato dado anteriormente vamos precisar # de um theta valendo pi/2 e de um phi valendo 0 # portanto vamos ter o vetor de bloch como (1,0,0) # Finalmente podemos exibir a esfera de bloch from qiskit.visualization import plot_bloch_vector %matplotlib inline plot_bloch_vector([1,0,0], title="Minha Primeira Esfera de Bloch")
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram problem = QuadraticProgram("sample") problem.binary_var("x") problem.binary_var("y") problem.maximize(linear={"x": 1, "y": -2}) print(problem.prettyprint()) from qiskit.algorithms import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = QAOA(optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer shots = 1000 mes = QAOA(sampler=Sampler(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = VQE(ansatz=RealAmplitudes(), optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = SamplingVQE(sampler=Sampler(), ansatz=RealAmplitudes(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Estimator from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = VQE(estimator=Estimator(), ansatz=RealAmplitudes(), optimizer=COBYLA()) try: meo = MinimumEigenOptimizer(min_eigen_solver=mes) except TypeError as ex: print(ex) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) qaoa = QAOA(optimizer=COBYLA(), quantum_instance=qins) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA()) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, quantum_instance=qins) result = optimizer.solve(problem) print(result) from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, sampler=Sampler()) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) try: optimizer = GroverOptimizer( num_value_qubits=3, num_iterations=3, quantum_instance=qins, sampler=Sampler() ) # raises an error because both quantum_instance and sampler are set. except ValueError as ex: print(ex) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/WhenTheyCry96/qiskitHackathon2022
WhenTheyCry96
%load_ext autoreload %autoreload 2 import os import warnings import numpy as np import pandas as pd import qiskit_metal as metal from numpy import pi from scipy.constants import c, h, pi, hbar, e from qiskit_metal import designs, draw, MetalGUI, Dict, Headings from qiskit_metal.qlibrary.qubits.transmon_pocket_6 import TransmonPocket6 from qiskit_metal.qlibrary.qubits.transmon_pocket_cl import TransmonPocketCL from qiskit_metal.qlibrary.tlines.meandered import RouteMeander from qiskit_metal.qlibrary.terminations.open_to_ground import OpenToGround from qiskit_metal.qlibrary.lumped.cap_3_interdigital import Cap3Interdigital from qiskit_metal.qlibrary.terminations.launchpad_wb_coupled import LaunchpadWirebondCoupled from qiskit_metal.analyses.em.cpw_calculations import guided_wavelength from qiskit_metal.analyses.quantization import LOManalysis, EPRanalysis from qiskit_metal.analyses.quantization.lumped_capacitive import load_q3d_capacitance_matrix from qiskit_metal.analyses.quantization.lom_core_analysis import CompositeSystem, Cell, Subsystem, QuantumSystemRegistry ws_path = os.getcwd() warnings.filterwarnings("ignore") design = designs.DesignPlanar() design.overwrite_enabled = True #constants: phi0 = h/(2*e) varphi0 = phi0/(2*pi) # project target parameters f_qList = np.around(np.linspace(5.25, 5.75, 4),2) # GHz f_rList = f_qList + 1.8 # GHz L_JJList = np.around(varphi0**2/((f_qList*1e9+300e6)**2/(8*300e6))/h*1e9, 2) # nH # initial CPW readout lengths def find_resonator_length(frequency, line_width, line_gap, N): #frequency in GHz #line_width/line_gap in um #N -> 2 for lambda/2, 4 for lambda/4 [lambdaG, etfSqrt, q] = guided_wavelength(frequency*10**9, line_width*10**-6, line_gap*10**-6, 750*10**-6, 200*10**-9) return str(lambdaG/N*10**3)+" mm" find_resonator_length(f_rList, 10, 6, 2) find_resonator_length(np.around(np.linspace(8, 9, 4),2), 10, 6, 2) chipX = 9 chipY = 9 design.chips.main.size_x = str(chipX)+"mm" design.chips.main.size_y = str(chipY)+"mm" gui = MetalGUI(design) design.delete_all_components() # basic parameters for inital cut C_JJ = 2 pad_g = 30 pad_w = 450 pad_h = 150 readout_g = 30 buslineL_g = 30 buslineH_g = 30 C_JJU = str(C_JJ)+"fF" pad_g = str(pad_g)+"um" pad_w = str(pad_w)+"um" pad_h = str(pad_h)+"um" readout_g = str(readout_g)+"um" buslineL_g = str(buslineL_g)+"um" buslineH_g = str(buslineH_g)+"um" connector1_pads_options = dict( cR = dict(loc_W=0, loc_H=1, pad_width='80 um', pad_gap=readout_g, pad_height='30 um'), # readout resonator cL = dict(loc_W=1, loc_H=-1, pad_width='80 um', pad_gap=buslineL_g, pad_height='30 um'), # bus line for lower frequency cH = dict(loc_W=-1, loc_H=-1, pad_width='80 um', pad_gap=buslineH_g, pad_height='30 um') # bus line for higher frequency ) connector2_pads_options = dict( cR = dict(loc_W=0, loc_H=1, pad_width='80 um', pad_gap=readout_g, pad_height='30 um'), # readout resonator cL = dict(loc_W=1, loc_H=-1, pad_width='80 um', pad_gap=buslineL_g, pad_height='30 um'), # bus line for lower frequency cH = dict(loc_W=-1, loc_H=-1, pad_width='80 um', pad_gap=buslineH_g, pad_height='30 um') # bus line for higher frequency ) connector3_pads_options = dict( cR = dict(loc_W=0, loc_H=1, pad_width='80 um', pad_gap=readout_g, pad_height='30 um'), # readout resonator cL = dict(loc_W=1, loc_H=-1, pad_width='80 um', pad_gap=buslineL_g, pad_height='30 um'), # bus line for lower frequency cH = dict(loc_W=-1, loc_H=-1, pad_width='80 um', pad_gap=buslineH_g, pad_height='30 um') # bus line for higher frequency ) connector4_pads_options = dict( cR = dict(loc_W=0, loc_H=1, pad_width='80 um', pad_gap=readout_g, pad_height='30 um'), # readout resonator cL = dict(loc_W=1, loc_H=-1, pad_width='80 um', pad_gap=buslineL_g, pad_height='30 um'), # bus line for lower frequency cH = dict(loc_W=-1, loc_H=-1, pad_width='80 um', pad_gap=buslineH_g, pad_height='30 um') # bus line for higher frequency ) # target f: 5.25 connection1_pads_options = dict( B1 = dict(loc_W=1, loc_H=-1), R= dict(loc_W=1, loc_H=1), B2 = dict(loc_W=-1, loc_H=-1) ) Q1 = TransmonPocketCL(design, 'Q1', options=dict(pos_x=f'0mm', pos_y=f'0mm', pad_gap = pad_g, pad_width = pad_w, pad_height = pad_h, orientation=0, connection_pads=dict(**connection1_pads_options))) gui.rebuild() gui.autoscale() from qiskit_metal.analyses.quantization import EPRanalysis eig_qres = EPRanalysis(design, "hfss") hfss = eig_qres.sim.renderer hfss.start() hfss.activate_ansys_design("Q1Readout", 'eigenmode') hfss.render_design(['Q1'], []) # Analysis properties setup = hfss.pinfo.setup setup.n_modes = 1 setup.passes = 10 setup.box_plus_buffer =True print(f""" Number of eigenmodes to find = {setup.n_modes} Number of simulation passes = {setup.passes} Convergence freq max delta percent diff = {setup.delta_f} """) pinfo = hfss.pinfo pinfo.design.set_variable('Lj', str(L_JJList[0])+'nH') pinfo.design.set_variable('Cj', C_JJU) setup.analyze() eig_qres.sim.convergence_t, eig_qres.sim.convergence_f, _ = hfss.get_convergences() eig_qres.sim.plot_convergences() import pyEPR as epr pinfo = hfss.pinfo pinfo.junctions['jj'] = {'Lj_variable': 'Lj', 'rect': 'JJ_rect_Lj_Q1_rect_jj', 'line': 'JJ_Lj_Q1_rect_jj_', 'Cj_variable': 'Cj'} pinfo.validate_junction_info() # Check that valid names of variables and objects have been supplied pinfo.dissipative['dielectrics_bulk'] = ['main'] # Dissipative elements: specify eprd = epr.DistributedAnalysis(pinfo) print(eprd) ℰ_elec = eprd.calc_energy_electric() ℰ_elec_substrate = eprd.calc_energy_electric(None, 'main') ℰ_mag = eprd.calc_energy_magnetic() print(f""" ℰ_elec_all = {ℰ_elec} ℰ_elec_substrate = {ℰ_elec_substrate} EPR of substrate = {ℰ_elec_substrate / ℰ_elec * 100 :.1f}% ℰ_mag_all = {ℰ_mag} ℰ_mag % of ℰ_elec_all = {ℰ_mag / ℰ_elec * 100 :.1f}% """) eprd.do_EPR_analysis() # 4a. Perform Hamiltonian spectrum post-analysis, building on mw solutions using EPR epra = epr.QuantumAnalysis(eprd.data_filename) epra.analyze_all_variations(cos_trunc = 8, fock_trunc = 7) hfss.modeler._modeler.ShowWindow() hfss.plot_fields('main')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() print(problem) hamiltonian = problem.hamiltonian coefficients = hamiltonian.electronic_integrals print(coefficients.alpha) second_q_op = hamiltonian.second_q_op() print(second_q_op) hamiltonian.nuclear_repulsion_energy # NOT included in the second_q_op above problem.molecule problem.reference_energy problem.num_particles problem.num_spatial_orbitals problem.basis problem.properties problem.properties.particle_number problem.properties.angular_momentum problem.properties.magnetization problem.properties.electronic_dipole_moment from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import JordanWignerMapper solver = GroundStateEigensolver( JordanWignerMapper(), NumPyMinimumEigensolver(), ) result = solver.solve(problem) print(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/aryashah2k/Quantum-Computing-Collection-Of-Resources
aryashah2k
%matplotlib inline from qiskit import * from qiskit.visualization import * from qiskit.tools.monitor import * import random, time # We will create a random qubit by directly assigning random amplitudes a1 = random.random()*2 -1 #Uniform number in [-1,1] a2 = random.random()*2 -1 b1 = random.random()*2 -1 b2 = random.random()*2 -1 # We need to normalize norm = (a1**2 + a2**2 + b1**2 + b2**2)**0.5 c1 = complex(a1/norm,a2/norm) #Amplitude for |0> c2 = complex(b1/norm,b2/norm) #Amplitude for |1> psi = QuantumRegister(1, name = 'psi') # The qubit to teleport bell = QuantumRegister(2, name = 'bell') # The shared entangled pair c = ClassicalRegister(2, name = 'c') # Two classical bits for the measures teleport = QuantumCircuit(psi,bell,c) # We create the circuit with the two quantum registers and the classical bits teleport.initialize([c1,c2],psi) # We set the amplitudes for Alice's quibt teleport.barrier() print("Alice's qubit is:") print(c1,"|0> + ", c2,"|1>") # Now we create the Bell pair teleport.h(bell[0]) teleport.cx(bell[0],bell[1]) teleport.barrier() # We apply CNOT to |psi> and Alice's part of the entangled pair # We also apply the H gate # Then, Alice measure her qubits and send the results to Bob teleport.cx(psi,bell[0]) teleport.h(psi) teleport.measure([psi[0],bell[0]],c) teleport.barrier() # Bob applies his gates depending on the values received from Alice teleport.cx(bell[0],bell[1]) teleport.cz(psi,bell[1]) teleport.draw(output='mpl') # We run the circuit and access the amplitudes to check that Bob got the qubit backend = Aer.get_backend('statevector_simulator') job = execute(teleport, backend) outputstate = job.result().get_statevector() print(outputstate) # We start by creating the Bell pair that Alice and Bob share bell = QuantumRegister(2, name = 'bell') # We need two qubits c = ClassicalRegister(2) # And two bits for the measurements dense = QuantumCircuit(bell,c) dense.h(bell[0]) dense.cx(bell[0],bell[1]) dense.barrier() # We randomly choose which bits to send b1 = random.randint(0,1) b2 = random.randint(0,1) print("Alice wants to send ",b1,b2) # And we apply the gates accordingly if(b2==1): dense.x(bell[0]) if(b1==1): dense.z(bell[0]) dense.barrier() dense.draw(output='mpl') # Alice sends her qubit to Bob, who applies his gates and measures dense.cx(bell[0],bell[1]) dense.h(bell[0]) dense.barrier() dense.measure(bell,c) dense.draw(output='mpl') # Let us run the circuit backend = Aer.get_backend('qasm_simulator') job = execute(dense, backend, shots = 1, memory = True) result = job.result().get_memory() print("Bob has received ",int(result[0][1]),int(result[0][0]))
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
https://github.com/Alfaxad/IBM_QC_Africa_2021
Alfaxad
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, execute from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.providers.aer import QasmSimulator backend = Aer.get_backend('statevector_simulator') qc1 = QuantumCircuit(4) # perform gate operations on individual qubits qc1.x(0) qc1.y(1) qc1.z(2) qc1.s(3) # Draw circuit qc1.draw() # Plot blochshere out1 = execute(qc1,backend).result().get_statevector() plot_bloch_multivector(out1) qc2 = QuantumCircuit(4) # initialize qubits qc2.x(range(4)) # perform gate operations on individual qubits qc2.x(0) qc2.y(1) qc2.z(2) qc2.s(3) # Draw circuit qc2.draw() # Plot blochshere out2 = execute(qc2,backend).result().get_statevector() plot_bloch_multivector(out2) qc3 = QuantumCircuit(4) # initialize qubits qc3.h(range(4)) # perform gate operations on individual qubits qc3.x(0) qc3.y(1) qc3.z(2) qc3.s(3) # Draw circuit qc3.draw() # Plot blochshere out3 = execute(qc3,backend).result().get_statevector() plot_bloch_multivector(out3) qc4 = QuantumCircuit(4) # initialize qubits qc4.x(range(4)) qc4.h(range(4)) # perform gate operations on individual qubits qc4.x(0) qc4.y(1) qc4.z(2) qc4.s(3) # Draw circuit qc4.draw() # Plot blochshere out4 = execute(qc4,backend).result().get_statevector() plot_bloch_multivector(out4) qc5 = QuantumCircuit(4) # initialize qubits qc5.h(range(4)) qc5.s(range(4)) # perform gate operations on individual qubits qc5.x(0) qc5.y(1) qc5.z(2) qc5.s(3) # Draw circuit qc5.draw() # Plot blochshere out5 = execute(qc5,backend).result().get_statevector() plot_bloch_multivector(out5) qc6 = QuantumCircuit(4) # initialize qubits qc6.x(range(4)) qc6.h(range(4)) qc6.s(range(4)) # perform gate operations on individual qubits qc6.x(0) qc6.y(1) qc6.z(2) qc6.s(3) # Draw circuit qc6.draw() # Plot blochshere out6 = execute(qc6,backend).result().get_statevector() plot_bloch_multivector(out6) import qiskit qiskit.__qiskit_version__
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/Pitt-JonesLab/clonk_transpilation
Pitt-JonesLab
import numpy as np import qiskit from qiskit import QuantumCircuit sys.path.append("..") from external.NuOp.parallel_two_qubit_gate_decomposition import * from external.NuOp.gates_numpy import ( cnot_gate, fsim_gate, cphase_gate, xy_gate, get_gate_unitary_qiskit, iswap, fsim, ) from itertools import product from qiskit.transpiler import PassManager import sys from clonk.utils.riswap_gates.riswap import RiSwapGate import h5py from tqdm import tqdm # test qc = QuantumCircuit(2) from qiskit.quantum_info import random_unitary qc.append(random_unitary(dims=(2, 2)), [0, 1]) # qc.draw(output='mpl') from qiskit.converters import circuit_to_dag, dag_to_circuit dag = circuit_to_dag(qc) base_fidelity = 1 - 5e-3 alpha_range = [2, 3, 5, 7] gate_range = range(2, 9) qc = QuantumCircuit(2) from qiskit.circuit.library.standard_gates import SwapGate qc.append(SwapGate(), [0, 1]) dag = circuit_to_dag(qc) # alpha_range = [2,3,4,5,6,7] # # alpha_range = [5] # gate_range = range(2,11)#9 # don't change, would break previous data collection # XXX alpha_range = [2, 3, 4, 5, 6, 7] # # alpha_range = [5] # gate_range = range(2,11)#9 # alpha_range = [1,2,3,4,5,6] gate_range = range(2, 9) # 11 from qiskit.quantum_info import random_unitary def collect_random2q_data(base_fidelity, N=15, mode="swap"): # alpha_range = [2,3,4,5,6,7] # # alpha_range = [5] # gate_range = range(2,9)#11 base_fidelity = base_fidelity empty_flag = 0 filename = f"data-archive2/data1_{mode}.h5" # f'data-archive2/data1_{mode}.h5' #f'data-archive/data1_{mode}.h5', #archive2 uses 2-7, archive3 uses 1-6 # filename = f'src/clonk/benchmark_suite/data/data5_{mode}.h5' # load in previous data try: with h5py.File(filename, "r") as h5f: # gate_error = h5f['random2q_gate_error'][:] decomp_error = h5f["decomp_error"][:] # fidelity_error = h5f['random2q_fidelity_error'][:] # backfill data gate_error = np.zeros( shape=(len(decomp_error), len(alpha_range), len(gate_range)) ) fidelity_error = np.zeros( shape=(len(decomp_error), len(alpha_range), len(gate_range)) ) for i in range(len(decomp_error)): for alpha_index, alpha in enumerate(alpha_range): alpha = 1 / alpha for gate_index, gate_count in enumerate(gate_range): gate_error[i][alpha_index][gate_index] = ( 1 - (alpha * (1 - base_fidelity)) ) ** gate_count fidelity_error[i][alpha_index][gate_index] = ( decomp_error[i][alpha_index][gate_index] ) * gate_error[i][alpha_index][gate_index] except Exception: # case where data doesn't already exist empty_flag = 1 decomp_error = [] for n in tqdm(range(N - len(decomp_error))): # if not empty_flag and len(gate_error) >= N: # break qc = QuantumCircuit(2) if mode == "random": qc.append(random_unitary(dims=(2, 2)), [0, 1]) else: qc.append(SwapGate(), [0, 1]) dag = circuit_to_dag(qc) # new data for this iteration temp_gate_error = np.zeros(shape=(1, len(alpha_range), len(gate_range))) temp_decomp_error = np.zeros(shape=(1, len(alpha_range), len(gate_range))) temp_fidelity_error = np.zeros(shape=(1, len(alpha_range), len(gate_range))) for alpha_index, alpha in enumerate(alpha_range): alpha = 1 / alpha for gate_index, gate_count in enumerate(gate_range): params = [[alpha]] gate_labels = [f"$iSwap^{alpha}$"] gate_defs = [RiSwapGate] temp_gate_error[0][alpha_index][gate_index] = ( 1 - (alpha * (1 - base_fidelity)) ) ** gate_count # run perfect if it doesn't already exist fid_2q = {(0, 1): [1]} pgrp = ParallelGateReplacementPass( gate_defs, params, fid_2q, fidelity_list_1q_gate=[1 for _ in range(54)], tol=1e-10, force_gate_count=gate_count, ) approx = pgrp.run(dag) temp_decomp_error[0][alpha_index][gate_index] = pgrp.property_set[ "best_fid" ] temp_fidelity_error[0][alpha_index][gate_index] = ( temp_gate_error[0][alpha_index][gate_index] ) * temp_decomp_error[0][alpha_index][gate_index] # run noisy # fid_2q = {(0,1):[1-alpha*(1-base_fidelity)]} # pgrp = ParallelGateReplacementPass(gate_defs, params ,fid_2q, fidelity_list_1q_gate=[1 for _ in range(54)], tol=1e-10, force_gate_count=gate_count) # approx = pgrp.run(dag) # temp_fidelity_error[0][alpha_index][gate_index] = (pgrp.property_set["best_fid"]) # these are equivalent - save some time and just calculate it using the previous values # print(f"{gate_error[-1]}, {decomp_error[-1]}, {fidelity_error[-1]}") # update data if empty_flag: gate_error = temp_gate_error decomp_error = temp_decomp_error fidelity_error = temp_fidelity_error empty_flag = 0 else: gate_error = np.append(gate_error, temp_gate_error, axis=0) decomp_error = np.append(decomp_error, temp_decomp_error, axis=0) fidelity_error = np.append(fidelity_error, temp_fidelity_error, axis=0) # write back data after each iteration in case we end early with h5py.File(filename, "a") as h5f: print(f"saving iter {n}") # delete old, differently sized dataset try: del h5f["gate_error"] del h5f["decomp_error"] del h5f["fidelity_error"] except Exception: # don't need to delete if they don't exist pass h5f.create_dataset("gate_error", data=gate_error) h5f.create_dataset("decomp_error", data=decomp_error) h5f.create_dataset("fidelity_error", data=fidelity_error) return gate_error, decomp_error, fidelity_error # #don't change, would break previous data collection # from qiskit.quantum_info import random_unitary # def fooo(base_fidelity, N=15, mode="swap"): # #XXX # alpha_range = [1] # # alpha_range = [5] # gate_range = range(2,4)#9 # base_fidelity = base_fidelity # empty_flag = 0 # filename = f'data-archive2/data_fooo{mode}.h5' #f'data-archive/data1_{mode}.h5' # # filename = f'data/data5_{mode}.h5' # #load in previous data # try: # with h5py.File(filename, 'r') as h5f: # #gate_error = h5f['random2q_gate_error'][:] # decomp_error = h5f['decomp_error'][:] # #fidelity_error = h5f['random2q_fidelity_error'][:] # #backfill data # gate_error = np.zeros(shape=(len(decomp_error), len(alpha_range), len(gate_range))) # fidelity_error = np.zeros(shape=(len(decomp_error), len(alpha_range), len(gate_range))) # for i in range(len(decomp_error)): # for alpha_index, alpha in enumerate(alpha_range): # alpha = 1/alpha # for gate_index, gate_count in enumerate(gate_range): # gate_error[i][alpha_index][gate_index] = ((1-(alpha*(1-base_fidelity)))**gate_count) # fidelity_error[i][alpha_index][gate_index] = (decomp_error[i][alpha_index][gate_index])*gate_error[i][alpha_index][gate_index] # except Exception: # #case where data doesn't already exist # empty_flag = 1 # decomp_error = [] # for n in range(N-len(decomp_error)): # # if not empty_flag and len(gate_error) >= N: # # break # qc = QuantumCircuit(2) # if mode == "random": # qc.append(random_unitary(dims=(2,2)),[0,1]) # else: # qc.append(SwapGate(), [0,1]) # dag = circuit_to_dag(qc) # #new data for this iteration # temp_gate_error = np.zeros(shape=(1, len(alpha_range), len(gate_range))) # temp_decomp_error = np.zeros(shape=(1, len(alpha_range), len(gate_range))) # temp_fidelity_error = np.zeros(shape=(1, len(alpha_range), len(gate_range))) # for alpha_index, alpha in enumerate(alpha_range): # alpha = 1/alpha # for gate_index, gate_count in enumerate(gate_range): # params = [[alpha]] # gate_labels = [f'$iSwap^{alpha}$'] # gate_defs = [RiSwapGate] # temp_gate_error[0][alpha_index][gate_index] = ((1-(alpha*(1-base_fidelity)))**gate_count) # #run perfect if it doesn't already exist # fid_2q = {(0,1):[1]} # pgrp = ParallelGateReplacementPass(gate_defs, params ,fid_2q, fidelity_list_1q_gate=[1 for _ in range(54)], tol=1e-10, force_gate_count=gate_count) # approx = pgrp.run(dag) # temp_decomp_error[0][alpha_index][gate_index] = (pgrp.property_set["best_fid"]) # temp_fidelity_error[0][alpha_index][gate_index] = (temp_gate_error[0][alpha_index][gate_index])*temp_decomp_error[0][alpha_index][gate_index] # #run noisy # # fid_2q = {(0,1):[1-alpha*(1-base_fidelity)]} # # pgrp = ParallelGateReplacementPass(gate_defs, params ,fid_2q, fidelity_list_1q_gate=[1 for _ in range(54)], tol=1e-10, force_gate_count=gate_count) # # approx = pgrp.run(dag) # # temp_fidelity_error[0][alpha_index][gate_index] = (pgrp.property_set["best_fid"]) # #these are equivalent - save some time and just calculate it using the previous values # # print(f"{gate_error[-1]}, {decomp_error[-1]}, {fidelity_error[-1]}") # #update data # if empty_flag: # gate_error = temp_gate_error # decomp_error = temp_decomp_error # fidelity_error = temp_fidelity_error # empty_flag = 0 # else: # gate_error = np.append(gate_error, temp_gate_error, axis=0) # decomp_error = np.append(decomp_error, temp_decomp_error, axis=0) # fidelity_error = np.append(fidelity_error, temp_fidelity_error, axis=0) # #write back data after each iteration in case we end early # with h5py.File(filename, 'a') as h5f: # print(f"saving iter {n}") # # delete old, differently sized dataset # try: # del h5f['gate_error'] # del h5f['decomp_error'] # del h5f['fidelity_error'] # except Exception: # #don't need to delete if they don't exist # pass # h5f.create_dataset('gate_error', data=gate_error) # h5f.create_dataset('decomp_error', data=decomp_error) # h5f.create_dataset('fidelity_error', data=fidelity_error) # return gate_error, decomp_error, fidelity_error # collect_random2q_data(.99, N=15, mode="random") # qc = QuantumCircuit(2) # from qiskit.quantum_info import random_unitary # qc.append(random_unitary(dims=(2,2)),[0,1]) # dag = circuit_to_dag(qc) # qc.decompose().draw(output='mpl') # alpha = 1/2 # gate_count = 3 # params = [[alpha]] # gate_labels = [f'$iSwap^{alpha}$'] # gate_defs = [RiSwapGate] # #temp_gate_error[0][alpha_index][gate_index] = ((1-(alpha*(1-base_fidelity)))**gate_count) # #run perfect if it doesn't already exist # fid_2q = {(0,1):[1]} # pgrp = ParallelGateReplacementPass(gate_defs, params ,fid_2q, fidelity_list_1q_gate=[1 for _ in range(54)], tol=1e-10, force_gate_count=gate_count) # approx = pgrp.run(dag) # from qiskit.converters import dag_to_circuit # print(pgrp.property_set["best_fid"]) # dag_to_circuit(approx).draw(output='mpl') # alpha = 1/2 # gate_count = 3 # params = [[alpha]] # gate_labels = [f'$iSwap^{alpha}$'] # gate_defs = [RiSwapGate] # #temp_gate_error[0][alpha_index][gate_index] = ((1-(alpha*(1-base_fidelity)))**gate_count) # #run perfect if it doesn't already exist # fid_2q = {(0,1):[1]} # pgrp = ParallelGateReplacementPass(gate_defs, params ,fid_2q, fidelity_list_1q_gate=[1 for _ in range(54)], tol=1e-10, force_gate_count=gate_count) # approx = pgrp.run(dag) # from qiskit.converters import dag_to_circuit # print(pgrp.property_set["best_fid"]) # dag_to_circuit(approx).draw(output='mpl') from scipy.stats import sem # import h5py # with h5py.File('data.h5', 'r') as h5f: # gate_error = h5f['random2q_gate_error'][:] # decomp_error = h5f['random2q_decomp_error'][:] # fidelity_error = h5f['random2q_fidelity_error'][:] import matplotlib.pyplot as plt plt.style.use(["science", "no-latex"]) def create_plot(gate_error, decomp_error, fidelity_error): fig, axs = plt.subplots( 1, len(gate_error[0]), sharey=True, sharex=True, figsize=(12, 4) ) for alpha_index in range(len(gate_error[0])): alpha = 1 / alpha_range[alpha_index] gate_unit_time = [el * alpha for el in gate_range] axs[alpha_index].plot( gate_unit_time, np.average(gate_error, axis=0)[alpha_index], label="Gate Error", linestyle="--", marker="o", ) axs[alpha_index].errorbar( gate_unit_time, np.average(decomp_error, axis=0)[alpha_index], yerr=sem(decomp_error, axis=0)[alpha_index], label="Decomp Error", linestyle="--", marker="s", ) axs[alpha_index].errorbar( gate_unit_time, np.average(fidelity_error, axis=0)[alpha_index], yerr=sem(fidelity_error, axis=0)[alpha_index], label="Total Fidelity", marker="^", ) axs[alpha_index].set_xlabel("Gate Unit Time") axs[alpha_index].set_title(f"iSwap^(1/{1/alpha})") # for i, key in enumerate(np.max(np.average(fidelity_error, axis=0),axis=1)): # axs[i].annotate(key, (i, frequency_list[key])) # if i >= 3: # break axs[-1].legend() axs[0].set_ylabel("Avg Fidelity") axs[0].set_yscale("logit") fig.tight_layout() fig.show() filename = "nuop_experiment" fig.savefig("{}.pdf".format(filename), format="pdf", facecolor="white") # gate_error, decomp_error, fidelity_error = collect_random2q_data(1-5e-2, N=25, mode="random") # create_plot(gate_error, decomp_error, fidelity_error) from scipy.stats import sem def get_max(fidelity_error): max_list = [] sem_list = [] for alpha_index in range(len(fidelity_error[0])): best_over_templatelength = 0 sem_temp = [] for template_length_index in range(len(fidelity_error[0][0])): best_temp_average = [] for n_repetition in range(len(fidelity_error)): best_temp_average.append( fidelity_error[n_repetition][alpha_index][template_length_index] ) val = np.sum(best_temp_average) / len(fidelity_error) if val > best_over_templatelength: best_over_templatelength = val sem_temp = sem(best_temp_average) # print(best_over_templatelength) sem_list.append(sem_temp) max_list.append(best_over_templatelength) return max_list, sem_list gate_error, decomp_error, fidelity_error = collect_random2q_data( 0.90, N=20, mode="random" ) get_max(fidelity_error) b = get_max(fidelity_error) print((1 - b[0][1]) / (1 - b[0][1])) # 1/2 print((1 - b[0][1]) / (1 - b[0][2])) # 1/3 print((1 - b[0][1]) / (1 - b[0][3])) # 1/4 print((1 - b[0][1]) / (1 - b[0][4])) # 1/5 # gate_error, decomp_error, fidelity_error = fooo(.99, mode="random") # # get_max(fidelity_error) # get_max(fidelity_error) # (1-.9874641583423502)/(1-0.9886633054798327) N = 20 import itertools marker = itertools.cycle(("o", "^", "s", "d", "v", "*")) color = itertools.cycle( ( "tab:blue", "tab:olive", "tab:purple", "tab:red", "tab:green", "tab:pink", "tab:orange", "tab:cyan", ) ) # color = itertools.cycle(("tab:green", "tab:pink", "tab:orange", "tab:cyan")) base_fidelity_list = [0.97, 0.98, 1 - 10e-3, 1 - 5e-3, 1 - 10e-4, 1] gate_error, decomp_error, fidelity_error = collect_random2q_data( 1 - 10e-3, N=N, mode="random" ) from scipy.stats import sem def create_plot2(gate_error, decomp_error, fidelity_error, plot_bool): plt.style.use(["science"]) # , 'ieee']) SMALL_SIZE = 4 MEDIUM_SIZE = 6 BIGGER_SIZE = 12 plt.rc("font", size=MEDIUM_SIZE + 2) # controls default text sizes plt.rc("axes", titlesize=MEDIUM_SIZE + 2) # fontsize of the axes title plt.rc("axes", labelsize=MEDIUM_SIZE + 1) # fontsize of the x and y labels plt.rc("xtick", labelsize=SMALL_SIZE + 2) # fontsize of the tick labels plt.rc("ytick", labelsize=SMALL_SIZE + 2) # fontsize of the tick labels plt.rc("legend", fontsize=MEDIUM_SIZE) # legend fontsize plt.rc("figure", titlesize=MEDIUM_SIZE + 2) # fontsize of the figure title plt.rc("lines", markersize=1.2, linewidth=0.65) # fig = plt.figure() # gs = fig.add_gridspec(2,2) # ax1 = fig.add_subplot(gs[0, 0]) # ax2 = fig.add_subplot(gs[0, 1]) # ax3 = fig.add_subplot(gs[1, :]) # axs = [ax1,ax2,ax3] if plot_bool: fig, axs = plt.subplots( 1, 2, figsize=(2, 1.25), sharey=True, gridspec_kw={"width_ratios": [1, 2]} ) for alpha_index in range(len(gate_error[0])): alpha = 1 / alpha_range[alpha_index] set_color = next(color) set_marker = next(marker) # gate_unit_time = gate_range c = len([el for el in gate_unit_time if el <= 8]) axs[0].errorbar( gate_unit_time[:c], [1 - el for el in np.average(decomp_error, axis=0)[alpha_index][:c]], yerr=sem(decomp_error, axis=0)[alpha_index][:c], capsize=1.5, elinewidth=0.5, ecolor=set_color, label=r"$\sqrt[" + str(int(1 / alpha)) + r"]{iSwap}$", marker=set_marker, color=set_color, ) # gate_unit_time = [el * alpha for el in gate_range] # gate_unit_time = gate_range # axs[1].plot(gate_unit_time, np.average(gate_error, axis=0)[alpha_index], label=f"Gate Error {alpha}", linestyle='--', marker='o') # cutting off values past 2 to make pulse duration plot look nicer c = len([el for el in gate_unit_time if el <= 2]) c_bottom = len(gate_unit_time) - len( [el for el in gate_unit_time if el >= 0] ) # c = len(gate_unit_time) axs[1].errorbar( gate_unit_time[c_bottom:c], [ 1 - el for el in np.average(decomp_error, axis=0)[alpha_index][c_bottom:c] ], yerr=sem(decomp_error, axis=0)[alpha_index][c_bottom:c], capsize=1.5, elinewidth=0.5, ecolor=set_color, label=r"$\sqrt[" + str(int(1 / alpha)) + r"]{iSwap}$", marker=set_marker, color=set_color, ) # axs.errorbar(gate_unit_time, np.average(fidelity_error, axis=0)[alpha_index], yerr=sem(fidelity_error, axis=0)[alpha_index], label=f"Total Fidelity{alpha}", marker='^') # axs[alpha_index].set_xlabel("Gate Unit Time") # axs[alpha_index].set_title(f"iSwap^(1/{1/alpha})") # for i, key in enumerate(np.max(np.average(fidelity_error, axis=0),axis=1)): # axs[i].annotate(key, (i, frequency_list[key])) # if i >= 3: # break axs[0].set_yscale("log") # axs[1].set_xscale('log') axs[0].set_xlabel(r"Gate Count ($k$)") axs[1].set_xlabel(r"Pulse Duration ($k/n$)") fig.suptitle(r"$\sqrt[n]{iSwap}$ Expected Decomp Fidelity") # axs[0].legend(bbox_to_anchor=(2,-.2), ncol=2) handles, labels = axs[0].get_legend_handles_labels() # fig.legend(handles,labels,bbox_to_anchor=(.95,-.08),ncol=3) # axs[0].legend(bbox_to_anchor=(1.0,-.2), ncol=2) # axs[0].yaxis.set_major_locator(plt.LogitLocator(3)) # axs[0].ticklabel_format(axis="y", style="sci", scilimits=(0, 0)) # axs[-1].legend() axs[0].set_ylabel(r"Avg Infidelity ($1-F_d$)") axs[0].set_xticks(range(2, 9)) axs[0].minorticks_on() axs[0].xaxis.set_tick_params(which="minor", bottom=False, top=False) else: # if plot_bool: fig, axs = plt.subplots(1, 1, figsize=(2, 1.15), sharey=True) ydata = [] ysem = [] base_fidelity_list = np.arange(0.9, 1, 0.01) for bf in base_fidelity_list: gate_error, decomp_error, fidelity_error = collect_random2q_data( bf, N=N, mode="random" ) ydata.append(get_max(fidelity_error)[0]) ysem.append(get_max(fidelity_error)[1]) # axs.errorbar([bf]*len(alpha_range), get_max(fidelity_error)[0], yerr=get_max(fidelity_error)[1], capsize=1.5, elinewidth=.5, ecolor='black', linestyle="-", marker=next(marker), label=bf,color=next(color)) for i, n in enumerate(range(len(gate_error[0]))): alpha = 1 / alpha_range[i] set_color = next(color) axs.errorbar( base_fidelity_list, [el[i] for el in ydata], yerr=[el[i] for el in ysem], capsize=1, elinewidth=0.5, ecolor=set_color, linestyle="-", marker=next(marker), label=r"$\sqrt[" + str(int(1 / alpha)) + r"]{iSwap}$", color=set_color, ) # axs.set_xlabel(r"$\sqrt[x]{iSwap}$") axs.set_xlabel(r"$F_b(\texttt{iSwap})$") axs.invert_xaxis() axs.set_yscale("linear") axs.minorticks_on() axs.xaxis.set_tick_params(which="minor", bottom=False, top=False) # # axs[1].set_ylabel("Avg fidelity") # # legend = axs[1].legend(title="iSwap Fidelity", bbox_to_anchor=(1.25,-.22), ncol=2) axs.legend(bbox_to_anchor=(1.0, -0.22), ncol=3) # # legend._legend_box.align = "bottoms" # axs.yaxis.set_major_locator(plt.MaxNLocator(4)) axs.set_xticks(np.linspace(0.9, 1, 5)) # #axs[0].xaxis.set_major_locator(plt.MaxNLocator(integer=True)) # axs[1].ticklabel_format(axis="y", style="sci", scilimits=(0, 0)) # # axs[1].set_title(f"Random 2Q Fidelity vs nth root iswap") # axs.set_yscale('log') axs.set_ylabel(r"Avg Total Fidelity $F_t$") # axs.set_ylabel("Average Fidelity") axs.set_title(r"$\sqrt[n]{iSwap}$ Expected Total Fidelity") # axs.minorticks_off() # axs.set_ylabel("Average Infidelity") # axs.set_xticks = [2,3,4,5,6,7,8] # axs.minorticks_off() # fig.suptitle(f"Random 2Q Fidelity (N={N})") # plt.axes().xaxis.set_major_locator(plt.MaxNLocator(integer=True)) # fig.tight_layout() fig.show() filename = "nuop_experiment" fig.savefig("{}.svg".format(filename), format="svg", facecolor=None) create_plot2(gate_error, decomp_error, fidelity_error, plot_bool=0); %matplotlib widget print(np.array(fidelity_error).shape) # base_fidelity_list = [1-10e-3,1-5e-3, 1-10e-4] # fig, axs = plt.subplots(1, 1, sharey=True)) # for bf in base_fidelity_list: # gate_error, decomp_error, fidelity_error = collect_random2q_data(bf, N=25, mode="random") # axs.plot(alpha_range, np.max(np.average(fidelity_error, axis=0),axis=1), '-o', label=bf) # axs.set_xlabel("nth root iswap") # axs.set_ylabel("Avg fidelity") # axs.set_title(f"Random 2Q Fidelity vs nth root iswap") # axs.set_yscale('logit') # fig.legend(loc='upper center', bbox_to_anchor=(0.5,0), ncol=3) # fig.tight_layout() # gate_error, decomp_error, fidelity_error = collect_random2q_data(1-5e-2, N=5, mode="swap") # create_plot(gate_error, decomp_error, fidelity_error) # base_fidelity_list = [1-10e-3,1-5e-3, 1-10e-4] # fig, axs = plt.subplots(1, 1, sharey=True, figsize=(4, 4)) # for bf in base_fidelity_list: # gate_error, decomp_error, fidelity_error = collect_random2q_data(bf, N=5, mode="swap") # axs.plot(alpha_range, np.max(np.average(fidelity_error, axis=0),axis=1), '-o', label=bf) # axs.set_xlabel("nth root iswap") # axs.set_ylabel("max average fidelity") # axs.set_title(f"Max fidelity vs nth root iswap") # axs.set_yscale('logit') # fig.legend() # fig.tight_layout() # #modify nuop so works with trotterization constraint - such that there is only U1 and U2 1Q gate solutions that are interleaved # #eliminate gate_range parameter, beacuse now we must force the number of template reptetitions to be exactly n for nriswap # #XXX # from qiskit.converters import dag_to_circuit # alpha_range = range(2,11) # # alpha_range = [5] # from qiskit.quantum_info import random_unitary # def collect_trotterization_data(base_fidelity, N=15, mode="swap"): # base_fidelity = base_fidelity # empty_flag = 0 # filename = f'data/trotter_{mode}.h5' # # filename = f'data/data5_{mode}.h5' # #load in previous data # try: # with h5py.File(filename, 'r') as h5f: # #gate_error = h5f['random2q_gate_error'][:] # decomp_error = h5f['decomp_error'][:] # #fidelity_error = h5f['random2q_fidelity_error'][:] # #backfill data # gate_error = np.zeros(shape=(len(decomp_error), len(alpha_range))) # fidelity_error = np.zeros(shape=(len(decomp_error), len(alpha_range))) # for i in range(len(decomp_error)): # for alpha_index, alpha in enumerate(alpha_range): # gate_count = alpha #constraint enforced by trotterization # alpha = 1/alpha # gate_error[i][alpha_index] = ((1-(alpha*(1-base_fidelity)))**gate_count) # fidelity_error[i][alpha_index] = (decomp_error[i][alpha_index])*gate_error[i][alpha_index] # except Exception: # #case where data doesn't already exist # empty_flag = 1 # decomp_error = [] # for n in range(N-len(decomp_error)): # # if not empty_flag and len(gate_error) >= N: # # break # qc = QuantumCircuit(2) # if mode == "random": # qc.append(random_unitary(dims=(2,2)),[0,1]) # else: # qc.append(SwapGate(), [0,1]) # dag = circuit_to_dag(qc) # #new data for this iteration # temp_gate_error = np.zeros(shape=(1, len(alpha_range))) # temp_decomp_error = np.zeros(shape=(1, len(alpha_range))) # temp_fidelity_error = np.zeros(shape=(1, len(alpha_range))) # for alpha_index, alpha in enumerate(alpha_range): # gate_count = alpha #constraint enforced by trotterization # alpha = 1/alpha # params = [[alpha]] # gate_labels = [f'$iSwap^{alpha}$'] # gate_defs = [RiSwapGate] # temp_gate_error[0][alpha_index] = ((1-(alpha*(1-base_fidelity)))**gate_count) # #run perfect if it doesn't already exist # fid_2q = {(0,1):[1]} # pgrp = ParallelGateReplacementPass(gate_defs, params ,fid_2q, fidelity_list_1q_gate=[1 for _ in range(54)], tol=1e-10, force_gate_count=gate_count,trotterization=True) # approx = pgrp.run(dag) # #print(dag_to_circuit(approx).draw(fold=-1)) # print(f"Completed iter{n}, gate {alpha}...") # temp_decomp_error[0][alpha_index] = (pgrp.property_set["best_fid"]) # temp_fidelity_error[0][alpha_index] = (temp_gate_error[0][alpha_index])*temp_decomp_error[0][alpha_index] # #run noisy # # fid_2q = {(0,1):[1-alpha*(1-base_fidelity)]} # # pgrp = ParallelGateReplacementPass(gate_defs, params ,fid_2q, fidelity_list_1q_gate=[1 for _ in range(54)], tol=1e-10, force_gate_count=gate_count) # # approx = pgrp.run(dag) # # temp_fidelity_error[0][alpha_index][gate_index] = (pgrp.property_set["best_fid"]) # #these are equivalent - save some time and just calculate it using the previous values # # print(f"{gate_error[-1]}, {decomp_error[-1]}, {fidelity_error[-1]}") # #update data # if empty_flag: # gate_error = temp_gate_error # decomp_error = temp_decomp_error # fidelity_error = temp_fidelity_error # empty_flag = 0 # else: # gate_error = np.append(gate_error, temp_gate_error, axis=0) # decomp_error = np.append(decomp_error, temp_decomp_error, axis=0) # fidelity_error = np.append(fidelity_error, temp_fidelity_error, axis=0) # #write back data after each iteration in case we end early # with h5py.File(filename, 'a') as h5f: # print(f"saving iter {n}") # # delete old, differently sized dataset # try: # del h5f['gate_error'] # del h5f['decomp_error'] # del h5f['fidelity_error'] # except Exception: # #don't need to delete if they don't exist # pass # h5f.create_dataset('gate_error', data=gate_error) # h5f.create_dataset('decomp_error', data=decomp_error) # h5f.create_dataset('fidelity_error', data=fidelity_error) # return gate_error, decomp_error, fidelity_error # gate_error, decomp_error, fidelity_error = collect_trotterization_data(base_fidelity, N=1, mode="swap") # gate_error.shape # decomp_error # gate_count = 3 #constraint enforced by trotterization # alpha = 1/gate_count # from qiskit.circuit.library.standard_gates import * # qc = QuantumCircuit(2) # mode = "swap" # if mode == "random": # qc.append(random_unitary(dims=(2,2)),[0,1]) # else: # #qc.append(SwapGate(), [0,1]) # qc.append(CXGate(), [0,1]) # dag = circuit_to_dag(qc) # params = [[alpha]] # gate_labels = [r"$\sqrt[" + str(int(1/alpha))+ r"]{iSwap}$"] # gate_defs = [RiSwapGate] # fid_2q = {(0,1):[1]} # pgrp = ParallelGateReplacementPass(gate_defs, params ,fid_2q, fidelity_list_1q_gate=[1 for _ in range(54)], tol=1e-10, force_gate_count=gate_count) # approx = pgrp.run(dag) # print(f"Completed iter, gate {alpha}...") # t = (pgrp.property_set["best_fid"]) # print(t) # print(dag_to_circuit(approx).draw(output='mpl')) # gate = Operator(dag_to_circuit(approx)).data # gate = Operator(CXGate()).data # import weylchamber # c1, c2, c3 = weylchamber.c1c2c3(gate) # print(c1,c2,c3) # import itertools # marker = itertools.cycle(('o', '^', 's', 'd')) # color = itertools.cycle(("tab:blue", "tab:olive", "tab:purple", "tab:red", "tab:green", "tab:pink", "tab:orange", "tab:cyan")) # #color = itertools.cycle(("tab:green", "tab:pink", "tab:orange", "tab:cyan")) # base_fidelity_list = [1-10e-3,1-5e-3, 1-10e-4, 1] # gate_error, decomp_error, fidelity_error = collect_trotterization_data(base_fidelity, N=1, mode="swap") # from scipy.stats import sem # def create_plot3(gate_error, decomp_error, fidelity_error): # plt.style.use(['science', 'ieee']) # SMALL_SIZE = 4 # MEDIUM_SIZE = 6 # BIGGER_SIZE = 12 # plt.rc("font", size=MEDIUM_SIZE+2) # controls default text sizes # plt.rc("axes", titlesize=MEDIUM_SIZE+2) # fontsize of the axes title # plt.rc("axes", labelsize=MEDIUM_SIZE + 1) # fontsize of the x and y labels # plt.rc("xtick", labelsize=SMALL_SIZE + 2) # fontsize of the tick labels # plt.rc("ytick", labelsize=SMALL_SIZE + 2) # fontsize of the tick labels # plt.rc("legend", fontsize=MEDIUM_SIZE + 2) # legend fontsize # plt.rc("figure", titlesize=MEDIUM_SIZE + 4) # fontsize of the figure title # plt.rc("lines", markersize=2, linewidth=.75) # fig, axs = plt.subplots(1,1, figsize=(2,1.75)) # if True: # for alpha_index in range(len(gate_error[0])): # alpha = 1/alpha_range[alpha_index] # gate_unit_time = [el*alpha for el in gate_range] # gate_unit_time = gate_range # #axs[1].plot(gate_unit_time, np.average(gate_error, axis=0)[alpha_index], label=f"Gate Error {alpha}", linestyle='--', marker='o') # axs.errorbar(gate_unit_time, [1-el for el in np.average(decomp_error, axis=0)[alpha_index]], yerr=sem(decomp_error, axis=0)[alpha_index], capsize=1.5, elinewidth=.5, ecolor='black', label=r"$\sqrt[" + str(int(1/alpha))+ r"]{iSwap}$", marker=next(marker), color=next(color)) # #axs.errorbar(gate_unit_time, np.average(fidelity_error, axis=0)[alpha_index], yerr=sem(fidelity_error, axis=0)[alpha_index], label=f"Total Fidelity{alpha}", marker='^') # # axs[alpha_index].set_xlabel("Gate Unit Time") # #axs[alpha_index].set_title(f"iSwap^(1/{1/alpha})") # # for i, key in enumerate(np.max(np.average(fidelity_error, axis=0),axis=1)): # # axs[i].annotate(key, (i, frequency_list[key])) # # if i >= 3: # # break # axs.set_yscale('log') # axs.set_xlabel("2Q Gate Count") # axs.set_title("Decomp Infidelity") # axs.legend(bbox_to_anchor=(1.2,-.2), ncol=2) # axs.legend(bbox_to_anchor=(1.0,-.2), ncol=2) # # axs[0].yaxis.set_major_locator(plt.LogitLocator(3)) # # axs[0].ticklabel_format(axis="y", style="sci", scilimits=(0, 0)) # # axs[-1].legend() # axs.set_ylabel("Avg Fidelity") # else: # for bf in base_fidelity_list: # gate_error, decomp_error, fidelity_error = collect_random2q_data(bf, N=N, mode="random") # x_axis = alpha_range # axs.errorbar(x_axis, get_max(fidelity_error)[0], yerr=get_max(fidelity_error)[1], capsize=1.5, elinewidth=.5, ecolor='black', linestyle="-", marker=next(marker), label=bf,color=next(color)) # axs.set_xlabel(r"$\sqrt[x]{iSwap}$") # # # axs[1].set_ylabel("Avg fidelity") # # # legend = axs[1].legend(title="iSwap Fidelity", bbox_to_anchor=(1.25,-.22), ncol=2) # axs.legend(bbox_to_anchor=(1.25,-.22), ncol=2) # # # legend._legend_box.align = "bottoms" # # axs.yaxis.set_major_locator(plt.MaxNLocator(4)) # axs.xaxis.set_major_locator(plt.MaxNLocator(integer=True)) # # #axs[0].xaxis.set_major_locator(plt.MaxNLocator(integer=True)) # # axs[1].ticklabel_format(axis="y", style="sci", scilimits=(0, 0)) # # # axs[1].set_title(f"Random 2Q Fidelity vs nth root iswap") # #axs.set_yscale('log') # axs.set_ylabel("Avg Infidelity") # #axs.set_ylabel("Average Fidelity") # axs.set_title("Best Total Fidelity") # #axs.minorticks_off() # #axs.set_ylabel("Average Infidelity") # #axs.set_xticks = [2,3,4,5,6,7,8] # #axs.minorticks_off() # #fig.suptitle(f"Random 2Q Fidelity (N={N})") # #plt.axes().xaxis.set_major_locator(plt.MaxNLocator(integer=True)) # #fig.tight_layout() # fig.show() # filename = "nuop_experiment" # fig.savefig('{}.pdf'.format(filename), format="pdf", facecolor='white') # create_plot2(gate_error, decomp_error, fidelity_error)
https://github.com/Z-928/Bugs4Q
Z-928
# The snipplet above ==== is buggy version; the code below ==== is fixed version. from math import pi,pow from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, BasicAer, execute def IQFT(circuit, qin, n): for i in range (int(n/2)): circuit.swap(qin[i], qin[n -1 -i]) for i in range (n): circuit.h(qin[i]) for j in range (i +1, n, 1): circuit.cu1(-pi/ pow(2, j-i), qin[j], qin[i]) n = 3 qin = QuantumRegister(n) cr = ClassicalRegister(n) circuit = QuantumCircuit(qin, cr, name="Inverse_Quantum_Fourier_Transform") circuit.h(qin) circuit.z(qin[2]) circuit.s(qin[1]) circuit.z(qin[0]) circuit.t(qin[0]) IQFT(circuit, qin, n) circuit.measure (qin, cr) backend = BasicAer.get_backend("qasm_simulator") result = execute(circuit, backend, shots = 500).result() counts = result.get_counts(circuit) print(counts) #============ from math import pi,pow from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, BasicAer, execute def QFT(n, inverse=False): """This function returns a circuit implementing the (inverse) QFT.""" circuit = QuantumCircuit(n, name='IQFT' if inverse else 'QFT') # here's your old code, building the inverse QFT for i in range(int(n/2)): # note that I removed the qin register, since registers are not # really needed and you can just use the qubit indices circuit.swap(i, n - 1 - i) for i in range(n): circuit.h(i) for j in range(i + 1, n, 1): circuit.cu1(-pi / pow(2, j - i), j, i) # now we invert it to get the regular QFT if inverse: circuit = circuit.inverse() return circuit n = 3 qin = QuantumRegister(n) cr = ClassicalRegister(n) circuit = QuantumCircuit(qin, cr) circuit.h(qin) circuit.z(qin[2]) circuit.s(qin[1]) circuit.z(qin[0]) circuit.t(qin[0]) # get the IQFT and add it to your circuit with ``compose`` # if you want the regular QFT, just set inverse=False iqft = QFT(n, inverse=True) circuit.compose(iqft, inplace=True) circuit.measure (qin, cr) backend = BasicAer.get_backend("qasm_simulator") result = execute(circuit, backend, shots = 500).result() counts = result.get_counts(circuit) print(counts)
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Helper function for converting a circuit to a dag""" import copy from qiskit.dagcircuit.dagcircuit import DAGCircuit def circuit_to_dag(circuit, copy_operations=True, *, qubit_order=None, clbit_order=None): """Build a ``DAGCircuit`` object from a ``QuantumCircuit``. Args: circuit (QuantumCircuit): the input circuit. copy_operations (bool): Deep copy the operation objects in the :class:`~.QuantumCircuit` for the output :class:`~.DAGCircuit`. This should only be set to ``False`` if the input :class:`~.QuantumCircuit` will not be used anymore as the operations in the output :class:`~.DAGCircuit` will be shared instances and modifications to operations in the :class:`~.DAGCircuit` will be reflected in the :class:`~.QuantumCircuit` (and vice versa). qubit_order (Iterable[Qubit] or None): the order that the qubits should be indexed in the output DAG. Defaults to the same order as in the circuit. clbit_order (Iterable[Clbit] or None): the order that the clbits should be indexed in the output DAG. Defaults to the same order as in the circuit. Return: DAGCircuit: the DAG representing the input circuit. Raises: ValueError: if the ``qubit_order`` or ``clbit_order`` parameters do not match the bits in the circuit. Example: .. code-block:: from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.dagcircuit import DAGCircuit from qiskit.converters import circuit_to_dag q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.measure(q[0], c[0]) circ.rz(0.5, q[1]).c_if(c, 2) dag = circuit_to_dag(circ) """ dagcircuit = DAGCircuit() dagcircuit.name = circuit.name dagcircuit.global_phase = circuit.global_phase dagcircuit.calibrations = circuit.calibrations dagcircuit.metadata = circuit.metadata if qubit_order is None: qubits = circuit.qubits elif len(qubit_order) != circuit.num_qubits or set(qubit_order) != set(circuit.qubits): raise ValueError("'qubit_order' does not contain exactly the same qubits as the circuit") else: qubits = qubit_order if clbit_order is None: clbits = circuit.clbits elif len(clbit_order) != circuit.num_clbits or set(clbit_order) != set(circuit.clbits): raise ValueError("'clbit_order' does not contain exactly the same clbits as the circuit") else: clbits = clbit_order dagcircuit.add_qubits(qubits) dagcircuit.add_clbits(clbits) for register in circuit.qregs: dagcircuit.add_qreg(register) for register in circuit.cregs: dagcircuit.add_creg(register) for instruction in circuit.data: op = instruction.operation if copy_operations: op = copy.deepcopy(op) dagcircuit.apply_operation_back(op, instruction.qubits, instruction.clbits) dagcircuit.duration = circuit.duration dagcircuit.unit = circuit.unit return dagcircuit
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test boolean expression.""" import unittest from os import path from ddt import ddt, unpack, data from qiskit.test.base import QiskitTestCase from qiskit import execute, BasicAer from qiskit.utils.optionals import HAS_TWEEDLEDUM if HAS_TWEEDLEDUM: from qiskit.circuit.classicalfunction.boolean_expression import BooleanExpression @unittest.skipUnless(HAS_TWEEDLEDUM, "Tweedledum is required for these tests.") @ddt class TestBooleanExpression(QiskitTestCase): """Test boolean expression.""" @data( ("x | x", "1", True), ("x & x", "0", False), ("(x0 & x1 | ~x2) ^ x4", "0110", False), ("xx & xxx | ( ~z ^ zz)", "0111", True), ) @unpack def test_evaluate(self, expression, input_bitstring, expected): """Test simulate""" expression = BooleanExpression(expression) result = expression.simulate(input_bitstring) self.assertEqual(result, expected) @data( ("x", False), ("not x", True), ("(x0 & x1 | ~x2) ^ x4", True), ("xx & xxx | ( ~z ^ zz)", True), ) @unpack def test_synth(self, expression, expected): """Test synth""" expression = BooleanExpression(expression) expr_circ = expression.synth() new_creg = expr_circ._create_creg(1, "c") expr_circ.add_register(new_creg) expr_circ.measure(expression.num_qubits - 1, new_creg) [result] = ( execute( expr_circ, backend=BasicAer.get_backend("qasm_simulator"), shots=1, seed_simulator=14, ) .result() .get_counts() .keys() ) self.assertEqual(bool(int(result)), expected) @unittest.skipUnless(HAS_TWEEDLEDUM, "Tweedledum is required for these tests.") class TestBooleanExpressionDIMACS(QiskitTestCase): """Loading from a cnf file""" def normalize_filenames(self, filename): """Given a filename, returns the directory in terms of __file__.""" dirname = path.dirname(__file__) return path.join(dirname, filename) def test_simple(self): """Loads simple_v3_c2.cnf and simulate""" filename = self.normalize_filenames("dimacs/simple_v3_c2.cnf") simple = BooleanExpression.from_dimacs_file(filename) self.assertEqual(simple.name, "simple_v3_c2.cnf") self.assertEqual(simple.num_qubits, 4) self.assertTrue(simple.simulate("101")) def test_quinn(self): """Loads quinn.cnf and simulate""" filename = self.normalize_filenames("dimacs/quinn.cnf") simple = BooleanExpression.from_dimacs_file(filename) self.assertEqual(simple.name, "quinn.cnf") self.assertEqual(simple.num_qubits, 16) self.assertFalse(simple.simulate("1010101010101010")) if __name__ == "__main__": unittest.main()
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Utility functions for debugging and testing. """ from typing import Tuple import numpy as np from scipy.stats import unitary_group import qiskit.transpiler.synthesis.aqc.fast_gradient.fast_grad_utils as fgu def relative_error(a_mat: np.ndarray, b_mat: np.ndarray) -> float: """ Computes relative residual between two matrices in Frobenius norm. """ return float(np.linalg.norm(a_mat - b_mat, "fro")) / float(np.linalg.norm(b_mat, "fro")) def make_unit_vector(pos: int, nbits: int) -> np.ndarray: """ Makes a unit vector ``e = (0 ... 0 1 0 ... 0)`` of size ``2^n`` with unit at the position ``num``. **Note**: result depends on bit ordering. Args: pos: position of unit in vector. nbits: number of meaningful bit in the number "pos". Returns: unit vector of size ``2^n``. """ vec = np.zeros((2**nbits,), dtype=np.int64) vec[fgu.reverse_bits(pos, nbits, enable=True)] = 1 return vec def eye_int(n: int) -> np.ndarray: """ Creates an identity matrix with integer entries. Args: n: number of bits. Returns: unit matrix of size ``2^n`` with integer entries. """ return np.eye(2**n, dtype=np.int64) def kron3(a_mat: np.ndarray, b_mat: np.ndarray, c_mat: np.ndarray) -> np.ndarray: """ Computes Kronecker product of 3 matrices. """ return np.kron(a_mat, np.kron(b_mat, c_mat)) def kron5( a_mat: np.ndarray, b_mat: np.ndarray, c_mat: np.ndarray, d_mat: np.ndarray, e_mat: np.ndarray ) -> np.ndarray: """ Computes Kronecker product of 5 matrices. """ return np.kron(np.kron(np.kron(np.kron(a_mat, b_mat), c_mat), d_mat), e_mat) def rand_matrix(dim: int, kind: str = "complex") -> np.ndarray: """ Generates a random complex or integer value matrix. Args: dim: matrix size dim-x-dim. kind: "complex" or "randint". Returns: a random matrix. """ if kind == "complex": return ( np.random.rand(dim, dim).astype(np.cfloat) + np.random.rand(dim, dim).astype(np.cfloat) * 1j ) else: return np.random.randint(low=1, high=100, size=(dim, dim), dtype=np.int64) def make_test_matrices2x2(n: int, k: int, kind: str = "complex") -> Tuple[np.ndarray, np.ndarray]: """ Creates a ``2^n x 2^n`` random matrix made as a Kronecker product of identity ones and a single 1-qubit gate. This models a layer in quantum circuit with an arbitrary 1-qubit gate somewhere in the middle. Args: n: number of qubits. k: index of qubit a 1-qubit gate is acting on. kind: entries of the output matrix are defined as: "complex", "primes" or "randint". Returns: A tuple of (1) ``2^n x 2^n`` random matrix; (2) ``2 x 2`` matrix of 1-qubit gate used for matrix construction. """ if kind == "primes": a_mat = np.asarray([[2, 3], [5, 7]], dtype=np.int64) else: a_mat = rand_matrix(dim=2, kind=kind) m_mat = kron3(eye_int(k), a_mat, eye_int(n - k - 1)) return m_mat, a_mat def make_test_matrices4x4( n: int, j: int, k: int, kind: str = "complex" ) -> Tuple[np.ndarray, np.ndarray]: """ Creates a ``2^n x 2^n`` random matrix made as a Kronecker product of identity ones and a single 2-qubit gate. This models a layer in quantum circuit with an arbitrary 2-qubit gate somewhere in the middle. Args: n: number of qubits. j: index of the first qubit the 2-qubit gate acting on. k: index of the second qubit the 2-qubit gate acting on. kind: entries of the output matrix are defined as: "complex", "primes" or "randint". Returns: A tuple of (1) ``2^n x 2^n`` random matrix; (2) ``4 x 4`` matrix of 2-qubit gate used for matrix construction. """ if kind == "primes": a_mat = np.asarray([[2, 3], [5, 7]], dtype=np.int64) b_mat = np.asarray([[11, 13], [17, 19]], dtype=np.int64) c_mat = np.asarray([[47, 53], [41, 43]], dtype=np.int64) d_mat = np.asarray([[31, 37], [23, 29]], dtype=np.int64) else: a_mat, b_mat = rand_matrix(dim=2, kind=kind), rand_matrix(dim=2, kind=kind) c_mat, d_mat = rand_matrix(dim=2, kind=kind), rand_matrix(dim=2, kind=kind) if j < k: m_mat = kron5(eye_int(j), a_mat, eye_int(k - j - 1), b_mat, eye_int(n - k - 1)) + kron5( eye_int(j), c_mat, eye_int(k - j - 1), d_mat, eye_int(n - k - 1) ) else: m_mat = kron5(eye_int(k), b_mat, eye_int(j - k - 1), a_mat, eye_int(n - j - 1)) + kron5( eye_int(k), d_mat, eye_int(j - k - 1), c_mat, eye_int(n - j - 1) ) g_mat = np.kron(a_mat, b_mat) + np.kron(c_mat, d_mat) return m_mat, g_mat def rand_circuit(num_qubits: int, depth: int) -> np.ndarray: """ Generates a random circuit of unit blocks for debugging and testing. """ blocks = np.tile(np.arange(num_qubits).reshape(num_qubits, 1), depth) for i in range(depth): np.random.shuffle(blocks[:, i]) return blocks[0:2, :].copy() def rand_su_mat(dim: int) -> np.ndarray: """ Generates a random SU matrix. Args: dim: matrix size ``dim-x-dim``. Returns: random SU matrix. """ u_mat = unitary_group.rvs(dim) u_mat /= np.linalg.det(u_mat) ** (1.0 / float(dim)) return u_mat
https://github.com/zeynepCankara/Introduction-Quantum-Programming
zeynepCankara
# the first and second elements are 1 and 1 F = [1,1] for i in range(2,30): F.append(F[i-1] + F[i-2]) # print the final list print(F) # define an empty list N = [] for i in range(11): N.append([ i , i*i , i*i*i , i*i + i*i*i ]) # a list having four elements is added to the list N # Alternatively: #N.append([i , i**2 , i**3 , i**2 + i**3]) # ** is the exponent operator #N = N + [ [i , i*i , i*i*i , i*i + i*i*i] ] # Why using double brackets? #N = N + [ [i , i**2 , i**3 , i**2 + i**3] ] # Why using double brackets? # In the last two alternative solutions, you may try with a single bracket, # and then see why double brackets are needed for the exact answer. # print the final list print(N) # let's print the list N element by element for i in range(len(N)): print(N[i]) # let's print the list N element by element by using an alternative method for el in N: # el will iteratively takes the values of elements in N print(el)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
input_3sat_instance = ''' c example DIMACS-CNF 3-SAT p cnf 3 5 -1 -2 -3 0 1 -2 3 0 1 2 -3 0 1 -2 -3 0 -1 2 3 0 ''' import os import tempfile from qiskit.exceptions import MissingOptionalLibraryError from qiskit.circuit.library.phase_oracle import PhaseOracle fp = tempfile.NamedTemporaryFile(mode='w+t', delete=False) fp.write(input_3sat_instance) file_name = fp.name fp.close() oracle = None try: oracle = PhaseOracle.from_dimacs_file(file_name) except MissingOptionalLibraryError as ex: print(ex) finally: os.remove(file_name) from qiskit.algorithms import AmplificationProblem problem = None if oracle is not None: problem = AmplificationProblem(oracle, is_good_state=oracle.evaluate_bitstring) from qiskit.algorithms import Grover from qiskit.primitives import Sampler grover = Grover(sampler=Sampler()) result = None if problem is not None: result = grover.amplify(problem) print(result.assignment) from qiskit.tools.visualization import plot_histogram if result is not None: display(plot_histogram(result.circuit_results[0])) expression = '(w ^ x) & ~(y ^ z) & (x & y & z)' try: oracle = PhaseOracle(expression) problem = AmplificationProblem(oracle, is_good_state=oracle.evaluate_bitstring) grover = Grover(sampler=Sampler()) result = grover.amplify(problem) display(plot_histogram(result.circuit_results[0])) except MissingOptionalLibraryError as ex: print(ex) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, PySCFDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer from qiskit_nature.settings import settings settings.dict_aux_operators = True molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = ElectronicStructureMoleculeDriver( molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF ) # or equivalently: driver = PySCFDriver.from_molecule(molecule, basis="sto3g") transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["ElectronicEnergy"] print(hamiltonian) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo from qiskit_nature.second_q.transformers import FreezeCoreTransformer molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") # this is now done explicitly problem = driver.run() transformer = FreezeCoreTransformer() # and you also apply transformers explicitly problem = transformer.transform(problem) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import PySCFDriver molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = PySCFDriver.from_molecule(molecule) result = driver.run() print(type(result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") result = driver.run() print(type(result)) from qiskit_nature.drivers.second_quantization import FCIDumpDriver path_to_fcidump = "aux_files/h2.fcidump" driver = FCIDumpDriver(path_to_fcidump) result = driver.run() print(type(result)) from qiskit_nature.second_q.formats.fcidump import FCIDump path_to_fcidump = "aux_files/h2.fcidump" fcidump = FCIDump.from_file(path_to_fcidump) print(type(fcidump)) from qiskit_nature.second_q.formats.fcidump_translator import fcidump_to_problem problem = fcidump_to_problem(fcidump) print(type(problem)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer driver = PySCFDriver() transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("ElectronicEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer driver = PySCFDriver() problem = driver.run() transformer = FreezeCoreTransformer() problem = transformer.transform(problem) hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/GIRISHBELANI/QC_Benchmarks_using_dm-simulator
GIRISHBELANI
""" Grover's Search Benchmark Program - QSim """ import sys import time import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister sys.path[1:1] = ["_common", "_common/qsim"] sys.path[1:1] = ["../../_common", "../../_common/qsim"] import execute as ex import metrics as metrics from execute import BenchmarkResult # Benchmark Name benchmark_name = "Grover's Search" np.random.seed(0) verbose = False # saved circuits for display QC_ = None grover_oracle = None diffusion_operator = None # for validating the implementation of an mcx shim _use_mcx_shim = False ############### Circuit Definition def GroversSearch(num_qubits, marked_item, n_iterations): # allocate qubits qr = QuantumRegister(num_qubits); cr = ClassicalRegister(num_qubits); qc = QuantumCircuit(qr, cr, name=f"grovers-{num_qubits}-{marked_item}") # Start with Hadamard on all qubits for i_qubit in range(num_qubits): qc.h(qr[i_qubit]) # loop over the estimated number of iterations for _ in range(n_iterations): qc.barrier() # add the grover oracle qc.append(add_grover_oracle(num_qubits, marked_item).to_instruction(), qr) # add the diffusion operator qc.append(add_diffusion_operator(num_qubits).to_instruction(), qr) qc.barrier() # measure all qubits qc.measure(qr, cr) # to get the partial_probability # qc.measure(qr, cr, basis='Ensemble', add_param='Z') # to get the ensemble_probability # save smaller circuit example for display global QC_ if QC_ == None or num_qubits <= 5: if num_qubits < 9: QC_ = qc # return a handle on the circuit return qc ############## Grover Oracle def add_grover_oracle(num_qubits, marked_item): global grover_oracle marked_item_bits = format(marked_item, f"0{num_qubits}b")[::-1] qr = QuantumRegister(num_qubits); qc = QuantumCircuit(qr, name="oracle") for (q, bit) in enumerate(marked_item_bits): if not int(bit): qc.x(q) qc.h(num_qubits - 1) if _use_mcx_shim: add_mcx(qc, [x for x in range(num_qubits - 1)], num_qubits - 1) else: qc.mcx([x for x in range(num_qubits - 1)], num_qubits - 1) qc.h(num_qubits - 1) qc.barrier() for (q, bit) in enumerate(marked_item_bits): if not int(bit): qc.x(q) if grover_oracle == None or num_qubits <= 5: if num_qubits < 9: grover_oracle = qc return qc ############## Grover Diffusion Operator def add_diffusion_operator(num_qubits): global diffusion_operator qr = QuantumRegister(num_qubits); qc = QuantumCircuit(qr, name="diffuser") for i_qubit in range(num_qubits): qc.h(qr[i_qubit]) for i_qubit in range(num_qubits): qc.x(qr[i_qubit]) qc.h(num_qubits - 1) if _use_mcx_shim: add_mcx(qc, [x for x in range(num_qubits - 1)], num_qubits - 1) else: qc.mcx([x for x in range(num_qubits - 1)], num_qubits - 1) qc.h(num_qubits - 1) qc.barrier() for i_qubit in range(num_qubits): qc.x(qr[i_qubit]) for i_qubit in range(num_qubits): qc.h(qr[i_qubit]) if diffusion_operator == None or num_qubits <= 5: if num_qubits < 9: diffusion_operator = qc return qc ############### MCX shim # single cx / cu1 unit for mcx implementation def add_cx_unit(qc, cxcu1_unit, controls, target): num_controls = len(controls) i_qubit = cxcu1_unit[1] j_qubit = cxcu1_unit[0] theta = cxcu1_unit[2] if j_qubit != None: qc.cx(controls[j_qubit], controls[i_qubit]) qc.cu1(theta, controls[i_qubit], target) i_qubit = i_qubit - 1 if j_qubit == None: j_qubit = i_qubit + 1 else: j_qubit = j_qubit - 1 if theta < 0: theta = -theta new_units = [] if i_qubit >= 0: new_units += [ [ j_qubit, i_qubit, -theta ] ] new_units += [ [ num_controls - 1, i_qubit, theta ] ] return new_units # mcx recursion loop def add_cxcu1_units(qc, cxcu1_units, controls, target): new_units = [] for cxcu1_unit in cxcu1_units: new_units += add_cx_unit(qc, cxcu1_unit, controls, target) cxcu1_units.clear() return new_units # mcx gate implementation: brute force and inefficent # start with a single CU1 on last control and target # and recursively expand for each additional control def add_mcx(qc, controls, target): num_controls = len(controls) theta = np.pi / 2**num_controls qc.h(target) cxcu1_units = [ [ None, num_controls - 1, theta] ] while len(cxcu1_units) > 0: cxcu1_units += add_cxcu1_units(qc, cxcu1_units, controls, target) qc.h(target) ################ Analysis # Analyze and print measured results # Expected result is always the secret_int, so fidelity calc is simple def analyze_and_print_result(qc, result, num_qubits, marked_item, num_shots): if result.backend_name == 'dm_simulator': benchmark_result = BenchmarkResult(result, num_shots) probs = benchmark_result.get_probs(num_shots) # get results as measured probability else: probs = result.get_counts(qc) # get results as measured counts # # setting the threhold value to avoid getting exponential values which leads to nan values # threshold = 3e-3 # probs = {key: value if value > threshold else 0.0 for key, value in probs.items()} if verbose: print(f"For type {marked_item} measured: {probs}") # we compare counts to analytical correct distribution correct_dist = grovers_dist(num_qubits, marked_item) if verbose: print(f"Marked item: {marked_item}, Correct dist: {correct_dist}") # use our polarization fidelity rescaling fidelity = metrics.polarization_fidelity(probs, correct_dist) return probs, fidelity def grovers_dist(num_qubits, marked_item): n_iterations = int(np.pi * np.sqrt(2 ** num_qubits) / 4) dist = {} for i in range(2**num_qubits): key = bin(i)[2:].zfill(num_qubits)[::-1] theta = np.arcsin(1/np.sqrt(2 ** num_qubits)) if i == int(marked_item): dist[key] = np.sin((2*n_iterations+1)*theta)**2 else: dist[key] = (np.cos((2*n_iterations+1)*theta)/(np.sqrt(2 ** num_qubits - 1)))**2 return dist ################ Benchmark Loop # Because this circuit size grows significantly with num_qubits (due to the mcx gate) # limit the max_qubits here ... MAX_QUBITS=8 # Execute program with default parameters def run(min_qubits=2, max_qubits=6, skip_qubits=1, max_circuits=3, num_shots=100, use_mcx_shim=False, backend_id='dm_simulator', provider_backend=None, # hub="ibm-q", group="open", project="main", exec_options=None, context=None): print(f"{benchmark_name} Benchmark Program - QSim") # Clamp the maximum number of qubits if max_qubits > MAX_QUBITS: print(f"INFO: {benchmark_name} benchmark is limited to a maximum of {MAX_QUBITS} qubits.") max_qubits = MAX_QUBITS # validate parameters (smallest circuit is 2 qubits) max_qubits = max(2, max_qubits) min_qubits = min(max(2, min_qubits), max_qubits) skip_qubits = max(1, skip_qubits) #print(f"min, max qubits = {min_qubits} {max_qubits}") # create context identifier if context is None: context = f"{benchmark_name} Benchmark" # set the flag to use an mcx shim if given global _use_mcx_shim _use_mcx_shim = use_mcx_shim if _use_mcx_shim: print("... using MCX shim") ########## # Initialize metrics module metrics.init_metrics() # Define custom result handler def execution_handler(qc, result, num_qubits, s_int, num_shots): # determine fidelity of result set num_qubits = int(num_qubits) probs, fidelity = analyze_and_print_result(qc, result, num_qubits, int(s_int), num_shots) metrics.store_metric(num_qubits, s_int, 'fidelity', fidelity) # Initialize execution module using the execution result handler above and specified backend_id ex.init_execution(execution_handler) ex.set_execution_target(backend_id, provider_backend=provider_backend, # hub=hub, group=group, project=project, exec_options=exec_options, context=context) ########## # Execute Benchmark Program N times for multiple circuit sizes # Accumulate metrics asynchronously as circuits complete for num_qubits in range(min_qubits, max_qubits + 1, skip_qubits): # determine number of circuits to execute for this group num_circuits = min(2 ** (num_qubits), max_circuits) print(f"************\nExecuting [{num_circuits}] circuits with num_qubits = {num_qubits}") # determine range of secret strings to loop over if 2**(num_qubits) <= max_circuits: s_range = list(range(num_circuits)) else: s_range = np.random.choice(2**(num_qubits), num_circuits, False) # loop over limited # of secret strings for this for s_int in s_range: # create the circuit for given qubit size and secret string, store time metric ts = time.time() n_iterations = int(np.pi * np.sqrt(2 ** num_qubits) / 4) qc = GroversSearch(num_qubits, s_int, n_iterations) metrics.store_metric(num_qubits, s_int, 'create_time', time.time() - ts) # collapse the sub-circuits used in this benchmark (for qiskit) qc2 = qc.decompose() # submit circuit for execution on target (simulator, cloud simulator, or hardware) ex.submit_circuit(qc2, num_qubits, s_int, num_shots) # Wait for some active circuits to complete; report metrics when groups complete ex.throttle_execution(metrics.finalize_group) # Wait for all active circuits to complete; report metrics when groups complete ex.finalize_execution(metrics.finalize_group) ########## # print a sample circuit created (if not too large) print("Sample Circuit:"); print(QC_ if QC_ != None else " ... too large!") print("\nOracle ="); print(grover_oracle if grover_oracle!= None else " ... too large!") print("\nDiffuser ="); print(diffusion_operator ) # Plot metrics for all circuit sizes metrics.plot_metrics(f"Benchmark Results - {benchmark_name} - QSim") # if main, execute method if __name__ == '__main__': ex.local_args() # calling local_args() needed while taking noise parameters through command line arguments (for individual benchmarks) run()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np # Import Qiskit from qiskit import QuantumCircuit, transpile from qiskit_aer import AerSimulator # Construct quantum circuit circ = QuantumCircuit(2, 2) circ.h(0) circ.cx(0, 1) circ.measure([0,1], [0,1]) # Select the AerSimulator from the Aer provider simulator = AerSimulator(method='matrix_product_state') # Run and get counts, using the matrix_product_state method tcirc = transpile(circ, simulator) result = simulator.run(tcirc).result() counts = result.get_counts(0) counts circ = QuantumCircuit(2, 2) circ.h(0) circ.cx(0, 1) # Define a snapshot that shows the current state vector circ.save_statevector(label='my_sv') circ.save_matrix_product_state(label='my_mps') circ.measure([0,1], [0,1]) # Execute and get saved data tcirc = transpile(circ, simulator) result = simulator.run(tcirc).result() data = result.data(0) #print the result data data num_qubits = 50 circ = QuantumCircuit(num_qubits, num_qubits) # Create EPR state circ.h(0) for i in range (0, num_qubits-1): circ.cx(i, i+1) # Measure circ.measure(range(num_qubits), range(num_qubits)) tcirc = transpile(circ, simulator) result = simulator.run(tcirc).result() print("Time taken: {} sec".format(result.time_taken)) result.get_counts() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit.circuit import Parameter from qiskit import pulse from qiskit.test.mock.backends.almaden import * phase = Parameter('phase') with pulse.build(FakeAlmaden()) as phase_test_sched: pulse.shift_phase(phase, pulse.drive_channel(0)) phase_test_sched.instructions # ()
https://github.com/xtophe388/QISKIT
xtophe388
import qiskit qiskit.__qiskit_version__ #initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.compiler import transpile from qiskit.tools.monitor import job_monitor # import basic plot tools from qiskit.tools.visualization import plot_histogram # Load our saved IBMQ accounts. IBMQ.load_account() nQubits = 14 # number of physical qubits a = 101 # the hidden integer whose bitstring is 1100101 # make sure that a can be represented with nQubits a = a % 2**(nQubits) # Creating registers # qubits for querying the oracle and finding the hidden integer qr = QuantumRegister(nQubits) # for recording the measurement on qr cr = ClassicalRegister(nQubits) circuitName = "BernsteinVazirani" bvCircuit = QuantumCircuit(qr, cr) # Apply Hadamard gates before querying the oracle for i in range(nQubits): bvCircuit.h(qr[i]) # Apply barrier so that it is not optimized by the compiler bvCircuit.barrier() # Apply the inner-product oracle for i in range(nQubits): if (a & (1 << i)): bvCircuit.z(qr[i]) else: bvCircuit.iden(qr[i]) # Apply barrier bvCircuit.barrier() #Apply Hadamard gates after querying the oracle for i in range(nQubits): bvCircuit.h(qr[i]) # Measurement bvCircuit.barrier(qr) bvCircuit.measure(qr, cr) bvCircuit.draw(output='mpl') # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1000 results = execute(bvCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) backend = IBMQ.get_backend('ibmq_16_melbourne') shots = 1000 bvCompiled = transpile(bvCircuit, backend=backend, optimization_level=1) job_exp = execute(bvCircuit, backend=backend, shots=shots) job_monitor(job_exp) results = job_exp.result() answer = results.get_counts(bvCircuit) threshold = int(0.01 * shots) #the threshold of plotting significant measurements filteredAnswer = {k: v for k,v in answer.items() if v >= threshold} #filter the answer for better view of plots removedCounts = np.sum([ v for k,v in answer.items() if v < threshold ]) #number of counts removed filteredAnswer['other_bitstrings'] = removedCounts #the removed counts is assigned to a new index plot_histogram(filteredAnswer) print(filteredAnswer)
https://github.com/oscarhiggott/pewpew-qube
oscarhiggott
%matplotlib notebook # import pygame to run the PewPew emulator from a notebook import pygame # add the src directory to the search path to load modules import sys sys.path.insert(0, "../src/") qiskit_images = ( ( (0, 3, 3, 3, 3, 3, 3, 0), (3, 2, 0, 1, 1, 0, 0, 3), (3, 0, 2, 0, 0, 1, 0, 3), (3, 1, 0, 2, 0, 0, 1, 3), (3, 3, 0, 0, 2, 0, 3, 3), (3, 0, 3, 3, 3, 3, 0, 3), (3, 0, 0, 0, 0, 0, 2, 3), (0, 3, 3, 3, 3, 3, 3, 0) ), ( (0, 3, 3, 3, 3, 3, 3, 0), (3, 0, 0, 2, 1, 0, 0, 3), (3, 0, 1, 2, 0, 1, 0, 3), (3, 1, 0, 0, 2, 0, 1, 3), (3, 3, 0, 0, 2, 0, 3, 3), (3, 0, 3, 3, 3, 3, 0, 3), (3, 0, 0, 0, 0, 2, 0, 3), (0, 3, 3, 3, 3, 3, 3, 0) ), ( (0, 3, 3, 3, 3, 3, 3, 0), (3, 0, 0, 1, 2, 0, 0, 3), (3, 0, 1, 0, 2, 1, 0, 3), (3, 1, 0, 2, 0, 0, 1, 3), (3, 3, 0, 2, 0, 0, 3, 3), (3, 0, 3, 3, 3, 3, 0, 3), (3, 0, 2, 0, 0, 0, 0, 3), (0, 3, 3, 3, 3, 3, 3, 0) ), ( (0, 3, 3, 3, 3, 3, 3, 0), (3, 0, 0, 1, 1, 0, 2, 3), (3, 0, 1, 0, 0, 2, 0, 3), (3, 1, 0, 0, 2, 0, 1, 3), (3, 3, 0, 2, 0, 0, 3, 3), (3, 0, 3, 3, 3, 3, 0, 3), (3, 2, 0, 0, 0, 0, 0, 3), (0, 3, 3, 3, 3, 3, 3, 0) ) ) import pew i = 0 # frame counter value = 0 # selected level pew.init() # initialize the PewPew console # main loop while not value: # check for pressed keys keys = pew.keys() if keys & pew.K_UP: value = 1 elif keys & pew.K_RIGHT: value = 2 elif keys & pew.K_DOWN: value = 3 elif keys & pew.K_LEFT: value = 4 # display the next frame animation = (0,0,1,1,2,2,3,3,2,2,1,1) i = (i + 1) % len(animation) screen = qiskit_images[animation[i]] pew.show(pew.Pix.from_iter(screen)) # wait 0.1 seconds pew.tick(0.1) # freeze the screen while a button is pressed while pew.keys(): pew.tick(0.1) # the following is just necessary in a jupyter notebook: pygame.display.quit() pygame.quit() import random import time # initialize the random-number generator random.seed(int(time.monotonic()*1000)) # unload unnecessary objects to save RAM del qiskit_images # load the new main loop from loop import main_loop # execute the new main loop passing to it the seleced level if value == 1: from rotations import instruction_set_XYZ main_loop(instruction_set_XYZ()) else: from instruction_sets import InstructionSet from displays import IBMQ main_loop(InstructionSet(level=value-2, goal=IBMQ)) # the following is just necessary in a jupyter notebook: pygame.display.quit() pygame.quit() def main_loop(ins): # initialize PewPew console pew.init() # Load start screens for start_screen in start_screens: pew.show(pew.Pix.from_iter(start_screen)) pew.tick(0.2) pew.show(pew.Pix.from_iter(blank_screen)) pew.tick(0.5) # display the first frame of the level pew.show(ins.get_current_screen()) # flags used throughout the loop bool_loop = True old_keys = 0 # new main loop while bool_loop: keys = pew.keys() if keys != 0 and keys != old_keys: # old_keys is necessary to debounce the buttons old_keys = keys # dispatch the pushed buttons if keys & pew.K_X: value = pew.K_X elif keys & pew.K_DOWN: value = pew.K_DOWN elif keys & pew.K_LEFT: value = pew.K_LEFT elif keys & pew.K_RIGHT: value = pew.K_RIGHT elif keys & pew.K_UP: value = pew.K_UP elif keys & pew.K_O: # the key "O" ("Z" in the emulator) will terminate the game value = pew.K_O bool_loop = False else: value = 0 # send the pressed key to the instruction set ins.key_pressed(value) elif keys == 0: # this is necessary to be able to push # a button twice in a row old_keys = keys # update the screen and wait for 20ms pew.show(ins.get_current_screen()) pew.tick(0.02) # the program has been terminated. # display the final sequence for final_screen in final_screens: pew.show(pew.Pix.from_iter(final_screen)) pew.tick(0.2) pew.show(pew.Pix.from_iter(blank_screen)) pew.tick(0.2) class instruction_set_XYZ: def __init__(self): # history of pushed keys self.key_hist = [] # current state vector self.state = random_state() def key_pressed(self, key): if key == pew.K_UP: # forget all pushed buttons self.key_hist = [] elif key == pew.K_LEFT or key == pew.K_DOWN or key == pew.K_RIGHT: # append button to history self.key_hist.append(key) # if two buttons have been pressed, determine the corresponding transformation if len(self.key_hist) == 2: if self.key_hist[0] == pew.K_LEFT: gate = 'x' elif self.key_hist[0] == pew.K_DOWN: gate = 'y' else: gate = 'z' if self.key_hist[1] == pew.K_LEFT: gate = gate + 'x' elif self.key_hist[1] == pew.K_DOWN: gate = gate + 'y' else: gate = gate + 'z' # update the state vector self.state = propagate_statevector(self.state, make_circuit(gate)) # clear the history of pushed buttons self.key_hist = [] elif key == pew.K_X: # restart the level self.__init__() def get_current_screen(self): return make_image(self.state) from aether import QuantumCircuit pi4 = 0.785398 pi2 = 1.570796 def make_circuit(gate): qc = QuantumCircuit(2) if gate[0] == 'x': qc.h(0) elif gate[0] == 'y': qc.rx(pi2,0) if gate[1] == 'x': qc.h(1) elif gate[1] == 'y': qc.rx(pi2,1) qc.cx(0,1) qc.h(1) qc.rx(pi2,1) qc.h(1) qc.cx(0,1) if gate[0] == 'x': qc.h(0) elif gate[0] == 'y': qc.rx(-pi2,0) if gate[1] == 'x': qc.h(1) elif gate[1] == 'y': qc.rx(-pi2,1) return qc from aether import QuantumCircuit, simulate def propagate_statevector(vec,qc): qc_i = QuantumCircuit(2,0) qc_i.initialize(vec) return simulate(qc_i + qc, get='statevector') def random_state(): state = [[1.0,0.0],[0.0,0.0],[0.0,0.0],[0.0,0.0]] for i in range(5): gate = ['xx','xy','xz','yx','yz','yy','zx','zy','zz'][randint(0,8)] qc = make_circuit(gate) state = propagate_statevector(state, qc) return state def make_image(state): blocks = [] for num in state: blocks.append(make_block(num)) image = pew.Pix() for i in range(2): for j in range(4): tmp = blocks[2*i][j] + blocks[2*i+1][j] for x in range(8): image.pixel(x,4*i+j,tmp[x]) return image def make_block(c_num): amp = sqrt(c_num[0]*c_num[0] + c_num[1]*c_num[1]) phi = atan2(c_num[1], c_num[0]) if amp < 0.01: phi = 0 scenario = 0 phases = [0.0, pi4, -pi4, 2.0*pi4, -2.0*pi4, 3.0*pi4, -3.0*pi4, 4.0*pi4, -4.0*pi4] scenarios = [1, -1, -2, 4, 2, -4, -3, 3, 3 ] for i in range(9): if (phi - phases[i])*(phi - phases[i]) < 0.001: scenario = scenarios[i] continue if amp < 0.25: block = [[0,0,0,0],[0,2,2,0],[0,2,2,0],[0,0,0,0]] elif amp < 0.6: if scenario > 0: block = [[0,0,2,0],[0,0,0,2],[0,0,0,2],[0,0,2,0]] else: block = [[0,0,0,0],[0,2,2,0],[0,0,2,0],[0,0,0,0]] elif amp < 0.9: if scenario > 0: block = [[0,0,0,2],[0,0,2,0],[0,0,2,0],[0,0,0,2]] else: block = [[0,0,2,0],[0,0,2,2],[0,0,0,0],[0,0,0,0]] else: if scenario > 0: block = [[0,0,0,2],[0,0,0,2],[0,0,0,2],[0,0,0,2]] else: block = [[0,0,2,2],[0,0,0,2],[0,0,0,0],[0,0,0,0]] if scenario != 1 and scenario != -1: for r in range(abs(scenario) - 1): block = rot90(block) return block def rot90(block): res = [] for i in range(len(block)): transposed = [] for col in block: transposed.append(col[i]) transposed.reverse() res.append(transposed) return res
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
from qiskit import QuantumCircuit, QuantumRegister, AncillaRegister, ClassicalRegister, Aer, execute from bit_functions import full_bitfield, get_qubit_list from Grover.grover_cirq import diffuser, calculate_iteration, prep_qubits_circuit, check_solution_grover, generate_grover_circuits_with_iterations, simulate_grover_qc_list from circuits import cnz from logic_gate_circuits import and_gate, or_gate, xor_gate, xnor_gate, nand_gate, nor_gate, mor_gate, mand_gate from Grover.grover_cirq import diffuser def check_same_num(num_qubit = None, max_num_value = None): '''Returns a circuit that sets the last ancilla qubit (Answer) if the numbers are the same''' if num_qubit is None and max_num_value is None: return None if num_qubit is not None: pass else: num_qubit = max_num_value.bit_length() num_a = QuantumRegister(num_qubit, 'A') num_b = QuantumRegister(num_qubit, 'B') xnor_qc = QuantumCircuit(num_a, num_b) for i in range(num_qubit): xnor_g = xnor_gate() xnor_qc.add_register(AncillaRegister(1)) xnor_qc = xnor_qc.compose(xnor_g, [num_a[i], num_b[i], xnor_qc.ancillas[-1]]) qc = QuantumCircuit(xnor_qc.qubits) qc = qc.compose(xnor_qc, xnor_qc.qubits) if len(qc.ancillas) > 1: qc.add_register(AncillaRegister(1)) qc.mcx(xnor_qc.ancillas, qc.ancillas[-1]) qc = qc.compose(xnor_qc.inverse(), xnor_qc.qubits) qc.name = 'Check_Same_Num' return qc #def prep_cnz(nqubits, set_qubit_value = [] ,mode='noancilla'): # '''Prepare cnz circuit with vgiven values of the qubits\n # Returns the prepared circuit\n # set_value_list contains a list of tuples that contains (qubit_index , 0 or 1)''' # # x_qubit = [value[0] for value in set_qubit_value if value[1] and value[0] < nqubits] # # cnz_qc = cnz(nqubits, mode) # # qc = QuantumCircuit(cnz_qc.qubits) # qc.x(x_qubit) if len(x_qubit) else None # qc.barrier(qc.qubits) # qc = qc.compose(cnz_qc, qc.qubits) # qc.barrier(qc.qubits) # qc.x(x_qubit) if len(x_qubit) else None # # qc.name = f"cnz {nqubits}" # return qc def create_sudoko_iteration(max_value = 2): max_cells = list(range(pow(max_value, 2))) qubit_num = (max_value - 1).bit_length() if not qubit_num: return None pairs = get_matrix_pairs(max_value) qubit_list = QuantumRegister(len(max_cells) * qubit_num) anc_list = AncillaRegister(qubit_num) if qubit_num > 1 else [] answer_anc_list = [] qc_pair = QuantumCircuit(qubit_list, anc_list) for p in pairs: check_equal_qc = check_same_num(qubit_num) answer_anc_list.append(check_equal_qc.ancillas[-1]) qc_pair.add_register([answer_anc_list[-1]]) qubit_connection = list(qubit_list[p[0] * qubit_num : (p[0] + 1) * qubit_num]) + list(qubit_list[p[1] * qubit_num : (p[1] + 1) * qubit_num]) + list(anc_list) + [check_equal_qc.ancillas[-1]] qc_pair = qc_pair.compose(check_equal_qc, qubit_connection) qc_pair.barrier(qc_pair.qubits) qc_z = cnz(len(answer_anc_list), [(i, 0) for i in range(len(answer_anc_list))]) diffuser_qc = diffuser(len(get_qubit_list(qc_pair))) qc = QuantumCircuit(qc_pair.qubits) qc = qc.compose(qc_pair, qc_pair.qubits) qc.barrier(qc.qubits) qc = qc.compose(qc_z, answer_anc_list) qc.barrier(qc.qubits) qc = qc.compose(qc_pair.inverse(), qc_pair.qubits) qc.barrier(qc.qubits) qc = qc.compose(diffuser_qc, get_qubit_list(qc)) return qc def create_sudoko_circuits(max_value = 2, set_qubit_value = []): qc_iter = create_sudoko_iteration(max_value) return generate_grover_circuits_with_iterations(qc_iter, set_qubit_value) def get_matrix_pairs(matrix_size = 4, start_cell = 0): output = [] if start_cell >= pow(matrix_size, 2): return output cur_index = start_cell + 1 while cur_index % matrix_size: pair = (start_cell, cur_index) output.append(pair) if pair not in output else None cur_index = cur_index + 1 cur_index = start_cell + matrix_size while cur_index < pow(matrix_size, 2): pair = (start_cell, cur_index) output.append(pair) if pair not in output else None cur_index = cur_index + matrix_size output = output + [i for i in get_matrix_pairs(matrix_size=matrix_size, start_cell= start_cell + 1) if i not in output] return output def check_under_nine(nqubits): '''Returns a circuit that calculates if the value of the qubits are under nine (0 - 8)\n The answer will be on the final ancilla bit.\n The ancillas, except the last one (Answer), can be reused''' nine_bit_size = int(9).bit_length() additional_qubits = nqubits - nine_bit_size if additional_qubits < 0: return None nand_three = mand_gate(3, [1] * 3) nand_three.x(nand_three.ancillas[-1]) nand_three.barrier(nand_three.qubits) nand_fourth = nand_gate() nine_qubit_qc = QuantumCircuit(nand_three.qubits, nand_fourth.qubits[1:]) nine_qubit_qc = nine_qubit_qc.compose(nand_three, nand_three.qubits) nine_qubit_qc = nine_qubit_qc.compose(nand_fourth, [nand_three.ancillas[-1]] + list(nand_fourth.qubits[1:])) if additional_qubits: add_qubits = QuantumRegister(additional_qubits) nine_qubit_qc.add_register(add_qubits) nine_qubit_qc.x(add_qubits) qc = QuantumCircuit(nine_qubit_qc.qubits, AncillaRegister(1)) qc = qc.compose(nine_qubit_qc, nine_qubit_qc.qubits) qc.barrier(qc.qubits) qc.mcx(list(add_qubits) + [nine_qubit_qc.ancillas[-1]], qc.ancillas[-1]) qc.barrier(qc.qubits) qc = qc.compose(nine_qubit_qc.inverse(), nine_qubit_qc.qubits) else: qc = QuantumCircuit(nine_qubit_qc.qubits) qc = qc.compose(nine_qubit_qc, nine_qubit_qc.qubits) qc = qc.compose(nand_three.inverse(), nand_three.qubits) qc.name = "Check_under_nine" return qc
https://github.com/mrvee-qC-bee/UNHAN_Quantum_Workshop_2023
mrvee-qC-bee
#make sure your qiskit version is up to date import qiskit.tools.jupyter %qiskit_version_table from qiskit import QuantumCircuit # Create a Quantum Circuit acting on a quantum register of two qubits circ = QuantumCircuit(2) print(circ) # Add a H gate on qubit 0, putting this qubit in superposition. circ.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting # the qubits in a Bell state. circ.cx(0, 1) circ.draw('mpl', style="iqp") #One can also draw this as an ascii drawing circ.draw() from qiskit.primitives import Sampler #Instantiate a new Sampler object sampler = Sampler() #We'll also need to add measurement circ = QuantumCircuit(2) circ.h(0) circ.cx(0, 1) # Insert measurements on all qubits circ.measure_all() circ.draw('mpl', style='iqp') # Now run the job and examine the results sampler_job = sampler.run(circ) result = sampler_job.result() print(f"Job Result:\n>>> {result}") print(f" > Quasi-probability distribution (integer): {result.quasi_dists[0]}") print(f" > Quasi-probability distribution (bits): {result.quasi_dists[0].binary_probabilities(2)}") print(f" > Metadata: {result.metadata[0]}") from qiskit.tools.visualization import plot_distribution prob_distribution = sampler_job.result().quasi_dists[0].binary_probabilities() plot_distribution(prob_distribution) from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session #Initialize a QiskitRuntimeService object service = QiskitRuntimeService() #We will use the 127-qubit ibm_nazca or 133-qubit ibm_torino backend backend = service.get_backend('ibm_cusco') session = Session(service=service, backend=backend) # sampler = Sampler(backend=backend) sampler = Sampler(session=session) job = sampler.run(circ) print(f">>> Job ID: {job.job_id()}") print(f">>> Session ID: {job.session_id}") print(f">>> Job Status: {job.status()}") # Use a job id from a previous result job = service.job("cnxwrpjmbjng0081zhc0") print(f">>> Job Status: {job.status()}") result = job.result() print(f"Job Result:\n>>> {result}") print(f" > Quasi-probability distribution (integer): {result.quasi_dists[0]}") print(f" > Quasi-probability distribution (bits): {result.quasi_dists[0].binary_probabilities(2)}") print(f" > Metadata: {result.metadata[0]}") from qiskit.visualization import plot_distribution import matplotlib.pyplot as plt plt.style.use('dark_background') #plot_distribution(result.quasi_dists[0]) plot_distribution([result.quasi_dists[0].binary_probabilities(2),prob_distribution]) from qiskit import QuantumRegister, ClassicalRegister #Create the circuit qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) # we can also write "qc = QuantumCircuit(2,2)" #Add the hadamard and CNOT gates to the circuit qc.h(0) qc.cx(0, 1) qc.draw('mpl', style="iqp") # Import the SparesPauliOp class and create our observables variable from qiskit.quantum_info import SparsePauliOp observable = SparsePauliOp(["II", "XX", "YY", "ZZ"], coeffs=[1, 1, -1, 1]) # Import qiskit primitives from qiskit.primitives import Estimator estimator = Estimator() job = estimator.run(qc, observable) result_exact = job.result() print(result_exact) print(f"Expectation Value of <II+XX-YY+ZZ> = {result_exact.values[0]:.3f}") from qiskit_ibm_runtime import Estimator, Session #Initialize a QiskitRuntimeService object service = QiskitRuntimeService() #We will use the 127-qubit ibm_nazca backend backend = service.get_backend('ibm_torino') # create a Runtime session for efficient execution (optional) session = Session(service=service, backend=backend) # estimator = Estimator(backend=backend) estimator = Estimator(session=session) #Here we can get some status information about the backend status = backend.status() is_operational = status.operational jobs_in_queue = status.pending_jobs print('Operational?: {} \n Jobs in Queue: {}\n'.format(is_operational, jobs_in_queue)) # We can also obtain some configuration information config = backend.configuration() print(64*"#","\nConfiguration for: {}, version: {}".format(config.backend_name, config.backend_version)) print(" Number of Qubits: {}".format(config.n_qubits)) print(" Basis Gates: {}".format(config.basis_gates)) print(" OpenPulse Enabled: {}".format(config.open_pulse)) job = estimator.run(qc, observable) print(f">>> Job ID: {job.job_id()}") print(f">>> Session ID: {job.session_id}") print(f">>> Job Status: {job.status()}") # Use a job id from a previous result job = service.job("cnxwwhtmbjng0081zhxg") print(f">>> Job Status: {job.status()}") #Examine our results once the job has completed result = job.result() print(f">>> {result}") print(f" > Expectation value: {result.values[0]}") print(f" > Metadata: {result.metadata[0]}") from qiskit.visualization import plot_histogram import matplotlib.pyplot as plt plt.style.use('dark_background') data = {"Ideal": result_exact.values[0],"Result": result.values[0]} plt.bar(range(len(data)), data.values(), align='center', color = "#7793f2") plt.xticks(range(len(data)), list(data.keys())) plt.show() from qiskit_ibm_runtime import Options # To set our resilience and optimization level we need to create this `Options` object options = Options() options.resilience_level = 2 options.optimization_level = 3 # We'll prepare the same example circuit as before qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) # we can also write "qc = QuantumCircuit(2,2)" #Add the hadamard and CNOT gates to the circuit qc.h(0) qc.cx(0, 1) # We'll also instantiate a new Runtime Estimator() object # estimator = Estimator(options=options, backend=backend) estimator = Estimator(options=options, session=session) # and use the same observable as before observable = SparsePauliOp(["II", "XX", "YY", "ZZ"], coeffs=[1, 1, -1, 1]) job = estimator.run(circuits=qc, observables=observable) print(f">>> Job ID: {job.job_id()}") print(f">>> Session ID: {job.session_id}") print(f">>> Job Status: {job.status()}") # Use a job id from a previous result job = service.job("cnxwx04ja3gg0085f6cg") print(f">>> Job Status: {job.status()}") #Examine our results once the job has completed result_mitigated = job.result() print(f">>> {result_mitigated}") print(f" > Expectation value: {result_mitigated.values[0]}") print(f" > Metadata: {result_mitigated.metadata[0]}") from qiskit.visualization import plot_histogram import matplotlib.pyplot as plt plt.style.use('dark_background') data = {"Ideal": result_exact.values[0],"Result": result.values[0],"Mitigated result": result_mitigated.values[0]} plt.bar(range(len(data)), data.values(), align='center', color = "#7793f2") plt.xticks(range(len(data)), list(data.keys())) plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit qc = QuantumCircuit(7) qc.ccx(0, 1, 4) qc.ccx(2, 3, 5) qc.ccx(4, 5, 6) qc.draw("mpl")
https://github.com/Chibikuri/qwopt
Chibikuri
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.3.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Optimization benchmarking # Plotting benchmark result. # + import sys import numpy as np import matplotlib.pyplot as plt import seaborn as sns import copy sys.path.append('../') from qwopt.compiler import composer from qwopt.benchmark import fidelity as fid from numpy import pi from qiskit import transpile from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister from qiskit import Aer, execute from qiskit.providers.aer.noise import NoiseModel from qiskit.providers.aer.noise.errors import depolarizing_error from tqdm import tqdm, trange from mpl_toolkits.mplot3d import Axes3D import warnings warnings.simplefilter('ignore') # - # ## 1. Multi step of 4 node graph with one partition # ## Target graph and probability transition matrix # + alpha = 0.85 target_graph = np.array([[0, 1, 0, 1], [0, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]]) E = np.array([[1/4, 1/2, 0, 1/2], [1/4, 0, 1/2, 0], [1/4, 1/2, 0, 1/2], [1/4, 0, 1/2, 0]]) # use google matrix prob_dist = alpha*E + ((1-alpha)/4)*np.ones((4, 4)) init_state = 1/2*np.array([np.sqrt(prob_dist[j][i]) for i in range(4) for j in range(4)]) # - # ### Check points # - How to decrease the fidelity over the number of steps # - The number of operations # ### Count operations # #### Without any optimizations # + # Circuit def four_node(opt, step): rotation = np.radians(31.788) cq = QuantumRegister(2, 'control') tq = QuantumRegister(2, 'target') c = ClassicalRegister(2, 'classical') if opt: anc = QuantumRegister(2, 'ancilla') qc = QuantumCircuit(cq, tq, anc, c) else: qc = QuantumCircuit(cq, tq, c) # initialize with probability distribution matrix initial = 1/2*np.array([np.sqrt(prob_dist[j][i]) for i in range(4) for j in range(4)]) qc.initialize(initial, [*cq, *tq]) for t in range(step): # Ti operation qc.x(cq[1]) qc.ccx(cq[0], cq[1], tq[1]) qc.x(cq[1]) qc.barrier() # Kdg operation if opt: qc.x(cq) qc.rccx(cq[0], cq[1], anc[0]) qc.barrier() qc.ch(anc[0], tq[0]) qc.ch(anc[0], tq[1]) qc.x(anc[0]) qc.cry(-rotation, anc[0], tq[1]) qc.ch(anc[0], tq[0]) qc.barrier() else: qc.x(cq) qc.mcry(-pi/2, cq, tq[0], None) qc.mcry(-pi/2, cq, tq[1], None) qc.x(cq) qc.barrier() # qc.x(cq[1]) # qc.mcry(-pi/2, cq, tq[0], None) # qc.mcry(-rotation, cq, tq[1], None) # qc.x(cq[1]) # qc.barrier() qc.x(cq[0]) qc.mcry(-pi/2, cq, tq[0], None) qc.mcry(-rotation, cq, tq[1], None) qc.x(cq[0]) qc.barrier() qc.cry(-pi/2, cq[0], tq[0]) qc.cry(-rotation, cq[0], tq[1]) qc.barrier() # qc.mcry(-pi/2, cq, tq[0], None) # qc.mcry(-rotation, cq, tq[1], None) # qc.barrier() # D operation qc.x(tq) qc.cz(tq[0], tq[1]) qc.x(tq) qc.barrier() # K operation if opt: qc.ch(anc[0], tq[0]) qc.cry(rotation, anc[0], tq[1]) qc.x(anc[0]) qc.ch(anc[0], tq[1]) qc.ch(anc[0], tq[0]) qc.rccx(cq[0], cq[1], anc[0]) qc.x(cq) qc.barrier() else: # previous, and naive imple # qc.mcry(pi/2, cq, tq[0], None) # qc.mcry(rotation, cq, tq[1], None) # qc.barrier() qc.cry(pi/2, cq[0], tq[0]) qc.cry(rotation, cq[0], tq[1]) qc.barrier() qc.x(cq[0]) qc.mcry(pi/2, cq, tq[0], None) qc.mcry(rotation, cq, tq[1], None) qc.x(cq[0]) qc.barrier() # qc.x(cq[1]) # qc.mcry(pi/2, cq, tq[0], None) # qc.mcry(rotation, cq, tq[1], None) # qc.x(cq[1]) # qc.barrier() qc.x(cq) qc.mcry(pi/2, cq, tq[0], None) qc.mcry(pi/2, cq, tq[1], None) qc.x(cq) qc.barrier() # Tidg operation qc.x(cq[1]) qc.ccx(cq[0], cq[1], tq[1]) qc.x(cq[1]) qc.barrier() # swap qc.swap(tq[0], cq[0]) qc.swap(tq[1], cq[1]) qc.measure(tq, c) return qc # - qc = four_node(True, 1) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend=backend, shots=10000) count = job.result().get_counts(qc) print(count) qc.draw(output='mpl') # ### The number of operations in steps # + ex1_cx = [] ex1_u3 = [] ex2_cx = [] ex2_u3 = [] ex3_cx = [] ex3_u3 = [] ex4_cx = [] ex4_u3 = [] for step in trange(1, 11): opt_qc = transpile(four_node(True, step), basis_gates=['cx', 'u3'], optimization_level=0) ncx = opt_qc.count_ops().get('cx', 0) nu3 = opt_qc.count_ops().get('u3', 0) + opt_qc.count_ops().get('u2', 0) + opt_qc.count_ops().get('u1', 0) ex1_cx.append(ncx) ex1_u3.append(nu3) # ex2 opt_qc = transpile(four_node(True, step), basis_gates=['cx', 'u3'], optimization_level=3) ncx = opt_qc.count_ops().get('cx', 0) nu3 = opt_qc.count_ops().get('u3', 0) + opt_qc.count_ops().get('u2', 0) + opt_qc.count_ops().get('u1', 0) ex2_cx.append(ncx) ex2_u3.append(nu3) # ex3 opt_qc = transpile(four_node(False, step), basis_gates=['cx', 'u3'], optimization_level=3) ncx = opt_qc.count_ops().get('cx', 0) nu3 = opt_qc.count_ops().get('u3', 0) + opt_qc.count_ops().get('u2', 0) + opt_qc.count_ops().get('u1', 0) ex3_cx.append(ncx) ex3_u3.append(nu3) # ex4 nopt_qc = transpile(four_node(False, step), basis_gates=['cx', 'u3'], optimization_level=0) ncx = nopt_qc.count_ops().get('cx', 0) nu3 = nopt_qc.count_ops().get('u3', 0) + nopt_qc.count_ops().get('u2', 0) + nopt_qc.count_ops().get('u1', 0) ex4_cx.append(ncx) ex4_u3.append(nu3) # - cx = [ex1_cx, ex2_cx, ex3_cx, ex4_cx] u3 = [ex1_u3, ex2_u3, ex3_u3, ex4_u3] # color = ['#C23685', '#E38692', '#6BBED5', '#3EBA2B'] # labels = ['with my optimizations', 'with my and qiskit optimizations', 'with qiskit optimizations', 'without optimizations'] steps = range(1, 11) fig = plt.figure(figsize=(20, 10)) ax = fig.add_subplot(111) sns.set() plt.xlabel('the number of steps', fontsize=30) plt.xticks([i for i in range(11)]) plt.ylabel('the number of operations', fontsize=30) plt.title('the nuber of operations over steps', fontsize=30) plt.tick_params(labelsize=20) plt.plot(steps, ex4_cx, color='#3EBA2B', label='# of CX without optimizations', linewidth=3) plt.plot(steps, ex4_u3, color='#6BBED5', label='# of single qubit operations without optimizations', linewidth=3) plt.legend(fontsize=25) cx = [ex1_cx, ex2_cx, ex3_cx, ex4_cx] u3 = [ex1_u3, ex2_u3, ex3_u3, ex4_u3] color = ['#C23685', '#E38692', '#6BBED5', '#3EBA2B'] labels = ['with my optimizations', 'with my and qiskit optimizations', 'with qiskit optimizations', 'without optimizations'] steps = range(1, 11) fig = plt.figure(figsize=(20, 10)) ax = fig.add_subplot(111) sns.set() plt.xlabel('the number of steps', fontsize=30) plt.xticks([i for i in range(11)]) plt.ylabel('the number of cx', fontsize=30) plt.title('the nuber of operations over steps', fontsize=30) plt.tick_params(labelsize=20) print(list(steps)) for cs, col, lab in zip(cx, color, labels): plt.plot(steps, cs, color=col, label=lab, linewidth=3) plt.legend(fontsize=25) # ## Error rate transition import warnings warnings.simplefilter('ignore') # + qasm_sim = Aer.get_backend('qasm_simulator') def KL_divergence(p, q, torelance=10e-9): ''' p: np.array or list q: np.array or list ''' parray = np.array(p) + torelance qarray = np.array(q) + torelance divergence = np.sum(parray*np.log(parray/qarray)) return divergence def get_error(qc, ideal, err_model, nq, type='KL', shots=10000): bins = [format(i, '0%db'%nq) for i in range(2**nq)] job = execute(qc, backend=qasm_sim, shots=shots, noise_model=err_model) counts = job.result().get_counts(qc) prob = np.array([counts.get(b, 0)/shots for b in bins]) id_prob = np.array(ideal) # l2_error = np.sum([(i-j)**2 for i, j in zip(id_prob, prob)]) KL_error = KL_divergence(id_prob, prob) return KL_error def theoretical_prob(initial, step, ptran, nq): Pi_op = Pi_operator(ptran) swap = swap_operator(nq) operator = (2*Pi_op) - np.identity(len(Pi_op)) Szegedy = np.dot(operator, swap) Szegedy_n = copy.deepcopy(Szegedy) if step == 0: init_prob = np.array([abs(i)**2 for i in initial], dtype=np.float) return init_prob elif step == 1: prob = np.array([abs(i)**2 for i in np.dot(Szegedy, initial)], dtype=np.float) return prob else: for n in range(step-1): Szegedy_n = np.dot(Szegedy_n, Szegedy) probs = np.array([abs(i)**2 for i in np.dot(Szegedy_n, initial)], dtype=np.float) return probs def swap_operator(n_qubit): q1 = QuantumRegister(n_qubit//2) q2 = QuantumRegister(n_qubit//2) qc = QuantumCircuit(q1, q2) for c, t in zip(q1, q2): qc.swap(c, t) # FIXME backend = Aer.get_backend('unitary_simulator') job = execute(qc, backend=backend) swap = job.result().get_unitary(qc) return swap def Pi_operator(ptran): ''' This is not a quantum operation, just returning matrix ''' lg = len(ptran) psi_op = [] count = 0 for i in range(lg): psi_vec = [0 for _ in range(lg**2)] for j in range(lg): psi_vec[count] = np.sqrt(ptran[j][i]) count += 1 psi_op.append(np.kron(np.array(psi_vec).T, np.conjugate(psi_vec)).reshape((lg**2, lg**2))) Pi = psi_op[0] for i in psi_op[1:]: Pi = np.add(Pi, i) return Pi # + # circuit verifications # for step in range(1, 11): # opt_qc1 = transpile(four_node(True, step), basis_gates=['cx', 'u3'], optimization_level=0) # opt_qc2 = transpile(four_node(True, step), basis_gates=['cx', 'u3'], optimization_level=3) # opt_qc3 = transpile(four_node(False, step), basis_gates=['cx', 'u3'], optimization_level=3) # nopt_qc = transpile(four_node(False, step), basis_gates=['cx', 'u3'], optimization_level=0) # job1 = execute(opt_qc1, backend=qasm_sim, shots=10000) # job2 = execute(opt_qc2, backend=qasm_sim, shots=10000) # job3 = execute(opt_qc3, backend=qasm_sim, shots=10000) # job4 = execute(nopt_qc, backend=qasm_sim, shots=10000) # count1 = job1.result().get_counts() # count2 = job2.result().get_counts() # count3 = job3.result().get_counts() # count4 = job4.result().get_counts() # print(count1.get('00'), count2.get('00'), count3.get('00'), count4.get('00')) # + ex1_mean = [] ex1_std = [] ex2_mean = [] ex2_std = [] ex3_mean = [] ex3_std = [] ex4_mean = [] ex4_std = [] extime = 10 u3_error = depolarizing_error(0.001, 1) qw_step = range(1, 11) gate_error = np.arange(0, 0.03, 0.001) # errors, steps= np.meshgrid(gate_error, qw_step) bins = [format(i, '02b') for i in range(2**2)] step = 5 opt_qc = four_node(True, step) job = execute(opt_qc, backend=qasm_sim, shots=100000) count = job.result().get_counts(opt_qc) ideal_prob = [count.get(i, 0)/100000 for i in bins] for cxerr in tqdm(gate_error): # noise model error_model = NoiseModel() cx_error = depolarizing_error(cxerr, 2) error_model.add_all_qubit_quantum_error(u3_error, ['u3', 'u2']) error_model.add_all_qubit_quantum_error(cx_error, ['cx']) # ex1 errors = [] for i in range(extime): opt_qc = transpile(four_node(True, step), basis_gates=['cx', 'u3'], optimization_level=0) error = get_error(opt_qc, ideal_prob, error_model, 2) errors.append(error) ex1_mean.append(np.mean(errors)) ex1_std.append(np.std(errors)) # ex2 errors = [] for i in range(extime): opt_qc = transpile(four_node(True, step), basis_gates=['cx', 'u3'], optimization_level=3) error = get_error(opt_qc, ideal_prob, error_model, 2) errors.append(error) ex2_mean.append(np.mean(errors)) ex2_std.append(np.std(errors)) # ex3 errors = [] for i in range(extime): opt_qc = transpile(four_node(False, step), basis_gates=['cx', 'u3'], optimization_level=3) error = get_error(opt_qc, ideal_prob, error_model, 2) errors.append(error) ex3_mean.append(np.mean(errors)) ex3_std.append(np.std(errors)) # ex4 errors=[] for i in range(extime): nopt_qc = transpile(four_node(False, step), basis_gates=['cx', 'u3'], optimization_level=0) error = get_error(nopt_qc, ideal_prob, error_model, 2) errors.append(error) ex4_mean.append(np.mean(errors)) ex4_std.append(np.std(errors)) # + fig = plt.figure(figsize=(20, 10)) # plt.errorbar(gate_error, ex1_mean, yerr=ex1_std, label='With my optimizations') # # plt.errorbar(gate_error, ex2_mean, yerr=ex2_std, label='With my and qiskit optimizations') # # plt.errorbar(gate_error, ex3_mean, yerr=ex3_std, label='With qiskit optimizations') plt.errorbar(gate_error, ex4_mean, yerr=ex4_std, label='Without optimizations') plt.title('error investigation of %dstep Quantum Walk'%step, fontsize=30) plt.xlabel('cx error rate', fontsize=30) plt.ylabel('KL divergence', fontsize=30) plt.tick_params(labelsize=20) plt.legend(fontsize=20) plt.show() # + # ex1_mean = [] # ex1_std = [] # ex2_mean = [] # ex2_std = [] # ex3_mean = [] # ex3_std = [] # ex4_mean = [] # ex4_std = [] # extime = 10 # u3_error = depolarizing_error(0, 1) # qw_step = range(1,6) # gate_error = np.arange(0, 0.1, 0.01) # errors, steps= np.meshgrid(gate_error, qw_step) # bins = [format(i, '02b') for i in range(2**2)] # for ce, st in tqdm(zip(errors, steps)): # opt_qc = four_node(True, st[0]) # job = execute(opt_qc, backend=qasm_sim, shots=100000) # count = job.result().get_counts(opt_qc) # ideal_prob = [count.get(i, 0)/100000 for i in bins] # for cxerr, step in zip(ce, st): # # noise model # error_model = NoiseModel() # cx_error = depolarizing_error(cxerr, 2) # error_model.add_all_qubit_quantum_error(u3_error, ['u3', 'u2']) # error_model.add_all_qubit_quantum_error(cx_error, ['cx']) # # ex1 # qcs1 = [four_node(True, step) for i in range(extime)] # opt_qc1 = transpile(qcs1, basis_gates=['cx', 'u3'], optimization_level=0) # errors = get_error(opt_qc1, ideal_prob, error_model, 2) # ex1_mean.append(np.mean(errors)) # ex1_std.append(np.std(errors)) # # ex2 # qcs2 = [four_node(True, step) for i in range(extime)] # opt_qc2 = transpile(qcs2, basis_gates=['cx', 'u3'], optimization_level=3) # errors = get_error(opt_qc2, ideal_prob, error_model, 2) # ex2_mean.append(np.mean(errors)) # ex2_std.append(np.std(errors)) # # ex3 # qcs3 = [four_node(False, step) for i in range(extime)] # opt_qc3 = transpile(qcs3, basis_gates=['cx', 'u3'], optimization_level=3) # errors = get_error(opt_qc, ideal_prob, error_model, 2) # ex3_mean.append(np.mean(errors)) # ex3_std.append(np.std(errors)) # # ex4 # qcs4 = [four_node(False, step) for i in range(extime)] # nopt_qc = transpile(qcs4, basis_gates=['cx', 'u3'], optimization_level=0) # error = get_error(nopt_qc, ideal_prob, error_model, 2) # ex4_mean.append(np.mean(errors)) # ex4_std.append(np.std(errors)) # - # ### plot 3d res1 = np.array(ex1_mean).reshape(10, 10) res2 = np.array(ex2_mean).reshape(10, 10) res3 = np.array(ex3_mean).reshape(10, 10) res4 = np.array(ex4_mean).reshape(10, 10) # + # fig = plt.figure(figsize=(20, 10)) # ax = Axes3D(fig) # ax.plot_wireframe(errors, steps, res1, color='#E6855E', linewidth=2, label='With my optimization') # ax.plot_wireframe(errors, steps, res2, color='#F9DB57', linewidth=2, label='With my and qiskit optimizations') # ax.plot_wireframe(errors, steps, res3, color='#3DB680', linewidth=2, label='With qiskit optimizations') # ax.plot_wireframe(errors, steps, res4, color='#6A8CC7', linewidth=2, label='Without optimizations') # ax.set_xlabel('Cx error rate', labelpad=30, fontsize=30) # ax.set_ylabel('The number of steps', labelpad=30, fontsize=30) # ax.set_zlabel('Error', labelpad=30, fontsize=30) # plt.tick_params(labelsize=20) # plt.legend(fontsize=20) # plt.show() # - # ## 2. Multi step of 8 node graph with one partition # ## Target graph and probability transition matrix # + # In this case, we're gonna investigate matrix that has just one partition alpha = 0.85 target_graph = np.array([[0, 1, 0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 0], [0, 1, 0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0]]) E = np.array([[1/8, 1/2, 0, 0, 0, 0, 0, 1/2], [1/8, 0, 1/2, 0, 0, 0, 0, 0], [1/8, 1/2, 0, 1/2, 0, 0, 0, 0], [1/8, 0, 1/2, 0, 1/2, 0, 0, 0], [1/8, 0, 0, 1/2, 0, 1/2, 0, 0], [1/8, 0, 0, 0, 1/2, 0, 1/2, 0], [1/8, 0, 0, 0, 0, 1/2, 0, 1/2], [1/8, 0, 0, 0, 0, 0, 1/2, 0]]) # use google matrix lt = len(target_graph) prob_dist = alpha*E + ((1-alpha)/lt)*np.ones((lt, lt)) init_state_eight = 1/np.sqrt(8)*np.array([np.sqrt(prob_dist[j][i]) for i in range(lt) for j in range(lt)]) # + # Circuit def eight_node(opt, step, initial, hardopt=False): rotation1 = np.radians(31.788) rotation2 = np.radians(90) rotation3 = np.radians(23.232) cq = QuantumRegister(3, 'control') tq = QuantumRegister(3, 'target') # ancilla for mct gates anc = QuantumRegister(3, 'mct anc') c = ClassicalRegister(3, 'classical') if opt: opt_anc = QuantumRegister(2, 'ancilla') qc = QuantumCircuit(cq, tq, anc, opt_anc, c) else: qc = QuantumCircuit(cq, tq, anc, c) # initialize with probability distribution matrix if initial is not None: qc.initialize(initial, [*cq, *tq]) for t in range(step): # Ti operation # T1 qc.x(cq[0]) qc.x(cq[2]) qc.mct(cq, tq[2], anc) qc.x(cq[0]) qc.x(cq[2]) qc.barrier() # T2 qc.x(cq[0]) qc.mct(cq, tq[1], anc) qc.x(cq[0]) qc.barrier() # T3 qc.x(cq[1:]) qc.mct(cq, tq[1], anc) qc.mct(cq, tq[2], anc) qc.x(cq[1:]) qc.barrier() # T4 qc.x(cq[1]) qc.mct(cq, tq[0], anc) qc.x(cq[1]) qc.barrier() # T5 qc.x(cq[2]) qc.mct(cq, tq[0], anc) qc.mct(cq, tq[2], anc) qc.x(cq[2]) qc.barrier() # T6 qc.x(tq[2]) qc.mct([*cq, *tq[1:]], tq[0], anc) qc.x(tq[2]) qc.barrier() # # Kdg operation if opt: qc.x(cq[:]) # qc.rcccx(cq[0], cq[1], cq[2], opt_anc[0]) qc.mct(cq, opt_anc[0], anc) qc.x(cq[:]) for ryq in tq: qc.cry(-pi/2, opt_anc[0], ryq) if hardopt: raise Exception('under_construction') else: qc.x(opt_anc[0]) qc.x(tq[0]) qc.mcry(-rotation3, [opt_anc[0], tq[0]], tq[2], anc) qc.x(tq[0]) qc.mcry(3/2*pi, [opt_anc[0], tq[0]], tq[1], anc) qc.mcry(3/2*pi, [opt_anc[0], tq[0]], tq[2], anc) qc.x(tq[0]) qc.mcry(-rotation2, [opt_anc[0], tq[0]], tq[1], anc) qc.x(tq[0]) qc.cry(-rotation1, opt_anc[0], tq[0]) qc.x(opt_anc[0]) else: qc.x(cq[:]) for ryq in tq: qc.mcry(-pi/2, cq, ryq, anc) qc.barrier() qc.x(cq[:]) for i in range(1, 8): bins = list(format(i, '03b')) for ib, b in enumerate(bins): if b == '0': qc.x(cq[ib]) qc.x(tq[0]) qc.mcry(-rotation3, [*cq, tq[0]], tq[2], anc) qc.x(tq[0]) qc.mcry(3/2*pi, [*cq, tq[0]], tq[1], anc) qc.mcry(3/2*pi, [*cq, tq[0]], tq[2], anc) qc.x(tq[0]) qc.mcry(-rotation2, [*cq, tq[0]], tq[1], anc) qc.x(tq[0]) qc.mcry(-rotation1, cq, tq[0], anc) for ib, b in enumerate(bins): if b == '0': qc.x(cq[ib]) # D operation qc.x(tq) qc.h(tq[2]) qc.ccx(tq[0], tq[1], tq[2]) qc.h(tq[2]) qc.x(tq) qc.barrier() # # K operation if opt: if hardopt: raise Exception('under...') else: qc.x(opt_anc[0]) qc.cry(rotation1, opt_anc[0], tq[0]) qc.x(tq[0]) qc.mcry(rotation2, [opt_anc[0], tq[0]], tq[1], anc) qc.x(tq[0]) qc.mcry(3/2*pi, [opt_anc[0], tq[0]], tq[1], anc) qc.mcry(3/2*pi, [opt_anc[0], tq[0]], tq[2], anc) qc.x(tq[0]) qc.mcry(rotation3, [opt_anc[0], tq[0]], tq[2], anc) qc.x(tq[0]) qc.x(opt_anc[0]) for anq in tq: qc.cry(pi/2, opt_anc[0], anq) qc.barrier() qc.x(cq[:]) qc.mct(cq, opt_anc[0], anc) qc.x(cq[:]) else: for i in range(1, 8): bins = list(format(i, '03b')) for ib, b in enumerate(bins): if b == '0': qc.x(cq[ib]) qc.mcry(rotation1, cq, tq[0], anc) qc.x(tq[0]) qc.mcry(rotation2, [*cq, tq[0]], tq[1], anc) qc.x(tq[0]) qc.mcry(3/2*pi, [*cq, tq[0]], tq[2], anc) qc.mcry(3/2*pi, [*cq, tq[0]], tq[1], anc) qc.x(tq[0]) qc.mcry(rotation3, [*cq, tq[0]], tq[2], anc) qc.x(tq[0]) for ib, b in enumerate(bins): if b == '0': qc.x(cq[ib]) qc.x(cq[:]) for anq in tq: qc.mcry(pi/2, cq, anq, anc) qc.x(cq[:]) # # Tidg operation # T6 qc.x(tq[2]) qc.mct([*cq, *tq[1:]], tq[0], anc) qc.x(tq[2]) qc.barrier() # T5 qc.x(cq[2]) qc.mct(cq, tq[0], anc) qc.mct(cq, tq[2], anc) qc.x(cq[2]) qc.barrier() # T4 qc.x(cq[1]) qc.mct(cq, tq[0], anc) qc.x(cq[1]) qc.barrier() # T3 qc.x(cq[1:]) qc.mct(cq, tq[1], anc) qc.mct(cq, tq[2], anc) qc.x(cq[1:]) qc.barrier() # T2 qc.x(cq[0]) qc.mct(cq, tq[1], anc) qc.x(cq[0]) qc.barrier() # T1 qc.x(cq[0]) qc.x(cq[2]) qc.mct(cq, tq[2], anc) qc.x(cq[0]) qc.x(cq[2]) qc.barrier() # swap for cont, targ in zip(cq, tq): qc.swap(cont, targ) qc.measure(cq, c) return qc # - # circuit verifications qasm_sim = Aer.get_backend("qasm_simulator") for step in range(1, 11): opt_qc1 = transpile(eight_node(True, step, init_state_eight), basis_gates=['cx', 'u3'], optimization_level=0) opt_qc2 = transpile(eight_node(True, step, init_state_eight), basis_gates=['cx', 'u3'], optimization_level=3) opt_qc3 = transpile(eight_node(False, step, init_state_eight), basis_gates=['cx', 'u3'], optimization_level=3) nopt_qc = transpile(eight_node(False, step, init_state_eight), basis_gates=['cx', 'u3'], optimization_level=0) job1 = execute(opt_qc1, backend=qasm_sim, shots=10000) job2 = execute(opt_qc2, backend=qasm_sim, shots=10000) job3 = execute(opt_qc3, backend=qasm_sim, shots=10000) job4 = execute(nopt_qc, backend=qasm_sim, shots=10000) count1 = job1.result().get_counts() count2 = job2.result().get_counts() count3 = job3.result().get_counts() count4 = job4.result().get_counts() print(count1.get('000'), count2.get('000'), count3.get('000'), count4.get('000')) # + ex1_cx = [] ex1_u3 = [] ex2_cx = [] ex2_u3 = [] ex3_cx = [] ex3_u3 = [] ex4_cx = [] ex4_u3 = [] for step in trange(1, 11): opt_qc = transpile(eight_node(True, step, None), basis_gates=['cx', 'u3'], optimization_level=0) ncx = opt_qc.count_ops().get('cx', 0) nu3 = opt_qc.count_ops().get('u3', 0) + opt_qc.count_ops().get('u2', 0) + opt_qc.count_ops().get('u1', 0) ex1_cx.append(ncx) ex1_u3.append(nu3) # ex2 opt_qc = transpile(eight_node(True, step, None), basis_gates=['cx', 'u3'], optimization_level=3) ncx = opt_qc.count_ops().get('cx', 0) nu3 = opt_qc.count_ops().get('u3', 0) + opt_qc.count_ops().get('u2', 0) + opt_qc.count_ops().get('u1', 0) ex2_cx.append(ncx) ex2_u3.append(nu3) # ex3 opt_qc = transpile(eight_node(False, step, None), basis_gates=['cx', 'u3'], optimization_level=3) ncx = opt_qc.count_ops().get('cx', 0) nu3 = opt_qc.count_ops().get('u3', 0) + opt_qc.count_ops().get('u2', 0) + opt_qc.count_ops().get('u1', 0) ex3_cx.append(ncx) ex3_u3.append(nu3) # ex4 nopt_qc = transpile(eight_node(False, step, None), basis_gates=['cx', 'u3'], optimization_level=0) ncx = nopt_qc.count_ops().get('cx', 0) nu3 = nopt_qc.count_ops().get('u3', 0) + nopt_qc.count_ops().get('u2', 0) + nopt_qc.count_ops().get('u1', 0) ex4_cx.append(ncx) ex4_u3.append(nu3) # - steps = range(1, 11) fig = plt.figure(figsize=(20, 10)) ax = fig.add_subplot(111) sns.set() plt.xlabel('the number of steps', fontsize=30) plt.ylabel('the number of cx', fontsize=30) plt.title('the nuber of operations over steps', fontsize=30) plt.tick_params(labelsize=20) plt.xticks([i for i in range(11)]) # for cs, col, lab in zip(cx, color, labels): plt.plot(steps, ex4_cx, color= '#3EBA2B', label= '# of CX without optimizations', linewidth=3) plt.plot(steps, ex4_u3, color= '#6BBED5', label= '# of single qubit operations without optimizations', linewidth=3) plt.legend(fontsize=25) cx = [ex1_cx, ex2_cx, ex3_cx, ex4_cx] u3 = [ex1_u3, ex2_u3, ex3_u3, ex4_u3] color = ['#C23685', '#E38692', '#6BBED5', '#3EBA2B'] labels = ['with my optimizations', 'with my and qiskit optimizations', 'with qiskit optimizations', 'without optimizations'] steps = range(1, 11) fig = plt.figure(figsize=(20, 10)) ax = fig.add_subplot(111) sns.set() plt.xlabel('the number of steps', fontsize=30) plt.ylabel('the number of cx', fontsize=30) plt.title('the nuber of operations over steps', fontsize=30) plt.tick_params(labelsize=20) for cs, col, lab in zip(cx, color, labels): plt.plot(steps, cs, color=col, label=lab, linewidth=3) plt.legend(fontsize=25) # + ex1_mean = [] ex1_std = [] ex2_mean = [] ex2_std = [] ex3_mean = [] ex3_std = [] ex4_mean = [] ex4_std = [] extime = 100 u3_error = depolarizing_error(0, 1) qw_step = range(1, 11) gate_error = np.arange(0, 0.03, 0.001) # errors, steps= np.meshgrid(gate_error, qw_step) bins = [format(i, '03b') for i in range(2**3)] step = 3 opt_qc = eight_node(True, step, init_state_eight) job = execute(opt_qc, backend=qasm_sim, shots=100000) count = job.result().get_counts(opt_qc) ideal_prob = [count.get(i, 0)/100000 for i in bins] for cxerr in tqdm(gate_error, desc="error"): # noise model error_model = NoiseModel() cx_error = depolarizing_error(cxerr, 2) error_model.add_all_qubit_quantum_error(u3_error, ['u3', 'u2']) error_model.add_all_qubit_quantum_error(cx_error, ['cx']) # ex1 # opt_qc = [transpile(eight_node(True, step, init_state_eight), basis_gates=['cx', 'u3'], optimization_level=0) for i in range(extime)] # errors = [] # for eqc in opt_qc: # errors.append(get_error(eqc, ideal_prob, error_model, 3)) # ex1_mean.append(np.mean(errors)) # ex1_std.append(np.std(errors)) # # ex2 # errors = [] # opt_qc = [transpile(eight_node(True, step, init_state_eight), basis_gates=['cx', 'u3'], optimization_level=3) for i in range(extime)] # for eqc in opt_qc: # errors.append(get_error(eqc, ideal_prob, error_model, 3)) # ex2_mean.append(np.mean(errors)) # ex2_std.append(np.std(errors)) # # ex3 # errors = [] # opt_qc = [transpile(eight_node(False, step, init_state_eight), basis_gates=['cx', 'u3'], optimization_level=3)for i in range(extime)] # for eqc in opt_qc: # errors.append(get_error(eqc, ideal_prob, error_model, 3)) # ex3_mean.append(np.mean(errors)) # ex3_std.append(np.std(errors)) # ex4 errors = [] nopt_qc = [transpile(eight_node(False, step, init_state_eight), basis_gates=['cx', 'u3'], optimization_level=0) for i in range(extime)] for eqc in nopt_qc: errors.append(get_error(eqc, ideal_prob, error_model, 3)) ex4_mean.append(np.mean(errors)) ex4_std.append(np.std(errors)) # - fig = plt.figure(figsize=(20, 10)) sns.set() # plt.errorbar(gate_error, ex1_mean, yerr=ex1_std, label='With my optimizations') # # plt.errorbar(gate_error, ex2_mean, yerr=ex2_std, label='With my and qiskit optimizations') # # plt.errorbar(gate_error, ex3_mean, yerr=ex3_std, label='With qiskit optimizations') plt.errorbar(gate_error, ex4_mean, yerr=ex4_std, label='Without optimizations') plt.title('error investigation of %dstep Quantum Walk'%step, fontsize=30) plt.xlabel('cx error rate', fontsize=30) plt.ylabel('KL divergence', fontsize=30) plt.tick_params(labelsize=20) plt.legend(fontsize=20) plt.show() # + # 1step fig = plt.figure(figsize=(20, 10)) plt.plot(gate_error, ex1_mean, label='ex1') plt.plot(gate_error, ex2_mean, label='ex2') plt.plot(gate_error, ex3_mean, label='ex3') plt.plot(gate_error, ex4_mean, label='ex4') plt.tick_params(labelsize=20) plt.legend(fontsize=20) plt.show() # + # res1 = np.array(ex1_mean).reshape(10, 10) # res2 = np.array(ex2_mean).reshape(10, 10) # res3 = np.array(ex3_mean).reshape(10, 10) # res4 = np.array(ex4_mean).reshape(10, 10) # + # fig = plt.figure(figsize=(20, 10)) # ax = Axes3D(fig) # ax.plot_wireframe(errors, steps, res1, color='#E6855E', linewidth=2, label='With my optimization') # ax.plot_wireframe(errors, steps, res2, color='#F9DB57', linewidth=2, label='With my and qiskit optimizations') # ax.plot_wireframe(errors, steps, res3, color='#3DB680', linewidth=2, label='With qiskit optimizations') # ax.plot_wireframe(errors, steps, res4, color='#6A8CC7', linewidth=2, label='Without optimizations') # ax.set_xlabel('Cx error rate', labelpad=30, fontsize=30) # ax.set_ylabel('The number of steps', labelpad=30, fontsize=30) # ax.set_zlabel('Error', labelpad=30, fontsize=30) # plt.tick_params(labelsize=20) # plt.legend(fontsize=20) # plt.show() # - # ## 3. Multi step of 8 node graph with multi partition # + code_folding=[] alpha = 0.85 target_graph = np.array([[0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 0, 0, 0], [0, 1, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1]]) E = np.array([[0, 0, 0, 1, 1/2, 0, 0, 0], [1, 0, 0, 0, 1/2, 0, 0, 0], [0, 1, 0, 0, 0, 1/2, 0, 0], [0, 0, 1, 0, 0, 1/2, 0, 0], [0, 0, 0, 0, 0, 0, 1/4, 1/4], [0, 0, 0, 0, 0, 0, 1/4, 1/4], [0, 0, 0, 0, 0, 0, 1/4, 1/4], [0, 0, 0, 0, 0, 0, 1/4, 1/4]]) # use google matrix prob_dist = alpha*E + ((1-alpha)/8)*np.ones((8, 8)) init_state_eight = 1/np.sqrt(8)*np.array([np.sqrt(prob_dist[j][i]) for i in range(8) for j in range(8)]) # - def mch(qc, controls, target, anc, tganc): # multi control hadamard gate if len(controls) == 1: qc.ch(*controls, target) elif len(controls) == 2: qc.ccx(controls[0], controls[1], tganc[0]) qc.ch(tganc[0], target) qc.ccx(controls[0], controls[1], tganc[0]) elif len(controls) > 2: qc.mct(controls, tganc[0], anc) for tg in target: qc.ch(tganc[0], tg) qc.mct(controls, tganc[0], anc) return qc qasm_sim = Aer.get_backend("qasm_simulator") q = QuantumRegister(6) anc = QuantumRegister(3) tganc = QuantumRegister(1) c = ClassicalRegister(10) qc = QuantumCircuit(q, anc, tganc, c) mch(qc, [q[0], q[3]], [q[4], q[5]], anc, tganc) qc.barrier() qc.draw(output='mpl') qc.measure(q, c[:6]) qc.measure(anc, c[6:9]) qc.measure(tganc, c[9]) job = execute(qc, backend=qasm_sim, shots=1024) count = job.result().get_counts(qc) print(count) qc.draw(output='mpl') # + # Circuit def eight_node_multi(opt, step, initial, hardopt=False): rotation11 = np.radians(31.788) rotation12 = np.radians(23.231) rotation13 = np.radians(163.285) rotation21 = np.radians(31.788) rotation22 = np.radians(23.231) rotation31 = np.radians(148.212) # for multi qubit hadamrd gate hs = QuantumCircuit.ch cq = QuantumRegister(3, 'control') tq = QuantumRegister(3, 'target') # ancilla for mct gates anc = QuantumRegister(3, 'mct anc') tganc = QuantumRegister(1, 'tgancila') c = ClassicalRegister(3, 'classical') if opt: opt_anc = QuantumRegister(2, 'ancilla') qc = QuantumCircuit(cq, tq, anc, opt_anc, tganc, c) else: qc = QuantumCircuit(cq, tq, anc,tganc, c) # initialize with probability distribution matrix if initial is not None: qc.initialize(initial, [*cq, *tq]) for t in range(step): # Ti operation(opt) # T11 qc.x(cq[1]) qc.ccx(cq[1], cq[2], tq[1]) qc.x(cq[1]) qc.barrier() # T12 qc.x(cq[0]) qc.x(cq[2]) qc.mct(cq, tq[1], anc) qc.x(cq[0]) qc.x(cq[2]) qc.barrier() # T21 qc.x(cq[0]) qc.ccx(cq[0], cq[2], tq[2]) qc.x(cq[0]) qc.barrier() # # Kdg operation if opt: if hardopt: raise Exception('under const') else: # K1dg qc.x(cq[0]) # s1 qc.x(tq[0]) # s2 mch(qc, [cq[0], tq[0], tq[1]], [tq[2]], anc, tganc) qc.x(tq[1]) # s3 qc.mcry(-rotation13, [cq[0], tq[0], tq[1]], tq[2], anc) qc.x(tq[1]) # e3 qc.x(tq[0]) # e2 mch(qc, [cq[0], tq[0]], [tq[1], tq[2]], anc, tganc) qc.x(tq[0]) # s4 qc.mcry(-rotation12, [cq[0], tq[0]], tq[1], anc) qc.x(tq[0]) # e4 qc.cry(-rotation11, cq[0], tq[0]) qc.x(cq[0]) # e1 qc.barrier # K2dg # map qc.x(cq[1]) qc.ccx(cq[1], cq[0], opt_anc[0]) qc.x(cq[1]) # op qc.ch(opt_anc[0], tq[2]) mch(qc, [opt_anc[0], tq[0]], tq[1], anc, tganc) qc.x(tq[0])# s1 qc.mcry(-rotation22, [opt_anc[0], tq[0]], tq[1], anc) qc.x(tq[0]) # e1 qc.cry(-rotation21, opt_anc[0], tq[0]) qc.barrier # K3dg #map qc.ccx(cq[1], cq[0], opt_anc[1]) # op qc.ch(opt_anc[1], tq[2]) qc.ch(opt_anc[1], tq[1]) qc.cry(-rotation31, opt_anc[1], tq[0]) qc.barrier else: # K1dg qc.x(cq[0]) # s1 qc.x(tq[0]) # s2 mch(qc, [cq[0], tq[0], tq[1]], [tq[2]], anc, tganc) qc.x(tq[1]) # s3 qc.mcry(-rotation13, [cq[0], tq[0], tq[1]], tq[2], anc) # rotation 3 dg qc.x(tq[1]) # e3 qc.x(tq[0]) # e2 mch(qc, [cq[0], tq[0]], [tq[1], tq[2]], anc, tganc) qc.x(tq[0]) # s4 qc.mcry(-rotation12, [cq[0], tq[0]], tq[1], anc) qc.x(tq[0]) # e4 qc.cry(-rotation11, cq[0], tq[0]) qc.x(cq[0]) # e1 # K2dg qc.x(cq[1]) # s1 qc.x(tq[0]) # s2 mch(qc, [cq[0], cq[1], tq[0]], [tq[2]], anc, tganc) qc.x(tq[0]) # e2 mch(qc, [cq[0], cq[1], tq[0]], [tq[1], tq[2]], anc, tganc) qc.x(tq[0]) # s3 qc.mcry(-rotation22, [cq[0], cq[1], tq[0]], tq[1], anc) qc.x(tq[0]) # e3 qc.mcry(-rotation21, [cq[0], cq[1]], tq[0], anc) qc.x(cq[1]) # K3dg mch(qc, [cq[0], cq[1]], [tq[1], tq[2]], anc, tganc) qc.mcry(-rotation31, [cq[0], cq[1]], tq[0], anc) # D operation qc.x(tq) qc.h(tq[2]) qc.ccx(tq[0], tq[1], tq[2]) qc.h(tq[2]) qc.x(tq) qc.barrier() # # K operation if opt: if hardopt: raise Exception('under') else: # K3 qc.cry(rotation31, opt_anc[1], tq[0]) qc.ch(opt_anc[1], tq[1]) qc.ch(opt_anc[1], tq[2]) #unmap qc.ccx(cq[1], cq[0], opt_anc[1]) qc.barrier() # K2 qc.cry(rotation21, opt_anc[0], tq[0]) qc.x(tq[0]) # s1 qc.mcry(rotation22, [opt_anc[0], tq[0]], tq[1], anc) qc.x(tq[0]) mch(qc, [opt_anc[0], tq[0]], tq[1], anc, tganc) qc.ch(opt_anc[0], tq[2]) # unmap qc.x(cq[1]) qc.ccx(cq[1], cq[0], opt_anc[0]) qc.x(cq[1]) # op qc.barrier # K1 qc.x(cq[0]) # s1 qc.cry(rotation11, cq[0], tq[0]) qc.x(tq[0]) # s2 qc.mcry(rotation12, [cq[0], tq[0]], tq[1], anc) qc.x(tq[0]) # e2 mch(qc, [cq[0], tq[0]], [tq[1], tq[2]], anc, tganc) qc.x(tq[0]) #s3 qc.x(tq[1]) # s4 qc.mcry(rotation13, [cq[0], tq[0], tq[1]], tq[2], anc) qc.x(tq[1]) # 4 mch(qc, [cq[0], tq[0], tq[1]], [tq[2]], anc, tganc) qc.x(tq[0]) # e3 qc.x(cq[0]) # e1 qc.barrier else: # K3 qc.mcry(rotation31, [cq[0], cq[1]], tq[0], anc) mch(qc, [cq[0], cq[1]], [tq[1], tq[2]], anc, tganc) # K2 qc.x(cq[1]) qc.mcry(rotation21, [cq[0], cq[1]], tq[0], anc) qc.x(tq[0]) # e3 qc.mcry(rotation22, [cq[0], cq[1], tq[0]], tq[1], anc) qc.x(tq[0]) # s3 mch(qc, [cq[0], cq[1], tq[0]], [tq[1], tq[2]], anc, tganc) qc.x(tq[0]) # e2 mch(qc, [cq[0], cq[1], tq[0]], [tq[2]], anc, tganc) qc.x(tq[0]) # s2 qc.x(cq[0]) qc.x(cq[1]) # s1 # K1 qc.cry(rotation11, cq[0], tq[0]) qc.x(tq[0]) # e4 qc.mcry(rotation12, [cq[0], tq[0]], tq[1], anc) qc.x(tq[0]) # s4 mch(qc, [cq[0], tq[0]], [tq[1], tq[2]], anc, tganc) qc.x(tq[0]) # e2 qc.x(tq[1]) # e3 qc.mcry(rotation13, [cq[0], tq[0], tq[1]], tq[2], anc) # rotation 3 dg qc.x(tq[1]) # s3 mch(qc, [cq[0], tq[0], tq[1]], [tq[2]], anc, tganc) qc.x(tq[0]) # s2 qc.x(cq[0]) # s1 # T21 dg qc.x(cq[0]) qc.ccx(cq[0], cq[2], tq[2]) qc.x(cq[0]) qc.barrier() # T12dg qc.x(cq[0]) qc.x(cq[2]) qc.mct(cq, tq[1], anc) qc.x(cq[0]) qc.x(cq[2]) qc.barrier() # T11 dg qc.x(cq[1]) qc.ccx(cq[0], cq[1], tq[1]) qc.x(cq[1]) # swap for cont, targ in zip(cq, tq): qc.swap(cont, targ) qc.measure(cq, c) return qc # - qc = eight_node_multi(True, 1, None) qc.draw(output='mpl') # circuit verifications qasm_sim = Aer.get_backend('qasm_simulator') init_state = [np.sqrt(1/64) for i in range(64)] for step in range(1, 11): opt_qc1 = transpile(eight_node_multi(True, step, init_state), basis_gates=['cx', 'u3'], optimization_level=0) opt_qc2 = transpile(eight_node_multi(True, step, init_state), basis_gates=['cx', 'u3'], optimization_level=3) opt_qc3 = transpile(eight_node_multi(False, step, init_state), basis_gates=['cx', 'u3'], optimization_level=3) nopt_qc = transpile(eight_node_multi(False, step, init_state), basis_gates=['cx', 'u3'], optimization_level=0) job1 = execute(opt_qc1, backend=qasm_sim, shots=10000) job2 = execute(opt_qc2, backend=qasm_sim, shots=10000) job3 = execute(opt_qc3, backend=qasm_sim, shots=10000) job4 = execute(nopt_qc, backend=qasm_sim, shots=10000) count1 = job1.result().get_counts() count2 = job2.result().get_counts() count3 = job3.result().get_counts() count4 = job4.result().get_counts() print(count1.get('000'), count2.get('000'), count3.get('000'), count4.get('000')) # + ex1_cx = [] ex1_u3 = [] ex2_cx = [] ex2_u3 = [] ex3_cx = [] ex3_u3 = [] ex4_cx = [] ex4_u3 = [] for step in trange(1, 11): opt_qc = transpile(eight_node_multi(True, step, None), basis_gates=['cx', 'u3'], optimization_level=0) ncx = opt_qc.count_ops().get('cx', 0) nu3 = opt_qc.count_ops().get('u3', 0) + opt_qc.count_ops().get('u2', 0) + opt_qc.count_ops().get('u1', 0) ex1_cx.append(ncx) ex1_u3.append(nu3) # ex2 opt_qc = transpile(eight_node_multi(True, step, None), basis_gates=['cx', 'u3'], optimization_level=3) ncx = opt_qc.count_ops().get('cx', 0) nu3 = opt_qc.count_ops().get('u3', 0) + opt_qc.count_ops().get('u2', 0) + opt_qc.count_ops().get('u1', 0) ex2_cx.append(ncx) ex2_u3.append(nu3) # ex3 opt_qc = transpile(eight_node_multi(False, step, None), basis_gates=['cx', 'u3'], optimization_level=3) ncx = opt_qc.count_ops().get('cx', 0) nu3 = opt_qc.count_ops().get('u3', 0) + opt_qc.count_ops().get('u2', 0) + opt_qc.count_ops().get('u1', 0) ex3_cx.append(ncx) ex3_u3.append(nu3) # ex4 nopt_qc = transpile(eight_node_multi(False, step, None), basis_gates=['cx', 'u3'], optimization_level=0) ncx = nopt_qc.count_ops().get('cx', 0) nu3 = nopt_qc.count_ops().get('u3', 0) + nopt_qc.count_ops().get('u2', 0) + nopt_qc.count_ops().get('u1', 0) ex4_cx.append(ncx) ex4_u3.append(nu3) # - qc = eight_node_multi(False, 1, None) print(qc.depth()) qc = eight_node_multi(False, 2, None) print(qc.depth()) cx = [ex1_cx, ex4_cx] u3 = [ex1_u3, ex4_u3] color = ['#C23685', '#6BBED5', '#3EBA2B'] labels = ['with my optimizations', 'related works[6]'] steps = range(1, 11) fig = plt.figure(figsize=(20, 10)) ax = fig.add_subplot(111) sns.set() plt.xlabel('the number of steps', fontsize=30) plt.yticks(range(0, 9000, 500)) plt.xticks(range(0, 11, 1)) plt.ylabel('the number of cx', fontsize=30) plt.title('the nuber of operations over steps', fontsize=30) plt.tick_params(labelsize=20) plt.plot(steps, ex4_cx, color= '#3EBA2B', label="# of CX paper circuit", linewidth=3) plt.plot(steps, ex4_u3, color= '#6BBED5', label="# of single qubit gates of paper circuit", linewidth=3) plt.legend(fontsize=25) cx = [ex1_cx, ex4_cx] u3 = [ex1_u3, ex4_u3] color = ['#C23685', '#6BBED5', '#3EBA2B'] labels = ['with my optimizations', 'related works[6]'] steps = range(1, 11) fig = plt.figure(figsize=(20, 10)) ax = fig.add_subplot(111) sns.set() plt.xlabel('the number of steps', fontsize=30) plt.yticks(range(0, 4600, 200)) plt.xticks(range(0, 11, 1)) plt.ylabel('the number of cx', fontsize=30) plt.title('the nuber of operations over steps', fontsize=30) plt.tick_params(labelsize=20) for cs, col, lab in zip(cx, color, labels): plt.plot(steps, cs, color=col, label=lab, linewidth=3) plt.legend(fontsize=25) # + ex1_mean = [] ex1_std = [] ex4_mean = [] ex4_std = [] extime = 10 u3_error = depolarizing_error(0, 1) gate_error = np.arange(0, 0.03, 0.001) # errors, steps= np.meshgrid(gate_error, qw_step) bins = [format(i, '03b') for i in range(2**3)] step = 5 opt_qc = eight_node_multi(False, step, init_state_eight) job = execute(opt_qc, backend=qasm_sim, shots=100000) count = job.result().get_counts(opt_qc) ideal_prob = [count.get(i, 0)/100000 for i in bins] for cxerr in tqdm(gate_error): # noise model error_model = NoiseModel() cx_error = depolarizing_error(cxerr, 2) error_model.add_all_qubit_quantum_error(u3_error, ['u3', 'u2']) error_model.add_all_qubit_quantum_error(cx_error, ['cx']) # ex1 opt_qc = transpile(eight_node_multi(True, step, init_state_eight), basis_gates=['cx', 'u3'], optimization_level=0) errors = [] for i in range(extime): error = get_error(opt_qc, ideal_prob, error_model, 3) errors.append(error) ex1_mean.append(np.mean(errors)) ex1_std.append(np.std(errors)) # ex4 nopt_qc = transpile(eight_node_multi(False, step, init_state_eight), basis_gates=['cx', 'u3'], optimization_level=0) for i in range(extime): error = get_error(nopt_qc, ideal_prob, error_model, 3) errors.append(error) ex4_mean.append(np.mean(errors)) ex4_std.append(np.std(errors)) # - fig = plt.figure(figsize=(20, 10)) sns.set() # plt.errorbar(gate_error, ex1_mean, yerr=ex1_std, label='With my optimizations') plt.errorbar(gate_error, ex4_mean, yerr=ex4_std, label='Without optimizations') plt.title('error investigation of %dstep Quantum Walk'%step, fontsize=30) plt.xlabel('cx error rate', fontsize=30) plt.ylabel('KL divergence', fontsize=30) plt.tick_params(labelsize=20) plt.legend(fontsize=20) plt.show() # Play ground q = QuantumRegister(1) qc = QuantumCircuit(q) rotation12 = np.radians(23.231) qc.u3(pi/2+rotation12, 0, pi, q[0]) unit = Aer.get_backend('unitary_simulator') job = execute(qc, backend=unit) uni = job.result().get_unitary() print(uni) q = QuantumRegister(1) qc = QuantumCircuit(q) rotation12 = np.radians(23.231) qc.u3(pi/2, 0, pi, q[0]) qc.ry(rotation12, q[0]) unit = Aer.get_backend('unitary_simulator') job = execute(qc, backend=unit) uni = job.result().get_unitary() print(uni) q = QuantumRegister(3,'qr') anc = QuantumRegister(2, 'anc') qc = QuantumCircuit(q, anc) qc.mcmt([q[0], q[1]], anc, QuantumCircuit.ch, [q[2]]) qc.draw(output='mpl') q = QuantumRegister(6) qc = QuantumCircuit(q) qc.initialize(init_state, q) nqc = transpile(qc, basis_gates=['cx', 'h', 'x', 'u3']) nqc.draw(output='mpl') # ## 4. Multi step of 512 node graph with multi partition
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """NumTensorFactors pass testing""" import unittest from qiskit import QuantumCircuit, QuantumRegister from qiskit.converters import circuit_to_dag from qiskit.transpiler.passes import NumTensorFactors from qiskit.test import QiskitTestCase class TestNumTensorsFactorPass(QiskitTestCase): """Tests for NumTensorFactors analysis methods.""" def test_empty_dag(self): """Empty DAG has 0 number of tensor factors.""" circuit = QuantumCircuit() dag = circuit_to_dag(circuit) pass_ = NumTensorFactors() _ = pass_.run(dag) self.assertEqual(pass_.property_set["num_tensor_factors"], 0) def test_just_qubits(self): """A dag with 8 operations and 1 tensor factor.""" qr = QuantumRegister(2) circuit = QuantumCircuit(qr) circuit.h(qr[0]) circuit.h(qr[1]) circuit.cx(qr[0], qr[1]) circuit.cx(qr[0], qr[1]) circuit.cx(qr[0], qr[1]) circuit.cx(qr[0], qr[1]) circuit.cx(qr[1], qr[0]) circuit.cx(qr[1], qr[0]) dag = circuit_to_dag(circuit) pass_ = NumTensorFactors() _ = pass_.run(dag) self.assertEqual(pass_.property_set["num_tensor_factors"], 1) def test_depth_one(self): """A dag with operations in parallel (2 tensor factors)""" qr = QuantumRegister(2) circuit = QuantumCircuit(qr) circuit.h(qr[0]) circuit.h(qr[1]) dag = circuit_to_dag(circuit) pass_ = NumTensorFactors() _ = pass_.run(dag) self.assertEqual(pass_.property_set["num_tensor_factors"], 2) if __name__ == "__main__": unittest.main()
https://github.com/VGGatGitHub/2020-QISKit-Summer-Jam
VGGatGitHub
import pandas as pd data = pd.read_csv("data/breast-cancer.csv") diagnosis = data["diagnosis"] labels = diagnosis.map({"M": 1, "B": -1}).values features = data.drop(["id", "diagnosis"], axis=1) #VGG coomet next three lines to run with the originla data above data = pd.read_csv("data/formatted_titanic.csv") labels = data["survived"]+2*data["sex"] features = data.drop(["survived","sex"], axis=1) data.shape # Data visualization import matplotlib.pyplot as plt import umap from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_features = scaler.fit_transform(features) reducer = umap.UMAP(n_components=3) embedding = reducer.fit_transform(scaled_features) embedding.shape plt.scatter( embedding[:, 0],embedding[:, 1], c=labels) plt.scatter( embedding[:, 0],embedding[:, 2], c=labels) plt.scatter( embedding[:, 1],embedding[:, 2], c=labels) fig = plt.figure() ax = fig.add_subplot(projection='3d') ax.scatter(embedding[:, 0],embedding[:, 1],embedding[:, 2], c=labels) plt.show() from sklearn.decomposition import PCA pca = PCA(n_components=0.75) features_pca = pca.fit_transform(features) pca.n_components_ features_pca.shape plt.scatter(features_pca[:, 0],features_pca[:, 1], c=labels) plt.scatter(features_pca[:, 0],features_pca[:, 2], c=labels) plt.scatter(features_pca[:, 1],features_pca[:, 2], c=labels) fig3d = plt.figure() ax3d = fig3d.add_subplot(projection='3d') ax3d.scatter(features_pca[:, 0],features_pca[:, 1],features_pca[:, 2], c=labels) plt.show() from qcfl.preprocessing import scale_for_angle_encoding features_scaled = scale_for_angle_encoding(features_pca) from utils import split_data, write_shards dataset = pd.DataFrame(data=features_scaled) dataset['target'] = labels dataset = dataset.sample(frac=1) shards = split_data(dataset, [0.3, 0.1, 0.2, 0.2, 0.2]) write_shards(shards, 'cancer') from pennylane import AdamOptimizer from qcfl.penny.classifier import QuantumClassifier from qcfl.penny.models import SimplQMLModel from qcfl.penny.federated_qml import create_clients, FederatedServer, to_numpy_dataset num_qubits = features_pca.shape[1] num_layers = 3 batch_size = 5 clients = create_clients(shards[0:4], lambda: QuantumClassifier(num_qubits, num_layers, batch_size, AdamOptimizer(), SimplQMLModel(num_qubits))) classifier = QuantumClassifier(num_qubits, num_layers, batch_size, AdamOptimizer(), SimplQMLModel(num_qubits)) server = FederatedServer(classifier, clients, client_epochs=10) # Train from pennylane import numpy as np weights = 0.01 * np.random.randn(num_layers, num_qubits, 3, requires_grad=True) bias = np.array(0.0, requires_grad=True) trained_weights, trained_bias = server.train(weights, bias, iterations=15) from sklearn.metrics import classification_report test_features, test_labels = to_numpy_dataset(shards[-1]) test_predictions = [classifier.classify(trained_weights, trained_bias, f) for f in test_features] target_names = ['Malignant', 'Benign'] target_names = [str(i) for i in set(labels.values).union()]#VGG comment this line for cancer cr = classification_report(test_labels, test_predictions, target_names=target_names) print(cr) set(labels.values).union() from typing import List, Tuple from flwr.common import Metrics def fit_round(server_round: int): """Send round number to client.""" return {"server_round": server_round} def weighted_average(metrics: List[Tuple[int, Metrics]]) -> Metrics: # Multiply accuracy of each client by number of examples used accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics] examples = [num_examples for num_examples, _ in metrics] # Aggregate and return custom metric (weighted average) return {"accuracy": sum(accuracies) / sum(examples)} def get_evaluate_fn(classifier, X_test, y_test): """Return an evaluation function for server-side evaluation.""" # The `evaluate` function will be called after every round def evaluate(server_round, parameters: fl.common.NDArrays, config): # Update model with the latest parameters weights, bias = parameters[0], parameters[1] classifier.set_parameters(weights, bias) loss, accuracy = classifier.evaluate(server_round, X_test, y_test) return loss, {"accuracy": accuracy} return evaluate from qcfl.flower.flower_qml_client import PennylaneClient num_qubits = features_pca.shape[1]#VGG NUM_CLIENTS = 4 client_resources = None def client_fn(cid: str) -> PennylaneClient: """Create a Flower client representing a single organization.""" print(cid) index = int(cid)+1 # Load a shard corresponding to this client X_train, y_train = load_shard('cancer', index) X_train = np.array(X_train, requires_grad=False) y_train = np.array(y_train, requires_grad=False) classifier = QuantumClassifier(num_qubits, 3, 5, AdamOptimizer(), SimplQMLModel(num_qubits)) # Define Flower client return PennylaneClient(f'cancer{index}', classifier, X_train, y_train) from utils import load_shard # Load test data here to avoid the overhead of doing it in `evaluate` itself X_test, y_test = load_shard('cancer', 5) # Create a classifier to hold the final weights classifier = QuantumClassifier(num_qubits, 3, 10, AdamOptimizer(), SimplQMLModel(num_qubits)) import flwr as fl # Create FedAvg strategy strategy = fl.server.strategy.FedAvg( fraction_fit=1.0, fraction_evaluate=0.5, min_available_clients=NUM_CLIENTS, on_fit_config_fn=fit_round, evaluate_fn=get_evaluate_fn(classifier, X_test, y_test), evaluate_metrics_aggregation_fn=weighted_average ) # Run flower in simulation mode fl.simulation.start_simulation( client_fn=client_fn, num_clients=NUM_CLIENTS, config=fl.server.ServerConfig(num_rounds=15), strategy=strategy, client_resources=client_resources, ) #TODO: Plot loss, accuracy # Compute metrics on final model test_features, test_labels = to_numpy_dataset(shards[-1]) test_predictions = [classifier.classify(trained_weights, trained_bias, f) for f in test_features] target_names = ['Malignant', 'Benign'] cr = classification_report(test_labels, test_predictions, target_names=target_names) print(cr)
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name """Test cases for the pulse schedule block.""" import re import unittest from typing import List, Any from qiskit import pulse, circuit from qiskit.pulse import transforms from qiskit.pulse.exceptions import PulseError from qiskit.test import QiskitTestCase from qiskit.providers.fake_provider import FakeOpenPulse2Q, FakeArmonk from qiskit.utils import has_aer class BaseTestBlock(QiskitTestCase): """ScheduleBlock tests.""" def setUp(self): super().setUp() self.backend = FakeOpenPulse2Q() self.test_waveform0 = pulse.Constant(100, 0.1) self.test_waveform1 = pulse.Constant(200, 0.1) self.d0 = pulse.DriveChannel(0) self.d1 = pulse.DriveChannel(1) self.left_context = transforms.AlignLeft() self.right_context = transforms.AlignRight() self.sequential_context = transforms.AlignSequential() self.equispaced_context = transforms.AlignEquispaced(duration=1000) def _align_func(j): return {1: 0.1, 2: 0.25, 3: 0.7, 4: 0.85}.get(j) self.func_context = transforms.AlignFunc(duration=1000, func=_align_func) def assertScheduleEqual(self, target, reference): """Check if two block are equal schedule representation.""" self.assertEqual(transforms.target_qobj_transform(target), reference) class TestTransformation(BaseTestBlock): """Test conversion of ScheduleBlock to Schedule.""" def test_left_alignment(self): """Test left alignment context.""" block = pulse.ScheduleBlock(alignment_context=self.left_context) block = block.append(pulse.Play(self.test_waveform0, self.d0)) block = block.append(pulse.Play(self.test_waveform1, self.d1)) ref_sched = pulse.Schedule() ref_sched = ref_sched.insert(0, pulse.Play(self.test_waveform0, self.d0)) ref_sched = ref_sched.insert(0, pulse.Play(self.test_waveform1, self.d1)) self.assertScheduleEqual(block, ref_sched) def test_right_alignment(self): """Test right alignment context.""" block = pulse.ScheduleBlock(alignment_context=self.right_context) block = block.append(pulse.Play(self.test_waveform0, self.d0)) block = block.append(pulse.Play(self.test_waveform1, self.d1)) ref_sched = pulse.Schedule() ref_sched = ref_sched.insert(100, pulse.Play(self.test_waveform0, self.d0)) ref_sched = ref_sched.insert(0, pulse.Play(self.test_waveform1, self.d1)) self.assertScheduleEqual(block, ref_sched) def test_sequential_alignment(self): """Test sequential alignment context.""" block = pulse.ScheduleBlock(alignment_context=self.sequential_context) block = block.append(pulse.Play(self.test_waveform0, self.d0)) block = block.append(pulse.Play(self.test_waveform1, self.d1)) ref_sched = pulse.Schedule() ref_sched = ref_sched.insert(0, pulse.Play(self.test_waveform0, self.d0)) ref_sched = ref_sched.insert(100, pulse.Play(self.test_waveform1, self.d1)) self.assertScheduleEqual(block, ref_sched) def test_equispace_alignment(self): """Test equispace alignment context.""" block = pulse.ScheduleBlock(alignment_context=self.equispaced_context) for _ in range(4): block = block.append(pulse.Play(self.test_waveform0, self.d0)) ref_sched = pulse.Schedule() ref_sched = ref_sched.insert(0, pulse.Play(self.test_waveform0, self.d0)) ref_sched = ref_sched.insert(300, pulse.Play(self.test_waveform0, self.d0)) ref_sched = ref_sched.insert(600, pulse.Play(self.test_waveform0, self.d0)) ref_sched = ref_sched.insert(900, pulse.Play(self.test_waveform0, self.d0)) self.assertScheduleEqual(block, ref_sched) def test_func_alignment(self): """Test func alignment context.""" block = pulse.ScheduleBlock(alignment_context=self.func_context) for _ in range(4): block = block.append(pulse.Play(self.test_waveform0, self.d0)) ref_sched = pulse.Schedule() ref_sched = ref_sched.insert(50, pulse.Play(self.test_waveform0, self.d0)) ref_sched = ref_sched.insert(200, pulse.Play(self.test_waveform0, self.d0)) ref_sched = ref_sched.insert(650, pulse.Play(self.test_waveform0, self.d0)) ref_sched = ref_sched.insert(800, pulse.Play(self.test_waveform0, self.d0)) self.assertScheduleEqual(block, ref_sched) def test_nested_alignment(self): """Test nested block scheduling.""" block_sub = pulse.ScheduleBlock(alignment_context=self.right_context) block_sub = block_sub.append(pulse.Play(self.test_waveform0, self.d0)) block_sub = block_sub.append(pulse.Play(self.test_waveform1, self.d1)) block_main = pulse.ScheduleBlock(alignment_context=self.sequential_context) block_main = block_main.append(block_sub) block_main = block_main.append(pulse.Delay(10, self.d0)) block_main = block_main.append(block_sub) ref_sched = pulse.Schedule() ref_sched = ref_sched.insert(0, pulse.Play(self.test_waveform1, self.d1)) ref_sched = ref_sched.insert(100, pulse.Play(self.test_waveform0, self.d0)) ref_sched = ref_sched.insert(200, pulse.Delay(10, self.d0)) ref_sched = ref_sched.insert(210, pulse.Play(self.test_waveform1, self.d1)) ref_sched = ref_sched.insert(310, pulse.Play(self.test_waveform0, self.d0)) self.assertScheduleEqual(block_main, ref_sched) class TestBlockOperation(BaseTestBlock): """Test fundamental operation on schedule block. Because ScheduleBlock adapts to the lazy scheduling, no uniitest for overlap constraints is necessary. Test scheme becomes simpler than the schedule. Some tests have dependency on schedule conversion. This operation should be tested in `test.python.pulse.test_block.TestTransformation`. """ def setUp(self): super().setUp() self.test_blocks = [ pulse.Play(self.test_waveform0, self.d0), pulse.Play(self.test_waveform1, self.d1), pulse.Delay(50, self.d0), pulse.Play(self.test_waveform1, self.d0), ] def test_append_an_instruction_to_empty_block(self): """Test append instructions to an empty block.""" block = pulse.ScheduleBlock() block = block.append(pulse.Play(self.test_waveform0, self.d0)) self.assertEqual(block.blocks[0], pulse.Play(self.test_waveform0, self.d0)) def test_append_an_instruction_to_empty_block_sugar(self): """Test append instructions to an empty block with syntax sugar.""" block = pulse.ScheduleBlock() block += pulse.Play(self.test_waveform0, self.d0) self.assertEqual(block.blocks[0], pulse.Play(self.test_waveform0, self.d0)) def test_append_an_instruction_to_empty_block_inplace(self): """Test append instructions to an empty block with inplace.""" block = pulse.ScheduleBlock() block.append(pulse.Play(self.test_waveform0, self.d0), inplace=True) self.assertEqual(block.blocks[0], pulse.Play(self.test_waveform0, self.d0)) def test_append_a_block_to_empty_block(self): """Test append another ScheduleBlock to empty block.""" block = pulse.ScheduleBlock() block.append(pulse.Play(self.test_waveform0, self.d0), inplace=True) block_main = pulse.ScheduleBlock() block_main = block_main.append(block) self.assertEqual(block_main.blocks[0], block) def test_append_an_instruction_to_block(self): """Test append instructions to a non-empty block.""" block = pulse.ScheduleBlock() block = block.append(pulse.Delay(100, self.d0)) block = block.append(pulse.Delay(100, self.d0)) self.assertEqual(len(block.blocks), 2) def test_append_an_instruction_to_block_inplace(self): """Test append instructions to a non-empty block with inplace.""" block = pulse.ScheduleBlock() block = block.append(pulse.Delay(100, self.d0)) block.append(pulse.Delay(100, self.d0), inplace=True) self.assertEqual(len(block.blocks), 2) def test_duration(self): """Test if correct duration is returned with implicit scheduling.""" block = pulse.ScheduleBlock() for inst in self.test_blocks: block.append(inst) self.assertEqual(block.duration, 350) def test_channels(self): """Test if all channels are returned.""" block = pulse.ScheduleBlock() for inst in self.test_blocks: block.append(inst) self.assertEqual(len(block.channels), 2) def test_instructions(self): """Test if all instructions are returned.""" block = pulse.ScheduleBlock() for inst in self.test_blocks: block.append(inst) self.assertEqual(block.blocks, tuple(self.test_blocks)) def test_channel_duraction(self): """Test if correct durations is calculated for each channel.""" block = pulse.ScheduleBlock() for inst in self.test_blocks: block.append(inst) self.assertEqual(block.ch_duration(self.d0), 350) self.assertEqual(block.ch_duration(self.d1), 200) def test_cannot_append_schedule(self): """Test schedule cannot be appended. Schedule should be input as Call instruction.""" block = pulse.ScheduleBlock() sched = pulse.Schedule() sched += pulse.Delay(10, self.d0) with self.assertRaises(PulseError): block.append(sched) def test_replace(self): """Test replacing specific instruction.""" block = pulse.ScheduleBlock() for inst in self.test_blocks: block.append(inst) replaced = pulse.Play(pulse.Constant(300, 0.1), self.d1) target = pulse.Delay(50, self.d0) block_replaced = block.replace(target, replaced, inplace=False) # original schedule is not destroyed self.assertListEqual(list(block.blocks), self.test_blocks) ref_sched = pulse.Schedule() ref_sched = ref_sched.insert(0, pulse.Play(self.test_waveform0, self.d0)) ref_sched = ref_sched.insert(0, pulse.Play(self.test_waveform1, self.d1)) ref_sched = ref_sched.insert(200, replaced) ref_sched = ref_sched.insert(100, pulse.Play(self.test_waveform1, self.d0)) self.assertScheduleEqual(block_replaced, ref_sched) def test_replace_inplace(self): """Test replacing specific instruction with inplace.""" block = pulse.ScheduleBlock() for inst in self.test_blocks: block.append(inst) replaced = pulse.Play(pulse.Constant(300, 0.1), self.d1) target = pulse.Delay(50, self.d0) block.replace(target, replaced, inplace=True) ref_sched = pulse.Schedule() ref_sched = ref_sched.insert(0, pulse.Play(self.test_waveform0, self.d0)) ref_sched = ref_sched.insert(0, pulse.Play(self.test_waveform1, self.d1)) ref_sched = ref_sched.insert(200, replaced) ref_sched = ref_sched.insert(100, pulse.Play(self.test_waveform1, self.d0)) self.assertScheduleEqual(block, ref_sched) def test_replace_block_by_instruction(self): """Test replacing block with instruction.""" sub_block1 = pulse.ScheduleBlock() sub_block1 = sub_block1.append(pulse.Delay(50, self.d0)) sub_block1 = sub_block1.append(pulse.Play(self.test_waveform0, self.d0)) sub_block2 = pulse.ScheduleBlock() sub_block2 = sub_block2.append(pulse.Delay(50, self.d0)) sub_block2 = sub_block2.append(pulse.Play(self.test_waveform1, self.d1)) main_block = pulse.ScheduleBlock() main_block = main_block.append(pulse.Delay(50, self.d0)) main_block = main_block.append(pulse.Play(self.test_waveform0, self.d0)) main_block = main_block.append(sub_block1) main_block = main_block.append(sub_block2) main_block = main_block.append(pulse.Play(self.test_waveform0, self.d1)) replaced = main_block.replace(sub_block1, pulse.Delay(100, self.d0)) ref_blocks = [ pulse.Delay(50, self.d0), pulse.Play(self.test_waveform0, self.d0), pulse.Delay(100, self.d0), sub_block2, pulse.Play(self.test_waveform0, self.d1), ] self.assertListEqual(list(replaced.blocks), ref_blocks) def test_replace_instruction_by_block(self): """Test replacing instruction with block.""" sub_block1 = pulse.ScheduleBlock() sub_block1 = sub_block1.append(pulse.Delay(50, self.d0)) sub_block1 = sub_block1.append(pulse.Play(self.test_waveform0, self.d0)) sub_block2 = pulse.ScheduleBlock() sub_block2 = sub_block2.append(pulse.Delay(50, self.d0)) sub_block2 = sub_block2.append(pulse.Play(self.test_waveform1, self.d1)) main_block = pulse.ScheduleBlock() main_block = main_block.append(pulse.Delay(50, self.d0)) main_block = main_block.append(pulse.Play(self.test_waveform0, self.d0)) main_block = main_block.append(pulse.Delay(100, self.d0)) main_block = main_block.append(sub_block2) main_block = main_block.append(pulse.Play(self.test_waveform0, self.d1)) replaced = main_block.replace(pulse.Delay(100, self.d0), sub_block1) ref_blocks = [ pulse.Delay(50, self.d0), pulse.Play(self.test_waveform0, self.d0), sub_block1, sub_block2, pulse.Play(self.test_waveform0, self.d1), ] self.assertListEqual(list(replaced.blocks), ref_blocks) def test_len(self): """Test __len__ method""" block = pulse.ScheduleBlock() self.assertEqual(len(block), 0) for j in range(1, 10): block = block.append(pulse.Delay(10, self.d0)) self.assertEqual(len(block), j) def test_inherit_from(self): """Test creating schedule with another schedule.""" ref_metadata = {"test": "value"} ref_name = "test" base_sched = pulse.ScheduleBlock(name=ref_name, metadata=ref_metadata) new_sched = pulse.ScheduleBlock.initialize_from(base_sched) self.assertEqual(new_sched.name, ref_name) self.assertDictEqual(new_sched.metadata, ref_metadata) @unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.") def test_execute_block(self): """Test executing a ScheduleBlock on a Pulse backend""" with pulse.build(name="test_block") as sched_block: pulse.play(pulse.Constant(160, 1.0), pulse.DriveChannel(0)) pulse.acquire(50, pulse.AcquireChannel(0), pulse.MemorySlot(0)) backend = FakeArmonk() # TODO: Rewrite test to simulate with qiskit-dynamics with self.assertWarns(DeprecationWarning): test_result = backend.run(sched_block).result() self.assertDictEqual(test_result.get_counts(), {"0": 1024}) class TestBlockEquality(BaseTestBlock): """Test equality of blocks. Equality of instruction ordering is compared on DAG representation. This should be tested for each transform. """ def test_different_channels(self): """Test equality is False if different channels.""" block1 = pulse.ScheduleBlock() block1 += pulse.Delay(10, self.d0) block2 = pulse.ScheduleBlock() block2 += pulse.Delay(10, self.d1) self.assertNotEqual(block1, block2) def test_different_transform(self): """Test equality is False if different transforms.""" block1 = pulse.ScheduleBlock(alignment_context=self.left_context) block1 += pulse.Delay(10, self.d0) block2 = pulse.ScheduleBlock(alignment_context=self.right_context) block2 += pulse.Delay(10, self.d0) self.assertNotEqual(block1, block2) def test_different_transform_opts(self): """Test equality is False if different transform options.""" context1 = transforms.AlignEquispaced(duration=100) context2 = transforms.AlignEquispaced(duration=500) block1 = pulse.ScheduleBlock(alignment_context=context1) block1 += pulse.Delay(10, self.d0) block2 = pulse.ScheduleBlock(alignment_context=context2) block2 += pulse.Delay(10, self.d0) self.assertNotEqual(block1, block2) def test_instruction_out_of_order_left(self): """Test equality is True if two blocks have instructions in different order.""" block1 = pulse.ScheduleBlock(alignment_context=self.left_context) block1 += pulse.Play(self.test_waveform0, self.d0) block1 += pulse.Play(self.test_waveform0, self.d1) block2 = pulse.ScheduleBlock(alignment_context=self.left_context) block2 += pulse.Play(self.test_waveform0, self.d1) block2 += pulse.Play(self.test_waveform0, self.d0) self.assertEqual(block1, block2) def test_instruction_in_order_left(self): """Test equality is True if two blocks have instructions in same order.""" block1 = pulse.ScheduleBlock(alignment_context=self.left_context) block1 += pulse.Play(self.test_waveform0, self.d0) block1 += pulse.Play(self.test_waveform0, self.d1) block2 = pulse.ScheduleBlock(alignment_context=self.left_context) block2 += pulse.Play(self.test_waveform0, self.d0) block2 += pulse.Play(self.test_waveform0, self.d1) self.assertEqual(block1, block2) def test_instruction_out_of_order_right(self): """Test equality is True if two blocks have instructions in different order.""" block1 = pulse.ScheduleBlock(alignment_context=self.right_context) block1 += pulse.Play(self.test_waveform0, self.d0) block1 += pulse.Play(self.test_waveform0, self.d1) block2 = pulse.ScheduleBlock(alignment_context=self.right_context) block2 += pulse.Play(self.test_waveform0, self.d1) block2 += pulse.Play(self.test_waveform0, self.d0) self.assertEqual(block1, block2) def test_instruction_in_order_right(self): """Test equality is True if two blocks have instructions in same order.""" block1 = pulse.ScheduleBlock(alignment_context=self.right_context) block1 += pulse.Play(self.test_waveform0, self.d0) block1 += pulse.Play(self.test_waveform0, self.d1) block2 = pulse.ScheduleBlock(alignment_context=self.right_context) block2 += pulse.Play(self.test_waveform0, self.d0) block2 += pulse.Play(self.test_waveform0, self.d1) self.assertEqual(block1, block2) def test_instruction_out_of_order_sequential(self): """Test equality is False if two blocks have instructions in different order.""" block1 = pulse.ScheduleBlock(alignment_context=self.sequential_context) block1 += pulse.Play(self.test_waveform0, self.d0) block1 += pulse.Play(self.test_waveform0, self.d1) block2 = pulse.ScheduleBlock(alignment_context=self.sequential_context) block2 += pulse.Play(self.test_waveform0, self.d1) block2 += pulse.Play(self.test_waveform0, self.d0) self.assertNotEqual(block1, block2) def test_instruction_out_of_order_sequential_more(self): """Test equality is False if three blocks have instructions in different order. This could detect a particular bug as discussed in this thread: https://github.com/Qiskit/qiskit-terra/pull/8005#discussion_r966191018 """ block1 = pulse.ScheduleBlock(alignment_context=self.sequential_context) block1 += pulse.Play(self.test_waveform0, self.d0) block1 += pulse.Play(self.test_waveform0, self.d0) block1 += pulse.Play(self.test_waveform0, self.d1) block2 = pulse.ScheduleBlock(alignment_context=self.sequential_context) block2 += pulse.Play(self.test_waveform0, self.d0) block2 += pulse.Play(self.test_waveform0, self.d1) block2 += pulse.Play(self.test_waveform0, self.d0) self.assertNotEqual(block1, block2) def test_instruction_in_order_sequential(self): """Test equality is True if two blocks have instructions in same order.""" block1 = pulse.ScheduleBlock(alignment_context=self.sequential_context) block1 += pulse.Play(self.test_waveform0, self.d0) block1 += pulse.Play(self.test_waveform0, self.d1) block2 = pulse.ScheduleBlock(alignment_context=self.sequential_context) block2 += pulse.Play(self.test_waveform0, self.d0) block2 += pulse.Play(self.test_waveform0, self.d1) self.assertEqual(block1, block2) def test_instruction_out_of_order_equispaced(self): """Test equality is False if two blocks have instructions in different order.""" block1 = pulse.ScheduleBlock(alignment_context=self.equispaced_context) block1 += pulse.Play(self.test_waveform0, self.d0) block1 += pulse.Play(self.test_waveform0, self.d1) block2 = pulse.ScheduleBlock(alignment_context=self.equispaced_context) block2 += pulse.Play(self.test_waveform0, self.d1) block2 += pulse.Play(self.test_waveform0, self.d0) self.assertNotEqual(block1, block2) def test_instruction_in_order_equispaced(self): """Test equality is True if two blocks have instructions in same order.""" block1 = pulse.ScheduleBlock(alignment_context=self.equispaced_context) block1 += pulse.Play(self.test_waveform0, self.d0) block1 += pulse.Play(self.test_waveform0, self.d1) block2 = pulse.ScheduleBlock(alignment_context=self.equispaced_context) block2 += pulse.Play(self.test_waveform0, self.d0) block2 += pulse.Play(self.test_waveform0, self.d1) self.assertEqual(block1, block2) def test_instruction_out_of_order_func(self): """Test equality is False if two blocks have instructions in different order.""" block1 = pulse.ScheduleBlock(alignment_context=self.func_context) block1 += pulse.Play(self.test_waveform0, self.d0) block1 += pulse.Play(self.test_waveform0, self.d1) block2 = pulse.ScheduleBlock(alignment_context=self.func_context) block2 += pulse.Play(self.test_waveform0, self.d1) block2 += pulse.Play(self.test_waveform0, self.d0) self.assertNotEqual(block1, block2) def test_instruction_in_order_func(self): """Test equality is True if two blocks have instructions in same order.""" block1 = pulse.ScheduleBlock(alignment_context=self.func_context) block1 += pulse.Play(self.test_waveform0, self.d0) block1 += pulse.Play(self.test_waveform0, self.d1) block2 = pulse.ScheduleBlock(alignment_context=self.func_context) block2 += pulse.Play(self.test_waveform0, self.d0) block2 += pulse.Play(self.test_waveform0, self.d1) self.assertEqual(block1, block2) def test_instrution_in_oder_but_different_node(self): """Test equality is False if two blocks have different instructions.""" block1 = pulse.ScheduleBlock(alignment_context=self.left_context) block1 += pulse.Play(self.test_waveform0, self.d0) block1 += pulse.Play(self.test_waveform1, self.d1) block2 = pulse.ScheduleBlock(alignment_context=self.left_context) block2 += pulse.Play(self.test_waveform0, self.d0) block2 += pulse.Play(self.test_waveform0, self.d1) self.assertNotEqual(block1, block2) def test_instruction_out_of_order_complex_equal(self): """Test complex schedule equality can be correctly evaluated.""" block1_a = pulse.ScheduleBlock(alignment_context=self.left_context) block1_a += pulse.Delay(10, self.d0) block1_a += pulse.Play(self.test_waveform1, self.d1) block1_a += pulse.Play(self.test_waveform0, self.d0) block1_b = pulse.ScheduleBlock(alignment_context=self.left_context) block1_b += pulse.Play(self.test_waveform1, self.d1) block1_b += pulse.Delay(10, self.d0) block1_b += pulse.Play(self.test_waveform0, self.d0) block2_a = pulse.ScheduleBlock(alignment_context=self.right_context) block2_a += block1_a block2_a += block1_b block2_a += block1_a block2_b = pulse.ScheduleBlock(alignment_context=self.right_context) block2_b += block1_a block2_b += block1_a block2_b += block1_b self.assertEqual(block2_a, block2_b) def test_instruction_out_of_order_complex_not_equal(self): """Test complex schedule equality can be correctly evaluated.""" block1_a = pulse.ScheduleBlock(alignment_context=self.left_context) block1_a += pulse.Play(self.test_waveform0, self.d0) block1_a += pulse.Play(self.test_waveform1, self.d1) block1_a += pulse.Delay(10, self.d0) block1_b = pulse.ScheduleBlock(alignment_context=self.left_context) block1_b += pulse.Play(self.test_waveform1, self.d1) block1_b += pulse.Delay(10, self.d0) block1_b += pulse.Play(self.test_waveform0, self.d0) block2_a = pulse.ScheduleBlock(alignment_context=self.right_context) block2_a += block1_a block2_a += block1_b block2_a += block1_a block2_b = pulse.ScheduleBlock(alignment_context=self.right_context) block2_b += block1_a block2_b += block1_a block2_b += block1_b self.assertNotEqual(block2_a, block2_b) class TestParametrizedBlockOperation(BaseTestBlock): """Test fundamental operation with parametrization.""" def setUp(self): super().setUp() self.amp0 = circuit.Parameter("amp0") self.amp1 = circuit.Parameter("amp1") self.dur0 = circuit.Parameter("dur0") self.dur1 = circuit.Parameter("dur1") self.test_par_waveform0 = pulse.Constant(self.dur0, self.amp0) self.test_par_waveform1 = pulse.Constant(self.dur1, self.amp1) def test_report_parameter_assignment(self): """Test duration assignment check.""" block = pulse.ScheduleBlock() block += pulse.Play(self.test_par_waveform0, self.d0) # check parameter evaluation mechanism self.assertTrue(block.is_parameterized()) self.assertFalse(block.is_schedulable()) # assign duration block = block.assign_parameters({self.dur0: 200}) self.assertTrue(block.is_parameterized()) self.assertTrue(block.is_schedulable()) def test_cannot_get_duration_if_not_assigned(self): """Test raise error when duration is not assigned.""" block = pulse.ScheduleBlock() block += pulse.Play(self.test_par_waveform0, self.d0) with self.assertRaises(PulseError): # pylint: disable=pointless-statement block.duration def test_get_assigend_duration(self): """Test duration is correctly evaluated.""" block = pulse.ScheduleBlock() block += pulse.Play(self.test_par_waveform0, self.d0) block += pulse.Play(self.test_waveform0, self.d0) block = block.assign_parameters({self.dur0: 300}) self.assertEqual(block.duration, 400) def test_nested_parametrized_instructions(self): """Test parameters of nested schedule can be assigned.""" test_waveform = pulse.Constant(100, self.amp0) param_sched = pulse.Schedule(pulse.Play(test_waveform, self.d0)) with self.assertWarns(DeprecationWarning): call_inst = pulse.instructions.Call(param_sched) sub_block = pulse.ScheduleBlock() sub_block += call_inst block = pulse.ScheduleBlock() block += sub_block self.assertTrue(block.is_parameterized()) # assign durations block = block.assign_parameters({self.amp0: 0.1}) self.assertFalse(block.is_parameterized()) def test_equality_of_parametrized_channels(self): """Test check equality of blocks involving parametrized channels.""" par_ch = circuit.Parameter("ch") block1 = pulse.ScheduleBlock(alignment_context=self.left_context) block1 += pulse.Play(self.test_waveform0, pulse.DriveChannel(par_ch)) block1 += pulse.Play(self.test_par_waveform0, self.d0) block2 = pulse.ScheduleBlock(alignment_context=self.left_context) block2 += pulse.Play(self.test_par_waveform0, self.d0) block2 += pulse.Play(self.test_waveform0, pulse.DriveChannel(par_ch)) self.assertEqual(block1, block2) block1_assigned = block1.assign_parameters({par_ch: 1}) block2_assigned = block2.assign_parameters({par_ch: 1}) self.assertEqual(block1_assigned, block2_assigned) def test_replace_parametrized_instruction(self): """Test parametrized instruction can updated with parameter table.""" block = pulse.ScheduleBlock() block += pulse.Play(self.test_par_waveform0, self.d0) block += pulse.Delay(100, self.d0) block += pulse.Play(self.test_waveform0, self.d0) replaced = block.replace( pulse.Play(self.test_par_waveform0, self.d0), pulse.Play(self.test_par_waveform1, self.d0), ) self.assertTrue(replaced.is_parameterized()) # check assign parameters replaced_assigned = replaced.assign_parameters({self.dur1: 100, self.amp1: 0.1}) self.assertFalse(replaced_assigned.is_parameterized()) def test_parametrized_context(self): """Test parametrize context parameter.""" duration = circuit.Parameter("dur") param_context = transforms.AlignEquispaced(duration=duration) block = pulse.ScheduleBlock(alignment_context=param_context) block += pulse.Delay(10, self.d0) block += pulse.Delay(10, self.d0) block += pulse.Delay(10, self.d0) block += pulse.Delay(10, self.d0) self.assertTrue(block.is_parameterized()) self.assertFalse(block.is_schedulable()) block.assign_parameters({duration: 100}, inplace=True) self.assertFalse(block.is_parameterized()) self.assertTrue(block.is_schedulable()) ref_sched = pulse.Schedule() ref_sched = ref_sched.insert(0, pulse.Delay(10, self.d0)) ref_sched = ref_sched.insert(30, pulse.Delay(10, self.d0)) ref_sched = ref_sched.insert(60, pulse.Delay(10, self.d0)) ref_sched = ref_sched.insert(90, pulse.Delay(10, self.d0)) self.assertScheduleEqual(block, ref_sched) class TestBlockFilter(BaseTestBlock): """Test ScheduleBlock filtering methods.""" def test_filter_channels(self): """Test filtering over channels.""" with pulse.build() as blk: pulse.play(self.test_waveform0, self.d0) pulse.delay(10, self.d0) pulse.play(self.test_waveform1, self.d1) filtered_blk = self._filter_and_test_consistency(blk, channels=[self.d0]) self.assertEqual(len(filtered_blk.channels), 1) self.assertTrue(self.d0 in filtered_blk.channels) with pulse.build() as ref_blk: pulse.play(self.test_waveform0, self.d0) pulse.delay(10, self.d0) self.assertEqual(filtered_blk, ref_blk) filtered_blk = self._filter_and_test_consistency(blk, channels=[self.d1]) self.assertEqual(len(filtered_blk.channels), 1) self.assertTrue(self.d1 in filtered_blk.channels) with pulse.build() as ref_blk: pulse.play(self.test_waveform1, self.d1) self.assertEqual(filtered_blk, ref_blk) filtered_blk = self._filter_and_test_consistency(blk, channels=[self.d0, self.d1]) self.assertEqual(len(filtered_blk.channels), 2) for ch in [self.d0, self.d1]: self.assertTrue(ch in filtered_blk.channels) self.assertEqual(filtered_blk, blk) def test_filter_channels_nested_block(self): """Test filtering over channels in a nested block.""" with pulse.build() as blk: with pulse.align_sequential(): pulse.play(self.test_waveform0, self.d0) pulse.delay(5, self.d0) with pulse.build(self.backend) as cx_blk: pulse.cx(0, 1) pulse.call(cx_blk) for ch in [self.d0, self.d1, pulse.ControlChannel(0)]: filtered_blk = self._filter_and_test_consistency(blk, channels=[ch]) self.assertEqual(len(filtered_blk.channels), 1) self.assertTrue(ch in filtered_blk.channels) def test_filter_inst_types(self): """Test filtering on instruction types.""" with pulse.build() as blk: pulse.acquire(5, pulse.AcquireChannel(0), pulse.MemorySlot(0)) with pulse.build() as blk_internal: pulse.play(self.test_waveform1, self.d1) pulse.call(blk_internal) pulse.reference(name="dummy_reference") pulse.delay(10, self.d0) pulse.play(self.test_waveform0, self.d0) pulse.barrier(self.d0, self.d1, pulse.AcquireChannel(0), pulse.MemorySlot(0)) pulse.set_frequency(10, self.d0) pulse.shift_frequency(5, self.d1) pulse.set_phase(3.14 / 4.0, self.d0) pulse.shift_phase(-3.14 / 2.0, self.d1) pulse.snapshot(label="dummy_snapshot") # test filtering Acquire filtered_blk = self._filter_and_test_consistency(blk, instruction_types=[pulse.Acquire]) self.assertEqual(len(filtered_blk.blocks), 1) self.assertIsInstance(filtered_blk.blocks[0], pulse.Acquire) self.assertEqual(len(filtered_blk.channels), 2) # test filtering Reference filtered_blk = self._filter_and_test_consistency( blk, instruction_types=[pulse.instructions.Reference] ) self.assertEqual(len(filtered_blk.blocks), 1) self.assertIsInstance(filtered_blk.blocks[0], pulse.instructions.Reference) # test filtering Delay filtered_blk = self._filter_and_test_consistency(blk, instruction_types=[pulse.Delay]) self.assertEqual(len(filtered_blk.blocks), 1) self.assertIsInstance(filtered_blk.blocks[0], pulse.Delay) self.assertEqual(len(filtered_blk.channels), 1) # test filtering Play filtered_blk = self._filter_and_test_consistency(blk, instruction_types=[pulse.Play]) self.assertEqual(len(filtered_blk.blocks), 2) self.assertIsInstance(filtered_blk.blocks[0].blocks[0], pulse.Play) self.assertIsInstance(filtered_blk.blocks[1], pulse.Play) self.assertEqual(len(filtered_blk.channels), 2) # test filtering RelativeBarrier filtered_blk = self._filter_and_test_consistency( blk, instruction_types=[pulse.instructions.RelativeBarrier] ) self.assertEqual(len(filtered_blk.blocks), 1) self.assertIsInstance(filtered_blk.blocks[0], pulse.instructions.RelativeBarrier) self.assertEqual(len(filtered_blk.channels), 4) # test filtering SetFrequency filtered_blk = self._filter_and_test_consistency( blk, instruction_types=[pulse.SetFrequency] ) self.assertEqual(len(filtered_blk.blocks), 1) self.assertIsInstance(filtered_blk.blocks[0], pulse.SetFrequency) self.assertEqual(len(filtered_blk.channels), 1) # test filtering ShiftFrequency filtered_blk = self._filter_and_test_consistency( blk, instruction_types=[pulse.ShiftFrequency] ) self.assertEqual(len(filtered_blk.blocks), 1) self.assertIsInstance(filtered_blk.blocks[0], pulse.ShiftFrequency) self.assertEqual(len(filtered_blk.channels), 1) # test filtering SetPhase filtered_blk = self._filter_and_test_consistency(blk, instruction_types=[pulse.SetPhase]) self.assertEqual(len(filtered_blk.blocks), 1) self.assertIsInstance(filtered_blk.blocks[0], pulse.SetPhase) self.assertEqual(len(filtered_blk.channels), 1) # test filtering ShiftPhase filtered_blk = self._filter_and_test_consistency(blk, instruction_types=[pulse.ShiftPhase]) self.assertEqual(len(filtered_blk.blocks), 1) self.assertIsInstance(filtered_blk.blocks[0], pulse.ShiftPhase) self.assertEqual(len(filtered_blk.channels), 1) # test filtering SnapShot filtered_blk = self._filter_and_test_consistency(blk, instruction_types=[pulse.Snapshot]) self.assertEqual(len(filtered_blk.blocks), 1) self.assertIsInstance(filtered_blk.blocks[0], pulse.Snapshot) self.assertEqual(len(filtered_blk.channels), 1) def test_filter_functionals(self): """Test functional filtering.""" with pulse.build() as blk: pulse.play(self.test_waveform0, self.d0, "play0") pulse.delay(10, self.d0, "delay0") with pulse.build() as blk_internal: pulse.play(self.test_waveform1, self.d1, "play1") pulse.call(blk_internal) pulse.play(self.test_waveform1, self.d1) def filter_with_inst_name(inst: pulse.Instruction) -> bool: try: if isinstance(inst.name, str): match_obj = re.search(pattern="play", string=inst.name) if match_obj is not None: return True except AttributeError: pass return False filtered_blk = self._filter_and_test_consistency(blk, filter_with_inst_name) self.assertEqual(len(filtered_blk.blocks), 2) self.assertIsInstance(filtered_blk.blocks[0], pulse.Play) self.assertIsInstance(filtered_blk.blocks[1].blocks[0], pulse.Play) self.assertEqual(len(filtered_blk.channels), 2) def test_filter_multiple(self): """Test filter composition.""" with pulse.build() as blk: pulse.play(pulse.Constant(100, 0.1, name="play0"), self.d0) pulse.delay(10, self.d0, "delay0") with pulse.build(name="internal_blk") as blk_internal: pulse.play(pulse.Constant(50, 0.1, name="play1"), self.d0) pulse.call(blk_internal) pulse.barrier(self.d0, self.d1) pulse.play(pulse.Constant(100, 0.1, name="play2"), self.d1) def filter_with_pulse_name(inst: pulse.Instruction) -> bool: try: if isinstance(inst.pulse.name, str): match_obj = re.search(pattern="play", string=inst.pulse.name) if match_obj is not None: return True except AttributeError: pass return False filtered_blk = self._filter_and_test_consistency( blk, filter_with_pulse_name, channels=[self.d1], instruction_types=[pulse.Play] ) self.assertEqual(len(filtered_blk.blocks), 1) self.assertIsInstance(filtered_blk.blocks[0], pulse.Play) self.assertEqual(len(filtered_blk.channels), 1) def _filter_and_test_consistency( self, sched_blk: pulse.ScheduleBlock, *args: Any, **kwargs: Any ) -> pulse.ScheduleBlock: """ Returns sched_blk.filter(*args, **kwargs), including a test that sched_blk.filter | sched_blk.exclude == sched_blk in terms of instructions. """ filtered = sched_blk.filter(*args, **kwargs) excluded = sched_blk.exclude(*args, **kwargs) def list_instructions(blk: pulse.ScheduleBlock) -> List[pulse.Instruction]: insts = [] for element in blk.blocks: if isinstance(element, pulse.ScheduleBlock): inner_insts = list_instructions(element) if len(inner_insts) != 0: insts.extend(inner_insts) elif isinstance(element, pulse.Instruction): insts.append(element) return insts sum_insts = list_instructions(filtered) + list_instructions(excluded) ref_insts = list_instructions(sched_blk) self.assertEqual(len(sum_insts), len(ref_insts)) self.assertTrue(all(inst in ref_insts for inst in sum_insts)) return filtered
https://github.com/ayushidubal/qram
ayushidubal
%matplotlib inline from qiskit import QuantumCircuit, QuantumRegister, transpile, ClassicalRegister from qiskit.quantum_info import Statevector from qiskit.visualization import array_to_latex, plot_histogram, plot_bloch_multivector from qiskit.circuit.library import CHGate from qiskit_aer import AerSimulator from functools import partial import numpy as np from utils import get_image_path show_unitary = partial(array_to_latex, max_size=100000) show_state = lambda qc: Statevector(qc).draw('latex') def get_unitary(qc, sim=AerSimulator()): qc_copy = qc.copy() qc_copy.save_unitary() unitary = sim.run(transpile(qc_copy, sim), shots=1000).result().get_unitary() return unitary def measure(qc, sim=AerSimulator(), qubits=None): qc_copy = qc.copy() if(not qubits): qc_copy.measure_all() else: qc_copy.measure(qubits, list(range(len(qubits)))) result = sim.run(transpile(qc_copy, sim), shots=1000).result().get_counts() return result mem = QuantumCircuit(2, name="QROM") mem.cz(0,1) display(mem.draw('mpl')) show_unitary(get_unitary(mem)) qc = QuantumCircuit(2) qc.x(range(2)) qc.append(mem, [0,1]) qc.x(range(2)) display(qc.draw('mpl')) display(show_unitary(get_unitary(qc))) show_state(qc) mem = QuantumCircuit(2, name="QROM") mem.cp(np.pi/3,0,1) display(mem.draw('mpl')) show_unitary(get_unitary(mem)) qc = QuantumCircuit(2) qc.x(range(2)) qc.append(mem, [0,1]) qc.x(range(2)) display(qc.draw('mpl')) display(show_unitary(get_unitary(qc))) show_state(qc) plot_bloch_multivector(qc) qc = QuantumCircuit(3) qc.x(range(2)) qc.h(2) qc.barrier() qc.append(mem, [0,1]) qc.barrier() qc.cx(2,1) qc.x(range(2)) qc.h(2) display(qc.draw('mpl')) display(show_unitary(get_unitary(qc))) display(show_state(qc)) display(plot_histogram(measure(qc))) qc = QuantumCircuit(1) #qc.h(0) qc.p(np.pi/2, 0) #qc.barrier() #qc.cx(1,0) qc.h(0) display(qc.draw('mpl')) display(show_unitary(get_unitary(qc))) display(show_state(qc)) display(plot_histogram(measure(qc))) mem = QuantumCircuit(2, name="QROM") mem.cp(np.pi/3,0,1) mem.x(range(2)) mem.cp(np.pi/7,0,1) mem.x(range(2)) display(mem.draw('mpl')) show_unitary(get_unitary(mem)) qc = QuantumCircuit(2) #qc.x(range(2)) qc.append(mem, [0,1]) #qc.x(range(2)) display(qc.draw('mpl')) display(show_unitary(get_unitary(qc))) show_state(qc) mem = QuantumCircuit(2, name="qrom") mem.ch(0,1) mem.x(0) mem.cry(np.pi/3, 0, 1) mem.x(0) display(mem.draw('mpl', filename=get_image_path("qrom_1.png"))) display(show_unitary(get_unitary(mem))) show_state(mem) addr = QuantumRegister(1, name="addr") out = QuantumRegister(1, name="out") q = QuantumRegister(1,name="q") result = ClassicalRegister(1, "m") qc = QuantumCircuit(addr, out, q, result) qc.x(addr) qc.barrier(addr) qc.append(mem, [addr, out]) qc.cx(out, q) display(qc.draw('mpl')) display(show_unitary(get_unitary(qc))) display(show_state(qc)) display(plot_histogram(measure(qc, qubits=[2]))) addr = QuantumRegister(1, name="addr") out = QuantumRegister(1, name="out") q = QuantumRegister(1,name="q") result = ClassicalRegister(1, "m") qc = QuantumCircuit(addr, out, q) qc.h(addr) qc.barrier(addr) qc.append(mem, [addr, out]) qc.cx(out, q) display(qc.draw('mpl', filename=get_image_path("qrom_1_usage.png"))) display(show_unitary(get_unitary(qc))) display(show_state(qc)) #display(plot_histogram(measure(qc, qubits=[2]))) CCH = CHGate().control(1) addr = QuantumRegister(2, name="addr") data = QuantumRegister(2, name="data") mem = QuantumCircuit(addr, data, name="qrom") mem.x(addr[0]) mem.ccx(addr[0], addr[1], data[0]) mem.x(addr[0]) mem.barrier() mem.append(CCH, [addr[0], addr[1], data[0]]) mem.ccx(addr[0], addr[1], data[1]) display(mem.draw('mpl')) display(show_unitary(get_unitary(mem))) show_state(mem) addr = QuantumRegister(2, name="addr") data = QuantumRegister(2, name="data") q = QuantumRegister(1, name="q") out = ClassicalRegister(1, name="c") qc = QuantumCircuit(addr, data, q, out) qc.x(range(2)) qc.barrier(addr) qc.append(mem, [*addr, *data]) qc.cx(data[1], q[0]) qc.cx(data[0], q[0]) qc.append(mem, [*addr, *data]) qc.barrier(addr) qc.x(range(2)) display(qc.draw('mpl')) #display(show_unitary(get_unitary(qc))) display(show_state(qc)) display(plot_histogram(measure(qc, qubits=[4]))) #memory with teleportation addr = QuantumRegister(1, name="addr") data = QuantumRegister(1, name="data") mem = QuantumCircuit(addr, data, name="qrom") mem.cry(np.pi/5, 0, 1) display(mem.draw('mpl')) display(show_unitary(get_unitary(mem))) show_state(mem) addr = QuantumRegister(1, name="addr") data = QuantumRegister(2, name="data") q = QuantumRegister(1, name="q") out = ClassicalRegister(1, name="c") qc = QuantumCircuit(addr, data, q, out) qc.x(addr) qc.barrier(addr) qc.append(mem, [addr, data[0]]) qc.cx(data[0], q) qc.barrier(addr) qc.append(mem, [addr, data[0]]) qc.x(addr) display(qc.draw('mpl')) #display(show_unitary(get_unitary(qc))) display(show_state(qc)) display(plot_histogram(measure(qc, qubits=[3]))) addr = QuantumRegister(1, name="addr") data = QuantumRegister(2, name="data") q = QuantumRegister(1, name="q") out = ClassicalRegister(1, name="c") qc = QuantumCircuit(addr, data, q, out) qc.x(addr) qc.barrier(addr) qc.append(mem, [addr, data[0]]) qc.h(data[1]) qc.cx(data[1], q) qc.cx(data[0], data[1]) qc.h(data[0]) qc.cx(data[1], q) qc.cz(data[0], q) display(qc.draw('mpl')) #display(show_unitary(get_unitary(qc))) display(show_state(qc)) display(plot_histogram(measure(qc, qubits=[3]))) display(plot_histogram(measure(qc, qubits=[1]))) (np.cos(np.pi/5/2))**2, (np.sin(np.pi/5/2))**2 qc = QuantumCircuit(3,3) qc.ry(np.pi/5, 0) qc.barrier() qc.h(1) qc.cx(1,2) qc.barrier() qc.cx(0,1) qc.h(0) qc.cx(1,2) qc.cz(0,2) qc.draw('mpl') display(qc.draw('mpl')) #display(show_unitary(get_unitary(qc))) display(show_state(qc)) display(plot_histogram(measure(qc, qubits=[2]))) data = QuantumRegister(1, name="data") teleportation_provider = QuantumRegister(1, name="t") q = QuantumRegister(1, name="q") meas = ClassicalRegister(1, name="out") qram = QuantumCircuit(data, teleportation_provider, q,meas) qram.h(teleportation_provider) qram.cx(teleportation_provider, data) qram.barrier() qram.ry(np.pi/7, q) qram.barrier() qram.cx(q, teleportation_provider) qram.h(q) qram.cx(teleportation_provider, data) qram.cz(q, data) display(qram.draw('mpl')) #display(show_unitary(get_unitary(qram))) display(show_state(qram)) display(plot_histogram(measure(qram, qubits=[0]))) display(plot_histogram(measure(qram, qubits=[2]))) np.cos(np.pi/7/2)**2, np.sin(np.pi/7/2)**2 data = QuantumRegister(2, name="data") teleportation_provider = QuantumRegister(2, name="t") q = QuantumRegister(2, name="q") meas = ClassicalRegister(1, name="out") qram = QuantumCircuit(data, teleportation_provider, q,meas) qram.h(teleportation_provider) qram.cx(teleportation_provider, data) qram.barrier() qram.ry(np.pi/3, q[0]) qram.ry(np.pi/7, q[1]) qram.barrier() qram.cx(q, teleportation_provider) qram.h(q) qram.cx(teleportation_provider, data) qram.cz(q, data) display(qram.draw('mpl', filename=get_image_path('qram.png'))) #display(show_unitary(get_unitary(qram))) display(show_state(qram)) display(plot_histogram(measure(qram, qubits=[0]))) display(plot_histogram(measure(qram, qubits=[4]))) display(plot_histogram(measure(qram, qubits=[1]))) display(plot_histogram(measure(qram, qubits=[5]))) np.cos(np.pi/3/2)**2, np.sin(np.pi/3/2)**2 data = QuantumRegister(2, name="data") teleportation_provider = QuantumRegister(2, name="t") q = QuantumRegister(2, name="q") meas = ClassicalRegister(1, name="out") qram = QuantumCircuit(data, teleportation_provider, q,meas) qram.h(teleportation_provider) qram.cx(teleportation_provider, data) qram.barrier() qram.h(q[0]) qram.h(q[1]) qram.barrier() qram.cx(q, teleportation_provider) qram.h(q) qram.cx(teleportation_provider, data) qram.cz(q, data) qram.barrier(label='second') qram.cz(q, data) qram.cx(teleportation_provider, data) qram.h(q) qram.cx(q, teleportation_provider) qram.barrier() qram.h(q[0]) qram.barrier() qram.cx(q, teleportation_provider) qram.h(q) qram.cx(teleportation_provider, data) qram.cz(q, data) display(qram.draw('mpl')) #display(show_unitary(get_unitary(qram))) display(show_state(qram)) display(plot_histogram(measure(qram, qubits=[0]))) display(plot_histogram(measure(qram, qubits=[4]))) display(plot_histogram(measure(qram, qubits=[1]))) display(plot_histogram(measure(qram, qubits=[5]))) data = QuantumRegister(2, name="data") teleportation_provider = QuantumRegister(1, name="t") q = QuantumRegister(2, name="q") meas = ClassicalRegister(1, name="out") qram = QuantumCircuit(data, teleportation_provider, q,meas) qram.h(teleportation_provider) qram.cx(teleportation_provider, data) qram.barrier() qram.ry(np.pi/3, q[0]) qram.ry(np.pi/7, q[1]) qram.barrier() qram.cx(q, teleportation_provider) qram.h(q) qram.cx(teleportation_provider, data) qram.cz(q, data) display(qram.draw('mpl', filename=get_image_path('qram.png'))) #display(show_unitary(get_unitary(qram))) display(show_state(qram)) display(plot_histogram(measure(qram, qubits=[0]))) display(plot_histogram(measure(qram, qubits=[4]))) display(plot_histogram(measure(qram, qubits=[1]))) display(plot_histogram(measure(qram, qubits=[5])))
https://github.com/SammithSB/virat-and-toss
SammithSB
# Do the necessary imports import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, BasicAer, IBMQ from qiskit.visualization import plot_histogram, plot_bloch_multivector ### Creating 3 qubit and 2 classical bits in each separate register qr = QuantumRegister(3) crz = ClassicalRegister(1) crx = ClassicalRegister(1) teleportation_circuit = QuantumCircuit(qr, crz, crx) ### A third party eve helps to create an entangled state def create_bell_pair(qc, a, b): qc.h(a) qc.cx(a, b) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.draw() def alice_gates(qc, a, b): qc.cx(a, b) qc.h(a) teleportation_circuit.barrier() alice_gates(teleportation_circuit, 0, 1) teleportation_circuit.draw() def measure_and_send(qc, a, b): qc.barrier() qc.measure(a,0) qc.measure(b,1) teleportation_circuit.barrier() measure_and_send(teleportation_circuit, 0, 1) teleportation_circuit.draw() def bob_gates(qc, qubit, crz, crx): qc.x(qubit).c_if(crx, 1) qc.z(qubit).c_if(crz, 1) teleportation_circuit.barrier() bob_gates(teleportation_circuit, 2, crz, crx) teleportation_circuit.draw() from qiskit.extensions import Initialize import math qc = QuantumCircuit(1) initial_state = [0,1] init_gate = Initialize(initial_state) # qc.append(initialize_qubit, [0]) qr = QuantumRegister(3) # Protocol uses 3 qubits crz = ClassicalRegister(1) # and 2 classical registers crx = ClassicalRegister(1) qc = QuantumCircuit(qr, crz, crx) # First, let's initialise Alice's q0 qc.append(init_gate, [0]) qc.barrier() # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) # Alice then sends her classical bits to Bob measure_and_send(qc, 0, 1) # Bob decodes qubits bob_gates(qc, 2, crz, crx) qc.draw() backend = BasicAer.get_backend('statevector_simulator') out_vector = execute(qc, backend).result().get_statevector() plot_bloch_multivector(out_vector) inverse_init_gate = init_gate.gates_to_uncompute() qc.append(inverse_init_gate, [2]) qc.draw() cr_result = ClassicalRegister(1) qc.add_register(cr_result) qc.measure(2,2) qc.draw() backend = BasicAer.get_backend('qasm_simulator') counts = execute(qc, backend, shots=1024).result().get_counts() plot_histogram(counts) def bob_gates(qc, a, b, c): qc.cz(a, c) qc.cx(b, c) qc = QuantumCircuit(3,1) # First, let's initialise Alice's q0 qc.append(init_gate, [0]) qc.barrier() # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) qc.barrier() # Alice sends classical bits to Bob bob_gates(qc, 0, 1, 2) # We undo the initialisation process qc.append(inverse_init_gate, [2]) # See the results, we only care about the state of qubit 2 qc.measure(2,0) # View the results: qc.draw() from qiskit import IBMQ IBMQ.save_account('### IMB TOKEN ') IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() from qiskit.providers.ibmq import least_busy backend = least_busy(provider.backends(filters=lambda b: b.configuration().n_qubits >= 3 and not b.configuration().simulator and b.status().operational==True)) job_exp = execute(qc, backend=backend, shots=8192) exp_result = job_exp.result() exp_measurement_result = exp_result.get_counts(qc) print(exp_measurement_result) plot_histogram(exp_measurement_result) error_rate_percent = sum([exp_measurement_result[result] for result in exp_measurement_result.keys() if result[0]=='1']) \ * 100./ sum(list(exp_measurement_result.values())) print("The experimental error rate : ", error_rate_percent, "%")
https://github.com/LSEG-API-Samples/Article.EikonAPI.Python.OptionPricingUsingQiskitAndEikonDataAPI
LSEG-API-Samples
# ! pip install qiskit qiskit-finance==0.2.1 import warnings warnings.filterwarnings("ignore") import qiskit.tools.jupyter %qiskit_version_table from qiskit import IBMQ IBMQ.save_account('MY_API_TOKEN', overwrite=True) # ! pip install eikon import eikon as ek print("Eikon version: ", ek.__version__) eikon_key = open("eikon.txt","r") ek.set_app_key(str(eikon_key.read())) eikon_key.close() import numpy as np import pandas as pd import datetime import matplotlib.pyplot as plt import seaborn as sns import qiskit from qiskit import Aer, QuantumCircuit from qiskit_finance.data_providers._base_data_provider import BaseDataProvider from qiskit.finance.applications.ising import portfolio from qiskit.circuit.library import TwoLocal from qiskit.aqua import QuantumInstance from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.aqua.algorithms import VQE, QAOA, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import COBYLA class EikonDataProvider(BaseDataProvider): """ The abstract base class for Eikon data_provider. """ def __init__(self, stocks_list, start_date, end_date): ''' stocks -> List of interested assets start -> start date to fetch historical data end -> ''' super().__init__() self._stocks = stocks_list self._start = start_date self._end = end_date self._data = [] self.stock_data = pd.DataFrame() def run(self): self._data = [] stocks_notfound = [] stock_data = ek.get_timeseries(self._stocks, start_date=self._start, end_date=self._end, interval='daily', corax='adjusted') for ticker in self._stocks: stock_value = stock_data['CLOSE'] self.stock_data[ticker] = stock_data['CLOSE'] if stock_value.dropna().empty: stocks_notfound.append(ticker) self._data.append(stock_value) # List of stocks stock_list = ['FB.O'] # Start Date start_date = datetime.datetime(2020,12,1) # End Date end_date = datetime.datetime(2021,12,1) # Set number of equities to the number of stocks num_assets = len(stock_list) # Set the risk factor risk_factor = 0.7 # Set budget budget = 2 # Scaling of budget penalty term will be dependant on the number of assets penalty = num_assets data = EikonDataProvider(stocks_list = stock_list, start_date=start_date, end_date=end_date) data.run() # Top 5 rows of data df = data.stock_data df.head() df.describe() # Closing Price History fig, ax = plt.subplots(figsize=(15, 8)) ax.plot(df) plt.title('Close Price History') plt.xlabel('Date',fontsize =20) plt.ylabel('Price in USD',fontsize = 20) ax.legend(df.columns.values) plt.show() df.tail() strike_price = 315 # agreed upon strike price T = 40 / 253 # 40 days to maturity S = 310.6 # initial spot price # vol = 0.4 # volatility of 40% vol = df['FB.O'].pct_change().std() r = 0.05 # annual interest rate of 4% # resulting parameters for log-normal distribution mu = ((r - 0.5 * vol**2) * T + np.log(S)) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2/2) variance = (np.exp(sigma**2) - 1) * np.exp(2*mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3*stddev) high = mean + 3*stddev low high import numpy as np from qiskit.algorithms import AmplitudeEstimation from qiskit_finance.circuit.library import EuropeanCallPricingObjective # F from qiskit.circuit.library import LogNormalDistribution, NormalDistribution from qiskit_finance.applications import EuropeanCallPricing from qiskit_finance.applications.estimation import EuropeanCallDelta from qiskit import Aer from qiskit.algorithms import IterativeAmplitudeEstimation sim = QuantumInstance(Aer.get_backend("aer_simulator"), shots=1000) # number of qubits to represent the uncertainty num_uncertainty_qubits = 5 distribution = LogNormalDistribution(num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high)) european_call_pricing = EuropeanCallPricing(num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, rescaling_factor=0.25, # approximation constant for payoff function bounds=(low, high), uncertainty_model=distribution) problem = european_call_pricing.to_estimation_problem() problem.state_preparation.draw('mpl', style='iqx') plt.show() epsilon = 0.01 # determines final accuracy alpha = 0.05 # determines how certain we are of the result ae = IterativeAmplitudeEstimation(epsilon, alpha=alpha, quantum_instance=sim) result = ae.estimate(problem) conf_int_result = np.array(result.confidence_interval_processed) print("Esimated value: \t%.4f" % european_call_pricing.interpret(result)) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int_result)) x = distribution.values y = distribution.probabilities plt.figure(figsize=(15,6)) plt.bar(x, y, width=0.3) plt.xticks(x, size=15, rotation=90) plt.yticks(size=10) plt.grid() plt.xlabel('Spot Price at Maturity $S_T$ (\$)', size=15) plt.ylabel('Probability ($\%$)', size=15) plt.show() # plot exact payoff function (evaluated on the grid of the uncertainty model) x = distribution.values y = np.maximum(0, x - strike_price) plt.figure(figsize=(15,6)) plt.plot(x, y, "ro-") plt.grid() plt.title("Payoff Function for Call Option", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value (normalized to the [0, 1] interval) exact_value = np.dot(distribution.probabilities, y) exact_delta = sum(distribution.probabilities[x >= strike_price]) print("exact expected value:\t%.4f" % exact_value) print("exact delta value: \t%.4f" % exact_delta) european_call_delta = EuropeanCallDelta( num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, bounds=(low, high), uncertainty_model=distribution, ) european_call_delta._objective.decompose().draw('mpl', style='iqx') plt.show() european_call_delta_circ = QuantumCircuit(european_call_delta._objective.num_qubits) european_call_delta_circ.append(distribution, range(num_uncertainty_qubits)) european_call_delta_circ.append( european_call_delta._objective, range(european_call_delta._objective.num_qubits) ) european_call_delta_circ.draw('mpl', style='iqx') plt.show() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_delta.to_estimation_problem() # construct amplitude estimation ae_delta = IterativeAmplitudeEstimation(epsilon, alpha=alpha, quantum_instance=sim) result_delta = ae_delta.estimate(problem) conf_int = np.array(result_delta.confidence_interval_processed) print("Exact delta: \t%.4f" % exact_delta) print("Esimated value: \t%.4f" % european_call_delta.interpret(result_delta)) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) put_distribution = LogNormalDistribution(num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high)) put_european_call_pricing = EuropeanCallPricing(num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, rescaling_factor=0.25, # approximation constant for payoff function bounds=(low, high), uncertainty_model=put_distribution) put_problem = put_european_call_pricing.to_estimation_problem() epsilon = 0.01 # determines final accuracy alpha = 0.05 # determines how certain we are of the result ae = IterativeAmplitudeEstimation(epsilon, alpha=alpha, quantum_instance=sim) put_result = ae.estimate(put_problem) put_conf_int_result = np.array(put_result.confidence_interval_processed) print("Esimated value: \t%.4f" % european_call_pricing.interpret(put_result)) print("Confidence interval: \t[%.4f, %.4f]" % tuple(put_conf_int_result)) x = put_distribution.values y = put_distribution.probabilities plt.figure(figsize=(15,6)) plt.bar(x, y, width=0.3) plt.xticks(x, size=12, rotation=90) plt.yticks(size=12) plt.xlabel('Spot Price at Maturity $S_T$ (\$)', size=15) plt.ylabel('Probability ($\%$)', size=15) plt.show() # plot exact payoff function (evaluated on the grid of the uncertainty model) x = distribution.values y = np.maximum(0, strike_price-x) plt.figure(figsize=(15,6)) plt.plot(x, y, "ro-") plt.title("Payoff Function for Put Option", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=12, rotation=90) plt.yticks(size=12) plt.show() # evaluate exact expected value (normalized to the [0, 1] interval) put_exact_value = np.dot(put_distribution.probabilities, y) conf_int = np.array(put_result.confidence_interval_processed) print("Exact Expected Value:\t%.4f" % exact_value) print("Esimated value: \t%.4f" % european_call_delta.interpret(put_result)) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int))
https://github.com/suvoooo/Qubits-Qiskit
suvoooo
!pip3 install qiskit import qiskit as q print ("check version: ", q.__qiskit_version__) from qiskit import IBMQ import matplotlib.pyplot as plt IBMQ.save_account('find your own number') IBMQ.load_account() circuit = q.QuantumCircuit(2, 2) # creates a new circuit with 2 classical and 2 quantum bits # apply a simple not gate circuit.x(1) # as both the bits are at 0, 0 this will flip the second bit to 1. # the number generally always represents the index, i.e. 1-- second index circuit.draw() # after flipping the second bit to 1 now we apply the controlled not gate circuit.cx(1, 0) # conrolled qubit is the 2nd one and the target qubit is the 1st one # QuantumCircuit.cx(control_qubit, target_qubit, *, label=None, ctrl_state=None, ctl=None, tgt=None) # here's the description [https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.cx.html]. # since the controlled bit is 1 so it will flip the target qubit which was initially sitting at 0, to 1. # rather than values think of this 0, 1 inside circuit.cx() as indices of the qubits. # so at this stage we will have 1, 1 as output. circuit.draw() circuit.measure([0, 1], [0, 1]) # measure: quantum bit into classical bit, # again think of the 0, 1 as indices, first list is the quantum register consisting of 2 qubits # second list is the classical register consisting of 2 classical bits. # think of this as value for qubit 0 is what will be returned for classical bit 0 and so on. circuit.draw(output='mpl') # let's simulate this before sending it to a quantum computer # idea is we simulate the quantum computer computation in local computer using Aer framework simulator = q.Aer.get_backend('qasm_simulator') # qasm : quantum assembly lang. results = q.execute(circuit, backend=simulator).result() # execute the circuit based on the simulator as backend q.visualization.plot_histogram(results.get_counts(circuit)) # Now we will use IBM Quantum Computer to see the result provider = IBMQ.get_provider('ibm-q') qcomp = provider.get_backend('ibmq_burlington') # check which computer has 0 jobs on queue job = q.execute(circuit, backend=qcomp) q_result = job.result() q.visualization.plot_histogram(q_result.get_counts(circuit))
https://github.com/zeynepCankara/Introduction-Quantum-Programming
zeynepCankara
# all portions are stored in a list all_portions = [7,5,4,2,6,1]; # let's calculate the total portion total_portion = 0 for i in range(6): total_portion = total_portion + all_portions[i] print("total portion is",total_portion) # find the weight of one portion one_portion = 1/total_portion print("the weight of one portion is",one_portion) print() # print an empty line # now we can calculate the probabilities of rolling 1,2,3,4,5, and 6 for i in range(6): print("the probability of rolling",(i+1),"is",(one_portion*all_portions[i])) # we will randomly create a probabilistic state # # we should be careful about two things: # 1. a probability value must be between 0 and 1 # 2. the total probability must be 1 # # let's use a list of size 4 # initial values are zeros my_state = [0,0,0,0] normalization_factor = 0 # this will be the summation of four values # we pick for random values between 0 and 100 from random import randrange while normalization_factor==0: # the normalization factor cannot be zero for i in range(4): my_state[i] = randrange(101) # pick a random value between 0 and (101-1) normalization_factor += my_state[i] print("the random values before the normalization",my_state) # let's normalize each value for i in range(4): my_state[i] = my_state[i]/normalization_factor print("the random values after the normalization",my_state) # let's find their summation sum = 0 for i in range(4): sum += my_state[i] print("the summation is",sum)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit.random import random_circuit circuit = random_circuit(2, 2, seed=0, measure=True).decompose(reps=1) display(circuit.draw("mpl")) from qiskit.primitives import Sampler sampler = Sampler() job = sampler.run(circuit) print(f">>> Job ID: {job.job_id()}") print(f">>> Job Status: {job.status()}") result = job.result() print(f">>> {result}") print(f" > Quasi-distribution: {result.quasi_dists[0]}") circuit = random_circuit(2, 2, seed=1, measure=True).decompose(reps=1) job = sampler.run(circuit) result = job.result() display(circuit.draw("mpl")) print(f">>> Quasi-distribution: {result.quasi_dists[0]}") circuits = ( random_circuit(2, 2, seed=0, measure=True).decompose(reps=1), random_circuit(2, 2, seed=1, measure=True).decompose(reps=1), ) job = sampler.run(circuits) result = job.result() [display(cir.draw("mpl")) for cir in circuits] print(f">>> Quasi-distribution: {result.quasi_dists}") from qiskit.circuit.library import RealAmplitudes circuit = RealAmplitudes(num_qubits=2, reps=2).decompose(reps=1) circuit.measure_all() parameter_values = [0, 1, 2, 3, 4, 5] job = sampler.run(circuit, parameter_values) result = job.result() display(circuit.draw("mpl")) print(f">>> Parameter values: {parameter_values}") print(f">>> Quasi-distribution: {result.quasi_dists[0]}") from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService(channel="ibm_quantum") backend = service.backend("ibmq_qasm_simulator") from qiskit.circuit.random import random_circuit circuit = random_circuit(2, 2, seed=0, measure=True).decompose(reps=1) display(circuit.draw("mpl")) from qiskit_ibm_runtime import Sampler sampler = Sampler(session=backend) job = sampler.run(circuit) print(f">>> Job ID: {job.job_id()}") print(f">>> Job Status: {job.status()}") result = job.result() print(f">>> {result}") print(f" > Quasi-distribution: {result.quasi_dists[0]}") print(f" > Metadata: {result.metadata[0]}") from qiskit_ibm_runtime import Options options = Options(optimization_level=3, environment={"log_level": "INFO"}) from qiskit_ibm_runtime import Options options = Options() options.resilience_level = 1 options.execution.shots = 2048 sampler = Sampler(session=backend, options=options) result = sampler.run(circuit).result() print(f">>> Metadata: {result.metadata[0]}") sampler = Sampler(session=backend, options=options) result = sampler.run(circuit, shots=1024).result() print(f">>> Metadata: {result.metadata[0]}") from qiskit_ibm_runtime import Options # optimization_level=3 adds dynamical decoupling # resilience_level=1 adds readout error mitigation options = Options(optimization_level=3, resilience_level=1) sampler = Sampler(session=backend, options=options) result = sampler.run(circuit).result() print(f">>> Quasi-distribution: {result.quasi_dists[0]}") print(f">>> Metadata: {result.metadata[0]}") from qiskit_ibm_runtime import Session, Estimator with Session(backend=backend, max_time="1h"): sampler = Sampler() result = sampler.run(circuit).result() print(f">>> Quasi-distribution from the first run: {result.quasi_dists[0]}") result = sampler.run(circuit).result() print(f">>> Quasi-distribution from the second run: {result.quasi_dists[0]}") from qiskit.circuit.random import random_circuit from qiskit.quantum_info import SparsePauliOp estimator_circuit = random_circuit(2, 2, seed=0).decompose(reps=1) display(estimator_circuit.draw("mpl")) observable = SparsePauliOp("XZ") print(f">>> Observable: {observable.paulis}") from qiskit_ibm_runtime import Session, Sampler, Estimator with Session(backend=backend): sampler = Sampler() estimator = Estimator() result = sampler.run(circuit).result() print(f">>> Quasi Distribution from the sampler job: {result.quasi_dists[0]}") result = estimator.run(estimator_circuit, observable).result() print(f">>> Expectation value from the estimator job: {result.values[0]}") from qiskit_ibm_runtime import Session, Sampler, Estimator with Session(backend=backend): sampler = Sampler() estimator = Estimator() sampler_job = sampler.run(circuit) estimator_job = estimator.run(estimator_circuit, observable) print(f">>> Quasi Distribution from the sampler job: {sampler_job.result().quasi_dists[0]}") print(f">>> Expectation value from the estimator job: {estimator_job.result().values[0]}") from qiskit_ibm_runtime import QiskitRuntimeService, Session, Sampler, Estimator, Options # 1. Initialize account service = QiskitRuntimeService(channel="ibm_quantum") # 2. Specify options, such as enabling error mitigation options = Options(resilience_level=1) # 3. Select a backend. backend = service.backend("ibmq_qasm_simulator") # 4. Create a session with Session(backend=backend): # 5. Create primitive instances sampler = Sampler(options=options) estimator = Estimator(options=options) # 6. Submit jobs sampler_job = sampler.run(circuit) estimator_job = estimator.run(estimator_circuit, observable) # 7. Get results print(f">>> Quasi Distribution from the sampler job: {sampler_job.result().quasi_dists[0]}") print(f">>> Expectation value from the estimator job: {estimator_job.result().values[0]}") import qiskit_ibm_runtime qiskit_ibm_runtime.version.get_version_info() from qiskit.tools.jupyter import * %qiskit_version_table %qiskit_copyright
https://github.com/iqm-finland/qiskit-on-iqm
iqm-finland
# Copyright 2022-2023 Qiskit on IQM developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing IQM fake backend. """ import pytest from qiskit import QuantumCircuit from qiskit.providers import JobV1 from qiskit_aer.noise.noise_model import NoiseModel from iqm.qiskit_iqm.fake_backends.iqm_fake_backend import IQMFakeBackend @pytest.fixture def backend(linear_architecture_3q, create_3q_error_profile): return IQMFakeBackend(linear_architecture_3q, create_3q_error_profile()) def test_fake_backend_with_incomplete_t1s(linear_architecture_3q, create_3q_error_profile): """Test that IQMFakeBackend construction fails if T1 times are not provided for all qubits""" with pytest.raises(ValueError, match="Length of t1s"): error_profile = create_3q_error_profile(t1s={"QB1": 2000, "QB3": 2000}) IQMFakeBackend(linear_architecture_3q, error_profile) def test_fake_backend_with_incomplete_t2s(linear_architecture_3q, create_3q_error_profile): """Test that IQMFakeBackend construction fails if T2 times are not provided for all qubits""" with pytest.raises(ValueError, match="Length of t2s"): error_profile = create_3q_error_profile(t2s={"QB1": 2000, "QB3": 2000}) IQMFakeBackend(linear_architecture_3q, error_profile) def test_fake_backend_with_single_qubit_gate_depolarizing_errors_qubits_not_matching_quantum_architecture( linear_architecture_3q, create_3q_error_profile, ): """Test that IQMFakeBackend construction fails if depolarizing rates are not provided for all qubits""" with pytest.raises(ValueError, match="The qubits specified for one-qubit gate"): error_profile = create_3q_error_profile( single_qubit_gate_depolarizing_error_parameters={"prx": {"QB1": 0.0001, "QB2": 0.0001}}, ) IQMFakeBackend(linear_architecture_3q, error_profile) def test_fake_backend_with_single_qubit_gate_depolarizing_errors_more_qubits_than_in_quantum_architecture( linear_architecture_3q, create_3q_error_profile, ): """Test that IQMFakeBackend construction fails if depolarizing rates are provided for other qubits than specified in the quantum architecture""" with pytest.raises(ValueError, match="The qubits specified for one-qubit gate"): error_profile = create_3q_error_profile( single_qubit_gate_depolarizing_error_parameters={ "prx": {"QB1": 0.0001, "QB2": 0.0001, "QB3": 0.0001, "QB4": 0.0001} }, ) IQMFakeBackend(linear_architecture_3q, error_profile) def test_fake_backend_with_two_qubit_gate_depolarizing_errors_couplings_not_matching_quantum_architecture( linear_architecture_3q, create_3q_error_profile, ): """Test that IQMFakeBackend construction fails if depolarizing rates are not provided for all couplings of the quantum architecture (QB1 -- QB2 -- QB3 here)""" with pytest.raises(ValueError, match="The couplings specified for two-qubit gate"): error_profile = create_3q_error_profile( two_qubit_gate_depolarizing_error_parameters={"cz": {("QB1", "QB2"): 0.001}}, ) IQMFakeBackend(linear_architecture_3q, error_profile) def test_fake_backend_with_two_qubit_gate_depolarizing_errors_more_couplings_than_in_quantum_architecture( linear_architecture_3q, create_3q_error_profile, ): """Test that IQMFakeBackend construction fails if depolarizing rates are provided for other couplings than specified in the quantum architecture""" with pytest.raises(ValueError, match="The couplings specified for two-qubit gate"): error_profile = create_3q_error_profile( two_qubit_gate_depolarizing_error_parameters={ "cz": {("QB1", "QB2"): 0.001, ("QB2", "QB3"): 0.001, ("QB1", "QB3"): 0.001} }, ) IQMFakeBackend(linear_architecture_3q, error_profile) @pytest.mark.parametrize( "param_name,param_value", [ ( "single_qubit_gate_depolarizing_error_parameters", {"wrong": {"QB1": 0.0001, "QB2": 0.0001, "QB3": 0}}, ), ( "two_qubit_gate_depolarizing_error_parameters", {"wrong": {("QB1", "QB2"): 0.001, ("QB2", "QB3"): 0.001}}, ), ], ) def test_fake_backend_not_matching_quantum_architecture( linear_architecture_3q, create_3q_error_profile, param_name: str, param_value: dict, ): """Test that IQMFakeBackend construction fails if one qubit depolarizing rates are refering to a gate not available in quantum architecture""" with pytest.raises( ValueError, match=f"Gate `wrong` in `{param_name}` is not supported", ): error_profile = create_3q_error_profile(**{param_name: param_value}) IQMFakeBackend(linear_architecture_3q, error_profile) def test_error_profile(linear_architecture_3q, create_3q_error_profile): err_profile = create_3q_error_profile() backend = IQMFakeBackend(linear_architecture_3q, err_profile) assert backend.error_profile == err_profile # Assert that error profile cannot be modified backend.error_profile.t1s["QB1"] = backend.error_profile.t1s["QB1"] + 127 assert backend.error_profile == err_profile def test_set_error_profile(backend, create_3q_error_profile): with pytest.raises(NotImplementedError, match="Setting error profile of existing fake backend is not allowed."): backend.error_profile = create_3q_error_profile() def test_copy_with_error_profile(linear_architecture_3q, create_3q_error_profile): err_profile = create_3q_error_profile() backend = IQMFakeBackend(linear_architecture_3q, err_profile) new_t1s = err_profile.t1s new_t1s["QB1"] = new_t1s["QB1"] + 128 new_err_profile = create_3q_error_profile(t1s=new_t1s) new_backend = backend.copy_with_error_profile(new_err_profile) assert new_backend.error_profile == new_err_profile def test_iqm_fake_backend_noise_model_instantiated(backend): """Test that creating a Fake Backend instantiates a Qiskit noise model""" assert isinstance(backend.noise_model, NoiseModel) def test_iqm_fake_backend_noise_model_basis_gates(backend): """Test that all operations named as part of the backend are utilizes in the noise_model""" assert all(gates in backend.operation_names for gates in backend.noise_model.basis_gates) def test_run_single_circuit(backend): """Test that the backend can be called with a circuit or a list of circuits and returns a result.""" circuit = QuantumCircuit(1, 1) circuit.measure(0, 0) shots = 10 job = backend.run(circuit, qubit_mapping=None, shots=shots) assert isinstance(job, JobV1) assert job.result() is not None # Should also work if the circuit is passed inside a list job = backend.run([circuit], qubit_mapping=None, shots=shots) assert isinstance(job, JobV1) assert job.result() is not None def test_error_on_empty_circuit_list(backend): """Test that calling run with an empty list of circuits raises a ValueError.""" with pytest.raises(ValueError, match="Empty list of circuits submitted for execution."): backend.run([], qubit_mapping=None) def test_noise_on_all_qubits(backend): """ Tests if noise is applied to all qubits of the device. """ noise_model = backend.noise_model simulator_qubit_indices = list(range(backend.num_qubits)) noisy_qubits = noise_model.noise_qubits assert simulator_qubit_indices == noisy_qubits def test_noise_model_has_noise_terms(backend): """ Tests if the noise model has some noise terms, i.e., tests if the noise model doesn't have no noise terms. """ noise_model = backend.noise_model assert not noise_model.is_ideal() def test_fake_backend_with_readout_errors_more_qubits_than_in_quantum_architecture( linear_architecture_3q, create_3q_error_profile, ): """Test that IQMFakeBackend construction fails if readout errors are provided for other qubits than specified in the quantum architecture""" with pytest.raises(ValueError, match="The qubits specified in readout errors"): error_profile = create_3q_error_profile( readout_errors={ "QB1": {"0": 0.02, "1": 0.03}, "QB2": {"0": 0.02, "1": 0.03}, "QB4": {"0": 0.02, "1": 0.03}, }, ) IQMFakeBackend(linear_architecture_3q, error_profile) def test_noise_model_contains_all_errors(backend): """ Test that the noise model contains all necessary errors. """ assert set(backend.noise_model.noise_instructions) == {"r", "cz", "measure"} # Assert that CZ gate error is applied independent of argument order in gate specification assert set(backend.noise_model._local_quantum_errors["cz"].keys()) == set([(0, 1), (1, 0), (1, 2), (2, 1)])
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumCircuit from qiskit.circuit.library.arithmetic.piecewise_chebyshev import PiecewiseChebyshev f_x, degree, breakpoints, num_state_qubits = lambda x: np.arcsin(1 / x), 2, [2, 4], 2 pw_approximation = PiecewiseChebyshev(f_x, degree, breakpoints, num_state_qubits) pw_approximation._build() qc = QuantumCircuit(pw_approximation.num_qubits) qc.h(list(range(num_state_qubits))) qc.append(pw_approximation.to_instruction(), qc.qubits) qc.draw(output='mpl')
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
https://github.com/qclib/qclib
qclib
# Copyright 2021 qclib project. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Bounded Approximation version of Plesch's algorithm. https://arxiv.org/abs/2111.03132 """ from dataclasses import dataclass from qiskit import QuantumCircuit from qclib.gates.initialize import Initialize from qclib.state_preparation.util.baa import adaptive_approximation from .lowrank import LowRankInitialize @dataclass class _OptParams: def __init__(self, opt_params): if opt_params is None: self.max_fidelity_loss = 0.0 self.isometry_scheme = "ccd" self.unitary_scheme = "qsd" self.strategy = "greedy" self.max_combination_size = 0 self.use_low_rank = False else: self.max_fidelity_loss = 0.0 if opt_params.get("max_fidelity_loss") is None \ else opt_params.get("max_fidelity_loss") self.isometry_scheme = "ccd" if opt_params.get("iso_scheme") is None else \ opt_params.get("iso_scheme") self.unitary_scheme = "qsd" if opt_params.get("unitary_scheme") is None else \ opt_params.get("unitary_scheme") self.strategy = "greedy" if opt_params.get("strategy") is None else \ opt_params.get("strategy") self.max_combination_size = 0 if opt_params.get("max_combination_size") is None else \ opt_params.get("max_combination_size") self.use_low_rank = False if opt_params.get("use_low_rank") is None else \ opt_params.get("use_low_rank") if self.max_fidelity_loss < 0 or self.max_fidelity_loss > 1: self.max_fidelity_loss = 0.0 class BaaLowRankInitialize(Initialize): """ State preparation using the bounded approximation algorithm via Schmidt decomposition arXiv:1003.5760 https://arxiv.org/abs/2111.03132 This class implements a state preparation gate. """ def __init__(self, params, label=None, opt_params=None): """ Parameters ---------- params: list of complex A unit vector representing a quantum state. Values are amplitudes. opt_params: Dictionary max_fidelity_loss: float ``state`` allowed (fidelity) error for approximation (0<=``max_fidelity_loss``<=1). If ``max_fidelity_loss`` is not in the valid range, it will be ignored. isometry_scheme: string Scheme used to decompose isometries. Possible values are ``'knill'`` and ``'ccd'`` (column-by-column decomposition). Default is ``isometry_scheme='ccd'``. unitary_scheme: string Scheme used to decompose unitaries. Possible values are ``'csd'`` (cosine-sine decomposition) and ``'qsd'`` (quantum Shannon decomposition). Default is ``unitary_scheme='qsd'``. strategy: string Method to search for the best approximation (``'brute_force'`` or ``'greedy'``). For states larger than 2**8, the greedy strategy should preferably be used. Default is ``strategy='greedy'``. max_combination_size: int Maximum size of the combination ``C(n_qubits, max_combination_size)`` between the qubits of an entangled subsystem of length ``n_qubits`` to produce the possible bipartitions (1 <= ``max_combination_size`` <= ``n_qubits``//2). For example, if ``max_combination_size``==1, there will be ``n_qubits`` bipartitions between 1 and ``n_qubits``-1 qubits. The default value is 0 (the size will be maximum for each level). use_low_rank: bool If set to True, ``rank``>1 approximations are also considered. This is fine tuning for high-entanglement states and is slower. The default value is False. """ self._name = "baa-lrsp" self._get_num_qubits(params) self.node = None self.opt_params = _OptParams(opt_params) if label is None: self._label = "BAASP" super().__init__(self._name, self.num_qubits, params, label=label) def _define(self): self.definition = self._define_initialize() def _define_initialize(self): self.node = adaptive_approximation( self.params, self.opt_params.max_fidelity_loss, self.opt_params.strategy, self.opt_params.max_combination_size, self.opt_params.use_low_rank, ) circuit = QuantumCircuit(self.num_qubits) for vector, qubits, rank, partition in zip( self.node.vectors, self.node.qubits, self.node.ranks, self.node.partitions ): opt_params = { "iso_scheme": self.opt_params.isometry_scheme, "unitary_scheme": self.opt_params.unitary_scheme, "partition": partition, "lr": rank, } gate = LowRankInitialize(vector, opt_params=opt_params) circuit.compose(gate, qubits[::-1], inplace=True) # qiskit little-endian. return circuit.reverse_bits() @staticmethod def initialize(q_circuit, state, qubits=None, opt_params=None): """ Appends a BaaLowRankInitialize gate into the q_circuit """ if qubits is None: q_circuit.append( BaaLowRankInitialize(state, opt_params=opt_params), q_circuit.qubits ) else: q_circuit.append(BaaLowRankInitialize(state, opt_params=opt_params), qubits)
https://github.com/udayapeddirajub/Grovers-Algorithm-Implementation-on-3-qubit-database
udayapeddirajub
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() from qiskit.circuit.library.standard_gates import XGate, HGate from operator import * n = 3 N = 8 #2**n index_colour_table = {} colour_hash_map = {} index_colour_table = {'000':"yellow", '001':"red", '010':"blue", '011':"red", '100':"green", '101':"blue", '110':"orange", '111':"red"} colour_hash_map = {"yellow":'100', "red":'011', "blue":'000', "green":'001', "orange":'010'} def database_oracle(index_colour_table, colour_hash_map): circ_database = QuantumCircuit(n + n) for i in range(N): circ_data = QuantumCircuit(n) idx = bin(i)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) # qiskit maps the rightmost bit as the 0th qubit -> qn, ..., q0 # we therefore reverse the index string -> q0, ..., qn data_gate = circ_data.to_gate(label=colour).control(num_ctrl_qubits=n, ctrl_state=idx, label="index-"+colour) circ_database.append(data_gate, list(range(n+n))) return circ_database # drawing the database oracle circuit print("Database Encoding") database_oracle(index_colour_table, colour_hash_map).draw() circ_data = QuantumCircuit(n) m = 4 idx = bin(m)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) print("Internal colour encoding for the colour green (as an example)"); circ_data.draw() def oracle_grover(database, data_entry): circ_grover = QuantumCircuit(n + n + 1) circ_grover.append(database, list(range(n+n))) target_reflection_gate = XGate().control(num_ctrl_qubits=n, ctrl_state=colour_hash_map[data_entry], label="Reflection of " + "\"" + data_entry + "\" Target") # control() missing 1 required positional argument: 'self' .... if only 'XGate' used instead of 'XGate()' # The “missing 1 required positional argument: 'self'” error is raised when you do not instantiate an object of a class before calling a class method. This error is also raised when you incorrectly instantiate a class. circ_grover.append(target_reflection_gate, list(range(n, n+n+1))) circ_grover.append(database, list(range(n+n))) return circ_grover print("Grover Oracle (target example: orange)") oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), "orange").decompose().draw() def mcz_gate(num_qubits): num_controls = num_qubits - 1 mcz_gate = QuantumCircuit(num_qubits) target_mcz = QuantumCircuit(1) target_mcz.z(0) target_mcz = target_mcz.to_gate(label="Z_Gate").control(num_ctrl_qubits=num_controls, ctrl_state=None, label="MCZ") mcz_gate.append(target_mcz, list(range(num_qubits))) return mcz_gate.reverse_bits() print("Multi-controlled Z (MCZ) Gate") mcz_gate(n).decompose().draw() def diffusion_operator(num_qubits): circ_diffusion = QuantumCircuit(num_qubits) qubits_list = list(range(num_qubits)) # Layer of H^n gates circ_diffusion.h(qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of Multi-controlled Z (MCZ) Gate circ_diffusion = circ_diffusion.compose(mcz_gate(num_qubits), qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of H^n gates circ_diffusion.h(qubits_list) return circ_diffusion print("Diffusion Circuit") diffusion_operator(n).draw() # Putting it all together ... !!! item = "green" print("Searching for the index of the colour", item) circuit = QuantumCircuit(n + n + 1, n) circuit.x(n + n) circuit.barrier() circuit.h(list(range(n))) circuit.h(n+n) circuit.barrier() unitary_oracle = oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), item).to_gate(label="Oracle Operator") unitary_diffuser = diffusion_operator(n).to_gate(label="Diffusion Operator") M = countOf(index_colour_table.values(), item) Q = int(np.pi * np.sqrt(N/M) / 4) for i in range(Q): circuit.append(unitary_oracle, list(range(n + n + 1))) circuit.append(unitary_diffuser, list(range(n))) circuit.barrier() circuit.measure(list(range(n)), list(range(n))) circuit.draw() backend_sim = Aer.get_backend('qasm_simulator') job_sim = backend_sim.run(transpile(circuit, backend_sim), shots=1024) result_sim = job_sim.result() counts = result_sim.get_counts(circuit) if M==1: print("Index of the colour", item, "is the index with most probable outcome") else: print("Indices of the colour", item, "are the indices the most probable outcomes") from qiskit.visualization import plot_histogram plot_histogram(counts)
https://github.com/Pitt-JonesLab/clonk_transpilation
Pitt-JonesLab
# from cirq import cphase import numpy as np import qiskit.circuit.library.standard_gates as g import qiskit.circuit.quantumcircuit as qc from qiskit.circuit.equivalence import EquivalenceLibrary from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary from qiskit.circuit.library.standard_gates.equivalence_library import ( StandardEquivalenceLibrary, ) SessionEquivalenceLibrary = EquivalenceLibrary(base=StandardEquivalenceLibrary) # https://github.com/Qiskit/qiskit-terra/blob/main/qiskit/circuit/library/standard_gates/equivalence_library.py from qiskit.quantum_info.operators import Operator circuit = qc.QuantumCircuit(2, name="rootswap") cx = Operator( [ [1, 0, 0, 0], [0, 0.5 * (1 + 1j), 0.5 * (1 - 1j), 0], [0, 0.5 * (1 - 1j), 0.5 * (1 + 1j), 0], [0, 0, 0, 1], ] ) circuit.unitary(cx, [0, 1]) rootSwap = circuit.to_gate() # define rootiswap circuit = qc.QuantumCircuit(2, name="rootiswap") cx = Operator( [ [1, 0, 0, 0], [0, 1 / np.sqrt(2), 1j / np.sqrt(2), 0], [0, 1j / np.sqrt(2), 1 / np.sqrt(2), 0], [0, 0, 0, 1], ] ) circuit.unitary(cx, [0, 1]) rootiSwap = circuit.to_gate() def iswap(alpha): return np.matrix( [ [1, 0, 0, 0], [0, np.cos(np.pi * alpha / 2), 1j * np.sin(np.pi * alpha / 2), 0], [0, 1j * np.sin(np.pi * alpha / 2), np.cos(np.pi * alpha / 2), 0], [0, 0, 0, 1], ] ) # class rootiswap_gate(qe.UnitaryGate): # def __init__(self): # super().__init__( # data=np.array( # [ # [1, 0, 0, 0], # [0, 1 / np.sqrt(2), 1j / np.sqrt(2), 0], # [0, 1j / np.sqrt(2), 1 / np.sqrt(2), 0], # [0, 0, 0, 1], # ] # ), # label=r"rootiswap", # ) # SWAP out of rootSWAP _rootSwapEquiv = qc.QuantumCircuit(2) _rootSwapEquiv.append(rootSwap, [0, 1]) _rootSwapEquiv.append(rootSwap, [0, 1]) SessionEquivalenceLibrary.add_equivalence(g.SwapGate(), _rootSwapEquiv) # CX out of rootSWAP _cxEquiv = qc.QuantumCircuit(2) _cxEquiv.ry(np.pi / 2, 1) _cxEquiv.append(rootSwap, [0, 1]) _cxEquiv.z(0) _cxEquiv.append(rootSwap, [0, 1]) _cxEquiv.rz(-np.pi / 2, 0) _cxEquiv.rz(-np.pi / 2, 1) _cxEquiv.ry(-np.pi / 2, 1) SessionEquivalenceLibrary.add_equivalence(g.CXGate(), _cxEquiv) # rootSWAP out of CX _rootSwapEquiv = qc.QuantumCircuit(2) _rootSwapEquiv.cx(0, 1) _rootSwapEquiv.h(0) _rootSwapEquiv.rz(np.pi / 4, 0) _rootSwapEquiv.rz(-np.pi / 4, 1) _rootSwapEquiv.h(0) _rootSwapEquiv.h(1) _rootSwapEquiv.cx(0, 1) _rootSwapEquiv.h(0) _rootSwapEquiv.h(1) _rootSwapEquiv.rz(-np.pi / 4, 0) _rootSwapEquiv.h(0) _rootSwapEquiv.cx(0, 1) _rootSwapEquiv.rz(-np.pi / 2, 0) _rootSwapEquiv.rz(np.pi / 2, 1) SessionEquivalenceLibrary.add_equivalence(rootSwap, _rootSwapEquiv) # add decomp rule for CZ out of Cphase _czEquiv = qc.QuantumCircuit(2) _czEquiv.append(g.CPhaseGate(np.pi), [0, 1]) SessionEquivalenceLibrary.add_equivalence(g.CZGate(), _czEquiv)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit circ = QuantumCircuit(2, 2) circ.h(0) circ.cx(0, 1) circ.measure(0, 0) circ.measure(1, 1) circ.draw('mpl') from qiskit import pulse from qiskit.pulse.library import Gaussian from qiskit.providers.fake_provider import FakeValencia backend = FakeValencia() with pulse.build(backend, name='hadamard') as h_q0: pulse.play(Gaussian(duration=128, amp=0.1, sigma=16), pulse.drive_channel(0)) h_q0.draw() circ.add_calibration('h', [0], h_q0) from qiskit import transpile from qiskit.providers.fake_provider import FakeHanoi backend = FakeHanoi() circ = transpile(circ, backend) print(backend.configuration().basis_gates) circ.draw('mpl', idle_wires=False) from qiskit import QuantumCircuit from qiskit.circuit import Gate circ = QuantumCircuit(1, 1) custom_gate = Gate('my_custom_gate', 1, [3.14, 1]) # 3.14 is an arbitrary parameter for demonstration circ.append(custom_gate, [0]) circ.measure(0, 0) circ.draw('mpl') with pulse.build(backend, name='custom') as my_schedule: pulse.play(Gaussian(duration=64, amp=0.2, sigma=8), pulse.drive_channel(0)) circ.add_calibration('my_custom_gate', [0], my_schedule, [3.14, 1]) # Alternatively: circ.add_calibration(custom_gate, [0], my_schedule) circ = transpile(circ, backend) circ.draw('mpl', idle_wires=False) circ = QuantumCircuit(2, 2) circ.append(custom_gate, [1]) from qiskit import QiskitError try: circ = transpile(circ, backend) except QiskitError as e: print(e) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * def Uf_c(n): qr = QuantumRegister(n+1); qc = QuantumCircuit(qr, name = 'Uf_c') qc.x(qr[n]) return qc qc = Uf_c(3); qc.draw() def Uf_b(n): qr = QuantumRegister(n+1); qc = QuantumCircuit(qr, name = 'Uf_b') qc.cx(qr[n-1],qr[n]) return qc qc = Uf_b(3); qc.draw() def deutsch_jozsa(n, typ): qr = QuantumRegister(n+1); cr = ClassicalRegister(n); qc = QuantumCircuit(qr,cr) qc.x(qr[n]) for j in range(0,n+1): qc.h(qr[j]) qc.barrier() qrs = [] for j in range(0,n+1): qrs.append(qr[j]) if typ == 'c': qc_uf = Uf_c(n); qc.append(qc_uf, qrs) elif typ == 'b': qc_uf = Uf_b(n); qc.append(qc_uf, qrs) qc.barrier() for j in range(0,n): qc.h(qr[j]) for j in range(0,n): qc.measure(qr[j], cr[j]) return qc qc = deutsch_jozsa(3, 'c'); qc.draw() # exemplo pra funcao constante simulator = Aer.get_backend('qasm_simulator') nshots = 8192 result = execute(qc, backend = simulator, shots = nshots).result() from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(qc)) qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') device = provider.get_backend('ibmq_belem') from qiskit.tools.monitor import backend_overview, backend_monitor job = execute(qc, backend = device, shots = nshots) from qiskit.tools.monitor import job_monitor job_monitor(job) result = job.result(); plot_histogram(result.get_counts(qc)) qc = deutsch_jozsa(3, 'b'); qc.draw() # exemplo de funcao balanceada result = execute(qc, backend = simulator, shots = nshots).result() plot_histogram(result.get_counts(qc)) job = execute(qc, backend = device, shots = nshots) job_monitor(job) result = job.result(); plot_histogram(result.get_counts(qc))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver() problem = driver.run() print(problem) from qiskit_nature.second_q.problems import ElectronicBasis driver.run_pyscf() problem = driver.to_problem(basis=ElectronicBasis.MO, include_dipole=True) print(problem.basis) ao_problem = driver.to_problem(basis=ElectronicBasis.AO) print(ao_problem.basis) from qiskit_nature.second_q.formats.qcschema_translator import qcschema_to_problem qcschema = driver.to_qcschema() ao_problem = qcschema_to_problem(qcschema, basis=ElectronicBasis.AO) from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema basis_transformer = get_ao_to_mo_from_qcschema(qcschema) mo_problem = basis_transformer.transform(ao_problem) print(mo_problem.basis) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.cx(0, 1) qc.draw("mpl")
https://github.com/PacktPublishing/Quantum-Computing-in-Practice-with-Qiskit-and-IBM-Quantum-Experience
PacktPublishing
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created Nov 2020 @author: hassi """ from qiskit import QuantumCircuit, execute from qiskit import IBMQ from qiskit.tools.monitor import job_monitor from IPython.core.display import display print("Getting provider...") if not IBMQ.active_account(): IBMQ.load_account() provider = IBMQ.get_provider() print("Ch 4: Quantum coin toss on IBM Q backend") print("----------------------------------------") qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0,1) qc.measure([0,1],[0,1]) display(qc.draw('mpl')) from qiskit.providers.ibmq import least_busy backend = least_busy(provider.backends(n_qubits=5, operational=True, simulator=False)) print(backend.name()) job = execute(qc, backend, shots=1000) job_monitor(job) result = job.result() print(result) counts = result.get_counts(qc) from qiskit.tools.visualization import plot_histogram display(plot_histogram(counts))
https://github.com/qiskit-community/community.qiskit.org
qiskit-community
#initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram s = '11' # Creating registers # qubits for querying the oracle and finding the hidden period s qr = QuantumRegister(2*len(str(s))) # classical registers for recording the measurement from qr cr = ClassicalRegister(2*len(str(s))) simonCircuit = QuantumCircuit(qr, cr) barriers = True # Apply Hadamard gates before querying the oracle for i in range(len(str(s))): simonCircuit.h(qr[i]) # Apply barrier if barriers: simonCircuit.barrier() # Apply the query function ## 2-qubit oracle for s = 11 simonCircuit.cx(qr[0], qr[len(str(s)) + 0]) simonCircuit.cx(qr[0], qr[len(str(s)) + 1]) simonCircuit.cx(qr[1], qr[len(str(s)) + 0]) simonCircuit.cx(qr[1], qr[len(str(s)) + 1]) # Apply barrier if barriers: simonCircuit.barrier() # Measure ancilla qubits for i in range(len(str(s)), 2*len(str(s))): simonCircuit.measure(qr[i], cr[i]) # Apply barrier if barriers: simonCircuit.barrier() # Apply Hadamard gates to the input register for i in range(len(str(s))): simonCircuit.h(qr[i]) # Apply barrier if barriers: simonCircuit.barrier() # Measure input register for i in range(len(str(s))): simonCircuit.measure(qr[i], cr[i]) simonCircuit.draw(output='mpl') # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(simonCircuit, backend=backend, shots=shots).result() answer = results.get_counts() # Categorize measurements by input register values answer_plot = {} for measresult in answer.keys(): measresult_input = measresult[len(str(s)):] if measresult_input in answer_plot: answer_plot[measresult_input] += answer[measresult] else: answer_plot[measresult_input] = answer[measresult] # Plot the categorized results print( answer_plot ) plot_histogram(answer_plot) # Calculate the dot product of the results def sdotz(a, b): accum = 0 for i in range(len(a)): accum += int(a[i]) * int(b[i]) return (accum % 2) print('s, z, s.z (mod 2)') for z_rev in answer_plot: z = z_rev[::-1] print( '{}, {}, {}.{}={}'.format(s, z, s,z,sdotz(s,z)) ) # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to 5 qubits IBMQ.load_account() IBMQ.get_provider(hub='ibm-q') provider.backends() backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(simonCircuit, backend=backend, shots=shots) job_monitor(job, interval = 2) # Categorize measurements by input register values answer_plot = {} for measresult in answer.keys(): measresult_input = measresult[len(str(s)):] if measresult_input in answer_plot: answer_plot[measresult_input] += answer[measresult] else: answer_plot[measresult_input] = answer[measresult] # Plot the categorized results print( answer_plot ) plot_histogram(answer_plot) # Calculate the dot product of the most significant results print('s, z, s.z (mod 2)') for z_rev in answer_plot: if answer_plot[z_rev] >= 0.1*shots: z = z_rev[::-1] print( '{}, {}, {}.{}={}'.format(s, z, s,z,sdotz(s,z)) ) import qiskit qiskit.__qiskit_version__
https://github.com/urwin419/QiskitChecker
urwin419
import qiskit #Code based on Qiskit offcial Textbook #Create the circuit for the Bernstein-Vazirani algorithm def bv_algorithm(bitstring: str, num_qubits: int) -> qiskit.QuantumCircuit: #Create the quantum circuit bv_circuit = qiskit.QuantumCircuit(num_qubits + 1, num_qubits) #Apply H-gate to the output qubit bv_circuit.h(num_qubits) #Apply Z-gate to the output qubit bv_circuit.z(num_qubits) #Apply H-gates to all qubits for qubit in range(num_qubits): bv_circuit.h(qubit) #Reverse the order of the bitstring s = bitstring[::-1] for qubit in range(num_qubits): if s[qubit] == '0': #If the position equals to 0, apply an I-gate bv_circuit.i(qubit) else: #Else, apply CX-gates bv_circuit.cx(qubit, num_qubits) #Apply H-gates to all qubits for qubit in range(num_qubits): bv_circuit.h(qubit) #Measure all the qubits for qubit in range(num_qubits): bv_circuit.measure(qubit, qubit) return bv_circuit #Run the simulation with the given circuit def bernstein_azirani(bitstring: str, num_qubits: int) -> qiskit.QuantumCircuit: #Get the simulator simulator = qiskit.Aer.get_backend('qasm_simulator') #Get the circuit circuit = bv_algorithm(bitstring, num_qubits) #Execute the Bernstein-Vazirani algorithm job = qiskit.execute(circuit, simulator, shots=1000) #Get results result = job.result().get_counts() return result
https://github.com/qclib/qclib
qclib
# Copyright 2021 qclib project. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test qclib.gate.mc_gate """ from unittest import TestCase import numpy as np from scipy.stats import unitary_group import qiskit from qiskit import QuantumRegister, QuantumCircuit from qiskit.circuit.library import MCXGate import qclib.util from qclib.gates.ldmcu import Ldmcu class TestLinearToffoli(TestCase): """ Testing qclib.gate.toffoli """ def test_controlled_gate(self): """ Testing multi controlled gate """ gate_u = unitary_group.rvs(2) controls = QuantumRegister(4) target = QuantumRegister(1) circuit = qiskit.QuantumCircuit(controls, target) circuit.x(0) circuit.x(1) circuit.x(2) circuit.x(3) Ldmcu.ldmcu(circuit, gate_u, controls, target) state = qclib.util.get_state(circuit) self.assertTrue(np.isclose(state[15], gate_u[0, 0])) self.assertTrue(np.isclose(state[31], gate_u[1, 0])) controls2 = QuantumRegister(4) target2 = QuantumRegister(1) circuit2 = QuantumCircuit(controls2, target2) circuit2.x(0) circuit2.x(1) circuit2.x(2) circuit2.x(3) circuit2.x(4) Ldmcu.ldmcu(circuit2, gate_u, controls2, target2) state = qclib.util.get_state(circuit2) self.assertTrue(np.isclose(state[15], gate_u[0, 1])) self.assertTrue(np.isclose(state[31], gate_u[1, 1])) def test_linear_toffoli3(self): """ Testing Toffoli control 111""" gate_x = np.array([[0, 1], [1, 0]]) controls = QuantumRegister(3) target = QuantumRegister(1) circuit = QuantumCircuit(controls, target) circuit.x(1) circuit.x(2) circuit.x(3) circuit.x(0) Ldmcu.ldmcu(circuit, gate_x, controls, target) state = qclib.util.get_state(circuit) exp_state = np.zeros(16, dtype=complex) exp_state[7] = 1 self.assertTrue(np.allclose(state, exp_state)) def test_linear_toffoli2(self): """ Testing Toffoli control 110""" gate_x = np.array([[0, 1], [1, 0]]) controls2 = QuantumRegister(3) target2 = QuantumRegister(1) circuit2 = QuantumCircuit(controls2, target2) circuit2 = qiskit.QuantumCircuit(4) circuit2.x(2) circuit2.x(3) circuit2.x(0) state1 = qclib.util.get_state(circuit2) controls1 = QuantumRegister(3) target1 = QuantumRegister(1) circuit1 = qiskit.QuantumCircuit(controls1, target1) Ldmcu.ldmcu(circuit1, gate_x, controls1, target1, ctrl_state='110') circuit2.compose(circuit1, circuit2.qubits, inplace=True) state2 = qclib.util.get_state(circuit2) self.assertTrue(np.allclose(state1, state2)) def test_linear_toffoli1(self): """ Testing Toffoli control 100""" gate_x = np.array([[0, 1], [1, 0]]) circuit2 = qiskit.QuantumCircuit(4) circuit2.x(0) state1 = qclib.util.get_state(circuit2) controls = QuantumRegister(3) target = QuantumRegister(1) circuit = qiskit.QuantumCircuit(controls, target) Ldmcu.ldmcu(circuit, gate_x, controls, target, ctrl_state='100') circuit2.compose(circuit, circuit2.qubits, inplace=True) state2 = qclib.util.get_state(circuit2) self.assertTrue(np.allclose(state1, state2)) def test_linear_toffoli0(self): """ Testing Toffoli control 000""" gate_x = np.array([[0, 1], [1, 0]]) controls = QuantumRegister(3) target = QuantumRegister(1) mcgate_circuit = qiskit.QuantumCircuit(controls, target) Ldmcu.ldmcu(mcgate_circuit, gate_x, controls, target, ctrl_state="000") controls_2 = QuantumRegister(3) target_2 = QuantumRegister(1) qiskit_circuit = QuantumCircuit(controls_2, target_2) qiskit_circuit.append(MCXGate(len(controls_2), ctrl_state='000'), [*controls_2, target_2]) state_qiskit = qclib.util.get_state(qiskit_circuit) state_mcgate = qclib.util.get_state(mcgate_circuit) self.assertTrue(np.allclose(state_qiskit, state_mcgate)) def test_mct_toffoli(self): """ compare qiskit.mct and toffoli depth with 7 qubits """ gate_x = np.array([[0, 1], [1, 0]]) qcirc1 = qiskit.QuantumCircuit(6) qcirc1.mcx([0, 1, 2, 3, 4], 5) t_qcirc1 = qiskit.transpile(qcirc1, basis_gates=['u', 'cx']) controls = QuantumRegister(5) target = QuantumRegister(1) qcirc2 = qiskit.QuantumCircuit(controls, target) Ldmcu.ldmcu(qcirc2, gate_x, controls, target) t_qcirc2 = qiskit.transpile(qcirc2, basis_gates=['u', 'cx']) self.assertTrue(t_qcirc2.depth() < t_qcirc1.depth())
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import pulse d0 = pulse.DriveChannel(0) x90 = pulse.Gaussian(10, 0.1, 3) x180 = pulse.Gaussian(10, 0.2, 3) def udd10_pos(j): return np.sin(np.pi*j/(2*10 + 2))**2 with pulse.build() as udd_sched: pulse.play(x90, d0) with pulse.align_func(duration=300, func=udd10_pos): for _ in range(10): pulse.play(x180, d0) pulse.play(x90, d0) udd_sched.draw()
https://github.com/theflyingrahul/qiskitsummerschool2020
theflyingrahul
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/kdk/qiskit-timeline-debugger
kdk
from qiskit import QuantumCircuit from qiskit.test.mock import FakeCasablanca from qiskit_trebugger import Debugger import warnings warnings.simplefilter('ignore') debugger = Debugger() backend = FakeCasablanca() circuit = QuantumCircuit(2) circuit.h(0) circuit.cx(0,1) circuit.measure_all() # replace transpile call debugger.debug(circuit, backend = backend, initial_layout = [0,1])
https://github.com/qiskit-community/community.qiskit.org
qiskit-community
import numpy as np np.random.seed(999999) target_distr = np.random.rand(2) # We now convert the random vector into a valid probability vector target_distr /= sum(target_distr) from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister def get_var_form(params): qr = QuantumRegister(1, name="q") cr = ClassicalRegister(1, name='c') qc = QuantumCircuit(qr, cr) qc.u3(params[0], params[1], params[2], qr[0]) qc.measure(qr, cr[0]) return qc from qiskit import Aer, execute backend = Aer.get_backend("qasm_simulator") NUM_SHOTS = 10000 def get_probability_distribution(counts): output_distr = [v / NUM_SHOTS for v in counts.values()] if len(output_distr) == 1: output_distr.append(0) return output_distr def objective_function(params): # Obtain a quantum circuit instance from the paramters qc = get_var_form(params) # Execute the quantum circuit to obtain the probability distribution associated with the current parameters result = execute(qc, backend, shots=NUM_SHOTS).result() # Obtain the counts for each measured state, and convert those counts into a probability vector output_distr = get_probability_distribution(result.get_counts(qc)) # Calculate the cost as the distance between the output distribution and the target distribution cost = sum([np.abs(output_distr[i] - target_distr[i]) for i in range(2)]) return cost from qiskit.aqua.components.optimizers import COBYLA # Initialize the COBYLA optimizer optimizer = COBYLA(maxiter=500, tol=0.0001) # Create the initial parameters (noting that our single qubit variational form has 3 parameters) params = np.random.rand(3) ret = optimizer.optimize(num_vars=3, objective_function=objective_function, initial_point=params) # Obtain the output distribution using the final parameters qc = get_var_form(ret[0]) counts = execute(qc, backend, shots=NUM_SHOTS).result().get_counts(qc) output_distr = get_probability_distribution(counts) print("Target Distribution:", target_distr) print("Obtained Distribution:", output_distr) print("Output Error (Manhattan Distance):", ret[1]) print("Parameters Found:", ret[0]) from qiskit.aqua.components.variational_forms import RYRZ entanglements = ["linear", "full"] for entanglement in entanglements: form = RYRZ(num_qubits=4, depth=1, entanglement=entanglement) if entanglement == "linear": print("=============Linear Entanglement:=============") else: print("=============Full Entanglement:=============") # We initialize all parameters to 0 for this demonstration print(form.construct_circuit([0] * form.num_parameters).draw(line_length=100)) print() from qiskit.aqua.algorithms import VQE, ExactEigensolver import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit.chemistry.aqua_extensions.components.variational_forms import UCCSD from qiskit.aqua.components.variational_forms import RYRZ from qiskit.chemistry.aqua_extensions.components.initial_states import HartreeFock from qiskit.aqua.components.optimizers import COBYLA, SPSA, SLSQP from qiskit import IBMQ, BasicAer, Aer from qiskit.chemistry.drivers import PySCFDriver, UnitsType from qiskit.chemistry import FermionicOperator from qiskit import IBMQ from qiskit.providers.aer import noise from qiskit.aqua import QuantumInstance from qiskit.ignis.mitigation.measurement import CompleteMeasFitter def get_qubit_op(dist): driver = PySCFDriver(atom="Li .0 .0 .0; H .0 .0 " + str(dist), unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g') molecule = driver.run() freeze_list = [0] remove_list = [-3, -2] repulsion_energy = molecule.nuclear_repulsion_energy num_particles = molecule.num_alpha + molecule.num_beta num_spin_orbitals = molecule.num_orbitals * 2 remove_list = [x % molecule.num_orbitals for x in remove_list] freeze_list = [x % molecule.num_orbitals for x in freeze_list] remove_list = [x - len(freeze_list) for x in remove_list] remove_list += [x + molecule.num_orbitals - len(freeze_list) for x in remove_list] freeze_list += [x + molecule.num_orbitals for x in freeze_list] ferOp = FermionicOperator(h1=molecule.one_body_integrals, h2=molecule.two_body_integrals) ferOp, energy_shift = ferOp.fermion_mode_freezing(freeze_list) num_spin_orbitals -= len(freeze_list) num_particles -= len(freeze_list) ferOp = ferOp.fermion_mode_elimination(remove_list) num_spin_orbitals -= len(remove_list) qubitOp = ferOp.mapping(map_type='parity', threshold=0.00000001) qubitOp = qubitOp.two_qubit_reduced_operator(num_particles) shift = energy_shift + repulsion_energy return qubitOp, num_particles, num_spin_orbitals, shift backend = BasicAer.get_backend("statevector_simulator") distances = np.arange(0.5, 4.0, 0.1) exact_energies = [] vqe_energies = [] optimizer = SLSQP(maxiter=5) for dist in distances: qubitOp, num_particles, num_spin_orbitals, shift = get_qubit_op(dist) result = ExactEigensolver(qubitOp).run() exact_energies.append(result['energy'] + shift) initial_state = HartreeFock( qubitOp.num_qubits, num_spin_orbitals, num_particles, 'parity' ) var_form = UCCSD( qubitOp.num_qubits, depth=1, num_orbitals=num_spin_orbitals, num_particles=num_particles, initial_state=initial_state, qubit_mapping='parity' ) vqe = VQE(qubitOp, var_form, optimizer, 'matrix') results = vqe.run(backend)['energy'] + shift vqe_energies.append(results) print("Interatomic Distance:", np.round(dist, 2), "VQE Result:", results, "Exact Energy:", exact_energies[-1]) print("All energies have been calculated") plt.plot(distances, exact_energies, label="Exact Energy") plt.plot(distances, vqe_energies, label="VQE Energy") plt.xlabel('Atomic distance (Angstrom)') plt.ylabel('Energy') plt.legend() plt.show() driver = PySCFDriver(atom='H .0 .0 -0.3625; H .0 .0 0.3625', unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g') molecule = driver.run() num_particles = molecule.num_alpha + molecule.num_beta qubitOp = FermionicOperator(h1=molecule.one_body_integrals, h2=molecule.two_body_integrals).mapping(map_type='parity') qubitOp = qubitOp.two_qubit_reduced_operator(num_particles) IBMQ.load_account() IBMQ.get_provider(hub='ibm-q') backend = Aer.get_backend("qasm_simulator") device = provider.get_backend("ibmqx4") coupling_map = device.configuration().coupling_map noise_model = noise.device.basic_device_noise_model(device.properties()) quantum_instance = QuantumInstance(backend=backend, shots=1000, noise_model=noise_model, coupling_map=coupling_map, measurement_error_mitigation_cls=CompleteMeasFitter, cals_matrix_refresh_period=30,) exact_solution = ExactEigensolver(qubitOp).run() print("Exact Result:", exact_solution['energy']) optimizer = SPSA(max_trials=100) var_form = RYRZ(qubitOp.num_qubits, depth=1, entanglement="linear") vqe = VQE(qubitOp, var_form, optimizer=optimizer, operator_mode="grouped_paulis") ret = vqe.run(quantum_instance) print("VQE Result:", ret['energy'])
https://github.com/theflyingrahul/qiskitsummerschool2020
theflyingrahul
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
list_bin = [] for j in range(0,2**4): b = "{:04b}".format(j) list_bin.append(b) print(list_bin) list_int = [] for j in range(0,2**4): list_int.append(int(list_bin[j],2)) print(list_int)
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Quantum teleportation example. Note: if you have only cloned the Qiskit repository but not used `pip install`, the examples only work from the root directory. """ from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import BasicAer from qiskit import execute ############################################################### # Set the backend name and coupling map. ############################################################### coupling_map = [[0, 1], [0, 2], [1, 2], [3, 2], [3, 4], [4, 2]] backend = BasicAer.get_backend("qasm_simulator") ############################################################### # Make a quantum program for quantum teleportation. ############################################################### q = QuantumRegister(3, "q") c0 = ClassicalRegister(1, "c0") c1 = ClassicalRegister(1, "c1") c2 = ClassicalRegister(1, "c2") qc = QuantumCircuit(q, c0, c1, c2, name="teleport") # Prepare an initial state qc.u(0.3, 0.2, 0.1, q[0]) # Prepare a Bell pair qc.h(q[1]) qc.cx(q[1], q[2]) # Barrier following state preparation qc.barrier(q) # Measure in the Bell basis qc.cx(q[0], q[1]) qc.h(q[0]) qc.measure(q[0], c0[0]) qc.measure(q[1], c1[0]) # Apply a correction qc.barrier(q) qc.z(q[2]).c_if(c0, 1) qc.x(q[2]).c_if(c1, 1) qc.measure(q[2], c2[0]) ############################################################### # Execute. # Experiment does not support feedback, so we use the simulator ############################################################### # First version: not mapped initial_layout = {q[0]: 0, q[1]: 1, q[2]: 2} job = execute(qc, backend=backend, coupling_map=None, shots=1024, initial_layout=initial_layout) result = job.result() print(result.get_counts(qc)) # Second version: mapped to 2x8 array coupling graph job = execute( qc, backend=backend, coupling_map=coupling_map, shots=1024, initial_layout=initial_layout ) result = job.result() print(result.get_counts(qc)) # Both versions should give the same distribution
https://github.com/HayleySummer/Qiskit_Hackathon_Europe
HayleySummer
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ, ClassicalRegister, QuantumRegister, execute from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * # import basic plot tools from qiskit.tools.visualization import plot_histogram # Loading your IBM Q account(s) provider = IBMQ.load_account() # Board A. Only valid move is first Tile # 011 # 111 # 111 boardA = [ 0, 1, 1, 1, 1, 1, 1, 1, 1] # Board B. Has Seven Valid moves #000 #010 #010 boardB = [ 0, 0, 0, 0, 1, 0, 0, 1, 0] # Board C. Has 5 Valid moves # 000 # 000 # 010 boardC = [ 0, 0, 0, 0, 0, 0, 0, 1, 0] # Board D. Has 2 Valid moves # 001 # 111 # 111 boardD = [ 0, 0, 1, 1, 1, 1, 1, 1, 1] # Params : circuit, BoardState, Auxillary Qubits, oracle def othello_3x3_oracle(qc, boardQ, auxillary, oracle): #Compute the search for the valid moves # Start with contrived solution, Use a board with only 1 free space. The only valid answer is of the form 100 000 000 #qc.cx(auxillary[0],boardQ[0]) qc.cx(auxillary,boardQ) qc.mct(boardQ, oracle) ### If the board is solved flip the output bit. #Phase kickback because output_qubit is in superposition #Uncompute the search for the valid moves #qc.cx(auxillary[0],boardQ[0]) qc.cx(auxillary,boardQ) return def diffuser(nqubits): qcDiff = QuantumCircuit(nqubits) # Apply transformation |s> -> |00..0> (H-gates) for qubit in range(nqubits): qcDiff.h(qubit) # Apply transformation |00..0> -> |11..1> (X-gates) for qubit in range(nqubits): qcDiff.x(qubit) # Do multi-controlled-Z gate qcDiff.h(nqubits-1) qcDiff.mct(list(range(nqubits-1)), nqubits-1) # multi-controlled-toffoli qcDiff.h(nqubits-1) # Apply transformation |11..1> -> |00..0> for qubit in range(nqubits): qcDiff.x(qubit) # Apply transformation |00..0> -> |s> for qubit in range(nqubits): qcDiff.h(qubit) # We will return the diffuser as a gate U_s = qcDiff.to_gate() U_s.name = "$U_s$" return U_s def othelloMoveSearch ( boardRepresentation ): # Create a 9 Qubit Register for the Quantum represntation of the board. boardQ = QuantumRegister(9) # Create a 9 Qubit Register for Auxillary Qubits for Grover Search auxillary = QuantumRegister(9) # Create a single Qubit Register for the Grover Search Oracle oracle = QuantumRegister(1) # Create a 2 Qubit Quantum Register [Not used yet] qr = QuantumRegister(2) # Create a 9 Bit Classical Register for the output cr = ClassicalRegister(9) # Create a quantum circuit containing the registers above qc = QuantumCircuit(boardQ, auxillary, oracle, qr, cr) # Put the Auxillary Qubits into SuperPosition of the Results. qc.h(auxillary[:]) # Prepare the Oracle Qubit qc.x(oracle[0]) qc.h(oracle[0]) # Set up the Quantum Representation of the board to match the current state of the board for x in range(len( boardRepresentation )): if boardRepresentation[x] > 0 : qc.x(boardQ[x]) # Call the Grover Algorithm and Diffuser 16 times [Number of iterations varies according to search] for i in range (16) : othello_3x3_oracle(qc, boardQ, auxillary, oracle) qc.append(diffuser(9), [9,10,11,12,13,14,15,16,17]) # Measure the status of the Quantum Board to verify the setup has worked. qc.measure(auxillary,cr) # Change the endian qc = qc.reverse_bits() #print ("Diagnostic Log 001") return qc # Create the circuit and print it on screen qc1 = othelloMoveSearch( boardA ) qc1.draw(output="mpl") #backend = BasicAer.get_backend('qasm_simulator') backend = Aer.get_backend('qasm_simulator') shots = 1024 results = execute(qc1, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer, number_to_keep=6)
https://github.com/rickapocalypse/final_paper_qiskit_sat
rickapocalypse
from qiskit import * import matplotlib.pyplot as plt from qiskit.tools.visualization import plot_histogram secretnumber = '10000100001' circuit = QuantumCircuit(len(secretnumber) + 1,len(secretnumber)) circuit.h(range(len(secretnumber))) circuit.x(len(secretnumber)) circuit.h(len(secretnumber)) # circuit.draw(output ='mpl') # plt.show() circuit.barrier() # circuit.draw(output ='mpl') # plt.show() for i in range(len(secretnumber)): if secretnumber[i] == '1': circuit.cx(len(secretnumber) - 1 - i, len(secretnumber)) # circuit.draw(output ='mpl') # plt.show() circuit.barrier() circuit.h(range(len(secretnumber))) # circuit.draw(output ='mpl') # plt.show() circuit.barrier() circuit.measure(range(len(secretnumber)),range(len(secretnumber))) circuit.draw(output ='mpl') plt.show() simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, backend = simulator, shots = 1).result() counts = result.get_counts() print(counts)
https://github.com/zeynepCankara/Introduction-Quantum-Programming
zeynepCankara
# import all necessary objects and methods for quantum circuits from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer qreg = QuantumRegister(4) # quantum register with 4 qubits creg = ClassicalRegister(4) # classical register with 4 bits mycircuit = QuantumCircuit(qreg,creg) # quantum circuit with quantum and classical registers # apply h-gate (Hadamard) to each qubit for i in range(4): mycircuit.h(qreg[i]) # measure all qubits mycircuit.measure(qreg,creg) # execute the circuit 1600 times, and print the outcomes job = execute(mycircuit,Aer.get_backend('qasm_simulator'),shots=1600) counts = job.result().get_counts(mycircuit) for outcome in counts: reverse_outcome = '' for i in outcome: reverse_outcome = i + reverse_outcome print(reverse_outcome,"is observed",counts[outcome],"times") # include our predefined functions %run qlatvia.py # import all necessary objects and methods for quantum circuits from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from math import acos, pi # after Hadamard operators u = [(13/16)**0.5,(3/16)**0.5] def angle_between_two_states(u1,u2): dot_product = u1[0]*u2[0]+u1[1]*u2[1] return acos(dot_product) theta = angle_between_two_states(u,[1,0]) all_visited_quantum_states =[] qreg2 = QuantumRegister(1) # quantum register with 1 qubit creg2 = ClassicalRegister(1) # classical register with 1 bit mycircuit2 = QuantumCircuit(qreg2,creg2) # quantum circuit with quantum and classical registers # set the qubit to |u> by rotating it by theta mycircuit2.ry(2*theta,qreg2[0]) # read and store the current quantum state current_state = execute(mycircuit2,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit2) [x,y] = [current_state[0].real,current_state[1].real] all_visited_quantum_states.append([x,y,'u']) # the first reflection theta = angle_between_two_states([x,y],[1,0]) mycircuit2.ry(2*(-2*theta),qreg2[0]) # read and store the current quantum state current_state = execute(mycircuit2,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit2) [x,y] = [current_state[0].real,current_state[1].real] all_visited_quantum_states.append([x,y,'r']) # the second reflection theta = angle_between_two_states(u,[x,y]) mycircuit2.ry(2*(2*theta),qreg2[0]) # read and store the current quantum state current_state = execute(mycircuit2,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit2) [x,y] = [current_state[0].real,current_state[1].real] all_visited_quantum_states.append([x,y,'n']) # measure the qubit mycircuit2.measure(qreg2,creg2) # execute the circuit 100 times, and print the outcomes job = execute(mycircuit2,Aer.get_backend('qasm_simulator'),shots=100) counts2 = job.result().get_counts(mycircuit2) print(counts2) # visualization draw_qubit() for quantum_state in all_visited_quantum_states: draw_quantum_state(quantum_state[0],quantum_state[1],quantum_state[2]) # include our predefined functions %run qlatvia.py # import all necessary objects and methods for quantum circuits from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from math import acos, pi # after Hadamard operators u = [(63/64)**0.5,(1/64)**0.5] def angle_between_two_states(u1,u2): dot_product = u1[0]*u2[0]+u1[1]*u2[1] return acos(dot_product) theta = angle_between_two_states(u,[1,0]) all_visited_quantum_states =[] qreg3 = QuantumRegister(1) # quantum register with 1 qubit creg3 = ClassicalRegister(1) # classical register with 1 bit mycircuit3 = QuantumCircuit(qreg3,creg3) # quantum circuit with quantum and classical registers # set the qubit to |u> by rotating it by theta mycircuit3.ry(2*theta,qreg3[0]) # read and store the current quantum state current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3) [x,y] = [current_state[0].real,current_state[1].real] all_visited_quantum_states.append([x,y,'u']) # three iterations for i in range(3): # 4,5,6,7,8,9,10 # the first reflection theta = angle_between_two_states([x,y],[1,0]) mycircuit3.ry(2*(-2*theta),qreg3[0]) # read and store the current quantum state current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3) [x,y] = [current_state[0].real,current_state[1].real] all_visited_quantum_states.append([x,y,'r'+str(i+1)]) # the second reflection theta = angle_between_two_states(u,[x,y]) mycircuit3.ry(2*(2*theta),qreg3[0]) # read and store the current quantum state current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3) [x,y] = [current_state[0].real,current_state[1].real] all_visited_quantum_states.append([x,y,'n'+str(i+1)]) # measure the qubit mycircuit3.measure(qreg3,creg3) # execute the circuit 100 times, and print the outcomes job = execute(mycircuit3,Aer.get_backend('qasm_simulator'),shots=100) counts3 = job.result().get_counts(mycircuit3) print(counts3) # visualization draw_qubit() for quantum_state in all_visited_quantum_states: draw_quantum_state(quantum_state[0],quantum_state[1],quantum_state[2]) # include our predefined functions %run qlatvia.py # import all necessary objects and methods for quantum circuits from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from math import acos, pi # after Hadamard operators u = [(4/16)**0.5,(12/16)**0.5] def angle_between_two_states(u1,u2): dot_product = u1[0]*u2[0]+u1[1]*u2[1] return acos(dot_product) theta = angle_between_two_states(u,[1,0]) all_visited_quantum_states = [] qreg3 = QuantumRegister(1) # quantum register with 1 qubit creg3 = ClassicalRegister(1) # classical register with 1 bit mycircuit3 = QuantumCircuit(qreg3,creg3) # quantum circuit with quantum and classical registers # set the qubit to |u> by rotating it by theta mycircuit3.ry(2*theta,qreg3[0]) # read and store the current quantum state current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3) [x,y] = [current_state[0].real,current_state[1].real] all_visited_quantum_states.append([x,y,'u']) # three iterations number_of_iterations = 1 # 2, 3, and 4 for i in range(number_of_iterations): # the first reflection theta = angle_between_two_states([x,y],[1,0]) mycircuit3.ry(2*(-2*theta),qreg3[0]) # read and store the current quantum state current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3) [x,y] = [current_state[0].real,current_state[1].real] if i == number_of_iterations -1: all_visited_quantum_states.append([x,y,'r'+str(i+1)]) # the second reflection theta = angle_between_two_states(u,[x,y]) mycircuit3.ry(2*(2*theta),qreg3[0]) # read and store the current quantum state current_state = execute(mycircuit3,Aer.get_backend('statevector_simulator')).result().get_statevector(mycircuit3) [x,y] = [current_state[0].real,current_state[1].real] if i == number_of_iterations -1: all_visited_quantum_states.append([x,y,'n'+str(i+1)]) # measure the qubit mycircuit3.measure(qreg3,creg3) # execute the circuit 100 times, and print the outcomes job = execute(mycircuit3,Aer.get_backend('qasm_simulator'),shots=100) counts3 = job.result().get_counts(mycircuit3) print(counts3) # visualization draw_qubit() for quantum_state in all_visited_quantum_states: draw_quantum_state(quantum_state[0],quantum_state[1],quantum_state[2])
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for quantum channel representation transformations.""" import unittest import numpy as np from qiskit import QiskitError from qiskit.quantum_info.states import DensityMatrix from qiskit.quantum_info.operators.predicates import matrix_equal from qiskit.quantum_info.operators.operator import Operator from qiskit.quantum_info.operators.channel.choi import Choi from qiskit.quantum_info.operators.channel.superop import SuperOp from qiskit.quantum_info.operators.channel.kraus import Kraus from qiskit.quantum_info.operators.channel.stinespring import Stinespring from qiskit.quantum_info.operators.channel.ptm import PTM from qiskit.quantum_info.operators.channel.chi import Chi from .channel_test_case import ChannelTestCase class TestTransformations(ChannelTestCase): """Tests for Operator channel representation.""" unitary_mat = [ ChannelTestCase.UI, ChannelTestCase.UX, ChannelTestCase.UY, ChannelTestCase.UZ, ChannelTestCase.UH, ] unitary_choi = [ ChannelTestCase.choiI, ChannelTestCase.choiX, ChannelTestCase.choiY, ChannelTestCase.choiZ, ChannelTestCase.choiH, ] unitary_chi = [ ChannelTestCase.chiI, ChannelTestCase.chiX, ChannelTestCase.chiY, ChannelTestCase.chiZ, ChannelTestCase.chiH, ] unitary_sop = [ ChannelTestCase.sopI, ChannelTestCase.sopX, ChannelTestCase.sopY, ChannelTestCase.sopZ, ChannelTestCase.sopH, ] unitary_ptm = [ ChannelTestCase.ptmI, ChannelTestCase.ptmX, ChannelTestCase.ptmY, ChannelTestCase.ptmZ, ChannelTestCase.ptmH, ] def test_operator_to_operator(self): """Test Operator to Operator transformation.""" # Test unitary channels for mat in self.unitary_mat: chan1 = Operator(mat) chan2 = Operator(chan1) self.assertEqual(chan1, chan2) def test_operator_to_choi(self): """Test Operator to Choi transformation.""" # Test unitary channels for mat, choi in zip(self.unitary_mat, self.unitary_choi): chan1 = Choi(choi) chan2 = Choi(Operator(mat)) self.assertEqual(chan1, chan2) def test_operator_to_superop(self): """Test Operator to SuperOp transformation.""" # Test unitary channels for mat, sop in zip(self.unitary_mat, self.unitary_sop): chan1 = SuperOp(sop) chan2 = SuperOp(Operator(mat)) self.assertEqual(chan1, chan2) def test_operator_to_kraus(self): """Test Operator to Kraus transformation.""" # Test unitary channels for mat in self.unitary_mat: chan1 = Kraus(mat) chan2 = Kraus(Operator(mat)) self.assertEqual(chan1, chan2) def test_operator_to_stinespring(self): """Test Operator to Stinespring transformation.""" # Test unitary channels for mat in self.unitary_mat: chan1 = Stinespring(mat) chan2 = Stinespring(Operator(chan1)) self.assertEqual(chan1, chan2) def test_operator_to_chi(self): """Test Operator to Chi transformation.""" # Test unitary channels for mat, chi in zip(self.unitary_mat, self.unitary_chi): chan1 = Chi(chi) chan2 = Chi(Operator(mat)) self.assertEqual(chan1, chan2) def test_operator_to_ptm(self): """Test Operator to PTM transformation.""" # Test unitary channels for mat, ptm in zip(self.unitary_mat, self.unitary_ptm): chan1 = PTM(ptm) chan2 = PTM(Operator(mat)) self.assertEqual(chan1, chan2) def test_choi_to_operator(self): """Test Choi to Operator transformation.""" # Test unitary channels for mat, choi in zip(self.unitary_mat, self.unitary_choi): chan1 = Operator(mat) chan2 = Operator(Choi(choi)) self.assertTrue(matrix_equal(chan2.data, chan1.data, ignore_phase=True)) def test_choi_to_choi(self): """Test Choi to Choi transformation.""" # Test unitary channels for choi in self.unitary_choi: chan1 = Choi(choi) chan2 = Choi(chan1) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = Choi(self.depol_choi(p)) chan2 = Choi(chan1) self.assertEqual(chan1, chan2) def test_choi_to_superop(self): """Test Choi to SuperOp transformation.""" # Test unitary channels for choi, sop in zip(self.unitary_choi, self.unitary_sop): chan1 = SuperOp(sop) chan2 = SuperOp(Choi(choi)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = SuperOp(self.depol_sop(p)) chan2 = SuperOp(Choi(self.depol_choi(p))) self.assertEqual(chan1, chan2) def test_choi_to_kraus(self): """Test Choi to Kraus transformation.""" # Test unitary channels for mat, choi in zip(self.unitary_mat, self.unitary_choi): chan1 = Kraus(mat) chan2 = Kraus(Choi(choi)) self.assertTrue(matrix_equal(chan2.data[0], chan1.data[0], ignore_phase=True)) # Test depolarizing channels rho = DensityMatrix(np.diag([1, 0])) for p in [0.25, 0.5, 0.75, 1]: target = rho.evolve(Kraus(self.depol_kraus(p))) output = rho.evolve(Kraus(Choi(self.depol_choi(p)))) self.assertEqual(output, target) def test_choi_to_stinespring(self): """Test Choi to Stinespring transformation.""" # Test unitary channels for mat, choi in zip(self.unitary_mat, self.unitary_choi): chan1 = Kraus(mat) chan2 = Kraus(Choi(choi)) self.assertTrue(matrix_equal(chan2.data[0], chan1.data[0], ignore_phase=True)) # Test depolarizing channels rho = DensityMatrix(np.diag([1, 0])) for p in [0.25, 0.5, 0.75, 1]: target = rho.evolve(Stinespring(self.depol_stine(p))) output = rho.evolve(Stinespring(Choi(self.depol_choi(p)))) self.assertEqual(output, target) def test_choi_to_chi(self): """Test Choi to Chi transformation.""" # Test unitary channels for choi, chi in zip(self.unitary_choi, self.unitary_chi): chan1 = Chi(chi) chan2 = Chi(Choi(choi)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = Chi(self.depol_chi(p)) chan2 = Chi(Choi(self.depol_choi(p))) self.assertEqual(chan1, chan2) def test_choi_to_ptm(self): """Test Choi to PTM transformation.""" # Test unitary channels for choi, ptm in zip(self.unitary_choi, self.unitary_ptm): chan1 = PTM(ptm) chan2 = PTM(Choi(choi)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = PTM(self.depol_ptm(p)) chan2 = PTM(Choi(self.depol_choi(p))) self.assertEqual(chan1, chan2) def test_superop_to_operator(self): """Test SuperOp to Operator transformation.""" for mat, sop in zip(self.unitary_mat, self.unitary_sop): chan1 = Operator(mat) chan2 = Operator(SuperOp(sop)) self.assertTrue(matrix_equal(chan2.data, chan1.data, ignore_phase=True)) self.assertRaises(QiskitError, Operator, SuperOp(self.depol_sop(0.5))) def test_superop_to_choi(self): """Test SuperOp to Choi transformation.""" # Test unitary channels for choi, sop in zip(self.unitary_choi, self.unitary_sop): chan1 = Choi(choi) chan2 = Choi(SuperOp(sop)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0, 0.25, 0.5, 0.75, 1]: chan1 = Choi(self.depol_choi(p)) chan2 = Choi(SuperOp(self.depol_sop(p))) self.assertEqual(chan1, chan2) def test_superop_to_superop(self): """Test SuperOp to SuperOp transformation.""" # Test unitary channels for sop in self.unitary_sop: chan1 = SuperOp(sop) chan2 = SuperOp(chan1) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0, 0.25, 0.5, 0.75, 1]: chan1 = SuperOp(self.depol_sop(p)) chan2 = SuperOp(chan1) self.assertEqual(chan1, chan2) def test_superop_to_kraus(self): """Test SuperOp to Kraus transformation.""" # Test unitary channels for mat, sop in zip(self.unitary_mat, self.unitary_sop): chan1 = Kraus(mat) chan2 = Kraus(SuperOp(sop)) self.assertTrue(matrix_equal(chan2.data[0], chan1.data[0], ignore_phase=True)) # Test depolarizing channels rho = DensityMatrix(np.diag([1, 0])) for p in [0.25, 0.5, 0.75, 1]: target = rho.evolve(Kraus(self.depol_kraus(p))) output = rho.evolve(Kraus(SuperOp(self.depol_sop(p)))) self.assertEqual(output, target) def test_superop_to_stinespring(self): """Test SuperOp to Stinespring transformation.""" # Test unitary channels for mat, sop in zip(self.unitary_mat, self.unitary_sop): chan1 = Stinespring(mat) chan2 = Stinespring(SuperOp(sop)) self.assertTrue(matrix_equal(chan2.data[0], chan1.data[0], ignore_phase=True)) # Test depolarizing channels rho = DensityMatrix(np.diag([1, 0])) for p in [0.25, 0.5, 0.75, 1]: target = rho.evolve(Stinespring(self.depol_stine(p))) output = rho.evolve(Stinespring(SuperOp(self.depol_sop(p)))) self.assertEqual(output, target) def test_superop_to_chi(self): """Test SuperOp to Chi transformation.""" # Test unitary channels for sop, ptm in zip(self.unitary_sop, self.unitary_ptm): chan1 = PTM(ptm) chan2 = PTM(SuperOp(sop)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = Chi(self.depol_chi(p)) chan2 = Chi(SuperOp(self.depol_sop(p))) self.assertEqual(chan1, chan2) def test_superop_to_ptm(self): """Test SuperOp to PTM transformation.""" # Test unitary channels for sop, ptm in zip(self.unitary_sop, self.unitary_ptm): chan1 = PTM(ptm) chan2 = PTM(SuperOp(sop)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = PTM(self.depol_ptm(p)) chan2 = PTM(SuperOp(self.depol_sop(p))) self.assertEqual(chan1, chan2) def test_kraus_to_operator(self): """Test Kraus to Operator transformation.""" for mat in self.unitary_mat: chan1 = Operator(mat) chan2 = Operator(Kraus(mat)) self.assertTrue(matrix_equal(chan2.data, chan1.data, ignore_phase=True)) self.assertRaises(QiskitError, Operator, Kraus(self.depol_kraus(0.5))) def test_kraus_to_choi(self): """Test Kraus to Choi transformation.""" # Test unitary channels for mat, choi in zip(self.unitary_mat, self.unitary_choi): chan1 = Choi(choi) chan2 = Choi(Kraus(mat)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = Choi(self.depol_choi(p)) chan2 = Choi(Kraus(self.depol_kraus(p))) self.assertEqual(chan1, chan2) def test_kraus_to_superop(self): """Test Kraus to SuperOp transformation.""" # Test unitary channels for mat, sop in zip(self.unitary_mat, self.unitary_sop): chan1 = SuperOp(sop) chan2 = SuperOp(Kraus(mat)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = SuperOp(self.depol_sop(p)) chan2 = SuperOp(Kraus(self.depol_kraus(p))) self.assertEqual(chan1, chan2) def test_kraus_to_kraus(self): """Test Kraus to Kraus transformation.""" # Test unitary channels for mat in self.unitary_mat: chan1 = Kraus(mat) chan2 = Kraus(chan1) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = Kraus(self.depol_kraus(p)) chan2 = Kraus(chan1) self.assertEqual(chan1, chan2) def test_kraus_to_stinespring(self): """Test Kraus to Stinespring transformation.""" # Test unitary channels for mat in self.unitary_mat: chan1 = Stinespring(mat) chan2 = Stinespring(Kraus(mat)) self.assertTrue(matrix_equal(chan2.data[0], chan1.data[0], ignore_phase=True)) # Test depolarizing channels rho = DensityMatrix(np.diag([1, 0])) for p in [0.25, 0.5, 0.75, 1]: target = rho.evolve(Stinespring(self.depol_stine(p))) output = rho.evolve(Stinespring(Kraus(self.depol_kraus(p)))) self.assertEqual(output, target) def test_kraus_to_chi(self): """Test Kraus to Chi transformation.""" # Test unitary channels for mat, chi in zip(self.unitary_mat, self.unitary_chi): chan1 = Chi(chi) chan2 = Chi(Kraus(mat)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = Chi(self.depol_chi(p)) chan2 = Chi(Kraus(self.depol_kraus(p))) self.assertEqual(chan1, chan2) def test_kraus_to_ptm(self): """Test Kraus to PTM transformation.""" # Test unitary channels for mat, ptm in zip(self.unitary_mat, self.unitary_ptm): chan1 = PTM(ptm) chan2 = PTM(Kraus(mat)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = PTM(self.depol_ptm(p)) chan2 = PTM(Kraus(self.depol_kraus(p))) self.assertEqual(chan1, chan2) def test_stinespring_to_operator(self): """Test Stinespring to Operator transformation.""" for mat in self.unitary_mat: chan1 = Operator(mat) chan2 = Operator(Stinespring(mat)) self.assertTrue(matrix_equal(chan2.data, chan1.data, ignore_phase=True)) self.assertRaises(QiskitError, Operator, Stinespring(self.depol_stine(0.5))) def test_stinespring_to_choi(self): """Test Stinespring to Choi transformation.""" # Test unitary channels for mat, choi in zip(self.unitary_mat, self.unitary_choi): chan1 = Choi(choi) chan2 = Choi(Stinespring(mat)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = Choi(self.depol_choi(p)) chan2 = Choi(Stinespring(self.depol_stine(p))) self.assertEqual(chan1, chan2) def test_stinespring_to_superop(self): """Test Stinespring to SuperOp transformation.""" # Test unitary channels for mat, sop in zip(self.unitary_mat, self.unitary_sop): chan1 = SuperOp(sop) chan2 = SuperOp(Kraus(mat)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = SuperOp(self.depol_sop(p)) chan2 = SuperOp(Stinespring(self.depol_stine(p))) self.assertEqual(chan1, chan2) def test_stinespring_to_kraus(self): """Test Stinespring to Kraus transformation.""" # Test unitary channels for mat in self.unitary_mat: chan1 = Kraus(mat) chan2 = Kraus(Stinespring(mat)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = Kraus(self.depol_kraus(p)) chan2 = Kraus(Stinespring(self.depol_stine(p))) self.assertEqual(chan1, chan2) def test_stinespring_to_stinespring(self): """Test Stinespring to Stinespring transformation.""" # Test unitary channels for mat in self.unitary_mat: chan1 = Stinespring(mat) chan2 = Stinespring(chan1) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = Stinespring(self.depol_stine(p)) chan2 = Stinespring(chan1) self.assertEqual(chan1, chan2) def test_stinespring_to_chi(self): """Test Stinespring to Chi transformation.""" # Test unitary channels for mat, chi in zip(self.unitary_mat, self.unitary_chi): chan1 = Chi(chi) chan2 = Chi(Stinespring(mat)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = Chi(self.depol_chi(p)) chan2 = Chi(Stinespring(self.depol_stine(p))) self.assertEqual(chan1, chan2) def test_stinespring_to_ptm(self): """Test Stinespring to PTM transformation.""" # Test unitary channels for mat, ptm in zip(self.unitary_mat, self.unitary_ptm): chan1 = PTM(ptm) chan2 = PTM(Stinespring(mat)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = PTM(self.depol_ptm(p)) chan2 = PTM(Stinespring(self.depol_stine(p))) self.assertEqual(chan1, chan2) def test_chi_to_operator(self): """Test Chi to Operator transformation.""" for mat, chi in zip(self.unitary_mat, self.unitary_chi): chan1 = Operator(mat) chan2 = Operator(Chi(chi)) self.assertTrue(matrix_equal(chan2.data, chan1.data, ignore_phase=True)) self.assertRaises(QiskitError, Operator, Chi(self.depol_chi(0.5))) def test_chi_to_choi(self): """Test Chi to Choi transformation.""" # Test unitary channels for chi, choi in zip(self.unitary_chi, self.unitary_choi): chan1 = Choi(choi) chan2 = Choi(Chi(chi)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = Choi(self.depol_choi(p)) chan2 = Choi(Chi(self.depol_chi(p))) self.assertEqual(chan1, chan2) def test_chi_to_superop(self): """Test Chi to SuperOp transformation.""" # Test unitary channels for chi, sop in zip(self.unitary_chi, self.unitary_sop): chan1 = SuperOp(sop) chan2 = SuperOp(Chi(chi)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = SuperOp(self.depol_sop(p)) chan2 = SuperOp(Chi(self.depol_chi(p))) self.assertEqual(chan1, chan2) def test_chi_to_kraus(self): """Test Chi to Kraus transformation.""" # Test unitary channels for mat, chi in zip(self.unitary_mat, self.unitary_chi): chan1 = Kraus(mat) chan2 = Kraus(Chi(chi)) self.assertTrue(matrix_equal(chan2.data[0], chan1.data[0], ignore_phase=True)) # Test depolarizing channels rho = DensityMatrix(np.diag([1, 0])) for p in [0.25, 0.5, 0.75, 1]: target = rho.evolve(Kraus(self.depol_kraus(p))) output = rho.evolve(Kraus(Chi(self.depol_chi(p)))) self.assertEqual(output, target) def test_chi_to_stinespring(self): """Test Chi to Stinespring transformation.""" # Test unitary channels for mat, chi in zip(self.unitary_mat, self.unitary_chi): chan1 = Kraus(mat) chan2 = Kraus(Chi(chi)) self.assertTrue(matrix_equal(chan2.data[0], chan1.data[0], ignore_phase=True)) # Test depolarizing channels rho = DensityMatrix(np.diag([1, 0])) for p in [0.25, 0.5, 0.75, 1]: target = rho.evolve(Stinespring(self.depol_stine(p))) output = rho.evolve(Stinespring(Chi(self.depol_chi(p)))) self.assertEqual(output, target) def test_chi_to_chi(self): """Test Chi to Chi transformation.""" # Test unitary channels for chi in self.unitary_chi: chan1 = Chi(chi) chan2 = Chi(chan1) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = Chi(self.depol_chi(p)) chan2 = Chi(chan1) self.assertEqual(chan1, chan2) def test_chi_to_ptm(self): """Test Chi to PTM transformation.""" # Test unitary channels for chi, ptm in zip(self.unitary_chi, self.unitary_ptm): chan1 = PTM(ptm) chan2 = PTM(Chi(chi)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = PTM(self.depol_ptm(p)) chan2 = PTM(Chi(self.depol_chi(p))) self.assertEqual(chan1, chan2) def test_ptm_to_operator(self): """Test PTM to Operator transformation.""" for mat, ptm in zip(self.unitary_mat, self.unitary_ptm): chan1 = Operator(mat) chan2 = Operator(PTM(ptm)) self.assertTrue(matrix_equal(chan2.data, chan1.data, ignore_phase=True)) self.assertRaises(QiskitError, Operator, PTM(self.depol_ptm(0.5))) def test_ptm_to_choi(self): """Test PTM to Choi transformation.""" # Test unitary channels for ptm, choi in zip(self.unitary_ptm, self.unitary_choi): chan1 = Choi(choi) chan2 = Choi(PTM(ptm)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = Choi(self.depol_choi(p)) chan2 = Choi(PTM(self.depol_ptm(p))) self.assertEqual(chan1, chan2) def test_ptm_to_superop(self): """Test PTM to SuperOp transformation.""" # Test unitary channels for ptm, sop in zip(self.unitary_ptm, self.unitary_sop): chan1 = SuperOp(sop) chan2 = SuperOp(PTM(ptm)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = SuperOp(self.depol_sop(p)) chan2 = SuperOp(PTM(self.depol_ptm(p))) self.assertEqual(chan1, chan2) def test_ptm_to_kraus(self): """Test PTM to Kraus transformation.""" # Test unitary channels for mat, ptm in zip(self.unitary_mat, self.unitary_ptm): chan1 = Kraus(mat) chan2 = Kraus(PTM(ptm)) self.assertTrue(matrix_equal(chan2.data[0], chan1.data[0], ignore_phase=True)) # Test depolarizing channels rho = DensityMatrix(np.diag([1, 0])) for p in [0.25, 0.5, 0.75, 1]: target = rho.evolve(Kraus(self.depol_kraus(p))) output = rho.evolve(Kraus(PTM(self.depol_ptm(p)))) self.assertEqual(output, target) def test_ptm_to_stinespring(self): """Test PTM to Stinespring transformation.""" # Test unitary channels for mat, ptm in zip(self.unitary_mat, self.unitary_ptm): chan1 = Kraus(mat) chan2 = Kraus(PTM(ptm)) self.assertTrue(matrix_equal(chan2.data[0], chan1.data[0], ignore_phase=True)) # Test depolarizing channels rho = DensityMatrix(np.diag([1, 0])) for p in [0.25, 0.5, 0.75, 1]: target = rho.evolve(Stinespring(self.depol_stine(p))) output = rho.evolve(Stinespring(PTM(self.depol_ptm(p)))) self.assertEqual(output, target) def test_ptm_to_chi(self): """Test PTM to Chi transformation.""" # Test unitary channels for chi, ptm in zip(self.unitary_chi, self.unitary_ptm): chan1 = Chi(chi) chan2 = Chi(PTM(ptm)) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = Chi(self.depol_chi(p)) chan2 = Chi(PTM(self.depol_ptm(p))) self.assertEqual(chan1, chan2) def test_ptm_to_ptm(self): """Test PTM to PTM transformation.""" # Test unitary channels for ptm in self.unitary_ptm: chan1 = PTM(ptm) chan2 = PTM(chan1) self.assertEqual(chan1, chan2) # Test depolarizing channels for p in [0.25, 0.5, 0.75, 1]: chan1 = PTM(self.depol_ptm(p)) chan2 = PTM(chan1) self.assertEqual(chan1, chan2) if __name__ == "__main__": unittest.main()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt import numpy as np from qiskit.circuit import ParameterVector from qiskit.circuit.library import TwoLocal from qiskit.quantum_info import Statevector from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit_aer.primitives import Sampler from qiskit_finance.applications.estimation import EuropeanCallPricing from qiskit_finance.circuit.library import NormalDistribution # Set upper and lower data values bounds = np.array([0.0, 7.0]) # Set number of qubits used in the uncertainty model num_qubits = 3 # Load the trained circuit parameters g_params = [0.29399714, 0.38853322, 0.9557694, 0.07245791, 6.02626428, 0.13537225] # Set an initial state for the generator circuit init_dist = NormalDistribution(num_qubits, mu=1.0, sigma=1.0, bounds=bounds) # construct the variational form var_form = TwoLocal(num_qubits, "ry", "cz", entanglement="circular", reps=1) # keep a list of the parameters so we can associate them to the list of numerical values # (otherwise we need a dictionary) theta = var_form.ordered_parameters # compose the generator circuit, this is the circuit loading the uncertainty model g_circuit = init_dist.compose(var_form) # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 2 # set the approximation scaling for the payoff function c_approx = 0.25 # Evaluate trained probability distribution values = [ bounds[0] + (bounds[1] - bounds[0]) * x / (2**num_qubits - 1) for x in range(2**num_qubits) ] uncertainty_model = g_circuit.assign_parameters(dict(zip(theta, g_params))) amplitudes = Statevector.from_instruction(uncertainty_model).data x = np.array(values) y = np.abs(amplitudes) ** 2 # Sample from target probability distribution N = 100000 log_normal = np.random.lognormal(mean=1, sigma=1, size=N) log_normal = np.round(log_normal) log_normal = log_normal[log_normal <= 7] log_normal_samples = [] for i in range(8): log_normal_samples += [np.sum(log_normal == i)] log_normal_samples = np.array(log_normal_samples / sum(log_normal_samples)) # Plot distributions plt.bar(x, y, width=0.2, label="trained distribution", color="royalblue") plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.plot( log_normal_samples, "-o", color="deepskyblue", label="target distribution", linewidth=4, markersize=12, ) plt.legend(loc="best") plt.show() # Evaluate payoff for different distributions payoff = np.array([0, 0, 0, 1, 2, 3, 4, 5]) ep = np.dot(log_normal_samples, payoff) print("Analytically calculated expected payoff w.r.t. the target distribution: %.4f" % ep) ep_trained = np.dot(y, payoff) print("Analytically calculated expected payoff w.r.t. the trained distribution: %.4f" % ep_trained) # Plot exact payoff function (evaluated on the grid of the trained uncertainty model) x = np.array(values) y_strike = np.maximum(0, x - strike_price) plt.plot(x, y_strike, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # construct circuit for payoff function european_call_pricing = EuropeanCallPricing( num_qubits, strike_price=strike_price, rescaling_factor=c_approx, bounds=bounds, uncertainty_model=uncertainty_model, ) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_pricing.to_estimation_problem() # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % ep_trained) print("Estimated value: \t%.4f" % (result.estimation_processed)) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/bagmk/Quantum_Machine_Learning_Express
bagmk
import qiskit from qiskit import Aer, QuantumCircuit from qiskit.utils import QuantumInstance from qiskit.opflow import AerPauliExpectation from qiskit.circuit import Parameter from qiskit_machine_learning.neural_networks import CircuitQNN from qiskit_machine_learning.connectors import TorchConnector qi = QuantumInstance(Aer.get_backend('statevector_simulator')) qiskit.__qiskit_version__ import numpy as np from numpy import pi import matplotlib.pyplot as plt from sklearn.utils import shuffle from pandas.core.common import flatten import torch from torch import Tensor from torch.nn import Linear, CrossEntropyLoss, MSELoss from torch.optim import LBFGS, SGD,Adam import torch.optim as optim torch.cuda.is_available() # import the example dataset from the folder # data = array([x1,y1],[x2,y2],[x3,y3],.....,[x1500,y1500]) # label = array([0,0,0,....,1,1,1]) data0Path = r'data.txt' data0Label = r'datalabel.txt' dataCoords = np.loadtxt(data0Path) dataLabels = np.loadtxt(data0Label) fig = plt.figure() ax = fig.add_axes([0,0,1,1]) ax.plot(np.ravel(dataCoords[np.where(dataLabels == 0)])[::2], np.ravel(dataCoords[np.where(dataLabels == 0)])[1::2], ls='', marker='o') ax.plot(np.ravel(dataCoords[np.where(dataLabels == 1)])[::2], np.ravel(dataCoords[np.where(dataLabels == 1)])[1::2], ls='', marker='o') # Change the data structure for shuffling # We are taking 100 data to train the model np.random.seed(2) data1 = list(zip(dataCoords, dataLabels)) data_ixs = np.random.choice(len(data1), size=100) # Transform the data to work with the pytorch optimizer. # data coordinate X is [x1,y1,x1,y1] to embed in four-qubit circuit. X= [np.array(list(flatten([data1[j][0],data1[j][0]]))) for j in data_ixs] y01 = [data1[j][1] for j in data_ixs] X_ = Tensor(X) y01_ = Tensor(y01).reshape(len(y01)).long() n=4; feature_map = QuantumCircuit(n, name='Embed') feature_map.rx(Parameter('x[0]'),0) feature_map.rx(Parameter('x[1]'),1) feature_map.rx(Parameter('x[2]'),2) feature_map.rx(Parameter('x[3]'),3) for i in range(n): feature_map.ry(pi/4,i) for i in range(n): feature_map.rz(pi/4,i) feature_map.draw('mpl') param_y=[]; for i in range(8): param_y.append((Parameter('θ'+str(i)))) ansatz = QuantumCircuit(n, name='PQC') for i in range(n): ansatz.ry(param_y[i],i) for i in range(n): ansatz.rz(param_y[i+4],i) ansatz.draw('mpl') def binary(x): return ('0'*(4-len('{:b}'.format(x) ))+'{:b}'.format(x)) def firsttwo(x): return x[:2] parity = lambda x: firsttwo(binary(x)).count('1') % 2 [parity(i) for i in range(16)] qc = QuantumCircuit(n) qc.append(feature_map, range(n)) qc.append(ansatz, range(n)) qc.draw('mpl') # Model for LBFGS # Combining the circuit together with CircuitQNN np.random.seed(3) qnn2 = CircuitQNN(qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, interpret=parity, output_shape=2, quantum_instance=qi) initial_weights = 0.1*(2*np.random.rand(qnn2.num_weights) - 1) model2 = TorchConnector(qnn2, initial_weights) # Model for Adam np.random.seed(3) qnn3 = CircuitQNN(qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, interpret=parity, output_shape=2, quantum_instance=qi) initial_weights = 0.1*(2*np.random.rand(qnn3.num_weights) - 1) model3 = TorchConnector(qnn3, initial_weights) # define optimizer and loss function optimizer = LBFGS(model2.parameters(),lr=0.01) f_loss = CrossEntropyLoss() # start training model2.train() # set model to training mode # define objective function def closure(): optimizer.zero_grad() # initialize gradient loss = 0.0 # initialize loss for x, y_target in zip(X, y01): # evaluate batch loss output = model2(Tensor(x)).reshape(1, 2) # forward pass loss += f_loss(output, Tensor([y_target]).long()) loss.backward() # backward pass print(loss.item()) # print loss return loss # run optimizer optimizer.step(closure) # evaluate model and compute accuracy y_predict = [] for x in X: output = model2(Tensor(x)) y_predict += [np.argmax(output.detach().numpy())] print('Accuracy:', sum(y_predict == np.array(y01))/len(np.array(y01))) # plot results # red == wrongly classified for x, y_target, y_ in zip(X, y01, y_predict): if y_target == 1: plt.plot(x[0], x[1], 'bo') else: plt.plot(x[0], x[1], 'go') if y_target != y_: plt.scatter(x[0], x[1], s=200, facecolors='none', edgecolors='r', linewidths=2) plt.show() for x, y_target, y_ in zip(X, y01, y_predict): if y_target == 1: plt.plot(x[0], x[1], 'bo') else: plt.plot(x[0], x[1], 'go') X1 = np.linspace(0, 1, num=10) Z1 = np.zeros((len(X1), len(X1))) # Contour map for j in range(len(X1)): for k in range(len(X1)): # Fill Z with the labels (numerical values) # the inner loop goes over the columns of Z, # which corresponds to sweeping x-values # Therefore, the role of j,k is flipped in the signature Z1[j, k] = np.argmax(model2(Tensor([X1[k],X1[j],X1[k],X1[j]])).detach().numpy()) plt.contourf(X1, X1, Z1, cmap='bwr', levels=30) # Converged paramter for the PQC for p in model2.parameters(): print(p.data) optimizer = optim.Adam(model3.parameters(),lr=0.05) f_loss = MSELoss(reduction='mean') model3.train() epochs = 10 # set number of epochs for epoch in range(epochs): optimizer.zero_grad() loss = 0.0 for x, y_target in zip(X, y01): output = model3(Tensor(x)).reshape(1, 2) targets=Tensor([y_target]).long() targets = targets.to(torch.float32) loss += f_loss(output, targets) loss.backward() print(loss.item()) optimizer.step() y_predict = [] for x in X: output = model3(Tensor(x)) y_predict += [np.argmax(output.detach().numpy())] print('Accuracy:', sum(y_predict == np.array(y01))/len(np.array(y01))) for x, y_target, y_ in zip(X, y01, y_predict): if y_target == 1: plt.plot(x[0], x[1], 'bo') else: plt.plot(x[0], x[1], 'go') if y_target != y_: plt.scatter(x[0], x[1], s=200, facecolors='none', edgecolors='r', linewidths=2) plt.show() for x, y_target, y_ in zip(X, y01, y_predict): if y_target == 1: plt.plot(x[0], x[1], 'bo') else: plt.plot(x[0], x[1], 'go') X1 = np.linspace(0, 1, num=10) Z1 = np.zeros((len(X1), len(X1))) for j in range(len(X1)): for k in range(len(X1)): Z1[j, k] = np.argmax(model3(Tensor([X1[k],X1[j],X1[k],X1[j]])).detach().numpy()) plt.contourf(X1, X1, Z1, cmap='bwr', levels=30) for p in model3.parameters(): print(p.data)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import QuantumCircuit from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits to represent the uncertainty num_uncertainty_qubits = 3 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective uncertainty_model = LogNormalDistribution( num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high) ) # plot probability distribution x = uncertainty_model.values y = uncertainty_model.probabilities plt.bar(x, y, width=0.2) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.show() # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 1.896 # set the approximation scaling for the payoff function c_approx = 0.25 # setup piecewise linear objective fcuntion breakpoints = [low, strike_price] slopes = [0, 1] offsets = [0, 0] f_min = 0 f_max = high - strike_price european_call_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, rescaling_factor=c_approx, ) # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective num_qubits = european_call_objective.num_qubits european_call = QuantumCircuit(num_qubits) european_call.append(uncertainty_model, range(num_uncertainty_qubits)) european_call.append(european_call_objective, range(num_qubits)) # draw the circuit european_call.draw() # plot exact payoff function (evaluated on the grid of the uncertainty model) x = uncertainty_model.values y = np.maximum(0, x - strike_price) plt.plot(x, y, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value (normalized to the [0, 1] interval) exact_value = np.dot(uncertainty_model.probabilities, y) exact_delta = sum(uncertainty_model.probabilities[x >= strike_price]) print("exact expected value:\t%.4f" % exact_value) print("exact delta value: \t%.4f" % exact_delta) european_call.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=european_call, objective_qubits=[3], post_processing=european_call_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (result.estimation_processed)) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) from qiskit_finance.applications.estimation import EuropeanCallPricing european_call_pricing = EuropeanCallPricing( num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, rescaling_factor=c_approx, bounds=(low, high), uncertainty_model=uncertainty_model, ) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_pricing.to_estimation_problem() # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (european_call_pricing.interpret(result))) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) from qiskit_finance.applications.estimation import EuropeanCallDelta european_call_delta = EuropeanCallDelta( num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, bounds=(low, high), uncertainty_model=uncertainty_model, ) european_call_delta._objective.decompose().draw() european_call_delta_circ = QuantumCircuit(european_call_delta._objective.num_qubits) european_call_delta_circ.append(uncertainty_model, range(num_uncertainty_qubits)) european_call_delta_circ.append( european_call_delta._objective, range(european_call_delta._objective.num_qubits) ) european_call_delta_circ.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_delta.to_estimation_problem() # construct amplitude estimation ae_delta = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_delta = ae_delta.estimate(problem) conf_int = np.array(result_delta.confidence_interval_processed) print("Exact delta: \t%.4f" % exact_delta) print("Esimated value: \t%.4f" % european_call_delta.interpret(result_delta)) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) qc.cx(1, 0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1, 0) ### removed h gate ### return qc
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
https://github.com/indian-institute-of-science-qc/qiskit-aakash
indian-institute-of-science-qc
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for the converters.""" import unittest from qiskit.converters import dag_to_circuit, circuit_to_dag from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.test import QiskitTestCase class TestCircuitToDag(QiskitTestCase): """Test Circuit to DAG.""" def test_circuit_and_dag(self): """Check convert to dag and back""" qr = QuantumRegister(3) cr = ClassicalRegister(3) circuit_in = QuantumCircuit(qr, cr) circuit_in.h(qr[0]) circuit_in.h(qr[1]) circuit_in.measure(qr[0], cr[0]) circuit_in.measure(qr[1], cr[1]) circuit_in.x(qr[0]).c_if(cr, 0x3) circuit_in.measure(qr[0], cr[0]) circuit_in.measure(qr[1], cr[1]) circuit_in.measure(qr[2], cr[2]) dag = circuit_to_dag(circuit_in) circuit_out = dag_to_circuit(dag) self.assertEqual(circuit_out, circuit_in) if __name__ == '__main__': unittest.main(verbosity=2)
https://github.com/Qiskit/feedback
Qiskit
from qiskit.circuit import * qreg, creg = QuantumRegister(5, "q"), ClassicalRegister(2, "c") body = QuantumCircuit(3, 1) loop_parameter = Parameter("foo") indexset = range(0, 10, 2) body.rx(loop_parameter, [0, 1, 2]) circuit = QuantumCircuit(qreg, creg) circuit.for_loop(indexset, loop_parameter, body, [1, 2, 3], [1]) print(circuit.draw()) from qiskit.qasm3 import dumps print(dumps(circuit)) from qiskit.transpiler.passes import UnrollForLoops circuit_unroll = UnrollForLoops()(circuit) print(dumps(circuit_unroll)) circuit_unroll.draw() print(dumps(UnrollForLoops(max_target_depth=4)(circuit))) from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager pass_manager = generate_preset_pass_manager(1) pass_manager.run(circuit).draw() pass_manager.pre_optimization.append(UnrollForLoops()) pass_manager.run(circuit).draw() # skip when continue and break import math from qiskit import QuantumCircuit qc = QuantumCircuit(2, 1) with qc.for_loop(range(5)) as i: qc.rx(i * math.pi/4, 0) qc.cx(0, 1) qc.measure(0, 0) qc.break_loop().c_if(0, True) print(dumps(qc)) print(dumps(UnrollForLoops()(qc)))
https://github.com/unitaryfund/mitiq
unitaryfund
# Copyright (C) Unitary Fund # # This source code is licensed under the GPL license (v3) found in the # LICENSE file in the root directory of this source tree. """Tests for mitiq.pec.sampling functions.""" import cirq import numpy as np import pytest from cirq import ( Circuit, Gate, LineQubit, NamedQubit, depolarize, measure, measure_each, ops, ) from pyquil import Program, gates from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister from mitiq.pec import ( NoisyOperation, OperationRepresentation, represent_operation_with_global_depolarizing_noise, sample_circuit, sample_sequence, ) from mitiq.pec.channels import _circuit_to_choi, _operation_to_choi from mitiq.pec.representations import ( represent_operation_with_local_depolarizing_noise, represent_operations_in_circuit_with_local_depolarizing_noise, ) from mitiq.utils import _equal xcirq = Circuit(cirq.X(cirq.LineQubit(0))) zcirq = Circuit(cirq.Z(cirq.LineQubit(0))) cnotcirq = Circuit(cirq.CNOT(cirq.LineQubit(0), cirq.LineQubit(1))) czcirq = Circuit(cirq.CZ(cirq.LineQubit(0), cirq.LineQubit(1))) def test_sample_sequence_cirq(): circuit = Circuit(cirq.H(LineQubit(0))) circuit.append(measure(LineQubit(0))) rep = OperationRepresentation( ideal=circuit, noisy_operations=[NoisyOperation(xcirq), NoisyOperation(zcirq)], coeffs=[0.5, -0.5], ) for _ in range(5): seqs, signs, norm = sample_sequence(circuit, representations=[rep]) assert isinstance(seqs[0], Circuit) assert signs[0] in {1, -1} assert norm == 1.0 def test_sample_sequence_qiskit(): qreg = QuantumRegister(1) circuit = QuantumCircuit(qreg) _ = circuit.h(qreg) xcircuit = QuantumCircuit(qreg) _ = xcircuit.x(qreg) zcircuit = QuantumCircuit(qreg) _ = zcircuit.z(qreg) noisy_xop = NoisyOperation(xcircuit) noisy_zop = NoisyOperation(zcircuit) rep = OperationRepresentation( ideal=circuit, noisy_operations=[noisy_xop, noisy_zop], coeffs=[0.5, -0.5], ) for _ in range(5): seqs, signs, norm = sample_sequence(circuit, representations=[rep]) assert isinstance(seqs[0], QuantumCircuit) assert signs[0] in {1, -1} assert norm == 1.0 def test_sample_sequence_pyquil(): circuit = Program(gates.H(0)) noisy_xop = NoisyOperation(Program(gates.X(0))) noisy_zop = NoisyOperation(Program(gates.Z(0))) rep = OperationRepresentation( ideal=circuit, noisy_operations=[noisy_xop, noisy_zop], coeffs=[0.5, -0.5], ) for _ in range(50): seqs, signs, norm = sample_sequence(circuit, representations=[rep]) assert isinstance(seqs[0], Program) assert signs[0] in {1, -1} assert norm == 1.0 @pytest.mark.parametrize("seed", (1, 2, 3, 5)) def test_sample_sequence_cirq_random_state(seed): circuit = Circuit(cirq.H.on(LineQubit(0))) rep = OperationRepresentation( ideal=circuit, noisy_operations=[NoisyOperation(xcirq), NoisyOperation(zcirq)], coeffs=[0.5, -0.5], ) sequences, signs, norm = sample_sequence( circuit, [rep], random_state=np.random.RandomState(seed) ) for _ in range(20): new_sequences, new_signs, new_norm = sample_sequence( circuit, [rep], random_state=np.random.RandomState(seed) ) assert _equal(new_sequences[0], sequences[0]) assert new_signs[0] == signs[0] assert np.isclose(new_norm, norm) def test_qubit_independent_representation_cirq(): """Test that an OperationRepresentation defined for some qubits can (optionally) be used to mitigate gates acting on different qubits.""" circuit = Circuit([cirq.I.on(LineQubit(0)), cirq.H.on(LineQubit(1))]) circuit.append(measure_each(*LineQubit.range(2))) rep = OperationRepresentation( ideal=Circuit(cirq.H.on(LineQubit(0))), noisy_operations=[NoisyOperation(xcirq), NoisyOperation(zcirq)], coeffs=[0.5, -0.5], is_qubit_dependent=False, ) expected_a = Circuit([cirq.I.on(LineQubit(0)), cirq.X.on(LineQubit(1))]) expected_a.append(measure_each(*LineQubit.range(2))) expected_b = Circuit([cirq.I.on(LineQubit(0)), cirq.Z.on(LineQubit(1))]) expected_b.append(measure_each(*LineQubit.range(2))) for _ in range(5): seqs, signs, norm = sample_circuit(circuit, representations=[rep]) assert seqs[0] in [expected_a, expected_b] assert signs[0] in {1, -1} assert norm == 1.0 def test_qubit_independent_representation_qiskit(): """Test that an OperationRepresentation defined for some qubits can (optionally) be used to mitigate gates acting on different qubits.""" different_qreg = QuantumRegister(2, name="q") circuit_to_mitigate = QuantumCircuit(different_qreg) _ = circuit_to_mitigate.cx(*different_qreg) qreg = QuantumRegister(2, name="rep_register") xcircuit = QuantumCircuit(qreg) _ = xcircuit.x(qreg) zcircuit = QuantumCircuit(qreg) _ = zcircuit.z(qreg) noisy_xop = NoisyOperation(xcircuit) noisy_zop = NoisyOperation(zcircuit) ideal_op = QuantumCircuit(qreg) _ = ideal_op.cx(*qreg) rep = OperationRepresentation( ideal=ideal_op, noisy_operations=[noisy_xop, noisy_zop], coeffs=[0.5, -0.5], is_qubit_dependent=False, ) # Expected outcomes xcircuit_different = QuantumCircuit(different_qreg) xcircuit_different.x(different_qreg) zcircuit_different = QuantumCircuit(different_qreg) zcircuit_different.z(different_qreg) for _ in range(5): seqs, signs, norm = sample_sequence( circuit_to_mitigate, representations=[rep] ) assert seqs[0] in [xcircuit_different, zcircuit_different] assert signs[0] in {1, -1} assert norm == 1.0 def test_qubit_independent_representation_pyquil(): """Test that an OperationRepresentation defined for some qubits can (optionally) be used to mitigate gates acting on different qubits.""" circuit_to_mitigate = Program(gates.H(1)) noisy_xop = NoisyOperation(Program(gates.X(0))) noisy_zop = NoisyOperation(Program(gates.Z(0))) rep = OperationRepresentation( ideal=Program(gates.H(0)), noisy_operations=[noisy_xop, noisy_zop], coeffs=[0.5, -0.5], is_qubit_dependent=False, ) for _ in range(50): seqs, signs, norm = sample_sequence( circuit_to_mitigate, representations=[rep] ) assert seqs[0] in [Program(gates.X(1)), Program(gates.Z(1))] assert signs[0] in {1, -1} assert norm == 1.0 @pytest.mark.parametrize( "reps", [ [], [ OperationRepresentation( Circuit(cirq.H.on(LineQubit(0))), [NoisyOperation(xcirq), NoisyOperation(zcirq)], [0.5, -0.5], ) ], ], ) def test_sample_sequence_no_representation(reps): circuit = Circuit(cirq.H.on(LineQubit(0)), cirq.H.on(LineQubit(1))) circuit.append(measure_each(*LineQubit.range(2))) with pytest.warns(UserWarning, match="No representation found for"): sequences, signs, norm = sample_sequence(circuit, reps) assert _equal(sequences[0], circuit, require_qubit_equality=True) assert signs == [1] assert norm == 1 @pytest.mark.parametrize("measure", [True, False]) def test_sample_circuit_cirq(measure): circuit = Circuit( ops.H.on(LineQubit(0)), ops.CNOT.on(*LineQubit.range(2)), ) if measure: circuit.append(measure_each(*LineQubit.range(2))) h_rep = OperationRepresentation( circuit[:1], [NoisyOperation(xcirq), NoisyOperation(zcirq)], [0.6, -0.6], ) cnot_rep = OperationRepresentation( circuit[1:2], [NoisyOperation(cnotcirq), NoisyOperation(czcirq)], [0.7, -0.7], ) for _ in range(50): sampled_circuits, signs, norm = sample_circuit( circuit, representations=[h_rep, cnot_rep] ) assert isinstance(sampled_circuits[0], Circuit) assert signs[0] in (-1, 1) assert norm >= 1 if measure: assert len(sampled_circuits[0]) == 3 assert cirq.is_measurement( list(sampled_circuits[0].all_operations())[-1] # last gate ) else: assert len(sampled_circuits[0]) == 2 def test_sample_circuit_partial_representations(): circuit = Circuit( ops.H.on(LineQubit(0)), ops.CNOT.on(*LineQubit.range(2)), ) cnot_rep = OperationRepresentation( circuit[1:2], [NoisyOperation(cnotcirq), NoisyOperation(czcirq)], [0.7, -0.7], ) for _ in range(10): with pytest.warns(UserWarning, match="No representation found for"): sampled_circuits, signs, norm = sample_circuit( circuit, representations=[cnot_rep] ) assert isinstance(sampled_circuits[0], Circuit) assert len(sampled_circuits[0]) == 2 assert signs[0] in (-1, 1) assert norm >= 1 def test_sample_circuit_pyquil(): circuit = Program(gates.H(0), gates.CNOT(0, 1)) h_rep = OperationRepresentation( circuit[:1], [ NoisyOperation(Program(gates.X(0))), NoisyOperation(Program(gates.Z(0))), ], [0.6, -0.6], ) cnot_rep = OperationRepresentation( circuit[1:], [ NoisyOperation(Program(gates.CNOT(0, 1))), NoisyOperation(Program(gates.CZ(0, 1))), ], [0.7, -0.7], ) for _ in range(50): sampled_circuits, signs, norm = sample_circuit( circuit, representations=[h_rep, cnot_rep] ) assert isinstance(sampled_circuits[0], Program) assert len(sampled_circuits[0]) == 2 assert signs[0] in (-1, 1) assert norm >= 1 def test_sample_circuit_with_seed(): circ = Circuit([cirq.X.on(LineQubit(0)) for _ in range(10)]) rep = OperationRepresentation( ideal=Circuit(cirq.X.on(LineQubit(0))), noisy_operations=[NoisyOperation(zcirq), NoisyOperation(xcirq)], coeffs=[1.0, -1.0], ) expected_circuits, expected_signs, expected_norm = sample_circuit( circ, [rep], random_state=4 ) # Check we're not sampling the same operation every call to sample_sequence assert len(set(expected_circuits[0].all_operations())) > 1 for _ in range(10): sampled_circuits, sampled_signs, sampled_norm = sample_circuit( circ, [rep], random_state=4 ) assert _equal(sampled_circuits[0], expected_circuits[0]) assert sampled_signs[0] == expected_signs[0] assert sampled_norm == expected_norm def test_sample_circuit_trivial_decomposition(): circuit = Circuit(ops.H.on(NamedQubit("Q"))) rep = OperationRepresentation( ideal=circuit, noisy_operations=[NoisyOperation(circuit)], coeffs=[1.0], ) sampled_circuits, signs, norm = sample_circuit( circuit, [rep], random_state=1 ) assert _equal(sampled_circuits[0], circuit) assert signs[0] == 1 assert np.isclose(norm, 1) BASE_NOISE = 0.02 qreg = LineQubit.range(2) @pytest.mark.parametrize("gate", [cirq.Y, cirq.CNOT]) def test_sample_sequence_choi(gate: Gate): """Tests the sample_sequence by comparing the exact Choi matrices.""" qreg = LineQubit.range(gate.num_qubits()) ideal_op = gate.on(*qreg) ideal_circ = Circuit(ideal_op) noisy_op_tree = [ideal_op] + [depolarize(BASE_NOISE)(q) for q in qreg] ideal_choi = _operation_to_choi(ideal_op) noisy_choi = _operation_to_choi(noisy_op_tree) representation = represent_operation_with_local_depolarizing_noise( ideal_circ, BASE_NOISE, ) choi_unbiased_estimates = [] rng = np.random.RandomState(1) for _ in range(500): imp_seqs, signs, norm = sample_sequence( ideal_circ, [representation], random_state=rng ) noisy_sequence = imp_seqs[0].with_noise(depolarize(BASE_NOISE)) sequence_choi = _circuit_to_choi(noisy_sequence) choi_unbiased_estimates.append(norm * signs[0] * sequence_choi) choi_pec_estimate = np.average(choi_unbiased_estimates, axis=0) noise_error = np.linalg.norm(ideal_choi - noisy_choi) pec_error = np.linalg.norm(ideal_choi - choi_pec_estimate) assert pec_error < noise_error assert np.allclose(ideal_choi, choi_pec_estimate, atol=0.05) def test_sample_circuit_choi(): """Tests the sample_circuit by comparing the exact Choi matrices.""" # A simple 2-qubit circuit qreg = LineQubit.range(2) ideal_circ = Circuit( cirq.X.on(qreg[0]), cirq.I.on(qreg[1]), cirq.CNOT.on(*qreg), ) noisy_circuit = ideal_circ.with_noise(depolarize(BASE_NOISE)) ideal_choi = _circuit_to_choi(ideal_circ) noisy_choi = _operation_to_choi(noisy_circuit) rep_list = represent_operations_in_circuit_with_local_depolarizing_noise( ideal_circuit=ideal_circ, noise_level=BASE_NOISE, ) choi_unbiased_estimates = [] rng = np.random.RandomState(1) for _ in range(500): imp_circs, signs, norm = sample_circuit( ideal_circ, rep_list, random_state=rng ) noisy_imp_circ = imp_circs[0].with_noise(depolarize(BASE_NOISE)) sequence_choi = _circuit_to_choi(noisy_imp_circ) choi_unbiased_estimates.append(norm * signs[0] * sequence_choi) choi_pec_estimate = np.average(choi_unbiased_estimates, axis=0) noise_error = np.linalg.norm(ideal_choi - noisy_choi) pec_error = np.linalg.norm(ideal_choi - choi_pec_estimate) assert pec_error < noise_error assert np.allclose(ideal_choi, choi_pec_estimate, atol=0.05) def test_conversions_in_sample_circuit(): """Tests sample_circuit preserves idle qubits and quantum registers.""" qreg = QuantumRegister(3, name="Q") creg = ClassicalRegister(2, name="C") circuit = QuantumCircuit(qreg, creg) circuit.h(qreg[0]) circuit.cx(qreg[0], qreg[1]) circuit.measure(0, 0) cnot_circuit = QuantumCircuit(qreg) cnot_circuit.cx(qreg[0], qreg[1]) rep = represent_operation_with_global_depolarizing_noise( cnot_circuit, noise_level=0.0, ) out_circuits, signs, norm = sample_circuit(circuit, [rep], num_samples=3) for out_circ in out_circuits: out_circ == circuit assert len(signs) == 3 assert set(signs).issubset({1.0, -1.0}) assert np.isclose(norm, 1.0)
https://github.com/mnp-club/Quantum_Computing_Workshop_2020
mnp-club
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.compiler import * from qiskit.tools.jupyter import * from qiskit.visualization import * import numpy as np import qiskit.quantum_info as qi # Loading your IBM Q account(s) provider = IBMQ.load_account() #This cell is just for seeing what the U tilde matrix looks like a, b, c, d = np.cos(np.pi/8), np.sin(np.pi/8), -np.sin(np.pi/8), np.cos(np.pi/8) u_tilde = np.array([[a,c],[b,d]]).reshape(2,2) print(u_tilde) #This cell defines the controlled variant of the U tilde matrix qc_for_u = QuantumCircuit(1) qc_for_u.ry(np.pi/4, 0) qc_for_u.name = "U" controlled_u_tilde = qc_for_u.to_gate().control(2) qc1 = QuantumCircuit(3) qc1.x(0) qc1.x(1) qc1.toffoli(0,1,2)#Flipping the third bit if the first two are zero qc1.x(0) #Essentially 000 -> 001 qc1.x(1) qc1.x(0) qc1.toffoli(0,2,1)#Flipping the second bit if the first bit is zero and the third is one qc1.x(0) #Essentially 001 -> 011 qc1.append(controlled_u_tilde, [1, 2, 0]) qc1.x(0) qc1.toffoli(0,2,1)#Undoing the flip from before qc1.x(0) qc1.x(0) qc1.x(1) qc1.toffoli(0,1,2)#Undoing the flip from before qc1.x(0) qc1.x(1) qc1.draw('mpl') U_circ = qi.Operator(qc1).data print(U_circ) qc2 = QuantumCircuit(3) #Code for executing U qc2.x(0) qc2.x(1) qc2.toffoli(0,1,2)#Flipping the third bit if the first two are zero qc2.x(0) #Essentially 000 -> 001 qc2.x(1) qc2.x(0) qc2.toffoli(0,2,1)#Flipping the second bit if the first bit is zero and the third is one qc2.x(0) #Essentially 001 -> 011 qc2.append(controlled_u_tilde, [1, 2, 0]) qc2.x(0) qc2.toffoli(0,2,1)#Undoing the flip from before qc2.x(0) qc2.x(0) qc2.x(1) qc2.toffoli(0,1,2)#Undoing the flip from before qc2.x(0) qc2.x(1) #Code for executing V qc2.x(0) qc2.toffoli(0,1,2)#Flipping the third bit if the first is zero and second is one qc2.x(0) #Essentially 010 -> 011 qc2.toffoli(1,2,0) qc2.x(0) qc2.toffoli(0,1,2)#Undoing the flip from before qc2.x(0) qc2.draw('mpl') def without_global_phase(matrix: np.ndarray, atol: float = 1e-8) : phases1 = np.angle(matrix[abs(matrix) > atol].ravel(order='F')) if len(phases1) > 0: matrix = np.exp(-1j * phases1[0]) * matrix return matrix V_circ = without_global_phase(qi.Operator(qc2).data) print(V_circ) #Function just returns norm ignoring global phase between unitaries def norm(unitary_a: np.ndarray, unitary_b: np.ndarray) : return np.linalg.norm(without_global_phase(unitary_b)-without_global_phase(unitary_a), ord=2) #Make the Pauli Y gate qcy = QuantumCircuit(1) qcy.t(0) qcy.t(0) qcy.t(0) qcy.t(0) qcy.h(0) qcy.t(0) qcy.t(0) qcy.t(0) qcy.t(0) qcy.h(0)# Essentially XZ is being applied since T^4 = X and HXH = Z and XZ = iY but global phase is ignored Y_circ = qi.Operator(qcy).data Y = np.array([[0,-1j],[1j,0]]) print(norm(Y_circ,Y)) uni_q = np.array([[-0.25+0.60355339j, 0.60355339+0.45710678j], [0.60355339-0.45710678j, 0.25+0.60355339j]]).reshape(2,2) qc3 = QuantumCircuit(1) qc_min = 1000 while(True): parameters = np.random.randint(8, size=6) #Samling integers from 0 to 7 and getting 6 of them for i in parameters[0:5]: for j in range(i): qc3.t(0) qc3.h(0) for j in range(parameters[-1]): qc3.t(0) if norm(qi.Operator(qc3).data,uni_q) <= 1e-8:#Break if we have reached the right combination print(parameters) break qc_min = np.sum(parameters) qc3 = QuantumCircuit(1)#Reinitiallize circuit uni_q_circ = qi.Operator(qc3).data print(norm(uni_q_circ,uni_q)) qc3.draw('mpl')#Drawing the actual solution #Note that there are multiple solutions so as long as your norm #was of order 1.65e-9 you are correct. The reason of these multiple #solutions is because there are commutativity relations that we #havent bothered calculating #There are better ways and many of you probably did use them. This is the best circuit we found #If you search amongst all the possibilities or iterate the right way this will be the solution you find #The difference between this cell and the one above is that the one above came from a random number generator qc3 = QuantumCircuit(1) qc3.t(0) qc3.h(0) qc3.t(0) qc3.t(0) qc3.t(0) qc3.h(0) qc3.t(0) qc3.h(0) qc3.t(0) qc3.h(0) qc3.t(0) qc3.t(0) qc3.h(0) qc3.draw('mpl') #Defining the gate as controlled_irx from qiskit.extensions import * pi_alpha = np.arccos(0.6) qc_for_irx = QuantumCircuit(1) irx = np.array([[1j*np.cos(pi_alpha/2),np.sin(pi_alpha/2)],[np.sin(pi_alpha/2),1j*np.cos(pi_alpha/2)]]).reshape(2,2) g_irx = UnitaryGate(data=irx,label=None) controlled_irx = g_irx.control(2) alpha = pi_alpha/np.pi i = 0 while(True): if abs((alpha*i)%2 - 0.5) <= 0.001: print(i) break i += 1 i = 1 while(True): if abs((alpha*i)%2) <= 0.013 and (i%4 == 2): print(i) break i += 1 n = 4 qcb = QuantumCircuit(n,n) qcb.x(0)#Ancilla qcb.x(1)#Ancilla You can use these two as control to use the controlled_irx gate #Doing the Rx(pi/2) for i in range(476): qcb.append(controlled_irx,[0,1,2]) #Controlled not off first qubit (here first qubit is actually the third one cause we have two ancillas) qcb.cx(2,3) #Doing the Rx(3pi/2) which is Rx(-pi/2) essentially qcb.x(2) for i in range(476): qcb.append(controlled_irx,[0,1,2]) # This makes the state |11> flip sign if third and fourth qubit is 1 #so that way we know that fourth qubit has |+> state always qcb.x(0)#reset ancillas qcb.x(1)#reset ancillas qcb.cx(2,0) qcb.cx(3,1) for i in range(122): qcb.append(controlled_irx,[0,1,3]) qcb.cx(3,1) qcb.cx(2,0) #Get state of qubit which should have the |+> state using the backend simulator i = 3#Index for the qubit at |+> state qcb.h(i)#Puts the |+> state to |0> qcb.measure(i, i) def run_circuit(qcb): backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend result = execute(qcb, backend, shots = 2000).result() # we run the simulation counts = result.get_counts() # we get the counts return counts counts = run_circuit(qcb) print(counts) plot_histogram(counts)
https://github.com/lynnlangit/learning-quantum
lynnlangit
# Importing Libraries import torch from torch import cat, no_grad, manual_seed from torch.utils.data import DataLoader from torchvision import transforms import torch.optim as optim from torch.nn import ( Module, Conv2d, Linear, Dropout2d, NLLLoss ) import torch.nn.functional as F import numpy as np import matplotlib.pyplot as plt from qiskit_machine_learning.neural_networks import EstimatorQNN from qiskit_machine_learning.connectors import TorchConnector from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit import QuantumCircuit from qiskit.visualization import circuit_drawer # Imports for CIFAR-10s from torchvision.datasets import CIFAR10 from torchvision import transforms def prepare_data(X, labels_to_keep, batch_size): # Filtering out labels (originally 0-9), leaving only labels 0 and 1 filtered_indices = [i for i in range(len(X.targets)) if X.targets[i] in labels_to_keep] X.data = X.data[filtered_indices] X.targets = [X.targets[i] for i in filtered_indices] # Defining dataloader with filtered data loader = DataLoader(X, batch_size=batch_size, shuffle=True) return loader # Set seed for reproducibility manual_seed(42) # CIFAR-10 data transformation transform = transforms.Compose([ transforms.ToTensor(), # convert the images to tensors transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # Normalization usign mean and std. ]) labels_to_keep = [0, 1] batch_size = 1 # Preparing Train Data X_train = CIFAR10(root="./data", train=True, download=True, transform=transform) train_loader = prepare_data(X_train, labels_to_keep, batch_size) # Preparing Test Data X_test = CIFAR10(root="./data", train=False, download=True, transform=transform) test_loader = prepare_data(X_test, labels_to_keep, batch_size) print(f"Training dataset size: {len(train_loader.dataset)}") print(f"Test dataset size: {len(test_loader.dataset)}") # Defining and creating QNN def create_qnn(): feature_map = ZZFeatureMap(2) # ZZFeatureMap with 2 bits, entanglement between qubits based on the pairwise product of input features. ansatz = RealAmplitudes(2, reps=1) # parameters (angles, in the case of RealAmplitudes) that are adjusted during the training process to optimize the quantum model for a specific task. qc = QuantumCircuit(2) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) qnn = EstimatorQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, input_gradients=True, ) return qnn qnn = create_qnn() # Visualizing the QNN circuit circuit_drawer(qnn.circuit, output='mpl') # Defining torch NN module class Net(Module): def __init__(self, qnn): super().__init__() self.conv1 = Conv2d(3, 16, kernel_size=3, padding=1) self.conv2 = Conv2d(16, 32, kernel_size=3, padding=1) self.dropout = Dropout2d() self.fc1 = Linear(32 * 8 * 8, 64) self.fc2 = Linear(64, 2) # 2-dimensional input to QNN self.qnn = TorchConnector(qnn) self.fc3 = Linear(1, 1) # 1-dimensional output from QNN def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(x.shape[0], -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.qnn(x) x = self.fc3(x) return cat((x, 1 - x), -1) # Creating model model = Net(qnn) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Defining model, optimizer, and loss function optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = NLLLoss() # Starting training epochs = 10 loss_list = [] model.train() for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) # Move data to GPU optimizer.zero_grad(set_to_none=True) output = model(data) loss = loss_func(output, target) loss.backward() optimizer.step() total_loss.append(loss.item()) loss_list.append(sum(total_loss) / len(total_loss)) print("Training [{:.0f}%]\tLoss: {:.4f}".format(100.0 * (epoch + 1) / epochs, loss_list[-1])) # Plotting loss convergence plt.plot(loss_list) plt.title("Hybrid NN Training Convergence") plt.xlabel("Training Iterations") plt.ylabel("Neg. Log Likelihood Loss") plt.show() # Saving the model torch.save( model.state_dict(), "model_cifar10_10EPOCHS.pt") # Loading the model qnn_cifar10 = create_qnn() model_cifar10 = Net(qnn_cifar10) model_cifar10.load_state_dict(torch.load("model_cifar10.pt")) correct = 0 total = 0 model_cifar10.eval() with torch.no_grad(): for data, target in test_loader: output = model_cifar10(data) _, predicted = torch.max(output.data, 1) total += target.size(0) correct += (predicted == target).sum().item() # Calculating and print test accuracy test_accuracy = correct / total * 100 print(f"Test Accuracy: {test_accuracy:.2f}%") # Plotting predicted labels n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) model_cifar10.eval() with no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model_cifar10(data) if len(output.shape) == 1: output = output.reshape(1, *output.shape) pred = output.argmax(dim=1, keepdim=True) axes[count].imshow(np.transpose(data[0].numpy(), (1, 2, 0))) axes[count].set_xticks([]) axes[count].set_yticks([]) axes[count].set_title("Predicted {0}\n Actual {1}".format(pred.item(), target.item())) count += 1 plt.show()
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import BasicAer from qiskit_aqua.algorithms import AmplitudeEstimation from qiskit_aqua.components.random_distributions import MultivariateNormalDistribution from qiskit_aqua.components.uncertainty_problems import FixedIncomeExpectedValue # can be used in case a principal component analysis has been done to derive the uncertainty model, ignored in this example. A = np.eye(2) b = np.zeros(2) # specify the number of qubits that are used to represent the different dimenions of the uncertainty model num_qubits = [2, 2] # specify the lower and upper bounds for the different dimension low = [0, 0] high = [0.12, 0.24] mu = [0.12, 0.24] sigma = 0.01*np.eye(2) # construct corresponding distribution u = MultivariateNormalDistribution(num_qubits, low, high, mu, sigma) # plot contour of probability density function x = np.linspace(low[0], high[0], 2**num_qubits[0]) y = np.linspace(low[1], high[1], 2**num_qubits[1]) z = u.probabilities.reshape(2**num_qubits[0], 2**num_qubits[1]) plt.contourf(x, y, z) plt.xticks(x, size=15) plt.yticks(y, size=15) plt.grid() plt.xlabel('$r_1$ (%)', size=15) plt.ylabel('$r_2$ (%)', size=15) plt.colorbar() plt.show() # specify cash flow cf = [1.0, 2.0] periods = range(1, len(cf)+1) # plot cash flow plt.bar(periods, cf) plt.xticks(periods, size=15) plt.yticks(size=15) plt.grid() plt.xlabel('periods', size=15) plt.ylabel('cashflow ($)', size=15) plt.show() # estimate real value cnt = 0 exact_value = 0.0 for x1 in np.linspace(low[0], high[0], pow(2, num_qubits[0])): for x2 in np.linspace(low[1], high[1], pow(2, num_qubits[1])): prob = u.probabilities[cnt] for t in range(len(cf)): # evaluate linear approximation of real value w.r.t. interest rates exact_value += prob * (cf[t]/pow(1 + b[t], t+1) - (t+1)*cf[t]*np.dot(A[:, t], np.asarray([x1, x2]))/pow(1 + b[t], t+2)) cnt += 1 print('Exact value: \t%.4f' % exact_value) # specify approximation factor c_approx = 0.125 # get fixed income circuit appfactory fixed_income = FixedIncomeExpectedValue(u, A, b, cf, c_approx) # set number of evaluation qubits (samples) m = 5 # construct amplitude estimation ae = AmplitudeEstimation(m, fixed_income) # result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100) result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator')) print('Exact value: \t%.4f' % exact_value) print('Estimated value:\t%.4f' % result['estimation']) print('Probability: \t%.4f' % result['max_probability']) # plot estimated values for "a" (direct result of amplitude estimation, not rescaled yet) plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities'])) plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15) plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15) plt.title('"a" Value', size=15) plt.ylabel('Probability', size=15) plt.xlim((0,1)) plt.ylim((0,1)) plt.grid() plt.show() # plot estimated values for fixed-income asset (after re-scaling and reversing the c_approx-transformation) plt.bar(result['mapped_values'], result['probabilities'], width=3/len(result['probabilities'])) plt.plot([exact_value, exact_value], [0,1], 'r--', linewidth=2) plt.xticks(size=15) plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15) plt.title('Estimated Option Price', size=15) plt.ylabel('Probability', size=15) plt.ylim((0,1)) plt.grid() plt.show()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import datetime import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt plt.rcParams.update({"text.usetex": True}) plt.rcParams["figure.figsize"] = (6,4) mpl.rcParams["figure.dpi"] = 200 from qiskit_ibm_runtime import Estimator, Session, QiskitRuntimeService, Options from qiskit.quantum_info import SparsePauliOp from qiskit import QuantumCircuit service = QiskitRuntimeService() backend_simulator = "backend_simulator" backend = "ibmq_montreal" qubits = 4 trotter_layer = QuantumCircuit(qubits) trotter_layer.rx(0.1, range(qubits)) trotter_layer.cx(0, 1) trotter_layer.cx(2, 3) trotter_layer.rz(-0.2, [1, 3]) trotter_layer.cx(0, 1) trotter_layer.cx(2, 3) trotter_layer.cx(1, 2) trotter_layer.rz(-0.2, 2) trotter_layer.cx(1, 2) num_steps = 6 trotter_circuit_list = [] for i in range(1, num_steps): trotter_circuit = QuantumCircuit(qubits) for _ in range(i): trotter_circuit = trotter_circuit.compose(trotter_layer) trotter_circuit_list.append(trotter_circuit) print(f'Trotter circuit with {i} Trotter steps`) display(trotter_circuit.draw(fold=-1)) obs = SparsePauliOp("Z"*qubits) obs_list = [obs]*len(trotter_circuit_list) options = Options() options.execution.shots = 1000 options.optimization_level = 0 # No optimization options.resilience_level = 0 # No mitigation with Session(service=service, backend=backend_simulator) as session: estimator_sim = Estimator(session=session, options=options) job_sim = estimator_sim.run(circuits=trotter_circuit_list, observables=obs_list) print('job id:', job_sim.job_id) print(job_sim.result()) expvals_ideal = job_sim.result().values expvals_ideal_variance = [metadata['variance']/metadata['shots'] for metadata in job_sim.result().metadata] std_error_ideal = np.sqrt(expvals_ideal_variance) options = Options() options.execution.shots = 1000 options.optimization_level = 0 # No optimization options.resilience_level = 0 # No error mitigation with Session(service=service, backend=backend) as session: estimator = Estimator(session=session, options=options) job = estimator.run(circuits=trotter_circuit_list, observables=obs_list) print('job id:', job.job_id) print(job.result()) expvals_unmit = job.result().values expvals_unmit_variance = [metadata['variance']/metadata['shots'] for metadata in job.result().metadata] std_error_unmit = np.sqrt(expvals_unmit_variance) options = Options() options.execution.shots = 1000 options.optimization_level = 3 # Dynamical decoupling options.resilience_level = 0 # No error mitigation with Session(service=service, backend=backend) as session: estimator = Estimator(session=session, options=options) job_dd = estimator.run(circuits=trotter_circuit_list, observables=obs_list) print('job id:', job_dd.job_id) print(job_dd.result()) expvals_unmit_dd = job_dd.result().values expvals_unmit_dd_variance = [metadata['variance']/metadata['shots'] for metadata in job_dd.result().metadata] std_error_dd = np.sqrt(expvals_unmit_dd_variance) plt.title('Trotter circuits expectation value') plt.errorbar(range(1, num_steps), expvals_ideal, std_error_ideal, fmt = 'o', linestyle = '--', capsize=4, c='red', label='Ideal') plt.errorbar(range(1, num_steps), expvals_unmit, std_error_unmit, fmt = 'o', linestyle = '-', capsize=4, c='green', label='No mitigation') plt.errorbar(range(1, num_steps), expvals_unmit_dd, std_error_dd, fmt = 'o', linestyle = '-', capsize=4, c='blue', label='Dynamical decoupling') plt.ylabel(f"$\langle ZZZZ \\rangle$") plt.xlabel('No. Trotter Steps') plt.xticks([1, 2, 3, 4, 5]) plt.legend() plt.show() options = Options() options.resilience_level = 1 # T-REx options.optimization_level = 0 # No optimization options.execution.shots = 1000 with Session(service=service, backend=backend) as session: estimator = Estimator(session=session, options=options) job_trex = estimator.run(circuits=trotter_circuit_list, observables=obs_list) print('job id:', job_trex.job_id) print(job_trex.result()) expvals_unmit_trex = job_trex.result().values expvals_unmit_trex_variance = [metadata['variance']/metadata['shots'] for metadata in job_trex.result().metadata] std_error_trex = np.sqrt(expvals_unmit_trex_variance) plt.title('Trotter circuits expectation value') plt.errorbar(range(1, num_steps), expvals_ideal, std_error_ideal, fmt = 'o', linestyle = '--', capsize=4, c='red', label='Ideal') plt.errorbar(range(1, num_steps), expvals_unmit, std_error_unmit, fmt = 'o', linestyle = '-', capsize=4, c='green', label='No mitigation') plt.errorbar(range(1, num_steps), expvals_unmit_trex, std_error_trex, fmt = 'o', linestyle = '-', capsize=4, c='violet', label='T-REx') plt.ylabel(f"$\langle ZZZZ \\rangle$") plt.xlabel('No. Trotter Steps') plt.xticks([1, 2, 3, 4, 5]) plt.legend() plt.show() options = Options() options.execution.shots = 1000 options.optimization_level = 0 # No optimization options.resilience_level = 2 # ZNE with Session(service=service, backend=backend) as session: estimator = Estimator(session=session, options=options) job_zne = estimator.run(circuits=trotter_circuit_list, observables=obs_list) print('job id:', job_zne.job_id) print(job_zne.result()) expvals_unmit_zne = job_zne.result().values # Standard error: coming soon! plt.title('Trotter circuits expectation value') plt.errorbar(range(1, num_steps), expvals_ideal, std_error_ideal, fmt = 'o', linestyle = '--', capsize=4, c='red', label='Ideal') plt.errorbar(range(1, num_steps), expvals_unmit, std_error_unmit, fmt = 'o', linestyle = '-', capsize=4, c='green', label='No mitigation') plt.errorbar(range(1, num_steps), expvals_unmit_zne, [0]*(num_steps-1), fmt = 'o', linestyle = '-', capsize=4, c='cyan', label='ZNE') plt.xlabel('No. Trotter Steps') plt.ylabel(f"$\langle ZZZZ \\rangle$") plt.xticks([1, 2, 3, 4, 5]) plt.legend() plt.show() def interim_results_callback(job_id, result): now = datetime.datetime.now() print(now, "*** Callback ***", result, "\n") options = Options() options.optimization_level = 0 # No optimization options.execution.shots = 100 options.resilience_level = 3 # PEC options.environment.callback = interim_results_callback with Session(service=service, backend=backend) as session: estimator_pec = Estimator(session=session, options=options) job_pec = estimator_pec.run(circuits=trotter_circuit_list, observables=obs_list) print('job id:', job_pec.job_id) expvals_pec = job_pec.result().values std_error_pec = [metadata['standard_error'] for metadata in job_pec.result().metadata] plt.title('Trotter circuits expectation value') plt.errorbar(range(1, num_steps), expvals_ideal, std_error_ideal, fmt = 'o', linestyle = '--', capsize=4, c='red', label='Ideal') plt.errorbar(range(1, num_steps), expvals_unmit, std_error_unmit, fmt = 'o', linestyle = '-', capsize=4, c='green', label='No mitigation') plt.errorbar(range(1, num_steps), expvals_pec, std_error_pec, fmt = 'd', linestyle = '-', capsize=4, c='orange', label='PEC') plt.ylabel(f"$\langle ZZZZ \\rangle$") plt.xlabel('No. Trotter Steps') plt.xticks([1, 2, 3, 4, 5]) plt.legend() plt.show() print(job_pec.result()) pec_metadata = job_pec.result().metadata fig, ax = plt.subplots() fig.subplots_adjust(right=0.75) twin1 = ax.twinx() twin2 = ax.twinx() twin3 = ax.twinx() twin2.spines.right.set_position(("axes", 1.2)) twin3.spines.right.set_position(("axes", 1.4)) p1, = ax.plot(range(1, num_steps), [m["total_mitigated_layers"] for m in pec_metadata] , "b-", label="Total mitigated layers") p2, = twin1.plot(range(1, num_steps), [m["sampling_overhead"] for m in pec_metadata], "r-", label="Sampling overhead") p3, = twin2.plot(range(1, num_steps), [m["samples"] for m in pec_metadata], "g-", label="Samples") p4, = twin3.plot(range(1, num_steps), [m["shots"] for m in pec_metadata], "c-", label="Shots") ax.set_ylim(0, 20) twin1.set_ylim(0, 2.8) twin2.set_ylim(0, 300) twin3.set_ylim(0, 35000) ax.set_xlabel("No. Trotter Steps") ax.set_ylabel("Total mitigated layers") twin1.set_ylabel("Sampling overhead") twin2.set_ylabel("Samples") twin3.set_ylabel("Shots") ax.yaxis.label.set_color(p1.get_color()) twin1.yaxis.label.set_color(p2.get_color()) twin2.yaxis.label.set_color(p3.get_color()) twin3.yaxis.label.set_color(p4.get_color()) tkw = dict(size=4, width=1.5) ax.tick_params(axis='y', colors=p1.get_color(), **tkw) twin1.tick_params(axis='y', colors=p2.get_color(), **tkw) twin2.tick_params(axis='y', colors=p3.get_color(), **tkw) twin3.tick_params(axis='y', colors=p4.get_color(), **tkw) plt.xticks([1, 2, 3, 4, 5]) ax.legend(handles=[p1, p2, p3, p4]) plt.title('PEC metadata') plt.show() from matplotlib.pyplot import figure plt.errorbar(range(1, num_steps), expvals_ideal, std_error_ideal, fmt = 'o', linestyle = '--', capsize=4, c='red', label='Ideal') plt.errorbar(range(1, num_steps), expvals_unmit, std_error_unmit, fmt = 'o', linestyle = '-', capsize=4, c='green', label='No mitigation') plt.errorbar(range(1, num_steps), expvals_unmit_trex, std_error_trex, fmt = 'o', linestyle = '-', capsize=4, c='violet', label='T-REx') plt.errorbar(range(1, num_steps), expvals_unmit_zne, [0]*(num_steps-1), fmt = 'o', linestyle = '-', capsize=4, c='cyan', label='ZNE') plt.errorbar(range(1, num_steps), expvals_pec, std_error_pec, fmt = 'd', linestyle = '-', capsize=4, c='orange', label='PEC') plt.title('Trotter circuits expectation value') plt.ylabel(f"$\langle ZZZZ \\rangle$") plt.xlabel('No. Trotter Steps') plt.xticks([1, 2, 3, 4, 5]) plt.legend() plt.show() options = Options() options.execution.shots = 1000 options.optimization_level = 0 # no optimization options.resilience_level = 2 # ZNE options.resilience.noise_factors = [1, 2, 3, 4] options.resilience.noise_amplifier = "LocalFoldingAmplifier" options.resilience.extrapolator = "QuadraticExtrapolator" with Session(service=service, backend='ibmq_montreal') as session: estimator = Estimator(session=session, options=options) job_zne_options = estimator.run(circuits=trotter_circuit_list, observables=obs_list) print('job id:', job_zne_options.job_id) print(job_zne_options.result()) from qiskit.tools import jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
input_3sat_instance = ''' c example DIMACS-CNF 3-SAT p cnf 3 5 -1 -2 -3 0 1 -2 3 0 1 2 -3 0 1 -2 -3 0 -1 2 3 0 ''' import os import tempfile from qiskit.exceptions import MissingOptionalLibraryError from qiskit.circuit.library.phase_oracle import PhaseOracle fp = tempfile.NamedTemporaryFile(mode='w+t', delete=False) fp.write(input_3sat_instance) file_name = fp.name fp.close() oracle = None try: oracle = PhaseOracle.from_dimacs_file(file_name) except MissingOptionalLibraryError as ex: print(ex) finally: os.remove(file_name) from qiskit.algorithms import AmplificationProblem problem = None if oracle is not None: problem = AmplificationProblem(oracle, is_good_state=oracle.evaluate_bitstring) from qiskit.algorithms import Grover from qiskit.primitives import Sampler grover = Grover(sampler=Sampler()) result = None if problem is not None: result = grover.amplify(problem) print(result.assignment) from qiskit.tools.visualization import plot_histogram if result is not None: display(plot_histogram(result.circuit_results[0])) expression = '(w ^ x) & ~(y ^ z) & (x & y & z)' try: oracle = PhaseOracle(expression) problem = AmplificationProblem(oracle, is_good_state=oracle.evaluate_bitstring) grover = Grover(sampler=Sampler()) result = grover.amplify(problem) display(plot_histogram(result.circuit_results[0])) except MissingOptionalLibraryError as ex: print(ex) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/Qiskit/feedback
Qiskit
# based on https://github.com/Qiskit-Extensions/qiskit-alt/blob/main/bench/jordan_wigner_nature_time.py from timeit import timeit from qiskit import __qiskit_version__ from qiskit_nature.drivers import UnitsType, Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper from qiskit_nature.operators.second_quantization import FermionicOp geometry = { "h2": [["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], "h2o": [["O", [0.0, 0.0, 0.0]], ["H", [0.757, 0.586, 0.0]], ["H", [-0.757, 0.586, 0.0]]], } def setup(basis, geom): molecule = Molecule(geometry=geom, charge=0, multiplicity=1) driver = ElectronicStructureMoleculeDriver( molecule, basis=basis, driver_type=ElectronicStructureDriverType.PYSCF ) es_problem = ElectronicStructureProblem(driver) second_q_op = es_problem.second_q_ops() qubit_converter = QubitConverter(mapper=JordanWignerMapper()) hamiltonian = second_q_op[0].reduce() return qubit_converter, hamiltonian def run_one_basis(basis, molecule, num_repetitions): qubit_converter, hamiltonian = setup(basis, geometry[molecule]) time = timeit(lambda: qubit_converter.convert(hamiltonian), number=num_repetitions) t = 1000 * time / num_repetitions print(f"geometry={molecule}, basis={basis}, size={len(hamiltonian)}, time={t:0.2f} ms") return t print(__qiskit_version__) for basis, molecule, num_repetitions in [ ("sto3g", "h2", 10), ("631g", "h2", 10), ("631++g", "h2", 5), ("sto3g", "h2o", 5), ("631g", "h2o", 1), ]: run_one_basis(basis, molecule, num_repetitions) # Pure-Python PoC of unique # https://github.com/Qiskit/qiskit-terra/pull/7656/commits/7e886dde94a7c2e46345d85b97b8bb4f7c928fc0 def _unique(array): # This function corresponds to # _, indexes, inverses = np.unique(array, return_index=True, return_inverse=True, axis=0) table = {} indexes = [] inverses = np.empty(array.shape[0], dtype=int) for i, ary in enumerate(array): b = ary.data.tobytes() if b in table: inverses[i] = table[b] else: inverses[i] = table[b] = len(table) indexes.append(i) return indexes, inverses
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) ### replaced x gate ### qc.x(1) qc.cx(1, 0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1, 0) ### replaced x gate ### qc.x(1) return qc
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test cases for the circuit qasm_file and qasm_string method.""" import os from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.circuit import Gate, Parameter from qiskit.exceptions import QiskitError from qiskit.test import QiskitTestCase from qiskit.transpiler.passes import Unroller from qiskit.converters.circuit_to_dag import circuit_to_dag class LoadFromQasmTest(QiskitTestCase): """Test circuit.from_qasm_* set of methods.""" def setUp(self): super().setUp() self.qasm_file_name = "entangled_registers.qasm" self.qasm_dir = os.path.join( os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "qasm" ) self.qasm_file_path = os.path.join(self.qasm_dir, self.qasm_file_name) def test_qasm_file(self): """ Test qasm_file and get_circuit. If all is correct we should get the qasm file loaded in _qasm_file_path """ q_circuit = QuantumCircuit.from_qasm_file(self.qasm_file_path) qr_a = QuantumRegister(4, "a") qr_b = QuantumRegister(4, "b") cr_c = ClassicalRegister(4, "c") cr_d = ClassicalRegister(4, "d") q_circuit_2 = QuantumCircuit(qr_a, qr_b, cr_c, cr_d) q_circuit_2.h(qr_a) q_circuit_2.cx(qr_a, qr_b) q_circuit_2.barrier(qr_a) q_circuit_2.barrier(qr_b) q_circuit_2.measure(qr_a, cr_c) q_circuit_2.measure(qr_b, cr_d) self.assertEqual(q_circuit, q_circuit_2) def test_loading_all_qelib1_gates(self): """Test setting up a circuit with all gates defined in qiskit/qasm/libs/qelib1.inc.""" from qiskit.circuit.library import U1Gate, U2Gate, U3Gate, CU1Gate, CU3Gate, UGate all_gates_qasm = os.path.join(self.qasm_dir, "all_gates.qasm") qasm_circuit = QuantumCircuit.from_qasm_file(all_gates_qasm) ref_circuit = QuantumCircuit(3, 3) # abstract gates (legacy) ref_circuit.append(UGate(0.2, 0.1, 0.6), [0]) ref_circuit.cx(0, 1) # the hardware primitives ref_circuit.append(U3Gate(0.2, 0.1, 0.6), [0]) ref_circuit.append(U2Gate(0.1, 0.6), [0]) ref_circuit.append(U1Gate(0.6), [0]) ref_circuit.id(0) ref_circuit.cx(0, 1) # the standard single qubit gates ref_circuit.u(0.2, 0.1, 0.6, 0) ref_circuit.p(0.6, 0) ref_circuit.x(0) ref_circuit.y(0) ref_circuit.z(0) ref_circuit.h(0) ref_circuit.s(0) ref_circuit.t(0) ref_circuit.sdg(0) ref_circuit.tdg(0) ref_circuit.sx(0) ref_circuit.sxdg(0) # the standard rotations ref_circuit.rx(0.1, 0) ref_circuit.ry(0.1, 0) ref_circuit.rz(0.1, 0) # the barrier ref_circuit.barrier() # the standard user-defined gates ref_circuit.swap(0, 1) ref_circuit.cswap(0, 1, 2) ref_circuit.cy(0, 1) ref_circuit.cz(0, 1) ref_circuit.ch(0, 1) ref_circuit.csx(0, 1) ref_circuit.append(CU1Gate(0.6), [0, 1]) ref_circuit.append(CU3Gate(0.2, 0.1, 0.6), [0, 1]) ref_circuit.cp(0.6, 0, 1) ref_circuit.cu(0.2, 0.1, 0.6, 0, 0, 1) ref_circuit.ccx(0, 1, 2) ref_circuit.crx(0.6, 0, 1) ref_circuit.cry(0.6, 0, 1) ref_circuit.crz(0.6, 0, 1) ref_circuit.rxx(0.2, 0, 1) ref_circuit.rzz(0.2, 0, 1) ref_circuit.measure([0, 1, 2], [0, 1, 2]) self.assertEqual(qasm_circuit, ref_circuit) def test_fail_qasm_file(self): """ Test fail_qasm_file. If all is correct we should get a QiskitError """ self.assertRaises(QiskitError, QuantumCircuit.from_qasm_file, "") def test_qasm_text(self): """ Test qasm_text and get_circuit. If all is correct we should get the qasm file loaded from the string """ qasm_string = "// A simple 8 qubit example\nOPENQASM 2.0;\n" qasm_string += 'include "qelib1.inc";\nqreg a[4];\n' qasm_string += "qreg b[4];\ncreg c[4];\ncreg d[4];\nh a;\ncx a, b;\n" qasm_string += "barrier a;\nbarrier b;\nmeasure a[0]->c[0];\n" qasm_string += "measure a[1]->c[1];\nmeasure a[2]->c[2];\n" qasm_string += "measure a[3]->c[3];\nmeasure b[0]->d[0];\n" qasm_string += "measure b[1]->d[1];\nmeasure b[2]->d[2];\n" qasm_string += "measure b[3]->d[3];" q_circuit = QuantumCircuit.from_qasm_str(qasm_string) qr_a = QuantumRegister(4, "a") qr_b = QuantumRegister(4, "b") cr_c = ClassicalRegister(4, "c") cr_d = ClassicalRegister(4, "d") ref = QuantumCircuit(qr_a, qr_b, cr_c, cr_d) ref.h(qr_a[3]) ref.cx(qr_a[3], qr_b[3]) ref.h(qr_a[2]) ref.cx(qr_a[2], qr_b[2]) ref.h(qr_a[1]) ref.cx(qr_a[1], qr_b[1]) ref.h(qr_a[0]) ref.cx(qr_a[0], qr_b[0]) ref.barrier(qr_b) ref.measure(qr_b, cr_d) ref.barrier(qr_a) ref.measure(qr_a, cr_c) self.assertEqual(len(q_circuit.cregs), 2) self.assertEqual(len(q_circuit.qregs), 2) self.assertEqual(q_circuit, ref) def test_qasm_text_conditional(self): """ Test qasm_text and get_circuit when conditionals are present. """ qasm_string = ( "\n".join( [ "OPENQASM 2.0;", 'include "qelib1.inc";', "qreg q[1];", "creg c0[4];", "creg c1[4];", "x q[0];", "if(c1==4) x q[0];", ] ) + "\n" ) q_circuit = QuantumCircuit.from_qasm_str(qasm_string) qr = QuantumRegister(1, "q") cr0 = ClassicalRegister(4, "c0") cr1 = ClassicalRegister(4, "c1") ref = QuantumCircuit(qr, cr0, cr1) ref.x(qr[0]) ref.x(qr[0]).c_if(cr1, 4) self.assertEqual(len(q_circuit.cregs), 2) self.assertEqual(len(q_circuit.qregs), 1) self.assertEqual(q_circuit, ref) def test_opaque_gate(self): """ Test parse an opaque gate See https://github.com/Qiskit/qiskit-terra/issues/1566. """ qasm_string = ( "\n".join( [ "OPENQASM 2.0;", 'include "qelib1.inc";', "opaque my_gate(theta,phi,lambda) a,b;", "qreg q[3];", "my_gate(1,2,3) q[1],q[2];", ] ) + "\n" ) circuit = QuantumCircuit.from_qasm_str(qasm_string) qr = QuantumRegister(3, "q") expected = QuantumCircuit(qr) expected.append(Gate(name="my_gate", num_qubits=2, params=[1, 2, 3]), [qr[1], qr[2]]) self.assertEqual(circuit, expected) def test_qasm_example_file(self): """Loads qasm/example.qasm.""" qasm_filename = os.path.join(self.qasm_dir, "example.qasm") expected_circuit = QuantumCircuit.from_qasm_str( "\n".join( [ "OPENQASM 2.0;", 'include "qelib1.inc";', "qreg q[3];", "qreg r[3];", "creg c[3];", "creg d[3];", "h q[2];", "cx q[2],r[2];", "measure r[2] -> d[2];", "h q[1];", "cx q[1],r[1];", "measure r[1] -> d[1];", "h q[0];", "cx q[0],r[0];", "measure r[0] -> d[0];", "barrier q[0],q[1],q[2];", "measure q[2] -> c[2];", "measure q[1] -> c[1];", "measure q[0] -> c[0];", ] ) + "\n" ) q_circuit = QuantumCircuit.from_qasm_file(qasm_filename) self.assertEqual(q_circuit, expected_circuit) self.assertEqual(len(q_circuit.cregs), 2) self.assertEqual(len(q_circuit.qregs), 2) def test_qasm_qas_string_order(self): """Test that gates are returned in qasm in ascending order.""" expected_qasm = ( "\n".join( [ "OPENQASM 2.0;", 'include "qelib1.inc";', "qreg q[3];", "h q[0];", "h q[1];", "h q[2];", ] ) + "\n" ) qasm_string = """OPENQASM 2.0; include "qelib1.inc"; qreg q[3]; h q;""" q_circuit = QuantumCircuit.from_qasm_str(qasm_string) self.assertEqual(q_circuit.qasm(), expected_qasm) def test_from_qasm_str_custom_gate1(self): """Test load custom gates (simple case)""" qasm_string = """OPENQASM 2.0; include "qelib1.inc"; gate rinv q {sdg q; h q; sdg q; h q; } qreg qr[1]; rinv qr[0];""" circuit = QuantumCircuit.from_qasm_str(qasm_string) rinv_q = QuantumRegister(1, name="q") rinv_gate = QuantumCircuit(rinv_q, name="rinv") rinv_gate.sdg(rinv_q) rinv_gate.h(rinv_q) rinv_gate.sdg(rinv_q) rinv_gate.h(rinv_q) rinv = rinv_gate.to_instruction() qr = QuantumRegister(1, name="qr") expected = QuantumCircuit(qr, name="circuit") expected.append(rinv, [qr[0]]) self.assertEqualUnroll(["sdg", "h"], circuit, expected) def test_from_qasm_str_custom_gate2(self): """Test load custom gates (no so simple case, different bit order) See: https://github.com/Qiskit/qiskit-terra/pull/3393#issuecomment-551307250 """ qasm_string = """OPENQASM 2.0; include "qelib1.inc"; gate swap2 a,b { cx a,b; cx b,a; // different bit order cx a,b; } qreg qr[3]; swap2 qr[0], qr[1]; swap2 qr[1], qr[2];""" circuit = QuantumCircuit.from_qasm_str(qasm_string) ab_args = QuantumRegister(2, name="ab") swap_gate = QuantumCircuit(ab_args, name="swap2") swap_gate.cx(ab_args[0], ab_args[1]) swap_gate.cx(ab_args[1], ab_args[0]) swap_gate.cx(ab_args[0], ab_args[1]) swap = swap_gate.to_instruction() qr = QuantumRegister(3, name="qr") expected = QuantumCircuit(qr, name="circuit") expected.append(swap, [qr[0], qr[1]]) expected.append(swap, [qr[1], qr[2]]) self.assertEqualUnroll(["cx"], expected, circuit) def test_from_qasm_str_custom_gate3(self): """Test load custom gates (no so simple case, different bit count) See: https://github.com/Qiskit/qiskit-terra/pull/3393#issuecomment-551307250 """ qasm_string = """OPENQASM 2.0; include "qelib1.inc"; gate cswap2 a,b,c { cx c,b; // different bit count ccx a,b,c; //previously defined gate cx c,b; } qreg qr[3]; cswap2 qr[1], qr[0], qr[2];""" circuit = QuantumCircuit.from_qasm_str(qasm_string) abc_args = QuantumRegister(3, name="abc") cswap_gate = QuantumCircuit(abc_args, name="cswap2") cswap_gate.cx(abc_args[2], abc_args[1]) cswap_gate.ccx(abc_args[0], abc_args[1], abc_args[2]) cswap_gate.cx(abc_args[2], abc_args[1]) cswap = cswap_gate.to_instruction() qr = QuantumRegister(3, name="qr") expected = QuantumCircuit(qr, name="circuit") expected.append(cswap, [qr[1], qr[0], qr[2]]) self.assertEqualUnroll(["cx", "h", "tdg", "t"], circuit, expected) def test_from_qasm_str_custom_gate4(self): """Test load custom gates (parameterized) See: https://github.com/Qiskit/qiskit-terra/pull/3393#issuecomment-551307250 """ qasm_string = """OPENQASM 2.0; include "qelib1.inc"; gate my_gate(phi,lambda) q {u(1.5707963267948966,phi,lambda) q;} qreg qr[1]; my_gate(pi, pi) qr[0];""" circuit = QuantumCircuit.from_qasm_str(qasm_string) my_gate_circuit = QuantumCircuit(1, name="my_gate") phi = Parameter("phi") lam = Parameter("lambda") my_gate_circuit.u(1.5707963267948966, phi, lam, 0) my_gate = my_gate_circuit.to_gate() qr = QuantumRegister(1, name="qr") expected = QuantumCircuit(qr, name="circuit") expected.append(my_gate, [qr[0]]) expected = expected.bind_parameters({phi: 3.141592653589793, lam: 3.141592653589793}) self.assertEqualUnroll("u", circuit, expected) def test_from_qasm_str_custom_gate5(self): """Test load custom gates (parameterized, with biop and constant) See: https://github.com/Qiskit/qiskit-terra/pull/3393#issuecomment-551307250 """ qasm_string = """OPENQASM 2.0; include "qelib1.inc"; gate my_gate(phi,lambda) q {u(pi/2,phi,lambda) q;} // biop with pi qreg qr[1]; my_gate(pi, pi) qr[0];""" circuit = QuantumCircuit.from_qasm_str(qasm_string) my_gate_circuit = QuantumCircuit(1, name="my_gate") phi = Parameter("phi") lam = Parameter("lambda") my_gate_circuit.u(1.5707963267948966, phi, lam, 0) my_gate = my_gate_circuit.to_gate() qr = QuantumRegister(1, name="qr") expected = QuantumCircuit(qr, name="circuit") expected.append(my_gate, [qr[0]]) expected = expected.bind_parameters({phi: 3.141592653589793, lam: 3.141592653589793}) self.assertEqualUnroll("u", circuit, expected) def test_from_qasm_str_custom_gate6(self): """Test load custom gates (parameters used in expressions) See: https://github.com/Qiskit/qiskit-terra/pull/3393#issuecomment-591668924 """ qasm_string = """OPENQASM 2.0; include "qelib1.inc"; gate my_gate(phi,lambda) q {rx(phi+pi) q; ry(lambda/2) q;} // parameters used in expressions qreg qr[1]; my_gate(pi, pi) qr[0];""" circuit = QuantumCircuit.from_qasm_str(qasm_string) my_gate_circuit = QuantumCircuit(1, name="my_gate") phi = Parameter("phi") lam = Parameter("lambda") my_gate_circuit.rx(phi + 3.141592653589793, 0) my_gate_circuit.ry(lam / 2, 0) my_gate = my_gate_circuit.to_gate() qr = QuantumRegister(1, name="qr") expected = QuantumCircuit(qr, name="circuit") expected.append(my_gate, [qr[0]]) expected = expected.bind_parameters({phi: 3.141592653589793, lam: 3.141592653589793}) self.assertEqualUnroll(["rx", "ry"], circuit, expected) def test_from_qasm_str_custom_gate7(self): """Test load custom gates (build in functions) See: https://github.com/Qiskit/qiskit-terra/pull/3393#issuecomment-592208951 """ qasm_string = """OPENQASM 2.0; include "qelib1.inc"; gate my_gate(phi,lambda) q {u(asin(cos(phi)/2), phi+pi, lambda/2) q;} // build func qreg qr[1]; my_gate(pi, pi) qr[0];""" circuit = QuantumCircuit.from_qasm_str(qasm_string) qr = QuantumRegister(1, name="qr") expected = QuantumCircuit(qr, name="circuit") expected.u(-0.5235987755982988, 6.283185307179586, 1.5707963267948966, qr[0]) self.assertEqualUnroll("u", circuit, expected) def test_from_qasm_str_nested_custom_gate(self): """Test chain of custom gates See: https://github.com/Qiskit/qiskit-terra/pull/3393#issuecomment-592261942 """ qasm_string = """OPENQASM 2.0; include "qelib1.inc"; gate my_other_gate(phi,lambda) q {u(asin(cos(phi)/2), phi+pi, lambda/2) q;} gate my_gate(phi) r {my_other_gate(phi, phi+pi) r;} qreg qr[1]; my_gate(pi) qr[0];""" circuit = QuantumCircuit.from_qasm_str(qasm_string) qr = QuantumRegister(1, name="qr") expected = QuantumCircuit(qr, name="circuit") expected.u(-0.5235987755982988, 6.283185307179586, 3.141592653589793, qr[0]) self.assertEqualUnroll("u", circuit, expected) def test_from_qasm_str_delay(self): """Test delay instruction/opaque-gate See: https://github.com/Qiskit/qiskit-terra/issues/6510 """ qasm_string = """OPENQASM 2.0; include "qelib1.inc"; opaque delay(time) q; qreg q[1]; delay(172) q[0];""" circuit = QuantumCircuit.from_qasm_str(qasm_string) qr = QuantumRegister(1, name="q") expected = QuantumCircuit(qr, name="circuit") expected.delay(172, qr[0]) self.assertEqualUnroll("u", circuit, expected) def test_definition_with_u_cx(self): """Test that gate-definition bodies can use U and CX.""" qasm_string = """ OPENQASM 2.0; gate bell q0, q1 { U(pi/2, 0, pi) q0; CX q0, q1; } qreg q[2]; bell q[0], q[1]; """ circuit = QuantumCircuit.from_qasm_str(qasm_string) qr = QuantumRegister(2, "q") expected = QuantumCircuit(qr) expected.h(0) expected.cx(0, 1) self.assertEqualUnroll(["u", "cx"], circuit, expected) def assertEqualUnroll(self, basis, circuit, expected): """Compares the dags after unrolling to basis""" circuit_dag = circuit_to_dag(circuit) expected_dag = circuit_to_dag(expected) circuit_result = Unroller(basis).run(circuit_dag) expected_result = Unroller(basis).run(expected_dag) self.assertEqual(circuit_result, expected_result)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1); tensored = bottom.tensor(top) tensored.draw('mpl')
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
import numpy as np from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute from qiskit import BasicAer π = np.pi q = QuantumRegister(3, 'q') c = ClassicalRegister(1, 'c') qft = QuantumCircuit(q, c) qft.h(q[0]) qft.cu1(π/2, q[1], q[0]) qft.h(q[1]) qft.cu1(π/4, q[2], q[0]) qft.cu1(π/2, q[2], q[1]) qft.h(q[2]); from qiskit.tools.visualization import circuit_drawer circuit_drawer(qft) qpe = QuantumCircuit(q, c) qpe.h(q[0]) qpe.h(q[1]); # Controlled-U0 qpe.cu3(-π / 2, -π / 2, π / 2, q[1], q[2]) qpe.cu1(3 * π / 4, q[1], q[2]) qpe.cx(q[1], q[2]) qpe.cu1(3 * π / 4, q[1], q[2]) qpe.cx(q[1], q[2]) # Controlled-U1 qpe.cx(q[0], q[2]); qpe.swap(q[0], q[1]) qpe.h(q[1]) qpe.cu1(-π / 2, q[0], q[1]) qpe.h(q[0]); circuit_drawer(qpe)
https://github.com/abbarreto/qiskit2
abbarreto
%run init.ipynb from qiskit import * nshots = 8192 IBMQ.load_account() provider= qiskit.IBMQ.get_provider(hub='ibm-q-research-2',group='federal-uni-sant-1',project='main') device = provider.get_backend('ibmq_bogota') simulator = Aer.get_backend('qasm_simulator') from qiskit.visualization import plot_histogram from qiskit.tools.monitor import job_monitor from qiskit.quantum_info import state_fidelity
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.dagcircuit import DAGCircuit from qiskit.converters import circuit_to_dag from qiskit.visualization import dag_drawer q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.measure(q[0], c[0]) circ.rz(0.5, q[1]).c_if(c, 2) dag = circuit_to_dag(circ) dag_drawer(dag)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.problems import QuadraticProgram # define a problem qp = QuadraticProgram() qp.binary_var("x") qp.integer_var(name="y", lowerbound=-1, upperbound=4) qp.maximize(quadratic={("x", "y"): 1}) qp.linear_constraint({"x": 1, "y": -1}, "<=", 0) print(qp.prettyprint()) from qiskit_optimization.algorithms import CplexOptimizer, GurobiOptimizer cplex_result = CplexOptimizer().solve(qp) gurobi_result = GurobiOptimizer().solve(qp) print("cplex") print(cplex_result.prettyprint()) print() print("gurobi") print(gurobi_result.prettyprint()) result = CplexOptimizer(disp=True, cplex_parameters={"threads": 1, "timelimit": 0.1}).solve(qp) print(result.prettyprint()) from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_aer import Aer from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler meo = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA(maxiter=100))) result = meo.solve(qp) print(result.prettyprint()) print("\ndisplay the best 5 solution samples") for sample in result.samples[:5]: print(sample) # docplex model from docplex.mp.model import Model docplex_model = Model("docplex") x = docplex_model.binary_var("x") y = docplex_model.integer_var(-1, 4, "y") docplex_model.maximize(x * y) docplex_model.add_constraint(x <= y) docplex_model.prettyprint() # gurobi model import gurobipy as gp gurobipy_model = gp.Model("gurobi") x = gurobipy_model.addVar(vtype=gp.GRB.BINARY, name="x") y = gurobipy_model.addVar(vtype=gp.GRB.INTEGER, lb=-1, ub=4, name="y") gurobipy_model.setObjective(x * y, gp.GRB.MAXIMIZE) gurobipy_model.addConstr(x - y <= 0) gurobipy_model.update() gurobipy_model.display() from qiskit_optimization.translators import from_docplex_mp, from_gurobipy qp = from_docplex_mp(docplex_model) print("QuadraticProgram obtained from docpblex") print(qp.prettyprint()) print("-------------") print("QuadraticProgram obtained from gurobipy") qp2 = from_gurobipy(gurobipy_model) print(qp2.prettyprint()) from qiskit_optimization.translators import to_gurobipy, to_docplex_mp gmod = to_gurobipy(from_docplex_mp(docplex_model)) print("convert docplex to gurobipy via QuadraticProgram") gmod.display() dmod = to_docplex_mp(from_gurobipy(gurobipy_model)) print("\nconvert gurobipy to docplex via QuadraticProgram") print(dmod.export_as_lp_string()) ind_mod = Model("docplex") x = ind_mod.binary_var("x") y = ind_mod.integer_var(-1, 2, "y") z = ind_mod.integer_var(-1, 2, "z") ind_mod.maximize(3 * x + y - z) ind_mod.add_indicator(x, y >= z, 1) print(ind_mod.export_as_lp_string()) qp = from_docplex_mp(ind_mod) result = meo.solve(qp) # apply QAOA to QuadraticProgram print("QAOA") print(result.prettyprint()) print("-----\nCPLEX") print(ind_mod.solve()) # apply CPLEX directly to the Docplex model import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/carstenblank/dc-qiskit-qml
carstenblank
# -*- coding: utf-8 -*- # Copyright 2018 Carsten Blank # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" CCXMöttönen ============ .. currentmodule:: dc_qiskit_qml.distance_based.hadamard.state.cnot._CCXMöttönen This module implements a :py:class:`CCXFactory` to create a multi-controlled X-gate (or NOT gate) to a circuit using the uniform rotations as described by Möttönen et al. (http://dl.acm.org/citation.cfm?id=2011670.2011675). .. autosummary:: :nosignatures: CCXMöttönen CCXMöttönen ############# .. autoclass:: CCXMöttönen :members: """ import logging from typing import List, Union, Tuple from dc_qiskit_algorithms.UniformRotation import ccx_uni_rot from qiskit import QuantumCircuit, QuantumRegister from qiskit.circuit.register import Register from . import CCXFactory log = logging.getLogger(__name__) class CCXMottonen(CCXFactory): """ cc-X gate implemented via the uniform rotation scheme (Möttönen et al. 2005) """ def ccx(self, qc, conditial_case, control_qubits, tgt): # type: (CCXFactory, QuantumCircuit, int, Union[List[Tuple[Register, int]], QuantumRegister], Union[Tuple[Register, int], QuantumRegister]) ->QuantumCircuit """ Using the Möttönen uniform rotation, one can create multi-controlled NOT gate (along with other arbitrary rotations). The routine has exponential (w.r.t. number of qubits) gate usage. :param qc: the circuit to apply this operation to :param conditial_case: an integer whose binary representation signifies the branch to controll on :param control_qubits: the qubits that hold the desired conditional case :param tgt: the target to be applied the controlled X gate on :return: the circuit after application of the gate """ ccx_uni_rot(qc, conditial_case, control_qubits, tgt) return qc
https://github.com/WhenTheyCry96/qiskitHackathon2022
WhenTheyCry96
%load_ext autoreload %autoreload 2 import os import warnings import numpy as np import pyEPR as epr import qiskit_metal as metal from collections import OrderedDict import scqubits as scq from scipy.constants import c, h, pi, hbar, e from qiskit_metal import designs, draw, MetalGUI, Dict, Headings from qiskit_metal.qlibrary.tlines.meandered import RouteMeander from qiskit_metal.qlibrary.tlines.anchored_path import RouteAnchors from qiskit_metal.analyses.quantization import LOManalysis, EPRanalysis from qiskit_metal.analyses.em.cpw_calculations import guided_wavelength from qiskit_metal.qlibrary.qubits.transmon_pocket_cl import TransmonPocketCL from qiskit_metal.qlibrary.lumped.cap_3_interdigital import Cap3Interdigital from qiskit_metal.qlibrary.terminations.launchpad_wb_coupled import LaunchpadWirebondCoupled from qiskit_metal.analyses.quantization.lumped_capacitive import load_q3d_capacitance_matrix from qiskit_metal.analyses.quantization.lom_core_analysis import CompositeSystem, Cell, Subsystem, QuantumSystemRegistry ws_path = os.getcwd() warnings.filterwarnings("ignore") design = designs.DesignPlanar() design.overwrite_enabled = True #constants: phi0 = h/(2*e) varphi0 = phi0/(2*pi) # project target parameters f_qList = np.around(np.linspace(5.25, 5.75, 4),2) # GHz f_rList = f_qList + 1.8 # GHz L_JJList = np.around(varphi0**2/((f_qList*1e9+300e6)**2/(8*300e6))/h*1e9, 2) # nH # initial CPW readout lengths def find_resonator_length(frequency, line_width, line_gap, N): #frequency in GHz #line_width/line_gap in um #N -> 2 for lambda/2, 4 for lambda/4 [lambdaG, etfSqrt, q] = guided_wavelength(frequency*10**9, line_width*10**-6, line_gap*10**-6, 750*10**-6, 200*10**-9) return str(lambdaG/N*10**3)+" mm" find_resonator_length(f_rList, 10, 6, 2) design.chips.main.size_x = '12mm' design.chips.main.size_y = '10mm' gui = MetalGUI(design) design.delete_all_components() design_span_x = 5 design_span_y = 3 half_chip_width = design_span_x / 2 half_chip_height = design_span_y / 2 connection_pads_options = dict( a = dict(loc_W=1, loc_H=-1), b = dict(loc_W=1, loc_H=1), c = dict(loc_W=-1, loc_H=-1) ) connection23_pads_options = dict( a = dict(loc_W=1, loc_H=-1), c = dict(loc_W=-1, loc_H=-1) ) transmons = [] transmons.append(TransmonPocketCL(design, 'Q1', options=dict(pos_x=f'-{half_chip_width}mm', pos_y=f'{-half_chip_height}mm', connection_pads=dict(**connection_pads_options)))) transmons.append(TransmonPocketCL(design, 'Q2', options=dict(pos_x=f'0mm', pos_y=f'{half_chip_height}mm', orientation=-90, connection_pads=dict(d=dict(loc_W=-1, loc_H=1), **connection23_pads_options)))) transmons.append(TransmonPocketCL(design, 'Q3', options=dict(pos_x=f'0mm', pos_y=f'{-half_chip_height}mm', orientation=90, connection_pads=dict(d=dict(loc_W=-1, loc_H=1), **connection23_pads_options)))) transmons.append(TransmonPocketCL(design, 'Q4', options=dict(pos_x=f'{half_chip_width}mm', pos_y=f'{half_chip_height}mm', orientation=180, connection_pads=dict(**connection_pads_options)))) gui.rebuild() gui.autoscale() fillet='99.99um' options = Dict( meander=Dict( lead_start='0.1mm', lead_end='0.1mm', asymmetry='0 um') ) def connect(component_name: str, component1: str, pin1: str, component2: str, pin2: str, length: str, asymmetry='0 um', start_strght='0 um', end_strght='0 um', flip=False): """Connect two pins with a CPW.""" myoptions = Dict( pin_inputs=Dict( start_pin=Dict( component=component1, pin=pin1), end_pin=Dict( component=component2, pin=pin2)), lead=Dict( start_straight=start_strght, end_straight=end_strght ), total_length=length, fillet = '99.9um') myoptions.update(options) myoptions.meander.asymmetry = asymmetry myoptions.meander.lead_direction_inverted = 'true' if flip else 'false' return RouteMeander(design, component_name, myoptions) asym_h = 100 asym_v = 100 cpw = [] cpw.append(connect('cpw1', 'Q1', 'b', 'Q2', 'a', '8 mm', f'+{asym_h}um', '0.1mm', '0.1mm')) cpw.append(connect('cpw3', 'Q4', 'b', 'Q3', 'a', '8 mm', f'+{asym_h}um', '0.1mm', '0.1mm')) cpw.append(connect('cpw4', 'Q3', 'd', 'Q1', 'a', '8 mm', f'-{asym_h}um', '0.1mm', '0.1mm')) cpw.append(connect('cpw5', 'Q2', 'd', 'Q4', 'a', '8 mm', f'-{asym_h}um', '0.1mm', '0.1mm')) gui.rebuild() gui.autoscale() readouts_lwc = [] control_lwc = [] offset_x = 0 offset_y = 1 #Readouts readouts_lwc.append(LaunchpadWirebondCoupled(design, 'R1', options = dict( pos_x = '-5mm', pos_y = f'-{half_chip_height+offset_y}mm', lead_length = '30um'))) readouts_lwc.append(LaunchpadWirebondCoupled(design, 'R2', options = dict( pos_x = '-1mm', pos_y = '4mm', orientation = -90, lead_length = '30um'))) readouts_lwc.append(LaunchpadWirebondCoupled(design, 'R3', options = dict( pos_x = '1mm', pos_y = '-4mm', orientation = 90, lead_length = '30um'))) readouts_lwc.append(LaunchpadWirebondCoupled(design, 'R4', options = dict( pos_x = '5mm', pos_y = f'{half_chip_height+offset_y}mm', orientation = 180, lead_length = '30um'))) #Controls control_lwc.append(LaunchpadWirebondCoupled(design, 'CL1', options = dict( pos_x = '-5mm', pos_y = '2mm', lead_length = '30um'))) control_lwc.append(LaunchpadWirebondCoupled(design, 'CL2', options = dict( pos_x = '4mm', pos_y = '4mm', orientation = -90, lead_length = '30um'))) control_lwc.append(LaunchpadWirebondCoupled(design, 'CL3', options = dict( pos_x = '-4mm', pos_y = '-4mm', orientation = 90, lead_length = '30um'))) control_lwc.append(LaunchpadWirebondCoupled(design, 'CL4', options = dict( pos_x = '5mm', pos_y = '-2mm', orientation = 180, lead_length = '30um'))) gui.rebuild() gui.autoscale() readout_lines = [] asym_14 = 700 asym_23 = 700 options = Dict( lead=Dict( start_straight='330um', end_straight='0um'), fillet='99.99um') readout_lines.append(connect('ol1', 'Q1', 'c', 'R1', 'tie', '8 mm', f'{asym_14}um')) options = Dict( lead=Dict( start_straight='430um', end_straight='0um'), fillet='99.99um') readout_lines.append(connect('ol2', 'Q2', 'c', 'R2', 'tie', '8 mm', f'{asym_23}um')) readout_lines.append(connect('ol3', 'Q3', 'c', 'R3', 'tie', '8 mm', f'{asym_23}um')) readout_lines.append(connect('ol4', 'Q4', 'c', 'R4', 'tie', '8 mm', f'{asym_14}um')) gui.rebuild() gui.autoscale() control_lines = [] def connectRouteAnchor(name: str, component1: str, pin1: str, component2: str, pin2: str, anchor_points: OrderedDict) -> RouteAnchors: options_line_cl = dict( pin_inputs = dict(start_pin = dict(component = component1, pin = pin1), end_pin = dict(component = component2, pin = pin2)), anchors = anchor_points, lead = dict(start_straight = '200um', end_straight = '225um'), fillet = fillet ) return RouteAnchors(design, name, options_line_cl) anchors1c = OrderedDict() anchors1c[0] = np.array([-4, -1.42]) anchors1c[1] = np.array([-4, 2]) control_lines.append(connectRouteAnchor('line_cl1', 'Q1', 'Charge_Line', 'CL1', 'tie', anchors1c)) anchors2c = OrderedDict() anchors2c[0] = np.array([0.08, 3.25]) anchors2c[1] = np.array([4, 3.25]) control_lines.append(connectRouteAnchor('line_cl2', 'Q2', 'Charge_Line', 'CL2', 'tie', anchors2c)) anchors3c = OrderedDict() anchors3c[0] = np.array([-0.08, -3.25]) anchors3c[1] = np.array([-4, -3.25]) control_lines.append(connectRouteAnchor('line_cl3', 'Q3', 'Charge_Line', 'CL3', 'tie', anchors3c)) anchors4c = OrderedDict() anchors4c[0] = np.array([4, 1.42]) anchors4c[1] = np.array([4, -2]) control_lines.append(connectRouteAnchor('line_cl4', 'Q4', 'Charge_Line', 'CL4', 'tie', anchors4c)) gui.rebuild() gui.autoscale() gui.screenshot(name="full_design.png") # constants: phi0 = h/(2*e) varphi0 = phi0/(2*pi) # project target parameters f_qList = np.around(np.linspace(5.25, 5.75, 4),2) # GHz f_rList = f_qList + 1.8 # GHz L_JJList = np.around(varphi0**2/((f_qList*1e9+300e6)**2/(8*300e6))/h*1e9, 2) # nH # initial CPW readout lengths def find_resonator_length(frequency, line_width, line_gap, N): #frequency in GHz #line_width/line_gap in um #N -> 2 for lambda/2, 4 for lambda/4 [lambdaG, etfSqrt, q] = guided_wavelength(frequency*10**9, line_width*10**-6, line_gap*10**-6, 750*10**-6, 200*10**-9) return str(lambdaG/N*10**3)+" mm" find_resonator_length(f_rList, 10, 6, 2) # CPW busline length is determined to be 7 mm cpw[0].options.total_length = '7.0mm' cpw[1].options.total_length = '7.0mm' cpw[2].options.total_length = '7.0mm' cpw[3].options.total_length = '7.0mm' gui.rebuild() gui.autoscale() # qubit 1 design target f: 5.25 GHz # readout resonator target f: 7.05 GHz # qubit 2 design target f: 5.42 GHz # readout resonator target f: 7.22 GHz transmons[1].options.pad_gap = '40um' transmons[1].options.pad_width = '390um' # 405 transmons[1].options.pad_height = '120um' transmons[1].options.connection_pads.d.pad_gap='8um' transmons[1].options.connection_pads.a.pad_gap='8um' transmons[1].options.connection_pads.c.pad_gap='8um' transmons[1].options.connection_pads.d.pad_width='140um' transmons[1].options.connection_pads.a.pad_width='140um' transmons[1].options.connection_pads.c.pad_width='150um' transmons[1].options.connection_pads.d.pad_gap # qubit 3 design target f: 5.58 GHz # readout resonator target f: 7.38 GHz transmons[2].options.pad_gap = '40um' transmons[2].options.pad_width = '370um' # 405 transmons[2].options.pad_height = '120um' transmons[2].options.connection_pads.d.pad_gap='10um' transmons[2].options.connection_pads.a.pad_gap='10um' transmons[2].options.connection_pads.c.pad_gap='10um' # qubit 4 design target f: 5.75 GHz # readout resonator target f: 7.55 GHz # tuning parameters C_JJ4f = 2 L_JJ4f = 9.8 C_JJ4 = str(C_JJ4f)+' fF' L_JJ4 = str(L_JJ4f)+' nH' transmons[3].options.pad_gap = '35um' transmons[3].options.pad_width = '510um' transmons[3].options.pad_height = '125um' transmons[3].options.connection_pads.c.pad_gap = '30um' transmons[3].options.connection_pads.a.pad_gap = '15um' # cpw5 transmons[3].options.connection_pads.a.pad_width = '40um' # cpw5 transmons[3].options.connection_pads.b.pad_gap = '15um' # cpw3 transmons[3].options.connection_pads.b.pad_width = '40um' # cpw3 readout_lines[3].options.total_length = '7.5mm' gui.rebuild() gui.autoscale()
https://github.com/harshdeeps036/QiskitFallFest21-AU
harshdeeps036
# Importing standard Qiskit libraries and configuring account from qiskit import QuantumRegister, ClassicalRegister, execute from qiskit import QuantumCircuit, execute, Aer from qiskit.tools.jupyter import * import matplotlib.pyplot as plt import numpy as np from math import pi %matplotlib inline def real_map(value, leftMin, leftMax, rightMin, rightMax): # Maps one range to another # Figure out how 'wide' each range is leftSpan = leftMax - leftMin rightSpan = rightMax - rightMin # Convert the left range into a 0-1 range (float) valueScaled = float(value - leftMin) / float(leftSpan) # Convert the 0-1 range into a value in the right range. return rightMin + (valueScaled * rightSpan) # Quantum Random Number generator def QRandom(a, b, qubits): q = QuantumRegister(qubits, 'q') circ = QuantumCircuit(q) c0 = ClassicalRegister(1, 'c0') circ.add_register(c0) for i in range(qubits): circ.h(q[i]) for i in range(qubits): circ.measure(q[i], c0) backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() output = result.get_statevector(circ, decimals=5) n1 = 0 n2 = 0 n3 = 0 for i in range( output.size ): if abs(output[i]) != 0: n1 = i n2 = np.real(output[i]) n3 = np.imag(output[i]) y = real_map(n1+n2+n3, -qubits, len(output)-1+qubits, a, b) return y y = [] for i in range(20): y.append(QRandom(0,100,3)) plt.plot(y) # Example of number of unique random numbers: # Generating 40 random numbers with our QRNG y = [] for i in range(40): y.append(QRandom(0,100,3)) count = 0 z=[] #Counting the number of unique elements for num in y: if num not in z: count = count+1 z.append(num) print('The number of unique elements in provided random distribution is:') print(count) # Variational Quantum Random Number generator def VarQRandom(a, b, theta, depth, qubits): q = QuantumRegister(qubits, 'q') circ = QuantumCircuit(q) c0 = ClassicalRegister(2, 'c0') circ.add_register(c0) for j in range(depth): for i in range(qubits): circ.h(q[i]) #rotating the axis by an angle theta along y-axis circ.ry(theta, q[i]) #rotating the axis by an angle theta along x-axis circ.rx(theta, q[i]) for i in range(qubits): circ.measure(q[i], c0) backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() output = result.get_statevector(circ, decimals=5) n1 = 0 n2 = 0 n3 = 0 for i in range( output.size ): if abs(output[i]) != 0: n1 = i n2 = np.real(output[i]) n3 = np.imag(output[i]) y = real_map(n1+n2+n3, -qubits, len(output)-1+qubits, a, b) return y #initialization m=0 length = 0 theta = 0 #taking input from the user number = int(input('Enter the number of random numbers required')) low = int(input('Enter lower limit')) high = int(input('Enter higher limit')) depth=1 x=[] n=1 while length!=number: y = VarQRandom(low,high,theta,depth,3) while (y in x): i=i+1 theta = theta + pi/16 y= VarQRandom(low,high,theta,depth,3) if(i==(16*n)): depth = depth+1 n=n+1 x.append(y) length=len(x) plt.plot(x) count = 0 z=[] #Counting the number of unique elements for num in x: if num not in z: count = count+1 z.append(num) print('The number of unique elements in provided random distribution is:') print(count) y2 = [] for i in range(20): y2.append(QRandom(0,100,2)) plt.plot(y2) z2=[] count = 0 #Counting the number of unique elements for num in y2: if num not in z2: count = count+1 z2.append(num) print('The number of unique elements in provided random distribution is:') print(count) #initialization m=0 length = 0 theta = 0 #taking input from the user number = int(input('Enter the number of random numbers required')) low = int(input('Enter lower limit')) high = int(input('Enter higher limit')) depth=1 x2=[] n=1 while length!=number: y = VarQRandom(low,high,theta,depth,2) while (y in x2): i=i+1 theta = theta + pi/16 y= VarQRandom(low,high,theta,depth,2) if(i==(16*n)): depth = depth+1 n=n+1 x2.append(y) length=len(x2) plt.plot(x2) z2=[] count = 0 #Counting the number of unique elements for num in x2: if num not in z2: count = count+1 z2.append(num) print('The number of unique elements in provided random distribution is:') print(count) from datetime import datetime start_time = datetime.now() y3 = [] for i in range(100): y3.append(QRandom(0,100,2)) end_time = datetime.now() print('Duration: {}'.format(end_time - start_time)) #initialization m=0 length = 0 theta = 0 #taking input from the user number = int(input('Enter the number of random numbers required')) low = int(input('Enter lower limit')) high = int(input('Enter higher limit')) depth=1 x2=[] n=1 start_time = datetime.now() while length!=number: y = VarQRandom(low,high,theta,depth,3) while (y in x2): i=i+1 theta = theta + pi/16 y= VarQRandom(low,high,theta,depth,3) if(i==(16*n)): depth = depth+1 n=n+1 x2.append(y) length=len(x2) end_time = datetime.now() print('Duration: {}'.format(end_time - start_time)) #initialization m=0 length = 0 theta = 0 #taking input from the user number = int(input('Enter the number of random numbers required')) low = int(input('Enter lower limit')) high = int(input('Enter higher limit')) depth=1 x4=[] n=1 start_time = datetime.now() while length!=number: y = VarQRandom(low,high,theta,depth,2) while (y in x2): i=i+1 theta = theta + pi/16 y= VarQRandom(low,high,theta,depth,2) if(i==(16*n)): depth = depth+1 n=n+1 x4.append(y) length=len(x4) end_time = datetime.now() print('Duration: {}'.format(end_time - start_time)) import random testpy=[] for i in range(20): y=random.randint(1,100) if y not in testpy: testpy.append(y) plt.plot(testpy) #initialization m=0 length = 0 theta = 0 #taking input from the user number = int(input('Enter the number of random numbers required')) low = int(input('Enter lower limit')) high = int(input('Enter higher limit')) depth=1 testvc=[] n=1 while length!=number: y = VarQRandom(low,high,theta,depth,2) while (y in testvc): i=i+1 theta = theta + pi/16 y= VarQRandom(low,high,theta,depth,2) if(i==(16*n)): depth = depth+1 n=n+1 testvc.append(y) length=len(testvc) plt.plot(testvc)
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) ### added h gate ### qc.h(1) qc.cx(1, 0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1, 0) qc.h(1) return qc
https://github.com/quantumgenetics/quantumgenetics
quantumgenetics
#!/usr/bin/env python3 import logging from datetime import datetime from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister logger = logging.getLogger(__name__) def map_circuit(circuit_qcount, gate_map, measurements): logger.info('Producing circuit...') before = datetime.now() qr = QuantumRegister(circuit_qcount) cr = ClassicalRegister(circuit_qcount) circuit = QuantumCircuit(qr, cr) for m in measurements: gate_map[m](circuit) delta = datetime.now() - before logger.info('Circuit produced ({} s)'.format(delta.total_seconds())) return circuit
https://github.com/QC-Hub/Examples
QC-Hub
from qiskit import QuantumRegister, ClassicalRegister from qiskit import QuantumCircuit, execute from qiskit import Aer import numpy as np import sys N=int(sys.argv[1]) filename = sys.argv[2] backend = Aer.get_backend('unitary_simulator') def GHZ(n): if n<=0: return None circ = QuantumCircuit(n) # Put your code below # ---------------------------- circ.h(0) for x in range(1,n): circ.cx(x-1,x) # ---------------------------- return circ circuit = GHZ(N) job = execute(circuit, backend, shots=8192) result = job.result() array = result.get_unitary(circuit,3) np.savetxt(filename, array, delimiter=",", fmt = "%0.3f")