repo
stringclasses
885 values
file
stringclasses
741 values
content
stringlengths
4
215k
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.timeline import draw, IQXDebugging from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) qc = transpile(qc, FakeBoeblingen(), scheduling_method='alap', layout_method='trivial') draw(qc, style=IQXDebugging())
https://github.com/quantumgenetics/quantumgenetics
quantumgenetics
from multiprocessing import Pool from qiskit import Aer import numpy as np from collections import deque from copy import deepcopy import math from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute import random from functools import reduce class Genetic_Executor: ''' It is just a class to keep things together. ''' def __init__(\ self, number_of_processors, population_initializer, population_size, parallel_population_initialization_flag=True): ''' number_of_processors -> positive integer the number of processes that will be spawned population_initializer -> function a function that returns an iterable representing the population ''' self.processs_pool = Pool(number_of_processors) self.population = population_initializer(population_size, self.processs_pool) self.population_size = population_size def apply_operation(self, operation_on_population): ''' operation_on_population -> function It receives the process pool and the population. It is called here ''' return operation_on_population(self.processs_pool, self.population) def get_number_gate_seq_relation(depth, available_gates): ''' Based on how many gates can there be, after a qubit, all the possible combinations of the gates are generated in a list and returned. ''' av_gates_tuple = tuple() for key in available_gates.keys(): av_gates_tuple += available_gates[key] av_gates_tuple += ('i',) mapping_list = [] current_seq_gates_list = [] dq = deque([(gate,0) for gate in av_gates_tuple]) while dq: gate, d = dq.pop() current_seq_gates_list = current_seq_gates_list[:d] current_seq_gates_list.append(gate) if d == depth - 1: mapping_list.append(deepcopy(current_seq_gates_list)) elif d < depth - 1: for g in av_gates_tuple: dq.append((g,d+1,)) return mapping_list def get_binary(decimal): ''' Gets a decimal as input. Outputs a list of the decimals binary representation. e.g. If the nuber of binaries in the list is 3 and decimal is 3, then the function outputs [0,1,1]. ''' key = [0 for _ in range(number_of_qubits_in_possible_circuit)] s_i = format(decimal, "b") k = number_of_qubits_in_possible_circuit - 1 j = len(s_i)-1 while j >= 0: if s_i[j] == '1': key[k] = 1 k-=1 j-=1 return key def get_binary_from_str(s): key = [] for ch in s: if ch == '0': key.append(0) else: key.append(1) return key def get_decimal(binary): ''' Gets a binary list and returns the decimal representaion. ''' i = len(binary)-1 a = 0 for b in binary: a += b**i i -= 1 return a def get_random_goal_function(number_of_qubits_in_possible_circuit): ''' Generates a random binary function of "number_of_qubits_in_possible_circuit" bits. ''' goal_function_dict = dict() for i in range(2**number_of_qubits_in_possible_circuit): goal_function_dict[tuple(get_binary(i))] = np.random.choice(2, number_of_qubits_in_possible_circuit) return goal_function_dict def chromosome_initialzer(a): ''' Randomly initializez and returns a chromosome (a tuple of 3 elements: theta, and amplitudes based on theta). Argument "a" is not used anywhere. ''' theta_arr = 2 * math.pi * np.random.random(number_of_qubits_in_individual) return (theta_arr,\ np.cos(theta_arr),\ np.sin(theta_arr)) def initializer1(pop_size, p_pool): return p_pool.map(chromosome_initialzer, [None for _ in range(pop_size)]) def get_pop_fitness(p_pool, population_iterable): ''' Collapses the individuals and then evalueates the circuit. ''' fitness_list = [] for theta_arr, _, _ in population_iterable: qr = QuantumRegister(number_of_qubits_in_individual) cr = ClassicalRegister(number_of_qubits_in_individual) qc = QuantumCircuit(qr, cr,) for i in range(number_of_qubits_in_individual): qc.u3(theta_arr[i], 0, 0, qr[i]) qc.measure(qr,cr) job = execute(qc, backend=backend, shots=1,) results = job.result() answer = results.get_counts() binary_list = get_binary_from_str(tuple(answer.keys())[0]) if binary_mutation_flag: for i in range(len(binary_list)): if random.random() < binary_mutation_prob: if binary_list[i] == 0: binary_list[i] = 1 else: binary_list[i] = 0 binary_bu_list = deepcopy(binary_list) qubits_per_line = len(binary_list)//number_of_qubits_in_possible_circuit v = 0 for key in goal_function.keys(): qr = QuantumRegister(number_of_qubits_in_possible_circuit) cr = ClassicalRegister(number_of_qubits_in_possible_circuit) qc = QuantumCircuit(qr, cr,) for i in range(number_of_qubits_in_possible_circuit): if key[i] == 1: qc.x(qr[i]) a = 0 for i in range(number_of_qubits_in_possible_circuit): config = config_list[get_decimal(binary_bu_list[a:a+qubits_per_line])] for gate in config: if gate == 'i': qc.iden(qr[i]) elif gate == 's': qc.u3(0,0,math.pi/4,qr[i]) elif gate == 'h': qc.h(qr[i]) else: qc.cx(qr[i],qr[(i+1)%number_of_qubits_in_possible_circuit]) a += qubits_per_line qc.measure(qr,cr) job = execute(qc, backend=backend, shots=global_shots,\ backend_options={\ "max_parallel_threads":0, 'max_parallel_shots':0}) results = job.result() answer = results.get_counts() goal_value = reduce( lambda acc, x: acc + str(x), goal_function[key], '' ) if goal_value not in answer: v += global_shots else: v += global_shots - answer[goal_value] fitness_list.append((v,binary_bu_list)) return fitness_list def main0(): global number_of_qubits_in_individual,backend,number_of_qubits_in_possible_circuit,config_list number_of_qubits_in_individual = 18 number_of_qubits_in_possible_circuit = 3 available_gates = { 1 : ('s', 'h'), 2 : ('cnot',), } kill_percentage = 0.5 population_size = 15 depth = 3 global binary_mutation_flag, binary_mutation_prob binary_mutation_flag = True binary_mutation_prob = 0.1 surviving_population_size = int(population_size * (1 - kill_percentage)) killed_population_size = population_size - surviving_population_size global global_shots,goal_function global_shots = 2048 backend = Aer.get_backend('qasm_simulator',) config_list = get_number_gate_seq_relation(depth, available_gates) goal_function = get_random_goal_function(number_of_qubits_in_possible_circuit) ge = Genetic_Executor(7, initializer1, population_size,) for it_no in range(10): fitness_values = list( enumerate( map( lambda e: e[0], ge.apply_operation(get_pop_fitness) ) ) ) fitness_values.sort(key=lambda p: p[1]) print(f'{it_no}: {fitness_values[0][1]}') new_pop = [] for i in range(surviving_population_size): new_pop.append(ge.population[fitness_values[i][0]]) ge.population = new_pop for _ in range(killed_population_size): theta_arr = np.empty(number_of_qubits_in_individual) alpha_arr = np.empty(number_of_qubits_in_individual) beta_arr = np.empty(number_of_qubits_in_individual) first_index = random.choice(range(surviving_population_size)) second_index = random.choice(tuple(filter(lambda e: e!=first_index, range(surviving_population_size)))) for i in range(number_of_qubits_in_individual): if random.choice((True,False,)): theta_arr[i] = ge.population[first_index][0][i] alpha_arr[i] = ge.population[first_index][1][i] beta_arr[i] = ge.population[first_index][2][i] else: theta_arr[i] = ge.population[second_index][0][i] alpha_arr[i] = ge.population[second_index][1][i] beta_arr[i] = ge.population[second_index][2][i] ge.population.append((theta_arr,alpha_arr,beta_arr)) if __name__ == '__main__': main0()
https://github.com/QuCO-CSAM/Solving-Combinatorial-Optimisation-Problems-Using-Quantum-Algorithms
QuCO-CSAM
#In case you don't have qiskit, install it now %pip install qiskit --quiet #Installing/upgrading pylatexenc seems to have fixed my mpl issue #If you try this and it doesn't work, try also restarting the runtime/kernel %pip install pylatexenc --quiet !pip install -Uqq ipdb !pip install qiskit_optimization import networkx as nx import matplotlib.pyplot as plt from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import BasicAer from qiskit.compiler import transpile from qiskit.quantum_info.operators import Operator, Pauli from qiskit.quantum_info import process_fidelity from qiskit.extensions.hamiltonian_gate import HamiltonianGate from qiskit.extensions import RXGate, XGate, CXGate from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, execute import numpy as np from qiskit.visualization import plot_histogram import ipdb from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * #quadratic optimization from qiskit_optimization import QuadraticProgram from qiskit_optimization.converters import QuadraticProgramToQubo %pdb on # def ApplyCost(qc, gamma): # Ix = np.array([[1,0],[0,1]]) # Zx= np.array([[1,0],[0,-1]]) # Xx = np.array([[0,1],[1,0]]) # Temp = (Ix-Zx)/2 # T = Operator(Temp) # I = Operator(Ix) # Z = Operator(Zx) # X = Operator(Xx) # FinalOp=-2*(T^I^T)-(I^T^T)-(T^I^I)+2*(I^T^I)-3*(I^I^T) # ham = HamiltonianGate(FinalOp,gamma) # qc.append(ham,[0,1,2]) task = QuadraticProgram(name = 'QUBO on QC') task.binary_var(name = 'x') task.binary_var(name = 'y') task.binary_var(name = 'z') task.minimize(linear = {"x":-1,"y":2,"z":-3}, quadratic = {("x", "z"): -2, ("y", "z"): -1}) qubo = QuadraticProgramToQubo().convert(task) #convert to QUBO operator, offset = qubo.to_ising() print(operator) # ham = HamiltonianGate(operator,0) # print(ham) Ix = np.array([[1,0],[0,1]]) Zx= np.array([[1,0],[0,-1]]) Xx = np.array([[0,1],[1,0]]) Temp = (Ix-Zx)/2 T = Operator(Temp) I = Operator(Ix) Z = Operator(Zx) X = Operator(Xx) FinalOp=-2*(T^I^T)-(I^T^T)-(T^I^I)+2*(I^T^I)-3*(I^I^T) ham = HamiltonianGate(FinalOp,0) print(ham) #define PYBIND11_DETAILED_ERROR_MESSAGES def compute_expectation(counts): """ Computes expectation value based on measurement results Args: counts: dict key as bitstring, val as count G: networkx graph Returns: avg: float expectation value """ avg = 0 sum_count = 0 for bitstring, count in counts.items(): x = int(bitstring[2]) y = int(bitstring[1]) z = int(bitstring[0]) obj = -2*x*z-y*z-x+2*y-3*z avg += obj * count sum_count += count return avg/sum_count # We will also bring the different circuit components that # build the qaoa circuit under a single function def create_qaoa_circ(theta): """ Creates a parametrized qaoa circuit Args: G: networkx graph theta: list unitary parameters Returns: qc: qiskit circuit """ nqubits = 3 n,m=3,3 p = len(theta)//2 # number of alternating unitaries qc = QuantumCircuit(nqubits,nqubits) Ix = np.array([[1,0],[0,1]]) Zx= np.array([[1,0],[0,-1]]) Xx = np.array([[0,1],[1,0]]) Temp = (Ix-Zx)/2 T = Operator(Temp) I = Operator(Ix) Z = Operator(Zx) X = Operator(Xx) FinalOp=-2*(Z^I^Z)-(I^Z^Z)-(Z^I^I)+2*(I^Z^I)-3*(I^I^Z) beta = theta[:p] gamma = theta[p:] # initial_state for i in range(0, nqubits): qc.h(i) for irep in range(0, p): #ipdb.set_trace(context=6) # problem unitary # for pair in list(G.edges()): # qc.rzz(2 * gamma[irep], pair[0], pair[1]) #ApplyCost(qc,2*0) ham = HamiltonianGate(operator,2 * gamma[irep]) qc.append(ham,[0,1,2]) # mixer unitary for i in range(0, nqubits): qc.rx(2 * beta[irep], i) qc.measure(qc.qubits[:n],qc.clbits[:m]) return qc # Finally we write a function that executes the circuit on the chosen backend def get_expectation(shots=512): """ Runs parametrized circuit Args: G: networkx graph p: int, Number of repetitions of unitaries """ backend = Aer.get_backend('qasm_simulator') backend.shots = shots def execute_circ(theta): qc = create_qaoa_circ(theta) # ipdb.set_trace(context=6) counts = {} job = execute(qc, backend, shots=1024) result = job.result() counts=result.get_counts(qc) return compute_expectation(counts) return execute_circ from scipy.optimize import minimize expectation = get_expectation() res = minimize(expectation, [1, 1], method='COBYLA') expectation = get_expectation() res = minimize(expectation, res.x, method='COBYLA') res from qiskit.visualization import plot_histogram backend = Aer.get_backend('aer_simulator') backend.shots = 512 qc_res = create_qaoa_circ(res.x) backend = Aer.get_backend('qasm_simulator') job = execute(qc_res, backend, shots=1024) result = job.result() counts=result.get_counts(qc_res) plot_histogram(counts)
https://github.com/weiT1993/qiskit_helper_functions
weiT1993
import sys import math import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister class QFT: """ Class which generates the circuit to perform the Quantum Fourier Transform (or its inverse) as described in Mike & Ike Chapter 5. (Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information (10th anniv. version), 2010.) For another example see Figure 1 of Daniel E Browne 2007 New J. Phys. 9 146 A QFT or iQFT circuit can be generated with a given instance of the QFT class by calling the gen_circuit() method. Attributes ---------- width : int number of qubits inverse : bool Set to true to generate the inverse quantum fourier transform kvals : bool optional parameter that will change the angle of the controlled rotations so that when the circuit is printed it will display the same k values that are shown in Mike & Ike Chpt 5, Fig 5.1 (NOTE: the generated circuit will no longer be valid! This is for visualization purposes only.) barriers : bool should barriers be included in the generated circuit measure : bool should a classical register & measurement be added to the circuit regname : str optional string to name the quantum and classical registers. This allows for the easy concatenation of multiple QuantumCircuits. qr : QuantumRegister Qiskit QuantumRegister holding all of the quantum bits cr : ClassicalRegister Qiskit ClassicalRegister holding all of the classical bits circ : QuantumCircuit Qiskit QuantumCircuit that represents the uccsd circuit """ def __init__( self, width, approximation_degree, inverse=False, kvals=False, barriers=True, measure=False, regname=None, ): # number of qubits self.nq = width self.approximation_degree = approximation_degree # set flags for circuit generation self.inverse = inverse self.kvals = kvals self.barriers = barriers self.measure = measure # create a QuantumCircuit object if regname is None: self.qr = QuantumRegister(self.nq) self.cr = ClassicalRegister(self.nq) else: self.qr = QuantumRegister(self.nq, name=regname) self.cr = ClassicalRegister(self.nq, name="c" + regname) # Have the option to include measurement if desired if self.measure: self.circ = QuantumCircuit(self.qr, self.cr) else: self.circ = QuantumCircuit(self.qr) def inv_qft(self): """ Implement the inverse QFT on self.circ j ranges from nq-1 -> 0 k ranges from nq-1 -> j+1 For each j qubit, a controlled cu1 gate is applied with target=j, control=k (for each k). cu1 = 1 0 0 e^(-2pi*i / 2^(k-j+1)) """ for j in range(self.nq - 1, -1, -1): for k in range(self.nq - 1, j, -1): if self.kvals: self.circ.cu1(-1 * (k - j + 1), self.qr[k], self.qr[j]) else: self.circ.cu1( -1 * (2 * np.pi) / (2 ** (k - j + 1)), self.qr[k], self.qr[j] ) self.circ.h(self.qr[j]) if self.barriers: self.circ.barrier() def reg_qft(self): """ Implement the QFT on self.circ j ranges from 0 -> nq-1 k ranges from j+1 -> nq-1 For each j qubit, a controlled cu1 gate is applied with target=j, control=k (for each k). cu1 = 1 0 0 e^(2pi*i / 2^(k-j+1)) """ for j in range(self.nq): self.circ.h(self.qr[j]) for k in range(j + 1, self.nq): if self.kvals: self.circ.cu1(k - j + 1, self.qr[k], self.qr[j]) else: if k - j + 1 <= self.approximation_degree: self.circ.cu1( (2 * np.pi) / (2 ** (k - j + 1)), self.qr[k], self.qr[j] ) if self.barriers: self.circ.barrier() def gen_circuit(self): """ Create a circuit implementing the UCCSD ansatz Given the number of qubits and parameters, construct the ansatz as given in Whitfield et al. Returns ------- QuantumCircuit QuantumCircuit object of size nq with no ClassicalRegister and no measurements """ if self.inverse: self.inv_qft() else: self.reg_qft() if self.measure: self.circ.barrier() self.circ.measure(self.qr, self.cr) return self.circ
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt import numpy as np from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler from qiskit.utils import algorithm_globals from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder, MinMaxScaler from qiskit_machine_learning.algorithms.classifiers import VQC from IPython.display import clear_output algorithm_globals.random_seed = 42 sampler1 = Sampler() sampler2 = Sampler() num_samples = 40 num_features = 2 features = 2 * algorithm_globals.random.random([num_samples, num_features]) - 1 labels = 1 * (np.sum(features, axis=1) >= 0) # in { 0, 1} features = MinMaxScaler().fit_transform(features) features.shape features[0:5, :] labels = OneHotEncoder(sparse=False).fit_transform(labels.reshape(-1, 1)) labels.shape labels[0:5, :] train_features, test_features, train_labels, test_labels = train_test_split( features, labels, train_size=30, random_state=algorithm_globals.random_seed ) train_features.shape def plot_dataset(): plt.scatter( train_features[np.where(train_labels[:, 0] == 0), 0], train_features[np.where(train_labels[:, 0] == 0), 1], marker="o", color="b", label="Label 0 train", ) plt.scatter( train_features[np.where(train_labels[:, 0] == 1), 0], train_features[np.where(train_labels[:, 0] == 1), 1], marker="o", color="g", label="Label 1 train", ) plt.scatter( test_features[np.where(test_labels[:, 0] == 0), 0], test_features[np.where(test_labels[:, 0] == 0), 1], marker="o", facecolors="w", edgecolors="b", label="Label 0 test", ) plt.scatter( test_features[np.where(test_labels[:, 0] == 1), 0], test_features[np.where(test_labels[:, 0] == 1), 1], marker="o", facecolors="w", edgecolors="g", label="Label 1 test", ) plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0) plt.plot([1, 0], [0, 1], "--", color="black") plot_dataset() plt.show() maxiter = 20 objective_values = [] # callback function that draws a live plot when the .fit() method is called def callback_graph(_, objective_value): clear_output(wait=True) objective_values.append(objective_value) plt.title("Objective function value against iteration") plt.xlabel("Iteration") plt.ylabel("Objective function value") stage1_len = np.min((len(objective_values), maxiter)) stage1_x = np.linspace(1, stage1_len, stage1_len) stage1_y = objective_values[:stage1_len] stage2_len = np.max((0, len(objective_values) - maxiter)) stage2_x = np.linspace(maxiter, maxiter + stage2_len - 1, stage2_len) stage2_y = objective_values[maxiter : maxiter + stage2_len] plt.plot(stage1_x, stage1_y, color="orange") plt.plot(stage2_x, stage2_y, color="purple") plt.show() plt.rcParams["figure.figsize"] = (12, 6) original_optimizer = COBYLA(maxiter=maxiter) ansatz = RealAmplitudes(num_features) initial_point = np.asarray([0.5] * ansatz.num_parameters) original_classifier = VQC( ansatz=ansatz, optimizer=original_optimizer, callback=callback_graph, sampler=sampler1 ) original_classifier.fit(train_features, train_labels) print("Train score", original_classifier.score(train_features, train_labels)) print("Test score ", original_classifier.score(test_features, test_labels)) original_classifier.save("vqc_classifier.model") loaded_classifier = VQC.load("vqc_classifier.model") loaded_classifier.warm_start = True loaded_classifier.neural_network.sampler = sampler2 loaded_classifier.optimizer = COBYLA(maxiter=80) loaded_classifier.fit(train_features, train_labels) print("Train score", loaded_classifier.score(train_features, train_labels)) print("Test score", loaded_classifier.score(test_features, test_labels)) train_predicts = loaded_classifier.predict(train_features) test_predicts = loaded_classifier.predict(test_features) # return plot to default figsize plt.rcParams["figure.figsize"] = (6, 4) plot_dataset() # plot misclassified data points plt.scatter( train_features[np.all(train_labels != train_predicts, axis=1), 0], train_features[np.all(train_labels != train_predicts, axis=1), 1], s=200, facecolors="none", edgecolors="r", linewidths=2, ) plt.scatter( test_features[np.all(test_labels != test_predicts, axis=1), 0], test_features[np.all(test_labels != test_predicts, axis=1), 1], s=200, facecolors="none", edgecolors="r", linewidths=2, ) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/vindem/quantumMD
vindem
import timeit from qiskit.circuit.library import EfficientSU2 from qiskit import IBMQ from qiskit.algorithms.optimizers import GradientDescent, COBYLA import numpy as np from qiskit.opflow import MatrixOp from qiskit.algorithms import VQE from qiskit.providers.aer import QasmSimulator from qiskit.providers.aer.noise import NoiseModel from qiskit.test.mock import FakeJakarta, FakeManila, FakeLagos, FakeSantiago from qiskit import Aer from qiskit.utils import QuantumInstance from matplotlib import pyplot as plt import scipy.linalg as lin_alg from qiskit.utils.mitigation import CompleteMeasFitter import csv from sklearn.metrics import mean_squared_error, mean_absolute_error import math from main import generate_random_matrices, generate_ansaetze IBMQ.load_account() provider = IBMQ.get_provider('ibm-q-research-2', 'vienna-uni-tech-1', 'main') exponents = range(0,5) reps = range(1,6) #target_backend = [FakeJakarta(), FakeManila(), FakeSantiago(), FakeLagos()] target_backend = [FakeJakarta()] backend_sim = Aer.get_backend('aer_simulator') for num_reps in reps: for e in exponents: num_qubits = e + 1 matrices = generate_random_matrices(2 ** e, 2 ** e, 0, 10) ansaetze = generate_ansaetze(num_qubits, num_reps, 'circular') row = [] for a in ansaetze: row.append(a.__class__.__name__ + '-RT') row.append(a.__class__.__name__ + '-EIG') row.append("Classic-EIG") for backend in target_backend: print(backend.name()) vqe_times = [] vqe_res = [] classic_result = [] summary_fname = "VQE_" + backend.name() + '_' + str(num_qubits) + '_' + str(num_reps) + '_rt-nrmse.csv' rawdata_fname = "VQE_" + backend.name() + '_' + str(num_qubits) + '_' + str(num_reps) + '_raw-data.csv' summary = open(summary_fname, 'w') rawdata = open(rawdata_fname, 'w') summary_writer = csv.writer(summary) rawdata_writer = csv.writer(rawdata) results = {} results = dict.fromkeys(row) for r in row: results[r] = [] summary_writer.writerow(["PQC","AVG-RUNTIME", "MAE", "MSE", "RMSE", "NRMSE"]) rawdata_writer.writerow(row) noise_model = NoiseModel.from_backend(QasmSimulator.from_backend(backend)) quantum_instance = QuantumInstance(backend=backend_sim, noise_model=noise_model, measurement_error_mitigation_cls=CompleteMeasFitter) optimizer = COBYLA(maxiter=100) for matrix in matrices: # matrix_op = pauli_representation(matrix) operator = MatrixOp(matrix) results["Classic-EIG"].append(lin_alg.eigvalsh(matrix)[0]) for ansatz in ansaetze: initial_point = np.random.random(ansatz.num_parameters) local_vqe = VQE(ansatz=ansatz, optimizer=optimizer, initial_point=initial_point, quantum_instance=quantum_instance) key_rt = ansatz.__class__.__name__ + "-RT" key_eig = ansatz.__class__.__name__ + "-EIG" start = timeit.timeit() mde_eig_result = local_vqe.compute_minimum_eigenvalue(operator) end = timeit.timeit() eig = np.real(mde_eig_result.eigenvalue) rt = end - start results[key_eig].append(eig) results[key_rt].append(rt) row_results = [] for r in row: row_results.append(str(results[r][-1])) rawdata_writer.writerow(row_results) print(backend.name()) print("PQC \t RUNTIME \t MAE \t MSE \t RMSE \t NRMSE") for a in ansaetze: rt = a.__class__.__name__ + '-RT' avg_time = sum(results[rt]) / len(results[rt]) eig = a.__class__.__name__ + '-EIG' eig_mae = mean_absolute_error(results["Classic-EIG"], results[eig]) eig_mse = mean_squared_error(results["Classic-EIG"], results[eig]) eig_rmse = math.sqrt(mean_squared_error(results["Classic-EIG"], results[eig])) eig_nrmse = eig_rmse / (max(results["Classic-EIG"]) - min(results["Classic-EIG"])) print(a.__class__.__name__ + " \t" + str(avg_time) + "\t" + str(eig_mae) + "\t" + str(eig_mse) + "\t" + str(eig_rmse) + "\t" + str(eig_nrmse)) summary_writer.writerow( [a.__class__.__name__, str(avg_time), str(eig_mae), str(eig_mse), str(eig_rmse), str(eig_nrmse)]) summary.close() rawdata.close()
https://github.com/alejomonbar/Quantum-Supply-Chain-Manager
alejomonbar
%load_ext autoreload %autoreload 2 # to use dataframe and load csv file import pandas as pd # to use for mathematical operations import numpy as np # split the set in 2 set, common train and test from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler # plot different designs import matplotlib.pyplot as plt %matplotlib inline np.random.seed(123) data = pd.read_csv("dataset/BackOrders.csv",header=0) data.shape data.head() for col in ['potential_issue', 'deck_risk', 'oe_constraint', 'ppap_risk', 'stop_auto_buy', 'rev_stop', 'went_on_backorder']: data[col]=pd.factorize(data[col])[0] data.describe(include='all') data['perf_6_month_avg']=data['perf_6_month_avg'].replace(-99, np.NaN) data['perf_12_month_avg']=data['perf_12_month_avg'].replace(-99, np.NaN) varnames=list(data)[1:] correlations = data[varnames].corr() fig = plt.figure() ax = fig.add_subplot(111) cax = ax.matshow(correlations, vmin=-1, vmax=1) fig.colorbar(cax) ticks = np.arange(0,22,1) ax.set_xticks(ticks) ax.set_yticks(ticks) ax.set_xticklabels(varnames,rotation=90) ax.set_yticklabels(varnames) plt.show() data.drop('rev_stop', axis=1, inplace=True) data.drop('oe_constraint', axis=1, inplace=True) data.drop('potential_issue', axis=1, inplace=True) data.drop('stop_auto_buy', axis=1, inplace=True) data.drop('deck_risk', axis=1, inplace=True) def check_missing(data): tot = data.isnull().sum().sort_values(ascending=False) perc = ( round(100*data.isnull().sum()/data.isnull().count(),1) ).sort_values(ascending=False) missing_data = pd.concat([tot, perc], axis=1, keys=['Missing', 'Percent']) return missing_data[:3] check_missing(data) data.fillna(data.median(), inplace=True) data check_missing(data) data.drop('sku', axis=1, inplace=True) data X, y = data.loc[:,data.columns!='went_on_backorder'].values, data.loc[:,'went_on_backorder'].values X,y X_train_1, X_test, y_train_1, y_test = train_test_split(X, y, test_size=0.1, random_state=123, stratify = data['went_on_backorder']) print(X_train_1.shape) print(X_test.shape) print(pd.value_counts(y_train)/y_train.size * 100) print(pd.value_counts(y_test)/y_test.size * 100) def balance_split(X_train_1,y_train_1,flag=""): X_train0 = [] X_train1 = [] y_train0 = [] y_train1 = [] for i in range(len(y_train_1)): if y_train_1[i] == 0: X_train0.append(X_train_1[i]) y_train0.append(y_train_1[i]) else: X_train1.append(X_train_1[i]) y_train1.append(y_train_1[i]) X_train =[] y_train = [] if flag == "fair": X_train = X_train0[:1000] + X_train1[:1000] y_train = y_train0[:1000] + y_train1[:1000] else: X_train = X_train0[:10000] + X_train1 y_train = y_train0[:10000] + y_train1 return np.asarray(X_train),np.asarray(y_train) def save_data(X_train_1,y_train_1,flag="",name=""): if flag == "fair": X_train,y_train = balance_split(X_train_1,y_train_1,flag) df_train = pd.concat([pd.DataFrame(X_train), pd.DataFrame(y_train)], axis=1) df_train.to_csv("dataset/fair_"+name+".csv", index=False) else: X_train,y_train = balance_split(X_train_1,y_train_1) df_train = pd.concat([pd.DataFrame(X_train), pd.DataFrame(y_train)], axis=1) df_train.to_csv("dataset/classic_"+name+".csv", index=False) #classic data save_data(X_train_1,y_train_1,flag="classic",name="train") #fair data save_data(X_train_1,y_train_1,flag="fair",name="train") #classic data save_data(X_test,y_test,flag="classic",name="test") data = pd.read_csv("dataset/classic_train.csv") X,y = data[data.columns[:16]].values, data[data.columns[16]].values X.shape, y.shape data = pd.read_csv("dataset/fair_train.csv") X,y = data[data.columns[:16]].values, data[data.columns[16]].values X.shape, y.shape data = pd.read_csv("dataset/classic_test.csv") X,y = data[data.columns[:16]].values, data[data.columns[16]].values X.shape, y.shape
https://github.com/MetalKyubit/Quantum-Algorithms-in-Qiskit
MetalKyubit
# initialization import numpy as np # importing Qiskit from qiskit import * # import basic plot tools from qiskit.visualization import plot_histogram from qiskit_textbook.tools import simon_oracle from qiskit.providers.fake_provider import FakeJakarta from qiskit.providers.fake_provider import FakeNairobi #defining a function to create the Simon's Algorithm circuit. Function takes in the oracle and number of qubits # and ouputs the quantum circuit def Simons_algo(oracle,n): # n input qubits and n helper qubit qc = QuantumCircuit(2*n,n) # creating superposition of all the inputs for i in range(n): qc.h(i) qc.barrier() # applying the oracle that has the funciton and the secret string encoded in it to the circuit qc.append(oracle, range(2*n)) qc.barrier() #applying the hadamard gates again to collapse the superposition to one state that has the final result #encoded in it. for i in range(n): qc.h(i) # measuring the input qubits to find the final result. qc.measure(range(n),range(n)) return (qc) a = '10' n = len(a) ora = simon_oracle(a) ora.draw('mpl') q1 = Simons_algo(ora, n) q1.draw('mpl') # Running on non-noisy simulator backend = Aer.get_backend('aer_simulator') job = execute(q1,backend, shots=1024) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) a = '101' n = len(a) ora = simon_oracle(a) ora.draw('mpl') q1 = Simons_algo(ora, n) q1.draw('mpl') # Running on non-noisy simulator backend = Aer.get_backend('aer_simulator') job = execute(q1,backend, shots=1024) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts)
https://github.com/JouziP/MQITE
JouziP
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Created on Wed Mar 11 18:03:12 2020 Functional interface to Qasm2 source loading and exporting Supersede QuantumCircuit member functions Provide for pluggable qasm translator Based on conversation with Dr. Luciano Bello @author: jax """ from importlib import import_module from os import linesep from typing import List, BinaryIO, TextIO from qiskit import QuantumCircuit, QiskitError from qiskit_openqasm2 import Qasm from .funhelp import qasm_load, qasm_export def _load_from_string(qasm_src: str or List[str], loader: str = None, include_path: str = '') -> QuantumCircuit: """ Parameters ---------- qasm_src : str or List[str] Qasm program source as string or list of string. loader : str, optional Name of module with functional attribute load(filename: str = None, data: str = None, include_path: str = None) -> QuantumCircuit: ... to use for qasm translation. None means "use Qiskit qasm" The default is None. include_path : str, optional Loader-specific include path for qasm include directives. The default is ''. Raises ------ QiskitError If unknown loader. Returns ------- QuantumCircuit Circuit factoried from Qasm src. """ circ = None if not loader: if isinstance(qasm_src, list): qasm_src = ''.join(s + linesep for s in qasm_src) qasm = Qasm(data=qasm_src) circ = qasm_load(qasm) else: m_m = import_module(loader) circ = getattr(m_m, 'load')(data=qasm_src, include_path=include_path) return circ def _load_from_file(filename: str, loader: str = None, include_path: str = '') -> QuantumCircuit: """ Parameters ---------- filename : str Filepath to qasm program source. loader : str, optional Name of module with functional attribute load(filename: str = None, data: str = None, include_path: str = None) -> QuantumCircuit: ... to use for qasm translation. None means "use Qiskit qasm" The default is None. include_path : str, optional Loader-specific include path for qasm include directives. The default is ''. Returns ------- QuantumCircuit Circuit factoried from Qasm src. """ circ = None if not loader: qasm = Qasm(filename=filename) circ = qasm_load(qasm) else: m_m = import_module(loader) circ = getattr(m_m, 'load')(filename=filename, include_path=include_path) return circ def load(data: str or List[str] = None, filename: str = None, loader: str = None, include_path: str = None) -> QuantumCircuit: """ Parameters ---------- data : str or List[str], optional Qasm program source as string or list of string. The default is None. filename : str, optional Filepath to qasm program source. The default is None. loader : str, optional Name of module with functional attribute load(filename: str = None, data: str = None, include_path: str = None) -> QuantumCircuit: ... to use for qasm translation. None means "use Qiskit qasm" The default is None. include_path : str, optional Loader-specific include path for qasm include directives. The default is None. Raises ------ QiskitError If both filename and data or neither filename nor data. Returns ------- QuantumCircuit The factoried circuit. """ if (not data and not filename) or (data and filename): raise QiskitError("To load, either filename or data (and not both) must be provided.") circ = None if data: circ = _load_from_string(data, loader=loader, include_path=include_path) elif filename: circ = _load_from_file(filename, loader=loader, include_path=include_path) return circ def export(qc: QuantumCircuit, exporter: str = None, file: BinaryIO or TextIO = None, filename: str = None, include_path: str = None,) -> str: """ Decompile a QuantumCircuit into Return OpenQASM string Parameters ---------- qc : QuantumCircuit Circuit to decompile ("export") exporter : str, optional Name of module with functional attribute export(qc: QuantumCircuit, include_path: str = None) -> QuantumCircuit: ... to use for qasm translation. None means "use Qiskit qasm" The default is None. file : BinaryIO or TextIO, optional File object to write to as well as return str Written in UTF-8 Caller must close file. Mutually exclusive with filename= The default is None. filename : str, optional Name of file to write export to as well as return str Mutually exclusive with file= The default is None. include_path: str, optional Unloader-specific include path for qasm include directives Raises ------ QiskitError If both filename and file Returns ------- str OpenQASM source for circuit. """ if filename and file: raise QiskitError("export: file= and filename= are mutually exclusive") qasm_src = None if not exporter: qasm_src = qasm_export(qc) else: m_m = import_module(exporter) qasm_src = getattr(m_m, 'export')(qc, include_path=include_path) if filename: f_f = open(filename, 'w') f_f.write(qasm_src) f_f.close() elif file: if 'b' in file.mode: file.write(bytes(qasm_src, 'utf-8')) else: file.write(qasm_src) return qasm_src
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) qc.h(range(2)) qc.measure(range(2), range(2)) # apply x gate if the classical register has the value 2 (10 in binary) qc.x(0).c_if(cr, 2) # apply y gate if bit 0 is set to 1 qc.y(1).c_if(0, 1) qc.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# useful additional packages import matplotlib.pyplot as plt import numpy as np import networkx as nx from qiskit_aer import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit_optimization.applications import Maxcut, Tsp from qiskit.algorithms.minimum_eigensolvers import SamplingVQE, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import SPSA from qiskit.utils import algorithm_globals from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer # Generating a graph of 4 nodes n = 4 # Number of nodes in graph G = nx.Graph() G.add_nodes_from(np.arange(0, n, 1)) elist = [(0, 1, 1.0), (0, 2, 1.0), (0, 3, 1.0), (1, 2, 1.0), (2, 3, 1.0)] # tuple is (i,j,weight) where (i,j) is the edge G.add_weighted_edges_from(elist) colors = ["r" for node in G.nodes()] pos = nx.spring_layout(G) def draw_graph(G, colors, pos): default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=0.8, ax=default_axes, pos=pos) edge_labels = nx.get_edge_attributes(G, "weight") nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=edge_labels) draw_graph(G, colors, pos) # Computing the weight matrix from the random graph w = np.zeros([n, n]) for i in range(n): for j in range(n): temp = G.get_edge_data(i, j, default=0) if temp != 0: w[i, j] = temp["weight"] print(w) best_cost_brute = 0 for b in range(2**n): x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))] cost = 0 for i in range(n): for j in range(n): cost = cost + w[i, j] * x[i] * (1 - x[j]) if best_cost_brute < cost: best_cost_brute = cost xbest_brute = x print("case = " + str(x) + " cost = " + str(cost)) colors = ["r" if xbest_brute[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) print("\nBest solution = " + str(xbest_brute) + " cost = " + str(best_cost_brute)) max_cut = Maxcut(w) qp = max_cut.to_quadratic_program() print(qp.prettyprint()) qubitOp, offset = qp.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) # solving Quadratic Program using exact classical eigensolver exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) result = exact.solve(qp) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # construct SamplingVQE optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) # run SamplingVQE result = vqe.compute_minimum_eigenvalue(qubitOp) # print results x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) # plot results colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) colors = ["r" if result.x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # Generating a graph of 3 nodes n = 3 num_qubits = n**2 tsp = Tsp.create_random_instance(n, seed=123) adj_matrix = nx.to_numpy_array(tsp.graph) print("distance\n", adj_matrix) colors = ["r" for node in tsp.graph.nodes] pos = [tsp.graph.nodes[node]["pos"] for node in tsp.graph.nodes] draw_graph(tsp.graph, colors, pos) from itertools import permutations def brute_force_tsp(w, N): a = list(permutations(range(1, N))) last_best_distance = 1e10 for i in a: distance = 0 pre_j = 0 for j in i: distance = distance + w[j, pre_j] pre_j = j distance = distance + w[pre_j, 0] order = (0,) + i if distance < last_best_distance: best_order = order last_best_distance = distance print("order = " + str(order) + " Distance = " + str(distance)) return last_best_distance, best_order best_distance, best_order = brute_force_tsp(adj_matrix, n) print( "Best order from brute force = " + str(best_order) + " with total distance = " + str(best_distance) ) def draw_tsp_solution(G, order, colors, pos): G2 = nx.DiGraph() G2.add_nodes_from(G) n = len(order) for i in range(n): j = (i + 1) % n G2.add_edge(order[i], order[j], weight=G[order[i]][order[j]]["weight"]) default_axes = plt.axes(frameon=True) nx.draw_networkx( G2, node_color=colors, edge_color="b", node_size=600, alpha=0.8, ax=default_axes, pos=pos ) edge_labels = nx.get_edge_attributes(G2, "weight") nx.draw_networkx_edge_labels(G2, pos, font_color="b", edge_labels=edge_labels) draw_tsp_solution(tsp.graph, best_order, colors, pos) qp = tsp.to_quadratic_program() print(qp.prettyprint()) from qiskit_optimization.converters import QuadraticProgramToQubo qp2qubo = QuadraticProgramToQubo() qubo = qp2qubo.convert(qp) qubitOp, offset = qubo.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) result = exact.solve(qubo) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("tsp objective:", result.eigenvalue.real + offset) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) result = vqe.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/luis6156/Shor-s-Quantum-Algorithm
luis6156
from qiskit import QuantumCircuit, Aer, execute, IBMQ from qiskit.utils import QuantumInstance import numpy as np from qiskit.algorithms import Shor IBMQ.enable_account('ENTER API TOKEN HERE') # Enter your API token here provider = IBMQ.get_provider(hub='ibm-q') backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1000) my_shor = Shor(quantum_instance) result_dict = my_shor.factor(15) print(result_dict)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit, transpile from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') qc_transpiled = transpile(qc, backend) result = backend.run(qc, shots = 8192).result()
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """A container class for counts from a circuit execution.""" import re from qiskit.result import postprocess from qiskit import exceptions # NOTE: A dict subclass should not overload any dunder methods like __getitem__ # this can cause unexpected behavior and issues as the cPython dict # implementation has many standard methods in C for performance and the dunder # methods are not always used as expected. For example, update() doesn't call # __setitem__ so overloading __setitem__ would not always provide the expected # result class Counts(dict): """A class to store a counts result from a circuit execution.""" bitstring_regex = re.compile(r"^[01\s]+$") def __init__(self, data, time_taken=None, creg_sizes=None, memory_slots=None): """Build a counts object Args: data (dict): The dictionary input for the counts. Where the keys represent a measured classical value and the value is an integer the number of shots with that result. The keys can be one of several formats: * A hexadecimal string of the form ``'0x4a'`` * A bit string prefixed with ``0b`` for example ``'0b1011'`` * A bit string formatted across register and memory slots. For example, ``'00 10'``. * A dit string, for example ``'02'``. Note for objects created with dit strings the ``creg_sizes`` and ``memory_slots`` kwargs don't work and :meth:`hex_outcomes` and :meth:`int_outcomes` also do not work. time_taken (float): The duration of the experiment that generated the counts in seconds. creg_sizes (list): a nested list where the inner element is a list of tuples containing both the classical register name and classical register size. For example, ``[('c_reg', 2), ('my_creg', 4)]``. memory_slots (int): The number of total ``memory_slots`` in the experiment. Raises: TypeError: If the input key type is not an ``int`` or ``str``. QiskitError: If a dit string key is input with ``creg_sizes`` and/or ``memory_slots``. """ bin_data = None data = dict(data) if not data: self.int_raw = {} self.hex_raw = {} bin_data = {} else: first_key = next(iter(data.keys())) if isinstance(first_key, int): self.int_raw = data self.hex_raw = {hex(key): value for key, value in self.int_raw.items()} elif isinstance(first_key, str): if first_key.startswith("0x"): self.hex_raw = data self.int_raw = {int(key, 0): value for key, value in self.hex_raw.items()} elif first_key.startswith("0b"): self.int_raw = {int(key, 0): value for key, value in data.items()} self.hex_raw = {hex(key): value for key, value in self.int_raw.items()} else: if not creg_sizes and not memory_slots: self.hex_raw = None self.int_raw = None bin_data = data else: hex_dict = {} int_dict = {} for bitstring, value in data.items(): if not self.bitstring_regex.search(bitstring): raise exceptions.QiskitError( "Counts objects with dit strings do not " "currently support dit string formatting parameters " "creg_sizes or memory_slots" ) int_key = self._remove_space_underscore(bitstring) int_dict[int_key] = value hex_dict[hex(int_key)] = value self.hex_raw = hex_dict self.int_raw = int_dict else: raise TypeError( "Invalid input key type %s, must be either an int " "key or string key with hexademical value or bit string" ) header = {} self.creg_sizes = creg_sizes if self.creg_sizes: header["creg_sizes"] = self.creg_sizes self.memory_slots = memory_slots if self.memory_slots: header["memory_slots"] = self.memory_slots if not bin_data: bin_data = postprocess.format_counts(self.hex_raw, header=header) super().__init__(bin_data) self.time_taken = time_taken def most_frequent(self): """Return the most frequent count Returns: str: The bit string for the most frequent result Raises: QiskitError: when there is >1 count with the same max counts, or an empty object. """ if not self: raise exceptions.QiskitError("Can not return a most frequent count on an empty object") max_value = max(self.values()) max_values_counts = [x[0] for x in self.items() if x[1] == max_value] if len(max_values_counts) != 1: raise exceptions.QiskitError( "Multiple values have the same maximum counts: %s" % ",".join(max_values_counts) ) return max_values_counts[0] def hex_outcomes(self): """Return a counts dictionary with hexadecimal string keys Returns: dict: A dictionary with the keys as hexadecimal strings instead of bitstrings Raises: QiskitError: If the Counts object contains counts for dit strings """ if self.hex_raw: return {key.lower(): value for key, value in self.hex_raw.items()} else: out_dict = {} for bitstring, value in self.items(): if not self.bitstring_regex.search(bitstring): raise exceptions.QiskitError( "Counts objects with dit strings do not " "currently support conversion to hexadecimal" ) int_key = self._remove_space_underscore(bitstring) out_dict[hex(int_key)] = value return out_dict def int_outcomes(self): """Build a counts dictionary with integer keys instead of count strings Returns: dict: A dictionary with the keys as integers instead of bitstrings Raises: QiskitError: If the Counts object contains counts for dit strings """ if self.int_raw: return self.int_raw else: out_dict = {} for bitstring, value in self.items(): if not self.bitstring_regex.search(bitstring): raise exceptions.QiskitError( "Counts objects with dit strings do not " "currently support conversion to integer" ) int_key = self._remove_space_underscore(bitstring) out_dict[int_key] = value return out_dict @staticmethod def _remove_space_underscore(bitstring): """Removes all spaces and underscores from bitstring""" return int(bitstring.replace(" ", "").replace("_", ""), 2) def shots(self): """Return the number of shots""" return sum(self.values())
https://github.com/quantumyatra/quantum_computing
quantumyatra
import numpy as np np.random.seed(999999) target_distr = np.random.rand(2) # We now convert the random vector into a valid probability vector target_distr /= sum(target_distr) print (target_distr) from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister def get_var_form(params): qr = QuantumRegister(1, name="q") cr = ClassicalRegister(1, name='c') qc = QuantumCircuit(qr, cr) qc.u3(params[0], params[1], params[2], qr[0]) qc.measure(qr, cr[0]) return qc params = [0.1, 0, 0] qcc = get_var_form(params) qcc.draw('mpl') from qiskit import Aer, execute backend = Aer.get_backend("qasm_simulator") num_shots = 10000 def get_probability_distribution(counts): output_distr = [v / num_shots for v in counts.values()] if len(output_distr) == 1: output_distr.append(0) return output_distr def objective_function(params): # Obtain a quantum circuit instance from the paramters qc = get_var_form(params) # Execute the quantum circuit to obtain the probability distribution associated with the current parameters result = execute(qc, backend, shots=num_shots).result() # Obtain the counts for each measured state, and convert those counts into a probability vector output_distr = get_probability_distribution(result.get_counts(qc)) # Calculate the cost as the distance between the output distribution and the target distribution cost = sum([np.abs(output_distr[i] - target_distr[i]) for i in range(2)]) return cost from qiskit.aqua.components.optimizers import COBYLA # Initialize the COBYLA optimizer optimizer = COBYLA(maxiter=50, tol=0.0001) # Create the initial parameters (noting that our single qubit variational form has 3 parameters) params = np.random.rand(3) ret = optimizer.optimize(num_vars=3, objective_function=objective_function, initial_point=params) # Obtain the output distribution using the final parameters qc = get_var_form(ret[0]) counts = execute(qc, backend, shots=num_shots).result().get_counts(qc) output_distr = get_probability_distribution(counts) print("Target Distribution:", target_distr) print("Obtained Distribution:", output_distr) print("Output Error (Manhattan Distance):", ret[1]) print("Parameters Found:", ret[0]) from qiskit.circuit.library import EfficientSU2 entanglements = ["linear", "full"] for entanglement in entanglements: form = EfficientSU2(num_qubits=4, entanglement=entanglement) if entanglement == "linear": print("=============Linear Entanglement:=============") else: print("=============Full Entanglement:=============") # We initialize all parameters to 0 for this demonstration display(form.draw("mpl", fold=100)) print() from qiskit.aqua.algorithms import VQE, NumPyEigensolver import matplotlib.pyplot as plt import numpy as np from qiskit.chemistry.components.variational_forms import UCCSD from qiskit.chemistry.components.initial_states import HartreeFock from qiskit.circuit.library import EfficientSU2 from qiskit.aqua.components.optimizers import COBYLA, SPSA, SLSQP from qiskit.aqua.operators import Z2Symmetries from qiskit import IBMQ, BasicAer, Aer from qiskit.chemistry.drivers import PySCFDriver, UnitsType from qiskit.chemistry import FermionicOperator from qiskit import IBMQ from qiskit.aqua import QuantumInstance from qiskit.ignis.mitigation.measurement import CompleteMeasFitter from qiskit.providers.aer.noise import NoiseModel def get_qubit_op(dist): driver = PySCFDriver(atom="Li .0 .0 .0; H .0 .0 " + str(dist), unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g') molecule = driver.run() freeze_list = [0] remove_list = [-3, -2] repulsion_energy = molecule.nuclear_repulsion_energy num_particles = molecule.num_alpha + molecule.num_beta num_spin_orbitals = molecule.num_orbitals * 2 remove_list = [x % molecule.num_orbitals for x in remove_list] freeze_list = [x % molecule.num_orbitals for x in freeze_list] remove_list = [x - len(freeze_list) for x in remove_list] remove_list += [x + molecule.num_orbitals - len(freeze_list) for x in remove_list] freeze_list += [x + molecule.num_orbitals for x in freeze_list] ferOp = FermionicOperator(h1=molecule.one_body_integrals, h2=molecule.two_body_integrals) ferOp, energy_shift = ferOp.fermion_mode_freezing(freeze_list) num_spin_orbitals -= len(freeze_list) num_particles -= len(freeze_list) ferOp = ferOp.fermion_mode_elimination(remove_list) num_spin_orbitals -= len(remove_list) qubitOp = ferOp.mapping(map_type='parity', threshold=0.00000001) qubitOp = Z2Symmetries.two_qubit_reduction(qubitOp, num_particles) shift = energy_shift + repulsion_energy return qubitOp, num_particles, num_spin_orbitals, shift dist = 1. qubitOp, num_particles, num_spin_orbitals, shift = get_qubit_op(dist) print ( qubitOp, num_particles, num_spin_orbitals, shift ) backend = BasicAer.get_backend("statevector_simulator") distances = np.arange(0.5, 4.0, 0.1) exact_energies = [] vqe_energies = [] optimizer = SLSQP(maxiter=5) for dist in distances: qubitOp, num_particles, num_spin_orbitals, shift = get_qubit_op(dist) result = NumPyEigensolver(qubitOp).run() exact_energies.append(np.real(result.eigenvalues) + shift) initial_state = HartreeFock( num_spin_orbitals, num_particles, qubit_mapping='parity' ) var_form = UCCSD( num_orbitals=num_spin_orbitals, num_particles=num_particles, initial_state=initial_state, qubit_mapping='parity' ) vqe = VQE(qubitOp, var_form, optimizer) vqe_result = np.real(vqe.run(backend)['eigenvalue'] + shift) vqe_energies.append(vqe_result) print("Interatomic Distance:", np.round(dist, 2), "VQE Result:", vqe_result, "Exact Energy:", exact_energies[-1]) print("All energies have been calculated") plt.plot(distances, exact_energies, label="Exact Energy") plt.plot(distances, vqe_energies, label="VQE Energy") plt.xlabel('Atomic distance (Angstrom)') plt.ylabel('Energy') plt.legend() plt.show()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit.library import RealAmplitudes from qiskit.algorithms.optimizers import COBYLA from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, SamplingVQE from qiskit.primitives import Sampler from qiskit_optimization.converters import LinearEqualityToPenalty from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from qiskit.utils import algorithm_globals import numpy as np import matplotlib.pyplot as plt from docplex.mp.model import Model algorithm_globals.random_seed = 123456 # prepare problem instance n = 6 # number of assets q = 0.5 # risk factor budget = n // 2 # budget penalty = 2 * n # scaling of penalty term # instance from [1] mu = np.array([0.7313, 0.9893, 0.2725, 0.8750, 0.7667, 0.3622]) sigma = np.array( [ [0.7312, -0.6233, 0.4689, -0.5452, -0.0082, -0.3809], [-0.6233, 2.4732, -0.7538, 2.4659, -0.0733, 0.8945], [0.4689, -0.7538, 1.1543, -1.4095, 0.0007, -0.4301], [-0.5452, 2.4659, -1.4095, 3.5067, 0.2012, 1.0922], [-0.0082, -0.0733, 0.0007, 0.2012, 0.6231, 0.1509], [-0.3809, 0.8945, -0.4301, 1.0922, 0.1509, 0.8992], ] ) # or create random instance # mu, sigma = portfolio.random_model(n, seed=123) # expected returns and covariance matrix # create docplex model mdl = Model("portfolio_optimization") x = mdl.binary_var_list(range(n), name="x") objective = mdl.sum([mu[i] * x[i] for i in range(n)]) objective -= q * mdl.sum([sigma[i, j] * x[i] * x[j] for i in range(n) for j in range(n)]) mdl.maximize(objective) mdl.add_constraint(mdl.sum(x[i] for i in range(n)) == budget) # case to qp = from_docplex_mp(mdl) # solve classically as reference opt_result = MinimumEigenOptimizer(NumPyMinimumEigensolver()).solve(qp) print(opt_result.prettyprint()) # we convert the problem to an unconstrained problem for further analysis, # otherwise this would not be necessary as the MinimumEigenSolver would do this # translation automatically linear2penalty = LinearEqualityToPenalty(penalty=penalty) qp = linear2penalty.convert(qp) _, offset = qp.to_ising() # set classical optimizer maxiter = 100 optimizer = COBYLA(maxiter=maxiter) # set variational ansatz ansatz = RealAmplitudes(n, reps=1) m = ansatz.num_parameters # set sampler sampler = Sampler() # run variational optimization for different values of alpha alphas = [1.0, 0.50, 0.25] # confidence levels to be evaluated # dictionaries to store optimization progress and results objectives = {alpha: [] for alpha in alphas} # set of tested objective functions w.r.t. alpha results = {} # results of minimum eigensolver w.r.t alpha # callback to store intermediate results def callback(i, params, obj, stddev, alpha): # we translate the objective from the internal Ising representation # to the original optimization problem objectives[alpha].append(np.real_if_close(-(obj + offset))) # loop over all given alpha values for alpha in alphas: # initialize SamplingVQE using CVaR vqe = SamplingVQE( sampler=sampler, ansatz=ansatz, optimizer=optimizer, aggregation=alpha, callback=lambda i, params, obj, stddev: callback(i, params, obj, stddev, alpha), ) # initialize optimization algorithm based on CVaR-SamplingVQE opt_alg = MinimumEigenOptimizer(vqe) # solve problem results[alpha] = opt_alg.solve(qp) # print results print("alpha = {}:".format(alpha)) print(results[alpha].prettyprint()) print() # plot resulting history of objective values plt.figure(figsize=(10, 5)) plt.plot([0, maxiter], [opt_result.fval, opt_result.fval], "r--", linewidth=2, label="optimum") for alpha in alphas: plt.plot(objectives[alpha], label="alpha = %.2f" % alpha, linewidth=2) plt.legend(loc="lower right", fontsize=14) plt.xlim(0, maxiter) plt.xticks(fontsize=14) plt.xlabel("iterations", fontsize=14) plt.yticks(fontsize=14) plt.ylabel("objective value", fontsize=14) plt.show() # evaluate and sort all objective values objective_values = np.zeros(2**n) for i in range(2**n): x_bin = ("{0:0%sb}" % n).format(i) x = [0 if x_ == "0" else 1 for x_ in reversed(x_bin)] objective_values[i] = qp.objective.evaluate(x) ind = np.argsort(objective_values) # evaluate final optimal probability for each alpha for alpha in alphas: probabilities = np.fromiter( results[alpha].min_eigen_solver_result.eigenstate.binary_probabilities().values(), dtype=float, ) print("optimal probability (alpha = %.2f): %.4f" % (alpha, probabilities[ind][-1:])) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name """Single-qubit unitary tests.""" import unittest from test import combine import numpy as np from ddt import ddt from qiskit.quantum_info.random import random_unitary from qiskit import BasicAer from qiskit import QuantumCircuit from qiskit import QuantumRegister from qiskit import execute from qiskit.test import QiskitTestCase from qiskit.extensions.quantum_initializer.squ import SingleQubitUnitary from qiskit.compiler import transpile from qiskit.quantum_info.operators.predicates import matrix_equal squs = [ np.eye(2, 2), np.array([[0.0, 1.0], [1.0, 0.0]]), 1 / np.sqrt(2) * np.array([[1.0, 1.0], [-1.0, 1.0]]), np.array([[np.exp(1j * 5.0 / 2), 0], [0, np.exp(-1j * 5.0 / 2)]]), random_unitary(2, seed=42).data, ] up_to_diagonal_list = [True, False] @ddt class TestSingleQubitUnitary(QiskitTestCase): """Qiskit ZYZ-decomposition tests.""" @combine(u=squs, up_to_diagonal=up_to_diagonal_list) def test_squ(self, u, up_to_diagonal): """Tests for single-qubit unitary decomposition.""" qr = QuantumRegister(1, "qr") qc = QuantumCircuit(qr) qc.squ(u, qr[0], up_to_diagonal=up_to_diagonal) # Decompose the gate qc = transpile(qc, basis_gates=["u1", "u3", "u2", "cx", "id"]) # Simulate the decomposed gate simulator = BasicAer.get_backend("unitary_simulator") result = execute(qc, simulator).result() unitary = result.get_unitary(qc) if up_to_diagonal: squ = SingleQubitUnitary(u, up_to_diagonal=up_to_diagonal) unitary = np.dot(np.diagflat(squ.diag), unitary) unitary_desired = u self.assertTrue(matrix_equal(unitary_desired, unitary, ignore_phase=True)) if __name__ == "__main__": unittest.main()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.quantum_info import Operator from qiskit.transpiler.passes import UnitarySynthesis circuit = QuantumCircuit(1) circuit.rx(0.8, 0) unitary = Operator(circuit).data unitary_circ = QuantumCircuit(1) unitary_circ.unitary(unitary, [0]) synth = UnitarySynthesis(basis_gates=["h", "s"], method="sk") out = synth(unitary_circ) out.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, PySCFDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer from qiskit_nature.settings import settings settings.dict_aux_operators = True molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = ElectronicStructureMoleculeDriver( molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF ) # or equivalently: driver = PySCFDriver.from_molecule(molecule, basis="sto3g") transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["ElectronicEnergy"] print(hamiltonian) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo from qiskit_nature.second_q.transformers import FreezeCoreTransformer molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") # this is now done explicitly problem = driver.run() transformer = FreezeCoreTransformer() # and you also apply transformers explicitly problem = transformer.transform(problem) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import PySCFDriver molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = PySCFDriver.from_molecule(molecule) result = driver.run() print(type(result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") result = driver.run() print(type(result)) from qiskit_nature.drivers.second_quantization import FCIDumpDriver path_to_fcidump = "aux_files/h2.fcidump" driver = FCIDumpDriver(path_to_fcidump) result = driver.run() print(type(result)) from qiskit_nature.second_q.formats.fcidump import FCIDump path_to_fcidump = "aux_files/h2.fcidump" fcidump = FCIDump.from_file(path_to_fcidump) print(type(fcidump)) from qiskit_nature.second_q.formats.fcidump_translator import fcidump_to_problem problem = fcidump_to_problem(fcidump) print(type(problem)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer driver = PySCFDriver() transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("ElectronicEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer driver = PySCFDriver() problem = driver.run() transformer = FreezeCoreTransformer() problem = transformer.transform(problem) hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/AmirhoseynpowAsghari/Qiskit-Tutorials
AmirhoseynpowAsghari
#DOI : https://doi.org/10.1143/JPSJ.12.570 import numpy as np import matplotlib.pyplot as plt from scipy.linalg import expm # Define Pauli matrices sigma_x = np.array([[0, 1], [1, 0]]) sigma_y = np.array([[0, -1j], [1j, 0]]) sigma_z = np.array([[1, 0], [0, -1]]) # System parameters omega_0 = 1.0 # Transition frequency Omega = 0.1 # Driving strength omega = 1.0 # Driving frequency hbar = 1.0 # Time array t = np.linspace(0, 50, 10000) dt = t[1] - t[0] # Initial density matrix (ground state) rho = np.array([[1, 0], [0, 0]], dtype=complex) # Hamiltonian matrices H0 = (hbar * omega_0 / 2) * sigma_z H_prime = lambda t: hbar * Omega * np.cos(omega * t) * sigma_x # Time evolution rho_t = np.zeros((len(t), 2, 2), dtype=complex) rho_t[0] = rho for i in range(1, len(t)): H = H0 + H_prime(t[i-1]) U = expm(-1j * H * dt / hbar) rho = U @ rho @ U.conj().T rho_t[i] = rho # Calculate expectation values of Pauli z-matrix expectation_z = [np.trace(rho @ sigma_z).real for rho in rho_t] # Plot the results plt.figure(figsize=(10, 6)) plt.plot(t, expectation_z, label=r'$\langle \sigma_z \rangle$') plt.xlabel('Time $t$') plt.ylabel(r'$\langle \sigma_z \rangle$') plt.title('Response of a Two-Level System to a Sinusoidal Driving Field') plt.legend() plt.grid() plt.show() import numpy as np import matplotlib.pyplot as plt from scipy.linalg import expm # Define Pauli matrices sigma_x = np.array([[0, 1], [1, 0]]) sigma_y = np.array([[0, -1j], [1j, 0]]) sigma_z = np.array([[1, 0], [0, -1]]) # System parameters omega_0 = 1.0 # Transition frequency Omega = 0.1 # Driving strength hbar = 1.0 # Time array t = np.linspace(0, 50, 10000) dt = t[1] - t[0] # Initial density matrix (ground state) rho = np.array([[1, 0], [0, 0]], dtype=complex) # Hamiltonian matrices H0 = (hbar * omega_0 / 2) * sigma_z H_prime = lambda t: hbar * Omega * (t >= 0) * sigma_x # Step function perturbation # Time evolution rho_t = np.zeros((len(t), 2, 2), dtype=complex) rho_t[0] = rho for i in range(1, len(t)): H = H0 + H_prime(t[i-1]) U = expm(-1j * H * dt / hbar) rho = U @ rho @ U.conj().T rho_t[i] = rho # Calculate expectation values of Pauli z-matrix expectation_z = [np.trace(rho @ sigma_z).real for rho in rho_t] # Plot the results plt.figure(figsize=(10, 6)) plt.plot(t, expectation_z, label=r'$\langle \sigma_z \rangle$') plt.xlabel('Time $t$') plt.ylabel(r'$\langle \sigma_z \rangle$') plt.title('Response of a Two-Level System to a Step Function Driving Field') plt.legend() plt.grid() plt.show()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram from qiskit_optimization.translators import from_docplex_mp # Make a Docplex model from docplex.mp.model import Model mdl = Model("docplex model") x = mdl.binary_var("x") y = mdl.integer_var(lb=-1, ub=5, name="y") mdl.minimize(x + 2 * y) mdl.add_constraint(x - y == 3) mdl.add_constraint((x + y) * (x - y) <= 1) print(mdl.export_as_lp_string()) # load from a Docplex model mod = from_docplex_mp(mdl) print(type(mod)) print() print(mod.prettyprint()) # make an empty problem mod = QuadraticProgram("my problem") print(mod.prettyprint()) # Add variables mod.binary_var(name="x") mod.integer_var(name="y", lowerbound=-1, upperbound=5) mod.continuous_var(name="z", lowerbound=-1, upperbound=5) print(mod.prettyprint()) # Add objective function using dictionaries mod.minimize(constant=3, linear={"x": 1}, quadratic={("x", "y"): 2, ("z", "z"): -1}) print(mod.prettyprint()) # Add objective function using lists/arrays mod.minimize(constant=3, linear=[1, 0, 0], quadratic=[[0, 1, 0], [1, 0, 0], [0, 0, -1]]) print(mod.prettyprint()) print("constant:\t\t\t", mod.objective.constant) print("linear dict:\t\t\t", mod.objective.linear.to_dict()) print("linear array:\t\t\t", mod.objective.linear.to_array()) print("linear array as sparse matrix:\n", mod.objective.linear.coefficients, "\n") print("quadratic dict w/ index:\t", mod.objective.quadratic.to_dict()) print("quadratic dict w/ name:\t\t", mod.objective.quadratic.to_dict(use_name=True)) print( "symmetric quadratic dict w/ name:\t", mod.objective.quadratic.to_dict(use_name=True, symmetric=True), ) print("quadratic matrix:\n", mod.objective.quadratic.to_array(), "\n") print("symmetric quadratic matrix:\n", mod.objective.quadratic.to_array(symmetric=True), "\n") print("quadratic matrix as sparse matrix:\n", mod.objective.quadratic.coefficients) # Add linear constraints mod.linear_constraint(linear={"x": 1, "y": 2}, sense="==", rhs=3, name="lin_eq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense="<=", rhs=3, name="lin_leq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense=">=", rhs=3, name="lin_geq") print(mod.prettyprint()) # Add quadratic constraints mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="==", rhs=1, name="quad_eq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="<=", rhs=1, name="quad_leq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense=">=", rhs=1, name="quad_geq", ) print(mod.prettyprint()) lin_geq = mod.get_linear_constraint("lin_geq") print("lin_geq:", lin_geq.linear.to_dict(use_name=True), lin_geq.sense, lin_geq.rhs) quad_geq = mod.get_quadratic_constraint("quad_geq") print( "quad_geq:", quad_geq.linear.to_dict(use_name=True), quad_geq.quadratic.to_dict(use_name=True), quad_geq.sense, lin_geq.rhs, ) # Remove constraints mod.remove_linear_constraint("lin_eq") mod.remove_quadratic_constraint("quad_leq") print(mod.prettyprint()) sub = mod.substitute_variables(constants={"x": 0}, variables={"y": ("z", -1)}) print(sub.prettyprint()) sub = mod.substitute_variables(constants={"x": -1}) print(sub.status) from qiskit_optimization import QiskitOptimizationError try: sub = mod.substitute_variables(constants={"x": -1}, variables={"y": ("x", 1)}) except QiskitOptimizationError as e: print("Error: {}".format(e)) mod = QuadraticProgram() mod.binary_var(name="e") mod.binary_var(name="f") mod.continuous_var(name="g") mod.minimize(linear=[1, 2, 3]) print(mod.export_as_lp_string()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name,no-name-in-module,ungrouped-imports """A circuit library widget module""" import ipywidgets as wid from IPython.display import display from qiskit import QuantumCircuit from qiskit.utils import optionals as _optionals from qiskit.utils.deprecation import deprecate_func @_optionals.HAS_MATPLOTLIB.require_in_call def _generate_circuit_library_visualization(circuit: QuantumCircuit): import matplotlib.pyplot as plt circuit = circuit.decompose() ops = circuit.count_ops() num_nl = circuit.num_nonlocal_gates() _fig, (ax0, ax1) = plt.subplots(2, 1) circuit.draw("mpl", ax=ax0) ax1.axis("off") ax1.grid(visible=None) ax1.table( [[circuit.name], [circuit.width()], [circuit.depth()], [sum(ops.values())], [num_nl]], rowLabels=["Circuit Name", "Width", "Depth", "Total Gates", "Non-local Gates"], ) plt.tight_layout() plt.show() @deprecate_func( since="0.25.0", additional_msg="This is unused by Qiskit, and no replacement will be publicly provided.", ) def circuit_data_table(circuit: QuantumCircuit) -> wid.HTML: """Create a HTML table widget for a given quantum circuit. Args: circuit: Input quantum circuit. Returns: Output widget. """ circuit = circuit.decompose() ops = circuit.count_ops() num_nl = circuit.num_nonlocal_gates() html = "<table>" html += """<style> table { font-family: "IBM Plex Sans", Arial, Helvetica, sans-serif; border-collapse: collapse; width: 100%; border-left: 2px solid #212121; } th { text-align: left; padding: 5px 5px 5px 5px; width: 100%; background-color: #988AFC; color: #fff; font-size: 14px; border-left: 2px solid #988AFC; } td { text-align: left; padding: 5px 5px 5px 5px; width: 100%; font-size: 12px; font-weight: medium; } tr:nth-child(even) {background-color: #f6f6f6;} </style>""" html += f"<tr><th>{circuit.name}</th><th></tr>" html += f"<tr><td>Width</td><td>{circuit.width()}</td></tr>" html += f"<tr><td>Depth</td><td>{circuit.depth()}</td></tr>" html += f"<tr><td>Total Gates</td><td>{sum(ops.values())}</td></tr>" html += f"<tr><td>Non-local Gates</td><td>{num_nl}</td></tr>" html += "</table>" out_wid = wid.HTML(html) return out_wid head_style = ( "font-family: IBM Plex Sans, Arial, Helvetica, sans-serif;" " font-size: 20px; font-weight: medium;" ) property_label = wid.HTML( f"<p style='{head_style}'>Circuit Properties</p>", layout=wid.Layout(margin="0px 0px 10px 0px"), ) @deprecate_func( since="0.25.0", additional_msg="This is unused by Qiskit, and no replacement will be publicly provided.", ) def properties_widget(circuit: QuantumCircuit) -> wid.VBox: """Create a HTML table widget with header for a given quantum circuit. Args: circuit: Input quantum circuit. Returns: Output widget. """ properties = wid.VBox( children=[property_label, circuit_data_table(circuit)], layout=wid.Layout(width="40%", height="auto"), ) return properties @_optionals.HAS_PYGMENTS.require_in_call @deprecate_func( since="0.25.0", additional_msg="This is unused by Qiskit, and no replacement will be publicly provided.", ) def qasm_widget(circuit: QuantumCircuit) -> wid.VBox: """Generate a QASM widget with header for a quantum circuit. Args: circuit: Input quantum circuit. Returns: Output widget. """ import pygments from pygments.formatters import HtmlFormatter from qiskit.qasm.pygments import QasmHTMLStyle, OpenQASMLexer qasm_code = circuit.qasm() code = pygments.highlight(qasm_code, OpenQASMLexer(), HtmlFormatter()) html_style = HtmlFormatter(style=QasmHTMLStyle).get_style_defs(".highlight") code_style = ( """ <style> .highlight { font-family: monospace; font-size: 14px; line-height: 1.7em; } .highlight .err { color: #000000; background-color: #FFFFFF } %s </style> """ % html_style ) out = wid.HTML( code_style + code, layout=wid.Layout(max_height="500px", height="auto", overflow="scroll scroll"), ) out_label = wid.HTML( f"<p style='{head_style}'>OpenQASM</p>", layout=wid.Layout(margin="0px 0px 10px 0px"), ) qasm = wid.VBox( children=[out_label, out], layout=wid.Layout( height="auto", max_height="500px", width="60%", margin="0px 0px 0px 20px" ), ) qasm._code_length = len(qasm_code.split("\n")) return qasm @deprecate_func( since="0.25.0", additional_msg="This is unused by Qiskit, and no replacement will be publicly provided.", ) def circuit_diagram_widget() -> wid.Box: """Create a circuit diagram widget. Returns: Output widget. """ # The max circuit height corresponds to a 20Q circuit with flat # classical register. top_out = wid.Output( layout=wid.Layout( width="100%", height="auto", max_height="1000px", overflow="hidden scroll", ) ) top = wid.Box(children=[top_out], layout=wid.Layout(width="100%", height="auto")) return top @deprecate_func( since="0.25.0", additional_msg="This is unused by Qiskit, and no replacement will be publicly provided.", ) def circuit_library_widget(circuit: QuantumCircuit) -> None: """Create a circuit library widget. Args: circuit: Input quantum circuit. """ qasm_wid = qasm_widget(circuit) sep_length = str(min(20 * qasm_wid._code_length, 495)) # The separator widget sep = wid.HTML( f"<div style='border-left: 3px solid #212121;height: {sep_length}px;'></div>", layout=wid.Layout(height="auto", max_height="495px", margin="40px 0px 0px 20px"), ) bottom = wid.HBox( children=[properties_widget(circuit), sep, qasm_widget(circuit)], layout=wid.Layout(max_height="550px", height="auto"), ) top = circuit_diagram_widget() with top.children[0]: display(circuit.decompose().draw(output="mpl")) display(wid.VBox(children=[top, bottom], layout=wid.Layout(width="100%", height="auto")))
https://github.com/rickapocalypse/final_paper_qiskit_sat
rickapocalypse
"""Python implementation of Grovers algorithm through use of the Qiskit library to find the value 3 (|11>) out of four possible values.""" #import numpy and plot library import matplotlib.pyplot as plt import numpy as np # importing Qiskit from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.quantum_info import Statevector # import basic plot tools from qiskit.visualization import plot_histogram # define variables, 1) initialize qubits to zero n = 2 grover_circuit = QuantumCircuit(n) #define initialization function def initialize_s(qc, qubits): '''Apply a H-gate to 'qubits' in qc''' for q in qubits: qc.h(q) return qc ### begin grovers circuit ### #2) Put qubits in equal state of superposition grover_circuit = initialize_s(grover_circuit, [0,1]) # 3) Apply oracle reflection to marked instance x_0 = 3, (|11>) grover_circuit.cz(0,1) statevec = job_sim.result().get_statevector() from qiskit_textbook.tools import vector2latex vector2latex(statevec, pretext="|\\psi\\rangle =") # 4) apply additional reflection (diffusion operator) grover_circuit.h([0,1]) grover_circuit.z([0,1]) grover_circuit.cz(0,1) grover_circuit.h([0,1]) # 5) measure the qubits grover_circuit.measure_all() # Load IBM Q account and get the least busy backend device provider = IBMQ.load_account() device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("Running on current least busy device: ", device) from qiskit.tools.monitor import job_monitor job = execute(grover_circuit, backend=device, shots=1024, optimization_level=3) job_monitor(job, interval = 2) results = job.result() answer = results.get_counts(grover_circuit) plot_histogram(answer) #highest amplitude should correspond with marked value x_0 (|11>)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.problems import BaseProblem dummy_hamiltonian = None base_problem = BaseProblem(dummy_hamiltonian) print(base_problem.properties) from qiskit_nature.second_q.properties import AngularMomentum print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Adding AngularMomentum to problem.properties...") base_problem.properties.add(AngularMomentum(2)) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Discarding AngularMomentum from problem.properties...") base_problem.properties.discard(AngularMomentum) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) from qiskit_nature.second_q.drivers import PySCFDriver es_problem = PySCFDriver().run() print(es_problem.properties.particle_number) print(es_problem.properties.angular_momentum) print(es_problem.properties.magnetization) print(es_problem.properties.electronic_dipole_moment) print(es_problem.properties.electronic_density) from qiskit_nature.second_q.properties import ElectronicDensity density = ElectronicDensity.from_orbital_occupation( es_problem.orbital_occupations, es_problem.orbital_occupations_b, ) es_problem.properties.electronic_density = density import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Example of using the StochasticSwap pass.""" from qiskit.transpiler.passes import StochasticSwap from qiskit.transpiler import CouplingMap from qiskit.converters import circuit_to_dag from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit coupling = CouplingMap([[0, 1], [1, 2], [1, 3]]) qr = QuantumRegister(4, "q") cr = ClassicalRegister(4, "c") circ = QuantumCircuit(qr, cr) circ.cx(qr[1], qr[2]) circ.cx(qr[0], qr[3]) circ.measure(qr[0], cr[0]) circ.h(qr) circ.cx(qr[0], qr[1]) circ.cx(qr[2], qr[3]) circ.measure(qr[0], cr[0]) circ.measure(qr[1], cr[1]) circ.measure(qr[2], cr[2]) circ.measure(qr[3], cr[3]) dag = circuit_to_dag(circ) # ┌─┐┌───┐ ┌─┐ # q_0: |0>─────────────────■──────────────────┤M├┤ H ├──■─────┤M├ # ┌───┐ │ └╥┘└───┘┌─┴─┐┌─┐└╥┘ # q_1: |0>──■───────┤ H ├──┼───────────────────╫──────┤ X ├┤M├─╫─ # ┌─┴─┐┌───┐└───┘ │ ┌─┐ ║ └───┘└╥┘ ║ # q_2: |0>┤ X ├┤ H ├───────┼─────────■─────┤M├─╫────────────╫──╫─ # └───┘└───┘ ┌─┴─┐┌───┐┌─┴─┐┌─┐└╥┘ ║ ║ ║ # q_3: |0>───────────────┤ X ├┤ H ├┤ X ├┤M├─╫──╫────────────╫──╫─ # └───┘└───┘└───┘└╥┘ ║ ║ ║ ║ # c_0: 0 ═══════════════════════════════╬══╬══╩════════════╬══╩═ # ║ ║ ║ # c_1: 0 ═══════════════════════════════╬══╬═══════════════╩════ # ║ ║ # c_2: 0 ═══════════════════════════════╬══╩════════════════════ # ║ # c_3: 0 ═══════════════════════════════╩═══════════════════════ # # ┌─┐┌───┐ ┌─┐ # q_0: |0>────────────────────■──┤M├┤ H ├──────────────────■──┤M├────── # ┌─┴─┐└╥┘└───┘┌───┐┌───┐ ┌─┴─┐└╥┘┌─┐ # q_1: |0>──■───X───────────┤ X ├─╫──────┤ H ├┤ X ├─X────┤ X ├─╫─┤M├─── # ┌─┴─┐ │ ┌───┐└───┘ ║ └───┘└─┬─┘ │ └───┘ ║ └╥┘┌─┐ # q_2: |0>┤ X ├─┼──────┤ H ├──────╫─────────────■───┼──────────╫──╫─┤M├ # └───┘ │ ┌───┐└───┘ ║ │ ┌─┐ ║ ║ └╥┘ # q_3: |0>──────X─┤ H ├───────────╫─────────────────X─┤M├──────╫──╫──╫─ # └───┘ ║ └╥┘ ║ ║ ║ # c_0: 0 ════════════════════════╩════════════════════╬═══════╩══╬══╬═ # ║ ║ ║ # c_1: 0 ═════════════════════════════════════════════╬══════════╩══╬═ # ║ ║ # c_2: 0 ═════════════════════════════════════════════╬═════════════╩═ # ║ # c_3: 0 ═════════════════════════════════════════════╩═══════════════ # # # 2 # | # 0 - 1 - 3 # Build the expected output to verify the pass worked expected = QuantumCircuit(qr, cr) expected.cx(qr[1], qr[2]) expected.h(qr[2]) expected.swap(qr[0], qr[1]) expected.h(qr[0]) expected.cx(qr[1], qr[3]) expected.h(qr[3]) expected.measure(qr[1], cr[0]) expected.swap(qr[1], qr[3]) expected.cx(qr[2], qr[1]) expected.h(qr[3]) expected.swap(qr[0], qr[1]) expected.measure(qr[2], cr[2]) expected.cx(qr[3], qr[1]) expected.measure(qr[0], cr[3]) expected.measure(qr[3], cr[0]) expected.measure(qr[1], cr[1]) expected_dag = circuit_to_dag(expected) # Run the pass on the dag from the input circuit pass_ = StochasticSwap(coupling, 20, 999) after = pass_.run(dag) # Verify the output of the pass matches our expectation assert expected_dag == after
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import QuantumCircuit from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import NormalDistribution # can be used in case a principal component analysis has been done to derive the uncertainty model, ignored in this example. A = np.eye(2) b = np.zeros(2) # specify the number of qubits that are used to represent the different dimenions of the uncertainty model num_qubits = [2, 2] # specify the lower and upper bounds for the different dimension low = [0, 0] high = [0.12, 0.24] mu = [0.12, 0.24] sigma = 0.01 * np.eye(2) # construct corresponding distribution bounds = list(zip(low, high)) u = NormalDistribution(num_qubits, mu, sigma, bounds) # plot contour of probability density function x = np.linspace(low[0], high[0], 2 ** num_qubits[0]) y = np.linspace(low[1], high[1], 2 ** num_qubits[1]) z = u.probabilities.reshape(2 ** num_qubits[0], 2 ** num_qubits[1]) plt.contourf(x, y, z) plt.xticks(x, size=15) plt.yticks(y, size=15) plt.grid() plt.xlabel("$r_1$ (%)", size=15) plt.ylabel("$r_2$ (%)", size=15) plt.colorbar() plt.show() # specify cash flow cf = [1.0, 2.0] periods = range(1, len(cf) + 1) # plot cash flow plt.bar(periods, cf) plt.xticks(periods, size=15) plt.yticks(size=15) plt.grid() plt.xlabel("periods", size=15) plt.ylabel("cashflow ($)", size=15) plt.show() # estimate real value cnt = 0 exact_value = 0.0 for x1 in np.linspace(low[0], high[0], pow(2, num_qubits[0])): for x2 in np.linspace(low[1], high[1], pow(2, num_qubits[1])): prob = u.probabilities[cnt] for t in range(len(cf)): # evaluate linear approximation of real value w.r.t. interest rates exact_value += prob * ( cf[t] / pow(1 + b[t], t + 1) - (t + 1) * cf[t] * np.dot(A[:, t], np.asarray([x1, x2])) / pow(1 + b[t], t + 2) ) cnt += 1 print("Exact value: \t%.4f" % exact_value) # specify approximation factor c_approx = 0.125 # create fixed income pricing application from qiskit_finance.applications.estimation import FixedIncomePricing fixed_income = FixedIncomePricing( num_qubits=num_qubits, pca_matrix=A, initial_interests=b, cash_flow=cf, rescaling_factor=c_approx, bounds=bounds, uncertainty_model=u, ) fixed_income._objective.draw() fixed_income_circ = QuantumCircuit(fixed_income._objective.num_qubits) # load probability distribution fixed_income_circ.append(u, range(u.num_qubits)) # apply function fixed_income_circ.append(fixed_income._objective, range(fixed_income._objective.num_qubits)) fixed_income_circ.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 # construct amplitude estimation problem = fixed_income.to_estimation_problem() ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (fixed_income.interpret(result))) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/brunorijsman/qiskit-cheat-sheet
brunorijsman
from qiskit import * from qiskit.visualization import * from math import * # A simple example Quantum Circuit that is used in many code snippets below example_qc = QuantumCircuit(2, 1) example_qc.h(0) example_qc.cx(0, 1) example_qc.measure(1, 0) None # Specify number of qubits and classical bits qc = QuantumCircuit(2, 1) # Quantum circuit with 2 qubits and 1 classical bit # In any of these examples add qc.draw() at the end to see better what is happening: # qc.draw() # Specify only number of qubits # Number of classical bits is zero by default qc = QuantumCircuit(2) # Quantum circuit with 2 qubits, and 0 classical bits # Quantum circuit with two quantum registers (a and b) and one classical register (c) a = QuantumRegister(2, "a") # 2 qubits in register, name is "a" b = QuantumRegister(3, "b") # 3 qubits in register, name is "b" c = ClassicalRegister(1, "c") # 1 classical bit in register, name is "c" qc = QuantumCircuit(a, b, c) # Quantum circuit with register a, b, and c # Give a name to the quantum circuit (not shown in draw or print) qc = QuantumCircuit(2, 2, name="my-quantum-circuit") # Apply a global phase to the quantum circuit # This is reported in draw() and print() and this is relevant when composing circuits qc = QuantumCircuit(2, 2, global_phase=pi/4) # Initialize to state provided as explicit vector qc = QuantumCircuit(2) qc.initialize([1, 0], 0) # Initialize qubit number 0 to [1, 0] = |0> qc.initialize([0, 1], 1) # Initialize qubit number 1 to [0, 1] = |1> # Many example end with "None" to avoid printing the return value of the last statement # In this case, qc.intialize() returns an InstructionSet object None # Reset qubit qc = QuantumCircuit(1) qc.reset(0) None # Initalize to string label # TODO: This is supposed to work, but it throws an exception # qc = QuantumCircuit(2) # qc.initialize('01', qc.qubits) # Initialize qubit 0 to |1> and qubit 1 to |0> # qc.initialize('+-', qc.qubits) # Initialize qubit 0 to |+> and qubit 1 to |-> # qc.initialize('rl', qc.qubits) # Initialize qubit 0 to |r> = |i> and qubit 1 to |l> = |-i> None # Apply a gate to a single qubit qc = QuantumCircuit(1) qc.x(0) # Apply X = NOT gate to qubit number 0 None # qc.x function returns an InstructionSet which I don't want to be printed # Apply a gate to two qubits qc = QuantumCircuit(2) qc.cx(0, 1) # Apply CX = controlled X = controlled NOT gate, qubit 0 is control, qubit 1 is target None # Apply a gate to three qubits qc = QuantumCircuit(3) qc.ccx(0, 1, 2) # Apply CCX = controlled controlled X = Toffoli gate, qubits 0 and 1 are control, qubit 2 is target None # Single qubit gates qc = QuantumCircuit(1) qc.x(0) # X gate = NOT gate = 180 degree rotation around X-axis qc.y(0) # Y gate = 180 degree rotation around Y-axis qc.z(0) # Z gate = 180 degree rotation around Z-axis qc.s(0) # S gate = 90 degree positive rotation around Z-axis qc.sdg(0) # S-dagger gate = 90 degree negative rotation around Z-axis qc.t(0) # T gate = 45 degree positive rotation around Z-axis qc.tdg(0) # T-dagger gate = 45 degree negative rotation around Z-axis qc.h(0) # H gate = Hadamard gate qc.i(0) # I gate = Identity gate (does nothing) qc.id(0) # Identity gate (synonym for I gate) # Parameterized gates qc.p(pi/4, 0) # P gate = Phase gate: first argument is phase qc.rx(pi/4, 0) # Rotate around X-axis by some angle qc.ry(pi/4, 0) # Rotate around Y-axis by some angle qc.rz(pi/4, 0) # Rotate around Z-axis by some angle None # Two qubit gates qc = QuantumCircuit(2) # "True" two qubit gates qc.swap(0, 1) # Swap gate qc.iswap(0, 1) # Iswap gate # Controlled single qubit gates # First argument is control qubit second argument is target qubit qc.cx(0, 1) # Controlled-X = Controlled-NOT qc.cnot(0, 1) # Controller-NOT = Controlled-X (synonym for cx) qc.cy(0, 1) # Controlled-Y qc.cz(0, 1) # Controlled-Z (Note control and target are symmetric due to phase kick-back) qc.ch(0, 1) # Controlled-H = Controlled-Hadamard # Controlled rotations around various axes / controlled phase # First arg is phase, second is control qubit, third is target qubit qc.crx(pi/8, 0, 1) # Controlled rotation around x-axis qc.cry(pi/8, 0, 1) # Controlled rotation around y-axis qc.crz(pi/8, 0, 1) # Controlled rotation around z-axis qc.cp(pi/8, 0, 1) # Controlled-Phase qc.csx(0, 1) # Controlled-SX gate = Controlled square-root-of-X gate None # Three qubit gates # Double controlled single qubit gates # First and second argument are control qubits, third argument is target qubit qc = QuantumCircuit(3) qc.ccx(0, 1, 2) # Controlled-controlled-X = controlled-controlled-NOT = Tofolli gate # Controlled two qubit gates # First argument is control qubit, second and third argument are target qubits qc.cswap(0, 1, 2) # Controlled-swap qc.fredkin(0, 1, 2) # Fredkin gate = synonym for controlled-swap None # TODO: more gates # cu gate # cu1 gate # cu3 gate # dcx gate # ecr gate # mcp gate # mcrx gate # mcry gate # mcrz gate # mct gate # mcu1 gate # mcx gate # ms gate # pauli gate # r gate # rccx gate # rcccx gate # rv gate # rxx gate # ryy gate # rzz gate # rzx gate # sx gate # sxdg gate # u gate # u1 gate # u2 gate # uc gate # ucrx gate # ucry gate # ucrz gate # Measure one qubit in existing classical bit # Measure qubit number 0 into classical bit number 0 qc = QuantumCircuit(1, 1) qc.measure(0, 0) None # Measure multiple qubits into multiple existing classical bits # Measure qubit number 0 into classical bit number 0, and qubit number 1 into classical bit number 1 qc = QuantumCircuit(2, 2) qc.measure([0, 1], [0, 1]) None # Measure quantum register into existing classical register quantum_register = QuantumRegister(2) classical_register = ClassicalRegister(2) qc = QuantumCircuit(quantum_register, classical_register) qc.measure(quantum_register, classical_register) None # Create barrier and measure all qubits into newly created classical bits "meas" qc = QuantumCircuit(2) qc.measure_all() None # Create barrier and measure all qubits that have at least one gate into newly created classical bits "meas" qc = QuantumCircuit(2) qc.x(0) qc.measure_active() None # Use Python control logic to procedurally generate a circuit nr_qubits = 6 qc = QuantumCircuit(nr_qubits) for i in range(nr_qubits-1): qc.h(i) qc.cx(i, nr_qubits-1) # Draw a quantum circuit example_qc.draw() # Draw multiple quantum circuits # Without the display calls, only the last draw is shown display(example_qc.draw()) display(example_qc.draw()) # Draw a scaled quantum circuit example_qc.draw(scale=0.5) # Draw a quantum circuit as text example_qc.draw(output="text") # Print a quantum circuit (same as draw as text) print(example_qc) # Execute by invoking execute method, passing in quantum circuit and backend backend = Aer.get_backend("qasm_simulator") job = execute(example_qc, backend) result = job.result() # Execute by compiling to object code and then invoking backend run method, passing in object code backend = Aer.get_backend("qasm_simulator") qobj = assemble(example_qc) job = backend.run(qobj) result = job.result() # Features of qasm_simulator backend: # - Simulates a real (noisy) hardware device # - No access to state vector, only to measurement results # - TODO: more backend = Aer.get_backend("qasm_simulator") # Note: synonymous with "aer_simulator" TODO: is that so? result = execute(example_qc, backend).result() # Features of statevector_simulator backend: # - TODO backend = Aer.get_backend("statevector_simulator") # Note: synonymous with "aer_simulator_statevector" result = execute(example_qc, backend).result() # Features of unitary_simulator backend: # - TODO backend = Aer.get_backend("unitary_simulator") # Note: synonymous with "aer_simulator_unitary" result = execute(example_qc, backend).result() # Plot histogram of measurement results # Available with all backends backend = Aer.get_backend("qasm_simulator") job = execute(example_qc, backend) result = job.result() counts = result.get_counts() plot_histogram(counts) # Plot Bloch multivector for a quantum state # Only available on backends where the internal statevector is available backend = Aer.get_backend("statevector_simulator") job = execute(example_qc, backend) result = job.result() statevector = result.get_statevector() plot_bloch_multivector(statevector) # Plot a state city for a quantum state # Only available on backends where the internal statevector is available qc = QuantumCircuit(2) qc.h(0) qc.z(0) qc.cx(0, 1) backend = Aer.get_backend("statevector_simulator") job = execute(qc, backend) result = job.result() statevector = result.get_statevector() plot_state_city(statevector) # Plot a hinton diagram for the density matrix of a quantum state # Only available on backends where the internal statevector is available qc = QuantumCircuit(2) qc.h(0) qc.z(0) qc.cx(0, 1) backend = Aer.get_backend("statevector_simulator") job = execute(qc, backend) result = job.result() statevector = result.get_statevector() plot_state_hinton(statevector) # Plot the paulivec representation of a quantum state # Only available on backends where the internal statevector is available qc = QuantumCircuit(2) qc.h(0) qc.z(0) qc.cx(0, 1) backend = Aer.get_backend("statevector_simulator") job = execute(qc, backend) result = job.result() statevector = result.get_statevector() plot_state_paulivec(statevector) # Plot the qsphere representation of a quantum state # Only available on backends where the internal statevector is available qc = QuantumCircuit(2) qc.h(0) qc.z(0) qc.cx(0, 1) backend = Aer.get_backend("statevector_simulator") job = execute(qc, backend) result = job.result() statevector = result.get_statevector() plot_state_qsphere(statevector) # TODO: Schedule a jon on real hardware # TODO: Monitor progress of a job # TODO: Gate class, circuit to gate, ... # TODO: classes Parameter, ParameterVector, ParameterExpression,
https://github.com/tomtuamnuq/compare-qiskit-ocean
tomtuamnuq
from qiskit_optimization import QuadraticProgram from qiskit_optimization.converters import QuadraticProgramToQubo from dwave.system import DWaveSampler, EmbeddingComposite import dimod import dwave.inspector # select quadratic program to solve qp = QuadraticProgram() qp.read_from_lp_file("example.lp") qubo = QuadraticProgramToQubo().convert(qp) bqm_binary = dimod.as_bqm(qubo.objective.linear.to_array(), qubo.objective.quadratic.to_array(), dimod.BINARY) print(qp) print(bqm_binary) bqm_ising = bqm_binary.to_ising() print("Ising Model form coefficients:") print(bqm_ising) sampler = EmbeddingComposite(DWaveSampler()) res = sampler.sample(bqm_binary, label="example_qubo_3_1024", num_reads=1024) res.to_pandas_dataframe() dwave.inspector.show(res) # this is a good looking one
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import QuantumCircuit from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits to represent the uncertainty num_uncertainty_qubits = 3 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective uncertainty_model = LogNormalDistribution( num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high) ) # plot probability distribution x = uncertainty_model.values y = uncertainty_model.probabilities plt.bar(x, y, width=0.2) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.show() # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 1.896 # set the approximation scaling for the payoff function c_approx = 0.25 # setup piecewise linear objective fcuntion breakpoints = [low, strike_price] slopes = [0, 1] offsets = [0, 0] f_min = 0 f_max = high - strike_price european_call_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, rescaling_factor=c_approx, ) # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective num_qubits = european_call_objective.num_qubits european_call = QuantumCircuit(num_qubits) european_call.append(uncertainty_model, range(num_uncertainty_qubits)) european_call.append(european_call_objective, range(num_qubits)) # draw the circuit european_call.draw() # plot exact payoff function (evaluated on the grid of the uncertainty model) x = uncertainty_model.values y = np.maximum(0, x - strike_price) plt.plot(x, y, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value (normalized to the [0, 1] interval) exact_value = np.dot(uncertainty_model.probabilities, y) exact_delta = sum(uncertainty_model.probabilities[x >= strike_price]) print("exact expected value:\t%.4f" % exact_value) print("exact delta value: \t%.4f" % exact_delta) european_call.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=european_call, objective_qubits=[3], post_processing=european_call_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (result.estimation_processed)) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) from qiskit_finance.applications.estimation import EuropeanCallPricing european_call_pricing = EuropeanCallPricing( num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, rescaling_factor=c_approx, bounds=(low, high), uncertainty_model=uncertainty_model, ) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_pricing.to_estimation_problem() # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (european_call_pricing.interpret(result))) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) from qiskit_finance.applications.estimation import EuropeanCallDelta european_call_delta = EuropeanCallDelta( num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, bounds=(low, high), uncertainty_model=uncertainty_model, ) european_call_delta._objective.decompose().draw() european_call_delta_circ = QuantumCircuit(european_call_delta._objective.num_qubits) european_call_delta_circ.append(uncertainty_model, range(num_uncertainty_qubits)) european_call_delta_circ.append( european_call_delta._objective, range(european_call_delta._objective.num_qubits) ) european_call_delta_circ.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_delta.to_estimation_problem() # construct amplitude estimation ae_delta = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_delta = ae_delta.estimate(problem) conf_int = np.array(result_delta.confidence_interval_processed) print("Exact delta: \t%.4f" % exact_delta) print("Esimated value: \t%.4f" % european_call_delta.interpret(result_delta)) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import numpy as np from qiskit import BasicAer from qiskit.transpiler import PassManager from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver, IQPE from qiskit.aqua.operators import WeightedPauliOperator from qiskit.circuit.library import TwoLocal from qiskit.aqua.components.optimizers import SPSA from qiskit.aqua.components.initial_states.var_form_based import VarFormBased pauli_dict = { 'paulis': [{"coeff": {"imag": 0.0, "real": -1.052373245772859}, "label": "II"}, {"coeff": {"imag": 0.0, "real": 0.39793742484318045}, "label": "IZ"}, {"coeff": {"imag": 0.0, "real": -0.39793742484318045}, "label": "ZI"}, {"coeff": {"imag": 0.0, "real": -0.01128010425623538}, "label": "ZZ"}, {"coeff": {"imag": 0.0, "real": 0.18093119978423156}, "label": "XX"} ] } qubit_op = WeightedPauliOperator.from_dict(pauli_dict) result_reference = NumPyMinimumEigensolver(qubit_op).run() print('The reference ground energy level is {}.'.format(result_reference.eigenvalue.real)) random_seed = 0 np.random.seed(random_seed) backend = BasicAer.get_backend('qasm_simulator') var_form_depth = 3 var_form = TwoLocal(qubit_op.num_qubits, ['ry', 'rz'], 'cz', reps=var_form_depth) spsa_max_trials=10 optimizer = SPSA(max_trials=spsa_max_trials) vqe = VQE(qubit_op, var_form, optimizer) quantum_instance = QuantumInstance(backend) result_vqe = vqe.run(quantum_instance) print('VQE estimated the ground energy to be {}.'.format(result_vqe.eigenvalue.real)) state_in = VarFormBased(var_form, result_vqe.optimal_point) num_time_slices = 1 num_iterations = 6 iqpe = IQPE(qubit_op, state_in, num_time_slices, num_iterations, expansion_mode='suzuki', expansion_order=2, shallow_circuit_concat=True) quantum_instance = QuantumInstance(backend, shots=100, seed_simulator=random_seed, seed_transpiler=random_seed) result_iqpe = iqpe.run(quantum_instance) print("Continuing with VQE's result, IQPE estimated the ground energy to be {}.".format( result_iqpe.eigenvalue.real))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumCircuit from qiskit.quantum_info import DensityMatrix from qiskit.visualization import plot_state_hinton qc = QuantumCircuit(2) qc.h([0, 1]) qc.cz(0,1) qc.ry(np.pi/3 , 0) qc.rx(np.pi/5, 1) state = DensityMatrix(qc) plot_state_hinton(state, title="New Hinton Plot")
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
10*15+13*125, 10*15-27*125 def euclides_gcd(a,b): if b > a: # put in increasing order t = a; a = b; b = t if a == b or a%b == 0: # test equality or null remainder return b r = a%b print('a =', a, ', b =', b, ', k =', a//b, ', r =', r) while r != 0: a = b; b = r gcd = b r = a%b print('a =', a, ', b =', b, ', k =', a//b, ', r =', r) return b import math a = 6825; b = 1430; egcd = euclides_gcd(a,b) print('euclides_gcd('+str(a)+','+str(b)+')=',egcd, ', python_gcd = ', math.gcd(a,b)) -9*6825 + 43*1430 # ok! a = 126; p = 23; a%p, (a**p)%p, (a**(p-1))%p
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Assembler Test.""" import unittest import numpy as np from numpy.testing import assert_allclose from qiskit import pulse from qiskit.compiler.assembler import assemble from qiskit.assembler.disassemble import disassemble from qiskit.assembler.run_config import RunConfig from qiskit.circuit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.circuit import Gate, Instruction, Parameter from qiskit.circuit.library import RXGate from qiskit.pulse.transforms import target_qobj_transform from qiskit.test import QiskitTestCase from qiskit.providers.fake_provider import FakeOpenPulse2Q import qiskit.quantum_info as qi def _parametric_to_waveforms(schedule): instructions = list(schedule.instructions) for i, time_instruction_tuple in enumerate(schedule.instructions): time, instruction = time_instruction_tuple if not isinstance(instruction.pulse, pulse.library.Waveform): new_inst = pulse.Play(instruction.pulse.get_waveform(), instruction.channel) instructions[i] = (time, new_inst) return tuple(instructions) class TestQuantumCircuitDisassembler(QiskitTestCase): """Tests for disassembling circuits to qobj.""" def test_disassemble_single_circuit(self): """Test disassembling a single circuit.""" qr = QuantumRegister(2, name="q") cr = ClassicalRegister(2, name="c") circ = QuantumCircuit(qr, cr, name="circ") circ.h(qr[0]) circ.cx(qr[0], qr[1]) circ.measure(qr, cr) qubit_lo_freq = [5e9, 5e9] meas_lo_freq = [6.7e9, 6.7e9] qobj = assemble( circ, shots=2000, memory=True, qubit_lo_freq=qubit_lo_freq, meas_lo_freq=meas_lo_freq, ) circuits, run_config_out, headers = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 2) self.assertEqual(run_config_out.memory_slots, 2) self.assertEqual(run_config_out.shots, 2000) self.assertEqual(run_config_out.memory, True) self.assertEqual(run_config_out.qubit_lo_freq, qubit_lo_freq) self.assertEqual(run_config_out.meas_lo_freq, meas_lo_freq) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], circ) self.assertEqual({}, headers) def test_disassemble_multiple_circuits(self): """Test disassembling multiple circuits, all should have the same config.""" qr0 = QuantumRegister(2, name="q0") qc0 = ClassicalRegister(2, name="c0") circ0 = QuantumCircuit(qr0, qc0, name="circ0") circ0.h(qr0[0]) circ0.cx(qr0[0], qr0[1]) circ0.measure(qr0, qc0) qr1 = QuantumRegister(3, name="q1") qc1 = ClassicalRegister(3, name="c1") circ1 = QuantumCircuit(qr1, qc1, name="circ0") circ1.h(qr1[0]) circ1.cx(qr1[0], qr1[1]) circ1.cx(qr1[0], qr1[2]) circ1.measure(qr1, qc1) qobj = assemble([circ0, circ1], shots=100, memory=False, seed=6) circuits, run_config_out, headers = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 3) self.assertEqual(run_config_out.memory_slots, 3) self.assertEqual(run_config_out.shots, 100) self.assertEqual(run_config_out.memory, False) self.assertEqual(run_config_out.seed, 6) self.assertEqual(len(circuits), 2) for circuit in circuits: self.assertIn(circuit, [circ0, circ1]) self.assertEqual({}, headers) def test_disassemble_no_run_config(self): """Test disassembling with no run_config, relying on default.""" qr = QuantumRegister(2, name="q") qc = ClassicalRegister(2, name="c") circ = QuantumCircuit(qr, qc, name="circ") circ.h(qr[0]) circ.cx(qr[0], qr[1]) circ.measure(qr, qc) qobj = assemble(circ) circuits, run_config_out, headers = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 2) self.assertEqual(run_config_out.memory_slots, 2) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], circ) self.assertEqual({}, headers) def test_disassemble_initialize(self): """Test disassembling a circuit with an initialize.""" q = QuantumRegister(2, name="q") circ = QuantumCircuit(q, name="circ") circ.initialize([1 / np.sqrt(2), 0, 0, 1 / np.sqrt(2)], q[:]) qobj = assemble(circ) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 2) self.assertEqual(run_config_out.memory_slots, 0) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], circ) self.assertEqual({}, header) def test_disassemble_isometry(self): """Test disassembling a circuit with an isometry.""" q = QuantumRegister(2, name="q") circ = QuantumCircuit(q, name="circ") circ.iso(qi.random_unitary(4).data, circ.qubits, []) qobj = assemble(circ) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 2) self.assertEqual(run_config_out.memory_slots, 0) self.assertEqual(len(circuits), 1) # params array assert_allclose(circuits[0]._data[0].operation.params[0], circ._data[0].operation.params[0]) # all other data self.assertEqual( circuits[0]._data[0].operation.params[1:], circ._data[0].operation.params[1:] ) self.assertEqual(circuits[0]._data[0].qubits, circ._data[0].qubits) self.assertEqual(circuits[0]._data[0].clbits, circ._data[0].clbits) self.assertEqual(circuits[0]._data[1:], circ._data[1:]) self.assertEqual({}, header) def test_opaque_instruction(self): """Test the disassembler handles opaque instructions correctly.""" opaque_inst = Instruction(name="my_inst", num_qubits=4, num_clbits=2, params=[0.5, 0.4]) q = QuantumRegister(6, name="q") c = ClassicalRegister(4, name="c") circ = QuantumCircuit(q, c, name="circ") circ.append(opaque_inst, [q[0], q[2], q[5], q[3]], [c[3], c[0]]) qobj = assemble(circ) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 6) self.assertEqual(run_config_out.memory_slots, 4) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], circ) self.assertEqual({}, header) def test_circuit_with_conditionals(self): """Verify disassemble sets conditionals correctly.""" qr = QuantumRegister(2) cr1 = ClassicalRegister(1) cr2 = ClassicalRegister(2) qc = QuantumCircuit(qr, cr1, cr2) qc.measure(qr[0], cr1) # Measure not required for a later conditional qc.measure(qr[1], cr2[1]) # Measure required for a later conditional qc.h(qr[1]).c_if(cr2, 3) qobj = assemble(qc) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 2) self.assertEqual(run_config_out.memory_slots, 3) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], qc) self.assertEqual({}, header) def test_circuit_with_simple_conditional(self): """Verify disassemble handles a simple conditional on the only bits.""" qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) qc.h(qr[0]).c_if(cr, 1) qobj = assemble(qc) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 1) self.assertEqual(run_config_out.memory_slots, 1) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], qc) self.assertEqual({}, header) def test_circuit_with_single_bit_conditions(self): """Verify disassemble handles a simple conditional on a single bit of a register.""" # This circuit would fail to perfectly round-trip if 'cr' below had only one bit in it. # This is because the format of QasmQobj is insufficient to disambiguate single-bit # conditions from conditions on registers with only one bit. Since single-bit conditions are # mostly a hack for the QasmQobj format at all, `disassemble` always prefers to return the # register if it can. It would also fail if registers overlap. qr = QuantumRegister(1) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) qc.h(qr[0]).c_if(cr[0], 1) qobj = assemble(qc) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, len(qr)) self.assertEqual(run_config_out.memory_slots, len(cr)) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], qc) self.assertEqual({}, header) def test_circuit_with_mcx(self): """Verify disassemble handles mcx gate - #6271.""" qr = QuantumRegister(5) cr = ClassicalRegister(5) qc = QuantumCircuit(qr, cr) qc.mcx([0, 1, 2], 4) qobj = assemble(qc) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 5) self.assertEqual(run_config_out.memory_slots, 5) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], qc) self.assertEqual({}, header) def test_multiple_conditionals_multiple_registers(self): """Verify disassemble handles multiple conditionals and registers.""" qr = QuantumRegister(3) cr1 = ClassicalRegister(3) cr2 = ClassicalRegister(5) cr3 = ClassicalRegister(6) cr4 = ClassicalRegister(1) qc = QuantumCircuit(qr, cr1, cr2, cr3, cr4) qc.x(qr[1]) qc.h(qr) qc.cx(qr[1], qr[0]).c_if(cr3, 14) qc.ccx(qr[0], qr[2], qr[1]).c_if(cr4, 1) qc.h(qr).c_if(cr1, 3) qobj = assemble(qc) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 3) self.assertEqual(run_config_out.memory_slots, 15) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], qc) self.assertEqual({}, header) def test_circuit_with_bit_conditional_1(self): """Verify disassemble handles conditional on a single bit.""" qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) qc.h(qr[0]).c_if(cr[1], True) qobj = assemble(qc) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 2) self.assertEqual(run_config_out.memory_slots, 2) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], qc) self.assertEqual({}, header) def test_circuit_with_bit_conditional_2(self): """Verify disassemble handles multiple single bit conditionals.""" qr = QuantumRegister(2) cr = ClassicalRegister(2) cr1 = ClassicalRegister(2) qc = QuantumCircuit(qr, cr, cr1) qc.h(qr[0]).c_if(cr1[1], False) qc.h(qr[1]).c_if(cr[0], True) qc.cx(qr[0], qr[1]).c_if(cr1[0], False) qobj = assemble(qc) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 2) self.assertEqual(run_config_out.memory_slots, 4) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], qc) self.assertEqual({}, header) def assertCircuitCalibrationsEqual(self, in_circuits, out_circuits): """Verify circuit calibrations are equivalent pre-assembly and post-disassembly""" self.assertEqual(len(in_circuits), len(out_circuits)) for in_qc, out_qc in zip(in_circuits, out_circuits): in_cals = in_qc.calibrations out_cals = out_qc.calibrations self.assertEqual(in_cals.keys(), out_cals.keys()) for gate_name in in_cals: self.assertEqual(in_cals[gate_name].keys(), out_cals[gate_name].keys()) for gate_params, in_sched in in_cals[gate_name].items(): out_sched = out_cals[gate_name][gate_params] self.assertEqual(*map(_parametric_to_waveforms, (in_sched, out_sched))) def test_single_circuit_calibrations(self): """Test that disassembler parses single circuit QOBJ calibrations (from QOBJ-level).""" theta = Parameter("theta") qc = QuantumCircuit(2) qc.h(0) qc.rx(np.pi, 0) qc.rx(theta, 1) qc = qc.assign_parameters({theta: np.pi}) with pulse.build() as h_sched: pulse.play(pulse.library.Drag(1, 0.15, 4, 2), pulse.DriveChannel(0)) with pulse.build() as x180: pulse.play(pulse.library.Gaussian(1, 0.2, 5), pulse.DriveChannel(0)) qc.add_calibration("h", [0], h_sched) qc.add_calibration(RXGate(np.pi), [0], x180) qobj = assemble(qc, FakeOpenPulse2Q()) output_circuits, _, _ = disassemble(qobj) self.assertCircuitCalibrationsEqual([qc], output_circuits) def test_parametric_pulse_circuit_calibrations(self): """Test that disassembler parses parametric pulses back to pulse gates.""" with pulse.build() as h_sched: pulse.play(pulse.library.Drag(50, 0.15, 4, 2), pulse.DriveChannel(0)) qc = QuantumCircuit(2) qc.h(0) qc.add_calibration("h", [0], h_sched) backend = FakeOpenPulse2Q() backend.configuration().parametric_pulses = ["drag"] qobj = assemble(qc, backend) output_circuits, _, _ = disassemble(qobj) out_qc = output_circuits[0] self.assertCircuitCalibrationsEqual([qc], output_circuits) self.assertTrue( all( qc_sched.instructions == out_qc_sched.instructions for (_, qc_gate), (_, out_qc_gate) in zip( qc.calibrations.items(), out_qc.calibrations.items() ) for qc_sched, out_qc_sched in zip(qc_gate.values(), out_qc_gate.values()) ), ) def test_multi_circuit_uncommon_calibrations(self): """Test that disassembler parses uncommon calibrations (stored at QOBJ experiment-level).""" with pulse.build() as sched: pulse.play(pulse.library.Drag(50, 0.15, 4, 2), pulse.DriveChannel(0)) qc_0 = QuantumCircuit(2) qc_0.h(0) qc_0.append(RXGate(np.pi), [1]) qc_0.add_calibration("h", [0], sched) qc_0.add_calibration(RXGate(np.pi), [1], sched) qc_1 = QuantumCircuit(2) qc_1.h(0) circuits = [qc_0, qc_1] qobj = assemble(circuits, FakeOpenPulse2Q()) output_circuits, _, _ = disassemble(qobj) self.assertCircuitCalibrationsEqual(circuits, output_circuits) def test_multi_circuit_common_calibrations(self): """Test that disassembler parses common calibrations (stored at QOBJ-level).""" with pulse.build() as sched: pulse.play(pulse.library.Drag(1, 0.15, 4, 2), pulse.DriveChannel(0)) qc_0 = QuantumCircuit(2) qc_0.h(0) qc_0.append(RXGate(np.pi), [1]) qc_0.add_calibration("h", [0], sched) qc_0.add_calibration(RXGate(np.pi), [1], sched) qc_1 = QuantumCircuit(2) qc_1.h(0) qc_1.add_calibration(RXGate(np.pi), [1], sched) circuits = [qc_0, qc_1] qobj = assemble(circuits, FakeOpenPulse2Q()) output_circuits, _, _ = disassemble(qobj) self.assertCircuitCalibrationsEqual(circuits, output_circuits) def test_single_circuit_delay_calibrations(self): """Test that disassembler parses delay instruction back to delay gate.""" qc = QuantumCircuit(2) qc.append(Gate("test", 1, []), [0]) test_sched = pulse.Delay(64, pulse.DriveChannel(0)) + pulse.Delay( 160, pulse.DriveChannel(0) ) qc.add_calibration("test", [0], test_sched) qobj = assemble(qc, FakeOpenPulse2Q()) output_circuits, _, _ = disassemble(qobj) self.assertEqual(len(qc.calibrations), len(output_circuits[0].calibrations)) self.assertEqual(qc.calibrations.keys(), output_circuits[0].calibrations.keys()) self.assertTrue( all( qc_cal.keys() == out_qc_cal.keys() for qc_cal, out_qc_cal in zip( qc.calibrations.values(), output_circuits[0].calibrations.values() ) ) ) self.assertEqual( qc.calibrations["test"][((0,), ())], output_circuits[0].calibrations["test"][((0,), ())] ) class TestPulseScheduleDisassembler(QiskitTestCase): """Tests for disassembling pulse schedules to qobj.""" def setUp(self): super().setUp() self.backend = FakeOpenPulse2Q() self.backend_config = self.backend.configuration() self.backend_config.parametric_pulses = ["constant", "gaussian", "gaussian_square", "drag"] def test_disassemble_single_schedule(self): """Test disassembling a single schedule.""" d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) with pulse.build(self.backend) as sched: with pulse.align_right(): pulse.play(pulse.library.Constant(10, 1.0), d0) pulse.set_phase(1.0, d0) pulse.shift_phase(3.11, d0) pulse.set_frequency(1e9, d0) pulse.shift_frequency(1e7, d0) pulse.delay(20, d0) pulse.delay(10, d1) pulse.play(pulse.library.Constant(8, 0.1), d1) pulse.measure_all() qobj = assemble(sched, backend=self.backend, shots=2000) scheds, run_config_out, _ = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.memory_slots, 2) self.assertEqual(run_config_out.shots, 2000) self.assertEqual(run_config_out.memory, False) self.assertEqual(run_config_out.meas_level, 2) self.assertEqual(run_config_out.meas_lo_freq, self.backend.defaults().meas_freq_est) self.assertEqual(run_config_out.qubit_lo_freq, self.backend.defaults().qubit_freq_est) self.assertEqual(run_config_out.rep_time, 99) self.assertEqual(len(scheds), 1) self.assertEqual(scheds[0], target_qobj_transform(sched)) def test_disassemble_multiple_schedules(self): """Test disassembling multiple schedules, all should have the same config.""" d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) with pulse.build(self.backend) as sched0: with pulse.align_right(): pulse.play(pulse.library.Constant(10, 1.0), d0) pulse.set_phase(1.0, d0) pulse.shift_phase(3.11, d0) pulse.set_frequency(1e9, d0) pulse.shift_frequency(1e7, d0) pulse.delay(20, d0) pulse.delay(10, d1) pulse.play(pulse.library.Constant(8, 0.1), d1) pulse.measure_all() with pulse.build(self.backend) as sched1: with pulse.align_right(): pulse.play(pulse.library.Constant(8, 0.1), d0) pulse.play(pulse.library.Waveform([0.0, 1.0]), d1) pulse.set_phase(1.1, d0) pulse.shift_phase(3.5, d0) pulse.set_frequency(2e9, d0) pulse.shift_frequency(3e7, d1) pulse.delay(20, d1) pulse.delay(10, d0) pulse.play(pulse.library.Constant(8, 0.4), d1) pulse.measure_all() qobj = assemble([sched0, sched1], backend=self.backend, shots=2000) scheds, run_config_out, _ = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.memory_slots, 2) self.assertEqual(run_config_out.shots, 2000) self.assertEqual(run_config_out.memory, False) self.assertEqual(len(scheds), 2) self.assertEqual(scheds[0], target_qobj_transform(sched0)) self.assertEqual(scheds[1], target_qobj_transform(sched1)) def test_disassemble_parametric_pulses(self): """Test disassembling multiple schedules all should have the same config.""" d0 = pulse.DriveChannel(0) with pulse.build(self.backend) as sched: with pulse.align_right(): pulse.play(pulse.library.Constant(10, 1.0), d0) pulse.play(pulse.library.Gaussian(10, 1.0, 2.0), d0) pulse.play(pulse.library.GaussianSquare(10, 1.0, 2.0, 3), d0) pulse.play(pulse.library.Drag(10, 1.0, 2.0, 0.1), d0) qobj = assemble(sched, backend=self.backend, shots=2000) scheds, _, _ = disassemble(qobj) self.assertEqual(scheds[0], target_qobj_transform(sched)) def test_disassemble_schedule_los(self): """Test disassembling schedule los.""" d0 = pulse.DriveChannel(0) m0 = pulse.MeasureChannel(0) d1 = pulse.DriveChannel(1) m1 = pulse.MeasureChannel(1) sched0 = pulse.Schedule() sched1 = pulse.Schedule() schedule_los = [ {d0: 4.5e9, d1: 5e9, m0: 6e9, m1: 7e9}, {d0: 5e9, d1: 4.5e9, m0: 7e9, m1: 6e9}, ] qobj = assemble([sched0, sched1], backend=self.backend, schedule_los=schedule_los) _, run_config_out, _ = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.schedule_los, schedule_los) if __name__ == "__main__": unittest.main(verbosity=2)
https://github.com/GabrielPontolillo/QiskitPBT
GabrielPontolillo
# class that inherits from property based test from qiskit import QuantumCircuit import numpy as np from qiskit.circuit.library import UnitaryGate from QiskitPBT.property import Property from QiskitPBT.input_generators import RandomEigenvectorUnitaryPair, RandomUnitary, Integer from QiskitPBT.case_studies.quantum_phase_estimation.quantum_phase_estimation import qpe_general class LowerRegisterUnchangedByEigenvector(Property): # specify the inputs that are to be generated def get_input_generators(self): eigenvector_unitary_pair = RandomEigenvectorUnitaryPair(RandomUnitary(1, 2), 1) estimation_qubits = Integer(1, 3) return [eigenvector_unitary_pair, estimation_qubits] # specify the preconditions for the test def preconditions(self, eigenvector_unitary_pair, estimation_qubits): return True # specify the operations to be performed on the input def operations(self, eigenvector_unitary_pair, estimation_qubits): eigenvectors, unitary = eigenvector_unitary_pair n = unitary.num_qubits # perform qpe on with an eigenvector in lower register qpe = qpe_general(estimation_qubits, UnitaryGate(unitary), eigenvectors[0][0]) # state should be the unchanged eigenvector qpe2 = QuantumCircuit(n, n) qpe2.initialize(eigenvectors[0][0], list(range(n))) self.statistical_analysis.assert_equal(self, list(range(estimation_qubits, estimation_qubits+unitary.num_qubits)), qpe, list(range(n)), qpe2)
https://github.com/qiskit-community/qgss-2023
qiskit-community
from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister import numpy as np def step_1_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 2 bits qc = QuantumCircuit(qr, cr) ####### your code goes here ####### return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") qc = QuantumCircuit(qr, cr) qc = step_1_circuit(qr, cr) qc.draw("mpl") # Submit your circuit from qc_grader.challenges.qgss_2023 import grade_lab4_ex1 grade_lab4_ex1(qc) def step_2_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 2 bits # begin with the circuit from Step 1 qc = step_1_circuit(qr, cr) ####### your code goes here ####### return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") qc = QuantumCircuit(qr, cr) qc = step_2_circuit(qr, cr) qc.draw("mpl") # Submit your circuit from qc_grader.challenges.qgss_2023 import grade_lab4_ex2 grade_lab4_ex2(qc) from qiskit_aer import AerSimulator sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() counts from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister import numpy as np def t_gate_ipe_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 3 bits qc = QuantumCircuit(qr, cr) ####### your code goes here ####### return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(3, "c") qc = QuantumCircuit(qr, cr) qc = t_gate_ipe_circuit(qr, cr) qc.draw("mpl") from qiskit_aer import AerSimulator sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() counts # Submit your circuit from qc_grader.challenges.qgss_2023 import grade_lab4_ex3 grade_lab4_ex3(qc) from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister import numpy as np def u_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 2 bits qc = QuantumCircuit(qr, cr) # Initialization q0, q1 = qr qc.h(q0) qc.x(q1) # Apply control-U operator as many times as needed to get the least significant phase bit u_angle = 2 * np.pi / 3 k = 1 cphase_angle = u_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis into the first classical bit qc.h(q0) c0, c1 = cr qc.measure(q0, c0) # Reset and re-initialize the auxiliary qubit qc.reset(q0) qc.h(q0) # Apply phase correction conditioned on the first classical bit with qc.if_test((c0, 1)): qc.p(-np.pi / 2, q0) # Apply control-U operator as many times as needed to get the next phase bit k = 0 cphase_angle = u_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis into the second classical bit qc.h(q0) qc.measure(q0, c1) return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") qc = QuantumCircuit(qr, cr) qc = u_circuit(qr, cr) qc.draw("mpl") from qiskit_aer import AerSimulator sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() print(counts) success_probability = counts["01"] / counts.shots() print(f"Success probability: {success_probability}") from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister import numpy as np def u_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 1 bits qc = QuantumCircuit(qr, cr) # Initialization q0, q1 = qr qc.h(q0) qc.x(q1) # Apply control-U operator as many times as needed to get the least significant phase bit u_angle = 2 * np.pi / 3 k = 1 cphase_angle = u_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis qc.h(q0) (c0,) = cr qc.measure(q0, c0) return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(1, "c") qc = QuantumCircuit(qr, cr) qc = u_circuit(qr, cr) qc.draw("mpl") job = sim.run(qc, shots=15) result = job.result() counts = result.get_counts() print(counts) step1_bit: int ####### your code goes here ####### # Submit your result from qc_grader.challenges.qgss_2023 import grade_lab4_ex4 grade_lab4_ex4(step1_bit) from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister import numpy as np def u_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 2 bits qc = QuantumCircuit(qr, cr) ####### your code goes here ####### return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") qc = QuantumCircuit(qr, cr) qc = u_circuit(qr, cr) qc.draw("mpl") # Submit your result from qc_grader.challenges.qgss_2023 import grade_lab4_ex5 grade_lab4_ex5(qc) from qiskit_aer import AerSimulator sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() print(counts) success_probability = counts["01"] / counts.shots() print(f"Success probability: {success_probability}") from qiskit.circuit import Gate def iterative_phase_estimation( qr: QuantumRegister, cr: ClassicalRegister, controlled_unitaries: list[Gate], state_prep: Gate, ) -> QuantumCircuit: qc = QuantumCircuit(qr, cr) ####### your code goes here ####### return qc from qiskit.circuit.library import CPhaseGate, XGate qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") s_angle = np.pi / 2 controlled_unitaries = [CPhaseGate(s_angle * 2**k) for k in range(2)] qc = iterative_phase_estimation(qr, cr, controlled_unitaries, XGate()) sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() counts from qiskit_ibm_provider import IBMProvider provider = IBMProvider() hub = "YOUR_HUB" group = "YOUR_GROUP" project = "YOUR_PROJECT" backend_name = "ibmq_manila" backend = provider.get_backend(backend_name, instance=f"{hub}/{group}/{project}") from qiskit import transpile qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") qc = QuantumCircuit(qr, cr) qc = step_2_circuit(qr, cr) qc_transpiled = transpile(qc, backend) job = backend.run(qc_transpiled, shots=1000, dynamic=True) job_id = job.job_id() print(job_id) retrieve_job = provider.retrieve_job(job_id) retrieve_job.status() from qiskit.tools.visualization import plot_histogram counts = retrieve_job.result().get_counts() plot_histogram(counts)
https://github.com/GIRISHBELANI/QC_Benchmarks_using_dm-simulator
GIRISHBELANI
""" HHL Benchmark Program - Qiskit (KM initial version 220402) TODO: - switch from total variation distance to Hellinger fidelity """ import sys import time import numpy as np pi = np.pi from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer, execute import sparse_Ham_sim as shs import uniform_controlled_rotation as ucr # include QFT in this list, so we can refer to the QFT sub-circuit definition #sys.path[1:1] = ["_common", "_common/qiskit", "quantum-fourier-transform/qiskit"] #sys.path[1:1] = ["../../_common", "../../_common/qiskit", "../../quantum-fourier-transform/qiskit"] # cannot use the QFT common yet, as HHL seems to use reverse bit order sys.path[1:1] = ["_common", "_common/qiskit", "quantum-fourier-transform/qiskit"] sys.path[1:1] = ["../../_common", "../../_common/qiskit", "../../quantum-fourier-transform/qiskit"] #from qft_benchmark import qft_gate, inv_qft_gate import execute as ex import metrics as metrics np.random.seed(0) verbose = False # Variable for number of resets to perform after mid circuit measurements num_resets = 1 # saved circuits for display QC_ = None U_ = None UI_ = None QFT_ = None QFTI_ = None ############### Circuit Definitions ''' replaced with code below ... def qft_dagger(qc, clock, n): qc.h(clock[1]); for j in reversed(range(n)): for k in reversed(range(j+1,n)): qc.cu1(-np.pi/float(2**(k-j)), clock[k], clock[j]); qc.h(clock[0]); def qft(qc, clock, n): qc.h(clock[0]); for j in reversed(range(n)): for k in reversed(range(j+1,n)): qc.cu1(np.pi/float(2**(k-j)), clock[k], clock[j]); qc.h(clock[1]); ''' ''' DEVNOTE: the QFT and IQFT are defined here as they are in the QFT benchmark - almost; Here, the sign of the angles is reversed and the QFT is actually used as the inverse QFT. This is an inconsistency that needs to be resolved later. The QPE part of the algorithm should be using the inverse QFT, but the qubit order is not correct. The QFT as defined in the QFT benchmark operates on qubits in the opposite order from the HHL pattern. ''' def initialize_state(qc, qreg, b): """ b (int): initial basis state |b> """ n = qreg.size b_bin = np.binary_repr(b, width=n) for q in range(n): if b_bin[n-1-q] == '1': qc.x(qreg[q]) return qc def IQFT(qc, qreg): """ inverse QFT qc : QuantumCircuit qreg : QuantumRegister belonging to qc does not include SWAP at end of the circuit """ n = int(qreg.size) for i in reversed(range(n)): for j in range(i+1,n): phase = -pi/2**(j-i) qc.cp(phase, qreg[i], qreg[j]) qc.h(qreg[i]) return qc def QFT(qc, qreg): """ QFT qc : QuantumCircuit qreg : QuantumRegister belonging to qc does not include SWAP at end of circuit """ n = int(qreg.size) for i in range(n): qc.h(qreg[i]) for j in reversed(range(i+1,n)): phase = pi/2**(j-i) qc.cp(phase, qreg[i], qreg[j]) return qc def inv_qft_gate(input_size, method=1): #def qft_gate(input_size): #global QFT_ qr = QuantumRegister(input_size); #qc = QuantumCircuit(qr, name="qft") qc = QuantumCircuit(qr, name="QFT†") if method == 1: # Generate multiple groups of diminishing angle CRZs and H gate for i_qubit in range(0, input_size): # start laying out gates from highest order qubit (the hidx) hidx = input_size - i_qubit - 1 # if not the highest order qubit, add multiple controlled RZs of decreasing angle if hidx < input_size - 1: num_crzs = i_qubit for j in range(0, num_crzs): divisor = 2 ** (num_crzs - j) #qc.crz( math.pi / divisor , qr[hidx], qr[input_size - j - 1]) ##qc.crz( -np.pi / divisor , qr[hidx], qr[input_size - j - 1]) qc.cu1(-np.pi / divisor, qr[hidx], qr[input_size - j - 1]); # followed by an H gate (applied to all qubits) qc.h(qr[hidx]) elif method == 2: # apply IQFT to register for i in range(input_size)[::-1]: for j in range(i+1,input_size): phase = -np.pi/2**(j-i) qc.cp(phase, qr[i], qr[j]) qc.h(qr[i]) qc.barrier() return qc ############### Inverse QFT Circuit def qft_gate(input_size, method=1): #def inv_qft_gate(input_size): #global QFTI_ qr = QuantumRegister(input_size); #qc = QuantumCircuit(qr, name="inv_qft") qc = QuantumCircuit(qr, name="QFT") if method == 1: # Generate multiple groups of diminishing angle CRZs and H gate for i_qubit in reversed(range(0, input_size)): # start laying out gates from highest order qubit (the hidx) hidx = input_size - i_qubit - 1 # precede with an H gate (applied to all qubits) qc.h(qr[hidx]) # if not the highest order qubit, add multiple controlled RZs of decreasing angle if hidx < input_size - 1: num_crzs = i_qubit for j in reversed(range(0, num_crzs)): divisor = 2 ** (num_crzs - j) #qc.crz( -math.pi / divisor , qr[hidx], qr[input_size - j - 1]) ##qc.crz( np.pi / divisor , qr[hidx], qr[input_size - j - 1]) qc.cu1( np.pi / divisor , qr[hidx], qr[input_size - j - 1]) elif method == 2: # apply QFT to register for i in range(input_size): qc.h(qr[i]) for j in range(i+1, input_size): phase = np.pi/2**(j-i) qc.cp(phase, qr[i], qr[j]) qc.barrier() return qc ############# Controlled U Gate #Construct the U gates for A def ctrl_u(exponent): qc = QuantumCircuit(1, name=f"U^{exponent}") for i in range(exponent): #qc.u(np.pi/2, -np.pi/2, np.pi/2, 3*np.pi/4, target); #qc.cu(np.pi/2, -np.pi/2, np.pi/2, 3*np.pi/4, control, target); qc.u(np.pi/2, -np.pi/2, np.pi/2, 0); cu_gate = qc.to_gate().control(1) return cu_gate, qc #Construct the U^-1 gates for reversing A def ctrl_ui(exponent): qc = QuantumCircuit(1, name=f"U^-{exponent}") for i in range(exponent): #qc.u(np.pi/2, -np.pi/2, np.pi/2, 3*np.pi/4, target); #qc.cu(np.pi/2, -np.pi/2, np.pi/2, 3*np.pi/4, control, target); qc.u(np.pi/2, np.pi/2, -np.pi/2, 0); cu_gate = qc.to_gate().control(1) return cu_gate, qc ############# Quantum Phase Estimation # DEVNOTE: The QPE and IQPE methods below mirror the mechanism in Hector_Wong # Need to investigate whether the clock qubits are in the correct, as this implementation # seems to require the QFT be implemented in reverse also. TODO # Append a series of Quantum Phase Estimation gates to the circuit def qpe(qc, clock, target, extra_qubits=None, ancilla=None, A=None, method=1): qc.barrier() ''' original code from Hector_Wong # e^{i*A*t} #qc.cu(np.pi/2, -np.pi/2, np.pi/2, 3*np.pi/4, clock[0], target, label='U'); # The CU gate is equivalent to a CU1 on the control bit followed by a CU3 qc.u1(3*np.pi/4, clock[0]); qc.cu3(np.pi/2, -np.pi/2, np.pi/2, clock[0], target); # e^{i*A*t*2} #qc.cu(np.pi, np.pi, 0, 0, clock[1], target, label='U2'); qc.cu3(np.pi, np.pi, 0, clock[1], target); qc.barrier(); ''' # apply series of controlled U operations to the state |1> # does nothing to state |0> # DEVNOTE: have not found a way to create a controlled operation that contains a U gate # with the global phase; instead do it piecemeal for now if method == 1: repeat = 1 #for j in reversed(range(len(clock))): for j in (range(len(clock))): # create U with exponent of 1, but in a loop repeating N times for k in range(repeat): # this global phase is applied to clock qubit qc.u1(3*np.pi/4, clock[j]); # apply the rest of U controlled by clock qubit #cp, _ = ctrl_u(repeat) cp, _ = ctrl_u(1) qc.append(cp, [clock[j], target]) repeat *= 2 qc.barrier(); #Define global U operator as the phase operator (for printing later) _, U_ = ctrl_u(1) if method == 2: for j in range(len(clock)): control = clock[j] phase = -(2*np.pi)*2**j con_H_sim = shs.control_Ham_sim(A, phase) qubits = [control] + [q for q in target] + [q for q in extra_qubits] + [ancilla[0]] qc.append(con_H_sim, qubits) # Perform an inverse QFT on the register holding the eigenvalues qc.append(inv_qft_gate(len(clock), method), clock) # Append a series of Inverse Quantum Phase Estimation gates to the circuit def inv_qpe(qc, clock, target, extra_qubits=None, ancilla=None, A=None, method=1): # Perform a QFT on the register holding the eigenvalues qc.append(qft_gate(len(clock), method), clock) qc.barrier() if method == 1: ''' original code from Hector_Wong # e^{i*A*t*2} #qc.cu(np.pi, np.pi, 0, 0, clock[1], target, label='U2'); qc.cu3(np.pi, np.pi, 0, clock[1], target); # e^{i*A*t} #qc.cu(np.pi/2, np.pi/2, -np.pi/2, -3*np.pi/4, clock[0], target, label='U'); # The CU gate is equivalent to a CU1 on the control bit followed by a CU3 qc.u1(-3*np.pi/4, clock[0]); qc.cu3(np.pi/2, np.pi/2, -np.pi/2, clock[0], target); qc.barrier() ''' # apply inverse series of controlled U operations to the state |1> # does nothing to state |0> # DEVNOTE: have not found a way to create a controlled operation that contains a U gate # with the global phase; instead do it piecemeal for now repeat = 2 ** (len(clock) - 1) for j in reversed(range(len(clock))): #for j in (range(len(clock))): # create U with exponent of 1, but in a loop repeating N times for k in range(repeat): # this global phase is applied to clock qubit qc.u1(-3*np.pi/4, clock[j]); # apply the rest of U controlled by clock qubit #cp, _ = ctrl_u(repeat) cp, _ = ctrl_ui(1) qc.append(cp, [clock[j], target]) repeat = int(repeat / 2) qc.barrier(); #Define global U operator as the phase operator (for printing later) _, UI_ = ctrl_ui(1) if method == 2: for j in reversed(range(len(clock))): control = clock[j] phase = (2*np.pi)*2**j con_H_sim = shs.control_Ham_sim(A, phase) qubits = [control] + [q for q in target] + [q for q in extra_qubits] + [ancilla[0]] qc.append(con_H_sim, qubits) def hhl_routine(qc, ancilla, clock, input_qubits, measurement, extra_qubits=None, A=None, method=1): qpe(qc, clock, input_qubits, extra_qubits, ancilla, A, method) qc.reset(ancilla) qc.barrier() if method == 1: # This section is to test and implement C = 1 # since we are not swapping after the QFT, reverse order of qubits from what is in papers qc.cry(np.pi, clock[1], ancilla) qc.cry(np.pi/3, clock[0], ancilla) # uniformly-controlled rotation elif method == 2: n_clock = clock.size C = 1/2**n_clock # constant in rotation (lower bound on eigenvalues A) # compute angles for inversion rotations alpha = [2*np.arcsin(C)] for x in range(1,2**n_clock): x_bin_rev = np.binary_repr(x, width=n_clock)[::-1] lam = int(x_bin_rev,2)/(2**n_clock) alpha.append(2*np.arcsin(C/lam)) theta = ucr.alpha2theta(alpha) # do inversion step qc = ucr.uniformly_controlled_rot(qc, clock, ancilla, theta) qc.barrier() qc.measure(ancilla, measurement[0]) qc.reset(ancilla) qc.barrier() inv_qpe(qc, clock, input_qubits, extra_qubits, ancilla, A, method) def HHL(num_qubits, num_input_qubits, num_clock_qubits, beta, A=None, method=1): if method == 1: # Create the various registers needed clock = QuantumRegister(num_clock_qubits, name='clock') input_qubits = QuantumRegister(num_input_qubits, name='b') ancilla = QuantumRegister(1, name='ancilla') measurement = ClassicalRegister(2, name='c') # Create an empty circuit with the specified registers qc = QuantumCircuit(ancilla, clock, input_qubits, measurement) # State preparation. (various initial values, done with initialize method) # intial_state = [0,1] # intial_state = [1,0] # intial_state = [1/np.sqrt(2),1/np.sqrt(2)] # intial_state = [np.sqrt(0.9),np.sqrt(0.1)] ##intial_state = [np.sqrt(1 - beta), np.sqrt(beta)] ##qc.initialize(intial_state, 3) # use an RY rotation to initialize the input state between 0 and 1 qc.ry(2 * np.arcsin(beta), input_qubits) # Put clock qubits into uniform superposition qc.h(clock) # Perform the HHL routine hhl_routine(qc, ancilla, clock, input_qubits, measurement) # Perform a Hadamard Transform on the clock qubits qc.h(clock) qc.barrier() # measure the input, which now contains the answer qc.measure(input_qubits, measurement[1]) # return a handle on the circuit return qc # Make the HHL circuit (this is the one aactually used right now) def make_circuit(A, b, num_clock_qubits): """ circuit for HHL algo A|x>=|b> A : sparse Hermitian matrix b (int): between 0,...,2^n-1. Initial basis state |b> """ # read in number of qubits N = len(A) n = int(np.log2(N)) n_t = num_clock_qubits # number of qubits in clock register # lower bound on eigenvalues of A. Fixed for now C = 1/4 # create quantum registers qr = QuantumRegister(n) qr_b = QuantumRegister(n) # ancillas for Hamiltonian simulation cr = ClassicalRegister(n) qr_t = QuantumRegister(n_t) # for phase estimation qr_a = QuantumRegister(1) # ancilla qubit cr_a = ClassicalRegister(1) qc = QuantumCircuit(qr, qr_b, qr_t, qr_a, cr, cr_a) # initialize the |b> state qc = initialize_state(qc, qr, b) # Hadamard phase estimation register for q in range(n_t): qc.h(qr_t[q]) # perform controlled e^(i*A*t) for q in range(n_t): control = qr_t[q] phase = -(2*pi)*2**q qc = shs.control_Ham_sim(qc, A, phase, control, qr, qr_b, qr_a[0]) # inverse QFT qc = IQFT(qc, qr_t) # reset ancilla qc.reset(qr_a[0]) # compute angles for inversion rotations alpha = [2*np.arcsin(C)] for x in range(1,2**n_t): x_bin_rev = np.binary_repr(x, width=n_t)[::-1] lam = int(x_bin_rev,2)/(2**n_t) if lam < C: alpha.append(0) elif lam >= C: alpha.append(2*np.arcsin(C/lam)) theta = ucr.alpha2theta(alpha) # do inversion step and measure ancilla qc = ucr.uniformly_controlled_rot(qc, qr_t, qr_a, theta) qc.measure(qr_a[0], cr_a[0]) qc.reset(qr_a[0]) # QFT qc = QFT(qc, qr_t) # uncompute phase estimation # perform controlled e^(-i*A*t) for q in reversed(range(n_t)): control = qr_t[q] phase = (2*pi)*2**q qc = shs.control_Ham_sim(qc, A, phase, control, qr, qr_b, qr_a[0]) # Hadamard phase estimation register for q in range(n_t): qc.h(qr_t[q]) # measure ancilla and main register qc.barrier() qc.measure(qr[0:], cr[0:]) return qc def sim_circuit(qc, shots): simulator = Aer.get_backend('qasm_simulator') result = execute(qc, simulator, shots=shots).result() outcomes = result.get_counts(qc) return outcomes def postselect(outcomes, return_probs=True): mar_out = {} for b_str in outcomes: if b_str[0] == '1': counts = outcomes[b_str] mar_out[b_str[2:]] = counts # compute postselection rate ps_shots = sum(mar_out.values()) shots = sum(outcomes.values()) rate = ps_shots/shots # convert to probability distribution if return_probs == True: mar_out = {b_str:round(mar_out[b_str]/ps_shots, 4) for b_str in mar_out} return mar_out, rate ############### Result Data Analysis saved_result = None def true_distr(A, b=0): N = len(A) n = int(np.log2(N)) b_vec = np.zeros(N); b_vec[b] = 1.0 #b = np.array([1,1])/np.sqrt(2) x = np.linalg.inv(A) @ b_vec # normalize x x_n = x/np.linalg.norm(x) probs = np.array([np.abs(xj)**2 for xj in x_n]) distr = {} for j, prob in enumerate(probs): if prob > 1e-8: j_bin = np.binary_repr(j, width=n) distr[j_bin] = prob distr = {out:distr[out]/sum(distr.values()) for out in distr} return distr def TVD(distr1, distr2): """ compute total variation distance between distr1 and distr2 which are represented as dictionaries of bitstrings and probabilities """ tvd = 0.0 for out1 in distr1: if out1 in distr2: p1, p2 = distr1[out1], distr2[out1] tvd += np.abs(p1-p2)/2 else: p1 = distr1[out1] tvd += p1/2 for out2 in distr2: if out2 not in distr1: p2 = distr2[out2] tvd += p2/2 return tvd def analyze_and_print_result (qc, result, num_qubits, s_int, num_shots): global saved_result saved_result = result # obtain counts from the result object counts = result.get_counts(qc) # post-select counts where ancilla was measured as |1> post_counts, rate = postselect(counts) num_input_qubits = len(list(post_counts.keys())[0]) if verbose: print(f'Ratio of counts with ancilla measured |1> : {round(rate, 4)}') # compute true distribution from secret int off_diag_index = 0 b = 0 s_int_o = int(s_int) s_int_b = int(s_int) while (s_int_o % 2) == 0: s_int_o = int(s_int_o/2) off_diag_index += 1 while (s_int_b % 3) == 0: s_int_b = int(s_int_b/3) b += 1 # temporarily fix diag and off-diag matrix elements diag_el = 0.5 off_diag_el = -0.25 A = shs.generate_sparse_H(num_input_qubits, off_diag_index, diag_el=diag_el, off_diag_el=off_diag_el) ideal_distr = true_distr(A, b) # compute total variation distance tvd = TVD(ideal_distr, post_counts) # use TVD as infidelity fidelity = 1 - tvd return post_counts, fidelity ################ Benchmark Loop # Execute program with default parameters def run (min_input_qubits=1, max_input_qubits=3, min_clock_qubits=2, max_clock_qubits=3, max_circuits=3, num_shots=100, backend_id='qasm_simulator', provider_backend=None, hub="ibm-q", group="open", project="main", exec_options=None): print("HHL Benchmark Program - Qiskit") # Initialize metrics module metrics.init_metrics() # Define custom result handler def execution_handler(qc, result, num_qubits, s_int, num_shots): # determine fidelity of result set num_qubits = int(num_qubits) #counts, fidelity = analyze_and_print_result(qc, result, num_qubits, ideal_distr) counts, fidelity = analyze_and_print_result(qc, result, num_qubits, int(s_int), num_shots) metrics.store_metric(num_qubits, s_int, 'fidelity', fidelity) # Variable for new qubit group ordering if using mid_circuit measurements mid_circuit_qubit_group = [] # If using mid_circuit measurements, set transform qubit group to true transform_qubit_group = False # Initialize execution module using the execution result handler above and specified backend_id ex.init_execution(execution_handler) ex.set_execution_target(backend_id, provider_backend=provider_backend, hub=hub, group=group, project=project, exec_options=exec_options) # for noiseless simulation, set noise model to be None #ex.set_noise_model(None) # temporarily fix diag and off-diag matrix elements diag_el = 0.5 off_diag_el = -0.25 # Execute Benchmark Program N times for multiple circuit sizes # Accumulate metrics asynchronously as circuits complete #for num_input_qubits in range(min_input_qubits, max_input_qubits+1): for num_input_qubits in range(min_input_qubits, max_input_qubits+1): N = 2**num_input_qubits # matrix size for num_clock_qubits in range(min_clock_qubits, max_clock_qubits+1): num_qubits = 2*num_input_qubits + num_clock_qubits + 1 # determine number of circuits to execute for this group num_circuits = max_circuits print(f"************\nExecuting {num_circuits} circuits with {num_input_qubits} input qubits and {num_clock_qubits} clock qubits") # loop over randomly generated problem instances for i in range(num_circuits): b = np.random.choice(range(N)) off_diag_index = np.random.choice(range(1,N)) A = shs.generate_sparse_H(num_input_qubits, off_diag_index, diag_el=diag_el, off_diag_el=off_diag_el) # define secret_int s_int = (2**off_diag_index)*(3**b) # create the circuit for given qubit size and secret string, store time metric ts = time.time() qc = make_circuit(A, b, num_clock_qubits) metrics.store_metric(num_qubits, s_int, 'create_time', time.time()-ts) # submit circuit for execution on target (simulator, cloud simulator, or hardware) ex.submit_circuit(qc, num_qubits, s_int, shots=num_shots) # Wait for some active circuits to complete; report metrics when groups complete ex.throttle_execution(metrics.finalize_group) # Wait for all active circuits to complete; report metrics when groups complete ex.finalize_execution(metrics.finalize_group) # print a sample circuit #print("Sample Circuit:"); print(QC_ if QC_ != None else " ... too large!") #if method == 1: print("\nQuantum Oracle 'Uf' ="); print(Uf_ if Uf_ != None else " ... too large!") #print("\nU Circuit ="); print(U_ if U_ != None else " ... too large!") #print("\nU^-1 Circuit ="); print(UI_ if UI_ != None else " ... too large!") #print("\nQFT Circuit ="); print(QFT_ if QFT_ != None else " ... too large!") #print("\nInverse QFT Circuit ="); print(QFTI_ if QFTI_ != None else " ... too large!") # Plot metrics for all circuit sizes metrics.plot_metrics("Benchmark Results - HHL - Qiskit", transform_qubit_group = transform_qubit_group, new_qubit_group = mid_circuit_qubit_group) # if main, execute method if __name__ == '__main__': run()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
#General imports import numpy as np #Operator Imports from qiskit.opflow import Z, X, I, StateFn, CircuitStateFn, SummedOp from qiskit.opflow.gradients import Gradient, NaturalGradient, QFI, Hessian #Circuit imports from qiskit.circuit import QuantumCircuit, QuantumRegister, Parameter, ParameterVector, ParameterExpression from qiskit.circuit.library import EfficientSU2 # Instantiate the quantum state a = Parameter('a') b = Parameter('b') q = QuantumRegister(1) qc = QuantumCircuit(q) qc.h(q) qc.rz(a, q[0]) qc.rx(b, q[0]) # Instantiate the Hamiltonian observable H = (2 * X) + Z # Combine the Hamiltonian observable and the state op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.) # Print the operator corresponding to the expectation value print(op) params = [a, b] # Define the values to be assigned to the parameters value_dict = {a: np.pi / 4, b: np.pi} # Convert the operator and the gradient target params into the respective operator grad = Gradient().convert(operator = op, params = params) # Print the operator corresponding to the Gradient print(grad) # Assign the parameters and evaluate the gradient grad_result = grad.assign_parameters(value_dict).eval() print('Gradient', grad_result) # Define the Hamiltonian with fixed coefficients H = 0.5 * X - 1 * Z # Define the parameters w.r.t. we want to compute the gradients params = [a, b] # Define the values to be assigned to the parameters value_dict = { a: np.pi / 4, b: np.pi} # Combine the Hamiltonian observable and the state into an expectation value operator op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.) print(op) # Convert the expectation value into an operator corresponding to the gradient w.r.t. the state parameters using # the parameter shift method. state_grad = Gradient(grad_method='param_shift').convert(operator=op, params=params) # Print the operator corresponding to the gradient print(state_grad) # Assign the parameters and evaluate the gradient state_grad_result = state_grad.assign_parameters(value_dict).eval() print('State gradient computed with parameter shift', state_grad_result) # Convert the expectation value into an operator corresponding to the gradient w.r.t. the state parameter using # the linear combination of unitaries method. state_grad = Gradient(grad_method='lin_comb').convert(operator=op, params=params) # Print the operator corresponding to the gradient print(state_grad) # Assign the parameters and evaluate the gradient state_grad_result = state_grad.assign_parameters(value_dict).eval() print('State gradient computed with the linear combination method', state_grad_result) # Convert the expectation value into an operator corresponding to the gradient w.r.t. the state parameter using # the finite difference method. state_grad = Gradient(grad_method='fin_diff').convert(operator=op, params=params) # Print the operator corresponding to the gradient print(state_grad) # Assign the parameters and evaluate the gradient state_grad_result = state_grad.assign_parameters(value_dict).eval() print('State gradient computed with finite difference', state_grad_result) # Besides the method to compute the circuit gradients resp. QFI, a regularization method can be chosen: # `ridge` or `lasso` with automatic parameter search or `perturb_diag_elements` or `perturb_diag` # which perturb the diagonal elements of the QFI. nat_grad = NaturalGradient(grad_method='lin_comb', qfi_method='lin_comb_full', regularization='ridge').convert( operator=op, params=params) # Assign the parameters and evaluate the gradient nat_grad_result = nat_grad.assign_parameters(value_dict).eval() print('Natural gradient computed with linear combination of unitaries', nat_grad_result) # Instantiate the Hamiltonian observable H = X # Instantiate the quantum state with two parameters a = Parameter('a') b = Parameter('b') q = QuantumRegister(1) qc = QuantumCircuit(q) qc.h(q) qc.rz(a, q[0]) qc.rx(b, q[0]) # Combine the Hamiltonian observable and the state op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.) # Convert the operator and the hessian target coefficients into the respective operator hessian = Hessian().convert(operator = op, params = [a, b]) # Define the values to be assigned to the parameters value_dict = {a: np.pi / 4, b: np.pi/4} # Assign the parameters and evaluate the Hessian w.r.t. the Hamiltonian coefficients hessian_result = hessian.assign_parameters(value_dict).eval() print('Hessian \n', np.real(np.array(hessian_result))) # Define parameters params = [a, b] # Get the operator object representing the Hessian state_hess = Hessian(hess_method='param_shift').convert(operator=op, params=params) # Assign the parameters and evaluate the Hessian hessian_result = state_hess.assign_parameters(value_dict).eval() print('Hessian computed using the parameter shift method\n', (np.array(hessian_result))) # Get the operator object representing the Hessian state_hess = Hessian(hess_method='lin_comb').convert(operator=op, params=params) # Assign the parameters and evaluate the Hessian hessian_result = state_hess.assign_parameters(value_dict).eval() print('Hessian computed using the linear combination of unitaries method\n', (np.array(hessian_result))) # Get the operator object representing the Hessian using finite difference state_hess = Hessian(hess_method='fin_diff').convert(operator=op, params=params) # Assign the parameters and evaluate the Hessian hessian_result = state_hess.assign_parameters(value_dict).eval() print('Hessian computed with finite difference\n', (np.array(hessian_result))) # Wrap the quantum circuit into a CircuitStateFn state = CircuitStateFn(primitive=qc, coeff=1.) # Convert the state and the parameters into the operator object that represents the QFI qfi = QFI(qfi_method='lin_comb_full').convert(operator=state, params=params) # Define the values for which the QFI is to be computed values_dict = {a: np.pi / 4, b: 0.1} # Assign the parameters and evaluate the QFI qfi_result = qfi.assign_parameters(values_dict).eval() print('full QFI \n', np.real(np.array(qfi_result))) # Convert the state and the parameters into the operator object that represents the QFI # and set the approximation to 'block_diagonal' qfi = QFI('overlap_block_diag').convert(operator=state, params=params) # Assign the parameters and evaluate the QFI qfi_result = qfi.assign_parameters(values_dict).eval() print('Block-diagonal QFI \n', np.real(np.array(qfi_result))) # Convert the state and the parameters into the operator object that represents the QFI # and set the approximation to 'diagonal' qfi = QFI('overlap_diag').convert(operator=state, params=params) # Assign the parameters and evaluate the QFI qfi_result = qfi.assign_parameters(values_dict).eval() print('Diagonal QFI \n', np.real(np.array(qfi_result))) # Execution Imports from qiskit import Aer from qiskit.utils import QuantumInstance # Algorithm Imports from qiskit.algorithms import VQE from qiskit.algorithms.optimizers import CG from qiskit.opflow import I, X, Z from qiskit.circuit import QuantumCircuit, ParameterVector from scipy.optimize import minimize # Instantiate the system Hamiltonian h2_hamiltonian = -1.05 * (I ^ I) + 0.39 * (I ^ Z) - 0.39 * (Z ^ I) - 0.01 * (Z ^ Z) + 0.18 * (X ^ X) # This is the target energy h2_energy = -1.85727503 # Define the Ansatz wavefunction = QuantumCircuit(2) params = ParameterVector('theta', length=8) it = iter(params) wavefunction.ry(next(it), 0) wavefunction.ry(next(it), 1) wavefunction.rz(next(it), 0) wavefunction.rz(next(it), 1) wavefunction.cx(0, 1) wavefunction.ry(next(it), 0) wavefunction.ry(next(it), 1) wavefunction.rz(next(it), 0) wavefunction.rz(next(it), 1) # Define the expectation value corresponding to the energy op = ~StateFn(h2_hamiltonian) @ StateFn(wavefunction) grad = Gradient(grad_method='lin_comb') qi_sv = QuantumInstance(Aer.get_backend('aer_simulator_statevector'), shots=1, seed_simulator=2, seed_transpiler=2) #Conjugate Gradient algorithm optimizer = CG(maxiter=50) # Gradient callable vqe = VQE(wavefunction, optimizer=optimizer, gradient=grad, quantum_instance=qi_sv) result = vqe.compute_minimum_eigenvalue(h2_hamiltonian) print('Result:', result.optimal_value, 'Reference:', h2_energy) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/hugoecarl/TSP-Problem-Study
hugoecarl
import math import matplotlib.pyplot as plt %matplotlib inline class TSP: def __init__(self): self.flat_mat = flat_mat self.n = 0 self.melhor_dist = 1e11 self.pontos = [] self.melhores_pontos = [] def busca_exaustiva(self, flat_mat, n, ite): if ite == n: dist = 0 for j in range(1, n): dist += flat_mat[self.pontos[j-1] * n + self.pontos[j]] dist += flat_mat[self.pontos[n-1] * n + self.pontos[0]] if dist < self.melhor_dist: self.melhor_dist = dist self.melhores_pontos = self.pontos[:] return for i in range(n): if self.pontos[i] == -1: self.pontos[i] = ite self.busca_exaustiva(flat_mat, n, ite + 1) self.pontos[i] = -1 def dist_mat(self): x = [] y = [] flat_mat = [] #matriz 1 dimensao contendo todas as distancias possiveis entre os pontos para facilitar cálculo. while True: try: temp = input("Digite a coordenada x y: ").split() x.append(float(temp[0])) y.append(float(temp[1])) except: break for i in range(len(x)): for j in range(len(y)): flat_mat.append(math.sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2)) return flat_mat, x, y def get_results(self): self.flat_mat, x, _ = self.dist_mat() self.n = len(x) self.pontos = [-1]*self.n self.pontos[0] = 0 self.busca_exaustiva(self.flat_mat, self.n, 1) return self.melhor_dist, self.melhores_pontos Tsp = TSP() distancia, pontos = Tsp.get_results() print("Melhor distancia encontrada: ", distancia) print("Melhor caminho encontrado: ", pontos) #plota gráfico def connectpoints(x,y,p1,p2): x1, x2 = x[p1], x[p2] y1, y2 = y[p1], y[p2] plt.plot([x1,x2],[y1,y2],'ro-') for i in range(1, len(pontos)): connectpoints(x,y,pontos[i-1],pontos[i]) connectpoints(x,y,pontos[len(x)-1],pontos[0]) plt.title("Percurso") plt.show() %%time %%cmd python TSP.py < in-1.txt type out-1.txt python TSP.py < in-2.txt type out-2.txt python TSP.py < in-3.txt type out-3.txt python TSP.py < in-4.txt type out-4.txt from qiskit import IBMQ import numpy as np #IBMQ.save_account('seu-tokenIBMQ-para-rodar-localmente') IBMQ.load_account() from qiskit import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit.optimization.applications.ising import max_cut, tsp from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import SPSA from qiskit.aqua import aqua_globals from qiskit.aqua import QuantumInstance from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.optimization.algorithms import MinimumEigenOptimizer from qiskit.optimization.problems import QuadraticProgram import logging from qiskit.aqua import set_qiskit_aqua_logging #Preparando os dados segundo os imputs do usuario para serem resolvidos pelo qiskit max 4 pontos por limitação de qubits coord = [] flat_mat, x, y = TSP().dist_mat() dist_mat = np.array(flat_mat).reshape(len(x),len(x)) for i, j in zip(x, y): coord.append([i,j]) ins = tsp.TspData('TSP_Q', dim=len(x), coord=np.array(coord), w=dist_mat) qubitOp, offset = tsp.get_operator(ins) print('Offset:', offset) print('Ising Hamiltonian:') print(qubitOp.print_details()) #Usando o numpyMinimumEigensolver como o solver do problema para resolver de forma quantica ee = NumPyMinimumEigensolver(qubitOp) result = ee.run() print('energy:', result.eigenvalue.real) print('tsp objective:', result.eigenvalue.real + offset) x_Q = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w)) for i in range(1, len(z)): connectpoints(x,y,z[i-1],z[i]) connectpoints(x,y,z[len(x)-1],z[0]) plt.title("Percurso") plt.show() #instanciando o simulador ou o computador real importante lembrar que nao ira funcionar para mais de 4 pontos pelo numero de qubits disponibilizados pela IBM que sao apenas 16 para o simulador qasm e 15 para a maquina quantica provider = IBMQ.get_provider(hub = 'ibm-q') device = provider.get_backend('ibmq_16_melbourne') aqua_globals.random_seed = np.random.default_rng(123) seed = 10598 backend = Aer.get_backend('qasm_simulator') #descomentar essa linha caso queira rodar na maquina real #backend = device quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed) #rodando no simulador quantico spsa = SPSA(maxiter=10) ry = TwoLocal(qubitOp.num_qubits, 'ry', 'cz', reps=5, entanglement='linear') vqe = VQE(qubitOp, ry, spsa, quantum_instance=quantum_instance) result = vqe.run(quantum_instance) print('energy:', result.eigenvalue.real) print('time:', result.optimizer_time) x = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.dagcircuit import DAGCircuit from qiskit.converters import circuit_to_dag from qiskit.visualization import dag_drawer q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.measure(q[0], c[0]) circ.rz(0.5, q[1]).c_if(c, 2) dag = circuit_to_dag(circ) dag_drawer(dag)
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import matplotlib.pyplot as plt plt.style.use("ggplot") from pprint import pprint import pickle import time import datetime %matplotlib inline # Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z) from qiskit.opflow import Zero, One, X, Y, Z, I from qiskit.opflow.state_fns.dict_state_fn import DictStateFn from qiskit.quantum_info import DensityMatrix from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, IBMQ, execute, transpile, Aer from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter from qiskit.transpiler.passes import RemoveBarriers # Import QREM package from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter from qiskit.ignis.mitigation import expectation_value # Import mitiq for zne # unused for this file import mitiq # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.quantum_info import state_fidelity import sys import importlib sys.path.append("../../solutions/utils/") import circuit_utils, zne_utils, tomography_utils importlib.reload(circuit_utils) importlib.reload(zne_utils) # unused for this file importlib.reload(tomography_utils) # unused for this file from circuit_utils import * from zne_utils import zne_wrapper, zne_decoder from tomography_utils import expvals_to_valid_rho from qiskit.test.mock import FakeJakarta # backend = FakeJakarta() backend = Aer.get_backend("qasm_simulator") # Returns the matrix representation of the XXX Heisenberg model for 3 spin-1/2 particles in a line def H_heis3(): # Interactions (I is the identity matrix; X, Y, and Z are Pauli matricies; ^ is a tensor product) XXs = (I^X^X) + (X^X^I) YYs = (I^Y^Y) + (Y^Y^I) ZZs = (I^Z^Z) + (Z^Z^I) # Sum interactions H = XXs + YYs + ZZs # Return Hamiltonian return H # Returns the matrix representation of U_heis3(t) for a given time t assuming an XXX Heisenberg Hamiltonian for 3 spins-1/2 particles in a line def U_heis3(t): # Compute XXX Hamiltonian for 3 spins in a line H = H_heis3() # Return the exponential of -i multipled by time t multipled by the 3 spin XXX Heisenberg Hamilonian return (t * H).exp_i() # Define array of time points ts = np.linspace(0, np.pi, 100) target_state = DictStateFn({"000": 0, "001": 0, "010": 1, "011": 0, "100": 0, "101": 0, "110": 1, "111": 0}, 1 / np.sqrt(2)) print(DensityMatrix(target_state.to_density_matrix()).is_valid()) # Compute probability of remaining in |110> state over the array of time points # ~target_state gives the bra of the initial state (<110|) # @ is short hand for matrix multiplication # U_heis3(t) is the unitary time evolution at time t # t needs to be wrapped with float(t) to avoid a bug # (...).eval() returns the inner product <110|U_heis3(t)|110> # np.abs(...)**2 is the modulus squared of the innner product which is the expectation value, or probability, of remaining in |110> probs_010_110 = [np.abs((~target_state @ U_heis3(float(t)) @ target_state).eval())**2 for t in ts] # Plot evolution of |110> plt.figure(dpi=200) plt.plot(ts, probs_010_110) plt.xlabel('time') plt.ylabel(r'probability of state $|010\rangle + |110\rangle$') plt.title(r'Evolution of state $|010\rangle + |110\rangle$ under $H_{Heis3}$') # plt.grid() plt.show() num_qubits = 3 # The final time of the state evolution target_times = [i * np.pi / 20 for i in range(0, 20 + 1)] pprint(target_times) # Parameterize variable t to be evaluated at t=pi later dt = Parameter('t') # Convert custom quantum circuit into a gate trot_gate = trotter_gate(dt) # initial layout initial_layout = [5,3,1] # Number of trotter steps num_steps = 100 print("trotter step: ", num_steps) scale_factors = [1.0, 2.0, 3.0] # unused for this file shots = 1 << 13 reps = 8 # unused target_state = np.zeros((1 << num_qubits, 1 << num_qubits)) target_state[2, 2] = target_state[6, 6] = target_state[2, 6] = target_state[6, 2] = 0.5 target_state = DensityMatrix(target_state) target_state.draw("latex") prob_list = [] for target_time in target_times: print("target_time: ", target_time) t1 = time.perf_counter() # Initialize quantum circuit for 3 qubits qr = QuantumRegister(num_qubits, name="q") cr = ClassicalRegister(num_qubits, name="c") qc = QuantumCircuit(qr, cr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>) qc.h(0) qc.x(1) general_subspace_encoder(qc, targets=[0, 1, 2]) # encode trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian general_subspace_decoder(qc, targets=[0, 1, 2]) # decode qc.x(1) qc.h(0) qc.measure(qr, cr[::-1]) # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({dt: target_time / num_steps}) print("created qc") # optimize circuit t3_qc = transpile(qc, optimization_level=3, basis_gates=["sx", "cx", "rz"]) t3_qc = transpile(t3_qc, optimization_level=3, basis_gates=["sx", "cx", "rz"]) print("created t3_qc (depth:", t3_qc.depth(), ")") t3_qc = transpile(t3_qc, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout) print("created t3_qc (depth:", t3_qc.depth(), ")") job = execute(t3_qc, backend, shots=shots, optimization_level=0) print('Job ID', job.job_id()) prob = job.result().get_counts().get("0" * num_qubits, 0) / shots prob_list.append(prob) t2 = time.perf_counter() print(r'probability of state |010> + |110> = {:.4f}'.format(prob)) print("time:", t2 - t1) print() plt.figure(dpi=200) plt.plot(ts, probs_010_110, label="theoretical prediction") plt.scatter(target_times, prob_list, c="green", zorder=4) plt.legend(("theoretical prediction", "proposed method")) plt.xlabel('time') plt.ylabel(r'probability of state $|010\rangle + |110\rangle$') plt.title(r'Evolution of state $|010\rangle + |110\rangle$ under $H_{Heis3}$') plt.show() import qiskit.tools.jupyter %qiskit_version_table fid_list = [] for target_time in target_times: print("target_time: ", target_time) t1 = time.perf_counter() # Initialize quantum circuit for 3 qubits qr = QuantumRegister(num_qubits, name="q") qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>) qc.h(0) qc.x(1) general_subspace_encoder(qc, targets=[0, 1, 2]) # encode trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian general_subspace_decoder(qc, targets=[0, 1, 2]) # decode # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({dt: target_time / num_steps}) print("created qc") # Generate state tomography circuits to evaluate fidelity of simulation st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN === print("created st_qcs (length:", len(st_qcs), ")") # remove barriers st_qcs = [RemoveBarriers()(qc) for qc in st_qcs] print("removed barriers from st_qcs") # optimize circuit t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) print("created t3_st_qcs (length:", len(t3_st_qcs), ")") # zne wrapping zne_qcs = t3_st_qcs # zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = False) # print("created zne_qcs (length:", len(zne_qcs), ")") # optimization_level must be 0 # feed initial_layout here to see the picture of the circuits before casting the job t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout) print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")") job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0) print('Job ID', job.job_id()) rho = StateTomographyFitter(job.result(), t3_zne_qcs).fit(method='lstsq') fid = state_fidelity(rho, target_state) fid_list.append(fid) t2 = time.perf_counter() print('state tomography fidelity = {:.4f}'.format(fid)) print("time:", t2 - t1) print()
https://github.com/arian-code/nptel_quantum_assignments
arian-code
import numpy as np # Import Qiskit from qiskit import QuantumCircuit from qiskit import Aer, transpile from qiskit.tools.visualization import plot_histogram, plot_state_city from qiskit import * from qiskit.tools.monitor import job_monitor import qiskit.quantum_info as qi Aer.backends() simulator = Aer.get_backend('aer_simulator') # Set initial state to generated statevector circ = QuantumCircuit(7, 6) circ.x(6) circ.barrier() circ.h(0) circ.h(1) circ.h(2) circ.h(3) circ.h(4) circ.h(5) circ.h(6) circ.barrier() circ.x(0) circ.x(2) circ.x(3) circ.barrier() circ.h(0) circ.h(1) circ.h(2) circ.h(3) circ.h(4) circ.h(5) circ.h(6) circ.barrier() circ.measure(range(6), range(6)) circ.draw() # execute the quantum circuit backend = BasicAer.get_backend('qasm_simulator') # the device to run on result = backend.run(transpile(circ, backend), shots=1000).result() counts = result.get_counts(circ) print(counts) plot_histogram(counts)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) with pulse.build() as pulse_prog: with pulse.align_right(): # this pulse will start at t=0 pulse.play(pulse.Constant(100, 1.0), d0) # this pulse will start at t=80 pulse.play(pulse.Constant(20, 1.0), d1) pulse_prog.draw()
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) qc.cx(1, 0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": ### replaced x gate ### qc.z(qubit) if msg[0] == "1": ### replaced z gate ### qc.x(qubit) return qc def decode_message(qc): qc.cx(1, 0) qc.h(1) return qc
https://github.com/indian-institute-of-science-qc/qiskit-aakash
indian-institute-of-science-qc
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name,missing-docstring """Quick program to test the quantum information states modules.""" import unittest import numpy as np from qiskit import execute, QuantumRegister, QuantumCircuit, BasicAer from qiskit.quantum_info import basis_state, random_state from qiskit.quantum_info import state_fidelity from qiskit.quantum_info import projector from qiskit.quantum_info import purity from qiskit.test import QiskitTestCase class TestStates(QiskitTestCase): """Tests for qi.py""" def test_state_fidelity(self): psi1 = [0.70710678118654746, 0, 0, 0.70710678118654746] psi2 = [0., 0.70710678118654746, 0.70710678118654746, 0.] rho1 = [[0.5, 0, 0, 0.5], [0, 0, 0, 0], [0, 0, 0, 0], [0.5, 0, 0, 0.5]] mix = [[0.25, 0, 0, 0], [0, 0.25, 0, 0], [0, 0, 0.25, 0], [0, 0, 0, 0.25]] self.assertAlmostEqual(state_fidelity(psi1, psi1), 1.0, places=7, msg='vector-vector input') self.assertAlmostEqual(state_fidelity(psi1, psi2), 0.0, places=7, msg='vector-vector input') self.assertAlmostEqual(state_fidelity(psi1, rho1), 1.0, places=7, msg='vector-matrix input') self.assertAlmostEqual(state_fidelity(psi1, mix), 0.25, places=7, msg='vector-matrix input') self.assertAlmostEqual(state_fidelity(psi2, rho1), 0.0, places=7, msg='vector-matrix input') self.assertAlmostEqual(state_fidelity(psi2, mix), 0.25, places=7, msg='vector-matrix input') self.assertAlmostEqual(state_fidelity(rho1, psi1), 1.0, places=7, msg='matrix-vector input') self.assertAlmostEqual(state_fidelity(rho1, rho1), 1.0, places=7, msg='matrix-matrix input') self.assertAlmostEqual(state_fidelity(mix, mix), 1.0, places=7, msg='matrix-matrix input') def test_state_fidelity_qubit(self): state0 = np.array([1.+0.j, 0.+0.j]) state1 = np.array([0.+0.j, 1.+0.j]) self.assertEqual(state_fidelity(state0, state0), 1.0) self.assertEqual(state_fidelity(state1, state1), 1.0) self.assertEqual(state_fidelity(state0, state1), 0.0) def test_projector(self): state0 = np.array([1.+0.j, 0.+0.j]) state1 = projector(np.array([0.+0.j, 1.+0.j])) self.assertEqual(state_fidelity(state0, state0), 1.0) self.assertEqual(state_fidelity(state1, state1), 1.0) self.assertEqual(state_fidelity(state0, state1), 0.0) def test_basis(self): # reference state = basis_state('010', 3) state_ideal = np.array([0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]) state_fidelity(state, state_ideal) self.assertEqual(state_fidelity(state, state_ideal), 1.0) def test_basis_state_circuit(self): state = state = (basis_state('001', 3)+basis_state('111', 3))/np.sqrt(2) q = QuantumRegister(3) qc = QuantumCircuit(q) qc.initialize(state, [q[0], q[1], q[2]]) backend = BasicAer.get_backend('statevector_simulator') qc_state = execute(qc, backend).result().get_statevector(qc) self.assertAlmostEqual(state_fidelity(qc_state, state), 1.0, places=7) def test_random_state(self): # this test that a random state converges to 1/d number = 100000 E_P0_last = 0 for ii in range(number): state = basis_state(bin(3)[2:].zfill(3), 3) E_P0 = (E_P0_last*ii)/(ii+1)+state_fidelity(state, random_state(2**3, seed=ii))/(ii+1) E_P0_last = E_P0 self.assertAlmostEqual(E_P0, 1/8, places=2) def test_random_state_circuit(self): state = random_state(2**3, seed=40) q = QuantumRegister(3) qc = QuantumCircuit(q) qc.initialize(state, [q[0], q[1], q[2]]) backend = BasicAer.get_backend('statevector_simulator') qc_state = execute(qc, backend).result().get_statevector(qc) self.assertAlmostEqual(state_fidelity(qc_state, state), 1.0, places=7) def test_purity_list_input(self): rho1 = [[1, 0], [0, 0]] rho2 = [[0.5, 0], [0, 0.5]] rho3 = 0.7 * np.array(rho1) + 0.3 * np.array(rho2) test_pass = (purity(rho1) == 1.0 and purity(rho2) == 0.5 and round(purity(rho3), 10) == 0.745) self.assertTrue(test_pass) def test_purity_1d_list_input(self): input_state = [1, 0] res = purity(input_state) self.assertEqual(1, res) def test_purity_basis_state_input(self): state_1 = basis_state('0', 1) state_2 = basis_state('11', 2) state_3 = basis_state('010', 3) self.assertEqual(purity(state_1), 1.0) self.assertEqual(purity(state_2), 1.0) self.assertEqual(purity(state_3), 1.0) def test_purity_pure_state(self): state_1 = (1/np.sqrt(2))*(basis_state('0', 1) + basis_state('1', 1)) state_2 = (1/np.sqrt(3))*(basis_state('00', 2) + basis_state('01', 2) + basis_state('11', 2)) state_3 = 0.5*(basis_state('000', 3) + basis_state('001', 3) + basis_state('010', 3) + basis_state('100', 3)) self.assertEqual(purity(state_1), 1.0) self.assertEqual(purity(state_2), 1.0) self.assertEqual(purity(state_3), 1.0) def test_purity_pure_matrix_state(self): state_1 = (1/np.sqrt(2))*(basis_state('0', 1) + basis_state('1', 1)) state_1 = projector(state_1) state_2 = (1/np.sqrt(3))*(basis_state('00', 2) + basis_state('01', 2) + basis_state('11', 2)) state_2 = projector(state_2) state_3 = 0.5*(basis_state('000', 3) + basis_state('001', 3) + basis_state('010', 3) + basis_state('100', 3)) state_3 = projector(state_3) self.assertAlmostEqual(purity(state_1), 1.0, places=10) self.assertAlmostEqual(purity(state_2), 1.0, places=10) self.assertEqual(purity(state_3), 1.0) def test_purity_mixed_state(self): state_1 = 0.5*(projector(basis_state('0', 1)) + projector(basis_state('1', 1))) state_2 = (1/3.0)*(projector(basis_state('00', 2)) + projector(basis_state('01', 2)) + projector(basis_state('10', 2))) self.assertEqual(purity(state_1), 0.5) self.assertEqual(purity(state_2), 1.0/3) if __name__ == '__main__': unittest.main()
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ A collection of functions that decide the layout of an output image. See :py:mod:`~qiskit.visualization.timeline.types` for more info on the required data. There are 2 types of layout functions in this module. 1. layout.bit_arrange In this stylesheet entry the input data is a list of `types.Bits` and returns a sorted list of `types.Bits`. The function signature of the layout is restricted to: ```python def my_layout(bits: List[types.Bits]) -> List[types.Bits]: # your code here: sort input bits and return list of bits ``` 2. layout.time_axis_map In this stylesheet entry the input data is `Tuple[int, int]` that represents horizontal axis limit of the output image. The layout function returns `types.HorizontalAxis` data which is consumed by the plotter API to make horizontal axis. The function signature of the layout is restricted to: ```python def my_layout(time_window: Tuple[int, int]) -> types.HorizontalAxis: # your code here: create and return axis config ``` Arbitrary layout function satisfying the above format can be accepted. """ import warnings from typing import List, Tuple import numpy as np from qiskit import circuit from qiskit.visualization.exceptions import VisualizationError from qiskit.visualization.timeline import types def qreg_creg_ascending(bits: List[types.Bits]) -> List[types.Bits]: """Sort bits by ascending order. Bit order becomes Q0, Q1, ..., Cl0, Cl1, ... Args: bits: List of bits to sort. Returns: Sorted bits. """ qregs = [] cregs = [] for bit in bits: if isinstance(bit, circuit.Qubit): qregs.append(bit) elif isinstance(bit, circuit.Clbit): cregs.append(bit) else: raise VisualizationError(f"Unknown bit {bit} is provided.") with warnings.catch_warnings(): warnings.simplefilter("ignore") qregs = sorted(qregs, key=lambda x: x.index, reverse=False) cregs = sorted(cregs, key=lambda x: x.index, reverse=False) return qregs + cregs def qreg_creg_descending(bits: List[types.Bits]) -> List[types.Bits]: """Sort bits by descending order. Bit order becomes Q_N, Q_N-1, ..., Cl_N, Cl_N-1, ... Args: bits: List of bits to sort. Returns: Sorted bits. """ qregs = [] cregs = [] for bit in bits: if isinstance(bit, circuit.Qubit): qregs.append(bit) elif isinstance(bit, circuit.Clbit): cregs.append(bit) else: raise VisualizationError(f"Unknown bit {bit} is provided.") qregs = sorted(qregs, key=lambda x: x.index, reverse=True) cregs = sorted(cregs, key=lambda x: x.index, reverse=True) return qregs + cregs def time_map_in_dt(time_window: Tuple[int, int]) -> types.HorizontalAxis: """Layout function for the horizontal axis formatting. Generate equispaced 6 horizontal axis ticks. Args: time_window: Left and right edge of this graph. Returns: Axis formatter object. """ # shift time axis t0, t1 = time_window # axis label axis_loc = np.linspace(max(t0, 0), t1, 6) axis_label = axis_loc.copy() # consider time resolution label = "System cycle time (dt)" formatted_label = [f"{val:.0f}" for val in axis_label] return types.HorizontalAxis( window=(t0, t1), axis_map=dict(zip(axis_loc, formatted_label)), label=label )
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1); tensored = bottom.tensor(top) tensored.draw('mpl')
https://github.com/JackHidary/quantumcomputingbook
JackHidary
# install latest version !pip install cirq==0.5 --quiet # Alternatively, install directly from HEAD on github: # !pip install git+https://github.com/quantumlib/Cirq.git --quiet import cirq import numpy as np import matplotlib print(cirq.google.Bristlecone) a = cirq.NamedQubit("a") b = cirq.NamedQubit("b") c = cirq.NamedQubit("c") ops = [cirq.H(a), cirq.H(b), cirq.CNOT(b, c), cirq.H(b)] circuit = cirq.Circuit.from_ops(ops) print(circuit) cirq.unitary(cirq.H) for i, moment in enumerate(circuit): print('Moment {}: {}'.format(i, moment)) print(repr(circuit)) def xor_swap(a, b): yield cirq.CNOT(a, b) yield cirq.CNOT(b, a) yield cirq.CNOT(a, b) def left_rotate(qubits): for i in range(len(qubits) - 1): a, b = qubits[i:i+2] yield xor_swap(a, b) line = cirq.LineQubit.range(5) print(cirq.Circuit.from_ops(left_rotate(line))) circuit = cirq.Circuit() circuit.append([cirq.CZ(a, b)]) circuit.append([cirq.H(a), cirq.H(b), cirq.H(c)]) print(circuit) circuit = cirq.Circuit() circuit.append([cirq.CZ(a, b)]) circuit.append([cirq.H(c), cirq.H(b), cirq.H(b), cirq.H(a)], ) print(circuit) #@title a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') c = cirq.NamedQubit('c') circuit = cirq.Circuit() circuit.append([cirq.CZ(a, b), cirq.H(c), cirq.H(a)] ) circuit.append([cirq.H(b), cirq.CZ(b, c), cirq.H(b), cirq.H(a), cirq.H(a)], strategy=cirq.InsertStrategy.NEW_THEN_INLINE) print(circuit) def basic_circuit(measure=True): sqrt_x = cirq.X**0.5 cz = cirq.CZ yield sqrt_x(a), sqrt_x(b) yield cz(a, b) yield sqrt_x(a), sqrt_x(b) if measure: yield cirq.measure(a,b) circuit = cirq.Circuit.from_ops(basic_circuit()) print(circuit) simulator = cirq.Simulator() circuit = cirq.Circuit.from_ops(basic_circuit()) result = simulator.run(circuit) print('Measurement results') print(result) circuit = cirq.Circuit() circuit.append(basic_circuit(measure=False)) result = simulator.simulate(circuit, qubit_order=[a, b]) print('Wavefunction:') print(np.around(result.final_state, 3)) print('Dirac notation:') print(result.dirac_notation()) circuit = cirq.Circuit.from_ops(basic_circuit()) result = simulator.run(circuit, repetitions=1000) print(result.histogram(key='a,b')) print(result.histogram(key='a,b', fold_func=lambda e: 'agree' if e[0] == e[1] else 'disagree')) q0, q1 = cirq.LineQubit.range(2) oracles = { '0': [], '1': [cirq.X(q1)], 'x': [cirq.CNOT(q0, q1)], 'notx': [cirq.CNOT(q0, q1), cirq.X(q1)] } q0, q1 = cirq.LineQubit.range(2) oracles = { '0': [], '1': [cirq.X(q1)], 'x': [cirq.CNOT(q0, q1)], 'notx': [cirq.CNOT(q0, q1), cirq.X(q1)] } def deutsch_algorithm(oracle): yield cirq.X(q1) yield cirq.H(q0), cirq.H(q1) yield oracle yield cirq.H(q0) yield cirq.measure(q0) for key, oracle in oracles.items(): print('Circuit for {}...'.format(key)) print('{}\n'.format(cirq.Circuit.from_ops(deutsch_algorithm(oracle)))) simulator = cirq.Simulator() for key, oracle in oracles.items(): result = simulator.run(cirq.Circuit.from_ops(deutsch_algorithm(oracle)), repetitions=10) print('oracle: {:<4} results: {}'.format(key, result)) q0, q1, q2 = cirq.LineQubit.range(3) constant = ([], [cirq.X(q2)]) balanced = ([cirq.CNOT(q0, q2)], [cirq.CNOT(q1, q2)], [cirq.CNOT(q0, q2), cirq.CNOT(q1, q2)], [cirq.CNOT(q0, q2), cirq.X(q2)], [ cirq.CNOT(q1, q2), cirq.X(q2)], [cirq.CNOT(q0, q2), cirq.CNOT(q1, q2), cirq.X(q2)]) for i, ops in enumerate(constant): print('\nConstant function {}'.format(i)) print(cirq.Circuit.from_ops(ops).to_text_diagram(qubit_order=[q0, q1, q2])) print() for i, ops in enumerate(balanced): print('\nBalanced function {}'.format(i)) print(cirq.Circuit.from_ops(ops).to_text_diagram(qubit_order=[q0, q1, q2])) simulator = cirq.Simulator() def your_circuit(oracle): # your code here yield oracle # and here yield cirq.measure(q0, q1, q2) print('Your result on constant functions') for oracle in constant: result = simulator.run(cirq.Circuit.from_ops(your_circuit(oracle)), repetitions=10) print(result) print('Your result on balanced functions') for oracle in balanced: result = simulator.run(cirq.Circuit.from_ops(your_circuit(oracle)), repetitions=10) print(result) #@title simulator = cirq.Simulator() def your_circuit(oracle): # phase kickback trick yield cirq.X(q2), cirq.H(q2) # equal superposition over input bits yield cirq.H(q0), cirq.H(q1) # query the function yield oracle # interference to get result, put last qubit into |1> yield cirq.H(q0), cirq.H(q1), cirq.H(q2) # a final OR gate to put result in final qubit yield cirq.X(q0), cirq.X(q1), cirq.CCX(q0, q1, q2) yield cirq.measure(q2) print('Your result on constant functions') for oracle in constant: result = simulator.run(cirq.Circuit.from_ops(your_circuit(oracle)), repetitions=10) print(result) print('Your result on balanced functions') for oracle in balanced: result = simulator.run(cirq.Circuit.from_ops(your_circuit(oracle)), repetitions=10) print(result) q0, q1, q2 = cirq.LineQubit.range(3) ops = [ cirq.X(q0), cirq.Y(q1), cirq.Z(q2), cirq.CZ(q0,q1), cirq.CNOT(q1,q2), cirq.H(q0), cirq.T(q1), cirq.S(q2), cirq.CCZ(q0, q1, q2), cirq.SWAP(q0, q1), cirq.CSWAP(q0, q1, q2), cirq.CCX(q0, q1, q2), cirq.ISWAP(q0, q1), cirq.Rx(0.5 * np.pi)(q0), cirq.Ry(.5 * np.pi)(q1), cirq.Rz(0.5 * np.pi)(q2), (cirq.X**0.5)(q0), ] print(cirq.Circuit.from_ops(ops)) print(cirq.unitary(cirq.CNOT)) print(cirq.unitary(cirq.Rx(0.5 * np.pi))) a = cirq.NamedQubit('a') circuit = cirq.Circuit.from_ops([cirq.Rx(np.pi / 50.0)(a) for theta in range(200)]) print('Circuit is a bunch of small rotations about Pauli X axis:') print('{}\n'.format(circuit)) p0 = [] z = [] print('We step through the circuit and plot the z component of the vector ' 'as a function of index of the moment being stepped over.') for i, step in enumerate(simulator.simulate_moment_steps(circuit)): prob = np.abs(step.state_vector()) ** 2 z.append(i) p0.append(prob[0]) matplotlib.pyplot.style.use('seaborn-whitegrid') matplotlib.pyplot.plot(z, p0, 'o') repetitions = 100 a = cirq.NamedQubit('a') circuit = cirq.Circuit.from_ops([cirq.Rx(np.pi / 50.0)(a) for theta in range(200)]) p0 = [] z = [] for i, step in enumerate(simulator.simulate_moment_steps(circuit)): samples = step.sample([a], repetitions=repetitions) prob0 = np.sum(samples, axis=0)[0] / repetitions p0.append(prob0) z.append(i) matplotlib.pyplot.style.use('seaborn-whitegrid') matplotlib.pyplot.plot(z, p0, 'o') class RationalGate(cirq.SingleQubitGate): def _unitary_(self): return np.array([[3 / 5, 4 / 5], [-4 / 5, 3 / 5]]) def __str__(self): return 'ζ' a = cirq.NamedQubit('a') rg = RationalGate() print(cirq.Circuit.from_ops([rg(a)])) print(cirq.unitary(rg)) circuit = cirq.Circuit.from_ops([rg(a)]) simulator = cirq.Simulator() result = simulator.simulate(circuit) print(result.final_state) class CRx(cirq.TwoQubitGate): def __init__(self, theta): self.theta = theta def _unitary_(self): return np.array([ ]) pass # Get this to print nicely in an ASCII circuit, you should also # implement the _circuit_diagram_info_ method from the # SupportsCircuitDiagramInfo protocol. You can return a tuple # of strings from this method. print(np.around(cirq.unitary(CRx(0.25 * np.pi)))) # Also get your class to print a circuit correctly. a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') op = CRx(0.25 * np.pi)(a, b) print(cirq.Circuit.from_ops([op])) class CRx(cirq.TwoQubitGate): def __init__(self, theta): self.theta = theta def _unitary_(self): return np.array([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, np.cos(self.theta), -1j * np.sin(self.theta)], [0, 0, -1j * np.sin(self.theta), np.cos(self.theta)] ]) def _circuit_diagram_info_(self, args): return '@', 'Rx({}π)'.format(self.theta / np.pi) print('cirq.unitary on the gate yields:') print(np.around(cirq.unitary(CRx(0.25 * np.pi)))) print() a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') op = CRx(0.25 * np.pi)(a, b) print('Circuit diagram:') print(cirq.Circuit.from_ops([op])) class HXGate(cirq.SingleQubitGate): def _decompose_(self, qubits): return cirq.H(*qubits), cirq.X(*qubits) def __str__(self): return 'HX' HX = HXGate() a = cirq.NamedQubit('a') circuit = cirq.Circuit.from_ops([HX(a)]) print(circuit) print(cirq.Circuit.from_ops(cirq.decompose(circuit))) print(cirq.Circuit.from_ops(cirq.decompose_once(HX(a)))) def my_decompose(op): if isinstance(op, cirq.GateOperation) and isinstance(op.gate, HXGate): return cirq.Z(*op.qubits), cirq.H(*op.qubits) cirq.Circuit.from_ops(cirq.decompose(HX(a), intercepting_decomposer=my_decompose)) def keep_h_and_x(op): return isinstance(op, cirq.GateOperation) and op.gate in [cirq.H, cirq.X] print(cirq.decompose(HX(a), keep=keep_h_and_x)) import sympy as sp a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') simulator = cirq.Simulator() val = sp.Symbol('s') pow_x_gate = cirq.X**val circuit = cirq.Circuit() circuit.append([pow_x_gate(a), pow_x_gate(b)]) print('Circuit with parameterized gates:') print(circuit) print() for y in range(5): result = simulator.simulate(circuit, param_resolver={'s': y / 4.0}) print('s={}: {}'.format(y, np.around(result.final_state, 2))) resolvers = [cirq.ParamResolver({'s': y / 8.0}) for y in range(9)] circuit = cirq.Circuit() circuit.append([pow_x_gate(a), pow_x_gate(b)]) circuit.append([cirq.measure(a), cirq.measure(b)]) results = simulator.run_sweep(program=circuit, params=resolvers, repetitions=10) for i, result in enumerate(results): print('params: {}\n{}'.format(result.params.param_dict, result)) linspace = cirq.Linspace(start=0, stop=1.0, length=11, key='x') for p in linspace: print(p) import matplotlib.pyplot as plt plt.plot([1, 2, 3], [5, 3, 10]) # Insert your code here circuit = cirq.Circuit.from_ops(cirq.depolarize(0.2)(a), cirq.measure(a)) print(circuit) for i, krauss in enumerate(cirq.channel(cirq.depolarize(0.2))): print('{}th krauss operator is {}'.format(i, krauss)) print() for i, krauss in enumerate(cirq.channel(cirq.depolarize(0.2))): pauli_ex = cirq.expand_matrix_in_orthogonal_basis(krauss, cirq.PAULI_BASIS) print('{}th krauss operator is {}'.format(i, pauli_ex)) circuit = cirq.Circuit.from_ops(cirq.depolarize(0.2)(a)) print('Circuit:\n{}\n'.format(circuit)) simulator = cirq.DensityMatrixSimulator() matrix = simulator.simulate(circuit).final_density_matrix print('Final density matrix:\n{}'.format(matrix)) circuit = cirq.Circuit.from_ops(cirq.depolarize(0.2)(a), cirq.measure(a)) simulator = cirq.DensityMatrixSimulator() for _ in range(5): print(simulator.simulate(circuit).final_density_matrix) for p, u in cirq.mixture(cirq.depolarize(0.2)): print('prob={}\nunitary\n{}\n'.format(p, u)) d = cirq.depolarize(0.2) print('does cirq.depolarize(0.2) have _channel_? {}'.format('yes' if getattr(d, '_channel_', None) else 'no')) print('does cirq.depolarize(0.2) have _mixture_? {}'.format('yes' if getattr(d, '_mixture_', None) else 'no')) circuit = cirq.Circuit.from_ops(cirq.depolarize(0.5).on(a), cirq.measure(a)) simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=10) print(result) noise = cirq.ConstantQubitNoiseModel(cirq.depolarize(0.2)) circuit = cirq.Circuit.from_ops(cirq.H(a), cirq.CNOT(a, b), cirq.measure(a, b)) print('Circuit with no noise:\n{}\n'.format(circuit)) system_qubits = sorted(circuit.all_qubits()) noisy_circuit = cirq.Circuit() for moment in circuit: noisy_circuit.append(noise.noisy_moment(moment, system_qubits)) print('Circuit with noise:\n{}'.format(noisy_circuit)) noise = cirq.ConstantQubitNoiseModel(cirq.depolarize(0.2)) circuit = cirq.Circuit.from_ops(cirq.H(a), cirq.CNOT(a, b), cirq.measure(a, b)) simulator = cirq.DensityMatrixSimulator(noise=noise) for i, step in enumerate(simulator.simulate_moment_steps(circuit)): print('After step {} state was\n{}\n'.format(i, step.density_matrix())) print(cirq.google.Bristlecone) brissy = cirq.google.Bristlecone op = cirq.X.on(cirq.GridQubit(5, 5)) print(brissy.duration_of(op)) q55 = cirq.GridQubit(5, 5) q56 = cirq.GridQubit(5, 6) q66 = cirq.GridQubit(6, 6) q67 = cirq.GridQubit(6, 7) ops = [cirq.CZ(q55, q56), cirq.CZ(q66, q67)] circuit = cirq.Circuit.from_ops(ops) print(circuit) print('But when we validate it against the device:') cirq.google.Bristlecone.validate_circuit(circuit) # (this should throw an error) ops = [cirq.CZ(q55, q56), cirq.CZ(q66, q67)] circuit = cirq.Circuit(device=cirq.google.Bristlecone) circuit.append(ops) print(circuit) # your code here class XZOptimizer(cirq.PointOptimizer): """Replaces an X followed by a Z with a Y.""" def optimization_at(self, circuit, index, op): # Is the gate an X gate? if isinstance(op, cirq.GateOperation) and (op.gate == cirq.X): next_op_index = circuit.next_moment_operating_on(op.qubits, index + 1) qubit = op.qubits[0] if next_op_index is not None: next_op = circuit.operation_at(qubit, next_op_index) if isinstance(next_op, cirq.GateOperation) and (next_op.gate == cirq.Z): new_op = cirq.Y.on(qubit) return cirq.PointOptimizationSummary( clear_span = next_op_index - index + 1, clear_qubits=op.qubits, new_operations=[new_op]) opt = XZOptimizer() circuit = cirq.Circuit.from_ops(cirq.X(a), cirq.Z(a), cirq.CZ(a, b), cirq.X(a)) print('Before\n{}\n'. format(circuit)) opt.optimize_circuit(circuit) print('After\n{}'.format(circuit)) # Insert your code here. # Here is a circuit to test this on. circuit = cirq.Circuit.from_ops(cirq.H(a), cirq.H(a), cirq.H(b), cirq.CNOT(a, b), cirq.H(a), cirq.H(b), cirq.CZ(a, b)) # Instantiate your optimizer # And check that it worked. print(my_opt.optimizer_circuit(circuit)) cirq.google.is_native_xmon_op(cirq.X.on(cirq.NamedQubit('a'))) cirq.google.is_native_xmon_op(cirq.CNOT.on(cirq.NamedQubit('a'), cirq.NamedQubit('b'))) converter = cirq.google.ConvertToXmonGates() converted = converter.convert(cirq.CNOT.on(cirq.NamedQubit('a'), cirq.NamedQubit('b'))) print(cirq.Circuit.from_ops(converted)) circuit = cirq.Circuit.from_ops([cirq.CNOT.on(cirq.NamedQubit('a'), cirq.NamedQubit('b'))]) print(cirq.google.optimized_for_xmon(circuit)) cirq.google.gate_to_proto_dict(cirq.X, [cirq.GridQubit(5, 5)]) result = cirq.experiments.rabi_oscillations( sampler=cirq.Simulator(), # In the future, sampler could point at real hardware. qubit=cirq.LineQubit(0) ) result.plot() class InconsistentXGate(cirq.SingleQubitGate): def _decompose_(self, qubits): yield cirq.H(qubits[0]) yield cirq.Z(qubits[0]) yield cirq.H(qubits[0]) def _unitary_(self): return np.array([[0, -1j], [1j, 0]]) # Oops! Y instead of X! cirq.testing.assert_decompose_is_consistent_with_unitary(InconsistentXGate()) a, b, c = cirq.LineQubit.range(3) circuit = cirq.Circuit.from_ops(cirq.H(a), cirq.H(c), cirq.CNOT(a, b), cirq.CCZ(a, b, c)) print(circuit.to_qasm()) from cirq.contrib.quirk.export_to_quirk import circuit_to_quirk_url print(circuit_to_quirk_url(circuit))
https://github.com/Slope86/QiskitExtension
Slope86
"""Module to store, manipulate and visualize quantum state vector.""" from __future__ import annotations import copy import itertools import re from typing import Iterable, List, Tuple import numpy as np from IPython.display import Latex from numpy.typing import NDArray from qiskit import QuantumCircuit from qiskit.circuit import Instruction from qiskit.exceptions import QiskitError from qiskit.quantum_info import Statevector from scipy import stats from qiskit_extension import latex_drawer from qiskit_extension.ket import Ket class StateVector2(Statevector): """An extended class of Statevector from Qiskit: https://qiskit.org/documentation/stubs/qiskit.quantum_info.Statevector.html Args: data (np.ndarray | list | Statevector | QuantumCircuit | Instruction): Data from which the statevector can be constructed. This can be either a complex vector, another statevector, a ``QuantumCircuit`` or ``Instruction``. If the data is a circuit or instruction, the statevector is constructed by assuming that all qubits are initialized to the zero state. dims (int | tuple | list, optional): The subsystem dimension of the state. """ def __init__(self, data, dims: int | Iterable[int] | None = None) -> None: if not isinstance(data, np.ndarray | list | Statevector | QuantumCircuit | Instruction): raise QiskitError("Input only accepts np.ndarray | list | Statevector | QuantumCircuit | Instruction") # REVERSE the order of qubits to fit textbook notation if isinstance(data, QuantumCircuit): data = data.reverse_bits() elif isinstance(data, Instruction): data = Statevector(data).reverse_qargs() self._data: NDArray[np.complex128] super().__init__(data, dims) self._num_of_qubit = int(np.log2(len(self._data))) self._basis = ["z"] * self._num_of_qubit @classmethod def __init__with_basis( cls, data, dims: int | Iterable[int] | None = None, basis: List[str] | str = [] ) -> StateVector2: """Initialize statevector with basis.""" state_vector = cls(data, dims) state_vector.basis = list(basis) + ["z"] * (state_vector._num_of_qubit - len(basis)) return state_vector def __repr__(self) -> str: """Return the official string representation of a Statevector.""" vector_str = np.array2string(self.to_matrix(), separator=", ") return f"Statevector:\n{vector_str}" @property def data(self) -> NDArray[np.complex128]: return self._data.copy() @property def basis(self) -> List[str]: return self._basis.copy() @data.setter def data(self, data: NDArray[np.complex128]): self._data = data.copy() @basis.setter def basis(self, basis: List[str]): self._basis = basis.copy() def copy(self) -> StateVector2: """Return a copy of the current statevector.""" return copy.deepcopy(self) def to_matrix(self) -> NDArray[np.complex128]: """Return matrix form of statevector""" clone = self.copy() clone._basis_convert("z" * self._num_of_qubit) vector = clone._data matrix = vector[np.newaxis].T # type: ignore return matrix def entropy(self, state: StateVector2 | Statevector | None = None) -> float: """Return entropy of input statevector.""" if state is None: state = self return stats.entropy(state.probabilities(), base=2) # type: ignore def evolve(self, circ: QuantumCircuit | NDArray, qargs: List[int] | None = None) -> StateVector2: """Evolve self(statevector) by a quantum circuit or matrix. return the evolved state as a new statevector. (self's state will not be changed) Args: circ (QuantumCircuit): The circ to evolve by. qargs (List[int], optional): A list of subsystem positions to apply the operator on. Returns: StateVector2: The new evolved statevector. """ clone = self.copy() original_basis = clone.basis clone._basis_convert(["z"] * self._num_of_qubit) new_state = clone._evolve(circ, qargs) new_state._basis_convert(original_basis) return new_state def _evolve(self, circ: QuantumCircuit | NDArray, qargs: List[int] | None = None) -> StateVector2: """Evolve self(z-basis statevector) by a quantum circuit or matrix. return the evolved state as a new statevector. (self's state will not be changed) Args: circ (QuantumCircuit): The object to evolve by. qargs (List[int], optional): A list of subsystem positions to apply the operator on. Returns: StateVector2: The new evolved statevector. """ if not isinstance(circ, QuantumCircuit | np.ndarray): raise QiskitError("Input is not a QuantumCircuit.") if isinstance(circ, QuantumCircuit): circ = circ.reverse_bits() # REVERSE the order of qubits to fit textbook notation evolve_data = super().evolve(circ, qargs).data return StateVector2.__init__with_basis(data=evolve_data, basis=self.basis) def measure( self, measure: List[int] | int | str, basis: List[str] | str | None = None, shot=100 ) -> List[StateVector2]: """measure statevector Args: measure (List[int] | int | str): which qubits to measure basis (List[str] | str | None, optional): measure in what basis. Defaults to current stored basis. shot (int, optional): number of shots. Defaults to 100. Returns: List[StateVector2]: list of statevector after measurement """ states = self._measure(measure, basis, shot)[1] for state in states: if state is not None: state._basis_convert(self.basis) return states def _measure( self, measure: List[int] | int | str, basis: List[str] | str | None = None, shot=100 ) -> Tuple[List[StateVector2], List[StateVector2]]: """measure statevector Args: measure (List[int] | int | str): which qubits to measure basis (List[str] | str, optional): measure in what basis. Defaults to current stored basis. shot (int, optional): number of shots. Defaults to 100. Returns: Tuple[List[StateVector2], List[StateVector2]]: list of measured statevector, list of remained statevector after measurement """ clone = self.copy() if isinstance(measure, str): measure = [int(char) for char in measure] elif isinstance(measure, int): measure = [measure] if basis is not None: convert_basis = clone.basis for i in range(len(basis)): convert_basis[measure[i]] = basis[i] clone._basis_convert(convert_basis) measure_state_list = [None] * 2 ** len(measure) # crate empty list for saving measure state remain_state_list = [None] * 2 ** len(measure) # crate empty list for saving remain state for _ in range(shot): measure_ket: str remain_state: Statevector # REVERSE measure bit number to fit qiskit statevector measure notation reverse_measure = [clone._num_of_qubit - 1 - i for i in measure] measure_ket, remain_state = Statevector(clone.data).measure(qargs=reverse_measure) # type: ignore measure_ket = measure_ket[::-1] # REVERSE the order of qubits to fit textbook notation if measure_state_list[int(measure_ket, 2)] is None: basis = clone.basis measure_basis = "" for i in measure: measure_basis += basis[i] basis_convert_measure_ket = "" for b, k in zip(measure_basis, measure_ket): match b: case "z": basis_convert_measure_ket += Ket.z1 if int(k) else Ket.z0 case "x": basis_convert_measure_ket += Ket.x1 if int(k) else Ket.x0 case "y": basis_convert_measure_ket += Ket.y1 if int(k) else Ket.y0 measure_state_list[int(measure_ket, 2)] = clone._from_label(basis_convert_measure_ket, to_z_basis=False) remain_state_list[int(measure_ket, 2)] = StateVector2.__init__with_basis( data=remain_state.data, basis=clone.basis ) return (measure_state_list, remain_state_list) def show_matrix(self): """show the matrix form of statevector in LaTeX""" return latex_drawer.matrix_to_latex(self.to_matrix()) def show_state( self, basis: List[str] | str | None = None, hide: List[int] | str = [], output_length: int = 2, output: str = "latex", ): """visualize statevector Args: basis (List[str] | str, optional): convert statevector's basis to input basis. Defaults to skip basis convert. hide (List[int] | str, optional): hide qubits. Default to show all qubits. output_length (int, optional): 2^output_length = number of terms in each line. Defaults to 2(= 4 terms/line) output (str, optional): visualization method. Defaults to "latex". Returns: matplotlib.Figure or str or TextMatrix or IPython.display.Latex: visualization output """ clone = self.copy() if basis is not None: clone._basis_convert(basis) match output: case "text": return print(clone) case "latex": return latex_drawer.state_to_latex(clone, hide, output_length) case "latex_source": return latex_drawer.state_to_latex(clone, hide, output_length, source=True) case _: return clone.draw(output=output) def show_measure( self, measure: List[int] | int | str, basis: List[str] | str | None = None, hide: List[int] | str = [], output_length: int = 2, remaining_basis: List[str] | str | None = None, ) -> Latex: """visualize measure result Args: measure (List[int] | int | str): qubits to measure basis (List[int] | str, optional): measure in what basis. Defaults to z basis. hide (List[int] | str, optional): hide qubits. Default to show all qubits. output_length (int, optional): 2^output_length = number of terms in each line. Defaults to 2(= 4 terms/line) remaining_basis (List[str] | str, optional): change statevector's basis to input basis before measure. Returns: Latex: visualization output """ if isinstance(hide, str): hide = [int(char) for char in hide] elif isinstance(hide, int): hide = [hide] if isinstance(measure, str): measure = [int(char) for char in measure] elif isinstance(measure, int): measure = [measure] clone = self.copy() if remaining_basis is not None: remaining_basis = list(remaining_basis) + ["-"] * (self._num_of_qubit - len(remaining_basis)) if basis is None: basis = ["z"] * len(measure) for i, b in zip(measure, basis): remaining_basis[i] = b clone._basis_convert(remaining_basis) result = clone._measure(measure=measure, basis=basis, shot=4 * 2 ** len(measure)) return latex_drawer.measure_result_to_latex(result, measure + hide, output_length) # type: ignore @classmethod def from_int(cls, i: int, dims: int | Iterable[int]) -> StateVector2: """Return a computational basis statevector. Args: i (int): the basis state element. dims (int | Iterable[int]): The subsystem dimensions of the statevector Returns: StateVector2: The statevector object. """ state = super().from_int(i, dims) return cls(state.data, dims) @classmethod def from_instruction(cls, instruction): """Return the output statevector of an instruction. The statevector is initialized in the state :math:`|{0,\\ldots,0}\\rangle` of the same number of qubits as the input instruction or circuit, evolved by the input instruction, and the output statevector returned. Args: instruction (qiskit.circuit.Instruction or QuantumCircuit): instruction or circuit Returns: Statevector: The final statevector. Raises: QiskitError: if the instruction contains invalid instructions for the statevector simulation. """ if not isinstance(instruction, QuantumCircuit | Instruction): raise QiskitError("Input is not a valid instruction or circuit.") return cls(instruction) @classmethod def from_label(cls, *args: str | Tuple[complex, str]) -> StateVector2: """Create a state vector from input coefficient and label string. Example: from_label("0", "1") = (|0> + |1>)/√2, from_label("00", "01", "10", "11") = (|00> + |01> + |10> + |11>)/2 = |++>, from_label( (2**0.5,"0") , "+" , (-1,"-") ) = ( √2|0> + |+> - |-> )/2 = |+> Args: args (str | Tuple[complex, str]): The input label string or tuple of coefficient and label string. Returns: StateVector2: The statevector object. Raises: QiskitError: if labels contain invalid characters or labels have different number of qubits. """ coeffs: List[complex] = [] labels: List[str] = [] for i, arg in enumerate(args): if isinstance(arg, tuple): coeffs.append(arg[0]) labels.append(arg[1]) else: coeffs.append(1.0) labels.append(arg) if not Ket.check_valid(labels[i]): raise QiskitError("Invalid label string.") if len(labels[0]) != len(labels[i]): raise QiskitError("Each label's number of qubits must be the same.") state: StateVector2 = cls._from_label(labels[0]) * coeffs[0] for coeff, label in zip(coeffs[1:], labels[1:]): state += cls._from_label(label) * coeff if type(state) is not StateVector2: raise QiskitError("Unexpected error.") state /= super(type(state), state).trace() ** 0.5 return state @classmethod def _from_label(cls, label: str, to_z_basis: bool = True) -> StateVector2: if to_z_basis: label = label.replace(Ket.z0, "0") label = label.replace(Ket.x0, "+") label = label.replace(Ket.y0, "r") label = label.replace(Ket.z1, "1") label = label.replace(Ket.x1, "-") label = label.replace(Ket.y1, "l") state = super().from_label(label) return cls(state.data) basis = "" for ket in label: match ket: case Ket.z0 | Ket.z1: basis += "z" case Ket.x0 | Ket.x1: basis += "x" case Ket.y0 | Ket.y1: basis += "y" label = label.replace(Ket.z0, "0") label = label.replace(Ket.x0, "0") label = label.replace(Ket.y0, "0") label = label.replace(Ket.z1, "1") label = label.replace(Ket.x1, "1") label = label.replace(Ket.y1, "1") state = super().from_label(label) return cls.__init__with_basis(state.data, basis=basis) def expand(self, other): """Return the tensor product state other ⊗ self. Args: other (Statevector2): a quantum state object. Returns: Statevector: the tensor product state other ⊗ self. Raises: QiskitError: if other is not a quantum state. """ clone = self.copy() clone._basis_convert("z" * self._num_of_qubit) other_clone = other.copy() other_clone._basis_convert("z" * other._num_of_qubit) state_expand = super(type(other_clone), other_clone).expand(clone) return StateVector2(state_expand.data) def _basis_convert( self, basis: List[str] | str = [], algorithm: str = "global", ) -> None: """Convert basis of statevector Args: basis (List[str] | str, optional):new basis. Defaults to auto choose basis with minimum entropy. algorithm (str, optional): if don't specify which basis to convert, (basis = "-") convert basis to basis with "local" or "global" minimum entropy. Defaults to "global". """ # check if input is valid target_basis = list(basis) + ["-"] * (self._num_of_qubit - len(basis)) del basis if re.match(R"^[\-xyz]+$", "".join(target_basis)) is None: raise QiskitError("Invalid basis.") # convert basis using QuantumCircuit auto_basis_index = [] circ_convert = QuantumCircuit(self._num_of_qubit) for i in range(self._num_of_qubit): if target_basis[i] == self._basis[i]: continue if target_basis[i] != "-": self._xyz_convert_circ(self.basis[i], target_basis[i], circ_convert, i) self._basis[i] = target_basis[i] else: auto_basis_index.append(i) self._data = self._evolve(circ_convert)._data if not auto_basis_index: return # if user don't specify which basis to convert, convert basis to basis with minimum entropy match algorithm: case "global": if len(auto_basis_index) > 8: print( "Warning: global minimum entropy basis convert with more then 8 qubits might take a long time." ) new_basis = self._global_min_entropy_basis(auto_basis_index) case "local": new_basis = self._local_min_entropy_basis(auto_basis_index) case _: raise QiskitError("Invalid min_entropy_basis_find_method.") self._basis_convert(new_basis) def _global_min_entropy_basis(self, auto_basis_index: List[int]) -> List[str]: """find basis with global minimum entropy Args: auto_basis_index (List[int]): index of auto-choose-basis Returns: List[str]: basis with global minimum entropy """ num_of_auto_basis = len(auto_basis_index) min_entropy = float("inf") min_basis = self.basis try_basis = self.basis for basis in itertools.product(["z", "x", "y"], repeat=num_of_auto_basis): # type: ignore for i in range(num_of_auto_basis): try_basis[auto_basis_index[i]] = basis[i] try_state = self.copy() try_state._basis_convert(try_basis) if (entropy := try_state.entropy()) < min_entropy: min_entropy = entropy min_basis = try_basis.copy() return min_basis def _local_min_entropy_basis(self, auto_basis_index: List[int]) -> List[str]: """find basis with local minimum entropy Args: auto_basis_index (List[int]): index of auto-choose-basis Returns: List[str]: basis with local minimum entropy """ # Step 1: Change all auto-choose-basis to y, e.g. [-, -, -, -] -> [z, z, z, z], calculate entropy # Step 2,3: Same as Step 1, but with x-basis and y-basis # Step 4: from Step 1 to 3, choose the basis with minimum entropy. clone_state = self.copy() min_entropy = float("inf") min_basis = clone_state.basis for basis in ["z", "x", "y"]: try_state = clone_state.copy() try_basis = try_state.basis for i in auto_basis_index: try_basis[i] = basis try_state._basis_convert(try_basis) if (entropy := try_state.entropy()) < min_entropy: min_entropy = entropy min_basis = try_basis clone_state._basis_convert(min_basis) # Step 1: Change the first auto-choose-basis to y, e.g. [-, -, -, -] -> [y, -, -, -], calculate entropy, # Step 2,3: Same as Step 1, but with x-basis and z-basis # Step 4: from Step 1 to 3, choose the basis with minimum entropy. # Step 5: Repeat Step 1 to 4 for the second auto-choose-basis, and so on. (greedy) # e.g. [-, -, -, -] -> [x, -, -, -] -> [x, z, -, -] -> [x, z, y, -] -> [x, z, y, z] min_entropy = float("inf") min_basis = clone_state.basis for i in auto_basis_index: try_basis = clone_state.basis for basis in ["y", "x", "z"]: try_basis[i] = basis try_state = clone_state.copy() try_state._basis_convert(try_basis) if (entropy_tmp := try_state.entropy()) < min_entropy: min_entropy = entropy_tmp min_basis[i] = basis clone_state._basis_convert(min_basis) return min_basis @staticmethod def _xyz_convert_circ(basis: str, new_basis: str, circ: QuantumCircuit, qubit: int) -> None: """Add the corresponding gate that converts different basis Args: basis (str): original basis new_basis (str): new basis circ (QuantumCircuit): quantum circuit to convert basis Returns: QuantumCircuit: quantum circuit to convert basis """ if basis == new_basis: return basis += new_basis match basis: case "zx" | "xz": circ.h(qubit) case "zy": circ.sdg(qubit) circ.h(qubit) case "yz": circ.h(qubit) circ.s(qubit) case "xy": circ.h(qubit) circ.sdg(qubit) circ.h(qubit) case "yx": circ.h(qubit) circ.s(qubit) circ.h(qubit) return
https://github.com/vindem/quantumMD
vindem
from qiskit.circuit.library import RealAmplitudes, EfficientSU2 efficientSU2 = EfficientSU2(1, reps=1, entanglement='linear', insert_barriers=True) realAmplitudes = RealAmplitudes(1,reps=1) efficientSU2.draw(output='text') realAmplitudes.draw(output='text') import numpy as np rdist = np.random.rand(1, 1) rdistt = np.transpose(rdist) z1 = np.zeros((1, 1)) z2 = np.zeros((1, 1)) matrix = np.block([[z1, rdist], [rdistt, z2]]) from qiskit import IBMQ from qiskit.providers.ibmq import least_busy from qiskit.providers import JobStatus IBMQ.load_account() provider = IBMQ.get_provider('ibm-q-research-2','vienna-uni-tech-1','main') backend = least_busy( provider.backends( filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational and x.configuration().dynamic_reprate_enabled ) ) print(backend.name()) from qiskit.algorithms.optimizers import COBYLA from qiskit.opflow.primitive_ops import MatrixOp import time matrix_op = MatrixOp(matrix) vqe_inputs = { 'ansatz': realAmplitudes, 'operator': matrix_op, 'optimizer': COBYLA(max_iter=100, tol=0.00001), 'initial_point': np.random.random(realAmplitudes.num_parameters), 'measurement_error_mitigation': True, 'shots': 1024 } options = { 'backend_name': backend.name(), } job = provider.runtime.run(program_id='vqe', inputs=vqe_inputs, options=options) while job.status() != JobStatus.RUNNING: pass start = time.time() res = job.result() end = time.time() print("Runtime: "+str(end-start)) from qiskit.algorithms.optimizers import COBYLA from qiskit.opflow.primitive_ops import MatrixOp import time matrix_op = MatrixOp(matrix) vqe_inputs = { 'ansatz': efficientSU2, 'operator': matrix_op, 'optimizer': COBYLA(max_iter=100, tol=0.00001), 'initial_point': np.random.random(efficientSU2.num_parameters), 'measurement_error_mitigation': True, 'shots': 1024 } options = { 'backend_name': backend.name(), } job = provider.runtime.run(program_id='vqe', inputs=vqe_inputs, options=options) while job.status() != JobStatus.RUNNING: pass start = time.time() res = job.result() end = time.time() print("Runtime: "+str(end-start))
https://github.com/arian-code/nptel_quantum_assignments
arian-code
from sympy import * from sympy.physics.quantum.state import Ket, Bra from sympy.physics.quantum import TensorProduct import numpy as np init_printing(use_unicode=True) plus=Matrix([1/sqrt(2), 1/sqrt(2)]) zero=Matrix([1, 0]) minus=Matrix([1/sqrt(2), -1/sqrt(2)]) plus, zero, minus TensorProduct(plus, zero, minus)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import copy # Problem modelling imports from docplex.mp.model import Model # Qiskit imports from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit.utils.algorithm_globals import algorithm_globals from qiskit_optimization.algorithms import MinimumEigenOptimizer, CplexOptimizer from qiskit_optimization import QuadraticProgram from qiskit_optimization.problems.variable import VarType from qiskit_optimization.converters.quadratic_program_to_qubo import QuadraticProgramToQubo from qiskit_optimization.translators import from_docplex_mp def create_problem(mu: np.array, sigma: np.array, total: int = 3) -> QuadraticProgram: """Solve the quadratic program using docplex.""" mdl = Model() x = [mdl.binary_var("x%s" % i) for i in range(len(sigma))] objective = mdl.sum([mu[i] * x[i] for i in range(len(mu))]) objective -= 2 * mdl.sum( [sigma[i, j] * x[i] * x[j] for i in range(len(mu)) for j in range(len(mu))] ) mdl.maximize(objective) cost = mdl.sum(x) mdl.add_constraint(cost == total) qp = from_docplex_mp(mdl) return qp def relax_problem(problem) -> QuadraticProgram: """Change all variables to continuous.""" relaxed_problem = copy.deepcopy(problem) for variable in relaxed_problem.variables: variable.vartype = VarType.CONTINUOUS return relaxed_problem mu = np.array([3.418, 2.0913, 6.2415, 4.4436, 10.892, 3.4051]) sigma = np.array( [ [1.07978412, 0.00768914, 0.11227606, -0.06842969, -0.01016793, -0.00839765], [0.00768914, 0.10922887, -0.03043424, -0.0020045, 0.00670929, 0.0147937], [0.11227606, -0.03043424, 0.985353, 0.02307313, -0.05249785, 0.00904119], [-0.06842969, -0.0020045, 0.02307313, 0.6043817, 0.03740115, -0.00945322], [-0.01016793, 0.00670929, -0.05249785, 0.03740115, 0.79839634, 0.07616951], [-0.00839765, 0.0147937, 0.00904119, -0.00945322, 0.07616951, 1.08464544], ] ) qubo = create_problem(mu, sigma) print(qubo.prettyprint()) result = CplexOptimizer().solve(qubo) print(result.prettyprint()) qp = relax_problem(QuadraticProgramToQubo().convert(qubo)) print(qp.prettyprint()) sol = CplexOptimizer().solve(qp) print(sol.prettyprint()) c_stars = sol.samples[0].x print(c_stars) algorithm_globals.random_seed = 12345 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) from qiskit import QuantumCircuit thetas = [2 * np.arcsin(np.sqrt(c_star)) for c_star in c_stars] init_qc = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): init_qc.ry(theta, idx) init_qc.draw(output="mpl") from qiskit.circuit import Parameter beta = Parameter("β") ws_mixer = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): ws_mixer.ry(-theta, idx) ws_mixer.rz(-2 * beta, idx) ws_mixer.ry(theta, idx) ws_mixer.draw(output="mpl") ws_qaoa_mes = QAOA( sampler=Sampler(), optimizer=COBYLA(), initial_state=init_qc, mixer=ws_mixer, initial_point=[0.0, 1.0], ) ws_qaoa = MinimumEigenOptimizer(ws_qaoa_mes) ws_qaoa_result = ws_qaoa.solve(qubo) print(ws_qaoa_result.prettyprint()) def format_qaoa_samples(samples, max_len: int = 10): qaoa_res = [] for s in samples: if sum(s.x) == 3: qaoa_res.append(("".join([str(int(_)) for _ in s.x]), s.fval, s.probability)) res = sorted(qaoa_res, key=lambda x: -x[1])[0:max_len] return [(_[0] + f": value: {_[1]:.3f}, probability: {1e2*_[2]:.1f}%") for _ in res] format_qaoa_samples(qaoa_result.samples) format_qaoa_samples(ws_qaoa_result.samples) from qiskit_optimization.algorithms import WarmStartQAOAOptimizer qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) ws_qaoa = WarmStartQAOAOptimizer( pre_solver=CplexOptimizer(), relax_for_pre_solver=True, qaoa=qaoa_mes, epsilon=0.0 ) ws_result = ws_qaoa.solve(qubo) print(ws_result.prettyprint()) format_qaoa_samples(ws_result.samples) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/ElePT/qiskit-algorithms-test
ElePT
# This code is part of Qiskit. # # (C) Copyright IBM 2022, 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Compute-uncompute fidelity interface using primitives """ from __future__ import annotations from collections.abc import Sequence from copy import copy from qiskit import QuantumCircuit from qiskit.primitives import BaseSampler from qiskit.providers import Options from ..exceptions import AlgorithmError from .base_state_fidelity import BaseStateFidelity from .state_fidelity_result import StateFidelityResult class ComputeUncompute(BaseStateFidelity): r""" This class leverages the sampler primitive to calculate the state fidelity of two quantum circuits following the compute-uncompute method (see [1] for further reference). The fidelity can be defined as the state overlap. .. math:: |\langle\psi(x)|\phi(y)\rangle|^2 where :math:`x` and :math:`y` are optional parametrizations of the states :math:`\psi` and :math:`\phi` prepared by the circuits ``circuit_1`` and ``circuit_2``, respectively. **Reference:** [1] Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., & Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209-212. `arXiv:1804.11326v2 [quant-ph] <https://arxiv.org/pdf/1804.11326.pdf>`_ """ def __init__( self, sampler: BaseSampler, options: Options | None = None, local: bool = False, ) -> None: r""" Args: sampler: Sampler primitive instance. options: Primitive backend runtime options used for circuit execution. The order of priority is: options in ``run`` method > fidelity's default options > primitive's default setting. Higher priority setting overrides lower priority setting. local: If set to ``True``, the fidelity is averaged over single-qubit projectors .. math:: \hat{O} = \frac{1}{N}\sum_{i=1}^N|0_i\rangle\langle 0_i|, instead of the global projector :math:`|0\rangle\langle 0|^{\otimes n}`. This coincides with the standard (global) fidelity in the limit of the fidelity approaching 1. Might be used to increase the variance to improve trainability in algorithms such as :class:`~.time_evolvers.PVQD`. Raises: ValueError: If the sampler is not an instance of ``BaseSampler``. """ if not isinstance(sampler, BaseSampler): raise ValueError( f"The sampler should be an instance of BaseSampler, " f"but got {type(sampler)}" ) self._sampler: BaseSampler = sampler self._local = local self._default_options = Options() if options is not None: self._default_options.update_options(**options) super().__init__() def create_fidelity_circuit( self, circuit_1: QuantumCircuit, circuit_2: QuantumCircuit ) -> QuantumCircuit: """ Combines ``circuit_1`` and ``circuit_2`` to create the fidelity circuit following the compute-uncompute method. Args: circuit_1: (Parametrized) quantum circuit. circuit_2: (Parametrized) quantum circuit. Returns: The fidelity quantum circuit corresponding to circuit_1 and circuit_2. """ if len(circuit_1.clbits) > 0: circuit_1.remove_final_measurements() if len(circuit_2.clbits) > 0: circuit_2.remove_final_measurements() circuit = circuit_1.compose(circuit_2.inverse()) circuit.measure_all() return circuit def _run( self, circuits_1: QuantumCircuit | Sequence[QuantumCircuit], circuits_2: QuantumCircuit | Sequence[QuantumCircuit], values_1: Sequence[float] | Sequence[Sequence[float]] | None = None, values_2: Sequence[float] | Sequence[Sequence[float]] | None = None, **options, ) -> StateFidelityResult: r""" Computes the state overlap (fidelity) calculation between two (parametrized) circuits (first and second) for a specific set of parameter values (first and second) following the compute-uncompute method. Args: circuits_1: (Parametrized) quantum circuits preparing :math:`|\psi\rangle`. circuits_2: (Parametrized) quantum circuits preparing :math:`|\phi\rangle`. values_1: Numerical parameters to be bound to the first circuits. values_2: Numerical parameters to be bound to the second circuits. options: Primitive backend runtime options used for circuit execution. The order of priority is: options in ``run`` method > fidelity's default options > primitive's default setting. Higher priority setting overrides lower priority setting. Returns: The result of the fidelity calculation. Raises: ValueError: At least one pair of circuits must be defined. AlgorithmError: If the sampler job is not completed successfully. """ circuits = self._construct_circuits(circuits_1, circuits_2) if len(circuits) == 0: raise ValueError( "At least one pair of circuits must be defined to calculate the state overlap." ) values = self._construct_value_list(circuits_1, circuits_2, values_1, values_2) # The priority of run options is as follows: # options in `evaluate` method > fidelity's default options > # primitive's default options. opts = copy(self._default_options) opts.update_options(**options) job = self._sampler.run(circuits=circuits, parameter_values=values, **opts.__dict__) try: result = job.result() except Exception as exc: raise AlgorithmError("Sampler job failed!") from exc if self._local: raw_fidelities = [ self._get_local_fidelity(prob_dist, circuit.num_qubits) for prob_dist, circuit in zip(result.quasi_dists, circuits) ] else: raw_fidelities = [ self._get_global_fidelity(prob_dist) for prob_dist in result.quasi_dists ] fidelities = self._truncate_fidelities(raw_fidelities) return StateFidelityResult( fidelities=fidelities, raw_fidelities=raw_fidelities, metadata=result.metadata, options=self._get_local_options(opts.__dict__), ) @property def options(self) -> Options: """Return the union of estimator options setting and fidelity default options, where, if the same field is set in both, the fidelity's default options override the primitive's default setting. Returns: The fidelity default + estimator options. """ return self._get_local_options(self._default_options.__dict__) def update_default_options(self, **options): """Update the fidelity's default options setting. Args: **options: The fields to update the default options. """ self._default_options.update_options(**options) def _get_local_options(self, options: Options) -> Options: """Return the union of the primitive's default setting, the fidelity default options, and the options in the ``run`` method. The order of priority is: options in ``run`` method > fidelity's default options > primitive's default setting. Args: options: The fields to update the options Returns: The fidelity default + estimator + run options. """ opts = copy(self._sampler.options) opts.update_options(**options) return opts def _get_global_fidelity(self, probability_distribution: dict[int, float]) -> float: """Process the probability distribution of a measurement to determine the global fidelity. Args: probability_distribution: Obtained from the measurement result Returns: The global fidelity. """ return probability_distribution.get(0, 0) def _get_local_fidelity( self, probability_distribution: dict[int, float], num_qubits: int ) -> float: """Process the probability distribution of a measurement to determine the local fidelity by averaging over single-qubit projectors. Args: probability_distribution: Obtained from the measurement result Returns: The local fidelity. """ fidelity = 0.0 for qubit in range(num_qubits): for bitstring, prob in probability_distribution.items(): # Check whether the bit representing the current qubit is 0 if not bitstring >> qubit & 1: fidelity += prob / num_qubits return fidelity
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
p = 0.2 import numpy as np from qiskit.circuit import QuantumCircuit class BernoulliA(QuantumCircuit): """A circuit representing the Bernoulli A operator.""" def __init__(self, probability): super().__init__(1) # circuit on 1 qubit theta_p = 2 * np.arcsin(np.sqrt(probability)) self.ry(theta_p, 0) class BernoulliQ(QuantumCircuit): """A circuit representing the Bernoulli Q operator.""" def __init__(self, probability): super().__init__(1) # circuit on 1 qubit self._theta_p = 2 * np.arcsin(np.sqrt(probability)) self.ry(2 * self._theta_p, 0) def power(self, k): # implement the efficient power of Q q_k = QuantumCircuit(1) q_k.ry(2 * k * self._theta_p, 0) return q_k A = BernoulliA(p) Q = BernoulliQ(p) from qiskit.algorithms import EstimationProblem problem = EstimationProblem( state_preparation=A, # A operator grover_operator=Q, # Q operator objective_qubits=[0], # the "good" state Psi1 is identified as measuring |1> in qubit 0 ) from qiskit.primitives import Sampler sampler = Sampler() from qiskit.algorithms import AmplitudeEstimation ae = AmplitudeEstimation( num_eval_qubits=3, # the number of evaluation qubits specifies circuit width and accuracy sampler=sampler, ) ae_result = ae.estimate(problem) print(ae_result.estimation) import matplotlib.pyplot as plt # plot estimated values gridpoints = list(ae_result.samples.keys()) probabilities = list(ae_result.samples.values()) plt.bar(gridpoints, probabilities, width=0.5 / len(probabilities)) plt.axvline(p, color="r", ls="--") plt.xticks(size=15) plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15) plt.title("Estimated Values", size=15) plt.ylabel("Probability", size=15) plt.xlabel(r"Amplitude $a$", size=15) plt.ylim((0, 1)) plt.grid() plt.show() print("Interpolated MLE estimator:", ae_result.mle) ae_circuit = ae.construct_circuit(problem) ae_circuit.decompose().draw( "mpl", style="iqx" ) # decompose 1 level: exposes the Phase estimation circuit! from qiskit import transpile basis_gates = ["h", "ry", "cry", "cx", "ccx", "p", "cp", "x", "s", "sdg", "y", "t", "cz"] transpile(ae_circuit, basis_gates=basis_gates, optimization_level=2).draw("mpl", style="iqx") from qiskit.algorithms import IterativeAmplitudeEstimation iae = IterativeAmplitudeEstimation( epsilon_target=0.01, # target accuracy alpha=0.05, # width of the confidence interval sampler=sampler, ) iae_result = iae.estimate(problem) print("Estimate:", iae_result.estimation) iae_circuit = iae.construct_circuit(problem, k=3) iae_circuit.draw("mpl", style="iqx") from qiskit.algorithms import MaximumLikelihoodAmplitudeEstimation mlae = MaximumLikelihoodAmplitudeEstimation( evaluation_schedule=3, # log2 of the maximal Grover power sampler=sampler, ) mlae_result = mlae.estimate(problem) print("Estimate:", mlae_result.estimation) from qiskit.algorithms import FasterAmplitudeEstimation fae = FasterAmplitudeEstimation( delta=0.01, # target accuracy maxiter=3, # determines the maximal power of the Grover operator sampler=sampler, ) fae_result = fae.estimate(problem) print("Estimate:", fae_result.estimation) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/suvoooo/Qubits-Qiskit
suvoooo
### calculate the probability for theta = 1 degree import math import cmath def probs_unitary(ang): ang = math.radians(ang) # 1 degree y = complex(0, ang) #i1 y0 = 0.5*(1 + cmath.exp(y)) #print ('probability for getting 0: ', abs(y0)**2) y1 = 0.5*(1 - cmath.exp(y)) #print ('probability for getting 1: ', abs(y1)**2) return abs(y0)**2, abs(y1)**2 prob0, prob1 = probs_unitary(1) print (r'probability for getting 0 and 1 for $\theta=1$: ', prob0, prob1) prob0_10, prob1_10 = probs_unitary(10) print (r'probability for getting 0 and 1 for $\theta=10$: ', prob0_10, prob1_10) from google.colab import drive drive.mount('/content/drive/') !pip install qiskit import qiskit as q import matplotlib import matplotlib.pyplot as plt import numpy as np # from mpl_toolkits.mplot3d import proj3d print (q.__version__) print(matplotlib.__version__) style = {'backgroundcolor': 'lavender', 'dpi':200, 'subfontsize':10} PEcircuit = q.QuantumCircuit(3, 2) PEcircuit.x(2) # this is the eigen state of S gate; in figures above this $\psi$ PEcircuit.draw() # start by applying the H gates for qubit in range(2): PEcircuit.h(qubit) PEcircuit.draw() repetitions = 1 for counting_qubit in range(2): for i in range(repetitions): PEcircuit.cp(np.pi/2, counting_qubit, 2); # This is CU # QuantumCircuit.cp(theta, control_qubit, target_qubit, label=None, ctrl_state=None) # importantly to apply controlled phase rotation we need to know the rotation angle beforehand repetitions *= 2 # 2^{n-1} factor PEcircuit.draw() !pip install pylatexenc style = {'backgroundcolor': 'lavender', 'dpi':200, 'subfontsize':10} PEcircuit.draw(output='mpl', scale=0.8, style=style, filename='/content/drive/My Drive/Colab Notebooks/Quantum_Compute/FourierTransform/2bits_QPE_QiskitEx.png') def qft_dagger(qc, n): """n-qubit inverse qft first n qubits will be transformed check the qft circuit implementation first """ for qubit in range(n//2): qc.swap(qubit, n-qubit-1) for j in range(n): for m in range(j): qc.cp(-math.pi/float(2**(j-m)), m, j) qc.h(j) PEcircuit.barrier() # Apply inverse QFT qft_dagger(PEcircuit, 2) # Measure PEcircuit.barrier() for n in range(2): PEcircuit.measure(n,n) # PEcircuit.draw(output='mpl', style=style, filename='/content/drive/My Drive/Colab Notebooks/Quantum_Compute/FourierTransform/2bits_QPE_QiskitEx_Full.png') aer_sim = q.Aer.get_backend('aer_simulator') shots = 2048 t_PEcircuit = q.transpile(PEcircuit, aer_sim) qobj = q.assemble(t_PEcircuit, shots=shots) results = aer_sim.run(qobj).result() answer = results.get_counts() q.visualization.plot_histogram(answer) PEcircuit_1 = q.QuantumCircuit(4, 3) PEcircuit_1.x(3) # this is the eigen state of S gate; in figures above this $\psi$ for qubit in range(3): PEcircuit_1.h(qubit) repetitions = 1 for counting_qubit in range(3): for i in range(repetitions): PEcircuit_1.cp(np.pi/2, counting_qubit, 3) # This is CU # QuantumCircuit.cp(theta, control_qubit, target_qubit, label=None, ctrl_state=None) # importantly to apply controlled phase rotation we need to know the rotation angle beforehand repetitions *= 2 # 2^{n-1} factor PEcircuit_1.draw() PEcircuit_1.barrier() # Apply inverse QFT qft_dagger(PEcircuit_1, 3) # Measure PEcircuit_1.barrier() for n in range(3): PEcircuit_1.measure(n, n) PEcircuit_1.draw(output='mpl', style=style, filename='/content/drive/My Drive/Colab Notebooks/Quantum_Compute/FourierTransform/3bits_QPE_QiskitEx.png') aer_sim = q.Aer.get_backend('aer_simulator') shots = 2048 t_PEcircuit_1 = q.transpile(PEcircuit_1, aer_sim) qobj = q.assemble(t_PEcircuit_1, shots=shots) results_1 = aer_sim.run(qobj).result() answer_1 = results_1.get_counts() q.visualization.plot_histogram(answer_1) PEcircuit_1.num_qubits-1 def qpe_circ(nq, angle): """ generic qpe circuit nq: number of qubits angle: theta as defined in description """ qc = q.QuantumCircuit(nq+1, nq) # num qubits + eigen state, for measuring we need num qubits = classical bits for measure. qc.x(nq) # apply the not gate to create state 1, i.e. eigen state at the last qubit for qubit in range(nq): qc.h(qubit) repetitions = 1 for counting_qubit in range(qc.num_qubits - 1): #qc.num_qubits - 1 = nq for i in range(repetitions): qc.cp(np.pi *2 * angle, counting_qubit, qc.num_qubits-1); # This is CU # QuantumCircuit.cp(theta, control_qubit, target_qubit, label=None, ctrl_state=None) # importantly to apply controlled phase rotation we need to know the rotation angle beforehand repetitions *= 2 # 2^{n-1} factor qc.barrier() qft_dagger(qc, qc.num_qubits-1) qc.barrier() for n1 in range(qc.num_qubits -1): qc.measure(n1, n1) return qc circuit_1 = qpe_circ(3, 1/5) circuit_1.draw(output='mpl', style=style, filename='/content/drive/My Drive/Colab Notebooks/Quantum_Compute/FourierTransform/3bits_QPE_QiskitEx_NonInt_Theta.png') aer_sim = q.Aer.get_backend('aer_simulator') shots = 2048 t_circuit_1 = q.transpile(circuit_1, aer_sim) qobj = q.assemble(t_circuit_1, shots=shots) results_c1 = aer_sim.run(qobj).result() answer_c1 = results_c1.get_counts() q.visualization.plot_histogram(answer_c1) circuit_2 = qpe_circ(5, 1/5) circuit_2.draw(output='mpl', style=style, filename='/content/drive/My Drive/Colab Notebooks/Quantum_Compute/FourierTransform/5bits_QPE_QiskitEx_NonInt_Theta.png') aer_sim = q.Aer.get_backend('aer_simulator') shots = 2048 t_circuit_2 = q.transpile(circuit_2, aer_sim) qobj = q.assemble(t_circuit_2, shots=shots) results_c2 = aer_sim.run(qobj).result() answer_c2 = results_c2.get_counts() fig, ax = plt.subplots(figsize=(14, 6)) q.visualization.plot_histogram(answer_c2, figsize=(14, 6), color='violet', title=r'QPE Measurement Result with 5 Qubits: $\theta = 1/5$', ax=ax) fig.savefig('/content/drive/My Drive/Colab Notebooks/Quantum_Compute/FourierTransform/5bits_QPE_QiskitEx_NonInt_Theta_Histogram.png', dpi=250) for k, v in answer_c2.items(): print(k, v)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram qp = QuadraticProgram() qp.binary_var("x") qp.binary_var("y") qp.integer_var(lowerbound=0, upperbound=7, name="z") qp.maximize(linear={"x": 2, "y": 1, "z": 1}) qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="LE", rhs=5.5, name="xyz_leq") qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="GE", rhs=2.5, name="xyz_geq") print(qp.prettyprint()) from qiskit_optimization.converters import InequalityToEquality ineq2eq = InequalityToEquality() qp_eq = ineq2eq.convert(qp) print(qp_eq.prettyprint()) print(qp_eq.prettyprint()) from qiskit_optimization.converters import IntegerToBinary int2bin = IntegerToBinary() qp_eq_bin = int2bin.convert(qp_eq) print(qp_eq_bin.prettyprint()) print(qp_eq_bin.prettyprint()) from qiskit_optimization.converters import LinearEqualityToPenalty lineq2penalty = LinearEqualityToPenalty() qubo = lineq2penalty.convert(qp_eq_bin) print(qubo.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-qcgpu-provider
qiskit-community
""" Exception for errors raised by QCGPU simulators """ from qiskit import QiskitError class QCGPUSimulatorError(QiskitError): """Base class for errors raised by simulators.""" def __init__(self, *message): """Set the error message""" super().__init__(*message) self.message = ' '.join(message) def __str__(self): """Return the message""" return repr(self.message)
https://github.com/Sanjay-995/Qiskit-Developer-Prep-Guide
Sanjay-995
from qiskit import IBMQ, QuantumRegister, ClassicalRegister, QuantumCircuit, Aer, execute from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector, plot_histogram import numpy as np from numpy import pi import math from math import sqrt import matplotlib as mpl %matplotlib inline qc1 = QuantumCircuit(4) qc1.draw(output = 'mpl') qc2 = QuantumCircuit(QuantumRegister(4)) qc2.draw(output = 'mpl') qc3 = QuantumCircuit(4,3) qc3.draw(output = 'mpl') qc4 = QuantumCircuit(QuantumRegister(4),ClassicalRegister(3)) qc4.draw(output = 'mpl') qc5 = QuantumCircuit(QuantumRegister(4, 'qr0'), QuantumRegister(2, 'qr1')) qc5.draw(output = 'mpl') qr = QuantumRegister(3, 'q') anc = QuantumRegister(2, 'ancilla') cr = ClassicalRegister(3, 'c') qc = QuantumCircuit(qr, anc, cr) qc.draw(output = 'mpl') qcA = QuantumCircuit(4,4) qcA.draw(output = 'mpl') qcB = QuantumCircuit(4) qcB.draw(output = 'mpl') qcC = QuantumCircuit(QuantumRegister(4, 'qr0'), QuantumRegister(4, 'cr1')) qcC.draw(output = 'mpl') qcD = QuantumCircuit([4,4])
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.pulse_v2 import draw, IQXSimple from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.measure_all() qc = transpile(qc, FakeBoeblingen(), layout_method='trivial') sched = schedule(qc, FakeBoeblingen()) draw(sched, style=IQXSimple(), backend=FakeBoeblingen())
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
import warnings from qiskit import QuantumRegister, ClassicalRegister from qiskit import QuantumCircuit, execute, Aer, transpile from qiskit.tools.monitor import job_monitor from qiskit.circuit.library import QFT from qiskit.visualization import plot_histogram, plot_bloch_multivector warnings.filterwarnings("ignore", category=DeprecationWarning) import numpy as np pi = np.pi def flip_endian(dict): newdict = {} for key in list(dict): newdict[key[::-1]] = dict.pop(key) return newdict def set_measure_x(circuit, n): for num in range(n): circuit.h(num) def set_measure_y(circuit, n): for num in range(n): circuit.sdg(num) circuit.h(num) def qft_rotations(circuit, n): #if qubit amount is 0, then do nothing and return if n == 0: #set it to measure the x axis set_measure_x(qc, 4) qc.measure_all() return circuit n -= 1 circuit.h(n) for qubit in range(n): circuit.cp(pi/2**(n-qubit), qubit, n) return qft_rotations(circuit, n) backend = Aer.get_backend('aer_simulator') qc = QuantumCircuit(4) qc.x(0) qft_rotations(qc,4)#call the recursive qft method #set it to measure the x axis set_measure_x(qc, 4) job = execute(qc, backend, shots=100000)#run the circuit 1000000 times print(flip_endian(job.result().get_counts()))#return the result counts def qft_rotations(circuit, n): #if qubit amount is 0, then do nothing and return if n == 0: return circuit n -= 1 circuit.h(n) for qubit in range(n): circuit.cp(pi/2**(n-qubit), qubit, n) #print(n) #print(qubit) return qft_rotations(circuit, n) sim = Aer.get_backend('aer_simulator') q = QuantumRegister(4,'q') c = ClassicalRegister(4,'c') qc = QuantumCircuit(q,c) qc.x(0) qc.x(1) qc.x(2) #qc.x(3) #qc.h(0) #qc.p( 20 * pi / 180, 0) qft_rotations(qc,4)#call the recursive qft method qc.save_statevector() statevector = sim.run(qc).result().get_statevector() print(statevector) plot_bloch_multivector(statevector) backend = Aer.get_backend('aer_simulator') q = QuantumRegister(4,'q') c = ClassicalRegister(1,'c') qc = QuantumCircuit(q,c) qc.x(0) qft_rotations(qc,4)#call the recursive qft method set_measure_x(qc, 4) print(qc) qc.measure(q[3],c)#select qubits registers to measure job = execute(qc, backend, shots=1000000)#run the circuit 1000 times dictRes = job.result().get_counts()#return the result counts print(dictRes)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer, MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from docplex.mp.model import Model model = Model() x0 = model.binary_var(name="x0") x1 = model.binary_var(name="x1") x2 = model.binary_var(name="x2") model.minimize(-x0 + 2 * x1 - 3 * x2 - 2 * x0 * x2 - 1 * x1 * x2) qp = from_docplex_mp(model) print(qp.prettyprint()) grover_optimizer = GroverOptimizer(6, num_iterations=10, sampler=Sampler()) results = grover_optimizer.solve(qp) print(results.prettyprint()) exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qp) print(exact_result.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/community.qiskit.org
qiskit-community
from qiskit import * from qiskit.visualization import plot_bloch_vector qc = QuantumCircuit(1) # z measurement of qubit 0 measure_z = QuantumCircuit(1,1) measure_z.measure(0,0); # x measurement of qubit 0 measure_x = QuantumCircuit(1,1) measure_x.h(0) measure_x.measure(0,0) # y measurement of qubit 0 measure_y = QuantumCircuit(1,1) measure_y.sdg(0) measure_y.h(0) measure_y.measure(0,0); shots = 2**14 # number of samples used for statistics bloch_vector = [] for measure_circuit in [measure_x, measure_y, measure_z]: # run the circuit with a the selected measurement and get the number of samples that output each bit value counts = execute(qc+measure_circuit,Aer.get_backend('qasm_simulator'),shots=shots).result().get_counts() # calculate the probabilities for each bit value probs = {} for output in ['0','1']: if output in counts: probs[output] = counts[output]/shots else: probs[output] = 0 bloch_vector.append( probs['0'] - probs['1'] ) plot_bloch_vector( bloch_vector )
https://github.com/PAYAL980/Four-Algorithms-in-Qiskit
PAYAL980
# Import libraries and necessary tools from qiskit import * import numpy as np import math from qiskit.visualization import plot_histogram from qiskit.providers.fake_provider import FakeJakarta, FakeNairobi """ Defining Diffuser (Z0) for N qubits""" def diffuser(N): cir = QuantumCircuit(N) # Applying anti controlled Z gate cir.x(range(N)) cir.h(0) cir.mcx([iz for iz in range(1,N)], 0) cir.h(0) cir.x(range(N)) return cir # Checking the diffuser function for 3 qubits q2 = diffuser(3) q2.draw('mpl') """ Defining the oracle(Zf) for N qubits and inp: input string such that f(inp) = 1""" def oracle(N, inp): cir = QuantumCircuit(N) # Checking the positions of '0' in the input string and applying X gate for the application of # anti-controlled Z gate for iz in range(N): if inp[iz]=='0': cir.x(N-iz-1) # Multiple controlled Z gate cir.h(0) cir.mcx([iz for iz in range(1,N)], 0) cir.h(0) # Applying X gates to reverse the effect of above applied X gates for iz in range(len(inp)): if inp[iz]=='0': cir.x(N-iz-1) return cir # Checking the oracle function for 3 qubits and input string '001' q2 = oracle(3, '001') q2.draw('mpl') """ Defining Grover's Algorithm """ def grovers_algo_gen(N, oracle_1): # calculating number of iterations for the Grover's operator m = int(np.round(np.pi*np.sqrt(2**N)/4 - 0.5)) # Creating a quantum circuit of 'N' qubits qc = QuantumCircuit(N, N) # Applying Hadamard gates to all qubits to create superposition qc.h(range(N)) qc.barrier() # Barrier for better visualization # Iterating the Grover's operator 'm' times for iz in range(m): # Appending the oracle qc.append(oracle_1, range(N)) qc.barrier() # Barrier for better visualization # Applying Hadamard gates on all qubits qc.h(range(N)) qc.barrier() # Barrier for better visualization # Appending the diffuser to the quantum circuit qc.append(diffuser(N), range(N)) qc.barrier() # Barrier for better visualization # Applying Hadamard gates to all qubits qc.h(range(N)) qc.barrier() # Barrier for better visualization # Measuring all N qubits to find the desired output qc.measure(range(N), range(N)) return qc # Testing the algorithm for N=3 and f('101') = 1 N = 3 ora = oracle(N, '101') ora.draw('mpl') q1 = grovers_algo_gen(N, ora) q1.draw('mpl') # Running on non-noisy simulator 1 backend = Aer.get_backend('aer_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on non-noisy simulator 2 backend = Aer.get_backend('qasm_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator 1 backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Running on noisy simulator 1 backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() plot_histogram(counts) # Defining a function that gives the output directly without running many cells # inp_str - the input string corresponding to f(x) = 1 # sim: simulator on which you want to run the algorithm #. - 1: non-noisy aer simulator # 2: non-noisy qasm simulator # 3: noisy simulator FakeJakarta # 4: noisy simulator FakeBelem # Output: counts, maximum number of counts are obtained for the secret string def run(inp_str, sim): N = len(inp_str) oracle_1 = oracle(N, inp_str) q1 = grovers_algo_gen(N, oracle_1) count = 0 if sim==1: backend = Aer.get_backend('aer_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts elif sim == 2: backend = Aer.get_backend('qasm_simulator') job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts elif sim == 3: backend = FakeJakarta() job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts else: backend = FakeNairobi() job = execute(q1,backend) results = job.result() counts = results.get_counts() count = counts return counts # Testing the algorithm for '10' on all 4 simulators plot_histogram(run('10', 1)) plot_histogram(run('10', 2)) plot_histogram(run('10', 3)) plot_histogram(run('10', 4)) # Testing the algorithm for '1010' on all 4 simulators plot_histogram(run('1010', 1)) plot_histogram(run('1010', 2)) plot_histogram(run('1010', 3)) plot_histogram(run('1010', 4)) # Testing the algorithm for a string of 6 bits on noisy simulator plot_histogram(run('101011', 4))
https://github.com/hugoecarl/TSP-Problem-Study
hugoecarl
with open('in-exemplo.txt', 'r') as f: print(f.read()) with open('out-exemplo.txt', 'r') as f: print(f.read()) import time import matplotlib.pyplot as plt import pandas as pd import os import subprocess %matplotlib inline #Roda entradas def roda_com_entrada(executavel, arquivo_in, envs = '1', deb = '0'): with open(arquivo_in) as f: start = time.perf_counter() a = f.read() proc = subprocess.run([executavel], input=a, text=True, capture_output=True, env=dict(OMP_NUM_THREADS=envs, DEBUG=deb, **os.environ)) end = time.perf_counter() f.close() ret = '' for i in a: if i == "\n": break ret += i return (proc.stdout, end - start, int(ret)) v #retorna tamanho do tour apartir do stdout buf = '' for i in out: if i == " ": return float(buf) buf += i #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] tempos_2 = [] resultados1 = [] resultados2 = [] resultados3 = [] #Usando as mesmas entradas for i in range(8): print("Rodando entrada: "+str(i)) a = roda_com_entrada('./busca_local_antigo','busca-exaustiva/in-'+str(i)+'.txt') b = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt') c = roda_com_entrada('./heuristico/heuristico','busca-exaustiva/in-'+str(i)+'.txt') tempos.append(a[1]) tempos_1.append(b[1]) tempos_2.append(c[1]) tamanho_entradas.append(a[2]) resultados1.append(tamanho_tour(a[0])) resultados2.append(tamanho_tour(b[0])) resultados3.append(tamanho_tour(c[0])) #Teste com entrada um pouco maior print("Rodando entrada: 8") tempos.append(roda_com_entrada('./busca_local_antigo','maior.txt')[1]) tempos_1.append(roda_com_entrada('./busca-exaustiva/busca-exaustiva','maior.txt')[1]) tempos_2.append(roda_com_entrada('./heuristico/heuristico','maior.txt')[1]) tamanho_entradas.append(roda_com_entrada('./busca-local/busca-local','maior.txt')[2]) resultados1.append(tamanho_tour(roda_com_entrada('./busca_local_antigo','maior.txt')[0])) resultados2.append(tamanho_tour(roda_com_entrada('./busca-exaustiva/busca-exaustiva','maior.txt')[0])) resultados3.append(tamanho_tour(roda_com_entrada('./heuristico/heuristico','maior.txt')[0])) plt.title("Comparacao Desempenho") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos_1) plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_2) plt.legend(["busca-exaustiva", "busca-local","heuristico"]) plt.show() plt.title("Comparacao Desempenho") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_2) plt.legend(["busca-local","heuristico"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-local-tempo"] = pd.Series(tempos) df["busca-exaustiva-tempo"] = pd.Series(tempos_1) df["heuristica-tempo"] = pd.Series(tempos_2) df["busca-local-resultado"] = pd.Series(resultados1) df["busca-exaustiva-resultado"] = pd.Series(resultados2) df["heuristica-resultado"] = pd.Series(resultados3) df df.describe() #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] tempos_2 = [] tempos_3 = [] tempos_4 = [] tempos_5 = [] #Usando as mesmas entradas for i in range(7): print("Rodando entrada: "+str(i)) a = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt') b = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','2') c = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','3') d = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','4') e = roda_com_entrada('./busca_local_antigo','busca-local/in-'+str(i)+'.txt') f = roda_com_entrada('./busca-local/busca-local-gpu','busca-local/in-'+str(i)+'.txt') tempos.append(a[1]) tempos_1.append(b[1]) tempos_2.append(c[1]) tempos_3.append(d[1]) tempos_4.append(e[1]) tempos_5.append(f[1]) tamanho_entradas.append(a[2]) plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_1) plt.plot(tamanho_entradas, tempos_2) plt.plot(tamanho_entradas, tempos_3) plt.legend(["1 thread otimizado", "2 threads otimizado","3 threads otimizado", "4 threads otimizado", "Sem otimizações"]) plt.show() plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos_3) plt.plot(tamanho_entradas, tempos_5) plt.legend(["4 thread otimizado", "GPU"]) plt.show() plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_4) plt.legend(["1 thread otimizado", "Sem otimizações"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-local-1-thread"] = pd.Series(tempos) df["busca-local-2-threads"] = pd.Series(tempos_1) df["busca-local-3-threads"] = pd.Series(tempos_2) df["busca-local-4-threads"] = pd.Series(tempos_3) df["busca-local-gpu"] = pd.Series(tempos_5) df["busca-local-semopt"] = pd.Series(tempos_4) df #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] tempos_2 = [] #Usando as mesmas entradas for i in range(8): print("Rodando entrada: "+str(i)) if i != 7: a = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt', '1', '1') tempos.append(a[1]) b = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt', '8', '0') c = roda_com_entrada('./busca-exaustiva-apenasbb','busca-exaustiva/in-'+str(i)+'.txt', '1', '0') tempos_1.append(b[1]) tempos_2.append(c[1]) tamanho_entradas.append(a[2]) plt.title("Comparacao Desempenho Busca Exaustiva") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas[:-1], tempos) plt.plot(tamanho_entradas[:-1], tempos_2[:-1]) plt.legend(["Exaustivo Simples", "Exaustivo Branch and Bound"]) plt.show() plt.title("Comparacao Desempenho Busca Exaustiva") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos_1) plt.plot(tamanho_entradas, tempos_2) plt.legend(["Branch and Bound Paralelo", "Branch and Bound Simples"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-exaustiva-simples"] = pd.Series(tempos) df["busca-exaustiva-branchnbound"] = pd.Series(tempos_2) df["busca-exaustiva-branchnbound-par"] = pd.Series(tempos_1) df
https://github.com/nahumsa/volta
nahumsa
# This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. from qiskit.circuit.library import TwoLocal from qiskit import QuantumCircuit import numpy as np def _get_ansatz(n_qubits: int, reps: int = 1) -> QuantumCircuit: """Create a TwoLocal ansatz for `n_qubits`. Args: n_qubits (int, optional): number of qubits for the ansatz Returns: QuantumCircuit: TwoLocal circuit. defaults to 1. """ return TwoLocal(n_qubits, ["ry", "rz"], "cx", reps=reps) def get_num_parameters(n_qubits: int) -> int: """Get the number of parameters for a TwoLocal Ansatz. Args: n_qubits (int): number of qubits Returns: int: number of parameters """ return len(_get_ansatz(n_qubits).parameters) def get_var_form(params: np.array, n_qubits: int = 2, reps: int = 1) -> QuantumCircuit: """Get an hardware-efficient ansatz for n_qubits given parameters. Args: params (np.array): parameters to be applied on the circuit. n_qubits (int, optional): number of qubits. Defaults to 2. reps (int, optional): repetition for the ansatz. Defaults to 1. Returns: QuantumCircuit: Circuit with parameters applied """ # Define variational Form var_form = _get_ansatz(n_qubits, reps) # Get Parameters from the variational form var_form_params = sorted(var_form.parameters, key=lambda p: p.name) # Check if the number of parameters is compatible assert len(var_form_params) == len(params), "The number of parameters don't match" # Create a dictionary with the parameters and values param_dict = dict(zip(var_form_params, params)) # Assing those values for the ansatz wave_function = var_form.assign_parameters(param_dict) return wave_function
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Testing legacy instruction alignment pass.""" from qiskit import QuantumCircuit, pulse from qiskit.test import QiskitTestCase from qiskit.transpiler import InstructionDurations from qiskit.transpiler.exceptions import TranspilerError from qiskit.transpiler.passes import ( AlignMeasures, ValidatePulseGates, ALAPSchedule, TimeUnitConversion, ) class TestAlignMeasures(QiskitTestCase): """A test for measurement alignment pass.""" def setUp(self): super().setUp() instruction_durations = InstructionDurations() instruction_durations.update( [ ("rz", (0,), 0), ("rz", (1,), 0), ("x", (0,), 160), ("x", (1,), 160), ("sx", (0,), 160), ("sx", (1,), 160), ("cx", (0, 1), 800), ("cx", (1, 0), 800), ("measure", None, 1600), ] ) self.time_conversion_pass = TimeUnitConversion(inst_durations=instruction_durations) # reproduce old behavior of 0.20.0 before #7655 # currently default write latency is 0 self.scheduling_pass = ALAPSchedule( durations=instruction_durations, clbit_write_latency=1600, conditional_latency=0, ) self.align_measure_pass = AlignMeasures(alignment=16) def test_t1_experiment_type(self): """Test T1 experiment type circuit. (input) ┌───┐┌────────────────┐┌─┐ q_0: ┤ X ├┤ Delay(100[dt]) ├┤M├ └───┘└────────────────┘└╥┘ c: 1/════════════════════════╩═ 0 (aligned) ┌───┐┌────────────────┐┌─┐ q_0: ┤ X ├┤ Delay(112[dt]) ├┤M├ └───┘└────────────────┘└╥┘ c: 1/════════════════════════╩═ 0 This type of experiment slightly changes delay duration of interest. However the quantization error should be less than alignment * dt. """ circuit = QuantumCircuit(1, 1) circuit.x(0) circuit.delay(100, 0, unit="dt") circuit.measure(0, 0) timed_circuit = self.time_conversion_pass(circuit) scheduled_circuit = self.scheduling_pass(timed_circuit, property_set={"time_unit": "dt"}) aligned_circuit = self.align_measure_pass( scheduled_circuit, property_set={"time_unit": "dt"} ) ref_circuit = QuantumCircuit(1, 1) ref_circuit.x(0) ref_circuit.delay(112, 0, unit="dt") ref_circuit.measure(0, 0) self.assertEqual(aligned_circuit, ref_circuit) def test_hanh_echo_experiment_type(self): """Test Hahn echo experiment type circuit. (input) ┌────┐┌────────────────┐┌───┐┌────────────────┐┌────┐┌─┐ q_0: ┤ √X ├┤ Delay(100[dt]) ├┤ X ├┤ Delay(100[dt]) ├┤ √X ├┤M├ └────┘└────────────────┘└───┘└────────────────┘└────┘└╥┘ c: 1/══════════════════════════════════════════════════════╩═ 0 (output) ┌────┐┌────────────────┐┌───┐┌────────────────┐┌────┐┌──────────────┐┌─┐ q_0: ┤ √X ├┤ Delay(100[dt]) ├┤ X ├┤ Delay(100[dt]) ├┤ √X ├┤ Delay(8[dt]) ├┤M├ └────┘└────────────────┘└───┘└────────────────┘└────┘└──────────────┘└╥┘ c: 1/══════════════════════════════════════════════════════════════════════╩═ 0 This type of experiment doesn't change duration of interest (two in the middle). However induces slight delay less than alignment * dt before measurement. This might induce extra amplitude damping error. """ circuit = QuantumCircuit(1, 1) circuit.sx(0) circuit.delay(100, 0, unit="dt") circuit.x(0) circuit.delay(100, 0, unit="dt") circuit.sx(0) circuit.measure(0, 0) timed_circuit = self.time_conversion_pass(circuit) scheduled_circuit = self.scheduling_pass(timed_circuit, property_set={"time_unit": "dt"}) aligned_circuit = self.align_measure_pass( scheduled_circuit, property_set={"time_unit": "dt"} ) ref_circuit = QuantumCircuit(1, 1) ref_circuit.sx(0) ref_circuit.delay(100, 0, unit="dt") ref_circuit.x(0) ref_circuit.delay(100, 0, unit="dt") ref_circuit.sx(0) ref_circuit.delay(8, 0, unit="dt") ref_circuit.measure(0, 0) self.assertEqual(aligned_circuit, ref_circuit) def test_mid_circuit_measure(self): """Test circuit with mid circuit measurement. (input) ┌───┐┌────────────────┐┌─┐┌───────────────┐┌───┐┌────────────────┐┌─┐ q_0: ┤ X ├┤ Delay(100[dt]) ├┤M├┤ Delay(10[dt]) ├┤ X ├┤ Delay(120[dt]) ├┤M├ └───┘└────────────────┘└╥┘└───────────────┘└───┘└────────────────┘└╥┘ c: 2/════════════════════════╩══════════════════════════════════════════╩═ 0 1 (output) ┌───┐┌────────────────┐┌─┐┌───────────────┐┌───┐┌────────────────┐┌─┐ q_0: ┤ X ├┤ Delay(112[dt]) ├┤M├┤ Delay(10[dt]) ├┤ X ├┤ Delay(134[dt]) ├┤M├ └───┘└────────────────┘└╥┘└───────────────┘└───┘└────────────────┘└╥┘ c: 2/════════════════════════╩══════════════════════════════════════════╩═ 0 1 Extra delay is always added to the existing delay right before the measurement. Delay after measurement is unchanged. """ circuit = QuantumCircuit(1, 2) circuit.x(0) circuit.delay(100, 0, unit="dt") circuit.measure(0, 0) circuit.delay(10, 0, unit="dt") circuit.x(0) circuit.delay(120, 0, unit="dt") circuit.measure(0, 1) timed_circuit = self.time_conversion_pass(circuit) scheduled_circuit = self.scheduling_pass(timed_circuit, property_set={"time_unit": "dt"}) aligned_circuit = self.align_measure_pass( scheduled_circuit, property_set={"time_unit": "dt"} ) ref_circuit = QuantumCircuit(1, 2) ref_circuit.x(0) ref_circuit.delay(112, 0, unit="dt") ref_circuit.measure(0, 0) ref_circuit.delay(10, 0, unit="dt") ref_circuit.x(0) ref_circuit.delay(134, 0, unit="dt") ref_circuit.measure(0, 1) self.assertEqual(aligned_circuit, ref_circuit) def test_mid_circuit_multiq_gates(self): """Test circuit with mid circuit measurement and multi qubit gates. (input) ┌───┐┌────────────────┐┌─┐ ┌─┐ q_0: ┤ X ├┤ Delay(100[dt]) ├┤M├──■───────■──┤M├ └───┘└────────────────┘└╥┘┌─┴─┐┌─┐┌─┴─┐└╥┘ q_1: ────────────────────────╫─┤ X ├┤M├┤ X ├─╫─ ║ └───┘└╥┘└───┘ ║ c: 2/════════════════════════╩═══════╩═══════╩═ 0 1 0 (output) ┌───┐ ┌────────────────┐┌─┐ ┌─────────────────┐ ┌─┐» q_0: ───────┤ X ├───────┤ Delay(112[dt]) ├┤M├──■──┤ Delay(1600[dt]) ├──■──┤M├» ┌──────┴───┴──────┐└────────────────┘└╥┘┌─┴─┐└───────┬─┬───────┘┌─┴─┐└╥┘» q_1: ┤ Delay(1872[dt]) ├───────────────────╫─┤ X ├────────┤M├────────┤ X ├─╫─» └─────────────────┘ ║ └───┘ └╥┘ └───┘ ║ » c: 2/══════════════════════════════════════╩═══════════════╩═══════════════╩═» 0 1 0 » « «q_0: ─────────────────── « ┌─────────────────┐ «q_1: ┤ Delay(1600[dt]) ├ « └─────────────────┘ «c: 2/═══════════════════ « Delay for the other channel paired by multi-qubit instruction is also scheduled. Delay (1872dt) = X (160dt) + Delay (100dt + extra 12dt) + Measure (1600dt). """ circuit = QuantumCircuit(2, 2) circuit.x(0) circuit.delay(100, 0, unit="dt") circuit.measure(0, 0) circuit.cx(0, 1) circuit.measure(1, 1) circuit.cx(0, 1) circuit.measure(0, 0) timed_circuit = self.time_conversion_pass(circuit) scheduled_circuit = self.scheduling_pass(timed_circuit, property_set={"time_unit": "dt"}) aligned_circuit = self.align_measure_pass( scheduled_circuit, property_set={"time_unit": "dt"} ) ref_circuit = QuantumCircuit(2, 2) ref_circuit.x(0) ref_circuit.delay(112, 0, unit="dt") ref_circuit.measure(0, 0) ref_circuit.delay(160 + 112 + 1600, 1, unit="dt") ref_circuit.cx(0, 1) ref_circuit.delay(1600, 0, unit="dt") ref_circuit.measure(1, 1) ref_circuit.cx(0, 1) ref_circuit.delay(1600, 1, unit="dt") ref_circuit.measure(0, 0) self.assertEqual(aligned_circuit, ref_circuit) def test_alignment_is_not_processed(self): """Test avoid pass processing if delay is aligned.""" circuit = QuantumCircuit(2, 2) circuit.x(0) circuit.delay(160, 0, unit="dt") circuit.measure(0, 0) circuit.cx(0, 1) circuit.measure(1, 1) circuit.cx(0, 1) circuit.measure(0, 0) # pre scheduling is not necessary because alignment is skipped # this is to minimize breaking changes to existing code. transpiled = self.align_measure_pass(circuit, property_set={"time_unit": "dt"}) self.assertEqual(transpiled, circuit) def test_circuit_using_clbit(self): """Test a circuit with instructions using a common clbit. (input) ┌───┐┌────────────────┐┌─┐ q_0: ┤ X ├┤ Delay(100[dt]) ├┤M├────────────── └───┘└────────────────┘└╥┘ ┌───┐ q_1: ────────────────────────╫────┤ X ├────── ║ └─╥─┘ ┌─┐ q_2: ────────────────────────╫──────╫─────┤M├ ║ ┌────╨────┐└╥┘ c: 1/════════════════════════╩═╡ c_0 = T ╞═╩═ 0 └─────────┘ 0 (aligned) ┌───┐ ┌────────────────┐┌─┐┌────────────────┐ q_0: ───────┤ X ├───────┤ Delay(112[dt]) ├┤M├┤ Delay(160[dt]) ├─── ┌──────┴───┴──────┐└────────────────┘└╥┘└─────┬───┬──────┘ q_1: ┤ Delay(1872[dt]) ├───────────────────╫───────┤ X ├────────── └┬────────────────┤ ║ └─╥─┘ ┌─┐ q_2: ─┤ Delay(432[dt]) ├───────────────────╫─────────╫─────────┤M├ └────────────────┘ ║ ┌────╨────┐ └╥┘ c: 1/══════════════════════════════════════╩════╡ c_0 = T ╞═════╩═ 0 └─────────┘ 0 Looking at the q_0, the total schedule length T becomes 160 (x) + 112 (aligned delay) + 1600 (measure) + 160 (delay) = 2032. The last delay comes from ALAP scheduling called before the AlignMeasure pass, which aligns stop times as late as possible, so the start time of x(1).c_if(0) and the stop time of measure(0, 0) become T - 160. """ circuit = QuantumCircuit(3, 1) circuit.x(0) circuit.delay(100, 0, unit="dt") circuit.measure(0, 0) circuit.x(1).c_if(0, 1) circuit.measure(2, 0) timed_circuit = self.time_conversion_pass(circuit) scheduled_circuit = self.scheduling_pass(timed_circuit, property_set={"time_unit": "dt"}) aligned_circuit = self.align_measure_pass( scheduled_circuit, property_set={"time_unit": "dt"} ) self.assertEqual(aligned_circuit.duration, 2032) ref_circuit = QuantumCircuit(3, 1) ref_circuit.x(0) ref_circuit.delay(112, 0, unit="dt") ref_circuit.delay(1872, 1, unit="dt") # 2032 - 160 ref_circuit.delay(432, 2, unit="dt") # 2032 - 1600 ref_circuit.measure(0, 0) ref_circuit.x(1).c_if(0, 1) ref_circuit.delay(160, 0, unit="dt") ref_circuit.measure(2, 0) self.assertEqual(aligned_circuit, ref_circuit) class TestPulseGateValidation(QiskitTestCase): """A test for pulse gate validation pass.""" def setUp(self): super().setUp() self.pulse_gate_validation_pass = ValidatePulseGates(granularity=16, min_length=64) def test_invalid_pulse_duration(self): """Kill pass manager if invalid pulse gate is found.""" # this is invalid duration pulse # this will cause backend error since this doesn't fit with waveform memory chunk. custom_gate = pulse.Schedule(name="custom_x_gate") custom_gate.insert( 0, pulse.Play(pulse.Constant(100, 0.1), pulse.DriveChannel(0)), inplace=True ) circuit = QuantumCircuit(1) circuit.x(0) circuit.add_calibration("x", qubits=(0,), schedule=custom_gate) with self.assertRaises(TranspilerError): self.pulse_gate_validation_pass(circuit) def test_short_pulse_duration(self): """Kill pass manager if invalid pulse gate is found.""" # this is invalid duration pulse # this will cause backend error since this doesn't fit with waveform memory chunk. custom_gate = pulse.Schedule(name="custom_x_gate") custom_gate.insert( 0, pulse.Play(pulse.Constant(32, 0.1), pulse.DriveChannel(0)), inplace=True ) circuit = QuantumCircuit(1) circuit.x(0) circuit.add_calibration("x", qubits=(0,), schedule=custom_gate) with self.assertRaises(TranspilerError): self.pulse_gate_validation_pass(circuit) def test_short_pulse_duration_multiple_pulse(self): """Kill pass manager if invalid pulse gate is found.""" # this is invalid duration pulse # however total gate schedule length is 64, which accidentally satisfies the constraints # this should fail in the validation custom_gate = pulse.Schedule(name="custom_x_gate") custom_gate.insert( 0, pulse.Play(pulse.Constant(32, 0.1), pulse.DriveChannel(0)), inplace=True ) custom_gate.insert( 32, pulse.Play(pulse.Constant(32, 0.1), pulse.DriveChannel(0)), inplace=True ) circuit = QuantumCircuit(1) circuit.x(0) circuit.add_calibration("x", qubits=(0,), schedule=custom_gate) with self.assertRaises(TranspilerError): self.pulse_gate_validation_pass(circuit) def test_valid_pulse_duration(self): """No error raises if valid calibration is provided.""" # this is valid duration pulse custom_gate = pulse.Schedule(name="custom_x_gate") custom_gate.insert( 0, pulse.Play(pulse.Constant(160, 0.1), pulse.DriveChannel(0)), inplace=True ) circuit = QuantumCircuit(1) circuit.x(0) circuit.add_calibration("x", qubits=(0,), schedule=custom_gate) # just not raise an error self.pulse_gate_validation_pass(circuit) def test_no_calibration(self): """No error raises if no calibration is addedd.""" circuit = QuantumCircuit(1) circuit.x(0) # just not raise an error self.pulse_gate_validation_pass(circuit)
https://github.com/mnp-club/Quantum_Computing_Workshop_2020
mnp-club
# Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.compiler import * from qiskit.tools.jupyter import * from qiskit.visualization import * import matplotlib.pyplot as plotter import scipy import numpy as np from IPython.display import display, Math, Latex import qiskit.quantum_info as qi %matplotlib inline %pip install -I git+https://github.com/mnp-club/MnP_QC_Workshop.git from mnp_qc_workshop_2020.unitary_circuit import * U = get_unitary() print(U.shape) fig, (ax1, ax2) = plotter.subplots(nrows = 1, ncols = 2, figsize=(12,6)) ax1.imshow(np.real(U)) #plot real parts of each element ax2.imshow(np.imag(U)) #plot imaginary parts of each element fig, (ax3, ax4) = plotter.subplots(nrows = 1, ncols = 2, figsize=(12,6)) ax3.imshow(np.abs(U)) #plot the absolute values of each element ax4.imshow(np.angle(U)) #plot the phase angles of each element qc1 = QuantumCircuit(4) qc1.unitary(U,range(4)) qc1 = transpile(qc1,basis_gates=['cx','u3'],optimization_level=3) qc1.draw('mpl') #Run this cell for getting your circuit checked check_circuit(qc1) H = scipy.linalg.hadamard(16)/4 #Normalizing has to be done HU = np.matmul(H,U) fig, (ax1, ax2) = plotter.subplots(nrows = 1, ncols = 2, figsize=(12,6)) ax1.imshow(np.real(HU)) #plot real parts of each element ax2.imshow(np.imag(HU)) #plot imaginary parts of each element fig, (ax3, ax4) = plotter.subplots(nrows = 1, ncols = 2, figsize=(12,6)) ax3.imshow(np.abs(HU)) #plot the absolute values of each element ax4.imshow(np.angle(HU)) #plot the phase angles of each element qc2 = QuantumCircuit(4) #for i in range(4): # qc2.h(i) qc2.unitary(HU,range(4)) for i in range(4): qc2.h(i) qc2 = transpile(qc2,basis_gates=['cx','u3'],optimization_level=3) qc2.draw('mpl') #Run this cell for getting your circuit checked check_circuit(qc2) HUH = np.matmul(HU,H) fig, (ax1, ax2) = plotter.subplots(nrows = 1, ncols = 2, figsize=(12,6)) ax1.imshow(np.real(HUH)) #plot real parts of each element ax2.imshow(np.imag(HUH)) #plot imaginary parts of each element fig, (ax3, ax4) = plotter.subplots(nrows = 1, ncols = 2, figsize=(12,6)) ax3.imshow(np.abs(HUH)) #plot the absolute values of each element ax4.imshow(np.angle(HUH)) #plot the phase angles of each element qc3 = QuantumCircuit(4) for i in range(4): qc3.h(i) qc3.unitary(HUH,range(4)) for i in range(4): qc3.h(i) qc3 = transpile(qc3,basis_gates=['cx','u3'],optimization_level=3) qc3.draw('mpl') #Run this cell for getting your circuit checked check_circuit(qc3) diag = np.diag(HUH) print(diag) a = np.sqrt(0.5) clean_diag = [ 1, a+(a*1j), -a+(a*1j), -1, 1j, a-(a*1j), -a-(a*1j), 1j, -a-(a*1j), 1j, -1, a+(a*1j), a-(a*1j), 1, -1j, a-(a*1j)] print(clean_diag) qc31 = QuantumCircuit(4) for i in range(4): qc31.h(i) qc31.diagonal(clean_diag,qc31.qubits) for i in range(4): qc31.h(i) qc31 = transpile(qc31,basis_gates=['cx','u3'],optimization_level=3) qc31.draw('mpl') #Run this cell for getting your circuit checked check_circuit(qc31) func = lambda a: np.array([[1,0],[0,np.exp(1j*np.pi*a/4)]]) def checking_of_diag(diag_v): for i in range(16): if np.abs(diag_v[i]-clean_diag[i])>=0.001 and np.abs(diag_v[i]+clean_diag[i])>=0.001: return False return True while(True): par = np.random.randint(low=1,high=8, size=4)#We will assume that all atleast rotate by pi/4 V_test = np.kron(np.kron(func(par[0]),func(par[1])),np.kron(func(par[2]),func(par[3]))) if checking_of_diag(np.diag(V_test)): print(par) break differences = np.identity(16) for i in range(16): if np.abs(V_test[i,i]-clean_diag[i]) >= 0.0001: print(i) differences[i,i] = -1 def without_global_phase(matrix: np.ndarray, atol: float = 1e-8) : phases1 = np.angle(matrix[abs(matrix) > atol].ravel(order='F')) if len(phases1) > 0: matrix = np.exp(-1j * phases1[0]) * matrix return matrix #Function just returns norm ignoring global phase between unitaries def norm(unitary_a: np.ndarray, unitary_b: np.ndarray) : return np.linalg.norm(without_global_phase(unitary_b)-without_global_phase(unitary_a), ord=2) qc_d = QuantumCircuit(4) for i in range(64): if (i%2) == 1: qc_d.cz(0,1) if (i//2)%2 == 1: qc_d.cz(0,2) if (i//4)%2 == 1: qc_d.cz(0,3) if (i//8)%2 == 1: qc_d.cz(1,2) if (i//16)%2 == 1: qc_d.cz(1,3) if (i//32)%2 == 1: qc_d.cz(3,2) if norm(qi.Operator(qc_d).data,differences) <= 0.001: print(i) break qc_d = QuantumCircuit(4) qc = QuantumCircuit(4) theta1 = par[3]*np.pi/4 theta2 = par[2]*np.pi/4 theta3 = par[1]*np.pi/4 theta4 = par[0]*np.pi/4 qc.h(0) qc.h(1) qc.h(2) qc.h(3) qc.rz(theta1,0) qc.rz(theta2,1) qc.rz(theta3,2) qc.rz(theta4,3) qc.cz(1,3) qc.cz(0,2) qc.cz(0,3) qc.h(0) qc.h(1) qc.h(2) qc.h(3) qc = transpile(qc,basis_gates=['cx','u3'],optimization_level=3) qc.draw('mpl') #Run this cell for getting your circuit checked check_circuit(qc)
https://github.com/DRA-chaos/Quantum-Classical-Hyrid-Neural-Network-for-binary-image-classification-using-PyTorch-Qiskit-pipeline
DRA-chaos
!pip install qiskit # check if CUDA is available import torch train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('CUDA is not available. Training on CPU ...') else: print('CUDA is available! Training on GPU ...') import numpy as np import matplotlib.pyplot as plt import torch from torch.autograd import Function from torchvision import datasets, transforms import torch.optim as optim import torch.nn as nn import torch.nn.functional as F import qiskit from qiskit import transpile, assemble from qiskit.visualization import * import numpy as np import torch from torch.autograd import Function import torch.optim as optim import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import datasets, transforms from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister, execute from qiskit.circuit import Parameter from qiskit import Aer from tqdm import tqdm from matplotlib import pyplot as plt %matplotlib inline def to_numbers(tensor_list): num_list = [] for tensor in tensor_list: num_list += [tensor.item()] return num_list class QuantumCircuit: """ This class provides a simple interface for interaction with the quantum circuit """ def __init__(self, n_qubits, backend, shots): # --- Circuit definition --- self._circuit = qiskit.QuantumCircuit(n_qubits) all_qubits = [i for i in range(n_qubits)] self.theta = qiskit.circuit.Parameter('theta') self._circuit.h(all_qubits) self._circuit.barrier() self._circuit.ry(self.theta, all_qubits) self._circuit.measure_all() # --------------------------- self.backend = backend self.shots = shots def run(self, thetas): t_qc = transpile(self._circuit, self.backend) qobj = assemble(t_qc, shots=self.shots, parameter_binds = [{self.theta: theta} for theta in thetas]) job = self.backend.run(qobj) result = job.result().get_counts() counts = np.array(list(result.values())) states = np.array(list(result.keys())).astype(float) # Compute probabilities for each state probabilities = counts / self.shots # Get state expectation expectation = np.sum(states * probabilities) return np.array([expectation]) class HybridFunction(Function): """ Hybrid quantum - classical function definition """ @staticmethod def forward(ctx, input, quantum_circuit, shift): """ Forward pass computation """ ctx.shift = shift ctx.quantum_circuit = quantum_circuit expectation_z = ctx.quantum_circuit.run(input[0].tolist()) result = torch.tensor([expectation_z]) ctx.save_for_backward(input, result) return result @staticmethod def backward(ctx, grad_output): """ Backward pass computation """ input, expectation_z = ctx.saved_tensors input_list = np.array(input.tolist()) shift_right = input_list + np.ones(input_list.shape) * ctx.shift shift_left = input_list - np.ones(input_list.shape) * ctx.shift gradients = [] for i in range(len(input_list)): expectation_right = ctx.quantum_circuit.run(shift_right[i]) expectation_left = ctx.quantum_circuit.run(shift_left[i]) gradient = torch.tensor([expectation_right]) - torch.tensor([expectation_left]) gradients.append(gradient) gradients = np.array([gradients]).T return torch.tensor([gradients]).float() * grad_output.float(), None, None class Hybrid(nn.Module): """ Hybrid quantum - classical layer definition """ def __init__(self, backend, shots, shift): super(Hybrid, self).__init__() self.quantum_circuit = QuantumCircuit(1, backend, shots) self.shift = shift def forward(self, input): return HybridFunction.apply(input, self.quantum_circuit, self.shift) import torchvision transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()]) # transform images to tensors/vectors cifar_trainset = datasets.CIFAR10(root='./data1', train=True, download=True, transform=transform) len(cifar_trainset) from torch.utils.data import DataLoader, random_split #cifar_trainset = datasets.CIFAR10(root='./data1', train=True, download=True, transform=transform) labels = cifar_trainset.targets # get the labels for the data labels = np.array(labels) idx1 = np.where(labels == 0) # filter on aeroplanes idx2 = np.where(labels == 1) # filter on automobiles # Specify number of datapoints per class (i.e. there will be n pictures of automobiles and n pictures of aeroplanes in the training set) n=100 # concatenate the data indices idx = np.concatenate((idx1[0][0:n],idx2[0][0:n])) # create the filtered dataset for our training set cifar_trainset.targets = labels[idx] cifar_trainset.data = cifar_trainset.data[idx] cifar_trainset, valid = random_split(cifar_trainset,[150,50]) train_loader = torch.utils.data.DataLoader(cifar_trainset, batch_size=1, shuffle=True) valid_loader = torch.utils.data.DataLoader(valid, batch_size=1, shuffle=True) @torch.no_grad() def get_all_preds(model, train_loader): all_preds = torch.tensor([]) for batch in train_loader: images, labels = batch preds = model(images) all_preds = torch.cat( (all_preds, preds) ,dim=0 ) return all_preds import numpy as np import matplotlib.pyplot as plt n_samples_show = 6 data_iter = iter(train_loader) fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 2)) while n_samples_show > 0: images, targets = data_iter.__next__() images=images.squeeze() axes[n_samples_show - 1].imshow(images[0].numpy(), cmap='gray') axes[n_samples_show - 1].set_xticks([]) axes[n_samples_show - 1].set_yticks([]) axes[n_samples_show - 1].set_title("Labeled: {}".format(targets.item())) n_samples_show -= 1 import torchvision transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()]) # transform images to tensors/vectors cifar_testset = datasets.CIFAR10(root='./data1', train=False, download=True, transform=transform) labels = cifar_testset.targets # get the labels for the data labels = np.array(labels) idx1 = np.where(labels == 0) # filter on aeroplanes idx2 = np.where(labels == 1) # filter on automobiles # Specify number of datapoints per class (i.e. there will be n pictures of automobiles and n pictures of aeroplanes in the training set) n=100 # concatenate the data indices idx = np.concatenate((idx1[0][0:n],idx2[0][0:n])) # create the filtered dataset for our training set cifar_testset.targets = labels[idx] cifar_testset.data = cifar_testset.data[idx] test_loader = torch.utils.data.DataLoader(cifar_testset, batch_size=1, shuffle=False) len(cifar_testset) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(500, 500) self.fc2 = nn.Linear(500, 1) self.hybrid = Hybrid(qiskit.Aer.get_backend('qasm_simulator'), 100, np.pi / 2) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(1, -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.hybrid(x) return torch.cat((x, 1 - x), -1) %matplotlib inline import matplotlib.pyplot as plt model = Net() optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 5 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on train data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) )
https://github.com/msramalho/Teach-Me-Quantum
msramalho
from qsvm_datasets import * from qiskit_aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name from qiskit_aqua.input import get_input_instance from qiskit_aqua import run_algorithm # setup aqua logging import logging from qiskit_aqua._logging import set_logging_config, build_logging_config # set_logging_config(build_logging_config(logging.DEBUG)) # choose INFO, DEBUG to see the log from qiskit import IBMQ IBMQ.load_accounts() feature_dim=2 # we support feature_dim 2 or 3 sample_Total, training_input, test_input, class_labels = ad_hoc_data(training_size=20, test_size=10, n=feature_dim, gap=0.3, PLOT_DATA=True) datapoints, class_to_label = split_dataset_to_data_and_labels(test_input) print(class_to_label) params = { 'problem': {'name': 'svm_classification', 'random_seed': 10598}, 'algorithm': { 'name': 'QSVM.Kernel' }, 'backend': {'name': 'qasm_simulator', 'shots': 1024}, 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entanglement': 'linear'} } algo_input = get_input_instance('SVMInput') algo_input.training_dataset = training_input algo_input.test_dataset = test_input algo_input.datapoints = datapoints[0] # 0 is data, 1 is labels result = run_algorithm(params, algo_input) print("testing success ratio: ", result['testing_accuracy']) print("predicted classes:", result['predicted_classes']) print("kernel matrix during the training:") kernel_matrix = result['kernel_matrix_training'] img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r') plt.show() sample_Total, training_input, test_input, class_labels = Breast_cancer(training_size=20, test_size=10, n=2, PLOT_DATA=True) # n =2 is the dimension of each data point datapoints, class_to_label = split_dataset_to_data_and_labels(test_input) label_to_class = {label:class_name for class_name, label in class_to_label.items()} print(class_to_label, label_to_class) algo_input = get_input_instance('SVMInput') algo_input.training_dataset = training_input algo_input.test_dataset = test_input algo_input.datapoints = datapoints[0] result = run_algorithm(params, algo_input) print("testing success ratio: ", result['testing_accuracy']) print("ground truth: {}".format(map_label_to_class_name(datapoints[1], label_to_class))) print("predicted: {}".format(result['predicted_classes'])) print("kernel matrix during the training:") kernel_matrix = result['kernel_matrix_training'] img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r') plt.show()
https://github.com/deadshot8086/quantum-grover-boolean-sat
deadshot8086
from qiskit import QuantumCircuit from math import pi, sqrt, acos # creates final grover's circuit, based of number of solutions class SATCircuit: def __init__(self, n, cnf, M, grover_operator): eq = len(cnf) total = n + eq + 1 circuit = QuantumCircuit(total, n) circuit.h(range(n)) circuit.h(total - 1) circuit.z(total - 1) itr = round(((pi / (2 * acos(sqrt((pow(2, n) - M) / pow(2, n))))) - 1) / 2) if itr == 0: raise SystemExit("No solution found") for x in range(itr): circuit = circuit.compose(grover_operator) circuit.measure(range(n), range(n)) self.main_circuit = circuit
https://github.com/qclib/qclib
qclib
# Copyright 2021 qclib project. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test bidirectional state preparation """ from unittest import TestCase import numpy as np from qiskit import ClassicalRegister from qiskit_aer import AerSimulator from qclib.state_preparation import BdspInitialize from qclib.util import measurement backend = AerSimulator() SHOTS = 8192 class TestBdsp(TestCase): """ Testing bdsp """ @staticmethod def bdsp_experiment(state, split=None): """ Run bdsp experiment """ opt_params = {'split': split} circuit = BdspInitialize(state, opt_params=opt_params).definition n_qubits = int(np.log2(len(state))) classical_register = ClassicalRegister(n_qubits) circuit.add_register(classical_register) return measurement(circuit, n_qubits, classical_register, backend, SHOTS) def test_bottom_up(self): """ Testing bdsp """ vector = np.random.rand(16) + np.random.rand(16) * 1j vector = vector / np.linalg.norm(vector) state = TestBdsp.bdsp_experiment(vector, 1) self.assertTrue(np.allclose(np.power(np.abs(vector), 2), state, rtol=1e-01, atol=0.005)) def test_top_down(self): """ Testing bdsp """ vector = np.random.rand(16) + np.random.rand(16) * 1j vector = vector / np.linalg.norm(vector) state = TestBdsp.bdsp_experiment(vector, int(np.log2(len(vector)))) self.assertTrue(np.allclose(np.power(np.abs(vector), 2), state, rtol=1e-01, atol=0.005)) def test_sublinear(self): """ Testing bdsp """ vector = np.random.rand(16) + np.random.rand(16) * 1j vector = vector / np.linalg.norm(vector) state = TestBdsp.bdsp_experiment(vector) self.assertTrue(np.allclose(np.power(np.abs(vector), 2), state, rtol=1e-01, atol=0.005))
https://github.com/bagmk/qiskit-quantum-state-classifier
bagmk
import numpy as np import pandas as pd import json as json from scipy import stats from statsmodels.formula.api import ols from o_plot import opl # a small local package dedicated to this project import sys print(sys.executable) # loading the data file_name = 'QAD_data_new.json' f = open(file_name) All_data = json.load(f) #defining the pandas data frame for statistics df_All= pd.DataFrame(All_data,columns=['shots', 'device', 'fidelity', 'mitigation','model','id_gates', 'QV', 'metric']) # any shot number >= 488 indicates that the curve calculation was ended after reaching n = 500: df_All.loc[df_All.shots>=488,"shots"]=np.nan # add the variable neperian log of safe shot number: df_All['log_shots'] = np.log(df_All['shots']) stat_model = ols("log_shots ~ metric + mitigation + model + fidelity + QV + id_gates + device", df_All.query("device != 'ideal_device' ")).fit() print(stat_model.summary()) # this for Jensen-Shannon metric s_metric = 'jensenshannon' sm = np.array([96]) SAD=0 # ! will be unselected by running the next cell # main option for metric: squared euclidean distance # skip this cell if you don't want this option s_metric = 'sqeuclidean' sm = np.array([97]) SAD=2 # this for measurement mitigation mit = 'yes' MIT=0 # ! will be unselected by running the next cell # main option: no mitigation # skip this cell if you don't want this option mit = 'no' MIT=-4 # select data according to the options df_mod = df_All[df_All.mitigation == mit][df_All.metric == s_metric] print("mitigation:",mit," metric:",s_metric ) df_mod.groupby('device')[['shots','log_shots']].describe(percentiles=[0.5]) ADD=0+SAD+MIT opl.plot_curves(All_data, np.append(sm,ADD+np.array([4,5,12,13,20,21,28,29,36,37,44,45])), "No noise simulator vs empirical model - $\epsilon=0.001$ - no delay", ["metric","mitigation"], ["device","model"], right_xlimit = 70) print("mitigation:",mit," metric:",s_metric ) stat_model = ols("log_shots ~ model + fidelity ", df_mod.query("id_gates == 0.0 ")).fit() print(stat_model.summary()) ADD=48+SAD+MIT opl.plot_curves(All_data, np.append(sm,ADD+np.array([4,5,12,13,20,21,28,29,36,37,44,45])), "No noise simulator vs empirical model - $\epsilon=0.001$ - with delay", ["metric","mitigation"], ["device","model"], right_xlimit = 70) print("mitigation:",mit," metric:",s_metric ) stat_model = ols("log_shots ~ model + fidelity", df_mod.query("id_gates == 256.0")).fit() print(stat_model.summary()) print("mitigation:",mit," metric:",s_metric ) stat_model = ols("log_shots ~ model + fidelity + id_gates", df_mod).fit() print(stat_model.summary()) # rem: in this figure, the ideal device calculated value is shown # but not included in the regression model df_short = df_All.query("model == 'empirical' & id_gates == 0.0") df_short = df_short[df_short.metric == s_metric] # here for adding the "ideal device" observation (11 shots for fidelity = 1.0) df_ideal= df_All.query("device == 'ideal_device' ") df_ideal = df_ideal[df_ideal.metric == s_metric] df_short = df_short[df_short['mitigation']==mit] tit_head = "$\ln \; n_s$ for $\epsilon$ = 0.001 vs " tit_tail = "mitigation:"+mit+ " metric:"+s_metric+" model: empirical, no delay" opl.plot_scatter(df_ideal.append(df_short),"fidelity", tit_head + "quantum readout error fidelity\n" +tit_tail, left_xlimit = 0.6, right_xlimit = 1.01, bottom_ylimit = 2, top_ylimit = 6) print("mitigation:",mit," metric:",s_metric ) stat_model = ols("log_shots ~ fidelity", df_mod.query("id_gates == 0.0 & model == 'empirical'")).fit() print(stat_model.summary()) # check if python linregress (figure) and OLS stat_model (table) agree round(np.sqrt(stat_model.rsquared),3) # calculate the expected value of n_s for a theoretical fidelity equal to 1.0 # to be compared to the oracle derived value for an ideal device: n_s = 11 alpha, beta = stat_model.params n_ideal = np.exp(alpha+beta) n_ideal ADD=0+SAD+MIT opl.plot_curves(All_data, np.append(sm,ADD+np.array([4,12,20,28,36,44])), "Empirical model - $\epsilon=0.001$ - no delay", ["metric","mitigation"], ["device","model"], right_xlimit = 45, top_ylimit = 0.5) opl.plot_scatter(df_short, "QV", tit_head + "quantum volume\n" + tit_tail, left_xlimit = 0, right_xlimit = 33, bottom_ylimit = 2, top_ylimit = 6) print("mitigation:",mit," metric:",s_metric ) stat_model = ols("log_shots ~ QV", df_mod.query("id_gates == 0.0 & model == 'empirical'")).fit() print(stat_model.summary()) # # check if python linregress (figure) and OLS stat_model (table) agree round(np.sqrt(stat_model.rsquared),3)
https://github.com/VGGatGitHub/2020-QISKit-Summer-Jam
VGGatGitHub
#%pip uninstall qiskit %pip install qiskit #==0.16 import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright # useful additional packages import matplotlib.pyplot as plt import matplotlib.axes as axes %matplotlib inline import numpy as np import networkx as nx from qiskit import Aer from qiskit.tools.visualization import plot_histogram #VGG todo 1: the equivalent run_algorithm and EnergyInput versions updates #from qiskit.aqua.translators.ising import max_cut, tsp #from qiskit.aqua import run_algorithm #from qiskit.aqua.input import EnergyInput #old v0.16# from qiskit.optimization.ising import max_cut, tsp #old v0.16# from qiskit.optimization.ising.common import sample_most_likely #older# from qiskit.optimization.ising import docplex from qiskit.optimization.applications.ising import max_cut, tsp from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.optimization.applications.ising import docplex from qiskit.aqua.algorithms import VQE from qiskit.aqua.algorithms import NumPyEigensolver as ExactEigensolver from qiskit.aqua.components.optimizers import SPSA #from qiskit.aqua.components.variational_forms import RY #RealAmplitudes from qiskit.circuit.library import RealAmplitudes as RY from qiskit.aqua import QuantumInstance # setup aqua logging import logging from qiskit.aqua import set_qiskit_aqua_logging # set_qiskit_aqua_logging(logging.DEBUG) # choose INFO, DEBUG to see the log #from qiskit import IBMQ #provider = IBMQ.load_account() #VGG select the backend for coupling_map try: backend = provider.get_backend('ibmq_16_melbourne')#'ibmq_16_melbourne')#'ibmq_essex') #backend = provider.get_backend('ibmq_london')#'ibmq_16_melbourne')#'ibmq_essex') except: backend = Aer.get_backend('qasm_simulator') #VGG it was 'BasicAer.get_backend' ibmq_16_melbourne coupling_map = backend.configuration().coupling_map print(coupling_map) from typing import List, Tuple seed = 19120623 np.random.seed(seed) #VGG: function adopted from the Rigetti's MaxCutQAOA.ipynb def generate_ising_graph(edges: List[Tuple[int, int]]) -> nx.Graph: graph = nx.from_edgelist(edges) weights: np.ndarray = np.random.rand(graph.number_of_edges()) #VGG the old [-1,1] range into [0,1] weights /= np.linalg.norm(weights) nx.set_edge_attributes(graph, {e: {'weight': w} for e, w in zip(graph.edges, weights)}) return graph if coupling_map != None: G=generate_ising_graph(coupling_map) n=G.number_of_nodes() print(n) # Generating a graph if there were no coupling_map if coupling_map== None: #define the edges / coupling_map #'ibmq_16_melbourne' elist=[[0, 1], [0, 14], [1, 0], [1, 2], [1, 13], [2, 1], [2, 3], [2, 12], [3, 2], [3, 4], [3, 11], [4, 3], [4, 5], [4, 10], [5, 4], [5, 6], [5, 9], [6, 5], [6, 8], [7, 8], [8, 6], [8, 7], [8, 9], [9, 5], [9, 8], [9, 10], [10, 4], [10, 9], [10, 11], [11, 3], [11, 10], [11, 12], [12, 2], [12, 11], [12, 13], [13, 1], [13, 12], [13, 14], [14, 0], [14, 13]] #elist=[[0,1],[0,2],[0,3],[1,2],[2,3],[0,4],[0,2], [4, 3],[1,5],[3,5]] elist=[[0,1],[0,2],[0,3],[1,2],[2,3],[0,4],[0,2], [4, 3]] G=generate_ising_graph(elist) n=G.number_of_nodes() #other ways to define the graph #n=5 # Number of nodes in graph #G=nx.Graph() #G.add_nodes_from(np.arange(0,n,1)) #ewlist=[(0,1,1.),(0,2,.5),(0,3,0),(1,2,1.0),(0,3,1.0)] #G1 = nx.from_edgelist(elist) #G1.add_weighted_edges_from(ewlist) #Visulaize print(G.number_of_nodes(),G.number_of_edges()) colors = ['r' for node in G.nodes()] pos = nx.spring_layout(G) default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos) nx.drawing.nx_pylab.draw(G) elist=G.edges() print("elist=",elist) ewlist=[(i,j,G.get_edge_data(i,j,default=0)['weight']) for i,j in G.edges()] print('ewlist=',ewlist) def issymmetric(Matrix): dim=Matrix.shape[0] if Matrix.shape[1] != dim: print("Shape Error!") return False for i in range(dim): for j in range(i,dim): if Matrix[i,j]!=Matrix[j,i]: print("Shape Error:",(i,j),Matrix[i,j],Matrix[j,i],"difference:",Matrix[i,j]-Matrix[j,i]) return False return True # Computing the weight matrix from the random graph w = np.zeros([n,n]) w = np.eye(n) for i in range(n): for j in range(n): temp = G.get_edge_data(i,j,default=0) if temp != 0: w[i,j] = temp['weight'] w/=np.linalg.det(w)**(1/n) print("Symmetric:",issymmetric(w),"Norm:",np.linalg.norm(w)) print("Eignvlues:",np.linalg.eigvals(w),"det:",np.linalg.det(w)) print(w) np.sum(w)/4 #the offset value def Max_Cut_BF(W,*x0): best_cost_brute = 0 xbest_brute=np.array([1]*n) for b in range(2**n): x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))] cost = 0 for h in x0: cost -= np.dot(h,x)/n #VGG don't give free samples to those with h==1 for i in range(n): cost +=(2-np.dot(x,x))/n/2 #VGG try to favor fewer free samples for j in range(n): cost += W[i,j]*x[i]*(1-x[j]) if np.isclose(cost,best_cost_brute): if sum(x)<sum(xbest_brute): best_cost_brute = cost xbest_brute = x else: if best_cost_brute < cost: best_cost_brute = cost xbest_brute = x if 1==2: print('case = ' + str(x)+ ' cost = ' + str(cost)) return best_cost_brute, xbest_brute %%time if n < 10: best_cost_brute, xbest_brute = Max_Cut_BF(w) colors = ['r' if xbest_brute[i] == 0 else 'b' for i in range(n)] nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, pos=pos) print('\nBest solution = ' + str(xbest_brute) + ' cost = ' + str(best_cost_brute)) np.set_printoptions(precision=3) print(w) def market_simulations(m,*opt): free_samples=0 boughten=0 Mw2 = np.zeros([n,n])+w relations=np.zeros([n,n]) x_free_samples=np.zeros(n) np.set_printoptions(precision=2) if 'q' in opt: print("Using Max_Cut option:",'q') print("submiting for results using:",backend) elif 'dcplx' in opt: print("Using Max_Cut option:",'Docplex') else: print("Using Max_Cut_BF") if n > 10 : print("It may take too long to do Brute Force Calulations - skiping!") return print("day"," [free samples]"," [buyers distribution]"," [to be used as constrain]"," the two totals"," w-det") for i in range(m): if sum(x_free_samples)>n/3: x_free_samples=np.zeros(n) x=np.array([0]*n) xbest_brute=np.array([0]*n) tmp1=Mw2/np.linalg.norm(Mw2) #select only those rows that recived free samples tmp=sum(tmp1[:,]) #sum probaility contributions tmp2=tmp else: if 'q' in opt: best_cost_brute, xbest_brute = Max_Cut_IBMQ(Mw2,x_free_samples) elif 'dcplx' in opt: best_cost_brute, xbest_brute = Max_Cut_Dcplx(Mw2,x_free_samples) else: best_cost_brute, xbest_brute = Max_Cut_BF(Mw2,x_free_samples) x=np.array(xbest_brute) x_free_samples+=x free_samples+=sum(x) tmp1=Mw2[x==1]/np.linalg.norm(Mw2) #select only those rows that recived free samples tmp=sum(tmp1[:,],(np.array([1]*n)-x)) #sum probaility contributions tmp-=np.array([1]*n) #push to negative those with free samples #print(tmp) ab=sum(tmp[tmp > 0]) for j in range(n): test=np.random.uniform()*ab/2 if tmp[j] > test: #buy the product x[j]+=1 boughten+=1 x0=np.array(xbest_brute) x-=x0 relation_today=x.reshape(n,1) @ x0.reshape(1,n) relation_today+=relation_today.T relations+=relation_today #print(x0,x,"\n",relation_today) #print(x0,x,x_free_samples,tmp) print(i,x0,x,x_free_samples,free_samples, boughten,np.linalg.det(Mw2)) if i%7==0 : #weekely updates of the w matrix Mw2+=(np.eye(n)+relations)/n/100 #update the w matrix relations=np.zeros([n,n]) if issymmetric(Mw2) and np.linalg.det(Mw2)>0.: Mw2/=np.linalg.det(Mw2)**(1/n) else: Mw2/=np.linalg.norm(Mw2,ord='fro') print("\nlast day configuration record:\n") print(x0,tmp) print() print(x,free_samples, boughten, np.linalg.norm(Mw2),np.linalg.det(Mw2)) print() print(Mw2) return %time market_simulations(10) #VGG qubitOp, offset = max_cut.get_max_cut_qubitops(w) qubitOp, offset = max_cut.get_operator(w) #algo_input = EnergyInput(qubitOp) offset #Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = ExactEigensolver(qubitOp, k=3) result = ee.run() print("energys:",result['eigenvalues'].real) #VGG# x = max_cut.sample_most_likely(result['eigvecs'][0]) x = sample_most_likely(result['eigenstates'][0]) print('energy:', result['eigenvalues'][0],', offset:',offset) print('max-cut objective:', result['eigenvalues'][0] + offset) print('solution:', max_cut.get_graph_solution(x)) print('solution objective:', max_cut.max_cut_value(x, w)) colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)] nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos) #VGG note that the other runs had implemeneted soft constrains! from docplex.mp.model import Model #VGG from qiskit.aqua.translators.ising import docplex #older# from qiskit.optimization.ising import docplex # Create an instance of a model and variables. mdl = Model(name='max_cut') y = {i: mdl.binary_var(name='x_{0}'.format(i)) for i in range(n)} # Object function #VGG added y[i]/100 term to split the degenerate 1<->0 states in favor of less free samples max_cut_func = mdl.sum(y[i]/50+w[i,j]* y[i] * ( 1 - y[j] ) for i in range(n) for j in range(n)) mdl.maximize(max_cut_func) # No constraints for Max-Cut problems. qubitOp_docplex, offset_docplex = docplex.get_operator(mdl) offset_docplex #VGG define the above as a function def set_up_Dcplx_model(W,*c_x0): mdl = Model(name='max_cut') y = {i: mdl.binary_var(name='y_{0}'.format(i)) for i in range(n)} #VGG try to favor fewer free samples using (2-np.dot(x,x))/n/2 #VGG split the degenerate 1<->0 states in favor of less free samples using x[i]/n**2 max_cut_func=mdl.sum((-1)*(2-y[i])*0.5+(-0)*y[i]/100 for i in range(n)) #VGG don't give free samples to those with h==1 max_cut_func+=mdl.sum(h[i]*y[i]*0.5 for i in range(n) for h in c_x0) max_cut_func+=mdl.sum(W[i,j]* y[i] * ( 1 - y[j] ) for i in range(n) for j in range(n)) mdl.maximize(max_cut_func) qubitOp, offset = docplex.get_operator(mdl) return qubitOp, offset qubitOp_docplex, offset_docplex = set_up_Dcplx_model(w) print(offset_docplex,x) #Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = ExactEigensolver(qubitOp_docplex, k=3) result = ee.run() print("energys:",result['eigenvalues'].real) x = sample_most_likely(result['eigenstates'][0]) print('energy:', result['eigenvalues'][0].real) print('max-cut objective:', result['eigenvalues'][0].real + offset_docplex) print('solution:', max_cut.get_graph_solution(x)) print('solution objective:', max_cut.max_cut_value(x, w)) colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)] nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos) x=max_cut.get_graph_solution(x).tolist() qubitOp_docplex, offset_docplex = set_up_Dcplx_model(w,x) print(x,offset_docplex) #VGG note if you keep executing this cell you can see diferent configurations #VGG define the above as a function def Max_Cut_Dcplx(W,*c_x0): qubitOp_docplex, offset_docplex = set_up_Dcplx_model(W) for h in c_x0: qubitOp_docplex, offset_docplex = set_up_Dcplx_model(W,h) ee = ExactEigensolver(qubitOp_docplex,k=3) result = ee.run() x=sample_most_likely(result['eigenstates'][0]) x_dcplx=max_cut.get_graph_solution(x).tolist() cost_dcplx=result['eigenvalues'][0].real #cost_dcplx=max_cut.max_cut_value(x, W) return cost_dcplx, x_dcplx %time market_simulations(10,'dcplx') seed = 10598 model=qubitOp_docplex #model=qubitOp spsa = SPSA(max_trials=30) ry = RY(model.num_qubits, entanglement='linear') #depth=5, vqe = VQE(model, ry, spsa) backend1 = Aer.get_backend('statevector_simulator') quantum_instance = QuantumInstance(backend1, seed_simulator=seed, seed_transpiler=seed) print(backend1) result = vqe.run(quantum_instance) #VGG# x = max_cut.sample_most_likely(result['eigvecs'][0]) x = sample_most_likely(result['eigenstate']) print('energy:', result['eigenvalue']) print('time:', result['optimizer_time']) print('max-cut objective:', result['eigenvalue'] + offset) print('solution:', max_cut.get_graph_solution(x)) print('solution objective:', max_cut.max_cut_value(x, w)) colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)] nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos) qubitOp_docplex, offset_docplex = set_up_Dcplx_model(w,x) print(x,offset_docplex) # run quantum algorithm with shots seed = 10598 spsa = SPSA(max_trials=300) ry = RY(model.num_qubits, entanglement='linear') #depth=5, vqe = VQE(model, ry, spsa) backend2 = Aer.get_backend('qasm_simulator') #VGG it was 'BasicAer.get_backend' ibmq_16_melbourne quantum_instance = QuantumInstance(backend2, shots=1024, seed_simulator=seed, seed_transpiler=seed) print(backend2) result = vqe.run(quantum_instance) """declarative approach, update the param from the previous cell. params['backend']['provider'] = 'qiskit.BasicAer' params['backend']['name'] = 'qasm_simulator' params['backend']['shots'] = 1024 result = run_algorithm(params, algo_input) """ #VGG# x = max_cut.sample_most_likely(result['eigvecs'][0]) x = sample_most_likely(result['eigenstate']) print('energy:', result['eigenvalue']) print('time:', result['optimizer_time']) print('max-cut objective:', result['eigenvalue'] + offset) print('solution:', max_cut.get_graph_solution(x)) print('solution objective:', max_cut.max_cut_value(x, w)) plot_histogram(result['eigenstate']) colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)] nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos) qubitOp_docplex, offset_docplex = set_up_Dcplx_model(w,x) print(x,offset_docplex) backend # run quantum algorithm with shots seed = 10598 spsa = SPSA(max_trials=30) #VGG 300 ry = RY(model.num_qubits, entanglement='linear') #depth=5, vqe = VQE(model, ry, spsa) #backend = provider.get_backend('ibmq_16_melbourne')#'ibmq_16_melbourne')#'ibmq_essex' # ibmq_london #backend = provider.get_backend('ibmq_qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024, seed_simulator=seed, seed_transpiler=seed) print("submiting for results using:",backend) result = vqe.run(quantum_instance) #VGG# x = max_cut.sample_most_likely(result['eigvecs'][0]) x = sample_most_likely(result['eigenstate']) print('energy:', result['eigenvalue']) print('time:', result['optimizer_time']) print('max-cut objective:', result['eigenvalue'] + offset) print('solution:', max_cut.get_graph_solution(x)) print('solution objective:', max_cut.max_cut_value(x, w)) plot_histogram(result['eigenstate']) colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)] nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos) #VGG define the above as a function def Max_Cut_IBMQ(W,*c_x0): qubitOp_docplex, offset_docplex = set_up_Dcplx_model(W) for h in c_x0: qubitOp_docplex, offset_docplex = set_up_Dcplx_model(W,h) model=qubitOp_docplex spsa = SPSA(max_trials=30) #VGG 300 ry = RY(model.num_qubits, entanglement='linear') #depth=5, vqe = VQE(model, ry, spsa) quantum_instance = QuantumInstance(backend, shots=1024, seed_simulator=seed, seed_transpiler=seed) result = vqe.run(quantum_instance) x = sample_most_likely(result['eigenstate']) cost_vqe=max_cut.max_cut_value(x, W) x_vqe =np.int_(max_cut.get_graph_solution(x)).tolist() return cost_vqe, x_vqe %time market_simulations(10) %time market_simulations(10,'dcplx') #backend = provider.get_backend('ibmq_16_melbourne')#'ibmq_16_melbourne')#'ibmq_essex' # ibmq_london #backend = provider.get_backend('ibmq_qasm_simulator') #backend = Aer.get_backend('qasm_simulator') #backend = Aer.get_backend('statevector_simulator') %time market_simulations(10,'q') import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit import Parameter from qiskit import QuantumCircuit theta = Parameter('$\\theta$') chsh_circuits_no_meas = QuantumCircuit(2) chsh_circuits_no_meas.h(0) chsh_circuits_no_meas.cx(0, 1) chsh_circuits_no_meas.ry(theta, 0) chsh_circuits_no_meas.draw('mpl') import numpy as np number_of_phases = 21 phases = np.linspace(0, 2*np.pi, number_of_phases) # Phases need to be expressed as list of lists in order to work individual_phases = [[ph] for ph in phases] from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService() backend = "ibmq_qasm_simulator" # use the simulator from qiskit_ibm_runtime import Estimator, Session from qiskit.quantum_info import SparsePauliOp ZZ = SparsePauliOp.from_list([("ZZ", 1)]) ZX = SparsePauliOp.from_list([("ZX", 1)]) XZ = SparsePauliOp.from_list([("XZ", 1)]) XX = SparsePauliOp.from_list([("XX", 1)]) ops = [ZZ, ZX, XZ, XX] chsh_est_sim = [] # Simulator with Session(service=service, backend=backend): estimator = Estimator() for op in ops: job = estimator.run( circuits=[chsh_circuits_no_meas]*len(individual_phases), observables=[op]*len(individual_phases), parameter_values=individual_phases) est_result = job.result() chsh_est_sim.append(est_result) # <CHSH1> = <AB> - <Ab> + <aB> + <ab> chsh1_est_sim = chsh_est_sim[0].values - chsh_est_sim[1].values + chsh_est_sim[2].values + chsh_est_sim[3].values # <CHSH2> = <AB> + <Ab> - <aB> + <ab> chsh2_est_sim = chsh_est_sim[0].values + chsh_est_sim[1].values - chsh_est_sim[2].values + chsh_est_sim[3].values import matplotlib.pyplot as plt import matplotlib.ticker as tck fig, ax = plt.subplots(figsize=(10, 6)) # results from a simulator ax.plot(phases/np.pi, chsh1_est_sim, 'o-', label='CHSH1 Simulation') ax.plot(phases/np.pi, chsh2_est_sim, 'o-', label='CHSH2 Simulation') # classical bound +-2 ax.axhline(y=2, color='r', linestyle='--') ax.axhline(y=-2, color='r', linestyle='--') # quantum bound, +-2√2 ax.axhline(y=np.sqrt(2)*2, color='b', linestyle='-.') ax.axhline(y=-np.sqrt(2)*2, color='b', linestyle='-.') # set x tick labels to the unit of pi ax.xaxis.set_major_formatter(tck.FormatStrFormatter('%g $\pi$')) ax.xaxis.set_major_locator(tck.MultipleLocator(base=0.5)) # set title, labels, and legend plt.title('Violation of CHSH Inequality') plt.xlabel('Theta') plt.ylabel('CHSH witness') plt.legend() import qiskit_ibm_runtime qiskit_ibm_runtime.version.get_version_info() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/akashktesla/qiskit_testing
akashktesla
from qiskit import QuantumCircuit import matplotlib.pyplot as plt qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) # qc.draw('mpl',style='iqp') # plt.show() from qiskit.quantum_info import Pauli ZZ = Pauli('ZZ') ZI = Pauli('ZI') IZ = Pauli('IZ') XX = Pauli('XX') XI = Pauli('XI') IX = Pauli('IX') observables = [ZZ,ZI,IZ,XX,XI,IX] #execute from qiskit_aer.primitives import Estimator estimator = Estimator() job = estimator.run([qc]*len(observables),observables) # print(job.result()) #plotting data = ['ZZ', 'ZI', 'IZ', 'XX', 'XI', 'IX'] values = job.result().values plt.plot(data,values,'-o') plt.xlabel('Observables') plt.ylabel('Expected values') plt.show()
https://github.com/kurtchahn/QiskitPrx
kurtchahn
import qiskit as qk import qiskit_aer as qaer import numpy as np import math sSimulator = qaer.Aer.backends(name="statevector_simulator")[0] mSimulator = qaer.Aer.backends(name="qasm_simulator")[0] qr = qk.QuantumRegister(1) helloQubit = qk.QuantumCircuit(qr) ## identity operator on q0 helloQubit.id(qr[0]) job = sSimulator.run(helloQubit) result = job.result() result.get_statevector() helloQubit.draw("mpl") qr = qk.QuantumRegister(3) qc = qk.QuantumCircuit(qr) qc.id(qr[0]) qc.id(qr[1]) qc.id(qr[2]) job = sSimulator.run(qc) result = job.result() result.get_statevector() qc.draw("mpl") qr = qk.QuantumRegister(1) cr = qk.ClassicalRegister(1) qc = qk.QuantumCircuit(qr, cr) qc.h(qr[0]) qc.measure(qr, cr) job = mSimulator.run(qc) result = job.result() result.get_counts(qc) qc.draw("mpl") qr = qk.QuantumRegister(2) cr = qk.ClassicalRegister(2) qc = qk.QuantumCircuit(qr, cr) qc.h(qr[0]) qc.h(qr[1]) qc.measure(qr, cr) counts = mSimulator.run(qc).result().get_counts(qc) print(counts) qc.draw("mpl") ## Partial Measurement qr = qk.QuantumRegister(2) cr = qk.ClassicalRegister(2) qc = qk.QuantumCircuit(qr, cr) qc.h(qr[0]) qc.h(qr[1]) qc.measure(qr[0], cr[0]) counts = mSimulator.run(qc).result().get_counts(qc) print(counts) def perfect_coinflip(numFlips): qr = qk.QuantumRegister(1) cr = qk.ClassicalRegister(1) coin = qk.QuantumCircuit(qr, cr) coin.h(qr[0]) coin.measure(qr, cr) counts = mSimulator.run(coin, shots=numFlips).result().get_counts(coin) heads = counts["0"] tails = counts["1"] return heads, tails numHeads, numTails = perfect_coinflip(100) print(f"Heads: {numHeads}") print(f"Tails: {numTails}")
https://github.com/usamisaori/quantum-expressibility-entangling-capability
usamisaori
import sys sys.path.append('../') from circuits import sampleCircuitA, sampleCircuitB1, sampleCircuitB2,\ sampleCircuitB3, sampleCircuitC, sampleCircuitD, sampleCircuitE,\ sampleCircuitF from entanglement import Ent import warnings warnings.filterwarnings('ignore') labels = [ 'Circuit A', 'Circuit B1', 'Circuit B2', 'Circuit B3', 'Circuit C', 'Circuit D', 'Circuit E', 'Circuit F' ] samplers = [ sampleCircuitA, sampleCircuitB1, sampleCircuitB2, sampleCircuitB3, sampleCircuitC, sampleCircuitD, sampleCircuitE, sampleCircuitF ] q = 4 for layer in range(1, 4): print(f'qubtis: {q}') print('-' * 25) for (label, sampler) in zip(labels, samplers): expr = Ent(sampler, layer=layer, epoch=3000) print(f'{label}(layer={layer}): {expr}') print()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.applications.vertex_cover import VertexCover import networkx as nx seed = 123 algorithm_globals.random_seed = seed graph = nx.random_regular_graph(d=3, n=6, seed=seed) pos = nx.spring_layout(graph, seed=seed) prob = VertexCover(graph) prob.draw(pos=pos) qp = prob.to_quadratic_program() print(qp.prettyprint()) # Numpy Eigensolver meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) prob.draw(result, pos=pos) # QAOA meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA())) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) print("\ntime:", result.min_eigen_solver_result.optimizer_time) prob.draw(result, pos=pos) from qiskit_optimization.applications import Knapsack prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10) qp = prob.to_quadratic_program() print(qp.prettyprint()) # Numpy Eigensolver meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) # QAOA meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA())) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) print("\ntime:", result.min_eigen_solver_result.optimizer_time) from qiskit_optimization.converters import QuadraticProgramToQubo # the same knapsack problem instance as in the previous section prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10) qp = prob.to_quadratic_program() print(qp.prettyprint()) # intermediate QUBO form of the optimization problem conv = QuadraticProgramToQubo() qubo = conv.convert(qp) print(qubo.prettyprint()) # qubit Hamiltonian and offset op, offset = qubo.to_ising() print(f"num qubits: {op.num_qubits}, offset: {offset}\n") print(op) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-sat-synthesis
qiskit-community
%load_ext autoreload %autoreload 2 !pip install git+https://github.com/qiskit-community/qiskit-sat-synthesis import numpy as np # Qiskit includes from qiskit.circuit import QuantumCircuit from qiskit.circuit.library import LinearFunction, PermutationGate from qiskit.quantum_info import Clifford from qiskit.transpiler import CouplingMap from qiskit.compiler import transpile from qiskit.transpiler.passes.synthesis.high_level_synthesis import HLSConfig from qiskit.transpiler.passes import HighLevelSynthesis from qiskit.transpiler.passes.synthesis import high_level_synthesis_plugin_names print(f'Clifford plugin names: {high_level_synthesis_plugin_names("clifford")}') print(f'LinearFunction plugin names: {high_level_synthesis_plugin_names("linear_function")}') print(f'PermutationGate plugin names: {high_level_synthesis_plugin_names("permutation")}') mat = np.array( [ [1, 1, 0, 1, 1], [0, 1, 1, 1, 1], [0, 0, 1, 1, 0], [0, 0, 0, 1, 1], [1, 0, 1, 1, 0], ] ) mat qc = QuantumCircuit(5) qc.append(LinearFunction(mat), [0, 1, 2, 3, 4]) qc.draw("mpl") # Transpile (default) tqc = transpile(qc) print(f"ops: {tqc.count_ops()}, depth: {tqc.depth()}") tqc.draw("mpl") hls_config = HLSConfig(linear_function=[("sat_count", {})]) tqc = transpile(qc, hls_config=hls_config) print(f"ops: {tqc.count_ops()}, depth: {tqc.depth()}") tqc.draw("mpl") hls_config = HLSConfig(linear_function=[("sat_depth", {})]) tqc = transpile(qc, hls_config=hls_config) print(f"ops: {tqc.count_ops()}, depth: {tqc.depth()}") tqc.draw("mpl") hls_config = HLSConfig( linear_function=[("sat_depth", {"optimize_1q_gates": True, "verbosity": 1})] ) tqc = transpile(qc, hls_config=hls_config) print(f"ops: {tqc.count_ops()}, depth: {tqc.depth()}") tqc.draw("mpl") hls_config = HLSConfig(linear_function=[("sat_depth", {"allow_final_permutation": True})]) tqc = transpile(qc, hls_config=hls_config) print(f"ops: {tqc.count_ops()}, depth: {tqc.depth()}") tqc.draw("mpl") hls_config = HLSConfig(linear_function=[("sat_depth", {"allow_layout_permutation": True})]) tqc = transpile(qc, hls_config=hls_config) print(f"ops: {tqc.count_ops()}, depth: {tqc.depth()}") tqc.draw("mpl") hls_config = HLSConfig(linear_function=[("sat_depth", {})]) coupling_map = CouplingMap.from_line(5) tqc = HighLevelSynthesis(hls_config=hls_config, coupling_map=coupling_map, use_qubit_indices=True)(qc) print(f"ops: {tqc.count_ops()}, depth: {tqc.depth()}") tqc.draw("mpl") # This is cyclic shift: 1->0, 2->1, 0->2 pattern = [1, 2, 3, 4, 5, 6, 7, 0] qc = QuantumCircuit(8) qc.append(PermutationGate(pattern), [0, 1, 2, 3, 4, 5, 6, 7]) qc.draw(output='mpl') hls_config = HLSConfig(permutation=[("sat_depth", {"optimize_2q_gates": True})]) coupling_map = CouplingMap.from_full(8) tqc = HighLevelSynthesis(hls_config=hls_config, coupling_map=coupling_map, use_qubit_indices=True)(qc) print(f"ops: {tqc.count_ops()}, depth: {tqc.depth()}") tqc.draw("mpl") hls_config = HLSConfig(permutation=[("sat_depth", {"optimize_2q_gates": True})]) coupling_map = CouplingMap.from_line(8) tqc = HighLevelSynthesis(hls_config=hls_config, coupling_map=coupling_map, use_qubit_indices=True)(qc) print(f"ops: {tqc.count_ops()}, depth: {tqc.depth()}") tqc.draw("mpl") print(mat) from qiskit_sat_synthesis.synthesize_linear import synthesize_linear_depth, synthesize_linear_count line5 = list(CouplingMap.from_line(5).get_edges()) # line connectivity full5 = list(CouplingMap.from_full(5).get_edges()) # all-to-all connectivity res = synthesize_linear_depth(mat, coupling_map=full5, verbosity=0, allow_final_permutation=True) res.circuit.draw("mpl") res.circuit_with_permutations.draw(output='mpl') print(res.solutions[0].final_permutation) LinearFunction(res.circuit_with_permutations) == LinearFunction(mat) res = synthesize_linear_depth(mat, coupling_map=full5, verbosity=1, allow_final_permutation=True, print_solutions=False, max_solutions=5) for i, solution in enumerate(res.solutions): print(f"Solution {i+1}:") print(solution.circuit) from qiskit_sat_synthesis.synthesize_superposed import ( synthesize_superposed_count, synthesize_superposed_depth, ) coupling_map = [(0, 1), (1, 0), (1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 5), (5, 4), (5, 6), (6, 5), (6, 7), (7, 6), (7, 8), (8, 7)] # line connectivity result = synthesize_superposed_depth( [1, 0, 1, 0, 1, 0, 1, 0, 1], coupling_map=coupling_map, optimize_2q_gates=True, print_solutions=False, verbosity=0, max_depth2q=10, ) result.circuit.draw('mpl') hor9 = [[0, 1], [3, 4], [6, 7], [1, 0], [4, 3], [7, 6], [1, 2], [4, 5], [7, 8], [2, 1], [5, 4], [8, 7]] ver9 = [[0, 3], [1, 4], [2, 5], [3, 0], [4, 1], [5, 2], [3, 6], [4, 7], [5, 8], [6, 3], [7, 4], [8, 5]] all9 = hor9 + ver9 state = [1, 0, 0, 0, 0, 0, 0, 0, 1] res = synthesize_superposed_depth( state, coupling_map=all9, print_solutions=False, check_solutions=True, optimize_2q_gates=True, verbosity=0, ) res.circuit.draw(output='mpl') res = synthesize_superposed_depth( state, coupling_map_list=[hor9, ver9], print_solutions=False, check_solutions=True, optimize_2q_gates=True, verbosity=0, ) res.circuit.draw(output='mpl') mat1 = np.array( [ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 1, 1, 1], ] ) mat2 = np.array( [ [1, 0, 0, 0], [0, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1], ] ) from qiskit_sat_synthesis.sat_problem_linear import SatProblemLinear def create_custom_problem(k): nq = 4 coupling_map = [[0, 1], [1, 0], [1, 2], [2, 1], [2, 3], [3, 2]] sat_problem = SatProblemLinear(nq, verbosity=0) sat_problem.set_init_matrix(mat1) for _ in range(k): sat_problem.add_layer( gates=["CX"], coupling_maps=[coupling_map], ) sat_problem.set_final_matrix(mat2) sat_problem.set_optimize_2q_gate(True) return sat_problem from qiskit_sat_synthesis.synthesize import SynthesisResult, synthesize_optimal res = synthesize_optimal(create_sat_problem_fn=create_custom_problem, verbosity=1) print(res.circuit) def create_cx_swap_problem(k, mat): nq = len(mat) coupling_map = list(CouplingMap.from_line(nq).get_edges()) sat_problem = SatProblemLinear(nq, verbosity=0) sat_problem.set_init_matrix_to_identity(nq) for _ in range(k): sat_problem.add_layer( gates=["CX", "SWAP"], coupling_maps=[coupling_map], ) sat_problem.set_final_matrix(mat) return sat_problem mat = np.array( [ [1, 1, 0, 1, 1], [0, 1, 1, 1, 1], [0, 0, 1, 1, 0], [0, 0, 0, 1, 1], [1, 0, 1, 1, 0], ] ) from functools import partial res = synthesize_optimal( create_sat_problem_fn=partial(create_cx_swap_problem, mat=mat), verbosity=1 ) res.circuit.draw(output='mpl') print(LinearFunction(res.circuit) == LinearFunction(mat)) def create_cx_swap_problem(k, mat): nq = len(mat) coupling_map = list(CouplingMap.from_line(nq).get_edges()) sat_problem = SatProblemLinear(nq, verbosity=0) sat_problem.set_init_matrix_to_identity(nq) for _ in range(k): layer_id = sat_problem.add_layer(gates=["CX", "SWAP"], coupling_maps=[coupling_map]) sat_problem.add_nonempty_constraint(layer_id) sat_problem.set_final_matrix(mat) return sat_problem res = synthesize_optimal( create_sat_problem_fn=partial(create_cx_swap_problem, mat=mat), verbosity=1 ) res.circuit.draw(output='mpl')
https://github.com/Tojarieh97/VQE
Tojarieh97
from qiskit.algorithms import VQE from qiskit import Aer from qiskit.utils import QuantumInstance, algorithm_globals seed = 50 algorithm_globals.random_seed = seed backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend=backend, shots=800, seed_transpiler=seed, seed_simulator=seed) from qiskit.algorithms.optimizers import L_BFGS_B bfgs_optimizer = L_BFGS_B(maxiter=60) import numpy as np from qiskit.opflow import X, Z, I a_1 = np.random.random_sample() a_2 = np.random.random_sample() J_21 = np.random.random_sample() H_transverse_ising = a_1*(I^X) + a_2*(X^I) + J_21*(Z^Z) print("========== Transverse Ising Model Hamiltonian for Two Qubits ==========\n") print(H_transverse_ising.to_matrix()) print() H2_molecule_Hamiltonian = -0.5053051899926562*(I^I) + \ -0.3277380754984016*(Z^I) + \ 0.15567463610622564*(Z^Z) + \ -0.3277380754984016*(I^Z) print("========== H2 Molecule Hamiltonian for Two Qubits ==========\n") print(H2_molecule_Hamiltonian.to_matrix()) print() from qiskit.circuit.library import EfficientSU2 def minimum_eigenvalue_by_vqe(num_qubits, ansatz_entanglement, optimizer, quantum_instance, hamiltonian): ansatz = EfficientSU2(num_qubits=num_qubits, entanglement=entanglement) vqe = VQE(ansatz, optimizer, quantum_instance=quantum_instance) result = vqe.compute_minimum_eigenvalue(hamiltonian) print(result) num_qubits = 2 entanglement = "linear" minimum_eigenvalue_by_vqe(num_qubits, entanglement, bfgs_optimizer, quantum_instance, H_transverse_ising) num_qubits = 2 entanglement = "full" minimum_eigenvalue_by_vqe(num_qubits, entanglement, bfgs_optimizer, quantum_instance, H_transverse_ising) num_qubits = 2 entanglement = "linear" minimum_eigenvalue_by_vqe(num_qubits, entanglement, bfgs_optimizer, quantum_instance, H2_molecule_Hamiltonian) num_qubits = 2 entanglement = "full" minimum_eigenvalue_by_vqe(num_qubits, entanglement, bfgs_optimizer, quantum_instance, H2_molecule_Hamiltonian)
https://github.com/acfilok96/Quantum-Computation
acfilok96
# Quantum Computation import qiskit print(qiskit.__version__) import qiskit.quantum_info as qi from qiskit.circuit.library import FourierChecking from qiskit.visualization import plot_histogram f = [1, -1, -1, -1] g = [1, 1, -1, -1] # How co-related fourier transform of function g to function f. # we will check for probability '00', if p(f,g) >= 0.05, then, # fourier transform of function g co-related to function f. circ = FourierChecking(f=f,g=g) circ.draw() zero = qi.Statevector.from_label('00') # '00' or '01' or '10' or '11' sv = zero.evolve(circ) probs = sv.probabilities_dict() plot_histogram(probs)
https://github.com/lynnlangit/learning-quantum
lynnlangit
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from numpy import pi qreg_alice = QuantumRegister(1, 'alice') qreg_fiber = QuantumRegister(1, 'fiber') qreg_bob = QuantumRegister(1, 'bob') creg_ahad = ClassicalRegister(1, 'ahad') creg_aval = ClassicalRegister(1, 'aval') creg_fval = ClassicalRegister(1, 'fval') creg_bhad = ClassicalRegister(1, 'bhad') creg_bval = ClassicalRegister(1, 'bval') circuit = QuantumCircuit(qreg_alice, qreg_fiber, qreg_bob, creg_ahad, creg_aval, creg_fval, creg_bhad, creg_bval) circuit.reset(qreg_alice[0]) circuit.h(qreg_alice[0]) # HAD Alice's qubit circuit.measure(qreg_alice[0], creg_ahad[0]) # READ Alice's qubit value into Ahad circuit.reset(qreg_alice[0]) circuit.h(qreg_alice[0]) # HAD Alice's qubit circuit.measure(qreg_alice[0], creg_aval[0]) # READ Alice's qubit value into Aval circuit.reset(qreg_alice[0]) circuit.x(qreg_alice[0]).c_if(creg_aval, 1) # NOT Alice's qubit if Aval is 1 circuit.h(qreg_alice[0]).c_if(creg_ahad, 1) # HAD Alice's qubit if Ahad is 1 circuit.swap(qreg_alice[0], qreg_fiber[0]) # SWAP Alice's qubit value into Fiber qubit circuit.barrier(qreg_alice[0], qreg_fiber[0], qreg_bob[0]) # PREVENT transformations accross this source line circuit.h(qreg_fiber[0]) # HAD Fiber qubit circuit.measure(qreg_fiber[0], creg_fval[0]) # READ Fiber qubit value into Fval circuit.reset(qreg_fiber[0]) circuit.x(qreg_fiber[0]).c_if(creg_fval, 1) # NOT Fiber qubit if Fval is 1 circuit.h(qreg_fiber[0]) # HAD Fiber qubit circuit.barrier(qreg_alice[0], qreg_fiber[0], qreg_bob[0]) # PREVENT transformations accross this source line circuit.reset(qreg_bob[0]) circuit.h(qreg_bob[0]) # HAD Bob's qubit circuit.measure(qreg_bob[0], creg_bhad[0]) # READ Bob's qubit value into Bhad circuit.swap(qreg_fiber[0], qreg_bob[0]) # SWAP Fiber qubit value into Bob's qubit circuit.h(qreg_bob[0]).c_if(creg_bhad, 1) # HAD Bob's qubit if Bhad is 1 circuit.measure(qreg_bob[0], creg_bval[0]) # READ Bob's qubit value into Bval editor = CircuitComposer(circuit=circuit) editor
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit # Create a circuit with a register of three qubits circ = QuantumCircuit(3) # H gate on qubit 0, putting this qubit in a superposition of |0> + |1>. circ.h(0) # A CX (CNOT) gate on control qubit 0 and target qubit 1 generating a Bell state. circ.cx(0, 1) # CX (CNOT) gate on control qubit 0 and target qubit 2 resulting in a GHZ state. circ.cx(0, 2) # Draw the circuit circ.draw('mpl')
https://github.com/usamisaori/Grover
usamisaori
import qiskit from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram import math import numpy as np from qiskit import execute, Aer simulator = Aer.get_backend('qasm_simulator') import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') state_0 = np.array([1, 0]) state_1 = np.array([0, 1]) from functools import reduce Dag = lambda matrix: matrix.conj().T Kron = lambda *matrices: reduce(np.kron, matrices) def getMeasurements(n): psi_0 = np.array([1.0, 0.0]) psi_1 = np.array([0.0, 1.0]) I = np.eye(2) M_0 = psi_0.reshape([2, 1]) @ psi_0.reshape([1, 2]).conj() M_1 = psi_1.reshape([2, 1]) @ psi_1.reshape([1, 2]).conj() M = [M_0, M_1] measurements = [] for i in range(2 ** n): binnum = bin(i)[2:].rjust(n, '0') temp = [] indices = map(lambda x: int(x), list(binnum)) for index in indices: temp.append(M[index]) measurements.append( Kron(*temp) ) return measurements def measure(M, state): return Dag(state) @ Dag(M) @ M @ state initState = Kron( state_0, state_0, state_0, state_0, state_0, state_0, state_0, state_0, state_0 ) H = np.array([[1,1], [1,-1]]) / (np.sqrt(2)) H_8 = Kron(H, H, H, H, H, H, H, H) H_9 = Kron(H, H, H, H, H, H, H, H, H) N = 2 ** 9 def createTargetState(n): states = [] s = bin(n)[2:].rjust(9, "0") for i in list(s): if i == '0': states.append(state_0) else: states.append(state_1) return Kron(*states) def createTargetStates(p): n = math.floor(p * N) state = createTargetState(0) for i in range(1, n): state = state + createTargetState(i) return state / (np.sqrt(n)) target_states = [ [createTargetStates(0.05), 0.05], # 0.05 [createTargetStates(0.1), 0.1], # 0.1 [createTargetStates(0.15), 0.15], # 0.15 [createTargetStates(0.2), 0.2], # 0.2 [createTargetStates(0.25), 0.25], # 0.25 [createTargetStates(0.3), 0.3], # 0.3 [createTargetStates(0.35), 0.35], # 0.35 [createTargetStates(0.4), 0.4], # 0.4 [createTargetStates(0.45), 0.45], # 0.45 [createTargetStates(0.5), 0.5], # 0.5 [createTargetStates(0.55), 0.55], # 0.55 [createTargetStates(0.6), 0.6], # 0.6 [createTargetStates(0.65), 0.65], # 0.65 [createTargetStates(0.7), 0.7], # 0.7 [createTargetStates(0.75), 0.75], # 0.75 [createTargetStates(0.8), 0.8], # 0.8 [createTargetStates(0.85), 0.85], # 0.85 [createTargetStates(0.9), 0.9], # 0.9 [createTargetStates(0.95), 0.95], # 0.95 [createTargetStates(1), 1] # 1 ] def createOriginalOracle(target_state): O = np.eye(N) - 2 * ( Dag(target_state).reshape(N, 1) @ target_state.reshape(1, N) ) return O def createOriginalDiffuser(): R = 2 * ( Dag(initState).reshape(N, 1) @ initState.reshape(1, N) ) - np.eye(N) return H_9 @ R @ Dag(H_9) def createHalfPIOracle(target_state): alpha = np.pi / 2 alpha_phase = np.exp(alpha * 1j) # Oracle = I - (1 - e^(αi))|target><target| O = np.eye(N) - (1 - alpha_phase) * \ ( Dag(target_state).reshape(N, 1) @ target_state.reshape(1, N) ) return O def createHalfPIDiffuser(): beta = -np.pi / 2 beta_phase = np.exp(beta * 1j) # R = (1 - e^(βi))|0><0| + e^(βi)I R = (1 - beta_phase) * ( Dag(initState).reshape(N, 1) @ initState.reshape(1, N) ) + beta_phase * np.eye(N) return H_9 @ R @ Dag(H_9) def createOneTenthPIOracle(target_state): alpha = np.pi / 10 alpha_phase = np.exp(alpha * 1j) # Oracle = I - (1 - e^(αi))|target><target| O = np.eye(N) - (1 - alpha_phase) * \ ( Dag(target_state).reshape(N, 1) @ target_state.reshape(1, N) ) return O def createOneTenthPIDiffuser(): beta = -np.pi / 10 beta_phase = np.exp(beta * 1j) # R = (1 - e^(βi))|0><0| + e^(βi)I R = (1 - beta_phase) * ( Dag(initState).reshape(N, 1) @ initState.reshape(1, N) ) + beta_phase * np.eye(N) return H_9 @ R @ Dag(H_9) def createYouneOracle(n): O = np.eye(N) for i in range(n): O[i][i] = 0 O[i][i + N // 2] = 1 O[i + N // 2][i + N // 2] = 0 O[i + N // 2][i] = 1 return O def createYouneDiffuser(): R = (2 * Dag(initState).reshape(N, 1) @ initState.reshape(1, N) - np.eye(N)) return Kron(np.eye(2), H_8) @ R @ Dag(Kron(np.eye(2), H_8)) measurements = getMeasurements(9) # test: one grover iteration x_o = [] y_o = [] for target_state, p in target_states: n = math.floor(p * N) O = createOriginalOracle(target_state) diff = createOriginalDiffuser() final_state = diff @ O @ H_9 @ initState probability = 0.0 for i in range(N): if i < n: probability = probability + measure(measurements[i], final_state) # print(f'p={p}, probability={probability}') x_o.append(p) y_o.append(probability) plt.title("Original Grover - apply one iterator") plt.scatter(x_o, y_o, color="#66CCCC") # test: best probability x_o_best = [] y_o_best = [] for target_state, p in target_states: n = math.floor(p * N) O = createOriginalOracle(target_state) diff = createOriginalDiffuser() final_state = H_9 @ initState theta = math.degrees( math.asin(math.sqrt(p)) ) k_tilde = math.floor( 180 / (4 * theta) - 0.5 ) for i in range(k_tilde): final_state = diff @ O @ final_state probability = 0.0 for i in range(N): if i < n: probability = probability + measure(measurements[i], final_state) final_state = diff @ O @ final_state probability2 = 0.0 for i in range(N): if i < n: probability2 = probability2 + measure(measurements[i], final_state) # print(f'p={p}, probability={probability}') x_o_best.append(p) y_o_best.append(max(probability, probability2)) plt.title("Original Grover - best Probability") x = np.arange(-0,1,0.01) y = 1 - x plt.plot(x, y, ls='--', color="#FFCC00") plt.ylim(0, 1.05) plt.scatter(x_o_best, y_o_best, color="#66CCCC") # test: one grover iteration x_half_pi = [] y_half_pi= [] for target_state, p in target_states: n = math.floor(p * N) O = createHalfPIOracle(target_state) diff = createHalfPIDiffuser() final_state = diff @ O @ H_9 @ initState probability = 0.0 for i in range(N): if i < n: probability = probability + measure(measurements[i], final_state) # print(f'p={p}, probability={probability}') x_half_pi.append(p) y_half_pi.append(probability) plt.title("pi/2 Grover - apply one iterator") plt.scatter(x_half_pi, y_half_pi, color="#66CCCC") # one grover iteration - pi/2 vs origin fig, ax = plt.subplots() plt.title("Apply one iteration") plt.axvline(1/3, linestyle='--', color="#FFCCCC", label="t/N = 1/3") plt.axhline(0.925, linestyle='--', color="#FFCC00", label="P=0.925") plt.scatter(x_o, y_o, color="#66CCCC", label="Original Grover") plt.scatter(x_half_pi, y_half_pi, color="#FF6666", label="pi/2 phase based Grover") ax.legend() # test: one grover iteration x_ot_pi = [] y_ot_pi= [] for target_state, p in target_states: n = math.floor(p * N) O = createOneTenthPIOracle(target_state) diff = createOneTenthPIDiffuser() final_state = diff @ O @ H_9 @ initState probability = 0.0 for i in range(N): if i < n: probability = probability + measure(measurements[i], final_state) # print(f'p={p}, probability={probability}') x_ot_pi.append(p) y_ot_pi.append(probability) plt.title("0.1pi Grover - apply one iteration") plt.scatter(x_ot_pi, y_ot_pi, color="#66CCCC") # test: best probability x_ot_best = [] y_ot_best = [] diff = createOneTenthPIDiffuser() for target_state, p in target_states: n = math.floor(p * N) O = createOneTenthPIOracle(target_state) # diff = createOneTenthPIDiffuser() final_state = H_9 @ initState p_best = 0.0 k_tilde = math.floor( 5 * np.sqrt(N) ) for i in range(k_tilde): final_state = diff @ O @ final_state probability = 0.0 for i in range(N): if i < n: probability = probability + measure(measurements[i], final_state) p_best = max(p_best, probability) # print(f'p={p}, probability={probability}') x_ot_best.append(p) y_ot_best.append(p_best) plt.title("0.1pi Grover - best Probability") plt.ylim(0, 1) plt.scatter(x_ot_best, y_ot_best, color="#66CCCC") # best probability - 0.1pi vs origin fig, ax = plt.subplots() plt.title("Best Probability") x = np.arange(-0,1,0.01) y = 1 - x plt.plot(x, y, ls='--', color="#FFCC00") plt.ylim(0, 1.05) plt.scatter(x_o_best, y_o_best, color="#66CCCC", label="Original Grover") plt.scatter(x_ot_best, y_ot_best, color="#FF6666", label="0.1pi phase based Grover") ax.legend() # test: best probability x_y_best = [] y_y_best = [] for _, p in target_states: n = math.floor(p * (N // 2)) O = createYouneOracle(n) diff = createYouneDiffuser() final_state = Kron( np.eye(2), H_8) @ initState p_best = 0.0 k_tilde = math.floor(np.pi / (2 * np.sqrt(2)) * np.sqrt((N // 2) / n)) for i in range(k_tilde): final_state = diff @ O @ final_state probability = 0.0 for i in range(N // 2): if i < n: probability = probability + measure(measurements[i], final_state) + measure(measurements[i + N // 2], final_state) # print(f'p={p}, probability={probability}') x_y_best.append(p) y_y_best.append(probability) fig, ax = plt.subplots() plt.title("Best Probability") x = np.arange(-0, 1, 0.01) y = 1 - x plt.plot(x, y, ls='--', color="#FFCC00") plt.axhline(0.8472, linestyle='--', color="#99CCFF", label="P=0.8472") plt.axvline(0.308, linestyle='--', color="#FFCCCC", label="P=0.308") plt.ylim(0, 1.05) plt.scatter(x_y_best, y_y_best, color="#FF6666", label="Youne") plt.scatter(x_o_best, y_o_best, color="#66CCCC", label="Original Grover") ax.legend()
https://github.com/PabloAMC/Qiskit_meetup_2021
PabloAMC
%matplotlib inline # Importing standard Qiskit libraries from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * #from iqx import * from qiskit.aqua.circuits import PhaseEstimationCircuit from qiskit.chemistry.components.initial_states import HartreeFock from qiskit.chemistry.core import Hamiltonian from qiskit.circuit.library import PhaseEstimation from qiskit import QuantumCircuit, execute, Aer from qiskit.circuit import QuantumRegister, Qubit, Gate, ClassicalRegister from qiskit.quantum_info import Statevector # Loading your IBM Q account(s) provider = IBMQ.load_account() from qiskit.chemistry.drivers import PySCFDriver, UnitsType, Molecule, PSI4Driver molecule = Molecule(geometry=[['H', [0., 0., 0.]], ['H', [0., 0., 0.735]]], charge=0, multiplicity=1) driver = PySCFDriver(molecule = molecule, unit=UnitsType.ANGSTROM, basis='sto3g') qmol = driver.run() print(qmol.one_body_integrals) print(qmol.two_body_integrals) from qiskit.chemistry.transformations import (FermionicTransformation, FermionicTransformationType, FermionicQubitMappingType) fermionic_transformation = FermionicTransformation( transformation=FermionicTransformationType.FULL, qubit_mapping=FermionicQubitMappingType.JORDAN_WIGNER, two_qubit_reduction=False, freeze_core=False) qubit_op, _ = fermionic_transformation.transform(driver) print('Qubit operator is', qubit_op) # Complete here! Perhaps you will find some information in the VQE tutorial num_orbitals = # To complete num_particles = # To complete qubit_mapping = # To complete two_qubit_reduction = # To complete z2_symmetries = # To complete # Use the previous variables to create a Hartree Fock state initial_state = # To complete initial_circ = initial_state.construct_circuit() print(initial_state.bitstr) initial_circ.draw() qubit_op, _ = fermionic_transformation.transform(driver) print(qubit_op) num_evaluation_qubits = 5 normalization_factor = 1/2 # Since the min energy will be approx -1.8 we need to normalize it so that it is smaller in absolute value than 1 ### Complete here! Perhaps look for how to exponentiate an operator and create a circuit unitary = (normalization_factor*#something).#something ### Look for Phase Estimation in the Qiskit documentation! phase_estimation = #something print(phase_estimation.qubits) dir(phase_estimation) phase_estimation.draw() circ = initial_circ.combine(phase_estimation) classical_eval = ClassicalRegister(num_evaluation_qubits, name = 'class_eval') circ = circ + QuantumCircuit(classical_eval) print(circ.qregs) circ.measure(circ.qregs[1], classical_eval) circ.draw() # Use Aer's qasm_simulator backend_sim = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is the default. job_sim = execute(circ, backend_sim, shots=1024) # Grab the results from the job. result_sim = job_sim.result() counts = result_sim.get_counts(circ) print(counts) maxkey = '0'*num_evaluation_qubits maxvalue = 0 for key, value in counts.items(): if value > maxvalue: maxvalue = value maxkey = key energy = 0 for i,s in zip(range(num_evaluation_qubits), maxkey[::-1]): energy -= (int(s)/2**(i))/normalization_factor print('The energy is', energy, 'Hartrees')
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test the decompose pass""" from numpy import pi from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.transpiler.passes import Decompose from qiskit.converters import circuit_to_dag from qiskit.circuit.library import HGate, CCXGate, U2Gate from qiskit.quantum_info.operators import Operator from qiskit.test import QiskitTestCase class TestDecompose(QiskitTestCase): """Tests the decompose pass.""" def setUp(self): super().setUp() # example complex circuit # ┌────────┐ ┌───┐┌─────────────┐ # q2_0: ┤0 ├────────────■──┤ H ├┤0 ├ # │ │ │ └───┘│ circuit-57 │ # q2_1: ┤1 gate1 ├────────────■───────┤1 ├ # │ │┌────────┐ │ └─────────────┘ # q2_2: ┤2 ├┤0 ├──■────────────────────── # └────────┘│ │ │ # q2_3: ──────────┤1 gate2 ├──■────────────────────── # │ │┌─┴─┐ # q2_4: ──────────┤2 ├┤ X ├──────────────────── # └────────┘└───┘ circ1 = QuantumCircuit(3) circ1.h(0) circ1.t(1) circ1.x(2) my_gate = circ1.to_gate(label="gate1") circ2 = QuantumCircuit(3) circ2.h(0) circ2.cx(0, 1) circ2.x(2) my_gate2 = circ2.to_gate(label="gate2") circ3 = QuantumCircuit(2) circ3.x(0) q_bits = QuantumRegister(5) qc = QuantumCircuit(q_bits) qc.append(my_gate, q_bits[:3]) qc.append(my_gate2, q_bits[2:]) qc.mct(q_bits[:4], q_bits[4]) qc.h(0) qc.append(circ3, [0, 1]) self.complex_circuit = qc def test_basic(self): """Test decompose a single H into u2.""" qr = QuantumRegister(1, "qr") circuit = QuantumCircuit(qr) circuit.h(qr[0]) dag = circuit_to_dag(circuit) pass_ = Decompose(HGate) after_dag = pass_.run(dag) op_nodes = after_dag.op_nodes() self.assertEqual(len(op_nodes), 1) self.assertEqual(op_nodes[0].name, "u2") def test_decompose_none(self): """Test decompose a single H into u2.""" qr = QuantumRegister(1, "qr") circuit = QuantumCircuit(qr) circuit.h(qr[0]) dag = circuit_to_dag(circuit) pass_ = Decompose() after_dag = pass_.run(dag) op_nodes = after_dag.op_nodes() self.assertEqual(len(op_nodes), 1) self.assertEqual(op_nodes[0].name, "u2") def test_decompose_only_h(self): """Test to decompose a single H, without the rest""" qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.h(qr[0]) circuit.cx(qr[0], qr[1]) dag = circuit_to_dag(circuit) pass_ = Decompose(HGate) after_dag = pass_.run(dag) op_nodes = after_dag.op_nodes() self.assertEqual(len(op_nodes), 2) for node in op_nodes: self.assertIn(node.name, ["cx", "u2"]) def test_decompose_toffoli(self): """Test decompose CCX.""" qr1 = QuantumRegister(2, "qr1") qr2 = QuantumRegister(1, "qr2") circuit = QuantumCircuit(qr1, qr2) circuit.ccx(qr1[0], qr1[1], qr2[0]) dag = circuit_to_dag(circuit) pass_ = Decompose(CCXGate) after_dag = pass_.run(dag) op_nodes = after_dag.op_nodes() self.assertEqual(len(op_nodes), 15) for node in op_nodes: self.assertIn(node.name, ["h", "t", "tdg", "cx"]) def test_decompose_conditional(self): """Test decompose a 1-qubit gates with a conditional.""" qr = QuantumRegister(1, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.h(qr).c_if(cr, 1) circuit.x(qr).c_if(cr, 1) dag = circuit_to_dag(circuit) pass_ = Decompose(HGate) after_dag = pass_.run(dag) ref_circuit = QuantumCircuit(qr, cr) ref_circuit.append(U2Gate(0, pi), [qr[0]]).c_if(cr, 1) ref_circuit.x(qr).c_if(cr, 1) ref_dag = circuit_to_dag(ref_circuit) self.assertEqual(after_dag, ref_dag) def test_decompose_oversized_instruction(self): """Test decompose on a single-op gate that doesn't use all qubits.""" # ref: https://github.com/Qiskit/qiskit-terra/issues/3440 qc1 = QuantumCircuit(2) qc1.x(0) gate = qc1.to_gate() qc2 = QuantumCircuit(2) qc2.append(gate, [0, 1]) output = qc2.decompose() self.assertEqual(qc1, output) def test_decomposition_preserves_qregs_order(self): """Test decomposing a gate preserves it's definition registers order""" qr = QuantumRegister(2, "qr1") qc1 = QuantumCircuit(qr) qc1.cx(1, 0) gate = qc1.to_gate() qr2 = QuantumRegister(2, "qr2") qc2 = QuantumCircuit(qr2) qc2.append(gate, qr2) expected = QuantumCircuit(qr2) expected.cx(1, 0) self.assertEqual(qc2.decompose(), expected) def test_decompose_global_phase_1q(self): """Test decomposition of circuit with global phase""" qc1 = QuantumCircuit(1) qc1.rz(0.1, 0) qc1.ry(0.5, 0) qc1.global_phase += pi / 4 qcd = qc1.decompose() self.assertEqual(Operator(qc1), Operator(qcd)) def test_decompose_global_phase_2q(self): """Test decomposition of circuit with global phase""" qc1 = QuantumCircuit(2, global_phase=pi / 4) qc1.rz(0.1, 0) qc1.rxx(0.2, 0, 1) qcd = qc1.decompose() self.assertEqual(Operator(qc1), Operator(qcd)) def test_decompose_global_phase_1q_composite(self): """Test decomposition of circuit with global phase in a composite gate.""" circ = QuantumCircuit(1, global_phase=pi / 2) circ.x(0) circ.h(0) v = circ.to_gate() qc1 = QuantumCircuit(1) qc1.append(v, [0]) qcd = qc1.decompose() self.assertEqual(Operator(qc1), Operator(qcd)) def test_decompose_only_h_gate(self): """Test decomposition parameters so that only a certain gate is decomposed.""" circ = QuantumCircuit(2, 1) circ.h(0) circ.cz(0, 1) decom_circ = circ.decompose(["h"]) dag = circuit_to_dag(decom_circ) self.assertEqual(len(dag.op_nodes()), 2) self.assertEqual(dag.op_nodes()[0].name, "u2") self.assertEqual(dag.op_nodes()[1].name, "cz") def test_decompose_only_given_label(self): """Test decomposition parameters so that only a given label is decomposed.""" decom_circ = self.complex_circuit.decompose(["gate2"]) dag = circuit_to_dag(decom_circ) self.assertEqual(len(dag.op_nodes()), 7) self.assertEqual(dag.op_nodes()[0].op.label, "gate1") self.assertEqual(dag.op_nodes()[1].name, "h") self.assertEqual(dag.op_nodes()[2].name, "cx") self.assertEqual(dag.op_nodes()[3].name, "x") self.assertEqual(dag.op_nodes()[4].name, "mcx") self.assertEqual(dag.op_nodes()[5].name, "h") self.assertRegex(dag.op_nodes()[6].name, "circuit-") def test_decompose_only_given_name(self): """Test decomposition parameters so that only given name is decomposed.""" decom_circ = self.complex_circuit.decompose(["mcx"]) dag = circuit_to_dag(decom_circ) self.assertEqual(len(dag.op_nodes()), 13) self.assertEqual(dag.op_nodes()[0].op.label, "gate1") self.assertEqual(dag.op_nodes()[1].op.label, "gate2") self.assertEqual(dag.op_nodes()[2].name, "h") self.assertEqual(dag.op_nodes()[3].name, "cu1") self.assertEqual(dag.op_nodes()[4].name, "rcccx") self.assertEqual(dag.op_nodes()[5].name, "h") self.assertEqual(dag.op_nodes()[6].name, "h") self.assertEqual(dag.op_nodes()[7].name, "cu1") self.assertEqual(dag.op_nodes()[8].name, "rcccx_dg") self.assertEqual(dag.op_nodes()[9].name, "h") self.assertEqual(dag.op_nodes()[10].name, "c3sx") self.assertEqual(dag.op_nodes()[11].name, "h") self.assertRegex(dag.op_nodes()[12].name, "circuit-") def test_decompose_mixture_of_names_and_labels(self): """Test decomposition parameters so that mixture of names and labels is decomposed""" decom_circ = self.complex_circuit.decompose(["mcx", "gate2"]) dag = circuit_to_dag(decom_circ) self.assertEqual(len(dag.op_nodes()), 15) self.assertEqual(dag.op_nodes()[0].op.label, "gate1") self.assertEqual(dag.op_nodes()[1].name, "h") self.assertEqual(dag.op_nodes()[2].name, "cx") self.assertEqual(dag.op_nodes()[3].name, "x") self.assertEqual(dag.op_nodes()[4].name, "h") self.assertEqual(dag.op_nodes()[5].name, "cu1") self.assertEqual(dag.op_nodes()[6].name, "rcccx") self.assertEqual(dag.op_nodes()[7].name, "h") self.assertEqual(dag.op_nodes()[8].name, "h") self.assertEqual(dag.op_nodes()[9].name, "cu1") self.assertEqual(dag.op_nodes()[10].name, "rcccx_dg") self.assertEqual(dag.op_nodes()[11].name, "h") self.assertEqual(dag.op_nodes()[12].name, "c3sx") self.assertEqual(dag.op_nodes()[13].name, "h") self.assertRegex(dag.op_nodes()[14].name, "circuit-") def test_decompose_name_wildcards(self): """Test decomposition parameters so that name wildcards is decomposed""" decom_circ = self.complex_circuit.decompose(["circuit-*"]) dag = circuit_to_dag(decom_circ) self.assertEqual(len(dag.op_nodes()), 9) self.assertEqual(dag.op_nodes()[0].name, "h") self.assertEqual(dag.op_nodes()[1].name, "t") self.assertEqual(dag.op_nodes()[2].name, "x") self.assertEqual(dag.op_nodes()[3].name, "h") self.assertRegex(dag.op_nodes()[4].name, "cx") self.assertEqual(dag.op_nodes()[5].name, "x") self.assertEqual(dag.op_nodes()[6].name, "mcx") self.assertEqual(dag.op_nodes()[7].name, "h") self.assertEqual(dag.op_nodes()[8].name, "x") def test_decompose_label_wildcards(self): """Test decomposition parameters so that label wildcards is decomposed""" decom_circ = self.complex_circuit.decompose(["gate*"]) dag = circuit_to_dag(decom_circ) self.assertEqual(len(dag.op_nodes()), 9) self.assertEqual(dag.op_nodes()[0].name, "h") self.assertEqual(dag.op_nodes()[1].name, "t") self.assertEqual(dag.op_nodes()[2].name, "x") self.assertEqual(dag.op_nodes()[3].name, "h") self.assertEqual(dag.op_nodes()[4].name, "cx") self.assertEqual(dag.op_nodes()[5].name, "x") self.assertEqual(dag.op_nodes()[6].name, "mcx") self.assertEqual(dag.op_nodes()[7].name, "h") self.assertRegex(dag.op_nodes()[8].name, "circuit-") def test_decompose_empty_gate(self): """Test a gate where the definition is an empty circuit is decomposed.""" empty = QuantumCircuit(1) circuit = QuantumCircuit(1) circuit.append(empty.to_gate(), [0]) decomposed = circuit.decompose() self.assertEqual(len(decomposed.data), 0) def test_decompose_reps(self): """Test decompose reps function is decomposed correctly""" decom_circ = self.complex_circuit.decompose(reps=2) decomposed = self.complex_circuit.decompose().decompose() self.assertEqual(decom_circ, decomposed) def test_decompose_single_qubit_clbit(self): """Test the decomposition of a block with a single qubit and clbit works. Regression test of Qiskit/qiskit-terra#8591. """ block = QuantumCircuit(1, 1) block.h(0) circuit = QuantumCircuit(1, 1) circuit.append(block, [0], [0]) decomposed = circuit.decompose() self.assertEqual(decomposed, block)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, PySCFDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer from qiskit_nature.settings import settings settings.dict_aux_operators = True molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = ElectronicStructureMoleculeDriver( molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF ) # or equivalently: driver = PySCFDriver.from_molecule(molecule, basis="sto3g") transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["ElectronicEnergy"] print(hamiltonian) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo from qiskit_nature.second_q.transformers import FreezeCoreTransformer molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") # this is now done explicitly problem = driver.run() transformer = FreezeCoreTransformer() # and you also apply transformers explicitly problem = transformer.transform(problem) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import PySCFDriver molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = PySCFDriver.from_molecule(molecule) result = driver.run() print(type(result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") result = driver.run() print(type(result)) from qiskit_nature.drivers.second_quantization import FCIDumpDriver path_to_fcidump = "aux_files/h2.fcidump" driver = FCIDumpDriver(path_to_fcidump) result = driver.run() print(type(result)) from qiskit_nature.second_q.formats.fcidump import FCIDump path_to_fcidump = "aux_files/h2.fcidump" fcidump = FCIDump.from_file(path_to_fcidump) print(type(fcidump)) from qiskit_nature.second_q.formats.fcidump_translator import fcidump_to_problem problem = fcidump_to_problem(fcidump) print(type(problem)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer driver = PySCFDriver() transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("ElectronicEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer driver = PySCFDriver() problem = driver.run() transformer = FreezeCoreTransformer() problem = transformer.transform(problem) hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from __future__ import annotations import numpy as np import networkx as nx num_nodes = 4 w = np.array([[0., 1., 1., 0.], [1., 0., 1., 1.], [1., 1., 0., 1.], [0., 1., 1., 0.]]) G = nx.from_numpy_array(w) layout = nx.random_layout(G, seed=10) colors = ['r', 'g', 'b', 'y'] nx.draw(G, layout, node_color=colors) labels = nx.get_edge_attributes(G, 'weight') nx.draw_networkx_edge_labels(G, pos=layout, edge_labels=labels); def objective_value(x: np.ndarray, w: np.ndarray) -> float: """Compute the value of a cut. Args: x: Binary string as numpy array. w: Adjacency matrix. Returns: Value of the cut. """ X = np.outer(x, (1 - x)) w_01 = np.where(w != 0, 1, 0) return np.sum(w_01 * X) def bitfield(n: int, L: int) -> list[int]: result = np.binary_repr(n, L) return [int(digit) for digit in result] # [2:] to chop off the "0b" part # use the brute-force way to generate the oracle L = num_nodes max = 2**L sol = np.inf for i in range(max): cur = bitfield(i, L) how_many_nonzero = np.count_nonzero(cur) if how_many_nonzero * 2 != L: # not balanced continue cur_v = objective_value(np.array(cur), w) if cur_v < sol: sol = cur_v print(f'Objective value computed by the brute-force method is {sol}') from qiskit.quantum_info import Pauli, SparsePauliOp def get_operator(weight_matrix: np.ndarray) -> tuple[SparsePauliOp, float]: r"""Generate Hamiltonian for the graph partitioning Notes: Goals: 1 Separate the vertices into two set of the same size. 2 Make sure the number of edges between the two set is minimized. Hamiltonian: H = H_A + H_B H_A = sum\_{(i,j)\in E}{(1-ZiZj)/2} H_B = (sum_{i}{Zi})^2 = sum_{i}{Zi^2}+sum_{i!=j}{ZiZj} H_A is for achieving goal 2 and H_B is for achieving goal 1. Args: weight_matrix: Adjacency matrix. Returns: Operator for the Hamiltonian A constant shift for the obj function. """ num_nodes = len(weight_matrix) pauli_list = [] coeffs = [] shift = 0 for i in range(num_nodes): for j in range(i): if weight_matrix[i, j] != 0: x_p = np.zeros(num_nodes, dtype=bool) z_p = np.zeros(num_nodes, dtype=bool) z_p[i] = True z_p[j] = True pauli_list.append(Pauli((z_p, x_p))) coeffs.append(-0.5) shift += 0.5 for i in range(num_nodes): for j in range(num_nodes): if i != j: x_p = np.zeros(num_nodes, dtype=bool) z_p = np.zeros(num_nodes, dtype=bool) z_p[i] = True z_p[j] = True pauli_list.append(Pauli((z_p, x_p))) coeffs.append(1.0) else: shift += 1 return SparsePauliOp(pauli_list, coeffs=coeffs), shift qubit_op, offset = get_operator(w) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import TwoLocal from qiskit.primitives import Sampler from qiskit.quantum_info import Pauli, Statevector from qiskit.result import QuasiDistribution from qiskit.utils import algorithm_globals sampler = Sampler() def sample_most_likely(state_vector: QuasiDistribution | Statevector) -> np.ndarray: """Compute the most likely binary string from state vector. Args: state_vector: State vector or quasi-distribution. Returns: Binary string as an array of ints. """ if isinstance(state_vector, QuasiDistribution): values = list(state_vector.values()) else: values = state_vector n = int(np.log2(len(values))) k = np.argmax(np.abs(values)) x = bitfield(k, n) x.reverse() return np.asarray(x) algorithm_globals.random_seed = 10598 optimizer = COBYLA() qaoa = QAOA(sampler, optimizer, reps=2) result = qaoa.compute_minimum_eigenvalue(qubit_op) x = sample_most_likely(result.eigenstate) print(x) print(f'Objective value computed by QAOA is {objective_value(x, w)}') from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.quantum_info import Operator npme = NumPyMinimumEigensolver() result = npme.compute_minimum_eigenvalue(Operator(qubit_op)) x = sample_most_likely(result.eigenstate) print(x) print(f'Objective value computed by the NumPyMinimumEigensolver is {objective_value(x, w)}') from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.circuit.library import TwoLocal from qiskit.utils import algorithm_globals algorithm_globals.random_seed = 10598 optimizer = COBYLA() ansatz = TwoLocal(qubit_op.num_qubits, "ry", "cz", reps=2, entanglement="linear") sampling_vqe = SamplingVQE(sampler, ansatz, optimizer) result = sampling_vqe.compute_minimum_eigenvalue(qubit_op) x = sample_most_likely(result.eigenstate) print(x) print(f"Objective value computed by VQE is {objective_value(x, w)}") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/AbeerVaishnav13/Quantum-Programs
AbeerVaishnav13
from qiskit import * %matplotlib inline import numpy as np qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0, 1) qc.draw('mpl') from qiskit.visualization import plot_state_hinton sim = Aer.get_backend('statevector_simulator') # qasm_simulator, statevector_simulator, unitary_simulator result = execute(qc, backend=sim).result() state = result.get_statevector(qc) plot_state_hinton(state) from qiskit.visualization import * from matplotlib import style style.use('bmh') style.use('dark_background') plot_state_city(state) plot_state_paulivec(result.get_statevector(qc)) from qiskit import IBMQ IBMQ.load_account() from qiskit.tools.monitor import job_monitor provider = IBMQ.get_provider(hub='ibm-q', group='open') backend = provider.get_backend('ibmq_santiago') job = execute(qc, backend=backend, shots=8192) job_monitor(job) from qiskit.visualization import plot_histogram result = job.result() plot_histogram(result.get_counts(qc))
https://github.com/nicomeyer96/qiskit-torch-module
nicomeyer96
# This code is part of the Qiskit-Torch-Module. # # If used in your project please cite this work as described in the README file. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import numpy as np import torch import torch.nn as nn from collections.abc import Sequence from qiskit import QuantumCircuit from qiskit.circuit import Parameter, ParameterVector from . import QuantumModule class HybridModule(nn.Module): """ This class implements a hybrid torch-module, by embedding a quantum module (with Pauli-Z observables on all individual qubits) between two linear layers. args: circuit: Quantum circuit ansatz encoding_params: Parameters used for data encoding, must be present in circuit | None if the circuit does not use data encoding variational_params: Parameters used for training, must be present in circuit input_size: Dimensionality of input (does NOT need to correspond to number of encoding parameters) output_size: Dimensionality of output (does NOT need to correspond to number of observables /qubits) variational_params_names: Names for the trainable parameter sets (default: `variational_#`) variational_params_initial: Initializers for the trainable parameter sets (default: 'uniform') choices: constant(val=1.0) | uniform(a=0.0, b=2*pi) | normal(mean=0.0, std=1.0) seed_init: Generate initial parameters with fixed seed (default: None) num_threads_forward: Number of parallel threads for forward computation (default: all available threads) num_threads_backward: Number of parallel threads for backward computation (default: all available threads) """ def __init__( self, circuit: QuantumCircuit, encoding_params: Sequence[Parameter] | ParameterVector | None, variational_params: Sequence[Sequence[Parameter]] | Sequence[ParameterVector] | Sequence[Parameter] | ParameterVector, input_size: int, output_size: int, variational_params_names: Sequence[str] | str = None, variational_params_initial: str | tuple[str, dict[str: float]] | Sequence[float, np.floating] | Sequence[str | tuple[str, dict[str: float]] | Sequence[float]] = 'uniform', seed_init: int = None, num_threads_forward: int = 0, num_threads_backward: int = 0, ): super(HybridModule, self).__init__() # save torch.random state from before torch_random_state_ = torch.random.get_rng_state() if seed_init is not None: torch.random.manual_seed(seed_init) # initialize classical preprocessing layer (keep this order to ensure printing in right order) self._preprocessing = nn.Linear(in_features=input_size, out_features=len(encoding_params), bias=True) self._input_size = input_size # initialize quantum module # - single-qubit observables have to be evaluated on all qubits, as this is assumed by the postprocessing NN # - gradients w.r.t. input parameters have to be computed in order to propagate them to the preprocessing NN # - the seed is set to None, as a `global` seed can also be set in the hybrid module self._quantum_module = QuantumModule( circuit=circuit, encoding_params=encoding_params, variational_params=variational_params, variational_params_names=variational_params_names, variational_params_initial=variational_params_initial, observables='individualZ', num_threads_forward=num_threads_forward, num_threads_backward=num_threads_backward, encoding_gradients_flag=True, seed_init=None ) # initialize classical postprocessing layer self._postprocessing = nn.Linear(in_features=self._quantum_module.output_size, out_features=output_size, bias=True) self._output_size = output_size # re-set seed to restore previous behaviour (i.e. don't interfere with potential other (un)set seeds) if seed_init is not None: torch.random.set_rng_state(torch_random_state_) def forward( self, input_tensor: torch.Tensor ) -> torch.Tensor: """ Forward pass through preprocessing linear layer, quantum module, and post-processing linear layer Args: input_tensor: Input to the quantum module Returns: Result of forward pass """ # Make sure everything is realized as Tensor (dtype=torch.float32 to enhance efficiency) if not torch.is_tensor(input_tensor): if isinstance(input_tensor, list): # conversion list -> np.array -> torch.tensor is faster than directly list -> torch.tensor input_tensor = np.array(input_tensor) input_tensor = torch.FloatTensor(input_tensor) else: input_tensor = input_tensor.to(dtype=torch.float32) input_tensor = self._preprocessing(input_tensor) input_tensor = self._quantum_module(input_tensor) input_tensor = self._postprocessing(input_tensor) return input_tensor @property def quantum_module(self): """ Returns underlying quantum module """ return self._quantum_module @property def pre_parameters_(self): """ Returns a handle of the trainable parameters in the preprocessing NN (weights + bias) """ return self._preprocessing.parameters() @property def quantum_parameters_(self): """ Returns a handle of the trainable parameters in the quantum module (only for convenience, can also be accessed via the methods of the `quantum_module`) Can be used to initialize a torch optimizer, e.g.: torchHQNN = HybridModule(...) opt = torch.optim.SGD([{'params': torchHQNN.pre_parameters}, {'params': torchHQNN.quantum_parameters_}, {'params': torchHQNN.post_parameters_}], lr=0.1) This is equivalent to: opt = torch.optim.SGD(torchHQNN.parameters(), lr=0.1) One can also use the class members to access the individual parameter sets of the quantum module (omitting the classical parameters for now, which can be handled in a similar fashion) opt = torch.optim.SGD([{'params': qtmModel.quantum_module.variational_0}, {'params': qtmModel.quantum_module.variational_1}], lr=0.1) or opt = torch.optim.SGD([{'params': qtmModel.quantum_parameters_[0]}, {'params': qtmModel.quantum_parameters_[0]}], lr=0.1) In this case equivalent to above, but can be used to set e.g. different learning rates for parameter sets. A summary of all available parameter sets can also be visualized: print(torchHQNN) """ return self._quantum_module.variational_ @property def post_parameters_(self): """ Returns a handle of the trainable parameters in the preprocessing NN (weights + bias) """ return self._postprocessing.parameters() @property def num_trainable_parameters_quantum(self): """ Returns number of trainable parameters in the quantum part if the hybrid module. """ return self._quantum_module.num_trainable_parameters @property def num_trainable_parameters_classical(self): """ Returns number of trainable parameters in the quantum part if the hybrid module. """ pre_parameters = filter(lambda p: p.requires_grad, self._preprocessing.parameters()) post_parameters = filter(lambda p: p.requires_grad, self._postprocessing.parameters()) return sum([np.prod(p.size()) for p in pre_parameters]) + sum([np.prod(p.size()) for p in post_parameters]) @property def num_trainable_parameters(self): """ Returns number of trainable parameters in the hybrid module """ return self.num_trainable_parameters_quantum + self.num_trainable_parameters_classical @property def input_size(self) -> int: """ Returns the input size of the hybrid module """ return self._input_size @property def output_size(self) -> int: """ Returns the output size of the hybrid module """ return self._output_size
https://github.com/zeynepCankara/Introduction-Quantum-Programming
zeynepCankara
# # your solution is here # import numpy as np random_arr = np.random.randn(3,3) random_arr = np.abs(random_arr) sum_elements = np.sum(random_arr) random_arr = random_arr / sum_elements print(random_arr) print("verify the probabilistic state from sum of elements: " + str(np.sum(random_arr))) # # your solution is here # prob_operator = np.array([[0.6, 0.3], [0.4, 0.7]]) prob_state = np.array([1, 0]) new_prob_state = np.matmul(prob_operator, prob_state) print("1st state transition: " + str(new_prob_state)) new_prob_state = np.matmul(prob_operator, new_prob_state) print("2nd state transition: " + str(new_prob_state)) # operator for the test A = [ [0.4,0.6,0], [0.2,0.1,0.7], [0.4,0.3,0.3] ] # state for test v = [0.1,0.3,0.6] # # your solution is here # # v = [1,0,0] def find_new_state(A, v): return np.matmul(A, v) new_state = find_new_state(A, v) print(new_state) # the initial state initial = [0.5, 0, 0.5, 0] # probabilistic operator for symbol a A = [ [0.5, 0, 0, 0], [0.25, 1, 0, 0], [0, 0, 1, 0], [0.25, 0, 0, 1] ] # probabilistic operator for symbol b B = [ [1, 0, 0, 0], [0, 1, 0.25, 0], [0, 0, 0.5, 0], [0, 0, 0.25, 1] ] # # your solution is here # def find_new_state(operator, initial): return np.matmul(operator, initial) def read_string(string_to_read): for c in string_to_read:
https://github.com/lmarza/QuantumDeskCalculator
lmarza
import math from qiskit import * from utils import bcolors, executeQFT, evolveQFTStateSub, inverseQFT pie = math.pi def sub(a, b, qc): n = len(a) #Compute the Fourier transform of register a for i in range(0, n): executeQFT(qc, a, n-(i+1), pie) #Add the two numbers by evolving the Fourier transform F(ψ(reg_a))> #to |F(ψ(reg_a-reg_b))> for i in range(0, n): evolveQFTStateSub(qc, a, b, n-(i+1), pie) #Compute the inverse Fourier transform of register a for i in range(0, n): inverseQFT(qc, a, i, pie)
https://github.com/Advanced-Research-Centre/QPULBA
Advanced-Research-Centre
import numpy as np import random from qiskit import QuantumCircuit, Aer, execute from math import log2, ceil, pi from numpy import savetxt, save, savez_compressed #===================================================================================================================== simulator = Aer.get_backend('statevector_simulator') def disp_isv(circ, msg="", all=True, precision=1e-8): sim_res = execute(circ, simulator).result() statevector = sim_res.get_statevector(circ) qb = int(log2(len(statevector))) print("\n============ State Vector ============", msg) s = 0 for i in statevector: if (all == True): print(' ({:+.5f}) |{:0{}b}>'.format(i,s,qb)) else: if (abs(i) > precision): print(' ({:+.5f}) |{:0{}b}>'.format(i,s,qb)) s = s+1 print("============..............============") return # 24 qubits with Hadamard on 12 qubits log size: 880 MB csv, 816 MB txt, 256 MB npy, 255 KB npz def save_isv(statevector, mode=1): if (mode == 1): savez_compressed('output.npz', statevector) elif (mode == 2): save('output.npy', statevector) elif (mode == 3): qb = int(log2(len(statevector))) f = open("output.txt", "w") f.write("============ State Vector ============\n") s = 0 for i in statevector: f.write(' ({:+.5f}) |{:0{}b}>'.format(i,s,qb)+'\n') s = s+1 f.write("============..............============") f.close() elif (mode == 4): savetxt('output.csv', statevector, delimiter=',') else: print('Invalid mode selected') return #===================================================================================================================== def nCX(k,c,t,b): nc = len(c) if nc == 1: k.cx(c[0], t[0]) elif nc == 2: k.toffoli(c[0], c[1], t[0]) else: nch = ceil(nc/2) c1 = c[:nch] c2 = c[nch:] c2.append(b[0]) nCX(k,c1,b,[nch+1]) nCX(k,c2,t,[nch-1]) nCX(k,c1,b,[nch+1]) nCX(k,c2,t,[nch-1]) return #===================================================================================================================== def U_init(qcirc, circ_width, fsm): for i in fsm: qcirc.h(i) return def U_read(qcirc, read, head, tape, ancilla): # Reset read (prepz measures superposed states... need to uncompute) for cell in range(0, len(tape)): enc = format(cell, '#0'+str(len(head)+2)+'b') # 2 for '0b' prefix for i in range(2, len(enc)): if(enc[i] == '0'): qcirc.x(head[(len(head)-1)-(i-2)]) nCX(qcirc, head+[tape[cell]], read, [ancilla[0]]) for i in range(2, len(enc)): if(enc[i] == '0'): qcirc.x(head[(len(head)-1)-(i-2)]) qcirc.barrier() return def U_fsm(qcirc, tick, fsm, state, read, write, move, ancilla): # Description Number Encoding: {Q/M/W}{QR} # [ Q11 M11 W11 Q10 M10 W10 Q01 M01 W01 Q00 M00 W00 ] LSQ = W00 = fsm[0] qcirc.x(state[tick]) # If s == 0 qcirc.x(read[0]) # If s == 0 && read == 0 nCX(qcirc, [state[tick],fsm[0],read[0]], write, [ancilla[0]]) # Update write nCX(qcirc, [state[tick],fsm[1],read[0]], move, [ancilla[0]]) # Update move nCX(qcirc, [state[tick],fsm[2],read[0]], [state[tick+1]], [ancilla[0]]) # Update state qcirc.x(read[0]) # If s == 0 && read == 1 nCX(qcirc, [state[tick],fsm[3],read[0]], write, [ancilla[0]]) # Update write nCX(qcirc, [state[tick],fsm[4],read[0]], move, [ancilla[0]]) # Update move nCX(qcirc, [state[tick],fsm[5],read[0]], [state[tick+1]], [ancilla[0]]) # Update state qcirc.x(state[tick]) # If s == 1 qcirc.x(read[0]) # If s == 1 && read == 0 nCX(qcirc, [state[tick],fsm[6],read[0]], write, [ancilla[0]]) # Update write nCX(qcirc, [state[tick],fsm[7],read[0]], move, [ancilla[0]]) # Update move nCX(qcirc, [state[tick],fsm[8],read[0]], [state[tick+1]], [ancilla[0]]) # Update state qcirc.x(read[0]) # If s == 1 && read == 1 nCX(qcirc, [state[tick],fsm[9],read[0]], write, [ancilla[0]]) # Update write nCX(qcirc, [state[tick],fsm[10],read[0]], move, [ancilla[0]]) # Update move nCX(qcirc, [state[tick],fsm[11],read[0]], [state[tick+1]], [ancilla[0]]) # Update state return def U_write(qcirc, write, head, tape, ancilla): # Reset write (prepz measures superposed states... need to uncompute) for cell in range(0, len(tape)): enc = format(cell, '#0'+str(len(head)+2)+'b') # 2 for '0b' prefix for i in range(2, len(enc)): if(enc[i] == '0'): qcirc.x(head[(len(head)-1)-(i-2)]) nCX(qcirc, head+write, [tape[cell]], [ancilla[0]]) for i in range(2, len(enc)): if(enc[i] == '0'): qcirc.x(head[(len(head)-1)-(i-2)]) return def U_move(qcirc, move, head, ancilla): # Increment/Decrement using Adder reg_a = move.copy() reg_a.extend([-1]*(len(head)-len(move))) reg_b = head.copy() reg_c = [-1] # No initial carry reg_c.extend(ancilla) reg_c.append(-1) # Ignore Head position under/overflow. Trim bits. Last carry not accounted, All-ones overflows to All-zeros def q_carry(qcirc, q0, q1, q2, q3): if (q1 != -1 and q2 != -1 and q3 != -1): qcirc.toffoli(q1, q2, q3) if (q1 != -1 and q2 != -1): qcirc.cx(q1, q2) if (q0 != -1 and q2 != -1 and q3 != -1): qcirc.toffoli(q0, q2, q3) def q_mid(qcirc, q0, q1): if (q0 != -1 and q1 != -1): qcirc.cx(q0, q1) def q_sum(qcirc, q0, q1, q2): if (q0 != -1 and q2 != -1): qcirc.cx(q0, q2) if (q1 != -1 and q2 != -1): qcirc.cx(q1, q2) def q_rcarry(qcirc, q0, q1, q2, q3): if (q0 != -1 and q2 != -1 and q3 != -1): qcirc.toffoli(q0, q2, q3) if (q1 != -1 and q2 != -1): qcirc.cx(q1, q2) if (q1 != -1 and q2 != -1 and q3 != -1): qcirc.toffoli(q1, q2, q3) # Quantum Adder for i in range(0,len(head)): q_carry(qcirc,reg_c[i],reg_a[i],reg_b[i],reg_c[i+1]) q_mid(qcirc,reg_a[i],reg_b[i]) q_sum(qcirc,reg_c[i],reg_a[i],reg_b[i]) for i in range(len(head)-2,-1,-1): q_rcarry(qcirc,reg_c[i],reg_a[i],reg_b[i],reg_c[i+1]) q_sum(qcirc,reg_c[i],reg_a[i],reg_b[i]) qcirc.barrier(move, head, ancilla) qcirc.x(reg_a[0]) # Quantum Subtractor for i in range(0,len(head)-1): q_sum(qcirc,reg_c[i],reg_a[i],reg_b[i]) q_carry(qcirc,reg_c[i],reg_a[i],reg_b[i],reg_c[i+1]) q_sum(qcirc,reg_c[i+1],reg_a[i+1],reg_b[i+1]) q_mid(qcirc,reg_a[i+1],reg_b[i+1]) for i in range(len(head)-2,-1,-1): q_rcarry(qcirc,reg_c[i],reg_a[i],reg_b[i],reg_c[i+1]) qcirc.x(reg_a[0]) qcirc.barrier() return def U_rst(qcirc, tick, fsm, state, read, write, move, ancilla): # Reset write and move qcirc.x(state[tick]) qcirc.x(read[0]) nCX(qcirc, [state[tick],fsm[0],read[0]], write, [ancilla[0]]) nCX(qcirc, [state[tick],fsm[1],read[0]], move, [ancilla[0]]) qcirc.x(read[0]) nCX(qcirc, [state[tick],fsm[3],read[0]], write, [ancilla[0]]) nCX(qcirc, [state[tick],fsm[4],read[0]], move, [ancilla[0]]) qcirc.x(state[tick]) qcirc.x(read[0]) nCX(qcirc, [state[tick],fsm[6],read[0]], write, [ancilla[0]]) nCX(qcirc, [state[tick],fsm[7],read[0]], move, [ancilla[0]]) qcirc.x(read[0]) nCX(qcirc, [state[tick],fsm[9],read[0]], write, [ancilla[0]]) nCX(qcirc, [state[tick],fsm[10],read[0]], move, [ancilla[0]]) # Maintain computation history qcirc.swap(state[0],state[tick+1]) return #===================================================================================================================== def Test_cfg(block): global fsm, state, move, head, read, write, tape, ancilla, test if (block == 'none'): return elif (block == 'read'): fsm = [] state = [] move = [] head = [0,1,2,3] read = [4] write = [] tape = [5,6,7,8,9,10,11,12,13,14,15,16] ancilla = [17] test = [18] elif (block == 'fsm'): fsm = [0,1,2,3,4,5,6,7,8,9,10,11] state = [12,13] move = [14] head = [] read = [15] write = [16] tape = [] ancilla = [17] test = [18,19,20] elif (block == 'move'): fsm = [] state = [] move = [0] head = [1,2,3,4] read = [] write = [] tape = [] ancilla = [5,6,7] test = [8,9,10,11] elif (block == 'write'): fsm = [] state = [] move = [] head = [0,1,2,3] read = [] write = [4] tape = [5,6,7,8,9,10,11,12,13,14,15,16] ancilla = [17] test = []#[18,19,20,21,22,23,24,25,26,27,28,29] elif (block == 'rst'): fsm = [0,1,2,3,4,5,6,7,8,9,10,11] state = [12,13] move = [14] head = [] read = [15] write = [16] tape = [] ancilla = [17] test = [18,19,20,21] print("\n\nTEST CONFIGURATION\n\tFSM\t:",fsm,"\n\tSTATE\t:",state,"\n\tMOVE\t:",move,"\n\tHEAD\t:",head,"\n\tREAD\t:",read,"\n\tWRITE\t:",write,"\n\tTAPE\t:",tape,"\n\tANCILLA :",ancilla,"\n\tTEST\t:",test) def Test_read(qcirc, read, head, tape, ancilla, test): # Test using full superposition of head and some random tape qubits # Test associated to read for i in range(0,len(head)): qcirc.h(head[i]) # Create random binary string of length tape randbin = "" for i in range(len(tape)): randbin += str(random.randint(0, 1)) for i in range(0,len(tape)): if (randbin[i] == '1'): qcirc.h(tape[i]) # Replace H with X for ease qcirc.cx(read[0],test[0]) print("Test tape:",randbin) qcirc.barrier() return def Test_fsm(qcirc, tick, fsm, state, read, write, move, ancilla, test): # Test using full superposition of fsm, current state, read # Test associated to move, write, new state # fsm superposition part of U_init qcirc.barrier() qcirc.h(state[0]) qcirc.h(read[0]) qcirc.barrier() qcirc.cx(write[0],test[0]) qcirc.cx(move[0],test[1]) qcirc.cx(state[1],test[2]) qcirc.barrier() return def Test_write(qcirc, write, head, tape, ancilla, test): # Test using full superposition of head and write # Test associated to tape (optional) for i in range(0,len(head)): qcirc.h(head[i]) qcirc.h(write) # for i in range(0,len(tape)): # qcirc.cx(tape[i],test[i]) return def Test_move(qcirc, move, head, ancilla, test): # Test using full superposition of head, both inc/dec # Test associated to head for i in range(0,len(head)): qcirc.ry(round(np.pi * random.random(),2),head[i]) qcirc.cx(head[i],test[i]) qcirc.ry(round(np.pi * random.random(),2),move[0]) qcirc.barrier() return def Test_rst(qcirc, tick, fsm, state, read, write, move, ancilla, test): # Test using full superposition of fsm, current state, read # Test associated to move, write, new state # fsm superposition part of U_init for i in range(0,len(state)): qcirc.h(state[i]) qcirc.h(read[0]) qcirc.h(write[0]) qcirc.h(move[0]) qcirc.barrier() for i in range(0,len(state)): qcirc.cx(state[i],test[i]) qcirc.cx(write[0],test[len(state)]) qcirc.cx(move[0],test[len(state)+1]) qcirc.barrier() return #===================================================================================================================== ssz = 2 # State size (Initial state is all 0) asz = 2 # Alphabet size: Binary (0 is blank/default) tdim = 1 # Tape dimension csz = ceil(log2(asz)) # Character symbol size senc = ceil(log2(ssz)) # State encoding size transitions = ssz * asz # Number of transition arrows in FSM dsz = transitions * (tdim + csz + senc) # Description size machines = 2 ** dsz print("\nNumber of "+str(ssz)+"-state "+str(asz)+"-symbol "+str(tdim)+"-dimension Quantum Parallel Universal Linear Bounded Automata: "+str(machines)) tsz = dsz # Turing Tape size (same as dsz to estimating self-replication and algorithmic probability) hsz = ceil(log2(tsz)) # Head size sim_tick = tsz # Number of ticks of the FSM before abort sim_tick = 1 # Just 1 QPULBA cycle for proof-of-concept tlog = (sim_tick+1) * senc # Transition log # required? nanc = 3 qnos = [dsz, tlog, tdim, hsz, csz, csz, tsz, nanc] fsm = list(range(sum(qnos[0:0]),sum(qnos[0:1]))) state = list(range(sum(qnos[0:1]),sum(qnos[0:2]))) # States (Binary coded) move = list(range(sum(qnos[0:2]),sum(qnos[0:3]))) head = list(range(sum(qnos[0:3]),sum(qnos[0:4]))) # Binary coded, 0-MSB 2-LSB, [001] refers to Tape pos 1, not 4 read = list(range(sum(qnos[0:4]),sum(qnos[0:5]))) write = list(range(sum(qnos[0:5]),sum(qnos[0:6]))) # Can be MUXed with read? tape = list(range(sum(qnos[0:6]),sum(qnos[0:7]))) ancilla = list(range(sum(qnos[0:7]),sum(qnos[0:8]))) print("\nFSM\t:",fsm,"\nSTATE\t:",state,"\nMOVE\t:",move,"\nHEAD\t:",head,"\nREAD\t:",read,"\nWRITE\t:",write,"\nTAPE\t:",tape,"\nANCILLA :",ancilla) #===================================================================================================================== test = [] unit = 'all' # 'all', read', 'fsm', 'write', 'move', 'rst' Test_cfg(unit) qcirc_width = len(fsm) + len(state) + len(move) + len(head) + len(read) + len(write) + len(tape) + len(ancilla) + len(test) qcirc = QuantumCircuit(qcirc_width) qcirc.barrier() # 1. Initialize U_init(qcirc, qcirc_width, fsm) # 2. Run machine for n-iterations: for tick in range(0, sim_tick): # 2.1 {read} << U_read({head, tape}) if (unit == 'read'): Test_read(qcirc, read, head, tape, ancilla, test) if (unit == 'read' or unit == 'all'): U_read(qcirc, read, head, tape, ancilla) # 2.2 {write, state, move} << U_fsm({read, state, fsm}) if (unit == 'fsm'): Test_fsm(qcirc, tick, fsm, state, read, write, move, ancilla, test) if (unit == 'fsm' or unit == 'all'): U_fsm(qcirc, tick, fsm, state, read, write, move, ancilla) # 2.3 {tape} << U_write({head, write}) if (unit == 'write'): Test_write(qcirc, write, head, tape, ancilla, test) if (unit == 'write' or unit == 'all'): U_write(qcirc, write, head, tape, ancilla) # 2.4 {head, err} << U_move({head, move}) if (unit == 'move'): Test_move(qcirc, move, head, ancilla, test) if (unit == 'move' or unit == 'all'): U_move(qcirc, move, head, ancilla) # 2.5 reset if (unit == 'rst'): Test_rst(qcirc, tick, fsm, state, read, write, move, ancilla, test) if (unit == 'rst' or unit == 'all'): U_rst(qcirc, tick, fsm, state, read, write, move, ancilla) print() print(qcirc.draw()) #print(qcirc.qasm()) #disp_isv(qcirc, "Step: Test "+unit, all=False, precision=1e-4) # Full simulation doesn't work #=====================================================================================================================
https://github.com/mballarin97/mps_qnn
mballarin97
from qiskit import * from oracle_generation import generate_oracle get_bin = lambda x, n: format(x, 'b').zfill(n) def gen_circuits(min,max,size): circuits = [] secrets = [] ORACLE_SIZE = size for i in range(min,max+1): cur_str = get_bin(i,ORACLE_SIZE-1) (circuit, secret) = generate_oracle(ORACLE_SIZE,False,3,cur_str) circuits.append(circuit) secrets.append(secret) return (circuits, secrets)
https://github.com/quantumyatra/quantum_computing
quantumyatra
# Useful additional packages import matplotlib.pyplot as plt %matplotlib inline import numpy as np from math import pi from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer from qiskit.quantum_info import state_fidelity from qiskit import BasicAer backend = BasicAer.get_backend('unitary_simulator') q = QuantumRegister(2) qc = QuantumCircuit(q) qc.cu1(pi/2,q[0], q[1]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) q = QuantumRegister(3) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q[0]) qc.cu1(pi/2,q[0], q[1]) qc.u3(pi/2,pi/2,pi/2,q[1]) qc.cu1(pi/2,q[1], q[2]) qc.u3(pi/2,pi/2,pi/2,q[2]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) q = QuantumRegister(4) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q[0]) qc.cu1(pi/2,q[0], q[1]) qc.u2(pi/2,pi/2,q[1]) qc.u1(pi/2,q[2]) qc.x(q[0]) qc.ccx(q[1],q[2],q[3]) qc.y(q[1]) qc.z(q[2]) qc.cx(q[2],q[3]) qc.z(q[3]) qc.h(q[3]) qc.s(q[0]) qc.cu1(pi/2,q[1], q[2]) qc.swap(q[0],q[2]) qc.cswap(q[0],q[1],q[3]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt import numpy as np from qiskit.circuit import ParameterVector from qiskit.circuit.library import TwoLocal from qiskit.quantum_info import Statevector from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit_aer.primitives import Sampler from qiskit_finance.applications.estimation import EuropeanCallPricing from qiskit_finance.circuit.library import NormalDistribution # Set upper and lower data values bounds = np.array([0.0, 7.0]) # Set number of qubits used in the uncertainty model num_qubits = 3 # Load the trained circuit parameters g_params = [0.29399714, 0.38853322, 0.9557694, 0.07245791, 6.02626428, 0.13537225] # Set an initial state for the generator circuit init_dist = NormalDistribution(num_qubits, mu=1.0, sigma=1.0, bounds=bounds) # construct the variational form var_form = TwoLocal(num_qubits, "ry", "cz", entanglement="circular", reps=1) # keep a list of the parameters so we can associate them to the list of numerical values # (otherwise we need a dictionary) theta = var_form.ordered_parameters # compose the generator circuit, this is the circuit loading the uncertainty model g_circuit = init_dist.compose(var_form) # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 2 # set the approximation scaling for the payoff function c_approx = 0.25 # Evaluate trained probability distribution values = [ bounds[0] + (bounds[1] - bounds[0]) * x / (2**num_qubits - 1) for x in range(2**num_qubits) ] uncertainty_model = g_circuit.assign_parameters(dict(zip(theta, g_params))) amplitudes = Statevector.from_instruction(uncertainty_model).data x = np.array(values) y = np.abs(amplitudes) ** 2 # Sample from target probability distribution N = 100000 log_normal = np.random.lognormal(mean=1, sigma=1, size=N) log_normal = np.round(log_normal) log_normal = log_normal[log_normal <= 7] log_normal_samples = [] for i in range(8): log_normal_samples += [np.sum(log_normal == i)] log_normal_samples = np.array(log_normal_samples / sum(log_normal_samples)) # Plot distributions plt.bar(x, y, width=0.2, label="trained distribution", color="royalblue") plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.plot( log_normal_samples, "-o", color="deepskyblue", label="target distribution", linewidth=4, markersize=12, ) plt.legend(loc="best") plt.show() # Evaluate payoff for different distributions payoff = np.array([0, 0, 0, 1, 2, 3, 4, 5]) ep = np.dot(log_normal_samples, payoff) print("Analytically calculated expected payoff w.r.t. the target distribution: %.4f" % ep) ep_trained = np.dot(y, payoff) print("Analytically calculated expected payoff w.r.t. the trained distribution: %.4f" % ep_trained) # Plot exact payoff function (evaluated on the grid of the trained uncertainty model) x = np.array(values) y_strike = np.maximum(0, x - strike_price) plt.plot(x, y_strike, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # construct circuit for payoff function european_call_pricing = EuropeanCallPricing( num_qubits, strike_price=strike_price, rescaling_factor=c_approx, bounds=bounds, uncertainty_model=uncertainty_model, ) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_pricing.to_estimation_problem() # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % ep_trained) print("Estimated value: \t%.4f" % (result.estimation_processed)) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer, MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from docplex.mp.model import Model model = Model() x0 = model.binary_var(name="x0") x1 = model.binary_var(name="x1") x2 = model.binary_var(name="x2") model.minimize(-x0 + 2 * x1 - 3 * x2 - 2 * x0 * x2 - 1 * x1 * x2) qp = from_docplex_mp(model) print(qp.prettyprint()) grover_optimizer = GroverOptimizer(6, num_iterations=10, sampler=Sampler()) results = grover_optimizer.solve(qp) print(results.prettyprint()) exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qp) print(exact_result.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Durations of instructions, one of transpiler configurations.""" from __future__ import annotations from typing import Optional, List, Tuple, Union, Iterable import qiskit.circuit from qiskit.circuit import Barrier, Delay from qiskit.circuit import Instruction, Qubit, ParameterExpression from qiskit.circuit.duration import duration_in_dt from qiskit.providers import Backend from qiskit.transpiler.exceptions import TranspilerError from qiskit.utils.deprecation import deprecate_arg from qiskit.utils.units import apply_prefix def _is_deprecated_qubits_argument(qubits: Union[int, list[int], Qubit, list[Qubit]]) -> bool: if isinstance(qubits, (int, Qubit)): qubits = [qubits] return isinstance(qubits[0], Qubit) class InstructionDurations: """Helper class to provide durations of instructions for scheduling. It stores durations (gate lengths) and dt to be used at the scheduling stage of transpiling. It can be constructed from ``backend`` or ``instruction_durations``, which is an argument of :func:`transpile`. The duration of an instruction depends on the instruction (given by name), the qubits, and optionally the parameters of the instruction. Note that these fields are used as keys in dictionaries that are used to retrieve the instruction durations. Therefore, users must use the exact same parameter value to retrieve an instruction duration as the value with which it was added. """ def __init__( self, instruction_durations: "InstructionDurationsType" | None = None, dt: float = None ): self.duration_by_name: dict[str, tuple[float, str]] = {} self.duration_by_name_qubits: dict[tuple[str, tuple[int, ...]], tuple[float, str]] = {} self.duration_by_name_qubits_params: dict[ tuple[str, tuple[int, ...], tuple[float, ...]], tuple[float, str] ] = {} self.dt = dt if instruction_durations: self.update(instruction_durations) def __str__(self): """Return a string representation of all stored durations.""" string = "" for k, v in self.duration_by_name.items(): string += k string += ": " string += str(v[0]) + " " + v[1] string += "\n" for k, v in self.duration_by_name_qubits.items(): string += k[0] + str(k[1]) string += ": " string += str(v[0]) + " " + v[1] string += "\n" return string @classmethod def from_backend(cls, backend: Backend): """Construct an :class:`InstructionDurations` object from the backend. Args: backend: backend from which durations (gate lengths) and dt are extracted. Returns: InstructionDurations: The InstructionDurations constructed from backend. Raises: TranspilerError: If dt and dtm is different in the backend. """ # All durations in seconds in gate_length instruction_durations = [] backend_properties = backend.properties() if hasattr(backend_properties, "_gates"): for gate, insts in backend_properties._gates.items(): for qubits, props in insts.items(): if "gate_length" in props: gate_length = props["gate_length"][0] # Throw away datetime at index 1 instruction_durations.append((gate, qubits, gate_length, "s")) for q, props in backend.properties()._qubits.items(): if "readout_length" in props: readout_length = props["readout_length"][0] # Throw away datetime at index 1 instruction_durations.append(("measure", [q], readout_length, "s")) try: dt = backend.configuration().dt except AttributeError: dt = None return InstructionDurations(instruction_durations, dt=dt) def update(self, inst_durations: "InstructionDurationsType" | None, dt: float = None): """Update self with inst_durations (inst_durations overwrite self). Args: inst_durations: Instruction durations to be merged into self (overwriting self). dt: Sampling duration in seconds of the target backend. Returns: InstructionDurations: The updated InstructionDurations. Raises: TranspilerError: If the format of instruction_durations is invalid. """ if dt: self.dt = dt if inst_durations is None: return self if isinstance(inst_durations, InstructionDurations): self.duration_by_name.update(inst_durations.duration_by_name) self.duration_by_name_qubits.update(inst_durations.duration_by_name_qubits) self.duration_by_name_qubits_params.update( inst_durations.duration_by_name_qubits_params ) else: for i, items in enumerate(inst_durations): if not isinstance(items[-1], str): items = (*items, "dt") # set default unit if len(items) == 4: # (inst_name, qubits, duration, unit) inst_durations[i] = (*items[:3], None, items[3]) else: inst_durations[i] = items # assert (inst_name, qubits, duration, parameters, unit) if len(inst_durations[i]) != 5: raise TranspilerError( "Each entry of inst_durations dictionary must be " "(inst_name, qubits, duration) or " "(inst_name, qubits, duration, unit) or" "(inst_name, qubits, duration, parameters) or" "(inst_name, qubits, duration, parameters, unit) " f"received {inst_durations[i]}." ) if inst_durations[i][2] is None: raise TranspilerError(f"None duration for {inst_durations[i]}.") for name, qubits, duration, parameters, unit in inst_durations: if isinstance(qubits, int): qubits = [qubits] if isinstance(parameters, (int, float)): parameters = [parameters] if qubits is None: self.duration_by_name[name] = duration, unit elif parameters is None: self.duration_by_name_qubits[(name, tuple(qubits))] = duration, unit else: key = (name, tuple(qubits), tuple(parameters)) self.duration_by_name_qubits_params[key] = duration, unit return self @deprecate_arg( "qubits", deprecation_description=( "Using a Qubit or List[Qubit] for the ``qubits`` argument to InstructionDurations.get()" ), additional_msg="Instead, use an integer for the qubit index.", since="0.19.0", predicate=_is_deprecated_qubits_argument, ) def get( self, inst: str | qiskit.circuit.Instruction, qubits: int | list[int] | Qubit | list[Qubit] | list[int | Qubit], unit: str = "dt", parameters: list[float] | None = None, ) -> float: """Get the duration of the instruction with the name, qubits, and parameters. Some instructions may have a parameter dependent duration. Args: inst: An instruction or its name to be queried. qubits: Qubits or its indices that the instruction acts on. unit: The unit of duration to be returned. It must be 's' or 'dt'. parameters: The value of the parameters of the desired instruction. Returns: float|int: The duration of the instruction on the qubits. Raises: TranspilerError: No duration is defined for the instruction. """ if isinstance(inst, Barrier): return 0 elif isinstance(inst, Delay): return self._convert_unit(inst.duration, inst.unit, unit) if isinstance(inst, Instruction): inst_name = inst.name else: inst_name = inst if isinstance(qubits, (int, Qubit)): qubits = [qubits] if isinstance(qubits[0], Qubit): qubits = [q.index for q in qubits] try: return self._get(inst_name, qubits, unit, parameters) except TranspilerError as ex: raise TranspilerError( f"Duration of {inst_name} on qubits {qubits} is not found." ) from ex def _get( self, name: str, qubits: list[int], to_unit: str, parameters: Iterable[float] | None = None, ) -> float: """Get the duration of the instruction with the name, qubits, and parameters.""" if name == "barrier": return 0 if parameters is not None: key = (name, tuple(qubits), tuple(parameters)) else: key = (name, tuple(qubits)) if key in self.duration_by_name_qubits_params: duration, unit = self.duration_by_name_qubits_params[key] elif key in self.duration_by_name_qubits: duration, unit = self.duration_by_name_qubits[key] elif name in self.duration_by_name: duration, unit = self.duration_by_name[name] else: raise TranspilerError(f"No value is found for key={key}") return self._convert_unit(duration, unit, to_unit) def _convert_unit(self, duration: float, from_unit: str, to_unit: str) -> float: if from_unit.endswith("s") and from_unit != "s": duration = apply_prefix(duration, from_unit) from_unit = "s" # assert both from_unit and to_unit in {'s', 'dt'} if from_unit == to_unit: return duration if self.dt is None: raise TranspilerError( f"dt is necessary to convert durations from '{from_unit}' to '{to_unit}'" ) if from_unit == "s" and to_unit == "dt": if isinstance(duration, ParameterExpression): return duration / self.dt return duration_in_dt(duration, self.dt) elif from_unit == "dt" and to_unit == "s": return duration * self.dt else: raise TranspilerError(f"Conversion from '{from_unit}' to '{to_unit}' is not supported") def units_used(self) -> set[str]: """Get the set of all units used in this instruction durations. Returns: Set of units used in this instruction durations. """ units_used = set() for _, unit in self.duration_by_name_qubits.values(): units_used.add(unit) for _, unit in self.duration_by_name.values(): units_used.add(unit) return units_used InstructionDurationsType = Union[ List[Tuple[str, Optional[Iterable[int]], float, Optional[Iterable[float]], str]], List[Tuple[str, Optional[Iterable[int]], float, Optional[Iterable[float]]]], List[Tuple[str, Optional[Iterable[int]], float, str]], List[Tuple[str, Optional[Iterable[int]], float]], InstructionDurations, ] """List of tuples representing (instruction name, qubits indices, parameters, duration)."""
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) es_problem = driver.run() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() from qiskit.algorithms.eigensolvers import NumPyEigensolver numpy_solver = NumPyEigensolver(filter_criterion=es_problem.get_default_filter_criterion()) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.algorithms import GroundStateEigensolver, QEOM from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD ansatz = UCCSD( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, initial_state=HartreeFock( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, ), ) estimator = Estimator() # This first part sets the ground state solver # see more about this part in the ground state calculation tutorial solver = VQE(estimator, ansatz, SLSQP()) solver.initial_point = [0.0] * ansatz.num_parameters gse = GroundStateEigensolver(mapper, solver) # The qEOM algorithm is simply instantiated with the chosen ground state solver and Estimator primitive qeom_excited_states_solver = QEOM(gse, estimator, "sd") from qiskit_nature.second_q.algorithms import ExcitedStatesEigensolver numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, numpy_solver) numpy_results = numpy_excited_states_solver.solve(es_problem) qeom_results = qeom_excited_states_solver.solve(es_problem) print(numpy_results) print("\n\n") print(qeom_results) import numpy as np def filter_criterion(eigenstate, eigenvalue, aux_values): return np.isclose(aux_values["ParticleNumber"][0], 2.0) new_numpy_solver = NumPyEigensolver(filter_criterion=filter_criterion) new_numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, new_numpy_solver) new_numpy_results = new_numpy_excited_states_solver.solve(es_problem) print(new_numpy_results) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qBraid/qBraid
qBraid
# Copyright (C) 2024 qBraid # # This file is part of the qBraid-SDK # # The qBraid-SDK is free software released under the GNU General Public License v3 # or later. You can redistribute and/or modify it under the terms of the GPL v3. # See the LICENSE file in the project root or <https://www.gnu.org/licenses/gpl-3.0.html>. # # THERE IS NO WARRANTY for the qBraid-SDK, as per Section 15 of the GPL v3. """ Module defining QiskitBackend Class """ from typing import TYPE_CHECKING, Optional, Union from qiskit_ibm_runtime import QiskitRuntimeService from qbraid.programs import load_program from qbraid.runtime.device import QuantumDevice from qbraid.runtime.enums import DeviceStatus, DeviceType from .job import QiskitJob if TYPE_CHECKING: import qiskit import qiskit_ibm_runtime import qbraid.runtime.qiskit class QiskitBackend(QuantumDevice): """Wrapper class for IBM Qiskit ``Backend`` objects.""" def __init__( self, profile: "qbraid.runtime.TargetProfile", service: "Optional[qiskit_ibm_runtime.QiskitRuntimeService]" = None, ): """Create a QiskitBackend.""" super().__init__(profile=profile) self._service = service or QiskitRuntimeService() self._backend = self._service.backend(self.id, instance=self.profile.get("instance")) def __str__(self): """Official string representation of QuantumDevice object.""" return f"{self.__class__.__name__}('{self.id}')" def status(self): """Return the status of this Device. Returns: str: The status of this Device """ if self.device_type == DeviceType.LOCAL_SIMULATOR: return DeviceStatus.ONLINE status = self._backend.status() if status.operational: if status.status_msg == "active": return DeviceStatus.ONLINE return DeviceStatus.UNAVAILABLE return DeviceStatus.OFFLINE def queue_depth(self) -> int: """Return the number of jobs in the queue for the ibm backend""" if self.device_type == DeviceType.LOCAL_SIMULATOR: return 0 return self._backend.status().pending_jobs def transform(self, run_input: "qiskit.QuantumCircuit") -> "qiskit.QuantumCircuit": """Transpile a circuit for the device.""" program = load_program(run_input) program.transform(self) return program.program def submit( self, run_input: "Union[qiskit.QuantumCircuit, list[qiskit.QuantumCircuit]]", *args, **kwargs, ) -> "qbraid.runtime.qiskit.QiskitJob": """Runs circuit(s) on qiskit backend via :meth:`~qiskit.execute` Uses the :meth:`~qiskit.execute` method to create a :class:`~qiskit.providers.QuantumJob` object, applies a :class:`~qbraid.runtime.qiskit.QiskitJob`, and return the result. Args: run_input: A circuit object to run on the IBM device. Keyword Args: shots (int): The number of times to run the task on the device. Default is 1024. Returns: qbraid.runtime.qiskit.QiskitJob: The job like object for the run. """ backend = self._backend shots = kwargs.pop("shots", backend.options.get("shots")) memory = kwargs.pop("memory", True) # Needed to get measurements job = backend.run(run_input, *args, shots=shots, memory=memory, **kwargs) return QiskitJob(job.job_id(), job=job, device=self)