repo
stringclasses
885 values
file
stringclasses
741 values
content
stringlengths
4
215k
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.visualization.timeline import draw as timeline_draw from qiskit import QuantumCircuit, transpile from qiskit.providers.fake_provider import FakeBoeblingen backend = FakeBoeblingen() ghz = QuantumCircuit(5) ghz.h(0) ghz.cx(0,range(1,5)) circ = transpile(ghz, backend, scheduling_method="asap") timeline_draw(circ)
https://github.com/Interlin-q/diskit
Interlin-q
import numpy as np from numpy import pi # importing Qiskit from qiskit import QuantumCircuit, transpile, assemble, Aer from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(3) qc.h(2) qc.cp(pi/2, 1, 2) qc.cp(pi/4, 0, 2) qc.h(1) qc.cp(pi/2, 0, 1) qc.h(0) qc.swap(0, 2) qc.draw() def qft_rotations(circuit, n): if n == 0: return circuit n -= 1 circuit.h(n) for qubit in range(n): circuit.cp(pi/2**(n-qubit), qubit, n) qft_rotations(circuit, n) def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft(circuit, n): qft_rotations(circuit, n) swap_registers(circuit, n) return circuit qc = QuantumCircuit(4) qft(qc,4) qc.draw() # Create the circuit qc = QuantumCircuit(3) # Encode the state 5 (101 in binary) qc.x(0) qc.x(2) qc.draw() sim = Aer.get_backend("aer_simulator") qc_init = qc.copy() qc_init.save_statevector() statevector = sim.run(qc_init).result().get_statevector() plot_bloch_multivector(statevector) qft(qc, 3) qc.draw() qc.save_statevector() statevector = sim.run(qc).result().get_statevector() plot_bloch_multivector(statevector)
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2021, 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """An algorithm to implement a Trotterization real time-evolution.""" from __future__ import annotations from qiskit import QuantumCircuit from qiskit_algorithms.time_evolvers.time_evolution_problem import TimeEvolutionProblem from qiskit_algorithms.time_evolvers.time_evolution_result import TimeEvolutionResult from qiskit_algorithms.time_evolvers.real_time_evolver import RealTimeEvolver from qiskit_algorithms.observables_evaluator import estimate_observables from qiskit.opflow import PauliSumOp from qiskit.circuit.library import PauliEvolutionGate from qiskit.circuit.parametertable import ParameterView from qiskit.primitives import BaseEstimator from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit.synthesis import ProductFormula, LieTrotter class TrotterQRTE(RealTimeEvolver): """Quantum Real Time Evolution using Trotterization. Type of Trotterization is defined by a ``ProductFormula`` provided. Examples: .. code-block:: python from qiskit.opflow import PauliSumOp from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit import QuantumCircuit from qiskit_algorithms import TimeEvolutionProblem from qiskit_algorithms.time_evolvers import TrotterQRTE from qiskit.primitives import Estimator operator = PauliSumOp(SparsePauliOp([Pauli("X"), Pauli("Z")])) initial_state = QuantumCircuit(1) time = 1 evolution_problem = TimeEvolutionProblem(operator, time, initial_state) # LieTrotter with 1 rep estimator = Estimator() trotter_qrte = TrotterQRTE(estimator=estimator) evolved_state = trotter_qrte.evolve(evolution_problem).evolved_state """ def __init__( self, product_formula: ProductFormula | None = None, estimator: BaseEstimator | None = None, num_timesteps: int = 1, ) -> None: """ Args: product_formula: A Lie-Trotter-Suzuki product formula. If ``None`` provided, the Lie-Trotter first order product formula with a single repetition is used. ``reps`` should be 1 to obtain a number of time-steps equal to ``num_timesteps`` and an evaluation of :attr:`.TimeEvolutionProblem.aux_operators` at every time-step. If ``reps`` is larger than 1, the true number of time-steps will be ``num_timesteps * reps``. num_timesteps: The number of time-steps the full evolution time is devided into (repetitions of ``product_formula``) estimator: An estimator primitive used for calculating expectation values of ``TimeEvolutionProblem.aux_operators``. """ self.product_formula = product_formula self.num_timesteps = num_timesteps self.estimator = estimator @property def product_formula(self) -> ProductFormula: """Returns a product formula.""" return self._product_formula @product_formula.setter def product_formula(self, product_formula: ProductFormula | None): """Sets a product formula. If ``None`` provided, sets the Lie-Trotter first order product formula with a single repetition.""" if product_formula is None: product_formula = LieTrotter() self._product_formula = product_formula @property def estimator(self) -> BaseEstimator | None: """ Returns an estimator. """ return self._estimator @estimator.setter def estimator(self, estimator: BaseEstimator) -> None: """ Sets an estimator. """ self._estimator = estimator @property def num_timesteps(self) -> int: """Returns the number of timesteps.""" return self._num_timesteps @num_timesteps.setter def num_timesteps(self, num_timesteps: int) -> None: """ Sets the number of time-steps. Raises: ValueError: If num_timesteps is not positive. """ if num_timesteps <= 0: raise ValueError( f"Number of time steps must be positive integer, {num_timesteps} provided" ) self._num_timesteps = num_timesteps @classmethod def supports_aux_operators(cls) -> bool: """ Whether computing the expectation value of auxiliary operators is supported. Returns: ``True`` if ``aux_operators`` expectations in the ``TimeEvolutionProblem`` can be evaluated, ``False`` otherwise. """ return True def evolve(self, evolution_problem: TimeEvolutionProblem) -> TimeEvolutionResult: """ Evolves a quantum state for a given time using the Trotterization method based on a product formula provided. The result is provided in the form of a quantum circuit. If auxiliary operators are included in the ``evolution_problem``, they are evaluated on the ``init_state`` and on the evolved state at every step (``num_timesteps`` times) using an estimator primitive provided. Args: evolution_problem: Instance defining evolution problem. For the included Hamiltonian, ``Pauli`` or ``PauliSumOp`` are supported by TrotterQRTE. Returns: Evolution result that includes an evolved state as a quantum circuit and, optionally, auxiliary operators evaluated for a resulting state on an estimator primitive. Raises: ValueError: If ``t_param`` is not set to ``None`` in the ``TimeEvolutionProblem`` (feature not currently supported). ValueError: If ``aux_operators`` provided in the time evolution problem but no estimator provided to the algorithm. ValueError: If the ``initial_state`` is not provided in the ``TimeEvolutionProblem``. ValueError: If an unsupported Hamiltonian type is provided. """ evolution_problem.validate_params() if evolution_problem.aux_operators is not None and self.estimator is None: raise ValueError( "The time evolution problem contained ``aux_operators`` but no estimator was " "provided. The algorithm continues without calculating these quantities. " ) # ensure the hamiltonian is a sparse pauli op hamiltonian = evolution_problem.hamiltonian if not isinstance(hamiltonian, (Pauli, PauliSumOp, SparsePauliOp)): raise ValueError( f"TrotterQRTE only accepts Pauli | PauliSumOp | SparsePauliOp, {type(hamiltonian)} " "provided." ) if isinstance(hamiltonian, PauliSumOp): hamiltonian = hamiltonian.primitive * hamiltonian.coeff elif isinstance(hamiltonian, Pauli): hamiltonian = SparsePauliOp(hamiltonian) t_param = evolution_problem.t_param free_parameters = hamiltonian.parameters if t_param is not None and free_parameters != ParameterView([t_param]): raise ValueError( f"Hamiltonian time parameters ({free_parameters}) do not match " f"evolution_problem.t_param ({t_param})." ) # make sure PauliEvolutionGate does not implement more than one Trotter step dt = evolution_problem.time / self.num_timesteps if evolution_problem.initial_state is not None: initial_state = evolution_problem.initial_state else: raise ValueError("``initial_state`` must be provided in the ``TimeEvolutionProblem``.") evolved_state = QuantumCircuit(initial_state.num_qubits) evolved_state.append(initial_state, evolved_state.qubits) if evolution_problem.aux_operators is not None: observables = [] observables.append( estimate_observables( self.estimator, evolved_state, evolution_problem.aux_operators, None, evolution_problem.truncation_threshold, ) ) else: observables = None if t_param is None: # the evolution gate single_step_evolution_gate = PauliEvolutionGate( hamiltonian, dt, synthesis=self.product_formula ) for n in range(self.num_timesteps): # if hamiltonian is time-dependent, bind new time-value at every step to construct # evolution for next step if t_param is not None: time_value = (n + 1) * dt bound_hamiltonian = hamiltonian.assign_parameters([time_value]) single_step_evolution_gate = PauliEvolutionGate( bound_hamiltonian, dt, synthesis=self.product_formula, ) evolved_state.append(single_step_evolution_gate, evolved_state.qubits) if evolution_problem.aux_operators is not None: observables.append( estimate_observables( self.estimator, evolved_state, evolution_problem.aux_operators, None, evolution_problem.truncation_threshold, ) ) evaluated_aux_ops = None if evolution_problem.aux_operators is not None: evaluated_aux_ops = observables[-1] return TimeEvolutionResult(evolved_state, evaluated_aux_ops, observables)
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-docstring import math from qiskit.circuit.library import ( RZGate, SXGate, XGate, CXGate, RYGate, RXGate, RXXGate, RGate, IGate, ECRGate, UGate, CCXGate, RZXGate, CZGate, ) from qiskit.circuit import IfElseOp, ForLoopOp, WhileLoopOp, SwitchCaseOp from qiskit.circuit.measure import Measure from qiskit.circuit.parameter import Parameter from qiskit import pulse from qiskit.pulse.instruction_schedule_map import InstructionScheduleMap from qiskit.pulse.calibration_entries import CalibrationPublisher, ScheduleDef from qiskit.transpiler.coupling import CouplingMap from qiskit.transpiler.instruction_durations import InstructionDurations from qiskit.transpiler.timing_constraints import TimingConstraints from qiskit.transpiler.exceptions import TranspilerError from qiskit.transpiler import Target from qiskit.transpiler import InstructionProperties from qiskit.test import QiskitTestCase from qiskit.providers.fake_provider import ( FakeBackendV2, FakeMumbaiFractionalCX, FakeVigo, FakeNairobi, FakeGeneva, ) class TestTarget(QiskitTestCase): def setUp(self): super().setUp() self.fake_backend = FakeBackendV2() self.fake_backend_target = self.fake_backend.target self.theta = Parameter("theta") self.phi = Parameter("phi") self.ibm_target = Target() i_props = { (0,): InstructionProperties(duration=35.5e-9, error=0.000413), (1,): InstructionProperties(duration=35.5e-9, error=0.000502), (2,): InstructionProperties(duration=35.5e-9, error=0.0004003), (3,): InstructionProperties(duration=35.5e-9, error=0.000614), (4,): InstructionProperties(duration=35.5e-9, error=0.006149), } self.ibm_target.add_instruction(IGate(), i_props) rz_props = { (0,): InstructionProperties(duration=0, error=0), (1,): InstructionProperties(duration=0, error=0), (2,): InstructionProperties(duration=0, error=0), (3,): InstructionProperties(duration=0, error=0), (4,): InstructionProperties(duration=0, error=0), } self.ibm_target.add_instruction(RZGate(self.theta), rz_props) sx_props = { (0,): InstructionProperties(duration=35.5e-9, error=0.000413), (1,): InstructionProperties(duration=35.5e-9, error=0.000502), (2,): InstructionProperties(duration=35.5e-9, error=0.0004003), (3,): InstructionProperties(duration=35.5e-9, error=0.000614), (4,): InstructionProperties(duration=35.5e-9, error=0.006149), } self.ibm_target.add_instruction(SXGate(), sx_props) x_props = { (0,): InstructionProperties(duration=35.5e-9, error=0.000413), (1,): InstructionProperties(duration=35.5e-9, error=0.000502), (2,): InstructionProperties(duration=35.5e-9, error=0.0004003), (3,): InstructionProperties(duration=35.5e-9, error=0.000614), (4,): InstructionProperties(duration=35.5e-9, error=0.006149), } self.ibm_target.add_instruction(XGate(), x_props) cx_props = { (3, 4): InstructionProperties(duration=270.22e-9, error=0.00713), (4, 3): InstructionProperties(duration=305.77e-9, error=0.00713), (3, 1): InstructionProperties(duration=462.22e-9, error=0.00929), (1, 3): InstructionProperties(duration=497.77e-9, error=0.00929), (1, 2): InstructionProperties(duration=227.55e-9, error=0.00659), (2, 1): InstructionProperties(duration=263.11e-9, error=0.00659), (0, 1): InstructionProperties(duration=519.11e-9, error=0.01201), (1, 0): InstructionProperties(duration=554.66e-9, error=0.01201), } self.ibm_target.add_instruction(CXGate(), cx_props) measure_props = { (0,): InstructionProperties(duration=5.813e-6, error=0.0751), (1,): InstructionProperties(duration=5.813e-6, error=0.0225), (2,): InstructionProperties(duration=5.813e-6, error=0.0146), (3,): InstructionProperties(duration=5.813e-6, error=0.0215), (4,): InstructionProperties(duration=5.813e-6, error=0.0333), } self.ibm_target.add_instruction(Measure(), measure_props) self.aqt_target = Target(description="AQT Target") rx_props = { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, } self.aqt_target.add_instruction(RXGate(self.theta), rx_props) ry_props = { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, } self.aqt_target.add_instruction(RYGate(self.theta), ry_props) rz_props = { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, } self.aqt_target.add_instruction(RZGate(self.theta), rz_props) r_props = { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, } self.aqt_target.add_instruction(RGate(self.theta, self.phi), r_props) rxx_props = { (0, 1): None, (0, 2): None, (0, 3): None, (0, 4): None, (1, 0): None, (2, 0): None, (3, 0): None, (4, 0): None, (1, 2): None, (1, 3): None, (1, 4): None, (2, 1): None, (3, 1): None, (4, 1): None, (2, 3): None, (2, 4): None, (3, 2): None, (4, 2): None, (3, 4): None, (4, 3): None, } self.aqt_target.add_instruction(RXXGate(self.theta), rxx_props) measure_props = { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, } self.aqt_target.add_instruction(Measure(), measure_props) self.empty_target = Target() self.ideal_sim_target = Target(num_qubits=3, description="Ideal Simulator") self.lam = Parameter("lam") for inst in [ UGate(self.theta, self.phi, self.lam), RXGate(self.theta), RYGate(self.theta), RZGate(self.theta), CXGate(), ECRGate(), CCXGate(), Measure(), ]: self.ideal_sim_target.add_instruction(inst, {None: None}) def test_qargs(self): self.assertEqual(set(), self.empty_target.qargs) expected_ibm = { (0,), (1,), (2,), (3,), (4,), (3, 4), (4, 3), (3, 1), (1, 3), (1, 2), (2, 1), (0, 1), (1, 0), } self.assertEqual(expected_ibm, self.ibm_target.qargs) expected_aqt = { (0,), (1,), (2,), (3,), (4,), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (2, 0), (3, 0), (4, 0), (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (4, 1), (2, 3), (2, 4), (3, 2), (4, 2), (3, 4), (4, 3), } self.assertEqual(expected_aqt, self.aqt_target.qargs) expected_fake = { (0,), (1,), (0, 1), (1, 0), } self.assertEqual(expected_fake, self.fake_backend_target.qargs) self.assertEqual(None, self.ideal_sim_target.qargs) def test_qargs_for_operation_name(self): with self.assertRaises(KeyError): self.empty_target.qargs_for_operation_name("rz") self.assertEqual( self.ibm_target.qargs_for_operation_name("rz"), {(0,), (1,), (2,), (3,), (4,)} ) self.assertEqual( self.aqt_target.qargs_for_operation_name("rz"), {(0,), (1,), (2,), (3,), (4,)} ) self.assertEqual(self.fake_backend_target.qargs_for_operation_name("cx"), {(0, 1)}) self.assertEqual( self.fake_backend_target.qargs_for_operation_name("ecr"), { (1, 0), }, ) self.assertEqual(self.ideal_sim_target.qargs_for_operation_name("cx"), None) def test_instruction_names(self): self.assertEqual(self.empty_target.operation_names, set()) self.assertEqual(self.ibm_target.operation_names, {"rz", "id", "sx", "x", "cx", "measure"}) self.assertEqual(self.aqt_target.operation_names, {"rz", "ry", "rx", "rxx", "r", "measure"}) self.assertEqual( self.fake_backend_target.operation_names, {"u", "cx", "measure", "ecr", "rx_30", "rx"} ) self.assertEqual( self.ideal_sim_target.operation_names, {"u", "rz", "ry", "rx", "cx", "ecr", "ccx", "measure"}, ) def test_operations(self): self.assertEqual(self.empty_target.operations, []) ibm_expected = [RZGate(self.theta), IGate(), SXGate(), XGate(), CXGate(), Measure()] for gate in ibm_expected: self.assertIn(gate, self.ibm_target.operations) aqt_expected = [ RZGate(self.theta), RXGate(self.theta), RYGate(self.theta), RGate(self.theta, self.phi), RXXGate(self.theta), ] for gate in aqt_expected: self.assertIn(gate, self.aqt_target.operations) fake_expected = [ UGate(self.fake_backend._theta, self.fake_backend._phi, self.fake_backend._lam), CXGate(), Measure(), ECRGate(), RXGate(math.pi / 6), RXGate(self.fake_backend._theta), ] for gate in fake_expected: self.assertIn(gate, self.fake_backend_target.operations) ideal_sim_expected = [ UGate(self.theta, self.phi, self.lam), RXGate(self.theta), RYGate(self.theta), RZGate(self.theta), CXGate(), ECRGate(), CCXGate(), Measure(), ] for gate in ideal_sim_expected: self.assertIn(gate, self.ideal_sim_target.operations) def test_instructions(self): self.assertEqual(self.empty_target.instructions, []) ibm_expected = [ (IGate(), (0,)), (IGate(), (1,)), (IGate(), (2,)), (IGate(), (3,)), (IGate(), (4,)), (RZGate(self.theta), (0,)), (RZGate(self.theta), (1,)), (RZGate(self.theta), (2,)), (RZGate(self.theta), (3,)), (RZGate(self.theta), (4,)), (SXGate(), (0,)), (SXGate(), (1,)), (SXGate(), (2,)), (SXGate(), (3,)), (SXGate(), (4,)), (XGate(), (0,)), (XGate(), (1,)), (XGate(), (2,)), (XGate(), (3,)), (XGate(), (4,)), (CXGate(), (3, 4)), (CXGate(), (4, 3)), (CXGate(), (3, 1)), (CXGate(), (1, 3)), (CXGate(), (1, 2)), (CXGate(), (2, 1)), (CXGate(), (0, 1)), (CXGate(), (1, 0)), (Measure(), (0,)), (Measure(), (1,)), (Measure(), (2,)), (Measure(), (3,)), (Measure(), (4,)), ] self.assertEqual(ibm_expected, self.ibm_target.instructions) ideal_sim_expected = [ (UGate(self.theta, self.phi, self.lam), None), (RXGate(self.theta), None), (RYGate(self.theta), None), (RZGate(self.theta), None), (CXGate(), None), (ECRGate(), None), (CCXGate(), None), (Measure(), None), ] self.assertEqual(ideal_sim_expected, self.ideal_sim_target.instructions) def test_instruction_properties(self): i_gate_2 = self.ibm_target.instruction_properties(2) self.assertEqual(i_gate_2.error, 0.0004003) self.assertIsNone(self.ideal_sim_target.instruction_properties(4)) def test_get_instruction_from_name(self): with self.assertRaises(KeyError): self.empty_target.operation_from_name("measure") self.assertEqual(self.ibm_target.operation_from_name("measure"), Measure()) self.assertEqual(self.fake_backend_target.operation_from_name("rx_30"), RXGate(math.pi / 6)) self.assertEqual( self.fake_backend_target.operation_from_name("rx"), RXGate(self.fake_backend._theta), ) self.assertEqual(self.ideal_sim_target.operation_from_name("ccx"), CCXGate()) def test_get_instructions_for_qargs(self): with self.assertRaises(KeyError): self.empty_target.operations_for_qargs((0,)) expected = [RZGate(self.theta), IGate(), SXGate(), XGate(), Measure()] res = self.ibm_target.operations_for_qargs((0,)) for gate in expected: self.assertIn(gate, res) expected = [ECRGate()] res = self.fake_backend_target.operations_for_qargs((1, 0)) for gate in expected: self.assertIn(gate, res) expected = [CXGate()] res = self.fake_backend_target.operations_for_qargs((0, 1)) self.assertEqual(expected, res) ideal_sim_expected = [ UGate(self.theta, self.phi, self.lam), RXGate(self.theta), RYGate(self.theta), RZGate(self.theta), CXGate(), ECRGate(), CCXGate(), Measure(), ] for gate in ideal_sim_expected: self.assertIn(gate, self.ideal_sim_target.operations_for_qargs(None)) def test_get_operation_for_qargs_global(self): expected = [ RXGate(self.theta), RYGate(self.theta), RZGate(self.theta), RGate(self.theta, self.phi), Measure(), ] res = self.aqt_target.operations_for_qargs((0,)) self.assertEqual(len(expected), len(res)) for x in expected: self.assertIn(x, res) expected = [RXXGate(self.theta)] res = self.aqt_target.operations_for_qargs((0, 1)) self.assertEqual(len(expected), len(res)) for x in expected: self.assertIn(x, res) def test_get_invalid_operations_for_qargs(self): with self.assertRaises(KeyError): self.ibm_target.operations_for_qargs((0, 102)) with self.assertRaises(KeyError): self.ibm_target.operations_for_qargs(None) def test_get_operation_names_for_qargs(self): with self.assertRaises(KeyError): self.empty_target.operation_names_for_qargs((0,)) expected = {"rz", "id", "sx", "x", "measure"} res = self.ibm_target.operation_names_for_qargs((0,)) for gate in expected: self.assertIn(gate, res) expected = {"ecr"} res = self.fake_backend_target.operation_names_for_qargs((1, 0)) for gate in expected: self.assertIn(gate, res) expected = {"cx"} res = self.fake_backend_target.operation_names_for_qargs((0, 1)) self.assertEqual(expected, res) ideal_sim_expected = ["u", "rx", "ry", "rz", "cx", "ecr", "ccx", "measure"] for gate in ideal_sim_expected: self.assertIn(gate, self.ideal_sim_target.operation_names_for_qargs(None)) def test_get_operation_names_for_qargs_invalid_qargs(self): with self.assertRaises(KeyError): self.ibm_target.operation_names_for_qargs((0, 102)) with self.assertRaises(KeyError): self.ibm_target.operation_names_for_qargs(None) def test_get_operation_names_for_qargs_global_insts(self): expected = {"r", "rx", "rz", "ry", "measure"} self.assertEqual(self.aqt_target.operation_names_for_qargs((0,)), expected) expected = { "rxx", } self.assertEqual(self.aqt_target.operation_names_for_qargs((0, 1)), expected) def test_coupling_map(self): self.assertEqual( CouplingMap().get_edges(), self.empty_target.build_coupling_map().get_edges() ) self.assertEqual( set(CouplingMap.from_full(5).get_edges()), set(self.aqt_target.build_coupling_map().get_edges()), ) self.assertEqual( {(0, 1), (1, 0)}, set(self.fake_backend_target.build_coupling_map().get_edges()) ) self.assertEqual( { (3, 4), (4, 3), (3, 1), (1, 3), (1, 2), (2, 1), (0, 1), (1, 0), }, set(self.ibm_target.build_coupling_map().get_edges()), ) self.assertEqual(None, self.ideal_sim_target.build_coupling_map()) def test_coupling_map_mutations_do_not_propagate(self): cm = CouplingMap.from_line(5, bidirectional=False) cx_props = { edge: InstructionProperties(duration=270.22e-9, error=0.00713) for edge in cm.get_edges() } target = Target() target.add_instruction(CXGate(), cx_props) self.assertEqual(cm, target.build_coupling_map()) symmetric = target.build_coupling_map() symmetric.make_symmetric() self.assertNotEqual(cm, symmetric) # sanity check for the test. # Verify that mutating the output of `build_coupling_map` doesn't affect the target. self.assertNotEqual(target.build_coupling_map(), symmetric) def test_coupling_map_filtered_mutations_do_not_propagate(self): cm = CouplingMap.from_line(5, bidirectional=False) cx_props = { edge: InstructionProperties(duration=270.22e-9, error=0.00713) for edge in cm.get_edges() if 2 not in edge } target = Target() target.add_instruction(CXGate(), cx_props) symmetric = target.build_coupling_map(filter_idle_qubits=True) symmetric.make_symmetric() self.assertNotEqual(cm, symmetric) # sanity check for the test. # Verify that mutating the output of `build_coupling_map` doesn't affect the target. self.assertNotEqual(target.build_coupling_map(filter_idle_qubits=True), symmetric) def test_coupling_map_no_filter_mutations_do_not_propagate(self): cm = CouplingMap.from_line(5, bidirectional=False) cx_props = { edge: InstructionProperties(duration=270.22e-9, error=0.00713) for edge in cm.get_edges() } target = Target() target.add_instruction(CXGate(), cx_props) # The filter here does not actually do anything, because there's no idle qubits. This is # just a test that this path is also not cached. self.assertEqual(cm, target.build_coupling_map(filter_idle_qubits=True)) symmetric = target.build_coupling_map(filter_idle_qubits=True) symmetric.make_symmetric() self.assertNotEqual(cm, symmetric) # sanity check for the test. # Verify that mutating the output of `build_coupling_map` doesn't affect the target. self.assertNotEqual(target.build_coupling_map(filter_idle_qubits=True), symmetric) def test_coupling_map_2q_gate(self): cmap = self.fake_backend_target.build_coupling_map("ecr") self.assertEqual( [ (1, 0), ], cmap.get_edges(), ) def test_coupling_map_3q_gate(self): fake_target = Target() ccx_props = { (0, 1, 2): None, (1, 0, 2): None, (2, 1, 0): None, } fake_target.add_instruction(CCXGate(), ccx_props) with self.assertLogs("qiskit.transpiler.target", level="WARN") as log: cmap = fake_target.build_coupling_map() self.assertEqual( log.output, [ "WARNING:qiskit.transpiler.target:" "This Target object contains multiqubit gates that " "operate on > 2 qubits. This will not be reflected in " "the output coupling map." ], ) self.assertEqual([], cmap.get_edges()) with self.assertRaises(ValueError): fake_target.build_coupling_map("ccx") def test_coupling_map_mixed_ideal_global_1q_and_2q_gates(self): n_qubits = 3 target = Target() target.add_instruction(CXGate(), {(i, i + 1): None for i in range(n_qubits - 1)}) target.add_instruction(RXGate(Parameter("theta")), {None: None}) cmap = target.build_coupling_map() self.assertEqual([(0, 1), (1, 2)], cmap.get_edges()) def test_coupling_map_mixed_global_1q_and_2q_gates(self): n_qubits = 3 target = Target() target.add_instruction(CXGate(), {(i, i + 1): None for i in range(n_qubits - 1)}) target.add_instruction(RXGate(Parameter("theta"))) cmap = target.build_coupling_map() self.assertEqual([(0, 1), (1, 2)], cmap.get_edges()) def test_coupling_map_mixed_ideal_global_2q_and_real_2q_gates(self): n_qubits = 3 target = Target() target.add_instruction(CXGate(), {(i, i + 1): None for i in range(n_qubits - 1)}) target.add_instruction(ECRGate()) cmap = target.build_coupling_map() self.assertIsNone(cmap) def test_physical_qubits(self): self.assertEqual([], self.empty_target.physical_qubits) self.assertEqual(list(range(5)), self.ibm_target.physical_qubits) self.assertEqual(list(range(5)), self.aqt_target.physical_qubits) self.assertEqual(list(range(2)), self.fake_backend_target.physical_qubits) self.assertEqual(list(range(3)), self.ideal_sim_target.physical_qubits) def test_duplicate_instruction_add_instruction(self): target = Target() target.add_instruction(XGate(), {(0,): None}) with self.assertRaises(AttributeError): target.add_instruction(XGate(), {(1,): None}) def test_durations(self): empty_durations = self.empty_target.durations() self.assertEqual( empty_durations.duration_by_name_qubits, InstructionDurations().duration_by_name_qubits ) aqt_durations = self.aqt_target.durations() self.assertEqual(aqt_durations.duration_by_name_qubits, {}) ibm_durations = self.ibm_target.durations() expected = { ("cx", (0, 1)): (5.1911e-07, "s"), ("cx", (1, 0)): (5.5466e-07, "s"), ("cx", (1, 2)): (2.2755e-07, "s"), ("cx", (1, 3)): (4.9777e-07, "s"), ("cx", (2, 1)): (2.6311e-07, "s"), ("cx", (3, 1)): (4.6222e-07, "s"), ("cx", (3, 4)): (2.7022e-07, "s"), ("cx", (4, 3)): (3.0577e-07, "s"), ("id", (0,)): (3.55e-08, "s"), ("id", (1,)): (3.55e-08, "s"), ("id", (2,)): (3.55e-08, "s"), ("id", (3,)): (3.55e-08, "s"), ("id", (4,)): (3.55e-08, "s"), ("measure", (0,)): (5.813e-06, "s"), ("measure", (1,)): (5.813e-06, "s"), ("measure", (2,)): (5.813e-06, "s"), ("measure", (3,)): (5.813e-06, "s"), ("measure", (4,)): (5.813e-06, "s"), ("rz", (0,)): (0, "s"), ("rz", (1,)): (0, "s"), ("rz", (2,)): (0, "s"), ("rz", (3,)): (0, "s"), ("rz", (4,)): (0, "s"), ("sx", (0,)): (3.55e-08, "s"), ("sx", (1,)): (3.55e-08, "s"), ("sx", (2,)): (3.55e-08, "s"), ("sx", (3,)): (3.55e-08, "s"), ("sx", (4,)): (3.55e-08, "s"), ("x", (0,)): (3.55e-08, "s"), ("x", (1,)): (3.55e-08, "s"), ("x", (2,)): (3.55e-08, "s"), ("x", (3,)): (3.55e-08, "s"), ("x", (4,)): (3.55e-08, "s"), } self.assertEqual(ibm_durations.duration_by_name_qubits, expected) def test_mapping(self): with self.assertRaises(KeyError): _res = self.empty_target["cx"] expected = { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, } self.assertEqual(self.aqt_target["r"], expected) self.assertEqual(["rx", "ry", "rz", "r", "rxx", "measure"], list(self.aqt_target)) expected_values = [ { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, }, { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, }, { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, }, { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, }, { (0, 1): None, (0, 2): None, (0, 3): None, (0, 4): None, (1, 0): None, (2, 0): None, (3, 0): None, (4, 0): None, (1, 2): None, (1, 3): None, (1, 4): None, (2, 1): None, (3, 1): None, (4, 1): None, (2, 3): None, (2, 4): None, (3, 2): None, (4, 2): None, (3, 4): None, (4, 3): None, }, { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, }, ] self.assertEqual(expected_values, list(self.aqt_target.values())) expected_items = { "rx": { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, }, "ry": { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, }, "rz": { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, }, "r": { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, }, "rxx": { (0, 1): None, (0, 2): None, (0, 3): None, (0, 4): None, (1, 0): None, (2, 0): None, (3, 0): None, (4, 0): None, (1, 2): None, (1, 3): None, (1, 4): None, (2, 1): None, (3, 1): None, (4, 1): None, (2, 3): None, (2, 4): None, (3, 2): None, (4, 2): None, (3, 4): None, (4, 3): None, }, "measure": { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, }, } self.assertEqual(expected_items, dict(self.aqt_target.items())) self.assertIn("cx", self.ibm_target) self.assertNotIn("ecr", self.ibm_target) self.assertEqual(len(self.ibm_target), 6) def test_update_instruction_properties(self): self.aqt_target.update_instruction_properties( "rxx", (0, 1), InstructionProperties(duration=1e-6, error=1e-5), ) self.assertEqual(self.aqt_target["rxx"][(0, 1)].duration, 1e-6) self.assertEqual(self.aqt_target["rxx"][(0, 1)].error, 1e-5) def test_update_instruction_properties_invalid_instruction(self): with self.assertRaises(KeyError): self.ibm_target.update_instruction_properties("rxx", (0, 1), None) def test_update_instruction_properties_invalid_qarg(self): with self.assertRaises(KeyError): self.fake_backend_target.update_instruction_properties("ecr", (0, 1), None) def test_str(self): expected = """Target Number of qubits: 5 Instructions: id (0,): Duration: 3.55e-08 sec. Error Rate: 0.000413 (1,): Duration: 3.55e-08 sec. Error Rate: 0.000502 (2,): Duration: 3.55e-08 sec. Error Rate: 0.0004003 (3,): Duration: 3.55e-08 sec. Error Rate: 0.000614 (4,): Duration: 3.55e-08 sec. Error Rate: 0.006149 rz (0,): Duration: 0 sec. Error Rate: 0 (1,): Duration: 0 sec. Error Rate: 0 (2,): Duration: 0 sec. Error Rate: 0 (3,): Duration: 0 sec. Error Rate: 0 (4,): Duration: 0 sec. Error Rate: 0 sx (0,): Duration: 3.55e-08 sec. Error Rate: 0.000413 (1,): Duration: 3.55e-08 sec. Error Rate: 0.000502 (2,): Duration: 3.55e-08 sec. Error Rate: 0.0004003 (3,): Duration: 3.55e-08 sec. Error Rate: 0.000614 (4,): Duration: 3.55e-08 sec. Error Rate: 0.006149 x (0,): Duration: 3.55e-08 sec. Error Rate: 0.000413 (1,): Duration: 3.55e-08 sec. Error Rate: 0.000502 (2,): Duration: 3.55e-08 sec. Error Rate: 0.0004003 (3,): Duration: 3.55e-08 sec. Error Rate: 0.000614 (4,): Duration: 3.55e-08 sec. Error Rate: 0.006149 cx (3, 4): Duration: 2.7022e-07 sec. Error Rate: 0.00713 (4, 3): Duration: 3.0577e-07 sec. Error Rate: 0.00713 (3, 1): Duration: 4.6222e-07 sec. Error Rate: 0.00929 (1, 3): Duration: 4.9777e-07 sec. Error Rate: 0.00929 (1, 2): Duration: 2.2755e-07 sec. Error Rate: 0.00659 (2, 1): Duration: 2.6311e-07 sec. Error Rate: 0.00659 (0, 1): Duration: 5.1911e-07 sec. Error Rate: 0.01201 (1, 0): Duration: 5.5466e-07 sec. Error Rate: 0.01201 measure (0,): Duration: 5.813e-06 sec. Error Rate: 0.0751 (1,): Duration: 5.813e-06 sec. Error Rate: 0.0225 (2,): Duration: 5.813e-06 sec. Error Rate: 0.0146 (3,): Duration: 5.813e-06 sec. Error Rate: 0.0215 (4,): Duration: 5.813e-06 sec. Error Rate: 0.0333 """ self.assertEqual(expected, str(self.ibm_target)) aqt_expected = """Target: AQT Target Number of qubits: 5 Instructions: rx (0,) (1,) (2,) (3,) (4,) ry (0,) (1,) (2,) (3,) (4,) rz (0,) (1,) (2,) (3,) (4,) r (0,) (1,) (2,) (3,) (4,) rxx (0, 1) (0, 2) (0, 3) (0, 4) (1, 0) (2, 0) (3, 0) (4, 0) (1, 2) (1, 3) (1, 4) (2, 1) (3, 1) (4, 1) (2, 3) (2, 4) (3, 2) (4, 2) (3, 4) (4, 3) measure (0,) (1,) (2,) (3,) (4,) """ self.assertEqual(aqt_expected, str(self.aqt_target)) sim_expected = """Target: Ideal Simulator Number of qubits: 3 Instructions: u rx ry rz cx ecr ccx measure """ self.assertEqual(sim_expected, str(self.ideal_sim_target)) def test_extra_props_str(self): target = Target(description="Extra Properties") class ExtraProperties(InstructionProperties): """An example properties subclass.""" def __init__( self, duration=None, error=None, calibration=None, tuned=None, diamond_norm_error=None, ): super().__init__(duration=duration, error=error, calibration=calibration) self.tuned = tuned self.diamond_norm_error = diamond_norm_error cx_props = { (3, 4): ExtraProperties( duration=270.22e-9, error=0.00713, tuned=False, diamond_norm_error=2.12e-6 ), } target.add_instruction(CXGate(), cx_props) expected = """Target: Extra Properties Number of qubits: 5 Instructions: cx (3, 4): Duration: 2.7022e-07 sec. Error Rate: 0.00713 """ self.assertEqual(expected, str(target)) def test_timing_constraints(self): generated_constraints = self.aqt_target.timing_constraints() expected_constraints = TimingConstraints() for i in ["granularity", "min_length", "pulse_alignment", "acquire_alignment"]: self.assertEqual( getattr(generated_constraints, i), getattr(expected_constraints, i), f"Generated constraints differs from expected for attribute {i}" f"{getattr(generated_constraints, i)}!={getattr(expected_constraints, i)}", ) def test_get_non_global_operation_name_ideal_backend(self): self.assertEqual(self.aqt_target.get_non_global_operation_names(), []) self.assertEqual(self.ideal_sim_target.get_non_global_operation_names(), []) self.assertEqual(self.ibm_target.get_non_global_operation_names(), []) self.assertEqual(self.fake_backend_target.get_non_global_operation_names(), []) def test_get_non_global_operation_name_ideal_backend_strict_direction(self): self.assertEqual(self.aqt_target.get_non_global_operation_names(True), []) self.assertEqual(self.ideal_sim_target.get_non_global_operation_names(True), []) self.assertEqual(self.ibm_target.get_non_global_operation_names(True), []) self.assertEqual( self.fake_backend_target.get_non_global_operation_names(True), ["cx", "ecr"] ) def test_instruction_supported(self): self.assertTrue(self.aqt_target.instruction_supported("r", (0,))) self.assertFalse(self.aqt_target.instruction_supported("cx", (0, 1))) self.assertTrue(self.ideal_sim_target.instruction_supported("cx", (0, 1))) self.assertFalse(self.ideal_sim_target.instruction_supported("cx", (0, 524))) self.assertTrue(self.fake_backend_target.instruction_supported("cx", (0, 1))) self.assertFalse(self.fake_backend_target.instruction_supported("cx", (1, 0))) self.assertFalse(self.ideal_sim_target.instruction_supported("cx", (0, 1, 2))) def test_instruction_supported_parameters(self): mumbai = FakeMumbaiFractionalCX() self.assertTrue( mumbai.target.instruction_supported( qargs=(0, 1), operation_class=RZXGate, parameters=[math.pi / 4] ) ) self.assertTrue(mumbai.target.instruction_supported(qargs=(0, 1), operation_class=RZXGate)) self.assertTrue( mumbai.target.instruction_supported(operation_class=RZXGate, parameters=[math.pi / 4]) ) self.assertFalse(mumbai.target.instruction_supported("rzx", parameters=[math.pi / 4])) self.assertTrue(mumbai.target.instruction_supported("rz", parameters=[Parameter("angle")])) self.assertTrue( mumbai.target.instruction_supported("rzx_45", qargs=(0, 1), parameters=[math.pi / 4]) ) self.assertTrue(mumbai.target.instruction_supported("rzx_45", qargs=(0, 1))) self.assertTrue(mumbai.target.instruction_supported("rzx_45", parameters=[math.pi / 4])) self.assertFalse(mumbai.target.instruction_supported("rzx_45", parameters=[math.pi / 6])) self.assertFalse( mumbai.target.instruction_supported("rzx_45", parameters=[Parameter("angle")]) ) self.assertTrue( self.ideal_sim_target.instruction_supported( qargs=(0,), operation_class=RXGate, parameters=[Parameter("angle")] ) ) self.assertTrue( self.ideal_sim_target.instruction_supported( qargs=(0,), operation_class=RXGate, parameters=[math.pi] ) ) self.assertTrue( self.ideal_sim_target.instruction_supported( operation_class=RXGate, parameters=[math.pi] ) ) self.assertTrue( self.ideal_sim_target.instruction_supported( operation_class=RXGate, parameters=[Parameter("angle")] ) ) self.assertTrue( self.ideal_sim_target.instruction_supported( "rx", qargs=(0,), parameters=[Parameter("angle")] ) ) self.assertTrue( self.ideal_sim_target.instruction_supported("rx", qargs=(0,), parameters=[math.pi]) ) self.assertTrue(self.ideal_sim_target.instruction_supported("rx", parameters=[math.pi])) self.assertTrue( self.ideal_sim_target.instruction_supported("rx", parameters=[Parameter("angle")]) ) def test_instruction_supported_multiple_parameters(self): target = Target(1) target.add_instruction( UGate(self.theta, self.phi, self.lam), {(0,): InstructionProperties(duration=270.22e-9, error=0.00713)}, ) self.assertFalse(target.instruction_supported("u", parameters=[math.pi])) self.assertTrue(target.instruction_supported("u", parameters=[math.pi, math.pi, math.pi])) self.assertTrue( target.instruction_supported( operation_class=UGate, parameters=[math.pi, math.pi, math.pi] ) ) self.assertFalse( target.instruction_supported(operation_class=UGate, parameters=[Parameter("x")]) ) def test_instruction_supported_arg_len_mismatch(self): self.assertFalse( self.ideal_sim_target.instruction_supported(operation_class=UGate, parameters=[math.pi]) ) self.assertFalse(self.ideal_sim_target.instruction_supported("u", parameters=[math.pi])) def test_instruction_supported_class_not_in_target(self): self.assertFalse( self.ibm_target.instruction_supported(operation_class=CZGate, parameters=[math.pi]) ) def test_instruction_supported_no_args(self): self.assertFalse(self.ibm_target.instruction_supported()) def test_instruction_supported_no_operation(self): self.assertFalse(self.ibm_target.instruction_supported(qargs=(0,), parameters=[math.pi])) class TestPulseTarget(QiskitTestCase): def setUp(self): super().setUp() self.pulse_target = Target( dt=3e-7, granularity=2, min_length=4, pulse_alignment=8, acquire_alignment=8 ) with pulse.build(name="sx_q0") as self.custom_sx_q0: pulse.play(pulse.Constant(100, 0.1), pulse.DriveChannel(0)) with pulse.build(name="sx_q1") as self.custom_sx_q1: pulse.play(pulse.Constant(100, 0.2), pulse.DriveChannel(1)) sx_props = { (0,): InstructionProperties( duration=35.5e-9, error=0.000413, calibration=self.custom_sx_q0 ), (1,): InstructionProperties( duration=35.5e-9, error=0.000502, calibration=self.custom_sx_q1 ), } self.pulse_target.add_instruction(SXGate(), sx_props) def test_instruction_schedule_map(self): inst_map = self.pulse_target.instruction_schedule_map() self.assertIn("sx", inst_map.instructions) self.assertEqual(inst_map.qubits_with_instruction("sx"), [0, 1]) self.assertTrue("sx" in inst_map.qubit_instructions(0)) def test_instruction_schedule_map_ideal_sim_backend(self): ideal_sim_target = Target(num_qubits=3) theta = Parameter("theta") phi = Parameter("phi") lam = Parameter("lambda") for inst in [ UGate(theta, phi, lam), RXGate(theta), RYGate(theta), RZGate(theta), CXGate(), ECRGate(), CCXGate(), Measure(), ]: ideal_sim_target.add_instruction(inst, {None: None}) inst_map = ideal_sim_target.instruction_schedule_map() self.assertEqual(InstructionScheduleMap(), inst_map) def test_str(self): expected = """Target Number of qubits: 2 Instructions: sx (0,): Duration: 3.55e-08 sec. Error Rate: 0.000413 With pulse schedule calibration (1,): Duration: 3.55e-08 sec. Error Rate: 0.000502 With pulse schedule calibration """ self.assertEqual(expected, str(self.pulse_target)) def test_update_from_instruction_schedule_map_add_instruction(self): target = Target() inst_map = InstructionScheduleMap() inst_map.add("sx", 0, self.custom_sx_q0) inst_map.add("sx", 1, self.custom_sx_q1) target.update_from_instruction_schedule_map(inst_map, {"sx": SXGate()}) self.assertEqual(inst_map, target.instruction_schedule_map()) def test_update_from_instruction_schedule_map_with_schedule_parameter(self): self.pulse_target.dt = None inst_map = InstructionScheduleMap() duration = Parameter("duration") with pulse.build(name="sx_q0") as custom_sx: pulse.play(pulse.Constant(duration, 0.2), pulse.DriveChannel(0)) inst_map.add("sx", 0, custom_sx, ["duration"]) target = Target(dt=3e-7) target.update_from_instruction_schedule_map(inst_map, {"sx": SXGate()}) self.assertEqual(inst_map, target.instruction_schedule_map()) def test_update_from_instruction_schedule_map_update_schedule(self): self.pulse_target.dt = None inst_map = InstructionScheduleMap() with pulse.build(name="sx_q1") as custom_sx: pulse.play(pulse.Constant(1000, 0.2), pulse.DriveChannel(1)) inst_map.add("sx", 0, self.custom_sx_q0) inst_map.add("sx", 1, custom_sx) self.pulse_target.update_from_instruction_schedule_map(inst_map, {"sx": SXGate()}) self.assertEqual(inst_map, self.pulse_target.instruction_schedule_map()) # Calibration doesn't change for q0 self.assertEqual(self.pulse_target["sx"][(0,)].duration, 35.5e-9) self.assertEqual(self.pulse_target["sx"][(0,)].error, 0.000413) # Calibration is updated for q1 without error dict and gate time self.assertIsNone(self.pulse_target["sx"][(1,)].duration) self.assertIsNone(self.pulse_target["sx"][(1,)].error) def test_update_from_instruction_schedule_map_new_instruction_no_name_map(self): target = Target() inst_map = InstructionScheduleMap() inst_map.add("sx", 0, self.custom_sx_q0) inst_map.add("sx", 1, self.custom_sx_q1) target.update_from_instruction_schedule_map(inst_map) self.assertEqual(target["sx"][(0,)].calibration, self.custom_sx_q0) self.assertEqual(target["sx"][(1,)].calibration, self.custom_sx_q1) def test_update_from_instruction_schedule_map_new_qarg_raises(self): inst_map = InstructionScheduleMap() inst_map.add("sx", 0, self.custom_sx_q0) inst_map.add("sx", 1, self.custom_sx_q1) inst_map.add("sx", 2, self.custom_sx_q1) self.pulse_target.update_from_instruction_schedule_map(inst_map) self.assertFalse(self.pulse_target.instruction_supported("sx", (2,))) def test_update_from_instruction_schedule_map_with_dt_set(self): inst_map = InstructionScheduleMap() with pulse.build(name="sx_q1") as custom_sx: pulse.play(pulse.Constant(1000, 0.2), pulse.DriveChannel(1)) inst_map.add("sx", 0, self.custom_sx_q0) inst_map.add("sx", 1, custom_sx) self.pulse_target.dt = 1.0 self.pulse_target.update_from_instruction_schedule_map(inst_map, {"sx": SXGate()}) self.assertEqual(inst_map, self.pulse_target.instruction_schedule_map()) self.assertEqual(self.pulse_target["sx"][(1,)].duration, 1000.0) self.assertIsNone(self.pulse_target["sx"][(1,)].error) # This is an edge case. # System dt is read-only property and changing it will break all underlying calibrations. # duration of sx0 returns previous value since calibration doesn't change. self.assertEqual(self.pulse_target["sx"][(0,)].duration, 35.5e-9) self.assertEqual(self.pulse_target["sx"][(0,)].error, 0.000413) def test_update_from_instruction_schedule_map_with_error_dict(self): inst_map = InstructionScheduleMap() with pulse.build(name="sx_q1") as custom_sx: pulse.play(pulse.Constant(1000, 0.2), pulse.DriveChannel(1)) inst_map.add("sx", 0, self.custom_sx_q0) inst_map.add("sx", 1, custom_sx) self.pulse_target.dt = 1.0 error_dict = {"sx": {(1,): 1.0}} self.pulse_target.update_from_instruction_schedule_map( inst_map, {"sx": SXGate()}, error_dict=error_dict ) self.assertEqual(self.pulse_target["sx"][(1,)].error, 1.0) self.assertEqual(self.pulse_target["sx"][(0,)].error, 0.000413) def test_timing_constraints(self): generated_constraints = self.pulse_target.timing_constraints() expected_constraints = TimingConstraints(2, 4, 8, 8) for i in ["granularity", "min_length", "pulse_alignment", "acquire_alignment"]: self.assertEqual( getattr(generated_constraints, i), getattr(expected_constraints, i), f"Generated constraints differs from expected for attribute {i}" f"{getattr(generated_constraints, i)}!={getattr(expected_constraints, i)}", ) def test_default_instmap_has_no_custom_gate(self): backend = FakeGeneva() target = backend.target # This copies .calibraiton of InstructionProperties of each instruction # This must not convert PulseQobj to Schedule during this. # See qiskit-terra/#9595 inst_map = target.instruction_schedule_map() self.assertFalse(inst_map.has_custom_gate()) # Get pulse schedule. This generates Schedule provided by backend. sched = inst_map.get("sx", (0,)) self.assertEqual(sched.metadata["publisher"], CalibrationPublisher.BACKEND_PROVIDER) self.assertFalse(inst_map.has_custom_gate()) # Update target with custom instruction. This is user provided schedule. new_prop = InstructionProperties( duration=self.custom_sx_q0.duration, error=None, calibration=self.custom_sx_q0, ) target.update_instruction_properties(instruction="sx", qargs=(0,), properties=new_prop) inst_map = target.instruction_schedule_map() self.assertTrue(inst_map.has_custom_gate()) empty = InstructionProperties() target.update_instruction_properties(instruction="sx", qargs=(0,), properties=empty) inst_map = target.instruction_schedule_map() self.assertFalse(inst_map.has_custom_gate()) def test_get_empty_target_calibration(self): target = Target() properties = {(0,): InstructionProperties(duration=100, error=0.1)} target.add_instruction(XGate(), properties) self.assertIsNone(target["x"][(0,)].calibration) def test_loading_legacy_ugate_instmap(self): # This is typical IBM backend situation. # IBM provider used to have u1, u2, u3 in the basis gates and # these have been replaced with sx and rz. # However, IBM provider still provides calibration of these u gates, # and the inst map loads them as backend calibrations. # Target is implicitly updated with inst map when it is set in transpile. # If u gates are not excluded, they may appear in the transpiled circuit. # These gates are no longer supported by hardware. entry = ScheduleDef() entry.define(pulse.Schedule(name="fake_u3"), user_provided=False) # backend provided instmap = InstructionScheduleMap() instmap._add("u3", (0,), entry) # Today's standard IBM backend target with sx, rz basis target = Target() target.add_instruction(SXGate(), {(0,): InstructionProperties()}) target.add_instruction(RZGate(Parameter("θ")), {(0,): InstructionProperties()}) target.add_instruction(Measure(), {(0,): InstructionProperties()}) names_before = set(target.operation_names) target.update_from_instruction_schedule_map(instmap) names_after = set(target.operation_names) # Otherwise u3 and sx-rz basis conflict in 1q decomposition. self.assertSetEqual(names_before, names_after) class TestGlobalVariableWidthOperations(QiskitTestCase): def setUp(self): super().setUp() self.theta = Parameter("theta") self.phi = Parameter("phi") self.lam = Parameter("lambda") self.target_global_gates_only = Target(num_qubits=5) self.target_global_gates_only.add_instruction(CXGate()) self.target_global_gates_only.add_instruction(UGate(self.theta, self.phi, self.lam)) self.target_global_gates_only.add_instruction(Measure()) self.target_global_gates_only.add_instruction(IfElseOp, name="if_else") self.target_global_gates_only.add_instruction(ForLoopOp, name="for_loop") self.target_global_gates_only.add_instruction(WhileLoopOp, name="while_loop") self.target_global_gates_only.add_instruction(SwitchCaseOp, name="switch_case") self.ibm_target = Target() i_props = { (0,): InstructionProperties(duration=35.5e-9, error=0.000413), (1,): InstructionProperties(duration=35.5e-9, error=0.000502), (2,): InstructionProperties(duration=35.5e-9, error=0.0004003), (3,): InstructionProperties(duration=35.5e-9, error=0.000614), (4,): InstructionProperties(duration=35.5e-9, error=0.006149), } self.ibm_target.add_instruction(IGate(), i_props) rz_props = { (0,): InstructionProperties(duration=0, error=0), (1,): InstructionProperties(duration=0, error=0), (2,): InstructionProperties(duration=0, error=0), (3,): InstructionProperties(duration=0, error=0), (4,): InstructionProperties(duration=0, error=0), } self.ibm_target.add_instruction(RZGate(self.theta), rz_props) sx_props = { (0,): InstructionProperties(duration=35.5e-9, error=0.000413), (1,): InstructionProperties(duration=35.5e-9, error=0.000502), (2,): InstructionProperties(duration=35.5e-9, error=0.0004003), (3,): InstructionProperties(duration=35.5e-9, error=0.000614), (4,): InstructionProperties(duration=35.5e-9, error=0.006149), } self.ibm_target.add_instruction(SXGate(), sx_props) x_props = { (0,): InstructionProperties(duration=35.5e-9, error=0.000413), (1,): InstructionProperties(duration=35.5e-9, error=0.000502), (2,): InstructionProperties(duration=35.5e-9, error=0.0004003), (3,): InstructionProperties(duration=35.5e-9, error=0.000614), (4,): InstructionProperties(duration=35.5e-9, error=0.006149), } self.ibm_target.add_instruction(XGate(), x_props) cx_props = { (3, 4): InstructionProperties(duration=270.22e-9, error=0.00713), (4, 3): InstructionProperties(duration=305.77e-9, error=0.00713), (3, 1): InstructionProperties(duration=462.22e-9, error=0.00929), (1, 3): InstructionProperties(duration=497.77e-9, error=0.00929), (1, 2): InstructionProperties(duration=227.55e-9, error=0.00659), (2, 1): InstructionProperties(duration=263.11e-9, error=0.00659), (0, 1): InstructionProperties(duration=519.11e-9, error=0.01201), (1, 0): InstructionProperties(duration=554.66e-9, error=0.01201), } self.ibm_target.add_instruction(CXGate(), cx_props) measure_props = { (0,): InstructionProperties(duration=5.813e-6, error=0.0751), (1,): InstructionProperties(duration=5.813e-6, error=0.0225), (2,): InstructionProperties(duration=5.813e-6, error=0.0146), (3,): InstructionProperties(duration=5.813e-6, error=0.0215), (4,): InstructionProperties(duration=5.813e-6, error=0.0333), } self.ibm_target.add_instruction(Measure(), measure_props) self.ibm_target.add_instruction(IfElseOp, name="if_else") self.ibm_target.add_instruction(ForLoopOp, name="for_loop") self.ibm_target.add_instruction(WhileLoopOp, name="while_loop") self.ibm_target.add_instruction(SwitchCaseOp, name="switch_case") self.aqt_target = Target(description="AQT Target") rx_props = { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, } self.aqt_target.add_instruction(RXGate(self.theta), rx_props) ry_props = { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, } self.aqt_target.add_instruction(RYGate(self.theta), ry_props) rz_props = { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, } self.aqt_target.add_instruction(RZGate(self.theta), rz_props) r_props = { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, } self.aqt_target.add_instruction(RGate(self.theta, self.phi), r_props) rxx_props = { (0, 1): None, (0, 2): None, (0, 3): None, (0, 4): None, (1, 0): None, (2, 0): None, (3, 0): None, (4, 0): None, (1, 2): None, (1, 3): None, (1, 4): None, (2, 1): None, (3, 1): None, (4, 1): None, (2, 3): None, (2, 4): None, (3, 2): None, (4, 2): None, (3, 4): None, (4, 3): None, } self.aqt_target.add_instruction(RXXGate(self.theta), rxx_props) measure_props = { (0,): None, (1,): None, (2,): None, (3,): None, (4,): None, } self.aqt_target.add_instruction(Measure(), measure_props) self.aqt_target.add_instruction(IfElseOp, name="if_else") self.aqt_target.add_instruction(ForLoopOp, name="for_loop") self.aqt_target.add_instruction(WhileLoopOp, name="while_loop") self.aqt_target.add_instruction(SwitchCaseOp, name="switch_case") def test_qargs(self): expected_ibm = { (0,), (1,), (2,), (3,), (4,), (3, 4), (4, 3), (3, 1), (1, 3), (1, 2), (2, 1), (0, 1), (1, 0), } self.assertEqual(expected_ibm, self.ibm_target.qargs) expected_aqt = { (0,), (1,), (2,), (3,), (4,), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (2, 0), (3, 0), (4, 0), (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (4, 1), (2, 3), (2, 4), (3, 2), (4, 2), (3, 4), (4, 3), } self.assertEqual(expected_aqt, self.aqt_target.qargs) self.assertEqual(None, self.target_global_gates_only.qargs) def test_qargs_single_qarg(self): target = Target() target.add_instruction(XGate(), {(0,): None}) self.assertEqual( { (0,), }, target.qargs, ) def test_qargs_for_operation_name(self): self.assertEqual( self.ibm_target.qargs_for_operation_name("rz"), {(0,), (1,), (2,), (3,), (4,)} ) self.assertEqual( self.aqt_target.qargs_for_operation_name("rz"), {(0,), (1,), (2,), (3,), (4,)} ) self.assertIsNone(self.target_global_gates_only.qargs_for_operation_name("cx")) self.assertIsNone(self.ibm_target.qargs_for_operation_name("if_else")) self.assertIsNone(self.aqt_target.qargs_for_operation_name("while_loop")) self.assertIsNone(self.aqt_target.qargs_for_operation_name("switch_case")) def test_instruction_names(self): self.assertEqual( self.ibm_target.operation_names, { "rz", "id", "sx", "x", "cx", "measure", "if_else", "while_loop", "for_loop", "switch_case", }, ) self.assertEqual( self.aqt_target.operation_names, { "rz", "ry", "rx", "rxx", "r", "measure", "if_else", "while_loop", "for_loop", "switch_case", }, ) self.assertEqual( self.target_global_gates_only.operation_names, {"u", "cx", "measure", "if_else", "while_loop", "for_loop", "switch_case"}, ) def test_operations_for_qargs(self): expected = [ IGate(), RZGate(self.theta), SXGate(), XGate(), Measure(), IfElseOp, ForLoopOp, WhileLoopOp, SwitchCaseOp, ] res = self.ibm_target.operations_for_qargs((0,)) self.assertEqual(len(expected), len(res)) for x in expected: self.assertIn(x, res) expected = [ CXGate(), IfElseOp, ForLoopOp, WhileLoopOp, SwitchCaseOp, ] res = self.ibm_target.operations_for_qargs((0, 1)) self.assertEqual(len(expected), len(res)) for x in expected: self.assertIn(x, res) expected = [ RXGate(self.theta), RYGate(self.theta), RZGate(self.theta), RGate(self.theta, self.phi), Measure(), IfElseOp, ForLoopOp, WhileLoopOp, SwitchCaseOp, ] res = self.aqt_target.operations_for_qargs((0,)) self.assertEqual(len(expected), len(res)) for x in expected: self.assertIn(x, res) expected = [RXXGate(self.theta), IfElseOp, ForLoopOp, WhileLoopOp, SwitchCaseOp] res = self.aqt_target.operations_for_qargs((0, 1)) self.assertEqual(len(expected), len(res)) for x in expected: self.assertIn(x, res) def test_operation_names_for_qargs(self): expected = { "id", "rz", "sx", "x", "measure", "if_else", "for_loop", "while_loop", "switch_case", } self.assertEqual(expected, self.ibm_target.operation_names_for_qargs((0,))) expected = { "cx", "if_else", "for_loop", "while_loop", "switch_case", } self.assertEqual(expected, self.ibm_target.operation_names_for_qargs((0, 1))) expected = { "rx", "ry", "rz", "r", "measure", "if_else", "for_loop", "while_loop", "switch_case", } self.assertEqual(self.aqt_target.operation_names_for_qargs((0,)), expected) expected = {"rxx", "if_else", "for_loop", "while_loop", "switch_case"} self.assertEqual(self.aqt_target.operation_names_for_qargs((0, 1)), expected) def test_operations(self): ibm_expected = [ RZGate(self.theta), IGate(), SXGate(), XGate(), CXGate(), Measure(), WhileLoopOp, IfElseOp, ForLoopOp, SwitchCaseOp, ] for gate in ibm_expected: self.assertIn(gate, self.ibm_target.operations) aqt_expected = [ RZGate(self.theta), RXGate(self.theta), RYGate(self.theta), RGate(self.theta, self.phi), RXXGate(self.theta), ForLoopOp, IfElseOp, WhileLoopOp, SwitchCaseOp, ] for gate in aqt_expected: self.assertIn(gate, self.aqt_target.operations) fake_expected = [ UGate(self.theta, self.phi, self.lam), CXGate(), Measure(), ForLoopOp, WhileLoopOp, IfElseOp, SwitchCaseOp, ] for gate in fake_expected: self.assertIn(gate, self.target_global_gates_only.operations) def test_add_invalid_instruction(self): inst_props = {(0, 1, 2, 3): None} target = Target() with self.assertRaises(TranspilerError): target.add_instruction(CXGate(), inst_props) def test_instructions(self): ibm_expected = [ (IGate(), (0,)), (IGate(), (1,)), (IGate(), (2,)), (IGate(), (3,)), (IGate(), (4,)), (RZGate(self.theta), (0,)), (RZGate(self.theta), (1,)), (RZGate(self.theta), (2,)), (RZGate(self.theta), (3,)), (RZGate(self.theta), (4,)), (SXGate(), (0,)), (SXGate(), (1,)), (SXGate(), (2,)), (SXGate(), (3,)), (SXGate(), (4,)), (XGate(), (0,)), (XGate(), (1,)), (XGate(), (2,)), (XGate(), (3,)), (XGate(), (4,)), (CXGate(), (3, 4)), (CXGate(), (4, 3)), (CXGate(), (3, 1)), (CXGate(), (1, 3)), (CXGate(), (1, 2)), (CXGate(), (2, 1)), (CXGate(), (0, 1)), (CXGate(), (1, 0)), (Measure(), (0,)), (Measure(), (1,)), (Measure(), (2,)), (Measure(), (3,)), (Measure(), (4,)), (IfElseOp, None), (ForLoopOp, None), (WhileLoopOp, None), (SwitchCaseOp, None), ] self.assertEqual(ibm_expected, self.ibm_target.instructions) ideal_sim_expected = [ (CXGate(), None), (UGate(self.theta, self.phi, self.lam), None), (Measure(), None), (IfElseOp, None), (ForLoopOp, None), (WhileLoopOp, None), (SwitchCaseOp, None), ] self.assertEqual(ideal_sim_expected, self.target_global_gates_only.instructions) def test_instruction_supported(self): self.assertTrue(self.aqt_target.instruction_supported("r", (0,))) self.assertFalse(self.aqt_target.instruction_supported("cx", (0, 1))) self.assertTrue(self.target_global_gates_only.instruction_supported("cx", (0, 1))) self.assertFalse(self.target_global_gates_only.instruction_supported("cx", (0, 524))) self.assertFalse(self.target_global_gates_only.instruction_supported("cx", (0, 1, 2))) self.assertTrue(self.aqt_target.instruction_supported("while_loop", (0, 1, 2, 3))) self.assertTrue( self.aqt_target.instruction_supported(operation_class=WhileLoopOp, qargs=(0, 1, 2, 3)) ) self.assertTrue( self.aqt_target.instruction_supported(operation_class=SwitchCaseOp, qargs=(0, 1, 2, 3)) ) self.assertFalse( self.ibm_target.instruction_supported( operation_class=IfElseOp, qargs=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) ) ) self.assertFalse( self.ibm_target.instruction_supported(operation_class=IfElseOp, qargs=(0, 425)) ) self.assertFalse(self.ibm_target.instruction_supported("for_loop", qargs=(0, 425))) def test_coupling_map(self): self.assertIsNone(self.target_global_gates_only.build_coupling_map()) self.assertEqual( set(CouplingMap.from_full(5).get_edges()), set(self.aqt_target.build_coupling_map().get_edges()), ) self.assertEqual( { (3, 4), (4, 3), (3, 1), (1, 3), (1, 2), (2, 1), (0, 1), (1, 0), }, set(self.ibm_target.build_coupling_map().get_edges()), ) class TestInstructionProperties(QiskitTestCase): def test_empty_repr(self): properties = InstructionProperties() self.assertEqual( repr(properties), "InstructionProperties(duration=None, error=None, calibration=None)", ) class TestTargetFromConfiguration(QiskitTestCase): """Test the from_configuration() constructor.""" def test_basis_gates_qubits_only(self): """Test construction with only basis gates.""" target = Target.from_configuration(["u", "cx"], 3) self.assertEqual(target.operation_names, {"u", "cx"}) def test_basis_gates_no_qubits(self): target = Target.from_configuration(["u", "cx"]) self.assertEqual(target.operation_names, {"u", "cx"}) def test_basis_gates_coupling_map(self): """Test construction with only basis gates.""" target = Target.from_configuration( ["u", "cx"], 3, CouplingMap.from_ring(3, bidirectional=False) ) self.assertEqual(target.operation_names, {"u", "cx"}) self.assertEqual({(0,), (1,), (2,)}, target["u"].keys()) self.assertEqual({(0, 1), (1, 2), (2, 0)}, target["cx"].keys()) def test_properties(self): fake_backend = FakeVigo() config = fake_backend.configuration() properties = fake_backend.properties() target = Target.from_configuration( basis_gates=config.basis_gates, num_qubits=config.num_qubits, coupling_map=CouplingMap(config.coupling_map), backend_properties=properties, ) self.assertEqual(0, target["rz"][(0,)].error) self.assertEqual(0, target["rz"][(0,)].duration) def test_properties_with_durations(self): fake_backend = FakeVigo() config = fake_backend.configuration() properties = fake_backend.properties() durations = InstructionDurations([("rz", 0, 0.5)], dt=1.0) target = Target.from_configuration( basis_gates=config.basis_gates, num_qubits=config.num_qubits, coupling_map=CouplingMap(config.coupling_map), backend_properties=properties, instruction_durations=durations, dt=config.dt, ) self.assertEqual(0.5, target["rz"][(0,)].duration) def test_inst_map(self): fake_backend = FakeNairobi() config = fake_backend.configuration() properties = fake_backend.properties() defaults = fake_backend.defaults() constraints = TimingConstraints(**config.timing_constraints) target = Target.from_configuration( basis_gates=config.basis_gates, num_qubits=config.num_qubits, coupling_map=CouplingMap(config.coupling_map), backend_properties=properties, dt=config.dt, inst_map=defaults.instruction_schedule_map, timing_constraints=constraints, ) self.assertIsNotNone(target["sx"][(0,)].calibration) self.assertEqual(target.granularity, constraints.granularity) self.assertEqual(target.min_length, constraints.min_length) self.assertEqual(target.pulse_alignment, constraints.pulse_alignment) self.assertEqual(target.acquire_alignment, constraints.acquire_alignment) def test_concurrent_measurements(self): fake_backend = FakeVigo() config = fake_backend.configuration() target = Target.from_configuration( basis_gates=config.basis_gates, concurrent_measurements=config.meas_map, ) self.assertEqual(target.concurrent_measurements, config.meas_map) def test_custom_basis_gates(self): basis_gates = ["my_x", "cx"] custom_name_mapping = {"my_x": XGate()} target = Target.from_configuration( basis_gates=basis_gates, num_qubits=2, custom_name_mapping=custom_name_mapping ) self.assertEqual(target.operation_names, {"my_x", "cx"}) def test_missing_custom_basis_no_coupling(self): basis_gates = ["my_X", "cx"] with self.assertRaisesRegex(KeyError, "is not present in the standard gate names"): Target.from_configuration(basis_gates, num_qubits=4) def test_missing_custom_basis_with_coupling(self): basis_gates = ["my_X", "cx"] cmap = CouplingMap.from_line(3) with self.assertRaisesRegex(KeyError, "is not present in the standard gate names"): Target.from_configuration(basis_gates, 3, cmap) def test_over_two_qubit_gate_without_coupling(self): basis_gates = ["ccx", "cx", "swap", "u"] target = Target.from_configuration(basis_gates, 15) self.assertEqual(target.operation_names, {"ccx", "cx", "swap", "u"}) def test_over_two_qubits_with_coupling(self): basis_gates = ["ccx", "cx", "swap", "u"] cmap = CouplingMap.from_line(15) with self.assertRaisesRegex(TranspilerError, "This constructor method only supports"): Target.from_configuration(basis_gates, 15, cmap)
https://github.com/sebasmos/QuantumVE
sebasmos
# Define the model name model_name = "efficientnet_b3" #EfficientNet_B7_Weights.IMAGENET1K_V1 feat_space = 8 !pwd %cd qubico !pwd import torchvision.models as models import torch MODEL_CONSTRUCTORS = { 'alexnet': models.alexnet, 'convnext_base': models.convnext_base, 'convnext_large': models.convnext_large, 'convnext_small': models.convnext_small, 'convnext_tiny': models.convnext_tiny, 'densenet121': models.densenet121, 'densenet161': models.densenet161, 'densenet169': models.densenet169, 'densenet201': models.densenet201, 'efficientnet_b0': models.efficientnet_b0, 'efficientnet_b1': models.efficientnet_b1, 'efficientnet_b2': models.efficientnet_b2, 'efficientnet_b3': models.efficientnet_b3, 'efficientnet_b4': models.efficientnet_b4, 'efficientnet_b5': models.efficientnet_b5, 'efficientnet_b6': models.efficientnet_b6, 'efficientnet_b7': models.efficientnet_b7, 'efficientnet_v2_l': models.efficientnet_v2_l, 'efficientnet_v2_m': models.efficientnet_v2_m, 'efficientnet_v2_s': models.efficientnet_v2_s, 'googlenet': models.googlenet, 'inception_v3': models.inception_v3, 'maxvit_t': models.maxvit_t, 'mnasnet0_5': models.mnasnet0_5, 'mnasnet0_75': models.mnasnet0_75, 'mnasnet1_0': models.mnasnet1_0, 'mnasnet1_3': models.mnasnet1_3, 'mobilenet_v2': models.mobilenet_v2, 'mobilenet_v3_large': models.mobilenet_v3_large, 'mobilenet_v3_small': models.mobilenet_v3_small, 'regnet_x_16gf': models.regnet_x_16gf, 'regnet_x_1_6gf': models.regnet_x_1_6gf, 'regnet_x_32gf': models.regnet_x_32gf, 'regnet_x_3_2gf': models.regnet_x_3_2gf, 'regnet_x_400mf': models.regnet_x_400mf, 'regnet_x_800mf': models.regnet_x_800mf, 'regnet_x_8gf': models.regnet_x_8gf, 'regnet_y_128gf': models.regnet_y_128gf,# check this regnet_y_128gf: no weigthts avaialble 'regnet_y_16gf': models.regnet_y_16gf, 'regnet_y_1_6gf': models.regnet_y_1_6gf, 'regnet_y_32gf': models.regnet_y_32gf, 'regnet_y_3_2gf': models.regnet_y_3_2gf, 'regnet_y_400mf': models.regnet_y_400mf, 'regnet_y_800mf': models.regnet_y_800mf, 'regnet_y_8gf': models.regnet_y_8gf, 'resnet101': models.resnet101, 'resnet152': models.resnet152, 'resnet18': models.resnet18, 'resnet34': models.resnet34, 'resnet50': models.resnet50, 'resnext101_32x8d': models.resnext101_32x8d, 'resnext101_64x4d': models.resnext101_64x4d, 'resnext50_32x4d': models.resnext50_32x4d, 'shufflenet_v2_x0_5': models.shufflenet_v2_x0_5, 'shufflenet_v2_x1_0': models.shufflenet_v2_x1_0, 'shufflenet_v2_x1_5': models.shufflenet_v2_x1_5, 'shufflenet_v2_x2_0': models.shufflenet_v2_x2_0, 'squeezenet1_0': models.squeezenet1_0, 'squeezenet1_1': models.squeezenet1_1, 'swin_b': models.swin_b, 'swin_s': models.swin_s, 'swin_t': models.swin_t, 'swin_v2_b': models.swin_v2_b, 'swin_v2_s': models.swin_v2_s, 'swin_v2_t': models.swin_v2_t, 'vgg11': models.vgg11, 'vgg11_bn': models.vgg11_bn, 'vgg13': models.vgg13, 'vgg13_bn': models.vgg13_bn, 'vgg16': models.vgg16, 'vgg16_bn': models.vgg16_bn, 'vgg19': models.vgg19, 'vgg19_bn': models.vgg19_bn, 'vit_b_16': models.vit_b_16, 'vit_b_32': models.vit_b_32, 'vit_h_14': models.vit_h_14,# and this..no weigthts avaialble 'vit_l_16': models.vit_l_16, 'vit_l_32': models.vit_l_32, 'wide_resnet101_2': models.wide_resnet101_2, 'wide_resnet50_2': models.wide_resnet50_2 } # Create experiment directory EXPERIMENT_NAME = f"{model_name}_embeddings" import os os.makedirs(EXPERIMENT_NAME, exist_ok=True) train_path = f"{EXPERIMENT_NAME}/train" val_path = f"{EXPERIMENT_NAME}/val" os.makedirs(train_path, exist_ok=True) os.makedirs(val_path, exist_ok=True) import sys sys.path.insert(0,'../') from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR from torch.utils.data import random_split from torch.utils.data import Subset, DataLoader, random_split from torchvision import datasets, transforms import torch.optim as optim from torch.optim.lr_scheduler import StepLR import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import confusion_matrix, classification_report import pandas as pd # from MAE code from util.datasets import build_dataset import argparse import util.misc as misc import argparse import datetime import json import numpy as np import os import time from pathlib import Path import torch import torch.backends.cudnn as cudnn from torch.utils.tensorboard import SummaryWriter import timm assert timm.__version__ == "0.3.2" # version check from timm.models.layers import trunc_normal_ from timm.data.mixup import Mixup from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy import util.lr_decay as lrd import util.misc as misc from util.datasets import build_dataset from util.pos_embed import interpolate_pos_embed from util.misc import NativeScalerWithGradNormCount as NativeScaler import models_vit import sys import os import torch import numpy as np import matplotlib.pyplot as plt from PIL import Image import models_mae import torch; print(f'numpy version: {np.__version__}\nCUDA version: {torch.version.cuda} - Torch versteion: {torch.__version__} - device count: {torch.cuda.device_count()}') from engine_finetune import train_one_epoch, evaluate from timm.data import Mixup from timm.utils import accuracy from sklearn.metrics import confusion_matrix, classification_report import seaborn as sns from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt from itertools import cycle import numpy as np from sklearn.metrics import precision_score, recall_score, f1_score import torch.optim as optim import torchvision.models as models import torch.nn as nn import torch import pandas as pd import torch import numpy as np import pandas as pd from tqdm import tqdm import os import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, fbeta_score from sklearn.metrics import precision_score, recall_score, f1_score, fbeta_score import numpy as np imagenet_mean = np.array([0.485, 0.456, 0.406]) imagenet_std = np.array([0.229, 0.224, 0.225]) def show_image(image, title=''): # image is [H, W, 3] assert image.shape[2] == 3 plt.imshow(torch.clip((image * imagenet_std + imagenet_mean) * 255, 0, 255).int()) plt.title(title, fontsize=16) plt.axis('off') return def prepare_model(chkpt_dir, arch='mae_vit_large_patch16'): # build model model = getattr(models_mae, arch)() # load model checkpoint = torch.load(chkpt_dir, map_location='cpu') msg = model.load_state_dict(checkpoint['model'], strict=False) print(msg) return model def plot_multiclass_roc_curve(all_labels, all_predictions, EXPERIMENT_NAME="."): # Step 1: Label Binarization label_binarizer = LabelBinarizer() y_onehot = label_binarizer.fit_transform(all_labels) all_predictions_hot = label_binarizer.transform(all_predictions) # Step 2: Calculate ROC curves fpr = dict() tpr = dict() roc_auc = dict() unique_classes = range(y_onehot.shape[1]) for i in unique_classes: fpr[i], tpr[i], _ = roc_curve(y_onehot[:, i], all_predictions_hot[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Step 3: Plot ROC curves fig, ax = plt.subplots(figsize=(8, 8)) # Micro-average ROC curve fpr_micro, tpr_micro, _ = roc_curve(y_onehot.ravel(), all_predictions_hot.ravel()) roc_auc_micro = auc(fpr_micro, tpr_micro) plt.plot( fpr_micro, tpr_micro, label=f"micro-average ROC curve (AUC = {roc_auc_micro:.2f})", color="deeppink", linestyle=":", linewidth=4, ) # Macro-average ROC curve all_fpr = np.unique(np.concatenate([fpr[i] for i in unique_classes])) mean_tpr = np.zeros_like(all_fpr) for i in unique_classes: mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) mean_tpr /= len(unique_classes) fpr_macro = all_fpr tpr_macro = mean_tpr roc_auc_macro = auc(fpr_macro, tpr_macro) plt.plot( fpr_macro, tpr_macro, label=f"macro-average ROC curve (AUC = {roc_auc_macro:.2f})", color="navy", linestyle=":", linewidth=4, ) # Individual class ROC curves with unique colors colors = plt.cm.rainbow(np.linspace(0, 1, len(unique_classes))) for class_id, color in zip(unique_classes, colors): plt.plot( fpr[class_id], tpr[class_id], color=color, label=f"ROC curve for Class {class_id} (AUC = {roc_auc[class_id]:.2f})", linewidth=2, ) plt.plot([0, 1], [0, 1], color='gray', linestyle='--', linewidth=2) # Add diagonal line for reference plt.axis("equal") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Extension of Receiver Operating Characteristic\n to One-vs-Rest multiclass") plt.legend() plt.savefig(f'{EXPERIMENT_NAME}/roc_curve.png') plt.show() # Set the seed for PyTorch torch.manual_seed(42) parser = argparse.ArgumentParser('MAE fine-tuning for image classification', add_help=False) parser.add_argument('--batch_size', default=64, type=int, help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus') parser.add_argument('--epochs', default=50, type=int) parser.add_argument('--accum_iter', default=4, type=int, help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)') # Model parameters parser.add_argument('--model', default='mobilenet_v3', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--input_size', default=224, type=int, help='images input size') parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') # Optimizer parameters parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)') parser.add_argument('--blr', type=float, default=5e-4, metavar='LR', help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') parser.add_argument('--layer_decay', type=float, default=0.65, help='layer-wise lr decay from ELECTRA/BEiT') parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0') parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', help='epochs to warmup LR') # Augmentation parameters parser.add_argument('--color_jitter', type=float, default=None, metavar='PCT', help='Color jitter factor (enabled only when not using Auto/RandAug)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'), parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') # * Random Erase params parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') # * Mixup params parser.add_argument('--mixup', type=float, default=0.8, help='mixup alpha, mixup enabled if > 0.') parser.add_argument('--cutmix', type=float, default=1.0, help='cutmix alpha, cutmix enabled if > 0.') parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup_prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup_switch_prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup_mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') # * Finetuning params parser.add_argument('--finetune', default='mae_pretrain_vit_base.pth', help='finetune from checkpoint') parser.add_argument('--global_pool', action='store_true') parser.set_defaults(global_pool=True) parser.add_argument('--cls_token', action='store_false', dest='global_pool', help='Use class token instead of global pool for classification') # Dataset parameters parser.add_argument('--data_path', default='/media/enc/vera1/sebastian/data/ABGQI_mel_spectrograms', type=str, help='dataset path') parser.add_argument('--nb_classes', default=5, type=int, help='number of the classification types') parser.add_argument('--output_dir', default='quinn_5_classes', help='path where to save, empty for no saving') parser.add_argument('--log_dir', default='/media/enc/vera1/sebastian/codes/classifiers/mae/MobileNet/output_dir', help='path where to tensorboard log') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default="/media/enc/vera1/sebastian/codes/classifiers/mae/MobileNet/quinn_5_classes/checkpoint-49.pth", help='resume from checkpoint') parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval',default=True, action='store_true', help='Perform evaluation only') parser.add_argument('--dist_eval', action='store_true', default=False, help='Enabling distributed evaluation (recommended during training for faster monitor') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') args, unknown = parser.parse_known_args() misc.init_distributed_mode(args) print("{}".format(args).replace(', ', ',\n')) os.makedirs(args.output_dir, exist_ok=True) device = torch.device(args.device) misc.init_distributed_mode(args) print("{}".format(args).replace(', ', ',\n')) device = torch.device(args.device) seed = args.seed + misc.get_rank() torch.manual_seed(seed) np.random.seed(seed) cudnn.benchmark = True dataset_train = build_dataset(is_train=True, args=args) dataset_val = build_dataset(is_train=False, args=args) if True: # args.distributed: num_tasks = misc.get_world_size() global_rank = misc.get_rank() sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) print("Sampler_train = %s" % str(sampler_train)) if args.dist_eval: if len(dataset_val) % num_tasks != 0: print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True) # shuffle=True to reduce monitor bias else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) if global_rank == 0 and args.log_dir is not None and not args.eval: os.makedirs(args.log_dir, exist_ok=True) log_writer = SummaryWriter(log_dir=args.log_dir) else: log_writer = None data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False ) def count_parameters(model, message=""): trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) total_params = sum(p.numel() for p in model.parameters()) print(f"{message} Trainable params: {trainable_params} of {total_params}") def extract_embeddings(model, data_loader, save_path, device, preprocess=None): embeddings_list = [] targets_list = [] total_batches = len(data_loader) with torch.no_grad(), tqdm(total=total_batches) as pbar: model.eval() # Set the model to evaluation mode for images, targets in data_loader: if preprocess: print("required processing") images = preprocess(images).squeeze() images = images.to(device) # print("image shape is: ", images.shape) embeddings = model(images) embeddings_list.append(embeddings.cpu().detach().numpy()) # Move to CPU and convert to NumPy targets_list.append(targets.numpy()) # Convert targets to NumPy pbar.update(1) # Concatenate embeddings and targets from all batches embeddings = np.concatenate(embeddings_list).squeeze() targets = np.concatenate(targets_list) num_embeddings = embeddings.shape[1] column_names = [f"feat_{i}" for i in range(num_embeddings)] column_names.append("label") embeddings_with_targets = np.hstack((embeddings, np.expand_dims(targets, axis=1))) # Create a DataFrame with column names df = pd.DataFrame(embeddings_with_targets, columns=column_names) df.to_csv(save_path, index=False) model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and not name.startswith('get_') and not name.startswith('list_') and callable(models.__dict__[name])) model_names # Load the model if model_name in MODEL_CONSTRUCTORS: model_constructor = MODEL_CONSTRUCTORS[model_name] if model_name == "vit_h_14": from torchvision.io import read_image from torchvision.models import vit_h_14, ViT_H_14_Weights # Step 1: Initialize model with the best available weights weights = ViT_H_14_Weights.IMAGENET1K_SWAG_E2E_V1.DEFAULT model = vit_h_14(weights=weights) model = torch.nn.Sequential(*(list(model.children())[:-1])) # Step 2: Initialize the inference transforms preprocess = weights.transforms() if model_name =="regnet_y_128gf": from torchvision.io import read_image from torchvision.models import regnet_y_128gf, RegNet_Y_128GF_Weights # Step 1: Initialize model with the best available weights weights = RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_E2E_V1 model = regnet_y_128gf(weights=weights) model = torch.nn.Sequential(*(list(model.children())[:-1])) # Step 2: Initialize the inference transforms preprocess = weights.transforms() if model_name =="mobilenet_v3_large": from torchvision.io import read_image from torchvision.models import mobilenet_v3_large, MobileNet_V3_Large_Weights # Step 1: Initialize model with the best available weights weights = MobileNet_V3_Large_Weights.IMAGENET1K_V2 model = mobilenet_v3_large(weights=weights) model = torch.nn.Sequential(*(list(model.children())[:-1])) # Step 2: Initialize the inference transforms preprocess = weights.transforms() else: model = model_constructor(pretrained=True, progress=True) model.classifier[1].in_features = model.classifier[1].in_features model.classifier[1] = nn.Linear(model.classifier[1].in_features, out_features=feat_space) preprocess=None else: raise ValueError("Invalid model type specified.") model model.eval() model.to(device) # Extract embeddings for training data extract_embeddings(model, data_loader_train, f'{train_path}/train_embeddings.csv', device, preprocess) # Extract embeddings for validation data extract_embeddings(model, data_loader_val, f'{val_path}/val_embeddings.csv', device, preprocess)
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
#!/usr/bin/env python3 # Author: Daniel Escanez-Exposito from abc import ABC, abstractmethod from qiskit import QuantumCircuit from qiskit.circuit.library import YGate, ZGate from qiskit.circuit.gate import Gate import qiskit.quantum_info as qi from numpy.random import randint import numpy as np from math import ceil ## An abstract class of a participant entity in the Six-State implementation ## @see https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html class Participant(ABC): ## Constructor @abstractmethod def __init__(self, name='', original_bits_size=0): ## The name of the participant self.name = name ## The original size of the message self.original_bits_size = original_bits_size ## The values of the participant self.values = None ## The axes of the participant self.axes = None ## The key of the participant self.key = None ## If the key is determined safe self.is_safe_key = False ## The otp of the participant self.otp = None ## The gate measuring z and y axes self.set_hy() ## Values setter def set_values(self, values=None): if values == None: self.values = list(randint(2, size=self.original_bits_size)) else: self.values = values ## Axes setter def set_axes(self, axes=None): if axes == None: self.axes = list(randint(3, size=self.original_bits_size)) else: self.axes = axes ## Print values def show_values(self): print('\n' + self.name, 'Values:') print(self.values) ## Print axes def show_axes(self): print('\n' + self.name, 'Axes:') print(self.axes) ## Print key def show_key(self): print('\n' + self.name, 'Key:') print(self.key) ## Print otp def show_otp(self): print('\n' + self.name, 'OTP:') print(self.otp) ## Remove the values of the qubits that were measured on the wrong axis def remove_garbage(self, another_axes): self.key = [] for i in range(self.original_bits_size): if self.axes[i] == another_axes[i]: self.key.append(self.values[i]) ## Check if the shared key is equal to the current key def check_key(self, shared_key): return shared_key == self.key[:len(shared_key)] ## Use the rest of the key and validate it def confirm_key(self, shared_size): self.key = self.key[shared_size:] self.is_safe_key = True ## Generate an One-Time Pad def generate_otp(self, n_bits): self.otp = [] for i in range(ceil(len(self.key) / n_bits)): bits_string = ''.join(map(str, self.key[i * n_bits: (i + 1) * n_bits])) self.otp.append(int(bits_string, 2)) ## Performs an XOR operation between the message and the One-Time Pad def xor_otp_message(self, message): final_message = '' CHR_LIMIT = 1114112 if len(self.otp) > 0: for i, char in enumerate(message): final_message += chr((ord(char) ^ self.otp[i % len(self.otp)]) % CHR_LIMIT) return final_message ## New gate setter def set_hy(self): hy_op = qi.Operator(1/np.sqrt(2)*(YGate().to_matrix() + ZGate().to_matrix())) hy_gate = QuantumCircuit(1) hy_gate.unitary(hy_op, [0], label='h_y') self.hy = hy_gate.to_gate()
https://github.com/GabrielPontolillo/QiskitPBT
GabrielPontolillo
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Sep 19 19:13:26 2023 @author: abdullahalshihry """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Sep 18 19:15:12 2023 @author: abdullahalshihry """ import qiskit as qs import qiskit.visualization as qv import random import qiskit.circuit as qf def Deutsch_Jozsa(circuit): qr = qs.QuantumRegister(5,'q') cr = qs.ClassicalRegister(4,'c') qc = qs.QuantumCircuit(qr,cr) qc.x(qr[4]) qc.barrier(range(5)) qc.h(qr[0]) qc.h(qr[1]) qc.h(qr[2]) qc.h(qr[3]) qc.h(qr[4]) qc.barrier(range(5)) qc = qc.compose(circuit) qc.barrier(range(5)) qc.h(qr[0]) qc.h(qr[1]) qc.h(qr[2]) qc.h(qr[3]) qc.barrier(range(5)) qc.measure(0,0) qc.measure(1,1) qc.measure(2,2) qc.measure(3,3) job1 = qs.execute(qc, qs.Aer.get_backend('aer_simulator'), shots = 1024) output1 = job1.result().get_counts() print(output1) qc.draw('mpl') def Oracle(): qr = qs.QuantumRegister(5,'q') cr = qs.ClassicalRegister(4,'c') qc = qs.QuantumCircuit(qr,cr) qq = qs.QuantumCircuit(5,name='Uf') v = random.randint(1, 2) if v == 1: qc.cx(0,4) qc.cx(1,4) qc.cx(2,4) qc.cx(3,4) print('Balanced (1)') elif v == 2: qq.i(qr[0]) qq.i(qr[1]) qq.i(qr[2]) qq.i(qr[3]) print('Constant (0)') qq =qq.to_gate() qc.append(qq,[0,1,2,3,4]) return qc Deutsch_Jozsa(Oracle())
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister # Build a quantum circuit circuit = QuantumCircuit(3, 3) circuit.x(1) circuit.h(range(3)) circuit.cx(0, 1) circuit.measure(range(3), range(3)); print(circuit) circuit.draw() # Matplotlib Drawing circuit.draw(output='mpl') # Draw a new circuit with barriers and more registers q_a = QuantumRegister(3, name='qa') q_b = QuantumRegister(5, name='qb') c_a = ClassicalRegister(3) c_b = ClassicalRegister(5) circuit = QuantumCircuit(q_a, q_b, c_a, c_b) circuit.x(q_a[1]) circuit.x(q_b[1]) circuit.x(q_b[2]) circuit.x(q_b[4]) circuit.barrier() circuit.h(q_a) circuit.barrier(q_a) circuit.h(q_b) circuit.cswap(q_b[0], q_b[1], q_b[2]) circuit.cswap(q_b[2], q_b[3], q_b[4]) circuit.cswap(q_b[3], q_b[4], q_b[0]) circuit.barrier(q_b) circuit.measure(q_a, c_a) circuit.measure(q_b, c_b); # Draw the circuit circuit.draw(output='mpl') # Draw the circuit with reversed bit order circuit.draw(output='mpl', reverse_bits=True) # Draw the circuit without barriers circuit.draw(output='mpl', plot_barriers=False) # Draw the circuit without barriers and reverse bit order circuit.draw(output='mpl', plot_barriers=False, reverse_bits=True) # Set line length to 80 for above circuit circuit.draw(output='text') # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} circuit.draw(output='mpl', style=style) # Scale the mpl output to 1/2 the normal size circuit.draw(output='mpl', scale=0.5) from qiskit.tools.visualization import circuit_drawer circuit_drawer(circuit, output='mpl', plot_barriers=False) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/community.qiskit.org
qiskit-community
from qiskit import * from qiskit.tools.visualization import plot_histogram import numpy as np qr = QuantumRegister(1) cr = ClassicalRegister(1) error = {} for n in range(1,11): # Create a blank circuit qc = QuantumCircuit(qr,cr) # Implement an approximate Hadamard theta = np.pi/np.sqrt(2) # here we correctly choose theta=pi/sqrt(2) for j in range(n): qc.rx(theta/n,qr[0]) qc.rz(theta/n,qr[0]) # We need to measure how good the above approximation is. Here's a simple way to do this. # Step 1: Use a real hadamard to cancel the above approximation. # For a good approximatuon, the qubit will return to state 0. For a bad one, it will end up as some superposition. qc.h(qr[0]) # Step 2: Run the circuit, and see how many times we get the outcome 1. # Since it should return 0 with certainty, the fraction of 1s is a measure of the error. qc.measure(qr,cr) shots = 20000 job = execute(qc, Aer.get_backend('qasm_simulator'),shots=shots) try: error[n] = (job.result().get_counts()['1']/shots) except: pass plot_histogram(error) # The linear nature of error^(-1/2) shows that the error has a quadratic decay. inverse_square_of_error = {} for n in error: inverse_square_of_error[n] = (error[n])**(-1/2) plot_histogram(inverse_square_of_error) qr = QuantumRegister(1) cr = ClassicalRegister(1) error = {} for n in range(1,11): # Create a blank circuit qc = QuantumCircuit(qr,cr) # Implement an approximate Hadamard theta = np.pi/np.sqrt(2) # here we correctly use theta=pi/sqrt(2) for j in range(n): qc.rz(theta/(2*n),qr[0]) qc.rx(theta/n,qr[0]) qc.rz(theta/(2*n),qr[0]) # We need to measure how good the above approximation is. Here's a simple way to do this. # Step 1: Use a real hadamard to cancel the above approximation. # For a good approximatuon, the qubit will return to state 0. For a bad one, it will end up as some superposition. qc.h(qr[0]) # Step 2: Run the circuit, and see how many times we get the outcome 1. # Since it should return 0 with certainty, the fraction of 1s is a measure of the error. qc.measure(qr,cr) shots = 100000 job = execute(qc, Aer.get_backend('qasm_simulator'),shots=shots) try: error[n] = (job.result().get_counts()['1']/shots) except: pass plot_histogram(error) # The linear nature of error^(-1/3) shows that the error has a cubic decay. # Note: this needs loads of shots to get a good result. inverse_cube_of_error = {} for n in error: error[n] inverse_cube_of_error[n] = (error[n])**(-1/3) plot_histogram(inverse_cube_of_error)
https://github.com/zeynepCankara/Introduction-Quantum-Programming
zeynepCankara
u = [-2,-1,0,1] v = [1,2,3] uv = [] vu = [] for i in range(len(u)): # one element of u is picked for j in range(len(v)): # now we iteratively select every element of v uv.append(u[i]*v[j]) # this one element of u is iteratively multiplied with every element of v print("u-tensor-v is",uv) for i in range(len(v)): # one element of v is picked for j in range(len(u)): # now we iteratively select every element of u vu.append(v[i]*u[j]) # this one element of v is iteratively multiplied with every element of u print("v-tensor-u is",vu) A = [ [-1,0,1], [-2,-1,2] ] B = [ [0,2], [3,-1], [-1,1] ] print("A =") for i in range(len(A)): print(A[i]) print() # print a line print("B =") for i in range(len(B)): print(B[i]) # let's define A-tensor-B as a (6x6)-dimensional zero matrix AB = [] for i in range(6): AB.append([]) for j in range(6): AB[i].append(0) # let's find A-tensor-B for i in range(2): for j in range(3): # for each A(i,j) we execute the following codes a = A[i][j] # we access each element of B for m in range(3): for n in range(2): b = B[m][n] # now we put (a*b) in the appropriate index of AB AB[3*i+m][2*j+n] = a * b print() # print a line print("A-tensor-B =") print() # print a line for i in range(6): print(AB[i]) A = [ [-1,0,1], [-2,-1,2] ] B = [ [0,2], [3,-1], [-1,1] ] print() # print a line print("B =") for i in range(len(B)): print(B[i]) print("A =") for i in range(len(A)): print(A[i]) # let's define B-tensor-A as a (6x6)-dimensional zero matrix BA = [] for i in range(6): BA.append([]) for j in range(6): BA[i].append(0) # let's find B-tensor-A for i in range(3): for j in range(2): # for each B(i,j) we execute the following codes b = B[i][j] # we access each element of A for m in range(2): for n in range(3): a = A[m][n] # now we put (a*b) in the appropriate index of AB BA[2*i+m][3*j+n] = b * a print() # print a line print("B-tensor-A =") print() # print a line for i in range(6): print(BA[i])
https://github.com/tomtuamnuq/compare-qiskit-ocean
tomtuamnuq
import time import numpy as np from qiskit import BasicAer from qiskit.aqua import QuantumInstance, aqua_globals from qiskit.aqua.algorithms import QAOA from qiskit.aqua.components.optimizers import COBYLA from qiskit.optimization.algorithms import MinimumEigenOptimizer, CplexOptimizer from qiskit.optimization.algorithms.optimization_algorithm import OptimizationResultStatus from random_lp.lp_random_gen import create_models DIR = 'TEST_DATA' + "/" + time.strftime("%d_%m_%Y") + "/DENSE/" # 23.04.2021 Q_SEED = 10598 # as used in most issues aqua_globals.random_seed = Q_SEED shots = 4096 # select linear program to solve qps = create_models(DIR) qp = qps['test_dense_3'] # init classical Optimizers optimizer = COBYLA() # SLSQP is default in Class VQE cplex = CplexOptimizer() # solve qps with Minimum Eigen Optimizer QAOA backend = BasicAer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, seed_simulator=Q_SEED, seed_transpiler=Q_SEED, shots=shots) qaoa_mes = QAOA(quantum_instance=quantum_instance, optimizer=optimizer) qaoa = MinimumEigenOptimizer(qaoa_mes) cplex.solve(qp) print("number of qubits: ",qp.get_num_vars()) res = qaoa.solve(qp) res
https://github.com/hkhetawat/QArithmetic
hkhetawat
# Import the Qiskit SDK from numpy.lib.function_base import copy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute, Aer from qiskit.providers.aer import QasmSimulator from QArithmetic import full_qr, power from copy import copy from qiskit.tools.visualization import circuit_drawer # Input N N = 2 X = 2 # qc will take exponentially longer to compile with each increase a = QuantumRegister(N) b = QuantumRegister(X) m = QuantumRegister(N*(pow(2,X)-1)) ca = ClassicalRegister(N) cm = ClassicalRegister(N*(pow(2,X)-1)) qc = QuantumCircuit(a, b, m, cm, ca) # Input # a = 11 = 3 qc.x(a[0]) qc.x(a[1]) # b= 11 = 3 qc.x(b[0]) qc.x(b[1]) power(qc, a, b, m) qc.measure(m, cm) qc.measure(a, ca) backend_sim = Aer.get_backend('qasm_simulator') print("started job") job_sim = execute(qc, backend_sim, shots=1) result_sim = job_sim.result() print(result_sim.get_counts(qc))
https://github.com/Z-928/Bugs4Q
Z-928
# https://github.com/Qiskit/qiskit-terra/issues/5839 from qiskit import QuantumCircuit,QuantumRegister, Aer, execute from qiskit.compiler import transpile from qiskit.quantum_info.states.measures import state_fidelity from IPython.core.display import display # Create circuit circ = QuantumCircuit(3) circ.x(0) circ.cnot(0,1) circ.snapshot('snap1', snapshot_type='statevector') circ.snapshot('snap1', snapshot_type='density_matrix') circ.cnot(0,2) circ.snapshot('snap2', snapshot_type='statevector') circ.snapshot('snap2', snapshot_type='density_matrix') circ.cnot(1,2) circ.snapshot('snap3', snapshot_type='statevector') circ.snapshot('snap3', snapshot_type='density_matrix') circ.measure_all() transpiled_circ = transpile(circ, coupling_map=[[0,1],[1,0],[1,2],[2,1]],optimization_level=2) display(circ.draw()) display(transpiled_circ.draw()) results = execute(circ,Aer.get_backend('qasm_simulator')).result() statevector1 = results.data()['snapshots']['statevector']['snap1'][0] statevector2 = results.data()['snapshots']['statevector']['snap2'][0] statevector3 = results.data()['snapshots']['statevector']['snap2'][0] density_matrix1 = results.data()['snapshots']['density_matrix']['snap1'][0]['value'] density_matrix2 = results.data()['snapshots']['density_matrix']['snap2'][0]['value'] density_matrix3 = results.data()['snapshots']['density_matrix']['snap3'][0]['value'] results = execute(transpiled_circ,Aer.get_backend('qasm_simulator')).result() statevector_transpiled1 = results.data()['snapshots']['statevector']['snap1'][0] statevector_transpiled2 = results.data()['snapshots']['statevector']['snap2'][0] statevector_transpiled3 = results.data()['snapshots']['statevector']['snap3'][0] density_matrix_transpiled1 = results.data()['snapshots']['density_matrix']['snap1'][0]['value'] density_matrix_transpiled2 = results.data()['snapshots']['density_matrix']['snap2'][0]['value'] density_matrix_transpiled3 = results.data()['snapshots']['density_matrix']['snap3'][0]['value'] print('Fidelity between transpiled and normal statevector snapshots') print('snap 1',state_fidelity(statevector_transpiled1,statevector1)) print('snap 2',state_fidelity(statevector_transpiled2,statevector2)) print('snap 3',state_fidelity(statevector_transpiled3,statevector3)) print('\nFidelity between transpiled and normal density matrix snapshots') print('snap 1',state_fidelity(density_matrix_transpiled1,density_matrix1)) print('snap 2',state_fidelity(density_matrix_transpiled2,density_matrix2)) print('snap 3',state_fidelity(density_matrix_transpiled3,density_matrix3)) print('Counts normal: ',results.get_counts(circ)) print('Counts transpiled: ',results.get_counts(transpiled_circ))
https://github.com/daimurat/qiskit-implementation
daimurat
import numpy as np import matplotlib as plt %matplotlib inline input_param=[1, 0.5, -0.765, 0.1, 0, -0.654] exp_output=[0, 0, 0, 0, -0.4553474723, 0] from qiskit.circuit import QuantumCircuit, ParameterVector n = 3 qc = QuantumCircuit(n) param_list = ParameterVector('Parameter', 2*n) for i in range(len(param_list)//n): qc.rx(param_list[3*i], 0) qc.ry(param_list[3*i+1], 1) qc.rz(param_list[3*i+2], 2) qc.cnot(0, 1) qc.cnot(1, 2) qc.cnot(2, 0) qc.draw(output='mpl') from qiskit.opflow import I, X, Y, Z hamiltonian = Z ^ I ^ Y from qiskit.opflow import StateFn, AerPauliExpectation expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(qc) pauli_basis = AerPauliExpectation().convert(expectation) from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit.opflow import CircuitSampler quantum_instance = QuantumInstance(Aer.get_backend('qasm_simulator'), # we'll set a seed for reproducibility shots = 32768, seed_simulator = 2718, seed_transpiler = 2718) sampler = CircuitSampler(quantum_instance) def evaluate_expectation(params): value_dict = dict(zip(qc.parameters, params)) result = sampler.convert(pauli_basis, params=value_dict).eval() return np.real(result) def calc_gradient(params): gradient = np.zeros_like(params) for i in range(len(params)): shifted = params.copy() shifted[i] += np.pi/2 forward = evaluate_expectation(shifted) shifted[i] -= np.pi backward = evaluate_expectation(shifted) gradient[i] = 0.5 * (forward - backward) return np.round(gradient, 10) calc_gradient(input_param) from qiskit.opflow import Gradient def calc_gradient_with_framework(params): state_grad = Gradient(grad_method="param_shift").convert(operator=expectation) value_dict = dict(zip(qc.parameters, params)) result = state_grad.assign_parameters(value_dict).eval() return np.round(np.array(result).real, 10) calc_gradient_with_framework(input_param) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/adlrocha/cryptoq
adlrocha
#8ec67edd7b4c8e358b08222c23234d995de520b29686a14582cf2d797ac399124c799747364b30c8b86f34b5facbcc8d72734d652645bfad82ea6a4f4a46b7b1 from qiskit import IBMQ IBMQ.load_accounts()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from qiskit import QuantumCircuit, transpile from qiskit.providers.fake_provider import FakeAuckland backend = FakeAuckland() ghz = QuantumCircuit(15) ghz.h(0) ghz.cx(0, range(1, 15)) ghz.draw(output='mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt import numpy as np from IPython.display import clear_output from qiskit import QuantumCircuit from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B from qiskit.circuit import Parameter from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit.utils import algorithm_globals from qiskit_machine_learning.algorithms.classifiers import NeuralNetworkClassifier, VQC from qiskit_machine_learning.algorithms.regressors import NeuralNetworkRegressor, VQR from qiskit_machine_learning.neural_networks import SamplerQNN, EstimatorQNN algorithm_globals.random_seed = 42 num_inputs = 2 num_samples = 20 X = 2 * algorithm_globals.random.random([num_samples, num_inputs]) - 1 y01 = 1 * (np.sum(X, axis=1) >= 0) # in { 0, 1} y = 2 * y01 - 1 # in {-1, +1} y_one_hot = np.zeros((num_samples, 2)) for i in range(num_samples): y_one_hot[i, y01[i]] = 1 for x, y_target in zip(X, y): if y_target == 1: plt.plot(x[0], x[1], "bo") else: plt.plot(x[0], x[1], "go") plt.plot([-1, 1], [1, -1], "--", color="black") plt.show() # construct QNN qc = QuantumCircuit(2) feature_map = ZZFeatureMap(2) ansatz = RealAmplitudes(2) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) qc.draw(output="mpl") estimator_qnn = EstimatorQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters ) # QNN maps inputs to [-1, +1] estimator_qnn.forward(X[0, :], algorithm_globals.random.random(estimator_qnn.num_weights)) # callback function that draws a live plot when the .fit() method is called def callback_graph(weights, obj_func_eval): clear_output(wait=True) objective_func_vals.append(obj_func_eval) plt.title("Objective function value against iteration") plt.xlabel("Iteration") plt.ylabel("Objective function value") plt.plot(range(len(objective_func_vals)), objective_func_vals) plt.show() # construct neural network classifier estimator_classifier = NeuralNetworkClassifier( estimator_qnn, optimizer=COBYLA(maxiter=60), callback=callback_graph ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit classifier to data estimator_classifier.fit(X, y) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score classifier estimator_classifier.score(X, y) # evaluate data points y_predict = estimator_classifier.predict(X) # plot results # red == wrongly classified for x, y_target, y_p in zip(X, y, y_predict): if y_target == 1: plt.plot(x[0], x[1], "bo") else: plt.plot(x[0], x[1], "go") if y_target != y_p: plt.scatter(x[0], x[1], s=200, facecolors="none", edgecolors="r", linewidths=2) plt.plot([-1, 1], [1, -1], "--", color="black") plt.show() estimator_classifier.weights # construct feature map feature_map = ZZFeatureMap(num_inputs) # construct ansatz ansatz = RealAmplitudes(num_inputs, reps=1) # construct quantum circuit qc = QuantumCircuit(num_inputs) qc.append(feature_map, range(num_inputs)) qc.append(ansatz, range(num_inputs)) qc.decompose().draw(output="mpl") # parity maps bitstrings to 0 or 1 def parity(x): return "{:b}".format(x).count("1") % 2 output_shape = 2 # corresponds to the number of classes, possible outcomes of the (parity) mapping. # construct QNN sampler_qnn = SamplerQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, interpret=parity, output_shape=output_shape, ) # construct classifier sampler_classifier = NeuralNetworkClassifier( neural_network=sampler_qnn, optimizer=COBYLA(maxiter=30), callback=callback_graph ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit classifier to data sampler_classifier.fit(X, y01) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score classifier sampler_classifier.score(X, y01) # evaluate data points y_predict = sampler_classifier.predict(X) # plot results # red == wrongly classified for x, y_target, y_p in zip(X, y01, y_predict): if y_target == 1: plt.plot(x[0], x[1], "bo") else: plt.plot(x[0], x[1], "go") if y_target != y_p: plt.scatter(x[0], x[1], s=200, facecolors="none", edgecolors="r", linewidths=2) plt.plot([-1, 1], [1, -1], "--", color="black") plt.show() sampler_classifier.weights # construct feature map, ansatz, and optimizer feature_map = ZZFeatureMap(num_inputs) ansatz = RealAmplitudes(num_inputs, reps=1) # construct variational quantum classifier vqc = VQC( feature_map=feature_map, ansatz=ansatz, loss="cross_entropy", optimizer=COBYLA(maxiter=30), callback=callback_graph, ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit classifier to data vqc.fit(X, y_one_hot) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score classifier vqc.score(X, y_one_hot) # evaluate data points y_predict = vqc.predict(X) # plot results # red == wrongly classified for x, y_target, y_p in zip(X, y_one_hot, y_predict): if y_target[0] == 1: plt.plot(x[0], x[1], "bo") else: plt.plot(x[0], x[1], "go") if not np.all(y_target == y_p): plt.scatter(x[0], x[1], s=200, facecolors="none", edgecolors="r", linewidths=2) plt.plot([-1, 1], [1, -1], "--", color="black") plt.show() from sklearn.datasets import make_classification from sklearn.preprocessing import MinMaxScaler X, y = make_classification( n_samples=10, n_features=2, n_classes=3, n_redundant=0, n_clusters_per_class=1, class_sep=2.0, random_state=algorithm_globals.random_seed, ) X = MinMaxScaler().fit_transform(X) plt.scatter(X[:, 0], X[:, 1], c=y) y_cat = np.empty(y.shape, dtype=str) y_cat[y == 0] = "A" y_cat[y == 1] = "B" y_cat[y == 2] = "C" print(y_cat) vqc = VQC( num_qubits=2, optimizer=COBYLA(maxiter=30), callback=callback_graph, ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit classifier to data vqc.fit(X, y_cat) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score classifier vqc.score(X, y_cat) predict = vqc.predict(X) print(f"Predicted labels: {predict}") print(f"Ground truth: {y_cat}") num_samples = 20 eps = 0.2 lb, ub = -np.pi, np.pi X_ = np.linspace(lb, ub, num=50).reshape(50, 1) f = lambda x: np.sin(x) X = (ub - lb) * algorithm_globals.random.random([num_samples, 1]) + lb y = f(X[:, 0]) + eps * (2 * algorithm_globals.random.random(num_samples) - 1) plt.plot(X_, f(X_), "r--") plt.plot(X, y, "bo") plt.show() # construct simple feature map param_x = Parameter("x") feature_map = QuantumCircuit(1, name="fm") feature_map.ry(param_x, 0) # construct simple ansatz param_y = Parameter("y") ansatz = QuantumCircuit(1, name="vf") ansatz.ry(param_y, 0) # construct a circuit qc = QuantumCircuit(1) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) # construct QNN regression_estimator_qnn = EstimatorQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters ) # construct the regressor from the neural network regressor = NeuralNetworkRegressor( neural_network=regression_estimator_qnn, loss="squared_error", optimizer=L_BFGS_B(maxiter=5), callback=callback_graph, ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit to data regressor.fit(X, y) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score the result regressor.score(X, y) # plot target function plt.plot(X_, f(X_), "r--") # plot data plt.plot(X, y, "bo") # plot fitted line y_ = regressor.predict(X_) plt.plot(X_, y_, "g-") plt.show() regressor.weights vqr = VQR( feature_map=feature_map, ansatz=ansatz, optimizer=L_BFGS_B(maxiter=5), callback=callback_graph, ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit regressor vqr.fit(X, y) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score result vqr.score(X, y) # plot target function plt.plot(X_, f(X_), "r--") # plot data plt.plot(X, y, "bo") # plot fitted line y_ = vqr.predict(X_) plt.plot(X_, y_, "g-") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.dagcircuit import DAGCircuit from qiskit.converters import circuit_to_dag from qiskit.circuit.library.standard_gates import CHGate, U2Gate, CXGate from qiskit.converters import dag_to_circuit q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.measure(q[0], c[0]) circ.rz(0.5, q[1]).c_if(c, 2) dag = circuit_to_dag(circ) circuit = dag_to_circuit(dag) circuit.draw('mpl')
https://github.com/indian-institute-of-science-qc/qiskit-aakash
indian-institute-of-science-qc
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/swe-train/qiskit__qiskit
swe-train
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ This module contains the definition of a base class for quantum fourier transforms. """ from abc import abstractmethod from qiskit import QuantumRegister, QuantumCircuit from qiskit.aqua import Pluggable, AquaError class QFT(Pluggable): """Base class for QFT. This method should initialize the module and its configuration, and use an exception if a component of the module is available. Args: configuration (dict): configuration dictionary """ @abstractmethod def __init__(self, *args, **kwargs): super().__init__() @classmethod def init_params(cls, params): qft_params = params.get(Pluggable.SECTION_KEY_QFT) kwargs = {k: v for k, v in qft_params.items() if k != 'name'} return cls(**kwargs) @abstractmethod def _build_matrix(self): raise NotImplementedError @abstractmethod def _build_circuit(self, qubits=None, circuit=None, do_swaps=True): raise NotImplementedError def construct_circuit(self, mode='circuit', qubits=None, circuit=None, do_swaps=True): """Construct the circuit. Args: mode (str): 'matrix' or 'circuit' qubits (QuantumRegister or qubits): register or qubits to build the circuit on. circuit (QuantumCircuit): circuit for construction. do_swaps (bool): include the swaps. Returns: The matrix or circuit depending on the specified mode. """ if mode == 'circuit': return self._build_circuit(qubits=qubits, circuit=circuit, do_swaps=do_swaps) elif mode == 'matrix': return self._build_matrix() else: raise AquaError('Unrecognized mode: {}.'.format(mode))
https://github.com/GabrielPontolillo/QiskitPBT
GabrielPontolillo
# class that inherits from property based test from qiskit import QuantumCircuit from QiskitPBT.property import Property from QiskitPBT.input_generators import Integer import random class FrequencyProperty(Property): # specify the inputs that are to be generated def get_input_generators(self): # The assumption of our code is that we need at least one input generator, if we do not include it, # the code breaks in the test runner - also its a fine assumption to include, property based testing requires inputs return [Integer(0, 255), Integer(0, 3)] # specify the preconditions for the test def preconditions(self, state, padding): return True # specify the operations to be performed on the input def operations(self, state, padding): padding = 2 binary = bin(state)[2:] binary = '0' * padding + binary qc = QuantumCircuit(len(binary), len(binary)) binary_to_mark(qc, binary) print(qc) self.statistical_analysis.assert_most_frequent(self, list(range(qc.num_qubits)), qc, [binary], basis=["z"]) class UncertainFrequencyProperty(Property): # specify the inputs that are to be generated def get_input_generators(self): # The assumption of our code is that we need at least one input generator, if we do not include it, # the code breaks in the test runner - also its a fine assumption to include, property based testing requires inputs return [Integer(0, 255), Integer(0, 3)] # specify the preconditions for the test def preconditions(self, state, padding): return True # specify the operations to be performed on the input def operations(self, state, padding): padding = 2 binary = bin(state)[2:] binary = '0' * padding + binary qc = QuantumCircuit(len(binary), len(binary)) binary_to_mark(qc, binary) # insert a random hadamard at a random position index = random.randint(0, len(binary) - 1) qc.h(index) # list with two possible outcomes after hadamard states = [binary[:index] + "0" + binary[index + 1:], binary[:index] + "1" + binary[index + 1:]] self.statistical_analysis.assert_most_frequent(self, list(range(qc.num_qubits)), qc, states, basis=["z"]) def binary_to_mark(qc: QuantumCircuit, binary_string: str): """ Construct a circuit to mark a binary string. """ for idx, bit in enumerate(binary_string): if bit == "1": qc.x(qc.qubits[idx])
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.dagcircuit import DAGCircuit from qiskit.converters import circuit_to_dag from qiskit.circuit.library.standard_gates import CHGate, U2Gate, CXGate from qiskit.converters import dag_to_circuit q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.measure(q[0], c[0]) circ.rz(0.5, q[1]).c_if(c, 2) dag = circuit_to_dag(circ) circuit = dag_to_circuit(dag) circuit.draw('mpl')
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2019, 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Measurement error mitigation""" import copy from typing import List, Optional, Tuple, Dict, Callable from qiskit import compiler from qiskit.providers import Backend from qiskit.circuit import QuantumCircuit from qiskit.qobj import QasmQobj from qiskit.assembler.run_config import RunConfig from qiskit.exceptions import QiskitError from qiskit.utils.mitigation import ( complete_meas_cal, tensored_meas_cal, CompleteMeasFitter, TensoredMeasFitter, ) from qiskit.utils.deprecation import deprecate_func @deprecate_func( since="0.24.0", additional_msg="For code migration guidelines, visit https://qisk.it/qi_migration.", ) def get_measured_qubits( transpiled_circuits: List[QuantumCircuit], ) -> Tuple[List[int], Dict[str, List[int]]]: """ Deprecated: Retrieve the measured qubits from transpiled circuits. Args: transpiled_circuits: a list of transpiled circuits Returns: The used and sorted qubit index Key is qubit index str connected by '_', value is the experiment index. {str: list[int]} Raises: QiskitError: invalid qubit mapping """ qubit_index = None qubit_mappings = {} for idx, qc in enumerate(transpiled_circuits): measured_qubits = [] for instruction in qc.data: if instruction.operation.name != "measure": continue for qreg in qc.qregs: if instruction.qubits[0] in qreg: index = qreg[:].index(instruction.qubits[0]) measured_qubits.append(index) break measured_qubits_str = "_".join([str(x) for x in measured_qubits]) if measured_qubits_str not in qubit_mappings: qubit_mappings[measured_qubits_str] = [] qubit_mappings[measured_qubits_str].append(idx) if qubit_index is None: qubit_index = measured_qubits elif set(qubit_index) != set(measured_qubits): raise QiskitError( "The used qubit index are different. ({}) vs ({}).\nCurrently, " "we only support all circuits using the same set of qubits " "regardless qubit order.".format(qubit_index, measured_qubits) ) return sorted(qubit_index), qubit_mappings @deprecate_func( since="0.24.0", additional_msg="For code migration guidelines, visit https://qisk.it/qi_migration.", ) def get_measured_qubits_from_qobj(qobj: QasmQobj) -> Tuple[List[int], Dict[str, List[int]]]: """ Deprecated: Retrieve the measured qubits from transpiled circuits. Args: qobj: qobj Returns: the used and sorted qubit index key is qubit index str connected by '_', value is the experiment index. {str: list[int]} Raises: QiskitError: invalid qubit mapping """ qubit_index = None qubit_mappings = {} for idx, exp in enumerate(qobj.experiments): measured_qubits = [] for instr in exp.instructions: if instr.name != "measure": continue measured_qubits.append(instr.qubits[0]) measured_qubits_str = "_".join([str(x) for x in measured_qubits]) if measured_qubits_str not in qubit_mappings: qubit_mappings[measured_qubits_str] = [] qubit_mappings[measured_qubits_str].append(idx) if qubit_index is None: qubit_index = measured_qubits else: if set(qubit_index) != set(measured_qubits): raise QiskitError( "The used qubit index are different. ({}) vs ({}).\nCurrently, " "we only support all circuits using the same set of qubits " "regardless qubit order.".format(qubit_index, measured_qubits) ) return sorted(qubit_index), qubit_mappings @deprecate_func( since="0.24.0", additional_msg="For code migration guidelines, visit https://qisk.it/qi_migration.", ) def build_measurement_error_mitigation_circuits( qubit_list: List[int], fitter_cls: Callable, backend: Backend, backend_config: Optional[Dict] = None, compile_config: Optional[Dict] = None, mit_pattern: Optional[List[List[int]]] = None, ) -> Tuple[QuantumCircuit, List[str], List[str]]: """Deprecated: Build measurement error mitigation circuits Args: qubit_list: list of ordered qubits used in the algorithm fitter_cls: CompleteMeasFitter or TensoredMeasFitter backend: backend instance backend_config: configuration for backend compile_config: configuration for compilation mit_pattern: Qubits on which to perform the measurement correction, divided to groups according to tensors. If `None` and `qr` is given then assumed to be performed over the entire `qr` as one group (default `None`). Returns: the circuit the state labels for build MeasFitter the labels of the calibration circuits Raises: QiskitError: when the fitter_cls is not recognizable. """ circlabel = "mcal" if not qubit_list: raise QiskitError("The measured qubit list can not be [].") run = False if fitter_cls == CompleteMeasFitter: meas_calibs_circuits, state_labels = complete_meas_cal( qubit_list=range(len(qubit_list)), circlabel=circlabel ) run = True elif fitter_cls == TensoredMeasFitter: meas_calibs_circuits, state_labels = tensored_meas_cal( mit_pattern=mit_pattern, circlabel=circlabel ) run = True if not run: try: from qiskit.ignis.mitigation.measurement import ( CompleteMeasFitter as CompleteMeasFitter_IG, TensoredMeasFitter as TensoredMeasFitter_IG, ) except ImportError as ex: # If ignis can't be imported we don't have a valid fitter # class so just fail here with an appropriate error message raise QiskitError(f"Unknown fitter {fitter_cls}") from ex if fitter_cls == CompleteMeasFitter_IG: meas_calibs_circuits, state_labels = complete_meas_cal( qubit_list=range(len(qubit_list)), circlabel=circlabel ) elif fitter_cls == TensoredMeasFitter_IG: meas_calibs_circuits, state_labels = tensored_meas_cal( mit_pattern=mit_pattern, circlabel=circlabel ) else: raise QiskitError(f"Unknown fitter {fitter_cls}") # the provided `qubit_list` would be used as the initial layout to # assure the consistent qubit mapping used in the main circuits. tmp_compile_config = copy.deepcopy(compile_config) tmp_compile_config["initial_layout"] = qubit_list t_meas_calibs_circuits = compiler.transpile( meas_calibs_circuits, backend, **backend_config, **tmp_compile_config ) return t_meas_calibs_circuits, state_labels, circlabel @deprecate_func( since="0.24.0", additional_msg="For code migration guidelines, visit https://qisk.it/qi_migration.", ) def build_measurement_error_mitigation_qobj( qubit_list: List[int], fitter_cls: Callable, backend: Backend, backend_config: Optional[Dict] = None, compile_config: Optional[Dict] = None, run_config: Optional[RunConfig] = None, mit_pattern: Optional[List[List[int]]] = None, ) -> Tuple[QasmQobj, List[str], List[str]]: """ Args: qubit_list: list of ordered qubits used in the algorithm fitter_cls: CompleteMeasFitter or TensoredMeasFitter backend: backend instance backend_config: configuration for backend compile_config: configuration for compilation run_config: configuration for running a circuit mit_pattern: Qubits on which to perform the measurement correction, divided to groups according to tensors. If `None` and `qr` is given then assumed to be performed over the entire `qr` as one group (default `None`). Returns: the Qobj with calibration circuits at the beginning the state labels for build MeasFitter the labels of the calibration circuits Raises: QiskitError: when the fitter_cls is not recognizable. MissingOptionalLibraryError: Qiskit-Ignis not installed """ circlabel = "mcal" if not qubit_list: raise QiskitError("The measured qubit list can not be [].") if fitter_cls == CompleteMeasFitter: meas_calibs_circuits, state_labels = complete_meas_cal( qubit_list=range(len(qubit_list)), circlabel=circlabel ) elif fitter_cls == TensoredMeasFitter: meas_calibs_circuits, state_labels = tensored_meas_cal( mit_pattern=mit_pattern, circlabel=circlabel ) else: raise QiskitError(f"Unknown fitter {fitter_cls}") # the provided `qubit_list` would be used as the initial layout to # assure the consistent qubit mapping used in the main circuits. tmp_compile_config = copy.deepcopy(compile_config) tmp_compile_config["initial_layout"] = qubit_list t_meas_calibs_circuits = compiler.transpile( meas_calibs_circuits, backend, **backend_config, **tmp_compile_config ) cals_qobj = compiler.assemble(t_meas_calibs_circuits, backend, **run_config.to_dict()) if hasattr(cals_qobj.config, "parameterizations"): del cals_qobj.config.parameterizations return cals_qobj, state_labels, circlabel
https://github.com/acfilok96/Quantum-Computation
acfilok96
import qiskit print(qiskit.__version__) from qiskit_machine_learning.datasets import ad_hoc_data adhoc_dimension = 2 train_features, train_labels, test_features, test_labels, adhoc_total = ad_hoc_data(training_size = 20, test_size = 5, n = adhoc_dimension, gap=0.3, plot_data =False, one_hot=False, include_sample_total=True) import numpy print(numpy.array(adhoc_total).shape) print("train data shape: ", train_features.shape,"\ttrain labels shape: ", train_labels.shape) print("test data shape: ", test_features.shape,"\ttest labels shape: ", test_labels.shape) print('train data:\n',train_features[:5]) print('\ntrain label:\n',train_labels[:5]) # plot_adhoc_dataset(train_features, train_labels, test_features, test_labels, adhoc_total) from qiskit import Aer from qiskit.utils import QuantumInstance seed=20 quantum_instance = QuantumInstance(Aer.get_backend("qasm_simulator"), shots=1024, seed_simulator=seed, seed_transpiler=seed) from qiskit.circuit.library import ZFeatureMap from qiskit_machine_learning.kernels import QuantumKernel z_feature_map = ZFeatureMap(feature_dimension=adhoc_dimension, reps=2) z_kernel = QuantumKernel(feature_map = z_feature_map, quantum_instance=quantum_instance) # z_feature_map.draw(output='mpl', scale=2) z_feature_map.decompose().draw(output='mpl', scale=2) from sklearn.svm import SVC svc = SVC(kernel=z_kernel.evaluate) svc.fit(train_features, train_labels) score = svc.score(test_features, test_labels) print('Callable kernel with ZFeatureMap classification test score: ', score) prediction = svc.predict(test_features) print(prediction) from qiskit.circuit.library import ZZFeatureMap zz_feature_map = ZZFeatureMap(feature_dimension=adhoc_dimension, reps=2, entanglement='linear') zz_kernel = QuantumKernel(feature_map = zz_feature_map, quantum_instance=quantum_instance) zz_feature_map.decompose().draw(output='mpl', scale=2) from sklearn.svm import SVC svc = SVC(kernel=zz_kernel.evaluate) svc.fit(train_features, train_labels) score = svc.score(test_features, test_labels) print('Callable kernel with ZZFeatureMap classification test score: ', score) prediction = svc.predict(test_features) print(prediction) from qiskit_machine_learning.algorithms import QSVC qsvc = QSVC() qsvc.quantum_kernel.quantum_instance = quantum_instance qsvc.fit(train_features, train_labels) score = qsvc.score(test_features, test_labels) print('QSVC classification test score: ', score) prediction = qsvc.predict(test_features) print(prediction) from qiskit.circuit.library import ZFeatureMap from qiskit_machine_learning.kernels import QuantumKernel # here feature_dimension = 2 and reps = 1 adhoc_dimension = 2 z_feature_map = ZFeatureMap(feature_dimension=adhoc_dimension, reps=1) z_kernel = QuantumKernel(feature_map = z_feature_map, quantum_instance=quantum_instance) z_feature_map.decompose().draw(output='mpl', scale=2) from qiskit.circuit.library import ZFeatureMap from qiskit_machine_learning.kernels import QuantumKernel # here feature_dimension = 2 and reps = 2 adhoc_dimension = 2 z_feature_map = ZFeatureMap(feature_dimension=adhoc_dimension, reps=2) z_kernel = QuantumKernel(feature_map = z_feature_map, quantum_instance=quantum_instance) z_feature_map.decompose().draw(output='mpl', scale=2) from qiskit.circuit.library import ZFeatureMap from qiskit_machine_learning.kernels import QuantumKernel # here feature_dimension = 3 and reps = 4 adhoc_dimension = 3 z_feature_map = ZFeatureMap(feature_dimension=adhoc_dimension, reps=4) z_kernel = QuantumKernel(feature_map = z_feature_map, quantum_instance=quantum_instance) z_feature_map.decompose().draw(output='mpl', scale=2) # same happens for ZZFeatureMap from qiskit.circuit.library import ZZFeatureMap adhoc_dimension=2 zz_feature_map = ZZFeatureMap(feature_dimension=adhoc_dimension, reps=1, entanglement='linear') zz_kernel = QuantumKernel(feature_map = zz_feature_map, quantum_instance=quantum_instance) zz_feature_map.decompose().draw(output='mpl', scale=2) # same happens for ZZFeatureMap from qiskit.circuit.library import ZZFeatureMap adhoc_dimension=2 zz_feature_map = ZZFeatureMap(feature_dimension=adhoc_dimension, reps=2, entanglement='linear') zz_kernel = QuantumKernel(feature_map = zz_feature_map, quantum_instance=quantum_instance) zz_feature_map.decompose().draw(output='mpl', scale=2) # same happens for ZZFeatureMap from qiskit.circuit.library import ZZFeatureMap adhoc_dimension=3 zz_feature_map = ZZFeatureMap(feature_dimension=adhoc_dimension, reps=1, entanglement='linear') zz_kernel = QuantumKernel(feature_map = zz_feature_map, quantum_instance=quantum_instance) zz_feature_map.decompose().draw(output='mpl', scale=2) # same happens for ZZFeatureMap from qiskit.circuit.library import ZZFeatureMap adhoc_dimension=3 zz_feature_map = ZZFeatureMap(feature_dimension=adhoc_dimension, reps=2, entanglement='linear') zz_kernel = QuantumKernel(feature_map = zz_feature_map, quantum_instance=quantum_instance) zz_feature_map.decompose().draw(output='mpl', scale=2)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# You can set a color for all the bars. from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_state_paulivec qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) state = Statevector(qc) plot_state_paulivec(state, color='midnightblue', title="New PauliVec plot")
https://github.com/GIRISHBELANI/QC_Benchmarks_using_dm-simulator
GIRISHBELANI
import math number = 3 int(math.ceil(math.log(number, 2))) import math import sys import time import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister sys.path[1:1] = ["_common", "_common/qsim", "shors/_common", "quantum-fourier-transform/qsim"] sys.path[1:1] = ["../../_common", "../../_common/qsim", "../../shors/_common", "../../quantum-fourier-transform/qsim"] from qiskit import * from shors_utils import getAngles, getAngle, modinv, generate_base n=2 num_qubits = 2*n + 3 qr_counting = QuantumRegister(1) qr_mult = QuantumRegister(n) # Register for multiplications qr_aux = QuantumRegister(n+2) # Register for addition and multiplication cr_data = ClassicalRegister(2*n) # Register for measured values of QFT cr_aux = ClassicalRegister(1) print(qr_counting) print(qr_mult,qr_aux,cr_data,cr_aux) qc = QuantumCircuit(qr_counting, qr_mult, qr_aux, cr_data, cr_aux, name="main") print(qc) qc.x(qr_mult[0]) print(qc) num_gates = 0 depth = 0 ############### QFT Circuit def qft_gate(input_size): global QFT_, num_gates, depth qr = QuantumRegister(input_size); qc = QuantumCircuit(qr, name="qft") # Generate multiple groups of diminishing angle CRZs and H gate for i_qubit in range(0, input_size): # start laying out gates from highest order qubit (the hidx) hidx = input_size - i_qubit - 1 # if not the highest order qubit, add multiple controlled RZs of decreasing angle if hidx < input_size - 1: num_crzs = i_qubit for j in range(0, num_crzs): divisor = 2 ** (num_crzs - j) qc.crz( math.pi / divisor , qr[hidx], qr[input_size - j - 1]) num_gates += 1 depth += 1 # followed by an H gate (applied to all qubits) qc.h(qr[hidx]) num_gates += 1 depth += 1 qc.barrier() if QFT_ == None or input_size <= 5: if input_size < 9: QFT_ = qc return qc ############### Inverse QFT Circuit def inv_qft_gate(input_size): global QFTI_, num_gates, depth qr = QuantumRegister(input_size); qc = QuantumCircuit(qr, name="inv_qft") # Generate multiple groups of diminishing angle CRZs and H gate for i_qubit in reversed(range(0, input_size)): # start laying out gates from highest order qubit (the hidx) hidx = input_size - i_qubit - 1 # precede with an H gate (applied to all qubits) qc.h(qr[hidx]) num_gates += 1 depth += 1 # if not the highest order qubit, add multiple controlled RZs of decreasing angle if hidx < input_size - 1: num_crzs = i_qubit for j in reversed(range(0, num_crzs)): divisor = 2 ** (num_crzs - j) qc.crz( -math.pi / divisor , qr[hidx], qr[input_size - j - 1]) num_gates += 1 depth += 1 qc.barrier() if QFTI_ == None or input_size <= 5: if input_size < 9: QFTI_= qc return qc base=2 QC_ = None PHIADD_ = None CCPHIADDMODN_ = None CMULTAMODN_ = None CUA_ = None QFT_ = None QFTI_ = None def phiADD(num_qubits, a): qc = QuantumCircuit(num_qubits, name = "\u03C6ADD") angle = getAngles(a, num_qubits) for i in range(0, num_qubits): # addition qc.p(angle[i], i) global PHIADD_ if PHIADD_ == None or num_qubits <= 3: if num_qubits < 4: PHIADD_ = qc return qc #Single controlled version of the phiADD circuit def cphiADD(num_qubits, a): phiadd_gate = phiADD(num_qubits,a).to_gate() cphiadd_gate = phiadd_gate.control(1) return cphiadd_gate #Doubly controlled version of the phiADD circuit def ccphiADD(num_qubits, a): phiadd_gate = phiADD(num_qubits,a).to_gate() ccphiadd_gate = phiadd_gate.control(2) return ccphiadd_gate # Circuit that implements doubly controlled modular addition by a (num qubits should be bit count for number N) def ccphiADDmodN(num_qubits, a, N): qr_ctl = QuantumRegister(2) qr_main = QuantumRegister(num_qubits+1) qr_ancilla = QuantumRegister(1) qc = QuantumCircuit(qr_ctl, qr_main,qr_ancilla, name = "cc\u03C6ADDmodN") # Generate relevant gates for circuit ccphiadda_gate = ccphiADD(num_qubits+1, a) ccphiadda_inv_gate = ccphiADD(num_qubits+1, a).inverse() phiaddN_inv_gate = phiADD(num_qubits+1, N).inverse(); phiaddN_inv_gate.name = "inv_\u03C6ADD" cphiaddN_gate = cphiADD(num_qubits+1, N) # Create relevant temporary qubit lists ctl_main_qubits = [i for i in qr_ctl]; ctl_main_qubits.extend([i for i in qr_main]) anc_main_qubits = [qr_ancilla[0]]; anc_main_qubits.extend([i for i in qr_main]) #Create circuit qc.append(ccphiadda_gate, ctl_main_qubits) qc.append(phiaddN_inv_gate, qr_main) qc.append(inv_qft_gate(num_qubits+1), qr_main) qc.cx(qr_main[-1], qr_ancilla[0]) qc.append(qft_gate(num_qubits+1), qr_main) qc.append(cphiaddN_gate, anc_main_qubits) qc.append(ccphiadda_inv_gate, ctl_main_qubits) qc.append(inv_qft_gate(num_qubits+1), qr_main) qc.x(qr_main[-1]) qc.cx(qr_main[-1], qr_ancilla[0]) qc.x(qr_main[-1]) qc.append(qft_gate(num_qubits+1), qr_main) qc.append(ccphiadda_gate, ctl_main_qubits) global CCPHIADDMODN_ if CCPHIADDMODN_ == None or num_qubits <= 2: if num_qubits < 3: CCPHIADDMODN_ = qc return qc def ccphiADDmodN_inv(num_qubits, a, N): cchpiAddmodN_circ = ccphiADDmodN(num_qubits, a, N) cchpiAddmodN_inv_circ = cchpiAddmodN_circ.inverse() cchpiAddmodN_inv_circ.name = "inv_cchpiAddmodN" return cchpiAddmodN_inv_circ # Creates circuit that implements single controlled modular multiplication by a. n represents the number of bits # needed to represent the integer number N def cMULTamodN(n, a, N): qr_ctl = QuantumRegister(1) qr_x = QuantumRegister(n) qr_main = QuantumRegister(n+1) qr_ancilla = QuantumRegister(1) qc = QuantumCircuit(qr_ctl, qr_x, qr_main,qr_ancilla, name = "cMULTamodN") # quantum Fourier transform only on auxillary qubits qc.append(qft_gate(n+1), qr_main) for i in range(n): ccphiADDmodN_gate = ccphiADDmodN(n, (2**i)*a % N, N) # Create relevant temporary qubit list qubits = [qr_ctl[0]]; qubits.extend([qr_x[i]]) qubits.extend([i for i in qr_main]); qubits.extend([qr_ancilla[0]]) qc.append(ccphiADDmodN_gate, qubits) # inverse quantum Fourier transform only on auxillary qubits qc.append(inv_qft_gate(n+1), qr_main) global CMULTAMODN_ if CMULTAMODN_ == None or n <= 2: if n < 3: CMULTAMODN_ = qc return qc def controlled_Ua(n,a,exponent,N): qr_ctl = QuantumRegister(1) qr_x = QuantumRegister(n) qr_main = QuantumRegister(n) qr_ancilla = QuantumRegister(2) qc = QuantumCircuit(qr_ctl, qr_x, qr_main,qr_ancilla, name = f"C-U^{a**exponent}") # Generate Gates a_inv = modinv(a**exponent,N) cMULTamodN_gate = cMULTamodN(n, a**exponent, N) cMULTamodN_inv_gate = cMULTamodN(n, a_inv, N).inverse(); cMULTamodN_inv_gate.name = "inv_cMULTamodN" # Create relevant temporary qubit list qubits = [i for i in qr_ctl]; qubits.extend([i for i in qr_x]); qubits.extend([i for i in qr_main]) qubits.extend([i for i in qr_ancilla]) qc.append(cMULTamodN_gate, qubits) for i in range(n): qc.cswap(qr_ctl, qr_x[i], qr_main[i]) qc.append(cMULTamodN_inv_gate, qubits) global CUA_ if CUA_ == None or n <= 2: if n < 3: CUA_ = qc return qc # perform modular exponentiation 2*n times for k in range(2*n): qc.barrier() # Reset the counting qubit to 0 if the previous measurement was 1 qc.x(qr_counting).c_if(cr_aux,1) qc.h(qr_counting) cUa_gate = controlled_Ua(n, base,2**(2*n-1-k), number) # Create relevant temporary qubit list qubits = [qr_counting[0]]; qubits.extend([i for i in qr_mult]);qubits.extend([i for i in qr_aux]) qc.append(cUa_gate, qubits) # perform inverse QFT --> Rotations conditioned on previous outcomes for i in range(2**k): qc.p(getAngle(i, k), qr_counting[0]).c_if(cr_data, i) qc.h(qr_counting) qc.measure(qr_counting[0], cr_data[k]) qc.measure(qr_counting[0], cr_aux[0]) print(qc) num_shots=100 backend = BasicAer.get_backend('dm_simulator') options={} job = execute(qc, backend, shots=num_shots, **options) result = job.result() print(result) qc= qc.decompose()#.decompose().decompose().decompose() print(qc) num_shots=100 backend = BasicAer.get_backend('dm_simulator') options={} job = execute(qc, backend, shots=num_shots, **options) result = job.result() print(result)
https://github.com/jonasmaziero/computacao_quantica_qiskit_sbf_2023
jonasmaziero
from qiskit import QuantumCircuit qc = QuantumCircuit(1,1) qc.x(0) qc.measure(0,0) qc.draw('mpl') from qiskit import Aer, execute simulator = Aer.get_backend('qasm_simulator') nshots = 2**13 job = execute(qc, backend=simulator,shots=nshots) counts = job.result().get_counts() from qiskit.tools.visualization import plot_histogram plot_histogram(counts) from qiskit import QuantumCircuit def qc_df(): # divisor de feixes 50:50 qc = QuantumCircuit(1, name='DF') qc.s(0) qc.h(0) qc.s(0) return qc qcdf = qc_df(); qcdf.draw('mpl') def qc_espelhos(): qc = QuantumCircuit(1, name='E') qc.z(0) qc.y(0) return qc qce = qc_espelhos(); qce.draw('mpl') def qc_bomba(): qc = QuantumCircuit(2, name='B') qc.cx(0,1) return qc qcb = qc_bomba(); qcb.draw('mpl') def qc_detector_de_bomba(): qc = QuantumCircuit(2, name='DB') qcdf = qc_df(); qc.append(qcdf,[0]) qce = qc_espelhos(); qc.append(qce,[0]) qcb = qc_bomba(); qc.append(qcb,[0,1]) qcdf = qc_df(); qc.append(qcdf,[0]) return qc qcdb = qc_detector_de_bomba(); qcdb.draw('mpl') qc = QuantumCircuit(2,2) qcdb = qc_detector_de_bomba(); qc.append(qcdb,[0,1]) qc.measure([0,1],[0,1]) qc.draw('mpl') # Simulação clássica from qiskit import Aer, execute simulator = Aer.get_backend('qasm_simulator') nshots = 2**13 job = execute(qc, backend=simulator,shots=nshots) counts = job.result().get_counts() from qiskit.tools.visualization import plot_histogram plot_histogram(counts) import qiskit qiskit.IBMQ.save_account('18d1a392e10ffca595cb87ad064ca04fb8f407e702274610ba421f54ac39fbef8e14b664d350f3e48cc9762e4b63aad22ecb2135f16468825ae37b14a85c1762', overwrite = True) qiskit.IBMQ.load_account() #provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') provider = qiskit.IBMQ.get_provider(hub='ibm-q-research-2', group='federal-uni-sant-1', project='main') device = provider.get_backend('ibm_nairobi') nshots = 2**13 # Experimento (simulação quântica) job = execute(qc, backend=device, shots=nshots) print(job.job_id()) job = device.retrieve_job('cmpt4asb9x9g0088t2c0') from qiskit.tools.visualization import plot_histogram plot_histogram(job.result().get_counts())
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
#!pip install git+https://github.com/qiskit-community/qiskit-textbook.git#subdirectory=qiskit-textbook-src import numpy as np from qiskit_textbook.tools import array_to_latex Y=np.array([[0,complex(0,-1)],[complex(0,1),0]]) #print ('Y:',Y) print (array_to_latex(Y,pretext="\\text{Y = } ")) Y_dag= Y.conj().transpose() print (array_to_latex(Y_dag, pretext="\\text{Y_dag = } ")) A=np.dot(Y,Y_dag) #print ('A:',A) print (array_to_latex(A,pretext="\\text{A = } ")) from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute from qiskit import Aer from qiskit.tools.visualization import circuit_drawer # Calling a simulator to see what happened after applying the gate backend_statevector = Aer.get_backend('statevector_simulator') # create a quantum register and a classical register q = QuantumRegister(1) c = ClassicalRegister(1) #used to measure the result circuit = QuantumCircuit(q, c) # Now we created a circuit circuit.x(q[0]) # Applied a Pauli X-gate to q0 job = execute(circuit, backend_statevector) print(array_to_latex(job.result().get_statevector(circuit),pretext="\\text{Psi after X-gate is applied = } ")) circuit.x(q[0]) # Apllied another Pauli X-gate to q print(circuit.draw(style='mpl')) job1 = execute(circuit, backend_statevector) # ran the job #print("Psi after X-gate applied again:",job1.result().get_statevector(circuit)) print(array_to_latex(job1.result().get_statevector(circuit),pretext="\\text{Psi after X-gate is applied again = } ")) np.eye(4) # Creates an identity matrix of 4 X 4 def mixed_state(pure_state, visibility): density_matrix = pure_state @ pure_state.T.conj() maximally_mixed_state = np.eye(4)/2**2 return visibility*density_matrix + (1-visibility)*maximally_mixed_state ϕ = np.array([[1],[0],[0],[1]])/np.sqrt(2) ##################### print(array_to_latex(ϕ,pretext="\\text{ϕ = } ")) d_m= ϕ @ ϕ.T.conj() print ('Density_matrix') print (d_m) ############################### print("Maximum visibility is a pure state:") print(mixed_state(ϕ, 1.0)) ############################# print("The state is still entangled with visibility 0.8:") print(mixed_state(ϕ, 0.8)) ################################ print("Entanglement is lost by 0.6:") print(mixed_state(ϕ, 0.6)) ############################ print("Barely any coherence remains by 0.2:") print(mixed_state(ϕ, 0.2)) import matplotlib.pyplot as plt temperatures = [.5, 5, 200] energies = np.linspace(0, 20, 100) # Creating uniform energy levels fig, ax = plt.subplots() for i, T in enumerate(temperatures): probabilities = np.exp(-energies/T) Z = probabilities.sum() probabilities /= Z ax.plot(energies, probabilities, linewidth=3, label = "$T_" + str(i+1)+"$="+str(T)) ax.set_xlim(0, 20) ax.set_ylim(0, 1.2*probabilities.max()) #ax.set_xticks([]) #ax.set_yticks([]) ax.set_xlabel('Energy') ax.set_ylabel('Probability') ax.legend() from qiskit.providers.aer.noise import NoiseModel from qiskit.providers.aer.noise.errors import pauli_error, depolarizing_error def get_noise(p_meas,p_gate): error_meas = pauli_error([('X',p_meas), ('I', 1 - p_meas)]) error_gate1 = depolarizing_error(p_gate, 1) error_gate2 = error_gate1.tensor(error_gate1) noise_model = NoiseModel() # measurement error is applied to measurements noise_model.add_all_qubit_quantum_error(error_meas, "measure") # single qubit gate error is applied to x gates noise_model.add_all_qubit_quantum_error(error_gate1, ["x"]) # two qubit gate error is applied to cx gates noise_model.add_all_qubit_quantum_error(error_gate2, ["cx"]) return noise_model #Create noise_model with a probability of 1% for each type of error noise_model=get_noise(0.01,0.01) # initialize circuit with three qubits in the 0 state qc0 = QuantumCircuit(3,3,name='0') # measure the qubits qc0.measure(qc0.qregs[0],qc0.cregs[0]) print(qc0.draw(style='mpl')) # run the circuit with th noise model and extract the counts counts_noise = execute( qc0, Aer.get_backend('qasm_simulator'),noise_model=noise_model).result().get_counts() counts = execute( qc0, Aer.get_backend('qasm_simulator')).result().get_counts() print(' No noise:',counts,'\n','Noise:',counts_noise) n =1024 # number of shots #Running same with '111' this time! qc1 = QuantumCircuit(3, 3, name='0') qc1.x(qc1.qregs[0]) # flip each 0 to 1 qc1.measure(qc1.qregs[0],qc1.cregs[0]) # measure the qubits print(qc1.draw(style='mpl')) # run the circuit with th noise model and extract the counts counts_noise = execute( qc1, Aer.get_backend('qasm_simulator'),noise_model=noise_model,shots=n).result().get_counts() counts = execute( qc1, Aer.get_backend('qasm_simulator'),shots=n).result().get_counts() print(' No noise:',counts,'\n','Noise:',counts_noise) #Increase measurement_noise probability noise_model = get_noise(0.5,0.0) counts = execute(qc1, Aer.get_backend('qasm_simulator'),noise_model=noise_model).result().get_counts() print(counts)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import execute, pulse d0 = pulse.DriveChannel(0) with pulse.build() as pulse_prog: pulse.play(pulse.Constant(100, 1.0), d0) pulse_prog.draw()
https://github.com/Dpbm/scientific-research-1-quantum-oracles
Dpbm
%matplotlib inline import os import shutil import numpy as np import pandas as pd import random import matplotlib.pyplot as plt import seaborn as sns from string import ascii_lowercase from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, transpile from qiskit.quantum_info import Statevector from qiskit.visualization import array_to_latex, plot_distribution, plot_histogram, plot_bloch_multivector from qiskit_algorithms import AmplificationProblem, Grover from qiskit.circuit.library import CPhaseGate from qiskit.primitives import Sampler from qiskit_aer import AerSimulator from utils import get_image_path def random_file_name(size=5): return ''.join(random.sample(list(ascii_lowercase), size)) def create_test_folder(folder): if(os.path.exists(folder)): print("Path already exists") print(f"Removing {folder}") shutil.rmtree(folder, ignore_errors=True) print(f"Creating: {folder}") os.mkdir(folder) def create_test_files(folder, n=5): create_test_folder(folder) for _ in range(n): file = random_file_name()+".txt" try: print(f"creating file: {file}") file_path = os.path.join(folder, file) file = open(file_path, "a") file.close() except Exception as error: print(f"Failed creating {file}") test_folder = os.path.join('.', 'files-test') create_test_files(test_folder) files = os.listdir(test_folder) files selected_file = files[random.randint(0,len(files))] selected_file def classical_method_1(files, target): #in this example, we are ignoring the extension #just for this case, in real life a good idea is to use the entire name, or a hash of it #unsing no type of lookup table, or sorting, the algorithm takes O(n) total_tests = 0 for file in files: total_tests += 1 print(f"total tests: {total_tests}") if(file == target): print("found file") break classical_method_1(files, selected_file) def classical_method_2(files, target): # this should be done after adding a file into the filesystem # it takes O(1) for adding a new file, O(n) for adding n files and O(1) for searching lut = {} for file in files: file_hash = hash(file) lut[file_hash] = file target_hash = hash(target) if lut.get(target_hash): print("File found") else: print("File doesnt exists in the filesystem") classical_method_2(files, selected_file) n_qubits = int(np.ceil(np.log2(len(files)))) def encoding_files_to_oracle(n_qubits, files): oracle = QuantumCircuit(n_qubits, name="LUT") encoded_bin = [bin(i)[2:].zfill(n_qubits)[::-1] for i in range(len(files))] for encoded in encoded_bin: x_positions = [i for i,char in enumerate(encoded) if char == '0'] oracle.x(x_positions) oracle.mcp(np.pi, list(range(1,n_qubits)), 0) oracle.x(x_positions) return encoded_bin,oracle binary,oracle = encoding_files_to_oracle(n_qubits,files) oracle.draw('mpl', filename=get_image_path("look-up-table.png")) def get_oracle_overload(files, targets): oracle = QuantumCircuit(n_qubits, name="$LUT^{-1}$") encode = lambda x,n: bin(x)[2:].zfill(n)[::-1] encoded_bin = [encode(i,n_qubits) for i, file in enumerate(files) if file not in targets] for encoded in encoded_bin: x_positions = [i for i,char in enumerate(encoded) if char == '0'] oracle.x(x_positions) oracle.mcp(np.pi, list(range(1,n_qubits)), 0) oracle.x(x_positions) return encoded_bin,oracle lut_binary,oracle = encoding_files_to_oracle(n_qubits,files) unvalid_states,oracle_inv = get_oracle_overload(files, [selected_file]) good_state = list(set(lut_binary) - set(unvalid_states)) n_qubits = len(oracle.qubits) qc = QuantumCircuit(n_qubits) qc.append(oracle, range(n_qubits)) qc.barrier(label="LUT") qc.append(oracle_inv, range(n_qubits)) qc.draw('mpl', filename=get_image_path("sets-difference-look-up-table-oracle.png")) qc.decompose().draw('mpl') Statevector(qc).draw('latex') qc_copy = qc.copy() qc_copy.save_unitary() sim = AerSimulator() unitary = sim.run(transpile(qc_copy, sim)).result().get_unitary() array_to_latex(unitary, max_size=10000) problem = AmplificationProblem(qc, is_good_state=good_state) problem.grover_operator.decompose().draw(output='mpl', filename=get_image_path("classical_grover_file_search.png")) grover = Grover(sampler=Sampler()) result = grover.amplify(problem) result.top_measurement qc = QuantumCircuit(3) qc.h(range(3)) qc.compose(problem.grover_operator.decompose(), range(3), inplace=True) qc.draw('mpl', filename=get_image_path("file_explorer.png")) sim = AerSimulator() qc_copy = qc.copy() qc_copy.measure_all() aer_result = sim.run(transpile(qc_copy, sim), shots=1000).result().get_counts() plot_histogram(aer_result, filename=get_image_path('AER_file_explorer_result.png')) def create_new_grover(file): n_qubits = int(np.ceil(np.log2(len(files)))) lut_binary, oracle = encoding_files_to_oracle(n_qubits,files) unvalid_states,oracle_inv = get_oracle_overload(files, [file]) good_state = list(set(lut_binary) - set(unvalid_states)) print('good state: ', good_state) t_qubits = len(oracle.qubits) final_oracle = QuantumCircuit(t_qubits) final_oracle.append(oracle, range(t_qubits)) final_oracle.barrier(label="LUT") final_oracle.append(oracle_inv, range(t_qubits)) total_zeros = good_state[0].count('0') """ angles from the grover tests 000 1.013620 001 1.385071 010 1.479508 011 1.680972 100 1.397662 101 1.712451 110 1.699860 111 2.058719 """ angles = { "000":1.013620, "001":1.385071, "010":1.479508, "011":1.680972, "100":1.397662, "101":1.712451, "110":1.699860, "111":2.058719 } problem = AmplificationProblem(final_oracle, is_good_state=good_state) qc = QuantumCircuit(t_qubits) qc.ry(angles[good_state[0]], range(t_qubits)) qc.compose(problem.grover_operator.decompose(), range(t_qubits), inplace=True) return qc new_qc = create_new_grover(selected_file) new_qc.draw('mpl', filename=get_image_path("improved_file_explorer.png")) sim = AerSimulator() qc_copy = new_qc.copy() qc_copy.measure_all() aer_result = sim.run(transpile(qc_copy, sim), shots=1000).result().get_counts() hist = plot_histogram(aer_result) plt.savefig(get_image_path("AER-file-explorer-hist-new-grover-mapped-rotations.png")) display(hist) x = np.array(list(range(0, 60)), dtype=np.int64) classical_find = lambda x: x classical_lut = lambda x: 1 quantum = lambda x: np.sqrt(x) vec_cf = np.vectorize(classical_find) vec_cl = np.vectorize(classical_lut) vec_q = np.vectorize(quantum) y_classical_f = vec_cf(x) y_classical_l = vec_cl(x) y_quantum = vec_q(x) df = pd.DataFrame({"x":x, "cf":y_classical_f, "cl":y_classical_l, "q":y_quantum}) df.head() plot = sns.lineplot(data=pd.melt(df, ["x"]), x="x", y="value", hue="variable", palette="flare") legend = plot.axes.get_legend() legend.set_title("O(x) comparation") for old, new in zip(legend.texts, ["classical find = O(n)", "classical LUT = O(1)", "quantum = O(√N)"]): old.set_text(new) plt.savefig(get_image_path("algorithms-finding-comparation.png")) plt.show(plot) def get_result(qc, sim=AerSimulator()): g_copy = qc.copy() g_copy.measure_all() sim = AerSimulator() return sim.run(transpile(g_copy, sim), shots=1000).result().get_counts() def new_g(superposition, oracle): qc = QuantumCircuit(3) qc.append(superposition, range(3)) qc.append(oracle, range(3)) qc.h(range(3)) qc.x(range(3)) qc.h(-1) qc.ccx(0, 1,2) qc.h(-1) qc.x(range(3)) qc.h(range(3)) return qc oracle = QuantumCircuit(3, name="oracle") oracle.ccz(0, 1,2) oracle.draw('mpl') s = QuantumCircuit(3, name="s") s.ry(np.pi/3, range(3)) display(s.draw('mpl')) plot_bloch_multivector(s) qc = new_g(s, oracle) qc.draw('mpl') plot_histogram(get_result(qc)) oracle = QuantumCircuit(3, name="oracle") oracle.x(range(3)) oracle.ccz(0, 1,2) oracle.x(range(3)) oracle.draw('mpl') qc = new_g(s, oracle) plot_histogram(get_result(qc)) oracle = QuantumCircuit(3, name="oracle") oracle.x(range(3)) oracle.ccz(0, 1,2) oracle.x(range(3)) oracle.ccz(0,1,2) oracle.x(0) oracle.ccz(0,1,2) oracle.x(0) oracle.draw('mpl') qc = new_g(s, oracle) plot_histogram(get_result(qc)) oracle = QuantumCircuit(3, name="oracle") oracle.x(0) oracle.ccz(0,1,2) oracle.x(0) oracle.x(range(3)) oracle.ccz(0, 1,2) oracle.x(range(3)) oracle.ccz(0,1,2) oracle.draw('mpl') qc = new_g(s, oracle) plot_histogram(get_result(qc)) oracle = QuantumCircuit(3, name="oracle") oracle.x(0) oracle.ccz(0,1,2) oracle.x(0) oracle.draw('mpl') qc = new_g(s, oracle) plot_histogram(get_result(qc)) sim = AerSimulator() def find_best_angle(encoded_bit_string, oracle): max_ = 0 best_angle = 0 for angle in np.linspace(0, np.pi, num=120): s = QuantumCircuit(3) s.ry(angle, range(3)) qc = new_g(s, oracle) qc.measure_all() result = sim.run(transpile(qc, sim), shots=1000).result().get_counts() if(not result.get(encoded_bit_string)): continue result = result[encoded_bit_string] if(result > max_): max_ = result best_angle = angle print(angle, result) return best_angle, max_ oracle = QuantumCircuit(3) oracle.x(0) oracle.ccz(0,1,2) oracle.x(0) best_angle, max_ = find_best_angle('110', oracle) best_angle, max_ np.degrees(best_angle) np.pi/4 (np.pi*11)/20 np.pi - ((np.pi*10)/18) - (np.pi/4) qc = QuantumCircuit(1) qc.ry(best_angle, 0) plot_bloch_multivector(qc) s = QuantumCircuit(3, name="S") s.ry(best_angle, range(3)) oracle = QuantumCircuit(3, name="oracle") oracle.x(0) oracle.ccz(0,1,2) oracle.x(0) qc = new_g(s, oracle) qc.draw('mpl') plot_histogram(get_result(qc)) s = QuantumCircuit(3, name="S") s.ry(best_angle, range(3)) oracle = QuantumCircuit(3, name="oracle") oracle.ccz(0,1,2) qc = new_g(s, oracle) plot_histogram(get_result(qc)) s = QuantumCircuit(3, name="S") s.ry(best_angle, range(3)) oracle = QuantumCircuit(3, name="oracle") #oracle.ccz(0,1,2) oracle.x(range(3)) oracle.ccz(0,1,2) oracle.x(range(3)) oracle.x(0) oracle.ccz(0,1,2) oracle.x(0) qc = new_g(s, oracle) plot_histogram(get_result(qc)) oracle = QuantumCircuit(3, name="oracle") oracle.ccz(0,1,2) oracle.x(range(3)) oracle.ccz(0,1,2) oracle.x(range(3)) oracle.x(0) oracle.ccz(0,1,2) oracle.x(0) oracle.x(0) oracle.x(1) oracle.ccz(0,1,2) oracle.x(0) oracle.x(1) qc = new_g(s, oracle) plot_histogram(get_result(qc)) oracle = QuantumCircuit(3, name="oracle") oracle.ccz(0,1,2) oracle.x(range(3)) oracle.ccz(0,1,2) oracle.x(range(3)) oracle.draw('mpl') problem = AmplificationProblem(oracle, is_good_state=['000', '111']) problem.grover_operator.decompose().draw(output='mpl') grover = Grover(sampler=Sampler()) result = grover.amplify(problem) result.circuit_results, result.iterations qc = QuantumCircuit(3) qc.h(range(3)) qc.compose(problem.grover_operator.decompose(), inplace=True) qc.draw('mpl') plot_histogram(get_result(qc)) oracle = QuantumCircuit(3, name="oracle") oracle.x(0) oracle.ccz(0,1,2) oracle.x(0) problem = AmplificationProblem(oracle, is_good_state=['110']) problem.grover_operator.decompose().draw(output='mpl') grover = Grover(sampler=Sampler()) result = grover.amplify(problem) result.circuit_results, result.iterations def p_oracle(bit_string): bit_string = bit_string[::-1] zeros = [i for i, v in enumerate(bit_string) if v == '0'] qc = QuantumCircuit(3) if(zeros):qc.x(zeros) qc.ccz(0,1,2) if(zeros):qc.x(zeros) return qc p_oracle('001').draw('mpl') best_angle def compare(best_angle): for b in ['000', '001', '010', '011', '100', '101', '110', '111']: oracle = p_oracle(b) s = QuantumCircuit(3, name="S") s.ry(best_angle, range(3)) new = new_g(s, oracle) old_problem = AmplificationProblem(oracle, is_good_state=[b]) old = QuantumCircuit(3) old.h(range(3)) old.compose(old_problem.grover_operator.decompose(), inplace=True) new_r = get_result(new) if(not new_r.get(b)): new_r = 0 else: new_r = new_r[b] old_r = get_result(old) if(not old_r.get(b)): old_r = 0 else: old_r = old_r[b] print(b, ' - ', old_r,new_r) compare(best_angle) best_angle, _ = find_best_angle('000', p_oracle('000')) best_angle compare(best_angle) qc = QuantumCircuit(1) qc.ry(best_angle, 0) plot_bloch_multivector(qc) best_angle, _ = find_best_angle('010', p_oracle('010')) best_angle compare(best_angle) qc = QuantumCircuit(1) qc.ry(best_angle, 0) plot_bloch_multivector(qc) old = {} new = {} bit_strings = ['000', '001', '010', '011', '100', '101', '110', '111'] for b in bit_strings: oracle = p_oracle(b) best_angle, _ = find_best_angle(b, oracle) s = QuantumCircuit(3, name="S") s.ry(best_angle, range(3)) new_ = new_g(s, oracle) old_problem = AmplificationProblem(oracle, is_good_state=[b]) old_ = QuantumCircuit(3) old_.h(range(3)) old_.compose(old_problem.grover_operator.decompose(), inplace=True) new_r = get_result(new_) if(not new_r.get(b)): new_r = 0 else: new_r = new_r[b] old_r = get_result(old_) if(not old_r.get(b)): old_r = 0 else: old_r = old_r[b] old[b] = old_r new[b] = new_r old, new data = {"new": new, "old":old} df = pd.DataFrame(data, columns=["new", "old"], index=bit_strings) df plt.plot(df.index.tolist(),df['new'], label="new") plt.plot(df.index.tolist(),df['old'], label="old") plt.title('old vs new Grover improvement (range [0, $\pi$])') plt.xlabel("bit string") plt.ylabel("counts") plt.legend(loc="upper right") plt.savefig(get_image_path("superposition-improvement-grover-algorithm.png")) plt.show() def find_best_angle_d_range(encoded_bit_string, oracle): max_ = 0 best_angle = 0 for angle in np.linspace(0, 2*np.pi, num=240): s = QuantumCircuit(3) s.ry(angle, range(3)) qc = new_g(s, oracle) qc.measure_all() result = sim.run(transpile(qc, sim), shots=1000).result().get_counts() if(not result.get(encoded_bit_string)): continue result = result[encoded_bit_string] if(result > max_): max_ = result best_angle = angle print(angle, result) return best_angle, max_ old = {} new = {} bit_strings = ['000', '001', '010', '011', '100', '101', '110', '111'] for b in bit_strings: oracle = p_oracle(b) best_angle, _ = find_best_angle_d_range(b, oracle) s = QuantumCircuit(3, name="S") s.ry(best_angle, range(3)) new_ = new_g(s, oracle) old_problem = AmplificationProblem(oracle, is_good_state=[b]) old_ = QuantumCircuit(3) old_.h(range(3)) old_.compose(old_problem.grover_operator.decompose(), inplace=True) new_r = get_result(new_) if(not new_r.get(b)): new_r = 0 else: new_r = new_r[b] old_r = get_result(old_) if(not old_r.get(b)): old_r = 0 else: old_r = old_r[b] old[b] = old_r new[b] = new_r data = {"new": new, "old":old} df = pd.DataFrame(data, columns=["new", "old"], index=bit_strings) df plt.plot(df.index.tolist(),df['new'], label="new") plt.plot(df.index.tolist(),df['old'], label="old") plt.title('old vs new Grover improvement (range [0, $2\pi$])') plt.xlabel("bit string") plt.ylabel("counts") plt.legend(loc="upper right") #plt.savefig(get_image_path("superposition-improvement-grover-algorithm.png")) plt.show() s = QuantumCircuit(3) s.ry(np.pi/3, 0) s.ry(np.pi/5, 1) s.ry(np.pi/9, 2) s.draw('mpl') plot_bloch_multivector(s) oracle = p_oracle('000') qc = new_g(s, oracle) plot_histogram(get_result(qc)) oracle = p_oracle('010') qc = new_g(s, oracle) plot_histogram(get_result(qc)) CCP = CPhaseGate(-np.pi/8).control(1) oracle = QuantumCircuit(3) oracle.append(CCP, [0, 1, 2]) oracle.draw('mpl') qc_copy = oracle.copy() qc_copy.save_unitary() sim = AerSimulator() unitary = sim.run(transpile(qc_copy, sim)).result().get_unitary() array_to_latex(unitary, max_size=10000) s = QuantumCircuit(3) s.ry(1.7423959255203896, range(3)) qc = new_g(s, oracle) plot_histogram(get_result(qc)) sim = AerSimulator() def find_best_angle_rx(encoded_bit_string, oracle): max_ = 0 best_angle = 0 for angle in np.linspace(0, np.pi, num=120): s = QuantumCircuit(3) s.rx(angle, range(3)) qc = new_g(s, oracle) qc.measure_all() result = sim.run(transpile(qc, sim), shots=1000).result().get_counts() if(not result.get(encoded_bit_string)): continue result = result[encoded_bit_string] if(result > max_): max_ = result best_angle = angle #transpiled = transpile(qc, sim) #display(transpiled.draw('mpl')) #print(angle, result) return best_angle, max_ def find_best_angle_rz(encoded_bit_string, oracle): max_ = 0 best_angle = 0 for angle in np.linspace(0, np.pi, num=120): s = QuantumCircuit(3) s.rz(angle, range(3)) qc = new_g(s, oracle) qc.measure_all() result = sim.run(transpile(qc, sim), shots=1000).result().get_counts() if(not result.get(encoded_bit_string)): continue result = result[encoded_bit_string] if(result > max_): max_ = result best_angle = angle #transpiled = transpile(qc, sim) #display(transpiled.draw('mpl')) #print(angle, result) return best_angle, max_ def find_best_angle_ry(encoded_bit_string, oracle): max_ = 0 best_angle = 0 for angle in np.linspace(0, np.pi, num=120): s = QuantumCircuit(3) s.ry(angle, range(3)) qc = new_g(s, oracle) qc.measure_all() result = sim.run(transpile(qc, sim), shots=1000).result().get_counts() if(not result.get(encoded_bit_string)): continue result = result[encoded_bit_string] if(result > max_): max_ = result best_angle = angle #transpiled = transpile(qc, sim) #display(transpiled.draw('mpl')) #print(angle, result) return best_angle, max_ rx = {} rz = {} ry = {} bit_strings = ['000', '001', '010', '011', '100', '101', '110', '111'] for s in bit_strings: oracle = p_oracle(s) angle_rx, max_rx = find_best_angle_rx(s, oracle) angle_rz, max_rz = find_best_angle_rz(s, oracle) angle_ry, max_ry = find_best_angle_ry(s, oracle) print(s, angle_rx, max_rx, angle_rz, max_rz, angle_ry, max_ry) rx[s] = max_rx rz[s] = max_rz ry[s] = max_ry data = {"ry": ry, "rx": rx, "rz": rz} df = pd.DataFrame(data, columns=("ry", "rx", "rz"), index=bit_strings) plt.plot(df.index.tolist(),df['ry'], label="ry") plt.plot(df.index.tolist(),df['rx'], label="rx") plt.plot(df.index.tolist(),df['rz'], label="rz") plt.title('test rotations') plt.xlabel("bit string") plt.ylabel("counts") plt.legend(loc="upper right") plt.savefig(get_image_path("rotations-test-grover-algorithm.png")) plt.show() test = QuantumCircuit(1) test.ry(3*np.pi/2, 0) display(test.draw('mpl')) plot_bloch_multivector(test) def find_best_angle_2(encoded_bit_string, oracle, values_range, sim=AerSimulator()): max_ = 0 best_angle = 0 for angle in values_range: s = QuantumCircuit(3) s.ry(angle, range(3)) qc = new_g(s, oracle) qc.measure_all() result = sim.run(transpile(qc, sim), shots=1000).result().get_counts() if(not result.get(encoded_bit_string)): continue result = result[encoded_bit_string] if(result > max_): max_ = result best_angle = angle #print(angle, result) return best_angle, max_ def new_compare(values_range, bit_strings=['000', '001', '010', '011', '100', '101', '110', '111']): old = {} new = {} total_qubits = len(bit_strings[0]) for b in bit_strings: oracle = p_oracle(b) best_angle, _ = find_best_angle_2(b, oracle, values_range=values_range) s = QuantumCircuit(total_qubits, name="S") s.ry(best_angle, range(total_qubits)) new_ = QuantumCircuit(total_qubits) new_.append(s, range(total_qubits)) new_.append(oracle, range(total_qubits)) new_.h(range(total_qubits)) new_.x(range(total_qubits)) new_.h(-1) new_.mcmt(list(range(tota_qubits-1)),-1) new_.h(-1) new_.x(range(total_qubits)) new_.h(range(total_qubits)) old_problem = AmplificationProblem(oracle, is_good_state=[b]) old_ = QuantumCircuit(total_qubits) old_.h(range(total_qubits)) old_.compose(old_problem.grover_operator.decompose(), inplace=True) new_r = get_result(new_) if(not new_r.get(b)): new_r = 0 else: new_r = new_r[b] old_r = get_result(old_) if(not old_r.get(b)): old_r = 0 else: old_r = old_r[b] old[b] = old_r new[b] = new_r data = {"old": old, "new": new} df = pd.DataFrame(data, columns=("old", "new"), index=bit_strings) return df df_0_to_pi = new_compare(np.linspace(0, np.pi, num=240)) df_0_to_pi plt.plot(df_0_to_pi.index.tolist(),df_0_to_pi['old'], label="old") plt.plot(df_0_to_pi.index.tolist(),df_0_to_pi['new'], label="new") plt.xlabel("bit string") plt.ylabel("counts") plt.legend(loc="upper right") plt.show() df_0_to_2pi = new_compare(np.linspace(0, 2*np.pi, num=240)) df_0_to_2pi plt.plot(df_0_to_2pi.index.tolist(),df_0_to_2pi['old'], label="old") plt.plot(df_0_to_2pi.index.tolist(),df_0_to_2pi['new'], label="new") plt.xlabel("bit string") plt.ylabel("counts") plt.legend(loc="upper right") plt.show() df_0_to_pi = new_compare(np.linspace(0, np.pi, num=240), bit_strings=['00', '01', '10', '11']) df_0_to_pi
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.timeline import draw from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) qc = transpile(qc, FakeBoeblingen(), scheduling_method='alap', layout_method='trivial') draw(qc)
https://github.com/zeynepCankara/Introduction-Quantum-Programming
zeynepCankara
# # your solution is here # from random import randrange def experiment(n): num_tails = 0 num_heads = 0 for i in range(n): if(randrange(2) == 0): # 0 is the head num_heads += 1 else: num_tails += 1 return num_heads, num_tails num_heads1000, num_tails1000 = experiment(1000) print("Experiment with 1000 flips | heads: " + str(num_heads1000) + " tails: " + str(num_tails1000)) print("Probability | heads: " + str(num_heads1000/1000) + " tails: " + str(num_tails1000/1000)) num_heads10000, num_tails10000 = experiment(10000) print("Experiment with 10,000 flips | heads: " + str(num_heads10000) + " tails: " + str(num_tails10000)) print("Probability | heads: " + str(num_heads10000/10000) + " tails: " + str(num_tails10000/10000)) num_heads100000, num_tails100000 = experiment(100000) print("Experiment with 100,000 flips | heads: " + str(num_heads100000) + " tails: " + str(num_tails100000)) print("Probability | heads: " + str(num_heads100000/1000000) + " tails: " + str(num_tails100000/1000000)) # # your solution is here # def experiment(n): num_tails = 0 num_heads = 0 for i in range(n): if(randrange(5) < 2): # < 0.4 prob for tail num_tails += 1 else: num_heads += 1 return num_heads, num_tails num_heads1000, num_tails1000 = experiment(1000) print("Experiment with 1000 flips | heads: " + str(num_heads1000) + " tails: " + str(num_tails1000)) print("Probability | heads: " + str(num_heads1000/1000) + " tails: " + str(num_tails1000/1000)) num_heads10000, num_tails10000 = experiment(10000) print("Experiment with 10,000 flips | heads: " + str(num_heads10000) + " tails: " + str(num_tails10000)) print("Probability | heads: " + str(num_heads10000/10000) + " tails: " + str(num_tails10000/10000)) num_heads100000, num_tails100000 = experiment(100000) print("Experiment with 100,000 flips | heads: " + str(num_heads100000) + " tails: " + str(num_tails100000)) print("Probability | heads: " + str(num_heads100000/1000000) + " tails: " + str(num_tails100000/1000000)) # proportion of heads and tails print(str((num_heads100000)/(num_tails100000)))
https://github.com/jwalaQ/my-qiskit-textbook-solutions
jwalaQ
from qiskit import * from math import pi import numpy as np from qiskit.visualization import plot_bloch_multivector,plot_histogram from qiskit_textbook.tools import array_to_latex backend_s = Aer.get_backend('statevector_simulator') backend_u = Aer.get_backend('unitary_simulator') qc = QuantumCircuit(2) qc.h(0) qc.x(1) # Add Controlled-T qc.cp(pi/4, 0, 1) # alternatively: qc.cu1(pi/4,0,1) display(qc.draw('mpl')) # See Results: final_state = execute(qc,backend_s).result().get_statevector() plot_bloch_multivector(final_state) qc = QuantumCircuit(2) qc.h(0) # Add Controlled-T qc.cp(pi/4, 0, 1) # Alternatively qc.cu1(pi/4,0,1) display(qc.draw('mpl')) # See Results: final_state = execute(qc,backend_s).result().get_statevector() plot_bloch_multivector(final_state) qc = QuantumCircuit(2) qc.h(0) qc.x(1) # Add Controlled-T qc.cp(-pi/2, 0, 1) #Alternatively qc.cu1(-pi/2,0,1) display(qc.draw('mpl')) # See Results: final_state = execute(qc,backend_s).result().get_statevector() plot_bloch_multivector(final_state) qc = QuantumCircuit(2) qc.x(0) qc.x(1) # Add Controlled-T qc.cp(pi/4, 0, 1) # Alternatively, qc.cu1(pi/4,0,1) display(qc.draw('mpl')) # See Results: final_state = execute(qc,backend_s).result().get_statevector() plot_bloch_multivector(final_state) import qiskit qiskit.__qiskit_version__
https://github.com/dv-gorasiya/quantum-machine-learning
dv-gorasiya
import numpy as np from matplotlib import pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from matplotlib.colors import ListedColormap seed = 12345 def plot_dataset(X, y, ax, axes=[-1, 1, -1, 1], marker='o', size=50, alpha=1.0, stepsize=0.5, grid=False, cmap=ListedColormap(['#FF0000', '#0000FF'])): """Simple routine to visualize a 2D dataset""" ax.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap, edgecolors='k', marker=marker, s=size, alpha=alpha) ax.axis(axes) ax.grid(grid, which='both') ax.set_xlabel(r"$x_1$", fontsize=24) ax.set_ylabel(r"$x_2$", fontsize=24, rotation=0) ax.xaxis.set_ticks(np.arange(axes[0], axes[1]+0.01, stepsize)) ax.yaxis.set_ticks(np.arange(axes[2], axes[3]+0.01, stepsize)) def visualize_dataset(): fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(18, 6)) ax1.set_title("Total", fontsize=24) plot_dataset(X, y, ax1) ax1.grid() ax2.set_title("Train", fontsize=24) plot_dataset(X_train, y_train, ax2, marker='s', size=80) ax2.grid() ax3.set_title("Test", fontsize=22) plot_dataset(X_test, y_test, ax3, marker='^', size=100) ax3.grid() plt.rcParams['font.size'] = 15 plt.tight_layout() plt.show() from sklearn.datasets import load_iris iris = load_iris() pair = [0, 2] X = iris.data[:, pair] y = iris.target # Data rescaling xmin = -1; xmax = 1 X = MinMaxScaler(feature_range=(xmin, xmax), copy=False).fit_transform(X) # Train/Test subdivision train_size = 20; test_size = 20 X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=train_size, test_size=test_size, stratify=y, random_state=seed ) def iris_visualize_dataset(X, y, ax, marker='o'): n_classes = 3 plot_colors = ['#FF0000', '#0000FF', '#00FF00'] cmap = ListedColormap(plot_colors) for i, color in zip(range(n_classes), plot_colors): idx = np.where(y == i) ax.scatter( X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], edgecolor="black", s=50, marker=marker ) fig, axs = plt.subplots(1, 3, figsize=(18, 6)) iris_visualize_dataset(X, y, axs[0]) iris_visualize_dataset(X_train, y_train, axs[1], marker='s') iris_visualize_dataset(X_test, y_test, axs[2], marker='^') for ax in axs: ax.set_xlim(xmin, xmax) ax.set_ylim(xmin, xmax) ax.set_xlabel(iris.feature_names[pair[0]]) ax.set_ylabel(iris.feature_names[pair[1]]) plt.rcParams['font.size'] = 20 plt.suptitle("Iris dataset") plt.legend(loc="lower right") plt.tight_layout() plt.show() from sklearn.datasets import make_blobs from sklearn.preprocessing import MinMaxScaler n_samples = 400 X, y = make_blobs(n_samples=n_samples, n_features=2, centers=2, random_state=110, shuffle=True, cluster_std=1.2) y[y%2 == 0] = -1 y[y > 0] = 1 xmin = -1; xmax = 1 X = MinMaxScaler(feature_range=(xmin, xmax)).fit_transform(X) train_size = 20 test_size = 20 X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=train_size, test_size=test_size, random_state=seed ) visualize_dataset() from sklearn.datasets import make_circles n_samples = 200 X, y = make_circles(n_samples, noise=0.1, factor=0.4, random_state=0) y[y%2 == 0] = -1 y[y > 0] = 1 xmin = -1; xmax = 1 X = MinMaxScaler(feature_range=(xmin, xmax)).fit_transform(X) train_size = 20 test_size = 20 X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=train_size, test_size=test_size, random_state=seed ) visualize_dataset() from sklearn.datasets import make_gaussian_quantiles n_samples = 200 X, y = make_gaussian_quantiles(n_samples=n_samples, n_features=2, n_classes=2, shuffle=True, random_state=10) y = 2*y-1 # Data rescaling xmin = -1; xmax = 1 X = MinMaxScaler(feature_range=(xmin, xmax), copy=False).fit_transform(X) train_size = 20 test_size = 20 X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=train_size, test_size=test_size, stratify=y, random_state=seed ) visualize_dataset() from sklearn.datasets import make_moons n_samples = 100 X, y = make_moons(n_samples=n_samples, noise=0.2, random_state=32345) y = 2*y-1 # Data rescaling xmin = -1; xmax = 1 X = MinMaxScaler(feature_range=(xmin, xmax), copy=False).fit_transform(X) train_size = 20 test_size = 20 X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=train_size, test_size=test_size, stratify=y, random_state=seed ) visualize_dataset()
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
from tsp_qaoa import test_solution from qiskit.visualization import plot_histogram import networkx as nx import numpy as np import json import csv # Array of JSON Objects header = ['p', 'state', 'probability', 'mean'] length_p = 10 with open('qaoa_multiple_p.csv', 'w', encoding='UTF8') as f: writer = csv.writer(f) # write the header writer.writerow(header) first_p = False for p in range(length_p): p = p+1 if first_p == False: job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(p=p) first_p = True else: job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(grafo=G, p=p) # Sort the JSON data based on the value of the brand key UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"]) mean = UNIFORM_CONVERGENCE_SAMPLE[0]["mean"] print(mean) state = 0 for probability in UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"]: state += 1 writer.writerow([p,state, probability,mean])
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram qp = QuadraticProgram() qp.binary_var("x") qp.binary_var("y") qp.integer_var(lowerbound=0, upperbound=7, name="z") qp.maximize(linear={"x": 2, "y": 1, "z": 1}) qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="LE", rhs=5.5, name="xyz_leq") qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="GE", rhs=2.5, name="xyz_geq") print(qp.prettyprint()) from qiskit_optimization.converters import InequalityToEquality ineq2eq = InequalityToEquality() qp_eq = ineq2eq.convert(qp) print(qp_eq.prettyprint()) print(qp_eq.prettyprint()) from qiskit_optimization.converters import IntegerToBinary int2bin = IntegerToBinary() qp_eq_bin = int2bin.convert(qp_eq) print(qp_eq_bin.prettyprint()) print(qp_eq_bin.prettyprint()) from qiskit_optimization.converters import LinearEqualityToPenalty lineq2penalty = LinearEqualityToPenalty() qubo = lineq2penalty.convert(qp_eq_bin) print(qubo.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
import sys, os sys.path.append(os.path.dirname(os.path.realpath(__file__)) + '/../../') from composer.qs_circuit import QSCircuit import string from qiskit import execute, BasicAer import math ALPHABET = list(string.ascii_uppercase) + [' ', '-', '_', '.', ',', '@'] SIZE_REG = int(math.log2(len(ALPHABET))) CIRCUIT_SIZE = SIZE_REG * 2 msg_indexes = list(range(0, SIZE_REG)) key_indexes = list(range(SIZE_REG, 2 * SIZE_REG)) key_slice = slice(SIZE_REG, 2 * SIZE_REG) def vigenere_qcypher(msg, key): qc = QSCircuit(CIRCUIT_SIZE) qc.set_reg(msg, msg_indexes) qc.set_reg(key, key_indexes) qc.xor2(msg_indexes, key_indexes) qc.measure(key_indexes, key_indexes) backend = BasicAer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1) counts = job.result().get_counts(qc) result_bin = ''.join(list(list(counts.keys())[0][::-1][key_slice][::-1])) result_char = ALPHABET[int(result_bin, 2) % len(ALPHABET)] return result_char msg = input('Insert message: ').upper() key = input('Insert key: ').upper() assert all(list(map(lambda c: c in ALPHABET, msg))) assert all(list(map(lambda c: c in ALPHABET, key))) cypher = '' for i, msg_char in enumerate(msg): key_char = key[i % len(key)] a = format(ALPHABET.index(msg_char), f'0{SIZE_REG}b')[::-1] b = format(ALPHABET.index(key_char), f'0{SIZE_REG}b')[::-1] result_char = vigenere_qcypher(a, b) cypher += result_char print(f'\nMessage: {msg}') print(f'Key: {key}') print(f'Cypher text: {cypher}')
https://github.com/qiskit-community/prototype-quantum-kernel-training
qiskit-community
# pylint: disable=import-error, wrong-import-position, pointless-statement import os import sys import numpy as np from qiskit import QuantumCircuit from qiskit.circuit import ParameterVector from qiskit_machine_learning.kernels import TrainableFidelityQuantumKernel NUM_QUBITS = 3 fm = QuantumCircuit(NUM_QUBITS) input_params = ip = ParameterVector("x", NUM_QUBITS) training_params = tp = ParameterVector("θ", NUM_QUBITS) for i in range(NUM_QUBITS): fm.h(i) fm.ry(tp[i], i) for i in range(NUM_QUBITS): fm.crx(ip[i], (i) % NUM_QUBITS, (i + 1) % NUM_QUBITS) # Define a Quantum Kernel using our trainable feature map qk = TrainableFidelityQuantumKernel( feature_map=fm, training_parameters=training_params[:NUM_QUBITS] ) print("input_params:", input_params) print("training_params:", training_params) qk.feature_map.draw() # Bind parameters to numeric values param_binds = {tp[0]: np.pi / 2, tp[1]: np.pi / 3, tp[2]: np.pi / 4} qk.assign_training_parameters(param_binds) qk.parameter_values # Create incomplete training param bindings param_binds = {tp[0]: np.pi / 6, tp[1]: np.pi / 5} qk.assign_training_parameters(param_binds) qk.parameter_values # Create incomplete user param bindings param_binds = {tp[0]: tp[0], tp[1]: tp[0] + tp[2], tp[2]: tp[2]} qk.assign_training_parameters(param_binds) qk.parameter_values qk = TrainableFidelityQuantumKernel(feature_map=fm, training_parameters=training_params) qk.feature_map.draw() param_values = [np.pi / 7, tp[1], np.pi / 9] qk.assign_training_parameters(param_values) qk.parameter_values param_values = [np.pi / 7, np.pi / 6, np.pi / 9] qk.assign_training_parameters(param_values) qk.parameter_values param_values = [tp[0], tp[1], tp[2]] qk.assign_training_parameters(param_values) qk.parameter_values #import qiskit.tools.jupyter # #%qiskit_version_table #%qiskit_copyright
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
import sys import os current_dir = os.getcwd() sys.path.append(current_dir) from quantum_circuit import QuantumCircuit # import qiskit.providers.fake_provider from qiskit.transpiler import CouplingMap import qiskit_ibm_runtime.fake_provider from Backend.backend import Backend class FakeBackend(Backend): def __init__(self, backend_name : str) -> None: self.backend = FakeBackend.get_ibm_fake_backend(backend_name=backend_name) @staticmethod def get_ibm_fake_backend_name_list() -> list[str]: ibm_dir = dir(qiskit_ibm_runtime.fake_provider) return [val for val in ibm_dir if '__' not in val and 'Fake' in val] @staticmethod def get_ibm_fake_backend(backend_name : str): try: return getattr(qiskit_ibm_runtime.fake_provider, backend_name)() except: pass fake_backend_name = FakeBackend.get_ibm_fake_backend_name_list() for backend in fake_backend_name: backend = FakeBackend.get_ibm_fake_backend(backend) if backend is not None: try: if backend.name == backend_name: return backend except: pass return None @staticmethod def get_ibm_fake_backend_names_with_limit(min_qubit : int = 1, max_qubit: int = float('inf')) -> list[str]: limited_backend = [] fake_backend_name = FakeBackend.get_ibm_fake_backend_name_list() for backend in fake_backend_name: backend = FakeBackend.get_ibm_fake_backend(backend) if backend is not None: try: num_qubit = backend.num_qubits if num_qubit >= min_qubit and num_qubit <= max_qubit: limited_backend.append(backend.name) except: pass return limited_backend if __name__ == "__main__": print(FakeBackend.get_ibm_fake_backend_name_list()) backend = FakeBackend('fake_auckland') qc = QuantumCircuit(2) qc.x(0) qc.h(1) qc.measure_all() print(qc.draw()) job = backend.run(qc) print(job.result()) qc_transpile = backend.traspile_qiskit(qc)[0] print(qc_transpile.draw()) job = backend.run(qc_transpile) print(job.result())
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# Create circuit to test transpiler on from qiskit import QuantumCircuit from qiskit.circuit.library import GroverOperator, Diagonal oracle = Diagonal([1]*7 + [-1]) qc = QuantumCircuit(3) qc.h([0,1,2]) qc = qc.compose(GroverOperator(oracle)) # Use Statevector object to calculate the ideal output from qiskit.quantum_info import Statevector ideal_distribution = Statevector.from_instruction(qc).probabilities_dict() from qiskit.visualization import plot_histogram plot_histogram(ideal_distribution) from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService() backend = service.backend('ibm_algiers') # Need to add measurements to the circuit qc.measure_all() from qiskit import transpile circuits = [] for optimization_level in [0, 3]: t_qc = transpile(qc, backend, optimization_level=optimization_level, seed_transpiler=0) print(f'CNOTs (optimization_level={optimization_level}): ', t_qc.count_ops()['cx']) circuits.append(t_qc) from qiskit.transpiler import PassManager, InstructionDurations from qiskit.transpiler.passes import ASAPSchedule, DynamicalDecoupling from qiskit.circuit.library import XGate # Get gate durations so the transpiler knows how long each operation takes durations = InstructionDurations.from_backend(backend) # This is the sequence we'll apply to idling qubits dd_sequence = [XGate(), XGate()] # Run scheduling and dynamic decoupling passes on circuit pm = PassManager([ASAPSchedule(durations), DynamicalDecoupling(durations, dd_sequence)] ) circ_dd = pm.run(circuits[1]) # Add this new circuit to our list circuits.append(circ_dd) from qiskit_ibm_runtime import Sampler, Session with Session(service=service, backend=backend): sampler = Sampler() job = sampler.run( circuits=circuits, # sample all three circuits skip_transpilation=True, shots=8000) result = job.result() from qiskit.visualization import plot_histogram binary_prob = [quasi_dist.binary_probabilities() for quasi_dist in result.quasi_dists] plot_histogram(binary_prob+[ideal_distribution], bar_labels=False, legend=['optimization_level=0', 'optimization_level=3', 'optimization_level=3 + dd', 'ideal distribution']) from qiskit.quantum_info import hellinger_fidelity for counts in result.quasi_dists: print( f"{hellinger_fidelity(counts.binary_probabilities(), ideal_distribution):.3f}" ) import qiskit_ibm_runtime qiskit_ibm_runtime.version.get_version_info() from qiskit.tools.jupyter import * %qiskit_version_table %qiskit_copyright
https://github.com/quantum-tokyo/qiskit-handson
quantum-tokyo
# Qiskitライブラリーを導入 from qiskit import * # 描画のためのライブラリーを導入 import matplotlib.pyplot as plt %matplotlib inline qiskit.__qiskit_version__ grover11=QuantumCircuit(2,2) grover11.draw(output='mpl') # 問題-1 上の回路図を作ってください。 grover11.draw(output='mpl') # 問題-2 上の回路図(問題-1に赤枠部分を追加したもの)を作ってください。 grover11.draw(output='mpl') #問題-3 上の回路図(問題-2に赤枠部分を追加したもの)を作ってください。 grover11.i(0) # 回路の見栄えを整えるために、恒等ゲートを差し込む。無くても動くが、表示の見栄えが崩れるのを防止するために、残しておく。 grover11.draw(output='mpl') grover11.measure(0,0) grover11.measure(1,1) grover11.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') # 実行環境の定義 job = execute(grover11, backend) # 処理の実行 result = job.result() # 実行結果 counts = result.get_counts(grover11) # 実行結果の詳細を取り出し print(counts) from qiskit.visualization import * plot_histogram(counts) # ヒストグラムで表示
https://github.com/Quantum-Ducks/QuBayes
Quantum-Ducks
import numpy as np import pandas as pd import matplotlib.pyplot as plt from qubayes_tools import * from network_setup import * def get_probabilities(node): ############################################ # USE THIS FUNCTION TO FIND THE PROBABILITIES FOR AN INDIVIDUAL NODE IN THE NETWORK ### INPUT ### # node: Node Node object in network ### OUTPUT ### # probs: dict probabilities ############################################ data= node.data states = node.states name = node.name num_total = len(data) #total number of data points with which to calculate probabilities probs = {} prob_sum = 0 for state in states.keys(): #loop through different state strings prob = np.shape(np.where(data == states[state]))[1]/num_total prob_sum += prob probs.update({name + "_" + state : prob}) assert round(prob_sum, 3) == 1. return probs def get_conditional_probability(child, *ps): ############################################ ### THIS FUNCTION CALCULATES CONDITIONAL PROBABILITIES FOR CHILD NODE ### THAT HAS s_m STATES AND m PARENT NODES EACH WITH s_i STATES WHERE i = 0, ..., m-1 ### INPUTS ### # child Node # *ps Node(s) or a single list of Nodes ### OUTPUT ### # a dictionary of conditional probabilities ############################################ #we might want to add some assert statements checking that all inputs have the same shape #also use assert to check that for all p in ps, ps.name is in child.parents, and vice versa if type(ps[0]) == list: ps = ps[0] if type(ps[0]) != Node: print("ERROR: This input is not right!") keys = generate_cond_keys(child, ps) cond_probs = {key: 0 for key in keys} #initialize a dictionary for conditional probabilities for key in keys: numer, tot = 0, 0 n = len(child.data) for i in range(n): all_ps = True for j in range(len(ps)): p = ps[j] if p.data[i] != int(p.states[key.split("|")[1].split(",")[j].split("_")[1]]): all_ps = False break if all_ps: tot += 1 if child.data[i] == int(child.states[key.split("|")[0].split("_")[1]]): numer += 1 cond_probs.update({key : numer/tot}) return cond_probs Cases, Tests, StayHome = get_lesser_model_nodes() get_conditional_probability(Cases, StayHome, Tests) get_conditional_probability(Cases, Tests, StayHome) Cases, Test, Mask, Work, Rec, Death, Age = get_mallard_model_nodes() get_conditional_probability(Cases, Test, Mask , Work, Rec) Cases, Test, Mask, Work, Rec, Death, Age, Race, Poverty, Health = get_alabio_model_nodes() get_conditional_probability(Cases, Test, Mask, Work, Rec, Poverty, Race) # example: results from running simple model on simulator: # {'000': 2783, '001': 1240, '100': 603, '111': 815, '110': 294, '010': 1712, '101': 485, '011': 260} def get_marginal_0probabilities(state_counts): #state_counts: dict, counts for each state from network result (should have 2^n entries) #marg_probs: array of length n, marginal probabilities that each qubit is 0, #from most significant to least significant qubit n = len(list(state_counts.keys())[0]) #number of qubits prob = np.zeros(n) total = sum(state_counts.values()) for i in range(n): for key in state_counts: if int(key[i]) == 0: prob[i] += state_counts[key] prob[i] = prob[i]/total return prob # get marginal probabilities for simulation results - lesser model results = {'000': 2783, '001': 1240, '100': 603, '111': 815, '110': 294, '010': 1712, '101': 485, '011': 260} #margProb = marginal_probabilities(results) #margCompare = marginal_probabilities_general(results) #print(margProb) #print(margCompare) def func(**counts): return counts["c001"] func(c000=4928, c001=82743, c100=48937, c111=9288842) C,B,A = get_lesser_model_nodes() print(C.name) get_conditional_probability(C, B, A)
https://github.com/qiskit-community/qiskit-dell-runtime
qiskit-community
import itertools import json import numpy as np from numpy.random import RandomState from qiskit import QuantumCircuit, QuantumRegister from qiskit.compiler import transpile from cvxopt import matrix, solvers # pylint: disable=import-error class QKA: def __init__(self, feature_map, backend, initial_layout=None, user_messenger=None): self.feature_map = feature_map self.feature_map_circuit = self.feature_map.construct_circuit self.backend = backend self.initial_layout = initial_layout self.num_parameters = self.feature_map._num_parameters self._user_messenger = user_messenger self.result = {} self.kernel_matrix = KernelMatrix( feature_map=self.feature_map, backend=self.backend, initial_layout=self.initial_layout ) def spsa_parameters(self): spsa_params = np.zeros((5)) spsa_params[0] = 0.05 # a spsa_params[1] = 0.1 # c spsa_params[2] = 0.602 # alpha spsa_params[3] = 0.101 # gamma spsa_params[4] = 0 # A return spsa_params def cvxopt_solver(self, K, y, C, max_iters=10000, show_progress=False): if y.ndim == 1: y = y[:, np.newaxis] H = np.outer(y, y) * K f = -np.ones(y.shape) n = K.shape[1] # number of training points y = y.astype("float") P = matrix(H) q = matrix(f) G = matrix(np.vstack((-np.eye((n)), np.eye((n))))) h = matrix(np.vstack((np.zeros((n, 1)), np.ones((n, 1)) * C))) A = matrix(y, y.T.shape) b = matrix(np.zeros(1), (1, 1)) solvers.options["maxiters"] = max_iters solvers.options["show_progress"] = show_progress ret = solvers.qp(P, q, G, h, A, b, kktsolver="ldl") return ret def spsa_step_one(self, lambdas, spsa_params, count): prng = RandomState(count) c_spsa = float(spsa_params[1]) / np.power(count + 1, spsa_params[3]) delta = 2 * prng.randint(0, 2, size=np.shape(lambdas)[0]) - 1 lambda_plus = lambdas + c_spsa * delta lambda_minus = lambdas - c_spsa * delta return lambda_plus, lambda_minus, delta def spsa_step_two(self, cost_plus, cost_minus, lambdas, spsa_params, delta, count): a_spsa = float(spsa_params[0]) / np.power(count + 1 + spsa_params[4], spsa_params[2]) c_spsa = float(spsa_params[1]) / np.power(count + 1, spsa_params[3]) g_spsa = (cost_plus - cost_minus) * delta / (2.0 * c_spsa) lambdas_new = lambdas - a_spsa * g_spsa lambdas_new = lambdas_new.flatten() cost_final = (cost_plus + cost_minus) / 2 return cost_final, lambdas_new def align_kernel(self, data, labels, initial_kernel_parameters=None, maxiters=1, C=1): if initial_kernel_parameters is not None: lambdas = initial_kernel_parameters else: lambdas = np.random.uniform(-1.0, 1.0, size=(self.num_parameters)) spsa_params = self.spsa_parameters() lambda_save = [] cost_final_save = [] for count in range(maxiters): lambda_plus, lambda_minus, delta = self.spsa_step_one( lambdas=lambdas, spsa_params=spsa_params, count=count ) kernel_plus = self.kernel_matrix.construct_kernel_matrix( x1_vec=data, x2_vec=data, parameters=lambda_plus ) kernel_minus = self.kernel_matrix.construct_kernel_matrix( x1_vec=data, x2_vec=data, parameters=lambda_minus ) ret_plus = self.cvxopt_solver(K=kernel_plus, y=labels, C=C) cost_plus = -1 * ret_plus["primal objective"] ret_minus = self.cvxopt_solver(K=kernel_minus, y=labels, C=C) cost_minus = -1 * ret_minus["primal objective"] cost_final, lambda_best = self.spsa_step_two( cost_plus=cost_plus, cost_minus=cost_minus, lambdas=lambdas, spsa_params=spsa_params, delta=delta, count=count, ) lambdas = lambda_best interim_result = {"cost": cost_final, "kernel_parameters": lambdas} print(interim_result) self._user_messenger.publish(interim_result) lambda_save.append(lambdas) cost_final_save.append(cost_final) # Evaluate aligned kernel matrix with optimized set of # parameters averaged over last 10% of SPSA steps: num_last_lambdas = int(len(lambda_save) * 0.10) if num_last_lambdas > 0: last_lambdas = np.array(lambda_save)[-num_last_lambdas:, :] lambdas = np.sum(last_lambdas, axis=0) / num_last_lambdas else: lambdas = np.array(lambda_save)[-1, :] kernel_best = self.kernel_matrix.construct_kernel_matrix( x1_vec=data, x2_vec=data, parameters=lambdas ) self.result["aligned_kernel_parameters"] = lambdas self.result["aligned_kernel_matrix"] = kernel_best return self.result class KernelMatrix: def __init__(self, feature_map, backend, initial_layout=None): self._feature_map = feature_map self._feature_map_circuit = self._feature_map.construct_circuit self._backend = backend self._initial_layout = initial_layout self.results = {} def construct_kernel_matrix(self, x1_vec, x2_vec, parameters=None): is_identical = False if np.array_equal(x1_vec, x2_vec): is_identical = True experiments = [] measurement_basis = "0" * self._feature_map._num_qubits if is_identical: my_product_list = list( itertools.combinations(range(len(x1_vec)), 2) ) # all pairwise combos of datapoint indices for index_1, index_2 in my_product_list: circuit_1 = self._feature_map_circuit( x=x1_vec[index_1], parameters=parameters, name="{}_{}".format(index_1, index_2) ) circuit_2 = self._feature_map_circuit( x=x1_vec[index_2], parameters=parameters, inverse=True ) circuit = circuit_1.compose(circuit_2) circuit.measure_all() experiments.append(circuit) experiments = transpile( experiments, backend=self._backend, initial_layout=self._initial_layout ) program_data = self._backend.run(experiments, shots=8192).result() self.results["program_data"] = program_data mat = np.eye( len(x1_vec), len(x1_vec) ) # kernel matrix element on the diagonal is always 1 for experiment, [index_1, index_2] in enumerate(my_product_list): counts = program_data.get_counts(experiment=experiment) shots = sum(counts.values()) mat[index_1][index_2] = ( counts.get(measurement_basis, 0) / shots ) # kernel matrix element is the probability of measuring all 0s mat[index_2][index_1] = mat[index_1][index_2] # kernel matrix is symmetric return mat else: for index_1, point_1 in enumerate(x1_vec): for index_2, point_2 in enumerate(x2_vec): circuit_1 = self._feature_map_circuit( x=point_1, parameters=parameters, name="{}_{}".format(index_1, index_2) ) circuit_2 = self._feature_map_circuit( x=point_2, parameters=parameters, inverse=True ) circuit = circuit_1.compose(circuit_2) circuit.measure_all() experiments.append(circuit) experiments = transpile( experiments, backend=self._backend, initial_layout=self._initial_layout ) program_data = self._backend.run(experiments, shots=8192).result() self.results["program_data"] = program_data mat = np.zeros((len(x1_vec), len(x2_vec))) i = 0 for index_1, _ in enumerate(x1_vec): for index_2, _ in enumerate(x2_vec): counts = program_data.get_counts(experiment=i) shots = sum(counts.values()) mat[index_1][index_2] = counts.get(measurement_basis, 0) / shots i += 1 return mat
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.pulse_v2 import draw, IQXSimple from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.measure_all() qc = transpile(qc, FakeBoeblingen(), layout_method='trivial') sched = schedule(qc, FakeBoeblingen()) draw(sched, style=IQXSimple(), backend=FakeBoeblingen())
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1); tensored = bottom.tensor(top) tensored.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import * from qiskit.circuit import Gate my_gate = Gate(name='my_gate', num_qubits=2, params=[]) qr = QuantumRegister(3, 'q') circ = QuantumCircuit(qr) circ.append(my_gate, [qr[0], qr[1]]) circ.append(my_gate, [qr[1], qr[2]]) circ.draw() # Build a sub-circuit sub_q = QuantumRegister(2) sub_circ = QuantumCircuit(sub_q, name='sub_circ') sub_circ.h(sub_q[0]) sub_circ.crz(1, sub_q[0], sub_q[1]) sub_circ.barrier() sub_circ.id(sub_q[1]) sub_circ.u(1, 2, -2, sub_q[0]) # Convert to a gate and stick it into an arbitrary place in the bigger circuit sub_inst = sub_circ.to_instruction() qr = QuantumRegister(3, 'q') circ = QuantumCircuit(qr) circ.h(qr[0]) circ.cx(qr[0], qr[1]) circ.cx(qr[1], qr[2]) circ.append(sub_inst, [qr[1], qr[2]]) circ.draw() decomposed_circ = circ.decompose() # Does not modify original circuit decomposed_circ.draw() from qiskit.circuit import Parameter theta = Parameter('θ') n = 5 qc = QuantumCircuit(5, 1) qc.h(0) for i in range(n-1): qc.cx(i, i+1) qc.barrier() qc.rz(theta, range(5)) qc.barrier() for i in reversed(range(n-1)): qc.cx(i, i+1) qc.h(0) qc.measure(0, 0) qc.draw('mpl') print(qc.parameters) import numpy as np theta_range = np.linspace(0, 2 * np.pi, 128) circuits = [qc.bind_parameters({theta: theta_val}) for theta_val in theta_range] circuits[-1].draw() backend = BasicAer.get_backend('qasm_simulator') job = backend.run(transpile(circuits, backend)) counts = job.result().get_counts() import matplotlib.pyplot as plt fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(111) ax.plot(theta_range, list(map(lambda c: c.get('0', 0), counts)), '.-', label='0') ax.plot(theta_range, list(map(lambda c: c.get('1', 0), counts)), '.-', label='1') ax.set_xticks([i * np.pi / 2 for i in range(5)]) ax.set_xticklabels(['0', r'$\frac{\pi}{2}$', r'$\pi$', r'$\frac{3\pi}{2}$', r'$2\pi$'], fontsize=14) ax.set_xlabel('θ', fontsize=14) ax.set_ylabel('Counts', fontsize=14) ax.legend(fontsize=14) import time from itertools import combinations from qiskit.compiler import assemble from qiskit.test.mock import FakeVigo start = time.time() qcs = [] theta_range = np.linspace(0, 2*np.pi, 32) for n in theta_range: qc = QuantumCircuit(5) for k in range(8): for i,j in combinations(range(5), 2): qc.cx(i,j) qc.rz(n, range(5)) for i,j in combinations(range(5), 2): qc.cx(i,j) qcs.append(qc) compiled_circuits = transpile(qcs, backend=FakeVigo()) qobj = assemble(compiled_circuits, backend=FakeVigo()) end = time.time() print('Time compiling over set of bound circuits: ', end-start) start = time.time() qc = QuantumCircuit(5) theta = Parameter('theta') for k in range(8): for i,j in combinations(range(5), 2): qc.cx(i,j) qc.rz(theta, range(5)) for i,j in combinations(range(5), 2): qc.cx(i,j) transpiled_qc = transpile(qc, backend=FakeVigo()) qobj = assemble([transpiled_qc.bind_parameters({theta: n}) for n in theta_range], backend=FakeVigo()) end = time.time() print('Time compiling over parameterized circuit, then binding: ', end-start) phi = Parameter('phi') sub_circ1 = QuantumCircuit(2, name='sc_1') sub_circ1.rz(phi, 0) sub_circ1.rx(phi, 1) sub_circ2 = QuantumCircuit(2, name='sc_2') sub_circ2.rx(phi, 0) sub_circ2.rz(phi, 1) qc = QuantumCircuit(4) qr = qc.qregs[0] qc.append(sub_circ1.to_instruction(), [qr[0], qr[1]]) qc.append(sub_circ2.to_instruction(), [qr[0], qr[1]]) qc.append(sub_circ2.to_instruction(), [qr[2], qr[3]]) print(qc.draw()) # The following raises an error: "QiskitError: 'Name conflict on adding parameter: phi'" # phi2 = Parameter('phi') # qc.u3(0.1, phi2, 0.3, 0) p = Parameter('p') qc = QuantumCircuit(3, name='oracle') qc.rz(p, 0) qc.cx(0, 1) qc.rz(p, 1) qc.cx(1, 2) qc.rz(p, 2) theta = Parameter('theta') phi = Parameter('phi') gamma = Parameter('gamma') qr = QuantumRegister(9) larger_qc = QuantumCircuit(qr) larger_qc.append(qc.to_instruction({p: theta}), qr[0:3]) larger_qc.append(qc.to_instruction({p: phi}), qr[3:6]) larger_qc.append(qc.to_instruction({p: gamma}), qr[6:9]) print(larger_qc.draw()) print(larger_qc.decompose().draw()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
from __future__ import print_function from imp import reload import matplotlib reload(matplotlib) matplotlib.use('nbagg') import matplotlib.backends.backend_nbagg reload(matplotlib.backends.backend_nbagg) import matplotlib.backends.backend_webagg_core reload(matplotlib.backends.backend_webagg_core) import matplotlib.pyplot as plt plt.interactive(False) fig1 = plt.figure() plt.plot(range(10)) plt.show() plt.plot([3, 2, 1]) plt.show() print(matplotlib.backends.backend_nbagg.connection_info()) plt.close(fig1) plt.plot(range(10)) print(matplotlib.backends.backend_nbagg.connection_info()) plt.show() plt.figure() plt.plot(range(5)) plt.show() plt.interactive(True) plt.figure() plt.plot([3, 2, 1]) plt.plot(range(3)) print(matplotlib.backends.backend_nbagg.connection_info()) plt.interactive(False) plt.gcf().canvas.manager.reshow() fig = plt.figure() plt.axes() plt.show() plt.plot([1, 2, 3]) plt.show() from matplotlib.backends.backend_nbagg import new_figure_manager,show manager = new_figure_manager(1000) fig = manager.canvas.figure ax = fig.add_subplot(1,1,1) ax.plot([1,2,3]) fig.show() import matplotlib.animation as animation import numpy as np fig, ax = plt.subplots() x = np.arange(0, 2*np.pi, 0.01) # x-array line, = ax.plot(x, np.sin(x)) def animate(i): line.set_ydata(np.sin(x+i/10.0)) # update the data return line, #Init only required for blitting to give a clean slate. def init(): line.set_ydata(np.ma.array(x, mask=True)) return line, ani = animation.FuncAnimation(fig, animate, np.arange(1, 200), init_func=init, interval=32., blit=True) plt.show() import matplotlib matplotlib.rcParams.update({'figure.facecolor': 'red', 'savefig.facecolor': 'yellow'}) plt.figure() plt.plot([3, 2, 1]) plt.show() import itertools fig, ax = plt.subplots() x = np.linspace(0,10,10000) y = np.sin(x) ln, = ax.plot(x,y) evt = [] colors = iter(itertools.cycle(['r', 'g', 'b', 'k', 'c'])) def on_event(event): if event.name.startswith('key'): fig.suptitle('%s: %s' % (event.name, event.key)) elif event.name == 'scroll_event': fig.suptitle('%s: %s' % (event.name, event.step)) else: fig.suptitle('%s: %s' % (event.name, event.button)) evt.append(event) ln.set_color(next(colors)) fig.canvas.draw() fig.canvas.draw_idle() fig.canvas.mpl_connect('button_press_event', on_event) fig.canvas.mpl_connect('button_release_event', on_event) fig.canvas.mpl_connect('scroll_event', on_event) fig.canvas.mpl_connect('key_press_event', on_event) fig.canvas.mpl_connect('key_release_event', on_event) plt.show() import time fig, ax = plt.subplots() text = ax.text(0.5, 0.5, '', ha='center') def update(text): text.set(text=time.ctime()) text.axes.figure.canvas.draw() timer = fig.canvas.new_timer(500, [(update, [text], {})]) timer.start() plt.show() fig, ax = plt.subplots() text = ax.text(0.5, 0.5, '', ha='center') timer = fig.canvas.new_timer(500, [(update, [text], {})]) timer.single_shot = True timer.start() plt.show() fig, ax = plt.subplots() text = ax.text(0.5, 0.5, '', ha='center') timer = fig.canvas.new_timer(500, [(update, [text], {})]) timer.start() timer.stop() plt.show() fig, ax = plt.subplots() text = ax.text(0.5, 0.5, '', ha='center') timer = fig.canvas.new_timer(500, [(update, [text], {})]) timer.single_shot = True timer.start() timer.stop() plt.show() fig, ax = plt.subplots() ax.plot(range(5)) plt.show() fig.canvas.manager.reshow()
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
import numpy as np from qiskit import BasicAer from qiskit.transpiler import PassManager from qiskit.aqua import QuantumInstance from qiskit.aqua.operators import MatrixOperator, op_converter from qiskit.aqua.algorithms import EOH from qiskit.aqua.components.initial_states import Custom num_qubits = 2 temp = np.random.random((2 ** num_qubits, 2 ** num_qubits)) qubit_op = op_converter.to_weighted_pauli_operator(MatrixOperator(matrix=temp + temp.T)) temp = np.random.random((2 ** num_qubits, 2 ** num_qubits)) evo_op = op_converter.to_weighted_pauli_operator(MatrixOperator(matrix=temp + temp.T)) evo_time = 1 num_time_slices = 1 state_in = Custom(qubit_op.num_qubits, state='uniform') eoh = EOH(qubit_op, state_in, evo_op, evo_time=evo_time, num_time_slices=num_time_slices) backend = BasicAer.get_backend('statevector_simulator') quantum_instance = QuantumInstance(backend) ret = eoh.run(quantum_instance) print('The result is\n{}'.format(ret))
https://github.com/Qottmann/Quantum-anomaly-detection
Qottmann
import time import itertools import numpy as np from scipy.optimize import minimize, basinhopping from qiskit import * from qiskit.quantum_info import Statevector from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B, SPSA from qiskit.opflow.state_fns import StateFn, CircuitStateFn from qiskit.providers.aer import StatevectorSimulator, AerSimulator import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator from matplotlib.colors import BoundaryNorm from modules.utils import * %matplotlib inline cmap = plt.get_cmap("plasma") #'viridis' import qiskit #%matplotlib inline print(qiskit.__version__) #reset random seed np.random.seed(123) from qiskit.utils import algorithm_globals algorithm_globals.random_seed = 123 ### Preliminaries L = 5 num_trash = 2 logspace_size=50 name = f'VQE_Ising_L5_anti_-1_50x50' # _1e-3 # name of the data produced by this notebook filename = "data/params_" + name # name of the data file that is used L = 5 anti = -1. VQE_params = np.load(filename + ".npz", allow_pickle=True) gx_list = VQE_params['gx_list'] gz_list = VQE_params['gz_list'] opt_params = VQE_params['opt_params'] gx_vals = np.unique(gx_list) gz_vals = np.unique(gz_list) mag = QMag(L,anti) #magnetization operator (Qiskit) Smag = Mag(L,anti) #magnetization operator (numpy) # the ~ is the adjoint, but also it turns the is_measurement attribute to True ~StateFn(mag) # state is technically a circuit, that prepares the ground state via VQE circuit #state.draw() # uncomment to see, but is very long Qen=np.zeros(len(opt_params)); Sen=np.zeros(len(opt_params)) #energies Qmags=np.zeros(len(opt_params)); Smags=np.zeros(len(opt_params)) #magnetizations load = True if load: temp = np.load(filename + "_mags-Es.npz",allow_pickle=True) Qmags = temp["Qmags"] Qen = temp["Qen"] Sen = temp["Sen"] Smags = temp["Smags"] if not load: for j in range(len(opt_params)): gx = gx_list[j] gz = gz_list[j] H = QHIsing(L, anti, np.float32(gx), np.float32(gz)) # build Hamiltonian Op state = init_vqe(opt_params[j], L=L) meas_outcome = ~StateFn(mag) @ StateFn(state) Qmags[j] = meas_outcome.eval() e_outcome = ~StateFn(H) @ StateFn(state) Qen[j] = e_outcome.eval() init_state, E, ham = ising_groundstate(L, anti, np.float(gx), np.float(gz)) Sen[j] = E Smags[j] = init_state.T.conj()@Smag@init_state #Magnetization with Numpy results np.savez(filename + "_mags-Es",Qmags=Qmags, Qen=Qen, Sen=Sen, Smags=Smags) # for large parameter space takes quite a while because of the exact diagonalization fig,ax = plt.subplots(figsize=(8,5)) cmap = plt.get_cmap("plasma") #'viridis' im = ax.pcolormesh(gz_vals, gx_vals, abs(Smags).reshape(len(gz_vals),len(gx_vals)), cmap=cmap) cbar = fig.colorbar(im, ax=ax) cbar.ax.tick_params(labelsize=20) plt.xscale("log") plt.yscale("log") ax.set_title("Magnetization ED L %.0f anti %.0f" %(L, anti),fontsize=20) ax.set_xlabel(r"$g_z$",fontsize=24) ax.set_ylabel(r"$g_x$",fontsize=24) ax.tick_params(labelsize=20) fig,ax = plt.subplots(figsize=(8,5)) cmap = plt.get_cmap("plasma") #'viridis' im = ax.pcolormesh(gz_vals, gx_vals, abs(Qmags).reshape(len(gz_vals),len(gx_vals)), cmap=cmap) cbar = fig.colorbar(im, ax=ax) cbar.ax.tick_params(labelsize=20) plt.xscale("log") plt.yscale("log") ax.set_title("Magnetization VQE L %.0f anti %.0f" %(L, anti),fontsize=20) ax.set_xlabel(r"$g_z$",fontsize=24) ax.set_ylabel(r"$g_x$",fontsize=24) ax.tick_params(labelsize=20) fig,ax = plt.subplots(figsize=(8,5)) cmap = plt.get_cmap("plasma") #'viridis' im = ax.pcolormesh(gz_vals, gx_vals, Sen.reshape(len(gz_vals),len(gx_vals)) - Qen.reshape(len(gz_vals),len(gx_vals)), cmap=cmap) cbar = fig.colorbar(im, ax=ax) cbar.ax.tick_params(labelsize=20) plt.xscale("log") plt.yscale("log") ax.set_title("Difference in energy L %.0f anti %.0f" %(L, anti),fontsize=20) ax.set_xlabel(r"$g_z$",fontsize=24) ax.set_ylabel(r"$g_x$",fontsize=24) ax.tick_params(labelsize=20) ############################################################################## ### II - Training ########################################################### ############################################################################## # Use Aer's qasm_simulator backend_sim = Aer.get_backend('qasm_simulator') thetas = np.random.uniform(0, 2*np.pi, 2*L+2) # initial parameters without feature encoding # thetas = np.random.uniform(0, 2*np.pi, (2*L+2, 2)) # initial parameters with feature encoding # linear entangler (as in scales linearly with trash qubits) def get_entangler_map(L, num_trash, i_permut=1): result = [] nums = list(range(L)) # here was the problem, it doesnt like when list elements are taken from numpy nums_compressed = nums.copy()[:L-num_trash] nums_trash = nums.copy()[-num_trash:] #print(nums, nums_compressed, nums_trash) # combine all trash qubits with themselves for trash_q in nums_trash[:-1]: result.append((trash_q+1,trash_q)) # combine each of the trash qubits with every n-th repeated = list(nums_trash) * (L-num_trash) # repeat the list of trash indices cyclicly for i in range(L-num_trash): result.append((repeated[i_permut + i], nums_compressed[i])) return result def QAE_Ansatz(thetas, L, num_trash, insert_barriers=False, parametrized_gate = "ry", entangling_gate = "cz"): entanglement = [get_entangler_map(L,num_trash,i_permut) for i_permut in range(num_trash)] circ = qiskit.circuit.library.TwoLocal(L, parametrized_gate, entangling_gate, entanglement, reps=num_trash, insert_barriers=insert_barriers, skip_final_rotation_layer=True ).assign_parameters(thetas[:-num_trash]) if insert_barriers: circ.barrier() for i in range(num_trash): circ.ry(thetas[L-i-1], L-i-1) #circ.ry(circuit.Parameter(f'θ{i}'), L-i-1) return circ def prepare_circuit(thetas, L=6, num_trash=2, init_state=None, measurement=True, vqe=True): qreg = QuantumRegister(L, 'q') creg = ClassicalRegister(num_trash, 'c') circ = QuantumCircuit(qreg, creg) circ += QAE_Ansatz(thetas, L, num_trash, insert_barriers=True)#.assign_parameters(thetas) # difference to bind? if measurement: for i in range(num_trash): circ.measure(qreg[L-i-1], creg[i]) if init_state is not None: if vqe: circ = init_vqe(init_state,L=L) + circ else: circ.initialize(init_state, qreg) return circ def feature_encoding(thetas, x): """ thetas: parameters to be optimized, x: Ising model parameter (eg. field) """ new_thetas = [] thetas = thetas.reshape((-1,2)) for theta in thetas: new_thetas.append(theta[0] * x + theta[1]) return new_thetas idx = 30 num_trash = 2 J, gx, gz = -1., gx_list[idx], gz_list[idx] # Ising parameters for which ground state should be compressed phi = opt_params[idx] # train on smallest lambda ;; this may grammatically be confusing, init_state = dictionary with unsorted parameters def run_circuit(thetas, L, num_trash, init_state, vqe=True, shots=100): circ = prepare_circuit(thetas, L, num_trash, init_state, vqe=vqe) # Execute the circuit on the qasm simulator. job_sim = execute(circ, backend_sim, shots=shots, seed_simulator=123, seed_transpiler=234) # fix seed to make it reproducible # Grab the results from the job. result_sim = job_sim.result() counts = result_sim.get_counts(circ) # print(counts) # mems = result_sim.get_memory(circ) # print(mems) return counts run_circuit(thetas, L, num_trash, phi)['11'] # translate to Rikes naming phis = opt_params gxs = gx_list gzs = gz_list def cost_function_single(thetas, L, num_trash, p, shots=1000, vqe=True, param_encoding=False, x=0): """ Optimizes circuit """ if vqe: init_state = phis[p] else: J, gx, gz = p init_state, _ = ising_groundstate(L, J, gx, gz) if param_encoding: thetas = feature_encoding(thetas, x) out = run_circuit(thetas, L, num_trash, init_state, vqe=vqe, shots=shots) cost = out.get('11', 0)*2 + out.get('01', 0) + out.get('10', 0) return cost/shots def cost_function(thetas, L, num_trash, ising_params, shots=1000, vqe=True, param_encoding=False, x=0): """ Optimizes circuit """ cost = 0. n_samples = len(ising_params) for i, p in enumerate(ising_params): if param_encoding: cost += cost_function_single(thetas, L, num_trash, p, shots, vqe, param_encoding, x[i]) else: cost += cost_function_single(thetas, L, num_trash, p, shots, vqe, param_encoding) return cost/n_samples def optimize(ising_params, L=6, num_trash=2, thetas=None, shots=1000, max_iter=400, vqe=True, param_encoding=False, x=0, pick_optimizer = None): if thetas is None: n_params = (2*L+2)*2 if param_encoding else (2*L+2) thetas = np.random.uniform(0, 2*np.pi, n_params) # initial parameters without feature encoding print("Initial cost: {:.3f}".format(cost_function(thetas, L, num_trash, ising_params, shots, vqe, param_encoding, x))) counts, values, accepted = [], [], [] def store_intermediate_result(eval_count, parameters, mean, std, ac): # counts.append(eval_count) values.append(mean) accepted.append(ac) # Initialize optimizer if pick_optimizer == "cobyla": optimizer = COBYLA(maxiter=max_iter, tol=0.0001) if pick_optimizer == "adam" or pick_optimizer == "ADAM": optimizer = qiskit.algorithms.optimizers.ADAM(maxiter=max_iter) # optimizer = L_BFGS_B(maxfun=300, maxiter=max_iter)#, factr=10, iprint=- 1, epsilon=1e-08) if pick_optimizer == "spsa" or pick_optimizer == None: optimizer = SPSA(maxiter=max_iter, #blocking=True, callback=store_intermediate_result, #learning_rate=1e-1, #perturbation=0.4 ) # recommended from qiskit (first iteraction takes quite long) # to reduce time figure out optimal learning rate and perturbation in advance start_time = time.time() ret = optimizer.optimize( num_vars=len(thetas), objective_function=(lambda thetas: cost_function(thetas, L, num_trash, ising_params, shots, vqe, param_encoding, x)), initial_point=thetas ) print("Time: {:.5f} sec".format(time.time()-start_time)) print(ret) return ret[0], values, accepted x,y = np.meshgrid(gx_vals, gz_vals) def run_inference(thetas, shots=1000, L=5): points = 50 J = -1.0 x,y = np.meshgrid(gx_vals, gz_vals) cost = np.zeros((len(gx_vals) * len(gz_vals))) Smags = np.zeros((len(gx_vals) * len(gz_vals))) shots = 1000 for i,p in enumerate(list(zip(gxs, gzs))): cost[i] = cost_function_single(thetas, L, num_trash, i, shots=shots) cost = cost.reshape((len(gx_vals), len(gz_vals))) return cost cmap = plt.get_cmap("plasma") def plot_result(cost): fig,axs = plt.subplots(ncols=2,figsize=(15,5)) nbins=100 ax = axs[0] im = ax.pcolormesh(x, y, cost, cmap=cmap, shading="auto") cbar = fig.colorbar(im, ax=ax) cbar.ax.tick_params(labelsize=20) ax.set_xscale("log") ax.set_yscale("log") ax.set_title(f"Loss",fontsize=20) ax.set_xlabel(r"$g_z$",fontsize=24) ax.set_ylabel(r"$g_x$",fontsize=24) ax.tick_params(labelsize=20) for p in params: gz = gz_list[p] gx = gx_list[p] ax.plot(gz,gx,"o",label="training",color="cyan") ax = axs[1] im = ax.pcolormesh(gz_vals, gx_vals, abs(Qmags).reshape(len(gz_vals),len(gx_vals)), cmap=cmap, shading="auto") cbar = fig.colorbar(im, ax=ax) cbar.ax.tick_params(labelsize=20) ax.set_xscale("log") ax.set_yscale("log") ax.set_title("Magnetization VQE L %.0f anti %.0f" %(L, anti),fontsize=20) ax.set_xlabel(r"$g_z$",fontsize=24) ax.set_ylabel(r"$g_x$",fontsize=24) ax.tick_params(labelsize=20) paramss =[ [0], # train on bottom left point np.intersect1d(np.where(gx_list > 99),np.where(gz_list == 1e-2)), # top left np.intersect1d(np.where(gz_list > 99),np.where(gx_list == 1e-2)), # bottom right [2450, 49] # both paramagnetic phases ] for i,params in enumerate(paramss): print(f"{i} / {len(paramss)} - params (gz, gx) in {[(gzs[p], gxs[p]) for p in params]}") thetass = [None] * len(paramss) losss = [None] * len(paramss) costs = [None] * len(paramss) for i,params in enumerate(paramss): print(f"{i+1} / {len(paramss)} - params (gz, gx) in {[(gzs[p], gxs[p]) for p in params]}") thetas, loss, accepted = optimize(params, max_iter=100, L=5) #, pick_optimizer="adam") thetass[i], losss[i] = thetas, loss plt.plot(loss) cost = run_inference(thetas) costs[i] = cost np.savez("data/" + name + "_thetas-loss-cost", losss = losss, costs = costs, thetass = thetass) for i,params in enumerate(paramss): print(f"{i+1} / {len(paramss)} - params (gz, gx) in {[(gzs[p], gxs[p]) for p in params]}") plot_result(np.load("data/" + name + "_thetas-loss-cost.npz",allow_pickle=True)["costs"][i]) plt.show() fig, axs = plt.subplots(ncols=2,figsize=(10,5)) ax = axs[0] ax.imshow(np.load("data/" + name + "_thetas-loss-cost.npz",allow_pickle=True)["costs"][0]) ax = axs[1] ax.imshow(np.load("data/" + name + "_thetas-loss-cost2.npz",allow_pickle=True)["costs"][0]) algorithm_globals.random_seed = 321 for i,params in enumerate(paramss): print(f"{i+1} / {len(paramss)} - params (gz, gx) in {[(gzs[p], gxs[p]) for p in params]}") thetas, loss, accepted = optimize(params, max_iter=100, L=5) #, pick_optimizer="adam") thetass[i], losss[i] = thetas, loss plt.plot(loss) cost = run_inference(thetas) costs[i] = cost np.savez("data/" + name + "_thetas-loss-cost2", losss = losss, costs = costs, thetass = thetass) for i,params in enumerate(paramss): print(f"{i+1} / {len(paramss)} - params (gz, gx) in {[(gzs[p], gxs[p]) for p in params]}") plot_result(np.load("data/" + name + "_thetas-loss-cost2.npz",allow_pickle=True)["costs"][i]) plt.show() for i,params in enumerate(paramss): print(f"{i+1} / {len(paramss)} - params (gz, gx) in {[(gzs[p], gxs[p]) for p in params]}") thetas, loss, accepted = optimize(params, max_iter=100, L=5, pick_optimizer="cobyla") thetass[i], losss[i] = thetas, loss plt.plot(loss) cost = run_inference(thetas) costs[i] = cost np.savez("data/" + name + "_thetas-loss-cost_cobyla", losss = losss, costs = costs, thetass = thetass) for i,params in enumerate(paramss): print(f"{i+1} / {len(paramss)} - params (gz, gx) in {[(gzs[p], gxs[p]) for p in params]}") plot_result(np.load("data/" + name + "_thetas-loss-cost_cobyla.npz",allow_pickle=True)["costs"][i]) plt.show()
https://github.com/ElePT/qiskit-algorithms-test
ElePT
# This code is part of Qiskit. # # (C) Copyright IBM 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Base state fidelity interface """ from __future__ import annotations from abc import ABC, abstractmethod from collections.abc import Sequence, Mapping import numpy as np from qiskit import QuantumCircuit from qiskit.circuit import ParameterVector from ..algorithm_job import AlgorithmJob from .state_fidelity_result import StateFidelityResult class BaseStateFidelity(ABC): r""" An interface to calculate state fidelities (state overlaps) for pairs of (parametrized) quantum circuits. The calculation depends on the particular fidelity method implementation, but can be always defined as the state overlap: .. math:: |\langle\psi(x)|\phi(y)\rangle|^2 where :math:`x` and :math:`y` are optional parametrizations of the states :math:`\psi` and :math:`\phi` prepared by the circuits ``circuit_1`` and ``circuit_2``, respectively. """ def __init__(self) -> None: # use cache for preventing unnecessary circuit compositions self._circuit_cache: Mapping[tuple[int, int], QuantumCircuit] = {} @staticmethod def _preprocess_values( circuits: QuantumCircuit | Sequence[QuantumCircuit], values: Sequence[float] | Sequence[Sequence[float]] | None = None, ) -> Sequence[Sequence[float]]: """ Checks whether the passed values match the shape of the parameters of the corresponding circuits and formats values to 2D list. Args: circuits: List of circuits to be checked. values: Parameter values corresponding to the circuits to be checked. Returns: A 2D value list if the values match the circuits, or an empty 2D list if values is None. Raises: ValueError: if the number of parameter values doesn't match the number of circuit parameters TypeError: if the input values are not a sequence. """ if isinstance(circuits, QuantumCircuit): circuits = [circuits] if values is None: for circuit in circuits: if circuit.num_parameters != 0: raise ValueError( f"`values` cannot be `None` because circuit <{circuit.name}> has " f"{circuit.num_parameters} free parameters." ) return [[]] else: # Support ndarray if isinstance(values, np.ndarray): values = values.tolist() if len(values) > 0 and isinstance(values[0], np.ndarray): values = [v.tolist() for v in values] if not isinstance(values, Sequence): raise TypeError( f"Expected a sequence of numerical parameter values, " f"but got input type {type(values)} instead." ) # ensure 2d if len(values) > 0 and not isinstance(values[0], Sequence) or len(values) == 0: values = [values] return values def _check_qubits_match(self, circuit_1: QuantumCircuit, circuit_2: QuantumCircuit) -> None: """ Checks that the number of qubits of 2 circuits matches. Args: circuit_1: (Parametrized) quantum circuit. circuit_2: (Parametrized) quantum circuit. Raises: ValueError: when ``circuit_1`` and ``circuit_2`` don't have the same number of qubits. """ if circuit_1.num_qubits != circuit_2.num_qubits: raise ValueError( f"The number of qubits for the first circuit ({circuit_1.num_qubits}) " f"and second circuit ({circuit_2.num_qubits}) are not the same." ) @abstractmethod def create_fidelity_circuit( self, circuit_1: QuantumCircuit, circuit_2: QuantumCircuit ) -> QuantumCircuit: """ Implementation-dependent method to create a fidelity circuit from 2 circuit inputs. Args: circuit_1: (Parametrized) quantum circuit. circuit_2: (Parametrized) quantum circuit. Returns: The fidelity quantum circuit corresponding to ``circuit_1`` and ``circuit_2``. """ raise NotImplementedError def _construct_circuits( self, circuits_1: QuantumCircuit | Sequence[QuantumCircuit], circuits_2: QuantumCircuit | Sequence[QuantumCircuit], ) -> Sequence[QuantumCircuit]: """ Constructs the list of fidelity circuits to be evaluated. These circuits represent the state overlap between pairs of input circuits, and their construction depends on the fidelity method implementations. Args: circuits_1: (Parametrized) quantum circuits. circuits_2: (Parametrized) quantum circuits. Returns: List of constructed fidelity circuits. Raises: ValueError: if the length of the input circuit lists doesn't match. """ if isinstance(circuits_1, QuantumCircuit): circuits_1 = [circuits_1] if isinstance(circuits_2, QuantumCircuit): circuits_2 = [circuits_2] if len(circuits_1) != len(circuits_2): raise ValueError( f"The length of the first circuit list({len(circuits_1)}) " f"and second circuit list ({len(circuits_2)}) is not the same." ) circuits = [] for (circuit_1, circuit_2) in zip(circuits_1, circuits_2): # TODO: improve caching, what if the circuit is modified without changing the id? circuit = self._circuit_cache.get((id(circuit_1), id(circuit_2))) if circuit is not None: circuits.append(circuit) else: self._check_qubits_match(circuit_1, circuit_2) # re-parametrize input circuits # TODO: make smarter checks to avoid unnecesary reparametrizations parameters_1 = ParameterVector("x", circuit_1.num_parameters) parametrized_circuit_1 = circuit_1.assign_parameters(parameters_1) parameters_2 = ParameterVector("y", circuit_2.num_parameters) parametrized_circuit_2 = circuit_2.assign_parameters(parameters_2) circuit = self.create_fidelity_circuit( parametrized_circuit_1, parametrized_circuit_2 ) circuits.append(circuit) # update cache self._circuit_cache[id(circuit_1), id(circuit_2)] = circuit return circuits def _construct_value_list( self, circuits_1: Sequence[QuantumCircuit], circuits_2: Sequence[QuantumCircuit], values_1: Sequence[float] | Sequence[Sequence[float]] | None = None, values_2: Sequence[float] | Sequence[Sequence[float]] | None = None, ) -> list[float]: """ Preprocesses input parameter values to match the fidelity circuit parametrization, and return in list format. Args: circuits_1: (Parametrized) quantum circuits preparing the first list of quantum states. circuits_2: (Parametrized) quantum circuits preparing the second list of quantum states. values_1: Numerical parameters to be bound to the first circuits. values_2: Numerical parameters to be bound to the second circuits. Returns: List of parameter values for fidelity circuit. """ values_1 = self._preprocess_values(circuits_1, values_1) values_2 = self._preprocess_values(circuits_2, values_2) values = [] if len(values_2[0]) == 0: values = list(values_1) elif len(values_1[0]) == 0: values = list(values_2) else: for (val_1, val_2) in zip(values_1, values_2): values.append(val_1 + val_2) return values @abstractmethod def _run( self, circuits_1: QuantumCircuit | Sequence[QuantumCircuit], circuits_2: QuantumCircuit | Sequence[QuantumCircuit], values_1: Sequence[float] | Sequence[Sequence[float]] | None = None, values_2: Sequence[float] | Sequence[Sequence[float]] | None = None, **options, ) -> StateFidelityResult: r""" Computes the state overlap (fidelity) calculation between two (parametrized) circuits (first and second) for a specific set of parameter values (first and second). Args: circuits_1: (Parametrized) quantum circuits preparing :math:`|\psi\rangle`. circuits_2: (Parametrized) quantum circuits preparing :math:`|\phi\rangle`. values_1: Numerical parameters to be bound to the first set of circuits values_2: Numerical parameters to be bound to the second set of circuits. options: Primitive backend runtime options used for circuit execution. The order of priority is\: options in ``run`` method > fidelity's default options > primitive's default setting. Higher priority setting overrides lower priority setting. Returns: The result of the fidelity calculation. """ raise NotImplementedError def run( self, circuits_1: QuantumCircuit | Sequence[QuantumCircuit], circuits_2: QuantumCircuit | Sequence[QuantumCircuit], values_1: Sequence[float] | Sequence[Sequence[float]] | None = None, values_2: Sequence[float] | Sequence[Sequence[float]] | None = None, **options, ) -> AlgorithmJob: r""" Runs asynchronously the state overlap (fidelity) calculation between two (parametrized) circuits (first and second) for a specific set of parameter values (first and second). This calculation depends on the particular fidelity method implementation. Args: circuits_1: (Parametrized) quantum circuits preparing :math:`|\psi\rangle`. circuits_2: (Parametrized) quantum circuits preparing :math:`|\phi\rangle`. values_1: Numerical parameters to be bound to the first set of circuits. values_2: Numerical parameters to be bound to the second set of circuits. options: Primitive backend runtime options used for circuit execution. The order of priority is\: options in ``run`` method > fidelity's default options > primitive's default setting. Higher priority setting overrides lower priority setting. Returns: Primitive job for the fidelity calculation. The job's result is an instance of ``StateFidelityResult``. """ job = AlgorithmJob(self._run, circuits_1, circuits_2, values_1, values_2, **options) job.submit() return job def _truncate_fidelities(self, fidelities: Sequence[float]) -> Sequence[float]: """ Ensures fidelity result in [0,1]. Args: fidelities: Sequence of raw fidelity results. Returns: List of truncated fidelities. """ return np.clip(fidelities, 0, 1).tolist()
https://github.com/tanvipenumudy/Quantum-Computing-Mini-Projects
tanvipenumudy
pip install qiskit import numpy as np import matplotlib.pyplot as plt import torch from torch.autograd import Function from torchvision import datasets, transforms import torch.optim as optim import torch.nn as nn import torch.nn.functional as F import qiskit from qiskit.visualization import * class QuantumCircuit: """ This class provides a simple interface for interaction with the quantum circuit """ def __init__(self, n_qubits, backend, shots): # --- Circuit definition --- self._circuit = qiskit.QuantumCircuit(n_qubits) all_qubits = [i for i in range(n_qubits)] self.theta = qiskit.circuit.Parameter('theta') self._circuit.h(all_qubits) self._circuit.barrier() self._circuit.ry(self.theta, all_qubits) self._circuit.measure_all() # --------------------------- self.backend = backend self.shots = shots def run(self, thetas): job = qiskit.execute(self._circuit, self.backend, shots = self.shots, parameter_binds = [{self.theta: theta} for theta in thetas]) result = job.result().get_counts(self._circuit) counts = np.array(list(result.values())) states = np.array(list(result.keys())).astype(float) # Compute probabilities for each state probabilities = counts / self.shots # Get state expectation expectation = np.sum(states * probabilities) return np.array([expectation]) simulator = qiskit.Aer.get_backend('qasm_simulator') circuit = QuantumCircuit(1, simulator, 100) print('Expected value for rotation pi {}'.format(circuit.run([np.pi])[0])) circuit._circuit.draw() class HybridFunction(Function): """ Hybrid quantum - classical function definition """ @staticmethod def forward(ctx, input, quantum_circuit, shift): """ Forward pass computation """ ctx.shift = shift ctx.quantum_circuit = quantum_circuit expectation_z = ctx.quantum_circuit.run(input[0].tolist()) result = torch.tensor([expectation_z]) ctx.save_for_backward(input, result) return result @staticmethod def backward(ctx, grad_output): """ Backward pass computation """ input, expectation_z = ctx.saved_tensors input_list = np.array(input.tolist()) shift_right = input_list + np.ones(input_list.shape) * ctx.shift shift_left = input_list - np.ones(input_list.shape) * ctx.shift gradients = [] for i in range(len(input_list)): expectation_right = ctx.quantum_circuit.run(shift_right[i]) expectation_left = ctx.quantum_circuit.run(shift_left[i]) gradient = torch.tensor([expectation_right]) - torch.tensor([expectation_left]) gradients.append(gradient) gradients = np.array([gradients]).T return torch.tensor([gradients]).float() * grad_output.float(), None, None class Hybrid(nn.Module): """ Hybrid quantum - classical layer definition """ def __init__(self, backend, shots, shift): super(Hybrid, self).__init__() self.quantum_circuit = QuantumCircuit(1, backend, shots) self.shift = shift def forward(self, input): return HybridFunction.apply(input, self.quantum_circuit, self.shift) # Concentrating on the first 100 samples n_samples = 100 X_train = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.Compose([transforms.ToTensor()])) # Leaving only labels 0 and 1 idx = np.append(np.where(X_train.targets == 0)[0][:n_samples], np.where(X_train.targets == 1)[0][:n_samples]) X_train.data = X_train.data[idx] X_train.targets = X_train.targets[idx] train_loader = torch.utils.data.DataLoader(X_train, batch_size=1, shuffle=True) n_samples_show = 6 data_iter = iter(train_loader) fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) while n_samples_show > 0: images, targets = data_iter.__next__() axes[n_samples_show - 1].imshow(images[0].numpy().squeeze(), cmap='gray') axes[n_samples_show - 1].set_xticks([]) axes[n_samples_show - 1].set_yticks([]) axes[n_samples_show - 1].set_title("Labeled: {}".format(targets.item())) n_samples_show -= 1 n_samples = 50 X_test = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.Compose([transforms.ToTensor()])) idx = np.append(np.where(X_test.targets == 0)[0][:n_samples], np.where(X_test.targets == 1)[0][:n_samples]) X_test.data = X_test.data[idx] X_test.targets = X_test.targets[idx] test_loader = torch.utils.data.DataLoader(X_test, batch_size=1, shuffle=True) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, kernel_size=5) self.conv2 = nn.Conv2d(6, 16, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(256, 64) self.fc2 = nn.Linear(64, 1) self.hybrid = Hybrid(qiskit.Aer.get_backend('qasm_simulator'), 100, np.pi / 2) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(1, -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.hybrid(x) return torch.cat((x, 1 - x), -1) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 20 loss_list = [] model.train() for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() total_loss.append(loss.item()) loss_list.append(sum(total_loss)/len(total_loss)) print('Training [{:.0f}%]\tLoss: {:.4f}'.format( 100. * (epoch + 1) / epochs, loss_list[-1])) plt.plot(loss_list) plt.title('Hybrid NN Training Convergence') plt.xlabel('Training Iterations') plt.ylabel('Neg Log Likelihood Loss') model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) model.eval() with torch.no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model(data) pred = output.argmax(dim=1, keepdim=True) axes[count].imshow(data[0].numpy().squeeze(), cmap='gray') axes[count].set_xticks([]) axes[count].set_yticks([]) axes[count].set_title('Predicted {}'.format(pred.item())) count += 1
https://github.com/DRA-chaos/Quantum-Classical-Hyrid-Neural-Network-for-binary-image-classification-using-PyTorch-Qiskit-pipeline
DRA-chaos
!pip install qiskit # check if CUDA is available import torch train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('CUDA is not available. Training on CPU ...') else: print('CUDA is available! Training on GPU ...') import numpy as np import matplotlib.pyplot as plt import torch from torch.autograd import Function from torchvision import datasets, transforms import torch.optim as optim import torch.nn as nn import torch.nn.functional as F import qiskit from qiskit import transpile, assemble from qiskit.visualization import * import numpy as np import torch from torch.autograd import Function import torch.optim as optim import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import datasets, transforms from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister, execute from qiskit.circuit import Parameter from qiskit import Aer from tqdm import tqdm from matplotlib import pyplot as plt %matplotlib inline def to_numbers(tensor_list): num_list = [] for tensor in tensor_list: num_list += [tensor.item()] return num_list class QuantumCircuit: """ This class provides a simple interface for interaction with the quantum circuit """ def __init__(self, n_qubits, backend, shots): # --- Circuit definition --- self._circuit = qiskit.QuantumCircuit(n_qubits) all_qubits = [i for i in range(n_qubits)] self.theta = qiskit.circuit.Parameter('theta') self._circuit.h(all_qubits) self._circuit.barrier() self._circuit.ry(self.theta, all_qubits) self._circuit.measure_all() # --------------------------- self.backend = backend self.shots = shots def run(self, thetas): t_qc = transpile(self._circuit, self.backend) qobj = assemble(t_qc, shots=self.shots, parameter_binds = [{self.theta: theta} for theta in thetas]) job = self.backend.run(qobj) result = job.result().get_counts() counts = np.array(list(result.values())) states = np.array(list(result.keys())).astype(float) # Compute probabilities for each state probabilities = counts / self.shots # Get state expectation expectation = np.sum(states * probabilities) return np.array([expectation]) class HybridFunction(Function): """ Hybrid quantum - classical function definition """ @staticmethod def forward(ctx, input, quantum_circuit, shift): """ Forward pass computation """ ctx.shift = shift ctx.quantum_circuit = quantum_circuit expectation_z = ctx.quantum_circuit.run(input[0].tolist()) result = torch.tensor([expectation_z]) ctx.save_for_backward(input, result) return result @staticmethod def backward(ctx, grad_output): """ Backward pass computation """ input, expectation_z = ctx.saved_tensors input_list = np.array(input.tolist()) shift_right = input_list + np.ones(input_list.shape) * ctx.shift shift_left = input_list - np.ones(input_list.shape) * ctx.shift gradients = [] for i in range(len(input_list)): expectation_right = ctx.quantum_circuit.run(shift_right[i]) expectation_left = ctx.quantum_circuit.run(shift_left[i]) gradient = torch.tensor([expectation_right]) - torch.tensor([expectation_left]) gradients.append(gradient) gradients = np.array([gradients]).T return torch.tensor([gradients]).float() * grad_output.float(), None, None class Hybrid(nn.Module): """ Hybrid quantum - classical layer definition """ def __init__(self, backend, shots, shift): super(Hybrid, self).__init__() self.quantum_circuit = QuantumCircuit(1, backend, shots) self.shift = shift def forward(self, input): return HybridFunction.apply(input, self.quantum_circuit, self.shift) import torchvision transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()]) # transform images to tensors/vectors cifar_trainset = datasets.CIFAR10(root='./data1', train=True, download=True, transform=transform) len(cifar_trainset) from torch.utils.data import DataLoader, random_split #cifar_trainset = datasets.CIFAR10(root='./data1', train=True, download=True, transform=transform) labels = cifar_trainset.targets # get the labels for the data labels = np.array(labels) idx1 = np.where(labels == 0) # filter on aeroplanes idx2 = np.where(labels == 1) # filter on automobiles # Specify number of datapoints per class (i.e. there will be n pictures of automobiles and n pictures of aeroplanes in the training set) n=100 # concatenate the data indices idx = np.concatenate((idx1[0][0:n],idx2[0][0:n])) # create the filtered dataset for our training set cifar_trainset.targets = labels[idx] cifar_trainset.data = cifar_trainset.data[idx] cifar_trainset, valid = random_split(cifar_trainset,[150,50]) train_loader = torch.utils.data.DataLoader(cifar_trainset, batch_size=1, shuffle=True) valid_loader = torch.utils.data.DataLoader(valid, batch_size=1, shuffle=True) @torch.no_grad() def get_all_preds(model, test_loader): all_preds = torch.tensor([]) for batch in test_loader: images, labels = batch preds = model(images) all_preds = torch.cat( (all_preds, preds) ,dim=0 ) return all_preds import numpy as np import matplotlib.pyplot as plt n_samples_show = 6 data_iter = iter(train_loader) fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 2)) while n_samples_show > 0: images, targets = data_iter.__next__() images=images.squeeze() axes[n_samples_show - 1].imshow(images[0].numpy(), cmap='gray') axes[n_samples_show - 1].set_xticks([]) axes[n_samples_show - 1].set_yticks([]) axes[n_samples_show - 1].set_title("Labeled: {}".format(targets.item())) n_samples_show -= 1 import torchvision transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()]) # transform images to tensors/vectors cifar_testset = datasets.CIFAR10(root='./data1', train=False, download=True, transform=transform) labels = cifar_testset.targets # get the labels for the data labels = np.array(labels) idx1 = np.where(labels == 0) # filter on aeroplanes idx2 = np.where(labels == 1) # filter on automobiles # Specify number of datapoints per class (i.e. there will be n pictures of automobiles and n pictures of aeroplanes in the training set) n=100 # concatenate the data indices idx = np.concatenate((idx1[0][0:n],idx2[0][0:n])) # create the filtered dataset for our training set cifar_testset.targets = labels[idx] cifar_testset.data = cifar_testset.data[idx] test_loader = torch.utils.data.DataLoader(cifar_testset, batch_size=1, shuffle=False) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(500, 500) self.fc2 = nn.Linear(500, 1) self.hybrid = Hybrid(qiskit.Aer.get_backend('qasm_simulator'), 100, np.pi / 2) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(1, -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.hybrid(x) return torch.cat((x, 1 - x), -1) %matplotlib inline import matplotlib.pyplot as plt model = Net() valid_loss_min = np.Inf # track change in validation loss optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 20 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch+1, loss_list[epoch], loss_list_V[-1])) if (validation_loss)<=(valid_loss_min): print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format( valid_loss_min, validation_loss)) torch.save(model.state_dict(), 'model_cifar.pt') valid_loss_min = validation_loss #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) %matplotlib inline import matplotlib.pyplot as plt model = Net() valid_loss_min = np.Inf # track change in validation loss optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 30 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch+1, loss_list[epoch], loss_list_V[-1])) if (validation_loss)<=(valid_loss_min): print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format( valid_loss_min, validation_loss)) torch.save(model.state_dict(), 'model_cifar.pt') valid_loss_min = validation_loss #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(20, 500) self.fc2 = nn.Linear(500, 1) self.hybrid = Hybrid(qiskit.Aer.get_backend('qasm_simulator'), 100, np.pi / 2) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.max_pool2d(x, 2) #Added layer x = F.relu(self.conv2(x)) x = self.dropout(x) #Added layer x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(1, -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.hybrid(x) return torch.cat((x, 1 - x), -1) %matplotlib inline import matplotlib.pyplot as plt model = Net() valid_loss_min = np.Inf # track change in validation loss optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 5 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch+1, loss_list[epoch], loss_list_V[-1])) if (validation_loss)<=(valid_loss_min): print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format( valid_loss_min, validation_loss)) torch.save(model.state_dict(), 'model_cifar.pt') valid_loss_min = validation_loss #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) %matplotlib inline import matplotlib.pyplot as plt model = Net() valid_loss_min = np.Inf # track change in validation loss optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 20 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch+1, loss_list[epoch], loss_list_V[-1])) if (validation_loss)<=(valid_loss_min): print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format( valid_loss_min, validation_loss)) torch.save(model.state_dict(), 'model_cifar.pt') valid_loss_min = validation_loss #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(20, 500) self.fc2 = nn.Linear(500, 1) self.hybrid = Hybrid(qiskit.Aer.get_backend('qasm_simulator'), 100, np.pi / 2) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = self.dropout(x) x = F.max_pool2d(x, 2) x = torch.flatten(x, 1) #Added layer x = self.dropout(x) x = x.view(1, -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.hybrid(x) return torch.cat((x, 1 - x), -1) %matplotlib inline import matplotlib.pyplot as plt model = Net() valid_loss_min = np.Inf # track change in validation loss optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 5 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch+1, loss_list[epoch], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) %matplotlib inline import matplotlib.pyplot as plt model = Net() valid_loss_min = np.Inf # track change in validation loss optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 20 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch+1, loss_list[epoch], loss_list_V[-1])) if (validation_loss)<=(valid_loss_min): print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format( valid_loss_min, validation_loss)) torch.save(model.state_dict(), 'model_cifar.pt') valid_loss_min = validation_loss #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(20, 500) self.fc2 = nn.Linear(500, 1) self.hybrid = Hybrid(qiskit.Aer.get_backend('qasm_simulator'), 100, np.pi / 2) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = self.dropout(x) x = F.max_pool2d(x, 2) x = torch.flatten(x, 1) #Added layer x = self.dropout(x) x = x.view(1, -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.hybrid(x) return torch.cat((x, 1 - x), -1) %matplotlib inline import matplotlib.pyplot as plt model = Net() valid_loss_min = np.Inf # track change in validation loss optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 5 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch+1, loss_list[epoch], loss_list_V[-1])) if (validation_loss)<=(valid_loss_min): print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format( valid_loss_min, validation_loss)) torch.save(model.state_dict(), 'model_cifar.pt') valid_loss_min = validation_loss #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) %matplotlib inline import matplotlib.pyplot as plt model = Net() valid_loss_min = np.Inf # track change in validation loss optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 20 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch+1, loss_list[epoch], loss_list_V[-1])) if (validation_loss)<=(valid_loss_min): print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format( valid_loss_min, validation_loss)) torch.save(model.state_dict(), 'model_cifar.pt') valid_loss_min = validation_loss #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) )
https://github.com/JessicaJohnBritto/Quantum-Computing-and-Information
JessicaJohnBritto
import pennylane as qml from pennylane import numpy as np import matplotlib.pyplot as plt def coefficients_to_values(coefficients): """Returns the value representation of a polynomial Args: coefficients (array[complex]): a 1-D array of complex coefficients of a polynomial with index i representing the i-th degree coefficient Returns: array[complex]: the value representation of the polynomial """ ################## # YOUR CODE HERE # ################## # pass return np.fft.fft(coefficients) A = [4, 3, 2, 1] print(coefficients_to_values(A)) def values_to_coefficients(values): """Returns the coefficient representation of a polynomial Args: values (array[complex]): a 1-D complex array with the value representation of a polynomial Returns: array[complex]: a 1-D complex array of coefficients """ ################## # YOUR CODE HERE # ################## return np.fft.ifft(values) A = [10.+0.j, 2.-2.j, 2.+0.j, 2.+2.j] print(values_to_coefficients(A)) def nearest_power_of_2(x): """Given an integer, return the nearest power of 2. Args: x (int): a positive integer Returns: int: the nearest power of 2 of x """ ################## # YOUR CODE HERE # ################## # k = np.log2(x) k = np.ceil(np.log2(x)) return (2**(int(k))) nearest_power_of_2(7) def fft_multiplication(poly_a, poly_b): """Returns the result of multiplying two polynomials Args: poly_a (array[complex]): 1-D array of coefficients poly_b (array[complex]): 1-D array of coefficients Returns: array[complex]: complex coefficients of the product of the polynomials """ ################## # YOUR CODE HERE # ################## # len(poly_b) = b # len(poly_a) = a b = len(poly_b) # print(b) a = len(poly_a) # print(a) b = b-1 a= a-1 # Calculate the number of values required nn = a + b + 1 # Figure out the nearest power of 2 n = nearest_power_of_2(nn) # print(n) # Pad zeros to the polynomial # if a<n: poly_a = np.pad(poly_a, (0,n-len(poly_a))) # if b<n: poly_b = np.pad(poly_b, (0,n-len(poly_b))) # Convert the polynomials to value representation aa = coefficients_to_values(poly_a) bb = coefficients_to_values(poly_b) # print(a) # print(b) # Multiply m = aa*bb # Convert back to coefficient representation res = values_to_coefficients(m) # final = np.zeros((a+b)) # final = [] # for i in range(a+b): # final[i] = res[i] return res A = np.array([1,1]) B = np.array([1,-1]) fft_multiplication(A, B) dev = qml.device("default.qubit", wires=1) @qml.qnode(dev) def one_qubit_QFT(basis_id): """A circuit that computes the QFT on a single qubit. Args: basis_id (int): An integer value identifying the basis state to construct. Returns: array[complex]: The state of the qubit after applying QFT. """ # Prepare the basis state |basis_id> bits = [int(x) for x in np.binary_repr(basis_id, width=dev.num_wires)] qml.BasisStatePreparation(bits, wires=[0]) ################## # YOUR CODE HERE # ################## qml.Hadamard(wires=0) return qml.state() n_bits = 2 dev = qml.device("default.qubit", wires=n_bits) @qml.qnode(dev) def two_qubit_QFT(basis_id): """A circuit that computes the QFT on two qubits using qml.QubitUnitary. Args: basis_id (int): An integer value identifying the basis state to construct. Returns: array[complex]: The state of the qubits after the QFT operation. """ # Prepare the basis state |basis_id> bits = [int(x) for x in np.binary_repr(basis_id, width=dev.num_wires)] qml.BasisStatePreparation(bits, wires=[0, 1]) ################## # YOUR CODE HERE # ################## U = 0.5*(np.array([[1,1,1,1], [1, complex(0,1), -1, complex(0,-1)], [1, -1, 1, -1], [1, complex(0,-1), -1, complex(0,1)]])) qml.QubitUnitary(U, wires=[0,1]) return qml.state() dev = qml.device("default.qubit", wires=2) @qml.qnode(dev) def decompose_two_qubit_QFT(basis_id): """A circuit that computes the QFT on two qubits using elementary gates. Args: basis_id (int): An integer value identifying the basis state to construct. Returns: array[complex]: The state of the qubits after the QFT operation. """ # Prepare the basis state |basis_id> bits = [int(x) for x in np.binary_repr(basis_id, width=dev.num_wires)] qml.BasisStatePreparation(bits, wires=[0, 1]) ################## # YOUR CODE HERE # ################## qml.Hadamard(wires=0) qml.ctrl(qml.S, control=1)(wires=0) qml.Hadamard(wires=1) qml.SWAP(wires=[0,1]) # pass return qml.state() dev = qml.device("default.qubit", wires=3) @qml.qnode(dev) def three_qubit_QFT(basis_id): """A circuit that computes the QFT on three qubits. Args: basis_id (int): An integer value identifying the basis state to construct. Returns: array[complex]: The state of the qubits after the QFT operation. """ # Prepare the basis state |basis_id> bits = [int(x) for x in np.binary_repr(basis_id, width=dev.num_wires)] qml.BasisStatePreparation(bits, wires=[0, 1, 2]) ################## # YOUR CODE HERE # ################## for i in range(3): # j=i+1 # print("test1") qml.Hadamard(wires=i) for jj in range(i+1,3,1): # print("test2") # k = (1/(2**(jj)))*(np.pi)*(complex(0,1)) # U = np.array([[1,0], [0, np.exp(k)]]) # qml.ctrl(qml.QubitUnitary(U, wires=i), control=jj) # Below lines of code give the same result as the above one k = (1/(2**(jj)))*(np.pi) qml.ctrl(qml.PhaseShift(k, wires=i), control = jj) qml.SWAP(wires=[0,2]) return qml.state() print(qml.draw(three_qubit_QFT)(3)) dev = qml.device('default.qubit', wires=4) def swap_bits(n_qubits): """A circuit that reverses the order of qubits, i.e., performs a SWAP such that [q1, q2, ..., qn] -> [qn, ... q2, q1]. Args: n_qubits (int): An integer value identifying the number of qubits. """ ################## # YOUR CODE HERE # ################## # if n%2==0: # j = for i in range(int(n_qubits/2)): qml.SWAP(wires=[i,n_qubits-1-i]) # pass @qml.qnode(dev) def qft_node(basis_id, n_qubits): # Prepare the basis state |basis_id> bits = [int(x) for x in np.binary_repr(basis_id, width=n_qubits)] qml.BasisStatePreparation(bits, wires=range(n_qubits)) # qft_rotations(n_qubits) swap_bits(n_qubits) return qml.state() dev = qml.device('default.qubit', wires=4) # @qml.qnode(dev) def qft_rotations(n_qubits): """A circuit performs the QFT rotations on the specified qubits. Args: n_qubits (int): An integer value identifying the number of qubits. """ ################## # YOUR CODE HERE # ################## n = n_qubits for i in range(n): # j=i+1 # print("test1") qml.Hadamard(wires=i) for jj in range(i+1,n,1): # print("test2") qml.ControlledPhaseShift(np.pi/(2**(jj-i)), wires=[jj,i]) pass @qml.qnode(dev) def qft_node(basis_id, n_qubits): # Prepare the basis state |basis_id> bits = [int(x) for x in np.binary_repr(basis_id, width=n_qubits)] qml.BasisStatePreparation(bits, wires=range(n_qubits)) qft_rotations(n_qubits) swap_bits(n_qubits) return qml.state() # print(qml.draw(qft_rotations)(3)) print(qml.draw(qft_node)(3,3)) dev = qml.device('default.qubit', wires=4) def qft_recursive_rotations(n_qubits, wire=0): """A circuit that performs the QFT rotations on the specified qubits recursively. Args: n_qubits (int): An integer value identifying the number of qubits. wire (int): An integer identifying the wire (or the qubit) to apply rotations on. """ ################## # YOUR CODE HERE # ################## i = wire if i == n_qubits-1: qml.Hadamard(wires=i) # for i in range(n_qubits): # qml.Hadamard(wires=i) # if n_qubits!=i: else: qml.Hadamard(wires=i) for j in range(i+1, n_qubits, 1): qml.ControlledPhaseShift(np.pi/(2**(j-i)), wires=[j,i]) qft_recursive_rotations(n_qubits, i+1) pass @qml.qnode(dev) def qft_node(basis_id, n_qubits): # Prepare the basis state |basis_id> bits = [int(x) for x in np.binary_repr(basis_id, width=n_qubits)] qml.BasisStatePreparation(bits, wires=range(n_qubits)) qft_recursive_rotations(n_qubits) swap_bits(n_qubits) return qml.state() print(qml.draw(qft_node)(3,3))
https://github.com/theflyingrahul/qiskitsummerschool2020
theflyingrahul
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/Tojarieh97/VQE
Tojarieh97
import numpy as np def get_first_k_eigenvectors_from_n_computational_basis(k, n): n_computational_basis = np.identity(n) return n_computational_basis[:k]
https://github.com/GIRISHBELANI/QC_Benchmarks_using_dm-simulator
GIRISHBELANI
""" Quantum Fourier Transform Benchmark Program - QSim """ import math import sys import time import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister sys.path[1:1] = [ "_common", "_common/qsim" ] sys.path[1:1] = [ "../../_common", "../../_common/qsim" ] import execute as ex import metrics as metrics from qiskit.circuit.library import QFT from execute import BenchmarkResult # Benchmark Name benchmark_name = "Quantum Fourier Transform" np.random.seed(0) verbose = False # saved circuits for display num_gates = 0 depth = 0 QC_ = None QFT_ = None QFTI_ = None ############### Circuit Definition def QuantumFourierTransform (num_qubits, secret_int, method=1): global num_gates, depth # Size of input is one less than available qubits input_size = num_qubits num_gates = 0 depth = 0 # allocate qubits qr = QuantumRegister(num_qubits); cr = ClassicalRegister(num_qubits); qc = QuantumCircuit(qr, cr, name=f"qft({method})-{num_qubits}-{secret_int}") if method==1: # Perform X on each qubit that matches a bit in secret string s = ('{0:0'+str(input_size)+'b}').format(secret_int) for i_qubit in range(input_size): if s[input_size-1-i_qubit]=='1': qc.x(qr[i_qubit]) num_gates += 1 depth += 1 qc.barrier() # perform QFT on the input qc.append(qft_gate(input_size).to_instruction(), qr) # End with Hadamard on all qubits (to measure the z rotations) ''' don't do this unless NOT doing the inverse afterwards for i_qubit in range(input_size): qc.h(qr[i_qubit]) qc.barrier() ''' qc.barrier() # some compilers recognize the QFT and IQFT in series and collapse them to identity; # perform a set of rotations to add one to the secret_int to avoid this collapse for i_q in range(0, num_qubits): divisor = 2 ** (i_q) qc.rz( 1 * math.pi / divisor , qr[i_q]) num_gates+=1 qc.barrier() # to revert back to initial state, apply inverse QFT qc.append(inv_qft_gate(input_size).to_instruction(), qr) qc.barrier() elif method == 2: for i_q in range(0, num_qubits): qc.h(qr[i_q]) num_gates += 1 for i_q in range(0, num_qubits): divisor = 2 ** (i_q) qc.rz(secret_int * math.pi / divisor, qr[i_q]) num_gates += 1 depth += 1 qc.append(inv_qft_gate(input_size).to_instruction(), qr) # This method is a work in progress elif method==3: for i_q in range(0, secret_int): qc.h(qr[i_q]) num_gates+=1 for i_q in range(secret_int, num_qubits): qc.x(qr[i_q]) num_gates+=1 depth += 1 qc.append(inv_qft_gate(input_size).to_instruction(), qr) else: exit("Invalid QFT method") # measure all qubits qc.measure(qr, cr) num_gates += num_qubits depth += 1 # save smaller circuit example for display global QC_ if QC_ == None or num_qubits <= 5: if num_qubits < 9: QC_ = qc # return a handle on the circuit return qc ############### QFT Circuit def qft_gate(input_size): global QFT_, num_gates, depth qr = QuantumRegister(input_size); qc = QuantumCircuit(qr, name="qft") # Generate multiple groups of diminishing angle CRZs and H gate for i_qubit in range(0, input_size): # start laying out gates from highest order qubit (the hidx) hidx = input_size - i_qubit - 1 # if not the highest order qubit, add multiple controlled RZs of decreasing angle if hidx < input_size - 1: num_crzs = i_qubit for j in range(0, num_crzs): divisor = 2 ** (num_crzs - j) qc.crz( math.pi / divisor , qr[hidx], qr[input_size - j - 1]) num_gates += 1 depth += 1 # followed by an H gate (applied to all qubits) qc.h(qr[hidx]) num_gates += 1 depth += 1 qc.barrier() if QFT_ == None or input_size <= 5: if input_size < 9: QFT_ = qc return qc ############### Inverse QFT Circuit def inv_qft_gate(input_size): global QFTI_, num_gates, depth qr = QuantumRegister(input_size); qc = QuantumCircuit(qr, name="inv_qft") # Generate multiple groups of diminishing angle CRZs and H gate for i_qubit in reversed(range(0, input_size)): # start laying out gates from highest order qubit (the hidx) hidx = input_size - i_qubit - 1 # precede with an H gate (applied to all qubits) qc.h(qr[hidx]) num_gates += 1 depth += 1 # if not the highest order qubit, add multiple controlled RZs of decreasing angle if hidx < input_size - 1: num_crzs = i_qubit for j in reversed(range(0, num_crzs)): divisor = 2 ** (num_crzs - j) qc.crz( -math.pi / divisor , qr[hidx], qr[input_size - j - 1]) num_gates += 1 depth += 1 qc.barrier() if QFTI_ == None or input_size <= 5: if input_size < 9: QFTI_= qc return qc # Define expected distribution calculated from applying the iqft to the prepared secret_int state def expected_dist(num_qubits, secret_int, probs): dist = {} s = num_qubits - secret_int for key in probs.keys(): if key[(num_qubits-secret_int):] == ''.zfill(secret_int): dist[key] = 1/(2**s) return dist ############### Result Data Analysis # Analyze and print measured results def analyze_and_print_result (qc, result, num_qubits, secret_int, num_shots, method): # obtain probs from the result object if result.backend_name == 'dm_simulator': benchmark_result = BenchmarkResult(result, num_shots) probs = benchmark_result.get_probs(num_shots) # get results as measured probability else: probs = result.get_counts(qc) # get results as measured counts # For method 1, expected result is always the secret_int if method==1: # add one to the secret_int to compensate for the extra rotations done between QFT and IQFT secret_int_plus_one = (secret_int + 1) % (2 ** num_qubits) # create the key that is expected to have all the measurements (for this circuit) key = format(secret_int_plus_one, f"0{num_qubits}b") # correct distribution is measuring the key 100% of the time correct_dist = {key: 1.0} # For method 2, expected result is always the secret_int elif method==2: # create the key that is expected to have all the measurements (for this circuit) key = format(secret_int, f"0{num_qubits}b") # correct distribution is measuring the key 100% of the time correct_dist = {key: 1.0} # For method 3, correct_dist is a distribution with more than one value elif method==3: # correct_dist is from the expected dist correct_dist = expected_dist(num_qubits, secret_int, probs) # use our polarization fidelity rescaling fidelity = metrics.polarization_fidelity(probs, correct_dist) if verbose: print(f"For secret int {secret_int} measured: {probs} fidelity: {fidelity}") return probs, fidelity ################ Benchmark Loop # Execute program with default parameters def run (min_qubits = 2, max_qubits = 8, max_circuits = 3, skip_qubits=1, num_shots = 100, method=1, backend_id='dm_simulator', provider_backend=None, #hub="ibm-q", group="open", project="main", exec_options=None, context=None): print(f"{benchmark_name} ({method}) Benchmark Program - QSim") # validate parameters (smallest circuit is 2 qubits) max_qubits = max(2, max_qubits) min_qubits = min(max(2, min_qubits), max_qubits) skip_qubits = max(1, skip_qubits) #print(f"min, max qubits = {min_qubits} {max_qubits}") # create context identifier if context is None: context = f"{benchmark_name} ({method}) Benchmark" ########## # Initialize metrics module metrics.init_metrics() # Define custom result handler def execution_handler (qc, result, input_size, s_int, num_shots): # determine fidelity of result set num_qubits = int(input_size) probs, fidelity = analyze_and_print_result(qc, result, num_qubits, int(s_int), num_shots, method) metrics.store_metric(input_size, s_int, 'fidelity', fidelity) # Initialize execution module using the execution result handler above and specified backend_id ex.init_execution(execution_handler) ex.set_execution_target(backend_id, provider_backend=provider_backend, #hub=hub, group=group, project=project, exec_options=exec_options, context=context) ########## # Execute Benchmark Program N times for multiple circuit sizes # Accumulate metrics asynchronously as circuits complete for input_size in range(min_qubits, max_qubits + 1, skip_qubits): # reset random seed np.random.seed(0) num_qubits = input_size # determine number of circuits to execute for this group # and determine range of secret strings to loop over if method == 1 or method == 2: num_circuits = min(2 ** (input_size), max_circuits) if 2**(input_size) <= max_circuits: s_range = list(range(num_circuits)) else: s_range = np.random.choice(2**(input_size), num_circuits, False) elif method == 3: num_circuits = min(input_size, max_circuits) if input_size <= max_circuits: s_range = list(range(num_circuits)) else: s_range = np.random.choice(range(input_size), num_circuits, False) else: sys.exit("Invalid QFT method") print(f"************\nExecuting [{num_circuits}] circuits with num_qubits = {num_qubits}") # loop over limited # of secret strings for this for s_int in s_range: # create the circuit for given qubit size and secret string, store time metric ts = time.time() qc = QuantumFourierTransform(num_qubits, s_int, method=method).reverse_bits() metrics.store_metric(input_size, s_int, 'create_time', time.time()-ts) # collapse the sub-circuits used in this benchmark (for qiskit) qc2 = qc.decompose() # submit circuit for execution on target (simulator, cloud simulator, or hardware) ex.submit_circuit(qc2, input_size, s_int, num_shots) print(f"... number of gates, depth = {num_gates}, {depth}") # Wait for some active circuits to complete; report metrics when groups complete ex.throttle_execution(metrics.finalize_group) # Wait for all active circuits to complete; report metrics when groups complete ex.finalize_execution(metrics.finalize_group) ########## # print a sample circuit created (if not too large) print("Sample Circuit:"); print(QC_ if QC_ != None else " ... too large!") if method==1: print("\nQFT Circuit ="); print(QFT_) print("\nInverse QFT Circuit ="); print(QFTI_) # Plot metrics for all circuit sizes metrics.plot_metrics(f"Benchmark Results - {benchmark_name} ({method}) - QSim") # if main, execute method 1 if __name__ == '__main__': ex.local_args() # calling local_args() needed while taking noise parameters through command line arguments (for individual benchmarks) run()
https://github.com/wyqian1027/Qiskit-Fall-Fest-USC-2022
wyqian1027
import numpy as np from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_bloch_multivector, array_to_latex ##### DO NOT CHANGE THIS CODE ####### # This is used to help you check if your exercises are correct and allow you to keep track # of your progress. Modifying this can make the system fail. ex_correct_dict = {'ex1': False, 'ex2': False, 'ex3': False, 'ex4': False, 'ex5': False, 'ex6': False, 'ex7': False} def language(x): global ESP ESP = x def correction_announcer(x): if ESP: if x: print('¡La respuesta es correcta! :) \n¡Te llevas un MAPI!') else: print('La respuesta es incorrecta :(') else: if x: print('Your answer is correct! :)') else: print('Your answer is incorrect :(') def ex1_grader(qc): from qiskit.quantum_info import Statevector state_vector_solution = Statevector(qc) state_vector_real = Statevector((1./np.sqrt(2))*np.array([1., 0., 0., -1.])) if state_vector_solution==state_vector_real or state_vector_solution==-state_vector_real: ex_correct_dict['ex1'] = True correction_announcer(True) else: correction_announcer(False) def ex2_grader(qc): from qiskit.quantum_info import Statevector state_vector_solution = Statevector(qc) state_vector_real = Statevector((1./np.sqrt(2))*np.array([0., 1., 1., 0.])) if state_vector_solution==state_vector_real or state_vector_solution==-state_vector_real: ex_correct_dict['ex2'] = True correction_announcer(True) else: correction_announcer(False) def ex3_grader(qc): from qiskit.quantum_info import Statevector state_vector_solution = Statevector(qc) state_vector_real = Statevector((1./np.sqrt(2))*np.array([0., 1., -1., 0.])) if state_vector_solution==state_vector_real or state_vector_solution==-state_vector_real: ex_correct_dict['ex3'] = True correction_announcer(True) else: correction_announcer(False) def ex4_grader(qc): from qiskit.quantum_info import Statevector state_vector_solution = Statevector(qc) state_vector_real = Statevector((1./np.sqrt(2))*np.array([1., 0., 0., 0., 0., 0., 0., 1.])) if state_vector_solution==state_vector_real or state_vector_solution==-state_vector_real: ex_correct_dict['ex4'] = True correction_announcer(True) else: correction_announcer(False) def ex5_grader(qc): from qiskit.quantum_info import Statevector state_vector_solution = Statevector(qc) state_vector_real = Statevector((1./2.)*np.array([1., 0., 0., 1., 0., 1., 1., 0.])) if state_vector_solution==state_vector_real or state_vector_solution==-state_vector_real: ex_correct_dict['ex5'] = True correction_announcer(True) else: correction_announcer(False) def ex6_grader(qc): from qiskit.quantum_info import Statevector state_vector_solution = Statevector(qc) state_vector_real = Statevector((1./2.)*np.array([0., 1., 1., 0., 1., 0., 0., 1.])) if state_vector_solution==state_vector_real or state_vector_solution==-state_vector_real: ex_correct_dict['ex6'] = True correction_announcer(True) else: correction_announcer(False) def ex7_grader(fun): from qiskit.quantum_info import Statevector qc = QuantumCircuit(1, 1) qc.h(0) fun(qc, 0, 0) backend_shots = Aer.get_backend('qasm_simulator', shots = 1024) result = execute(qc, backend_shots).result().get_counts() if result['0'] == 1024: qc = QuantumCircuit(1, 1) qc.x(0) qc.h(0) fun(qc, 0, 0) result = execute(qc, backend_shots).result().get_counts() if result['1'] == 1024: ex_correct_dict['ex7'] = True correction_announcer(True) else: correction_announcer(False)
https://github.com/yatharth0610/Quantum-Algorithms-qiskit-
yatharth0610
!pip install tabulate %matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from tabulate import tabulate # Loading your IBM Q account(s) provider = IBMQ.load_account() #Get the library to check the answers %pip install -I git+https://github.com/mnp-club/MnP_QC_Workshop.git from mnp_qc_workshop_2020.discrete_logarithm import qft_dagger, oracle, check_answer n_qubits = 3 #Number of qubits for the registers of |x1> and |x2> #For figuring out you would just need 2*n_qubits classical bits qc_disc_log = QuantumCircuit(4+n_qubits+n_qubits, n_qubits+n_qubits) for i in range(2*n_qubits): qc_disc_log.h(i) qc_disc_log.x(9) qc_disc_log.append(oracle(), range(10)) qc_disc_log.append(qft_dagger(3), range(3)) qc_disc_log.append(qft_dagger(3) ,[3,4,5]) qc_disc_log.measure(range(2*n_qubits), range(2*n_qubits)) qc_disc_log.draw('text') backend = Aer.get_backend('qasm_simulator') results = execute(qc_disc_log, backend, shots=8192).result() counts = results.get_counts() plot_histogram(counts) rows_x_1, eigenvalues_x_1 = [], [] for output in counts: decimal = int(output, 2)//8 eigenvalue = decimal/(2**3) eigenvalues_x_1.append(eigenvalue) rows_x_1.append(["%s(bin) = %i(dec)" % (output[0:3], decimal), "%i/%i = %.2f" % (decimal, 2**3, eigenvalue)]) print(tabulate(rows_x_1, headers=["Register Output", "Phase"])) rows_x_2, eigenvalues_x_2 = [], [] for output in counts: decimal = int(output, 2) - ((int(output, 2)//8)*8) eigenvalue = decimal/(2**3) eigenvalues_x_2.append(eigenvalue) rows_x_2.append(["%s(bin) = %i(dec)" % (output[3:6], decimal), "%i/%i = %.2f" % (decimal, 2**3, eigenvalue)]) print(tabulate(rows_x_2, headers=["Register Output", "Phase"])) #Store your value for s here s = 3 #Do analysis of oracle here qc = QuantumCircuit(10, 4) qc.x(0) qc.x(9) qc.append(oracle(), range(10)) qc.measure([6,7,8,9], range(4)) backend = Aer.get_backend('qasm_simulator') results = execute(qc, backend, shots=8192).result() counts = results.get_counts() plot_histogram(counts) # On x1=1, ans = 2 and on x2=1, ans = 8 #Store values of a and b here a, b = 2, 8 check_answer(s,a,b)
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np from mitiq import cdr, Observable, PauliString, Executor import cirq from cirq.contrib.qasm_import import circuit_from_qasm from cirq.circuits.qasm_output import QasmUGate from qiskit import * from qiskit import transpile, assemble, IBMQ from qiskit.visualization import * from qiskit import Aer, QuantumCircuit from qiskit.circuit import ParameterVector pi = np.pi feature_dim = 2 reps = 2 duplicates = 1 feature_map_circuit = QuantumCircuit(feature_dim, name='feature_map_circuit') # x = ParameterVector('x', feature_dim * reps) x = [0.1, 0.2] for i in range(reps): for i in range(feature_dim): feature_map_circuit.h(i) feature_map_circuit.rz(2.0*x[0], 0) feature_map_circuit.rz(2.0*x[1], 1) feature_map_circuit.cnot(0, 1) feature_map_circuit.rz(2.0*(pi - x[0])*(pi - x[1]), 1) feature_map_circuit.cnot(0, 1) feature_map_circuit.draw() qasm_feature_map = feature_map_circuit.qasm(filename='feature_map.qasm') print(qasm_feature_map) cirq_feature_map = circuit_from_qasm(qasm_feature_map) cirq_3_feature_map = cirq_feature_map * 3 print(cirq_3_feature_map) from mitiq.interface.mitiq_cirq import compute_density_matrix compute_density_matrix(cirq_feature_map).round(3) obs = Observable(PauliString("ZZ")) print(obs) def simulate(circuit: cirq.Circuit) -> np.ndarray: return compute_density_matrix(circuit, noise_level=(0.0,)) simulate(cirq_feature_map).round(3) ideal_measurement = obs.expectation(cirq_feature_map, simulate).real print("ideal_measurement = ",ideal_measurement) unmitigated_measurement = obs.expectation(cirq_feature_map, compute_density_matrix).real print("unmitigated_measurement = ", unmitigated_measurement) mitigated_measurement = cdr.execute_with_cdr( cirq_feature_map, compute_density_matrix, observable=obs, simulator=simulate, seed=0, ).real print("mitigated_measurement = ", mitigated_measurement) from mitiq.zne import scaling vncdr = cdr.execute_with_cdr( cirq_feature_map, compute_density_matrix, observable=obs, simulator=simulate, seed=0, scale_factors=(1.0, 3.0), ).real print("vncdr = ", vncdr) error_unmitigated = abs(unmitigated_measurement-ideal_measurement) error_mitigated = abs(mitigated_measurement-ideal_measurement) error_vn_mitigated = abs(vncdr-ideal_measurement) print("Error (unmitigated):", error_unmitigated) print("Error (mitigated with CDR):", error_mitigated) print("Error (mitigated with VNCDR):", error_vn_mitigated) print("Relative error (unmitigated):", (error_unmitigated/ideal_measurement)) print("Relative error (mitigated with CDR):", error_mitigated/ideal_measurement) print("Relative error (mitigated with VNCDR):", error_vn_mitigated/ideal_measurement) print( f"Error reduction with CDR: {(error_unmitigated-error_mitigated)/error_unmitigated :.1%}.") print( f"Error reduction with VNCDR: {(error_unmitigated-error_vn_mitigated)/error_unmitigated :.1%}.") num_qubits = 2 ansatz_circuit = QuantumCircuit(num_qubits, name='ansatz_circuit') reps = 1 # params = ParameterVector('θ', num_qubits + num_qubits * reps) params = [0.7, 0.3, 0.5, 1.2] counter = 0 for i in range(num_qubits): ansatz_circuit.ry(params[counter], i) counter += 1 for j in range(reps): for k in range(num_qubits-1): ansatz_circuit.cnot(k, k+1) for m in range(num_qubits): ansatz_circuit.ry(params[counter], m) counter += 1 ansatz_circuit.draw() qasm_ansatz = ansatz_circuit.qasm(filename='ansatz.qasm') print(qasm_ansatz) cirq_ansatz = circuit_from_qasm(qasm_ansatz) * 1 print(cirq_ansatz) compute_density_matrix(cirq_ansatz).round(3) simulate(cirq_ansatz).round(3) ideal_measurement = obs.expectation(cirq_ansatz, simulate).real print("ideal_measurement = ",ideal_measurement) unmitigated_measurement = obs.expectation(cirq_ansatz, compute_density_matrix).real print("unmitigated_measurement = ", unmitigated_measurement) mitigated_measurement = cdr.execute_with_cdr( cirq_ansatz, compute_density_matrix, observable=obs, simulator=simulate, seed=0, ).real print("mitigated_measurement = ", mitigated_measurement) from mitiq.zne import scaling vncdr = cdr.execute_with_cdr( cirq_ansatz, compute_density_matrix, observable=obs, simulator=simulate, seed=0, scale_factors=(1.0, 3.0), ).real print("vncdr = ", vncdr) error_unmitigated = abs(unmitigated_measurement-ideal_measurement) error_mitigated = abs(mitigated_measurement-ideal_measurement) error_vn_mitigated = abs(vncdr-ideal_measurement) print("Error (unmitigated):", error_unmitigated) print("Error (mitigated with CDR):", error_mitigated) print("Error (mitigated with VNCDR):", error_vn_mitigated) print("Relative error (unmitigated):", (error_unmitigated/ideal_measurement)) print("Relative error (mitigated with CDR):", error_mitigated/ideal_measurement) print("Relative error (mitigated with VNCDR):", error_vn_mitigated/ideal_measurement) print( f"Error reduction with CDR: {(error_unmitigated-error_mitigated)/error_unmitigated :.1%}.") print( f"Error reduction with VNCDR: {(error_unmitigated-error_vn_mitigated)/error_unmitigated :.1%}.")
https://github.com/qiskit-community/qopt-best-practices
qiskit-community
from networkx import barabasi_albert_graph, draw graph = barabasi_albert_graph(n=10, m=6, seed=42) draw(graph, with_labels=True) from qopt_best_practices.utils import build_max_cut_paulis from qiskit.quantum_info import SparsePauliOp local_correlators = build_max_cut_paulis(graph) cost_operator = SparsePauliOp.from_list(local_correlators) print(cost_operator) # import json # graph_file = "data/graph_2layers_0seed.json" # data = json.load(open(graph_file, "r")) # local_correlators = data["paulis"] # print(local_correlators) # cost_operator = SparsePauliOp.from_list(local_correlators) num_qubits = cost_operator.num_qubits print(num_qubits) qaoa_layers = 3 from qiskit.providers.fake_provider import GenericBackendV2 from qiskit.transpiler import CouplingMap cmap = CouplingMap.from_heavy_hex(distance=3) print(cmap.size()) backend = GenericBackendV2(num_qubits = 19, coupling_map = cmap, basis_gates = ["x", "sx", "cz", "id", "rz"], seed=0) from qiskit import QuantumCircuit from qiskit.circuit.library import QAOAAnsatz from qiskit.circuit import ParameterVector # Initial state = equal superposition initial_state = QuantumCircuit(num_qubits) initial_state.h(range(num_qubits)) # Mixer operator = rx rotations betas = ParameterVector("β", qaoa_layers) mixer_operator = QuantumCircuit(num_qubits) mixer_operator.rx(-2*betas[0], range(num_qubits)) # Use off-the-shelf qiskit QAOAAnsatz qaoa_ansatz = QAOAAnsatz( cost_operator, initial_state = initial_state, mixer_operator = mixer_operator, reps = qaoa_layers, ) qaoa_ansatz.measure_all() from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager naive_pm = generate_preset_pass_manager(backend=backend, optimization_level=3) print(naive_pm.expanded_stages) # naive_pm.draw() print("init") for task in naive_pm.init._tasks: print(task) print("----") print("layout") for task in naive_pm.layout._tasks: print(task) print("----") print("routing") for task in naive_pm.routing._tasks: print(task) print("----") print("translation") for task in naive_pm.translation._tasks: print(task) print("----") print("optimization") for task in naive_pm.optimization._tasks: print(task) print("----") print("scheduling") for task in naive_pm.scheduling._tasks: print(task) def callback_func(**kwargs): pass_ = kwargs['pass_'] print(pass_) import time from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager naive_pm = generate_preset_pass_manager(backend=backend, optimization_level=3) t0 = time.time() naively_transpiled_qaoa = naive_pm.run(qaoa_ansatz) t1 = time.time() print(f"transpilation time: {t1 - t0} (s)") naively_transpiled_qaoa.count_ops() naively_transpiled_qaoa.depth() # We are taking advantage of the QAOAAnsatz class to build the cost layer, # note that we are giving it dummy initial state and mixer circuits. dummy_initial_state = QuantumCircuit(num_qubits) # the real initial state is defined later dummy_mixer_operator = QuantumCircuit(num_qubits) # the real mixer is defined later cost_layer = QAOAAnsatz( cost_operator, reps=1, initial_state=dummy_initial_state, mixer_operator=dummy_mixer_operator, name="QAOA cost block", ) cost_layer.draw("mpl", fold=-1) cost_layer.decompose(reps=2).draw("mpl", fold=-1) from qopt_best_practices.qubit_selection import BackendEvaluator # The backend evaluator finds the line of qubits with the best fidelity to map the circuit to path_finder = BackendEvaluator(backend) path, fidelity, num_subsets = path_finder.evaluate(num_qubits) print(path, fidelity) from qiskit.transpiler import PassManager from qiskit.transpiler.passes import ( BasisTranslator, UnrollCustomDefinitions, CommutativeCancellation, Decompose, CXCancellation, HighLevelSynthesis, InverseCancellation ) from qiskit.transpiler.passes.routing.commuting_2q_gate_routing import ( SwapStrategy, FindCommutingPauliEvolutions, Commuting2qGateRouter, ) from qiskit.circuit.library.standard_gates.equivalence_library import _sel from qiskit.circuit.library import CXGate # 1. choose swap strategy (in this case -> line) swap_strategy = SwapStrategy.from_line([i for i in range(num_qubits)]) edge_coloring = {(idx, idx + 1): (idx + 1) % 2 for idx in range(num_qubits)} # 2. define pass manager for cost layer pre_init = PassManager( [HighLevelSynthesis(basis_gates=['PauliEvolution']), FindCommutingPauliEvolutions(), Commuting2qGateRouter( swap_strategy, edge_coloring, ), HighLevelSynthesis(basis_gates=["x", "cx", "sx", "rz", "id"]), InverseCancellation(gates_to_cancel=[CXGate()]), ] ) # Before: print(cost_layer.decompose(reps=4).count_ops()) cost_layer.decompose(reps=4).draw("mpl", fold=-1) tmp = pre_init.run(cost_layer) # After: print(tmp.count_ops()) tmp.draw('mpl', fold=-1) from qiskit.transpiler.basepasses import TransformationPass from qiskit.converters import circuit_to_dag, dag_to_circuit class QAOAPass(TransformationPass): def __init__(self, num_layers, num_qubits, init_state = None, mixer_layer = None): super().__init__() self.num_layers = num_layers self.num_qubits = num_qubits if init_state is None: # Add default initial state -> equal superposition self.init_state = QuantumCircuit(num_qubits) self.init_state.h(range(num_qubits)) else: self.init_state = init_state if mixer_layer is None: # Define default mixer layer self.mixer_layer = QuantumCircuit(num_qubits) self.mixer_layer.rx(-2*betas[0], range(num_qubits)) else: self.mixer_layer = mixer_layer def run(self, cost_layer_dag): cost_layer = dag_to_circuit(cost_layer_dag) qaoa_circuit = QuantumCircuit(self.num_qubits, self.num_qubits) # Re-parametrize the circuit gammas = ParameterVector("γ", self.num_layers) betas = ParameterVector("β", self.num_layers) # Add initial state qaoa_circuit.compose(self.init_state, inplace = True) # iterate over number of qaoa layers # and alternate cost/reversed cost and mixer for layer in range(self.num_layers): bind_dict = {cost_layer.parameters[0]: gammas[layer]} bound_cost_layer = cost_layer.assign_parameters(bind_dict) bind_dict = {self.mixer_layer.parameters[0]: betas[layer]} bound_mixer_layer = self.mixer_layer.assign_parameters(bind_dict) if layer % 2 == 0: # even layer -> append cost qaoa_circuit.compose(bound_cost_layer, range(self.num_qubits), inplace=True) else: # odd layer -> append reversed cost qaoa_circuit.compose(bound_cost_layer.reverse_ops(), range(self.num_qubits), inplace=True) # the mixer layer is not reversed qaoa_circuit.compose(bound_mixer_layer, range(self.num_qubits), inplace=True) if self.num_layers % 2 == 1: # iterate over layout permutations to recover measurements if self.property_set["virtual_permutation_layout"]: for cidx, qidx in self.property_set["virtual_permutation_layout"].get_physical_bits().items(): qaoa_circuit.measure(qidx, cidx) else: print("layout not found, assigining trivial layout") for idx in range(self.num_qubits): qaoa_circuit.measure(idx, idx) else: for idx in range(self.num_qubits): qaoa_circuit.measure(idx, idx) return circuit_to_dag(qaoa_circuit) init = PassManager([QAOAPass(num_layers=3, num_qubits=10)]) tmp_out = init.run(tmp) tmp_out.count_ops() tmp_out.draw('mpl', fold=-1) from qiskit.transpiler import Layout # We use the obtained path to define the initial layout initial_layout = Layout.from_intlist(path, cost_layer.qregs[0]) # The post init step unrolls the gates in the ansatz to the backend basis gates post_init = PassManager( [ UnrollCustomDefinitions(_sel, basis_gates=backend.operation_names, min_qubits=3), BasisTranslator(_sel, target_basis=backend.operation_names, min_qubits=3), ] ) staged_pm = generate_preset_pass_manager(3, backend, initial_layout=initial_layout) staged_pm.pre_init = pre_init staged_pm.init = init staged_pm.post_init = post_init # staged_pm.routing = None print("pre_init") for task in staged_pm.pre_init._tasks: print(task) print("----") print("init") for task in staged_pm.init._tasks: print(task) print("----") print("post_init") for task in staged_pm.post_init._tasks: print(task) print("----") print("layout") for task in staged_pm.layout._tasks: print(task) print("----") print("optimization") for task in staged_pm.optimization._tasks: print(task) print("----") print("routing") for task in staged_pm.routing._tasks: print(task) t0_opt = time.time() optimally_transpiled_qaoa = staged_pm.run(cost_layer) t1_opt = time.time() naive_count = naively_transpiled_qaoa.count_ops().get("cz", 0) optimal_count = optimally_transpiled_qaoa.count_ops().get("cz", 0) print(f"2q gate count for naive circuit = {naive_count}") print(f"2q gate count for optimal circuit = {optimal_count}") naive_2q_depth = naively_transpiled_qaoa.depth(filter_function=lambda x: x.operation.name == "cz") optimal_2q_depth = optimally_transpiled_qaoa.depth(filter_function=lambda x: x.operation.name == "cz") print(f"2q depth for naive circuit = {naive_2q_depth}") print(f"2q depth for optimal circuit = {optimal_2q_depth}") naive_depth = naively_transpiled_qaoa.depth() optimal_depth = optimally_transpiled_qaoa.depth() print(f"total depth for naive circuit = {naive_depth}") print(f"total depth for optimal circuit = {optimal_depth}") time_naive = t1 - t0 time_optimal = (t1_opt - t0_opt) print(f"total time for naive transpilation = {time_naive} (s)") print(f"total time for optimal transpilation = {time_optimal} (s)") # optimally_transpiled_qaoa.draw(fold=-1) # naively_transpiled_qaoa.draw(fold=-1) from qiskit.transpiler.passes import ( FullAncillaAllocation, EnlargeWithAncilla, ApplyLayout, SetLayout, ) # The post init step unrolls the gates in the ansatz to the backend basis gates post_init = PassManager( [ UnrollCustomDefinitions(_sel, basis_gates=backend.operation_names), BasisTranslator(_sel, target_basis=backend.operation_names), ] ) # The layout step applies the previously computed layout and enlarges the circuit # with ancilla qubits to have the same number of physical qubits as the target layout = PassManager( [ SetLayout(initial_layout), FullAncillaAllocation(backend.target), EnlargeWithAncilla(), ApplyLayout(), ] ) # The optimization step performs additional gate cancellations optimization = PassManager( [ CommutativeCancellation(target=backend.target) ] ) from qiskit.transpiler import StagedPassManager other_staged_pm = StagedPassManager(stages=["init", "layout", 'optimization'], pre_init=pre_init, init=init, post_init=post_init, layout=layout, optimization=optimization) t0_opt = time.time() optimally_transpiled_qaoa = other_staged_pm.run(cost_layer) t1_opt = time.time() naive_count = naively_transpiled_qaoa.count_ops().get("cz", 0) optimal_count = optimally_transpiled_qaoa.count_ops().get("cz", 0) print(f"2q gate count for naive circuit = {naive_count}") print(f"2q gate count for optimal circuit = {optimal_count}") naive_2q_depth = naively_transpiled_qaoa.depth(filter_function=lambda x: x.operation.name == "cz") optimal_2q_depth = optimally_transpiled_qaoa.depth(filter_function=lambda x: x.operation.name == "cz") print(f"2q depth for naive circuit = {naive_2q_depth}") print(f"2q depth for optimal circuit = {optimal_2q_depth}") naive_depth = naively_transpiled_qaoa.depth() optimal_depth = optimally_transpiled_qaoa.depth() print(f"total depth for naive circuit = {naive_depth}") print(f"total depth for optimal circuit = {optimal_depth}") time_naive = t1 - t0 time_optimal = (t1_opt - t0_opt) print(f"total time for naive transpilation = {time_naive} (s)") print(f"total time for optimal transpilation = {time_optimal} (s)")
https://github.com/vindem/quantumMD
vindem
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute, transpile from VectorPreprocessor import VectorPreprocessor import numpy as np class CSWAPCircuit: def __init__(self, aux, qr1n, qr2n, crn, backend, shots): self._aux = aux self._qr1n = qr1n self._qr2n = qr2n self._crn = crn self._backend = backend self._shots = shots def _init_cswap_circuit(self, a, b, norm): q1 = QuantumRegister(self._aux, name='control_0') q2 = QuantumRegister(self._qr1n, name='qr_1') q3 = QuantumRegister(self._qr2n, name='qr_2') c = ClassicalRegister(self._crn, name='c') qc = QuantumCircuit(q1,q2,q3,c) qc.initialize(a, q2[0:self._qr1n]) qc.initialize(b, q3[0:self._qr2n]) qc.barrier() qc.h(q1[0]) qc.cswap(q1[0], q2[0], q3[0]) qc.h(q1[0]) qc.barrier() qc.measure(q1, c) job = execute(qc, self._backend, shots=self._shots, optimization_level=1) result = job.result() countsqd = result.get_counts(qc) qdsquared = abs((4 * norm ** 2 * ((countsqd['0'] / self._shots) - 0.5))) qd = np.sqrt(qdsquared) return qd def execute_swap_test(self, A, B): vector_preprocessor = VectorPreprocessor(A,B) return [self._init_cswap_circuit(vector_preprocessor.phi_reg()[i], vector_preprocessor.psi_reg()[i], vector_preprocessor.norm_factor()[i]) for i in range(len(vector_preprocessor.psi_reg()))]
https://github.com/DaisukeIto-ynu/KosakaQ
DaisukeIto-ynu
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Simulator command to snapshot internal simulator representation. """ from warnings import warn from qiskit import QuantumCircuit from .snapshot import Snapshot class SnapshotStabilizer(Snapshot): """Snapshot instruction for stabilizer method of Qasm simulator.""" def __init__(self, label, num_qubits=0): """Create a stabilizer state snapshot instruction. Args: label (str): the snapshot label. num_qubits (int): the instruction barrier size [Default: 0]. Raises: ExtensionError: if snapshot is invalid. Additional Information: This snapshot is always performed on all qubits in a circuit. The number of qubits parameter specifies the size of the instruction as a barrier and should be set to the number of qubits in the circuit. .. deprecated:: 0.9.0 This instruction has been deprecated and will be removed no earlier than 3 months from the 0.9.0 release date. It has been superseded by the :class:`qiskit.providers.aer.library.SaveStabilizer` instruction. """ warn('The `SnapshotStabilizer` instruction will be deprecated in the' ' future. It has been superseded by the `save_stabilizer`' ' instructions.', DeprecationWarning, stacklevel=2) super().__init__(label, snapshot_type='stabilizer', num_qubits=num_qubits) def snapshot_stabilizer(self, label): """Take a stabilizer snapshot of the simulator state. Args: label (str): a snapshot label to report the result. Returns: QuantumCircuit: with attached instruction. Raises: ExtensionError: if snapshot is invalid. Additional Information: This snapshot is always performed on all qubits in a circuit. The number of qubits parameter specifies the size of the instruction as a barrier and should be set to the number of qubits in the circuit. .. deprecated:: 0.9.0 This instruction has been deprecated and will be removed no earlier than 3 months from the 0.9.0 release date. It has been superseded by the :func:`qiskit.providers.aer.library.save_stabilizer` circuit method. """ warn('The `snapshot_stabilizer` circuit method has been deprecated as of' ' qiskit-aer 0.9 and will be removed in a future release.' ' It has been superseded by the `save_stabilizer`' ' circuit method.', DeprecationWarning, stacklevel=2) snapshot_register = Snapshot.define_snapshot_register(self) return self.append( SnapshotStabilizer(label, num_qubits=len(snapshot_register)), snapshot_register) QuantumCircuit.snapshot_stabilizer = snapshot_stabilizer
https://github.com/matheusmtta/Quantum-Computing
matheusmtta
import numpy as np from scipy.linalg import expm, sinm, cosm import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import math from scipy import stats %matplotlib inline from IPython.display import Image, display, Math, Latex sns.set(color_codes=True)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, QuantumRegister from qiskit.circuit.library.standard_gates import HGate qc1 = QuantumCircuit(2) qc1.x(0) qc1.h(1) custom = qc1.to_gate().control(2) qc2 = QuantumCircuit(4) qc2.append(custom, [0, 3, 1, 2]) qc2.draw('mpl')
https://github.com/SamperQuinto/QisKit
SamperQuinto
import os from qiskit import * import qiskit.tools.visualization as qt from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.quantum_info import DensityMatrix from qiskit.visualization import plot_state_city from numpy import pi import matplotlib.pyplot as plt %matplotlib inline qreg_q = QuantumRegister(2, 'q') creg_c = ClassicalRegister(2, 'c') circuits = [] for i in range(0, 4): circuits.append(QuantumCircuit(qreg_q, creg_c)) def entlanging(circuit, qreg_q): circuit.barrier() circuit.h(qreg_q[0]) circuit.cnot(qreg_q[0], qreg_q[1]) circuit.barrier() # 00 state circuits[0].reset(qreg_q[0]) circuits[0].reset(qreg_q[1]) entlanging(circuits[0], qreg_q) # 01 state circuits[1].reset(qreg_q[0]) circuits[1].x(qreg_q[1]) entlanging(circuits[1], qreg_q) # 10 state circuits[2].x(qreg_q[0]) circuits[2].reset(qreg_q[1]) entlanging(circuits[2], qreg_q) # 11 state circuits[3].x(qreg_q[0]) circuits[3].x(qreg_q[1]) entlanging(circuits[3], qreg_q) simulator = Aer.get_backend('qasm_simulator') circuits[0].measure(qreg_q[0], creg_c[0]) circuits[0].measure(qreg_q[1], creg_c[1]) result0 = execute(circuits[0], backend=simulator, shots=1024).result() counts0 = result0.get_counts() qt.plot_histogram(counts0, color="#5C9DFF", title="Entangled qubits values for input |00>") circuits[0].draw(output='mpl') circuits[1].measure(qreg_q[0], creg_c[0]) circuits[1].measure(qreg_q[1], creg_c[1]) result1 = execute(circuits[1], backend=simulator, shots=1024).result() counts1 = result1.get_counts() qt.plot_histogram(counts1, color="#5C9DFF", title="Entangled qubits values for input |01>") circuits[1].draw(output='mpl') circuits[2].measure(qreg_q[0], creg_c[0]) circuits[2].measure(qreg_q[1], creg_c[1]) result2 = execute(circuits[2], backend=simulator, shots=1024).result() counts2 = result2.get_counts() qt.plot_histogram(counts2, color="#5C9DFF", title="Entangled qubits values for input |10>") circuits[2].draw(output='mpl') circuits[3].measure(qreg_q[0], creg_c[0]) circuits[3].measure(qreg_q[1], creg_c[1]) result3 = execute(circuits[3], backend=simulator, shots=1024).result() counts3 = result3.get_counts() qt.plot_histogram(counts3, color="#5C9DFF", title="Entangled qubits values for input |11>") circuits[3].draw(output='mpl')
https://github.com/agaviniv/qaoa-maxcut-qiskit
agaviniv
from math import sqrt, pi from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister import oracle_simple import composed_gates def get_circuit(n, oracles): """ Build the circuit composed by the oracle black box and the other quantum gates. :param n: The number of qubits (not including the ancillas) :param oracles: A list of black box (quantum) oracles; each of them selects a specific state :returns: The proper quantum circuit :rtype: qiskit.QuantumCircuit """ cr = ClassicalRegister(n) ## Testing if n > 3: #anc = QuantumRegister(n - 1, 'anc') # n qubits for the real number # n - 1 qubits for the ancillas qr = QuantumRegister(n + n - 1) qc = QuantumCircuit(qr, cr) else: # We don't need ancillas qr = QuantumRegister(n) qc = QuantumCircuit(qr, cr) ## /Testing print("Number of qubits is {0}".format(len(qr))) print(qr) # Initial superposition for j in range(n): qc.h(qr[j]) # The length of the oracles list, or, in other words, how many roots of the function do we have m = len(oracles) # Grover's algorithm is a repetition of an oracle box and a diffusion box. # The number of repetitions is given by the following formula. print("n is ", n) r = int(round((pi / 2 * sqrt((2**n) / m) - 1) / 2)) print("Repetition of ORACLE+DIFFUSION boxes required: {0}".format(r)) oracle_t1 = oracle_simple.OracleSimple(n, 5) oracle_t2 = oracle_simple.OracleSimple(n, 0) for j in range(r): for i in range(len(oracles)): oracles[i].get_circuit(qr, qc) diffusion(n, qr, qc) for j in range(n): qc.measure(qr[j], cr[j]) return qc, len(qr) def diffusion(n, qr, qc): """ The Grover diffusion operator. Given the arry of qiskit QuantumRegister qr and the qiskit QuantumCircuit qc, it adds the diffusion operator to the appropriate qubits in the circuit. """ for j in range(n): qc.h(qr[j]) # D matrix, flips state |000> only (instead of flipping all the others) for j in range(n): qc.x(qr[j]) # 0..n-2 control bits, n-1 target, n.. if n > 3: composed_gates.n_controlled_Z_circuit( qc, [qr[j] for j in range(n - 1)], qr[n - 1], [qr[j] for j in range(n, n + n - 1)]) else: composed_gates.n_controlled_Z_circuit( qc, [qr[j] for j in range(n - 1)], qr[n - 1], None) for j in range(n): qc.x(qr[j]) for j in range(n): qc.h(qr[j])
https://github.com/jakelishman/qiskit-qasm2
jakelishman
import contextlib import pathlib import uuid import sys from typing import Iterable import pytest from qiskit.circuit import QuantumCircuit, Parameter import qiskit_qasm2.parse if sys.version_info >= (3, 8): def _unlink(path: pathlib.Path): path.unlink(missing_ok=True) else: def _unlink(path: pathlib.Path): try: path.unlink() except FileNotFoundError: pass def gate_builder(name: str, parameters: Iterable[Parameter], definition: QuantumCircuit): """Get a builder for a custom gate. Ideally we would just use an eagerly defined `Gate` instance here, but limitations in how `QuantumCircuit.__eq__` and `Instruction.__eq__` work mean that we have to ensure we're using the same class as the parser for equality checks to work.""" # Ideally we wouldn't have this at all, but hiding it away in one function is likely the safest # and easiest to update if the Python component of the library changes. # pylint: disable=protected-access def definer(*arguments): # We can supply empty lists for the gates and the bytecode, because we're going to override # the definition manually ourselves. gate = qiskit_qasm2.parse._DefinedGate(name, definition.num_qubits, arguments, (), ()) gate._definition = definition.assign_parameters(dict(zip(parameters, arguments))) return gate return definer class _TemporaryFilePathFactory: def __init__(self, basedir): self._basedir = basedir @contextlib.contextmanager def __call__(self): path = self._basedir / str(uuid.uuid4()) path.touch() try: yield path finally: _unlink(path) @pytest.fixture(scope="session") def tmp_file_path_factory(tmp_path_factory): """Get a path to a unique read/writeable temporary file that already exists on disk (with no content), has a valid file name, and can be opened for both reading and writing in any mode. The file will cleaned up after the function, if it still exists.""" return _TemporaryFilePathFactory(tmp_path_factory.getbasetemp())
https://github.com/IlliaOvcharenko/quantum-search
IlliaOvcharenko
import sys, os sys.path.append(os.getcwd()) import matplotlib matplotlib.use('Agg') import math import numpy as np import matplotlib.pyplot as plt from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.primitives.sampler import Sampler from fire import Fire def main( array_len: int | None = None, n_grover_iterations: int | None = None, save_circuit_plot: bool = False, save_state_dist_plot: bool = False, plot_prefix: str = "", ): np.random.seed(42) plot_prefix = plot_prefix + "-" if plot_prefix != "" else plot_prefix if array_len is None: array = [4, 7, 2, 1, 3, 0, 5, 6] # item = 5 # answer should be 6 # item = 4 # answer should be 0 item = 0 # answer should be 5 else: array = np.arange(array_len) np.random.shuffle(array) item = np.random.choice(array) array = array.tolist() print(f"Input array: {array}") print(f"Item to search: {item}") print(f"Correct answer should be: {array.index(item)}") n_index_qbits = math.ceil(math.log(len(array), 2)) n_value_qbits = math.ceil(math.log(max(array), 2)) to_bits = lambda i: bin(i)[2:][::-1] to_int = lambda b: int(b[::-1], 2) index_qbits = [i for i in range(n_index_qbits)] value_qbits = [i + n_index_qbits for i in range(n_value_qbits)] phase_qbit = n_index_qbits + n_value_qbits print(f"N qubits for index: {n_index_qbits}") print(f"N qubits for value: {n_value_qbits}") if n_grover_iterations is None: n_grover_iterations = math.floor(math.sqrt(len(array))) print(f"Num of grover iterations: {n_grover_iterations}") qc = QuantumCircuit( QuantumRegister(n_index_qbits, "index"), QuantumRegister(n_value_qbits, "value"), QuantumRegister(1, "phase"), icr := ClassicalRegister(n_index_qbits, "meas-index"), ) qc.h(index_qbits) # qc.x(index_qbits[0]) # qc.x(index_qbits[1]) qc.x(phase_qbit) qc.h(phase_qbit) def add_oracle(global_qc): qc = QuantumCircuit( QuantumRegister(n_index_qbits, "index"), QuantumRegister(n_value_qbits, "value"), QuantumRegister(1, "phase"), ) for array_idx in range(len(array)): qc.barrier() array_idx_bit = to_bits(array_idx)[:n_index_qbits] array_idx_bit += "0" * (n_index_qbits - len(array_idx_bit)) array_item = array[array_idx] array_item_bit = to_bits(array_item)[:n_value_qbits] array_item_bit += "0" * (n_value_qbits - len(array_item_bit)) zeros = [index_qbits[i] for i, b in enumerate(array_idx_bit) if b == "0"] ones = [value_qbits[i] for i, b in enumerate(array_item_bit) if b == "1"] for value_idx in ones: if zeros: qc.x(zeros) qc.mcx(index_qbits, value_idx) if zeros: qc.x(zeros) global_qc = global_qc.compose(qc) item_bit = to_bits(item) item_bit += "0" * (n_value_qbits - len(item_bit)) zeros = [value_qbits[i] for i, b in enumerate(item_bit) if b == "0"] if zeros: global_qc.x(zeros) global_qc.mcx(value_qbits, phase_qbit) if zeros: global_qc.x(zeros) global_qc = global_qc.compose(qc.inverse()) return global_qc def add_diffuser(global_qc): qc = QuantumCircuit( QuantumRegister(n_index_qbits, "index"), QuantumRegister(n_value_qbits, "value"), QuantumRegister(1, "phase"), ) qc.h(index_qbits) qc.x(index_qbits) qc.mcx(index_qbits, phase_qbit) qc.x(index_qbits) qc.h(index_qbits) global_qc = global_qc.compose(qc) return global_qc for _ in range(n_grover_iterations): qc = add_oracle(qc) qc = add_diffuser(qc) if save_circuit_plot: qc.draw("mpl") plt.savefig(f"figs/{plot_prefix}qc.png", bbox_inches="tight") qc.measure(index_qbits, icr) sampler = Sampler() job = sampler.run(qc, shots=64) result = job.result() index_dist = result.quasi_dists[0] if save_state_dist_plot: state_dist = [(k, v) for k, v in index_dist.items()] state = [to_bits(k)[:n_index_qbits] for k, _ in state_dist] state = [s + ("0" * (n_index_qbits - len(s))) for s in state] dist = [v for k, v in state_dist] plt.figure(figsize=(15, 10)) plt.bar(state, dist) plt.xlabel("system state") plt.ylabel("probability") plt.grid() plt.savefig(f"figs/{plot_prefix}state-dist.png", bbox_inches="tight") index_pred = max(index_dist.items(), key=lambda x: x[1]) print(f"Search result, index: {index_pred[0]}, " \ f"empirical prob to collapse in this state: {index_pred[1]}") print(f"Prob to collapse into a correct state: {index_dist[array.index(item)]}") if __name__ == "__main__": Fire(main)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse from qiskit.providers.fake_provider import FakeArmonk backend = FakeArmonk() with pulse.build(backend) as drive_sched: d0 = pulse.drive_channel(0) a0 = pulse.acquire_channel(0) pulse.play(pulse.library.Constant(10, 1.0), d0) pulse.delay(20, d0) pulse.shift_phase(3.14/2, d0) pulse.set_phase(3.14, d0) pulse.shift_frequency(1e7, d0) pulse.set_frequency(5e9, d0) with pulse.build() as temp_sched: pulse.play(pulse.library.Gaussian(20, 1.0, 3.0), d0) pulse.play(pulse.library.Gaussian(20, -1.0, 3.0), d0) pulse.call(temp_sched) pulse.acquire(30, a0, pulse.MemorySlot(0)) drive_sched.draw()
https://github.com/Zhaoyilunnn/qdao
Zhaoyilunnn
import os from time import time import numpy as np import pytest from qiskit import QuantumCircuit, qiskit from qiskit.compiler import transpile from qiskit.qasm2 import dumps from qiskit.quantum_info import Statevector from constants import * from qdao.circuit import BaselinePartitioner from qdao.engine import Engine from qdao.simulator import QdaoSimObj from qdao.util import retrieve_sv from tests.qdao import QdaoBaseTest class TestEngine(QdaoBaseTest): def setup_method(self): if not os.path.exists("qcs"): os.system(f"git clone {QCS_URL} qcs") def run_qiskit_diff_test( self, circ: QuantumCircuit, NQ: int, NP: int, NL: int, mode: str = "QDAO", is_parallel: bool = True, is_diff: bool = True, sv_location: str = "disk", device: str = "CPU", ): if mode == "QDAO": engine = Engine( circuit=circ, num_primary=NP, num_local=NL, backend="qiskit", is_parallel=is_parallel, sv_location=sv_location, device=device, ) elif mode == "BASELINE": engine = Engine( circuit=circ, num_primary=NP, num_local=NL, backend="qiskit", partitioner=BaselinePartitioner(np=NP, nl=NL, backend="qiskit"), is_parallel=is_parallel, ) else: raise ValueError( f"Unsupported mode::{mode}, should be either QDAO or BASELINE" ) st = time() engine.run() print("Qdao runs:\t{}".format(time() - st)) # print(sv) engine.print_statistics() engine._manager.print_statistics() if is_diff: circ.save_state() st = time() try: self._sv_sim.set_options(method="statevector") self._sv_sim.set_options(device=device) sv_org = self._sv_sim.run(circ).result().get_statevector().data except Exception: pass print("Qiskit runs: {}".format(time() - st)) def test_run_qiskit_any_qasm( self, nq, np, nl, mode, qasm, parallel, diff, sv_location, device ): NQ, NP, NL = self.get_qdao_params(nq, np, nl) parallel = True if int(parallel) == 1 else False diff = True if int(diff) == 1 else False print("\n::::::::::::::::::Config::::::::::::::::::\n") print("NQ::\t{}".format(NQ)) print("NP::\t{}".format(NP)) print("NL::\t{}".format(NL)) print("\n::::::::::::::::::Config::::::::::::::::::\n") try: circ = qiskit.circuit.QuantumCircuit.from_qasm_file( QCS_BENCHMARKS_DIR + qasm ) except Exception as e: raise ValueError(f"Cannot load qasm file {qasm}: {e}") circ = transpile(circ, self._sv_sim) self.run_qiskit_diff_test( circ, NQ, NP, NL, mode, is_parallel=parallel, is_diff=diff, sv_location=sv_location, device=device, ) def test_run_qiskit_random(self, nq): NQ = int(nq) NP = NQ - 2 NL = NQ - 10 circ = self.get_qiskit_circ("random", num_qubits=NQ, depth=9, measure=False) circ = transpile(circ, self._sv_sim) engine = Engine(circuit=circ, num_primary=NP, num_local=NL, is_parallel=True) st = time() engine.run() print("Qdao runs: {}".format(time() - st)) sv = retrieve_sv(NQ, num_local=NL) engine.print_statistics() engine._manager.print_statistics() circ.save_state() st = time() sv_org = self._sv_sim.run(circ).result().get_statevector().data print("Qiskit runs: {}".format(time() - st)) assert Statevector(sv).equiv(Statevector(sv_org)) def run_quafu_diff_test( self, circ: QuantumCircuit, NQ: int, NP: int, NL: int, mode: str = "QDAO", is_parallel: bool = True, is_diff: bool = True, ): """Run test from qiskit QuantumCircuit Args: circ: Qiskit quantum circuit NQ: number of qubits, NP: number of qubits in a compute unit NL: number of qubits in a storage unit mode: "QDAO" or "BASELINE" is_parallel: Whether enable parallel load/store is_diff: Whether run diff test, if set False, only run QDAO """ from quafu.circuits.quantum_circuit import QuantumCircuit quafu_circ = QuantumCircuit(1) quafu_circ.from_openqasm(dumps(circ)) # quafu_circ = qasm_to_circuit(dumps(circ)) # print("\nOriginal Circ") # quafu_circ.draw_circuit() if mode == "QDAO": engine = Engine( circuit=quafu_circ, num_primary=NP, num_local=NL, backend="quafu", is_parallel=is_parallel, ) elif mode == "BASELINE": engine = Engine( circuit=quafu_circ, num_primary=NP, num_local=NL, backend="quafu", partitioner=BaselinePartitioner(np=NP, nl=NL, backend="quafu"), is_parallel=is_parallel, ) else: raise ValueError( f"Unsupported mode::{mode}, should be either QDAO or BASELINE" ) st = time() engine.run() print("Qdao runs:\t{}".format(time() - st)) # print(sv) engine.print_statistics() engine._manager.print_statistics() if is_diff: from quafu.simulators.simulator import simulate st = time() init_sv = np.zeros(1 << NQ, dtype=np.complex128) init_sv[0] = 1 sv_org = simulate( quafu_circ, psi=init_sv, output="state_vector" ).get_statevector() print("Quafu runs:\t{}".format(time() - st)) # print(sv_org) if NQ < 26: sv = retrieve_sv(NQ, num_local=NL) assert Statevector(sv).equiv(Statevector(sv_org)) def get_qdao_params(self, nq, np, nl): nq = int(nq) np = int(np) nl = int(nl) NQ = nq if nq > 0 else 12 NP = np if np > 0 else NQ - 2 # Normally set 2 NL = nl if nl > 0 else NQ - 10 # Normally set 10 return NQ, NP, NL def test_run_quafu_any_qasm(self, nq, np, nl, mode, qasm, parallel, diff): """ Basic test to run random circuits and compare performance between 1. Qdao on top of quafu 2. Quafu """ NQ, NP, NL = self.get_qdao_params(nq, np, nl) parallel = True if int(parallel) == 1 else False diff = True if int(diff) == 1 else False print("\n::::::::::::::::::Config::::::::::::::::::\n") print("NQ::\t{}".format(NQ)) print("NP::\t{}".format(NP)) print("NL::\t{}".format(NL)) print("\n::::::::::::::::::Config::::::::::::::::::\n") try: circ = qiskit.circuit.QuantumCircuit.from_qasm_file( QCS_BENCHMARKS_DIR + qasm ) except Exception as e: raise ValueError(f"Cannot load qasm file {qasm}: {e}") circ = transpile(circ, self._sv_sim) self.run_quafu_diff_test( circ, NQ, NP, NL, mode=mode, is_parallel=parallel, is_diff=diff ) def test_run_quafu_random_single_vs_qiskit_with_init(self, nq): NQ = int(nq) from qdao.qiskit.utils import random_circuit circ = random_circuit(NQ, NQ, measure=False) circ = transpile(circ, self._sv_sim) from quafu.circuits.quantum_circuit import QuantumCircuit quafu_circ = QuantumCircuit(1) quafu_circ.from_openqasm(dumps(circ)) # quafu_circ = qasm_to_circuit(dumps(circ)) from quafu.simulators.simulator import simulate st = time() init_sv = np.zeros(1 << NQ, dtype=np.complex128) init_sv[0] = 1 sv_quafu = simulate( quafu_circ, psi=init_sv, output="state_vector" ).get_statevector() print("Quafu runs: {}".format(time() - st)) st = time() init_sv = np.zeros(1 << NQ, dtype=np.complex128) init_sv[0] = 1 init_circ = qiskit.circuit.QuantumCircuit(NQ) init_circ.initialize(init_sv, range(NQ)) init_circ.compose(circ, inplace=True) init_circ.save_state() self._sv_sim.set_options(fusion_enable=False) sv_qiskit = self._sv_sim.run(init_circ).result().get_statevector() # FIXME(zhaoyilun): when testing small circuits, uncomment this assert sv_qiskit.equiv(Statevector(sv_quafu)) # print(sv_quafu) # print(sv_qiskit.data) print("Qiskit runs: {}".format(time() - st))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
from IPython.display import YouTubeVideo YouTubeVideo('U6_wSh_-EQc', width=960, height=490) !pip install qiskit --quiet !pip install qiskit-aer --quiet !pip install pylatexenc --quiet # @markdown ### **1. Import `Qiskit` and essential packages for UI demonstration** { display-mode: "form" } from abc import abstractmethod, ABCMeta # For define pure virtual functions from IPython.display import clear_output from ipywidgets import Output, Button, HBox, VBox, HTML, Dropdown from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, transpile from qiskit.visualization import plot_bloch_multivector, plot_histogram from qiskit_aer import AerSimulator # @markdown ### **2. `Board` class for essential quantum operations** { display-mode: "form" } class Board: def __init__(self, size=3, simulator=None): # Initialize the quantum circuit with one qubit and classical bit for each cell self.size = size self.simulator = simulator self.superposition_count = 0 self.cells = [[' ' for _ in range(size)] for _ in range(size)] # Initialize the board representation self.qubits = QuantumRegister(size**2, 'q') self.bits = ClassicalRegister(size**2, 'c') self.circuit = QuantumCircuit(self.qubits, self.bits) ''' For a 3x3 board, the winning lines are: - Horizontal lines: (0, 1, 2), (3, 4, 5), (6, 7, 8) - Vertical lines: (0, 3, 6), (1, 4, 7), (2, 5, 8) - Diagonal lines: (0, 4, 8), (2, 4, 6) ''' self.winning_lines = [tuple(range(i, size**2, size)) for i in range(size)] + \ [tuple(range(i * size, (i + 1) * size)) for i in range(size)] + \ [tuple(range(0, size**2, size + 1)), tuple(range(size - 1, size**2 - 1, size - 1))] def make_classical_move(self, row, col, player_mark, is_collapsed=False): if self.cells[row][col] == ' ' or is_collapsed: # Check if the cell is occupied self.cells[row][col] = player_mark index = row * self.size + col if player_mark == 'X': self.circuit.x(self.qubits[index]) else: self.circuit.id(self.qubits[index]) return True return False def make_swap_move(self, row1, col1, row2, col2, **kwargs): if self.cells[row1][col1] != ' ' and self.cells[row2][col2] != ' ': indices = [row1 * self.size + col1, row2 * self.size + col2] self.circuit.swap(self.qubits[indices[0]], self.qubits[indices[1]]) self.cells[row1][col1], self.cells[row2][col2] = self.cells[row2][col2], self.cells[row1][col1] return True return False def make_superposition_move(self, row, col, player_mark, **kwargs): if self.cells[row][col] == ' ': index = row * self.size + col self.circuit.h(self.qubits[index]) self.cells[row][col] = player_mark + '?' self.superposition_count += 1 return True return False def make_entangled_move(self, *positions, risk_level, player_mark, **kwargs): # Entangle the quantum states of 2 or 3 cells based on the risk level pos_count = len(positions) if pos_count not in [2, 3] or risk_level not in [1, 2, 3, 4] or len(set(positions)) != pos_count or \ (pos_count == 2 and risk_level not in [1, 3]) or (pos_count == 3 and risk_level not in [2, 4]) or \ any(self.cells[row][col] != ' ' for row, col in positions): return False indices = [row * self.size + col for row, col in positions] self.circuit.h(self.qubits[indices[0]]) if pos_count == 2: # Pairwise Entanglement with Bell state for 2 qubits: # Lv1. |Ψ+⟩ = (∣01⟩ + ∣10⟩)/√2 | Lv3. |Φ+⟩ = (∣00⟩ + ∣11⟩)/√2 if risk_level == 1: self.circuit.x(self.qubits[indices[1]]) self.circuit.cx(self.qubits[indices[0]], self.qubits[indices[1]]) else: # Triple Entanglement with GHZ state for 3 qubits: # Lv2. (∣010⟩ + ∣101⟩)/√2 | Lv4. (∣000⟩ + ∣111⟩)/√2 if risk_level == 2: self.circuit.x(self.qubits[indices[1]]) self.circuit.x(self.qubits[indices[2]]) # Apply CNOT chain to entangle all 3 qubits self.circuit.cx(self.qubits[indices[0]], self.qubits[indices[1]]) self.circuit.cx(self.qubits[indices[1]], self.qubits[indices[2]]) for row, col in positions: self.cells[row][col] = player_mark + '?' self.superposition_count += pos_count return True def can_be_collapsed(self): # If superpositions/entanglement cells form a potential winning line => collapse for line in self.winning_lines: if all(self.cells[i // self.size][i % self.size].endswith('?') for i in line): return True return False def collapse_board(self): # Update the board based on the measurement results and apply the corresponding classical moves self.circuit.barrier() self.circuit.measure(self.qubits, self.bits) # Measure all qubits to collapse them to classical states transpiled_circuit = transpile(self.circuit, self.simulator) job = self.simulator.run(transpiled_circuit, memory=True) counts = job.result().get_counts() max_state = max(counts, key=counts.get)[::-1] # Get the state with the highest probability for i in range(self.size ** 2): row, col = divmod(i, self.size) if self.cells[row][col].endswith('?'): self.circuit.reset(self.qubits[i]) self.make_classical_move(row, col, 'X' if max_state[i] == '1' else 'O', is_collapsed=True) self.superposition_count = 0 return counts def check_win(self): # Dynamic implementation for above logic with dynamic winning lines for line in self.winning_lines: # Check if all cells in the line are the same and not empty first_cell = self.cells[line[0] // self.size][line[0] % self.size] if first_cell not in [' ', 'X?', 'O?']: is_same = all(self.cells[i // self.size][i % self.size] == first_cell for i in line) if is_same: return line # If no spaces and no superpositions left => 'Draw' # If all cells are filled but some are still in superpositions => collapse_board if all(self.cells[i // self.size][i % self.size] not in [' '] for i in range(self.size**2)): if self.superposition_count <= 0: return 'Draw' return self.superposition_count return None # @markdown ### **3. `QuantumT3Widgets` class for game interface** class QuantumT3Widgets(metaclass=ABCMeta): def __init__(self, board, current_player, quantum_move_mode): self.board = board self.current_player = current_player self.quantum_move_mode = quantum_move_mode self.log = Output(layout={'margin': '10px 0 0 0'}) self.histogram_output = Output(layout={'margin': '0 0 10px 10px'}) self.circuit_output = Output() self.create_widgets() def create_widgets(self): # Create widgets for each cell and controls for game actions self.buttons = [] for row in range(self.board.size): self.buttons.append([]) for col in range(self.board.size): button = Button( description = ' ', layout = {'width': '100px', 'height': '100px', 'border': '1px solid black'}, style = {'button_color': 'lightgray', 'font_weight': 'bold', 'text_color': 'white'} ) button.on_click(self.create_on_cell_clicked(row, col)) self.buttons[row].append(button) self.create_action_buttons() self.game_info = HTML(f'<b>Current Player: {self.current_player} / Quantum Mode: {self.quantum_move_mode}</b>') self.board_histogram_widget = HBox( [VBox([VBox([HBox(row) for row in self.buttons]), self.game_info]), self.histogram_output], layout = {'display': 'flex', 'justify_content': 'center', 'align_items': 'flex-end'} ) display(VBox([self.board_histogram_widget, self.action_buttons, self.log, self.circuit_output])) def create_action_buttons(self): self.reset_btn = Button(description='Reset', button_style='danger') self.collapse_btn = Button(description='Collapse', button_style='warning') self.classical_btn = Button(description='Classical Move', button_style='primary') self.swap_btn = Button(description='SWAP Move', button_style='info') self.superposition_btn = Button(description='Superposition', button_style='success') self.entangled_btn = Button(description='Entanglement', button_style='success') self.entangled_options = Dropdown(options=[ ('', 0), # Qubits collapse to opposite states (not consecutive) ('Lv1. PAIRWAISE: ∣Ψ+⟩ = (∣01⟩ + ∣10⟩) / √2', 1), # Qubits collapse to opposite states (not consecutive) ('Lv2. TRIPLE: GHZ_Xs = (∣010⟩ + ∣101⟩) / √2', 2), ('Lv3. PAIRWAISE: ∣Φ+⟩ = (∣00⟩ + ∣11⟩) / √2', 3), # Can form consecutive winning cells or accidentally help the opponent ('Lv4. TRIPLE: GHZ = (∣000⟩ + ∣111⟩) / √2', 4), ], value=0, disabled=True) self.entangled_options.observe(self.update_entangled_options, names='value') self.reset_btn.on_click(self.on_reset_btn_clicked) self.collapse_btn.on_click(self.on_collapse_btn_clicked) self.classical_btn.on_click(self.create_on_move_clicked('CLASSICAL')) self.swap_btn.on_click(self.create_on_move_clicked('SWAP', 'Select 2 cells to swap their states.')) self.superposition_btn.on_click(self.create_on_move_clicked('SUPERPOSITION', 'Select a cell to put in superposition.')) self.entangled_btn.on_click(self.create_on_move_clicked('ENTANGLED', 'Select 2/3 cells based on risk level to entangle.')) self.action_buttons = HBox([ self.reset_btn, self.collapse_btn, self.classical_btn, self.swap_btn, self.superposition_btn, self.entangled_btn, self.entangled_options ]) @abstractmethod # Pure virtual functions => Must be overridden in the derived classes def on_reset_btn_clicked(self, btn=None): raise NotImplementedError('on_reset_btn_clicked method is not implemented.') @abstractmethod # Pure virtual functions => Must be overridden in the derived classes def on_collapse_btn_clicked(self, btn=None): raise NotImplementedError('on_collapse_btn_clicked method is not implemented.') @abstractmethod # Pure virtual functions => Must be overridden in the derived classes def on_move_clicked(self, mode, message=''): raise NotImplementedError('on_move_clicked method is not implemented.') @abstractmethod # Pure virtual functions => Must be overridden in the derived classes def on_cell_clicked(self, btn, row, col): raise NotImplementedError('on_cell_clicked method is not implemented.') def update_entangled_options(self, change): with self.log: self.entangled_options.disabled = change.new != 0 for row in self.buttons: for button in row: button.disabled = change.new == 0 # Check if there are enough empty cells for the selected operation empty_count = sum(cell == ' ' for row in self.board.cells for cell in row) total_empty_required = {1: 2, 2: 3, 3: 2, 4: 3} # Total empty cells required for each risk level if change.new == 0: return elif empty_count < total_empty_required[change.new]: print(f'Not enough empty cells to perform entanglement with risk level {change.new}. Please select another.') self.entangled_options.value = 0 else: print(f'Risk Level {change.new} ACTIVATED =>', end=' ') if change.new in [1, 3]: print(f'Select 2 cells (qubits) for this PAIRWAISE entanglement.') else: print(f'Select 3 cells (qubits) for this TRIPLE entanglement.') def create_on_move_clicked(self, mode, message=''): def on_move_clicked(btn): with self.log: try: self.on_move_clicked(mode, message) except Exception as e: print(f'ERROR: {e}') return on_move_clicked def create_on_cell_clicked(self, row, col): def on_cell_clicked(btn): with self.log: try: self.on_cell_clicked(btn, row, col) except Exception as e: print(f'ERROR: {e}') return on_cell_clicked def display_circuit(self): with self.circuit_output: clear_output(wait=True) display(self.board.circuit.draw('mpl', fold=-1, initial_state=True)) def display_histogram(self, counts): with self.histogram_output: clear_output(wait=True) display(plot_histogram(counts, figsize=(9, 4))) # @markdown ### **4. `QuantumT3GUI` class for game flow and interaction between players and `Board`** class QuantumT3GUI(QuantumT3Widgets): def __init__(self, size=3, simulator=None): super().__init__(Board(size, simulator), 'X', 'CLASSICAL') self.quantum_moves_selected = [] # Selected cells for operation on multi-qubit gates self.game_over = False def buttons_disabled(self, is_disabled=True): for btn in self.action_buttons.children[1:]: btn.disabled = is_disabled for row in self.buttons: for btn in row: btn.disabled = is_disabled def update_entire_board(self): for row in range(self.board.size): for col in range(self.board.size): cell = self.board.cells[row][col] color_map = {'X': 'dodgerblue', 'O': 'purple', '?': 'green', ' ': 'lightgray'} self.buttons[row][col].description = cell if cell != ' ' else ' ' self.buttons[row][col].style.button_color = color_map[cell[-1]] def clean_incompleted_quantum_moves(self): for row, col in self.quantum_moves_selected: if self.board.cells[row][col] == ' ': self.buttons[row][col].description = ' ' self.buttons[row][col].style.button_color = 'lightgray' self.quantum_moves_selected = [] def on_reset_btn_clicked(self, btn=None): with self.log: clear_output(wait=True) self.board = Board(self.board.size, self.board.simulator) self.current_player = 'X' self.quantum_move_mode = 'CLASSICAL' self.quantum_moves_selected = [] self.game_info.value = f'<b>Current Player: {self.current_player} / Quantum Mode: {self.quantum_move_mode}</b>' self.game_over = False self.update_entire_board() self.buttons_disabled(False) self.entangled_options.disabled = True with self.histogram_output: clear_output() with self.circuit_output: clear_output() print('Game reset. New game started.') def on_collapse_btn_clicked(self, btn=None): with self.log: if self.quantum_moves_selected: print('Please complete the current quantum operation before measuring the board.') return clear_output(wait=True) counts = self.board.collapse_board() self.display_histogram(counts) self.update_entire_board() # Update the board cells with the collapsed states self.check_win() print('Board measured and quantum states collapsed.') def on_move_clicked(self, mode, message=''): clear_output(wait=True) self.quantum_move_mode = mode self.game_info.value = f'<b>Current Player: {self.current_player} / Quantum Mode: {self.quantum_move_mode}</b>' self.clean_incompleted_quantum_moves() for row in self.buttons: for button in row: button.disabled = mode == 'ENTANGLED' if mode == 'ENTANGLED': self.entangled_options.value = 0 self.entangled_options.disabled = mode != 'ENTANGLED' print(f'{mode} mode ACTIVATED' + (f': {message}' if message else '')) def on_cell_clicked(self, btn, row, col): if self.quantum_move_mode == 'CLASSICAL': if self.board.make_classical_move(row, col, self.current_player): btn.description = self.board.cells[row][col] btn.style.button_color = 'dodgerblue' if self.current_player == 'X' else 'purple' self.check_win() else: print('That position is already occupied. Please choose another.') elif self.quantum_move_mode == 'SUPERPOSITION': if self.board.cells[row][col] == ' ': btn.description = self.current_player + '?' btn.style.button_color = 'green' self.make_quantum_move_wrapper( pos=(row, col), board_func=self.board.make_superposition_move, success_msg='Cell is now in superposition state.') else: print('Invalid SUPERPOSITION move. Cell must be empty.') elif len(self.quantum_moves_selected) < 3: # Multi-qubit gates operation self.quantum_moves_selected.append((row, col)) # Store the selected cell of operation print(f'Cell ({row + 1}, {col + 1}) selected for {self.quantum_move_mode} move.') if self.quantum_move_mode == 'SWAP' and len(self.quantum_moves_selected) == 2: flat_pos = sum(self.quantum_moves_selected, ()) # Flatten the tuple to match 4 arguments in Board.make_swap_move pos1, pos2 = self.quantum_moves_selected self.make_quantum_move_wrapper( pos=flat_pos, board_func=self.board.make_swap_move, success_msg=f'SWAPPED Cell {pos1} to {pos2}', success_func=self.swap_on_board, failure_msg='Invalid SWAP move. Both cells must be non-empty.') elif self.quantum_move_mode == 'ENTANGLED': if self.board.cells[row][col] == ' ': btn.description = self.current_player + '?' btn.style.button_color = 'green' total_empty_required = {1: 2, 2: 3, 3: 2, 4: 3} # Total empty cells required for each risk level if len(self.quantum_moves_selected) == total_empty_required[self.entangled_options.value]: self.make_quantum_move_wrapper( pos=self.quantum_moves_selected, board_func=self.board.make_entangled_move, success_msg='These positions are now entangled and in a superposition state.', failure_msg='Invalid ENTANGLEMENT move. Duplicated cell selection.') else: clear_output(wait=True) print('Invalid ENTANGLEMENT move. A position is already occupied.') self.quantum_moves_selected.pop() # Remove the invalid cell from the selected list def swap_on_board(self): row1, col1 = self.quantum_moves_selected[0][0], self.quantum_moves_selected[0][1] row2, col2 = self.quantum_moves_selected[1][0], self.quantum_moves_selected[1][1] # Swap the description and color of the selected cells self.buttons[row1][col1].description, self.buttons[row2][col2].description = \ self.buttons[row2][col2].description, self.buttons[row1][col1].description self.buttons[row1][col1].style.button_color, self.buttons[row2][col2].style.button_color = \ self.buttons[row2][col2].style.button_color, self.buttons[row1][col1].style.button_color def make_quantum_move_wrapper(self, pos, board_func, success_msg='', success_func=None, failure_msg=''): if board_func(*pos, risk_level=self.entangled_options.value, player_mark=self.current_player): if success_msg: print(success_msg) if success_func: success_func() if self.board.can_be_collapsed(): print('Perform automatic board measurement and collapse the states.') self.quantum_moves_selected = [] self.on_collapse_btn_clicked() else: self.check_win() else: clear_output(wait=True) if failure_msg: print(failure_msg) self.clean_incompleted_quantum_moves() def check_win(self): self.quantum_moves_selected = [] while not self.game_over: # Check if the game is over after each move self.display_circuit() result = self.board.check_win() if result == 'Draw': # All cells are filled but no winner yet self.game_over = True print("Game Over. It's a draw!") elif type(result) == tuple: # A player wins self.game_over = True for cell_index in result: row, col = divmod(cell_index, self.board.size) self.buttons[row][col].style.button_color = 'orangered' print(f'Game Over. {self.board.cells[row][col]} wins!') elif type(result) == int: # All cells are filled but some are still in superpositions print(f'All cells are filled but {result} of them still in superpositions => Keep Collapsing...') self.quantum_moves_selected = [] self.on_collapse_btn_clicked() # Automatically collapse the board break else: # Switch players if no winner yet then continue the game self.current_player = 'O' if self.current_player == 'X' else 'X' # Switch players self.game_info.value = f'<b>Current Player: {self.current_player} / Quantum Mode: {self.quantum_move_mode}</b>' break if self.game_over: self.buttons_disabled(True) game = QuantumT3GUI(size=3, simulator=AerSimulator())
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from docplex.mp.model import Model from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import CobylaOptimizer, MinimumEigenOptimizer from qiskit_optimization.algorithms.admm_optimizer import ADMMParameters, ADMMOptimizer from qiskit_optimization.translators import from_docplex_mp # If CPLEX is installed, you can uncomment this line to import the CplexOptimizer. # CPLEX can be used in this tutorial to solve the convex continuous problem, # but also as a reference to solve the QUBO, or even the full problem. # # from qiskit.optimization.algorithms import CplexOptimizer # define COBYLA optimizer to handle convex continuous problems. cobyla = CobylaOptimizer() # define QAOA via the minimum eigen optimizer qaoa = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA())) # exact QUBO solver as classical benchmark exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) # to solve QUBOs # in case CPLEX is installed it can also be used for the convex problems, the QUBO, # or as a benchmark for the full problem. # # cplex = CplexOptimizer() # construct model using docplex mdl = Model("ex6") v = mdl.binary_var(name="v") w = mdl.binary_var(name="w") t = mdl.binary_var(name="t") u = mdl.continuous_var(name="u") mdl.minimize(v + w + t + 5 * (u - 2) ** 2) mdl.add_constraint(v + 2 * w + t + u <= 3, "cons1") mdl.add_constraint(v + w + t >= 1, "cons2") mdl.add_constraint(v + w == 1, "cons3") # load quadratic program from docplex model qp = from_docplex_mp(mdl) print(qp.prettyprint()) admm_params = ADMMParameters( rho_initial=1001, beta=1000, factor_c=900, maxiter=100, three_block=True, tol=1.0e-6 ) # define QUBO optimizer qubo_optimizer = exact # qubo_optimizer = cplex # uncomment to use CPLEX instead # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with classical QUBO and convex optimizer admm = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result = admm.solve(qp) print(result.prettyprint()) plt.plot(result.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() # define QUBO optimizer qubo_optimizer = qaoa # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with quantum QUBO optimizer and classical convex optimizer admm_q = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result_q = admm_q.solve(qp) print(result.prettyprint()) plt.clf() plt.plot(result_q.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """DAGFixedPoint pass testing""" import unittest from qiskit.transpiler.passes import DAGFixedPoint from qiskit import QuantumRegister, QuantumCircuit from qiskit.converters import circuit_to_dag from qiskit.test import QiskitTestCase class TestFixedPointPass(QiskitTestCase): """Tests for PropertySet methods.""" def test_empty_dag_true(self): """Test the dag fixed point of an empty dag.""" circuit = QuantumCircuit() dag = circuit_to_dag(circuit) pass_ = DAGFixedPoint() pass_.run(dag) self.assertFalse(pass_.property_set["dag_fixed_point"]) pass_.run(dag) self.assertTrue(pass_.property_set["dag_fixed_point"]) def test_nonempty_dag_false(self): """Test the dag false fixed point of a non-empty dag.""" qr = QuantumRegister(2) circuit = QuantumCircuit(qr) circuit.h(qr[0]) circuit.cx(qr[0], qr[1]) dag = circuit_to_dag(circuit) pass_ = DAGFixedPoint() pass_.run(dag) self.assertFalse(pass_.property_set["dag_fixed_point"]) dag.remove_all_ops_named("h") pass_.run(dag) self.assertFalse(pass_.property_set["dag_fixed_point"]) if __name__ == "__main__": unittest.main()
https://github.com/derivation/ThinkQuantum
derivation
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute, Aer from qiskit.tools.visualization import circuit_drawer, plot_histogram import numpy as np from numpy import pi num_measurements = 5 q = QuantumRegister(1) c = ClassicalRegister(num_measurements) circ = QuantumCircuit(q,c) for m in range(num_measurements): circ.measure(q[0],c[m]) circuit_drawer(circ, output='mpl') backend_sim = Aer.get_backend('qasm_simulator') job_sim = execute(circ, backend_sim, shots=1) result_sim = job_sim.result() counts = result_sim.get_counts(circ) print(counts) num_measurements = 5 q = QuantumRegister(1) c = ClassicalRegister(num_measurements) circ = QuantumCircuit(q,c) for m in range(num_measurements): circ.measure(q[0],c[m]) circ.rx(pi, q[0]) circuit_drawer(circ, output='mpl') job_sim = execute(circ, backend_sim, shots=1) result_sim = job_sim.result() counts = result_sim.get_counts(circ) print(counts) num_measurements = 1 q = QuantumRegister(1) c = ClassicalRegister(num_measurements) circ = QuantumCircuit(q,c) circ.rx(pi/2, q) circ.measure(q, c) circuit_drawer(circ, output='mpl') job_sim = execute(circ, backend_sim, shots=1) result_sim = job_sim.result() counts = result_sim.get_counts(circ) print(counts) repetitions = 1024 job_sim = execute(circ, backend_sim, shots=repetitions) result_sim = job_sim.result() counts = result_sim.get_counts(circ) print(counts) plot_histogram(counts)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) es_problem = driver.run() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver numpy_solver = NumPyMinimumEigensolver() from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD ansatz = UCCSD( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, initial_state=HartreeFock( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, ), ) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = [0.0] * ansatz.num_parameters from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.circuit.library import TwoLocal tl_circuit = TwoLocal( rotation_blocks=["h", "rx"], entanglement_blocks="cz", entanglement="full", reps=2, parameter_prefix="y", ) another_solver = VQE(Estimator(), tl_circuit, SLSQP()) from qiskit_nature.second_q.algorithms import GroundStateEigensolver calc = GroundStateEigensolver(mapper, vqe_solver) res = calc.solve(es_problem) print(res) calc = GroundStateEigensolver(mapper, numpy_solver) res = calc.solve(es_problem) print(res) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.mappers import DirectMapper from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis([2, 2, 2, 2]) vib_problem = driver.run(basis=basis) vib_problem.hamiltonian.truncation_order = 2 mapper = DirectMapper() solver_without_filter = NumPyMinimumEigensolver() solver_with_filter = NumPyMinimumEigensolver( filter_criterion=vib_problem.get_default_filter_criterion() ) gsc_wo = GroundStateEigensolver(mapper, solver_without_filter) result_wo = gsc_wo.solve(vib_problem) gsc_w = GroundStateEigensolver(mapper, solver_with_filter) result_w = gsc_w.solve(vib_problem) print(result_wo) print("\n\n") print(result_w) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/mickahell/quantum_pokemon-fight
mickahell
from train.robot_vs_robot import team, battle from stats.gen_data import gen_team_data from src.class_custom.attacks import Attack from src.class_custom.player import Player from src.class_custom.pokemon import Pokemon from src.class_custom.type import Type from qiskit import Aer, QuantumCircuit, QuantumRegister import warnings class Team: def __init__(self): warnings.filterwarnings("ignore", category=DeprecationWarning) # Init Qasm simulator backend qasm = Aer.get_backend("qasm_simulator") backend_sim = qasm # Choose your backend : <quantum_computer> or <qasm> for u in range(2): # Types creation --> Sources : https://boutique-pokemon.com/blogs/blog-pokemon/table-types-pokemon fire = Type("Fire") normal = Type("Normal") water = Type("Water") grass = Type("Grass") electric = Type("Electric") fly = Type("Fly") poison = Type("Poison") bug = Type("Bug") ghost = Type("Ghost") ground = Type("Ground") dark = Type("Dark") ice = Type("Ice") steel = Type("Steel") resistance = [bug, grass, fire, ice, steel] weakness = [water, ground] imunite = ["None"] fire.add_info(resistance, weakness, imunite) resistance = ["None"] weakness = ["None"] imunite = [ghost] normal.add_info(resistance, weakness, imunite) resistance = [grass, ground] weakness = [fire, fly] imunite = ["None"] bug.add_info(resistance, weakness, imunite) resistance = [water, fire, steel] weakness = [grass, electric] imunite = ["None"] water.add_info(resistance, weakness, imunite) resistance = [water, electric, grass, ground] weakness = [fire, bug, poison, fly, ice] imunite = ["None"] grass.add_info(resistance, weakness, imunite) resistance = [electric, fly, steel] weakness = [ground] imunite = ["None"] electric.add_info(resistance, weakness, imunite) resistance = [bug, grass] weakness = [electric, ice] imunite = [ground] fly.add_info(resistance, weakness, imunite) resistance = [ghost, dark] weakness = [bug] imunite = ["None"] dark.add_info(resistance, weakness, imunite) resistance = [bug, poison] weakness = [ghost, dark] imunite = [normal] ghost.add_info(resistance, weakness, imunite) resistance = [bug, grass, poison] weakness = [ground] imunite = ["None"] poison.add_info(resistance, weakness, imunite) resistance = [poison] weakness = [water, grass, ice] imunite = [electric] ground.add_info(resistance, weakness, imunite) resistance = [ice] weakness = [fire, steel] imunite = ["None"] ice.add_info(resistance, weakness, imunite) resistance = [steel, ice, bug, normal, grass, fly] weakness = [fire, ground] imunite = [poison] steel.add_info(resistance, weakness, imunite) # type qubits creation fire.qubit = QuantumRegister(1, "fire") normal.qubit = QuantumRegister(1, "normal") water.qubit = QuantumRegister(1, "water") grass.qubit = QuantumRegister(1, "grass") electric.qubit = QuantumRegister(1, "electric") fly.qubit = QuantumRegister(1, "fly") poison.qubit = QuantumRegister(1, "poison") bug.qubit = QuantumRegister(1, "bug") ghost.qubit = QuantumRegister(1, "ghost") ground.qubit = QuantumRegister(1, "ground") dark.qubit = QuantumRegister(1, "dark") ice.qubit = QuantumRegister(1, "ice") steel.qubit = QuantumRegister(1, "steel") qc_type = QuantumCircuit( steel.qubit, fire.qubit, normal.qubit, water.qubit, grass.qubit, electric.qubit, fly.qubit, poison.qubit, bug.qubit, ghost.qubit, ground.qubit, dark.qubit, ice.qubit, ) # Attacks creation fire_blast = Attack("Fire Blast", fire, 110, 0.85, "special") hurricane = Attack("Hurricane", fly, 110, 0.70, "special") earthquake = Attack("Earthquake", ground, 100, 1, "physical") leaf_storm = Attack("Leaf Storm", grass, 90, 1, "special") shadow_ball = Attack("Shadow Ball", ghost, 80, 1, "special") sludge_bomb = Attack("Sludge Bomb", poison, 90, 1, "special") thunder = Attack("Thunder", electric, 110, 0.70, "special") dark_pulse = Attack("Dark Pulse", dark, 80, 1, "special") ice_beam = Attack("Ice Beam", ice, 90, 1, "special") hydroblast = Attack("Hydroblast", water, 110, 0.8, "special") iron_tail = Attack("Iron Tail", steel, 100, 0.75, "physical") slam = Attack("Slam", normal, 80, 0.75, "physical") grass_knot = Attack("Grass Knot", grass, 80, 1, "special") flash_cannon = Attack("Flash Cannon", steel, 80, 1, "special") giga_impact = Attack("Giga-Impact", normal, 150, 0.9, "physical") bite = Attack("Bite", dark, 60, 1, "physical") tri_attack = Attack("Triplattaque", normal, 80, 1, "special") #hyper_beam = Attack("Hyper Beam", normal, 150, 0.9, "special") throat_chop = Attack("Throat Chop", dark, 80, 1, "physical") fire_punch = Attack("Fire Punch", fire, 75, 1, "physical") # Pokémon creation --> Sources : https://www.pokepedia.fr/Pikachu#Statistiques-remarques1 charizard = Pokemon("Charizard", [fire, fly], 360, 267, 255, 317, 269, 299) gengar = Pokemon("Gengar", [ghost, poison], 324, 229, 219, 359, 249, 319) blastoise = Pokemon("Blastoise", [water], 362, 265, 299, 269, 309, 255) pikachu = Pokemon("Pikachu", [electric], 294, 259, 199, 249, 219, 339) glaceon = Pokemon("Glaceon", [ice], 334, 219, 319, 359, 289, 229) porygonz = Pokemon("Porygon-Z", [normal], 374, 259, 239, 369, 249, 279) abomasnow = Pokemon("Abomasnow", [grass, ice], 384, 283, 249, 283, 269, 219) toxtricity = Pokemon( "Toxtricity", [electric, poison], 354, 295, 239, 327, 239, 249 ) # Attacks learning charizard.learn_attacks([fire_blast, hurricane, earthquake, leaf_storm]) gengar.learn_attacks([sludge_bomb, dark_pulse, shadow_ball, thunder]) blastoise.learn_attacks([ice_beam, hydroblast, flash_cannon, giga_impact]) pikachu.learn_attacks([thunder, iron_tail, slam, grass_knot]) glaceon.learn_attacks([ice_beam, slam, iron_tail, bite]) porygonz.learn_attacks([thunder, ice_beam, tri_attack, dark_pulse]) abomasnow.learn_attacks([ice_beam, leaf_storm, earthquake, giga_impact]) toxtricity.learn_attacks([sludge_bomb, thunder, throat_chop, fire_punch]) # Player creation me = Player("Oak", "j1", "human") him = Player("Agatha", "j2", "robot") ############################################################## # GAME print( """ ################################################### # Welcome in the Quantum Pokémon fight - CLI # Will you succeed to win against the Quantum AI ? # # Good Luck !!! ################################################### """ ) team(me, him, nb_team=3) winner, looser = battle(me, him, qc_type, backend_sim) for i, y in zip(winner.register_team, looser.register_team): gen_team_data(pokemon=i, has_win="yes") gen_team_data(pokemon=y, has_win="no") print("Fight {} is finished !".format(u + 1)) print("Gen team data program ended !")
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
import qiskit qiskit.__qiskit_version__ from math import pi import numpy as np import scipy as sp import matplotlib.pyplot as plt %matplotlib inline # importing Qiskit from qiskit import BasicAer, IBMQ from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute from qiskit.tools.visualization import plot_histogram from qiskit.tools.monitor import job_monitor # Load saved IBMQ accounts IBMQ.load_account() # We first define controlled gates used in the IPEA def cu1fixed(qProg, c, t, a): qProg.u1(-a, t) qProg.cx(c, t) qProg.u1(a, t) qProg.cx(c, t) def cu5pi8(qProg, c, t): cu1fixed(qProg, c, t, -5.0*pi/8.0) # We then prepare quantum and classical registers and the circuit qr = QuantumRegister(2) cr = ClassicalRegister(4) circuitName="IPEAonSimulator" ipeaCircuit = QuantumCircuit(qr, cr) # Apply IPEA ipeaCircuit.h(qr[0]) for i in range(8): cu5pi8(ipeaCircuit, qr[0], qr[1]) ipeaCircuit.h(qr[0]) ipeaCircuit.measure(qr[0], cr[0]) ipeaCircuit.reset(qr[0]) ipeaCircuit.h(qr[0]) for i in range(4): cu5pi8(ipeaCircuit, qr[0], qr[1]) ipeaCircuit.u1(-pi/2, qr[0]).c_if(cr, 1) ipeaCircuit.h(qr[0]) ipeaCircuit.measure(qr[0], cr[1]) ipeaCircuit.reset(qr[0]) ipeaCircuit.h(qr[0]) for i in range(2): cu5pi8(ipeaCircuit, qr[0], qr[1]) ipeaCircuit.u1(-pi/4, qr[0]).c_if(cr, 1) ipeaCircuit.u1(-pi/2, qr[0]).c_if(cr, 2) ipeaCircuit.u1(-3*pi/4, qr[0]).c_if(cr, 3) ipeaCircuit.h(qr[0]) ipeaCircuit.measure(qr[0], cr[2]) ipeaCircuit.reset(qr[0]) ipeaCircuit.h(qr[0]) cu5pi8(ipeaCircuit, qr[0], qr[1]) ipeaCircuit.u1(-pi/8, qr[0]).c_if(cr, 1) ipeaCircuit.u1(-2*pi/8, qr[0]).c_if(cr, 2) ipeaCircuit.u1(-3*pi/8, qr[0]).c_if(cr, 3) ipeaCircuit.u1(-4*pi/8, qr[0]).c_if(cr, 4) ipeaCircuit.u1(-5*pi/8, qr[0]).c_if(cr, 5) ipeaCircuit.u1(-6*pi/8, qr[0]).c_if(cr, 6) ipeaCircuit.u1(-7*pi/8, qr[0]).c_if(cr, 7) ipeaCircuit.h(qr[0]) ipeaCircuit.measure(qr[0], cr[3]) backend = BasicAer.get_backend('qasm_simulator') shots = 1000 results = execute(ipeaCircuit, backend=backend, shots=shots).result() plot_histogram(results.get_counts()) # We then prepare quantum and classical registers and the circuit qr = QuantumRegister(5) cr = ClassicalRegister(5) realStep1Circuit = QuantumCircuit(qr, cr) # Apply IPEA realStep1Circuit.h(qr[0]) for i in range(8): cu5pi8(realStep1Circuit, qr[0], qr[1]) realStep1Circuit.h(qr[0]) realStep1Circuit.measure(qr[0], cr[0]) #connect to remote API to be able to use remote simulators and real devices print("Available backends:", [BasicAer.backends(), IBMQ.backends()]) backend = IBMQ.get_backend("ibmq_5_yorktown") shots = 1000 job_exp1 = execute(realStep1Circuit, backend=backend, shots=shots) job_monitor(job_exp1) results1 = job_exp1.result() plot_histogram(results1.get_counts()) realStep2Circuit = QuantumCircuit(qr, cr) # Apply IPEA realStep2Circuit.h(qr[0]) for i in range(4): cu5pi8(realStep2Circuit, qr[0], qr[1]) realStep2Circuit.u1(-pi/2, qr[0]) # Assuming the value of the measurement on Step 1 realStep2Circuit.h(qr[0]) realStep2Circuit.measure(qr[0], cr[0]) job_exp2 = execute(realStep2Circuit, backend=backend, shots=shots) job_monitor(job_exp1) results2 = job_exp2.result() plot_histogram(results2.get_counts()) realStep3Circuit = QuantumCircuit(qr, cr) # Apply IPEA realStep3Circuit.h(qr[0]) for i in range(2): cu5pi8(realStep3Circuit, qr[0], qr[1]) realStep3Circuit.u1(-3*pi/4, qr[0]) # Assuming the value of the measurement on Step 1 and Step 2 realStep3Circuit.h(qr[0]) realStep3Circuit.measure(qr[0], cr[0]) job_exp3 = execute(realStep3Circuit, backend=backend, shots=shots) job_monitor(job_exp3) results3 = job_exp3.result() plot_histogram(results3.get_counts()) realStep4Circuit = QuantumCircuit(qr, cr) # Apply IPEA realStep4Circuit.h(qr[0]) cu5pi8(realStep4Circuit, qr[0], qr[1]) realStep4Circuit.u1(-3*pi/8, qr[0]) # Assuming the value of the measurement on Step 1, 2, and 3 realStep4Circuit.h(qr[0]) realStep4Circuit.measure(qr[0], cr[0]) job_exp4 = execute(realStep4Circuit, backend=backend, shots=shots) job_monitor(job_exp4) results4 = job_exp4.result() plot_histogram(results4.get_counts())
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) qc.cx(1, 0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": ### replaced x gate ### qc.z(qubit) if msg[0] == "1": ### replaced z gate ### qc.x(qubit) return qc def decode_message(qc): qc.cx(1, 0) qc.h(1) return qc
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2023 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=no-member,invalid-name,missing-docstring,no-name-in-module # pylint: disable=attribute-defined-outside-init,unsubscriptable-object import os from qiskit.compiler import transpile from qiskit import QuantumCircuit from qiskit.transpiler import InstructionDurations from qiskit.providers.fake_provider import FakeMelbourne from .utils import build_qv_model_circuit class TranspilerLevelBenchmarks: params = [0, 1, 2, 3] param_names = ["transpiler optimization level"] timeout = 600 def setup(self, _): self.rochester_coupling_map = [ [0, 5], [0, 1], [1, 2], [1, 0], [2, 3], [2, 1], [3, 4], [3, 2], [4, 6], [4, 3], [5, 9], [5, 0], [6, 13], [6, 4], [7, 16], [7, 8], [8, 9], [8, 7], [9, 10], [9, 8], [9, 5], [10, 11], [10, 9], [11, 17], [11, 12], [11, 10], [12, 13], [12, 11], [13, 14], [13, 12], [13, 6], [14, 15], [14, 13], [15, 18], [15, 14], [16, 19], [16, 7], [17, 23], [17, 11], [18, 27], [18, 15], [19, 20], [19, 16], [20, 21], [20, 19], [21, 28], [21, 22], [21, 20], [22, 23], [22, 21], [23, 24], [23, 22], [23, 17], [24, 25], [24, 23], [25, 29], [25, 26], [25, 24], [26, 27], [26, 25], [27, 26], [27, 18], [28, 32], [28, 21], [29, 36], [29, 25], [30, 39], [30, 31], [31, 32], [31, 30], [32, 33], [32, 31], [32, 28], [33, 34], [33, 32], [34, 40], [34, 35], [34, 33], [35, 36], [35, 34], [36, 37], [36, 35], [36, 29], [37, 38], [37, 36], [38, 41], [38, 37], [39, 42], [39, 30], [40, 46], [40, 34], [41, 50], [41, 38], [42, 43], [42, 39], [43, 44], [43, 42], [44, 51], [44, 45], [44, 43], [45, 46], [45, 44], [46, 47], [46, 45], [46, 40], [47, 48], [47, 46], [48, 52], [48, 49], [48, 47], [49, 50], [49, 48], [50, 49], [50, 41], [51, 44], [52, 48], ] self.basis_gates = ["u1", "u2", "u3", "cx", "id"] self.qv_50_x_20 = build_qv_model_circuit(50, 20, 0) self.qv_14_x_14 = build_qv_model_circuit(14, 14, 0) self.qasm_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "qasm")) large_qasm_path = os.path.join(self.qasm_path, "test_eoh_qasm.qasm") self.large_qasm = QuantumCircuit.from_qasm_file(large_qasm_path) self.melbourne = FakeMelbourne() self.durations = InstructionDurations( [ ("u1", None, 0), ("id", None, 160), ("u2", None, 160), ("u3", None, 320), ("cx", None, 800), ("measure", None, 3200), ], dt=1e-9, ) def time_quantum_volume_transpile_50_x_20(self, transpiler_level): transpile( self.qv_50_x_20, basis_gates=self.basis_gates, coupling_map=self.rochester_coupling_map, seed_transpiler=0, optimization_level=transpiler_level, ) def track_depth_quantum_volume_transpile_50_x_20(self, transpiler_level): return transpile( self.qv_50_x_20, basis_gates=self.basis_gates, coupling_map=self.rochester_coupling_map, seed_transpiler=0, optimization_level=transpiler_level, ).depth() def time_transpile_from_large_qasm(self, transpiler_level): transpile( self.large_qasm, basis_gates=self.basis_gates, coupling_map=self.rochester_coupling_map, seed_transpiler=0, optimization_level=transpiler_level, ) def track_depth_transpile_from_large_qasm(self, transpiler_level): return transpile( self.large_qasm, basis_gates=self.basis_gates, coupling_map=self.rochester_coupling_map, seed_transpiler=0, optimization_level=transpiler_level, ).depth() def time_transpile_from_large_qasm_backend_with_prop(self, transpiler_level): transpile( self.large_qasm, self.melbourne, seed_transpiler=0, optimization_level=transpiler_level ) def track_depth_transpile_from_large_qasm_backend_with_prop(self, transpiler_level): return transpile( self.large_qasm, self.melbourne, seed_transpiler=0, optimization_level=transpiler_level ).depth() def time_transpile_qv_14_x_14(self, transpiler_level): transpile( self.qv_14_x_14, self.melbourne, seed_transpiler=0, optimization_level=transpiler_level ) def track_depth_transpile_qv_14_x_14(self, transpiler_level): return transpile( self.qv_14_x_14, self.melbourne, seed_transpiler=0, optimization_level=transpiler_level ).depth() def time_schedule_qv_14_x_14(self, transpiler_level): transpile( self.qv_14_x_14, self.melbourne, seed_transpiler=0, optimization_level=transpiler_level, scheduling_method="alap", instruction_durations=self.durations, ) # limit optimization levels to reduce time time_schedule_qv_14_x_14.params = [0, 1]
https://github.com/qiskit-community/qiskit-cold-atom
qiskit-community
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Module for cold-atom fermion backends.""" from abc import ABC from typing import Union, List, Optional import numpy as np from qiskit.providers import BackendV1 as Backend from qiskit import QuantumCircuit from qiskit_nature.second_q.operators import FermionicOp from qiskit_cold_atom.fermions.fermion_gate_library import LoadFermions from qiskit_cold_atom.fermions.fermion_circuit_solver import FermionCircuitSolver from qiskit_cold_atom.fermions.fermionic_state import FermionicState from qiskit_cold_atom.exceptions import QiskitColdAtomError class BaseFermionBackend(Backend, ABC): """Abstract base class for fermionic tweezer backends.""" def initialize_circuit(self, occupations: Union[List[int], List[List[int]]]): """ Initialize a fermionic quantum circuit with the given occupations. Args: occupations: List of occupation numbers. When ``List[int]`` is given, the occupations correspond to the number of indistinguishable fermionic particles in each mode, e.g. ``[0, 1, 1, 0]`` implies that sites one and two are occupied by a fermion. When ``List[List[int]]`` is given, the occupations describe the number of particles in fermionic modes with different (distinguishable) species of fermions. Each inner list gives the occupations of one fermionic species. Returns: circuit: Qiskit QuantumCircuit with a quantum register for each fermionic species initialized with the ``load`` instructions corresponding to the given occupations Raises: QiskitColdAtomError: If occupations do not match the backend """ try: backend_size = self.configuration().to_dict()["n_qubits"] except NameError as name_error: raise QiskitColdAtomError( f"Number of tweezers not specified for {self.name()}" ) from name_error initial_state = FermionicState(occupations) n_wires = initial_state.sites * initial_state.num_species if n_wires > backend_size: raise QiskitColdAtomError( f"{self.name()} supports up to {backend_size} sites, {n_wires} were given" ) # if num_species is specified by the backend, the wires describe different atomic species # and the circuit must exactly match the expected wire count of the backend. if "num_species" in self.configuration().to_dict().keys(): num_species = self.configuration().num_species if num_species > 1 and n_wires < self.configuration().num_qubits: raise QiskitColdAtomError( f"{self.name()} requires circuits with exactly " f"{self.configuration().num_qubits} wires, but an initial occupation of size " f"{n_wires} was given." ) from qiskit.circuit import QuantumRegister if initial_state.num_species > 1: registers = [] for i in range(initial_state.num_species): registers.append(QuantumRegister(initial_state.sites, f"spin_{i}")) circuit = QuantumCircuit(*registers) else: circuit = QuantumCircuit(QuantumRegister(initial_state.sites, "fer_mode")) for i, occupation_list in enumerate(initial_state.occupations): for j, occ in enumerate(occupation_list): if occ: circuit.append(LoadFermions(), qargs=[i * initial_state.sites + j]) return circuit def measure_observable_expectation( self, circuits: Union[QuantumCircuit, List[QuantumCircuit]], observable: FermionicOp, shots: int, seed: Optional[int] = None, num_species: int = 1, get_variance: bool = False, ): """Measure the expectation value of an observable in a state prepared by a given quantum circuit that uses fermionic gates. Measurements are added to the entire register if they are not yet applied in the circuit. Args: circuits: QuantumCircuit applying gates with fermionic generators observable: A FermionicOp describing an observable of which the expectation value is sampled shots: Number of measurement shots taken in case the circuit has measure instructions seed: seed for the random number generator of the measurement simulation num_species: number of different fermionic species described by the circuits get_variance: If True, also returns an estimate of the variance of the observable Raises: QiskitColdAtomError: if the observable is non-diagonal Returns: observable_ev: List of the measured expectation values of the observables in given circuits variance: List of the estimated variances of of the observables (if get_variance is True) """ if isinstance(circuits, QuantumCircuit): circuits = [circuits] observable_evs = [0] * len(circuits) observable_vars = [0] * len(circuits) for idx, circuit in enumerate(circuits): # check whether the observable is diagonal in the computational basis. solver = FermionCircuitSolver(num_species=2) solver.preprocess_circuit(circuit) observable_mat = solver.operator_to_mat(observable) if list(observable_mat.nonzero()[0]) != list(observable_mat.nonzero()[1]): raise QiskitColdAtomError( "Measuring general observables that are non-diagonal in the " "computational basis is not yet implemented for " "fermionic backends. This requires non-trivial basis " "transformations that are in general difficult to find and " "depend on the backend's native gate set." ) circuit.remove_final_measurements() circuit.measure_all() # pylint: disable=unexpected-keyword-arg job = self.run(circuit, shots=shots, seed=seed, num_species=num_species) counts = job.result().get_counts() for bitstring in counts: # Extract the index of the measured count-bitstring in the fermionic basis. # In contrast to qubits, this is not trivial and requires an additional step. ind = solver.basis.get_index_of_measurement(bitstring) # contribution to the operator estimate of this outcome p = counts[bitstring] / shots observable_evs[idx] += p * observable_mat[ind, ind].real if get_variance: # contribution to the variance of the operator observable_vars[idx] += ( np.sqrt(p * (1 - p) / shots) * observable_mat[ind, ind] ) ** 2 if get_variance: return observable_evs, observable_vars else: return observable_evs def draw(self, qc: QuantumCircuit, **draw_options): """Modified circuit drawer to better display atomic mixture quantum circuits. Note that in the future this method may be modified and tailored to fermionic quantum circuits. Args: qc: The quantum circuit to draw. draw_options: Key word arguments for the drawing of circuits. """ qc.draw(**draw_options)
https://github.com/googlercolin/Qiskit-Course
googlercolin
#!pip install PySCF --upgrade import networkx as nx import numpy as np import plotly.graph_objects as go import matplotlib as mpl import pandas as pd from IPython.display import clear_output from plotly.subplots import make_subplots from matplotlib import pyplot as plt from qiskit import Aer, transpile, assemble, IBMQ, execute from qiskit import QuantumCircuit from qiskit.visualization import plot_state_city from qiskit.algorithms.optimizers import COBYLA, SLSQP, ADAM from time import time from copy import copy from typing import List from qc_grader.graph_util import display_maxcut_widget, QAOA_widget, graphs mpl.rcParams['figure.dpi'] = 300 from qiskit.circuit import Parameter, ParameterVector #Parameters are initialized with a simple string identifier parameter_0 = Parameter('θ[0]') parameter_1 = Parameter('θ[1]') circuit = QuantumCircuit(1) #We can then pass the initialized parameters as the rotation angle argument to the Rx and Ry gates circuit.ry(theta = parameter_0, qubit = 0) circuit.rx(theta = parameter_1, qubit = 0) circuit.draw('mpl') parameter = Parameter('θ') circuit = QuantumCircuit(1) circuit.ry(theta = parameter, qubit = 0) circuit.rx(theta = parameter, qubit = 0) circuit.draw('mpl') #Set the number of layers and qubits n=3 num_layers = 2 #ParameterVectors are initialized with a string identifier and an integer specifying the vector length parameters = ParameterVector('θ', n*(num_layers+1)) circuit = QuantumCircuit(n, n) for layer in range(num_layers): #Appending the parameterized Ry gates using parameters from the vector constructed above for i in range(n): circuit.ry(parameters[n*layer+i], i) circuit.barrier() #Appending the entangling CNOT gates for i in range(n): for j in range(i): circuit.cx(j,i) circuit.barrier() #Appending one additional layer of parameterized Ry gates for i in range(n): circuit.ry(parameters[n*num_layers+i], i) circuit.barrier() circuit.draw('mpl') print(circuit.parameters) #Create parameter dictionary with random values to bind param_dict = {parameter: np.random.random() for parameter in parameters} print(param_dict) #Assign parameters using the assign_parameters method bound_circuit = circuit.assign_parameters(parameters = param_dict) bound_circuit.draw('mpl') new_parameters = ParameterVector('Ψ',9) new_circuit = circuit.assign_parameters(parameters = [k*new_parameters[k] for k in range(9)]) new_circuit.draw('mpl') #Run the circuit with assigned parameters on Aer's statevector simulator simulator = Aer.get_backend('statevector_simulator') result = simulator.run(bound_circuit).result() statevector = result.get_statevector(bound_circuit) plot_state_city(statevector) #The following line produces an error when run because 'circuit' still contains non-assigned parameters #result = simulator.run(circuit).result() for key in graphs.keys(): print(key) graph = nx.Graph() #Add nodes and edges graph.add_nodes_from(np.arange(0,6,1)) edges = [(0,1,2.0),(0,2,3.0),(0,3,2.0),(0,4,4.0),(0,5,1.0),(1,2,4.0),(1,3,1.0),(1,4,1.0),(1,5,3.0),(2,4,2.0),(2,5,3.0),(3,4,5.0),(3,5,1.0)] graph.add_weighted_edges_from(edges) graphs['custom'] = graph #Display widget display_maxcut_widget(graphs['custom']) def maxcut_cost_fn(graph: nx.Graph, bitstring: List[int]) -> float: """ Computes the maxcut cost function value for a given graph and cut represented by some bitstring Args: graph: The graph to compute cut values for bitstring: A list of integer values '0' or '1' specifying a cut of the graph Returns: The value of the cut """ #Get the weight matrix of the graph weight_matrix = nx.adjacency_matrix(graph).toarray() size = weight_matrix.shape[0] value = 0. #INSERT YOUR CODE TO COMPUTE THE CUT VALUE HERE for i in range(size): for j in range(size): value += weight_matrix[i][j]*bitstring[i]*(1-bitstring[j]) return value def plot_maxcut_histogram(graph: nx.Graph) -> None: """ Plots a bar diagram with the values for all possible cuts of a given graph. Args: graph: The graph to compute cut values for """ num_vars = graph.number_of_nodes() #Create list of bitstrings and corresponding cut values bitstrings = ['{:b}'.format(i).rjust(num_vars, '0')[::-1] for i in range(2**num_vars)] values = [maxcut_cost_fn(graph = graph, bitstring = [int(x) for x in bitstring]) for bitstring in bitstrings] #Sort both lists by largest cut value values, bitstrings = zip(*sorted(zip(values, bitstrings))) #Plot bar diagram bar_plot = go.Bar(x = bitstrings, y = values, marker=dict(color=values, colorscale = 'plasma', colorbar=dict(title='Cut Value'))) fig = go.Figure(data=bar_plot, layout = dict(xaxis=dict(type = 'category'), width = 1500, height = 600)) fig.show() plot_maxcut_histogram(graph = graphs['custom']) from qc_grader import grade_lab2_ex1 bitstring = [1, 0, 1, 1, 0, 0] #DEFINE THE CORRECT MAXCUT BITSTRING HERE # Note that the grading function is expecting a list of integers '0' and '1' grade_lab2_ex1(bitstring) from qiskit_optimization import QuadraticProgram quadratic_program = QuadraticProgram('sample_problem') print(quadratic_program.export_as_lp_string()) quadratic_program.binary_var(name = 'x_0') quadratic_program.integer_var(name = 'x_1') quadratic_program.continuous_var(name = 'x_2', lowerbound = -2.5, upperbound = 1.8) quadratic = [[0,1,2],[3,4,5],[0,1,2]] linear = [10,20,30] quadratic_program.minimize(quadratic = quadratic, linear = linear, constant = -5) print(quadratic_program.export_as_lp_string()) def quadratic_program_from_graph(graph: nx.Graph) -> QuadraticProgram: """Constructs a quadratic program from a given graph for a MaxCut problem instance. Args: graph: Underlying graph of the problem. Returns: QuadraticProgram """ #Get weight matrix of graph weight_matrix = nx.adjacency_matrix(graph) shape = weight_matrix.shape size = shape[0] #Build qubo matrix Q from weight matrix W qubo_matrix = np.zeros((size, size)) for i in range(size): for j in range(size): qubo_matrix[i, j] -= weight_matrix[i, j] #INSERT YOUR CODE HERE #Define quadratic_program quadratic_program = QuadraticProgram('quadratic_program_from_graph') #Initiate binary variables for i in range(size): quadratic_program.binary_var(name = f'x_{i}') #Build the qubo vector c_vector from weight matrix W c_vector = np.zeros(size) for i in range(size): for j in range(size): c_vector[i] += weight_matrix[i, j] quadratic_program.maximize(quadratic = qubo_matrix, linear = c_vector) return quadratic_program quadratic_program = quadratic_program_from_graph(graphs['custom']) print(quadratic_program.export_as_lp_string()) from qc_grader import grade_lab2_ex2 # Note that the grading function is expecting a quadratic program grade_lab2_ex2(quadratic_program) def qaoa_circuit(qubo: QuadraticProgram, p: int = 1): """ Given a QUBO instance and the number of layers p, constructs the corresponding parameterized QAOA circuit with p layers. Args: qubo: The quadratic program instance p: The number of layers in the QAOA circuit Returns: The parameterized QAOA circuit """ size = len(qubo.variables) qubo_matrix = qubo.objective.quadratic.to_array(symmetric=True) qubo_linearity = qubo.objective.linear.to_array() #Prepare the quantum and classical registers qaoa_circuit = QuantumCircuit(size,size) #Apply the initial layer of Hadamard gates to all qubits qaoa_circuit.h(range(size)) #Create the parameters to be used in the circuit gammas = ParameterVector('gamma', p) betas = ParameterVector('beta', p) #Outer loop to create each layer for i in range(p): #Apply R_Z rotational gates from cost layer #INSERT YOUR CODE HERE for j in range(size): qubo_matrix_row_sum = 0 for k in range(size): qubo_matrix_row_sum += qubo_matrix[j, k] qaoa_circuit.rz((qubo_linearity[j]+qubo_matrix_row_sum)*gammas[i], j) qaoa_circuit.barrier() #Apply R_ZZ rotational gates for entangled qubit rotations from cost layer #INSERT YOUR CODE HERE for j in range(size): for k in range(size): if j>=k: continue qaoa_circuit.rzz(0.5*qubo_matrix[j, k]*gammas[i], j, k) qaoa_circuit.barrier() # Apply single qubit X - rotations with angle 2*beta_i to all qubits #INSERT YOUR CODE HERE for j in range(size): qaoa_circuit.rx(2.0*betas[i], j) qaoa_circuit.barrier() return qaoa_circuit quadratic_program = quadratic_program_from_graph(graphs['custom']) custom_circuit = qaoa_circuit(qubo = quadratic_program) test = custom_circuit.assign_parameters(parameters=[1.0]*len(custom_circuit.parameters)) custom_circuit.draw() from qc_grader import grade_lab2_ex3 # Note that the grading function is expecting a quantum circuit grade_lab2_ex3(test) from qiskit.algorithms import QAOA from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = Aer.get_backend('statevector_simulator') qaoa = QAOA(optimizer = ADAM(), quantum_instance = backend, reps=1, initial_point = [0.1,0.1]) eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver = qaoa) quadratic_program = quadratic_program_from_graph(graphs['custom']) result = eigen_optimizer.solve(quadratic_program) print(result) def plot_samples(samples): """ Plots a bar diagram for the samples of a quantum algorithm Args: samples """ #Sort samples by probability samples = sorted(samples, key = lambda x: x.probability) #Get list of probabilities, function values and bitstrings probabilities = [sample.probability for sample in samples] values = [sample.fval for sample in samples] bitstrings = [''.join([str(int(i)) for i in sample.x]) for sample in samples] #Plot bar diagram sample_plot = go.Bar(x = bitstrings, y = probabilities, marker=dict(color=values, colorscale = 'plasma',colorbar=dict(title='Function Value'))) fig = go.Figure( data=sample_plot, layout = dict( xaxis=dict( type = 'category' ) ) ) fig.show() plot_samples(result.samples) graph_name = 'custom' quadratic_program = quadratic_program_from_graph(graph=graphs[graph_name]) trajectory={'beta_0':[], 'gamma_0':[], 'energy':[]} offset = 1/4*quadratic_program.objective.quadratic.to_array(symmetric = True).sum() + 1/2*quadratic_program.objective.linear.to_array().sum() def callback(eval_count, params, mean, std_dev): trajectory['beta_0'].append(params[1]) trajectory['gamma_0'].append(params[0]) trajectory['energy'].append(-mean + offset) optimizers = { 'cobyla': COBYLA(), 'slsqp': SLSQP(), 'adam': ADAM() } qaoa = QAOA(optimizer = optimizers['cobyla'], quantum_instance = backend, reps=1, initial_point = [6.2,1.8],callback = callback) eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver = qaoa) result = eigen_optimizer.solve(quadratic_program) fig = QAOA_widget(landscape_file=f'./resources/energy_landscapes/{graph_name}.csv', trajectory = trajectory, samples = result.samples) fig.show() graph_name = 'custom' quadratic_program = quadratic_program_from_graph(graphs[graph_name]) #Create callback to record total number of evaluations max_evals = 0 def callback(eval_count, params, mean, std_dev): global max_evals max_evals = eval_count #Create empty lists to track values energies = [] runtimes = [] num_evals=[] #Run QAOA for different values of p for p in range(1,10): print(f'Evaluating for p = {p}...') qaoa = QAOA(optimizer = optimizers['cobyla'], quantum_instance = backend, reps=p, callback=callback) eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver = qaoa) start = time() result = eigen_optimizer.solve(quadratic_program) runtimes.append(time()-start) num_evals.append(max_evals) #Calculate energy of final state from samples avg_value = 0. for sample in result.samples: avg_value += sample.probability*sample.fval energies.append(avg_value) #Create and display plots energy_plot = go.Scatter(x = list(range(1,10)), y =energies, marker=dict(color=energies, colorscale = 'plasma')) runtime_plot = go.Scatter(x = list(range(1,10)), y =runtimes, marker=dict(color=runtimes, colorscale = 'plasma')) num_evals_plot = go.Scatter(x = list(range(1,10)), y =num_evals, marker=dict(color=num_evals, colorscale = 'plasma')) fig = make_subplots(rows = 1, cols = 3, subplot_titles = ['Energy value', 'Runtime', 'Number of evaluations']) fig.update_layout(width=1800,height=600, showlegend=False) fig.add_trace(energy_plot, row=1, col=1) fig.add_trace(runtime_plot, row=1, col=2) fig.add_trace(num_evals_plot, row=1, col=3) clear_output() fig.show() def plot_qaoa_energy_landscape(graph: nx.Graph, cvar: float = None): num_shots = 1000 seed = 42 simulator = Aer.get_backend('qasm_simulator') simulator.set_options(seed_simulator = 42) #Generate circuit circuit = qaoa_circuit(qubo = quadratic_program_from_graph(graph), p=1) circuit.measure(range(graph.number_of_nodes()),range(graph.number_of_nodes())) #Create dictionary with precomputed cut values for all bitstrings cut_values = {} size = graph.number_of_nodes() for i in range(2**size): bitstr = '{:b}'.format(i).rjust(size, '0')[::-1] x = [int(bit) for bit in bitstr] cut_values[bitstr] = maxcut_cost_fn(graph, x) #Perform grid search over all parameters data_points = [] max_energy = None for beta in np.linspace(0,np.pi, 50): for gamma in np.linspace(0, 4*np.pi, 50): bound_circuit = circuit.assign_parameters([beta, gamma]) result = simulator.run(bound_circuit, shots = num_shots).result() statevector = result.get_counts(bound_circuit) energy = 0 measured_cuts = [] for bitstring, count in statevector.items(): measured_cuts = measured_cuts + [cut_values[bitstring]]*count if cvar is None: #Calculate the mean of all cut values energy = sum(measured_cuts)/num_shots else: # raise NotImplementedError() # INSERT YOUR CODE HERE measured_cuts.sort(reverse=True) # sort the measured_cuts in descending order reduced_size = cvar*num_shots energy = sum(measured_cuts[:int(reduced_size)])/(reduced_size) # average only from the reduced sample #Update optimal parameters if max_energy is None or energy > max_energy: max_energy = energy optimum = {'beta': beta, 'gamma': gamma, 'energy': energy} #Update data data_points.append({'beta': beta, 'gamma': gamma, 'energy': energy}) #Create and display surface plot from data_points df = pd.DataFrame(data_points) df = df.pivot(index='beta', columns='gamma', values='energy') matrix = df.to_numpy() beta_values = df.index.tolist() gamma_values = df.columns.tolist() surface_plot = go.Surface( x=gamma_values, y=beta_values, z=matrix, coloraxis = 'coloraxis' ) fig = go.Figure(data = surface_plot) fig.show() #Return optimum return optimum graph = graphs['custom'] optimal_parameters = plot_qaoa_energy_landscape(graph = graph) print('Optimal parameters:') print(optimal_parameters) optimal_parameters = plot_qaoa_energy_landscape(graph = graph, cvar = 0.2) print(optimal_parameters) from qc_grader import grade_lab2_ex4 # Note that the grading function is expecting a python dictionary # with the entries 'beta', 'gamma' and 'energy' grade_lab2_ex4(optimal_parameters)
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ The Quantum Dynamics algorithm. """ import logging from qiskit import QuantumRegister from qiskit.aqua.algorithms import QuantumAlgorithm from qiskit.aqua import AquaError, Pluggable, PluggableType, get_pluggable_class logger = logging.getLogger(__name__) class EOH(QuantumAlgorithm): """ The Quantum EOH (Evolution of Hamiltonian) algorithm. """ PROP_OPERATOR_MODE = 'operator_mode' PROP_EVO_TIME = 'evo_time' PROP_NUM_TIME_SLICES = 'num_time_slices' PROP_EXPANSION_MODE = 'expansion_mode' PROP_EXPANSION_ORDER = 'expansion_order' CONFIGURATION = { 'name': 'EOH', 'description': 'Evolution of Hamiltonian for Quantum Systems', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'EOH_schema', 'type': 'object', 'properties': { PROP_OPERATOR_MODE: { 'type': 'string', 'default': 'paulis', 'oneOf': [ {'enum': [ 'paulis', 'grouped_paulis', 'matrix' ]} ] }, PROP_EVO_TIME: { 'type': 'number', 'default': 1, 'minimum': 0 }, PROP_NUM_TIME_SLICES: { 'type': 'integer', 'default': 1, 'minimum': 0 }, PROP_EXPANSION_MODE: { 'type': 'string', 'default': 'trotter', 'oneOf': [ {'enum': [ 'trotter', 'suzuki' ]} ] }, PROP_EXPANSION_ORDER: { 'type': 'integer', 'default': 1, 'minimum': 1 } }, 'additionalProperties': False }, 'problems': ['eoh'], 'depends': [ {'pluggable_type': 'initial_state', 'default': { 'name': 'ZERO' } }, ], } def __init__(self, operator, initial_state, evo_operator, operator_mode='paulis', evo_time=1, num_time_slices=1, expansion_mode='trotter', expansion_order=1): self.validate(locals()) super().__init__() self._operator = operator self._operator_mode = operator_mode self._initial_state = initial_state self._evo_operator = evo_operator self._evo_time = evo_time self._num_time_slices = num_time_slices self._expansion_mode = expansion_mode self._expansion_order = expansion_order self._ret = {} @classmethod def init_params(cls, params, algo_input): """ Initialize via parameters dictionary and algorithm input instance Args: params: parameters dictionary algo_input: EnergyInput instance """ if algo_input is None: raise AquaError("EnergyInput instance is required.") # For getting the extra operator, caller has to do something like: algo_input.add_aux_op(evo_op) operator = algo_input.qubit_op aux_ops = algo_input.aux_ops if aux_ops is None or len(aux_ops) != 1: raise AquaError("EnergyInput, a single aux op is required for evaluation.") evo_operator = aux_ops[0] if evo_operator is None: raise AquaError("EnergyInput, invalid aux op.") dynamics_params = params.get(Pluggable.SECTION_KEY_ALGORITHM) operator_mode = dynamics_params.get(EOH.PROP_OPERATOR_MODE) evo_time = dynamics_params.get(EOH.PROP_EVO_TIME) num_time_slices = dynamics_params.get(EOH.PROP_NUM_TIME_SLICES) expansion_mode = dynamics_params.get(EOH.PROP_EXPANSION_MODE) expansion_order = dynamics_params.get(EOH.PROP_EXPANSION_ORDER) # Set up initial state, we need to add computed num qubits to params initial_state_params = params.get(Pluggable.SECTION_KEY_INITIAL_STATE) initial_state_params['num_qubits'] = operator.num_qubits initial_state = get_pluggable_class(PluggableType.INITIAL_STATE, initial_state_params['name']).init_params(params) return cls(operator, initial_state, evo_operator, operator_mode, evo_time, num_time_slices, expansion_mode=expansion_mode, expansion_order=expansion_order) def construct_circuit(self): """ Construct the circuit. Returns: QuantumCircuit: the circuit. """ quantum_registers = QuantumRegister(self._operator.num_qubits, name='q') qc = self._initial_state.construct_circuit('circuit', quantum_registers) qc += self._evo_operator.evolve( evo_time=self._evo_time, evo_mode='circuit', num_time_slices=self._num_time_slices, quantum_registers=quantum_registers, expansion_mode=self._expansion_mode, expansion_order=self._expansion_order, ) return qc def _run(self): qc = self.construct_circuit() qc_with_op = self._operator.construct_evaluation_circuit( self._operator_mode, qc, self._quantum_instance.backend ) result = self._quantum_instance.execute(qc_with_op) self._ret['avg'], self._ret['std_dev'] = self._operator.evaluate_with_result( self._operator_mode, qc_with_op, self._quantum_instance.backend, result ) return self._ret
https://github.com/ernchern/qiskit-vaqsd
ernchern
import numpy as np from qiskit import( QuantumCircuit, execute, Aer) from qiskit import IBMQ IBMQ.save_account("e69e6c2e07ed86d44bf6ba9dc2db3c727e01eceeaea1d4d5508a8331a192d414336aeec995677836051acafd09a886485064a85f4931d2fbeee945d6ea16801b") IBMQ.load_account() def setQubit(circuit, a, b): if b!=0 : circuit.u3(2*np.arccos(a),np.arccos(np.real(b)/abs(b)),0,0) else: circuit.u3(2*np.arccos(a),0,0,0) def addLayer(circuit, params, index): circuit.u3(params[0],params[1],params[2],index) def build_circuit(params, a_1, b_1, a_2, b_2, a_3, b_3, bias, shots = 1000, verbose = False): ''' Inputs: params: 4 by 3 array of nodes shots: number of executions of the circuit a_n and b_n : nth qubit's parameters Output: p_success: Success rate p_inconclusive: Probability of getting the leftover output ''' # Use Aer's qasm_simulator simulator = Aer.get_backend('qasm_simulator') # Create a Quantum Circuit acting on the q register circuit1 = QuantumCircuit(2, 2) circuit2 = QuantumCircuit(2, 2) circuit3 = QuantumCircuit(2, 2) #Set the quits setQubit(circuit1, a_1, b_1) setQubit(circuit2, a_2, b_2) setQubit(circuit3, a_3, b_3) params = params.reshape((4,3)) #"Neural layers" addLayer(circuit1, params[0][:],0) addLayer(circuit1, params[1][:],1) addLayer(circuit2, params[0][:],0) addLayer(circuit2, params[1][:],1) addLayer(circuit3, params[0][:],0) addLayer(circuit3, params[1][:],1) # CNOT gate circuit1.cx(0,1) circuit2.cx(0,1) circuit3.cx(0,1) #"Neural layers" addLayer(circuit1, params[2][:],0) addLayer(circuit1, params[3][:],1) addLayer(circuit2, params[2][:],0) addLayer(circuit2, params[3][:],1) addLayer(circuit3, params[2][:],0) addLayer(circuit3, params[3][:],1) #CNOT gate circuit1.cx(1,0) circuit2.cx(1,0) circuit3.cx(1,0) # Measure circuit1.measure([0,1], [0,1]) circuit2.measure([0,1], [0,1]) circuit3.measure([0,1], [0,1]) # Execute the circuit on the qasm simulator job1 = execute(circuit1, simulator, shots = shots) job2 = execute(circuit2, simulator, shots = shots) job3 = execute(circuit3, simulator, shots = shots) # Grab results from the job result1 = job1.result() result2 = job2.result() result3 = job3.result() # Returns counts counts1 = result1.get_counts(circuit1) counts2 = result2.get_counts(circuit2) counts3 = result3.get_counts(circuit3) if verbose: print(circuit1) print(counts1) print(circuit2) print(counts2) print(circuit3) print(counts3) for i in ['00', '01','10','11']: if not i in counts1: counts1[i] = 0 if not i in counts2: counts2[i] = 0 if not i in counts3: counts3[i] = 0 p_success = (counts1['00']+counts2['01']+counts3['10'])/(3*shots) p_inconclusive = (counts1['11']+counts2['11']+counts3['11'])/(3*shots) #obj_value = p_success / (p_inconclusive + bias*shots) #obj_value = 1.5 * p_success - p_inconclusive return (p_success, p_inconclusive)
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import qiskit qiskit.__qiskit_version__ import numpy as np import matplotlib.pyplot as plt %matplotlib inline # importing Qiskit from qiskit import BasicAer, IBMQ from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.compiler import transpile from qiskit.tools.visualization import plot_histogram q = QuantumRegister(6) qc = QuantumCircuit(q) qc.x(q[2]) qc.cx(q[1], q[5]) qc.cx(q[2], q[5]) qc.cx(q[3], q[5]) qc.ccx(q[1], q[2], q[4]) qc.ccx(q[3], q[4], q[5]) qc.ccx(q[1], q[2], q[4]) qc.x(q[2]) qc.draw(output='mpl') def black_box_u_f(circuit, f_in, f_out, aux, n, exactly_1_3_sat_formula): """Circuit that computes the black-box function from f_in to f_out. Create a circuit that verifies whether a given exactly-1 3-SAT formula is satisfied by the input. The exactly-1 version requires exactly one literal out of every clause to be satisfied. """ num_clauses = len(exactly_1_3_sat_formula) for (k, clause) in enumerate(exactly_1_3_sat_formula): # This loop ensures aux[k] is 1 if an odd number of literals # are true for literal in clause: if literal > 0: circuit.cx(f_in[literal-1], aux[k]) else: circuit.x(f_in[-literal-1]) circuit.cx(f_in[-literal-1], aux[k]) # Flip aux[k] if all literals are true, using auxiliary qubit # (ancilla) aux[num_clauses] circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) circuit.ccx(f_in[2], aux[num_clauses], aux[k]) # Flip back to reverse state of negative literals and ancilla circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) for literal in clause: if literal < 0: circuit.x(f_in[-literal-1]) # The formula is satisfied if and only if all auxiliary qubits # except aux[num_clauses] are 1 if (num_clauses == 1): circuit.cx(aux[0], f_out[0]) elif (num_clauses == 2): circuit.ccx(aux[0], aux[1], f_out[0]) elif (num_clauses == 3): circuit.ccx(aux[0], aux[1], aux[num_clauses]) circuit.ccx(aux[2], aux[num_clauses], f_out[0]) circuit.ccx(aux[0], aux[1], aux[num_clauses]) else: raise ValueError('We only allow at most 3 clauses') # Flip back any auxiliary qubits to make sure state is consistent # for future executions of this routine; same loop as above. for (k, clause) in enumerate(exactly_1_3_sat_formula): for literal in clause: if literal > 0: circuit.cx(f_in[literal-1], aux[k]) else: circuit.x(f_in[-literal-1]) circuit.cx(f_in[-literal-1], aux[k]) circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) circuit.ccx(f_in[2], aux[num_clauses], aux[k]) circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) for literal in clause: if literal < 0: circuit.x(f_in[-literal-1]) # -- end function def n_controlled_Z(circuit, controls, target): """Implement a Z gate with multiple controls""" if (len(controls) > 2): raise ValueError('The controlled Z with more than 2 ' + 'controls is not implemented') elif (len(controls) == 1): circuit.h(target) circuit.cx(controls[0], target) circuit.h(target) elif (len(controls) == 2): circuit.h(target) circuit.ccx(controls[0], controls[1], target) circuit.h(target) # -- end function def inversion_about_average(circuit, f_in, n): """Apply inversion about the average step of Grover's algorithm.""" # Hadamards everywhere for j in range(n): circuit.h(f_in[j]) # D matrix: flips the sign of the state |000> only for j in range(n): circuit.x(f_in[j]) n_controlled_Z(circuit, [f_in[j] for j in range(n-1)], f_in[n-1]) for j in range(n): circuit.x(f_in[j]) # Hadamards everywhere again for j in range(n): circuit.h(f_in[j]) # -- end function qr = QuantumRegister(3) qInvAvg = QuantumCircuit(qr) inversion_about_average(qInvAvg, qr, 3) qInvAvg.draw(output='mpl') """ Grover search implemented in Qiskit. This module contains the code necessary to run Grover search on 3 qubits, both with a simulator and with a real quantum computing device. This code is the companion for the paper "An introduction to quantum computing, without the physics", Giacomo Nannicini, https://arxiv.org/abs/1708.03684. """ def input_state(circuit, f_in, f_out, n): """(n+1)-qubit input state for Grover search.""" for j in range(n): circuit.h(f_in[j]) circuit.x(f_out) circuit.h(f_out) # -- end function # Make a quantum program for the n-bit Grover search. n = 3 # Exactly-1 3-SAT formula to be satisfied, in conjunctive # normal form. We represent literals with integers, positive or # negative, to indicate a Boolean variable or its negation. exactly_1_3_sat_formula = [[1, 2, -3], [-1, -2, -3], [-1, 2, 3]] # Define three quantum registers: 'f_in' is the search space (input # to the function f), 'f_out' is bit used for the output of function # f, aux are the auxiliary bits used by f to perform its # computation. f_in = QuantumRegister(n) f_out = QuantumRegister(1) aux = QuantumRegister(len(exactly_1_3_sat_formula) + 1) # Define classical register for algorithm result ans = ClassicalRegister(n) # Define quantum circuit with above registers grover = QuantumCircuit() grover.add_register(f_in) grover.add_register(f_out) grover.add_register(aux) grover.add_register(ans) input_state(grover, f_in, f_out, n) T = 2 for t in range(T): # Apply T full iterations black_box_u_f(grover, f_in, f_out, aux, n, exactly_1_3_sat_formula) inversion_about_average(grover, f_in, n) # Measure the output register in the computational basis for j in range(n): grover.measure(f_in[j], ans[j]) # Execute circuit backend = BasicAer.get_backend('qasm_simulator') job = execute([grover], backend=backend, shots=1000) result = job.result() # Get counts and plot histogram counts = result.get_counts(grover) plot_histogram(counts) IBMQ.load_account() # get ibmq_16_melbourne configuration and coupling map backend = IBMQ.get_backend('ibmq_16_melbourne') # compile the circuit for ibmq_16_rueschlikon grover_compiled = transpile(grover, backend=backend, seed_transpiler=1, optimization_level=3) print('gates = ', grover_compiled.count_ops()) print('depth = ', grover_compiled.depth()) grover.draw(output='mpl', scale=0.5)
https://github.com/mnp-club/Quantum_Computing_Workshop_2020
mnp-club
from qiskit import * from qiskit.compiler import * from qiskit.tools.jupyter import * from qiskit.visualization import * import matplotlib.pyplot as plotter import numpy as np from IPython.display import display, Math, Latex %matplotlib inline # Loading your IBM Q account(s) provider = IBMQ.load_account() qc1=QuantumCircuit(2) qc1.h(0) qc1.h(1) qc1.barrier() #The part between the barriers is our oracle qc1.cz(0,1) #We are using a controlled-Z gate which flips the sign of the second qubit when both qubits are set to '1' qc1.barrier() qc1.draw('mpl') def final_vector(qc): backend = Aer.get_backend('statevector_simulator') job = execute(qc, backend) result = job.result() outputstate = result.get_statevector(qc, decimals=3) return outputstate print(final_vector(qc1)) #We can see that the desired state has been obtained qc2=QuantumCircuit(3) qc2.h(0) qc2.h(1) qc2.h(2) qc2.barrier() #The part between the barriers is our oracle qc2.x(0) qc2.h(1) qc2.x(2) qc2.ccx(0, 2, 1) qc2.x(0) qc2.h(1) qc2.x(2) qc2.barrier() qc2.draw('mpl') def final_vector(qc): backend = Aer.get_backend('statevector_simulator') job = execute(qc, backend) result = job.result() outputstate = result.get_statevector(qc, decimals=3) return outputstate print(final_vector(qc2)) def ccz_gate(qc,a,b,c): qc.h(c) qc.ccx(a,b,c) qc.h(c) #Let's create an oracle which will mark the states 101 and 110 #(This particular oracle won't be using ancilla qubits) def phase_oracle(circuit): circuit.cz(0, 2) circuit.cz(0, 1) n=3 qc2=QuantumCircuit(n,n) for i in range(0,n): qc2.h(i) qc2.barrier([0,1,2]) #This creates a superposition of all states #We will now perform the Grover iteration phase_oracle(qc2) qc2.barrier([0,1,2]) for i in range(0,n): qc2.h(i) #Performing a conditional phase shift qc2.x(0) qc2.x(1) qc2.x(2) ccz_gate(qc2,0,1,2) qc2.x(0) qc2.x(1) qc2.x(2) for i in range(0,n): qc2.h(i) #The Grover iteration is now complete qc2.barrier([0,1,2]) qc2.draw('mpl') qc2.measure(0,0) qc2.measure(1,1) qc2.measure(2,2) qc2.draw('mpl') def counts_circ(circ): backend_sim = Aer.get_backend('qasm_simulator') job_sim = execute(circ, backend_sim, shots=2000) result_sim = job_sim.result() counts = result_sim.get_counts(circ) return(counts) plot_histogram(counts_circ(qc2)) qc_mct=QuantumCircuit(5,5) for i in range(0,4): qc_mct.x(i) qc_mct.mct([0,1,2,3],4) qc_mct.draw('mpl') qc_mct.measure(0,0) qc_mct.measure(1,1) qc_mct.measure(2,2) qc_mct.measure(3,3) qc_mct.measure(4,4) plot_histogram(counts_circ(qc_mct)) def c3z_gate(qc, a, b, c, d): qc.h(d) qc.mct([a, b, c], d) qc.h(d) def phase_oracle(qc): qc.x(1) qc.x(3) c3z_gate(qc, 0, 1, 2, 3) # Handles 1010 qc.x(2) c3z_gate(qc, 0, 1, 2, 3) # Handles 1000 qc.x(3) c3z_gate(qc, 0, 1, 2, 3) # Handles 1001 qc.x(2) qc.x(0) qc.x(3) c3z_gate(qc, 0, 1, 2, 3) # Handles 0010 qc.x(0) qc.x(1) qc.x(3) n = 4 qc3 = QuantumCircuit(n, n) for i in range(0,n): qc3.h(i) qc3.barrier([0, 1, 2, 3]) phase_oracle(qc3) qc3.barrier([0, 1, 2, 3]) for i in range(0,n): qc3.h(i) qc3.x(0) qc3.x(1) qc3.x(2) qc3.x(3) c3z_gate(qc3, 0, 1, 2, 3) qc3.x(0) qc3.x(1) qc3.x(2) qc3.x(3) for i in range(0,n): qc3.h(i) qc3.barrier([0, 1, 2, 3]) qc3.measure(0, 0) qc3.measure(1, 1) qc3.measure(2, 2) qc3.measure(3, 3) qc3.draw('mpl') def counts_circ(circ): backend_sim = Aer.get_backend('qasm_simulator') job_sim = execute(circ, backend_sim, shots=2000) result_sim = job_sim.result() counts = result_sim.get_counts(circ) return(counts) plot_histogram(counts_circ(qc3))
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Disassemble function for a qobj into a list of circuits and its config""" from typing import Any, Dict, List, NewType, Tuple, Union import collections import math from qiskit import pulse from qiskit.circuit.classicalregister import ClassicalRegister from qiskit.circuit.instruction import Instruction from qiskit.circuit.quantumcircuit import QuantumCircuit from qiskit.circuit.quantumregister import QuantumRegister from qiskit.qobj import PulseQobjInstruction from qiskit.qobj.converters import QobjToInstructionConverter # A ``CircuitModule`` is a representation of a circuit execution on the backend. # It is currently a list of quantum circuits to execute, a run Qobj dictionary # and a header dictionary. CircuitModule = NewType( "CircuitModule", Tuple[List[QuantumCircuit], Dict[str, Any], Dict[str, Any]] ) # A ``PulseModule`` is a representation of a pulse execution on the backend. # It is currently a list of pulse schedules to execute, a run Qobj dictionary # and a header dictionary. PulseModule = NewType("PulseModule", Tuple[List[pulse.Schedule], Dict[str, Any], Dict[str, Any]]) def disassemble(qobj) -> Union[CircuitModule, PulseModule]: """Disassemble a qobj and return the circuits or pulse schedules, run_config, and user header. .. note:: ``disassemble(assemble(qc))`` is not guaranteed to produce an exactly equal circuit to the input, due to limitations in the :obj:`.QasmQobj` format that need to be maintained for backend system compatibility. This is most likely to be the case when using newer features of :obj:`.QuantumCircuit`. In most cases, the output should be equivalent, if not quite equal. Args: qobj (Qobj): The input qobj object to disassemble Returns: Union[CircuitModule, PulseModule]: The disassembled program which consists of: * programs: A list of quantum circuits or pulse schedules * run_config: The dict of the run config * user_qobj_header: The dict of any user headers in the qobj Examples: .. code-block:: python from qiskit.circuit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.compiler.assembler import assemble from qiskit.assembler.disassemble import disassemble # Create a circuit to assemble into a qobj q = QuantumRegister(2) c = ClassicalRegister(2) qc = QuantumCircuit(q, c) qc.h(q[0]) qc.cx(q[0], q[1]) qc.measure(q, c) # Assemble the circuit into a Qobj qobj = assemble(qc, shots=2000, memory=True) # Disassemble the qobj back into a circuit circuits, run_config_out, headers = disassemble(qobj) """ if qobj.type == "PULSE": return _disassemble_pulse_schedule(qobj) else: return _disassemble_circuit(qobj) def _disassemble_circuit(qobj) -> CircuitModule: run_config = qobj.config.to_dict() # convert lo freq back to Hz qubit_lo_freq = run_config.get("qubit_lo_freq", []) if qubit_lo_freq: run_config["qubit_lo_freq"] = [freq * 1e9 for freq in qubit_lo_freq] meas_lo_freq = run_config.get("meas_lo_freq", []) if meas_lo_freq: run_config["meas_lo_freq"] = [freq * 1e9 for freq in meas_lo_freq] user_qobj_header = qobj.header.to_dict() return CircuitModule((_experiments_to_circuits(qobj), run_config, user_qobj_header)) def _qobj_to_circuit_cals(qobj, pulse_lib): """Return circuit calibrations dictionary from qobj/exp config calibrations.""" qobj_cals = qobj.config.calibrations.to_dict()["gates"] converter = QobjToInstructionConverter(pulse_lib) qc_cals = {} for gate in qobj_cals: config = (tuple(gate["qubits"]), tuple(gate["params"])) cal = { config: pulse.Schedule( name="{} {} {}".format(gate["name"], str(gate["params"]), str(gate["qubits"])) ) } for instruction in gate["instructions"]: qobj_instruction = PulseQobjInstruction.from_dict(instruction) schedule = converter(qobj_instruction) cal[config] = cal[config].insert(schedule.ch_start_time(), schedule) if gate["name"] in qc_cals: qc_cals[gate["name"]].update(cal) else: qc_cals[gate["name"]] = cal return qc_cals def _experiments_to_circuits(qobj): """Return a list of QuantumCircuit object(s) from a qobj. Args: qobj (Qobj): The Qobj object to convert to QuantumCircuits Returns: list: A list of QuantumCircuit objects from the qobj """ if not qobj.experiments: return None circuits = [] for exp in qobj.experiments: quantum_registers = [QuantumRegister(i[1], name=i[0]) for i in exp.header.qreg_sizes] classical_registers = [ClassicalRegister(i[1], name=i[0]) for i in exp.header.creg_sizes] circuit = QuantumCircuit(*quantum_registers, *classical_registers, name=exp.header.name) qreg_dict = collections.OrderedDict() creg_dict = collections.OrderedDict() for reg in quantum_registers: qreg_dict[reg.name] = reg for reg in classical_registers: creg_dict[reg.name] = reg conditional = {} for i in exp.instructions: name = i.name qubits = [] params = getattr(i, "params", []) try: for qubit in i.qubits: qubit_label = exp.header.qubit_labels[qubit] qubits.append(qreg_dict[qubit_label[0]][qubit_label[1]]) except Exception: # pylint: disable=broad-except pass clbits = [] try: for clbit in i.memory: clbit_label = exp.header.clbit_labels[clbit] clbits.append(creg_dict[clbit_label[0]][clbit_label[1]]) except Exception: # pylint: disable=broad-except pass if hasattr(circuit, name): instr_method = getattr(circuit, name) if i.name in ["snapshot"]: _inst = instr_method( i.label, snapshot_type=i.snapshot_type, qubits=qubits, params=params ) elif i.name == "initialize": _inst = instr_method(params, qubits) elif i.name == "isometry": _inst = instr_method(*params, qubits, clbits) elif i.name in ["mcx", "mcu1", "mcp"]: _inst = instr_method(*params, qubits[:-1], qubits[-1], *clbits) else: _inst = instr_method(*params, *qubits, *clbits) elif name == "bfunc": conditional["value"] = int(i.val, 16) full_bit_size = sum(creg_dict[x].size for x in creg_dict) mask_map = {} raw_map = {} raw = [] for creg in creg_dict: size = creg_dict[creg].size reg_raw = [1] * size if not raw: raw = reg_raw else: for pos, val in enumerate(raw): if val == 1: raw[pos] = 0 raw = reg_raw + raw mask = [0] * (full_bit_size - len(raw)) + raw raw_map[creg] = mask mask_map[int("".join(str(x) for x in mask), 2)] = creg if bin(int(i.mask, 16)).count("1") == 1: # The condition is on a single bit. This might be a single-bit condition, or it # might be a register of length one. The case that it's a single-bit condition # in a register of length one is ambiguous, and we choose to return a condition # on the register. This may not match the input circuit exactly, but is at # least equivalent. cbit = int(math.log2(int(i.mask, 16))) for reg in creg_dict.values(): size = reg.size if cbit >= size: cbit -= size else: conditional["register"] = reg if reg.size == 1 else reg[cbit] break mask_str = bin(int(i.mask, 16))[2:].zfill(full_bit_size) mask = [int(item) for item in list(mask_str)] else: creg = mask_map[int(i.mask, 16)] conditional["register"] = creg_dict[creg] mask = raw_map[creg] val = int(i.val, 16) for j in reversed(mask): if j == 0: val = val >> 1 else: conditional["value"] = val break else: _inst = temp_opaque_instruction = Instruction( name=name, num_qubits=len(qubits), num_clbits=len(clbits), params=params ) circuit.append(temp_opaque_instruction, qubits, clbits) if conditional and name != "bfunc": _inst.c_if(conditional["register"], conditional["value"]) conditional = {} pulse_lib = qobj.config.pulse_library if hasattr(qobj.config, "pulse_library") else [] # The dict update method did not work here; could investigate in the future if hasattr(qobj.config, "calibrations"): circuit.calibrations = dict( **circuit.calibrations, **_qobj_to_circuit_cals(qobj, pulse_lib) ) if hasattr(exp.config, "calibrations"): circuit.calibrations = dict( **circuit.calibrations, **_qobj_to_circuit_cals(exp, pulse_lib) ) circuits.append(circuit) return circuits def _disassemble_pulse_schedule(qobj) -> PulseModule: run_config = qobj.config.to_dict() run_config.pop("pulse_library") qubit_lo_freq = run_config.get("qubit_lo_freq") if qubit_lo_freq: run_config["qubit_lo_freq"] = [freq * 1e9 for freq in qubit_lo_freq] meas_lo_freq = run_config.get("meas_lo_freq") if meas_lo_freq: run_config["meas_lo_freq"] = [freq * 1e9 for freq in meas_lo_freq] user_qobj_header = qobj.header.to_dict() # extract schedule lo settings schedule_los = [] for program in qobj.experiments: program_los = {} if hasattr(program, "config"): if hasattr(program.config, "qubit_lo_freq"): for i, lo in enumerate(program.config.qubit_lo_freq): program_los[pulse.DriveChannel(i)] = lo * 1e9 if hasattr(program.config, "meas_lo_freq"): for i, lo in enumerate(program.config.meas_lo_freq): program_los[pulse.MeasureChannel(i)] = lo * 1e9 schedule_los.append(program_los) if any(schedule_los): run_config["schedule_los"] = schedule_los return PulseModule((_experiments_to_schedules(qobj), run_config, user_qobj_header)) def _experiments_to_schedules(qobj) -> List[pulse.Schedule]: """Return a list of :class:`qiskit.pulse.Schedule` object(s) from a qobj. Args: qobj (Qobj): The Qobj object to convert to pulse schedules. Returns: A list of :class:`qiskit.pulse.Schedule` objects from the qobj Raises: pulse.PulseError: If a parameterized instruction is supplied. """ converter = QobjToInstructionConverter(qobj.config.pulse_library) schedules = [] for program in qobj.experiments: insts = [] for inst in program.instructions: insts.append(converter(inst)) schedule = pulse.Schedule(*insts) schedules.append(schedule) return schedules
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver() problem = driver.run() fermionic_op = problem.hamiltonian.second_q_op() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() qubit_jw_op = mapper.map(fermionic_op) print(qubit_jw_op) from qiskit_nature.second_q.mappers import ParityMapper mapper = ParityMapper() qubit_p_op = mapper.map(fermionic_op) print(qubit_p_op) mapper = ParityMapper(num_particles=problem.num_particles) qubit_op = mapper.map(fermionic_op) print(qubit_op) tapered_mapper = problem.get_tapered_mapper(mapper) print(type(tapered_mapper)) qubit_op = tapered_mapper.map(fermionic_op) print(qubit_op) from qiskit_nature.second_q.circuit.library import HartreeFock hf_state = HartreeFock(2, (1, 1), JordanWignerMapper()) hf_state.draw() from qiskit_nature.second_q.mappers import InterleavedQubitMapper interleaved_mapper = InterleavedQubitMapper(JordanWignerMapper()) hf_state = HartreeFock(2, (1, 1), interleaved_mapper) hf_state.draw() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister # Build a quantum circuit circuit = QuantumCircuit(3, 3) circuit.x(1) circuit.h(range(3)) circuit.cx(0, 1) circuit.measure(range(3), range(3)); print(circuit) circuit.draw() # Matplotlib Drawing circuit.draw(output='mpl') # Draw a new circuit with barriers and more registers q_a = QuantumRegister(3, name='qa') q_b = QuantumRegister(5, name='qb') c_a = ClassicalRegister(3) c_b = ClassicalRegister(5) circuit = QuantumCircuit(q_a, q_b, c_a, c_b) circuit.x(q_a[1]) circuit.x(q_b[1]) circuit.x(q_b[2]) circuit.x(q_b[4]) circuit.barrier() circuit.h(q_a) circuit.barrier(q_a) circuit.h(q_b) circuit.cswap(q_b[0], q_b[1], q_b[2]) circuit.cswap(q_b[2], q_b[3], q_b[4]) circuit.cswap(q_b[3], q_b[4], q_b[0]) circuit.barrier(q_b) circuit.measure(q_a, c_a) circuit.measure(q_b, c_b); # Draw the circuit circuit.draw(output='mpl') # Draw the circuit with reversed bit order circuit.draw(output='mpl', reverse_bits=True) # Draw the circuit without barriers circuit.draw(output='mpl', plot_barriers=False) # Draw the circuit without barriers and reverse bit order circuit.draw(output='mpl', plot_barriers=False, reverse_bits=True) # Set line length to 80 for above circuit circuit.draw(output='text') # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} circuit.draw(output='mpl', style=style) # Scale the mpl output to 1/2 the normal size circuit.draw(output='mpl', scale=0.5) from qiskit.tools.visualization import circuit_drawer circuit_drawer(circuit, output='mpl', plot_barriers=False) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/Qiskit/feedback
Qiskit
from trebugger import TreBugger from qiskit.circuit.random import random_circuit from qiskit.test.mock import FakeCasablanca from qiskit import transpile rc = random_circuit(num_qubits = 5, depth = 10) casb = FakeCasablanca() trb = TreBugger() trb.debug(rc,casb,1) circs = [] for depth in range(5,40,5): circs.append(random_circuit(num_qubits = 7, depth = depth, seed = depth)) circs[0].draw('mpl',scale = 0.4) import time trb = TreBugger() depths = [] trb_times, transpile_times = [], [] for i in range(len(circs)): circuit = circs[i] t_times, tb_times = 0, 0 # do 5 experiments for i in range(5): t1 = time.time() transpile(circuits = circuit, backend = casb, optimization_level = 1, seed_transpiler = 412) t2 = time.time() t_times+= round(t2-t1,3) t1 = time.time() trb.debug(circuit, casb, 1,seed = 412, disp = False) t2 = time.time() tb_times += round((t2-t1),3) transpile_times.append(round(t_times/5,4)) trb_times.append(round(tb_times/5,4)) depths.append(circuit.depth()) import matplotlib.pyplot as plt plt.figure(figsize = (9,8)) plt.title("Execution times for variable depth circuits with opt_level = 1") plt.xlabel("Depths", fontsize = 15) plt.ylabel("Execution time (sec)", fontsize = 15) plt.plot(depths, trb_times, marker = 's', color = 'cyan', alpha = 0.6, label = 'Trebugger time') plt.plot(depths, transpile_times, marker = 's', color = 'orange', alpha = 0.6, label = 'Transpiler time') plt.legend() plt.grid() plt.savefig("Varied Depth opt-level1.png", dpi = 250) from qiskit import Aer backend = Aer.get_backend('qasm_simulator') circs = [] for q in range(5,25,2): circs.append(random_circuit(num_qubits = q, depth = 30, seed = q)) circs[0].draw('mpl',scale = 0.4) import time trb = TreBugger() qubits = [] trb_times_q, transpile_times_q = [], [] for i in range(len(circs)): circuit = circs[i] q = len(circuit.qubits) t_times, tr_times = 0,0 for i in range(5): # transpile t1 = time.time() transpile(circuits = circuit, backend = backend, optimization_level = 1, seed_transpiler = q) t2 = time.time() t_times += round(t2-t1,3) # debug t1 = time.time() trb.debug(circuit, backend, 1,seed = q, disp = False) t2 = time.time() tr_times += round(t2-t1,3) transpile_times_q.append(round(t_times/5,3)) trb_times_q.append(round(tr_times/5,3)) qubits.append(q) import matplotlib.pyplot as plt plt.figure(figsize = (9,8)) plt.title("Execution times for variable qubit circuits with opt_level = 1") plt.xlabel("Qubits", fontsize = 15) plt.ylabel("Execution time (sec)", fontsize = 15) plt.plot(qubits, trb_times_q, marker = 's', color = 'red', alpha = 0.6, label = 'Trebugger time') plt.plot(qubits, transpile_times_q, marker = 's', color = 'grey', alpha = 0.6, label = 'Transpiler time') plt.legend() plt.grid() plt.savefig("Varied qubits depth 30.png", dpi = 200)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse d0 = pulse.DriveChannel(0) x90 = pulse.Gaussian(10, 0.1, 3) x180 = pulse.Gaussian(10, 0.2, 3) with pulse.build() as hahn_echo: with pulse.align_equispaced(duration=100): pulse.play(x90, d0) pulse.play(x180, d0) pulse.play(x90, d0) hahn_echo.draw()
https://github.com/mcoggins96/Quantum-Computing-UK-Repository
mcoggins96
from qiskit import QuantumRegister from qiskit import QuantumRegister, ClassicalRegister from qiskit import QuantumCircuit, execute,IBMQ from qiskit.tools.monitor import job_monitor print('\nPhase Flip Code') print('----------------') IBMQ.enable_account('ENTER API KEY HERE') provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_qasm_simulator') q = QuantumRegister(3,'q') c = ClassicalRegister(1,'c') circuit = QuantumCircuit(q,c) circuit.cx(q[0],q[1]) circuit.cx(q[0],q[2]) circuit.h(q[0]) circuit.h(q[1]) circuit.h(q[2]) circuit.z(q[0]) #Add this to simulate a phase flip error circuit.h(q[0]) circuit.h(q[1]) circuit.h(q[2]) circuit.cx(q[0],q[1]) circuit.cx(q[0],q[2]) circuit.ccx(q[2],q[1],q[0]) circuit.measure(q[0],c[0]) job = execute(circuit, backend, shots=1000) job_monitor(job) counts = job.result().get_counts() print("\nPhase flip code with error") print("----------------------") print(counts) input()
https://github.com/samabwhite/Grover-Search-Implementation
samabwhite
from qiskit import QuantumCircuit from qiskit.tools.visualization import circuit_drawer import numpy as np from matplotlib import pyplot as plt n=5 qc = QuantumCircuit(n) qc.x(1) qc.ccx(0, 1, 3) qc.ccx(2, 3, 4) qc.ccx(0, 1, 3) qc.x(1) qc.draw('mpl') def phase_oracle(n, name = 'Uf'): qc = QuantumCircuit(n, name = name) qc.x(1) qc.ccx(0, 1, 3) qc.ccx(2, 3, 4) qc.ccx(0, 1, 3) qc.x(1) return qc n=5 qc = QuantumCircuit(n) for i in range(n-2): qc.x(i) qc.ccx(0, 1, 3) qc.ccx(2, 3, 4) qc.ccx(0, 1, 3) for i in range(n-2): qc.x(i) qc.draw('mpl') def diffuser(n, name= 'V'): qc = QuantumCircuit(n, name =name) for qb in range(n-2): # First layer of Hadamards in diffuser qc.h(qb) for i in range(n-2): qc.x(i) qc.ccx(0, 1, 3) qc.ccx(2, 3, 4) qc.ccx(0, 1, 3) for i in range(n-2): qc.x(i) for qb in range(n-2): # Second layer of Hadamards in diffuser qc.h(qb) return qc n=5 gr = QuantumCircuit(n, n-2) mu = 1 #number of solutions r = int(np.floor(np.pi/4*np.sqrt(2**(n-2)/mu))) #determine r print('r = ',r) gr.h(range(n-2)) #step1: apply Hadamard gates on all working qubits #put ancilla in state |-> gr.x(n-1) gr.h(n-1) #step 2: apply r rounds of the phase oracle and the diffuser for j in range(r): gr.append(phase_oracle(n), range(n)) gr.append(diffuser(n), range(n)) gr.measure(range(n-2), range(n-2)) #step 3: measure all qubits gr.draw('mpl') from qiskit import BasicAer, Aer, execute, IBMQ from qiskit.visualization import plot_histogram simulator = Aer.get_backend('qasm_simulator') result = execute(gr, backend = simulator, shots = 1024).result() counts = result.get_counts() plot_histogram(counts) from qiskit import IBMQ IBMQ.save_account('e19ab1a54fb68a1937a725b48b02eafb8af0db9189107e78762686e5bf12dff5642e1597470d966ea9d2e121cc86f4a0f08bea5d5e760de66c7be7be04fd2974') IBMQ.load_account() provider = IBMQ.get_provider(hub = 'ibm-q') device = provider.get_backend('ibmq_qasm_simulator') job = execute(gr, backend=device, shots=1024) print(job.job_id()) from qiskit.tools.monitor import job_monitor job_monitor(job) device_result = job.result() plot_histogram(device_result.get_counts(gr))
https://github.com/qclib/qclib
qclib
# Copyright 2021 qclib project. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test qclib.gate.mcg """ from unittest import TestCase import numpy as np from scipy.stats import unitary_group from qiskit import QuantumCircuit from qiskit.quantum_info import Operator from qclib.util import get_cnot_count, get_depth from qclib.gates.mcg import Mcg # pylint: disable=maybe-no-member # pylint: disable=missing-function-docstring # pylint: disable=missing-class-docstring class TestMcg(TestCase): """ Testing qclib.gate.mcg """ def _build_su2_circuit(self, alpha, beta, n_qubits): length = np.linalg.norm([alpha, beta]) su2 = np.array([ [alpha, -np.conj(beta)], [beta, np.conj(alpha)] ]) / length return self._build_circuit(su2, n_qubits) def _build_circuit(self, unitary, n_qubits): mcg_circuit = QuantumCircuit(n_qubits) qiskit_circuit = QuantumCircuit(1) if n_qubits > 1: controls = list(range(n_qubits - 1)) target = n_qubits - 1 ctrl_state = f"{np.random.randint(2**(n_qubits - 1)):0{n_qubits - 1}b}" mcg_circuit = Mcg(unitary, len(controls), ctrl_state=ctrl_state).definition qiskit_circuit.unitary(unitary, 0) qiskit_circuit = qiskit_circuit.control( num_ctrl_qubits=n_qubits - 1, ctrl_state=ctrl_state ) else: mcg_circuit = Mcg(unitary, 0).definition qiskit_circuit.unitary(unitary, 0) return mcg_circuit, qiskit_circuit def _su2_count(self, alpha, beta, n_qubits): mcg_circuit, qiskit_circuit = self._build_su2_circuit(alpha, beta, n_qubits) # Count cnots mcg_cx = get_cnot_count(mcg_circuit) qiskit_cx = get_cnot_count(qiskit_circuit) self.assertTrue(mcg_cx <= qiskit_cx) def _su2_depth(self, alpha, beta, n_qubits): mcg_circuit, qiskit_circuit = self._build_su2_circuit(alpha, beta, n_qubits) # Count cnots mcg_dp = get_depth(mcg_circuit) qiskit_dp = get_depth(qiskit_circuit) self.assertTrue(mcg_dp <= qiskit_dp) def _su2_compare(self, alpha, beta, n_qubits): mcg_circuit, qiskit_circuit = self._build_su2_circuit(alpha, beta, n_qubits) # Compare mcg_op = Operator(mcg_circuit).data qiskit_op = Operator(qiskit_circuit).data self.assertTrue(np.allclose(mcg_op, qiskit_op)) def _u2_count(self, unitary, n_qubits): mcg_circuit, qiskit_circuit = self._build_circuit(unitary, n_qubits) # Count cnots mcg_cx = get_cnot_count(mcg_circuit) ''' Exact number of CNOTs for the Linear U(2) Decomposition as described in "Linear-depth quantum circuits for multiqubit controlled gates" https://arxiv.org/abs/2203.11882 4n^2 - 12n + 10 ''' estimate = 4*n_qubits**2 - 12*n_qubits + 10 self.assertTrue(mcg_cx <= estimate) def _u2_compare(self, unitary, n_qubits): mcg_circuit, qiskit_circuit = self._build_circuit(unitary, n_qubits) # Compare mcg_op = Operator(mcg_circuit).data qiskit_op = Operator(qiskit_circuit).data self.assertTrue(np.allclose(mcg_op, qiskit_op)) def test_su2_sec_diag_real(self): alpha = np.random.rand() + 1.j * np.random.rand() beta = np.random.rand() for n_qubits in range(1, 8): self._su2_compare(alpha, beta, n_qubits) self._su2_count(alpha, beta, n_qubits) def test_su2_pri_diag_real(self): alpha = np.random.rand() beta = np.random.rand() + 1.j * np.random.rand() for n_qubits in range(1, 8): self._su2_compare(alpha, beta, n_qubits) self._su2_count(alpha, beta, n_qubits) def test_su2_both_diag_real(self): alpha = np.random.rand() beta = np.random.rand() for n_qubits in range(1, 8): self._su2_compare(alpha, beta, n_qubits) self._su2_count(alpha, beta, n_qubits) def test_su2_both_diag_complex(self): alpha = np.random.rand() + 1.j * np.random.rand() beta = np.random.rand() + 1.j * np.random.rand() for n_qubits in range(1, 8): self._su2_compare(alpha, beta, n_qubits) self._su2_count(alpha, beta, n_qubits) #self._su2_depth(alpha, beta, n_qubits) def test_u2(self): unitary = unitary_group.rvs(2) for n_qubits in range(1, 8): self._u2_compare(unitary, n_qubits) for n_qubits in range(1, 10): self._u2_count(unitary, n_qubits)
https://github.com/theflyingrahul/qiskitsummerschool2020
theflyingrahul
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/hugoecarl/TSP-Problem-Study
hugoecarl
import math import matplotlib.pyplot as plt %matplotlib inline class TSP: def __init__(self): self.flat_mat = flat_mat self.n = 0 self.melhor_dist = 1e11 self.pontos = [] self.melhores_pontos = [] def busca_exaustiva(self, flat_mat, n, ite): if ite == n: dist = 0 for j in range(1, n): dist += flat_mat[self.pontos[j-1] * n + self.pontos[j]] dist += flat_mat[self.pontos[n-1] * n + self.pontos[0]] if dist < self.melhor_dist: self.melhor_dist = dist self.melhores_pontos = self.pontos[:] return for i in range(n): if self.pontos[i] == -1: self.pontos[i] = ite self.busca_exaustiva(flat_mat, n, ite + 1) self.pontos[i] = -1 def dist_mat(self): x = [] y = [] flat_mat = [] #matriz 1 dimensao contendo todas as distancias possiveis entre os pontos para facilitar cálculo. while True: try: temp = input("Digite a coordenada x y: ").split() x.append(float(temp[0])) y.append(float(temp[1])) except: break for i in range(len(x)): for j in range(len(y)): flat_mat.append(math.sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2)) return flat_mat, x, y def get_results(self): self.flat_mat, x, _ = self.dist_mat() self.n = len(x) self.pontos = [-1]*self.n self.pontos[0] = 0 self.busca_exaustiva(self.flat_mat, self.n, 1) return self.melhor_dist, self.melhores_pontos Tsp = TSP() distancia, pontos = Tsp.get_results() print("Melhor distancia encontrada: ", distancia) print("Melhor caminho encontrado: ", pontos) #plota gráfico def connectpoints(x,y,p1,p2): x1, x2 = x[p1], x[p2] y1, y2 = y[p1], y[p2] plt.plot([x1,x2],[y1,y2],'ro-') for i in range(1, len(pontos)): connectpoints(x,y,pontos[i-1],pontos[i]) connectpoints(x,y,pontos[len(x)-1],pontos[0]) plt.title("Percurso") plt.show() %%time %%cmd python TSP.py < in-1.txt type out-1.txt python TSP.py < in-2.txt type out-2.txt python TSP.py < in-3.txt type out-3.txt python TSP.py < in-4.txt type out-4.txt from qiskit import IBMQ import numpy as np #IBMQ.save_account('seu-tokenIBMQ-para-rodar-localmente') IBMQ.load_account() from qiskit import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit.optimization.applications.ising import max_cut, tsp from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import SPSA from qiskit.aqua import aqua_globals from qiskit.aqua import QuantumInstance from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.optimization.algorithms import MinimumEigenOptimizer from qiskit.optimization.problems import QuadraticProgram import logging from qiskit.aqua import set_qiskit_aqua_logging #Preparando os dados segundo os imputs do usuario para serem resolvidos pelo qiskit max 4 pontos por limitação de qubits coord = [] flat_mat, x, y = TSP().dist_mat() dist_mat = np.array(flat_mat).reshape(len(x),len(x)) for i, j in zip(x, y): coord.append([i,j]) ins = tsp.TspData('TSP_Q', dim=len(x), coord=np.array(coord), w=dist_mat) qubitOp, offset = tsp.get_operator(ins) print('Offset:', offset) print('Ising Hamiltonian:') print(qubitOp.print_details()) #Usando o numpyMinimumEigensolver como o solver do problema para resolver de forma quantica ee = NumPyMinimumEigensolver(qubitOp) result = ee.run() print('energy:', result.eigenvalue.real) print('tsp objective:', result.eigenvalue.real + offset) x_Q = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w)) for i in range(1, len(z)): connectpoints(x,y,z[i-1],z[i]) connectpoints(x,y,z[len(x)-1],z[0]) plt.title("Percurso") plt.show() #instanciando o simulador ou o computador real importante lembrar que nao ira funcionar para mais de 4 pontos pelo numero de qubits disponibilizados pela IBM que sao apenas 16 para o simulador qasm e 15 para a maquina quantica provider = IBMQ.get_provider(hub = 'ibm-q') device = provider.get_backend('ibmq_16_melbourne') aqua_globals.random_seed = np.random.default_rng(123) seed = 10598 backend = Aer.get_backend('qasm_simulator') #descomentar essa linha caso queira rodar na maquina real #backend = device quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed) #rodando no simulador quantico spsa = SPSA(maxiter=10) ry = TwoLocal(qubitOp.num_qubits, 'ry', 'cz', reps=5, entanglement='linear') vqe = VQE(qubitOp, ry, spsa, quantum_instance=quantum_instance) result = vqe.run(quantum_instance) print('energy:', result.eigenvalue.real) print('time:', result.optimizer_time) x = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w))
https://github.com/ukzncqt/QC_Tuts
ukzncqt
!pip install qiskit from qiskit import BasicAer from qiskit import QuantumRegister ,ClassicalRegister ,QuantumCircuit ,execute from qiskit.tools.visualization import plot_histogram ,circuit_drawer from numpy import pi qr = QuantumRegister(3) cr = ClassicalRegister(3) qc = QuantumCircuit(qr,cr) qc.u3(pi/7,13*pi/4,0,qr[0]) qc.h(qr[1]) qc.cx(qr[1],qr[2]) qc.cx(qr[0],qr[1]) qc.h(qr[0]) qc.cx(qr[1],qr[2]) qc.cz(qr[0],qr[2]) qc.barrier() qc.measure(qr,cr) qc.draw() backend = BasicAer.get_backend("qasm_simulator") job = execute(qc,backend = backend, shots = 8192) res = job.result() counts1 = res.get_counts() counts1 plot_histogram(counts1) backend1 = BasicAer.get_backend("statevector_simulator") qr = QuantumRegister(1) qc = QuantumCircuit(qr,cr) qc.u3(pi/7,13*pi/4,0,qr[0]) job = execute(qc,backend=backend1) res = job.result() message = res.get_statevector(qc,decimals=3) message from numpy import abs prob0=(abs(message[0]))**2 prob0 prob1=(abs(message[1]))**2 prob1 prob_bob_0=0.232+0.245+0.238+0.237 prob_bob_0 prob_bob_1=0.013+0.012+0.012+0.011 prob_bob_1
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# You can show the phase of each state and use # degrees instead of radians from qiskit.quantum_info import DensityMatrix import numpy as np from qiskit import QuantumCircuit from qiskit.visualization import plot_state_qsphere qc = QuantumCircuit(2) qc.h([0, 1]) qc.cz(0,1) qc.ry(np.pi/3, 0) qc.rx(np.pi/5, 1) qc.z(1) matrix = DensityMatrix(qc) plot_state_qsphere(matrix, show_state_phases = True, use_degrees = True)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_state_qsphere qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) state = Statevector(qc) plot_state_qsphere(state)