repo
stringclasses
885 values
file
stringclasses
741 values
content
stringlengths
4
215k
https://github.com/qiskit-community/qiskit-dell-runtime
qiskit-community
# This code is part of qiskit-runtime. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name import itertools import json import numpy as np from numpy.random import RandomState from qiskit import QuantumCircuit, QuantumRegister from qiskit.compiler import transpile from cvxopt import matrix, solvers # pylint: disable=import-error from qtils.featuremap import FeatureMap from qtils.qka import QKA import os import pandas as pd def main(backend, user_messenger, **kwargs): df = pd.read_csv(os.path.dirname(os.path.abspath(__file__)) + '/aux_file/dataset_graph7.csv',sep=',', header=None) # alterative problem: dataset_graph10.csv data = df.values # choose number of training and test samples per class: num_train = 10 num_test = 10 # extract training and test sets and sort them by class label train = data[:2*num_train, :] test = data[2*num_train:2*(num_train+num_test), :] ind=np.argsort(train[:,-1]) x_train = train[ind][:,:-1] y_train = train[ind][:,-1] ind=np.argsort(test[:,-1]) x_test = test[ind][:,:-1] y_test = test[ind][:,-1] C = 1 maxiters = 1 initial_point = [0.1] initial_layout = [10, 11, 12, 13, 14, 15, 16] # see figure above for the 7-qubit graph # initial_layout = [9, 8, 11, 14, 16, 19, 22, 25, 24, 23] # see figure above for the 10-qubit graph d = np.shape(data)[1]-1 # feature dimension is twice the qubit number em = [[0,2],[3,4],[2,5],[1,4],[2,3],[4,6]] fm = FeatureMap(feature_dimension=d, entangler_map=em) qka = QKA( feature_map=fm, backend=backend, initial_layout=initial_layout, user_messenger=user_messenger, ) qka_results = qka.align_kernel( data=x_train, labels=y_train, initial_kernel_parameters=initial_point, maxiters=maxiters, C=C, ) user_messenger.publish(qka_results, final=True)
https://github.com/JessicaJohnBritto/Quantum-Computing-and-Information
JessicaJohnBritto
import pennylane as qml from pennylane import numpy as np import matplotlib.pyplot as plt def coefficients_to_values(coefficients): """Returns the value representation of a polynomial Args: coefficients (array[complex]): a 1-D array of complex coefficients of a polynomial with index i representing the i-th degree coefficient Returns: array[complex]: the value representation of the polynomial """ ################## # YOUR CODE HERE # ################## # pass return np.fft.fft(coefficients) A = [4, 3, 2, 1] print(coefficients_to_values(A)) def values_to_coefficients(values): """Returns the coefficient representation of a polynomial Args: values (array[complex]): a 1-D complex array with the value representation of a polynomial Returns: array[complex]: a 1-D complex array of coefficients """ ################## # YOUR CODE HERE # ################## return np.fft.ifft(values) A = [10.+0.j, 2.-2.j, 2.+0.j, 2.+2.j] print(values_to_coefficients(A)) def nearest_power_of_2(x): """Given an integer, return the nearest power of 2. Args: x (int): a positive integer Returns: int: the nearest power of 2 of x """ ################## # YOUR CODE HERE # ################## # k = np.log2(x) k = np.ceil(np.log2(x)) return (2**(int(k))) nearest_power_of_2(7) def fft_multiplication(poly_a, poly_b): """Returns the result of multiplying two polynomials Args: poly_a (array[complex]): 1-D array of coefficients poly_b (array[complex]): 1-D array of coefficients Returns: array[complex]: complex coefficients of the product of the polynomials """ ################## # YOUR CODE HERE # ################## # len(poly_b) = b # len(poly_a) = a b = len(poly_b) # print(b) a = len(poly_a) # print(a) b = b-1 a= a-1 # Calculate the number of values required nn = a + b + 1 # Figure out the nearest power of 2 n = nearest_power_of_2(nn) # print(n) # Pad zeros to the polynomial # if a<n: poly_a = np.pad(poly_a, (0,n-len(poly_a))) # if b<n: poly_b = np.pad(poly_b, (0,n-len(poly_b))) # Convert the polynomials to value representation aa = coefficients_to_values(poly_a) bb = coefficients_to_values(poly_b) # print(a) # print(b) # Multiply m = aa*bb # Convert back to coefficient representation res = values_to_coefficients(m) # final = np.zeros((a+b)) # final = [] # for i in range(a+b): # final[i] = res[i] return res A = np.array([1,1]) B = np.array([1,-1]) fft_multiplication(A, B) dev = qml.device("default.qubit", wires=1) @qml.qnode(dev) def one_qubit_QFT(basis_id): """A circuit that computes the QFT on a single qubit. Args: basis_id (int): An integer value identifying the basis state to construct. Returns: array[complex]: The state of the qubit after applying QFT. """ # Prepare the basis state |basis_id> bits = [int(x) for x in np.binary_repr(basis_id, width=dev.num_wires)] qml.BasisStatePreparation(bits, wires=[0]) ################## # YOUR CODE HERE # ################## qml.Hadamard(wires=0) return qml.state() n_bits = 2 dev = qml.device("default.qubit", wires=n_bits) @qml.qnode(dev) def two_qubit_QFT(basis_id): """A circuit that computes the QFT on two qubits using qml.QubitUnitary. Args: basis_id (int): An integer value identifying the basis state to construct. Returns: array[complex]: The state of the qubits after the QFT operation. """ # Prepare the basis state |basis_id> bits = [int(x) for x in np.binary_repr(basis_id, width=dev.num_wires)] qml.BasisStatePreparation(bits, wires=[0, 1]) ################## # YOUR CODE HERE # ################## U = 0.5*(np.array([[1,1,1,1], [1, complex(0,1), -1, complex(0,-1)], [1, -1, 1, -1], [1, complex(0,-1), -1, complex(0,1)]])) qml.QubitUnitary(U, wires=[0,1]) return qml.state() dev = qml.device("default.qubit", wires=2) @qml.qnode(dev) def decompose_two_qubit_QFT(basis_id): """A circuit that computes the QFT on two qubits using elementary gates. Args: basis_id (int): An integer value identifying the basis state to construct. Returns: array[complex]: The state of the qubits after the QFT operation. """ # Prepare the basis state |basis_id> bits = [int(x) for x in np.binary_repr(basis_id, width=dev.num_wires)] qml.BasisStatePreparation(bits, wires=[0, 1]) ################## # YOUR CODE HERE # ################## qml.Hadamard(wires=0) qml.ctrl(qml.S, control=1)(wires=0) qml.Hadamard(wires=1) qml.SWAP(wires=[0,1]) # pass return qml.state() dev = qml.device("default.qubit", wires=3) @qml.qnode(dev) def three_qubit_QFT(basis_id): """A circuit that computes the QFT on three qubits. Args: basis_id (int): An integer value identifying the basis state to construct. Returns: array[complex]: The state of the qubits after the QFT operation. """ # Prepare the basis state |basis_id> bits = [int(x) for x in np.binary_repr(basis_id, width=dev.num_wires)] qml.BasisStatePreparation(bits, wires=[0, 1, 2]) ################## # YOUR CODE HERE # ################## for i in range(3): # j=i+1 # print("test1") qml.Hadamard(wires=i) for jj in range(i+1,3,1): # print("test2") # k = (1/(2**(jj)))*(np.pi)*(complex(0,1)) # U = np.array([[1,0], [0, np.exp(k)]]) # qml.ctrl(qml.QubitUnitary(U, wires=i), control=jj) # Below lines of code give the same result as the above one k = (1/(2**(jj)))*(np.pi) qml.ctrl(qml.PhaseShift(k, wires=i), control = jj) qml.SWAP(wires=[0,2]) return qml.state() print(qml.draw(three_qubit_QFT)(3)) dev = qml.device('default.qubit', wires=4) def swap_bits(n_qubits): """A circuit that reverses the order of qubits, i.e., performs a SWAP such that [q1, q2, ..., qn] -> [qn, ... q2, q1]. Args: n_qubits (int): An integer value identifying the number of qubits. """ ################## # YOUR CODE HERE # ################## # if n%2==0: # j = for i in range(int(n_qubits/2)): qml.SWAP(wires=[i,n_qubits-1-i]) # pass @qml.qnode(dev) def qft_node(basis_id, n_qubits): # Prepare the basis state |basis_id> bits = [int(x) for x in np.binary_repr(basis_id, width=n_qubits)] qml.BasisStatePreparation(bits, wires=range(n_qubits)) # qft_rotations(n_qubits) swap_bits(n_qubits) return qml.state() dev = qml.device('default.qubit', wires=4) # @qml.qnode(dev) def qft_rotations(n_qubits): """A circuit performs the QFT rotations on the specified qubits. Args: n_qubits (int): An integer value identifying the number of qubits. """ ################## # YOUR CODE HERE # ################## n = n_qubits for i in range(n): # j=i+1 # print("test1") qml.Hadamard(wires=i) for jj in range(i+1,n,1): # print("test2") qml.ControlledPhaseShift(np.pi/(2**(jj-i)), wires=[jj,i]) pass @qml.qnode(dev) def qft_node(basis_id, n_qubits): # Prepare the basis state |basis_id> bits = [int(x) for x in np.binary_repr(basis_id, width=n_qubits)] qml.BasisStatePreparation(bits, wires=range(n_qubits)) qft_rotations(n_qubits) swap_bits(n_qubits) return qml.state() # print(qml.draw(qft_rotations)(3)) print(qml.draw(qft_node)(3,3)) dev = qml.device('default.qubit', wires=4) def qft_recursive_rotations(n_qubits, wire=0): """A circuit that performs the QFT rotations on the specified qubits recursively. Args: n_qubits (int): An integer value identifying the number of qubits. wire (int): An integer identifying the wire (or the qubit) to apply rotations on. """ ################## # YOUR CODE HERE # ################## i = wire if i == n_qubits-1: qml.Hadamard(wires=i) # for i in range(n_qubits): # qml.Hadamard(wires=i) # if n_qubits!=i: else: qml.Hadamard(wires=i) for j in range(i+1, n_qubits, 1): qml.ControlledPhaseShift(np.pi/(2**(j-i)), wires=[j,i]) qft_recursive_rotations(n_qubits, i+1) pass @qml.qnode(dev) def qft_node(basis_id, n_qubits): # Prepare the basis state |basis_id> bits = [int(x) for x in np.binary_repr(basis_id, width=n_qubits)] qml.BasisStatePreparation(bits, wires=range(n_qubits)) qft_recursive_rotations(n_qubits) swap_bits(n_qubits) return qml.state() print(qml.draw(qft_node)(3,3))
https://github.com/xin-0/QC-jupyter
xin-0
import numpy as np from math import pi from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister, BasicAer, execute, IBMQ from qiskit.visualization import plot_bloch_multivector, plot_histogram def pe_circ_init(size:int): #quantum register and single state for storing eigen-state qr = QuantumRegister(size) psi = QuantumRegister(1,name="psi") #classical bits for readout cr = ClassicalRegister(size) qc = QuantumCircuit(qr,psi,cr) # apply Hadamards and init the eigenstate as |1> for i in range(size): qc.h(i) qc.x(size) qc.barrier() return qc def C_U(circuit:QuantumCircuit, size:int, phi:float): rep = 1 for counting_qubit in range(size): for i in range(rep): circuit.cu1(2*pi*phi, counting_qubit, size) rep *= 2 circuit.barrier() return def qft_dagger(qc:QuantumCircuit,size:int): for qubit in range(size//2): qc.swap(qubit,size-qubit-1) for j in range(size): for m in range(j): qc.cu1(-pi/float(2**(j-m)), m, j) qc.h(j) qc.barrier() return def readout(qc:QuantumCircuit,size:int): for i in range(size): qc.measure(i,i) return def phaseEstCircuit(size:int, phi:float): qc = pe_circ_init(size) C_U(qc, size, phi) qft_dagger(qc, size) readout(qc,size) return qc def counts_decode(counts): decoded = {} for key in counts: decimal_key = 0.0 i = -1 for c in key: b = int(c) if b: decimal_key += 2**i i -= 1 decoded[decimal_key] = counts[key] return decoded def expectation(decode_counts): res = 0.0 total = 0 for key in decode_counts: total += decode_counts[key] res += key*decode_counts[key] return res/total def choosemax(decode_counts): counts = 0 result = 0.0 for key in decode_counts: if decode_counts[key] > counts: counts = decode_counts[key] result = key return result def getEstPhi(PhaseEstQC:QuantumCircuit, back_end, shots, metric): # get backend result = execute(qc,backend=back_end,shots=shots).result() counts = result.get_counts() plot_histogram(counts) dt = counts_decode(counts) est_val = metric(dt) return est_val qubit = 4 nTrail = 20 back_end = BasicAer.get_backend("qasm_simulator") shots = 4096 Phi = np.random.random((nTrail,)) Phi_est = [] for phi in Phi: qc = phaseEstCircuit(qubit, phi) single_run_res = getEstPhi(qc, back_end,shots,metric=choosemax) Phi_est.append(single_run_res) Phi_est = np.array(Phi_est) error = np.abs(Phi_est-Phi)/Phi print(Phi) print(Phi_est) print(error) qubit = 5 nTrail = 20 back_end = BasicAer.get_backend("qasm_simulator") shots = 4096 Phi_est = [] for phi in Phi: qc = phaseEstCircuit(qubit, phi) single_run_res = getEstPhi(qc, back_end,shots,metric=choosemax) Phi_est.append(single_run_res) Phi_est = np.array(Phi_est) error = np.abs(Phi_est-Phi)/Phi print(Phi) print(Phi_est) print(error) qubit = 6 nTrail = 20 back_end = BasicAer.get_backend("qasm_simulator") shots = 4096 Phi_est = [] for phi in Phi: qc = phaseEstCircuit(qubit, phi) single_run_res = getEstPhi(qc, back_end,shots,metric=choosemax) Phi_est.append(single_run_res) Phi_est = np.array(Phi_est) error = np.abs(Phi_est-Phi)/Phi print(Phi) print(Phi_est) print(error) qubit = 7 nTrail = 20 back_end = BasicAer.get_backend("qasm_simulator") shots = 4096 Phi_est = [] for phi in Phi: qc = phaseEstCircuit(qubit, phi) single_run_res = getEstPhi(qc, back_end,shots,metric=choosemax) Phi_est.append(single_run_res) Phi_est = np.array(Phi_est) error = np.abs(Phi_est-Phi)/Phi print(Phi) print(Phi_est) print(error) qubit = 8 nTrail = 20 back_end = BasicAer.get_backend("qasm_simulator") shots = 4096 Phi_est = [] for phi in Phi: qc = phaseEstCircuit(qubit, phi) single_run_res = getEstPhi(qc, back_end,shots,metric=choosemax) Phi_est.append(single_run_res) Phi_est = np.array(Phi_est) error = np.abs(Phi_est-Phi)/Phi print(Phi) print(Phi_est) print(error) def get_error(size, Phi, back_end, shots, metric): Phi_est = [] for phi in Phi: qc = phaseEstCircuit(qubit, phi) qc.draw() single_run_res = getEstPhi(qc, back_end,shots,metric) Phi_est.append(single_run_res) Phi_est = np.array(Phi_est) return np.abs(Phi_est-Phi)/Phi error_4 = get_error(size=4, Phi=Phi, back_end=back_end,shots=2048,metric=choosemax) error_5 = get_error(size=5, Phi=Phi, back_end=back_end,shots=2048,metric=choosemax) error_6 = get_error(size=6, Phi=Phi, back_end=back_end,shots=2048,metric=choosemax) import matplotlib.pyplot as plt plt.plot(Phi,error_4,'rs',Phi,error_5,'bs',Phi,error_6,'gs') error_4 error_5
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumCircuit # Create a Quantum Circuit acting on a quantum register of three qubits circ = QuantumCircuit(3) # Add a H gate on qubit 0, putting this qubit in superposition. circ.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting # the qubits in a Bell state. circ.cx(0, 1) # Add a CX (CNOT) gate on control qubit 0 and target qubit 2, putting # the qubits in a GHZ state. circ.cx(0, 2) circ.draw('mpl') from qiskit.quantum_info import Statevector # Set the intial state of the simulator to the ground state using from_int state = Statevector.from_int(0, 2**3) # Evolve the state by the quantum circuit state = state.evolve(circ) #draw using latex state.draw('latex') from qiskit.visualization import array_to_latex #Alternative way of representing in latex array_to_latex(state) state.draw('qsphere') state.draw('hinton') from qiskit.quantum_info import Operator U = Operator(circ) # Show the results U.data # Create a Quantum Circuit meas = QuantumCircuit(3, 3) meas.barrier(range(3)) # map the quantum measurement to the classical bits meas.measure(range(3), range(3)) # The Qiskit circuit object supports composition. # Here the meas has to be first and front=True (putting it before) # as compose must put a smaller circuit into a larger one. qc = meas.compose(circ, range(3), front=True) #drawing the circuit qc.draw('mpl') # Adding the transpiler to reduce the circuit to QASM instructions # supported by the backend from qiskit import transpile # Use AerSimulator from qiskit_aer import AerSimulator backend = AerSimulator() # First we have to transpile the quantum circuit # to the low-level QASM instructions used by the # backend qc_compiled = transpile(qc, backend) # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is the default. job_sim = backend.run(qc_compiled, shots=1024) # Grab the results from the job. result_sim = job_sim.result() counts = result_sim.get_counts(qc_compiled) print(counts) from qiskit.visualization import plot_histogram plot_histogram(counts) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2023 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-docstring,invalid-name,no-member # pylint: disable=attribute-defined-outside-init # pylint: disable=unused-argument from qiskit import QuantumRegister, QuantumCircuit from qiskit.compiler import transpile from qiskit.quantum_info.random import random_unitary class IsometryTranspileBench: params = ([0, 1, 2, 3], [3, 4, 5, 6]) param_names = ["number of input qubits", "number of output qubits"] def setup(self, m, n): q = QuantumRegister(n) qc = QuantumCircuit(q) if not hasattr(qc, "iso"): raise NotImplementedError iso = random_unitary(2**n, seed=0).data[:, 0 : 2**m] if len(iso.shape) == 1: iso = iso.reshape((len(iso), 1)) qc.iso(iso, q[:m], q[m:]) self.circuit = qc def track_cnot_counts_after_mapping_to_ibmq_16_melbourne(self, *unused): coupling = [ [1, 0], [1, 2], [2, 3], [4, 3], [4, 10], [5, 4], [5, 6], [5, 9], [6, 8], [7, 8], [9, 8], [9, 10], [11, 3], [11, 10], [11, 12], [12, 2], [13, 1], [13, 12], ] circuit = transpile( self.circuit, basis_gates=["u1", "u3", "u2", "cx"], coupling_map=coupling, seed_transpiler=0, ) counts = circuit.count_ops() cnot_count = counts.get("cx", 0) return cnot_count
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.pulse_v2 import draw, IQXDebugging from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.measure_all() qc = transpile(qc, FakeBoeblingen(), layout_method='trivial') sched = schedule(qc, FakeBoeblingen()) draw(sched, style=IQXDebugging(), backend=FakeBoeblingen())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/AnikenC/JaxifiedQiskit
AnikenC
# All Imports import numpy as np import matplotlib.pyplot as plt import sympy as sym import qiskit from qiskit import pulse from qiskit_dynamics import Solver, DynamicsBackend from qiskit_dynamics.pulse import InstructionToSignals from qiskit_dynamics.array import Array from qiskit.quantum_info import Statevector, DensityMatrix, Operator, SparsePauliOp from qiskit.circuit.parameter import Parameter import jax import jax.numpy as jnp from jax import jit, vmap, block_until_ready, config import chex from typing import Optional, Union Array.set_default_backend('jax') config.update('jax_enable_x64', True) config.update('jax_platform_name', 'cpu') # Constructing a Two Qutrit Hamiltonian dim = 3 v0 = 4.86e9 anharm0 = -0.32e9 r0 = 0.22e9 v1 = 4.97e9 anharm1 = -0.32e9 r1 = 0.26e9 J = 0.002e9 a = np.diag(np.sqrt(np.arange(1, dim)), 1) adag = np.diag(np.sqrt(np.arange(1, dim)), -1) N = np.diag(np.arange(dim)) ident = np.eye(dim, dtype=complex) full_ident = np.eye(dim**2, dtype=complex) N0 = np.kron(ident, N) N1 = np.kron(N, ident) a0 = np.kron(ident, a) a1 = np.kron(a, ident) a0dag = np.kron(ident, adag) a1dag = np.kron(adag, ident) static_ham0 = 2 * np.pi * v0 * N0 + np.pi * anharm0 * N0 * (N0 - full_ident) static_ham1 = 2 * np.pi * v1 * N1 + np.pi * anharm1 * N1 * (N1 - full_ident) static_ham_full = static_ham0 + static_ham1 + 2 * np.pi * J * ((a0 + a0dag) @ (a1 + a1dag)) drive_op0 = 2 * np.pi * r0 * (a0 + a0dag) drive_op1 = 2 * np.pi * r1 * (a1 + a1dag) batchsize = 400 amp_vals = jnp.linspace(0.5, 0.99, batchsize, dtype=jnp.float64).reshape(-1, 1) sigma_vals = jnp.linspace(20, 80, batchsize, dtype=jnp.int8).reshape(-1, 1) freq_vals = jnp.linspace(-0.5, 0.5, batchsize, dtype=jnp.float64).reshape(-1, 1) * 1e6 batch_params = jnp.concatenate((amp_vals, sigma_vals, freq_vals), axis=-1) batch_y0 = jnp.tile(np.ones(9), (batchsize, 1)) batch_obs = jnp.tile(N0, (batchsize, 1, 1)) print(f"Batched Params Shape: {batch_params.shape}") # Constructing a custom function that takes as input a parameter vector and returns the simulated state def standard_func(params): amp, sigma, freq = params # Here we use a Drag Pulse as defined in qiskit pulse as its already a Scalable Symbolic Pulse special_pulse = pulse.Drag( duration=320, amp=amp, sigma=sigma, beta=0.1, angle=0.1, limit_amplitude=False ) with pulse.build(default_alignment='sequential') as sched: d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) u0 = pulse.ControlChannel(0) u1 = pulse.ControlChannel(1) pulse.shift_frequency(freq, d0) pulse.play(special_pulse, d0) pulse.shift_frequency(freq, d1) pulse.play(special_pulse, d1) pulse.shift_frequency(freq, u0) pulse.play(special_pulse, u0) pulse.shift_frequency(freq, u1) pulse.play(special_pulse, u1) return sched # Constructing the new solver dt = 1/4.5e9 atol = 1e-2 rtol = 1e-4 t_linspace = np.linspace(0.0, 400e-9, 11) t_span = np.array([t_linspace[0], t_linspace[-1]]) ham_ops = [drive_op0, drive_op1, drive_op0, drive_op1] ham_chans = ["d0", "d1", "u0", "u1"] chan_freqs = {"d0": v0, "d1": v1, "u0": v1, "u1": v0} solver = Solver( static_hamiltonian=static_ham_full, hamiltonian_operators=ham_ops, rotating_frame=static_ham_full, hamiltonian_channels=ham_chans, channel_carrier_freqs=chan_freqs, dt=dt, ) class JaxifiedSolver: def __init__( self, schedule_func, dt, carrier_freqs, ham_chans, t_span, rtol, atol ): super().__init__() self.schedule_func = schedule_func self.dt = dt self.carrier_freqs = carrier_freqs self.ham_chans = ham_chans self.t_span = t_span self.rtol = rtol self.atol = atol self.fast_batched_sim = jit(vmap(self.run_sim)) def run_sim(self, y0, obs, params): sched = self.schedule_func(params) converter = InstructionToSignals(self.dt, carriers=self.carrier_freqs, channels=self.ham_chans) signals = converter.get_signals(sched) results = solver.solve( t_span=self.t_span, y0=y0 / jnp.linalg.norm(y0), t_eval=self.t_span, signals=signals, rtol=self.rtol, atol=self.atol, convert_results=False, method='jax_odeint' ) state_vec = results.y.data[-1] state_vec = state_vec / jnp.linalg.norm(state_vec) two_vec = state_vec[:4] evolved_vec = jnp.dot(obs, two_vec) new_vec = jnp.concatenate((evolved_vec, state_vec[4:])) probs_vec = jnp.abs(new_vec)**2 probs_vec = jnp.clip(probs_vec, a_min=0.0, a_max=1.0) # Shots instead of probabilities return probs_vec def estimate(self, batch_y0, batch_obs, batch_params): ops_mat = [b.to_matrix() for b in batch_obs] ops_arr = jnp.array(ops_mat) return self.fast_batched_sim(batch_y0, ops_arr, batch_params) j_solver = JaxifiedSolver( schedule_func=standard_func, dt=dt, carrier_freqs=chan_freqs, ham_chans=ham_chans, t_span=t_span, rtol=rtol, atol=atol ) ops_list = [SparsePauliOp(["IX"]), SparsePauliOp(["IY"]), SparsePauliOp(["YZ"]), SparsePauliOp(["ZX"])] * 100 batch_res = j_solver.estimate( batch_y0, ops_list, batch_params ) %timeit j_solver.estimate(batch_y0,ops_list,batch_params) op_x = SparsePauliOp('IXXYI') arr = op_x.to_matrix() print(arr.shape) print(op_x.to_matrix()) dim_size = 8 qudit = jnp.array([1.0, 0.0, 0.0, 0.0]) qubit_op = jnp.array([[0., 1.0], [1.0, 0.0]]) big_ident = jnp.identity(dim_size) big_op = big_ident.at[:2,:2].set(qubit_op) big_op op_str = "XI" num_qubits = len(op_str) qudit_dim_size = 3 init_state = np.zeros(qudit_dim_size ** num_qubits, dtype=np.complex64) init_state[1] = 1 base_gates_dict = { "I": jnp.array([[1.0, 0.], [0., 1.]]), "X": jnp.array([[0., 1.], [1., 0.]]), "Y": jnp.array([[0., -1.0j], [1.0j, 0.]]), "Z": jnp.array([[1., 0.], [0., -1.]]) } def PauliToQuditMatrix(inp_str: str, qudit_dim_size: Optional[int] = 4): word_list = list(inp_str) qudit_op_list = [] for word in word_list: qubit_op = base_gates_dict[word] qud_op = np.identity(qudit_dim_size, dtype=np.complex64) qud_op[:2,:2] = qubit_op qudit_op_list.append(qud_op) complete_op = qudit_op_list[0] for i in range(1,len(qudit_op_list)): complete_op = np.kron(complete_op, qudit_op_list[i]) return complete_op def evolve_state(batch_state, batch_var_str): return_state = [] for state, var_str in zip(batch_state, batch_var_str): complete_op = PauliToQuditMatrix(var_str, qudit_dim_size) return_state.append(complete_op @ state) return return_state b_size = 400 batch_state = [init_state] * b_size batch_var_str = [op_str] * b_size %timeit evolve_state(batch_state, batch_var_str) class JaxedSolver: def __init__( self, schedule_func, dt, carrier_freqs, ham_chans, t_span, rtol, atol ): super().__init__() self.schedule_func = schedule_func self.dt = dt self.carrier_freqs = carrier_freqs self.ham_chans = ham_chans self.t_span = t_span self.rtol = rtol self.atol = atol self.fast_batched_sim = jit(vmap(self.run_sim)) def run_sim(self, y0, obs, params): sched = self.schedule_func(params) converter = InstructionToSignals(self.dt, carriers=self.carrier_freqs, channels=self.ham_chans) signals = converter.get_signals(sched) results = solver.solve( t_span=self.t_span, y0=y0 / jnp.linalg.norm(y0), t_eval=self.t_span, signals=signals, rtol=self.rtol, atol=self.atol, convert_results=False, method='jax_odeint' ) state_vec = results.y.data[-1] state_vec = state_vec / jnp.linalg.norm(state_vec) new_vec = obs @ state_vec probs_vec = jnp.abs(new_vec)**2 probs_vec = jnp.clip(probs_vec, a_min=0.0, a_max=1.0) # Shots instead of probabilities return probs_vec def estimate2(self, batch_y0, batch_params, batch_obs_str): batch_obs = jnp.zeros((batch_y0.shape[0], batch_y0.shape[1], batch_y0.shape[1]), dtype=jnp.complex64) for i, b_str in enumerate(batch_obs_str): batch_obs = batch_obs.at[i].set(PauliToQuditMatrix(b_str, dim)) return self.fast_batched_sim(batch_y0, batch_obs, batch_params) j_solver_2 = JaxedSolver( schedule_func=standard_func, dt=dt, carrier_freqs=chan_freqs, ham_chans=ham_chans, t_span=t_span, rtol=rtol, atol=atol ) ops_str_list = ["IX", "XY", "ZX", "ZI"] * 100 batch_res = j_solver_2.estimate2( batch_y0, batch_params, ops_str_list ) %timeit j_solver_2.estimate2(batch_y0, batch_params, ops_str_list)
https://github.com/hephaex/Quantum-Computing-Awesome-List
hephaex
# Importing everything from qiskit import * from qiskit.visualization import plot_histogram # For Jupyter Notebooks, change the settings to get nicer images %config InlineBackend.figure_format = 'svg' def create_bell_pair(qc, a, b): qc.h(a) qc.cx(a, b) def encode_message(qc, qubit, message): if message == "00": pass elif message == "01": qc.z(qubit) elif message == "10": qc.x(qubit) elif message == "11": qc.z(qubit) qz.x(qubit) else: print("Enter Valid message please") def decode_message(qc, a, b): qc.cx(a, b) qc.h(a) # Create the quantum circuit with 2 qubits qc = QuantumCircuit(2) # First, Eve creates the entangled pair between Alice and Bob create_bell_pair(qc, 0, 1) qc.barrier() # This adds a barrier to our circuit. A barrier # separates the gates in our diagram and makes it # clear which part of the circuit is which # At this point, qubit 0 goes to Alice and qubit 1 goes to Bob # Next, Alice encodes her message onto qubit 0. In this case, # we want to send the message '10'. You can try changing this # value and see how it affects the circuit message = "10" encode_message(qc, 0, message) qc.barrier() # Alice then sends her qubit to Bob. # After recieving qubit 0, Bob applies the recovery protocol: decode_message(qc, 0, 1) # Finally, Bob measures his qubits to read Alice's message qc.measure_all() # Draw our output qc.draw(output = "mpl") backend = Aer.get_backend('qasm_simulator') job_sim = execute(qc, backend, shots=1024) sim_result = job_sim.result() measurement_result = sim_result.get_counts(qc) print(measurement_result) plot_histogram(measurement_result) from qiskit import IBMQ from qiskit.providers.ibmq import least_busy shots = 256 # Load local account information IBMQ.load_account() # Get the least busy backend provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 2 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit job = execute(qc, backend=backend, shots=shots) from qiskit.tools.monitor import job_monitor job_monitor(job) result = job.result() plot_histogram(result.get_counts(qc))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, execute from qiskit.providers.fake_provider import FakeVigoV2 from qiskit.visualization import plot_gate_map backend = FakeVigoV2() plot_gate_map(backend)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse with pulse.build(name='my_example') as my_program: # Add instructions here pass my_program from qiskit.pulse import DriveChannel channel = DriveChannel(0) from qiskit.providers.fake_provider import FakeValencia backend = FakeValencia() with pulse.build(backend=backend, name='backend_aware') as backend_aware_program: channel = pulse.drive_channel(0) print(pulse.num_qubits()) # Raises an error as backend only has 5 qubits #pulse.drive_channel(100) with pulse.build(backend) as delay_5dt: pulse.delay(5, channel) from qiskit.pulse import library amp = 1 sigma = 10 num_samples = 128 gaus = pulse.library.Gaussian(num_samples, amp, sigma, name="Parametric Gaus") gaus.draw() import numpy as np times = np.arange(num_samples) gaussian_samples = np.exp(-1/2 *((times - num_samples / 2) ** 2 / sigma**2)) gaus = library.Waveform(gaussian_samples, name="WF Gaus") gaus.draw() gaus = library.gaussian(duration=num_samples, amp=amp, sigma=sigma, name="Lib Gaus") gaus.draw() with pulse.build() as schedule: pulse.play(gaus, channel) schedule.draw() with pulse.build() as schedule: pulse.play([0.001*i for i in range(160)], channel) schedule.draw() with pulse.build(backend) as schedule: pulse.set_frequency(4.5e9, channel) with pulse.build(backend) as schedule: pulse.shift_phase(np.pi, channel) from qiskit.pulse import Acquire, AcquireChannel, MemorySlot with pulse.build(backend) as schedule: pulse.acquire(1200, pulse.acquire_channel(0), MemorySlot(0)) with pulse.build(backend, name='Left align example') as program: with pulse.align_left(): gaussian_pulse = library.gaussian(100, 0.5, 20) pulse.play(gaussian_pulse, pulse.drive_channel(0)) pulse.play(gaussian_pulse, pulse.drive_channel(1)) pulse.play(gaussian_pulse, pulse.drive_channel(1)) program.draw() with pulse.build(backend, name='Right align example') as program: with pulse.align_right(): gaussian_pulse = library.gaussian(100, 0.5, 20) pulse.play(gaussian_pulse, pulse.drive_channel(0)) pulse.play(gaussian_pulse, pulse.drive_channel(1)) pulse.play(gaussian_pulse, pulse.drive_channel(1)) program.draw() with pulse.build(backend, name='example') as program: gaussian_pulse = library.gaussian(100, 0.5, 20) with pulse.align_equispaced(2*gaussian_pulse.duration): pulse.play(gaussian_pulse, pulse.drive_channel(0)) pulse.play(gaussian_pulse, pulse.drive_channel(1)) pulse.play(gaussian_pulse, pulse.drive_channel(1)) program.draw() with pulse.build(backend, name='example') as program: with pulse.align_sequential(): gaussian_pulse = library.gaussian(100, 0.5, 20) pulse.play(gaussian_pulse, pulse.drive_channel(0)) pulse.play(gaussian_pulse, pulse.drive_channel(1)) pulse.play(gaussian_pulse, pulse.drive_channel(1)) program.draw() with pulse.build(backend, name='Offset example') as program: with pulse.phase_offset(3.14, pulse.drive_channel(0)): pulse.play(gaussian_pulse, pulse.drive_channel(0)) with pulse.frequency_offset(10e6, pulse.drive_channel(0)): pulse.play(gaussian_pulse, pulse.drive_channel(0)) program.draw() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
https://github.com/acfilok96/Quantum-Computation
acfilok96
import qiskit from qiskit import * print(qiskit.__version__) %matplotlib inline from qiskit.tools.visualization import plot_histogram from ibm_quantum_widgets import draw_circuit # initialize two qubits in the zero state and # two classical bits in the zero state in the quantum circuit circuit = QuantumCircuit(3,3) # C gate # (2) => q2 circuit.x(2) circuit.draw(output='mpl') draw_circuit(circuit) # Hadamard (H) gate # (0) => (q0) circuit.h(0) circuit.draw(output='mpl') draw_circuit(circuit) # A controlled-NOT (CX NOT) gate, on control qubit 0 # and target qubit 1, putting the qubits in an entangled state. # (2,1) = > q2(control bit)(quantum bit)(origin) --> q1(target bit)(quantum bit)(destination) circuit.cx(2,1) # (0,2) = > q0(control bit)(quantum bit)(origin) --> q2(target bit)(quantum bit)(destination) circuit.cx(0,2) circuit.draw(output='mpl') draw_circuit(circuit) # measurement between quantum state and classical state # [1,1] => [q1,q1](quantum bit) and [2,0] => [c2,c0](classical bit) circuit.measure([1,1],[2,0]) circuit.draw(output='mpl') draw_circuit(circuit) # The n qubit’s measurement result will be stored in the n classical bit circuit.measure([1,1,2],[2,0,0]) circuit.draw(output='mpl') draw_circuit(circuit) simulator = Aer.get_backend("qasm_simulator") job = execute(circuit, simulator, shots=2024) result = job.result() counts = result.get_counts(circuit) print("Total count for 100 and 101 are: ", counts) # 1. plot_histogram(counts) # 2. from ibm_quantum_widgets import draw_circuit draw_circuit(circuit)
https://github.com/danieljaffe/quantum-algorithms-qiskit
danieljaffe
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Sep 19 19:13:26 2023 @author: abdullahalshihry """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Sep 18 19:15:12 2023 @author: abdullahalshihry """ import qiskit as qs import qiskit.visualization as qv import random import qiskit.circuit as qf def Deutsch_Jozsa(circuit): qr = qs.QuantumRegister(5,'q') cr = qs.ClassicalRegister(4,'c') qc = qs.QuantumCircuit(qr,cr) qc.x(qr[4]) qc.barrier(range(5)) qc.h(qr[0]) qc.h(qr[1]) qc.h(qr[2]) qc.h(qr[3]) qc.h(qr[4]) qc.barrier(range(5)) qc = qc.compose(circuit) qc.barrier(range(5)) qc.h(qr[0]) qc.h(qr[1]) qc.h(qr[2]) qc.h(qr[3]) qc.barrier(range(5)) qc.measure(0,0) qc.measure(1,1) qc.measure(2,2) qc.measure(3,3) job1 = qs.execute(qc, qs.Aer.get_backend('aer_simulator'), shots = 1024) output1 = job1.result().get_counts() print(output1) qc.draw('mpl') def Oracle(): qr = qs.QuantumRegister(5,'q') cr = qs.ClassicalRegister(4,'c') qc = qs.QuantumCircuit(qr,cr) qq = qs.QuantumCircuit(5,name='Uf') v = random.randint(1, 2) if v == 1: qc.cx(0,4) qc.cx(1,4) qc.cx(2,4) qc.cx(3,4) print('Balanced (1)') elif v == 2: qq.i(qr[0]) qq.i(qr[1]) qq.i(qr[2]) qq.i(qr[3]) print('Constant (0)') qq =qq.to_gate() qc.append(qq,[0,1,2,3,4]) return qc Deutsch_Jozsa(Oracle())
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import matplotlib.pyplot as plt import itertools from pprint import pprint # plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts import pickle import time import datetime # Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z) from qiskit.opflow import Zero, One, I, X, Y, Z from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter from qiskit.transpiler.passes import RemoveBarriers # Import QREM package from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter from qiskit.ignis.mitigation import expectation_value # Import mitiq for zne import mitiq # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits from qiskit.quantum_info import state_fidelity import sys import importlib sys.path.append("./") import circuit_utils, zne_utils, tomography_utils, sgs_algorithm importlib.reload(circuit_utils) importlib.reload(zne_utils) importlib.reload(tomography_utils) importlib.reload(sgs_algorithm) from circuit_utils import * from zne_utils import * from tomography_utils import * from sgs_algorithm import * # Combine subcircuits into a single multiqubit gate representing a single trotter step num_qubits = 3 # The final time of the state evolution target_time = np.pi # Parameterize variable t to be evaluated at t=pi later dt = Parameter('t') # Convert custom quantum circuit into a gate trot_gate = trotter_gate(dt) # initial layout initial_layout = [5,3,1] # Number of trotter steps num_steps = 100 print("trotter step: ", num_steps) # Initialize quantum circuit for 3 qubits qr = QuantumRegister(num_qubits, name="lq") qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>) make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian subspace_decoder(qc, targets=[0, 1, 2]) # decode # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({dt: target_time / num_steps}) print("created qc") # Generate state tomography circuits to evaluate fidelity of simulation st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN === print("created st_qcs (length:", len(st_qcs), ")") # remove barriers st_qcs = [RemoveBarriers()(qc) for qc in st_qcs] print("removed barriers from st_qcs") # optimize circuit t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) print("created t3_st_qcs (length:", len(t3_st_qcs), ")") # zne wrapping zne_qcs = t3_st_qcs # CHANGED!!!! print("created zne_qcs (length:", len(zne_qcs), ")") t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout) print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")") t3_zne_qcs[4].draw("mpl") from qiskit.test.mock import FakeJakarta # backend = FakeJakarta() # backend = Aer.get_backend("qasm_simulator") IBMQ.load_account() # provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst') provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') print("provider:", provider) backend = provider.get_backend("ibmq_jakarta") # QREM shots = 1 << 13 qr = QuantumRegister(num_qubits) meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout) print('Job ID', cal_job.job_id()) shots = 1 << 13 reps = 8 # unused jobs = [] for _ in range(reps): job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0) # 毎回チェック: ここちゃんと変えた? print('Job ID', job.job_id()) jobs.append(job) dt_now = datetime.datetime.now() print(dt_now) import pickle with open("jobs_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump({"jobs": jobs, "cal_job": cal_job}, f) with open("job_ids_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f) with open("properties_jakarta" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump(backend.properties(), f) cal_results = cal_job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!! fids = [] for job in jobs: mit_results = meas_fitter.filter.apply(job.result()) rho = State fid = state_fidelity(rho, target_state) fids.append(fid) print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.problems import BaseProblem dummy_hamiltonian = None base_problem = BaseProblem(dummy_hamiltonian) print(base_problem.properties) from qiskit_nature.second_q.properties import AngularMomentum print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Adding AngularMomentum to problem.properties...") base_problem.properties.add(AngularMomentum(2)) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Discarding AngularMomentum from problem.properties...") base_problem.properties.discard(AngularMomentum) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) from qiskit_nature.second_q.drivers import PySCFDriver es_problem = PySCFDriver().run() print(es_problem.properties.particle_number) print(es_problem.properties.angular_momentum) print(es_problem.properties.magnetization) print(es_problem.properties.electronic_dipole_moment) print(es_problem.properties.electronic_density) from qiskit_nature.second_q.properties import ElectronicDensity density = ElectronicDensity.from_orbital_occupation( es_problem.orbital_occupations, es_problem.orbital_occupations_b, ) es_problem.properties.electronic_density = density import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/grossiM/Qiskit_workshop1019
grossiM
#initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram def phase_oracle(circuit, register): circuit.cz(qr[2],qr[0]) circuit.cz(qr[2],qr[1]) def n_controlled_Z(circuit, controls, target): """Implement a Z gate with multiple controls""" if (len(controls) > 2): raise ValueError('The controlled Z with more than 2 controls is not implemented') elif (len(controls) == 1): circuit.h(target) circuit.cx(controls[0], target) circuit.h(target) elif (len(controls) == 2): circuit.h(target) circuit.ccx(controls[0], controls[1], target) circuit.h(target) def inversion_about_average(circuit, register, n, barriers): """Apply inversion about the average step of Grover's algorithm.""" circuit.h(register) circuit.x(register) if barriers: circuit.barrier() n_controlled_Z(circuit, [register[j] for j in range(n-1)], register[n-1]) if barriers: circuit.barrier() circuit.x(register) circuit.h(register) barriers = True qr = QuantumRegister(3) cr = ClassicalRegister(3) groverCircuit = QuantumCircuit(qr,cr) groverCircuit.h(qr) if barriers: groverCircuit.barrier() phase_oracle(groverCircuit, qr) if barriers: groverCircuit.barrier() inversion_about_average(groverCircuit, qr, 3, barriers) if barriers: groverCircuit.barrier() groverCircuit.measure(qr,cr) groverCircuit.draw(output="mpl") backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(groverCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to 5 qubits IBMQ.load_account() IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(groverCircuit, backend=backend, shots=shots) job_monitor(job, interval = 2) # Get the results from the computation results = job.result() answer = results.get_counts(groverCircuit) plot_histogram(answer) import qiskit qiskit.__qiskit_version__
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
"""Qiskit code for running Simon's algorithm on quantum hardware for 2 qubits and b = '11' """ # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, execute # import basic plot tools from qiskit.visualization import plot_histogram from qiskit_textbook.tools import simon_oracle #set b equal to '11' b = '11' #1) initialize qubits n = 2 simon_circuit_2 = QuantumCircuit(n*2, n) #2) Apply Hadamard gates before querying the oracle simon_circuit_2.h(range(n)) #3) Query oracle simon_circuit_2 += simon_oracle(b) #5) Apply Hadamard gates to the input register simon_circuit_2.h(range(n)) #3) and 6) Measure qubits simon_circuit_2.measure(range(n), range(n)) # Load saved IBMQ accounts and get the least busy backend device IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= n and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Execute and monitor the job from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(simon_circuit_2, backend=backend, shots=shots, optimization_level=3) job_monitor(job, interval = 2) # Get results and plot counts device_counts = job.result().get_counts() plot_histogram(device_counts) #additionally, function for calculating dot product of results def bdotz(b, z): accum = 0 for i in range(len(b)): accum += int(b[i]) * int(z[i]) return (accum % 2) print('b = ' + b) for z in device_counts: print( '{}.{} = {} (mod 2) ({:.1f}%)'.format(b, z, bdotz(b,z), device_counts[z]*100/shots)) #the most significant results are those for which b dot z=0(mod 2). '''b = 11 11.00 = 0 (mod 2) (45.0%) 11.01 = 1 (mod 2) (6.2%) 11.10 = 1 (mod 2) (6.4%) 11.11 = 0 (mod 2) (42.4%)'''
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
https://github.com/vindem/quantumMD
vindem
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute, transpile from VectorPreprocessor import VectorPreprocessor import numpy as np class CSWAPCircuit: def __init__(self, aux, qr1n, qr2n, crn, backend, shots): self._aux = aux self._qr1n = qr1n self._qr2n = qr2n self._crn = crn self._backend = backend self._shots = shots def _init_cswap_circuit(self, a, b, norm): q1 = QuantumRegister(self._aux, name='control_0') q2 = QuantumRegister(self._qr1n, name='qr_1') q3 = QuantumRegister(self._qr2n, name='qr_2') c = ClassicalRegister(self._crn, name='c') qc = QuantumCircuit(q1,q2,q3,c) qc.initialize(a, q2[0:self._qr1n]) qc.initialize(b, q3[0:self._qr2n]) qc.barrier() qc.h(q1[0]) qc.cswap(q1[0], q2[0], q3[0]) qc.h(q1[0]) qc.barrier() qc.measure(q1, c) job = execute(qc, self._backend, shots=self._shots, optimization_level=1) result = job.result() countsqd = result.get_counts(qc) qdsquared = abs((4 * norm ** 2 * ((countsqd['0'] / self._shots) - 0.5))) qd = np.sqrt(qdsquared) return qd def execute_swap_test(self, A, B): vector_preprocessor = VectorPreprocessor(A,B) return [self._init_cswap_circuit(vector_preprocessor.phi_reg()[i], vector_preprocessor.psi_reg()[i], vector_preprocessor.norm_factor()[i]) for i in range(len(vector_preprocessor.psi_reg()))]
https://github.com/hugoecarl/TSP-Problem-Study
hugoecarl
import math import matplotlib.pyplot as plt %matplotlib inline class TSP: def __init__(self): self.flat_mat = flat_mat self.n = 0 self.melhor_dist = 1e11 self.pontos = [] self.melhores_pontos = [] def busca_exaustiva(self, flat_mat, n, ite): if ite == n: dist = 0 for j in range(1, n): dist += flat_mat[self.pontos[j-1] * n + self.pontos[j]] dist += flat_mat[self.pontos[n-1] * n + self.pontos[0]] if dist < self.melhor_dist: self.melhor_dist = dist self.melhores_pontos = self.pontos[:] return for i in range(n): if self.pontos[i] == -1: self.pontos[i] = ite self.busca_exaustiva(flat_mat, n, ite + 1) self.pontos[i] = -1 def dist_mat(self): x = [] y = [] flat_mat = [] #matriz 1 dimensao contendo todas as distancias possiveis entre os pontos para facilitar cálculo. while True: try: temp = input("Digite a coordenada x y: ").split() x.append(float(temp[0])) y.append(float(temp[1])) except: break for i in range(len(x)): for j in range(len(y)): flat_mat.append(math.sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2)) return flat_mat, x, y def get_results(self): self.flat_mat, x, _ = self.dist_mat() self.n = len(x) self.pontos = [-1]*self.n self.pontos[0] = 0 self.busca_exaustiva(self.flat_mat, self.n, 1) return self.melhor_dist, self.melhores_pontos Tsp = TSP() distancia, pontos = Tsp.get_results() print("Melhor distancia encontrada: ", distancia) print("Melhor caminho encontrado: ", pontos) #plota gráfico def connectpoints(x,y,p1,p2): x1, x2 = x[p1], x[p2] y1, y2 = y[p1], y[p2] plt.plot([x1,x2],[y1,y2],'ro-') for i in range(1, len(pontos)): connectpoints(x,y,pontos[i-1],pontos[i]) connectpoints(x,y,pontos[len(x)-1],pontos[0]) plt.title("Percurso") plt.show() %%time %%cmd python TSP.py < in-1.txt type out-1.txt python TSP.py < in-2.txt type out-2.txt python TSP.py < in-3.txt type out-3.txt python TSP.py < in-4.txt type out-4.txt from qiskit import IBMQ import numpy as np #IBMQ.save_account('seu-tokenIBMQ-para-rodar-localmente') IBMQ.load_account() from qiskit import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit.optimization.applications.ising import max_cut, tsp from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import SPSA from qiskit.aqua import aqua_globals from qiskit.aqua import QuantumInstance from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.optimization.algorithms import MinimumEigenOptimizer from qiskit.optimization.problems import QuadraticProgram import logging from qiskit.aqua import set_qiskit_aqua_logging #Preparando os dados segundo os imputs do usuario para serem resolvidos pelo qiskit max 4 pontos por limitação de qubits coord = [] flat_mat, x, y = TSP().dist_mat() dist_mat = np.array(flat_mat).reshape(len(x),len(x)) for i, j in zip(x, y): coord.append([i,j]) ins = tsp.TspData('TSP_Q', dim=len(x), coord=np.array(coord), w=dist_mat) qubitOp, offset = tsp.get_operator(ins) print('Offset:', offset) print('Ising Hamiltonian:') print(qubitOp.print_details()) #Usando o numpyMinimumEigensolver como o solver do problema para resolver de forma quantica ee = NumPyMinimumEigensolver(qubitOp) result = ee.run() print('energy:', result.eigenvalue.real) print('tsp objective:', result.eigenvalue.real + offset) x_Q = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w)) for i in range(1, len(z)): connectpoints(x,y,z[i-1],z[i]) connectpoints(x,y,z[len(x)-1],z[0]) plt.title("Percurso") plt.show() #instanciando o simulador ou o computador real importante lembrar que nao ira funcionar para mais de 4 pontos pelo numero de qubits disponibilizados pela IBM que sao apenas 16 para o simulador qasm e 15 para a maquina quantica provider = IBMQ.get_provider(hub = 'ibm-q') device = provider.get_backend('ibmq_16_melbourne') aqua_globals.random_seed = np.random.default_rng(123) seed = 10598 backend = Aer.get_backend('qasm_simulator') #descomentar essa linha caso queira rodar na maquina real #backend = device quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed) #rodando no simulador quantico spsa = SPSA(maxiter=10) ry = TwoLocal(qubitOp.num_qubits, 'ry', 'cz', reps=5, entanglement='linear') vqe = VQE(qubitOp, ry, spsa, quantum_instance=quantum_instance) result = vqe.run(quantum_instance) print('energy:', result.eigenvalue.real) print('time:', result.optimizer_time) x = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w))
https://github.com/qiskit-community/qiskit-metriq
qiskit-community
import os import pandas as pd from pyzx import routing from qiskit import QuantumCircuit, transpile from qiskit.transpiler import CouplingMap, TranspilerError from qiskit_versions import * VERSION = get_installed_version() PACKAGE_NAME = "qiskit" if VERSION == compare_versions(VERSION, "0.25.3") else "qiskit-terra" SAMPLE_SIZE = 100 ARCHITECTURES = ["ibm_rochester", "rigetti_16q_aspen"] OPTIMIZATION_LEVEL = 3 DATE = get_version_date(PACKAGE_NAME, VERSION) METHOD = f"{PACKAGE_NAME} {VERSION} compilation" def run_experiment(qasm_id: str): print(f"\nRunning {METHOD} for circuit {qasm_id}\n") qasm_file_path = os.path.abspath(os.path.join( os.path.dirname( __file__ ),"..", "benchmarking",f"{qasm_id}.qasm")) circuit = QuantumCircuit.from_qasm_file(qasm_file_path) # Transpile for each architecture using pyzx for arch in ARCHITECTURES: architecture = routing.create_architecture(arch) coupling_map = CouplingMap(architecture.graph.edges()) df = pd.DataFrame(columns=["Qasm file","Method","Date","Opt level","Platform","Seed","Circuit depth","Gate count"]) for i in range(SAMPLE_SIZE): result = None while result is None: try: result = transpile(circuit, coupling_map=coupling_map, optimization_level=OPTIMIZATION_LEVEL, seed_transpiler=i) except TranspilerError: i += SAMPLE_SIZE results = [f"{qasm_id}.qasm", METHOD, DATE, OPTIMIZATION_LEVEL,arch,i,result.depth(),sum(result.count_ops().values())] df.loc[len(df)] = results output_path = os.path.abspath(os.path.join(os.path.dirname( __file__ ),"..","benchmarking","results",f"{qasm_id}-qiskit{VERSION}-{arch}.csv")) df.to_csv(output_path, sep="|") print(f"{arch}\n", f"- Circuit depth - ave: {df['Circuit depth'].mean()} | stdev: {df['Circuit depth'].std()}\n", f"- Gate count - ave: {df['Gate count'].mean()} | stdev: {df['Gate count'].std()}") run_experiment("ex1_226")
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
import cirq import matplotlib.pyplot as plt import numpy as np def qft_dagger_cirq(qc, qubits, n): for qubit in range(n//2): qc.append(cirq.SWAP(qubits[qubit], qubits[n-qubit-1])) for j in range(n): for m in range(j): qc.append((cirq.CZ**(-1/2**(j-m)))(qubits[m],qubits[j])) qc.append(cirq.H(qubits[j])) def generalised_qpe_cirq(amt_estimation_qubits, angle, shots = 4098): # Create and set up circuit qubits = cirq.LineQubit.range(amt_estimation_qubits+1) circuit = cirq.Circuit() # Apply H-Gates to counting qubits: for qubit in range(amt_estimation_qubits): circuit.append(cirq.H(qubits[qubit])) # Prepare our eigenstate |psi>: circuit.append(cirq.X(qubits[amt_estimation_qubits])) repetitions = 1 for counting_qubit in range(amt_estimation_qubits): for i in range(repetitions): circuit.append((cirq.CZ**(angle))(qubits[counting_qubit],qubits[amt_estimation_qubits])); repetitions *= 2 # Do the inverse QFT: qft_dagger_cirq(circuit, qubits, amt_estimation_qubits) # Measure of course! circuit.append(cirq.measure(*qubits[:-1], key='m')) simulator = cirq.Simulator() results = simulator.run(circuit , repetitions = shots) theta_estimates = np.sum(2 ** np.arange(amt_estimation_qubits) * results.measurements['m'], axis=1) / 2**amt_estimation_qubits unique,pos = np.unique(theta_estimates,return_inverse=True) counts = np.bincount(pos) maxpos = counts.argmax() generalised_qpe_cirq(8,(2*(1/3))) %timeit -p 8 -r 1 -n 1 generalised_qpe_cirq(8,(2*(1/3)),10000) %timeit -p 8 -r 1 -n 1 generalised_qpe_cirq(8,(2*(1/3)),10000) %timeit -p 8 -r 1 -n 1 generalised_qpe_cirq(8,(2*(1/3)),10000) %timeit -p 8 -r 1 -n 1 generalised_qpe_cirq(8,(2*(1/3)),10000) %timeit -p 8 -r 1 -n 1 generalised_qpe_cirq(8,(2*(1/3)),10000) %timeit -p 8 -r 1 -n 1 generalised_qpe_cirq(8,(2*(1/3)),10000) %timeit -p 8 -r 1 -n 1 generalised_qpe_cirq(8,(2*(1/3)),10000) %timeit -p 8 -r 1 -n 1 generalised_qpe_cirq(8,(2*(1/3)),10000) %timeit -p 8 -r 1 -n 1 generalised_qpe_cirq(8,(2*(1/3)),10000) %timeit -p 8 -r 1 -n 1 generalised_qpe_cirq(8,(2*(1/3)),10000)
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) ### removed cx gate ### return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1, 0) qc.h(1) return qc
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) es_problem = driver.run() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() from qiskit.algorithms.eigensolvers import NumPyEigensolver numpy_solver = NumPyEigensolver(filter_criterion=es_problem.get_default_filter_criterion()) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.algorithms import GroundStateEigensolver, QEOM from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD ansatz = UCCSD( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, initial_state=HartreeFock( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, ), ) estimator = Estimator() # This first part sets the ground state solver # see more about this part in the ground state calculation tutorial solver = VQE(estimator, ansatz, SLSQP()) solver.initial_point = [0.0] * ansatz.num_parameters gse = GroundStateEigensolver(mapper, solver) # The qEOM algorithm is simply instantiated with the chosen ground state solver and Estimator primitive qeom_excited_states_solver = QEOM(gse, estimator, "sd") from qiskit_nature.second_q.algorithms import ExcitedStatesEigensolver numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, numpy_solver) numpy_results = numpy_excited_states_solver.solve(es_problem) qeom_results = qeom_excited_states_solver.solve(es_problem) print(numpy_results) print("\n\n") print(qeom_results) import numpy as np def filter_criterion(eigenstate, eigenvalue, aux_values): return np.isclose(aux_values["ParticleNumber"][0], 2.0) new_numpy_solver = NumPyEigensolver(filter_criterion=filter_criterion) new_numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, new_numpy_solver) new_numpy_results = new_numpy_excited_states_solver.solve(es_problem) print(new_numpy_results) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
import networkx as nx import numpy as np from qiskit import Aer from qiskit.aqua import aqua_globals, QuantumInstance from qiskit.aqua.algorithms import QAOA, VQE, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import SPSA, COBYLA from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.optimization.applications.ising import tsp from qiskit.optimization.converters import IsingToQuadraticProgram from qiskit.optimization.problems import QuadraticProgram from qiskit.optimization.algorithms import MinimumEigenOptimizer, RecursiveMinimumEigenOptimizer from qiskit.circuit.library import TwoLocal def get_graph(nodes): G = nx.Graph() G.add_nodes_from(np.arange(0, nodes, 1)) # Create random positions in the graph. Distance will be calculated from positions # Note: Dwave and other solvers require a complete graph for i in range(nodes): G.nodes[i]['pos'] = (np.random.uniform(0, 10), np.random.uniform(0, 10)) elist = set() for i in range(nodes): for t in range(i + 1,nodes): y1=G.nodes[i]['pos'][1] x1=G.nodes[i]['pos'][0] y2=G.nodes[t]['pos'][1] x2=G.nodes[t]['pos'][0] dist = np.sqrt(((x2-x1)**2)+((y2-y1)**2)) _tuple = (i, t, dist) elist.add(_tuple) # tuple is (i,j,weight) where (i,j) is the edge G.add_weighted_edges_from(elist) return G def get_cost_matrix(G, nodes): w = np.zeros([nodes,nodes]) for i in range(nodes): for j in range(nodes): temp = G.get_edge_data(i,j,default=0) if temp != 0: w[i,j] = temp['weight'] return w def calculate_cost(cost_matrix, solution): cost = 0 for i in range(len(solution)): a = i % len(solution) b = (i + 1) % len(solution) cost += cost_matrix[solution[a]][solution[b]] return cost nodes = 3 starting_node = 0 #### G = get_graph(nodes) cost_matrix = get_cost_matrix(G, nodes) G.nodes[0]['pos'] coords = [] for node in G.nodes: coords.append(G.nodes[node]['pos']) print(G.nodes[node]['pos']) tsp_instance = tsp.TspData(name = "TSP", dim = len(G.nodes), coord = coords, w = cost_matrix) qubitOp, offset = tsp.get_operator(tsp_instance) #print(qubitOp.print_details()) print("Qubits: ",qubitOp.num_qubits) qp = QuadraticProgram() qp.from_ising(qubitOp, offset, linear=True) qp.to_docplex().prettyprint() backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend) optimizer = SPSA(maxiter=400) #optimizer = COBYLA(maxiter=100, rhobeg=2, tol=0.5, disp=True) ry = TwoLocal(qubitOp.num_qubits, 'ry', 'cx', reps=3, entanglement='full') vqe = VQE(operator=qubitOp, optimizer=optimizer, quantum_instance=quantum_instance) result = vqe.run(quantum_instance) print(result) x = sample_most_likely(result.eigenstate) print(x) print(tsp.tsp_feasible(x)) if(tsp.tsp_feasible(x)): z = tsp.get_tsp_solution(x) print('solution with VQE:', z) else: print('No solution found with VQE and such parameters') npes = NumPyMinimumEigensolver(qubitOp) result_classical = npes.run() x = sample_most_likely(result_classical.eigenstate) print(x) if(tsp.tsp_feasible(x)): z = tsp.get_tsp_solution(x) print('solution Numpy classical solver:', z) else: print('No solution found with Classical Eigensolver') ## Try now with the optimizer and the Recursive Optimizer backend = quantum_instance = Aer.get_backend('qasm_simulator') optimizer = COBYLA(maxiter=200, rhobeg=3, tol=1.5, disp=True) # MinimumEigenSolvers qaoa_mes = QAOA(quantum_instance = backend, optimizer=optimizer) vqe_mes = VQE(quantum_instance=backend, optimizer=optimizer, operator=qubitOp) exact_mes = NumPyMinimumEigensolver() # Optimizers qaoa = MinimumEigenOptimizer(qaoa_mes) # using QAOA vqe = MinimumEigenOptimizer(vqe_mes) # using QAOA exact = MinimumEigenOptimizer(exact_mes) # using the exact classical numpy minimum eigen solver # We can try using VQE or QAOA for the minimum eigen optimizer and compare results rqaoa = RecursiveMinimumEigenOptimizer(min_eigen_optimizer=vqe, min_num_vars=1, min_num_vars_optimizer=exact) #rqaoa = RecursiveMinimumEigenOptimizer(min_eigen_optimizer=qaoa, min_num_vars=1, min_num_vars_optimizer=exact) exact_result = exact.solve(qp) print("Result Exact QP: ",exact_result.x) if(tsp.tsp_feasible(exact_result.x)): print(tsp.get_tsp_solution(exact_result.x)) qaoa_result = qaoa.solve(qp) print("Result QAOA with QP: ",qaoa_result.x) if(tsp.tsp_feasible(qaoa_result.x)): print(tsp.get_tsp_solution(qaoa_result.x)) vqe_result = vqe.solve(qp) print("Result VQE with QP: ",vqe_result.x) if(tsp.tsp_feasible(vqe_result.x)): print(tsp.get_tsp_solution(vqe_result.x)) rqaoa_result = rqaoa.solve(qp) print("Result RQAOA (withVQE) QP: ",rqaoa_result.x) if(tsp.tsp_feasible(rqaoa_result.x)): print(tsp.get_tsp_solution(rqaoa_result.x)) # Compare with using VQE directly without optimizer. That is why we send qubit operator to the MES result = vqe_mes.run(quantum_instance) x = sample_most_likely(result_classical.eigenstate) print("Result VQE with Operator: ",x) if(tsp.tsp_feasible(x)): print(tsp.get_tsp_solution(x))
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2022, 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Compute-uncompute fidelity interface using primitives """ from __future__ import annotations from collections.abc import Sequence from copy import copy from qiskit import QuantumCircuit from qiskit.primitives import BaseSampler from qiskit.providers import Options from ..exceptions import AlgorithmError from .base_state_fidelity import BaseStateFidelity from .state_fidelity_result import StateFidelityResult class ComputeUncompute(BaseStateFidelity): r""" This class leverages the sampler primitive to calculate the state fidelity of two quantum circuits following the compute-uncompute method (see [1] for further reference). The fidelity can be defined as the state overlap. .. math:: |\langle\psi(x)|\phi(y)\rangle|^2 where :math:`x` and :math:`y` are optional parametrizations of the states :math:`\psi` and :math:`\phi` prepared by the circuits ``circuit_1`` and ``circuit_2``, respectively. **Reference:** [1] Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., & Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209-212. `arXiv:1804.11326v2 [quant-ph] <https://arxiv.org/pdf/1804.11326.pdf>`_ """ def __init__( self, sampler: BaseSampler, options: Options | None = None, local: bool = False, ) -> None: r""" Args: sampler: Sampler primitive instance. options: Primitive backend runtime options used for circuit execution. The order of priority is: options in ``run`` method > fidelity's default options > primitive's default setting. Higher priority setting overrides lower priority setting. local: If set to ``True``, the fidelity is averaged over single-qubit projectors .. math:: \hat{O} = \frac{1}{N}\sum_{i=1}^N|0_i\rangle\langle 0_i|, instead of the global projector :math:`|0\rangle\langle 0|^{\otimes n}`. This coincides with the standard (global) fidelity in the limit of the fidelity approaching 1. Might be used to increase the variance to improve trainability in algorithms such as :class:`~.time_evolvers.PVQD`. Raises: ValueError: If the sampler is not an instance of ``BaseSampler``. """ if not isinstance(sampler, BaseSampler): raise ValueError( f"The sampler should be an instance of BaseSampler, " f"but got {type(sampler)}" ) self._sampler: BaseSampler = sampler self._local = local self._default_options = Options() if options is not None: self._default_options.update_options(**options) super().__init__() def create_fidelity_circuit( self, circuit_1: QuantumCircuit, circuit_2: QuantumCircuit ) -> QuantumCircuit: """ Combines ``circuit_1`` and ``circuit_2`` to create the fidelity circuit following the compute-uncompute method. Args: circuit_1: (Parametrized) quantum circuit. circuit_2: (Parametrized) quantum circuit. Returns: The fidelity quantum circuit corresponding to circuit_1 and circuit_2. """ if len(circuit_1.clbits) > 0: circuit_1.remove_final_measurements() if len(circuit_2.clbits) > 0: circuit_2.remove_final_measurements() circuit = circuit_1.compose(circuit_2.inverse()) circuit.measure_all() return circuit def _run( self, circuits_1: QuantumCircuit | Sequence[QuantumCircuit], circuits_2: QuantumCircuit | Sequence[QuantumCircuit], values_1: Sequence[float] | Sequence[Sequence[float]] | None = None, values_2: Sequence[float] | Sequence[Sequence[float]] | None = None, **options, ) -> StateFidelityResult: r""" Computes the state overlap (fidelity) calculation between two (parametrized) circuits (first and second) for a specific set of parameter values (first and second) following the compute-uncompute method. Args: circuits_1: (Parametrized) quantum circuits preparing :math:`|\psi\rangle`. circuits_2: (Parametrized) quantum circuits preparing :math:`|\phi\rangle`. values_1: Numerical parameters to be bound to the first circuits. values_2: Numerical parameters to be bound to the second circuits. options: Primitive backend runtime options used for circuit execution. The order of priority is: options in ``run`` method > fidelity's default options > primitive's default setting. Higher priority setting overrides lower priority setting. Returns: The result of the fidelity calculation. Raises: ValueError: At least one pair of circuits must be defined. AlgorithmError: If the sampler job is not completed successfully. """ circuits = self._construct_circuits(circuits_1, circuits_2) if len(circuits) == 0: raise ValueError( "At least one pair of circuits must be defined to calculate the state overlap." ) values = self._construct_value_list(circuits_1, circuits_2, values_1, values_2) # The priority of run options is as follows: # options in `evaluate` method > fidelity's default options > # primitive's default options. opts = copy(self._default_options) opts.update_options(**options) job = self._sampler.run(circuits=circuits, parameter_values=values, **opts.__dict__) try: result = job.result() except Exception as exc: raise AlgorithmError("Sampler job failed!") from exc if self._local: raw_fidelities = [ self._get_local_fidelity(prob_dist, circuit.num_qubits) for prob_dist, circuit in zip(result.quasi_dists, circuits) ] else: raw_fidelities = [ self._get_global_fidelity(prob_dist) for prob_dist in result.quasi_dists ] fidelities = self._truncate_fidelities(raw_fidelities) return StateFidelityResult( fidelities=fidelities, raw_fidelities=raw_fidelities, metadata=result.metadata, options=self._get_local_options(opts.__dict__), ) @property def options(self) -> Options: """Return the union of estimator options setting and fidelity default options, where, if the same field is set in both, the fidelity's default options override the primitive's default setting. Returns: The fidelity default + estimator options. """ return self._get_local_options(self._default_options.__dict__) def update_default_options(self, **options): """Update the fidelity's default options setting. Args: **options: The fields to update the default options. """ self._default_options.update_options(**options) def _get_local_options(self, options: Options) -> Options: """Return the union of the primitive's default setting, the fidelity default options, and the options in the ``run`` method. The order of priority is: options in ``run`` method > fidelity's default options > primitive's default setting. Args: options: The fields to update the options Returns: The fidelity default + estimator + run options. """ opts = copy(self._sampler.options) opts.update_options(**options) return opts def _get_global_fidelity(self, probability_distribution: dict[int, float]) -> float: """Process the probability distribution of a measurement to determine the global fidelity. Args: probability_distribution: Obtained from the measurement result Returns: The global fidelity. """ return probability_distribution.get(0, 0) def _get_local_fidelity( self, probability_distribution: dict[int, float], num_qubits: int ) -> float: """Process the probability distribution of a measurement to determine the local fidelity by averaging over single-qubit projectors. Args: probability_distribution: Obtained from the measurement result Returns: The local fidelity. """ fidelity = 0.0 for qubit in range(num_qubits): for bitstring, prob in probability_distribution.items(): # Check whether the bit representing the current qubit is 0 if not bitstring >> qubit & 1: fidelity += prob / num_qubits return fidelity
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
from IPython.display import HTML HTML('''<script> code_show=true; function code_toggle() { if (code_show){ $('div.input').hide(); } else { $('div.input').show(); } code_show = !code_show } $( document ).ready(code_toggle); </script> <form action="javascript:code_toggle()"><input type="submit" value="Click here to toggle on/off the raw code for QISKit exercises."></form>''') from initialize import * import random #initialize quantum program my_alg = initialize(circuit_name = 'bb84', qubit_number=1, bit_number=1, backend = 'local_qasm_simulator', shots = 1) #add gates to the circuit # Alice encodes the bit 1 into a qubit my_alg.q_circuit.x(my_alg.q_reg[0]) # Alice randomly applies the Hadamard gate to go to the Hadamard basis a = random.randint(0,1) if a==1: my_alg.q_circuit.h(my_alg.q_reg[0]) # Bob randomly applies the Hadamard gate to go to the Hadamard basis b = random.randint(0,1) if b==1: my_alg.q_circuit.h(my_alg.q_reg[0]) my_alg.q_circuit.measure(my_alg.q_reg[0], my_alg.c_reg[0]) # measures first qubit # print list of gates in the circuit print('List of gates:') for circuit in my_alg.q_circuit: print(circuit.name) #Execute the quantum algorithm result = my_alg.Q_program.execute(my_alg.circ_name, backend=my_alg.backend, shots= my_alg.shots) #Show the results obtained from the quantum algorithm counts = result.get_counts(my_alg.circ_name) print('\nThe measured outcomes of the circuits are:',counts) if a == b: print('Alice and Bob agree on the basis, thus they keep the bit') else: print("Alice and Bob don't agree the same basis, thus they discard the bit") ### <span style="color:blue"> QISKit: EPR protocol </span> #### <span style="color:blue"> 3) Show the communication of one bit </span>
https://github.com/acfilok96/Quantum-Computation
acfilok96
from qiskit import * from qiskit.tools.visualization import plot_bloch_multivector circuit = QuantumCircuit(1,1) circuit.x(0) simulator = Aer.get_backend('statevector_simulator') result = execute(circuit, backend=simulator).result() statevector = result.get_statevector() print(statevector) %matplotlib inline circuit.draw(output='mpl') # bloch sphere plot_bloch_multivector(statevector) # measurement circuit.measure([0],[0]) backend = Aer.get_backend('qasm_simulator') result = execute(circuit, backend=backend, shots=1024).result() counts = result.get_counts() from qiskit.tools.visualization import plot_histogram plot_histogram(counts) circuit = QuantumCircuit(1,1) circuit.x(0) simulator = Aer.get_backend('unitary_simulator') result = execute(circuit, backend=simulator).result() unitary = result.get_unitary() print(unitary) %matplotlib inline circuit.draw(output='mpl') # bloch sphere plot_bloch_multivector(unitary)
https://github.com/tuf65651/quantum-research
tuf65651
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from datetime import datetime backend = Aer.get_backend("qasm_simulator") global n_reg # = QuantumRegister(6, 'n') global scratch_a global class_reg # = ClassicalRegister(6, 'y') global qc # = QuantumCircuit(n_reg, m_reg, scratch_a, class_reg) test_timestamp = datetime.now() from ArithmaticFunctions import * def setup_each_addition(): n_reg = QuantumRegister(6, 'n') m_reg = QuantumRegister(6, 'm') scratch_a = QuantumRegister(6, 'sca') scratch_b = QuantumRegister(6, 'scb') class_reg = ClassicalRegister(6, 'y') qc = QuantumCircuit(n_reg, m_reg, scratch_a, scratch_b, class_reg) return {'n_reg': n_reg, 'm_reg': m_reg, 'scratch_a': scratch_a, 'scratch_b': scratch_b, 'class_reg': class_reg, 'qc': qc } # def get_results_of_last_test(): # # for bit in range(len(n_reg)): # # qc.measure(n_reg[bit], class_reg[bit]) # simulate = execute(qc, backend=backend, shots=1024).result() return simulate.get_counts() def verify_results(expected): if [expected] == list(results.keys()): print("PASSING - ", test_timestamp) else: print("FAILING - ", test_timestamp) print(f'Got - {results}') tc = setup_each_addition() qc = tc['qc'] qc.x(tc['m_reg'][0]) qc.x(tc['m_reg'][2]) qc.x(tc['n_reg'][3]) mod_reduce(circuit=qc, mod_reg=tc['m_reg'], base_reg=tc['n_reg'], scratch_carry=tc['scratch_a'], scratch_unadd=tc['scratch_b'] ) qc.measure(tc['n_reg'], tc['class_reg']) simulate = execute(qc, backend=backend, shots=1024).result() print(simulate.get_counts())
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1); tensored = bottom.tensor(top) tensored.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.dagcircuit import DAGCircuit from qiskit.converters import circuit_to_dag from qiskit.visualization import dag_drawer q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.measure(q[0], c[0]) circ.rz(0.5, q[1]).c_if(c, 2) dag = circuit_to_dag(circ) dag_drawer(dag)
https://github.com/RQC-QApp/Seminars
RQC-QApp
import numpy as np import matplotlib.pyplot as plt outcome_0 = np.array([1.0, 0.0]) outcome_1 = np.array([0.0, 1.0]) a = 0.75 b = 0.25 assert a + b == 1 prob_bit = a * outcome_0 + b * outcome_1 X, Y = prob_bit plt.figure(figsize=(5,5)) plt.plot([a, 0], [b, b], '--', color='orange') plt.plot([a, a], [b, 0], '--', color='green') ax = plt.gca() ax.quiver(X, Y, angles='xy', scale_units='xy', scale=1) ax.set_xlim([0,1]) ax.set_ylim([0,1]) ax.quiver(0, Y, angles='xy', scale_units='xy', scale=1, color='green', label='Проекция на направление $\overrightarrow{1}$') ax.quiver(X, 0, angles='xy', scale_units='xy', scale=1, color='orange', label='Проекция на направление $\overrightarrow{0}$') plt.xlabel('$\overrightarrow{0}$', fontsize=15) plt.ylabel('$\overrightarrow{1}$', fontsize=15) plt.title('$\overrightarrow{v} = {a}\cdot\overrightarrow{0} + {b}\cdot\overrightarrow{1}$'.format(0, 1, v='v', a=a, b=b)) plt.legend() plt.draw() plt.show() print("Получаем, что a={}".format(prob_bit.dot(outcome_0))) print("Получаем, что b={}".format(prob_bit.dot(outcome_1)))
https://github.com/AllenGabrielMarchen/HHL_implementation
AllenGabrielMarchen
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer from qiskit.quantum_info import Statevector from qiskit.algorithms.linear_solvers.hhl import HHL import numpy as np def qiskit_HHL(A,b): backend = Aer.get_backend('aer_simulator') #qiskit HHL 코드를 불러옴 hhl = HHL(quantum_instance=backend) #A, b에 대해서 HHL 회로를 구성 solution = hhl.solve(A, b) #만들어진 회로를 그림으로 저장 solution.state.draw("mpl").savefig("./outputs/HHL_circuit_qiskit.png") #연산된 상태를 상태 벡터의 형태로 결과를 얻음 naive_sv = Statevector(solution.state).data #qubit수를 확인 num_qubit = solution.state.num_qubits #상태 벡터에서 필요한 상태만을 골라서 저장함 naive_full_vector = np.array([naive_sv[2**(num_qubit-1)+i] for i in range(len(b))]) #실수 부분만 취함 naive_full_vector = np.real(naive_full_vector) #얻어진 벡터를 normalize하여 반환 normalized_result = naive_full_vector/np.linalg.norm(naive_full_vector) constant = b/(A @ normalized_result) constant = (constant[0]+constant[1])/2 constant = np.mean(constant) print('<Qiskit_HHL>') print('Normalized Qiskit Answer : {0}'.format(normalized_result)) print('Un-normalized Qiskit Answer : {0}'.format(normalized_result * constant)) print('Normalize Constant: ' ,constant) return [normalized_result,normalized_result * constant]
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# Import requisite modules import math import datetime import numpy as np import matplotlib.pyplot as plt %matplotlib inline # Import Qiskit packages from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, QAOA, SamplingVQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import TwoLocal from qiskit_aer.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer # The data providers of stock-market data from qiskit_finance.data_providers import RandomDataProvider from qiskit_finance.applications.optimization import PortfolioDiversification # Generate a pairwise time-series similarity matrix seed = 123 stocks = ["TICKER1", "TICKER2"] n = len(stocks) data = RandomDataProvider( tickers=stocks, start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 30), seed=seed, ) data.run() rho = data.get_similarity_matrix() q = 1 # q less or equal than n class ClassicalOptimizer: def __init__(self, rho, n, q): self.rho = rho self.n = n # number of inner variables self.q = q # number of required selection def compute_allowed_combinations(self): f = math.factorial return int(f(self.n) / f(self.q) / f(self.n - self.q)) def cplex_solution(self): # refactoring rho = self.rho n = self.n q = self.q my_obj = list(rho.reshape(1, n**2)[0]) + [0.0 for x in range(0, n)] my_ub = [1 for x in range(0, n**2 + n)] my_lb = [0 for x in range(0, n**2 + n)] my_ctype = "".join(["I" for x in range(0, n**2 + n)]) my_rhs = ( [q] + [1 for x in range(0, n)] + [0 for x in range(0, n)] + [0.1 for x in range(0, n**2)] ) my_sense = ( "".join(["E" for x in range(0, 1 + n)]) + "".join(["E" for x in range(0, n)]) + "".join(["L" for x in range(0, n**2)]) ) try: my_prob = cplex.Cplex() self.populatebyrow(my_prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs) my_prob.solve() except CplexError as exc: print(exc) return x = my_prob.solution.get_values() x = np.array(x) cost = my_prob.solution.get_objective_value() return x, cost def populatebyrow(self, prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs): n = self.n prob.objective.set_sense(prob.objective.sense.minimize) prob.variables.add(obj=my_obj, lb=my_lb, ub=my_ub, types=my_ctype) prob.set_log_stream(None) prob.set_error_stream(None) prob.set_warning_stream(None) prob.set_results_stream(None) rows = [] col = [x for x in range(n**2, n**2 + n)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [x for x in range(0 + n * ii, n + n * ii)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [ii * n + ii, n**2 + ii] coef = [1, -1] rows.append([col, coef]) for ii in range(0, n): for jj in range(0, n): col = [ii * n + jj, n**2 + jj] coef = [1, -1] rows.append([col, coef]) prob.linear_constraints.add(lin_expr=rows, senses=my_sense, rhs=my_rhs) # Instantiate the classical optimizer class classical_optimizer = ClassicalOptimizer(rho, n, q) # Compute the number of feasible solutions: print("Number of feasible combinations= " + str(classical_optimizer.compute_allowed_combinations())) # Compute the total number of possible combinations (feasible + unfeasible) print("Total number of combinations= " + str(2 ** (n * (n + 1)))) # Visualize the solution def visualize_solution(xc, yc, x, C, n, K, title_str): plt.figure() plt.scatter(xc, yc, s=200) for i in range(len(xc)): plt.annotate(i, (xc[i] + 0.015, yc[i]), size=16, color="r") plt.grid() for ii in range(n**2, n**2 + n): if x[ii] > 0: plt.plot(xc[ii - n**2], yc[ii - n**2], "r*", ms=20) for ii in range(0, n**2): if x[ii] > 0: iy = ii // n ix = ii % n plt.plot([xc[ix], xc[iy]], [yc[ix], yc[iy]], "C2") plt.title(title_str + " cost = " + str(int(C * 100) / 100.0)) plt.show() from qiskit.utils import algorithm_globals class QuantumOptimizer: def __init__(self, rho, n, q): self.rho = rho self.n = n self.q = q self.pdf = PortfolioDiversification(similarity_matrix=rho, num_assets=n, num_clusters=q) self.qp = self.pdf.to_quadratic_program() # Obtains the least eigenvalue of the Hamiltonian classically def exact_solution(self): exact_mes = NumPyMinimumEigensolver() exact_eigensolver = MinimumEigenOptimizer(exact_mes) result = exact_eigensolver.solve(self.qp) return self.decode_result(result) def vqe_solution(self): algorithm_globals.random_seed = 100 cobyla = COBYLA() cobyla.set_options(maxiter=250) ry = TwoLocal(n, "ry", "cz", reps=5, entanglement="full") vqe_mes = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=cobyla) vqe = MinimumEigenOptimizer(vqe_mes) result = vqe.solve(self.qp) return self.decode_result(result) def qaoa_solution(self): algorithm_globals.random_seed = 1234 cobyla = COBYLA() cobyla.set_options(maxiter=250) qaoa_mes = QAOA(sampler=Sampler(), optimizer=cobyla, reps=3) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(self.qp) return self.decode_result(result) def decode_result(self, result, offset=0): quantum_solution = 1 - (result.x) ground_level = self.qp.objective.evaluate(result.x) return quantum_solution, ground_level # Instantiate the quantum optimizer class with parameters: quantum_optimizer = QuantumOptimizer(rho, n, q) # Check if the binary representation is correct. This requires CPLEX try: import cplex # warnings.filterwarnings('ignore') quantum_solution, quantum_cost = quantum_optimizer.exact_solution() print(quantum_solution, quantum_cost) classical_solution, classical_cost = classical_optimizer.cplex_solution() print(classical_solution, classical_cost) if np.abs(quantum_cost - classical_cost) < 0.01: print("Binary formulation is correct") else: print("Error in the formulation of the Hamiltonian") except Exception as ex: print(ex) ground_state, ground_level = quantum_optimizer.exact_solution() print(ground_state) classical_cost = 1.000779571614484 # obtained from the CPLEX solution try: if np.abs(ground_level - classical_cost) < 0.01: print("Ising Hamiltonian in Z basis is correct") else: print("Error in the Ising Hamiltonian formulation") except Exception as ex: print(ex) vqe_state, vqe_level = quantum_optimizer.vqe_solution() print(vqe_state, vqe_level) try: if np.linalg.norm(ground_state - vqe_state) < 0.01: print("SamplingVQE produces the same solution as the exact eigensolver.") else: print( "SamplingVQE does not produce the same solution as the exact eigensolver, but that is to be expected." ) except Exception as ex: print(ex) xc, yc = data.get_coordinates() visualize_solution(xc, yc, ground_state, ground_level, n, q, "Classical") visualize_solution(xc, yc, vqe_state, vqe_level, n, q, "VQE") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ The Bernstein-Vazirani algorithm. """ import logging import operator import numpy as np from qiskit import ClassicalRegister, QuantumCircuit from qiskit.aqua import AquaError, Pluggable, PluggableType, get_pluggable_class from qiskit.aqua.algorithms import QuantumAlgorithm from qiskit.aqua.utils import get_subsystem_density_matrix logger = logging.getLogger(__name__) class BernsteinVazirani(QuantumAlgorithm): """The Bernstein-Vazirani algorithm.""" CONFIGURATION = { 'name': 'BernsteinVazirani', 'description': 'Bernstein Vazirani', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'bv_schema', 'type': 'object', 'properties': { }, 'additionalProperties': False }, 'problems': ['hiddenstringfinding'], 'depends': [ { 'pluggable_type': 'oracle', 'default': { 'name': 'TruthTableOracle', }, }, ], } def __init__(self, oracle): self.validate(locals()) super().__init__() self._oracle = oracle self._circuit = None self._ret = {} @classmethod def init_params(cls, params, algo_input): if algo_input is not None: raise AquaError("Input instance not supported.") oracle_params = params.get(Pluggable.SECTION_KEY_ORACLE) oracle = get_pluggable_class( PluggableType.ORACLE, oracle_params['name']).init_params(params) return cls(oracle) def construct_circuit(self, measurement=False): """ Construct the quantum circuit Args: measurement (bool): Boolean flag to indicate if measurement should be included in the circuit. Returns: the QuantumCircuit object for the constructed circuit """ if self._circuit is not None: return self._circuit qc_preoracle = QuantumCircuit( self._oracle.variable_register, self._oracle.output_register, ) qc_preoracle.h(self._oracle.variable_register) qc_preoracle.x(self._oracle.output_register) qc_preoracle.h(self._oracle.output_register) qc_preoracle.barrier() # oracle circuit qc_oracle = self._oracle.circuit qc_oracle.barrier() # postoracle circuit qc_postoracle = QuantumCircuit( self._oracle.variable_register, self._oracle.output_register, ) qc_postoracle.h(self._oracle.variable_register) self._circuit = qc_preoracle + qc_oracle + qc_postoracle # measurement circuit if measurement: measurement_cr = ClassicalRegister(len(self._oracle.variable_register), name='m') self._circuit.add_register(measurement_cr) self._circuit.measure(self._oracle.variable_register, measurement_cr) return self._circuit def _run(self): if self._quantum_instance.is_statevector: qc = self.construct_circuit(measurement=False) result = self._quantum_instance.execute(qc) complete_state_vec = result.get_statevector(qc) variable_register_density_matrix = get_subsystem_density_matrix( complete_state_vec, range(len(self._oracle.variable_register), qc.width()) ) variable_register_density_matrix_diag = np.diag(variable_register_density_matrix) max_amplitude = max( variable_register_density_matrix_diag.min(), variable_register_density_matrix_diag.max(), key=abs ) max_amplitude_idx = np.where(variable_register_density_matrix_diag == max_amplitude)[0][0] top_measurement = np.binary_repr(max_amplitude_idx, len(self._oracle.variable_register)) else: qc = self.construct_circuit(measurement=True) measurement = self._quantum_instance.execute(qc).get_counts(qc) self._ret['measurement'] = measurement top_measurement = max(measurement.items(), key=operator.itemgetter(1))[0] self._ret['result'] = top_measurement return self._ret
https://github.com/noamsgl/IBMAscolaChallenge
noamsgl
import qiskit from qiskit import QuantumCircuit from qiskit.circuit.library import RXGate import numpy as np basis_gates = ['u3'] circ = QuantumCircuit(1, 1) RX = RXGate(0) # circ.append(RX, [0]) circ.h(0) circ.measure(0, 0) print("Before Transpiling:") print(circ) new_circ = qiskit.compiler.transpile(circ, basis_gates=basis_gates, optimization_level=0) print("After Transpiling:") print(new_circ)
https://github.com/bernardomendonca/qiskit-fourier-check
bernardomendonca
import qiskit.quantum_info as qi from qiskit.circuit.library import FourierChecking from qiskit.visualization import plot_histogram f=[1,-1,-1,-1] g=[1,1,-1,-1] circ = FourierChecking(f=f,g=g) circ.draw() zero = qi.Statevector.from_label('00') sv = zero.evolve(circ) probs = sv.probabilities_dict() plot_histogram(probs)
https://github.com/daimurat/qiskit-implementation
daimurat
from qiskit import QuantumCircuit bell = QuantumCircuit(2) bell.h(0) bell.cx(0, 1) bell.measure_all() qasm_str = bell.qasm() qc2 = QuantumCircuit().from_qasm_str(qasm_str) qc2.draw() qc3 = QuantumCircuit().from_qasm_file('qasm') qc3.draw()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/quantum-tokyo/qiskit-handson
quantum-tokyo
import numpy as np from scipy.fftpack import fft import matplotlib.pyplot as plt %matplotlib inline # parameters N = 2**20 # data number dt = 0.0001 # data step [s] f1, f2 = 5, 0 # frequency[Hz] A1, A2 = 5, 0 # Amplitude p1, p2 = 0, 0 # phase t = np.arange(0, N*dt, dt) # time freq = np.linspace(0, 1.0/dt, N) # frequency step x = A1*np.sin(2*np.pi*f1*t + p1) + A2*np.sin(2*np.pi*f2*t + p2) y = fft(x)/(N/2) # 離散フーリエ変換&規格化 plt.figure(2) plt.subplot(211) plt.plot(t, x) plt.xlim(0, 1) plt.xlabel("time") plt.ylabel("amplitude") plt.subplot(212) plt.plot(freq, np.abs(y)) plt.xlim(0, 10) #plt.ylim(0, 5) plt.xlabel("frequency") plt.ylabel("amplitude") plt.tight_layout() plt.savefig("01") plt.show() import numpy as np from numpy import pi # importing Qiskit from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.providers.ibmq import least_busy from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram, plot_bloch_multivector %config InlineBackend.figure_format = 'svg' # Makes the images look nice qc = QuantumCircuit(3) qc.h(2) qc.cu1(pi/2, 1, 2) # CROT from qubit 1 to qubit 2 qc.cu1(pi/4, 0, 2) # CROT from qubit 2 to qubit 0 qc.h(1) qc.cu1(pi/2, 0, 1) # CROT from qubit 0 to qubit 1 qc.h(0) qc.swap(0,2) qc.draw('mpl') import numpy as np from numpy import pi # importing Qiskit from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.providers.ibmq import least_busy from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram, plot_bloch_multivector %config InlineBackend.figure_format = 'svg' # Makes the images look nice def qft_rotations(circuit, n): """Performs qft on the first n qubits in circuit (without swaps)""" if n == 0: return circuit n -= 1 circuit.h(n) for qubit in range(n): circuit.cu1(pi/2**(n-qubit), qubit, n) # At the end of our function, we call the same function again on # the next qubits (we reduced n by one earlier in the function) qft_rotations(circuit, n) # Let's see how it looks: qc = QuantumCircuit(4) qft_rotations(qc,4) qc.draw('mpl') def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit # Let's see how it looks: qc = QuantumCircuit(4) swap_registers(qc,4) qc.draw('mpl') def qft(circuit, n): """QFT on the first n qubits in circuit""" qft_rotations(circuit, n) swap_registers(circuit, n) return circuit # Let's see how it looks: qc = QuantumCircuit(4) qft(qc,4) qc.draw('mpl') bin(5) # Create the circuit qc = QuantumCircuit(3) # Encode the state 5 qc.x(0) qc.x(2) %config InlineBackend.figure_format = 'svg' # Makes the images fit qc.draw('mpl') backend = Aer.get_backend("statevector_simulator") statevector = execute(qc, backend=backend).result().get_statevector() plot_bloch_multivector(statevector) qft(qc,3) qc.draw('mpl') statevector = execute(qc, backend=backend).result().get_statevector() plot_bloch_multivector(statevector) def inverse_qft(circuit, n): """Does the inverse QFT on the first n qubits in circuit""" # First we create a QFT circuit of the correct size: qft_circ = qft(QuantumCircuit(n), n) # Then we take the inverse of this circuit invqft_circ = qft_circ.inverse() # And add it to the first n qubits in our existing circuit circuit.append(invqft_circ, circuit.qubits[:n]) return circuit.decompose() # .decompose() allows us to see the individual gates nqubits = 3 number = 5 qc = QuantumCircuit(nqubits) for qubit in range(nqubits): qc.h(qubit) qc.u1(number*pi/4,0) qc.u1(number*pi/2,1) qc.u1(number*pi,2) qc.draw('mpl') backend = Aer.get_backend("statevector_simulator") statevector = execute(qc, backend=backend).result().get_statevector() plot_bloch_multivector(statevector) qc = inverse_qft(qc,nqubits) qc.measure_all() qc.draw('mpl') # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to nqubits # IBMQ.save_account('Your_Token') IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= nqubits and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) shots = 2048 job = execute(qc, backend=backend, shots=shots, optimization_level=3) job_monitor(job) counts = job.result().get_counts() plot_histogram(counts)
https://github.com/samuraigab/Quantum-Basic-Algorithms
samuraigab
import numpy as np from numpy import pi # importing Qiskit from qiskit import QuantumCircuit, transpile, assemble, Aer from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(3) qc.h(2) qc.cp(pi/2, 1, 2) qc.cp(pi/4, 0, 2) qc.h(1) qc.cp(pi/2, 0, 1) qc.h(0) qc.swap(0, 2) qc.draw() def qft_rotations(circuit, n): if n == 0: return circuit n -= 1 circuit.h(n) for qubit in range(n): circuit.cp(pi/2**(n-qubit), qubit, n) qft_rotations(circuit, n) def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft(circuit, n): qft_rotations(circuit, n) swap_registers(circuit, n) return circuit qc = QuantumCircuit(4) qft(qc,4) qc.draw() # Create the circuit qc = QuantumCircuit(3) # Encode the state 5 (101 in binary) qc.x(0) qc.x(2) qc.draw() sim = Aer.get_backend("aer_simulator") qc_init = qc.copy() qc_init.save_statevector() statevector = sim.run(qc_init).result().get_statevector() plot_bloch_multivector(statevector) qft(qc, 3) qc.draw() qc.save_statevector() statevector = sim.run(qc).result().get_statevector() plot_bloch_multivector(statevector)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit qr = QuantumRegister(3, 'q') anc = QuantumRegister(1, 'ancilla') cr = ClassicalRegister(3, 'c') qc = QuantumCircuit(qr, anc, cr) qc.x(anc[0]) qc.h(anc[0]) qc.h(qr[0:3]) qc.cx(qr[0:3], anc[0]) qc.h(qr[0:3]) qc.barrier(qr) qc.measure(qr, cr) qc.draw('mpl')
https://github.com/aryashah2k/Quantum-Computing-Collection-Of-Resources
aryashah2k
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() from qiskit.circuit.library.standard_gates import XGate, HGate from operator import * n = 3 N = 8 #2**n index_colour_table = {} colour_hash_map = {} index_colour_table = {'000':"yellow", '001':"red", '010':"blue", '011':"red", '100':"green", '101':"blue", '110':"orange", '111':"red"} colour_hash_map = {"yellow":'100', "red":'011', "blue":'000', "green":'001', "orange":'010'} def database_oracle(index_colour_table, colour_hash_map): circ_database = QuantumCircuit(n + n) for i in range(N): circ_data = QuantumCircuit(n) idx = bin(i)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) # qiskit maps the rightmost bit as the 0th qubit -> qn, ..., q0 # we therefore reverse the index string -> q0, ..., qn data_gate = circ_data.to_gate(label=colour).control(num_ctrl_qubits=n, ctrl_state=idx, label="index-"+colour) circ_database.append(data_gate, list(range(n+n))) return circ_database # drawing the database oracle circuit print("Database Encoding") database_oracle(index_colour_table, colour_hash_map).draw() circ_data = QuantumCircuit(n) m = 4 idx = bin(m)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) print("Internal colour encoding for the colour green (as an example)"); circ_data.draw() def oracle_grover(database, data_entry): circ_grover = QuantumCircuit(n + n + 1) circ_grover.append(database, list(range(n+n))) target_reflection_gate = XGate().control(num_ctrl_qubits=n, ctrl_state=colour_hash_map[data_entry], label="Reflection of " + "\"" + data_entry + "\" Target") # control() missing 1 required positional argument: 'self' .... if only 'XGate' used instead of 'XGate()' # The “missing 1 required positional argument: 'self'” error is raised when you do not instantiate an object of a class before calling a class method. This error is also raised when you incorrectly instantiate a class. circ_grover.append(target_reflection_gate, list(range(n, n+n+1))) circ_grover.append(database, list(range(n+n))) return circ_grover print("Grover Oracle (target example: orange)") oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), "orange").decompose().draw() def mcz_gate(num_qubits): num_controls = num_qubits - 1 mcz_gate = QuantumCircuit(num_qubits) target_mcz = QuantumCircuit(1) target_mcz.z(0) target_mcz = target_mcz.to_gate(label="Z_Gate").control(num_ctrl_qubits=num_controls, ctrl_state=None, label="MCZ") mcz_gate.append(target_mcz, list(range(num_qubits))) return mcz_gate.reverse_bits() print("Multi-controlled Z (MCZ) Gate") mcz_gate(n).decompose().draw() def diffusion_operator(num_qubits): circ_diffusion = QuantumCircuit(num_qubits) qubits_list = list(range(num_qubits)) # Layer of H^n gates circ_diffusion.h(qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of Multi-controlled Z (MCZ) Gate circ_diffusion = circ_diffusion.compose(mcz_gate(num_qubits), qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of H^n gates circ_diffusion.h(qubits_list) return circ_diffusion print("Diffusion Circuit") diffusion_operator(n).draw() # Putting it all together ... !!! item = "green" print("Searching for the index of the colour", item) circuit = QuantumCircuit(n + n + 1, n) circuit.x(n + n) circuit.barrier() circuit.h(list(range(n))) circuit.h(n+n) circuit.barrier() unitary_oracle = oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), item).to_gate(label="Oracle Operator") unitary_diffuser = diffusion_operator(n).to_gate(label="Diffusion Operator") M = countOf(index_colour_table.values(), item) Q = int(np.pi * np.sqrt(N/M) / 4) for i in range(Q): circuit.append(unitary_oracle, list(range(n + n + 1))) circuit.append(unitary_diffuser, list(range(n))) circuit.barrier() circuit.measure(list(range(n)), list(range(n))) circuit.draw() backend_sim = Aer.get_backend('qasm_simulator') job_sim = backend_sim.run(transpile(circuit, backend_sim), shots=1024) result_sim = job_sim.result() counts = result_sim.get_counts(circuit) if M==1: print("Index of the colour", item, "is the index with most probable outcome") else: print("Indices of the colour", item, "are the indices the most probable outcomes") from qiskit.visualization import plot_histogram plot_histogram(counts)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from qiskit import QuantumCircuit, transpile from qiskit.providers.fake_provider import FakeAuckland backend = FakeAuckland() ghz = QuantumCircuit(15) ghz.h(0) ghz.cx(0, range(1, 15)) depths = [] for _ in range(100): depths.append( transpile( ghz, backend, layout_method='trivial' # Fixed layout mapped in circuit order ).depth() ) plt.figure(figsize=(8, 6)) plt.hist(depths, align='left', color='#AC557C') plt.xlabel('Depth', fontsize=14) plt.ylabel('Counts', fontsize=14);
https://github.com/kaelynj/Qiskit-HubbardModel
kaelynj
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ, BasicAer, QuantumRegister, ClassicalRegister from qiskit.compiler import transpile, assemble from qiskit.quantum_info import Operator from qiskit.tools.monitor import job_monitor from qiskit.tools.jupyter import * from qiskit.visualization import * import random as rand import scipy.linalg as la provider = IBMQ.load_account() import matplotlib.pyplot as plt import matplotlib.colors as mcolors import numpy as np from matplotlib import rcParams rcParams['text.usetex'] = True def reverse_list(s): temp_list = list(s) temp_list.reverse() return ''.join(temp_list) #Useful tool for converting an integer to a binary bit string def get_bin(x, n=0): """ Get the binary representation of x. Parameters: x (int), n (int, number of digits)""" binry = format(x, 'b').zfill(n) sup = list( reversed( binry[0:int(len(binry)/2)] ) ) sdn = list( reversed( binry[int(len(binry)/2):len(binry)] ) ) return format(x, 'b').zfill(n) #return ''.join(sup)+''.join(sdn) '''The task here is now to define a function which will either update a given circuit with a time-step or return a single gate which contains all the necessary components of a time-step''' #==========Set Parameters of the System=============# dt = 0.2 #Delta t t = 1.0 #Hopping parameter U = 2. #On-Site repulsion time_steps = 30 nsite = 3 trotter_slices = 5 #==========Needed Functions=============# #Function to apply a full set of time evolution gates to a given circuit def qc_evolve(qc, numsite, dt, t, U, num_steps): #Compute angles for the onsite and hopping gates # based on the model parameters t, U, and dt theta = t*dt/(2*trotter_slices) phi = U*dt/(trotter_slices) numq = 2*numsite y_hop = Operator([[np.cos(theta), 0, 0, -1j*np.sin(theta)], [0, np.cos(theta), 1j*np.sin(theta), 0], [0, 1j*np.sin(theta), np.cos(theta), 0], [-1j*np.sin(theta), 0, 0, np.cos(theta)]]) x_hop = Operator([[np.cos(theta), 0, 0, 1j*np.sin(theta)], [0, np.cos(theta), 1j*np.sin(theta), 0], [0, 1j*np.sin(theta), np.cos(theta), 0], [1j*np.sin(theta), 0, 0, np.cos(theta)]]) z_onsite = Operator([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, np.exp(1j*phi)]]) #Loop over each time step needed and apply onsite and hopping gates for step in range(num_steps): for trot in range(trotter_slices): #Onsite Terms for i in range(0, numsite): qc.unitary(z_onsite, [i,i+numsite], label="Z_Onsite") #Add barrier to separate onsite from hopping terms qc.barrier() #Hopping terms for i in range(0,numsite-1): #Spin-up chain qc.unitary(y_hop, [i,i+1], label="YHop") qc.unitary(x_hop, [i,i+1], label="Xhop") #Spin-down chain qc.unitary(y_hop, [i+numsite, i+1+numsite], label="Xhop") qc.unitary(x_hop, [i+numsite, i+1+numsite], label="Xhop") #Add barrier after finishing the time step qc.barrier() #Measure the circuit for i in range(numq): qc.measure(i, i) #Function to run the circuit and store the counts for an evolution with # num_steps number of time steps. def sys_evolve(nsites, dt, t, U, num_steps): numq = 2*nsites data = np.zeros((2**numq, num_steps)) for t_step in range(0, num_steps): #Create circuit with t_step number of steps q = QuantumRegister(numq) c = ClassicalRegister(numq) qcirc = QuantumCircuit(q,c) #Initialize circuit by setting the occupation to # a spin up and down electron in the middle site #=========I TURNED THIS OFF FOR A SPECIFIC CASE============== #qcirc.x(int(nsites/2)) #qcirc.x(nsites+int(nsites/2)) # if nsites==3: #Half-filling # qcirc.x(1) # qcirc.x(4) # qcirc.x(0) #1 electron qcirc.x(1) #=======USE THE REGION ABOVE TO SET YOUR INITIAL STATE======= qcirc.barrier() #Append circuit with Trotter steps needed qc_evolve(qcirc, nsites, dt, t, U, t_step) #Choose provider and backend provider = IBMQ.get_provider() #backend = Aer.get_backend('statevector_simulator') backend = Aer.get_backend('qasm_simulator') #backend = provider.get_backend('ibmq_qasm_simulator') #backend = provider.get_backend('ibmqx4') #backend = provider.get_backend('ibmqx2') #backend = provider.get_backend('ibmq_16_melbourne') shots = 8192 max_credits = 10 #Max number of credits to spend on execution job_exp = execute(qcirc, backend=backend, shots=shots, max_credits=max_credits) job_monitor(job_exp) result = job_exp.result() counts = result.get_counts(qcirc) print(result.get_counts(qcirc)) print("Job: ",t_step+1, " of ", time_steps," complete.") #Store results in data array and normalize them for i in range(2**numq): if counts.get(get_bin(i,numq)) is None: dat = 0 else: dat = counts.get(get_bin(i,numq)) data[i,t_step] = dat/shots return data #Run simulation run_results = sys_evolve(nsite, dt, t, U, time_steps) #Process and plot data '''The procedure here is, for each fermionic mode, add the probability of every state containing that mode (at a given time step), and renormalize the data based on the total occupation of each mode. Afterwards, plot the data as a function of time step for each mode.''' proc_data = np.zeros((2*nsite, time_steps)) timesq = np.arange(0.,time_steps*dt, dt) #Sum over time steps for t in range(time_steps): #Sum over all possible states of computer for i in range(2**(2*nsite)): #num = get_bin(i, 2*nsite) num = ''.join( list( reversed(get_bin(i,2*nsite)) ) ) #For each state, check which mode(s) it contains and add them for mode in range(len(num)): if num[mode]=='1': proc_data[mode,t] += run_results[i,t] #Renormalize these sums so that the total occupation of the modes is 1 norm = 0.0 for mode in range(len(num)): norm += proc_data[mode,t] proc_data[:,t] = proc_data[:,t] / norm ''' At this point, proc_data is a 2d array containing the occupation of each mode, for every time step ''' #Create plots of the processed data fig2, ax2 = plt.subplots(figsize=(20,10)) colors = list(mcolors.TABLEAU_COLORS.keys()) for i in range(nsite): #Create string label strup = "Site "+str(i+1)+r'$\uparrow$' strdwn = "Site "+str(i+1)+r'$\downarrow$' ax2.plot(timesq, proc_data[i,:], marker="^", color=str(colors[i]), label=strup) ax2.plot(timesq, proc_data[i+nsite,:], marker="v", color=str(colors[i]), label=strdwn) #ax2.set_ylim(0, 0.55) ax2.set_xlim(0, time_steps*dt+dt/2.) #ax2.set_xticks(np.arange(0,time_steps*dt+dt, 0.2)) #ax2.set_yticks(np.arange(0,0.55, 0.05)) ax2.tick_params(labelsize=16) ax2.set_title('Time Evolution of 3 Site One Dimensional Chain', fontsize=22) ax2.set_xlabel('Time', fontsize=24) ax2.set_ylabel('Probability', fontsize=24) ax2.legend(fontsize=20) #Plot the raw data as a colormap xticks = np.arange(2**(nsite*2)) xlabels=[] print("Time Steps: ",time_steps, " Step Size: ",dt) for i in range(2**(nsite*2)): xlabels.append(get_bin(i,6)) fig, ax = plt.subplots(figsize=(10,20)) c = ax.pcolor(run_results, cmap='binary') ax.set_title('Time Evolution of 3 Site One Dimensional Chain', fontsize=22) plt.yticks(xticks, xlabels, size=18) ax.set_xlabel('Time Step', fontsize=22) ax.set_ylabel('State', fontsize=26) plt.show() #Try by constructing the matrix and finding the eigenvalues N = 3 Nup = 2 Ndwn = N - Nup t = 1.0 U = 2. #Check if two states are different by a single hop def hop(psii, psij): #Check spin down hopp = 0 if psii[0]==psij[0]: #Create array of indices with nonzero values indi = np.nonzero(psii[1])[0] indj = np.nonzero(psij[1])[0] for i in range(len(indi)): if abs(indi[i]-indj[i])==1: hopp = -t return hopp #Check spin up if psii[1]==psij[1]: indi = np.nonzero(psii[0])[0] indj = np.nonzero(psij[0])[0] for i in range(len(indi)): if abs(indi[i]-indj[i])==1: hopp = -t return hopp return hopp #On-site terms def repel(l,state): if state[0][l]==1 and state[1][l]==1: return state else: return [] #States for 3 electrons with net spin up ''' states = [ [[1,1,0],[1,0,0]], [[1,1,0],[0,1,0]], [[1,1,0], [0,0,1]], [[1,0,1],[1,0,0]], [[1,0,1],[0,1,0]], [[1,0,1], [0,0,1]], [[0,1,1],[1,0,0]], [[0,1,1],[0,1,0]], [[0,1,1], [0,0,1]] ] #States for 2 electrons in singlet state ''' states = [ [[1,0,0],[1,0,0]], [[1,0,0],[0,1,0]], [[1,0,0],[0,0,1]], [[0,1,0],[1,0,0]], [[0,1,0],[0,1,0]], [[0,1,0],[0,0,1]], [[0,0,1],[1,0,0]], [[0,0,1],[0,1,0]], [[0,0,1],[0,0,1]] ] #''' #States for a single electron #states = [ [[1,0,0],[0,0,0]], [[0,1,0],[0,0,0]], [[0,0,1],[0,0,0]] ] #''' H = np.zeros((len(states),len(states)) ) #Construct Hamiltonian matrix for i in range(len(states)): psi_i = states[i] for j in range(len(states)): psi_j = states[j] if j==i: for l in range(0,N): if psi_i == repel(l,psi_j): H[i,j] = U break else: H[i,j] = hop(psi_i, psi_j) print(H) results = la.eig(H) print() for i in range(len(results[0])): print('Eigenvalue: ',results[0][i]) print('Eigenvector: \n',results[1][i]) print() dens_ops = [] eigs = [] for vec in results[1]: dens_ops.append(np.outer(results[1][i],results[1][i])) eigs.append(results[0][i]) print(dens_ops) dt = 0.1 tsteps = 50 times = np.arange(0., tsteps*dt, dt) t_op = la.expm(-1j*H*dt) #print(np.subtract(np.identity(len(H)), dt*H*1j)) #print(t_op) wfk = [0., 1., 0., 0., .0, 0., 0., 0., 0.] #Half-filling initial state #wfk = [0., 0., 0., 0., 1.0, 0., 0., 0., 0.] #2 electron initial state #wfk = [0., 1., 0.] #1 electron initial state evolve = np.zeros([tsteps, len(wfk)]) mode_evolve = np.zeros([tsteps, 6]) evolve[0] = wfk #Figure out how to generalize this later #''' mode_evolve[0][0] = (evolve[0][0]+evolve[0][1]+evolve[0][2]) /2. mode_evolve[0][1] = (evolve[0][3]+evolve[0][4]+evolve[0][5]) /2. mode_evolve[0][2] = (evolve[0][6]+evolve[0][7]+evolve[0][8]) /2. mode_evolve[0][3] = (evolve[0][0]+evolve[0][3]+evolve[0][6]) /2. mode_evolve[0][4] = (evolve[0][1]+evolve[0][4]+evolve[0][7]) /2. mode_evolve[0][5] = (evolve[0][2]+evolve[0][5]+evolve[0][8]) /2. ''' mode_evolve[0][0] = (evolve[0][0]+evolve[0][1]+evolve[0][2]+evolve[0][3]+evolve[0][4]+evolve[0][5]) /3. mode_evolve[0][1] = (evolve[0][0]+evolve[0][1]+evolve[0][2]+evolve[0][6]+evolve[0][7]+evolve[0][8]) /3. mode_evolve[0][2] = (evolve[0][3]+evolve[0][4]+evolve[0][5]+evolve[0][6]+evolve[0][7]+evolve[0][8]) /3. mode_evolve[0][3] = (evolve[0][0]+evolve[0][3]+evolve[0][6]) /3. mode_evolve[0][4] = (evolve[0][1]+evolve[0][4]+evolve[0][7]) /3. mode_evolve[0][5] = (evolve[0][2]+evolve[0][5]+evolve[0][8]) /3. ''' print(mode_evolve[0]) #Define density matrices for t in range(1, tsteps): #t_op = la.expm(-1j*H*t) wfk = np.dot(t_op, wfk) evolve[t] = np.multiply(np.conj(wfk), wfk) norm = np.sum(evolve[t]) #print(evolve[t]) #Store data in modes rather than basis defined in 'states' variable #''' #Procedure for two electrons mode_evolve[t][0] = (evolve[t][0]+evolve[t][1]+evolve[t][2]) / (2) mode_evolve[t][1] = (evolve[t][3]+evolve[t][4]+evolve[t][5]) / (2) mode_evolve[t][2] = (evolve[t][6]+evolve[t][7]+evolve[t][8]) / (2) mode_evolve[t][3] = (evolve[t][0]+evolve[t][3]+evolve[t][6]) / (2) mode_evolve[t][4] = (evolve[t][1]+evolve[t][4]+evolve[t][7]) / (2) mode_evolve[t][5] = (evolve[t][2]+evolve[t][5]+evolve[t][8]) / (2) ''' #Procedure for half-filling mode_evolve[t][0] = (evolve[t][0]+evolve[t][1]+evolve[t][2]+evolve[t][3]+evolve[t][4]+evolve[t][5]) /3. mode_evolve[t][1] = (evolve[t][0]+evolve[t][1]+evolve[t][2]+evolve[t][6]+evolve[t][7]+evolve[t][8]) /3. mode_evolve[t][2] = (evolve[t][3]+evolve[t][4]+evolve[t][5]+evolve[t][6]+evolve[t][7]+evolve[t][8]) /3. mode_evolve[t][3] = (evolve[t][0]+evolve[t][3]+evolve[t][6]) /3. mode_evolve[t][4] = (evolve[t][1]+evolve[t][4]+evolve[t][7]) /3. mode_evolve[t][5] = (evolve[t][2]+evolve[t][5]+evolve[t][8]) /3. #''' print(mode_evolve[t]) #print(np.linalg.norm(evolve[t])) #print(len(evolve[:,0]) ) #print(len(times)) #print(evolve[:,0]) #print(min(evolve[:,0])) #Create plots of the processed data fig2, ax2 = plt.subplots(figsize=(20,10)) colors = list(mcolors.TABLEAU_COLORS.keys()) sit1 = "Exact Site "+str(1)+r'$\uparrow$' sit2 = "Exact Site "+str(2)+r'$\uparrow$' sit3 = "Exact Site "+str(3)+r'$\uparrow$' #ax2.plot(times, evolve[:,0], linestyle='--', color=colors[0], linewidth=2.5, label=sit1) #ax2.plot(times, evolve[:,1], linestyle='--', color=str(colors[1]), linewidth=2.5, label=sit2) #ax2.plot(times, evolve[:,2], linestyle='--', color=str(colors[2]), linewidth=2., label=sit3) #ax2.plot(times, np.zeros(len(times))) for i in range(nsite): #Create string label strupq = "Quantum Site "+str(i+1)+r'$\uparrow$' strdwnq = "Quantum Site "+str(i+1)+r'$\downarrow$' strup = "Numerical Site "+str(i+1)+r'$\uparrow$' strdwn = "Numerical Site "+str(i+1)+r'$\downarrow$' #ax2.plot(timesq, proc_data[i,:], marker="*", color=str(colors[i]), markersize=5, label=strupq) #ax2.plot(timesq, proc_data[i+nsite,:], marker="v", color=str(colors[i]), markersize=5, label=strdwnq) ax2.plot(times, mode_evolve[:,i], linestyle='-', color=str(colors[i]), linewidth=2, label=strup) ax2.plot(times, mode_evolve[:,i+3], linestyle='--', color=str(colors[i]), linewidth=2, label=strdwn) #ax2.plot(times, evolve[:,i], linestyle='-', color=str(colors[i]), linewidth=2, label=strup) #ax2.plot(times, evolve[:,i+3], linestyle='--', color=str(colors[i]), linewidth=2, label=strdwn) ax2.set_ylim(0, .5) ax2.set_xlim(0, tsteps*dt+dt/2.) ax2.set_xticks(np.arange(0,tsteps*dt+dt, 2*dt)) ax2.set_yticks(np.arange(0,0.5, 0.05)) ax2.tick_params(labelsize=16) ax2.set_title('Time Evolution of 2 Electrons in 3 Site Chain', fontsize=22) ax2.set_xlabel('Time', fontsize=24) ax2.set_ylabel('Probability', fontsize=24) ax2.legend(fontsize=20)
https://github.com/kazawai/shor_qiskit
kazawai
from qiskit import (ClassicalRegister, QuantumCircuit, QuantumRegister, transpile) from qiskit_aer import AerSimulator # Define the quantum circuit qc = QuantumCircuit(QuantumRegister(1), ClassicalRegister(1)) # Append the X operator qc.x(0) # Measure the qubit qc.measure(0, 0) # Display the circuit print(qc) # Transpile the circuit for the AerSimulator aer_sim = AerSimulator() aer_sim_transpile = transpile(qc, aer_sim) # Simulate the transpiled circuit 10 times result = aer_sim.run(aer_sim_transpile, shots=10).result() # Print the result print(result.get_counts())
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, QuantumRegister from qiskit.circuit.library.standard_gates import HGate qr = QuantumRegister(3) qc = QuantumCircuit(qr) c3h_gate = HGate().control(2) qc.append(c3h_gate, qr) qc.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import GaussianForcesDriver # if you ran Gaussian elsewhere and already have the output file driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") # if you want to run the Gaussian job from Qiskit # driver = GaussianForcesDriver( # ['#p B3LYP/6-31g Freq=(Anharm) Int=Ultrafine SCF=VeryTight', # '', # 'CO2 geometry optimization B3LYP/6-31g', # '', # '0 1', # 'C -0.848629 2.067624 0.160992', # 'O 0.098816 2.655801 -0.159738', # 'O -1.796073 1.479446 0.481721', # '', # '' from qiskit_nature.second_q.problems import HarmonicBasis basis = HarmonicBasis([2, 2, 2, 2]) from qiskit_nature.second_q.problems import VibrationalStructureProblem from qiskit_nature.second_q.mappers import DirectMapper vibrational_problem = driver.run(basis=basis) vibrational_problem.hamiltonian.truncation_order = 2 main_op, aux_ops = vibrational_problem.second_q_ops() print(main_op) qubit_mapper = DirectMapper() qubit_op = qubit_mapper.map(main_op) print(qubit_op) basis = HarmonicBasis([3, 3, 3, 3]) vibrational_problem = driver.run(basis=basis) vibrational_problem.hamiltonian.truncation_order = 2 main_op, aux_ops = vibrational_problem.second_q_ops() qubit_mapper = DirectMapper() qubit_op = qubit_mapper.map(main_op) print(qubit_op) # for simplicity, we will use the smaller basis again vibrational_problem = driver.run(basis=HarmonicBasis([2, 2, 2, 2])) vibrational_problem.hamiltonian.truncation_order = 2 from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver solver = GroundStateEigensolver( qubit_mapper, NumPyMinimumEigensolver(filter_criterion=vibrational_problem.get_default_filter_criterion()), ) result = solver.solve(vibrational_problem) print(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import json import matplotlib.pyplot as plt import numpy as np from IPython.display import clear_output from qiskit import QuantumCircuit from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit import ParameterVector from qiskit.circuit.library import ZFeatureMap from qiskit.quantum_info import SparsePauliOp from qiskit.utils import algorithm_globals from qiskit_machine_learning.algorithms.classifiers import NeuralNetworkClassifier from qiskit_machine_learning.neural_networks import EstimatorQNN from sklearn.model_selection import train_test_split algorithm_globals.random_seed = 12345 # We now define a two qubit unitary as defined in [3] def conv_circuit(params): target = QuantumCircuit(2) target.rz(-np.pi / 2, 1) target.cx(1, 0) target.rz(params[0], 0) target.ry(params[1], 1) target.cx(0, 1) target.ry(params[2], 1) target.cx(1, 0) target.rz(np.pi / 2, 0) return target # Let's draw this circuit and see what it looks like params = ParameterVector("θ", length=3) circuit = conv_circuit(params) circuit.draw("mpl") def conv_layer(num_qubits, param_prefix): qc = QuantumCircuit(num_qubits, name="Convolutional Layer") qubits = list(range(num_qubits)) param_index = 0 params = ParameterVector(param_prefix, length=num_qubits * 3) for q1, q2 in zip(qubits[0::2], qubits[1::2]): qc = qc.compose(conv_circuit(params[param_index : (param_index + 3)]), [q1, q2]) qc.barrier() param_index += 3 for q1, q2 in zip(qubits[1::2], qubits[2::2] + [0]): qc = qc.compose(conv_circuit(params[param_index : (param_index + 3)]), [q1, q2]) qc.barrier() param_index += 3 qc_inst = qc.to_instruction() qc = QuantumCircuit(num_qubits) qc.append(qc_inst, qubits) return qc circuit = conv_layer(4, "θ") circuit.decompose().draw("mpl") def pool_circuit(params): target = QuantumCircuit(2) target.rz(-np.pi / 2, 1) target.cx(1, 0) target.rz(params[0], 0) target.ry(params[1], 1) target.cx(0, 1) target.ry(params[2], 1) return target params = ParameterVector("θ", length=3) circuit = pool_circuit(params) circuit.draw("mpl") def pool_layer(sources, sinks, param_prefix): num_qubits = len(sources) + len(sinks) qc = QuantumCircuit(num_qubits, name="Pooling Layer") param_index = 0 params = ParameterVector(param_prefix, length=num_qubits // 2 * 3) for source, sink in zip(sources, sinks): qc = qc.compose(pool_circuit(params[param_index : (param_index + 3)]), [source, sink]) qc.barrier() param_index += 3 qc_inst = qc.to_instruction() qc = QuantumCircuit(num_qubits) qc.append(qc_inst, range(num_qubits)) return qc sources = [0, 1] sinks = [2, 3] circuit = pool_layer(sources, sinks, "θ") circuit.decompose().draw("mpl") def generate_dataset(num_images): images = [] labels = [] hor_array = np.zeros((6, 8)) ver_array = np.zeros((4, 8)) j = 0 for i in range(0, 7): if i != 3: hor_array[j][i] = np.pi / 2 hor_array[j][i + 1] = np.pi / 2 j += 1 j = 0 for i in range(0, 4): ver_array[j][i] = np.pi / 2 ver_array[j][i + 4] = np.pi / 2 j += 1 for n in range(num_images): rng = algorithm_globals.random.integers(0, 2) if rng == 0: labels.append(-1) random_image = algorithm_globals.random.integers(0, 6) images.append(np.array(hor_array[random_image])) elif rng == 1: labels.append(1) random_image = algorithm_globals.random.integers(0, 4) images.append(np.array(ver_array[random_image])) # Create noise for i in range(8): if images[-1][i] == 0: images[-1][i] = algorithm_globals.random.uniform(0, np.pi / 4) return images, labels images, labels = generate_dataset(50) train_images, test_images, train_labels, test_labels = train_test_split( images, labels, test_size=0.3 ) fig, ax = plt.subplots(2, 2, figsize=(10, 6), subplot_kw={"xticks": [], "yticks": []}) for i in range(4): ax[i // 2, i % 2].imshow( train_images[i].reshape(2, 4), # Change back to 2 by 4 aspect="equal", ) plt.subplots_adjust(wspace=0.1, hspace=0.025) feature_map = ZFeatureMap(8) feature_map.decompose().draw("mpl") feature_map = ZFeatureMap(8) ansatz = QuantumCircuit(8, name="Ansatz") # First Convolutional Layer ansatz.compose(conv_layer(8, "с1"), list(range(8)), inplace=True) # First Pooling Layer ansatz.compose(pool_layer([0, 1, 2, 3], [4, 5, 6, 7], "p1"), list(range(8)), inplace=True) # Second Convolutional Layer ansatz.compose(conv_layer(4, "c2"), list(range(4, 8)), inplace=True) # Second Pooling Layer ansatz.compose(pool_layer([0, 1], [2, 3], "p2"), list(range(4, 8)), inplace=True) # Third Convolutional Layer ansatz.compose(conv_layer(2, "c3"), list(range(6, 8)), inplace=True) # Third Pooling Layer ansatz.compose(pool_layer([0], [1], "p3"), list(range(6, 8)), inplace=True) # Combining the feature map and ansatz circuit = QuantumCircuit(8) circuit.compose(feature_map, range(8), inplace=True) circuit.compose(ansatz, range(8), inplace=True) observable = SparsePauliOp.from_list([("Z" + "I" * 7, 1)]) # we decompose the circuit for the QNN to avoid additional data copying qnn = EstimatorQNN( circuit=circuit.decompose(), observables=observable, input_params=feature_map.parameters, weight_params=ansatz.parameters, ) circuit.draw("mpl") def callback_graph(weights, obj_func_eval): clear_output(wait=True) objective_func_vals.append(obj_func_eval) plt.title("Objective function value against iteration") plt.xlabel("Iteration") plt.ylabel("Objective function value") plt.plot(range(len(objective_func_vals)), objective_func_vals) plt.show() with open("11_qcnn_initial_point.json", "r") as f: initial_point = json.load(f) classifier = NeuralNetworkClassifier( qnn, optimizer=COBYLA(maxiter=200), # Set max iterations here callback=callback_graph, initial_point=initial_point, ) x = np.asarray(train_images) y = np.asarray(train_labels) objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) classifier.fit(x, y) # score classifier print(f"Accuracy from the train data : {np.round(100 * classifier.score(x, y), 2)}%") y_predict = classifier.predict(test_images) x = np.asarray(test_images) y = np.asarray(test_labels) print(f"Accuracy from the test data : {np.round(100 * classifier.score(x, y), 2)}%") # Let's see some examples in our dataset fig, ax = plt.subplots(2, 2, figsize=(10, 6), subplot_kw={"xticks": [], "yticks": []}) for i in range(0, 4): ax[i // 2, i % 2].imshow(test_images[i].reshape(2, 4), aspect="equal") if y_predict[i] == -1: ax[i // 2, i % 2].set_title("The QCNN predicts this is a Horizontal Line") if y_predict[i] == +1: ax[i // 2, i % 2].set_title("The QCNN predicts this is a Vertical Line") plt.subplots_adjust(wspace=0.1, hspace=0.5) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-quantinuum-provider
qiskit-community
# This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # Copyright 2019-2020 Quantinuum, Intl. (www.quantinuum.com) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for interfacing with a Quantinuum Backend.""" import logging import warnings from qiskit.circuit import QuantumCircuit from qiskit.providers import BackendV1 from qiskit.providers.models import BackendStatus from qiskit.providers import Options from qiskit.utils import deprecate_arguments from qiskit import qobj as qobj_mod from qiskit import pulse from qiskit_quantinuum.exceptions import QiskitError from .quantinuumjob import QuantinuumJob logger = logging.getLogger(__name__) class QuantinuumBackend(BackendV1): """Backend class interfacing with a Quantinuum backend.""" def __init__(self, name, configuration, provider, api): """Initialize remote backend for Quantinuum Quantum Computer. Args: name (String): name of backend. configuration (BackendConfiguration): backend configuration provider (QuantinuumProvider): provider. api (QuantinuumClient): API client instance to use for backend communication """ super().__init__(configuration=configuration, provider=provider) self._api = api self._name = name @classmethod def _default_options(cls): return Options(shots=1024, priority='normal') @deprecate_arguments({'qobj': 'run_input'}) def run(self, run_input, **kwargs): """Run a circuit on the backend. Args: run_input (QuantumCircuit|list): A QuantumCircuit or a list of QuantumCircuit objects to run on the backend Returns: HoneywelJob: a handle to the async execution of the circuit(s) on the backend Raises: QiskitError: If a pulse schedule is passed in for ``run_input`` """ if isinstance(run_input, qobj_mod.QasmQobj): warnings.warn("Passing in a QASMQobj object to run() is " "deprecated and will be removed in a future " "release", DeprecationWarning) job = QuantinuumJob(self, None, self._api, circuits=run_input) elif isinstance(run_input, (qobj_mod.PulseQobj, pulse.Schedule)): raise QiskitError("Pulse jobs are not accepted") else: if isinstance(run_input, QuantumCircuit): run_input = [run_input] job_config = {} for kwarg in kwargs: if not hasattr(self.options, kwarg): warnings.warn( "Option %s is not used by this backend" % kwarg, UserWarning, stacklevel=2) else: job_config[kwarg] = kwargs[kwarg] if 'shots' not in job_config: job_config['shots'] = self.options.shots job_config['priority'] = self.options.priority job = QuantinuumJob(self, None, self._api, circuits=run_input, job_config=job_config) job.submit() return job def retrieve_job(self, job_id): """ Returns the job associated with the given job_id """ job = QuantinuumJob(self, job_id, self._api) return job def retrieve_jobs(self, job_ids): """ Returns a list of jobs associated with the given job_ids """ return [QuantinuumJob(self, job_id, self._api) for job_id in job_ids] def status(self): """Return the online backend status. Returns: BackendStatus: The status of the backend. Raises: LookupError: If status for the backend can't be found. QuantinuumBackendError: If the status can't be formatted properly. """ api_status = self._api.backend_status(self.name()) try: return BackendStatus.from_dict(api_status) except QiskitError as ex: raise LookupError( "Couldn't get backend status: {0}".format(ex) ) def name(self): return self._name
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
#!/usr/bin/env python3 # Author: Daniel Escanez-Exposito from qiskit import QuantumCircuit from algorithms.qalgorithm import QAlgorithm ## A Quantum Algorithm to obtain random numbers for QuantumSolver class QRand(QAlgorithm): ## Constructor def __init__(self): ## The name of the algorithm self.name = 'QRand' ## A short description self.description = 'Gives a random number between 0 and 2 ^ n_qubits - 1' ## The required parameters for the algorithm self.parameters = [ { 'type': 'int', 'description': 'A positive number of qubits to use', 'constraint': 'Can\'t be bigger than the number of qubits of the selected backend' } ] ## How to parse the result of the circuit execution self.parse_result = lambda counts: int(list(counts.keys())[0], 2) ## How to parse the input parameters self.parse_parameters = lambda parameters: [int(parameters[0])] ## Verify that the parameter is the number of qubits to use def check_parameters(self, parameters): if len(parameters) == 1 and type(parameters[0]) == str: try: return int(parameters[0]) > 0 except: return False ## Create the circuit def circuit(self, n=1): # Create a Quantum Circuit circuit = QuantumCircuit(n, n) n_range = list(range(n)) # Add a H gate on every qubit circuit.h(n_range) circuit.barrier() # Map the quantum measurement to the classical bits circuit.measure(n_range, n_range) return circuit
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for Kraus quantum channel representation class.""" import copy import unittest import numpy as np from numpy.testing import assert_allclose from qiskit import QiskitError from qiskit.quantum_info.states import DensityMatrix from qiskit.quantum_info import Kraus from .channel_test_case import ChannelTestCase class TestKraus(ChannelTestCase): """Tests for Kraus channel representation.""" def test_init(self): """Test initialization""" # Initialize from unitary chan = Kraus(self.UI) assert_allclose(chan.data, [self.UI]) self.assertEqual(chan.dim, (2, 2)) self.assertEqual(chan.num_qubits, 1) # Initialize from Kraus chan = Kraus(self.depol_kraus(0.5)) assert_allclose(chan.data, self.depol_kraus(0.5)) self.assertEqual(chan.dim, (2, 2)) self.assertEqual(chan.num_qubits, 1) # Initialize from Non-CPTP kraus_l, kraus_r = [self.UI, self.UX], [self.UY, self.UZ] chan = Kraus((kraus_l, kraus_r)) assert_allclose(chan.data, (kraus_l, kraus_r)) self.assertEqual(chan.dim, (2, 2)) self.assertEqual(chan.num_qubits, 1) # Initialize with redundant second op chan = Kraus((kraus_l, kraus_l)) assert_allclose(chan.data, kraus_l) self.assertEqual(chan.dim, (2, 2)) self.assertEqual(chan.num_qubits, 1) # Initialize from rectangular kraus = [np.zeros((4, 2))] chan = Kraus(kraus) assert_allclose(chan.data, kraus) self.assertEqual(chan.dim, (2, 4)) self.assertIsNone(chan.num_qubits) # Wrong input or output dims should raise exception self.assertRaises(QiskitError, Kraus, kraus, input_dims=4, output_dims=4) def test_circuit_init(self): """Test initialization from a circuit.""" circuit, target = self.simple_circuit_no_measure() op = Kraus(circuit) target = Kraus(target) self.assertEqual(op, target) def test_circuit_init_except(self): """Test initialization from circuit with measure raises exception.""" circuit = self.simple_circuit_with_measure() self.assertRaises(QiskitError, Kraus, circuit) def test_equal(self): """Test __eq__ method""" kraus = [self.rand_matrix(2, 2) for _ in range(2)] self.assertEqual(Kraus(kraus), Kraus(kraus)) def test_copy(self): """Test copy method""" mat = np.eye(2) with self.subTest("Deep copy"): orig = Kraus(mat) cpy = orig.copy() cpy._data[0][0][0, 0] = 0.0 self.assertFalse(cpy == orig) with self.subTest("Shallow copy"): orig = Kraus(mat) clone = copy.copy(orig) clone._data[0][0][0, 0] = 0.0 self.assertTrue(clone == orig) def test_clone(self): """Test clone method""" mat = np.eye(4) orig = Kraus(mat) clone = copy.copy(orig) clone._data[0][0][0, 0] = 0.0 self.assertTrue(clone == orig) def test_is_cptp(self): """Test is_cptp method.""" self.assertTrue(Kraus(self.depol_kraus(0.5)).is_cptp()) self.assertTrue(Kraus(self.UX).is_cptp()) # Non-CPTP should return false self.assertFalse(Kraus(([self.UI], [self.UX])).is_cptp()) self.assertFalse(Kraus([self.UI, self.UX]).is_cptp()) def test_conjugate(self): """Test conjugate method.""" kraus_l, kraus_r = self.rand_kraus(2, 4, 4), self.rand_kraus(2, 4, 4) # Single Kraus list targ = Kraus([np.conjugate(k) for k in kraus_l]) chan1 = Kraus(kraus_l) chan = chan1.conjugate() self.assertEqual(chan, targ) self.assertEqual(chan.dim, (2, 4)) # Double Kraus list targ = Kraus(([np.conjugate(k) for k in kraus_l], [np.conjugate(k) for k in kraus_r])) chan1 = Kraus((kraus_l, kraus_r)) chan = chan1.conjugate() self.assertEqual(chan, targ) self.assertEqual(chan.dim, (2, 4)) def test_transpose(self): """Test transpose method.""" kraus_l, kraus_r = self.rand_kraus(2, 4, 4), self.rand_kraus(2, 4, 4) # Single Kraus list targ = Kraus([np.transpose(k) for k in kraus_l]) chan1 = Kraus(kraus_l) chan = chan1.transpose() self.assertEqual(chan, targ) self.assertEqual(chan.dim, (4, 2)) # Double Kraus list targ = Kraus(([np.transpose(k) for k in kraus_l], [np.transpose(k) for k in kraus_r])) chan1 = Kraus((kraus_l, kraus_r)) chan = chan1.transpose() self.assertEqual(chan, targ) self.assertEqual(chan.dim, (4, 2)) def test_adjoint(self): """Test adjoint method.""" kraus_l, kraus_r = self.rand_kraus(2, 4, 4), self.rand_kraus(2, 4, 4) # Single Kraus list targ = Kraus([np.transpose(k).conj() for k in kraus_l]) chan1 = Kraus(kraus_l) chan = chan1.adjoint() self.assertEqual(chan, targ) self.assertEqual(chan.dim, (4, 2)) # Double Kraus list targ = Kraus( ([np.transpose(k).conj() for k in kraus_l], [np.transpose(k).conj() for k in kraus_r]) ) chan1 = Kraus((kraus_l, kraus_r)) chan = chan1.adjoint() self.assertEqual(chan, targ) self.assertEqual(chan.dim, (4, 2)) def test_compose_except(self): """Test compose different dimension exception""" self.assertRaises(QiskitError, Kraus(np.eye(2)).compose, Kraus(np.eye(4))) self.assertRaises(QiskitError, Kraus(np.eye(2)).compose, 2) def test_compose(self): """Test compose method.""" # Random input test state rho = DensityMatrix(self.rand_rho(2)) # UnitaryChannel evolution chan1 = Kraus(self.UX) chan2 = Kraus(self.UY) chan = chan1.compose(chan2) targ = rho & Kraus(self.UZ) self.assertEqual(rho & chan, targ) # 50% depolarizing channel chan1 = Kraus(self.depol_kraus(0.5)) chan = chan1.compose(chan1) targ = rho & Kraus(self.depol_kraus(0.75)) self.assertEqual(rho & chan, targ) # Compose different dimensions kraus1, kraus2 = self.rand_kraus(2, 4, 4), self.rand_kraus(4, 2, 4) chan1 = Kraus(kraus1) chan2 = Kraus(kraus2) targ = rho & chan1 & chan2 chan = chan1.compose(chan2) self.assertEqual(chan.dim, (2, 2)) self.assertEqual(rho & chan, targ) chan = chan1 & chan2 self.assertEqual(chan.dim, (2, 2)) self.assertEqual(rho & chan, targ) def test_dot(self): """Test dot method.""" # Random input test state rho = DensityMatrix(self.rand_rho(2)) # UnitaryChannel evolution chan1 = Kraus(self.UX) chan2 = Kraus(self.UY) targ = rho.evolve(Kraus(self.UZ)) self.assertEqual(rho.evolve(chan1.dot(chan2)), targ) self.assertEqual(rho.evolve(chan1 @ chan2), targ) # 50% depolarizing channel chan1 = Kraus(self.depol_kraus(0.5)) targ = rho & Kraus(self.depol_kraus(0.75)) self.assertEqual(rho.evolve(chan1.dot(chan1)), targ) self.assertEqual(rho.evolve(chan1 @ chan1), targ) # Compose different dimensions kraus1, kraus2 = self.rand_kraus(2, 4, 4), self.rand_kraus(4, 2, 4) chan1 = Kraus(kraus1) chan2 = Kraus(kraus2) targ = rho & chan1 & chan2 self.assertEqual(rho.evolve(chan2.dot(chan1)), targ) self.assertEqual(rho.evolve(chan2 @ chan1), targ) def test_compose_front(self): """Test deprecated front compose method.""" # Random input test state rho = DensityMatrix(self.rand_rho(2)) # UnitaryChannel evolution chan1 = Kraus(self.UX) chan2 = Kraus(self.UY) chan = chan1.compose(chan2, front=True) targ = rho & Kraus(self.UZ) self.assertEqual(rho & chan, targ) # 50% depolarizing channel chan1 = Kraus(self.depol_kraus(0.5)) chan = chan1.compose(chan1, front=True) targ = rho & Kraus(self.depol_kraus(0.75)) self.assertEqual(rho & chan, targ) # Compose different dimensions kraus1, kraus2 = self.rand_kraus(2, 4, 4), self.rand_kraus(4, 2, 4) chan1 = Kraus(kraus1) chan2 = Kraus(kraus2) targ = rho & chan1 & chan2 chan = chan2.compose(chan1, front=True) self.assertEqual(chan.dim, (2, 2)) self.assertEqual(rho & chan, targ) def test_expand(self): """Test expand method.""" rho0, rho1 = np.diag([1, 0]), np.diag([0, 1]) rho_init = DensityMatrix(np.kron(rho0, rho0)) chan1 = Kraus(self.UI) chan2 = Kraus(self.UX) # X \otimes I chan = chan1.expand(chan2) rho_targ = DensityMatrix(np.kron(rho1, rho0)) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init & chan, rho_targ) # I \otimes X chan = chan2.expand(chan1) rho_targ = DensityMatrix(np.kron(rho0, rho1)) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init & chan, rho_targ) # Completely depolarizing chan_dep = Kraus(self.depol_kraus(1)) chan = chan_dep.expand(chan_dep) rho_targ = DensityMatrix(np.diag([1, 1, 1, 1]) / 4) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init & chan, rho_targ) def test_tensor(self): """Test tensor method.""" rho0, rho1 = np.diag([1, 0]), np.diag([0, 1]) rho_init = DensityMatrix(np.kron(rho0, rho0)) chan1 = Kraus(self.UI) chan2 = Kraus(self.UX) # X \otimes I chan = chan2.tensor(chan1) rho_targ = DensityMatrix(np.kron(rho1, rho0)) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init & chan, rho_targ) # I \otimes X chan = chan1.tensor(chan2) rho_targ = DensityMatrix(np.kron(rho0, rho1)) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init & chan, rho_targ) # Completely depolarizing chan_dep = Kraus(self.depol_kraus(1)) chan = chan_dep.tensor(chan_dep) rho_targ = DensityMatrix(np.diag([1, 1, 1, 1]) / 4) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init & chan, rho_targ) def test_power(self): """Test power method.""" # 10% depolarizing channel rho = DensityMatrix(np.diag([1, 0])) p_id = 0.9 chan = Kraus(self.depol_kraus(1 - p_id)) # Compose 3 times p_id3 = p_id**3 chan3 = chan.power(3) targ3a = rho & chan & chan & chan self.assertEqual(rho & chan3, targ3a) targ3b = rho & Kraus(self.depol_kraus(1 - p_id3)) self.assertEqual(rho & chan3, targ3b) def test_add(self): """Test add method.""" # Random input test state rho = DensityMatrix(self.rand_rho(2)) kraus1, kraus2 = self.rand_kraus(2, 4, 4), self.rand_kraus(2, 4, 4) # Random Single-Kraus maps chan1 = Kraus(kraus1) chan2 = Kraus(kraus2) targ = (rho & chan1) + (rho & chan2) chan = chan1._add(chan2) self.assertEqual(rho & chan, targ) chan = chan1 + chan2 self.assertEqual(rho & chan, targ) # Random Single-Kraus maps chan = Kraus((kraus1, kraus2)) targ = 2 * (rho & chan) chan = chan._add(chan) self.assertEqual(rho & chan, targ) def test_add_qargs(self): """Test add method with qargs.""" rho = DensityMatrix(self.rand_rho(8)) kraus = self.rand_kraus(8, 8, 4) kraus0 = self.rand_kraus(2, 2, 4) op = Kraus(kraus) op0 = Kraus(kraus0) eye = Kraus(self.UI) with self.subTest(msg="qargs=[0]"): value = op + op0([0]) target = op + eye.tensor(eye).tensor(op0) self.assertEqual(rho & value, rho & target) with self.subTest(msg="qargs=[1]"): value = op + op0([1]) target = op + eye.tensor(op0).tensor(eye) self.assertEqual(rho & value, rho & target) with self.subTest(msg="qargs=[2]"): value = op + op0([2]) target = op + op0.tensor(eye).tensor(eye) self.assertEqual(rho & value, rho & target) def test_sub_qargs(self): """Test sub method with qargs.""" rho = DensityMatrix(self.rand_rho(8)) kraus = self.rand_kraus(8, 8, 4) kraus0 = self.rand_kraus(2, 2, 4) op = Kraus(kraus) op0 = Kraus(kraus0) eye = Kraus(self.UI) with self.subTest(msg="qargs=[0]"): value = op - op0([0]) target = op - eye.tensor(eye).tensor(op0) self.assertEqual(rho & value, rho & target) with self.subTest(msg="qargs=[1]"): value = op - op0([1]) target = op - eye.tensor(op0).tensor(eye) self.assertEqual(rho & value, rho & target) with self.subTest(msg="qargs=[2]"): value = op - op0([2]) target = op - op0.tensor(eye).tensor(eye) self.assertEqual(rho & value, rho & target) def test_subtract(self): """Test subtract method.""" # Random input test state rho = DensityMatrix(self.rand_rho(2)) kraus1, kraus2 = self.rand_kraus(2, 4, 4), self.rand_kraus(2, 4, 4) # Random Single-Kraus maps chan1 = Kraus(kraus1) chan2 = Kraus(kraus2) targ = (rho & chan1) - (rho & chan2) chan = chan1 - chan2 self.assertEqual(rho & chan, targ) # Random Single-Kraus maps chan = Kraus((kraus1, kraus2)) targ = 0 * (rho & chan) chan = chan - chan self.assertEqual(rho & chan, targ) def test_multiply(self): """Test multiply method.""" # Random initial state and Kraus ops rho = DensityMatrix(self.rand_rho(2)) val = 0.5 kraus1, kraus2 = self.rand_kraus(2, 4, 4), self.rand_kraus(2, 4, 4) # Single Kraus set chan1 = Kraus(kraus1) targ = val * (rho & chan1) chan = chan1._multiply(val) self.assertEqual(rho & chan, targ) chan = val * chan1 self.assertEqual(rho & chan, targ) targ = (rho & chan1) * val chan = chan1 * val self.assertEqual(rho & chan, targ) # Double Kraus set chan2 = Kraus((kraus1, kraus2)) targ = val * (rho & chan2) chan = chan2._multiply(val) self.assertEqual(rho & chan, targ) chan = val * chan2 self.assertEqual(rho & chan, targ) def test_multiply_except(self): """Test multiply method raises exceptions.""" chan = Kraus(self.depol_kraus(1)) self.assertRaises(QiskitError, chan._multiply, "s") self.assertRaises(QiskitError, chan.__rmul__, "s") self.assertRaises(QiskitError, chan._multiply, chan) self.assertRaises(QiskitError, chan.__rmul__, chan) def test_negate(self): """Test negate method""" rho = DensityMatrix(np.diag([1, 0])) targ = DensityMatrix(np.diag([-0.5, -0.5])) chan = -Kraus(self.depol_kraus(1)) self.assertEqual(rho & chan, targ) if __name__ == "__main__": unittest.main()
https://github.com/vm6502q/qiskit-qrack-provider
vm6502q
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Decorator for using with Qiskit unit tests.""" import functools import os import sys import unittest from .utils import Path from .http_recorder import http_recorder from .testing_options import get_test_options def is_aer_provider_available(): """Check if the C++ simulator can be instantiated. Returns: bool: True if simulator executable is available """ # TODO: HACK FROM THE DEPTHS OF DESPAIR AS AER DOES NOT WORK ON MAC if sys.platform == 'darwin': return False try: import qiskit.providers.aer # pylint: disable=unused-import except ImportError: return False return True def requires_aer_provider(test_item): """Decorator that skips test if qiskit aer provider is not available Args: test_item (callable): function or class to be decorated. Returns: callable: the decorated function. """ reason = 'Aer provider not found, skipping test' return unittest.skipIf(not is_aer_provider_available(), reason)(test_item) def slow_test(func): """Decorator that signals that the test takes minutes to run. Args: func (callable): test function to be decorated. Returns: callable: the decorated function. """ @functools.wraps(func) def _wrapper(*args, **kwargs): skip_slow = not TEST_OPTIONS['run_slow'] if skip_slow: raise unittest.SkipTest('Skipping slow tests') return func(*args, **kwargs) return _wrapper def _get_credentials(test_object, test_options): """Finds the credentials for a specific test and options. Args: test_object (QiskitTestCase): The test object asking for credentials test_options (dict): Options after QISKIT_TESTS was parsed by get_test_options. Returns: Credentials: set of credentials Raises: ImportError: if the Exception: when the credential could not be set and they are needed for that set of options """ try: from qiskit.providers.ibmq.credentials import (Credentials, discover_credentials) except ImportError: raise ImportError('qiskit-ibmq-provider could not be found, and is ' 'required for mocking or executing online tests.') dummy_credentials = Credentials( 'dummyapiusersloginWithTokenid01', 'https://quantumexperience.ng.bluemix.net/api') if test_options['mock_online']: return dummy_credentials if os.getenv('USE_ALTERNATE_ENV_CREDENTIALS', ''): # Special case: instead of using the standard credentials mechanism, # load them from different environment variables. This assumes they # will always be in place, as is used by the Travis setup. return Credentials(os.getenv('IBMQ_TOKEN'), os.getenv('IBMQ_URL')) else: # Attempt to read the standard credentials. discovered_credentials = discover_credentials() if discovered_credentials: # Decide which credentials to use for testing. if len(discovered_credentials) > 1: try: # Attempt to use QE credentials. return discovered_credentials[dummy_credentials.unique_id()] except KeyError: pass # Use the first available credentials. return list(discovered_credentials.values())[0] # No user credentials were found. if test_options['rec']: raise Exception('Could not locate valid credentials. You need them for ' 'recording tests against the remote API.') test_object.log.warning('No user credentials were detected. ' 'Running with mocked data.') test_options['mock_online'] = True return dummy_credentials def requires_qe_access(func): """Decorator that signals that the test uses the online API: It involves: * determines if the test should be skipped by checking environment variables. * if the `USE_ALTERNATE_ENV_CREDENTIALS` environment variable is set, it reads the credentials from an alternative set of environment variables. * if the test is not skipped, it reads `qe_token` and `qe_url` from `Qconfig.py`, environment variables or qiskitrc. * if the test is not skipped, it appends `qe_token` and `qe_url` as arguments to the test function. Args: func (callable): test function to be decorated. Returns: callable: the decorated function. """ @functools.wraps(func) def _wrapper(self, *args, **kwargs): if TEST_OPTIONS['skip_online']: raise unittest.SkipTest('Skipping online tests') credentials = _get_credentials(self, TEST_OPTIONS) self.using_ibmq_credentials = credentials.is_ibmq() kwargs.update({'qe_token': credentials.token, 'qe_url': credentials.url}) decorated_func = func if TEST_OPTIONS['rec'] or TEST_OPTIONS['mock_online']: # For recording or for replaying existing cassettes, the test # should be decorated with @use_cassette. vcr_mode = 'new_episodes' if TEST_OPTIONS['rec'] else 'none' decorated_func = http_recorder( vcr_mode, Path.CASSETTES.value).use_cassette()(decorated_func) return decorated_func(self, *args, **kwargs) return _wrapper TEST_OPTIONS = get_test_options()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.quantum_info import SparsePauliOp H2_op = SparsePauliOp.from_list( [ ("II", -1.052373245772859), ("IZ", 0.39793742484318045), ("ZI", -0.39793742484318045), ("ZZ", -0.01128010425623538), ("XX", 0.18093119978423156), ] ) from qiskit.circuit.library import TwoLocal from qiskit.algorithms.optimizers import SLSQP ansatz = TwoLocal(3, rotation_blocks=["ry", "rz"], entanglement_blocks="cz", reps=1) optimizer = SLSQP() ansatz.decompose().draw('mpl') from qiskit.primitives import Sampler, Estimator from qiskit.algorithms.state_fidelities import ComputeUncompute estimator = Estimator() sampler = Sampler() fidelity = ComputeUncompute(sampler) k = 3 betas = [33, 33, 33] counts = [] values = [] steps = [] def callback(eval_count, params, value, meta, step): counts.append(eval_count) values.append(value) steps.append(step) from qiskit.algorithms.eigensolvers import VQD vqd = VQD(estimator, fidelity, ansatz, optimizer, k=k, betas=betas, callback=callback) result = vqd.compute_eigenvalues(operator = H2_op) vqd_values = result.optimal_values print(vqd_values) import numpy as np import pylab pylab.rcParams["figure.figsize"] = (12, 8) steps = np.asarray(steps) counts = np.asarray(counts) values = np.asarray(values) for i in range(1,4): _counts = counts[np.where(steps == i)] _values = values[np.where(steps == i)] pylab.plot(_counts, _values, label=f"State {i-1}") pylab.xlabel("Eval count") pylab.ylabel("Energy") pylab.title("Energy convergence for each computed state") pylab.legend(loc="upper right"); from qiskit.algorithms.eigensolvers import NumPyEigensolver from qiskit.opflow import PauliSumOp exact_solver = NumPyEigensolver(k=3) exact_result = exact_solver.compute_eigenvalues(PauliSumOp(H2_op)) ref_values = exact_result.eigenvalues print(f"Reference values: {ref_values}") print(f"VQD values: {vqd_values}") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/Tojarieh97/VQE
Tojarieh97
import nbimporter from typing import Dict, Tuple, List import numpy as np from tqdm import tqdm QUBITS_NUM = 4 N = 16 K = 4 NUM_SHOTS = 1024 NUM_ITERATIONS = 50 w = 0.5 approximated_energies = [] from qiskit import Aer from qiskit.utils import QuantumInstance, algorithm_globals seed = 50 algorithm_globals.random_seed = seed simulator_backend = Aer.get_backend('qasm_simulator') from scipy.optimize import minimize from utiles import * input_states = get_first_k_eigenvectors_from_n_computational_basis(K, N) from ansatz_circuit_item2 import get_full_variational_quantum_circuit init_circuit_params = { "thetas": np.random.uniform(low=0, high=2*np.pi, size=8), "phis": np.random.uniform(low=0, high=2*np.pi, size=4), "D1": 2, "D2": 6 } def prepare_circuit_params(thetas) -> Dict: return { "thetas": thetas[4:], "phis": thetas[:4], "D1": 2, "D2": 6 } def get_ansatz_state(circuit_params, input_state): circuit_params_with_input_state = {**circuit_params, "input_state": input_state} return get_full_variational_quantum_circuit(**circuit_params_with_input_state) def transfrom_hamiltonian_into_pauli_strings(hamiltonian) -> List: pauli_operators = hamiltonian.to_pauli_op().settings['oplist'] pauli_coeffs = list(map(lambda pauli_operator: pauli_operator.coeff, pauli_operators)) pauli_strings = list(map(lambda pauli_operator: pauli_operator.primitive, pauli_operators)) return pauli_coeffs, pauli_strings from qiskit.circuit.library.standard_gates import HGate, SGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister reducing_to_pauli_z_mapping = { 'I': 'I', 'Z': 'Z', 'X': 'Z', 'Y': 'Z' } def reduce_pauli_matrixes_into_sigma_z(pauli_string) -> str: reduced_pauli_string = "" for matrix_index in range(QUBITS_NUM): pauli_matrix = str(pauli_string[matrix_index]) reduced_pauli_matrix = reducing_to_pauli_z_mapping[pauli_matrix] reduced_pauli_string = reduced_pauli_matrix + reduced_pauli_string return reduced_pauli_string def add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string, quantum_circuit): quantum_registers = QuantumRegister(QUBITS_NUM, name="qubit") additional_circuit_layer = QuantumCircuit(quantum_registers) for quantum_register_index, pauli_matrix in enumerate(pauli_string): if pauli_matrix == "X": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) if pauli_string == "Y": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) additional_circuit_layer.append(SGate(), [quantum_registers[quantum_register_index]]) extended_quantum_circuit = quantum_circuit.compose(additional_circuit_layer) return extended_quantum_circuit def get_probability_distribution(counts: Dict) -> Dict: proba_distribution = {state: (count / NUM_SHOTS) for state, count in counts.items()} return proba_distribution def calculate_probabilities_of_measurments_in_computational_basis(quantum_state_circuit) -> Dict: quantum_state_circuit.measure_all() transpiled_quantum_state_circuit = transpile(quantum_state_circuit, simulator_backend) Qobj = assemble(transpiled_quantum_state_circuit) result = simulator_backend.run(Qobj).result() counts = result.get_counts(quantum_state_circuit) return get_probability_distribution(counts) def sort_probas_dict_by_qubits_string_keys(proba_distribution: Dict) -> Dict: return dict(sorted(proba_distribution.items())) def reset_power_of_minus_1(power_of_minus_1): power_of_minus_1 = 0 return power_of_minus_1 def convert_pauli_string_into_str(pauli_string) -> str: return str(pauli_string) def calculate_expectation_value_of_pauli_string_by_measurments_probas(pauli_string, ansatz_circuit): pauli_string_expectation_value = 0 power_of_minus_1 = 0 pauli_string_str = convert_pauli_string_into_str(pauli_string) extended_ansatz_circuit = add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string_str, ansatz_circuit) probas_distribution = calculate_probabilities_of_measurments_in_computational_basis(extended_ansatz_circuit) reduced_pauli_string = reduce_pauli_matrixes_into_sigma_z(pauli_string) sorted_probas_distribuition = sort_probas_dict_by_qubits_string_keys(probas_distribution) for qubits_string, proba in sorted_probas_distribuition.items(): for string_index in range(QUBITS_NUM): if(str(qubits_string[string_index])=="1" and str(pauli_string[string_index])=="Z"): power_of_minus_1 += 1 pauli_string_expectation_value += pow(-1, power_of_minus_1)*proba power_of_minus_1 = reset_power_of_minus_1(power_of_minus_1) return pauli_string_expectation_value def get_expectation_value(ansatz_circuit, pauli_coeffs, pauli_strings): total_expection_value = 0 for pauli_coeff, pauli_string in zip(pauli_coeffs, pauli_strings): total_expection_value += pauli_coeff*calculate_expectation_value_of_pauli_string_by_measurments_probas( pauli_string, ansatz_circuit) return total_expection_value from qiskit import assemble, transpile def cost_function(thetas, hamiltonian): circuit_params = prepare_circuit_params(thetas) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) k_ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[K-1]) approximated_energey = get_expectation_value(k_ansatz_state, pauli_coeffs, pauli_strings) insert_approximated_energy_to_list_of_all_approximated_energies(approximated_energey) L_w = w*approximated_energey for j in range(K-1): ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[j]) L_w += get_expectation_value(ansatz_state, pauli_coeffs, pauli_strings) return L_w def get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian): initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=12) optimizer_result = minimize(cost_function, x0=initial_thetas, args=(hamiltonian), method="COBYLA", options={"disp": True, "maxiter":NUM_ITERATIONS}) optimal_thetas = prepare_circuit_params(optimizer_result.x) return optimal_thetas def get_approximated_eigenvalue_of_hamiltonian(hamiltonian): optimal_thetas = get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian) print(optimal_thetas) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) optimal_ansatz_state = get_ansatz_state(optimal_thetas, computational_eigenvectors[K-1]) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) approximated_eigenvalue = get_expectation_value(optimal_ansatz_state, pauli_coeffs, pauli_strings) return approximated_eigenvalue from numpy import linalg as LA def get_approximation_error(exact_eigenvalue, approximated_eigenvalue): return abs(abs(exact_eigenvalue)-abs(approximated_eigenvalue))/abs(exact_eigenvalue) def get_k_exact_eigenvalue_of_hamiltonian(hamiltonian, k): eigen_values = LA.eig(hamiltonian.to_matrix())[0] print(sorted(eigen_values, reverse=True)) return sorted(eigen_values,reverse=True)[k-1] def compare_exact_and_approximated_eigenvalue(hamiltonian, approximated_eigenvalue): exact_eigenvalue = get_k_exact_eigenvalue_of_hamiltonian(hamiltonian, K) print("Exact Eigenvalue:") print(exact_eigenvalue) print("Approximated K Eigenvalues:") print(approximated_eigenvalue) print("Approximation Error") print(get_approximation_error(exact_eigenvalue, approximated_eigenvalue)) def insert_approximated_energy_to_list_of_all_approximated_energies(energy): approximated_energies.append(energy) import matplotlib.pyplot as plt def plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin): plt.title("convergence of optimization process to the exact eigenvalue") plt.margins(0, margin) plt.plot(approximated_energies) plt.axhline(y = exact_eigenvalue, color = 'r', linestyle = '-') plt.xlabel("# of iterations") plt.ylabel("Energy") def plot_fidelity(): plt.plot(LiH_approximated_energies) plt.xlabel("# of iterations") plt.ylabel("Energy") from qiskit.opflow import X, Z, Y, I, H, S LiH_molecule_4_qubits = -7.49894690201071*(I^I^I^I) + \ -0.0029329964409502266*(X^X^Y^Y) + \ 0.0029329964409502266*(X^Y^Y^X) + \ 0.01291078027311749*(X^Z^X^I) + \ -0.0013743761078958677*(X^Z^X^Z) + \ 0.011536413200774975*(X^I^X^I) + \ 0.0029329964409502266*(Y^X^X^Y) + \ -0.0029329964409502266*(Y^Y^X^X) + \ 0.01291078027311749*(Y^Z^Y^I) + \ -0.0013743761078958677*(Y^Z^Y^Z) + \ 0.011536413200774975*(Y^I^Y^I) + \ 0.16199475388004184*(Z^I^I^I) + \ 0.011536413200774975*(Z^X^Z^X) + \ 0.011536413200774975*(Z^Y^Z^Y) + \ 0.12444770133137588*(Z^Z^I^I) + \ 0.054130445793298836*(Z^I^Z^I) + \ 0.05706344223424907*(Z^I^I^Z) + \ 0.012910780273117487*(I^X^Z^X) + \ -0.0013743761078958677*(I^X^I^X) + \ 0.012910780273117487*(I^Y^Z^Y) + \ -0.0013743761078958677*(I^Y^I^Y) + \ 0.16199475388004186*(I^Z^I^I) + \ 0.05706344223424907*(I^Z^Z^I) + \ 0.054130445793298836*(I^Z^I^Z) + \ -0.013243698330265966*(I^I^Z^I) + \ 0.08479609543670981*(I^I^Z^Z) + \ -0.013243698330265952*(I^I^I^Z) %%time LiH_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(LiH_molecule_4_qubits) compare_exact_and_approximated_eigenvalue(LiH_molecule_4_qubits, LiH_approximated_eigenvalue) print(approximated_energies) approximated_energies = [] LiH_approximated_energies = [-7.6274591415582105, -7.607576828257072, -7.632200935003245, -7.609855196623901, -7.6059250397280795, -7.854597415729809, -7.628956794318834, -7.6784378048763715, -7.640342773091634, -7.665298199108273, -7.4589086431520615, -7.64400728822478, -7.63919074876535, -7.5712982052834015, -7.644638404908841, -7.646954760531615, -7.755301596699023, -7.631831246253383, -7.631061799605215, -7.616310788526333, -7.611576222526171, -7.620105483420993, -7.6417862171136335, -7.589952292685995, -7.610418644012381, -7.674320046442037, -7.61956694546109, -7.627683802497983, -7.623678295984975, -7.617228428549745, -7.633104604686701, -7.629086274819348, -7.595694407363554, -7.617836676264696, -7.617389773769819, -7.634299221424122, -7.598467942904893, -7.630191480144404, -7.63698619980098, -7.623626950424333, -7.612007795510998, -7.6261074907011634, -7.6148982305668405, -7.623709634670492, -7.61204075447679, -7.6106110013026385, -7.620711346718306, -7.618187492707977, -7.612462844967995, -7.623640830688807] plot_convergence_of_optimization_process(LiH_approximated_energies, exact_eigenvalue=-7.7140566916607005,margin=1) H2_molecule_Hamiltonian_4_qubits = -0.8105479805373279 * (I^I^I^I) \ + 0.1721839326191554 * (I^I^I^Z) \ - 0.22575349222402372 * (I^I^Z^I) \ + 0.17218393261915543 * (I^Z^I^I) \ - 0.2257534922240237 * (Z^I^I^I) \ + 0.12091263261776627 * (I^I^Z^Z) \ + 0.16892753870087907 * (I^Z^I^Z) \ + 0.045232799946057826 * (Y^Y^Y^Y) \ + 0.045232799946057826 * (X^X^Y^Y) \ + 0.045232799946057826 * (Y^Y^X^X) \ + 0.045232799946057826 * (X^X^X^X) \ + 0.1661454325638241 * (Z^I^I^Z) \ + 0.1661454325638241 * (I^Z^Z^I) \ + 0.17464343068300453 * (Z^I^Z^I) \ + 0.12091263261776627 * (Z^Z^I^I) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits) compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_4_qubits, H2_approximated_eigenvalue) print(approximated_energies) approximated_energies = [] H2_approximated_energies = [-1.009976657006965, -0.9238284763706393, -0.9884320852467877, -0.9805917857984984, -1.0167176344158073, -0.803009921527331, -0.4598306468944341, -0.5114890962692614, -0.8589176393087158, -0.9346855734783651, -0.8412382644084648, -0.6224404303456501, -0.653317087612677, -0.7607656559263039, -0.7930275875404521, -0.4281158503125878, -0.5788815212789364, -0.7176165386431208, -0.8701142070097521, -0.8688095826524974, -0.9151572025822381, -0.6635735611840398, -0.6037067550586409, -0.9285839833437391, -0.5058550482270441, -0.9291800596309192, -0.49550483773798376, -0.7464398349372543, -0.9433354608506894, -0.8895971844704103, -0.9048816527272305, -0.8978302385287464, -0.6949574562429168, -0.8304208103551916, -0.4692230966986817, -0.8462497998117152, -0.7185585023635032, -0.8077110062007753, -0.5192275804166049, -0.5640061209546482, -0.8011222125790844, -0.9513753098344495, -0.8402620344123755, -0.6086751350074949, -0.7369530952207817, -0.7603612456563129, -0.7950958666448285, -0.7999579057635281, -0.7706575601258369, -0.7909119439657882] plot_convergence_of_optimization_process(H2_approximated_energies, exact_eigenvalue=-1.2445845498133272, margin=5) transverse_ising_4_qubits = 0.0 * (I^I^I^I) \ + 0.8398088405253477 * (X^I^I^I) \ + 0.7989496312070936 * (I^X^I^I) \ + 0.38189710487113193 * (Z^Z^I^I) \ + 0.057753122422666725 * (I^I^X^I) \ + 0.5633292636970458 * (Z^I^Z^I) \ + 0.3152740621483513 * (I^Z^Z^I) \ + 0.07209487981989715 * (I^I^I^X) \ + 0.17892334004292654 * (Z^I^I^Z) \ + 0.2273896497668042 * (I^Z^I^Z) \ + 0.09762902934216211 * (I^I^Z^Z) %%time TI_approximated_eigen_value = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_4_qubits) compare_exact_and_approximated_eigenvalue(transverse_ising_4_qubits, TI_approximated_eigen_value) print(approximated_energies) approximated_energies = [] TI_approximated_energies = [1.0877911566875362, 1.3339897771771856, 1.1497195956414945, 1.3463775026022828, 1.1824868775928117, 1.6423958284840114, 1.5842407965410792, 1.6377219801098, 1.5250316270225506, 1.626129653972439, 1.3560460449434424, 1.6695319025733455, 1.6842571288891142, 1.5407570120203158, 1.5187677867233031, 1.4564666271629088, 1.7323725293893963, 1.792109013228278, 1.7481282811675565, 1.8139670143156743, 1.6629383661129478, 1.68337823955209, 1.4848944286809986, 1.4845001982657569, 1.6129182843066505, 1.6625400070359255, 1.6104761870181472, 1.7152744787413363, 1.6678413737920048, 1.6869395320619605, 1.6590487040095492, 1.6723344557176432, 1.627252139576561, 1.6998615622327233, 1.6227578573441954, 1.6709380388303952, 1.747587311276882, 1.7146592410359045, 1.7219455615683754, 1.6503664867345986, 1.7349602602365404, 1.767898541795154, 1.7803996165862503, 1.6955748077929296, 1.7174656756704858, 1.715728620581076, 1.7002352954018423, 1.7436412571902764, 1.6757447332820925, 1.7032804122037015] plot_convergence_of_optimization_process(TI_approximated_energies, exact_eigenvalue=-1.7583827504312988, margin=3)
https://github.com/MonitSharma/Qiskit-Summer-School-and-Quantum-Challenges
MonitSharma
from qiskit import * from qiskit.visualization import plot_histogram import numpy as np def NOT(inp): """An NOT gate. Parameters: inp (str): Input, encoded in qubit 0. Returns: QuantumCircuit: Output NOT circuit. str: Output value measured from qubit 0. """ qc = QuantumCircuit(1, 1) # A quantum circuit with a single qubit and a single classical bit qc.reset(0) # We encode '0' as the qubit state |0⟩, and '1' as |1⟩ # Since the qubit is initially |0⟩, we don't need to do anything for an input of '0' # For an input of '1', we do an x to rotate the |0⟩ to |1⟩ if inp=='1': qc.x(0) # barrier between input state and gate operation qc.barrier() # Now we've encoded the input, we can do a NOT on it using x qc.x(0) #barrier between gate operation and measurement qc.barrier() # Finally, we extract the |0⟩/|1⟩ output of the qubit and encode it in the bit c[0] qc.measure(0,0) qc.draw() # We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc, shots=1, memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp in ['0', '1']: qc, out = NOT(inp) print('NOT with input',inp,'gives output',out) display(qc.draw()) print('\n') def XOR(inp1,inp2): """An XOR gate. Parameters: inpt1 (str): Input 1, encoded in qubit 0. inpt2 (str): Input 2, encoded in qubit 1. Returns: QuantumCircuit: Output XOR circuit. str: Output value measured from qubit 1. """ qc = QuantumCircuit(2, 1) qc.reset(range(2)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) # barrier between input state and gate operation qc.barrier() # this is where your program for quantum XOR gate goes qc.cx(0, 1) # barrier between input state and gate operation qc.barrier() qc.measure(1,0) # output from qubit 1 is measured #We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') #Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc, shots=1, memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp1 in ['0', '1']: for inp2 in ['0', '1']: qc, output = XOR(inp1, inp2) print('XOR with inputs',inp1,inp2,'gives output',output) display(qc.draw()) print('\n') def AND(inp1,inp2): """An AND gate. Parameters: inpt1 (str): Input 1, encoded in qubit 0. inpt2 (str): Input 2, encoded in qubit 1. Returns: QuantumCircuit: Output XOR circuit. str: Output value measured from qubit 2. """ qc = QuantumCircuit(3, 1) qc.reset(range(2)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() # this is where your program for quantum AND gate goes qc.ccx(0,1,2) qc.barrier() qc.measure(2, 0) # output from qubit 2 is measured # We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc, shots=1, memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp1 in ['0', '1']: for inp2 in ['0', '1']: qc, output = AND(inp1, inp2) print('AND with inputs',inp1,inp2,'gives output',output) display(qc.draw()) print('\n') def NAND(inp1,inp2): """An NAND gate. Parameters: inpt1 (str): Input 1, encoded in qubit 0. inpt2 (str): Input 2, encoded in qubit 1. Returns: QuantumCircuit: Output NAND circuit. str: Output value measured from qubit 2. """ qc = QuantumCircuit(3, 1) qc.reset(range(3)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() # this is where your program for quantum NAND gate goes qc.ccx(0,1,2) if inp=='1': qc.x(2) qc.barrier() qc.measure(2, 0) # output from qubit 2 is measured # We'll run the program on a simulator backend = Aer.get_backend('aer_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc,shots=1,memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp1 in ['0', '1']: for inp2 in ['0', '1']: qc, output = NAND(inp1, inp2) print('NAND with inputs',inp1,inp2,'gives output',output) display(qc.draw()) print('\n') def OR(inp1,inp2): """An OR gate. Parameters: inpt1 (str): Input 1, encoded in qubit 0. inpt2 (str): Input 2, encoded in qubit 1. Returns: QuantumCircuit: Output XOR circuit. str: Output value measured from qubit 2. """ qc = QuantumCircuit(3, 1) qc.reset(range(3)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() # this is where your program for quantum OR gate goes qc.cx(0, 2) qc.cx(1, 2) qc.barrier() qc.measure(2, 0) # output from qubit 2 is measured # We'll run the program on a simulator backend = Aer.get_backend('aer_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc,shots=1,memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp1 in ['0', '1']: for inp2 in ['0', '1']: qc, output = OR(inp1, inp2) print('OR with inputs',inp1,inp2,'gives output',output) display(qc.draw()) print('\n') from qiskit import IBMQ #IBMQ.save_account("a68a35747d4eccd1d58f275e637909987c789ce5c0edd8a4f43014672bf0301b54b28b1b5f44ba8ff87500777429e1e4ceb79621a6ba248d6cca6bca0e233d23", overwrite=True) IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider('ibm-q') provider.backends() import qiskit.tools.jupyter # run this cell backend = provider.get_backend('ibmq_quito') qc_and = QuantumCircuit(3) qc_and.ccx(0,1,2) print('AND gate') display(qc_and.draw()) print('\n\nTranspiled AND gate with all the required connectivity') qc_and.decompose().draw() from qiskit.tools.monitor import job_monitor # run the cell to define AND gate for real quantum system def AND(inp1, inp2, backend, layout): qc = QuantumCircuit(3, 1) qc.reset(range(3)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() qc.ccx(0, 1, 2) qc.barrier() qc.measure(2, 0) qc_trans = transpile(qc, backend, initial_layout=layout, optimization_level=3) job = backend.run(qc_trans, shots=8192) print(job.job_id()) job_monitor(job) output = job.result().get_counts() return qc_trans, output backend layout = [0, 1, 2] output_all = [] qc_trans_all = [] prob_all = [] worst = 1 best = 0 for input1 in ['0','1']: for input2 in ['0','1']: qc_trans, output = AND(input1, input2, backend, layout) output_all.append(output) qc_trans_all.append(qc_trans) prob = output[str(int( input1=='1' and input2=='1' ))]/8192 prob_all.append(prob) print('\nProbability of correct answer for inputs',input1,input2) print('{:.2f}'.format(prob) ) print('---------------------------------') worst = min(worst,prob) best = max(best, prob) print('') print('\nThe highest of these probabilities was {:.2f}'.format(best)) print('The lowest of these probabilities was {:.2f}'.format(worst)) print('Transpiled AND gate circuit for ibmq_vigo with input 0 0') print('\nThe circuit depth : {}'.format (qc_trans_all[0].depth())) print('# of nonlocal gates : {}'.format (qc_trans_all[0].num_nonlocal_gates())) print('Probability of correct answer : {:.2f}'.format(prob_all[0]) ) qc_trans_all[0].draw() print('Transpiled AND gate circuit for ibmq_vigo with input 0 1') print('\nThe circuit depth : {}'.format (qc_trans_all[1].depth())) print('# of nonlocal gates : {}'.format (qc_trans_all[1].num_nonlocal_gates())) print('Probability of correct answer : {:.2f}'.format(prob_all[1]) ) qc_trans_all[1].draw() print('Transpiled AND gate circuit for ibmq_vigo with input 1 0') print('\nThe circuit depth : {}'.format (qc_trans_all[2].depth())) print('# of nonlocal gates : {}'.format (qc_trans_all[2].num_nonlocal_gates())) print('Probability of correct answer : {:.2f}'.format(prob_all[2]) ) qc_trans_all[2].draw() print('Transpiled AND gate circuit for ibmq_vigo with input 1 1') print('\nThe circuit depth : {}'.format (qc_trans_all[3].depth())) print('# of nonlocal gates : {}'.format (qc_trans_all[3].num_nonlocal_gates())) print('Probability of correct answer : {:.2f}'.format(prob_all[3]) ) qc_trans_all[3].draw()
https://github.com/qiskit-community/prototype-entanglement-forging
qiskit-community
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Weighted Pauli Operator """ import itertools import json import logging import sys from copy import deepcopy from operator import add as op_add, sub as op_sub from typing import List, Optional, Tuple, Union import numpy as np from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister from qiskit.algorithms import AlgorithmError from qiskit.quantum_info import Pauli from qiskit.tools import parallel_map from qiskit.tools.events import TextProgressBar from qiskit.utils import algorithm_globals from .base_operator import LegacyBaseOperator from .common import ( measure_pauli_z, covariance, pauli_measurement, suzuki_expansion_slice_pauli_list, check_commutativity, evolution_instruction, ) logger = logging.getLogger(__name__) # pylint: disable=invalid-name,too-many-lines,too-many-arguments,protected-access,no-else-return,too-many-locals # pylint: disable=too-many-branches,too-many-public-methods # pylint: disable=duplicate-code class WeightedPauliOperator(LegacyBaseOperator): """Weighted Pauli Operator""" def __init__( self, paulis: List[List[Union[complex, Pauli]]], basis: Optional[List[Tuple[object, List[int]]]] = None, z2_symmetries: "Z2Symmetries" = None, atol: float = 1e-12, name: Optional[str] = None, ) -> None: """ Args: paulis: the list of weighted Paulis, where a weighted pauli is composed of a length-2 list and the first item is the weight and the second item is the Pauli object. basis: the grouping basis, each element is a tuple composed of the basis and the indices to paulis which belong to that group. e.g., if tpb basis is used, the object will be a pauli. By default, the group is equal to non-grouping, each pauli is its own basis. z2_symmetries: recording the z2 symmetries info atol: the threshold used in truncating paulis name: the name of operator. """ super().__init__(basis, z2_symmetries, name) # plain store the paulis, the group information is store in the basis self._paulis_table = None self._paulis = paulis self._basis = ( [(pauli[1], [i]) for i, pauli in enumerate(paulis)] if basis is None else basis ) # combine the paulis and remove those with zero weight self.simplify() self._atol = atol @classmethod def from_list(cls, paulis, weights=None, name=None): """ Create a WeightedPauliOperator via a pair of list. Args: paulis (list[Pauli]): the list of Paulis weights (list[complex], optional): the list of weights, if it is None, all weights are 1. name (str, optional): name of the operator. Returns: WeightedPauliOperator: operator Raises: ValueError: The length of weights and paulis must be the same """ if weights is not None and len(weights) != len(paulis): raise ValueError("The length of weights and paulis must be the same.") if weights is None: weights = [1.0] * len(paulis) return cls(paulis=[[w, p] for w, p in zip(weights, paulis)], name=name) # pylint: disable=arguments-differ def to_opflow(self, reverse_endianness=False): """to op flow""" # pylint: disable=import-outside-toplevel from qiskit.opflow import PrimitiveOp pauli_ops = [] for [w, p] in self.paulis: pauli = Pauli(str(p)[::-1]) if reverse_endianness else p # This weighted pauli operator has the coeff stored as a complex type # irrespective of whether the value has any imaginary part or not. # For many operators the coeff will be real. Hence below the coeff is made real, # when creating the PrimitiveOp, since it can be stored then as a float, if its # value is real, i.e. has no imaginary part. This avoids any potential issues around # complex - but if there are complex coeffs then maybe that using the opflow # later will fail if it happens to be used where complex is not supported. # Now there are imaginary coefficients in UCCSD that would need to be handled # when this is converted to opflow (evolution of hopping operators) where currently # Terra does not handle complex. # TODO fix these or add support for them in Terra # pylint: disable=fixme coeff = np.real(w) if np.isreal(w) else w pauli_ops += [PrimitiveOp(pauli, coeff=coeff)] return sum(pauli_ops) @property def paulis(self): """get paulis""" return self._paulis @property def atol(self): """get atol""" return self._atol @atol.setter def atol(self, new_value): """set atol""" self._atol = new_value @property def num_qubits(self): """ Number of qubits required for the operator. Returns: int: number of qubits """ if not self.is_empty(): res = self._paulis[0][1].num_qubits else: logger.warning("Operator is empty, Return 0.") res = 0 return res def __eq__(self, other): """Overload == operation""" # need to clean up the zeros self.simplify() other.simplify() if len(self._paulis) != len(other.paulis): return False for weight, pauli in self._paulis: found_pauli = False other_weight = 0.0 for weight2, pauli2 in other.paulis: if pauli == pauli2: found_pauli = True other_weight = weight2 break if ( not found_pauli and other_weight != 0.0 ): # since we might have 0 weights of paulis. return False if weight != other_weight: return False return True def _add_or_sub(self, other, operation, copy=True): """ Add two operators either extend (in-place) or combine (copy) them. The addition performs optimized combination of two operators. If `other` has identical basis, the coefficient are combined rather than appended. Args: other (WeightedPauliOperator): to-be-combined operator operation (callable or str): add or sub callable from operator copy (bool): working on a copy or self Returns: WeightedPauliOperator: operator Raises: AlgorithmError: two operators have different number of qubits. """ if not self.is_empty() and not other.is_empty(): if self.num_qubits != other.num_qubits: raise AlgorithmError( "Can not add/sub two operators " "with different number of qubits." ) ret_op = self.copy() if copy else self for pauli in other.paulis: pauli_label = pauli[1].to_label() idx = ret_op._paulis_table.get(pauli_label, None) if idx is not None: ret_op._paulis[idx][0] = operation(ret_op._paulis[idx][0], pauli[0]) else: new_pauli = deepcopy(pauli) ret_op._paulis_table[pauli_label] = len(ret_op._paulis) ret_op._basis.append((new_pauli[1], [len(ret_op._paulis)])) new_pauli[0] = operation(0.0, pauli[0]) ret_op._paulis.append(new_pauli) return ret_op def add(self, other, copy=False): """ Perform self + other. Args: other (WeightedPauliOperator): to-be-combined operator copy (bool): working on a copy or self, if False, the results are written back to self. Returns: WeightedPauliOperator: operator """ return self._add_or_sub(other, op_add, copy=copy) def sub(self, other, copy=False): """ Perform self - other. Args: other (WeightedPauliOperator): to-be-combined operator copy (bool): working on a copy or self, if False, the results are written back to self. Returns: WeightedPauliOperator: operator """ return self._add_or_sub(other, op_sub, copy=copy) def __add__(self, other): """Overload + operator""" return self.add(other, copy=True) def __iadd__(self, other): """Overload += operator""" return self.add(other, copy=False) def __sub__(self, other): """Overload - operator""" return self.sub(other, copy=True) def __isub__(self, other): """Overload -= operator""" return self.sub(other, copy=False) def _scaling_weight(self, scaling_factor, copy=False): """ Constantly scaling all weights of paulis. Args: scaling_factor (complex): the scaling factor copy (bool): return a copy or modify in-place Returns: WeightedPauliOperator: a copy of the scaled one. Raises: ValueError: the scaling factor is not a valid type. """ if not isinstance(scaling_factor, (int, float, complex)): raise ValueError( f"Type of scaling factor is a valid type. {scaling_factor.__class__} if given." ) ret = self.copy() if copy else self for idx in range(len(ret._paulis)): # pylint: disable=consider-using-enumerate ret._paulis[idx] = [ ret._paulis[idx][0] * scaling_factor, ret._paulis[idx][1], ] return ret def multiply(self, other): """ Perform self * other, and the phases are tracked. Args: other (WeightedPauliOperator): an operator Returns: WeightedPauliOperator: the multiplied operator """ ret_op = WeightedPauliOperator(paulis=[]) for existed_weight, existed_pauli in self.paulis: for weight, pauli in other.paulis: p = existed_pauli.dot(pauli) new_pauli, sign = p[:], (-1j) ** p.phase new_weight = existed_weight * weight * sign pauli_term = [new_weight, new_pauli] ret_op += WeightedPauliOperator(paulis=[pauli_term]) return ret_op def __rmul__(self, other): """Overload other * self""" if isinstance(other, (int, float, complex)): return self._scaling_weight(other, copy=True) else: return other.multiply(self) def __mul__(self, other): """Overload self * other""" if isinstance(other, (int, float, complex)): return self._scaling_weight(other, copy=True) else: return self.multiply(other) def __neg__(self): """Overload unary -""" return self._scaling_weight(-1.0, copy=True) def __str__(self): """Overload str()""" curr_repr = "paulis" length = len(self._paulis) name = "" if self._name == "" else f"{self._name}: " ret = f"{name}Representation: {curr_repr}, qubits: {self.num_qubits}, size: {length}" return ret def print_details(self): """ Print out the operator in details. Returns: str: a formatted string describes the operator. """ if self.is_empty(): return "Operator is empty." ret = "" for weight, pauli in self._paulis: ret = "".join([ret, f"{pauli.to_label()}\t{weight}\n"]) return ret def copy(self): """Get a copy of self""" return deepcopy(self) def simplify(self, copy=False): """ Merge the paulis whose bases are identical and the pauli with zero coefficient would be removed. Note: This behavior of this method is slightly changed, it will remove the paulis whose weights are zero. Args: copy (bool): simplify on a copy or self Returns: WeightedPauliOperator: the simplified operator """ op = self.copy() if copy else self new_paulis = [] new_paulis_table = {} old_to_new_indices = {} curr_idx = 0 for curr_weight, curr_pauli in op.paulis: pauli_label = curr_pauli.to_label() new_idx = new_paulis_table.get(pauli_label, None) if new_idx is not None: new_paulis[new_idx][0] += curr_weight old_to_new_indices[curr_idx] = new_idx else: new_paulis_table[pauli_label] = len(new_paulis) old_to_new_indices[curr_idx] = len(new_paulis) new_paulis.append([curr_weight, curr_pauli]) curr_idx += 1 op._paulis = new_paulis op._paulis_table = new_paulis_table # update the grouping info, since this method only reduce the number # of paulis, we can handle it here for both # pauli and tpb grouped pauli # should have a better way to rebuild the basis here. new_basis = [] for basis, indices in op.basis: new_indices = [] found = False if new_basis: for b, ind in new_basis: if b == basis: new_indices = ind found = True break for idx in indices: new_idx = old_to_new_indices[idx] if new_idx is not None and new_idx not in new_indices: new_indices.append(new_idx) if new_indices and not found: new_basis.append((basis, new_indices)) op._basis = new_basis op.chop(0.0) return op def rounding(self, decimals, copy=False): """ Rounding the weight. Args: decimals (int): rounding the weight to the decimals. copy (bool): chop on a copy or self Returns: WeightedPauliOperator: operator """ op = self.copy() if copy else self op._paulis = [ [np.around(weight, decimals=decimals), pauli] for weight, pauli in op.paulis ] return op def chop(self, threshold=None, copy=False): """ Eliminate the real and imagine part of weight in each pauli by `threshold`. If pauli's weight is less then `threshold` in both real and imaginary parts, the pauli is removed. Note: If weight is real-only, the imaginary part is skipped. Args: threshold (float): the threshold is used to remove the paulis copy (bool): chop on a copy or self Returns: WeightedPauliOperator: if copy is True, the original operator is unchanged; otherwise, the operator is mutated. """ threshold = self._atol if threshold is None else threshold def chop_real_imag(weight): temp_real = weight.real if np.absolute(weight.real) >= threshold else 0.0 temp_imag = weight.imag if np.absolute(weight.imag) >= threshold else 0.0 if temp_real == 0.0 and temp_imag == 0.0: return 0.0 else: new_weight = temp_real + 1j * temp_imag return new_weight op = self.copy() if copy else self if op.is_empty(): return op paulis = [] old_to_new_indices = {} curr_idx = 0 for idx, weighted_pauli in enumerate(op.paulis): weight, pauli = weighted_pauli new_weight = chop_real_imag(weight) if new_weight != 0.0: old_to_new_indices[idx] = curr_idx curr_idx += 1 paulis.append([new_weight, pauli]) op._paulis = paulis op._paulis_table = { weighted_pauli[1].to_label(): i for i, weighted_pauli in enumerate(paulis) } # update the grouping info, since this method only remove pauli, # we can handle it here for both # pauli and tpb grouped pauli new_basis = [] for basis, indices in op.basis: new_indices = [] for idx in indices: new_idx = old_to_new_indices.get(idx, None) if new_idx is not None: new_indices.append(new_idx) if new_indices: new_basis.append((basis, new_indices)) op._basis = new_basis return op def commute_with(self, other): """Commutes with""" return check_commutativity(self, other) def anticommute_with(self, other): """Anti commutes with""" return check_commutativity(self, other, anti=True) def is_empty(self): """ Check Operator is empty or not. Returns: bool: True if empty, False otherwise """ if not self._paulis: return True elif not self._paulis[0]: return True else: return False @classmethod def from_file(cls, file_name, before_04=False): """ Load paulis in a file to construct an Operator. Args: file_name (str): path to the file, which contains a list of Paulis and coefficients. before_04 (bool): support the format before Aqua 0.4. Returns: WeightedPauliOperator: the loaded operator. """ with open(file_name, "r", encoding="UTF-8") as file: return cls.from_dict(json.load(file), before_04=before_04) def to_file(self, file_name): """ Save operator to a file in pauli representation. Args: file_name (str): path to the file """ with open(file_name, "w", encoding="UTF-8") as file: json.dump(self.to_dict(), file) @classmethod def from_dict(cls, dictionary, before_04=False): """ Load paulis from a dictionary to construct an Operator. The dictionary must comprise the key 'paulis' having a value which is an array of pauli dicts. Each dict in this array must be represented by label and coeff (real and imag) such as in the following example: .. code-block:: python {'paulis': [ {'label': 'IIII', 'coeff': {'real': -0.33562957575267038, 'imag': 0.0}}, {'label': 'ZIII', 'coeff': {'real': 0.28220597164664896, 'imag': 0.0}}, ... ] } Args: dictionary (dict): dictionary, which contains a list of Paulis and coefficients. before_04 (bool): support the format before Aqua 0.4. Returns: WeightedPauliOperator: the operator created from the input dictionary. Raises: AlgorithmError: Invalid dictionary """ if "paulis" not in dictionary: raise AlgorithmError('Dictionary missing "paulis" key') paulis = [] for op in dictionary["paulis"]: if "label" not in op: raise AlgorithmError('Dictionary missing "label" key') pauli_label = op["label"] if "coeff" not in op: raise AlgorithmError('Dictionary missing "coeff" key') pauli_coeff = op["coeff"] if "real" not in pauli_coeff: raise AlgorithmError('Dictionary missing "real" key') coeff = pauli_coeff["real"] if "imag" in pauli_coeff: coeff = complex(pauli_coeff["real"], pauli_coeff["imag"]) pauli_label = pauli_label[::-1] if before_04 else pauli_label paulis.append([coeff, Pauli(pauli_label)]) return cls(paulis=paulis) def to_dict(self): """ Save operator to a dict in pauli representation. Returns: dict: a dictionary contains an operator with pauli representation. """ ret_dict = {"paulis": []} for coeff, pauli in self._paulis: op = {"label": pauli.to_label()} if isinstance(coeff, complex): op["coeff"] = {"real": np.real(coeff), "imag": np.imag(coeff)} else: op["coeff"] = {"real": coeff} ret_dict["paulis"].append(op) return ret_dict # pylint: disable=arguments-differ def construct_evaluation_circuit( self, wave_function, statevector_mode, qr=None, cr=None, use_simulator_snapshot_mode=False, circuit_name_prefix="", ): r""" Construct the circuits for evaluation, which calculating the expectation <psi\|H\|psi>. At statevector mode: to simplify the computation, we do not build the whole circuit for <psi|H|psi>, instead of that we construct an individual circuit <psi\|, and a bundle circuit for H\|psi> Args: wave_function (QuantumCircuit): the quantum circuit. statevector_mode (bool): indicate which type of simulator are going to use. qr (QuantumRegister, optional): the quantum register associated with the input_circuit cr (ClassicalRegister, optional): the classical register associated with the input_circuit use_simulator_snapshot_mode (bool, optional): if aer_provider is used, we can do faster evaluation for pauli mode on statevector simulation circuit_name_prefix (str, optional): a prefix of circuit name Returns: list[QuantumCircuit]: a list of quantum circuits and each circuit with a unique name: circuit_name_prefix + Pauli string Raises: AlgorithmError: if Operator is empty AlgorithmError: if quantum register is not provided explicitly and cannot find quantum register with `q` as the name AlgorithmError: The provided qreg is not in the wave_function """ if self.is_empty(): raise AlgorithmError("Operator is empty, check the operator.") # pylint: disable=import-outside-toplevel from qiskit.utils.run_circuits import find_regs_by_name if qr is None: qr = find_regs_by_name(wave_function, "q") if qr is None: raise AlgorithmError( "Either provide the quantum register " "(qreg) explicitly or use `q` as the name " "of the quantum register in the input circuit." ) else: if not wave_function.has_register(qr): raise AlgorithmError( "The provided QuantumRegister (qreg) is not in the circuit." ) n_qubits = self.num_qubits instructions = self.evaluation_instruction( statevector_mode, use_simulator_snapshot_mode ) circuits = [] if use_simulator_snapshot_mode: circuit = wave_function.copy(name=circuit_name_prefix + "snapshot_mode") # Add expectation value snapshot instruction instr = instructions.get("expval_snapshot", None) if instr is not None: circuit.append(instr, qr) circuits.append(circuit) elif statevector_mode: circuits.append(wave_function.copy(name=circuit_name_prefix + "psi")) for _, pauli in self._paulis: inst = instructions.get(pauli.to_label(), None) if inst is not None: circuit = wave_function.copy( name=circuit_name_prefix + pauli.to_label() ) circuit.append(inst, qr) circuits.append(circuit) else: base_circuit = wave_function.copy() if cr is not None: if not base_circuit.has_register(cr): base_circuit.add_register(cr) else: cr = find_regs_by_name(base_circuit, "c", qreg=False) if cr is None: cr = ClassicalRegister(n_qubits, name="c") base_circuit.add_register(cr) for basis, _ in self._basis: circuit = base_circuit.copy(name=circuit_name_prefix + basis.to_label()) circuit.append(instructions[basis.to_label()], qargs=qr, cargs=cr) circuits.append(circuit) return circuits def evaluation_instruction( self, statevector_mode, use_simulator_snapshot_mode=False ): """ Args: statevector_mode (bool): will it be run on statevector simulator or not use_simulator_snapshot_mode (bool): will it use qiskit aer simulator operator mode Returns: dict: Pauli-instruction pair. Raises: AlgorithmError: if Operator is empty MissingOptionalLibraryError: qiskit-aer not installed """ if self.is_empty(): raise AlgorithmError("Operator is empty, check the operator.") instructions = {} qr = QuantumRegister(self.num_qubits) qc = QuantumCircuit(qr) if statevector_mode: for _, pauli in self._paulis: tmp_qc = qc.copy(name="Pauli " + pauli.to_label()) if np.all(np.logical_not(pauli.z)) and np.all( np.logical_not(pauli.x) ): # all I continue # This explicit barrier is needed for statevector simulator since Qiskit-terra # will remove global phase at default compilation level but the results here # rely on global phase. tmp_qc.barrier(list(range(self.num_qubits))) tmp_qc.append(pauli.to_instruction(), list(range(self.num_qubits))) instructions[pauli.to_label()] = tmp_qc.to_instruction() else: cr = ClassicalRegister(self.num_qubits) qc.add_register(cr) for basis, _ in self._basis: tmp_qc = qc.copy(name="Pauli " + basis.to_label()) tmp_qc = pauli_measurement(tmp_qc, basis, qr, cr, barrier=True) instructions[basis.to_label()] = tmp_qc.to_instruction() return instructions # pylint: disable=arguments-differ def evaluate_with_result( self, result, statevector_mode, use_simulator_snapshot_mode=False, circuit_name_prefix="", ): """ This method can be only used with the circuits generated by the :meth:`construct_evaluation_circuit` method with the same `circuit_name_prefix` name since the circuit names are tied to some meanings. Calculate the evaluated value with the measurement results. Args: result (qiskit.Result): the result from the backend. statevector_mode (bool): indicate which type of simulator are used. use_simulator_snapshot_mode (bool): if aer_provider is used, we can do faster evaluation for pauli mode on statevector simulation circuit_name_prefix (str): a prefix of circuit name Returns: float: the mean value float: the standard deviation Raises: AlgorithmError: if Operator is empty """ if self.is_empty(): raise AlgorithmError("Operator is empty, check the operator.") avg, std_dev, variance = 0.0, 0.0, 0.0 if use_simulator_snapshot_mode: snapshot_data = result.data(circuit_name_prefix + "snapshot_mode")[ "snapshots" ] avg = snapshot_data["expectation_value"]["expval"][0]["value"] if isinstance(avg, (list, tuple)): # Aer versions before 0.4 use a list snapshot format # which must be converted to a complex value. avg = avg[0] + 1j * avg[1] elif statevector_mode: quantum_state = np.asarray( result.get_statevector(circuit_name_prefix + "psi") ) for weight, pauli in self._paulis: # all I if np.all(np.logical_not(pauli.z)) and np.all(np.logical_not(pauli.x)): avg += weight else: quantum_state_i = result.get_statevector( circuit_name_prefix + pauli.to_label() ) avg += weight * (np.vdot(quantum_state, quantum_state_i)) else: if logger.isEnabledFor(logging.DEBUG): logger.debug("Computing the expectation from measurement results:") TextProgressBar(sys.stderr) # pick the first result to get the total number of shots num_shots = sum(list(result.get_counts(0).values())) results = parallel_map( WeightedPauliOperator._routine_compute_mean_and_var, [ ( [self._paulis[idx] for idx in indices], result.get_counts(circuit_name_prefix + basis.to_label()), ) for basis, indices in self._basis ], num_processes=algorithm_globals.num_processes, ) for res in results: avg += res[0] variance += res[1] std_dev = np.sqrt(variance / num_shots) return avg, std_dev @staticmethod def _routine_compute_mean_and_var(args): paulis, measured_results = args avg_paulis = [] avg = 0.0 variance = 0.0 for weight, pauli in paulis: observable = measure_pauli_z(measured_results, pauli) avg += weight * observable avg_paulis.append(observable) for idx_1, weighted_pauli_1 in enumerate(paulis): weight_1, pauli_1 = weighted_pauli_1 for idx_2, weighted_pauli_2 in enumerate(paulis): weight_2, pauli_2 = weighted_pauli_2 variance += ( weight_1 * weight_2 * covariance( measured_results, pauli_1, pauli_2, avg_paulis[idx_1], avg_paulis[idx_2], ) ) return avg, variance def reorder_paulis(self) -> List[List[Union[complex, Pauli]]]: """ Reorder the paulis based on the basis and return the reordered paulis. Returns: the ordered paulis based on the basis. """ # if each pauli belongs to its group, no reordering it needed. if len(self._basis) == len(self._paulis): return self._paulis paulis = [] new_basis = [] curr_count = 0 for basis, indices in self._basis: sub_paulis = [] for idx in indices: sub_paulis.append(self._paulis[idx]) new_basis.append((basis, range(curr_count, curr_count + len(sub_paulis)))) paulis.extend(sub_paulis) curr_count += len(sub_paulis) self._paulis = paulis self._basis = new_basis return self._paulis # pylint: disable=arguments-differ def evolve( self, state_in=None, evo_time=0, num_time_slices=1, quantum_registers=None, expansion_mode="trotter", expansion_order=1, ): """ Carry out the eoh evolution for the operator under supplied specifications. Args: state_in (QuantumCircuit): a circuit describes the input state evo_time (Union(complex, float, Parameter, ParameterExpression)): The evolution time num_time_slices (int): The number of time slices for the expansion quantum_registers (QuantumRegister): The QuantumRegister to build the QuantumCircuit off of expansion_mode (str): The mode under which the expansion is to be done. Currently support 'trotter', which follows the expansion as discussed in http://science.sciencemag.org/content/273/5278/1073, and 'suzuki', which corresponds to the discussion in https://arxiv.org/pdf/quant-ph/0508139.pdf expansion_order (int): The order for suzuki expansion Returns: QuantumCircuit: The constructed circuit. Raises: AlgorithmError: quantum_registers must be in the provided state_in circuit AlgorithmError: if operator is empty """ if self.is_empty(): raise AlgorithmError("Operator is empty, can not evolve.") if state_in is not None and quantum_registers is not None: if not state_in.has_register(quantum_registers): raise AlgorithmError( "quantum_registers must be in the provided state_in circuit." ) elif state_in is None and quantum_registers is None: quantum_registers = QuantumRegister(self.num_qubits) qc = QuantumCircuit(quantum_registers) elif state_in is not None and quantum_registers is None: # assuming the first register is for evolve quantum_registers = state_in.qregs[0] qc = QuantumCircuit() + state_in else: qc = QuantumCircuit(quantum_registers) instruction = self.evolve_instruction( evo_time, num_time_slices, expansion_mode, expansion_order ) qc.append(instruction, quantum_registers) return qc def evolve_instruction( self, evo_time=0, num_time_slices=1, expansion_mode="trotter", expansion_order=1 ): """ Carry out the eoh evolution for the operator under supplied specifications. Args: evo_time (Union(complex, float, Parameter, ParameterExpression)): The evolution time num_time_slices (int): The number of time slices for the expansion expansion_mode (str): The mode under which the expansion is to be done. Currently support 'trotter', which follows the expansion as discussed in http://science.sciencemag.org/content/273/5278/1073, and 'suzuki', which corresponds to the discussion in https://arxiv.org/pdf/quant-ph/0508139.pdf expansion_order (int): The order for suzuki expansion Returns: QuantumCircuit: The constructed QuantumCircuit. Raises: ValueError: Number of time slices should be a non-negative integer NotImplementedError: expansion mode not supported AlgorithmError: if operator is empty """ if self.is_empty(): raise AlgorithmError("Operator is empty, can not build evolve instruction.") # pylint: disable=no-member if num_time_slices <= 0 or not isinstance(num_time_slices, int): raise ValueError("Number of time slices should be a non-negative integer.") if expansion_mode not in ["trotter", "suzuki"]: raise NotImplementedError(f"Expansion mode {expansion_mode} not supported.") pauli_list = self.reorder_paulis() if len(pauli_list) == 1: slice_pauli_list = pauli_list else: if expansion_mode == "trotter": slice_pauli_list = pauli_list # suzuki expansion else: slice_pauli_list = suzuki_expansion_slice_pauli_list( pauli_list, 1, expansion_order ) instruction = evolution_instruction(slice_pauli_list, evo_time, num_time_slices) return instruction class Z2Symmetries: """Z2 Symmetries""" def __init__(self, symmetries, sq_paulis, sq_list, tapering_values=None): """ Args: symmetries (list[Pauli]): the list of Pauli objects representing the Z_2 symmetries sq_paulis (list[Pauli]): the list of single - qubit Pauli objects to construct the Clifford operators sq_list (list[int]): the list of support of the single-qubit Pauli objects used to build the Clifford operators tapering_values (list[int], optional): values determines the sector. Raises: AlgorithmError: Invalid paulis """ if len(symmetries) != len(sq_paulis): raise AlgorithmError( "Number of Z2 symmetries has to be the same as number " "of single-qubit pauli x." ) if len(sq_paulis) != len(sq_list): raise AlgorithmError( "Number of single-qubit pauli x has to be the same " "as length of single-qubit list." ) if tapering_values is not None: if len(sq_list) != len(tapering_values): raise AlgorithmError( "The length of single-qubit list has " "to be the same as length of tapering values." ) self._symmetries = symmetries self._sq_paulis = sq_paulis self._sq_list = sq_list self._tapering_values = tapering_values @property def symmetries(self): """return symmetries""" return self._symmetries @property def sq_paulis(self): """returns sq paulis""" return self._sq_paulis @property def cliffords(self): """ Get clifford operators, build based on symmetries and single-qubit X. Returns: list[WeightedPauliOperator]: a list of unitaries used to diagonalize the Hamiltonian. """ cliffords = [ WeightedPauliOperator( paulis=[[1 / np.sqrt(2), pauli_symm], [1 / np.sqrt(2), sq_pauli]] ) for pauli_symm, sq_pauli in zip(self._symmetries, self._sq_paulis) ] return cliffords @property def sq_list(self): """returns sq list""" return self._sq_list @property def tapering_values(self): """returns tapering values""" return self._tapering_values @tapering_values.setter def tapering_values(self, new_value): """set tapering values""" self._tapering_values = new_value def __str__(self): ret = ["Z2 symmetries:"] ret.append("Symmetries:") for symmetry in self._symmetries: ret.append(symmetry.to_label()) ret.append("Single-Qubit Pauli X:") for x in self._sq_paulis: ret.append(x.to_label()) ret.append("Cliffords:") for c in self.cliffords: ret.append(c.print_details()) ret.append("Qubit index:") ret.append(str(self._sq_list)) ret.append("Tapering values:") if self._tapering_values is None: possible_values = [ str(list(coeff)) for coeff in itertools.product([1, -1], repeat=len(self._sq_list)) ] possible_values = ", ".join(x for x in possible_values) ret.append(" - Possible values: " + possible_values) else: ret.append(str(self._tapering_values)) ret = "\n".join(ret) return ret def copy(self) -> "Z2Symmetries": """ Get a copy of self. Returns: copy """ return deepcopy(self) def is_empty(self): """ Check the z2_symmetries is empty or not. Returns: bool: empty """ if self._symmetries != [] and self._sq_paulis != [] and self._sq_list != []: return False else: return True def taper(self, operator, tapering_values=None): """ Taper an operator based on the z2_symmetries info and sector defined by `tapering_values`. The `tapering_values` will be stored into the resulted operator for a record. Args: operator (WeightedPauliOperator): the to-be-tapered operator. tapering_values (list[int], optional): if None, returns operators at each sector; otherwise, returns the operator located in that sector. Returns: list[WeightedPauliOperator] or WeightedPauliOperator: If tapering_values is None: [:class`WeightedPauliOperator`]; otherwise, :class:`WeightedPauliOperator` Raises: AlgorithmError: Z2 symmetries, single qubit pauli and single qubit list cannot be empty """ if not self._symmetries or not self._sq_paulis or not self._sq_list: raise AlgorithmError( "Z2 symmetries, single qubit pauli and " "single qubit list cannot be empty." ) if operator.is_empty(): logger.warning("The operator is empty, return the empty operator directly.") return operator for clifford in self.cliffords: operator = clifford * operator * clifford tapering_values = ( tapering_values if tapering_values is not None else self._tapering_values ) def _taper(op, curr_tapering_values): z2_symmetries = self.copy() z2_symmetries.tapering_values = curr_tapering_values operator_out = WeightedPauliOperator( paulis=[], z2_symmetries=z2_symmetries, name=operator.name ) for pauli_term in op.paulis: coeff_out = pauli_term[0] for idx, qubit_idx in enumerate(self._sq_list): if not ( not pauli_term[1].z[qubit_idx] and not pauli_term[1].x[qubit_idx] ): coeff_out = curr_tapering_values[idx] * coeff_out z_temp = np.delete(pauli_term[1].z.copy(), np.asarray(self._sq_list)) x_temp = np.delete(pauli_term[1].x.copy(), np.asarray(self._sq_list)) pauli_term_out = WeightedPauliOperator( paulis=[[coeff_out, Pauli((z_temp, x_temp))]] ) operator_out += pauli_term_out operator_out.chop(0.0) return operator_out if tapering_values is None: tapered_ops = [] for coeff in itertools.product([1, -1], repeat=len(self._sq_list)): tapered_ops.append(_taper(operator, list(coeff))) else: tapered_ops = _taper(operator, tapering_values) return tapered_ops @staticmethod def two_qubit_reduction(operator, num_particles): """ Eliminates the central and last qubit in a list of Pauli that has diagonal operators (Z,I) at those positions Chemistry specific method: It can be used to taper two qubits in parity and binary-tree mapped fermionic Hamiltonians when the spin orbitals are ordered in two spin sectors, (block spin order) according to the number of particles in the system. Args: operator (WeightedPauliOperator): the operator num_particles (Union(list, int)): number of particles, if it is a list, the first number is alpha and the second number if beta. Returns: WeightedPauliOperator: a new operator whose qubit number is reduced by 2. """ if operator.is_empty(): logger.info( "Operator is empty, can not do two qubit reduction. " "Return the empty operator back." ) return operator if isinstance(num_particles, (tuple, list)): num_alpha = num_particles[0] num_beta = num_particles[1] else: num_alpha = num_particles // 2 num_beta = num_particles // 2 par_1 = 1 if (num_alpha + num_beta) % 2 == 0 else -1 par_2 = 1 if num_alpha % 2 == 0 else -1 tapering_values = [par_2, par_1] num_qubits = operator.num_qubits last_idx = num_qubits - 1 mid_idx = num_qubits // 2 - 1 sq_list = [mid_idx, last_idx] # build symmetries, sq_paulis: symmetries, sq_paulis = [], [] for idx in sq_list: pauli_str = ["I"] * num_qubits pauli_str[idx] = "Z" z_sym = Pauli("".join(pauli_str)[::-1]) symmetries.append(z_sym) pauli_str[idx] = "X" sq_pauli = Pauli("".join(pauli_str)[::-1]) sq_paulis.append(sq_pauli) z2_symmetries = Z2Symmetries(symmetries, sq_paulis, sq_list, tapering_values) return z2_symmetries.taper(operator) def consistent_tapering(self, operator): """ Tapering the `operator` with the same manner of how this tapered operator is created. i.e., using the same Cliffords and tapering values. Args: operator (WeightedPauliOperator): the to-be-tapered operator Returns: TaperedWeightedPauliOperator: the tapered operator Raises: AlgorithmError: The given operator does not commute with the symmetry """ if operator.is_empty(): raise AlgorithmError("Can not taper an empty operator.") for symmetry in self._symmetries: if not operator.commute_with(symmetry): raise AlgorithmError( "The given operator does not commute with " "the symmetry, can not taper it." ) return self.taper(operator)
https://github.com/samihatashin/QC-Algorithms-with-Qiskit
samihatashin
my_list = [1,3,5,2,4,2,5,8,0,7,6] #classical computation method def oracle(my_input): winner =7 if my_input is winner: response = True else: response = False return response for index, trial_number in enumerate(my_list): if oracle(trial_number) is True: print("Winner is found at index %i" %index) print("%i calls to the oracle used " %(index +1)) break #quantum implemenation from qiskit import * import matplotlib.pyplot as plt import numpy as np from qiskit.tools import job_monitor # oracle circuit oracle = QuantumCircuit(2, name='oracle') oracle.cz(0,1) oracle.to_gate() oracle.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') grover_circuit = QuantumCircuit(2,2) grover_circuit.h([0,1]) grover_circuit.append(oracle,[0,1]) grover_circuit.draw(output='mpl') job= execute(grover_circuit, backend=backend) result= job.result() sv= result.get_statevector() np.around(sv,2) #amplitude amplification reflection = QuantumCircuit(2, name='reflection') reflection.h([0,1]) reflection.z([0,1]) reflection.cz(0,1) reflection.h([0,1]) reflection.to_gate() reflection.draw(output='mpl') #testing circuit on simulator simulator = Aer.get_backend('qasm_simulator') grover_circuit = QuantumCircuit(2,2) grover_circuit.h([0,1]) grover_circuit.append(oracle,[0,1]) grover_circuit.append(reflection, [0,1]) grover_circuit.barrier() grover_circuit.measure([0,1],[0,1]) grover_circuit.draw(output='mpl') job= execute(grover_circuit,backend=simulator,shots=1) result=job.result() result.get_counts() #testing on real backend system IBMQ.load_account() provider= IBMQ.get_provider('ibm-q') qcomp= provider.get_backend('ibmq_manila') job = execute(grover_circuit,backend=qcomp) job_monitor(job) result=job.result() counts=result.get_counts(grover_circuit) from qiskit.visualization import plot_histogram plot_histogram(counts) counts['11']
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, QuantumRegister from qiskit.circuit.library.standard_gates import HGate qr = QuantumRegister(3) qc = QuantumCircuit(qr) c3h_gate = HGate().control(2) qc.append(c3h_gate, qr) qc.draw('mpl')
https://github.com/Slope86/QiskitExtension
Slope86
import math import random from qiskit_extension.quantum_circuit2 import QuantumCircuit2 as qc2 from qiskit_extension.state_vector2 import StateVector2 as sv2 state_unknown = sv2.from_label((random.random(), "0"), (random.random(), "1")) state_unknown.show_state() # Create a 2bits quantum circuit circ_init = qc2(2) # Entangle two ground state qubits to an EPR pair circ_init.h(0) circ_init.cx(0,1) # Put the ground state into the circuit to get the EPR pair state_EPR = sv2(circ_init) # Show state_EPR, confirm it is EPR pair state_EPR.show_state() # Combined state_unknown and state_EPR into a 3-qubit sv2 object state_before_teleport = state_unknown.expand(state_EPR) state_before_teleport.show_state() # Create the circuit for Bell measurement circ_bell = qc2(3) circ_bell.cx(0,1) circ_bell.h(0) # Bell measurement on qubits(0,1), and store the four possible states as a list after measurement # list[0b00]=state after measurement result is 00, # list[0b01]=state after measurement result is 01, # ... list_state_after_measure = state_before_teleport.evolve(circ_bell).measure([0,1]) # Show the four possible states after the Bell measurement # Display format: (|00> indicates the measured state, followed by a colon indicating [the remaining state after measurement result is 00]) # |00>: 1/2|0> + 1/2|1> ... state_before_teleport.evolve(circ_bell).show_measure([0,1]) state_after_teleport = list_state_after_measure[0b00] state_after_teleport.show_state(hide=[0,1]) # Correction circuit circ_correction = qc2(3) circ_correction.x(2) # Applying the correction circuit state_after_teleport = list_state_after_measure[0b01].evolve(circ_correction) state_after_teleport.show_state(hide=[0,1]) # Correction circuit circ_correction = qc2(3) circ_correction.z(2) # Applying the correction circuit state_after_teleport = list_state_after_measure[0b10].evolve(circ_correction) state_after_teleport.show_state(hide=[0,1]) # Correction circuit circ_correction = qc2(3) circ_correction.x(2) circ_correction.z(2) # Applying the correction circuit state_after_teleport = list_state_after_measure[0b11].evolve(circ_correction) state_after_teleport.show_state(hide=[0,1])
https://github.com/SaashaJoshi/IBM-Qiskit-Summer-School-2020
SaashaJoshi
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/DeboQubie/Options-Trading
DeboQubie
from qiskit import QuantumCircuit,QuantumRegister,ClassicalRegister from qiskit_finance.circuit.library import LogNormalDistribution import numpy as np from qiskit.quantum_info import Statevector # Implementing the log-normal-distribution # number of qubits to represent the uncertainty num_uncertainty_qubits = 3 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 300 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = ((r - 0.5 * vol**2) * T + np.log(S)) # sigma = vol * np.sqrt(T) sigma=0.1 # sigma=10% mean = np.exp(mu + sigma**2/2) variance = (np.exp(sigma**2) - 1) * np.exp(2*mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3*stddev) high = mean + 3*stddev # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective uncertainty_model = LogNormalDistribution(num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high)) uncertainty_model.draw('mpl') # Defining some constants num_of_qubits=3 q=QuantumRegister(num_of_qubits,name="q") q_c=QuantumRegister(1,name="c") q_a=QuantumRegister(1,name="a") c=ClassicalRegister(1) qc=QuantumCircuit(q,q_c,q_a,c) qc.append(uncertainty_model,range(num_uncertainty_qubits)) qc.barrier() qc.draw("mpl") psi=Statevector(qc) psi.draw("latex") # To see the log normal distribution # qc.measure(q,c) # qc.draw('mpl') # from qiskit import transpile # from qiskit.providers.aer import QasmSimulator # backend=QasmSimulator() # qc_compiled=transpile(qc,backend) # job = backend.run(qc_compiled,shot=1024) # result=job.result() # counts=result.get_counts() # print(counts) # from qiskit.visualization import plot_histogram # plot_histogram(counts) k=2 # Strike price # Implementing the comparitor circuit for the given strike price qc.cx(q[2],q_c[0]) qc.barrier() qc.draw("mpl") from math import pi # constants C=0.25 # scalling factor i_max=(2**num_of_qubits)-1 #2^n-1 # f(i)=f0+f1*i f0=-(2*C*k)/(i_max-k) f1=(2*C)/(i_max-k) g0=(pi/4)-C # circuit qc.ry(g0,q_a[0]) # making the Ry[g(i)] part qc.ry(f0,q_a[0]) qc.cry(f1,q_c[0],q_a[0]) qc.cry(4*f1,q[2],q_a[0]) qc.cry(2*f1,q[1],q_a[0]) qc.cry(f1,q[0],q_a[0]) qc.barrier() qc.draw('mpl') psi=Statevector(qc) psi.draw('latex') qc.measure(q_a,c) qc.draw('mpl') from qiskit import transpile from qiskit.providers.aer import QasmSimulator backend=QasmSimulator() qc_compiled=transpile(qc,backend) job = backend.run(qc_compiled,shots=2) result=job.result() counts=result.get_counts() print(counts) from qiskit.visualization import plot_histogram plot_histogram(counts,sort="value") from qiskit import transpile from qiskit.providers.aer import QasmSimulator m=[3,5,7,9,11,13] #different no.of shots a_l=[] # stores the expected payoff for different no.of shots for i in m: M=2**i backend=QasmSimulator() qc_compiled=transpile(qc,backend) job = backend.run(qc_compiled,shots=M) result=job.result() counts=result.get_counts() print(counts) a_l+=[counts["1"]/(2**i)] for i in range(len(a_l)): print("expected payoff for m =",m[i]," is =",a_l[i]) import numpy as np import scipy.stats as si import sympy as sy from sympy.stats import Normal, cdf def euro_vanilla_call(S, K, T, r, sigma): #S: spot price #K: strike price #T: time to maturity #r: interest rate #sigma: volatility of underlying asset d1 = (np.log(S / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T)) d2 = (np.log(S / K) + (r - 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T)) call = (S * si.norm.cdf(d1, 0.0, 1.0) - K * np.exp(-r * T) * si.norm.cdf(d2, 0.0, 1.0)) return call print(euro_vanilla_call(S, k, T, r, sigma))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile from qiskit.visualization import plot_circuit_layout from qiskit.providers.fake_provider import FakeVigo backend = FakeVigo() ghz = QuantumCircuit(3, 3) ghz.h(0) ghz.cx(0,range(1,3)) ghz.barrier() ghz.measure(range(3), range(3)) # Virtual -> physical # 0 -> 3 # 1 -> 4 # 2 -> 2 my_ghz = transpile(ghz, backend, initial_layout=[3, 4, 2]) plot_circuit_layout(my_ghz, backend)
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import matplotlib.pyplot as plt import itertools import pickle # plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts import time import datetime # Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z) from qiskit.opflow import Zero, One, I, X, Y, Z from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer from qiskit.providers.aer import QasmSimulator from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter # Import QREM package from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter # Import mitiq for zne import mitiq # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.quantum_info import state_fidelity # Suppress warnings import warnings warnings.filterwarnings('ignore') def trotter_gate(dt, to_instruction = True): qc = QuantumCircuit(2) qc.rx(2*dt,0) qc.rz(2*dt,1) qc.h(1) qc.cx(1,0) qc.rz(-2*dt, 0) qc.rx(-2*dt, 1) qc.rz(2*dt, 1) qc.cx(1,0) qc.h(1) qc.rz(2*dt, 0) return qc.to_instruction() if to_instruction else qc trotter_gate(np.pi / 6, to_instruction=False).draw("mpl") # Combine subcircuits into a single multiqubit gate representing a single trotter step num_qubits = 3 # The final time of the state evolution target_time = np.pi # Parameterize variable t to be evaluated at t=pi later dt = Parameter('t') # Convert custom quantum circuit into a gate Trot_gate = trotter_gate(dt) # Number of trotter steps trotter_steps = 15 ### CAN BE >= 4 # Initialize quantum circuit for 3 qubits qr = QuantumRegister(7) qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>) qc.x([5]) # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) # Simulate time evolution under H_heis3 Hamiltonian for _ in range(trotter_steps): qc.append(Trot_gate, [qr[3], qr[5]]) qc.cx(qr[3], qr[1]) qc.cx(qr[5], qr[3]) # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({dt: target_time/trotter_steps}) t3_qc = transpile(qc, optimization_level=3, basis_gates=["sx", "cx", "rz"]) t3_qc = transpile(t3_qc, optimization_level=3, basis_gates=["sx", "cx", "rz"]) # Generate state tomography circuits to evaluate fidelity of simulation st_qcs = state_tomography_circuits(t3_qc, [qr[1], qr[3], qr[5]]) # Display circuit for confirmation # st_qcs[-1].decompose().draw() # view decomposition of trotter gates st_qcs[-1].draw("mpl") # only view trotter gates # from qiskit.test.mock import FakeJakarta # backend = FakeJakarta() # backend = Aer.get_backend("qasm_simulator") IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') print("provider:", provider) backend = provider.get_backend("ibmq_jakarta") shots = 8192 reps = 8 jobs = [] for _ in range(reps): # execute job = execute(st_qcs, backend, shots=shots) print('Job ID', job.job_id()) jobs.append(job) # QREM qr = QuantumRegister(num_qubits) meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout=[5,3,1]) print('Job ID', cal_job.job_id()) dt_now = datetime.datetime.now() print(dt_now) with open("jobs_jakarta_15step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump({"jobs": jobs, "cal_job": cal_job}, f) with open("job_ids_jakarta_15step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f) with open("properties_jakarta" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump(backend.properties(), f) filename = "job_ids_jakarta_15step_20220412_031437_.pkl" # change here with open(filename, "rb") as f: job_ids_dict = pickle.load(f) job_ids = job_ids_dict["job_ids"] cal_job_id = job_ids_dict["cal_job_id"] retrieved_jobs = [] for job_id in job_ids: retrieved_jobs.append(backend.retrieve_job(job_id)) retrieved_cal_job = backend.retrieve_job(cal_job_id) cal_results = retrieved_cal_job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') # set the target state target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!! fids = [] for job in retrieved_jobs: mit_results = meas_fitter.filter.apply(job.result()) # apply QREM rho = StateTomographyFitter(mit_results, st_qcs).fit(method='lstsq') fid = state_fidelity(rho, target_state) fids.append(fid) print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids))) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/junayed-hasan/Quantum-Machine-Learning-Qiskit-PyTorch
junayed-hasan
from qiskit import * %matplotlib inline import numpy as np qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0, 1) qc.draw('mpl') from qiskit.visualization import plot_state_hinton sim = Aer.get_backend('statevector_simulator') # qasm_simulator, statevector_simulator, unitary_simulator result = execute(qc, backend=sim).result() state = result.get_statevector(qc) plot_state_hinton(state) from qiskit.visualization import * from matplotlib import style style.use('bmh') style.use('dark_background') plot_state_city(state) plot_state_paulivec(result.get_statevector(qc)) from qiskit import IBMQ IBMQ.load_account() from qiskit.tools.monitor import job_monitor provider = IBMQ.get_provider(hub='ibm-q', group='open') backend = provider.get_backend('ibmq_santiago') job = execute(qc, backend=backend, shots=8192) job_monitor(job) from qiskit.visualization import plot_histogram result = job.result() plot_histogram(result.get_counts(qc))
https://github.com/drnickallgood/simonqiskit
drnickallgood
import sys import logging import matplotlib.pyplot as plt import numpy as np import operator import itertools #from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute, IBMQ from qiskit.providers.ibmq import least_busy from collections import OrderedDict # AER is for simulators from qiskit import Aer from qiskit import QuantumCircuit from qiskit import ClassicalRegister from qiskit import QuantumRegister from qiskit import execute from qiskit import IBMQ #from qiskit.providers.ibmq.managed import IBMQJobManager from qiskit.tools.monitor import job_monitor from qiskit.tools.visualization import plot_histogram from qiskit.tools.visualization import circuit_drawer from sympy import Matrix, pprint, MatrixSymbol, expand, mod_inverse from qjob import QJob unitary_sim = Aer.get_backend('unitary_simulator') ## function to get dot product of result string with the period string to verify, result should be 0 #check the wikipedia for simons formula # DOT PRODUCT IS MOD 2 !!!! # Result XOR ?? = 0 -- this is what we're looking for! # We have to verify the period string with the ouptput using mod_2 addition aka XOR # Simply xor the period string with the output string # Simply xor the period string with the output string, result must be 0 or 0b0 def verify_string(ostr, pstr): """ Verify string with period string Does dot product and then mod2 addition """ temp_list = list() # loop through outstring, make into numpy array for o in ostr: temp_list.append(int(o)) ostr_arr = np.asarray(temp_list) temp_list.clear() # loop through period string, make into numpy array for p in pstr: temp_list.append(int(p)) pstr_arr = np.asarray(temp_list) temp_list.clear() # Per Simosn, we do the dot product of the np arrays and then do mod 2 results = np.dot(ostr_arr, pstr_arr) if results % 2 == 0: return True return False def blackbox(simonCircuit, uni_list, period_string): #### Blackbox Function ##### # QP's don't care about this, we do# ############################# #bbqr = QuantumRegister(2*n, 'q') #bbcr = ClassicalRegister(n, 'c') #bbcirc = QuantumCircuit(bbqr,bbcr) flag = True while flag: bbqr = QuantumRegister(2*n, 'q') bbcr = ClassicalRegister(n, 'c') bbcirc = QuantumCircuit(bbqr,bbcr) # Copy first register to second by using CNOT gates for i in range(n): #simonCircuit.cx(qr[i],qr[n+i]) #bbcirc.cx(qr[i],qr[n+i]) bbcirc.cx(bbqr[i],bbqr[n+i]) # get the small index j such it's "1" j = -1 #reverse the string so that it takes s = period_string[::-1] for i, c in enumerate(s): if c == "1": j = i break # 1-1 and 2-1 mapping with jth qubit # x is control to xor 2nd qubit with a for i, c in enumerate(s): if c == "1" and j >= 0: #simonCircuit.x(qr[j]) bbcirc.cx(bbqr[j], bbqr[n+i]) #the i-th qubit is flipped if s_i is 1 #simonCircuit.x(qr[j]) # Added to expand function space so that we get enough random # functions for statistical sampling # Randomly add a CX gate for i in range(n): for j in range(i+1, n): if np.random.random() > 0.5: bbcirc.cx(bbqr[n+i],bbqr[n+j]) # Random peemutation # This part is how we can get by with 1 query of the oracle and better # simulates quantum behavior we'd expect perm = list(np.random.permutation(n)) # init position init = list(range(n)) i = 0 while i < n: if init[i] != perm[i]: k = perm.index(init[i]) bbcirc.swap(bbqr[n+i], bbqr[n+k]) #swap gate on qubits init[i], init[k] = init[k], init[i] # mark the swapped qubits else: i += 1 # Randomly flip qubit # Seed random numbers for predictability / benchmark for i in range(n): if np.random.random() > 0.5: bbcirc.x(bbqr[n+i]) # Added for duplicate checking # We get the unitary matrix of the blackbox generated circuit bb_sim_result = execute(bbcirc, unitary_sim).result() bb_uni = bb_sim_result.get_unitary(bbcirc, decimals=15) # Duplicate flag dup = False # Handle empty list if len(uni_list) == 0: #uni_list.append(bb_uni) # Set flag to false to break out of main loop flag = False dup = False print("adding first generated") else: # Check for duplicates # If duplicate oracle query, re-run oracle #print(np.array_equal(bb_uni, uni_list[0])) for i, uni in enumerate(uni_list): if (bb_uni == uni).all(): #if np.array_equal(bb_uni, uni): # Break out of for loop because we founhd a duplicate, re-run to get new blackbox circuit print("Duplicates Found, restarting loop") dup = True break # breaks out of for loop to start over, else: dup = False # If duplicate flag not set after we searched the list... if not dup: # No duplicate unitary matricies, we can add to list # and break out uni_list.append(bb_uni) flag = False print("No Duplicates - Added another to list") ### End While # Combine input circuit with created blackbox circuit simonCircuit = simonCircuit + bbcirc simonCircuit.barrier() print("Ending blackbox") return simonCircuit ## easily create period strings ## We want to avoid using anything with all 0's as that gives us false results ## because anything mod2 00 will give results def create_period_str(strlen): str_list = list() for i in itertools.product([0,1],repeat=strlen): if "1" in ("".join(map(str,i))): #print("".join(map(str,i))) str_list.append("".join(map(str,i))) return str_list #### START #### # hidden stringsn period_strings_5qubit = list() period_strings_5qubit = create_period_str(2) period_strings_2bit = list() period_strings_3bit = list() period_strings_4bit = list() period_strings_5bit = list() period_strings_6bit = list() period_strings_7bit = list() # 2-bit strings period_strings_2bit = create_period_str(2) # 3-bit strings period_strings_3bit = create_period_str(3) # 4-bit strings period_strings_4bit = create_period_str(4) # 5-bit strings period_strings_5bit = create_period_str(5) # 6-bit strings period_strings_6bit = create_period_str(6) # 7-bit strings period_strings_7bit = create_period_str(7) # IBM Q stuff.. IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') circuitList = list() ## DO NOT USE ITERATION FORMULA JUST HERE FOR REF # Iterations = # of backends tested # iteration formula = floor(log2(num_backends * num_shots)) = 14 here # 2-bit period strings ranJobs = list() backname = "local_sim" #2bit = 12 = 36 random functions #3bit = 54 = 372+ random functions #4bit #5bit #6bit #7bit #o Jobs total = # of strings * iterations #total_jobs = iterations * len(period_strings_5bit) #job_start_idx = 1 circs = list() def find_duplicates(circs): k = 0 dup_count = 0 while k < len(circs)-1: if circs[k].count_ops() == circs[k+1].count_ops(): #print("\n=== Duplicates Found! ===") #print("Index:" + str(k)) #print("Index:" + str(k+1)) dup_count = dup_count + 1 #print(circs[k].count_ops()) #print(circs[k+1].count_ops()) #print("=== End Duplcates ===") k = k+2 else: k = k+1 return dup_count def generate_simon(simonCircuit, uni_list, period): # Generate circuit # Assumes global simoncircuit # Hadamards prior to oracle for i in range(n): simonCircuit.h(qr[i]) simonCircuit.barrier() # Oracle query simonCircuit = blackbox(simonCircuit, uni_list, period) # Apply hadamards again for i in range(n): simonCircuit.h(qr[i]) simonCircuit.barrier() # Measure qubits, maybe change to just first qubit to measure simonCircuit.measure(qr[0:n],cr) return simonCircuit i = 0 z = 0 not_done = True np.random.seed(0) n = len(period_strings_2bit[0]) qr = QuantumRegister(2*n, 'q') cr = ClassicalRegister(n, 'c') simonCircuit = QuantumCircuit(qr,cr) uni_list = list() outfile = open("sim-results/simulations-2bit-12iter.txt", "w") iterations = 12 #2-bit #iterations = 54 #3-bit #iterations = 26 #4-bit #iterations = 13 #5-bit #iterations = 7 #6-bit #iterations = 4 #7-bit local_sim = Aer.get_backend('qasm_simulator') while not_done: while i < len(period_strings_2bit): #print("Started main block..") #print(str(period_strings_6bit[i])) n = len(period_strings_2bit[i]) print("Period strings: " + str(i+1) + "/" + str(len(period_strings_2bit))) while z < iterations: qr = QuantumRegister(2*n, 'q') cr = ClassicalRegister(n, 'c') simonCircuit = QuantumCircuit(qr,cr) # Duplicates are checked in blackbox function simon = generate_simon(simonCircuit, uni_list, period_strings_2bit[i]) circs.append(simon) z = z + 1 print("Iterations:" + str(z) + "/" + str(iterations)) i = i + 1 z = 0 not_done = False dup_flag = False print("\nDouble checking heuristically...\n") # Double checking all items in list are not duplicate for x in range(0,len(uni_list)-1): for y in range(1,len(uni_list)): # Handle condition when x and y overlap and are eachother if x != y: if np.array_equal(uni_list[x], uni_list[y]): print("Duplicates found at indexes:" + str(x) + "," + str(y)) dup_flag = True #print("\nDuplicates in set, not valid\n") if dup_flag: print("\nDuplicates Found, see above.\n") else: print("\nNo duplicates found in 2nd pass\n") print("\nRunning final check of dot product between period string and observed strings...") ### Now to run on simulator #### iter_cnt = 0 pstr_cnt = 0 ranJobs = list() for circ in circs: job = execute(circ, backend=local_sim, shots=1024, optimization_level=3, seed_transpiler=0) # create Qjob, store info qj = QJob(job, circ, "local_sim", period_strings_2bit[pstr_cnt]) ranJobs.append(qj) result = job.result() counts = result.get_counts() # We advance to next period string when we iterate through all # the circuits per period strings if iter_cnt == iterations-1: pstr_cnt += 1 iter_cnt = 0 else: iter_cnt += 1 # outfile.write(str(counts) + "\n") outfile.close() # Go through and get correct vs incorrect in jobs ## This will verify all the strings we get back are correct from the non # duplicate circuits for qjob in ranJobs: results = qjob.job.result() counts = results.get_counts() #equations = guass_elim(results) # Get period string pstr = qjob.getPeriod() # Verify observed string vs peroid string by doing dot product for ostr, count in counts.items(): if verify_string(ostr, pstr): qjob.setCorrect(count) else: qjob.setIncorrect(count) total_correct = 0 total_incorrect = 0 total_runs = (1024 * iterations) * len(period_strings_2bit) for qjob in ranJobs: total_correct += qjob.getCorrect() total_incorrect += qjob.getIncorrect() print("\nTotal Runs: " + str(total_runs)) print("Total Correct: " + str(total_correct)) print("Prob Correct: " + str(float(total_correct) / float(total_runs))) print("Total Incorrect: " + str(total_incorrect)) print("Prob Incorrect: " + str(float(total_incorrect) / float(total_runs))) print("")
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit qc = QuantumCircuit(3) qc.x(0) qc.y(1) qc.z(2) print(qc) qc.draw("mpl")
https://github.com/quantum-tokyo/qiskit-handson
quantum-tokyo
# Qiskitライブラリーを導入 from qiskit import * from qiskit.visualization import * # 描画のためのライブラリーを導入 import matplotlib.pyplot as plt %matplotlib inline import numpy as np # Qiskitバージョンの確認 qiskit.__qiskit_version__ q = QuantumCircuit(1) # 1量子ビット回路を用意 q.x(0) # Xゲートを0番目の量子ビットに操作します。 q.draw(output="mpl") # 回路を描画 # 状態ベクトルシミュレーターの実行 backend = Aer.get_backend('statevector_simulator') result = execute(q, backend).result().get_statevector(q, decimals=3) print(result) plot_bloch_multivector(result) # ブロッホ球の表示 q = QuantumCircuit(1) # 1量子ビット回路を用意 q.h(0) # Hゲートを0番目の量子ビットに操作します。 q.draw(output="mpl") # 回路を描画 # 状態ベクトルシミュレーターの実行 backend = Aer.get_backend('statevector_simulator') result = execute(q, backend).result().get_statevector(q, decimals=3) print(result) plot_bloch_multivector(result) # ブロッホ球の表示 q = QuantumCircuit(1) # 1量子ビット回路を用意 # Hゲートを0番目の量子ビットに操作します。 q.h(0) # 次にZゲートを0番目の量子ビットに操作します。 q.z(0) q.draw(output="mpl") # 回路を描画 # 状態ベクトルシミュレーターの実行 backend = Aer.get_backend('statevector_simulator') result = execute(q, backend).result().get_statevector(q, decimals=3) print(result) plot_bloch_multivector(result) # ブロッホ球の表示 q = QuantumCircuit(1) # 1量子ビット回路を用意 q.h(0) # Hゲートを0番目の量子ビットに操作します。 q.s(0) # 次にSゲートを0番目の量子ビットに操作します。 q.draw(output="mpl") # 回路を描画 # 状態ベクトルシミュレーターの実行 backend = Aer.get_backend('statevector_simulator') result = execute(q, backend).result().get_statevector(q, decimals=3) print(result) plot_bloch_multivector(result) # ブロッホ球の表示 q = QuantumCircuit(1) # 1量子ビット回路を用意 q.h(0) # Hゲートを0番目の量子ビットに操作します。 q.t(0) # 次にTゲートを0番目の量子ビットに操作します。 q.draw(output="mpl") # 回路を描画 # 状態ベクトルシミュレーターの実行 backend = Aer.get_backend('statevector_simulator') result = execute(q, backend).result().get_statevector(q, decimals=3) print(result) plot_bloch_multivector(result) # ブロッホ球の表示 q = QuantumCircuit(1) # 1量子ビット回路を用意 q.h(0) # Hゲートを0番目の量子ビットに操作します。 q.u1(np.pi/8,0) # 次にU1ゲートを0番目の量子ビットに操作します。 q.draw(output="mpl") # 回路を描画 # 状態ベクトルシミュレーターの実行 backend = Aer.get_backend('statevector_simulator') result = execute(q, backend).result().get_statevector(q, decimals=3) print(result) plot_bloch_multivector(result) # ブロッホ球の表示 q = QuantumCircuit(2) # 2量子ビット回路を用意 q.h(0) # Hゲートを0番目の量子ビットに操作します。 q.h(1) # Hゲートを1番目の量子ビットに操作します。 q.draw(output="mpl") # 回路を描画 # 状態ベクトルシミュレーターの実行 backend = Aer.get_backend('statevector_simulator') result = execute(q, backend).result().get_statevector(q, decimals=3) print(result) plot_bloch_multivector(result) # ブロッホ球の表示 q = QuantumCircuit(2) # 2量子ビット回路を用意 # q0=|1>, q1=|+>の場合: q.x(0) q.h(1) # CU1ゲートの制御ビットをq0、目標ビットをq1、角度をpi/2にセットします。 q.cu1(np.pi/2,0,1) q.draw(output="mpl") # 回路を描画 # 状態ベクトルシミュレーターの実行 backend = Aer.get_backend('statevector_simulator') result = execute(q, backend).result().get_statevector(q, decimals=3) print(result) plot_bloch_multivector(result) # ブロッホ球の表示
https://github.com/Rodri-rf/playing_with_quantum_computing
Rodri-rf
# Author: Khaled Alam(khaledalam.net@gmail.com) ''' Guess binary string (secret) of length N in 1 shot only using quantum computing circuit! ~ by using clasical computers we need at least N shots to guess string (secret) of length N ~ by using quantum computer we need 1 shot to guess string (secret) of ANY length ( cool isn't it! ^^ ) ''' secret = '01000001' # `01000001` = `A` from qiskit import * n = len(secret) qCircuit = QuantumCircuit(n+1, n) # n+1 qubits and n classical bits qCircuit.x(n) qCircuit.barrier() qCircuit.h(range(n+1)) qCircuit.barrier() for ii, OZ in enumerate(reversed(secret)): if OZ == '1': qCircuit.cx(ii, n) qCircuit.barrier() qCircuit.h(range(n+1)) qCircuit.barrier() qCircuit.measure(range(n), range(n)) %matplotlib inline qCircuit.draw(output='mpl') # run on simulator simulator = Aer.get_backend('qasm_simulator') result = execute(qCircuit, backend=simulator, shots=1).result() # only 1 shot from qiskit.visualization import plot_histogram plot_histogram( result.get_counts(qCircuit) )
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb %run 08_gellmann.ipynb def coh_l1(rho): d = rho.shape[0]; C = 0 for j in range(0,d-1): for k in range(j+1,d): C += np.abs(rho[j,k]) return 2*C rho = np.array([[1,0],[0,0]]); rho, coh_l1(rho) rho = np.array([[1,1],[1,1]])/2; rho, coh_l1(rho) def mutual_info(da, db, rhoAB): rhoA = pTraceR_num(da, db, rhoAB); Sa = von_neumann_num(rhoA) rhoB = pTraceL_num(da, db, rhoAB); Sb = von_neumann_num(rhoB) Sab = von_neumann_num(rhoAB) return Sa + Sb - Sab def shannon_num(pv): d = pv.shape[0]; SE = 0.0; j = -1 while (j < d-1): j = j + 1 if pv[j] > 10**-15 and pv[j] < (1.0-10**-15): SE -= pv[j]*math.log(pv[j], 2) return SE import scipy.linalg.lapack as lapak def von_neumann_num(rho): d = rho.shape[0]; b = lapak.zheevd(rho) return shannon_num(b[0]) def pTraceL_num(dl, dr, rhoLR): rhoR = np.zeros((dr, dr), dtype=complex) for j in range(0, dr): for k in range(j, dr): for l in range(0, dl): rhoR[j,k] += rhoLR[l*dr+j,l*dr+k] if j != k: rhoR[k,j] = np.conj(rhoR[j,k]) return rhoR def pTraceR_num(dl, dr, rhoLR): rhoL = np.zeros((dl, dl), dtype=complex) for j in range(0, dl): for k in range(j, dl): for l in range(0, dr): rhoL[j,k] += rhoLR[j*dr+l,k*dr+l] if j != k: rhoL[k,j] = np.conj(rhoL[j,k]) return rhoL rho = proj(tp(cb(2,0),cb(2,0))); rho, mutual_info(2, 2, rho) rho = 0.5*proj(tp(cb(2,0),cb(2,0))) + 0.5*proj(tp(cb(2,1),cb(2,1))); rho, mutual_info(2, 2, rho) psi = (1/math.sqrt(2))*(tp(cb(2,0),cb(2,0))+tp(cb(2,1),cb(2,1))) rho = proj(psi); rho, mutual_info(2, 2, rho) import scipy def Dhellinger(da, db, rhoAB): M = scipy.linalg.sqrtm(rhoAB) A = pTraceR_num(da, db, M); bva = bloch_vector(A)/math.sqrt(2*db) B = pTraceL_num(da, db, M); bvb = bloch_vector(B)/2 cm = corr_mat(da, db, M)/2; ev = lapak.zheevd(bva*bva.T + cm*cm.T) D_he = 2 - 2*math.sqrt((np.trace(A)/math.sqrt(2*db))**2 + (scipy.linalg.norm(bvb))**2 + max(ev[0].real)) D_he = D_he/(2 - 2/math.sqrt(da)) return D_he da = 2; db = 2 M = scipy.linalg.sqrtm(np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]])/4) A = pTraceR_num(2, 2, M); bva = bloch_vector(A)/math.sqrt(2*2); bva B = pTraceL_num(da, db, M); bvb = bloch_vector(B)/2; bvb cm = corr_mat(da, db, M)/2; ev = lapak.zheevd(bva*bva.T + cm*cm.T); cm D_he = 2 - 2*math.sqrt((np.trace(A)/math.sqrt(2*db))**2 + (scipy.linalg.norm(bvb))**2 + max(ev[0].real)) D_he = D_he/(2 - 2/math.sqrt(da)); D_he # teste para a raiz quadrada de matriz calculada usando scipy A = np.array([[1,0],[0,-1]]); Asr = scipy.linalg.sqrtm(A); Asr # raiz quadrada (testes) #Asr*Asr def Pauli(j): if j == 0: return np.array([[1,0],[0,1]]) elif j == 1: return np.array([[0,1],[1,0]]) elif j == 2: return np.array([[0,-1j],[1j,0]]) elif j == 3: return np.array([[1,0],[0,-1]]) ev = lapak.zheevd(Pauli(1)); ev, ev[0], ev[0][0], ev[1][0], ev[1][0][0] def Econcurrence(rho): R = rho@tp(Pauli(2),Pauli(2))@np.matrix.conjugate(rho)@tp(Pauli(2),Pauli(2)) ev = lapak.zheevd(R) evm = max(abs(ev[0][0]), abs(ev[0][1]), abs(ev[0][2]), abs(ev[0][3])) Ec = 2*math.sqrt(abs(evm)) - math.sqrt(abs(ev[0][0])) - math.sqrt(abs(ev[0][1]))\ - math.sqrt(abs(ev[0][2])) - math.sqrt(abs(ev[0][3])) if Ec < 0.0: Ec = 0.0 return Ec # Emaranhamento de formação def Eof(rho): Ec = Econcurrence(rho) pv = np.zeros(2); pv[0] = (1+math.sqrt(1-Ec**2))/2; pv[1] = 1 - pv[0] return shannon_num(pv) pv=np.array([1,2]); pv.shape x = np.arange(10**-3,1,0.01); p0 = (1 + np.sqrt(1-x**2))/2; p1 = 1 - p0 ef = np.zeros(x.shape[0]); ef = -p0*np.log2(p0) - p1*np.log2(p1) plt.plot(x , ef); plt.xlabel(r'$E_{c}$'); plt.ylabel(r'$E_{f}$'); plt.show() def rho_werner(w): rho = np.zeros((4,4), dtype = complex) rho =+ ((1-w)/4)*np.identity(4) + (w/2)*np.array([[1,0,0,1],[0,0,0,0],[0,0,0,0],[1,0,0,1]]) return rho rho_werner(0) w = np.arange(0, 1.05, 0.05); C = np.zeros(w.shape[0]); MI = np.zeros(w.shape[0]); D_he = np.zeros(w.shape[0]) Ec = np.zeros(w.shape[0]); Ef = np.zeros(w.shape[0]) for j in range(0, w.shape[0]): rho = rho_werner(w[j]); C[j] = coh_l1(rho); MI[j] = mutual_info(2, 2, rho)/2 D_he[j] = Dhellinger(2, 2, rho); Ec[j] = Econcurrence(rho); Ef[j] = Eof(rho) matplotlib.rcParams.update({'font.size':12}) plt.figure(figsize = (6,4), dpi = 100) plt.plot(w, C, label = r'$C$'); plt.plot(w, MI, label = r'$I/2$'); plt.plot(w, D_he, label = r'$D_{A}^{he}$') plt.plot(w, Ec, '*', label = r'$E_{c}$'); plt.plot(w, Ef, '-.', label = r'$E_{f}$') plt.xlabel(r'$w$'); plt.legend(); plt.show()
https://github.com/JackHidary/quantumcomputingbook
JackHidary
# Do the necessary imports import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer from qiskit.extensions import Initialize from qiskit.quantum_info import random_statevector, Statevector,partial_trace def trace01(out_vector): return Statevector([sum([out_vector[i] for i in range(0,4)]), sum([out_vector[i] for i in range(4,8)])]) def teleportation(): # Create random 1-qubit state psi = random_statevector(2) print(psi) init_gate = Initialize(psi) init_gate.label = "init" ## SETUP qr = QuantumRegister(3, name="q") # Protocol uses 3 qubits crz = ClassicalRegister(1, name="crz") # and 2 classical registers crx = ClassicalRegister(1, name="crx") qc = QuantumCircuit(qr, crz, crx) # Don't modify the code above ## Put your code below # ---------------------------- qc.initialize(psi, qr[0]) qc.h(qr[1]) qc.cx(qr[1],qr[2]) qc.cx(qr[0],qr[1]) qc.h(qr[0]) qc.measure(qr[0],crz[0]) qc.measure(qr[1],crx[0]) qc.x(qr[2]).c_if(crx[0], 1) qc.z(qr[2]).c_if(crz[0], 1) # ---------------------------- # Don't modify the code below sim = Aer.get_backend('aer_simulator') qc.save_statevector() out_vector = sim.run(qc).result().get_statevector() result = trace01(out_vector) return psi, result # (psi,res) = teleportation() # print(psi) # print(res) # if psi == res: # print('1') # else: # print('0')
https://github.com/quantumyatra/quantum_computing
quantumyatra
# import dimod # import numpy as np # import pylab as plt linear = {0: -1, 1: -1} quadratic = {(0, 1): 2} bqm = dimod.BinaryQuadraticModel(linear, quadratic, 0.0, dimod.BINARY) # 0.0 is the value for offset bqm_ising = bqm.change_vartype(dimod.SPIN, inplace=False) response = dimod.ExactSolver().sample(bqm) for sample, energy in response.data(['sample', 'energy']): print(sample, energy) def Test_offset_values(offset): linear = {0: -1, 1: -1} quadratic = {(0, 1): 2} bqm = dimod.BinaryQuadraticModel(linear, quadratic, offset, dimod.BINARY) # 0.0 is the value for offset bqm_ising = bqm.change_vartype(dimod.SPIN, inplace=False) response = dimod.ExactSolver().sample(bqm) for sample, energy in response.data(['sample', 'energy']): print(sample, energy) for offset in [0., 1., 10]: print ('offset=',offset) Test_offset_values(offset) Q = {('x1', 'x2'): 1, ('x1', 'z'): -2, ('x2', 'z'): -2, ('z', 'z'): 3} from dwave.system import DWaveSampler, EmbeddingComposite sampler = DWaveSampler() #from dwave.system import DWaveSampler, EmbeddingComposite #sampler = DWaveSampler() #sampler_embedded = EmbeddingComposite(sampler) linear = {1: 1, 2: 2, 3: 3, 4: 4} # linear term in the Ising hamiltonian h_i s_i terms # And the quadratic terms s_i \dot s_j terms quadratic = {(1, 2): 12, (1, 3): 13, (1, 4): 14, (2, 3): 23, (2, 4): 24, (3, 4): 34} bqm_k4 = dimod.BinaryQuadraticModel(linear, quadratic, 0.5, dimod.SPIN) #bqm_k4 bqm_k4.vartype import dimod >>> linear = {1: 1, 2: 2, 3: 3, 4: 4} >>> quadratic = {(1, 2): 12, (1, 3): 13, (1, 4): 14, ... (2, 3): 23, (2, 4): 24, ... (3, 4): 34} >>> bqm_k4 = dimod.BinaryQuadraticModel(linear, quadratic, 0.5, dimod.SPIN) >>> bqm_k4.vartype <Vartype.SPIN: frozenset([1, -1])> >>> len(bqm_k4.linear) 4 >>> bqm_k4.contract_variables(2, 3) >>> len(bqm_k4.linear) 3 >>> bqm_no3_qubo = bqm_k4.binary
https://github.com/fiasqo-io/quantumcircuit_gym
fiasqo-io
import gym import gym_quantcircuit import numpy as np env = gym.make('quantcircuit-v0') num_qubits = 3 test_goal_state = [0j] * (2**num_qubits - 1) + [1+0j] env.var_init(num_qubits, unitary=False, gate_group='pauli', connectivity='fully_connected', goal_state=test_goal_state) env.render() env.plot_connectivity_graph() action = env.sample() env.gate_list[action] env.step(action) env.render() for _ in range(5): env.step(env.sample()) env.render() env.reset() env.render() # Environment must be created before this step custom_gate_group = [ env.qcircuit.x, env.qcircuit.h, env.qcircuit.t ] env.set_gate_group('custom',custom_gate_group) env.gate_list = env._create_gates() env.gate_list # Nearest neighbour nnenv = gym.make('quantcircuit-v0') nnenv.var_init(5,connectivity='nearest_neighbour') nnenv.plot_connectivity_graph() # Fully Connected fc_env = gym.make('quantcircuit-v0') fc_env.var_init(5,connectivity='fully_connected') fc_env.plot_connectivity_graph() # IBM - limited to 5, 14 or 20 qubits (these are the only current physical architectures) ibm_env = gym.make('quantcircuit-v0') ibm_env.var_init(5,connectivity='ibm') ibm_env.plot_connectivity_graph() # Custom custom_conn = np.array([[1,1,1,0],[1,1,1,0],[1,1,1,1],[0,0,1,1]]) custom_env = gym.make('quantcircuit-v0') custom_env.var_init(4,connectivity='custom',custom_connectivity=custom_conn) custom_env.plot_connectivity_graph() num_gates = 2 curriculum, tracker = env.make_curriculum(num_gates) curriculum tracker
https://github.com/hephaex/Quantum-Computing-Awesome-List
hephaex
# Do the necessary imports import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, BasicAer, IBMQ from qiskit.visualization import plot_histogram, plot_bloch_multivector ### Creating 3 qubit and 2 classical bits in each separate register qr = QuantumRegister(3) crz = ClassicalRegister(1) crx = ClassicalRegister(1) teleportation_circuit = QuantumCircuit(qr, crz, crx) ### A third party eve helps to create an entangled state def create_bell_pair(qc, a, b): qc.h(a) qc.cx(a, b) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.draw() def alice_gates(qc, a, b): qc.cx(a, b) qc.h(a) teleportation_circuit.barrier() alice_gates(teleportation_circuit, 0, 1) teleportation_circuit.draw() def measure_and_send(qc, a, b): qc.barrier() qc.measure(a,0) qc.measure(b,1) teleportation_circuit.barrier() measure_and_send(teleportation_circuit, 0, 1) teleportation_circuit.draw() def bob_gates(qc, qubit, crz, crx): qc.x(qubit).c_if(crx, 1) qc.z(qubit).c_if(crz, 1) teleportation_circuit.barrier() bob_gates(teleportation_circuit, 2, crz, crx) teleportation_circuit.draw() from qiskit.extensions import Initialize import math qc = QuantumCircuit(1) initial_state = [0,1] init_gate = Initialize(initial_state) # qc.append(initialize_qubit, [0]) qr = QuantumRegister(3) # Protocol uses 3 qubits crz = ClassicalRegister(1) # and 2 classical registers crx = ClassicalRegister(1) qc = QuantumCircuit(qr, crz, crx) # First, let's initialise Alice's q0 qc.append(init_gate, [0]) qc.barrier() # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) # Alice then sends her classical bits to Bob measure_and_send(qc, 0, 1) # Bob decodes qubits bob_gates(qc, 2, crz, crx) qc.draw() backend = BasicAer.get_backend('statevector_simulator') out_vector = execute(qc, backend).result().get_statevector() plot_bloch_multivector(out_vector) inverse_init_gate = init_gate.gates_to_uncompute() qc.append(inverse_init_gate, [2]) qc.draw() cr_result = ClassicalRegister(1) qc.add_register(cr_result) qc.measure(2,2) qc.draw() backend = BasicAer.get_backend('qasm_simulator') counts = execute(qc, backend, shots=1024).result().get_counts() plot_histogram(counts) def bob_gates(qc, a, b, c): qc.cz(a, c) qc.cx(b, c) qc = QuantumCircuit(3,1) # First, let's initialise Alice's q0 qc.append(init_gate, [0]) qc.barrier() # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) qc.barrier() # Alice sends classical bits to Bob bob_gates(qc, 0, 1, 2) # We undo the initialisation process qc.append(inverse_init_gate, [2]) # See the results, we only care about the state of qubit 2 qc.measure(2,0) # View the results: qc.draw() from qiskit import IBMQ IBMQ.save_account('### IMB TOKEN ') IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() from qiskit.providers.ibmq import least_busy backend = least_busy(provider.backends(filters=lambda b: b.configuration().n_qubits >= 3 and not b.configuration().simulator and b.status().operational==True)) job_exp = execute(qc, backend=backend, shots=8192) exp_result = job_exp.result() exp_measurement_result = exp_result.get_counts(qc) print(exp_measurement_result) plot_histogram(exp_measurement_result) error_rate_percent = sum([exp_measurement_result[result] for result in exp_measurement_result.keys() if result[0]=='1']) \ * 100./ sum(list(exp_measurement_result.values())) print("The experimental error rate : ", error_rate_percent, "%")
https://github.com/usamisaori/Grover
usamisaori
import qiskit from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram import numpy as np from qiskit import execute, Aer simulator = Aer.get_backend('qasm_simulator') import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from qiskit.quantum_info import DensityMatrix, Statevector, Operator def getDensityMatrix(circuit): return DensityMatrix(circuit).data from functools import reduce Dag = lambda matrix: matrix.conj().T Kron = lambda *matrices: reduce(np.kron, matrices) def pm(matrix): for row in range(len(matrix)): for col in range (len(matrix[row])): print("{:.3f}".format(matrix[row][col]), end = " ") print() def initCircuit(n): circuit = QuantumCircuit(n, n) for i in range(n): circuit.h(i) circuit.barrier() return circuit inputCircuit_2q = initCircuit(2) inputCircuit_2q.draw(output='mpl') def createEvenOracle(): circuit = QuantumCircuit(2, 2) circuit.x(0) circuit.x(1) circuit.cz(0, 1) circuit.x(1) circuit.cz(0, 1) circuit.x(0) circuit.barrier() return circuit evenOracle = createEvenOracle() evenOracle.draw(output='mpl') Operator(evenOracle).data # find 0 and 2 def createR_2q(): circuit = QuantumCircuit(2, 2) circuit.z(0) circuit.z(1) circuit.cz(0, 1) return circuit def createDiffuser_2q(): circuit = QuantumCircuit(2, 2) circuit.h(0) circuit.h(1) circuit = circuit.compose(createR_2q()) circuit.h(0) circuit.h(1) circuit.barrier() return circuit diffuserCircuit_2q = createDiffuser_2q() diffuserCircuit_2q.draw(output='mpl') grover_even = initCircuit(2).compose(createEvenOracle()).compose(createDiffuser_2q()) grover_even.draw(output='mpl') grover_even.measure([0, 1], [0, 1]) job = execute(grover_even, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_even) print(counts) plot_histogram(counts, figsize=(5, 5), color="#66CCCC", title="origin grover - find evens")
https://github.com/qclib/qclib
qclib
# Copyright 2021 qclib project. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ https://arxiv.org/abs/quant-ph/9807054 """ import numpy as np from qiskit import QuantumCircuit, QuantumRegister from qclib.gates.initialize_sparse import InitializeSparse # pylint: disable=maybe-no-member class FnPointsInitialize(InitializeSparse): """ Initializing the Amplitude Distribution of a Quantum State https://arxiv.org/abs/quant-ph/9807054 This class implements a state preparation gate. """ def __init__(self, params, label=None, opt_params=None): """State preparation using Ventura and Martinez algorithm quant-ph/9807054 Algorithm that requires a polynomial number of elementary operations for initializing a quantum system to represent only the m known points of a function f (m = len(state)). The result is a quantum superposition with m nonzero coefficients -- the creation of which is a nontrivial task compared to creating a superposition of all basis states. The amplitudes of modulus "1/sqrt(m)" will be "2 pi / N" radians apart from each other on the complex plane. Binary output function case: f:z->s with z \\in {0,1}^n and s \\in {0, 1} General case: f:z->s with z \\in {0,1}^n and s \\in {0, 1, ..., N-1} For instance, to initialize the state 1/sqrt(3)|01> + 1/sqrt(3)*e^(1*i*2pi/N)|10> + 1/sqrt(3)*e^(2*i*2pi/N)c|11> $ state = {1: 0, 2: 1, 3: 2} $ circuit = initialize(state, n=2, N=3) Parameters ---------- params: dict of {int:float} A unit vector representing a quantum state. Keys are function binary input values and values are function output values. opt_params: Dictionary n_output_values: int Number of possible output values N (Ex.: n_output_values=2 for a binary function). Default value is the max value in ``params`` minus 1. """ self._name = "fn-points" self._get_num_qubits(params) default_n_output_values = max(params.values()) - 1 if opt_params is None: self.n_output_values = default_n_output_values else: if opt_params.get("n_output_values") is None: self.n_output_values = default_n_output_values else: self.n_output_values = opt_params.get("n_output_values") self.n_output_values = max(self.n_output_values, default_n_output_values) if label is None: self._label = "FNSP" super().__init__(self._name, self.num_qubits, params.items(), label) def _define(self): self.definition = self._define_initialize() def _define_initialize(self): reg_x = QuantumRegister(self.num_qubits, "x") reg_g = QuantumRegister(self.num_qubits - 1, "g") reg_c = QuantumRegister(2, "c") circuit = QuantumCircuit(reg_x, reg_g, reg_c) reg_x = reg_x[::-1] # qiskit reverse (qiskit little-endian) bits_z0 = [int(k) for k in f"{0:0{self.num_qubits}b}"] for idx_p, (input_z, output_s) in list(enumerate(self.params))[::-1]: bits_z = [int(k) for k in input_z] circuit.x(reg_c[1]) for j, k in enumerate(bits_z): if bits_z0[j] != k: circuit.cx(reg_c[1], reg_x[j]) bits_z0 = bits_z circuit.cx(reg_c[1], reg_c[0]) circuit.x(reg_c[1]) self._apply_smatrix( circuit, idx_p, output_s.real, reg_c ) self._flipflop01(bits_z, circuit, reg_x) circuit.ccx(reg_x[0], reg_x[1], reg_g[0]) self._flipflop01(bits_z, circuit, reg_x) for k in range(2, self.num_qubits): if bits_z[k] == 0: circuit.x(reg_x[k]) circuit.ccx(reg_x[k], reg_g[k - 2], reg_g[k - 1]) if bits_z[k] == 0: circuit.x(reg_x[k]) circuit.cx(reg_g[self.num_qubits - 2], reg_c[0]) for k in range(self.num_qubits - 1, 1, -1): if bits_z[k] == 0: circuit.x(reg_x[k]) circuit.ccx(reg_x[k], reg_g[k - 2], reg_g[k - 1]) if bits_z[k] == 0: circuit.x(reg_x[k]) self._flipflop01(bits_z, circuit, reg_x) circuit.ccx(reg_x[0], reg_x[1], reg_g[0]) self._flipflop01(bits_z, circuit, reg_x) circuit.x(reg_c[1]) return circuit def _apply_smatrix(self, circuit, idx_p, output_s, reg_c): theta = -2 * np.arccos(np.sqrt(idx_p / (idx_p + 1))) # This sign is here for the smaller values of "s" to be represented by # negative amplitudes and the larger ones by positive amplitudes. # In the paper this negative sign is missing. Without it the matrix S # is not unitary. lamb = -output_s * 2 * np.pi / self.n_output_values phi = -lamb circuit.cu(theta, phi, lamb, 0, reg_c[0], reg_c[1]) @staticmethod def _flipflop01(bits_z, circuit, reg_x): if bits_z[0] == 0: circuit.x(reg_x[0]) if bits_z[1] == 0: circuit.x(reg_x[1]) @staticmethod def initialize(q_circuit, state, qubits=None, opt_params=None): if qubits is None: q_circuit.append( FnPointsInitialize(state, opt_params=opt_params), q_circuit.qubits ) else: q_circuit.append(FnPointsInitialize(state, opt_params=opt_params), qubits)
https://github.com/kaelynj/Qiskit-HubbardModel
kaelynj
%matplotlib inline import sys sys.path.append('./src') # Importing standard Qiskit libraries and configuring account #from qiskit import QuantumCircuit, execute, Aer, IBMQ #from qiskit.compiler import transpile, assemble #from qiskit.tools.jupyter import * #from qiskit.visualization import * import matplotlib.pyplot as plt import matplotlib.colors as mcolors import numpy as np import ClassicalHubbardEvolutionChain as chc import FullClassicalHubbardEvolutionChain as fhc import random as rand import scipy.linalg as la numsites = 3 states_list = fhc.get_states(numsites) hamil = fhc.get_hamiltonian(states_list, 1.0, 2.0) print(hamil) eigval, eigvec = la.eig(hamil) #Attempt to get trotter error def XX(theta): theta2 = theta / 2 cos = np.cos(theta2) isin = 1j * np.sin(theta2) return np.array([[cos, 0, 0, -isin], [0, cos, -isin, 0], [0, -isin, cos, 0], [-isin, 0, 0, cos]]) def YY(theta): cos = np.cos(theta / 2) isin = 1j * np.sin(theta / 2) return np.array([[cos, 0, 0, isin], [0, cos, -isin, 0], [0, -isin, cos, 0], [isin, 0, 0, cos]]) def ZZ(theta): itheta2 = 1j * float(theta) / 2 return np.array( [ [np.exp(-itheta2), 0, 0, 0], [0, np.exp(itheta2), 0, 0], [0, 0, np.exp(itheta2), 0], [0, 0, 0, np.exp(-itheta2)], ]) def Z(theta): itheta2 = 1j * float(theta)/2 return np.array([np.exp(-itheta2), 0], [0, np.exp(itehta2)]) t = 6.0 trotter_steps = np.arange(2,50,2) U_over_t = 2.0 I = np.array([[1., 0.], [0., 1.]]) X = np.array([[0., 1.], [1., 0.]]) Y = np.array([[0., -1.j], [1.j, 0.]]) Z = np.array([[1., 0.],[0., -1.]]) for N in trotter_steps: delta = t/N H0_trot = np.tensordot(I, np.tensordot(ZZ(delta), I, axes=0), axes=0) H1_trot = np.tensordot(XX(delta), np.tensordot(I, I, axes=0), axes=0) H2_trot = np.tensordot(YY(delta), np.tensordot(I, I, axes=0), axes=0) H3_trot = np.tensordot(I, np.tensordot(I, XX(delta), axes=0), axes=0) H4_trot = np.tensordot(I, np.tensordot(I, YY(delta), axes=0), axes=0) H_trot = np.matmul(H3_trot, H4_trot) H_trot = np.matmul(H2_trot, H_trot) H_trot = np.matmul(H1_trot, H_trot) H_trot = np.matmul(H0_trot, H_trot) for step in range(N): H_trot = np.matmul(H_trot, H_trot) H0 = np.tensordot(I, np.tensordot(Z, np.tensordot(Z, I, axes=0), axes=0), axes=0) H1 = np.tensordot(X, np.tensordot(X, np.tensordot(I, I, axes=0), axes=0), axes=0) H2 = np.tensordot(Y, np.tensordot(Y, np.tensordot(I, I, axes=0), axes=0), axes=0) H3 = np.tensordot(I, np.tensordot(I, np.tensordot(X, X, axes=0), axes=0), axes=0) H4 = np.tensordot(I, np.tensordot(I, np.tensordot(Y, Y, axes=0), axes=0), axes=0) H = H0 + H1 + H2 + H3 + H4 true_unitary = np.expm(-1j*H*t) diff = np.linalg.norm(true_unitary - H_trot) print("Trotter Steps: ", N, " Error: ",diff) print(eigval) #System parameters numsites = 3 t = 1.0 U = 2. classical_time_step = 0.01 classical_total_time = 500*0.01 times = np.arange(0., classical_total_time, classical_time_step) states_list = fhc.get_states(numsites) #Create full Hamiltonian wfk_full = np.zeros(len(states_list)) #wfk_full[18] = 1. #010010 wfk_full[21] = 1. #010101 #wfk_full[2] = 1. #000010 evolution2, engs2, wfks = fhc.sys_evolve(states_list, wfk_full, t, U, classical_total_time, classical_time_step) print(wfks[10]) print(evolution2) #print(engs2) colors = list(mcolors.TABLEAU_COLORS.keys()) fig2, ax2 = plt.subplots(figsize=(20,10)) for i in range(3): #Create string label strup = "Site "+str(i+1)+r'$\uparrow$' strdwn = "Site "+str(i+1)+r'$\downarrow$' ax2.plot(times, evolution2[:,i], linestyle='-', color=str(colors[i]), linewidth=2, label=strup) ax2.plot(times, evolution2[:,i+3], linestyle='--', color=str(colors[i]), linewidth=2, label=strdwn) plt.legend() def get_bin(x, n=0): """ Get the binary representation of x. Parameters: x (int), n (int, number of digits)""" binry = format(x, 'b').zfill(n) sup = list( reversed( binry[0:int(len(binry)/2)] ) ) sdn = list( reversed( binry[int(len(binry)/2):len(binry)] ) ) return format(x, 'b').zfill(n) #==== Create all Possible States for given system size ===# states_list = [] nsite = 3 for state in range(0, 2**(2*nsite)): state_bin = get_bin(state, 2*nsite) state_list = [[],[]] for mode in range(0,nsite): state_list[0].append(int(state_bin[mode])) state_list[1].append(int(state_bin[mode+nsite])) #print(state_list) states_list.append(state_list) def repel(l,state): if state[0][l]==1 and state[1][l]==1: return state else: return [] #Check if two states are different by a single hop def hop(psii, psij, hopping): #Check spin down hopp = 0 if psii[0]==psij[0]: #Create array of indices with nonzero values hops = [] for site in range(len(psii[0])): if psii[1][site] != psij[1][site]: hops.append(site) if len(hops)==2 and np.sum(psii[1]) == np.sum(psij[1]): if hops[1]-hops[0]==1: hopp = -hopping return hopp #Check spin up if psii[1]==psij[1]: hops = [] for site in range(len(psii[1])): if psii[0][site] != psij[0][site]: hops.append(site) if len(hops)==2 and np.sum(psii[0])==np.sum(psij[0]): if hops[1]-hops[0]==1: hopp = -hopping return hopp return hopp def get_hamiltonian(states, t, U): H = np.zeros((len(states),len(states)) ) #Construct Hamiltonian matrix for i in range(len(states)): psi_i = states[i] for j in range(i, len(states)): psi_j = states[j] if j==i: for l in range(0,len(states[0][0])): if psi_i == repel(l,psi_j): H[i,j] = U break else: #print('psi_i: ',psi_i,' psi_j: ',psi_j) H[i,j] = hop(psi_i, psi_j, t) H[j,i] = H[i,j] return H def get_mapping(states): num_sites = len(states[0][0]) mode_list = [] for i in range(0,2*num_sites): index_list = [] for state_index in range(0,len(states)): state = states[state_index] #Check spin-up modes if i < num_sites: if state[0][i]==1: index_list.append(state_index) #Check spin-down modes else: if state[1][i-num_sites]==1: index_list.append(state_index) if index_list: mode_list.append(index_list) return mode_list def wfk_energy(wfk, hamil): eng = np.dot(np.conj(wfk), np.dot(hamil, wfk)) return eng def get_variance(wfk, h): h_squared = np.matmul(h, h) eng_squared = np.vdot(wfk, np.dot(h_squared, wfk)) squared_eng = np.vdot(wfk, np.dot(h, wfk)) var = np.sqrt(eng_squared - squared_eng) return var def sys_evolve(states, init_wfk, hopping, repulsion, total_time, dt): hamiltonian = get_hamiltonian(states, hopping, repulsion) t_operator = la.expm(-1j*hamiltonian*dt) wavefunctions = [] mapping = get_mapping(states) #print(mapping) #Initalize system tsteps = int(total_time/dt) evolve = np.zeros([tsteps, len(init_wfk)]) mode_evolve = np.zeros([tsteps, len(mapping)]) wfk = init_wfk wavefunctions.append(np.ndarray.tolist(wfk)) energies = np.zeros(tsteps) #Store first time step in mode_evolve evolve[0] = np.multiply(np.conj(wfk), wfk) for i in range(0, len(mapping)): wfk_sum = 0. norm = 0. for j in mapping[i]: wfk_sum += evolve[0][j] norm += evolve[0][j] if norm == 0.: norm = 1. mode_evolve[0][i] = wfk_sum #/ norm #print('wfk_sum: ',wfk_sum,' norm: ',norm) energies[0] = wfk_energy(wfk, hamiltonian) #print('Variance: ',get_variance(wfk, hamiltonian) ) #Now do time evolution print(mode_evolve[0]) times = np.arange(0., total_time, dt) for t in range(1, tsteps): wfk = np.dot(t_operator, wfk) evolve[t] = np.multiply(np.conj(wfk), wfk) wavefunctions.append(np.ndarray.tolist(wfk)) #print(evolve[t]) energies[t] = wfk_energy(wfk, hamiltonian ) for i in range(0, len(mapping)): norm = 0. wfk_sum = 0. for j in mapping[i]: wfk_sum += evolve[t][j] norm += evolve[t][j] #print('wfk_sum: ',wfk_sum,' norm: ',norm) if norm == 0.: norm = 1. mode_evolve[t][i] = wfk_sum #/ norm #print(mode_evolve[t]) #Return time evolution return mode_evolve, energies, wavefunctions #System parameters t = 1.0 U = 2. classical_time_step = 0.01 classical_total_time = 500*0.01 times = np.arange(0., classical_total_time, classical_time_step) #Create full Hamiltonian wfk_full = np.zeros(len(states_list)) #wfk_full[18] = 1. #010010 wfk_full[21] = 1. #010101 #wfk_full[2] = 1. #000010 evolution2, engs2, wfks = sys_evolve(states_list, wfk_full, t, U, classical_total_time, classical_time_step) print(wfks[10]) print(evolution2) #print(engs2) colors = list(mcolors.TABLEAU_COLORS.keys()) fig2, ax2 = plt.subplots(figsize=(20,10)) for i in range(3): #Create string label strup = "Site "+str(i+1)+r'$\uparrow$' strdwn = "Site "+str(i+1)+r'$\downarrow$' ax2.plot(times, evolution2[:,i], linestyle='-', color=str(colors[i]), linewidth=2, label=strup) ax2.plot(times, evolution2[:,i+3], linestyle='--', color=str(colors[i]), linewidth=2, label=strdwn) plt.legend()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from math import pi import numpy as np import rustworkx as rx from qiskit_nature.second_q.hamiltonians.lattices import ( BoundaryCondition, HyperCubicLattice, Lattice, LatticeDrawStyle, LineLattice, SquareLattice, TriangularLattice, ) from qiskit_nature.second_q.hamiltonians import FermiHubbardModel num_nodes = 11 boundary_condition = BoundaryCondition.OPEN line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) line_lattice.draw() num_nodes = 11 boundary_condition = BoundaryCondition.PERIODIC line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) line_lattice.draw() line_lattice.draw_without_boundary() num_nodes = 11 boundary_condition = BoundaryCondition.PERIODIC edge_parameter = 1.0 + 1.0j onsite_parameter = 1.0 line_lattice = LineLattice( num_nodes=num_nodes, edge_parameter=edge_parameter, onsite_parameter=onsite_parameter, boundary_condition=boundary_condition, ) set(line_lattice.graph.weighted_edge_list()) line_lattice.to_adjacency_matrix() line_lattice.to_adjacency_matrix(weighted=True) rows = 5 cols = 4 boundary_condition = BoundaryCondition.OPEN square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) square_lattice.draw() rows = 5 cols = 4 boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.PERIODIC, ) # open in the x-direction, periodic in the y-direction square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) square_lattice.draw() rows = 5 cols = 4 edge_parameter = (1.0, 1.0 + 1.0j) boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.PERIODIC, ) # open in the x-direction, periodic in the y-direction onsite_parameter = 1.0 square_lattice = SquareLattice( rows=rows, cols=cols, edge_parameter=edge_parameter, onsite_parameter=onsite_parameter, boundary_condition=boundary_condition, ) set(square_lattice.graph.weighted_edge_list()) size = (3, 4, 5) boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.OPEN, BoundaryCondition.OPEN, ) cubic_lattice = HyperCubicLattice(size=size, boundary_condition=boundary_condition) # function for setting the positions def indextocoord_3d(index: int, size: tuple, angle) -> list: z = index // (size[0] * size[1]) a = index % (size[0] * size[1]) y = a // size[0] x = a % size[0] vec_x = np.array([1, 0]) vec_y = np.array([np.cos(angle), np.sin(angle)]) vec_z = np.array([0, 1]) return_coord = x * vec_x + y * vec_y + z * vec_z return return_coord.tolist() pos = dict([(index, indextocoord_3d(index, size, angle=pi / 4)) for index in range(np.prod(size))]) cubic_lattice.draw(style=LatticeDrawStyle(pos=pos)) rows = 4 cols = 3 boundary_condition = BoundaryCondition.OPEN triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) triangular_lattice.draw() rows = 4 cols = 3 boundary_condition = BoundaryCondition.PERIODIC triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) triangular_lattice.draw() graph = rx.PyGraph(multigraph=False) # multigraph shoud be False graph.add_nodes_from(range(6)) weighted_edge_list = [ (0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 3, 2.0), (4, 2, -1.0 + 2.0j), (4, 4, 3.0), (2, 5, -1.0), ] graph.add_edges_from(weighted_edge_list) # make a lattice general_lattice = Lattice(graph) set(general_lattice.graph.weighted_edge_list()) general_lattice.draw() general_lattice.draw(self_loop=True) general_lattice.draw(self_loop=True, style=LatticeDrawStyle(with_labels=True)) square_lattice = SquareLattice(rows=5, cols=4, boundary_condition=BoundaryCondition.PERIODIC) t = -1.0 # the interaction parameter v = 0.0 # the onsite potential u = 5.0 # the interaction parameter U fhm = FermiHubbardModel( square_lattice.uniform_parameters( uniform_interaction=t, uniform_onsite_potential=v, ), onsite_interaction=u, ) ham = fhm.second_q_op().simplify() print(ham) graph = rx.PyGraph(multigraph=False) # multiigraph shoud be False graph.add_nodes_from(range(6)) weighted_edge_list = [ (0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 3, 2.0), (4, 2, -1.0 + 2.0j), (4, 4, 3.0), (2, 5, -1.0), ] graph.add_edges_from(weighted_edge_list) general_lattice = Lattice(graph) # the lattice whose weights are seen as the interaction matrix. u = 5.0 # the interaction parameter U fhm = FermiHubbardModel(lattice=general_lattice, onsite_interaction=u) ham = fhm.second_q_op().simplify() print(ham) from qiskit_nature.second_q.problems import LatticeModelProblem num_nodes = 4 boundary_condition = BoundaryCondition.OPEN line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) fhm = FermiHubbardModel( line_lattice.uniform_parameters( uniform_interaction=t, uniform_onsite_potential=v, ), onsite_interaction=u, ) lmp = LatticeModelProblem(fhm) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import JordanWignerMapper numpy_solver = NumPyMinimumEigensolver() qubit_mapper = JordanWignerMapper() calc = GroundStateEigensolver(qubit_mapper, numpy_solver) res = calc.solve(lmp) print(res) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/pedrotelez/QuantumHelloWorld
pedrotelez
# Importing Qiskit from qiskit import * # Init 2 qubits and 2 classical bits number_of_qubits = 2 # qubits number_of_classical_bits = 2 # classical bits Qr = QuantumRegister(number_of_qubits) # quantum register Cr = ClassicalRegister(number_of_classical_bits) # classical register # Building the circuit circuit = QuantumCircuit(Qr, Cr) # Adding gates to the circuit circuit.h(Qr[0]) # Hadamard gate on Qubit 0 circuit.cx(Qr[0], Qr[1]) # CNOT gate on control Qubit 0 and target Qubit 1 # Measure the qubits [0, 1] and store the result in classical bits [0, 1] circuit.measure(Qr, Cr) # Draw the circuit circuit.draw(output='mpl') # the hello world of quantum computing # 2 qubits, 2 classical bits # Hadamard gate on Qubit 0 # CNOT gate on control Qubit 0 and target Qubit 1 # Measure the qubits [0, 1] and store the result in classical bits [0, 1] # Hadamard gate means that the qubit is in superposition, so it has a 50% chance of being 0 or 1 # CNOT gate means that the qubit 1 is entangled with qubit 0, so if qubit 0 is 0, qubit 1 is 0, and if qubit 0 is 1, qubit 1 is 1 # Simulating the circuit in the local simulator simulator = Aer.get_backend('qasm_simulator') # simulator result = execute(circuit, backend=simulator).result() # execute the circuit on the simulator # Plot the result from qiskit.visualization import plot_histogram plot_histogram(result.get_counts(circuit)) # plot the result
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/AlphaMiyaL/Qiskit-Quantum-Journey
AlphaMiyaL
# initialization import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, execute, Aer from qiskit.tools.jupyter import * provider = IBMQ.load_account() # import basic plot tools from qiskit.visualization import plot_histogram def initialize(circuit, n, m): circuit.h(range(n)) # Hadamard transform on measurment register circuit.x(n+m-1) # X gate on last qubit def c_amod15(a, x): if a not in [2,7,8,11,13]: raise ValueError("'a' must be 2,7,8,11 or 13") # remember that a needs to be co-prime with N unitary = QuantumCircuit(4) for iteration in range(x): # bitwise arithmetic to represent modular exponentiation function if a in [2,13]: unitary.swap(0,1) unitary.swap(1,2) unitary.swap(2,3) if a in [7,8]: unitary.swap(2,3) unitary.swap(1,2) unitary.swap(0,1) if a == 11: unitary.swap(1,3) unitary.swap(0,2) if a in [7,11,13]: for q in range(4): unitary.x(q) unitary = unitary.to_gate() unitary.name = "%i^%i mod 15" % (a, x) # But we need to make it a controlled operation for phase kickback c_unitary = unitary.control() return c_unitary def modular_exponentiation(circuit, n, m, a): for exp in range(n): exponent = 2**exp circuit.append(a_x_mod15(a, exponent), [exp] + list(range(n, n+m))) from qiskit.circuit.library import QFT def apply_iqft(circuit, measurement_qubits): circuit.append(QFT( len(measurement_qubits), do_swaps=False).inverse(), measurement_qubits) def shor_algo(n, m, a): # set up the circuit circ = QuantumCircuit(n+m, n) # initialize the registers initialize(circ, n, m) circ.barrier() # map modular exponentiation problem onto qubits modular_exponentiation(circ, n, m, a) circ.barrier() # apply inverse QFT -- expose period apply_iqft(circ, range(n)) # measure the measurement register circ.measure(range(n), range(n)) return circ n = 4; m = 4; a = 11 mycircuit = shor_algo(n, m, a) mycircuit.draw('mpl') simulator = Aer.get_backend('qasm_simulator') counts = execute(mycircuit, backend=simulator, shots=1024).result().get_counts(mycircuit) plot_histogram(counts) for measured_value in counts: print(f"Measured {int(measured_value[::-1], 2)}") from math import gcd from math import sqrt from itertools import count, islice for measured_value in counts: measured_value_decimal = int(measured_value[::-1], 2) print(f"Measured {measured_value_decimal}") if measured_value_decimal % 2 != 0: print("Failed. Measured value is not an even number") continue x = int((a ** (measured_value_decimal/2)) % 15) if (x + 1) % 15 == 0: print("Failed. x + 1 = 0 (mod N) where x = a^(r/2) (mod N)") continue guesses = gcd(x + 1, 15), gcd(x - 1, 15) print(guesses) def is_prime(n): return n > 1 and all(n % i for i in islice(count(2), int(sqrt(n)-1))) if is_prime(guesses[0]) and is_prime(guesses[1]): print(f"**The prime factors are {guesses[0]} and {guesses[1]}**")
https://github.com/MonitSharma/Learn-Quantum-Computing-with-Qiskit
MonitSharma
from qiskit import QuantumCircuit, assemble, Aer from math import pi, sqrt, exp from qiskit.visualization import plot_bloch_multivector, plot_histogram sim = Aer.get_backend('aer_simulator') qc = QuantumCircuit(1) qc.x(0) qc.draw() qc.save_statevector() qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() plot_bloch_multivector(state) qc = QuantumCircuit(1) qc.y(0) qc.draw() qc.save_statevector() qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() plot_bloch_multivector(state) qc = QuantumCircuit(1) qc.z(0) qc.draw() qc.save_statevector() qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() plot_bloch_multivector(state) qc = QuantumCircuit(1) qc.h(0) qc.draw() qc.save_statevector() qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() plot_bloch_multivector(state) qc = QuantumCircuit(1) qc.p(pi/4, 0) qc.draw() qc = QuantumCircuit(1) qc.s(0) # Apply S-gate to qubit 0 qc.sdg(0) # Apply Sdg-gate to qubit 0 qc.draw() qc = QuantumCircuit(1) qc.t(0) # Apply T-gate to qubit 0 qc.tdg(0) # Apply Tdg-gate to qubit 0 qc.draw() qc = QuantumCircuit(1) qc.u(pi/2, 0, pi, 0) qc.draw() qc.save_statevector() qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() plot_bloch_multivector(state) initial_state =[1/sqrt(2), -1/sqrt(2)] # Define state |q_0> qc = QuantumCircuit(1) # Must redefine qc qc.initialize(initial_state, 0) # Initialize the 0th qubit in the state `initial_state` qc.save_statevector() # Save statevector qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() # Execute the circuit print(state) # Print the result qobj = assemble(qc) results = sim.run(qobj).result().get_counts() plot_histogram(results) initial_state =[1/sqrt(2), 1/sqrt(2)] # Define state |q_0> qc = QuantumCircuit(1) # Must redefine qc qc.initialize(initial_state, 0) # Initialize the 0th qubit in the state `initial_state` qc.save_statevector() # Save statevector qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() # Execute the circuit print(state) # Print the result qobj = assemble(qc) results = sim.run(qobj).result().get_counts() plot_histogram(results) # Create the Y-measurement function: def x_measurement(qc, qubit, cbit): """Measure 'qubit' in the X-basis, and store the result in 'cbit'""" qc.s(qubit) qc.h(qubit) qc.measure(qubit, cbit) return qc initial_state = [1/sqrt(2), -complex(0,1)/sqrt(2)] # Initialize our qubit and measure it qc = QuantumCircuit(1,1) qc.initialize(initial_state, 0) x_measurement(qc, 0, 0) # measure qubit 0 to classical bit 0 qc.draw() qobj = assemble(qc) # Assemble circuit into a Qobj that can be run counts = sim.run(qobj).result().get_counts() # Do the simulation, returning the state vector plot_histogram(counts) # Display the output on measurement of state vector
https://github.com/aryashah2k/Quantum-Computing-Collection-Of-Resources
aryashah2k
%matplotlib inline from qiskit import * from qiskit.visualization import * from qiskit.tools.monitor import * circ_bell = QuantumCircuit(2,2) # We need two qubits and two classical bits (for the measurements) circ_bell.h(0) # We apply the H gate on the first qubit circ_bell.cx(0,1) # We apply the CNOT gate with control on the first qubit and target on the second circ_bell.measure(range(2),range(2)) # Measurement circ_bell.draw(output='mpl') backend = Aer.get_backend('qasm_simulator') job = execute(circ_bell, backend, shots=1000) counts = job.result().get_counts() print(counts) circ_bell2 = QuantumCircuit(2) circ_bell2.h(0) circ_bell2.cx(0,1) backend = Aer.get_backend('statevector_simulator') job = execute(circ_bell2, backend) state = job.result().get_statevector() for i in range(4): s = format(i,"b") # Convert to binary s = (2-len(s))*"0"+s # Prepend zeroes if needed print("Amplitude of",s,"=",state[i]) print() for i in range(4): s = format(i,"b") # Convert to binary s = (2-len(s))*"0"+s # Prepend zeroes if needed print("Probability of",s,"=",abs(state[i])**2) provider = IBMQ.load_account() backend_overview() backend_monitor(provider.get_backend("ibmq_ourense")) from qiskit.providers.ibmq import least_busy # We execute on the least busy device (among the actual quantum computers) backend = least_busy(provider.backends(operational = True, simulator=False, status_msg='active', filters=lambda x: x.configuration().n_qubits > 1)) print("We are executing on...",backend) print("It has",backend.status().pending_jobs,"pending jobs") job_exp = execute(circ_bell, backend=backend) job_monitor(job_exp) result_exp = job_exp.result() counts_exp = result_exp.get_counts(circ_bell) plot_histogram([counts_exp,counts], legend=['Device', 'Simulator'])
https://github.com/Qiskit/feedback
Qiskit
import qiskit qiskit.__version__ from qiskit.circuit.library import XGate, CZGate, RZGate from qiskit.circuit import QuantumCircuit XGate() is XGate() is XGate() is XGate() is XGate() is XGate() is XGate() is XGate() is XGate() CZGate() is CZGate() is CZGate() is CZGate() is CZGate() is CZGate() is CZGate() is CZGate() is CZGate() is CZGate() is CZGate() is CZGate() is CZGate() gate = XGate() print(f"name: {gate.name}") print(f"params: {gate.params}") print(f"matrix:\n{gate.to_matrix()}") print(f"definition:\n{gate.definition}") gate = XGate() print(f"name: {gate.name}") print(f"params: {gate.params}") print(f"matrix:\n{gate.to_matrix()}") print(f"definition:\n{gate.definition}") import math RZGate(math.pi) is RZGate(math.pi / 2) RZGate(math.pi) is RZGate(math.pi) gate = XGate() try: gate.label = "My bespoke x gate that gives me perfect results" except TypeError as e: print(e) gate = XGate().to_mutable() gate.label = "My bespoke x gate that gives me perfect results" labelled_gate = XGate(label="My bespoke x gate that gives me perfect results") print(labelled_gate.mutable) qc = QuantumCircuit(1) qc.append(gate, [0]) qc.append(labelled_gate, [0]) print(qc) from qiskit import passmanager class ToyPassManager(passmanager.BasePassManager): """Synthetic example PassManager that takes input "programs" integers operates on them as strings and returns a final integer The transpiler's passmanager defines ``_passmanager_frontend`` as QuantumCircuit -> DAGCircuit and ``_passmanager_backend`` as DAGCircuit -> QuantumCircuit """ def _passmanager_frontend(self, input_program: int, **kwargs) -> str: """Convert input int to str "IR""" return str(input_program) def _passmanager_backend(self, passmanager_ir: str, in_program: int, **kwargs) -> int: """Convert str "IR" to output int""" return int(passmanager_ir) class RemoveFive(passmanager.GenericPass): """Pass for ToyPassManager that removes the number 5 from a string "IR""" def run(self, passmanager_ir: str): return passmanager_ir.replace("5", "") pm = ToyPassManager(RemoveFive()) pm.run([123456789, 12345, 555552]) from qiskit.providers.fake_provider import FakeNairobiV2 from qiskit import transpile qc = QuantumCircuit(5) qc.x(4) qc.h(range(5)) qc.cx(4, range(4)) tqc = transpile(qc, FakeNairobiV2(), optimization_level=3) tqc.draw('mpl', fold=-1) tqc.layout.initial_virtual_layout(filter_ancillas=True) tqc.layout.final_index_layout() from qiskit.circuit.library import RealAmplitudes from qiskit.quantum_info import SparsePauliOp from qiskit.primitives import BackendEstimator from qiskit.compiler import transpile psi = RealAmplitudes(num_qubits=2, reps=2) H1 = SparsePauliOp.from_list([("II", 1), ("IZ", 2), ("XI", 3)]) backend = FakeNairobiV2() estimator = BackendEstimator(backend=backend, skip_transpilation=True) thetas = [0, 1, 1, 2, 3, 5] transpiled_psi = transpile(psi, backend, optimization_level=3) # New in 0.45.0 inflate and permute: print(f"original operator:\n{H1}\n") permuted_op = H1.apply_layout(transpiled_psi.layout) print(f"final layout: {transpiled_psi.layout.final_index_layout()}\n") print(f"operator with layout applied:\n{permuted_op}\n") res = estimator.run(transpiled_psi, permuted_op, thetas, shots=int(1e5)).result() print(res)
https://github.com/OscarCharlieST/QISKIT_lab
OscarCharlieST
import matplotlib.pyplot as plt from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute, Aer from qiskit.tools.visualization import circuit_drawer import numpy as np import time qr = QuantumRegister(1) cr = ClassicalRegister(1) circuit = QuantumCircuit(qr, cr) circuit.h(qr[0]) circuit.measure(qr[0],cr[0]) backend = Aer.get_backend('qasm_simulator') exponent = np.arange(2,20,1) # 2^25 iterations is as much as I can calulate in a reasonable amound of time. expectation = [] for s in [2**n for n in exponent]: job = execute(circuit, backend, shots=s) result=job.result().get_counts(circuit) expectation.append((result['0']-result['1'])/(result['0']+result['1'])) fig = plt.figure(figsize=(10,5)) ax = fig.add_subplot() ax.scatter(exponent, expectation) ax.plot(exponent, exponent*0, c=(0.7,.7,0.7)) ax.set_ylabel('<Z> expectation value') ax.set_xlabel('log2(number of itterations)') import matplotlib.pyplot as plt from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute, Aer from qiskit.visualization import circuit_drawer import numpy as np import pandas as pd import time def measure_z(circuit, c_bit, shots=1024): """ Takes a circuit and a classical bit, and returns the expectation value of the Z operator. """ circuit.measure([0],c_bit) job = execute(circuit, backend, shots=shots) result = job.result().get_counts(circuit) keys = list(result.keys()) if set(keys) == set(['0','1']): return (result['0']-result['1'])/(result['0']+result['1']) elif keys == ['0']: return 1.0 elif keys == ['1']: return -1.0 def measure_x(circuit, c_bit, shots=1024): """ Takes a circuit and a classical bit, and returns the expectation value of the X operator. """ circuit.h([0]) circuit.measure([0],c_bit) job = execute(circuit, backend, shots=shots) result = job.result().get_counts(circuit) keys = list(result.keys()) if set(keys) == set(['0','1']): return (result['0']-result['1'])/(result['0']+result['1']) elif keys == ['0']: return 1.0 elif keys == ['1']: return -1.0 def measure_y(circuit, c_bit, shots=1024): """ Takes a circuit and a classical bit, and returns the expectation value of the Y operator. """ circuit.s([0]) circuit.s([0]) circuit.s([0]) # using S^-1 = S^3 circuit.h([0]) circuit.measure([0],c_bit) job = execute(circuit, backend, shots=shots) result = job.result().get_counts(circuit) keys = list(result.keys()) if set(keys) == set(['0','1']): return (result['0']-result['1'])/(result['0']+result['1']) elif keys == ['0']: return 1.0 elif keys == ['1']: return -1.0 def measure_method_2(theta, circuit, cr, shots=1024): """ Takes a parameter for the matrix M, and an input state circuit with an attached a classical register, and returns <M> via the standard VQE method. """ xcircuit = circuit.copy() x = measure_x(xcircuit, cr[0], shots=shots) ycircuit = circuit.copy() circuit_drawer(ycircuit) y = measure_y(ycircuit, cr[0], shots=shots) M = np.cos(theta)*x + np.sin(theta)*y return M def measure_method_1(theta, circuit, cr, shots=1024): """ Takes a parameter for the matrix M, and an input state circuit with an attached a classical register, and returns <M> via the unitary basis rotation method. """ zcircuit = circuit.copy() zcircuit.p(-theta, [0]) zcircuit.h([0]) M = measure_z(zcircuit, cr[0], shots=shots) return M qr = QuantumRegister(1) cr = ClassicalRegister(1) backend = Aer.get_backend('qasm_simulator') shots = 2**0 # Number of shots to obtain expectation value N = 2**9 # The number of iterations used to see statistics of method # Method 1 zcircuit = QuantumCircuit(qr, cr) M1_1 = [] start=time.time() for i in range(N): M1_1.append(measure_method_1(np.pi/4, zcircuit, cr, shots=shots)) t1_1 = time.time()-start print(f'Method 1: \nTime elapsed for {N} iterations of {shots} shots: ', t1_1) print('Mean:', np.mean(M1_1)) print('Std. dev.:', np.std(M1_1)) # Method 2 circuit = QuantumCircuit(qr, cr) M2_1 = [] start=time.time() for i in range(N): M2_1.append(measure_method_2(np.pi/4, circuit, cr, shots=shots)) t2_1 = time.time()-start print(f'Method 2: \nTime elapsed for {N} iterations of {shots} shots: ', t2_1) print('Mean:', np.mean(M2_1)) print('Std. dev.:', np.std(M2_1)) fig1, ax1 = plt.subplots(figsize=(8,5)) bins=np.histogram(np.hstack((M1_1,M2_1)), bins=40)[1] ax1.hist(M1_1, bins, color='b', alpha=0.5, label=f'method 1 ({round(t1/N*1000, 2)} ms/iter)') ax1.hist(M2_1, bins, color='r', alpha=0.5, label=f'method 2 ({round(t2/N*1000, 2)} ms/iter)') ax1.axvline(0.0, linestyle='-', c='g', label='True value') ax1.set_xlabel(r'Estimate of $\langle M\rangle$') ax1.set_ylabel('Frequency') ax1.set_title(f'Results of {N} simulations of {shots} shots for '+r'$\theta=\pi/4, \phi=\pi/8$') ax1.legend() def init_circuit(phi, qr, cr): circuit = QuantumCircuit(qr, cr) circuit.h([0]) circuit.p(-2*phi, [0]) circuit.h([0]) # Ignoring global phase return circuit # Method 1 zcircuit = init_circuit(np.pi/4, qr, cr) M1_2 = [] start=time.time() for i in range(N): M1_2.append(measure_method_1(np.pi/8, zcircuit, cr, shots=shots)) t1_2 = time.time()-start print(f'Method 1: \nTime elapsed for {N} iterations of {shots} shots: ', t1_2) print('Mean:', np.mean(M1_2)) print('Std. dev.:', np.std(M1_2)) # Method 2 circuit = init_circuit(np.pi/4, qr, cr) M2_2 = [] start=time.time() for i in range(N): M2_2.append(measure_method_2(np.pi/8, circuit, cr, shots=shots)) t2_2 = time.time()-start print(f'Method 2: \nTime elapsed for {N} iterations of {shots} shots: ', t2_2) print('Mean:', np.mean(M2_2)) print('Std. dev.:', np.std(M2_2)) fig1, ax1 = plt.subplots(figsize=(8,5)) bins=np.histogram(np.hstack((M1_2,M2_2)), bins=40)[1] ax1.hist(M1_2, bins, color='b', alpha=0.5, label=f'method 1 ({round(t1/N*1000, 2)} ms/iter)') ax1.hist(M2_2, bins, color='r', alpha=0.5, label=f'method 2 ({round(t2/N*1000, 2)} ms/iter)') ax1.axvline(0.3827, linestyle='-', c='g', label='True value') ax1.set_xlabel(r'Estimate of $\langle M\rangle$') ax1.set_ylabel('Frequency') ax1.set_title(f'Results of {N} simulations of {shots} shots for '+r'$\theta=\pi/4, \phi=\pi/8$') ax1.legend() shots = np.arange(1000, 100000, 1000) s_exps = np.linspace(7, 17, 200) #shots = [(2**exp)//1 for exp in s_exps] # Method 1 zcircuit = init_circuit(np.pi/4, qr, cr) M1 = [] t1 = [] for s in shots: start=time.time() M1.append(measure_method_1(np.pi/8, zcircuit, cr, shots=s)) end=time.time() t1.append(end-start) # Method 2 circuit = init_circuit(np.pi/4, qr, cr) M2 = [] t2 = [] for s in shots: start=time.time() M2.append(measure_method_2(np.pi/8, circuit, cr, shots=s)) end=time.time() t2.append(end-start) fig, axs = plt.subplots(1,2,figsize=(16,5)) axs[0].plot(shots,t1, label='method 1') axs[0].plot(shots,t2, label='method 2') axs[0].set_xlabel('Number of shots') axs[0].set_ylabel('Time taken') axs[0].legend() axs[1].scatter(shots,M1, label='method 1') axs[1].scatter(shots,M2, label='method 2') axs[1].axhline(np.sin(np.pi/8), label='expected value', c=(.7,.7,.7)) #axs[1].set_xlabel(r'$log_2(shots)$') axs[1].set_ylabel(r'$\langle M\rangle') axs[1].legend() tps_1 = np.mean(np.array(t1)/np.array(shots)) tps_2 = np.mean(np.array(t2)/np.array(shots)) print('Ratio of time taken (method 2:method 1) = ', round(tps_2/tps_1, 3)) #s_exps = np.linspace(7, 14, 10) #shots = [(2**exp)//1 for exp in s_exps] shots_std = np.linspace(500,2000,15) N=50 # Method 1 zcircuit = init_circuit(np.pi/4, qr, cr) std1 = [] for s in shots_std: m = [] for i in range(N): m.append(measure_method_1(np.pi/8, zcircuit, cr, shots=s)) std1.append(np.std(m)) # Method 2 circuit = init_circuit(np.pi/4, qr, cr) std2=[] for s in shots_std: m=[] for i in range(N): m.append(measure_method_2(np.pi/8, circuit, cr, shots=s)) std2.append(np.std(m)) fig, axs = plt.subplots(1,2,figsize=(16,5)) axs[0].plot(shots,t1, label='method 1', c='r') axs[0].plot(shots,t2, label='method 2', c='b') axs[0].set_xlabel('Number of shots') axs[0].set_ylabel('Time taken') axs[0].legend() rt_s = np.sqrt(1/np.array(shots_std)) axs[1].scatter(rt_s, std1, label='method 1', c='r') axs[1].plot(rt_s, rt_s*np.polyfit(rt_s, std1,1)[0]+ np.polyfit(rt_s, std1,1)[1], c='r', alpha=.5, label='m='+str(round(np.polyfit(rt_s, std1,1)[0],3))) axs[1].scatter(rt_s, std2, label='method 2', c='b') axs[1].plot(rt_s, rt_s*np.polyfit(rt_s, std2,1)[0]+ np.polyfit(rt_s, std2,1)[1], c='b', alpha=.5, label='m='+str(round(np.polyfit(rt_s, std2,1)[0],3))) axs[1].set_xlabel(r'shots$^{-1/2}$') axs[1].set_ylabel(r'$\Delta\langle M\rangle$') axs[1].legend()
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
https://github.com/aryashah2k/Quantum-Computing-Collection-Of-Resources
aryashah2k
%run qlatvia.py draw_qubit() draw_quantum_state(3/5,4/5,"u") draw_quantum_state(3/5,-4/5,"u'") # import all necessary objects and methods for quantum circuits from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer # import randrange for random choices from random import randrange # # your code is here # # import all necessary objects and methods for quantum circuits from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer # import randrange for random choices from random import randrange number_of_qubit = 5 # define a quantum register with 5 qubits q = QuantumRegister(number_of_qubit) # define a classical register with 5 bits c = ClassicalRegister(number_of_qubit) # define our quantum circuit qc = QuantumCircuit(q,c) # apply h-gate to all qubits for i in range(number_of_qubit): qc.h(q[i]) # apply z-gate to randomly picked qubits for i in range(number_of_qubit): if randrange(2) == 0: # the qubit with index i is picked to apply z-gate qc.z(q[i]) # apply h-gate to all qubits for i in range(number_of_qubit): qc.h(q[i]) qc.barrier() # measure all qubits qc.measure(q,c) # draw the circuit qc.draw(output='mpl') # execute the circuit 1000 times in the local simulator job = execute(qc,Aer.get_backend('qasm_simulator'),shots=1000) counts = job.result().get_counts(qc) print(counts) %run qlatvia.py draw_qubit() sqrttwo=2**0.5 draw_quantum_state(1,0,"") draw_quantum_state(1/sqrttwo,1/sqrttwo,"|+>") %run qlatvia.py draw_qubit() sqrttwo=2**0.5 draw_quantum_state(0,1,"") draw_quantum_state(1/sqrttwo,-1/sqrttwo,"|->") %run qlatvia.py draw_qubit() sqrttwo=2**0.5 draw_quantum_state(1,0,"") draw_quantum_state(1/sqrttwo,1/sqrttwo,"|+>") draw_quantum_state(0,1,"") draw_quantum_state(1/sqrttwo,-1/sqrttwo,"|->") # line of reflection for Hadamard from matplotlib.pyplot import arrow arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red') # drawing the angle with |0>-axis from matplotlib.pyplot import gca, text from matplotlib.patches import Arc gca().add_patch( Arc((0,0),0.4,0.4,angle=0,theta1=0,theta2=22.5) ) text(0.09,0.015,'.',fontsize=30) text(0.25,0.03,'\u03C0/8') gca().add_patch( Arc((0,0),0.4,0.4,angle=0,theta1=22.5,theta2=45) ) text(0.075,0.065,'.',fontsize=30) text(0.21,0.16,'\u03C0/8') %run qlatvia.py draw_qubit() # line of reflection for Hadamard from matplotlib.pyplot import arrow arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red') # # your code is here # # randomly create a 2-dimensional quantum state from math import cos, sin, pi from random import randrange def random_quantum_state2(): angle_degree = randrange(360) angle_radian = 2*pi*angle_degree/360 return [cos(angle_radian),sin(angle_radian)] %run qlatvia.py draw_qubit() # line of reflection for Hadamard from matplotlib.pyplot import arrow arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red') [x1,y1] = random_quantum_state2() print(x1,y1) sqrttwo=2**0.5 oversqrttwo = 1/sqrttwo [x2,y2] = [ oversqrttwo*x1 + oversqrttwo*y1 , oversqrttwo*x1 - oversqrttwo*y1 ] print(x2,y2) draw_quantum_state(x1,y1,"main") draw_quantum_state(x2,y2,"ref") %run qlatvia.py draw_qubit() # the line y=x from matplotlib.pyplot import arrow arrow(-1,-1,2,2,linestyle='dotted',color='red') # # your code is here # # draw_quantum_state(x,y,"name") # randomly create a 2-dimensional quantum state from math import cos, sin, pi from random import randrange def random_quantum_state2(): angle_degree = randrange(360) angle_radian = 2*pi*angle_degree/360 return [cos(angle_radian),sin(angle_radian)] %run qlatvia.py draw_qubit() # the line y=x from matplotlib.pyplot import arrow arrow(-1,-1,2,2,linestyle='dotted',color='red') [x1,y1] = random_quantum_state2() [x2,y2] = [y1,x1] draw_quantum_state(x1,y1,"main") draw_quantum_state(x2,y2,"ref") %run qlatvia.py draw_qubit() # # your code is here # # line of reflection # from matplotlib.pyplot import arrow # arrow(x,y,dx,dy,linestyle='dotted',color='red') # # # draw_quantum_state(x,y,"name")
https://github.com/matteoacrossi/oqs-jupyterbook
matteoacrossi
# Imports import numpy as np import matplotlib.pyplot as plt from datetime import datetime import json import copy # Main qiskit imports from qiskit import QuantumRegister, ClassicalRegister from qiskit import QuantumCircuit, execute, Aer, IBMQ # Error mitigation from qiskit.ignis.mitigation.measurement import (complete_meas_cal, CompleteMeasFitter, MeasurementFilter) # Utility functions from qiskit.tools.jupyter import * from qiskit.tools.monitor import job_monitor from qiskit.providers.jobstatus import JobStatus # We use ibmqx2 IBMQ.load_account() backend = IBMQ.get_provider(hub='ibm-q', group='open', project='main').get_backend('ibmqx2') # Local simulator simulator = Aer.get_backend('qasm_simulator') def zz_pump(q, c, p, system, ancilla): """Returns a QuantumCircuit implementing the ZZ pump channel on the system qubits Args: q (QuantumRegister): the register to use for the circuit c (ClassicalRegister): the register to use for the measurement of the system qubits p (float): the efficiency for the channel, between 0 and 1 system (list): list of indices for the system qubits ancilla (int): index for the ancillary qubit Returns: A QuantumCircuit object """ zz = QuantumCircuit(q, c) theta = 2 * np.arcsin(np.sqrt(p)) # Map information to ancilla zz.cx(q[system[0]], q[system[1]]) zz.x(q[ancilla]) zz.cx(q[system][1], q[ancilla]) # Conditional rotation zz.cu3(theta, 0.0, 0.0, q[ancilla], q[system[1]]) # Inverse mapping zz.cx(q[system[1]], q[ancilla]) # Measurement zz.h(q[system[0]]) zz.measure(q[system[0]], c[0]) zz.measure(q[system[1]], c[1]) return zz def xx_pump(q, c, p, system, ancilla): """Returns a QuantumCircuit implementing the XX pump channel on the system qubits Args: q (QuantumRegister): the register to use for the circuit c (ClassicalRegister): the register to use for the measurement of the system qubits p (float): the efficiency for the channel, between 0 and 1 system (list): list of indices for the system qubits ancilla (int): index for the ancillary qubit Returns: A QuantumCircuit object """ xx = QuantumCircuit(q, c) theta = 2 * np.arcsin(np.sqrt(p)) # Map information to ancilla xx.cx(q[system[0]], q[system[1]]) xx.h(q[system[0]]) xx.x(q[ancilla]) xx.cx(q[system[0]], q[ancilla]) # Conditional rotation xx.cu3(theta, 0.0, 0.0, q[ancilla], q[system[0]]) # Inverse mapping xx.cx(q[system[0]], q[ancilla]) # Measurement xx.measure(q[system[0]], c[0]) xx.measure(q[system[1]], c[1]) return xx def zz_xx_pump(q, c, p, system, ancillae): """Returns a QuantumCircuit implementing the composition channel on the system qubits Args: q (QuantumRegister): the register to use for the circuit c (ClassicalRegister): the register to use for the measurement of the system qubits p (float): the efficiency for both channels, between 0 and 1 system (list): list of indices for the system qubits ancillae (list): list of indices for the ancillary qubits Returns: A QuantumCircuit object """ zx = QuantumCircuit(q, c) theta = 2 * np.arcsin(np.sqrt(p)) # ZZ pump ## Map information to ancilla zx.cx(q[system[0]], q[system[1]]) zx.x(q[ancillae[0]]) zx.cx(q[system[1]], q[ancillae[0]]) ## Conditional rotation zx.cu3(theta, 0.0, 0.0, q[ancillae[0]], q[system[1]]) ## Inverse mapping zx.cx(q[system[1]], q[ancillae[0]]) # XX pump ## Map information to ancilla zx.h(q[system[0]]) zx.x(q[ancillae[1]]) zx.cx(q[system[0]], q[ancillae[1]]) ## Conditional rotation zx.cu3(theta, 0.0, 0.0, q[ancillae[1]], q[system[0]]) ## Inverse mapping zx.cx(q[system[0]], q[ancillae[1]]) # Measurement zx.measure(q[system[0]], c[0]) zx.measure(q[system[1]], c[1]) return zx def initial_conditions(q, system): """Returns a dictionary containing four QuantumCircuit objects which prepare the two-qubit system in different initial states Args: q (QuantumRegister): the register to use for the circuit system (list): list of indices for the system qubits Returns: A dictionary with the initial state QuantumCircuit objects and a list of labels """ # State labels state_labels = ['00', '01', '10', '11'] ic = {} for ic_label in state_labels: ic[ic_label] = QuantumCircuit(q) # |01> ic['01'].x(q[system[0]]) # |10> ic['10'].x(q[system[1]]) # |11> ic['11'].x(q[system[0]]) ic['11'].x(q[system[1]]) return ic, state_labels SHOTS = 8192 # The values for p p_values = np.linspace(0, 1, 10) # We create the quantum circuits q = QuantumRegister(5, name='q') c = ClassicalRegister(2, name='c') ## Index of the system qubit system = [2, 1] ## Indices of the ancillary qubits a_zz = 0 a_xx = 4 ## Prepare the qubits in four initial conditions ic_circs, ic_state_labels = initial_conditions(q, system) ## Three different channels, each with ## four initial conditions and ten values of p pumps = ['ZZ', 'XX', 'ZZ_XX'] circuits = {} for pump in pumps: circuits[pump] = {} for ic in ic_state_labels: circuits[pump][ic] = [] for ic in ic_state_labels: for p in p_values: circuits['ZZ'][ic].append(ic_circs[ic]+zz_pump(q, c, p, system, a_zz)) circuits['XX'][ic].append(ic_circs[ic]+xx_pump(q, c, p, system, a_xx)) circuits['ZZ_XX'][ic].append(ic_circs[ic]+zz_xx_pump(q, c, p, system, [a_zz, a_xx])) circuits['ZZ_XX']['00'][1].draw(output='mpl') # Execute the circuits on the local simulator jobs_sim = {} for pump in pumps: jobs_sim[pump] = {} for ic in ic_state_labels: jobs_sim[pump][ic] = execute(circuits[pump][ic], backend = simulator, shots = SHOTS) # Analyse the outcomes overlaps_sim = {} for pump in pumps: overlaps_sim[pump] = {} for ic in ic_state_labels: overlaps_sim[pump][ic] = [0.0]*len(p_values) for i in range(len(p_values)): for ic in ic_state_labels: counts = jobs_sim[pump][ic].result().get_counts(i) for outcome in counts: overlaps_sim[pump][outcome][i] += counts[outcome]/(4.0 * float(SHOTS)) # Plot the results fig_idx = 131 plt.figure(figsize=(15,6)) bell_labels = {'00': r"$| \phi^{+} \rangle$", '01': r"$| \phi^{-} \rangle$", '10': r"$| \psi^{+} \rangle$", '11': r"$| \psi^{-} \rangle$"} for pump in pumps: plt.subplot(fig_idx) for outcome in overlaps_sim[pump]: plt.plot(p_values, overlaps_sim[pump][outcome], label = bell_labels[outcome]) plt.xlabel('p') plt.ylabel('Overlap') fig_idx += 1 plt.grid() plt.legend(); # Calibration circuits cal_circuits, state_labels = complete_meas_cal(system, q, c) # Run the calibration job calibration_job = execute(cal_circuits, backend, shots=SHOTS) # Run the circuits and save the jobs jobs = {} jobs_data = [] for pump in pumps: jobs[pump] = {} for ic in ic_state_labels: jobs[pump][ic] = execute(circuits[pump][ic], backend = backend, shots = SHOTS) # Use the calibration job to implement the error mitigation meas_fitter = CompleteMeasFitter(calibration_job.result(), ic_state_labels) meas_filter = meas_fitter.filter overlaps = {} for pump in pumps: overlaps[pump] = {} for ic in ic_state_labels: overlaps[pump][ic] = [0.0]*len(p_values) for i in range(len(p_values)): for ic in ic_state_labels: counts = meas_filter.apply(jobs[pump][ic].result()).get_counts(i) for outcome in counts: overlaps[pump][outcome][i] += counts[outcome]/(4 * float(SHOTS)) # Plot the results fig_idx = 131 plt.figure(figsize=(15,6)) bell_labels = {'00': r"$| \phi^{+} \rangle$", '01': r"$| \phi^{-} \rangle$", '10': r"$| \psi^{+} \rangle$", '11': r"$| \psi^{-} \rangle$"} for pump in pumps: plt.subplot(fig_idx) for outcome in overlaps[pump]: plt.plot(p_values, overlaps[pump][outcome], label = bell_labels[outcome]) plt.xlabel('p') plt.ylabel('Overlap') fig_idx += 1 plt.grid() plt.legend();
https://github.com/ctuning/ck-qiskit
ctuning
#!/usr/bin/env python3 import qiskit.tools.apps.optimization num_of_qubits = 2 circuit_depth = 6 num_params = 2 * num_of_qubits * circuit_depth # make sure you set this correctly to the number of parameters used by the ansatz ## Previously used for Hydrogen VQE in QISKit implementation # def universal_ansatz(current_params, entangler_map=None): if entangler_map==None: # Which qubits to use (0 to 1 best to avoid qiskit bugs) entangler_map = {1: [0]} return qiskit.tools.apps.optimization.trial_circuit_ryrz(num_of_qubits, circuit_depth, current_params, entangler_map, None, False)
https://github.com/DRA-chaos/Quantum-Classical-Hyrid-Neural-Network-for-binary-image-classification-using-PyTorch-Qiskit-pipeline
DRA-chaos
!pip install qiskit # check if CUDA is available import torch train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('CUDA is not available. Training on CPU ...') else: print('CUDA is available! Training on GPU ...') import numpy as np import matplotlib.pyplot as plt import torch from torch.autograd import Function from torchvision import datasets, transforms import torch.optim as optim import torch.nn as nn import torch.nn.functional as F import qiskit from qiskit import transpile, assemble from qiskit.visualization import * import numpy as np import torch from torch.autograd import Function import torch.optim as optim import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import datasets, transforms from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister, execute from qiskit.circuit import Parameter from qiskit import Aer from tqdm import tqdm from matplotlib import pyplot as plt %matplotlib inline def to_numbers(tensor_list): num_list = [] for tensor in tensor_list: num_list += [tensor.item()] return num_list class QuantumCircuit: """ This class provides a simple interface for interaction with the quantum circuit """ def __init__(self, n_qubits, backend, shots): # --- Circuit definition --- self._circuit = qiskit.QuantumCircuit(n_qubits) all_qubits = [i for i in range(n_qubits)] self.theta = qiskit.circuit.Parameter('theta') self._circuit.h(all_qubits) self._circuit.barrier() self._circuit.ry(self.theta, all_qubits) self._circuit.measure_all() # --------------------------- self.backend = backend self.shots = shots def run(self, thetas): t_qc = transpile(self._circuit, self.backend) qobj = assemble(t_qc, shots=self.shots, parameter_binds = [{self.theta: theta} for theta in thetas]) job = self.backend.run(qobj) result = job.result().get_counts() counts = np.array(list(result.values())) states = np.array(list(result.keys())).astype(float) # Compute probabilities for each state probabilities = counts / self.shots # Get state expectation expectation = np.sum(states * probabilities) return np.array([expectation]) class HybridFunction(Function): """ Hybrid quantum - classical function definition """ @staticmethod def forward(ctx, input, quantum_circuit, shift): """ Forward pass computation """ ctx.shift = shift ctx.quantum_circuit = quantum_circuit expectation_z = ctx.quantum_circuit.run(input[0].tolist()) result = torch.tensor([expectation_z]) ctx.save_for_backward(input, result) return result @staticmethod def backward(ctx, grad_output): """ Backward pass computation """ input, expectation_z = ctx.saved_tensors input_list = np.array(input.tolist()) shift_right = input_list + np.ones(input_list.shape) * ctx.shift shift_left = input_list - np.ones(input_list.shape) * ctx.shift gradients = [] for i in range(len(input_list)): expectation_right = ctx.quantum_circuit.run(shift_right[i]) expectation_left = ctx.quantum_circuit.run(shift_left[i]) gradient = torch.tensor([expectation_right]) - torch.tensor([expectation_left]) gradients.append(gradient) gradients = np.array([gradients]).T return torch.tensor([gradients]).float() * grad_output.float(), None, None class Hybrid(nn.Module): """ Hybrid quantum - classical layer definition """ def __init__(self, backend, shots, shift): super(Hybrid, self).__init__() self.quantum_circuit = QuantumCircuit(1, backend, shots) self.shift = shift def forward(self, input): return HybridFunction.apply(input, self.quantum_circuit, self.shift) import torchvision transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()]) # transform images to tensors/vectors cifar_trainset = datasets.CIFAR10(root='./data1', train=True, download=True, transform=transform) len(cifar_trainset) from torch.utils.data import DataLoader, random_split #cifar_trainset = datasets.CIFAR10(root='./data1', train=True, download=True, transform=transform) labels = cifar_trainset.targets # get the labels for the data labels = np.array(labels) idx1 = np.where(labels == 0) # filter on aeroplanes idx2 = np.where(labels == 1) # filter on automobiles # Specify number of datapoints per class (i.e. there will be n pictures of automobiles and n pictures of aeroplanes in the training set) n=100 # concatenate the data indices idx = np.concatenate((idx1[0][0:n],idx2[0][0:n])) # create the filtered dataset for our training set cifar_trainset.targets = labels[idx] cifar_trainset.data = cifar_trainset.data[idx] cifar_trainset, valid = random_split(cifar_trainset,[150,50]) train_loader = torch.utils.data.DataLoader(cifar_trainset, batch_size=1, shuffle=True) valid_loader = torch.utils.data.DataLoader(valid, batch_size=1, shuffle=True) @torch.no_grad() def get_all_preds(model, train_loader): all_preds = torch.tensor([]) for batch in train_loader: images, labels = batch preds = model(images) all_preds = torch.cat( (all_preds, preds) ,dim=0 ) return all_preds import numpy as np import matplotlib.pyplot as plt n_samples_show = 6 data_iter = iter(train_loader) fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 2)) while n_samples_show > 0: images, targets = data_iter.__next__() images=images.squeeze() axes[n_samples_show - 1].imshow(images[0].numpy(), cmap='gray') axes[n_samples_show - 1].set_xticks([]) axes[n_samples_show - 1].set_yticks([]) axes[n_samples_show - 1].set_title("Labeled: {}".format(targets.item())) n_samples_show -= 1 import torchvision transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()]) # transform images to tensors/vectors cifar_testset = datasets.CIFAR10(root='./data1', train=False, download=True, transform=transform) labels = cifar_testset.targets # get the labels for the data labels = np.array(labels) idx1 = np.where(labels == 0) # filter on aeroplanes idx2 = np.where(labels == 1) # filter on automobiles # Specify number of datapoints per class (i.e. there will be n pictures of automobiles and n pictures of aeroplanes in the training set) n=100 # concatenate the data indices idx = np.concatenate((idx1[0][0:n],idx2[0][0:n])) # create the filtered dataset for our training set cifar_testset.targets = labels[idx] cifar_testset.data = cifar_testset.data[idx] test_loader = torch.utils.data.DataLoader(cifar_testset, batch_size=1, shuffle=False) len(cifar_testset) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(500, 500) self.fc2 = nn.Linear(500, 1) self.hybrid = Hybrid(qiskit.Aer.get_backend('qasm_simulator'), 100, np.pi / 2) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(1, -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.hybrid(x) return torch.cat((x, 1 - x), -1) %matplotlib inline import matplotlib.pyplot as plt model = Net() valid_loss_min = np.Inf # track change in validation loss optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 5 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) if (validation_loss)<=(valid_loss_min): print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format( valid_loss_min, validation_loss)) torch.save(model.state_dict(), 'model_cifar.pt') valid_loss_min = validation_loss #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() model.load_state_dict(torch.load('model_cifar.pt')) total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on train data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) %matplotlib inline import matplotlib.pyplot as plt model = Net() valid_loss_min = np.Inf # track change in validation loss optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 3 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) if (validation_loss)<=(valid_loss_min): print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format( valid_loss_min, validation_loss)) torch.save(model.state_dict(), 'model_cifar.pt') valid_loss_min = validation_loss #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on train data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) %matplotlib inline import matplotlib.pyplot as plt model = Net() valid_loss_min = np.Inf # track change in validation loss optimizer = optim.Adam(model.parameters(), lr=0.0008) loss_func = nn.NLLLoss() epochs = 15 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) if (validation_loss)<=(valid_loss_min): print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format( valid_loss_min, validation_loss)) torch.save(model.state_dict(), 'model_cifar.pt') valid_loss_min = validation_loss #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() model.load_state_dict(torch.load('model_cifar.pt')) total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) %matplotlib inline import matplotlib.pyplot as plt model = Net() valid_loss_min = np.Inf # track change in validation loss optimizer = optim.Adam(model.parameters(), lr=0.0008) loss_func = nn.NLLLoss() epochs = 25 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) if (validation_loss)<=(valid_loss_min): print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format( valid_loss_min, validation_loss)) torch.save(model.state_dict(), 'model_cifar.pt') valid_loss_min = validation_loss #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() %matplotlib inline import matplotlib.pyplot as plt model = Net() valid_loss_min = np.Inf # track change in validation loss optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 5 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) if (validation_loss)<=(valid_loss_min): print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format( valid_loss_min, validation_loss)) torch.save(model.state_dict(), 'model_cifar.pt') valid_loss_min = validation_loss #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() %matplotlib inline import matplotlib.pyplot as plt model = Net() optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 5 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() %matplotlib inline import matplotlib.pyplot as plt model = Net() optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 5 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on train data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0005) loss_func = nn.NLLLoss() epochs = 5 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on train data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) model.eval() with torch.no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model(data) pred = output.argmax(dim=1, keepdim=True) data=data.squeeze() axes[count].imshow(data[0].numpy().squeeze(), cmap='gray') axes[count].set_xticks([]) axes[count].set_yticks([]) axes[count].set_title('Predicted {}'.format(pred.item())) count += 1 model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0005) loss_func = nn.NLLLoss() epochs = 10 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on train data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0005) loss_func = nn.NLLLoss() epochs = 7 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on train data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0005) loss_func = nn.NLLLoss() epochs = 8 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on train data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0005) loss_func = nn.NLLLoss() epochs = 9 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on train data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0005) loss_func = nn.NLLLoss() epochs = 6 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on train data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0004) loss_func = nn.NLLLoss() epochs = 6 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on train data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0003) loss_func = nn.NLLLoss() epochs = 5 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on train data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0008) loss_func = nn.NLLLoss() epochs = 7 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on train data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.SGD(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 10 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on train data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 15 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on train data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.01) loss_func = nn.NLLLoss() epochs = 15 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on train data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0005) loss_func = nn.NLLLoss() epochs = 15 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0005) loss_func = nn.NLLLoss() epochs = 10 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0005) loss_func = nn.NLLLoss() epochs = 3 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0005) loss_func = nn.NLLLoss() epochs = 7 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0008) loss_func = nn.NLLLoss() epochs = 10 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0008) loss_func = nn.NLLLoss() epochs = 15 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0008) loss_func = nn.NLLLoss() epochs = 5 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.0008) loss_func = nn.NLLLoss() epochs = 3 loss_list = [] loss_list_V = [] #training the model model.train() for epoch in range(epochs): train_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() train_loss.append(loss.item()) loss_list.append(sum(train_loss)/len(train_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list[-1])) #Validate the model model.eval() for epoch in range(epochs): valid_loss = [] for batch_idx, (data, target) in enumerate(valid_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss validation_loss = loss_func(output, target) # Backward pass validation_loss.backward() # Optimize the weights optimizer.step() valid_loss.append(validation_loss.item()) loss_list_V.append(sum(valid_loss)/len(valid_loss)) #print('Training [{:.0f}%]\tLoss: {:.4f}'.format(100. * (epoch + 1) / epochs, loss_list_V[-1])) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, loss_list[-1], loss_list_V[-1])) #Now plotting the training graph plt.plot(loss_list,label='Training Loss') plt.plot(loss_list_V,label='Validation Loss') plt.legend() plt.show() total_loss=[] model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) )
https://github.com/quantumyatra/quantum_computing
quantumyatra
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer, execute, BasicAer from qiskit.visualization import plot_bloch_multivector import numpy as np import matplotlib.pyplot as plt %matplotlib inline qc = QuantumCircuit(3, 2) print(qc.qregs) print(qc.cregs) ##This is equivalent to the following. qr = QuantumRegister(3, name='q') cr = ClassicalRegister(2, name='c') qc = QuantumCircuit(qr, cr) # Checking the quantum and classical registers print(qc.qregs) print(qc.cregs) bell = QuantumCircuit(2, 2) bell.h(0) bell.cx(0, 1) #Syntax: QuantumCircuit.measure(qubit, cbit) bell.measure([0,1], [0,1]) bell.draw(output='mpl') qr1 = QuantumRegister(1, 'q1') qr2 = QuantumRegister(1, 'q2') cr = ClassicalRegister(2, 'c') circuit = QuantumCircuit(qr2, qr1, cr) print('Qubit ordering:', circuit.qubits) # quantum print('Classical bit ordering:', circuit.clbits) # classical circuit.h([1,0]) # hadamard gate on both 1 and 0 qubits circuit.measure(1, [0,1]) # 1 qubit and 2 clbit circuit.draw(output='mpl') from qiskit.circuit import Gate # Syntax Gate(name, num_qubits, params, label=None) my_gate = Gate(name='my_gate', num_qubits=2, params=[]) print (my_gate.params) circ = QuantumCircuit(qr) circ.h(0) circ.append(my_gate, [qr[0], qr[1]]) circ.append(my_gate, [qr[1], qr[2]]) circ.draw(output='mpl') from qiskit.circuit import QuantumCircuit, Parameter theta = Parameter('theta') test_ckt = QuantumCircuit(3) #Syntax crz(theta, control_qubit, target_qubit, *, ctl=None, tgt=None) test_ckt.crz(theta,0,2) test_ckt.crz(theta,1,2) test_ckt.barrier(0) test_ckt.barrier() test_ckt.draw(output='mpl') from qiskit.extensions import HGate print (f"Matrix(HGate):\n {HGate().to_matrix() } \n") qcN = QuantumCircuit(2, 2) qcN.h(0) #qcN.cx(0, 1) qcN.measure([0, 1], [0, 1]) backend = BasicAer.get_backend('statevector_simulator') res = execute(qcN, backend).result() out_state = res.get_statevector(qcN, decimals=3) print (out_state) plot_bloch_multivector(out_state) # Build a sub-circuit sub_q = QuantumRegister(2) sub_circ = QuantumCircuit(sub_q, name='sub_circ') sub_circ.h(sub_q[0]) sub_circ.crz(1, sub_q[0], sub_q[1]) sub_circ.barrier() sub_circ.i(sub_q[1]) sub_circ.u3(1, 2, -2, sub_q[0]) sub_circ.draw('mpl') # Convert to a gate and stick it into an arbitrary place in the bigger ckt sub_inst = sub_circ.to_instruction() q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) #circ.cx(qr[1], qr[2]) #circ.append(sub_inst, [q[1], q[2]]) #circ.append(sub_circ, [q[1], q[2]]) circ.draw('mpl') decomposed_circ = circ.decompose() # Does not modify original circuit decomposed_circ.draw(output='mpl') from qiskit.circuit import Parameter %matplotlib inline n=5 theta = Parameter('theta') qc = QuantumCircuit(n, 1) qc.h(0) for i in range(n-1): qc.cx(i, i+1) qc.barrier() qc.rz(theta, range(n)) #qc.rz(theta, [0,4]) qc.barrier() for i in reversed(range(n-1)): qc.cx(i, i+1) qc.h(0) qc.measure(0, 0) qc.draw(output='mpl') theta_range = np.linspace(0, 2 * np.pi, 128) circuits = [qc.bind_parameters({theta: theta_val}) for theta_val in theta_range] print(circuits[-1].draw(fold=120)) print(circuits[-1].parameters)### Binding parameters to values job = execute(qc, backend=BasicAer.get_backend('qasm_simulator'), parameter_binds=[{theta: theta_val} for theta_val in theta_range], shots=2000) counts = [job.result().get_counts(i) for i in range(len(job.result().results))] plt.figure(figsize=(8,4)) plt.plot(theta_range, list(map(lambda c: c.get('0', 0), counts)), '-.', label='0', color='green') plt.plot(theta_range, list(map(lambda c: c.get('1', 0), counts)), '-.', label='1', color='maroon') labs = ['0', r'$\frac{\pi}{2}$', r'$\pi$', r'$\frac{3\pi}{2}$', r'$2\pi$'] plt.xticks([i * np.pi / 2 for i in range(5)], labs, fontsize=16) plt.xlabel('$\\theta$', fontsize=16); plt.legend(); import time from itertools import combinations from qiskit.compiler import transpile, assemble from qiskit.test.mock import FakeTokyo start = time.time() qcs = [] theta_range = np.linspace(0, 2*np.pi, 16) for n in theta_range: qc = QuantumCircuit(5) for k in range(8): for i,j in combinations(range(5), 2): qc.cx(i,j) qc.rz(n, range(5)) for i,j in combinations(range(5), 2): qc.cx(i,j) qcs.append(qc) compiled_circuits = transpile(qcs, backend=FakeTokyo()) qobj = assemble(compiled_circuits, backend=FakeTokyo()) end = time.time() print('Time compiling over set of bound circuits: ', end-start) start = time.time() qc = QuantumCircuit(5) theta = Parameter('theta') for k in range(4): for i,j in combinations(range(5), 2): qc.cx(i,j) qc.rz(theta, range(5)) for i,j in combinations(range(5), 2): qc.cx(i,j) transpiled_qc = transpile(qc, backend=FakeTokyo()) qobj = assemble([transpiled_qc.bind_parameters({theta: n}) for n in theta_range], backend=FakeTokyo()) end = time.time() print('Time compiling over parameterized circuit, then binding: ', end-start) phi = Parameter('phi') sub_circ1 = QuantumCircuit(2, name='sc_1') sub_circ1.rz(phi, 0) sub_circ1.rx(phi, 1) sub_circ2 = QuantumCircuit(2, name='sc_2') sub_circ2.rx(phi, 0) sub_circ2.rz(phi, 1) qc = QuantumCircuit(4) qr = qc.qregs[0] qc.append(sub_circ1.to_instruction(), [qr[0], qr[1]]) qc.append(sub_circ2.to_instruction(), [qr[0], qr[1]]) qc.append(sub_circ2.to_instruction(), [qr[2], qr[3]]) print(qc.draw()) # The following raises an error: "QiskitError: 'Name conflict on adding parameter: phi'" # phi2 = Parameter('phi') # qc.u3(0.1, phi2, 0.3, 0) p = Parameter('p') qc = QuantumCircuit(3, name='oracle') qc.rz(p, 0) qc.cx(0, 1) qc.rz(p, 1) qc.cx(1, 2) qc.rz(p, 2) theta = Parameter('theta') phi = Parameter('phi') gamma = Parameter('gamma') qr = QuantumRegister(9) larger_qc = QuantumCircuit(qr) larger_qc.append(qc.to_instruction({p: theta}), qr[0:3]) larger_qc.append(qc.to_instruction({p: phi}), qr[3:6]) larger_qc.append(qc.to_instruction({p: gamma}), qr[6:9]) print(larger_qc.draw()) print(larger_qc.decompose().draw())
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse from qiskit.providers.fake_provider import FakeArmonk backend = FakeArmonk() with pulse.build(backend) as drive_sched: d0 = pulse.drive_channel(0) a0 = pulse.acquire_channel(0) pulse.play(pulse.library.Constant(10, 1.0), d0) pulse.delay(20, d0) pulse.shift_phase(3.14/2, d0) pulse.set_phase(3.14, d0) pulse.shift_frequency(1e7, d0) pulse.set_frequency(5e9, d0) with pulse.build() as temp_sched: pulse.play(pulse.library.Gaussian(20, 1.0, 3.0), d0) pulse.play(pulse.library.Gaussian(20, -1.0, 3.0), d0) pulse.call(temp_sched) pulse.acquire(30, a0, pulse.MemorySlot(0)) drive_sched.draw()
https://github.com/UST-QuAntiL/qiskit-service
UST-QuAntiL
from qiskit import QuantumRegister, ClassicalRegister from qiskit import QuantumCircuit qc = QuantumCircuit() q = QuantumRegister(5, 'q') c = ClassicalRegister(3, 'c') qc.add_register(q) qc.add_register(c) qc.h(q[0]) qc.h(q[1]) qc.h(q[2]) qc.h(q[1]) qc.cx(q[2], q[3]) qc.cu1(0, q[1], q[0]) qc.cx(q[2], q[4]) qc.h(q[0]) qc.cu1(0, q[1], q[2]) qc.cu1(0, q[0], q[2]) qc.h(q[2]) qc.measure(q[0], c[0]) qc.measure(q[1], c[1]) qc.measure(q[2], c[2])
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import * # Create a Quantum Circuit acting on a quantum register of three qubits circ = QuantumCircuit(3) # Add a H gate on qubit $q_{0}$, putting this qubit in superposition. circ.h(0) # Add a CX (CNOT) gate on control qubit $q_{0}$ and target qubit $q_{1}$, putting # the qubits in a Bell state. circ.cx(0, 1) # Add a CX (CNOT) gate on control qubit $q_{0}$ and target qubit $q_{2}$, putting # the qubits in a GHZ state. circ.cx(0, 2) circ.draw('mpl') # Import Aer from qiskit import Aer # Run the quantum circuit on a statevector simulator backend backend = Aer.get_backend('statevector_simulator') # Create a Quantum Program for execution job = backend.run(circ) result = job.result() outputstate = result.get_statevector(circ, decimals=3) print(outputstate) from qiskit.visualization import plot_state_city plot_state_city(outputstate) # Run the quantum circuit on a unitary simulator backend backend = Aer.get_backend('unitary_simulator') job = backend.run(circ) result = job.result() # Show the results print(result.get_unitary(circ, decimals=3)) # Create a Quantum Circuit meas = QuantumCircuit(3, 3) meas.barrier(range(3)) # map the quantum measurement to the classical bits meas.measure(range(3), range(3)) # The Qiskit circuit object supports composition using # the compose method. circ.add_register(meas.cregs[0]) qc = circ.compose(meas) #drawing the circuit qc.draw() # Use Aer's qasm_simulator backend_sim = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is the default. job_sim = backend_sim.run(transpile(qc, backend_sim), shots=1024) # Grab the results from the job. result_sim = job_sim.result() counts = result_sim.get_counts(qc) print(counts) from qiskit.visualization import plot_histogram plot_histogram(counts) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Helper function for converting a dag to a circuit.""" import copy from qiskit.circuit import QuantumCircuit, CircuitInstruction def dag_to_circuit(dag, copy_operations=True): """Build a ``QuantumCircuit`` object from a ``DAGCircuit``. Args: dag (DAGCircuit): the input dag. copy_operations (bool): Deep copy the operation objects in the :class:`~.DAGCircuit` for the output :class:`~.QuantumCircuit`. This should only be set to ``False`` if the input :class:`~.DAGCircuit` will not be used anymore as the operations in the output :class:`~.QuantumCircuit` will be shared instances and modifications to operations in the :class:`~.DAGCircuit` will be reflected in the :class:`~.QuantumCircuit` (and vice versa). Return: QuantumCircuit: the circuit representing the input dag. Example: .. plot:: :include-source: from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.dagcircuit import DAGCircuit from qiskit.converters import circuit_to_dag from qiskit.circuit.library.standard_gates import CHGate, U2Gate, CXGate from qiskit.converters import dag_to_circuit q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.measure(q[0], c[0]) circ.rz(0.5, q[1]).c_if(c, 2) dag = circuit_to_dag(circ) circuit = dag_to_circuit(dag) circuit.draw('mpl') """ name = dag.name or None circuit = QuantumCircuit( dag.qubits, dag.clbits, *dag.qregs.values(), *dag.cregs.values(), name=name, global_phase=dag.global_phase, ) circuit.metadata = dag.metadata circuit.calibrations = dag.calibrations for node in dag.topological_op_nodes(): op = node.op if copy_operations: op = copy.deepcopy(op) circuit._append(CircuitInstruction(op, node.qargs, node.cargs)) circuit.duration = dag.duration circuit.unit = dag.unit return circuit
https://github.com/dkp-quantum/Tutorials
dkp-quantum
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * import numpy as np # Create a quantum register with 2 qubits q = QuantumRegister(2,'q') # Form a quantum circuit # Note that the circuit name is optional qc = QuantumCircuit(q,name="first_qc") # Display the quantum circuit qc.draw() # Add a Hadamard gate on qubit 0, putting this in superposition. qc.h(0) # Add a CX (CNOT) gate on control qubit 0 # and target qubit 1 to create an entangled state. qc.cx(0, 1) qc.draw() # Create a classical register with 2 bits c = ClassicalRegister(2,'c') meas = QuantumCircuit(q,c,name="first_m") meas.barrier(q) meas.measure(q, c) meas.draw() # Quantum circuits can be added with + operations # Add two pre-defined circuits qc_all=qc+meas qc_all.draw() # Draw the quantum circuit in a different (slightly better) format qc_all.draw(output='mpl') # Create the quantum circuit with the measurement in one go. qc_all = QuantumCircuit(q,c,name="2q_all") qc_all.h(0) qc_all.cx(0,1) qc_all.barrier() qc_all.measure(0,0) qc_all.measure(1,1) qc_all.draw(output='mpl') # Use Aer's qasm_simulator backend_q = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. job_sim1 = execute(qc_all, backend_q, shots=4096) job_sim1.status() # Grab the results from the job. result_sim1 = job_sim1.result() result_sim1 result_sim1.get_counts(qc_all) plot_histogram(result_sim1.get_counts(qc_all)) # Use Aer's statevector_simulator backend_sv = Aer.get_backend('statevector_simulator') # Execute the circuit on the statevector simulator. # It is important to note that the measurement has been excluded job_sim2 = execute(qc, backend_sv) # Grab the results from the job. result_sim2 = job_sim2.result() # Output the entire result result_sim2 # See output state as a vector outputstate = result_sim2.get_statevector(qc, decimals=5) print(outputstate) # Visualize density matrix plot_state_city(outputstate) # Create the quantum circuit with the measurement in one go. qc_3 = QuantumCircuit(3,3,name="qc_bloch") qc_3.x(1) qc_3.h(2) qc_3.barrier() qc_3.draw(output='mpl') # Execute the circuit on the statevector simulator. # It is important to note that the measurement has been excluded job_sim_bloch = execute(qc_3, backend_sv) # Grab the results from the job. result_sim_bloch = job_sim_bloch.result() # See output state as a vector output_bloch = result_sim_bloch.get_statevector(qc_3, decimals=5) # Draw on the Bloch sphere plot_bloch_multivector(output_bloch) # Use Aer's unitary_simulator backend_u = Aer.get_backend('unitary_simulator') # Execute the circuit on the unitary simulator. job_usim = execute(qc, backend_u) # Grab the results from the job. result_usim = job_usim.result() result_usim # Output the unitary matrix unitary = result_usim.get_unitary(qc) print('%s\n' % unitary) # Create the quantum circuit with the measurement in one go. qc_ex1 = QuantumCircuit(q,c,name="ex1") # Put the first qubit in equal superposition qc_ex1.h(0) # Rest of the circuit qc_ex1.x(1) qc_ex1.cx(0,1) qc_ex1.barrier() qc_ex1.measure(0,0) qc_ex1.measure(1,1) qc_ex1.draw(output='mpl') # Execute the circuit on the qasm simulator. job_ex1 = execute(qc_ex1, backend_q, shots=4096) job_ex1.status() # Grab the results from the job. result_ex1 = job_ex1.result() result_ex1.get_counts(qc_ex1) plot_histogram(result_ex1.get_counts(qc_ex1)) # Or get the histogram in one go plot_histogram(job_ex1.result().get_counts(qc_ex1)) # Create a quantum register with 3 qubits q3 = QuantumRegister(3,'q') # Create a classical register with 3 qubits c3 = ClassicalRegister(3,'c') # Create the quantum circuit with the measurement in one go. qc_ex2 = QuantumCircuit(q3,c3,name="ex1") qc_ex2.ry(2*np.pi/3,0) qc_ex2.cx(0,1) qc_ex2.cx(1,2) qc_ex2.barrier() qc_ex2.measure(q3,c3) qc_ex2.draw(output='mpl') # Execute the circuit on the qasm simulator. job_ex2 = execute(qc_ex2, backend_q, shots=4096) # Grab the results from the job. result_ex2 = job_ex2.result() plot_histogram(result_ex2.get_counts(qc_ex2)) # Create a quantum register with 3 qubits q3 = QuantumRegister(3,'q') # Create a classical register with 3 qubits c3 = ClassicalRegister(3,'c') # Create the quantum circuit without a Toffoli gate qc_toff = QuantumCircuit(q3,c3,name="ex1") qc_toff.ry(2*np.pi/3,0) qc_toff.h(1) qc_toff.h(2) qc_toff.barrier() qc_toff.measure(q3,c3) qc_toff.draw(output='mpl') # Execute the circuit on the qasm simulator. job_toff = execute(qc_toff, backend_q, shots=4096) # Grab the results from the job. result_toff = job_toff.result() plot_histogram(result_toff.get_counts(qc_toff)) # Now, add a Toffoli gate qc_toff = QuantumCircuit(q3,c3,name="ex1") qc_toff.ry(2*np.pi/3,0) qc_toff.h(1) qc_toff.h(2) qc_toff.ccx(1,2,0) qc_toff.barrier() qc_toff.measure(q3,c3) qc_toff.draw(output='mpl') # Execute the circuit on the qasm simulator. job_toff = execute(qc_toff, backend_q, shots=4096) # Grab the results from the job. result_toff = job_toff.result() plot_histogram(result_toff.get_counts(qc_toff)) IBMQ.disable_account() provider = IBMQ.enable_account('IBM_TOKEN') # provider = IBMQ.get_provider(hub='ibm-q-research') provider.backends() from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor from qiskit.tools.visualization import plot_gate_map, plot_error_map # Retrieve IBM Quantum device information backend_overview() # Let's get two quantum devices as an example backend_qx2 = provider.get_backend('ibmqx2') backend_vigo = provider.get_backend('ibmq_vigo') backend_monitor(backend_qx2) plot_error_map(backend_qx2) backend_monitor(backend_vigo) plot_error_map(backend_vigo) #![sdc2](jupyter_img/superdensecoding2.png) # Create a 5-qubit GHZ state (i.e. (|00000> + |11111>)/sqrt(2)) q5 = QuantumRegister(5,'q') c5 = ClassicalRegister(5,'c') ghz5= QuantumCircuit(q5,c5) ghz5.h(0) for i in range(1,5): ghz5.cx(0,i) ghz5.barrier() ghz5.measure(q5,c5) ghz5.draw(output='mpl') # Run the 5-qubit GHZ experiment on a 5-qubit device (try vigo) job_exp1 = execute(ghz5, backend=backend_vigo, shots=4096) job_monitor(job_exp1) # Grab experimental results result_vigo = job_exp1.result() counts_vigo = result_vigo.get_counts(ghz5) # Let's also try the same experiment on the 14-qubit device. job_exp2 = execute(ghz5, backend=provider.get_backend('ibmq_16_melbourne'), shots=4096) job_monitor(job_exp2) # Grab experimental results result_mel = job_exp2.result() counts_mel = result_mel.get_counts(ghz5) # Now, compare to theory by running it on qasm_simulator job_qasm = execute(ghz5,backend=backend_q) result_qasm = job_qasm.result() counts_qasm = result_qasm.get_counts(ghz5) # Plot both experimental and ideal results plot_histogram([counts_qasm,counts_vigo,counts_mel], color=['black','green','blue'], legend=['QASM','Vigo','Melbourne'],figsize = [20,8]) %matplotlib inline import numpy as np import matplotlib.pyplot as plt # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * from qiskit.circuit import Parameter # Simple example # Define two parameters, t1 and t2 theta1 = Parameter('t1') theta2 = Parameter('t2') # Build a 1-qubit circuit qc = QuantumCircuit(1, 1) # First parameter, t1, is used for a single qubit rotation of a controlled qubit qc.ry(theta1,0) qc.rz(theta2,0) qc.barrier() qc.measure(0, 0) qc.draw(output='mpl') theta1_range = np.linspace(0, 2 * np.pi, 20) theta2_range = np.linspace(0, np.pi, 2) circuits = [qc.bind_parameters({theta1: theta_val1, theta2: theta_val2}) for theta_val2 in theta2_range for theta_val1 in theta1_range ] # Visualize several circuits to check that correct circuits are generated correctly. display(circuits[0].draw(output='mpl')) display(circuits[1].draw(output='mpl')) display(circuits[20].draw(output='mpl')) # Execute multiple circuits job = execute(qc, backend=Aer.get_backend('qasm_simulator'), shots = 8192, parameter_binds=[{theta1: theta_val1, theta2: theta_val2} for theta_val2 in theta2_range for theta_val1 in theta1_range]) # Store all counts counts = [job.result().get_counts(i) for i in range(len(job.result().results))] # Plot to visualize the result plt.figure(figsize=(12,6)) plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts: (counts.get('0',0)-counts.get('1',1))/8192,counts))) plt.show() # IBMQ.disable_account() provider = IBMQ.enable_account('TOKEN') from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor from qiskit.tools.visualization import plot_gate_map, plot_error_map # Retrieve IBM Quantum device information backend_overview() # Execute multiple circuits job_exp = execute(qc, backend=provider.get_backend('ibmq_essex'), shots = 8192, parameter_binds=[{theta1: theta_val1, theta2: theta_val2} for theta_val2 in theta2_range for theta_val1 in theta1_range]) # Monitor job status job_monitor(job_exp) # Store all counts counts_exp = [job_exp.result().get_counts(i) for i in range(len(job_exp.result().results))] # Plot to visualize the result plt.figure(figsize=(12,6)) plt.rcParams.update({'font.size': 16}) plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts: (counts.get('0',0)-counts.get('1',1))/8192,counts)),'r',label='Simulation') plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts_exp: (counts_exp.get('0',0)-counts_exp.get('1',1))/8192,counts_exp)), 'b',label='Experiment') plt.legend(loc='best') plt.show() from qiskit.compiler import transpile from qiskit.transpiler import PassManager, Layout display(plot_error_map(provider.get_backend('ibmqx2'))) display(plot_error_map(provider.get_backend('ibmq_burlington'))) # Create a dummy circuit for default transpiler demonstration qc = QuantumCircuit(4) qc.h(0) qc.swap(0,1) qc.cx(1,0) qc.s(3) qc.x(3) qc.h(3) qc.h(0) qc.cx(0,2) qc.ccx(0,1,2) qc.h(0) print('Original circuit') display(qc.draw(output='mpl')) # Transpile the circuit to run on ibmqx2 qt_qx2 = transpile(qc,provider.get_backend('ibmqx2')) print('Transpiled circuit for ibmqx2') display(qt_qx2.draw(output='mpl')) # Transpile the circuit to run on ibmq_burlington qt_bu = transpile(qc,provider.get_backend('ibmq_burlington')) print('Transpiled circuit for ibmqx_Burlington') display(qt_bu.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations for ibmqx2 = %s" % qt_qx2.size()) print("Number of operations for ibmq_burlington = %s \n" % qt_bu.size()) # Circuit depth print("Circuit depth for ibmqx2 = %s" % qt_qx2.depth()) print("Circuit depth for ibmq_burlington = %s \n" % qt_bu.depth()) # Number of qubits print("Number of qubits for ibmqx2 = %s" % qt_qx2.width()) print("Number of qubits for ibmq_burlington = %s \n" % qt_bu.width()) # Breakdown of operations by type print("Operations for ibmqx2: %s" % qt_qx2.count_ops()) print("Operations for ibmq_burlington: %s \n" % qt_bu.count_ops()) # Number of unentangled subcircuits in this circuit. # In principle, each subcircuit can be executed on a different quantum device. print("Number of unentangled subcircuits for ibmqx2 = %s" % qt_qx2.num_tensor_factors()) print("Number of unentangled subcircuits for ibmq_burlington = %s" % qt_bu.num_tensor_factors()) qr = QuantumRegister(4,'q') cr = ClassicalRegister(4,'c') qc_test = QuantumCircuit(qr,cr) qc_test.h(0) for i in range(3): qc_test.cx(i,i+1) qc_test.barrier() qc_test.measure(qr,cr) qc_test.draw(output='mpl') qc_t = transpile(qc_test, backend = provider.get_backend('ibmq_london')) # Display transpiled circuit display(qc_t.draw(output='mpl')) # Display the qubit layout display(plot_error_map(provider.get_backend('ibmq_london'))) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_t.size()) # Circuit depth print("Circuit depth = %s" % qc_t.depth()) # Execute the circuit on the qasm simulator. job_test = execute(qc_test, provider.get_backend('ibmq_london'), shots=8192) job_monitor(job_test) # Customize the layout layout = Layout({qr[0]: 4, qr[1]: 3, qr[2]: 1, qr[3]:0}) # Map it onto 5 qubit backend ibmqx2 qc_test_new = transpile(qc_test, backend = provider.get_backend('ibmq_london'), initial_layout=layout, basis_gates=['u1','u2','u3','cx']) display(qc_test_new.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_test_new.size()) # Circuit depth print("Circuit depth = %s" % qc_test_new.depth()) # Execute the circuit on the qasm simulator. job_test_new = execute(qc_test_new, provider.get_backend('ibmq_london'), shots=8192) job_monitor(job_test_new) # Now, compare the two result_test = job_test.result() result_test_new = job_test_new.result() # Plot both experimental and ideal results plot_histogram([result_test.get_counts(qc_test),result_test_new.get_counts(qc_test_new)], color=['green','blue'],legend=['default','custom'],figsize = [20,8]) # Apply 4-qubit controlled x gate qr = QuantumRegister(5,'q') qc = QuantumCircuit(qr) qc.h(0) qc.h(1) qc.h(3) qc.ccx(0,1,2) qc.ccx(2,3,4) qc.ccx(0,1,2) display(qc.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s \n" % qc.size()) # Count different types of operations print("Operation counts = %s \n" % qc.count_ops()) # Circuit depth print("Circuit depth = %s" % qc.depth()) qc_t = transpile(qc, provider.get_backend('ibmq_valencia')) display(qc_t.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_t.size()) # Circuit depth print("Circuit depth = %s" % qc_t.depth()) # Transpile many times (20 times in this example) and pick the best one trial = 20 # Use ibmq_valencia for example backend_exp = provider.get_backend('ibmq_valencia') tcircs0 = transpile([qc]*trial, backend_exp, optimization_level=0) tcircs1 = transpile([qc]*trial, backend_exp, optimization_level=1) tcircs2 = transpile([qc]*trial, backend_exp, optimization_level=2) tcircs3 = transpile([qc]*trial, backend_exp, optimization_level=3) import matplotlib.pyplot as plt num_cx0 = [c.count_ops()['cx'] for c in tcircs0] num_cx1 = [c.count_ops()['cx'] for c in tcircs1] num_cx2 = [c.count_ops()['cx'] for c in tcircs2] num_cx3 = [c.count_ops()['cx'] for c in tcircs3] num_tot0 = [c.size() for c in tcircs0] num_tot1 = [c.size() for c in tcircs1] num_tot2 = [c.size() for c in tcircs2] num_tot3 = [c.size() for c in tcircs3] num_depth0 = [c.depth() for c in tcircs0] num_depth1 = [c.depth() for c in tcircs1] num_depth2 = [c.depth() for c in tcircs2] num_depth3 = [c.depth() for c in tcircs3] plt.rcParams.update({'font.size': 16}) # Plot the number of CNOT gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_cx0)),num_cx0,'r',label='level 0') plt.plot(range(len(num_cx1)),num_cx1,'b',label='level 1') plt.plot(range(len(num_cx2)),num_cx2,'g',label='level 2') plt.plot(range(len(num_cx3)),num_cx3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('# of cx gates') plt.show() # Plot total number of gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_tot0)),num_tot0,'r',label='level 0') plt.plot(range(len(num_tot1)),num_tot1,'b',label='level 1') plt.plot(range(len(num_tot2)),num_tot2,'g',label='level 2') plt.plot(range(len(num_tot3)),num_tot3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('# of total gates') plt.show() # Plot the number of CNOT gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_depth0)),num_depth0,'r',label='level 0') plt.plot(range(len(num_depth1)),num_depth1,'b',label='level 1') plt.plot(range(len(num_depth2)),num_depth2,'g',label='level 2') plt.plot(range(len(num_depth3)),num_depth3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('Circuit depth') plt.show() print('Opt0: Minimum # of cx gates = %s' % min(num_cx0)) print('Opt0: The best circuit is the circut %s \n' % num_cx0.index(min(num_cx0))) print('Opt1: Minimum # of cx gates = %s' % min(num_cx1)) print('Opt1: The best circuit is the circut %s \n' % num_cx1.index(min(num_cx1))) print('Opt2: Minimum # of cx gates = %s' % min(num_cx2)) print('Opt2: The best circuit is the circut %s \n' % num_cx2.index(min(num_cx2))) print('Opt3: Minimum # of cx gates = %s' % min(num_cx3)) print('Opt3: The best circuit is the circut %s' % num_cx3.index(min(num_cx3)))
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Helper function for converting a circuit to an instruction.""" from qiskit.exceptions import QiskitError from qiskit.circuit.instruction import Instruction from qiskit.circuit.quantumregister import QuantumRegister from qiskit.circuit.classicalregister import ClassicalRegister, Clbit def circuit_to_instruction(circuit, parameter_map=None, equivalence_library=None, label=None): """Build an :class:`~.circuit.Instruction` object from a :class:`.QuantumCircuit`. The instruction is anonymous (not tied to a named quantum register), and so can be inserted into another circuit. The instruction will have the same string name as the circuit. Args: circuit (QuantumCircuit): the input circuit. parameter_map (dict): For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the instruction. If None, existing circuit parameters will also parameterize the instruction. equivalence_library (EquivalenceLibrary): Optional equivalence library where the converted instruction will be registered. label (str): Optional instruction label. Raises: QiskitError: if parameter_map is not compatible with circuit Return: qiskit.circuit.Instruction: an instruction equivalent to the action of the input circuit. Upon decomposition, this instruction will yield the components comprising the original circuit. Example: .. code-block:: from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.converters import circuit_to_instruction q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.measure(q[0], c[0]) circ.rz(0.5, q[1]).c_if(c, 2) circuit_to_instruction(circ) """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit if parameter_map is None: parameter_dict = {p: p for p in circuit.parameters} else: parameter_dict = circuit._unroll_param_dict(parameter_map) if parameter_dict.keys() != circuit.parameters: raise QiskitError( ( "parameter_map should map all circuit parameters. " "Circuit parameters: {}, parameter_map: {}" ).format(circuit.parameters, parameter_dict) ) out_instruction = Instruction( name=circuit.name, num_qubits=circuit.num_qubits, num_clbits=circuit.num_clbits, params=[*parameter_dict.values()], label=label, ) out_instruction.condition = None target = circuit.assign_parameters(parameter_dict, inplace=False) if equivalence_library is not None: equivalence_library.add_equivalence(out_instruction, target) regs = [] if out_instruction.num_qubits > 0: q = QuantumRegister(out_instruction.num_qubits, "q") regs.append(q) if out_instruction.num_clbits > 0: c = ClassicalRegister(out_instruction.num_clbits, "c") regs.append(c) qubit_map = {bit: q[idx] for idx, bit in enumerate(circuit.qubits)} clbit_map = {bit: c[idx] for idx, bit in enumerate(circuit.clbits)} definition = [ instruction.replace( qubits=[qubit_map[y] for y in instruction.qubits], clbits=[clbit_map[y] for y in instruction.clbits], ) for instruction in target.data ] # fix condition for rule in definition: condition = getattr(rule.operation, "condition", None) if condition: reg, val = condition if isinstance(reg, Clbit): rule.operation.condition = (clbit_map[reg], val) elif reg.size == c.size: rule.operation.condition = (c, val) else: raise QiskitError( "Cannot convert condition in circuit with " "multiple classical registers to instruction" ) qc = QuantumCircuit(*regs, name=out_instruction.name) for instruction in definition: qc._append(instruction) if circuit.global_phase: qc.global_phase = circuit.global_phase out_instruction.definition = qc return out_instruction
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# Copyright 2022-2023 Ohad Lev. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0, # or in the root directory of this package("LICENSE.txt"). # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ `SATInterface` class. """ import os import json from typing import List, Tuple, Union, Optional, Dict, Any from sys import stdout from datetime import datetime from hashlib import sha256 from qiskit import transpile, QuantumCircuit, qpy from qiskit.result.counts import Counts from qiskit.visualization.circuit.text import TextDrawing from qiskit.providers.backend import Backend from qiskit.transpiler.passes import RemoveBarriers from IPython import display from matplotlib.figure import Figure from sat_circuits_engine.util import timer_dec, timestamp, flatten_circuit from sat_circuits_engine.util.settings import DATA_PATH, TRANSPILE_KWARGS from sat_circuits_engine.circuit import GroverConstraintsOperator, SATCircuit from sat_circuits_engine.constraints_parse import ParsedConstraints from sat_circuits_engine.interface.circuit_decomposition import decompose_operator from sat_circuits_engine.interface.counts_visualization import plot_histogram from sat_circuits_engine.interface.translator import ConstraintsTranslator from sat_circuits_engine.classical_processing import ( find_iterations_unknown, calc_iterations, ClassicalVerifier, ) from sat_circuits_engine.interface.interactive_inputs import ( interactive_operator_inputs, interactive_solutions_num_input, interactive_run_input, interactive_backend_input, interactive_shots_input, ) # Local globlas for visualization of charts and diagrams IFRAME_WIDTH = "100%" IFRAME_HEIGHT = "700" class SATInterface: """ An interface for building, running and mining data from n-SAT problems quantum circuits. There are 2 options to use this class: (1) Using an interactive interface (intuitive but somewhat limited) - for this just initiate a bare instance of this class: `SATInterface()`. (2) Using the API defined by this class, that includes the following methods: * The following descriptions are partial, for full annotations see the methods' docstrings. - `__init__`: an instance of `SATInterface must be initiated with exactly 1 combination: (a) (high_level_constraints_string + high_level_vars) - for constraints in a high-level format. (b) (num_input_qubits + constraints_string) - for constraints in a low-level foramt. * For formats annotations see `constriants_format.ipynb` in the main directory. - `obtain_grover_operator`: obtains the suitable grover operator for the constraints. - `save_display_grover_operator`: saves and displays data generated by the `obtain_grover_operator` method. - `obtain_overall_circuit`: obtains the suitable overall SAT circuit. - `save_display_overall_circuit: saves and displays data generated by the `obtain_overall_circuit` method. - `run_overall_circuit`: executes the overall SAT circuit. - `save_display_results`: saves and displays data generated by the `run_overall_circuit` method. It is very recommended to go through `demos.ipynb` that demonstrates the various optional uses of this class, in addition to reading `constraints_format.ipynb`, which is a must for using this package properly. Both notebooks are in ther main directory. """ def __init__( self, num_input_qubits: Optional[int] = None, constraints_string: Optional[str] = None, high_level_constraints_string: Optional[str] = None, high_level_vars: Optional[Dict[str, int]] = None, name: Optional[str] = None, save_data: Optional[bool] = True, ) -> None: """ Accepts the combination of paramters: (high_level_constraints_string + high_level_vars) or (num_input_qubits + constraints_string). Exactly one combination is accepted. In other cases either an iteractive user interface will be called to take user's inputs, or an exception will be raised due to misuse of the API. Args: num_input_qubits (Optional[int] = None): number of input qubits. constraints_string (Optional[str] = None): a string of constraints in a low-level format. high_level_constraints_string (Optional[str] = None): a string of constraints in a high-level format. high_level_vars (Optional[Dict[str, int]] = None): a dictionary that configures the high-level variables - keys are names and values are bits-lengths. name (Optional[str] = None): a name for this object, if None than the generic name "SAT" is given automatically. save_data (Optional[bool] = True): if True, saves all data and metadata generated by this class to a unique data folder (by using the `save_XXX` methods of this class). Raises: SyntaxError - if a forbidden combination of arguments has been provided. """ if name is None: name = "SAT" self.name = name # Creating a directory for data to be saved if save_data: self.time_created = timestamp(datetime.now()) self.dir_path = f"{DATA_PATH}{self.time_created}_{self.name}/" os.mkdir(self.dir_path) print(f"Data will be saved into '{self.dir_path}'.") # Initial metadata, more to be added by this class' `save_XXX` methods self.metadata = { "name": self.name, "datetime": self.time_created, "num_input_qubits": num_input_qubits, "constraints_string": constraints_string, "high_level_constraints_string": high_level_constraints_string, "high_level_vars": high_level_vars, } self.update_metadata() # Identifying user's platform, for visualization purposes self.identify_platform() # In the case of low-level constraints format, that is the default value self.high_to_low_map = None # Case A - interactive interface if (num_input_qubits is None or constraints_string is None) and ( high_level_constraints_string is None or high_level_vars is None ): self.interactive_interface() # Case B - API else: self.high_level_constraints_string = high_level_constraints_string self.high_level_vars = high_level_vars # Case B.1 - high-level format constraints inputs if num_input_qubits is None or constraints_string is None: self.num_input_qubits = sum(self.high_level_vars.values()) self.high_to_low_map, self.constraints_string = ConstraintsTranslator( self.high_level_constraints_string, self.high_level_vars ).translate() # Case B.2 - low-level format constraints inputs elif num_input_qubits is not None and constraints_string is not None: self.num_input_qubits = num_input_qubits self.constraints_string = constraints_string # Misuse else: raise SyntaxError( "SATInterface accepts the combination of paramters:" "(high_level_constraints_string + high_level_vars) or " "(num_input_qubits + constraints_string). " "Exactly one combination is accepted, not both." ) self.parsed_constraints = ParsedConstraints( self.constraints_string, self.high_level_constraints_string ) def update_metadata(self, update_metadata: Optional[Dict[str, Any]] = None) -> None: """ Updates the metadata file (in the unique data folder of a given `SATInterface` instance). Args: update_metadata (Optional[Dict[str, Any]] = None): - If None - just dumps `self.metadata` into the metadata JSON file. - If defined - updates the `self.metadata` attribute and then dumps it. """ if update_metadata is not None: self.metadata.update(update_metadata) with open(f"{self.dir_path}metadata.json", "w") as metadata_file: json.dump(self.metadata, metadata_file, indent=4) def identify_platform(self) -> None: """ Identifies user's platform. Writes True to `self.jupyter` for Jupyter notebook, False for terminal. """ # If True then the platform is a terminal/command line/shell if stdout.isatty(): self.jupyter = False # If False, we assume the platform is a Jupyter notebook else: self.jupyter = True def output_to_platform( self, *, title: str, output_terminal: Union[TextDrawing, str], output_jupyter: Union[Figure, str], display_both_on_jupyter: Optional[bool] = False, ) -> None: """ Displays output to user's platform. Args: title (str): a title for the output. output_terminal (Union[TextDrawing, str]): text to print for a terminal platform. output_jupyter: (Union[Figure, str]): objects to display for a Jupyter notebook platform. can handle `Figure` matplotlib objects or strings of paths to IFrame displayable file, e.g PDF files. display_both_on_jupyter (Optional[bool] = False): if True, displays both `output_terminal` and `output_jupyter` in a Jupyter notebook platform. Raises: TypeError - in the case of misusing the `output_jupyter` argument. """ print() print(title) if self.jupyter: if isinstance(output_jupyter, str): display.display(display.IFrame(output_jupyter, width=IFRAME_WIDTH, height=IFRAME_HEIGHT)) elif isinstance(output_jupyter, Figure): display.display(output_jupyter) else: raise TypeError("output_jupyter must be an str (path to image file) or a Figure object.") if display_both_on_jupyter: print(output_terminal) else: print(output_terminal) def interactive_interface(self) -> None: """ An interactive CLI that allows exploiting most (but not all) of the package's features. Uses functions of the form `interactive_XXX_inputs` from the `interactive_inputs.py` module. Divided into 3 main stages: 1. Obtaining Grover's operator for the SAT problem. 2. Obtaining the overall SAT cirucit. 3. Executing the circuit and parsing the results. The interface is built in a modular manner such that a user can halt at any stage. The defualt settings for the interactive user intreface are: 1. `name = "SAT"`. 2. `save_data = True`. 3. `display = True`. 4. `transpile_kwargs = {'basis_gates': ['u', 'cx'], 'optimization_level': 3}`. 5. Backends are limited to those defined in the global-constant-like function `BACKENDS`: - Those are the local `aer_simulator` and the remote `ibmq_qasm_simulator` for now. Due to these default settings the interactive CLI is somewhat restrictive, for full flexibility a user should use the API and not the CLI. """ # Handling operator part operator_inputs = interactive_operator_inputs() self.num_input_qubits = operator_inputs["num_input_qubits"] self.high_to_low_map = operator_inputs["high_to_low_map"] self.constraints_string = operator_inputs["constraints_string"] self.high_level_constraints_string = operator_inputs["high_level_constraints_string"] self.high_level_vars = operator_inputs["high_level_vars"] self.parsed_constraints = ParsedConstraints( self.constraints_string, self.high_level_constraints_string ) self.update_metadata( { "num_input_qubits": self.num_input_qubits, "constraints_string": self.constraints_string, "high_level_constraints_string": self.high_level_constraints_string, "high_level_vars": self.high_level_vars, } ) obtain_grover_operator_output = self.obtain_grover_operator() self.save_display_grover_operator(obtain_grover_operator_output) # Handling overall circuit part solutions_num = interactive_solutions_num_input() if solutions_num is not None: backend = None if solutions_num == -1: backend = interactive_backend_input() overall_circuit_data = self.obtain_overall_sat_circuit( obtain_grover_operator_output["operator"], solutions_num, backend ) self.save_display_overall_circuit(overall_circuit_data) # Handling circuit execution part if interactive_run_input(): if backend is None: backend = interactive_backend_input() shots = interactive_shots_input() counts_parsed = self.run_overall_sat_circuit( overall_circuit_data["circuit"], backend, shots ) self.save_display_results(counts_parsed) print() print(f"Done saving data into '{self.dir_path}'.") def obtain_grover_operator( self, transpile_kwargs: Optional[Dict[str, Any]] = None ) -> Dict[str, Union[GroverConstraintsOperator, QuantumCircuit]]: """ Obtains the suitable `GroverConstraintsOperator` object for the constraints, decomposes it using the `circuit_decomposition.py` module and transpiles it according to `transpile_kwargs`. Args: transpile_kwargs (Optional[Dict[str, Any]]): kwargs for Qiskit's transpile function. The defualt is set to the global constant `TRANSPILE_KWARGS`. Returns: (Dict[str, Union[GroverConstraintsOperator, QuantumCircuit, Dict[str, List[int]]]]): - 'operator' (GroverConstraintsOperator):the high-level blocks operator. - 'decomposed_operator' (QuantumCircuit): decomposed to building-blocks operator. * For annotations regarding the decomposition method see the `circuit_decomposition` module. - 'transpiled_operator' (QuantumCircuit): the transpiled operator. *** The high-level operator and the decomposed operator are generated with barriers between constraints as default for visualizations purposes. The barriers are stripped off before transpiling so the the transpiled operator object contains no barriers. *** - 'high_level_to_bit_indexes_map' (Optional[Dict[str, List[int]]] = None): A map of high-level variables with their allocated bit-indexes in the input register. """ print() print( "The system synthesizes and transpiles a Grover's " "operator for the given constraints. Please wait.." ) if transpile_kwargs is None: transpile_kwargs = TRANSPILE_KWARGS self.transpile_kwargs = transpile_kwargs operator = GroverConstraintsOperator( self.parsed_constraints, self.num_input_qubits, insert_barriers=True ) decomposed_operator = decompose_operator(operator) no_baerriers_operator = RemoveBarriers()(operator) transpiled_operator = transpile(no_baerriers_operator, **transpile_kwargs) print("Done.") return { "operator": operator, "decomposed_operator": decomposed_operator, "transpiled_operator": transpiled_operator, "high_level_to_bit_indexes_map": self.high_to_low_map, } def save_display_grover_operator( self, obtain_grover_operator_output: Dict[str, Union[GroverConstraintsOperator, QuantumCircuit]], display: Optional[bool] = True, ) -> None: """ Handles saving and displaying data generated by the `self.obtain_grover_operator` method. Args: obtain_grover_operator_output(Dict[str, Union[GroverConstraintsOperator, QuantumCircuit]]): the dictionary returned upon calling the `self.obtain_grover_operator` method. display (Optional[bool] = True) - If true, displays objects to user's platform. """ # Creating a directory to save operator's data operator_dir_path = f"{self.dir_path}grover_operator/" os.mkdir(operator_dir_path) # Titles for displaying objects, by order of `obtain_grover_operator_output` titles = [ "The operator diagram - high level blocks:", "The operator diagram - decomposed:", f"The transpiled operator diagram saved into '{operator_dir_path}'.\n" f"It's not presented here due to its complexity.\n" f"Please note that barriers appear in the high-level diagrams above only for convenient\n" f"visual separation between constraints.\n" f"Before transpilation all barriers are removed to avoid redundant inefficiencies.", ] for index, (op_name, op_obj) in enumerate(obtain_grover_operator_output.items()): # Generic path and name for files to be saved files_path = f"{operator_dir_path}{op_name}" # Generating a circuit diagrams figure figure_path = f"{files_path}.pdf" op_obj.draw("mpl", filename=figure_path, fold=-1) # Generating a QPY serialization file for the circuit object qpy_file_path = f"{files_path}.qpy" with open(qpy_file_path, "wb") as qpy_file: qpy.dump(op_obj, qpy_file) # Original high-level operator and decomposed operator if index < 2 and display: # Displaying to user self.output_to_platform( title=titles[index], output_terminal=op_obj.draw("text"), output_jupyter=figure_path ) # Transpiled operator elif index == 2: # Output to user, not including the circuit diagram print() print(titles[index]) print() print(f"The transpilation kwargs are: {self.transpile_kwargs}.") transpiled_operator_depth = op_obj.depth() transpiled_operator_gates_count = op_obj.count_ops() print(f"Transpiled operator depth: {transpiled_operator_depth}.") print(f"Transpiled operator gates count: {transpiled_operator_gates_count}.") print(f"Total number of qubits: {op_obj.num_qubits}.") # Generating QASM 2.0 file only for the (flattened = no registers) tranpsiled operator qasm_file_path = f"{files_path}.qasm" flatten_circuit(op_obj).qasm(filename=qasm_file_path) # Index 3 is 'high_level_to_bit_indexes_map' so it's time to break from the loop break # Mapping from high-level variables to bit-indexes will be displayed as well mapping = obtain_grover_operator_output["high_level_to_bit_indexes_map"] if mapping: print() print(f"The high-level variables mapping to bit-indexes:\n{mapping}") print() print( f"Saved into '{operator_dir_path}':\n", " Circuit diagrams for all levels.\n", " QPY serialization exports for all levels.\n", " QASM 2.0 export only for the transpiled level.", ) with open(f"{operator_dir_path}operator.qpy", "rb") as qpy_file: operator_qpy_sha256 = sha256(qpy_file.read()).hexdigest() self.update_metadata( { "high_level_to_bit_indexes_map": self.high_to_low_map, "transpile_kwargs": self.transpile_kwargs, "transpiled_operator_depth": transpiled_operator_depth, "transpiled_operator_gates_count": transpiled_operator_gates_count, "operator_qpy_sha256": operator_qpy_sha256, } ) def obtain_overall_sat_circuit( self, grover_operator: GroverConstraintsOperator, solutions_num: int, backend: Optional[Backend] = None, ) -> Dict[str, SATCircuit]: """ Obtains the suitable `SATCircuit` object (= the overall SAT circuit) for the SAT problem. Args: grover_operator (GroverConstraintsOperator): Grover's operator for the SAT problem. solutions_num (int): number of solutions for the SAT problem. In the case the number of solutions is unknown, specific negative values are accepted: * '-1' - for launching a classical iterative stochastic process that finds an adequate number of iterations - by calling the `find_iterations_unknown` function (see its docstrings for more information). * '-2' - for generating a dynamic circuit that iterates over Grover's iterator until a solution is obtained, using weak measurements. TODO - this feature isn't ready yet. backend (Optional[Backend] = None): in the case of a '-1' value given to `solutions_num`, a backend object to execute the depicted iterative prcess upon should be provided. Returns: (Dict[str, SATCircuit]): - 'circuit' key for the overall SAT circuit. - 'concise_circuit' key for the overall SAT circuit, with only 1 iteration over Grover's iterator (operator + diffuser). Useful for visualization purposes. *** The concise circuit is generated with barriers between segments as default for visualizations purposes. In the actual circuit there no barriers. *** """ # -1 = Unknown number of solutions - iterative stochastic process print() if solutions_num == -1: assert backend is not None, "Need to specify a backend if `solutions_num == -1`." print("Please wait while the system checks various solutions..") circuit, iterations = find_iterations_unknown( self.num_input_qubits, grover_operator, self.parsed_constraints, precision=10, backend=backend, ) print() print(f"An adequate number of iterations found = {iterations}.") # -2 = Unknown number of solutions - implement a dynamic circuit # TODO this feature isn't fully implemented yet elif solutions_num == -2: print("The system builds a dynamic circuit..") circuit = SATCircuit(self.num_input_qubits, grover_operator, iterations=None) circuit.add_input_reg_measurement() iterations = None # Known number of solutions else: print("The system builds the overall circuit..") iterations = calc_iterations(self.num_input_qubits, solutions_num) print(f"\nFor {solutions_num} solutions, {iterations} iterations needed.") circuit = SATCircuit( self.num_input_qubits, grover_operator, iterations, insert_barriers=False ) circuit.add_input_reg_measurement() self.iterations = iterations # Obtaining a SATCircuit object with one iteration for concise representation concise_circuit = SATCircuit( self.num_input_qubits, grover_operator, iterations=1, insert_barriers=True ) concise_circuit.add_input_reg_measurement() return {"circuit": circuit, "concise_circuit": concise_circuit} def save_display_overall_circuit( self, obtain_overall_sat_circuit_output: Dict[str, SATCircuit], display: Optional[bool] = True ) -> None: """ Handles saving and displaying data generated by the `self.obtain_overall_sat_circuit` method. Args: obtain_overall_sat_circuit_output(Dict[str, SATCircuit]): the dictionary returned upon calling the `self.obtain_overall_sat_circuit` method. display (Optional[bool] = True) - If true, displays objects to user's platform. """ circuit = obtain_overall_sat_circuit_output["circuit"] concise_circuit = obtain_overall_sat_circuit_output["concise_circuit"] # Creating a directory to save overall circuit's data overall_circuit_dir_path = f"{self.dir_path}overall_circuit/" os.mkdir(overall_circuit_dir_path) # Generating a figure of the overall SAT circuit with just 1 iteration (i.e "concise") concise_circuit_fig_path = f"{overall_circuit_dir_path}overall_circuit_1_iteration.pdf" concise_circuit.draw("mpl", filename=concise_circuit_fig_path, fold=-1) # Displaying the concise circuit to user if display: if self.iterations: self.output_to_platform( title=( f"The high level circuit contains {self.iterations}" f" iterations of the following form:" ), output_terminal=concise_circuit.draw("text"), output_jupyter=concise_circuit_fig_path, ) # Dynamic circuit case - TODO NOT FULLY IMPLEMENTED YET else: dynamic_circuit_fig_path = f"{overall_circuit_dir_path}overall_circuit_dynamic.pdf" circuit.draw("mpl", filename=dynamic_circuit_fig_path, fold=-1) self.output_to_platform( title="The dynamic circuit diagram:", output_terminal=circuit.draw("text"), output_jupyter=dynamic_circuit_fig_path, ) if self.iterations: transpiled_overall_circuit = transpile(flatten_circuit(circuit), **self.transpile_kwargs) print() print(f"The transpilation kwargs are: {self.transpile_kwargs}.") transpiled_overall_circuit_depth = transpiled_overall_circuit.depth() transpiled_overall_circuit_gates_count = transpiled_overall_circuit.count_ops() print(f"Transpiled overall-circuit depth: {transpiled_overall_circuit_depth}.") print(f"Transpiled overall-circuit gates count: {transpiled_overall_circuit_gates_count}.") print(f"Total number of qubits: {transpiled_overall_circuit.num_qubits}.") print() print("Exporting the full overall SAT circuit object..") export_files_path = f"{overall_circuit_dir_path}overall_circuit" with open(f"{export_files_path}.qpy", "wb") as qpy_file: qpy.dump(circuit, qpy_file) if self.iterations: transpiled_overall_circuit.qasm(filename=f"{export_files_path}.qasm") print() print( f"Saved into '{overall_circuit_dir_path}':\n", " A concised (1 iteration) circuit diagram of the high-level overall SAT circuit.\n", " QPY serialization export for the full overall SAT circuit object.", ) if self.iterations: print(" QASM 2.0 export for the transpiled full overall SAT circuit object.") metadata_update = { "num_total_qubits": circuit.num_qubits, "num_iterations": circuit.iterations, } if self.iterations: metadata_update["transpiled_overall_circuit_depth"] = (transpiled_overall_circuit_depth,) metadata_update[ "transpiled_overall_circuit_gates_count" ] = transpiled_overall_circuit_gates_count self.update_metadata(metadata_update) @timer_dec("Circuit simulation execution time = ") def run_overall_sat_circuit( self, circuit: QuantumCircuit, backend: Backend, shots: int ) -> Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]: """ Executes a `circuit` on `backend` transpiled w.r.t backend, `shots` times. Args: circuit (QuantumCircuit): `QuantumCircuit` object or child-object (a.k.a `SATCircuit`) to execute. backend (Backend): backend to execute `circuit` upon. shots (int): number of execution shots. Returns: (Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]): dict object returned by `self.parse_counts` - see this method's docstrings for annotations. """ # Defines also instance attributes to use in other methods self.backend = backend self.shots = shots print() print(f"The system is running the circuit {shots} times on {backend}, please wait..") print("This process might take a while.") job = backend.run(transpile(circuit, backend), shots=shots) counts = job.result().get_counts() print("Done.") parsed_counts = self.parse_counts(counts) return parsed_counts def parse_counts( self, counts: Counts ) -> Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]: """ Parses a `Counts` object into several desired datas (see 'Returns' section). Args: counts (Counts): the `Counts` object to parse. Returns: (Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]): 'counts' (Counts) - the original `Counts` object. 'counts_sorted' (List[Tuple[Union[str, int]]]) - results sorted in a descending order. 'distilled_solutions' (List[str]): list of solutions (bitstrings). 'high_level_vars_values' (List[Dict[str, int]]): list of solutions (each solution is a dictionary with variable-names as keys and their integer values as values). """ # Sorting results in an a descending order counts_sorted = sorted(counts.items(), key=lambda x: x[1], reverse=True) # Generating a set of distilled verified-only solutions verifier = ClassicalVerifier(self.parsed_constraints) distilled_solutions = set() for count_item in counts_sorted: if not verifier.verify(count_item[0]): break distilled_solutions.add(count_item[0]) # In the case of high-level format in use, translating `distilled_solutions` into integer values high_level_vars_values = None if self.high_level_constraints_string and self.high_level_vars: # Container for dictionaries with variables integer values high_level_vars_values = [] for solution in distilled_solutions: # Keys are variable-names and values are their integer values solution_vars = {} for var, bits_bundle in self.high_to_low_map.items(): reversed_solution = solution[::-1] var_bitstring = "" for bit_index in bits_bundle: var_bitstring += reversed_solution[bit_index] # Translating to integer value solution_vars[var] = int(var_bitstring, 2) high_level_vars_values.append(solution_vars) return { "counts": counts, "counts_sorted": counts_sorted, "distilled_solutions": distilled_solutions, "high_level_vars_values": high_level_vars_values, } def save_display_results( self, run_overall_sat_circuit_output: Dict[ str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]] ], display: Optional[bool] = True, ) -> None: """ Handles saving and displaying data generated by the `self.run_overall_sat_circuit` method. Args: run_overall_sat_circuit_output (Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]): the dictionary returned upon calling the `self.run_overall_sat_circuit` method. display (Optional[bool] = True) - If true, displays objects to user's platform. """ counts = run_overall_sat_circuit_output["counts"] counts_sorted = run_overall_sat_circuit_output["counts_sorted"] distilled_solutions = run_overall_sat_circuit_output["distilled_solutions"] high_level_vars_values = run_overall_sat_circuit_output["high_level_vars_values"] # Creating a directory to save results data results_dir_path = f"{self.dir_path}results/" os.mkdir(results_dir_path) # Defining custom dimensions for the custom `plot_histogram` of this package histogram_fig_width = max((len(counts) * self.num_input_qubits * (10 / 72)), 7) histogram_fig_height = 5 histogram_figsize = (histogram_fig_width, histogram_fig_height) histogram_path = f"{results_dir_path}histogram.pdf" plot_histogram(counts, figsize=histogram_figsize, sort="value_desc", filename=histogram_path) if display: # Basic output text output_text = ( f"All counts:\n{counts_sorted}\n" f"\nDistilled solutions ({len(distilled_solutions)} total):\n" f"{distilled_solutions}" ) # Additional outputs for a high-level constraints format if high_level_vars_values: # Mapping from high-level variables to bit-indexes will be displayed as well output_text += ( f"\n\nThe high-level variables mapping to bit-indexes:" f"\n{self.high_to_low_map}" ) # Actual integer solutions will be displayed as well additional_text = "" for solution_index, solution in enumerate(high_level_vars_values): additional_text += f"Solution {solution_index + 1}: " for var_index, (var, value) in enumerate(solution.items()): additional_text += f"{var} = {value}" if var_index != len(solution) - 1: additional_text += ", " else: additional_text += "\n" output_text += f"\n\nHigh-level format solutions: \n{additional_text}" self.output_to_platform( title=f"The results for {self.shots} shots are:", output_terminal=output_text, output_jupyter=histogram_path, display_both_on_jupyter=True, ) results_dict = { "high_level_to_bit_indexes_map": self.high_to_low_map, "solutions": list(distilled_solutions), "high_level_solutions": high_level_vars_values, "counts": counts_sorted, } with open(f"{results_dir_path}results.json", "w") as results_file: json.dump(results_dict, results_file, indent=4) self.update_metadata( { "num_solutions": len(distilled_solutions), "backend": str(self.backend), "shots": self.shots, } )
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# Import requisite modules import math import datetime import numpy as np import matplotlib.pyplot as plt %matplotlib inline # Import Qiskit packages from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, QAOA, SamplingVQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import TwoLocal from qiskit_aer.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer # The data providers of stock-market data from qiskit_finance.data_providers import RandomDataProvider from qiskit_finance.applications.optimization import PortfolioDiversification # Generate a pairwise time-series similarity matrix seed = 123 stocks = ["TICKER1", "TICKER2"] n = len(stocks) data = RandomDataProvider( tickers=stocks, start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 30), seed=seed, ) data.run() rho = data.get_similarity_matrix() q = 1 # q less or equal than n class ClassicalOptimizer: def __init__(self, rho, n, q): self.rho = rho self.n = n # number of inner variables self.q = q # number of required selection def compute_allowed_combinations(self): f = math.factorial return int(f(self.n) / f(self.q) / f(self.n - self.q)) def cplex_solution(self): # refactoring rho = self.rho n = self.n q = self.q my_obj = list(rho.reshape(1, n**2)[0]) + [0.0 for x in range(0, n)] my_ub = [1 for x in range(0, n**2 + n)] my_lb = [0 for x in range(0, n**2 + n)] my_ctype = "".join(["I" for x in range(0, n**2 + n)]) my_rhs = ( [q] + [1 for x in range(0, n)] + [0 for x in range(0, n)] + [0.1 for x in range(0, n**2)] ) my_sense = ( "".join(["E" for x in range(0, 1 + n)]) + "".join(["E" for x in range(0, n)]) + "".join(["L" for x in range(0, n**2)]) ) try: my_prob = cplex.Cplex() self.populatebyrow(my_prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs) my_prob.solve() except CplexError as exc: print(exc) return x = my_prob.solution.get_values() x = np.array(x) cost = my_prob.solution.get_objective_value() return x, cost def populatebyrow(self, prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs): n = self.n prob.objective.set_sense(prob.objective.sense.minimize) prob.variables.add(obj=my_obj, lb=my_lb, ub=my_ub, types=my_ctype) prob.set_log_stream(None) prob.set_error_stream(None) prob.set_warning_stream(None) prob.set_results_stream(None) rows = [] col = [x for x in range(n**2, n**2 + n)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [x for x in range(0 + n * ii, n + n * ii)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [ii * n + ii, n**2 + ii] coef = [1, -1] rows.append([col, coef]) for ii in range(0, n): for jj in range(0, n): col = [ii * n + jj, n**2 + jj] coef = [1, -1] rows.append([col, coef]) prob.linear_constraints.add(lin_expr=rows, senses=my_sense, rhs=my_rhs) # Instantiate the classical optimizer class classical_optimizer = ClassicalOptimizer(rho, n, q) # Compute the number of feasible solutions: print("Number of feasible combinations= " + str(classical_optimizer.compute_allowed_combinations())) # Compute the total number of possible combinations (feasible + unfeasible) print("Total number of combinations= " + str(2 ** (n * (n + 1)))) # Visualize the solution def visualize_solution(xc, yc, x, C, n, K, title_str): plt.figure() plt.scatter(xc, yc, s=200) for i in range(len(xc)): plt.annotate(i, (xc[i] + 0.015, yc[i]), size=16, color="r") plt.grid() for ii in range(n**2, n**2 + n): if x[ii] > 0: plt.plot(xc[ii - n**2], yc[ii - n**2], "r*", ms=20) for ii in range(0, n**2): if x[ii] > 0: iy = ii // n ix = ii % n plt.plot([xc[ix], xc[iy]], [yc[ix], yc[iy]], "C2") plt.title(title_str + " cost = " + str(int(C * 100) / 100.0)) plt.show() from qiskit.utils import algorithm_globals class QuantumOptimizer: def __init__(self, rho, n, q): self.rho = rho self.n = n self.q = q self.pdf = PortfolioDiversification(similarity_matrix=rho, num_assets=n, num_clusters=q) self.qp = self.pdf.to_quadratic_program() # Obtains the least eigenvalue of the Hamiltonian classically def exact_solution(self): exact_mes = NumPyMinimumEigensolver() exact_eigensolver = MinimumEigenOptimizer(exact_mes) result = exact_eigensolver.solve(self.qp) return self.decode_result(result) def vqe_solution(self): algorithm_globals.random_seed = 100 cobyla = COBYLA() cobyla.set_options(maxiter=250) ry = TwoLocal(n, "ry", "cz", reps=5, entanglement="full") vqe_mes = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=cobyla) vqe = MinimumEigenOptimizer(vqe_mes) result = vqe.solve(self.qp) return self.decode_result(result) def qaoa_solution(self): algorithm_globals.random_seed = 1234 cobyla = COBYLA() cobyla.set_options(maxiter=250) qaoa_mes = QAOA(sampler=Sampler(), optimizer=cobyla, reps=3) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(self.qp) return self.decode_result(result) def decode_result(self, result, offset=0): quantum_solution = 1 - (result.x) ground_level = self.qp.objective.evaluate(result.x) return quantum_solution, ground_level # Instantiate the quantum optimizer class with parameters: quantum_optimizer = QuantumOptimizer(rho, n, q) # Check if the binary representation is correct. This requires CPLEX try: import cplex # warnings.filterwarnings('ignore') quantum_solution, quantum_cost = quantum_optimizer.exact_solution() print(quantum_solution, quantum_cost) classical_solution, classical_cost = classical_optimizer.cplex_solution() print(classical_solution, classical_cost) if np.abs(quantum_cost - classical_cost) < 0.01: print("Binary formulation is correct") else: print("Error in the formulation of the Hamiltonian") except Exception as ex: print(ex) ground_state, ground_level = quantum_optimizer.exact_solution() print(ground_state) classical_cost = 1.000779571614484 # obtained from the CPLEX solution try: if np.abs(ground_level - classical_cost) < 0.01: print("Ising Hamiltonian in Z basis is correct") else: print("Error in the Ising Hamiltonian formulation") except Exception as ex: print(ex) vqe_state, vqe_level = quantum_optimizer.vqe_solution() print(vqe_state, vqe_level) try: if np.linalg.norm(ground_state - vqe_state) < 0.01: print("SamplingVQE produces the same solution as the exact eigensolver.") else: print( "SamplingVQE does not produce the same solution as the exact eigensolver, but that is to be expected." ) except Exception as ex: print(ex) xc, yc = data.get_coordinates() visualize_solution(xc, yc, ground_state, ground_level, n, q, "Classical") visualize_solution(xc, yc, vqe_state, vqe_level, n, q, "VQE") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright