repo
stringclasses
885 values
file
stringclasses
741 values
content
stringlengths
4
215k
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np import torch from torchvision.transforms import ToTensor from torch import no_grad from torchvision import datasets import torch.optim as optim from torch.nn import (Module, Conv2d, Linear, Dropout2d, NLLLoss, MaxPool2d, Flatten, Sequential, ReLU) import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from qiskit import * from qiskit import transpile, assemble, IBMQ from qiskit.visualization import * from qiskit import Aer, QuantumCircuit from qiskit.utils import QuantumInstance, algorithm_globals from qiskit.opflow import AerPauliExpectation from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit.circuit import ParameterVector from qiskit_machine_learning.neural_networks import CircuitQNN, TwoLayerQNN from qiskit_machine_learning.connectors import TorchConnector import qiskit.providers.fake_provider as fake from qiskit.providers.aer.noise import NoiseModel from qiskit.providers.aer import AerSimulator, QasmSimulator import matplotlib.pyplot as plt provider = IBMQ.load_account() # Declare Quantum instance noisy_backend = provider.get_backend('ibmq_manila') backend_sim = AerSimulator.from_backend(noisy_backend) qi = QuantumInstance(backend_sim) print(backend_sim) ### Training and test data downloaded from FashionMNIST and transformed into tensors ### training_data = datasets.FashionMNIST( root="data", train=True, download=True, transform=ToTensor() ) test_data = datasets.FashionMNIST( root="data", train=False, download=True, transform=ToTensor() ) ### Inspecting the images in the training data set with their labels ### labels_map = { 0: "T-Shirt", 1: "Trouser", 2: "Pullover", 3: "Dress", 4: "Coat", 5: "Sandal", 6: "Shirt", 7: "Sneaker", 8: "Bag", 9: "Ankle Boot", } figure = plt.figure(figsize=(8, 8)) cols, rows = 3, 3 for i in range(1, cols * rows + 1): sample_idx = torch.randint(len(training_data), size=(1,)).item() img, label = training_data[sample_idx] figure.add_subplot(rows, cols, i) plt.title(labels_map[label]) plt.axis("off") plt.imshow(img.squeeze(), cmap="gray") plt.show() ### Load training data into Torch DataLoader ### X_train = training_data n_samples = 500 batch_size = 64 # Filter out labels (originally 0-9), leaving only labels 0 and 1 idx = np.append(np.where(X_train.targets == 0)[0][:n_samples], np.where(X_train.targets == 1)[0][:n_samples]) X_train.data = X_train.data[idx] X_train.targets = X_train.targets[idx] # A torch dataloader is defined with filtered data train_loader = DataLoader(X_train, batch_size=64, shuffle=True) # Load test data into Torch DataLoader X_test = test_data # Filter out labels (originally 0-9), leaving only labels 0 and 1 idx = np.append(np.where(X_test.targets == 0)[0][:n_samples], np.where(X_test.targets == 1)[0][:n_samples]) X_test.data = X_test.data[idx] X_test.targets = X_test.targets[idx] # Define torch dataloader with filtered data test_loader = DataLoader(X_test, batch_size=64, shuffle=True) pi = np.pi feature_dim = 2 reps = 2 duplicates = 3 # only use odd integers here feature_map_circuit = QuantumCircuit(feature_dim, name=f'feature_map_circuit, duplicates = {duplicates}') x = ParameterVector('x', feature_dim * reps) for i in range(reps): for j in range(feature_dim): for k in range(duplicates): feature_map_circuit.h(j) for m in range(duplicates): feature_map_circuit.p(2.0*x[0], 0) feature_map_circuit.p(2.0*x[1], 1) for m in range(duplicates): feature_map_circuit.cnot(0, 1) for m in range(duplicates): feature_map_circuit.p(2.0*(pi - x[0])*(pi - x[1]), 1) for m in range(duplicates): feature_map_circuit.cnot(0, 1) feature_map_circuit.draw() num_qubits = 2 ansatz_circuit = QuantumCircuit(num_qubits, name=f'ansatz_circuit, duplicates = {duplicates}') reps = 1 params = ParameterVector('θ', num_qubits + num_qubits * reps) counter = 0 for i in range(num_qubits): for n in range(duplicates): ansatz_circuit.ry(params[counter], i) counter += 1 for j in range(reps): for k in range(num_qubits-1): for n in range(duplicates): ansatz_circuit.cnot(k, k+1) for m in range(num_qubits): for n in range(duplicates): ansatz_circuit.ry(params[counter], m) counter += 1 ansatz_circuit.draw() qnn2 = TwoLayerQNN(2, feature_map_circuit, ansatz_circuit, input_gradients=True, exp_val=AerPauliExpectation(), quantum_instance=qi) print(qnn2.operator) ### Torch NN module from Qiskit ### class Net(Module): def __init__(self): super().__init__() self.conv1 = Conv2d(1, 2, kernel_size=5) self.conv2 = Conv2d(2, 16, kernel_size=5) self.dropout = Dropout2d() self.fc1 = Linear(256, 64) self.fc2 = Linear(64, 2) # 2-dimensional input to QNN # Apply torch connector, weights chosen self.qnn = TorchConnector(qnn2) # uniformly at random from interval [-1,1]. self.fc3 = Linear(1, 1) # 1-dimensional output from QNN def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(x.shape[0], -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.qnn(x) # apply QNN x = self.fc3(x) return torch.cat((x, 1 - x), -1) ### Model trained and the loss computed ### model = Net() optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 20 loss_list = [] model.train() for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() total_loss.append(loss.item()) loss_list.append(sum(total_loss)/len(total_loss)) print('Training [{:.0f}%]\tLoss: {:.4f}'.format( 100. * (epoch + 1) / epochs, loss_list[-1])) ### Loss convergence plotted ### plt.plot(loss_list) plt.title('Hybrid NN Training Convergence') plt.xlabel('Training Iterations') plt.ylabel('Neg. Log Likelihood Loss') plt.show() torch.save(model.state_dict( ), 'Models/d3ZZ_d3RealAmp.pth') ### Model evaluated ### model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), (correct / len(test_loader) / batch_size) * 100)) ### Predicted images displayed. Either T-shirt or Trouser ### n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(15, 5)) model.eval() with no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model(data[0:1]) if len(output.shape) == 1: output = output.reshape(1, *output.shape) pred = output.argmax(dim=1, keepdim=True) axes[count].imshow(data[0].numpy().squeeze(), cmap='gray') axes[count].set_xticks([]) axes[count].set_yticks([]) if pred.item() == 0: axes[count].set_title('Predicted item: T-Shirt') elif pred.item() == 1: axes[count].set_title('Predicted item: Trouser') count += 1
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1); tensored = bottom.tensor(top) tensored.draw('mpl')
https://github.com/orpgol/quantum_algorithms_qiskit
orpgol
import numpy as np from qiskit import BasicAer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.visualization import plot_histogram from qiskit import IBMQ, assemble, transpile from qiskit.tools.monitor import job_monitor from qiskit.tools.monitor import job_monitor import argparse, sys import time provider = IBMQ.load_account() parser = argparse.ArgumentParser() parser.add_argument('--s', help = 'Enter the secret string.') class Bernstein_Vazirani(object): def __init__(self, n, s): self.n = n self.s = s def _run_bv(self): bv_circuit = QuantumCircuit(self.n+1,self.n) bv_circuit.h(self.n) bv_circuit.barrier() bv_circuit.z(self.n) bv_circuit.barrier() for i in range(self.n): bv_circuit.h(i) bv_circuit.barrier() s = self.s[::-1] for q in range(self.n): if s[q] == '0': bv_circuit.i(q) else: bv_circuit.cx(q, self.n) bv_circuit.barrier() for i in range(self.n): bv_circuit.h(i) bv_circuit.barrier() for i in range(self.n): bv_circuit.measure(i, i) backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= len(self.qubits) and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) shots = 8000 job = execute(bv_circuit, backend=backend, shots=shots, optimization_level=3) job_monitor(job, interval = 2) try: result = job.result() except: print(job.error_message()) return -1, -1 answer = result.get_counts(bv_circuit) print(answer) fi = plot_histogram(answer) fi.savefig(fname = "bv_results4_8000.png") print("--%s seconds--" % result.time_taken) if __name__ == '__main__': start_time = time.time() args = parser.parse_args() s = args.s for i in s: if i != '0' and i != '1': raise AssertionError("s must be a bitstring") n = len(s) bv = Bernstein_Vazirani(n, s) bv._run_bv()
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Basic rescheduling functions which take schedule or instructions and return new schedules.""" import warnings from collections import defaultdict from typing import List, Optional, Iterable, Union, Type import numpy as np from qiskit.pulse import channels as chans, exceptions, instructions from qiskit.pulse.channels import ClassicalIOChannel from qiskit.pulse.exceptions import PulseError from qiskit.pulse.exceptions import UnassignedDurationError from qiskit.pulse.instruction_schedule_map import InstructionScheduleMap from qiskit.pulse.instructions import directives from qiskit.pulse.schedule import Schedule, ScheduleBlock, ScheduleComponent def block_to_schedule(block: ScheduleBlock) -> Schedule: """Convert ``ScheduleBlock`` to ``Schedule``. Args: block: A ``ScheduleBlock`` to convert. Returns: Scheduled pulse program. Raises: UnassignedDurationError: When any instruction duration is not assigned. PulseError: When the alignment context duration is shorter than the schedule duration. .. note:: This transform may insert barriers in between contexts. """ if not block.is_schedulable(): raise UnassignedDurationError( "All instruction durations should be assigned before creating `Schedule`." "Please check `.parameters` to find unassigned parameter objects." ) schedule = Schedule.initialize_from(block) for op_data in block.blocks: if isinstance(op_data, ScheduleBlock): context_schedule = block_to_schedule(op_data) if hasattr(op_data.alignment_context, "duration"): # context may have local scope duration, e.g. EquispacedAlignment for 1000 dt post_buffer = op_data.alignment_context.duration - context_schedule.duration if post_buffer < 0: raise PulseError( f"ScheduleBlock {op_data.name} has longer duration than " "the specified context duration " f"{context_schedule.duration} > {op_data.duration}." ) else: post_buffer = 0 schedule.append(context_schedule, inplace=True) # prevent interruption by following instructions. # padding with delay instructions is no longer necessary, thanks to alignment context. if post_buffer > 0: context_boundary = instructions.RelativeBarrier(*op_data.channels) schedule.append(context_boundary.shift(post_buffer), inplace=True) else: schedule.append(op_data, inplace=True) # transform with defined policy return block.alignment_context.align(schedule) def compress_pulses(schedules: List[Schedule]) -> List[Schedule]: """Optimization pass to replace identical pulses. Args: schedules: Schedules to compress. Returns: Compressed schedules. """ existing_pulses = [] new_schedules = [] for schedule in schedules: new_schedule = Schedule.initialize_from(schedule) for time, inst in schedule.instructions: if isinstance(inst, instructions.Play): if inst.pulse in existing_pulses: idx = existing_pulses.index(inst.pulse) identical_pulse = existing_pulses[idx] new_schedule.insert( time, instructions.Play(identical_pulse, inst.channel, inst.name), inplace=True, ) else: existing_pulses.append(inst.pulse) new_schedule.insert(time, inst, inplace=True) else: new_schedule.insert(time, inst, inplace=True) new_schedules.append(new_schedule) return new_schedules def flatten(program: Schedule) -> Schedule: """Flatten (inline) any called nodes into a Schedule tree with no nested children. Args: program: Pulse program to remove nested structure. Returns: Flatten pulse program. Raises: PulseError: When invalid data format is given. """ if isinstance(program, Schedule): flat_sched = Schedule.initialize_from(program) for time, inst in program.instructions: flat_sched.insert(time, inst, inplace=True) return flat_sched else: raise PulseError(f"Invalid input program {program.__class__.__name__} is specified.") def inline_subroutines(program: Union[Schedule, ScheduleBlock]) -> Union[Schedule, ScheduleBlock]: """Recursively remove call instructions and inline the respective subroutine instructions. Assigned parameter values, which are stored in the parameter table, are also applied. The subroutine is copied before the parameter assignment to avoid mutation problem. Args: program: A program which may contain the subroutine, i.e. ``Call`` instruction. Returns: A schedule without subroutine. Raises: PulseError: When input program is not valid data format. """ if isinstance(program, Schedule): return _inline_schedule(program) elif isinstance(program, ScheduleBlock): return _inline_block(program) else: raise PulseError(f"Invalid program {program.__class__.__name__} is specified.") def _inline_schedule(schedule: Schedule) -> Schedule: """A helper function to inline subroutine of schedule. .. note:: If subroutine is ``ScheduleBlock`` it is converted into Schedule to get ``t0``. """ ret_schedule = Schedule.initialize_from(schedule) for t0, inst in schedule.children: # note that schedule.instructions unintentionally flatten the nested schedule. # this should be performed by another transformer node. if isinstance(inst, instructions.Call): # bind parameter subroutine = inst.assigned_subroutine() # convert into schedule if block is given if isinstance(subroutine, ScheduleBlock): subroutine = block_to_schedule(subroutine) # recursively inline the program inline_schedule = _inline_schedule(subroutine) ret_schedule.insert(t0, inline_schedule, inplace=True) elif isinstance(inst, Schedule): # recursively inline the program inline_schedule = _inline_schedule(inst) ret_schedule.insert(t0, inline_schedule, inplace=True) else: ret_schedule.insert(t0, inst, inplace=True) return ret_schedule def _inline_block(block: ScheduleBlock) -> ScheduleBlock: """A helper function to inline subroutine of schedule block. .. note:: If subroutine is ``Schedule`` the function raises an error. """ ret_block = ScheduleBlock.initialize_from(block) for inst in block.blocks: if isinstance(inst, instructions.Call): # bind parameter subroutine = inst.assigned_subroutine() if isinstance(subroutine, Schedule): raise PulseError( f"A subroutine {subroutine.name} is a pulse Schedule. " "This program cannot be inserted into ScheduleBlock because " "t0 associated with instruction will be lost." ) # recursively inline the program inline_block = _inline_block(subroutine) ret_block.append(inline_block, inplace=True) elif isinstance(inst, ScheduleBlock): # recursively inline the program inline_block = _inline_block(inst) ret_block.append(inline_block, inplace=True) else: ret_block.append(inst, inplace=True) return ret_block def remove_directives(schedule: Schedule) -> Schedule: """Remove directives. Args: schedule: A schedule to remove compiler directives. Returns: A schedule without directives. """ return schedule.exclude(instruction_types=[directives.Directive]) def remove_trivial_barriers(schedule: Schedule) -> Schedule: """Remove trivial barriers with 0 or 1 channels. Args: schedule: A schedule to remove trivial barriers. Returns: schedule: A schedule without trivial barriers """ def filter_func(inst): return isinstance(inst[1], directives.RelativeBarrier) and len(inst[1].channels) < 2 return schedule.exclude(filter_func) def align_measures( schedules: Iterable[ScheduleComponent], inst_map: Optional[InstructionScheduleMap] = None, cal_gate: str = "u3", max_calibration_duration: Optional[int] = None, align_time: Optional[int] = None, align_all: Optional[bool] = True, ) -> List[Schedule]: """Return new schedules where measurements occur at the same physical time. This transformation will align the first :class:`.Acquire` on every channel to occur at the same time. Minimum measurement wait time (to allow for calibration pulses) is enforced and may be set with ``max_calibration_duration``. By default only instructions containing a :class:`.AcquireChannel` or :class:`.MeasureChannel` will be shifted. If you wish to keep the relative timing of all instructions in the schedule set ``align_all=True``. This method assumes that ``MeasureChannel(i)`` and ``AcquireChannel(i)`` correspond to the same qubit and the acquire/play instructions should be shifted together on these channels. .. code-block:: from qiskit import pulse from qiskit.pulse import transforms d0 = pulse.DriveChannel(0) m0 = pulse.MeasureChannel(0) a0 = pulse.AcquireChannel(0) mem0 = pulse.MemorySlot(0) sched = pulse.Schedule() sched.append(pulse.Play(pulse.Constant(10, 0.5), d0), inplace=True) sched.append(pulse.Play(pulse.Constant(10, 1.), m0).shift(sched.duration), inplace=True) sched.append(pulse.Acquire(20, a0, mem0).shift(sched.duration), inplace=True) sched_shifted = sched << 20 aligned_sched, aligned_sched_shifted = transforms.align_measures([sched, sched_shifted]) assert aligned_sched == aligned_sched_shifted If it is desired to only shift acquisition and measurement stimulus instructions set the flag ``align_all=False``: .. code-block:: aligned_sched, aligned_sched_shifted = transforms.align_measures( [sched, sched_shifted], align_all=False, ) assert aligned_sched != aligned_sched_shifted Args: schedules: Collection of schedules to be aligned together inst_map: Mapping of circuit operations to pulse schedules cal_gate: The name of the gate to inspect for the calibration time max_calibration_duration: If provided, inst_map and cal_gate will be ignored align_time: If provided, this will be used as final align time. align_all: Shift all instructions in the schedule such that they maintain their relative alignment with the shifted acquisition instruction. If ``False`` only the acquisition and measurement pulse instructions will be shifted. Returns: The input list of schedules transformed to have their measurements aligned. Raises: PulseError: If the provided alignment time is negative. """ def get_first_acquire_times(schedules): """Return a list of first acquire times for each schedule.""" acquire_times = [] for schedule in schedules: visited_channels = set() qubit_first_acquire_times = defaultdict(lambda: None) for time, inst in schedule.instructions: if isinstance(inst, instructions.Acquire) and inst.channel not in visited_channels: visited_channels.add(inst.channel) qubit_first_acquire_times[inst.channel.index] = time acquire_times.append(qubit_first_acquire_times) return acquire_times def get_max_calibration_duration(inst_map, cal_gate): """Return the time needed to allow for readout discrimination calibration pulses.""" # TODO (qiskit-terra #5472): fix behavior of this. max_calibration_duration = 0 for qubits in inst_map.qubits_with_instruction(cal_gate): cmd = inst_map.get(cal_gate, qubits, np.pi, 0, np.pi) max_calibration_duration = max(cmd.duration, max_calibration_duration) return max_calibration_duration if align_time is not None and align_time < 0: raise exceptions.PulseError("Align time cannot be negative.") first_acquire_times = get_first_acquire_times(schedules) # Extract the maximum acquire in every schedule across all acquires in the schedule. # If there are no acquires in the schedule default to 0. max_acquire_times = [max(0, *times.values()) for times in first_acquire_times] if align_time is None: if max_calibration_duration is None: if inst_map: max_calibration_duration = get_max_calibration_duration(inst_map, cal_gate) else: max_calibration_duration = 0 align_time = max(max_calibration_duration, *max_acquire_times) # Shift acquires according to the new scheduled time new_schedules = [] for sched_idx, schedule in enumerate(schedules): new_schedule = Schedule.initialize_from(schedule) stop_time = schedule.stop_time if align_all: if first_acquire_times[sched_idx]: shift = align_time - max_acquire_times[sched_idx] else: shift = align_time - stop_time else: shift = 0 for time, inst in schedule.instructions: measurement_channels = { chan.index for chan in inst.channels if isinstance(chan, (chans.MeasureChannel, chans.AcquireChannel)) } if measurement_channels: sched_first_acquire_times = first_acquire_times[sched_idx] max_start_time = max( sched_first_acquire_times[chan] for chan in measurement_channels if chan in sched_first_acquire_times ) shift = align_time - max_start_time if shift < 0: warnings.warn( "The provided alignment time is scheduling an acquire instruction " "earlier than it was scheduled for in the original Schedule. " "This may result in an instruction being scheduled before t=0 and " "an error being raised." ) new_schedule.insert(time + shift, inst, inplace=True) new_schedules.append(new_schedule) return new_schedules def add_implicit_acquires(schedule: ScheduleComponent, meas_map: List[List[int]]) -> Schedule: """Return a new schedule with implicit acquires from the measurement mapping replaced by explicit ones. .. warning:: Since new acquires are being added, Memory Slots will be set to match the qubit index. This may overwrite your specification. Args: schedule: Schedule to be aligned. meas_map: List of lists of qubits that are measured together. Returns: A ``Schedule`` with the additional acquisition instructions. """ new_schedule = Schedule.initialize_from(schedule) acquire_map = {} for time, inst in schedule.instructions: if isinstance(inst, instructions.Acquire): if inst.mem_slot and inst.mem_slot.index != inst.channel.index: warnings.warn( "One of your acquires was mapped to a memory slot which didn't match" " the qubit index. I'm relabeling them to match." ) # Get the label of all qubits that are measured with the qubit(s) in this instruction all_qubits = [] for sublist in meas_map: if inst.channel.index in sublist: all_qubits.extend(sublist) # Replace the old acquire instruction by a new one explicitly acquiring all qubits in # the measurement group. for i in all_qubits: explicit_inst = instructions.Acquire( inst.duration, chans.AcquireChannel(i), mem_slot=chans.MemorySlot(i), kernel=inst.kernel, discriminator=inst.discriminator, ) if time not in acquire_map: new_schedule.insert(time, explicit_inst, inplace=True) acquire_map = {time: {i}} elif i not in acquire_map[time]: new_schedule.insert(time, explicit_inst, inplace=True) acquire_map[time].add(i) else: new_schedule.insert(time, inst, inplace=True) return new_schedule def pad( schedule: Schedule, channels: Optional[Iterable[chans.Channel]] = None, until: Optional[int] = None, inplace: bool = False, pad_with: Optional[Type[instructions.Instruction]] = None, ) -> Schedule: """Pad the input Schedule with ``Delay``s on all unoccupied timeslots until ``schedule.duration`` or ``until`` if not ``None``. Args: schedule: Schedule to pad. channels: Channels to pad. Defaults to all channels in ``schedule`` if not provided. If the supplied channel is not a member of ``schedule`` it will be added. until: Time to pad until. Defaults to ``schedule.duration`` if not provided. inplace: Pad this schedule by mutating rather than returning a new schedule. pad_with: Pulse ``Instruction`` subclass to be used for padding. Default to :class:`~qiskit.pulse.instructions.Delay` instruction. Returns: The padded schedule. Raises: PulseError: When non pulse instruction is set to `pad_with`. """ until = until or schedule.duration channels = channels or schedule.channels if pad_with: if issubclass(pad_with, instructions.Instruction): pad_cls = pad_with else: raise PulseError( f"'{pad_with.__class__.__name__}' is not valid pulse instruction to pad with." ) else: pad_cls = instructions.Delay for channel in channels: if isinstance(channel, ClassicalIOChannel): continue if channel not in schedule.channels: schedule = schedule.insert(0, instructions.Delay(until, channel), inplace=inplace) continue prev_time = 0 timeslots = iter(schedule.timeslots[channel]) to_pad = [] while prev_time < until: try: t0, t1 = next(timeslots) except StopIteration: to_pad.append((prev_time, until - prev_time)) break if prev_time < t0: to_pad.append((prev_time, min(t0, until) - prev_time)) prev_time = t1 for t0, duration in to_pad: schedule = schedule.insert(t0, pad_cls(duration, channel), inplace=inplace) return schedule
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test library of weighted adder circuits.""" import unittest from collections import defaultdict from ddt import ddt, data import numpy as np from qiskit.test.base import QiskitTestCase from qiskit import BasicAer, execute from qiskit.circuit import QuantumCircuit from qiskit.circuit.library import WeightedAdder @ddt class TestWeightedAdder(QiskitTestCase): """Test the weighted adder circuit.""" def assertSummationIsCorrect(self, adder): """Assert that ``adder`` correctly implements the summation w.r.t. its set weights.""" circuit = QuantumCircuit(adder.num_qubits) circuit.h(list(range(adder.num_state_qubits))) circuit.append(adder.to_instruction(), list(range(adder.num_qubits))) backend = BasicAer.get_backend("statevector_simulator") statevector = execute(circuit, backend).result().get_statevector() probabilities = defaultdict(float) for i, statevector_amplitude in enumerate(statevector): i = bin(i)[2:].zfill(circuit.num_qubits)[adder.num_ancillas :] probabilities[i] += np.real(np.abs(statevector_amplitude) ** 2) expectations = defaultdict(float) for x in range(2**adder.num_state_qubits): bits = np.array(list(bin(x)[2:].zfill(adder.num_state_qubits)), dtype=int) summation = bits.dot(adder.weights[::-1]) entry = bin(summation)[2:].zfill(adder.num_sum_qubits) + bin(x)[2:].zfill( adder.num_state_qubits ) expectations[entry] = 1 / 2**adder.num_state_qubits for state, probability in probabilities.items(): self.assertAlmostEqual(probability, expectations[state]) @data([0], [1, 2, 1], [4], [1, 2, 1, 1, 4]) def test_summation(self, weights): """Test the weighted adder on some examples.""" adder = WeightedAdder(len(weights), weights) self.assertSummationIsCorrect(adder) def test_mutability(self): """Test the mutability of the weighted adder.""" adder = WeightedAdder() with self.subTest(msg="missing number of state qubits"): with self.assertRaises(AttributeError): print(adder.draw()) with self.subTest(msg="default weights"): adder.num_state_qubits = 3 default_weights = 3 * [1] self.assertListEqual(adder.weights, default_weights) with self.subTest(msg="specify weights"): adder.weights = [3, 2, 1] self.assertSummationIsCorrect(adder) with self.subTest(msg="mismatching number of state qubits and weights"): with self.assertRaises(ValueError): adder.weights = [0, 1, 2, 3] print(adder.draw()) with self.subTest(msg="change all attributes"): adder.num_state_qubits = 4 adder.weights = [2, 0, 1, 1] self.assertSummationIsCorrect(adder) if __name__ == "__main__": unittest.main()
https://github.com/WhenTheyCry96/qiskitHackathon2022
WhenTheyCry96
import warnings warnings.filterwarnings('ignore') from qiskit_metal import designs, MetalGUI design = designs.DesignPlanar() design.overwrite_enabled = True design.chips.main.size_x = '12mm' design.chips.main.size_y = '10mm' gui = MetalGUI(design) from qiskit_metal.qlibrary.qubits.transmon_pocket_cl import TransmonPocketCL design.delete_all_components() design_span_x = 5 design_span_y = 3 half_chip_width = design_span_x / 2 half_chip_height = design_span_y / 2 connection_pads_options = dict( a = dict(loc_W=1, loc_H=-1), b = dict(loc_W=1, loc_H=1), c = dict(loc_W=-1, loc_H=-1) ) connection23_pads_options = dict( a = dict(loc_W=1, loc_H=-1), c = dict(loc_W=-1, loc_H=-1) ) transmons = [] transmons.append(TransmonPocketCL(design, 'Q1', options=dict(pos_x=f'-{half_chip_width}mm', pos_y=f'{-half_chip_height}mm', connection_pads=dict(**connection_pads_options)))) transmons.append(TransmonPocketCL(design, 'Q2', options=dict(pos_x=f'0mm', pos_y=f'{half_chip_height}mm', orientation=-90, connection_pads=dict(d=dict(loc_W=-1, loc_H=1), **connection23_pads_options)))) transmons.append(TransmonPocketCL(design, 'Q3', options=dict(pos_x=f'0mm', pos_y=f'{-half_chip_height}mm', orientation=90, connection_pads=dict(d=dict(loc_W=-1, loc_H=1), **connection23_pads_options)))) transmons.append(TransmonPocketCL(design, 'Q4', options=dict(pos_x=f'{half_chip_width}mm', pos_y=f'{half_chip_height}mm', orientation=180, connection_pads=dict(**connection_pads_options)))) gui.rebuild() gui.autoscale() from qiskit_metal.qlibrary.tlines.meandered import RouteMeander from qiskit_metal import Dict fillet='99.99um' options = Dict( meander=Dict( lead_start='0.1mm', lead_end='0.1mm', asymmetry='0 um') ) def connect(component_name: str, component1: str, pin1: str, component2: str, pin2: str, length: str, asymmetry='0 um', start_strght='0 um', end_strght='0 um', flip=False): """Connect two pins with a CPW.""" myoptions = Dict( pin_inputs=Dict( start_pin=Dict( component=component1, pin=pin1), end_pin=Dict( component=component2, pin=pin2)), lead=Dict( start_straight=start_strght, end_straight=end_strght ), total_length=length, fillet = '99.9um') myoptions.update(options) myoptions.meander.asymmetry = asymmetry myoptions.meander.lead_direction_inverted = 'true' if flip else 'false' return RouteMeander(design, component_name, myoptions) asym_h = 100 asym_v = 100 cpw = [] cpw.append(connect('cpw1', 'Q1', 'b', 'Q2', 'a', '8 mm', f'+{asym_h}um', '0.1mm', '0.1mm')) cpw.append(connect('cpw3', 'Q4', 'b', 'Q3', 'a', '8 mm', f'+{asym_h}um', '0.1mm', '0.1mm')) cpw.append(connect('cpw4', 'Q3', 'd', 'Q1', 'a', '8 mm', f'-{asym_h}um', '0.1mm', '0.1mm')) cpw.append(connect('cpw5', 'Q2', 'd', 'Q4', 'a', '8 mm', f'-{asym_h}um', '0.1mm', '0.1mm')) gui.rebuild() gui.autoscale() from qiskit_metal.qlibrary.terminations.launchpad_wb_coupled import LaunchpadWirebondCoupled readouts_lwc = [] control_lwc = [] offset_x = 0 offset_y = 1 #Readouts readouts_lwc.append(LaunchpadWirebondCoupled(design, 'R1', options = dict( pos_x = '-5mm', pos_y = f'-{half_chip_height+offset_y}mm', lead_length = '30um'))) readouts_lwc.append(LaunchpadWirebondCoupled(design, 'R2', options = dict( pos_x = '-1mm', pos_y = '4mm', orientation = -90, lead_length = '30um'))) readouts_lwc.append(LaunchpadWirebondCoupled(design, 'R3', options = dict( pos_x = '1mm', pos_y = '-4mm', orientation = 90, lead_length = '30um'))) readouts_lwc.append(LaunchpadWirebondCoupled(design, 'R4', options = dict( pos_x = '5mm', pos_y = f'{half_chip_height+offset_y}mm', orientation = 180, lead_length = '30um'))) #Controls control_lwc.append(LaunchpadWirebondCoupled(design, 'CL1', options = dict( pos_x = '-5mm', pos_y = '2mm', lead_length = '30um'))) control_lwc.append(LaunchpadWirebondCoupled(design, 'CL2', options = dict( pos_x = '4mm', pos_y = '4mm', orientation = -90, lead_length = '30um'))) control_lwc.append(LaunchpadWirebondCoupled(design, 'CL3', options = dict( pos_x = '-4mm', pos_y = '-4mm', orientation = 90, lead_length = '30um'))) control_lwc.append(LaunchpadWirebondCoupled(design, 'CL4', options = dict( pos_x = '5mm', pos_y = '-2mm', orientation = 180, lead_length = '30um'))) gui.rebuild() gui.autoscale() readout_lines = [] asym_14 = 700 asym_23 = 700 options = Dict( lead=Dict( start_straight='330um', end_straight='0um'), fillet='99.99um') readout_lines.append(connect('ol1', 'Q1', 'c', 'R1', 'tie', '8 mm', f'{asym_14}um')) options = Dict( lead=Dict( start_straight='430um', end_straight='0um'), fillet='99.99um') readout_lines.append(connect('ol2', 'Q2', 'c', 'R2', 'tie', '8 mm', f'{asym_23}um')) readout_lines.append(connect('ol3', 'Q3', 'c', 'R3', 'tie', '8 mm', f'{asym_23}um')) readout_lines.append(connect('ol4', 'Q4', 'c', 'R4', 'tie', '8 mm', f'{asym_14}um')) gui.rebuild() gui.autoscale() from qiskit_metal.qlibrary.tlines.anchored_path import RouteAnchors from collections import OrderedDict import numpy as np control_lines = [] def connectRouteAnchor(name: str, component1: str, pin1: str, component2: str, pin2: str, anchor_points: OrderedDict) -> RouteAnchors: options_line_cl = dict( pin_inputs = dict(start_pin = dict(component = component1, pin = pin1), end_pin = dict(component = component2, pin = pin2)), anchors = anchor_points, lead = dict(start_straight = '200um', end_straight = '225um'), fillet = fillet ) return RouteAnchors(design, name, options_line_cl) anchors1c = OrderedDict() anchors1c[0] = np.array([-4, -1.42]) anchors1c[1] = np.array([-4, 2]) control_lines.append(connectRouteAnchor('line_cl1', 'Q1', 'Charge_Line', 'CL1', 'tie', anchors1c)) anchors2c = OrderedDict() anchors2c[0] = np.array([0.08, 3.25]) anchors2c[1] = np.array([4, 3.25]) control_lines.append(connectRouteAnchor('line_cl2', 'Q2', 'Charge_Line', 'CL2', 'tie', anchors2c)) anchors3c = OrderedDict() anchors3c[0] = np.array([-0.08, -3.25]) anchors3c[1] = np.array([-4, -3.25]) control_lines.append(connectRouteAnchor('line_cl3', 'Q3', 'Charge_Line', 'CL3', 'tie', anchors3c)) anchors4c = OrderedDict() anchors4c[0] = np.array([4, 1.42]) anchors4c[1] = np.array([4, -2]) control_lines.append(connectRouteAnchor('line_cl4', 'Q4', 'Charge_Line', 'CL4', 'tie', anchors4c)) gui.rebuild() gui.autoscale() gui.autoscale() gui.screenshot(name="full_design") import numpy as np from scipy.constants import c, h, pi, hbar, e from qiskit_metal.analyses.em.cpw_calculations import guided_wavelength # constants: phi0 = h/(2*e) varphi0 = phi0/(2*pi) # project target parameters f_qList = np.around(np.linspace(5.25, 5.75, 4),2) # GHz f_rList = f_qList + 1.8 # GHz L_JJList = np.around(varphi0**2/((f_qList*1e9+300e6)**2/(8*300e6))/h*1e9, 2) # nH # initial CPW readout lengths def find_resonator_length(frequency, line_width, line_gap, N): #frequency in GHz #line_width/line_gap in um #N -> 2 for lambda/2, 4 for lambda/4 [lambdaG, etfSqrt, q] = guided_wavelength(frequency*10**9, line_width*10**-6, line_gap*10**-6, 750*10**-6, 200*10**-9) return str(lambdaG/N*10**3)+" mm" find_resonator_length(f_rList, 10, 6, 2) find_resonator_length(np.around(np.linspace(8, 9.2, 4), 2), 10, 6, 2) transmons[0].options.pad_gap = '40um' transmons[0].options.pad_width = '550um' # 405 transmons[0].options.pad_height = '120um' transmons[1].options.pad_gap = '40um' transmons[1].options.pad_width = '540um' # 405 transmons[1].options.pad_height = '120um' transmons[2].options.pad_gap = '40um' transmons[2].options.pad_width = '530um' # 405 transmons[2].options.pad_height = '120um' transmons[3].options.pad_gap = '40um' transmons[3].options.pad_width = '520um' # 405 transmons[3].options.pad_height = '120um' readout_lines[0].options.total_length = '8.63mm' readout_lines[1].options.total_length = '8.42mm' readout_lines[2].options.total_length = '8.24mm' readout_lines[3].options.total_length = '8.06mm' cpw[0].options.total_length = '7.6mm' cpw[1].options.total_length = '7.2mm' cpw[2].options.total_length = '6.9mm' cpw[3].options.total_length = '6.6mm' gui.rebuild() gui.autoscale() qcomps = design.components # short handle (alias) qcomps['Q1'].options['hfss_inductance'] = 'Lj1' qcomps['Q1'].options['hfss_capacitance'] = 'Cj1' qcomps['Q2'].options['hfss_inductance'] = 'Lj2' qcomps['Q2'].options['hfss_capacitance'] = 'Cj2' qcomps['Q3'].options['hfss_inductance'] = 'Lj3' qcomps['Q3'].options['hfss_capacitance'] = 'Cj3' qcomps['Q4'].options['hfss_inductance'] = 'Lj4' qcomps['Q4'].options['hfss_capacitance'] = 'Cj4' from qiskit_metal.analyses.quantization import EPRanalysis, LOManalysis c1 = LOManalysis(design, "q3d") q3d1 = c1.sim.renderer q3d1.start() q3d1.activate_ansys_design("qubit_pad_w_550_520", 'capacitive') q3d1.render_design([], []) q3d1.add_q3d_setup(name="Setup", max_passes=15, min_converged_passes=5,percent_error=0.05) q3d1.analyze_setup("Setup") c1.sim.capacitance_matrix, c1.sim.units = q3d1.get_capacitance_matrix() c1.sim.capacitance_all_passes, _ = q3d1.get_capacitance_all_passes() c1.sim.capacitance_matrix Out[14].to_csv("full_pad_width550_520_C.txt")
https://github.com/JanLahmann/RasQberry
JanLahmann
#!/usr/bin/env python # coding: utf-8 # Credits: https://github.com/wmazin/Visualizing-Quantum-Computing-using-fractals ############################################################# # Importing standard python libraries from typing import Tuple, List from math import pi # Importing standard Qiskit libraries from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from numpy import complex64, ndarray import numpy as np class QuantumFractalCircuit: def __init__(self, number_of_qubits:int = 1, number_of_frames: int = 60) -> None: self.n_qubits = number_of_qubits self.n_frames = number_of_frames # Create the circuit for which the gates will be applied self.quantum_circuit = QuantumCircuit(number_of_qubits) self.quantum_circuit.h(0) # noinspection PyUnresolvedReferences def get_quantum_circuit(self, frame_iteration:int = 0) -> Tuple[complex64, QuantumCircuit, ndarray[complex64]]: # Create a fresh copy of the Quantum Circuit quantum_circuit = self.quantum_circuit.copy() # Calculate the rotation Phi and apply it to the local Quantum Circuit phi_rotation = frame_iteration * 2 * pi / self.n_frames quantum_circuit.rz(phi_rotation, 0) # Simulate the Quantum Circuit and extract the statevector statevector_array = Statevector(quantum_circuit) statevector_idx_n = statevector_array.data.astype(complex64) statevector_idx_0 = statevector_array.data[0].astype(complex64) statevector_idx_1 = statevector_array.data[1].astype(complex64) # Check statevector values and calculate a new statevector if statevector_idx_1.real != 0 or statevector_idx_1.imag != 0: statevector_new = statevector_idx_0 / statevector_idx_1 statevector_new = round(statevector_new.real, 2) + round(statevector_new.imag, 2) * 1j else: statevector_new = 0 return statevector_new.astype(complex64), quantum_circuit, statevector_idx_n
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Decorator for using with Qiskit unit tests.""" import functools import os import sys import unittest from .utils import Path from .http_recorder import http_recorder from .testing_options import get_test_options def is_aer_provider_available(): """Check if the C++ simulator can be instantiated. Returns: bool: True if simulator executable is available """ # TODO: HACK FROM THE DEPTHS OF DESPAIR AS AER DOES NOT WORK ON MAC if sys.platform == 'darwin': return False try: import qiskit.providers.aer # pylint: disable=unused-import except ImportError: return False return True def requires_aer_provider(test_item): """Decorator that skips test if qiskit aer provider is not available Args: test_item (callable): function or class to be decorated. Returns: callable: the decorated function. """ reason = 'Aer provider not found, skipping test' return unittest.skipIf(not is_aer_provider_available(), reason)(test_item) def slow_test(func): """Decorator that signals that the test takes minutes to run. Args: func (callable): test function to be decorated. Returns: callable: the decorated function. """ @functools.wraps(func) def _wrapper(*args, **kwargs): skip_slow = not TEST_OPTIONS['run_slow'] if skip_slow: raise unittest.SkipTest('Skipping slow tests') return func(*args, **kwargs) return _wrapper def _get_credentials(test_object, test_options): """Finds the credentials for a specific test and options. Args: test_object (QiskitTestCase): The test object asking for credentials test_options (dict): Options after QISKIT_TESTS was parsed by get_test_options. Returns: Credentials: set of credentials Raises: ImportError: if the Exception: when the credential could not be set and they are needed for that set of options """ try: from qiskit.providers.ibmq.credentials import (Credentials, discover_credentials) except ImportError: raise ImportError('qiskit-ibmq-provider could not be found, and is ' 'required for mocking or executing online tests.') dummy_credentials = Credentials( 'dummyapiusersloginWithTokenid01', 'https://quantumexperience.ng.bluemix.net/api') if test_options['mock_online']: return dummy_credentials if os.getenv('USE_ALTERNATE_ENV_CREDENTIALS', ''): # Special case: instead of using the standard credentials mechanism, # load them from different environment variables. This assumes they # will always be in place, as is used by the Travis setup. return Credentials(os.getenv('IBMQ_TOKEN'), os.getenv('IBMQ_URL')) else: # Attempt to read the standard credentials. discovered_credentials = discover_credentials() if discovered_credentials: # Decide which credentials to use for testing. if len(discovered_credentials) > 1: try: # Attempt to use QE credentials. return discovered_credentials[dummy_credentials.unique_id()] except KeyError: pass # Use the first available credentials. return list(discovered_credentials.values())[0] # No user credentials were found. if test_options['rec']: raise Exception('Could not locate valid credentials. You need them for ' 'recording tests against the remote API.') test_object.log.warning('No user credentials were detected. ' 'Running with mocked data.') test_options['mock_online'] = True return dummy_credentials def requires_qe_access(func): """Decorator that signals that the test uses the online API: It involves: * determines if the test should be skipped by checking environment variables. * if the `USE_ALTERNATE_ENV_CREDENTIALS` environment variable is set, it reads the credentials from an alternative set of environment variables. * if the test is not skipped, it reads `qe_token` and `qe_url` from `Qconfig.py`, environment variables or qiskitrc. * if the test is not skipped, it appends `qe_token` and `qe_url` as arguments to the test function. Args: func (callable): test function to be decorated. Returns: callable: the decorated function. """ @functools.wraps(func) def _wrapper(self, *args, **kwargs): if TEST_OPTIONS['skip_online']: raise unittest.SkipTest('Skipping online tests') credentials = _get_credentials(self, TEST_OPTIONS) self.using_ibmq_credentials = credentials.is_ibmq() kwargs.update({'qe_token': credentials.token, 'qe_url': credentials.url}) decorated_func = func if TEST_OPTIONS['rec'] or TEST_OPTIONS['mock_online']: # For recording or for replaying existing cassettes, the test # should be decorated with @use_cassette. vcr_mode = 'new_episodes' if TEST_OPTIONS['rec'] else 'none' decorated_func = http_recorder( vcr_mode, Path.CASSETTES.value).use_cassette()(decorated_func) return decorated_func(self, *args, **kwargs) return _wrapper TEST_OPTIONS = get_test_options()
https://github.com/InvictusWingsSRL/QiskitTutorials
InvictusWingsSRL
#Libraries needed to implement and simulate quantum circuits from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, transpile, qasm2, qasm3 from qiskit_aer import Aer from qiskit.primitives import BackendSampler #Custem functions to simplify answers import Our_Qiskit_Functions as oq #a part of the library presented in arXiv:1903.04359v1. import numpy as np import math as m import scipy as sci #Initialize backends simulators to visualize circuits S_simulator = Aer.backends(name='statevector_simulator')[0] M_simulator = Aer.backends(name='qasm_simulator')[0] q = QuantumRegister(4,name='q') H_qc = QuantumCircuit(q,name='qc') H_qc.x(q[0]) H_qc.id(q[1]) H_qc.x(q[2]) print('_____Initial State_________') oq.Wavefunction(H_qc) H_qc.h(q[0]) H_qc.x(q[1]) H_qc.y(q[2]) H_qc.z(q[3]) print('\n_____Operator H + X + Y + Z_________') oq.Wavefunction(H_qc) H_qc.h(q[0]) H_qc.x(q[1]) H_qc.y(q[2]) H_qc.z(q[3]) print('\n_____Operator H + X + Y + Z_________') oq.Wavefunction(H_qc); q = QuantumRegister(1,name='q') XZ_qc = QuantumCircuit(q,name='qc') XZ_qc.id(q[0]) print('_____Initial State_________') oq.Wavefunction(XZ_qc) XZ_qc.x(q[0]) XZ_qc.z(q[0]) print('\n_____Operator XZ_________') oq.Wavefunction(XZ_qc) XZ_qc.x(q[0]) XZ_qc.z(q[0]) print('\n_____Operator XZ_________') oq.Wavefunction(XZ_qc); q = QuantumRegister(1,name='q') XZ_qc = QuantumCircuit(q,name='qc') XZ_qc.id(q[0]) print('_____Initial State_________') oq.Wavefunction(XZ_qc) XZ_qc.x(q[0]) XZ_qc.z(q[0]) print('\n_____Operator XZ_________') oq.Wavefunction(XZ_qc) XZ_qc.z(q[0]) XZ_qc.x(q[0]) print('\n_____Operator ZX_________') oq.Wavefunction(XZ_qc); q = QuantumRegister(2,name='q') F_qc = QuantumCircuit(q,name='qc') F_qc.x(q[0]) F_qc.h(q[0]) F_qc.x(q[1]) F_qc.h(q[1]) print('_____Initial State_________') oq.Wavefunction(F_qc) F_qc.h(q[0]) F_qc.cp(m.pi/2,q[1],q[0]) F_qc.h(q[1]) print('\n_____After QFT_________') oq.Wavefunction(F_qc); q = QuantumRegister(3,name='q') F_qc = QuantumCircuit(q,name='qc') F_qc.x(q[2]) print('_____Initial State_________') oq.Wavefunction(F_qc) #---------------------------- qubit 0 F_qc.h(q[0]) F_qc.cp(m.pi/2,q[1],q[0]) F_qc.cp(m.pi/4,q[2],q[0]) #---------------------------- qubit 1 F_qc.h(q[1]) F_qc.cp(m.pi/4,q[2],q[1]) #---------------------------- qubit 2 F_qc.h(q[2]) print('\n_____After QFT_________') oq.Wavefunction(F_qc); q = QuantumRegister(2,name='q') F_qc = QuantumCircuit(q,name='qc') F_qc.x(q[0]) F_qc.h(q[0]) F_qc.x(q[1]) F_qc.h(q[1]) print('_____Initial State_________') oq.Wavefunction(F_qc) oq.QFT(F_qc,q,2) print('\n_____First QFT_________') oq.Wavefunction(F_qc) oq.QFT(F_qc,q,2) print('\n_____Second QFT_________') oq.Wavefunction(F_qc); q = QuantumRegister(2,name='q') F_qc = QuantumCircuit(q,name='qc') F_qc.x(q[0]) F_qc.h(q[0]) F_qc.x(q[1]) F_qc.h(q[1]) print('_____Initial State_________') oq.Wavefunction(F_qc) print(' ') F_qc.h(q[0]) F_qc.cp(m.pi/2,q[1],q[0]) F_qc.h(q[1]) print('_____QFT_________') oq.Wavefunction(F_qc) print(' ') F_qc.h(q[1]) F_qc.cp(-m.pi/2,q[1],q[0]) F_qc.h(q[0]) print('_____Inverse QFT_________') oq.Wavefunction(F_qc); q = QuantumRegister(2,name='q') F_qc = QuantumCircuit(q,name='qc') F_qc.x(q[0]) F_qc.h(q[0]) F_qc.x(q[1]) F_qc.h(q[1]) print('_____Initial State_________') oq.Wavefunction(F_qc) oq.QFT(F_qc,q,2) print('\n_____QFT_________') oq.Wavefunction(F_qc) oq.QFT_dgr(F_qc,q,2) print('\n_____Inverse QFT_________') oq.Wavefunction(F_qc); X = [0,1/m.sqrt(8),0,0,0,0,0,0] FX = oq.DFT(X, inverse = True) print('______DFT\u2020_________') for i in range(len(FX)): print ('State: ',oq.Binary(i,2**3), ' Amplitude: ', FX[i]) #=================================================================== q = QuantumRegister(3, name='q') qc = QuantumCircuit(q, name='qc') qc.x(q[2]) oq.QFT(qc,q,3) print('\n_____QFT________') oq.Wavefunction(qc); X = [0,1/m.sqrt(8),0,0,0,0,0,0] FX = oq.DFT(X, inverse = True) print('______DFT\u2020_________') for i in range(len(FX)): print ('State: ',oq.Binary(i,2**3), ' Amplitude: ', FX[i]) #=================================================================== q = QuantumRegister(3, name='q') qc = QuantumCircuit(q, name='qc') qc.x(q[2]) oq.QFT(qc,q,3) qc.swap(q[0],q[2]) print('\n_____QFT________') oq.Wavefunction(qc); q = QuantumRegister(2, name='q') anc = QuantumRegister(1, name='anc') FG_qc = QuantumCircuit(q, anc, name='qc') marked = [1,0] FG_qc.x(anc[0]) print('marked state: ',marked) print(' ') oq.QFT(FG_qc,q,2) print('_____Initial State (QFT)_________') oq.Wavefunction(FG_qc, systems=[2,1], show_systems=[True,False]) print(' ') oq.X_Transformation(FG_qc, q, marked) FG_qc.h(anc[0]) FG_qc.ccx(q[0],q[1],anc[0]) oq.X_Transformation(FG_qc,q,marked) FG_qc.h(anc[0]) print('__________Flip the marked state_____________') oq.Wavefunction(FG_qc, systems=[2,1], show_systems=[True,False]) print(' ') oq.QFT(FG_qc,q,2) print('_____QFT_________') oq.Wavefunction(FG_qc, systems=[2,1], show_systems=[True,False]) print(' ') FG_qc.h(anc[0]) oq.X_Transformation(FG_qc, q, [0,0]) FG_qc.ccx(q[0],q[1],anc[0]) FG_qc.h(anc[0]) oq.X_Transformation(FG_qc,q,[0,0]) print('__________Flip the |00> state_____________') oq.Wavefunction(FG_qc, systems=[2,1], show_systems=[True,False]) print(' ') oq.QFT_dgr(FG_qc,q,2) print('_____QFT_dgr_________') oq.Wavefunction(FG_qc, systems=[2,1], show_systems=[True,False]); X = [0,1/m.sqrt(8),0,0,0,0,0,0] FX = oq.DFT(X, inverse = True) print('______DFT\u2020_________') for i in range(len(FX)): print ('State: ',oq.Binary(i,2**3), ' Amplitude: ', FX[i]) #=================================================================== q = QuantumRegister(3, name='q') qc = QuantumCircuit(q, name='qc') qc.x(q[2]) oq.QFT(qc,q,3,swap=True) print('\n_____QFT________') oq.Wavefunction(qc); qc.draw(output='mpl')
https://github.com/baronefr/perceptron-dqa
baronefr
import tensorflow as tf import tensorflow.linalg as tfl import numpy as np import matplotlib.pyplot as plt from tqdm.notebook import tqdm physical_devices = tf.config.list_physical_devices('GPU') print('GPU devices:', physical_devices) if physical_devices: for device in physical_devices: tf.config.experimental.set_memory_growth(device, True) sigma_x = tfl.LinearOperatorFullMatrix([[0., 1.], [1., 0.]]) sigma_z = tfl.LinearOperatorFullMatrix([[1., 0.], [0., -1.]]) id = tfl.LinearOperatorIdentity(2) def H_perc(data, labels): n_data, n = data.shape # define a batch of ientities operators where batch is the #data id_batch = tfl.LinearOperatorIdentity(2, batch_shape=[n_data]) # define a batch of sigma_z operators where batch is the #data sigma_z_batch = tf.tile(tf.expand_dims(tf.constant([[1., 0.], [0., -1.]]), axis=0), [n_data, 1, 1]) sigma_z_op = tfl.LinearOperatorFullMatrix(sigma_z_batch) # define a batch of data operators where batch is the #data. # each coordinate of a single datum is casted into a 2x2 operator, # which will be composed with the corresponding sigma_z operator # result is a list of n [n_data, 2, 2] opearators data_ops = [tfl.LinearOperatorDiag(tf.repeat(data, [2], axis=1)[:,i:i+2]) for i in range(0, n*2, 2)] ops = [tfl.LinearOperatorKronecker([id_batch]*i+[tfl.LinearOperatorComposition([data_ops[i], sigma_z_op])]+[id_batch]*(n-i-1)).to_dense() for i in range(n)] # opearotrs are first stacked on the n dimension and reduced, then labels are applied, # then heaviside step function is applied (relu), and finally reduced over n_data return tf.reduce_sum(tf.nn.relu(-tf.reshape(labels, (-1, 1, 1))*tf.reduce_sum(tf.stack(ops), axis=0)), axis=0)# / tf.sqrt(n+0.) # reimplementation of the previous function with an eye over ram usage def H_perc_nobatch(data, labels): n_data, n = data.shape h_perc = tf.zeros((2**n, 2**n), dtype='float32') for i in tqdm(range(n_data), desc='Constructing H_perc'): op = tf.zeros((2**n, 2**n), dtype='float32') for j in range(n): data_op = tfl.LinearOperatorDiag(tf.repeat(data[i, :], [2], axis=0)[2*j:2*(j+1)]) op += tfl.LinearOperatorKronecker([id]*j+[tfl.LinearOperatorComposition([data_op, sigma_z])]+[id]*(n-j-1)).to_dense() del data_op h_perc += tf.nn.relu(-labels[i]*op) del op return h_perc #/ tf.sqrt(n+0.) def H_x(n): sigma_xs = [tfl.LinearOperatorKronecker([id]*i+[sigma_x]+[id]*(n-i-1)).to_dense() for i in range(n)] return -tf.reduce_sum(tf.stack(sigma_xs), axis=0) def H_z(n): sigma_zs = [tfl.LinearOperatorKronecker([id]*i+[sigma_z]+[id]*(n-i-1)).to_dense() for i in range(n)] return tf.reduce_sum(tf.stack(sigma_zs), axis=0) def H_QA(p, P, Hz, Hx): frac = p/P return tf.cast(frac*Hz + (1-frac)*Hx, dtype='complex128') def init_state(n): return tf.ones((2**n,), dtype='complex128')/tf.sqrt((2.**n+0.j)) data = tf.constant([[1., -1.], [-1., -1.]]) labels = tf.constant([1., -1.]) h_perc = H_perc(data, labels) h_perc n_data, n = data.shape # define a batch of ientities operators where batch is the #data id_batch = tfl.LinearOperatorIdentity(2, batch_shape=[n_data]) # define a batch of sigma_z operators where batch is the #data sigma_z_batch = tf.tile(tf.expand_dims(tf.constant([[1., 0.], [0., -1.]]), axis=0), [n_data, 1, 1]) sigma_z_op = tfl.LinearOperatorFullMatrix(sigma_z_batch) # define a batch of data operators where batch is the #data. # each coordinate of a single datum is casted into a 2x2 operator, # which will be composed with the corresponding sigma_z operator # result is a list of n [n_data, 2, 2] opearators data_ops = [tfl.LinearOperatorDiag(tf.repeat(data, [2], axis=1)[:,i:i+2]) for i in range(0, n*2, 2)] ops = [tfl.LinearOperatorKronecker([id_batch]*i+[tfl.LinearOperatorComposition([data_ops[i], sigma_z_op])]+[id_batch]*(n-i-1)).to_dense() for i in range(n)] tfl.LinearOperatorKronecker([tfl.LinearOperatorFullMatrix(np.array([[0., 0.], [0., 1.]], 'float32')), id]).to_dense() tfl.LinearOperatorKronecker([id, tfl.LinearOperatorFullMatrix(np.array([[0., 0.], [0., 1.]], 'float32'))]).to_dense() n = 10 hadamard = tfl.LinearOperatorFullMatrix(np.array([[1., 1.], [1., -1.]], 'float32') / np.sqrt(2.)) ops = [tfl.LinearOperatorKronecker([id]*i+[hadamard]+[id]*(n-i-1)).to_dense() for i in range(n)] np.diag(tfl.LinearOperatorKronecker([sigma_z]*10).to_dense())[:4] tf.reduce_sum(tf.stack(ops), axis=0)[:,0] # define a batch of sigma_z operators where batch is the #data sigma_z_batch = tf.tile(tf.expand_dims(tf.constant([[1., 0.], [0., -1.]]), axis=0), [n_data, 1, 1]) sigma_z_op = tfl.LinearOperatorFullMatrix(sigma_z_batch) # define a batch of data operators where batch is the #data. # each coordinate of a single datum is casted into a 2x2 operator, # which will be composed with the corresponding sigma_z operator # result is a list of n [n_data, 2, 2] opearators data_ops = [tfl.LinearOperatorDiag(tf.repeat(data, [2], axis=1)[:,i:i+2]) for i in range(0, n*2, 2)] ops = [tfl.LinearOperatorKronecker([id_batch]*i+[tfl.LinearOperatorComposition([data_ops[i], sigma_z_op])]+[id_batch]*(n-i-1)).to_dense() for i in range(n)] H_perc_nobatch(data, labels) tfl.eigh(h_perc) h_x = H_x(10) h_x = tf.cast(h_x, 'complex64') eigvals, eigvecs = tfl.eigh(h_x) tfl.matmul(eigvecs, tfl.matmul(tfl.diag(tf.exp(-1.j*eigvals)), eigvecs, adjoint_b=True), adjoint_a=False) datum_ops = [tfl.LinearOperatorDiag(tf.repeat(data[0,:], [2], axis=0)[i:i+2]) for i in range(0, 2*2, 2)] datum_ops[1].to_dense() init_state(2) h_t = H_QA(1, 1_000, h_perc, h_x) h_t def ed_qa_step(state, Ht, dt): eigvals, eigvecs = tfl.eigh(Ht) # define time evolution operator U = tf.exp(-1.j*eigvals*dt) # rewrite state in eigenvector basis, apply time evolution operator, project back to computational basis evolved = tfl.matvec(eigvecs, U * tfl.matvec(eigvecs, state, adjoint_a=True)) return evolved def create_dataset(N : int, features : int): """Create dataset as described by ref. paper, i.e. random +-1 values.""" x = np.random.randint(2, size=(N, features)) x[ x == 0 ] = -1 # data is encoded as +- 1 return x tau = 1_000 P = 1_000 dt = tau/P N_data = 8 N_feat = 10 data = create_dataset(N_data, N_feat).astype('float32') labels = tf.ones((N_data), 'float32') data = np.load('patterns8_10.npy') #h_perc = tf.cast(H_perc_nobatch(data, labels), 'complex128') h_perc = tf.cast(H_perc_nobatch(data, labels), 'complex128') E0 = tfl.eigh(h_perc)[0][0] h_x = tf.cast(H_x(data.shape[1]), 'complex128') #h_z = tf.cast(H_z(data.shape[1]), 'complex128') state = init_state(data.shape[1]) loss = [] pbar = tqdm(range(P), desc='ED QA') for i in pbar: h_t = H_QA(i+1, P, h_perc, h_x) state = ed_qa_step(state, h_t, dt) loss.append(tf.cast((tf.tensordot(tf.math.conj(state), tfl.matvec(tf.cast(h_perc, 'complex128'), state), axes=1)-E0)/N_feat, 'float32').numpy()) pbar.set_postfix({'loss':loss[-1], 'norm':tf.cast(tf.norm(state), 'float32').numpy()}) state np.save('result', state.numpy()) which_down = tf.where(tf.cast(tfl.eigh(h_perc)[1][0], 'float32') > 0.).numpy() which_down state.numpy()[which_down[0]] plt.plot((np.array(range(P))+1)/P, abs(np.asarray(loss))) plt.yscale('log') plt.ylabel(r'$\epsilon(s)$') plt.xlabel(r'$s$') plt.grid(alpha=0.2) # comparison with dQA approach psi_dqa = np.load('stato2.npy') psi_qa = np.load('result.npy') tf.cast(tf.norm(tfl.matvec(tf.cast(psi_dqa, 'complex128'), psi_qa, adjoint_a=True )), 'float32') tau = 500 P = 1_000 dt = tau/P N_data = 3 N_feat = 4 data = create_dataset(N_data, N_feat) labels = np.ones((N_data), 'float32') h_perc_diag = H_perc_diag(data, labels) E0 = np.sort(h_perc_diag)[0] h_x = H_x(data.shape[1]) h_perc = np.diag(h_perc_diag) eigvals_array = np.empty((P, 2**N_feat)) pbar = tqdm(range(P), desc='Spectral analysis') for i in pbar: h_t = H_QA(i+1, P, h_perc, h_x) eigvals, eigvecs = ncp.linalg.eigh(h_t) eigvals_array[i] = np.real_if_close(eigvals.get()) np.save('eigvals_3-4', eigvals_array) plt.plot(np.linspace(0, 1, P), eigvals_array[:,::1], lw=1.8) plt.xlabel(r'$s(t)$', fontsize=14) plt.ylabel(r'Energy [$a.u.$]', fontsize=14) plt.tick_params('both', which='major', labelsize=12) plt.title('Quantum Annealing\neigenvalues evolution', fontsize=16) #plt.grid(alpha=0.3) plt.savefig('qa_eigevolution.svg') plt.savefig('qa_eigevolution.svg') state = tf.cast(psi_dqa.squeeze(), 'complex128') epsilon = (tf.cast(tf.tensordot(tf.math.conj(state), tfl.matvec(h_perc, state), axes=1), 'float32').numpy()-E0)/N_data epsilon state import matplotlib.pyplot as plt import numpy as np import cupy import math from datetime import datetime from tqdm.notebook import tqdm from importlib.util import find_spec GPU = True if GPU: if find_spec('cupy') is not None: import cupy as ncp else: print('Selected device is GPU but cupy is not installed, falling back to numpy') import numpy as ncp else: import numpy as ncp def kronecker_prod(operators): result = operators[0] for op in operators[1:]: result = ncp.kron(result, op) return result def ReLU(x): return x * (x > 0) def H_perc_diag(data, labels): ## ASSUMING H_PERC IS DIAGONAL, WHICH IS IN THE COMPUTATIONAL BASIS ## n_data, n = data.shape identity = ncp.ones((2,), 'float64') sigma_z = ncp.array([1., -1.]) h_perc = ncp.zeros((2**n,), dtype='float64') for i in range(n_data): op = ncp.zeros((2**n,), dtype='float64') for j in range(n): op += kronecker_prod([identity]*j+[data[i, j] * sigma_z]+[identity]*(n-j-1)) h_perc += ReLU(-labels[i]*op) del op return h_perc / ncp.sqrt(n) def H_x(n): identity = ncp.diag([1., 1.]) sigma_x = ncp.array([[0., 1.], [1., 0.]]) op = ncp.zeros((2**n, 2**n), dtype='float64') for j in range(n): op += kronecker_prod([identity]*j+[sigma_x]+[identity]*(n-j-1)) return -op def H_QA(p, P, Hz, Hx): frac = p/P return (frac*Hz + (1-frac)*Hx).astype('complex128') def init_state(n): return (ncp.ones((2**n,))/ncp.sqrt(2**n)).astype('complex128') def ed_qa_step(state, Ht, dt): eigvals, eigvecs = ncp.linalg.eigh(Ht) # define time evolution operator U = ncp.exp(-1.j*eigvals*dt) # rewrite state in eigenvector basis, apply time evolution operator, project back to computational basis evolved = ncp.dot(eigvecs, U * ncp.dot(eigvecs.transpose().conjugate(), state)) return evolved def create_dataset(N : int, features : int): """Create dataset as described by ref. paper, i.e. random +-1 values.""" x = np.random.randint(2, size=(N, features)) x[ x == 0 ] = -1 # data is encoded as +- 1 return x tau = 1_000 P = 5 dt = 0.5 N_feats = np.array([i for i in range(1, 14)]) N_datas = np.arange(1, np.floor(0.83*N_feats[[-1]]), dtype='int64') memory = cupy.get_default_memory_pool() #data = np.load('../data/patterns8_10.npy') N_datas used_ram_tot = np.empty((N_feats.shape[0], N_datas.shape[0], P, 4)) times = np.empty((N_feats.shape[0], N_datas.shape[0], P+1)) data_pbar = tqdm(total=len(N_datas), desc='testing N_data', leave=True) p_pbar = tqdm(total=P, desc='ED QA', leave=True) for m, N_feat in enumerate(tqdm(N_feats, desc='testing N_feat')): for n, N_data in enumerate(N_datas): start = datetime.now() data = create_dataset(N_data, N_feat) labels = np.ones((N_data), 'float32') h_perc_diag = H_perc_diag(data, labels) E0 = np.sort(h_perc_diag)[0] h_x = H_x(data.shape[1]) h_perc = np.diag(h_perc_diag) #h_z = tf.cast(H_z(data.shape[1]), 'complex128') state = init_state(data.shape[1]) end = datetime.now() times[m, n, -1] = (end-start).microseconds loss = [] for i in range(P): start = datetime.now() h_t = H_QA(i+1, P, h_perc, h_x) used_ram_tot[m, n, i, 0] = memory.used_bytes() state = ed_qa_step(state, h_t, dt) used_ram_tot[m, n, i, 1] = memory.used_bytes() loss.append(ncp.real_if_close((ncp.tensordot(state.conjugate(), ncp.dot(h_perc, state), axes=1)-E0)/N_feat)) end = datetime.now() times[m, n, i] = (end-start).microseconds pbar.set_postfix({'loss':ncp.real_if_close(loss[-1]), 'norm':ncp.real_if_close(ncp.linalg.norm(state))}) used_ram_tot[m, n, i, 2] = memory.used_bytes() del h_t used_ram_tot[m, n, i, 3] = memory.used_bytes() p_pbar.update() del state p_pbar.refresh() p_pbar.reset() data_pbar.update() memory.free_all_blocks() data_pbar.refresh() data_pbar.reset() used_ram_tot = np.load('perf_ram.npy') times = np.load('perf_time.npy') FONTSIZE=12 fig, (ax_ram, ax_time) = plt.subplots(2, 1, figsize=(8, 7), tight_layout=True, sharex=True) ram_cmap = ax_ram.imshow(used_ram_tot[:,:,:,2].mean(axis=2).T/1e3, cmap='plasma', norm='log', origin='lower') time_cmap = ax_time.imshow((times[:,:,:-1].mean(axis=2) + times[:,:,-1]).T/1e3, cmap='viridis', norm='log', origin='lower') ax_ram.set_ylabel('#patterns', fontsize=FONTSIZE+2) ax_ram.tick_params(axis='y', which='major', labelsize=FONTSIZE) ax_ram.set_yticks(range(0,len(N_datas),2), labels=N_datas[::2]) ax_ram.set_title(r'RAM usage [$KB$]', fontsize=FONTSIZE+4) ax_time.set_xlabel('#qbits', fontsize=FONTSIZE+2) ax_time.set_ylabel('#patterns', fontsize=FONTSIZE+2) ax_time.tick_params(axis='both', which='major', labelsize=FONTSIZE) ax_time.set_xticks(range(0,len(N_feats),2), labels=N_feats[::2]) ax_time.set_yticks(range(0,len(N_datas),2), labels=N_datas[::2]) ax_time.set_title(r'Execution time [$ms$]', fontsize=FONTSIZE+4) fig.colorbar(ram_cmap, ax=ax_ram) fig.colorbar(time_cmap, ax=ax_time) fig.suptitle('Exact diagonalization performances', fontsize=FONTSIZE+6, x=0.5845) fig.savefig('ed_performances.svg') plt.imshow(times[:,:,-1].T, cmap='plasma', origin='lower') plt.plot(((ncp.array(range(P))+1)/P).get(), ncp.asarray(loss).get()) plt.yscale('log') plt.ylabel(r'$\epsilon(s)$') plt.xlabel(r'$s$') plt.grid(alpha=0.2) FONTSIZE=12 fig, ax = plt.subplots(figsize=(5, 4), tight_layout=True) handle1 = ax.plot(N_feats, used_ram_tot[:,:,2].mean(axis=1)/1e3, label='RAM', lw=2) ax.set_yscale('log') ax.set_xlabel('#qbits', fontsize=FONTSIZE+2) ax.set_xticks(N_feats[1::2]) ax.tick_params(axis='both', which='major', labelsize=FONTSIZE) ax.set_ylabel(r'RAM usage [$KB$]', fontsize=FONTSIZE+2) ax2 = ax.twinx() handle2 = ax2.plot(N_feats, times[:,:-1].mean(axis=1)/1e3, c='tab:orange', label='Time', lw=2) ax2.set_yscale('log') ax2.tick_params(axis='y', which='major', labelsize=FONTSIZE) ax2.set_ylabel(r'Execution time [$ms$]', fontsize=FONTSIZE+2) ax.legend(handles=handle1+handle2, fontsize=FONTSIZE+2) ax.set_title('Exact diagonalization performances', fontsize=FONTSIZE+4) ax.grid(alpha=0.3) ax2.grid(alpha=0.3) plt.plot(N_feats, times[:,-1]) FONTSIZE=12 fig, ax = plt.subplots(figsize=(5, 4), tight_layout=True) handle1 = ax.plot(N_feats, used_ram_tot[:,:,2].mean(axis=1)/1e3, label='RAM', lw=2) ax.set_yscale('log') ax.set_xlabel('#qbits', fontsize=FONTSIZE+2) ax.set_xticks(N_feats[1::2]) ax.tick_params(axis='both', which='major', labelsize=FONTSIZE) ax.set_ylabel(r'RAM usage [$KB$]', fontsize=FONTSIZE+2) ax2 = ax.twinx() handle2 = ax2.plot(N_feats, times[:,:-1].mean(axis=1)/1e3, c='tab:orange', label='Time', lw=2) ax2.set_yscale('log') ax2.tick_params(axis='y', which='major', labelsize=FONTSIZE) ax2.set_ylabel(r'Execution time [$ms$]', fontsize=FONTSIZE+2) ax.legend(handles=handle1+handle2, fontsize=FONTSIZE+2) ax.set_title('Exact diagonalization performances', fontsize=FONTSIZE+4) ax.grid(alpha=0.3) ax2.grid(alpha=0.3) plt.plot(N_feats, times[:,-1]) def H_perc2(state, data, labels): n_data, n = data.shape h_perc = tf.zeros((2**n, 2**n), dtype='complex128') id = tfl.LinearOperatorIdentity(2) sigma_z = tfl.LinearOperatorFullMatrix(tf.constant([[1., 0.], [0., -1.]])) for i in range(n_data): datum_ops = [tfl.LinearOperatorDiag(tf.repeat(data[i,:], [2], axis=0)[j:j+2]) for j in range(0, n*2, 2)] ops = [tfl.LinearOperatorKronecker([id]*i+[tfl.LinearOperatorComposition([sigma_z, datum_ops[i]])]+[id]*(n-i-1)).to_dense() for j in range(n)] result_op = tf.cast(-tf.reshape(labels[i], (1, 1))*tf.reduce_sum(tf.stack(ops), axis=0), 'complex128') if tf.cast(tf.tensordot(tf.math.conj(state), tfl.matvec(result_op, state), axes=1), 'float32') < 0.: continue else: h_perc = h_perc + result_op return h_perc
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits to represent the uncertainty num_uncertainty_qubits = 3 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # construct circuit for uncertainty model uncertainty_model = LogNormalDistribution( num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high) ) # plot probability distribution x = uncertainty_model.values y = uncertainty_model.probabilities plt.bar(x, y, width=0.2) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.show() # set the strike price (should be within the low and the high value of the uncertainty) strike_price_1 = 1.438 strike_price_2 = 2.584 # set the approximation scaling for the payoff function rescaling_factor = 0.25 # setup piecewise linear objective fcuntion breakpoints = [low, strike_price_1, strike_price_2] slopes = [0, 1, 0] offsets = [0, 0, strike_price_2 - strike_price_1] f_min = 0 f_max = strike_price_2 - strike_price_1 bull_spread_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, rescaling_factor=rescaling_factor, ) # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective bull_spread = bull_spread_objective.compose(uncertainty_model, front=True) # plot exact payoff function (evaluated on the grid of the uncertainty model) x = uncertainty_model.values y = np.minimum(np.maximum(0, x - strike_price_1), strike_price_2 - strike_price_1) plt.plot(x, y, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value (normalized to the [0, 1] interval) exact_value = np.dot(uncertainty_model.probabilities, y) exact_delta = sum( uncertainty_model.probabilities[np.logical_and(x >= strike_price_1, x <= strike_price_2)] ) print("exact expected value:\t%.4f" % exact_value) print("exact delta value: \t%.4f" % exact_delta) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=bull_spread, objective_qubits=[num_uncertainty_qubits], post_processing=bull_spread_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value:\t%.4f" % result.estimation_processed) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) # setup piecewise linear objective fcuntion breakpoints = [low, strike_price_1, strike_price_2] slopes = [0, 0, 0] offsets = [0, 1, 0] f_min = 0 f_max = 1 bull_spread_delta_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, ) # no approximation necessary, hence no rescaling factor # construct the A operator by stacking the uncertainty model and payoff function together bull_spread_delta = bull_spread_delta_objective.compose(uncertainty_model, front=True) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=bull_spread_delta, objective_qubits=[num_uncertainty_qubits] ) # construct amplitude estimation ae_delta = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_delta = ae_delta.estimate(problem) conf_int = np.array(result_delta.confidence_interval) print("Exact delta: \t%.4f" % exact_delta) print("Estimated value:\t%.4f" % result_delta.estimation) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/zeynepCankara/Introduction-Quantum-Programming
zeynepCankara
# vector v v = [1,2,-3] # vector u u=[-2,3] vu = [] for i in range(len(v)): # Each element of v will be replaced for j in range(len(u)): # the vector u will come here after multiplying with the entry there vu.append( v[i] * u[j] ) print("v=",v) print("u=",u) print("vu=",vu) # # your solution is here # import numpy as np u = [-2, -1, 0, 1] v = [1, 2, 3] uv = np.tensordot(np.array(u), np.array(v), axes = 0) print("uv: " + str(uv)) # matrix M M = [ [-1,0,1], [-2,-1,2], [1,2,-2] ] # matrix N N = [ [0,2,1], [3,-1,-2], [-1,1,0] ] # MN will be a (9x9)-dimensional matrix # let's prepare it as a zero matrix # this helps us to easily fill it MN=[] for i in range(9): MN.append([]) for j in range(9): MN[i].append(0) for i in range(3): # row of M for j in range(3): # column of M for k in range(3): # row of N for l in range(3): # column of N MN[i*3+k][3*j+l] = M[i][j] * N[k][l] print("M-tensor-N is") for i in range(9): print(MN[i]) # matrices M and N were defined above # matrix NM will be prepared as a (9x9)-dimensional zero matrix NM=[] for i in range(9): NM.append([]) for j in range(9): NM[i].append(0) for i in range(3): # row of N for j in range(3): # column of N for k in range(3): # row of M for l in range(3): # column of M NM[i*3+k][3*j+l] = N[i][j] * M[k][l] print("N-tensor-M is") for i in range(9): print(NM[i]) # # your solution is here # A = [ [-1,0,1], [-2,-1,2] ] B = [ [0,2], [3,-1], [-1,1] ] print("A =") for i in range(len(A)): print(A[i]) print() # print a line print("B =") for i in range(len(B)): print(B[i]) # let's define A-tensor-B as a (6x6)-dimensional zero matrix AB = [] for i in range(6): AB.append([]) for j in range(6): AB[i].append(0) # let's find A-tensor-B for i in range(2): for j in range(3): # for each A(i,j) we execute the following codes a = A[i][j] # we access each element of B for m in range(3): for n in range(2): b = B[m][n] # now we put (a*b) in the appropriate index of AB AB[3*i+m][2*j+n] = a * b print() # print a line print("A-tensor-B =") print() # print a line for i in range(6): print(AB[i]) # # your solution is here # A = [ [-1,0,1], [-2,-1,2] ] B = [ [0,2], [3,-1], [-1,1] ] print() # print a line print("B =") for i in range(len(B)): print(B[i]) print("A =") for i in range(len(A)): print(A[i]) # let's define B-tensor-A as a (6x6)-dimensional zero matrix BA = [] for i in range(6): BA.append([]) for j in range(6): BA[i].append(0) # let's find B-tensor-A for i in range(3): for j in range(2): # for each B(i,j) we execute the following codes b = B[i][j] # we access each element of A for m in range(2): for n in range(3): a = A[m][n] # now we put (a*b) in the appropriate index of AB BA[2*i+m][3*j+n] = b * a print() # print a line print("B-tensor-A =") print() # print a line for i in range(6): print(BA[i])
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ This module contains the definition of a base class for quantum fourier transforms. """ from abc import abstractmethod from qiskit import QuantumRegister, QuantumCircuit from qiskit.aqua import Pluggable, AquaError class QFT(Pluggable): """Base class for QFT. This method should initialize the module and its configuration, and use an exception if a component of the module is available. Args: configuration (dict): configuration dictionary """ @abstractmethod def __init__(self, *args, **kwargs): super().__init__() @classmethod def init_params(cls, params): qft_params = params.get(Pluggable.SECTION_KEY_QFT) kwargs = {k: v for k, v in qft_params.items() if k != 'name'} return cls(**kwargs) @abstractmethod def _build_matrix(self): raise NotImplementedError @abstractmethod def _build_circuit(self, qubits=None, circuit=None, do_swaps=True): raise NotImplementedError def construct_circuit(self, mode='circuit', qubits=None, circuit=None, do_swaps=True): """Construct the circuit. Args: mode (str): 'matrix' or 'circuit' qubits (QuantumRegister or qubits): register or qubits to build the circuit on. circuit (QuantumCircuit): circuit for construction. do_swaps (bool): include the swaps. Returns: The matrix or circuit depending on the specified mode. """ if mode == 'circuit': return self._build_circuit(qubits=qubits, circuit=circuit, do_swaps=do_swaps) elif mode == 'matrix': return self._build_matrix() else: raise AquaError('Unrecognized mode: {}.'.format(mode))
https://github.com/grossiM/Qiskit_workshop1019
grossiM
import numpy as np from qiskit import * %matplotlib inline # Create a Quantum Circuit acting on a quantum register of three qubits circ = QuantumCircuit(3) # Add a H gate on qubit 0, putting this qubit in superposition. circ.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting # the qubits in a Bell state. circ.cx(0, 1) # Add a CX (CNOT) gate on control qubit 0 and target qubit 2, putting # the qubits in a GHZ state. circ.cx(0, 2) #circ.draw() circ.draw(output='mpl') # Import Aer from qiskit import Aer # Run the quantum circuit on a statevector simulator backend backend = Aer.get_backend('statevector_simulator') # Create a Quantum Program for execution job = execute(circ, backend) result = job.result() outputstate = result.get_statevector(circ, decimals=3) print(outputstate) from qiskit.visualization import plot_state_city plot_state_city(outputstate) # Run the quantum circuit on a unitary simulator backend backend = Aer.get_backend('unitary_simulator') job = execute(circ, backend) result = job.result() # Show the results print(result.get_unitary(circ, decimals=3)) # Create a Quantum Circuit meas = QuantumCircuit(3, 3) meas.barrier(range(3)) # map the quantum measurement to the classical bits meas.measure(range(3),range(3)) # The Qiskit circuit object supports composition using # the addition operator. qc = circ+meas #drawing the circuit qc.draw() # Use Aer's qasm_simulator backend_sim = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is the default. job_sim = execute(qc, backend_sim, shots=1024) # Grab the results from the job. result_sim = job_sim.result() counts = result_sim.get_counts(qc) print(counts) from qiskit.visualization import plot_histogram plot_histogram(counts) from qiskit import IBMQ #IBMQ.save_account('APIKEY') IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider(group='open') provider.backends() simulator_backend = provider.get_backend('ibmq_qasm_simulator') job_cloud = execute(qc, backend=simulator_backend) result_cloud = job_cloud.result() counts_cloud = result_cloud.get_counts(qc) plot_histogram(counts_cloud) #example of backend filtering, you can modify the filters or ask just for the least_busy device from qiskit.providers.ibmq import least_busy backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) #here we ask for the backend properties backend.configuration() from qiskit.tools.monitor import job_monitor job_exp = execute(qc, backend=backend) job_monitor(job_exp) result_exp = job_exp.result() counts_exp = result_exp.get_counts(qc) plot_histogram([counts_exp,counts], legend=['Device', 'Simulator']) #uncomment the line below in case you are not able to specify 'latex' in the draw method #!pip install pylatexenc #!pip install pillow from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import BasicAer qr0 = QuantumRegister(1,name='qb') # qb for "qubit", but the name is optional cr0 = ClassicalRegister(1,name='b') # b for "bit", but the name is optional qc0 = QuantumCircuit(qr0,cr0) qc0.draw(output='latex') from qiskit.tools.visualization import plot_bloch_vector import math theta = math.pi/2 # You can try to change the parameters theta and phi phi = math.pi/4 # to see how the vector moves on the sphere plot_bloch_vector([math.cos(phi)*math.sin(theta),math.sin(phi)*math.sin(theta),math.cos(theta)]) # Entries of the # input vector are # coordinates [x,y,z] qc0.measure(qr0,cr0) #Select the output method to use for drawing the circuit. Valid choices are text, latex, latex_source, or mpl. By default the ‘text’ drawer is used unless a user config file has an alternative backend set as the default. #If the output kwarg is set, that backend will always be used over the default in a user config file. qc0.draw('latex') #backend_sim = Aer.get_backend('qasm_simulator') already defined above job = execute(qc0, backend_sim, shots=1024) result = job.result() counts = result.get_counts() print(counts) qc1 = QuantumCircuit(qr0,cr0) qc1.x(0) # A X gate targeting the first (and only) qubit in register qr0 qc1.measure(qr0,cr0) qc1.draw(output='mpl') job1 = execute(qc1, backend_sim, shots=1024) result1 = job1.result() counts1 = result1.get_counts() print(counts1) from qiskit.tools.visualization import plot_bloch_multivector vec_backend = Aer.get_backend('statevector_simulator') result_vec0 = execute(qc0, vec_backend).result() result_vec1 = execute(qc1, vec_backend).result() psi0 = result_vec0.get_statevector() psi1 = result_vec1.get_statevector() plot_bloch_multivector(psi0) plot_bloch_multivector(psi1) qc2 = QuantumCircuit(qr0,cr0) qc2.h(0) qc2.measure(qr0,cr0) qc2.draw(output='mpl') job2 = execute(qc2, backend_sim, shots=1024) result2 = job2.result() counts2 = result2.get_counts() print(counts2) result_vec2 = execute(qc2, vec_backend).result() psi2 = result_vec2.get_statevector() plot_bloch_multivector(psi2) qc3 = QuantumCircuit(qr0,cr0) qc3.h(0) qc3.s(0) # Use sdg instead of s for the adjoint qc3.measure(qr0,cr0) qc3.draw(output='mpl') job3 = execute(qc3, backend_sim, shots=1024) result3 = job3.result() counts3 = result3.get_counts() print(counts3) result_vec3 = execute(qc3, vec_backend).result() psi3 = result_vec3.get_statevector() plot_bloch_multivector(psi3) qc4 = QuantumCircuit(qr0,cr0) qc4.h(0) qc4.t(0) # Use tdg instead of t for the adjoint qc4.measure(qr0,cr0) qc4.draw(output='mpl') job4 = execute(qc4, backend_sim, shots=1024) result4 = job4.result() counts4 = result4.get_counts() print(counts4) result_vec4 = execute(qc4, vec_backend).result() psi4 = result_vec4.get_statevector() plot_bloch_multivector(psi4) qc4b = QuantumCircuit(qr0) qc4b.tdg(0) qc4b.draw('mpl') backend_unit = BasicAer.get_backend('unitary_simulator') job = execute(qc4b, backend_unit) job.result().get_unitary(qc4b, decimals=3) lmbd = 1.2 # Change this value to rotate the output vector on the equator of the Bloch sphere qc5 = QuantumCircuit(qr0,cr0) qc5.h(0) qc5.u1(lmbd,0) qc5.measure(qr0,cr0) qc5.draw(output='mpl') result_vec5 = execute(qc5, vec_backend).result() psi5 = result_vec5.get_statevector() plot_bloch_multivector(psi5) qc6 = QuantumCircuit(qr0,cr0) qc6.u2(0,math.pi, 0) qc6.measure(qr0,cr0) result_vec6 = execute(qc6, vec_backend).result() psi6 = result_vec6.get_statevector() plot_bloch_multivector(psi6) theta = math.pi phi = math.pi lmb = math.pi qc7 = QuantumCircuit(qr0,cr0) qc7.u3(theta,phi, lmb, 0) qc7.measure(qr0,cr0) result_vec7 = execute(qc7, vec_backend).result() psi7 = result_vec7.get_statevector() plot_bloch_multivector(psi7) qr = QuantumRegister(2,name='qr') # we need a 2-qubit register now cr = ClassicalRegister(2,name='cr') cnot_example = QuantumCircuit(qr,cr) cnot_example.x(0) cnot_example.cx(0,1) # First entry is control, the second is the target cnot_example.measure(qr,cr) cnot_example.draw(output='mpl') job_cnot = execute(cnot_example, backend_sim, shots=1024) result_cnot = job_cnot.result() counts_cnot = result_cnot.get_counts() print(counts_cnot) cnot_reversed = QuantumCircuit(qr,cr) cnot_reversed.x(0) # This part uses cx(qr[1],qr[0]) but is equivalent to cx(qr[0],qr[1]) cnot_reversed.h(0) cnot_reversed.h(1) cnot_reversed.cx(1,0) cnot_reversed.h(0) cnot_reversed.h(1) # cnot_reversed.measure(qr,cr) cnot_reversed.draw(output='mpl') job_cnot_rev = execute(cnot_reversed, backend_sim, shots=1024) result_cnot_rev = job_cnot_rev.result() counts_cnot_rev = result_cnot_rev.get_counts() print(counts_cnot_rev) bell_phi_p = QuantumCircuit(qr,cr) bell_phi_p.h(0) bell_phi_p.cx(0,1) bell_phi_p.measure(qr,cr) bell_phi_p.draw(output='mpl') job_bell_phi_p = execute(bell_phi_p, backend_sim, shots=1024) result_bell_phi_p = job_bell_phi_p.result() counts_bell_phi_p = result_bell_phi_p.get_counts() print(counts_bell_phi_p) cz_example = QuantumCircuit(qr) cz_example.cz(0,1) cz_example.draw(output='mpl') job_cz = execute(cz_example, backend_unit) job_cz.result().get_unitary(cz_example, decimals=3) cz_from_cnot = QuantumCircuit(qr) #notice here a more verbose way of writing gates and assign them to qubits cz_from_cnot.h(qr[1]) cz_from_cnot.cx(qr[0],qr[1]) cz_from_cnot.h(qr[1]) cz_from_cnot.draw(output='mpl') swap_test = QuantumCircuit(qr) swap_test.swap(qr[0],qr[1]) swap_test.draw(output='mpl') swap_from_cnot = QuantumCircuit(qr) swap_from_cnot.cx(qr[0],qr[1]) swap_from_cnot.cx(qr[1],qr[0]) swap_from_cnot.cx(qr[0],qr[1]) swap_from_cnot.draw(output='mpl') qr_many = QuantumRegister(5) control_example = QuantumCircuit(qr_many) control_example.cy(qr_many[0],qr_many[1]) control_example.ch(qr_many[1],qr_many[2]) control_example.crz(0.2,qr_many[2],qr_many[3]) control_example.cu3(0.5, 0, 0, qr_many[3],qr_many[4]) control_example.draw(output='mpl') qrthree = QuantumRegister(3) toffoli_example = QuantumCircuit(qrthree) toffoli_example.ccx(0,1,2) toffoli_example.draw(output='mpl') toffoli_from_cnot = QuantumCircuit(qrthree) toffoli_from_cnot.h(qrthree[2]) toffoli_from_cnot.cx(qrthree[1],qrthree[2]) toffoli_from_cnot.tdg(qrthree[2]) toffoli_from_cnot.cx(qrthree[0],qrthree[2]) toffoli_from_cnot.t(qrthree[2]) toffoli_from_cnot.cx(qrthree[1],qrthree[2]) toffoli_from_cnot.tdg(qrthree[2]) toffoli_from_cnot.cx(qrthree[0],qrthree[2]) toffoli_from_cnot.tdg(qrthree[1]) toffoli_from_cnot.t(qrthree[2]) toffoli_from_cnot.h(qrthree[2]) toffoli_from_cnot.cx(qrthree[0],qrthree[1]) toffoli_from_cnot.tdg(qrthree[1]) toffoli_from_cnot.cx(qrthree[0],qrthree[1]) toffoli_from_cnot.s(qrthree[1]) toffoli_from_cnot.t(qrthree[0]) toffoli_from_cnot.draw(output='mpl') # Initializing a three-qubit quantum state import math desired_vector = [ 1 / math.sqrt(16) * complex(0, 1), 1 / math.sqrt(8) * complex(1, 0), 1 / math.sqrt(16) * complex(1, 1), 0, 0, 1 / math.sqrt(8) * complex(1, 2), 1 / math.sqrt(16) * complex(1, 0), 0] q = QuantumRegister(3) qc = QuantumCircuit(q) qc.initialize(desired_vector, [q[0],q[1],q[2]]) qc.draw(output='latex') backend = BasicAer.get_backend('statevector_simulator') job = execute(qc, backend) qc_state = job.result().get_statevector(qc) qc_state state_fidelity(desired_vector,qc_state)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.algorithms.optimizers import SLSQP from qiskit.circuit.library import TwoLocal num_qubits = 2 ansatz = TwoLocal(num_qubits, "ry", "cz") optimizer = SLSQP(maxiter=1000) ansatz.decompose().draw("mpl", style="iqx") from qiskit.primitives import Estimator estimator = Estimator() from qiskit.algorithms.minimum_eigensolvers import VQE vqe = VQE(estimator, ansatz, optimizer) from qiskit.quantum_info import SparsePauliOp H2_op = SparsePauliOp.from_list([ ("II", -1.052373245772859), ("IZ", 0.39793742484318045), ("ZI", -0.39793742484318045), ("ZZ", -0.01128010425623538), ("XX", 0.18093119978423156) ]) result = vqe.compute_minimum_eigenvalue(H2_op) print(result) from qiskit.algorithms.optimizers import SPSA estimator = Estimator(options={"shots": 1000}) vqe.estimator = estimator vqe.optimizer = SPSA(maxiter=100) result = vqe.compute_minimum_eigenvalue(operator=H2_op) print(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/epelaaez/QuantumLibrary
epelaaez
# To clean enviroment variables %reset import numpy as np import pandas as pd import folium import matplotlib.pyplot as plt try: import cplex from cplex.exceptions import CplexError except: print("Warning: Cplex not found.") import math from qiskit.utils import algorithm_globals from qiskit_algorithms import SamplingVQE from qiskit_algorithms.optimizers import SPSA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler df = pd.read_csv("uscities.csv") columnsNeeded = ["city", "lat", "lng"] # Inicialization of variables locationsNumber = 15 # OJO que en local me crashea si sobrepaso 5 coordenatesDf = df[columnsNeeded].iloc[:locationsNumber] n = coordenatesDf.shape[0] # number of nodes + depot (n+1) K = 3 # number of vehicles print(coordenatesDf) # Initialize instance values by calculate the squared Euclidean distances between a set of coordinates # represented in the dataframe. def generate_instance(coordenatesDf): n = coordenatesDf.shape[0] xc = coordenatesDf["lat"] yc = coordenatesDf["lng"] loc = coordenatesDf["city"] instance = np.zeros([n, n]) for ii in range(0, n): for jj in range(ii + 1, n): instance[ii, jj] = (xc[ii] - xc[jj]) ** 2 + (yc[ii] - yc[jj]) ** 2 instance[jj, ii] = instance[ii, jj] return xc, yc, instance, loc # Initialize the problem by randomly generating the instance lat, lng, instance, loc = generate_instance(coordenatesDf) print(lat, lng, loc, instance) #print(instance) class ClassicalOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n # number of nodes self.K = K # number of vehicles def compute_allowed_combinations(self): f = math.factorial return f(self.n) / f(self.K) / f(self.n - self.K) def cplex_solution(self): # refactoring instance = self.instance n = self.n K = self.K my_obj = list(instance.reshape(1, n**2)[0]) + [0.0 for x in range(0, n - 1)] my_ub = [1 for x in range(0, n**2 + n - 1)] my_lb = [0 for x in range(0, n**2)] + [0.1 for x in range(0, n - 1)] my_ctype = "".join(["I" for x in range(0, n**2)]) + "".join( ["C" for x in range(0, n - 1)] ) my_rhs = ( 2 * ([K] + [1 for x in range(0, n - 1)]) + [1 - 0.1 for x in range(0, (n - 1) ** 2 - (n - 1))] + [0 for x in range(0, n)] ) my_sense = ( "".join(["E" for x in range(0, 2 * n)]) + "".join(["L" for x in range(0, (n - 1) ** 2 - (n - 1))]) + "".join(["E" for x in range(0, n)]) ) try: my_prob = cplex.Cplex() self.populatebyrow(my_prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs) my_prob.solve() except CplexError as exc: print(exc) return x = my_prob.solution.get_values() x = np.array(x) cost = my_prob.solution.get_objective_value() return x, cost def populatebyrow(self, prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs): n = self.n prob.objective.set_sense(prob.objective.sense.minimize) prob.variables.add(obj=my_obj, lb=my_lb, ub=my_ub, types=my_ctype) prob.set_log_stream(None) prob.set_error_stream(None) prob.set_warning_stream(None) prob.set_results_stream(None) rows = [] for ii in range(0, n): col = [x for x in range(0 + n * ii, n + n * ii)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [x for x in range(0 + ii, n**2, n)] coef = [1 for x in range(0, n)] rows.append([col, coef]) # Sub-tour elimination constraints: for ii in range(0, n): for jj in range(0, n): if (ii != jj) and (ii * jj > 0): col = [ii + (jj * n), n**2 + ii - 1, n**2 + jj - 1] coef = [1, 1, -1] rows.append([col, coef]) for ii in range(0, n): col = [(ii) * (n + 1)] coef = [1] rows.append([col, coef]) prob.linear_constraints.add(lin_expr=rows, senses=my_sense, rhs=my_rhs) # Instantiate the classical optimizer class classical_optimizer = ClassicalOptimizer(instance, n, K) # Print number of feasible solutions print("Number of feasible solutions = " + str(classical_optimizer.compute_allowed_combinations())) # Solve the problem in a classical fashion via CPLEX x = None z = None try: x, classical_cost = classical_optimizer.cplex_solution() # Put the solution in the z variable z = [x[ii] for ii in range(n**2) if ii // n != ii % n] # Print the solution print(z) except: print("CPLEX may be missing.") m = folium.Map(location=[39.487660, -97.594333], zoom_start=0) marker_icon1 = folium.Icon(color = "red") for i in range(len(lat)): if (i == 0): folium.Marker(location=[lat[i], lng[i]], tooltip=f"Location: {loc[i]}, Order: {i}", icon=marker_icon1).add_to(m) else: folium.Marker(location=[lat[i], lng[i]], tooltip=f"Location: {loc[i]}, Order: {i}").add_to(m) for ii in range(0, n**2): if x[ii] > 0: ix = ii // n iy = ii % n folium.PolyLine([(lat[ix], lng[ix]), (lat[iy], lng[iy])], color="blue").add_to(m) m from qiskit_optimization import QuadraticProgram from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver class QuantumOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n self.K = K def binary_representation(self, x_sol=0): instance = self.instance n = self.n K = self.K A = np.max(instance) * 100 # A parameter of cost function # Determine the weights w instance_vec = instance.reshape(n**2) w_list = [instance_vec[x] for x in range(n**2) if instance_vec[x] > 0] w = np.zeros(n * (n - 1)) for ii in range(len(w_list)): w[ii] = w_list[ii] # Some variables I will use Id_n = np.eye(n) Im_n_1 = np.ones([n - 1, n - 1]) Iv_n_1 = np.ones(n) Iv_n_1[0] = 0 Iv_n = np.ones(n - 1) neg_Iv_n_1 = np.ones(n) - Iv_n_1 v = np.zeros([n, n * (n - 1)]) for ii in range(n): count = ii - 1 for jj in range(n * (n - 1)): if jj // (n - 1) == ii: count = ii if jj // (n - 1) != ii and jj % (n - 1) == count: v[ii][jj] = 1.0 vn = np.sum(v[1:], axis=0) # Q defines the interactions between variables Q = A * (np.kron(Id_n, Im_n_1) + np.dot(v.T, v)) # g defines the contribution from the individual variables g = ( w - 2 * A * (np.kron(Iv_n_1, Iv_n) + vn.T) - 2 * A * K * (np.kron(neg_Iv_n_1, Iv_n) + v[0].T) ) # c is the constant offset c = 2 * A * (n - 1) + 2 * A * (K**2) try: max(x_sol) # Evaluates the cost distance from a binary representation of a path fun = ( lambda x: np.dot(np.around(x), np.dot(Q, np.around(x))) + np.dot(g, np.around(x)) + c ) cost = fun(x_sol) except: cost = 0 return Q, g, c, cost def construct_problem(self, Q, g, c) -> QuadraticProgram: qp = QuadraticProgram() for i in range(n * (n - 1)): qp.binary_var(str(i)) qp.objective.quadratic = Q qp.objective.linear = g qp.objective.constant = c return qp def solve_problem(self, qp): algorithm_globals.random_seed = 10598 #vqe = SamplingVQE(sampler=Sampler(), optimizer=SPSA(), ansatz=RealAmplitudes()) #optimizer = MinimumEigenOptimizer(min_eigen_solver=vqe) meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) # compute cost of the obtained result _, _, _, level = self.binary_representation(x_sol=result.x) return result.x, level # Instantiate the quantum optimizer class with parameters: quantum_optimizer = QuantumOptimizer(instance, n, K) # Check if the binary representation is correct try: if z is not None: Q, g, c, binary_cost = quantum_optimizer.binary_representation(x_sol=z) print("Binary cost:", binary_cost, "classical cost:", classical_cost) if np.abs(binary_cost - classical_cost) < 0.01: print("Binary formulation is correct") else: print("Error in the binary formulation") else: print("Could not verify the correctness, due to CPLEX solution being unavailable.") Q, g, c, binary_cost = quantum_optimizer.binary_representation() print("Binary cost:", binary_cost) except NameError as e: print("Warning: Please run the cells above first.") print(e) qp = quantum_optimizer.construct_problem(Q, g, c) print(qp) #quantum_solution, quantum_cost = quantum_optimizer.solve_problem(qp) quantum_solution, quantum_cost = quantum_optimizer.solve_problem(qp) print(quantum_solution, quantum_cost) print(classical_cost) m = folium.Map(location=[39.487660, -97.594333], zoom_start=0) marker_icon1 = folium.Icon(color = "red") for i in range(len(lat)): if (i == 0): folium.Marker(location=[lat[i], lng[i]], tooltip=f"Location: {loc[i]}, Order: {i}", icon=marker_icon1).add_to(m) else: folium.Marker(location=[lat[i], lng[i]], tooltip=f"Location: {loc[i]}, Order: {i}").add_to(m) for ii in range(0, n**2): if x[ii] > 0: ix = ii // n iy = ii % n folium.PolyLine([(lat[ix], lng[ix]), (lat[iy], lng[iy])], color="blue").add_to(m) m print(quantum_cost) x_quantum = np.zeros(n**2) kk = 0 for ii in range(n**2): if ii // n != ii % n: x_quantum[ii] = quantum_solution[kk] kk += 1 m = folium.Map(location=[39.487660, -97.594333], zoom_start=0) marker_icon1 = folium.Icon(color = "red") for i in range(len(lat)): if (i == 0): folium.Marker(location=[lat[i], lng[i]], tooltip=f"Location: {loc[i]}, Order: {i}", icon=marker_icon1).add_to(m) else: folium.Marker(location=[lat[i], lng[i]], tooltip=f"Location: {loc[i]}, Order: {i}").add_to(m) for ii in range(0, n**2): if x_quantum[ii] > 0: ix = ii // n iy = ii % n folium.PolyLine([(lat[ix], lng[ix]), (lat[iy], lng[iy])], color="blue").add_to(m) m algorithms = ("Classic", "Quantum") data = { 'K = 1': (2249.2068134000006, 1706.2245994000696), 'k = 2': (2771.940853740001, 1845.127222779207), 'K = 3': (3981.1556002800016, 3981.155600280501), } x = np.arange(len(algorithms)) # the label locations width = 0.25 # the width of the bars multiplier = 0 fig, ax = plt.subplots(layout='constrained') for attribute, measurement in data.items(): offset = width * multiplier rects = ax.bar(x + offset, measurement, width, label=attribute) ax.bar_label(rects, padding=3) multiplier += 1 # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('Length (mm)') ax.set_title('Comparision of Quantum and Classical Cost') ax.set_xticks(x + width, algorithms) ax.legend(loc='upper left', ncols=3) ax.set_ylim(0, 5000) plt.show()
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
import qiskit import numpy as np import networkx as nx import matplotlib.pyplot as plt from collections import defaultdict from operator import itemgetter from scipy.optimize import minimize from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer from qiskit.aqua.algorithms import NumPyEigensolver from qiskit.quantum_info import Pauli from qiskit.aqua.operators import op_converter from qiskit.aqua.operators import WeightedPauliOperator from tsp_qaoa import marina_solution G=nx.Graph() i=1 G.add_node(i,pos=(i,i)) G.add_node(2,pos=(2,2)) G.add_node(3,pos=(1,0)) G.add_edge(1,2,weight=20.5) G.add_edge(1,3,weight=9.8) pos=nx.get_node_attributes(G,'pos') nx.draw(G,pos) labels = nx.get_edge_attributes(G,'weight') nx.draw_networkx_edge_labels(G,pos,edge_labels=labels) def append_zz_term(qc,q1,q2,gamma): qc.cx(q1,q2) qc.rz(2*gamma,q2) qc.cx(q1,q2) def get_cost_circuit(G,gamma): N=G.number_of_nodes() qc=QuantumCircuit(N,N) for i,j in G.edges(): append_zz_term(qc,i,j,gamma) return qc #print(get_cost_circuit(G,0.5)) def append_x_term(qc,q1,beta): qc.rx(2*beta,q1) def get_mixer_operator(G,beta): N=G.number_of_nodes() qc=QuantumCircuit(N,N) for n in G.nodes(): append_x_term(qc,n,beta) return qc #print(get_mixer_operator(G,0.5)) def get_QAOA_circuit(G,beta,gamma): assert(len(beta)==len(gamma)) N=G.number_of_nodes() qc=QuantumCircuit(N,N) qc.h(range(N)) p=len(beta) #aplicamos las p rotaciones for i in range(p): qc=qc.compose(get_cost_circuit(G,gamma[i])) qc=qc.compose(get_mixer_operator(G,beta[i])) qc.barrier(range(N)) qc.measure(range(N),range(N)) return qc print(get_QAOA_circuit(G,[0.5,0,6],[0.5,0,6])) def invert_counts(counts): return {k[::-1] :v for k,v in counts.items()} qc=get_QAOA_circuit(G,[0.5,0,6],[0.5,0,6]) backend=Aer.get_backend('qasm_simulator') job=execute(qc,backend) result=job.result() print(invert_counts(result.get_counts())) def maxcut_obj(x,G): cut=0 for i,j in G.edges(): if x[i]!=x[j]: cut = cut-1 return cut print(maxcut_obj("00011",G)) def compute_maxcut_energy(counts,G): energy=0 get_counts=0 total_counts=0 for meas, meas_count in counts.items(): obj_for_meas=maxcut_obj(meas,G) energy+=obj_for_meas*meas_count total_counts+=meas_count return energy/total_counts def get_black_box_objective(G,p): backend=Aer.get_backend('qasm_simulator') def f(theta): beta=theta[:p] gamma=theta[p:] qc=get_QAOA_circuit(G,beta,gamma) counts=execute(qc,backend,seed_simulator=10).result().get_counts() return compute_maxcut_energy(invert_counts(counts),G) return f p=5 obj=get_black_box_objective(G,p) init_point=np.array([0.8,2.2,0.83,2.15,0.37,2.4,6.1,2.2,3.8,6.1])#([2,2,1,1,1,1,1,1,1,1]) res_sample=minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True}) res_sample from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost from utils import mapeo_grafo cantidad_ciudades = 4 pesos, conexiones = None, None mejor_camino = None while not mejor_camino: pesos, conexiones = rand_graph(cantidad_ciudades) mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False) G = mapeo_grafo(conexiones, pesos) pos=nx.spring_layout(G) nx.draw(G,pos) labels = nx.get_edge_attributes(G,'weight') nx.draw_networkx_edge_labels(G,pos,edge_labels=labels) G pos=nx.get_node_attributes(G,'weight') pos labels = nx.get_edge_attributes(G,'weight') labels def funcion_costo(multiplicador_lagrange, cantidad_ciudades, pesos, conexiones ): N = G.number_of_nodes() N_square = N^2 # restriccion 1 for i in range(cantidad_ciudades): cur = sI(N_square) for j in range(num_cities): cur -= D(i, j) ret += cur**2 # retorna el indice de qubit por conversion al problema def quibit_indice(i, l, N): return i * N + l from qiskit.quantum_info.operators import Operator, Pauli # Create an operator XX = Operator(Pauli(label='XX')) # Add to a circuit circ = QuantumCircuit(2, 2) circ.append(XX, [0, 1]) circ.measure([0,1], [0,1]) circ.draw('mpl') # Add to a circuit circ = QuantumCircuit(2, 2) circ.append(a, [0]) #circ.measure([0,1], [0,1]) circ.draw('mpl') a = I - ( 0.5*(I+ Z))**2 a = Operator(a) a.is_unitary() print(I @ Z)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import GaussianForcesDriver # if you ran Gaussian elsewhere and already have the output file driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") # if you want to run the Gaussian job from Qiskit # driver = GaussianForcesDriver( # ['#p B3LYP/6-31g Freq=(Anharm) Int=Ultrafine SCF=VeryTight', # '', # 'CO2 geometry optimization B3LYP/6-31g', # '', # '0 1', # 'C -0.848629 2.067624 0.160992', # 'O 0.098816 2.655801 -0.159738', # 'O -1.796073 1.479446 0.481721', # '', # '' from qiskit_nature.second_q.problems import HarmonicBasis basis = HarmonicBasis([2, 2, 2, 2]) from qiskit_nature.second_q.problems import VibrationalStructureProblem from qiskit_nature.second_q.mappers import DirectMapper vibrational_problem = driver.run(basis=basis) vibrational_problem.hamiltonian.truncation_order = 2 main_op, aux_ops = vibrational_problem.second_q_ops() print(main_op) qubit_mapper = DirectMapper() qubit_op = qubit_mapper.map(main_op) print(qubit_op) basis = HarmonicBasis([3, 3, 3, 3]) vibrational_problem = driver.run(basis=basis) vibrational_problem.hamiltonian.truncation_order = 2 main_op, aux_ops = vibrational_problem.second_q_ops() qubit_mapper = DirectMapper() qubit_op = qubit_mapper.map(main_op) print(qubit_op) # for simplicity, we will use the smaller basis again vibrational_problem = driver.run(basis=HarmonicBasis([2, 2, 2, 2])) vibrational_problem.hamiltonian.truncation_order = 2 from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver solver = GroundStateEigensolver( qubit_mapper, NumPyMinimumEigensolver(filter_criterion=vibrational_problem.get_default_filter_criterion()), ) result = solver.solve(vibrational_problem) print(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-aqt-provider
qiskit-community
# This code is part of Qiskit. # # (C) Copyright Alpine Quantum Technologies 2023 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import base64 import io import typing from pathlib import Path from typing import Any, Optional, Union import platformdirs import pydantic as pdt from pydantic import ConfigDict, GetCoreSchemaHandler from pydantic_core import CoreSchema, core_schema from qiskit import qpy from qiskit.circuit import QuantumCircuit from typing_extensions import Self from qiskit_aqt_provider.api_models import ResourceId from qiskit_aqt_provider.aqt_options import AQTOptions from qiskit_aqt_provider.utils import map_exceptions from qiskit_aqt_provider.versions import QISKIT_AQT_PROVIDER_VERSION class JobNotFoundError(Exception): """A job was not found in persistent storage.""" class Circuits: """Custom Pydantic type to persist and restore lists of Qiskit circuits. Serialization of :class:`QuantumCircuit <qiskit.circuit.QuantumCircuit>` instances is provided by :mod:`qiskit.qpy`. """ def __init__(self, circuits: list[QuantumCircuit]) -> None: """Initialize a container filled with the given circuits.""" self.circuits = circuits @classmethod def __get_pydantic_core_schema__( cls, source_type: Any, handler: GetCoreSchemaHandler ) -> CoreSchema: """Setup custom validator, to turn this class into a pydantic model.""" return core_schema.no_info_plain_validator_function(function=cls.validate) @classmethod def validate(cls, value: Union[Self, str]) -> Self: """Parse the base64-encoded :mod:`qiskit.qpy` representation of a list of quantum circuits. Because initializing a Pydantic model also triggers validation, this parser accepts already formed instances of this class and returns them unvalidated. """ if isinstance(value, Circuits): # self bypass return typing.cast(Self, value) if not isinstance(value, str): raise ValueError(f"Expected string, received {type(value)}") data = base64.b64decode(value.encode("ascii")) buf = io.BytesIO(data) obj = qpy.load(buf) if not isinstance(obj, list): obj = [obj] for n, qc in enumerate(obj): if not isinstance(qc, QuantumCircuit): raise ValueError(f"Object at position {n} is not a QuantumCircuit: {type(qc)}") return cls(circuits=obj) @classmethod def json_encoder(cls, value: Self) -> str: """Return a base64-encoded QPY representation of the held list of circuits.""" buf = io.BytesIO() qpy.dump(value.circuits, buf) return base64.b64encode(buf.getvalue()).decode("ascii") class Job(pdt.BaseModel): """Model for job persistence in local storage.""" model_config = ConfigDict(frozen=True, json_encoders={Circuits: Circuits.json_encoder}) resource: ResourceId circuits: Circuits options: AQTOptions @classmethod @map_exceptions(JobNotFoundError, source_exc=(FileNotFoundError,)) def restore(cls, job_id: str, store_path: Path) -> Self: """Load data for a job by ID from local storage. Args: job_id: identifier of the job to restore. store_path: path to the local storage directory. Raises: JobNotFoundError: no job with the given identifier is stored in the local storage. """ data = cls.filepath(job_id, store_path).read_text("utf-8") return cls.model_validate_json(data) def persist(self, job_id: str, store_path: Path) -> Path: """Persist the job data to the local storage. Args: job_id: storage key for this job data. store_path: path to the local storage directory. Returns: The path of the persisted data file. """ filepath = self.filepath(job_id, store_path) filepath.write_text(self.model_dump_json(), "utf-8") return filepath @classmethod def remove_from_store(cls, job_id: str, store_path: Path) -> None: """Remove persisted job data from the local storage. This function also succeeds if there is no data under `job_id`. Args: job_id: storage key for the data to delete. store_path: path to the local storage directory. """ cls.filepath(job_id, store_path).unlink(missing_ok=True) @classmethod def filepath(cls, job_id: str, store_path: Path) -> Path: """Path of the file to store data under a given key in local storage. Args: job_id: storage key for the data. store_path: path to the local storage directory. """ return store_path / job_id def get_store_path(override: Optional[Path] = None) -> Path: """Resolve the local persistence store path. By default, this is the user cache directory for this package. Different cache directories are used for different package versions. Args: override: if given, return this override instead of the default path. Returns: Path for the persistence store. Ensured to exist. """ if override is not None: override.mkdir(parents=True, exist_ok=True) return override return Path( platformdirs.user_cache_dir( "qiskit_aqt_provider", version=QISKIT_AQT_PROVIDER_VERSION, ensure_exists=True, ) )
https://github.com/shell-raiser/Qiskit-Developer-Certification-Notes-and-Code
shell-raiser
import qiskit.quantum_info as qi from qiskit.circuit.library import FourierChecking #FourierChecking is an algorithm circuit built into the circuit library from qiskit.visualization import plot_histogram #these both are functions, among which, we find the corelativity f=[1,-1,-1,-1] g=[1,1,-1,-1] circ = FourierChecking(f=f, g=g) circ.draw() zero = qi.Statevector.from_label('00') sv = zero.evolve(circ) probs = sv.probabilities_dict() plot_histogram(probs) #only intersted in 00 probability
https://github.com/stevvwen/QAlgoImplementation
stevvwen
# initialization import numpy as np import matplotlib # importing Qiskit from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ, BasicAer, assemble, transpile from qiskit.quantum_info import Statevector # import basic plot tools from qiskit.visualization import plot_bloch_multivector,plot_bloch_vector, plot_histogram style = {'backgroundcolor': 'lightyellow'} # Style of the circuits # set the length of the n-bit input string. n = 3 # set the length of the n-bit input string. n = 3 const_oracle = QuantumCircuit(n+1) output = np.random.randint(2) if output == 1: const_oracle.x(n) const_oracle.draw(output='mpl', style=style) balanced_oracle = QuantumCircuit(n+1) b_str = "101" balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) balanced_oracle.draw(output='mpl', style=style) balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() balanced_oracle.draw(output='mpl', style=style) balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Show oracle balanced_oracle.draw(output='mpl', style=style) dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) dj_circuit.draw(output='mpl', style=style) dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit += balanced_oracle dj_circuit.draw(output='mpl', style=style) dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit += balanced_oracle # Repeat H-gates for qubit in range(n): dj_circuit.h(qubit) dj_circuit.barrier() # Measure for i in range(n): dj_circuit.measure(i, i) # Display circuit dj_circuit.draw(output='mpl', style=style) # use local simulator aer_sim = Aer.get_backend('aer_simulator') qobj = assemble(dj_circuit, aer_sim) results = aer_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) def dj_oracle(case, n): # We need to make a QuantumCircuit object to return # This circuit has n+1 qubits: the size of the input, # plus one output qubit oracle_qc = QuantumCircuit(n+1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1,2**n) print(b) print(str(n)) b=7 # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, '0'+str(n)+'b') print(b_str) # Next, we place the first X-gates. Each digit in our binary string # corresponds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for qubit in range(n): oracle_qc.cx(qubit, n) # Next, place the final X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(n) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate def dj_algorithm(oracle, n): dj_circuit = QuantumCircuit(n+1, n) # Set up the output qubit: dj_circuit.x(n) dj_circuit.h(n) # And set up the input register: for qubit in range(n): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(n+1)) # Finally, perform the H-gates again and measure: for qubit in range(n): dj_circuit.h(qubit) for i in range(n): dj_circuit.measure(i, i) return dj_circuit n = 4 oracle_gate = dj_oracle('balanced', n) dj_circuit = dj_algorithm(oracle_gate, n) dj_circuit.draw(output='mpl', style=style) transpiled_dj_circuit = transpile(dj_circuit, aer_sim) qobj = assemble(transpiled_dj_circuit) results = aer_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, QuantumRegister from qiskit.circuit.library.standard_gates import HGate qc1 = QuantumCircuit(2) qc1.x(0) qc1.h(1) custom = qc1.to_gate().control(2) qc2 = QuantumCircuit(4) qc2.append(custom, [0, 3, 1, 2]) qc2.draw('mpl')
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring # Since the import is nearly entirely delegated to an external package, most of the testing is done # there. Here we need to test our wrapping behaviour for base functionality and exceptions. We # don't want to get into a situation where updates to `qiskit_qasm3_import` breaks Terra's test # suite due to too specific tests on the Terra side. import os import tempfile import unittest from qiskit import qasm3 from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.test import QiskitTestCase from qiskit.utils import optionals class TestQASM3Import(QiskitTestCase): @unittest.skipUnless( optionals.HAS_QASM3_IMPORT, "need qiskit-qasm3-import for OpenQASM 3 imports" ) def test_import_errors_converted(self): with self.assertRaises(qasm3.QASM3ImporterError): qasm3.loads("OPENQASM 3.0; qubit[2.5] q;") @unittest.skipUnless( optionals.HAS_QASM3_IMPORT, "need qiskit-qasm3-import for OpenQASM 3 imports" ) def test_loads_can_succeed(self): program = """ OPENQASM 3.0; include "stdgates.inc"; qubit[2] qr; bit[2] cr; h qr[0]; cx qr[0], qr[1]; cr[0] = measure qr[0]; cr[1] = measure qr[1]; """ parsed = qasm3.loads(program) expected = QuantumCircuit(QuantumRegister(2, "qr"), ClassicalRegister(2, "cr")) expected.h(0) expected.cx(0, 1) expected.measure(0, 0) expected.measure(1, 1) self.assertEqual(parsed, expected) @unittest.skipUnless( optionals.HAS_QASM3_IMPORT, "need qiskit-qasm3-import for OpenQASM 3 imports" ) def test_load_can_succeed(self): program = """ OPENQASM 3.0; include "stdgates.inc"; qubit[2] qr; bit[2] cr; h qr[0]; cx qr[0], qr[1]; cr[0] = measure qr[0]; cr[1] = measure qr[1]; """ with tempfile.TemporaryDirectory() as tmp_dir: tmp_path = os.path.join(tmp_dir, "bell.qasm") with open(tmp_path, "w") as fptr: fptr.write(program) parsed = qasm3.load(tmp_path) expected = QuantumCircuit(QuantumRegister(2, "qr"), ClassicalRegister(2, "cr")) expected.h(0) expected.cx(0, 1) expected.measure(0, 0) expected.measure(1, 1) self.assertEqual(parsed, expected)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) qc.h(range(2)) qc.measure(range(2), range(2)) # apply x gate if the classical register has the value 2 (10 in binary) qc.x(0).c_if(cr, 2) # apply y gate if bit 0 is set to 1 qc.y(1).c_if(0, 1) qc.draw('mpl')
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
# Importando módulos from qiskit import * from qiskit.tools.visualization import plot_histogram # Inicializando o circuito nQubits = 2 nBits = 2 circuitoQuantico = QuantumCircuit(nQubits, nBits) # Para aplicar uma porta no circuito devemos seguir o seguinte exemplo onde aplicamos uma Hadamard Gate circuitoQuantico.h(0) # Nesse exemplo h() é a função que usamos para aplicar uma Hadamard Gate e o argumento é o índice do qubit # onde se deseja aplica a porta # Podemos ver ao chamar draw() que a Hadamard Gate fica no qubit desejado circuitoQuantico.draw(output = 'mpl') # Podemos aplicar também portas que envolvem mais de um qubit, como a CNOT(Controlled NOT) Gate circuitoQuantico.cx(0,1) # Visualização do circuito após chamar a CNOT Gate circuitoQuantico.draw(output = 'mpl') # Agora podemos medir esses qubits após as operações chamando measure() circuitoQuantico.measure(0,0) circuitoQuantico.measure(1,1) # Visualização do circuito após chamar measure() circuitoQuantico.draw(output = 'mpl') # Para simular um circuito quântico usamos um elemento do Qiskit chamado Aer, que tem como # uma de suas funções a simulação de circuitos simulador = Aer.get_backend('qasm_simulator') # Para executar o circuito chamamos execute() que leva como argumento o circuito a ser executado e o # backend(aonde o circuito vai ser executado) que nesse caso é no simulador do Aer resultado = execute(circuitoQuantico, backend = simulador).result() # Usamos a variável resultado para guardar os dados do resultado # Para exibir os resultados chamamos plot_histogram() plot_histogram(resultado.get_counts(circuitoQuantico)) # Antes de tudo é necessário imp
https://github.com/Keerthiraj-Nagaraj/IBM-quantum-challenge-2020
Keerthiraj-Nagaraj
# Importing standard Qiskit libraries and configuring account from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import IBMQ, Aer, execute from qiskit.visualization import plot_bloch_multivector # If you run this code outside IBM Quantum Experience, # run the following commands to store your API token locally. # Please refer https://qiskit.org/documentation/install.html#access-ibm-quantum-systems # IBMQ.save_account('MY_API_TOKEN') # Loading your IBM Q account(s) IBMQ.load_account() # Let's do an X-gate on a |0> qubit q = QuantumRegister(1) qc = QuantumCircuit(q) qc.x(q[0]) qc.draw(output='mpl') # Let's see the result backend = Aer.get_backend('statevector_simulator') result = execute(qc, backend).result().get_statevector(qc, decimals=3) plot_bloch_multivector(result) # Let's do an H-gate on a |0> qubit q = QuantumRegister(1) qc = QuantumCircuit(q) qc.h(q[0]) qc.draw(output='mpl') # Let's see the result backend = Aer.get_backend('statevector_simulator') result = execute(qc, backend).result().get_statevector(qc, decimals=3) plot_bloch_multivector(result) # Let's do an Z-gate on |+> q = QuantumRegister(1) qc = QuantumCircuit(q) qc.h(q[0]) qc.z(q[0]) qc.draw(output='mpl') # Let's see the result backend = Aer.get_backend('statevector_simulator') result = execute(qc, backend).result().get_statevector(qc, decimals=3) print(result) plot_bloch_multivector(result) # Let's do an CX-gate on |00> q = QuantumRegister(2) qc = QuantumCircuit(q) qc.cx(q[0],q[1]) qc.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') result = execute(qc, backend).result().get_statevector(qc, decimals=3) print(result) plot_bloch_multivector(result) # Let's do an CZ-gate on |00> q = QuantumRegister(2) qc = QuantumCircuit(q) qc.cz(q[0],q[1]) qc.draw(output='mpl') # Let's make CZ-gate with CX-gate and H-gate q = QuantumRegister(2) qc = QuantumCircuit(q) qc.h(q[1]) qc.cx(q[0],q[1]) qc.h(q[1]) qc.draw(output='mpl') # Let's do an CCX-gate on |00> q = QuantumRegister(3) qc = QuantumCircuit(q) qc.ccx(q[0],q[1],q[2]) qc.draw(output='mpl') # Create a Quantum Circuit with 1 quantum register and 1 classical register q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q,c) qc.x(q[0]) qc.measure(q[0], c[0]) # Map the quantum measurement to the classical bits qc.draw(output='mpl') q = QuantumRegister(3) c = ClassicalRegister(1) qc = QuantumCircuit(q,c) qc.ccx(q[0], q[1], q[2]) qc.measure(q[2], c[0]) qc.draw(output='mpl') q = QuantumRegister(3) c = ClassicalRegister(1) qc = QuantumCircuit(q,c) qc.ccx(q[0], q[1], q[2]) qc.x(q[2]) qc.measure(q[2], c[0]) qc.draw(output='mpl') q = QuantumRegister(3) c = ClassicalRegister(1) qc = QuantumCircuit(q,c) qc.cx(q[1], q[2]) qc.cx(q[0], q[2]) qc.ccx(q[0], q[1], q[2]) qc.measure(q[2], c[0]) qc.draw(output='mpl') q = QuantumRegister(3) c = ClassicalRegister(1) qc = QuantumCircuit(q,c) qc.cx(q[1], q[2]) qc.cx(q[0], q[2]) qc.measure(q[2], c[0]) qc.draw(output='mpl') q = QuantumRegister(3) c = ClassicalRegister(1) qc = QuantumCircuit(q,c) qc.cx(q[1], q[2]) qc.cx(q[0], q[2]) qc.ccx(q[0], q[1], q[2]) qc.x(q[2]) qc.measure(q[2], c[0]) qc.draw(output='mpl') #Define registers and a quantum circuit q = QuantumRegister(4) c = ClassicalRegister(2) qc = QuantumCircuit(q,c) #XOR qc.cx(q[1], q[2]) qc.cx(q[0], q[2]) qc.barrier() #AND qc.ccx(q[0], q[1], q[3]) qc.barrier() #Sum qc.measure(q[2], c[0]) #Carry out qc.measure(q[3], c[1]) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) result = job.result() count =result.get_counts() print(count) qc.draw(output='mpl') import numpy as np from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import BasicAer, execute from qiskit.quantum_info import Pauli, state_fidelity, process_fidelity q = QuantumRegister(4, 'q0') c = ClassicalRegister(1, 'c0') qc = QuantumCircuit(q, c) qc.ccx(q[0], q[1], q[2]) qc.cx(q[3], q[1]) qc.h(q[3]) qc.ccx(q[3], q[2], q[1]) qc.measure(q[3],c[0]) qc.draw(output='mpl') qc.count_ops() from qiskit.transpiler import PassManager from qiskit.transpiler.passes import Unroller pass_ = Unroller(['u3', 'cx']) pm = PassManager(pass_) new_circuit = pm.run(qc) new_circuit.draw(output='mpl') new_circuit.count_ops() q = QuantumRegister(3, 'q0') c = ClassicalRegister(1, 'c0') qc = QuantumCircuit(q, c) qc.ccx(q[0], q[1], q[2]) qc.draw(output='mpl') pass_ = Unroller(['u3', 'cx']) pm = PassManager(pass_) new_circuit = pm.run(qc) new_circuit.draw(output='mpl') new_circuit.count_ops() from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import IBMQ, Aer, execute ##### build your quantum circuit here q = QuantumRegister(8, 'q') c = ClassicalRegister(2, 'c') qc = QuantumCircuit(q,c) qc.x(q[0]) #input 1 #qc.x(q[1]) #input 1 qc.x(q[2]) #input 1 qc.cx(q[2],q[3]) qc.cx(q[1], q[3]) # B XOR X qc.cx(q[3], q[4]) qc.cx(q[0], q[4]) #4 will be my sum - B XOR X XOR A qc.ccx(q[0], q[3], q[5]) # A AND (B XOR X) qc.ccx(q[1], q[2], q[6]) # BX qc.cx(q[6], q[7]) qc.cx(q[5], q[7]) qc.ccx(q[5], q[6], q[7]) # BX AND A(B XOR X) qc.measure(q[4],c[0]) # SUM - B XOR X XOR A qc.measure(q[7],c[1]) # Carry Out - BX OR A(B XOR X) # execute the circuit by qasm_simulator backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) result = job.result() count =result.get_counts() print(count) qc.draw(output='mpl') from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import IBMQ, Aer, execute ##### build your quantum circuit here q = QuantumRegister(6, 'q') c = ClassicalRegister(2, 'c') qc = QuantumCircuit(q,c) qc.x(q[0]) #input 1 #qc.x(q[1]) #input 1 qc.x(q[2]) #input 1 qc.ccx(q[1], q[2],q[3]) # BX qc.cx(q[1], q[2]) # B XOR X qc.ccx(q[0], q[2], q[4]) # A(B XOR X) qc.cx(q[0], q[2]) #2 will be my sum - B XOR X XOR A qc.cx(q[4], q[5]) qc.cx(q[3], q[5]) qc.ccx(q[3], q[4], q[5]) # BX OR A(B XOR X) qc.measure(q[2],c[0]) # SUM - B XOR X XOR A qc.measure(q[5],c[1]) # Carry Out - BX OR A(B XOR X) # execute the circuit by qasm_simulator backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) result = job.result() count =result.get_counts() print(count) qc.draw(output='mpl') from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import IBMQ, Aer, execute ##### build your quantum circuit here q = QuantumRegister(6, 'q') c = ClassicalRegister(2, 'c') qc = QuantumCircuit(q,c) qc.x(q[0]) #input 1 #qc.x(q[1]) #input 1 qc.x(q[2]) #input 1 qc.ccx(q[1], q[2],q[3]) # BX qc.cx(q[1], q[2]) # B XOR X qc.ccx(q[0], q[2], q[4]) # A(B XOR X) qc.cx(q[0], q[2]) #2 will be my sum - B XOR X XOR A qc.measure(q[2],c[0]) # SUM - B XOR X XOR A qc.x(q[3]) qc.x(q[4]) qc.ccx(q[3], q[4], q[5]) qc.x(q[5])# BX OR A(B XOR X) qc.measure(q[5],c[1]) # Carry Out - BX OR A(B XOR X) # execute the circuit by qasm_simulator backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) result = job.result() count =result.get_counts() print(count) qc.draw(output='mpl') from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import IBMQ, Aer, execute ##### build your quantum circuit here q = QuantumRegister(4, 'q') c = ClassicalRegister(2, 'c') qc = QuantumCircuit(q,c) qc.x(q[0]) #input 1 #qc.x(q[1]) #input 1 qc.x(q[2]) #input 1 qc.ccx(q[1], q[2],q[3]) # BX qc.cx(q[1], q[2]) # B XOR X qc.ccx(q[0], q[2], q[3]) # A(B XOR X) qc.cx(q[0], q[2]) #2 will be my sum - A XOR B XOR X qc.measure(q[2],c[0]) # SUM - B XOR X XOR A qc.measure(q[3],c[1]) # Carry Out - BX OR A(B XOR X) # execute the circuit by qasm_simulator backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) result = job.result() count =result.get_counts() print(count) qc.draw(output='mpl') from qiskit.transpiler import PassManager from qiskit.transpiler.passes import Unroller pass_ = Unroller(['u3', 'cx']) pm = PassManager(pass_) new_circuit = pm.run(qc) #new_circuit.draw(output='mpl') new_circuit.count_ops() # Check your answer using following code from qc_grader import grade_ex1a grade_ex1a(qc) # Submit your answer. You can re-submit at any time. from qc_grader import submit_ex1a submit_ex1a(qc)
https://github.com/qiskit-community/community.qiskit.org
qiskit-community
secret_unitary = 'hz' # make the imports that are necessary for our work import qiskit as qk from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit from qiskit import execute, Aer from qiskit import IBMQ from qiskit.tools.visualization import plot_histogram # simple function that applies a series of unitary gates from a given string def apply_secret_unitary(secret_unitary, qubit, quantum_circuit, dagger): functionmap = { 'x':quantum_circuit.x, 'y':quantum_circuit.y, 'z':quantum_circuit.z, 'h':quantum_circuit.h, 't':quantum_circuit.t, } if dagger: functionmap['t'] = quantum_circuit.tdg if dagger: [functionmap[unitary](qubit) for unitary in secret_unitary] else: [functionmap[unitary](qubit) for unitary in secret_unitary[::-1]] # Create the quantum circuit q = QuantumRegister(3) c = ClassicalRegister(3) qc = QuantumCircuit(q, c) ''' Qubit ordering as follows (classical registers will just contain measured values of the corresponding qubits): q[0]: qubit to be teleported (Alice's first qubit. It was given to her after the application of a secret unitary which she doesn't know) q[1]: Alice's second qubit q[2]: Bob's qubit, which will be the destination for the teleportation ''' # Apply the secret unitary that we are using to generate the state to teleport. You can change it to any unitary apply_secret_unitary(secret_unitary, q[0], qc, dagger = 0) qc.barrier() # Next, generate the entangled pair between Alice and Bob (Remember: Hadamard followed by CX generates a Bell pair) qc.h(q[1]) qc.cx(q[1], q[2]) qc.barrier() # Next, apply the teleportation protocol. qc.cx(q[0], q[1]) qc.h(q[0]) qc.measure(q[0], c[0]) qc.measure(q[1], c[1]) qc.cx(q[1], q[2]) qc.cz(q[0], q[2]) qc.barrier() ''' In principle, if the teleportation protocol worked, we have q[2] = secret_unitary|0> As a result, we should be able to recover q[2] = |0> by applying the reverse of secret_unitary since for a unitary u, u^dagger u = I. ''' apply_secret_unitary(secret_unitary, q[2], qc, dagger=1) qc.measure(q[2], c[2]) qc.draw(output='mpl') backend = Aer.get_backend('qasm_simulator') job_sim = execute(qc, backend, shots=1024) sim_result = job_sim.result() measurement_result = sim_result.get_counts(qc) print(measurement_result) plot_histogram(measurement_result) # First, see what devices we are allowed to use by loading our saved accounts IBMQ.load_account() IBMQ.get_provider(hub='ibm-q') provider.backends() # get the least-busy backend at IBM and run the quantum circuit there from qiskit.providers.ibmq import least_busy backend = least_busy(provider.backends(simulator=False)) job_exp = execute(qc, backend=backend, shots=8192) exp_result = job_exp.result() exp_measurement_result = exp_result.get_counts(qc) print(exp_measurement_result) plot_histogram(exp_measurement_result) error_rate_percent = sum([exp_measurement_result[result] for result in exp_measurement_result.keys() if result[0]=='1']) \ * 100./ sum(list(exp_measurement_result.values())) print("The experimental error rate : ", error_rate_percent, "%")
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits to represent the uncertainty num_uncertainty_qubits = 3 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # construct circuit for uncertainty model uncertainty_model = LogNormalDistribution( num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high) ) # plot probability distribution x = uncertainty_model.values y = uncertainty_model.probabilities plt.bar(x, y, width=0.2) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.show() # set the strike price (should be within the low and the high value of the uncertainty) strike_price_1 = 1.438 strike_price_2 = 2.584 # set the approximation scaling for the payoff function rescaling_factor = 0.25 # setup piecewise linear objective fcuntion breakpoints = [low, strike_price_1, strike_price_2] slopes = [0, 1, 0] offsets = [0, 0, strike_price_2 - strike_price_1] f_min = 0 f_max = strike_price_2 - strike_price_1 bull_spread_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, rescaling_factor=rescaling_factor, ) # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective bull_spread = bull_spread_objective.compose(uncertainty_model, front=True) # plot exact payoff function (evaluated on the grid of the uncertainty model) x = uncertainty_model.values y = np.minimum(np.maximum(0, x - strike_price_1), strike_price_2 - strike_price_1) plt.plot(x, y, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value (normalized to the [0, 1] interval) exact_value = np.dot(uncertainty_model.probabilities, y) exact_delta = sum( uncertainty_model.probabilities[np.logical_and(x >= strike_price_1, x <= strike_price_2)] ) print("exact expected value:\t%.4f" % exact_value) print("exact delta value: \t%.4f" % exact_delta) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=bull_spread, objective_qubits=[num_uncertainty_qubits], post_processing=bull_spread_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value:\t%.4f" % result.estimation_processed) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) # setup piecewise linear objective fcuntion breakpoints = [low, strike_price_1, strike_price_2] slopes = [0, 0, 0] offsets = [0, 1, 0] f_min = 0 f_max = 1 bull_spread_delta_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, ) # no approximation necessary, hence no rescaling factor # construct the A operator by stacking the uncertainty model and payoff function together bull_spread_delta = bull_spread_delta_objective.compose(uncertainty_model, front=True) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=bull_spread_delta, objective_qubits=[num_uncertainty_qubits] ) # construct amplitude estimation ae_delta = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_delta = ae_delta.estimate(problem) conf_int = np.array(result_delta.confidence_interval) print("Exact delta: \t%.4f" % exact_delta) print("Estimated value:\t%.4f" % result_delta.estimation) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/BryceFuller/qiskit_camp
BryceFuller
%matplotlib inline import sys sys.path.append("..") import compress from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer import numpy as np from functools import partial from qiskit.aqua.components.optimizers import SPSA from multideterminant_prep import PrepareMultiDeterminantState as pmds import seaborn as sns import matplotlib.pyplot as plt get_ipython().run_line_magic('pylab', 'inline') pylab.rcParams['figure.figsize'] = (12, 6) pylab.rcParams.update({'font.size': 10}) in_strings = ["101", "011", "110"] in_weights = [4, 7, 2] circuit = pmds(in_weights, in_strings) circuit.draw(scale=0.5, style={'fold':100}, output='mpl') # Configuration n_shots = 1000 n_trials = 300 n_layers = 3 n_params = circuit.width() * n_layers * 3 # Build variable bounds variable_bounds_single = (0., 2*np.pi) variable_bounds = [variable_bounds_single] * n_params initial_point = np.random.uniform(low=variable_bounds_single[0], high=variable_bounds_single[1], size=(n_params,)).tolist() circuit.draw(scale=0.5, style={'fold':100}, output='mpl') print("Circuit has a depth of: {}".format(circuit.depth())) final_circuit = compress.swap_test_with_compression_model(circuit, initial_point) final_circuit.draw(scale=0.5, style={'fold':100}, output='mpl') results = compress.cross_validate_qnn_depth(circuit, n_shots, n_trials, n_layers, run=0) results sns.lineplot(x='iteration', y='fidelity', data=results.fidelity.to_dataframe().reset_index()) plt.title("Fidelity improvement with optimiser iterations")
https://github.com/kerenavnery/qmail
kerenavnery
from qiskit import * from qiskit.quantum_info import Statevector from parser import QSerializer from SocketChannel import SocketChannel class Channel: def __init__(self): #self._is_master = is_master self._master_qargs_list = None self._master_cargs_list = None self._slave_qargs_list = None self._slave_cargs_list = None self._circuit = None def receive(self,circuit): print('Wait to receive') channel = SocketChannel(port=5005, listen=True) data = channel.receive() print("received data:", data) channel.close() #From Marc ser2 = parser.QSerializer() ser2.decode(data) recieve_channel = ser2.get_element('channel_class') self._slave_offset = recieve_channel._slave_offset if(recieve_channel._master): self._master = False self._offset = self._slave_offset new_circuit = QuantumCircuit(len(recieve_channel._state_vector.dims())) new_circuit.initialize(recieve_channel._state_vector.data, range(len(recieve_channel._state_vector.dims()))) new_circuit = transpile(new_circuit, basis_gates=self._basis_gates) return new_circuit, self._offset def append(self, is_master instruction, qargs=None, cargs=None): if is_master: for restricted_qarg in self._slave_qargs_list: if restricted_qarg is in qargs: print("Master is trying to access Slave's qarg: %d".format(restricted_qarg)) return -1 for restricted_carg in self._slave_cargs_list: if restricted_carg is in cargs: print("Master is trying to access Slave's carg: %d".format(restricted_carg)) return -1 else: ## is_slave for restricted_qarg in self._master_qargs_list: if restricted_qarg is in qargs: print("Slave is trying to access Master's qarg: %d".format(restricted_qarg)) return -1 for restricted_carg in self._master_cargs_list: if restricted_carg is in cargs: print("Slave is trying to access Master's carg: %d".format(restricted_carg)) return -1 ## Allowed access return self._circuit.append(instruction, qargs, cargs) def # self._state_vector = None # self._arr_qubits = None # self._basis_gates = ['u1', 'u2', 'u3', 'cx','x','y','H','z'] # self._master = True # self._offset = 0 # self._slave_offset = slave_offset def send(self,circuit,arr_qubits): self._state_vector = Statevector.from_instruction(circuit) self._arr_qubits = arr_qubits #From Marc ser = QSerializer() ser.add_element('channel_class', self) str_to_send = ser.encode() #print(str_to_send.type()) #From Luca message = str_to_send TCP_IP = '127.0.0.1' channel = SocketChannel() channel.connect(TCP_IP, 5005) channel.send(message) channel.close() ## TODO: TCP THINGS return self def receive(self,circuit):#,recieve_channel): ## TODO: remove recieve as an input #TODO: TCP things #recieve_channel = TCP_STUFF #From Luca print('Wait to receive') channel = SocketChannel(port=5005, listen=True) data = channel.receive() print("received data:", data) channel.close() #From Marc ser2 = QSerializer() ser2.decode(data) recieve_channel = ser2.get_element('channel_class') self._slave_offset = recieve_channel._slave_offset if(recieve_channel._master): self._master = False self._offset = self._slave_offset new_circuit = QuantumCircuit(len(recieve_channel._state_vector.dims())) new_circuit.initialize(recieve_channel._state_vector.data, range(len(recieve_channel._state_vector.dims()))) new_circuit = transpile(new_circuit, basis_gates=self._basis_gates) return new_circuit, self._offset
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit.algorithms.optimizers import SLSQP from qiskit.circuit.library import TwoLocal from qiskit.extensions import UnitaryGate from weylchamber import canonical_gate gate = UnitaryGate(canonical_gate(0.5, 0.25, 0.25).full()) # gate ='cx' num_qubits = 2 ansatz = TwoLocal(num_qubits, ["ry", "rz"], gate) optimizer = SLSQP(maxiter=1000) ansatz.decompose().draw("mpl", style="iqx") from qiskit.primitives import Estimator estimator = Estimator() from qiskit.algorithms.minimum_eigensolvers import VQE vqe = VQE(estimator, ansatz, optimizer) from qiskit.quantum_info import SparsePauliOp H2_op = SparsePauliOp.from_list( [ ("II", -1.052373245772859), ("IZ", 0.39793742484318045), ("ZI", -0.39793742484318045), ("ZZ", -0.01128010425623538), ("XX", 0.18093119978423156), ] ) result = vqe.compute_minimum_eigenvalue(H2_op) print(result)
https://github.com/electricalgorithm/BernsteinVaziraniAlgorithm
electricalgorithm
""" This module implements the Bernstein-Vazirani Algorithm. """ from qiskit import Aer from qiskit import QuantumCircuit, assemble, transpile from qiskit.circuit.instruction import Instruction class BVAlgorithm: """This class implements the Bernstein-Vazirani Algorithm.""" @staticmethod def create_oracle_from_number(number: int) -> Instruction: """This method returns a Oracle block which will be used in the Bernstein-Vazirani Algorithm. Parameters ---------- number_str : str The number in binary form as string. Returns ------- Instruction Oracle block to be fed into the algorithm. """ # Convert the integer into binary string. number_str = format(number, "b") inputs_count = len(number_str) # Create a quantum circuit with the number of input qubits + 1 output qubit. oracle = QuantumCircuit(inputs_count + 1, inputs_count) # Apply the CNOTs to the inputs as "1"s. for index, qubit in enumerate(reversed(number_str)): if qubit == "1": oracle.cx(index, inputs_count) inst = oracle.to_instruction() inst.name = "SecretNumberOracle" return inst @staticmethod def simulate(secret_number_oracle: Instruction) -> dict: """_summary_ Parameters ---------- secret_no_oracle : Instruction The secret number to look for with the algoritm. Returns ------- dict A dictionary with result attribute which is the found number. """ # Create the circuit. circuit = BVAlgorithm._construct_the_circuit(secret_number_oracle) # Run the simulation. aer_sim = Aer.get_backend("aer_simulator") transpiled_dj_circuit = transpile(circuit, aer_sim) qobj = assemble(transpiled_dj_circuit) results = aer_sim.run(qobj).result() # Get the answer. answer = results.get_counts() answer_as_list = list(answer.keys()) answer_int = int(answer_as_list[0], 2) return {"result": answer_int} @staticmethod def _construct_the_circuit(function_block: QuantumCircuit) -> QuantumCircuit: """It creates the circuit for the Bernstein-Vazirani Algorithm. Parameters ---------- function_block : QuantumCircuit The secret number block to check with the Bernstein-Vazirani Algorithm. Returns ------- QuantumCircuit The circuit for the Bernstein-Vazirani Algorithm. """ # Get the number of input qubits. input_length = function_block.num_qubits - 1 _circuit = QuantumCircuit(input_length + 1, input_length) # Apply Hadamard gates to all input qubits. for qubit in range(input_length): _circuit.h(qubit) # Convert the last qubit to |-) state. _circuit.x(input_length) _circuit.h(input_length) _circuit.barrier() # Apply the oracle block. _circuit.append( function_block, range(function_block.num_qubits), range(function_block.num_clbits), ) _circuit.barrier() # Apply Hadamard gates to all input qubits. for qubit in range(input_length): _circuit.h(qubit) _circuit.barrier() # Measure all input qubits and put them to classical bits. for qubit in range(input_length): _circuit.measure(qubit, qubit) return _circuit if __name__ == "__main__": print("========================================") print("Bernstein-Vazirani Algorithm Simulation") print("========================================") # Get the number of input qubits. secret_number = int(input("> Enter the secret number to search for: ")) # Get the oracle block. block_to_test = BVAlgorithm.create_oracle_from_number(secret_number) # Run the algorithm. result = BVAlgorithm.simulate(block_to_test) print(f"Result: {result['result']}")
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2023 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import itertools import math import sys import ddt import qiskit.qasm2 from qiskit.test import QiskitTestCase @ddt.ddt class TestSimple(QiskitTestCase): def test_unary_constants(self): program = "qreg q[1]; U(-(0.5 + 0.5), +(+1 - 2), -+-+2) q[0];" parsed = qiskit.qasm2.loads(program) expected = [-1.0, -1.0, 2.0] self.assertEqual(list(parsed.data[0].operation.params), expected) def test_unary_symbolic(self): program = """ gate u(a, b, c) q { U(-(a + a), +(+b - c), -+-+c) q; } qreg q[1]; u(0.5, 1.0, 2.0) q[0]; """ parsed = qiskit.qasm2.loads(program) expected = [-1.0, -1.0, 2.0] actual = [float(x) for x in parsed.data[0].operation.definition.data[0].operation.params] self.assertEqual(list(actual), expected) @ddt.data( ("+", lambda a, b: a + b), ("-", lambda a, b: a - b), ("*", lambda a, b: a * b), ("/", lambda a, b: a / b), ("^", lambda a, b: a**b), ) @ddt.unpack def test_binary_constants(self, str_op, py_op): program = f"qreg q[1]; U(0.25{str_op}0.5, 1.0{str_op}0.5, 3.2{str_op}-0.8) q[0];" parsed = qiskit.qasm2.loads(program) expected = [py_op(0.25, 0.5), py_op(1.0, 0.5), py_op(3.2, -0.8)] # These should be bit-for-bit exact. self.assertEqual(list(parsed.data[0].operation.params), expected) @ddt.data( ("+", lambda a, b: a + b), ("-", lambda a, b: a - b), ("*", lambda a, b: a * b), ("/", lambda a, b: a / b), ("^", lambda a, b: a**b), ) @ddt.unpack def test_binary_symbolic(self, str_op, py_op): program = f""" gate u(a, b, c) q {{ U(a {str_op} b, a {str_op} (b {str_op} c), 0.0) q; }} qreg q[1]; u(1.0, 2.0, 3.0) q[0]; """ parsed = qiskit.qasm2.loads(program) outer = [1.0, 2.0, 3.0] abstract_op = parsed.data[0].operation self.assertEqual(list(abstract_op.params), outer) expected = [py_op(1.0, 2.0), py_op(1.0, py_op(2.0, 3.0)), 0.0] actual = [float(x) for x in abstract_op.definition.data[0].operation.params] self.assertEqual(list(actual), expected) @ddt.data( ("cos", math.cos), ("exp", math.exp), ("ln", math.log), ("sin", math.sin), ("sqrt", math.sqrt), ("tan", math.tan), ) @ddt.unpack def test_function_constants(self, function_str, function_py): program = f"qreg q[1]; U({function_str}(0.5),{function_str}(1.0),{function_str}(pi)) q[0];" parsed = qiskit.qasm2.loads(program) expected = [function_py(0.5), function_py(1.0), function_py(math.pi)] # These should be bit-for-bit exact. self.assertEqual(list(parsed.data[0].operation.params), expected) @ddt.data( ("cos", math.cos), ("exp", math.exp), ("ln", math.log), ("sin", math.sin), ("sqrt", math.sqrt), ("tan", math.tan), ) @ddt.unpack def test_function_symbolic(self, function_str, function_py): program = f""" gate u(a, b, c) q {{ U({function_str}(a), {function_str}(b), {function_str}(c)) q; }} qreg q[1]; u(0.5, 1.0, pi) q[0]; """ parsed = qiskit.qasm2.loads(program) outer = [0.5, 1.0, math.pi] abstract_op = parsed.data[0].operation self.assertEqual(list(abstract_op.params), outer) expected = [function_py(x) for x in outer] actual = [float(x) for x in abstract_op.definition.data[0].operation.params] self.assertEqual(list(actual), expected) class TestPrecedenceAssociativity(QiskitTestCase): def test_precedence(self): # OQ3's precedence rules are the same as Python's, so we can effectively just eval. expr = " 1.0 + 2.0 * -3.0 ^ 1.5 - 0.5 / +0.25" expected = 1.0 + 2.0 * -(3.0**1.5) - 0.5 / +0.25 program = f"qreg q[1]; U({expr}, 0, 0) q[0];" parsed = qiskit.qasm2.loads(program) self.assertEqual(parsed.data[0].operation.params[0], expected) def test_addition_left(self): # `eps` is the smallest floating-point value such that `1 + eps != 1`. That means that if # addition is correctly parsed and resolved as left-associative, then the first parameter # should first calculate `1 + (eps / 2)`, which will be 1, and then the same again, whereas # the second will do `(eps / 2) + (eps / 2) = eps`, then `eps + 1` will be different. eps = sys.float_info.epsilon program = f"qreg q[1]; U(1 + {eps / 2} + {eps / 2}, {eps / 2} + {eps / 2} + 1, 0) q[0];" parsed = qiskit.qasm2.loads(program) self.assertNotEqual(1.0 + eps, 1.0) # Sanity check for the test. self.assertEqual(list(parsed.data[0].operation.params), [1.0, 1.0 + eps, 0.0]) def test_multiplication_left(self): # A similar principle to the epsilon test for addition; if multiplication associates right, # then `(0.5 * 2.0 * fmax)` is `inf`, otherwise it's `fmax`. fmax = sys.float_info.max program = f"qreg q[1]; U({fmax} * 0.5 * 2.0, 2.0 * 0.5 * {fmax}, 2.0 * {fmax} * 0.5) q[0];" parsed = qiskit.qasm2.loads(program) self.assertEqual(list(parsed.data[0].operation.params), [fmax, fmax, math.inf]) def test_subtraction_left(self): # If subtraction associated right, we'd accidentally get 2. program = "qreg q[1]; U(2.0 - 1.0 - 1.0, 0, 0) q[0];" parsed = qiskit.qasm2.loads(program) self.assertEqual(list(parsed.data[0].operation.params), [0.0, 0.0, 0.0]) def test_division_left(self): # If division associated right, we'd accidentally get 4. program = "qreg q[1]; U(4.0 / 2.0 / 2.0, 0, 0) q[0];" parsed = qiskit.qasm2.loads(program) self.assertEqual(list(parsed.data[0].operation.params), [1.0, 0.0, 0.0]) def test_power_right(self): # If the power operator associated left, we'd accidentally get 64 instead. program = "qreg q[1]; U(2.0 ^ 3.0 ^ 2.0, 0, 0) q[0];" parsed = qiskit.qasm2.loads(program) self.assertEqual(list(parsed.data[0].operation.params), [512.0, 0.0, 0.0]) class TestCustomClassical(QiskitTestCase): def test_evaluation_order(self): """We should be evaluating all functions, including custom user ones the exact number of times we expect, and left-to-right in parameter lists.""" # pylint: disable=invalid-name order = itertools.count() def f(): return next(order) program = """ qreg q[1]; U(f(), 2 * f() + f(), atan2(f(), f()) - f()) q[0]; """ parsed = qiskit.qasm2.loads( program, custom_classical=[ qiskit.qasm2.CustomClassical("f", 0, f), qiskit.qasm2.CustomClassical("atan2", 2, math.atan2), ], ) self.assertEqual( list(parsed.data[0].operation.params), [0, 2 * 1 + 2, math.atan2(3, 4) - 5] ) self.assertEqual(next(order), 6) @ddt.ddt class TestErrors(QiskitTestCase): @ddt.data("0.0", "(1.0 - 1.0)") def test_refuses_to_divide_by_zero(self, denom): program = f"qreg q[1]; U(2.0 / {denom}, 0.0, 0.0) q[0];" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "divide by zero"): qiskit.qasm2.loads(program) program = f"gate rx(a) q {{ U(a / {denom}, 0.0, 0.0) q; }}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "divide by zero"): qiskit.qasm2.loads(program) @ddt.data("0.0", "1.0 - 1.0", "-2.0", "2.0 - 3.0") def test_refuses_to_ln_non_positive(self, operand): program = f"qreg q[1]; U(ln({operand}), 0.0, 0.0) q[0];" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "ln of non-positive"): qiskit.qasm2.loads(program) program = f"gate rx(a) q {{ U(a + ln({operand}), 0.0, 0.0) q; }}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "ln of non-positive"): qiskit.qasm2.loads(program) @ddt.data("-2.0", "2.0 - 3.0") def test_refuses_to_sqrt_negative(self, operand): program = f"qreg q[1]; U(sqrt({operand}), 0.0, 0.0) q[0];" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "sqrt of negative"): qiskit.qasm2.loads(program) program = f"gate rx(a) q {{ U(a + sqrt({operand}), 0.0, 0.0) q; }}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "sqrt of negative"): qiskit.qasm2.loads(program) @ddt.data("*", "/", "^") def test_cannot_use_nonunary_operators_in_unary_position(self, operator): program = f"qreg q[1]; U({operator}1.0, 0.0, 0.0) q[0];" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "not a valid unary operator"): qiskit.qasm2.loads(program) @ddt.data("+", "-", "*", "/", "^") def test_missing_binary_operand_errors(self, operator): program = f"qreg q[1]; U(1.0 {operator}, 0.0, 0.0) q[0];" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "missing operand"): qiskit.qasm2.loads(program) program = f"qreg q[1]; U((1.0 {operator}), 0.0, 0.0) q[0];" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "missing operand"): qiskit.qasm2.loads(program) def test_parenthesis_must_be_closed(self): program = "qreg q[1]; U((1 + 1 2), 3, 2) q[0];" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "needed a closing parenthesis"): qiskit.qasm2.loads(program) def test_premature_right_parenthesis(self): program = "qreg q[1]; U(sin(), 0.0, 0.0) q[0];" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "did not find an .* expression"): qiskit.qasm2.loads(program)
https://github.com/qiskit-community/prototype-quantum-kernel-training
qiskit-community
# pylint: disable=import-error, wrong-import-position, too-few-public-methods, no-self-use, function-redefined from functools import partial from typing import Sequence import os import sys import numpy as np import matplotlib.pyplot as plt # Import Qiskit packages from qiskit.circuit.library import ZZFeatureMap from qiskit_machine_learning.kernels import TrainableFidelityQuantumKernel from qiskit_machine_learning.utils.loss_functions import KernelLoss feature_map = ZZFeatureMap(3) user_params = [feature_map.parameters[1]] qkernel = TrainableFidelityQuantumKernel( feature_map=feature_map, training_parameters=user_params, ) X_train = [[0.6, 0.2], [0.5, 0.3], [0.3, 0.7], [0.1, 0.5]] y_train = np.array([0, 0, 1, 1]) class CustomKernelLoss(KernelLoss): """Example Kernel Loss class""" def __init__(self, **kwargs): self.kwargs = kwargs # Evaluate the Loss of a trainable quantum kernel # at a particular setting of user_param_values on # a particular dataset. def evaluate( self, parameter_values: Sequence[float], quantum_kernel: TrainableFidelityQuantumKernel, data: np.ndarray, labels: np.ndarray, ): # Bind the user parameter values quantum_kernel.assign_training_parameters(parameter_values) kernel_matrix = quantum_kernel.evaluate(data) return labels.T @ kernel_matrix @ labels # Wrap our evaluate method so to produce a callable # which maps user_param_values to loss scores. def get_variational_callable( self, quantum_kernel: TrainableFidelityQuantumKernel, data: np.ndarray, labels: np.ndarray, ): return partial( self.evaluate, quantum_kernel=quantum_kernel, data=data, labels=labels ) kernel_loss = CustomKernelLoss().get_variational_callable(qkernel, X_train, y_train) print(kernel_loss([0.75])) NUM_GRID_POINTS = 100 loss_values = [kernel_loss([val]) for val in np.linspace(0, 2 * np.pi, NUM_GRID_POINTS)] plt.rcParams["font.size"] = 15 plt.figure(figsize=(8, 4)) plt.plot(np.linspace(0, 2 * np.pi, NUM_GRID_POINTS), loss_values) plt.xlabel("θ") plt.ylabel("Kernel Loss") plt.show() def kernel_loss_full(training_param_values, kernel, data, labels): kernel.assign_training_parameters(training_param_values) kernel_matrix = kernel.evaluate(data) return labels.T @ kernel_matrix @ labels kernel_loss = partial(kernel_loss_full, kernel=qkernel, data=X_train, labels=y_train) print(kernel_loss([0.75])) #import qiskit.tools.jupyter # #%qiskit_version_table #%qiskit_copyright
https://github.com/ronitd2002/IBM-Quantum-challenge-2024
ronitd2002
# please create a 3 qubit GHZ circuit # please create a 2 qubit ch gate with only cx and ry gate # Enter your prompt here - Delete this line
https://github.com/victor-onofre/Quantum_Algorithms
victor-onofre
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ, BasicAer from qiskit.visualization import plot_bloch_multivector,plot_bloch_vector, plot_histogram, plot_state_qsphere from qiskit.quantum_info import Statevector, partial_trace import random import numpy as np import matplotlib backend_statevector = BasicAer.get_backend('statevector_simulator')# This backend executes a single shot of a Qiskit QuantumCircuit and returns the final quantum statevector of the simulation. style = {'backgroundcolor': 'lightyellow'} # Style of the circuits backend_qasm = BasicAer.get_backend('qasm_simulator')# This backend is designed to mimic an actual device. #It executes a Qiskit QuantumCircuit and returns a count dictionary containing the final values of any classical registers in the circuit. shots = 1024 #Number of individual shots qreg = QuantumRegister(2) registerBell = ClassicalRegister(2) qBell = QuantumCircuit(qreg,registerBell ) qBell.h(0) qBell.cx(0,1) qBell.draw(output='mpl', style=style) out_vectorBell = execute(qBell, backend_statevector).result().get_statevector() plot_state_qsphere(out_vectorBell) qBell.measure(qreg[0],registerBell [0]) qBell.measure(qreg[1],registerBell [1]) qBell.draw(output='mpl', style=style) results = execute(qBell, backend=backend_qasm, shots=shots).result() answer = results.get_counts() plot_histogram(answer) def gate_errorX(): ############################################################ # This function will return ['X'] with a probability 0.2 # # ['Z'] with a probability 0.2 # # and ['I'] with a probability 0.6 # ########################################################## random_gate = random.choices(population= ['Z', 'X', 'I'],weights=[0.2,0.2, 0.6],k=1) return(random_gate) def noise(qcirc): if gate_errorX() == ['X']: ### Bit-flip in the qubit 0 ##### qcirc.x(0) elif gate_errorX() == ['Z']: ### phase-flip in the qubit 0 ##### qcirc.z(0) else: qcirc.i(0) if gate_errorX() == ['X']: ### Bit-flip in the qubit 1 ##### qcirc.x(1) elif gate_errorX() == ['Z']: ### phase-flip in the qubit 0 ##### qcirc.z(1) else: qcirc.i(1) return qcirc qregNoise = QuantumRegister(2) registerBellNoise = ClassicalRegister(2) qBellNoise = QuantumCircuit(qregNoise,registerBellNoise ) qBellNoise.h(0) qBellNoise.barrier() noise(qBellNoise) #qBellNoise.z(0) qBellNoise.barrier() qBellNoise.cx(0,1) qBellNoise.draw(output='mpl', style=style) out_vectorBellNoise = execute(qBellNoise, backend_statevector).result().get_statevector() plot_state_qsphere(out_vectorBellNoise) plot_state_qsphere(out_vectorBell) qBellNoise.measure(qregNoise[0],registerBellNoise[0]) qBellNoise.measure(qregNoise[1],registerBellNoise[1]) qBellNoise.draw(output='mpl', style=style) resultsNoise = execute(qBellNoise, backend=backend_qasm, shots=shots).result() answerNoise = resultsNoise.get_counts() plot_histogram(answerNoise) qreg_X1_Noise = QuantumRegister(2) registerBell_X1_Noise = ClassicalRegister(2) qBell_X1_Noise = QuantumCircuit(qreg_X1_Noise,registerBell_X1_Noise ) qBell_X1_Noise.h(0) qBell_X1_Noise.barrier() #noise(qBellNoise) qBell_X1_Noise.x(1) qBell_X1_Noise.barrier() qBell_X1_Noise.cx(0,1) qBell_X1_Noise.draw(output='mpl', style=style) out_vectorBell_X1_Noise = execute(qBell_X1_Noise, backend_statevector).result().get_statevector() plot_state_qsphere(out_vectorBell_X1_Noise) Qreg1 = QuantumRegister(1) Qreg2 = QuantumRegister(2) qc_bit_flip = QuantumCircuit(Qreg1,Qreg2) state_to_protect = [np.sqrt(0.2),np.sqrt(0.8)] qc_bit_flip.initialize(state_to_protect,0) # Apply initialisation operation to the 0th qubit qc_bit_flip.barrier() Initial_state = Statevector.from_instruction(qc_bit_flip) plot_bloch_multivector(Initial_state, title='Initial state') qc_bit_flip.cx(0,1) qc_bit_flip.cx(0,2) qc_bit_flip.draw(output='mpl', style=style) qc_bit_flip.barrier() qc_bit_flip.x(0) qc_bit_flip.barrier() qc_bit_flip.cx(0,2) qc_bit_flip.cx(0,1) qc_bit_flip.barrier() qc_bit_flip.ccx(2,1,0) qc_bit_flip.draw(output='mpl', style=style) out_vector = execute(qc_bit_flip, backend_statevector).result().get_statevector() plot_bloch_multivector(out_vector, title='Final state') plot_bloch_multivector(Initial_state, title='Initial state') qregister1 = QuantumRegister(1) qregister2 = QuantumRegister(2) cregister = ClassicalRegister(2, 'c') qc_bit_flip_measurements = QuantumCircuit(qregister1,qregister2,cregister) qc_bit_flip_measurements.initialize(state_to_protect,0) # Apply initialisation operation to the 0th qubit Initial_state1 = Statevector.from_instruction(qc_bit_flip_measurements) plot_bloch_multivector(Initial_state1, title='Initial state') ### Perfmoing the encoding ##### qc_bit_flip_measurements.barrier() qc_bit_flip_measurements.cx(0,1) qc_bit_flip_measurements.cx(0,2) ### Apply some noise ##### qc_bit_flip_measurements.barrier() #noise(qc) qc_bit_flip_measurements.x(0) ### Aplying the inverse of the encoding procedure ### qc_bit_flip_measurements.barrier() qc_bit_flip_measurements.cx(0,2) qc_bit_flip_measurements.cx(0,1) qc_bit_flip_measurements.barrier() qc_bit_flip_measurements.measure(qregister2,cregister) qc_bit_flip_measurements.x(0).c_if(cregister, 3) qc_bit_flip_measurements.draw(output='mpl', style=style) out_vector1 = execute(qc_bit_flip_measurements, backend_statevector).result().get_statevector() plot_bloch_multivector(out_vector1, title='Final state') plot_bloch_multivector(Initial_state1, title='Initial state') qEncoding = QuantumRegister(3) qAncillas = QuantumRegister(2, 'ancilla') AncillasRegister = ClassicalRegister(2, 'c') qc_bit_flip_ancillas_measuremnts = QuantumCircuit(qEncoding,qAncillas,AncillasRegister) qc_bit_flip_ancillas_measuremnts.initialize(state_to_protect,0) # Apply initialisation operation to the 0th qubit Initial_state2 = Statevector.from_instruction(qc_bit_flip_ancillas_measuremnts) plot_bloch_multivector(Initial_state2, title='Initial state') ### Perfmoing the encoding ##### qc_bit_flip_ancillas_measuremnts.barrier() qc_bit_flip_ancillas_measuremnts.cx(0,1) qc_bit_flip_ancillas_measuremnts.cx(0,2) ### Apply some noise ##### qc_bit_flip_ancillas_measuremnts.barrier() #noise(qc) qc_bit_flip_ancillas_measuremnts.x(0) qc_bit_flip_ancillas_measuremnts.barrier() qc_bit_flip_ancillas_measuremnts.cx(0,4) qc_bit_flip_ancillas_measuremnts.cx(1,4) qc_bit_flip_ancillas_measuremnts.barrier() qc_bit_flip_ancillas_measuremnts.cx(1,3) qc_bit_flip_ancillas_measuremnts.cx(2,3) qc_bit_flip_ancillas_measuremnts.barrier() qc_bit_flip_ancillas_measuremnts.measure(qAncillas,AncillasRegister) qc_bit_flip_ancillas_measuremnts.x(0).c_if(AncillasRegister, 2) qc_bit_flip_ancillas_measuremnts.x(1).c_if(AncillasRegister, 3) qc_bit_flip_ancillas_measuremnts.x(2).c_if(AncillasRegister, 1) qc_bit_flip_ancillas_measuremnts.barrier() qc_bit_flip_ancillas_measuremnts.cx(0,2) qc_bit_flip_ancillas_measuremnts.cx(0,1) qc_bit_flip_ancillas_measuremnts.draw(output='mpl', style=style) out_vector2 = execute(qc_bit_flip_ancillas_measuremnts,backend_statevector).result().get_statevector() plot_bloch_multivector(out_vector2, title='Final state') plot_bloch_multivector(Initial_state2, title='Initial state') qregister_to_protect = QuantumRegister(1) qregister = QuantumRegister(2) creg = ClassicalRegister(2, 'c') qc_phase_flip = QuantumCircuit(qregister_to_protect,qregister,creg) qc_phase_flip.initialize(state_to_protect,0) # Apply initialisation operation to the 0th qubit Initial_state3 = Statevector.from_instruction(qc_phase_flip) plot_bloch_multivector(Initial_state3, title='Initial state') ### Perfmoing the encoding ##### qc_phase_flip.barrier() qc_phase_flip.cx(0,1) qc_phase_flip.cx(0,2) ### Apply thje hadamard gates ##### qc_phase_flip.barrier() qc_phase_flip.h(0) qc_phase_flip.h(1) qc_phase_flip.h(2) ### Apply some noise ##### qc_phase_flip.barrier() #noise(qc) qc_phase_flip.z(0) qc_phase_flip.barrier() ### Apply thje hadamard gates ##### qc_phase_flip.h(0) qc_phase_flip.h(1) qc_phase_flip.h(2) ### Aplying the inverse of the encoding procedure ### qc_phase_flip.barrier() qc_phase_flip.cx(0,2) qc_phase_flip.cx(0,1) qc_phase_flip.barrier() qc_phase_flip.measure(qregister,creg) qc_phase_flip.x(0).c_if(cregister, 3) qc_phase_flip.draw(output='mpl', style=style) out_vector4 = execute(qc_phase_flip, backend_statevector).result().get_statevector() plot_bloch_multivector(out_vector4) plot_bloch_multivector(Initial_state3, title='Initial state') qregA = QuantumRegister(1) qr1 = QuantumRegister(2) qregB = QuantumRegister(1) qr2 = QuantumRegister(2) qregC = QuantumRegister(1) qr3 = QuantumRegister(2) r1 = ClassicalRegister(2, 'c1') r2 = ClassicalRegister(2, 'c2') r3 = ClassicalRegister(2, 'c3') registerBC = ClassicalRegister(2, 'c') qc_shor_code = QuantumCircuit(qregA, qr1,qregB, qr2,qregC,qr3,r1,r2,r3,registerBC) qc_shor_code.initialize(state_to_protect,0) # Apply initialisation operation to the 0th qubit qc_shor_code.barrier() Initial_state4 = Statevector.from_instruction(qc_shor_code) plot_bloch_multivector(Initial_state4, title='Initial state') qc_shor_code.cx(0,3) qc_shor_code.cx(0,6) qc_shor_code.h(0) qc_shor_code.h(3) qc_shor_code.h(6) qc_shor_code.barrier() qc_shor_code.cx(0,1) qc_shor_code.cx(0,2) qc_shor_code.cx(3,4) qc_shor_code.cx(3,5) qc_shor_code.cx(6,7) qc_shor_code.cx(6,8) qc_shor_code.draw(output='mpl', style=style) ### Apply some gate error, in this case X y Z gate ### qc_shor_code.barrier() qc_shor_code.x(0) qc_shor_code.z(6) ## This is the saame as the bit-flip code with measurements (Part 3.2) repeated 3 times ## qc_shor_code.barrier() qc_shor_code.cx(0,2) qc_shor_code.cx(0,1) qc_shor_code.cx(3,5) qc_shor_code.cx(3,4) qc_shor_code.cx(6,8) qc_shor_code.cx(6,7) qc_shor_code.barrier() qc_shor_code.measure(qr1,r1) qc_shor_code.measure(qr2,r2) qc_shor_code.measure(qr3,r3) qc_shor_code.x(qregA).c_if(r1, 3) qc_shor_code.x(qregB).c_if(r2, 3) qc_shor_code.x(qregC).c_if(r3, 3) ### Aplying the inverse of the encoding procedure ### qc_shor_code.barrier() qc_shor_code.h(0) qc_shor_code.h(3) qc_shor_code.h(6) qc_shor_code.cx(0,6) qc_shor_code.cx(0,3) qc_shor_code.measure(qregB,registerBC[0]) qc_shor_code.measure(qregC,registerBC[1]) qc_shor_code.x(qregA).c_if(registerBC, 3) qc_shor_code.draw(output='mpl', style=style, fold= 30) out_vector5 = execute(qc_shor_code,backend_statevector).result().get_statevector() plot_bloch_multivector(out_vector5) reduced_state_shor_code = partial_trace(out_vector5 , [1,2,3,4,5,6,7,8]) plot_bloch_multivector(reduced_state_shor_code) plot_bloch_multivector(Initial_state4, title='Initial state') reduced_intial_state_shor_code = partial_trace(Initial_state4 , [1,2,3,4,5,6,7,8]) plot_bloch_multivector(reduced_intial_state_shor_code) def shor_encoding(qc_shor_encode): ## Encoding for the shor code ## ################################ qc_shor_encode.cx(0,3) qc_shor_encode.cx(0,6) qc_shor_encode.h(0) qc_shor_encode.h(3) qc_shor_encode.h(6) qc_shor_encode.barrier() qc_shor_encode.cx(0,1) qc_shor_encode.cx(0,2) qc_shor_encode.cx(3,4) qc_shor_encode.cx(3,5) qc_shor_encode.cx(6,7) qc_shor_encode.cx(6,8) qc_shor_encode.barrier() return(qc_shor_encode) def shor_correct(qc_shor_code_correct,qCorrect_regA, qCorrect_r1,qCorrect_regB, qCorrect_r2,qCorrect_regC,qCorrect_r3,rCorrect1,rCorrect2,rCorrect3,registerCorrectBC ): ## Correction of the error in the shor code ## ############################################## qc_shor_code_correct.barrier() qc_shor_code_correct.cx(0,2) qc_shor_code_correct.cx(0,1) qc_shor_code_correct.cx(3,5) qc_shor_code_correct.cx(3,4) qc_shor_code_correct.cx(6,8) qc_shor_code_correct.cx(6,7) qc_shor_code_correct.barrier() qc_shor_code_correct.measure(qCorrect_r1,rCorrect1) qc_shor_code_correct.measure(qCorrect_r2,rCorrect2) qc_shor_code_correct.measure(qCorrect_r3,rCorrect3) qc_shor_code_correct.x(qCorrect_regA).c_if(rCorrect1, 3) qc_shor_code_correct.x(qCorrect_regB).c_if(rCorrect2, 3) qc_shor_code_correct.x(qCorrect_regC).c_if(rCorrect3, 3) qc_shor_code_correct.barrier() qc_shor_code_correct.h(0) qc_shor_code_correct.h(3) qc_shor_code_correct.h(6) qc_shor_code_correct.cx(0,6) qc_shor_code_correct.cx(0,3) qc_shor_code_correct.measure(qCorrect_regB,registerCorrectBC[0]) qc_shor_code_correct.measure(qCorrect_regC,registerCorrectBC[1]) qc_shor_code_correct.x(qCorrect_regA).c_if(registerCorrectBC, 3) return(qc_shor_code_correct) ### Ciruit to encode the state for the bit-flip code #### q_Encoding_bit_flip_reg1 = QuantumRegister(1) q_Encoding_bit_flip_reg2 = QuantumRegister(2) qc_Encoding_bit_flip = QuantumCircuit(Qreg1,Qreg2) qc_Encoding_bit_flip.cx(0,1) qc_Encoding_bit_flip.cx(0,2) ### Ciruit to correct the state for the bit-flip code #### qBit_flip_correct_register1 = QuantumRegister(1) qBit_flip_correct_register2 = QuantumRegister(2) cBit_flip_correct_register = ClassicalRegister(2, 'c') qcBit_flip_correct = QuantumCircuit(qBit_flip_correct_register1,qBit_flip_correct_register2,cBit_flip_correct_register) qcBit_flip_correct.barrier() qcBit_flip_correct.cx(0,2) qcBit_flip_correct.cx(0,1) qcBit_flip_correct.barrier() qcBit_flip_correct.measure(qBit_flip_correct_register2,cBit_flip_correct_register) qcBit_flip_correct.x(0).c_if(cBit_flip_correct_register, 3) qcBit_flip_correct.barrier() q_To_Protect1 = QuantumRegister(1, name = 'state_to_protect1') qCorrect_r1 = QuantumRegister(2) qCorrect_regB = QuantumRegister(1) qCorrect_r2 = QuantumRegister(2) qCorrect_regC = QuantumRegister(1) qCorrect_r3 = QuantumRegister(2) rCorrect1 = ClassicalRegister(2, 'c1') rCorrect2 = ClassicalRegister(2, 'c2') rCorrect3 = ClassicalRegister(2, 'c3') registerCorrectBC = ClassicalRegister(2, 'c') q_To_Protect2 = QuantumRegister(1, name = 'state_to_protect2') qregister_test2 = QuantumRegister(2) qbell_test = QuantumCircuit(q_To_Protect1, qCorrect_r1,qCorrect_regB, qCorrect_r2,qCorrect_regC,qCorrect_r3,rCorrect1,rCorrect2,rCorrect3,registerCorrectBC, q_To_Protect2, qregister_test2) qbell_test.h(0) qbell_test.barrier() qbell_test.draw(output='mpl', style=style) shor_encoding(qbell_test) new_qc1 = qbell_test.compose(qc_Encoding_bit_flip,[9,10,11]) new_qc1.draw(output='mpl', style=style) new_qc1.barrier() new_qc1.x(0) new_qc1.z(9) new_qc2 = new_qc1.compose(qcBit_flip_correct,[9,10,11]) shor_correct(new_qc2,q_To_Protect1, qCorrect_r1,qCorrect_regB, qCorrect_r2,qCorrect_regC,qCorrect_r3,rCorrect1,rCorrect2,rCorrect3,registerCorrectBC) new_qc2.barrier() new_qc2.cx(0,9) new_qc2.draw(output='mpl', style=style, fold= 42) out_vector8 = execute(new_qc2,backend_statevector).result().get_statevector() reduced_state1 = partial_trace(out_vector8 , [1,2,3,4,5,6,7,8,10,11]) plot_state_qsphere(reduced_state1) q_To_Protect1_ZX = QuantumRegister(1, name = 'state_to_protect1') qCorrect_r1_ZX = QuantumRegister(2) qCorrect_regB_ZX = QuantumRegister(1) qCorrect_r2_ZX = QuantumRegister(2) qCorrect_regC_ZX = QuantumRegister(1) qCorrect_r3_ZX = QuantumRegister(2) rCorrect1_ZX = ClassicalRegister(2, 'c1') rCorrect2_ZX = ClassicalRegister(2, 'c2') rCorrect3_ZX = ClassicalRegister(2, 'c3') registerCorrectBC_ZX = ClassicalRegister(2, 'c') q_To_Protect2_ZX = QuantumRegister(1, name = 'state_to_protect2') qregister_test2_ZX = QuantumRegister(2) qbell_test_ZX = QuantumCircuit(q_To_Protect1_ZX, qCorrect_r1_ZX,qCorrect_regB_ZX, qCorrect_r2_ZX,qCorrect_regC_ZX,qCorrect_r3_ZX,rCorrect1_ZX,rCorrect2_ZX,rCorrect3_ZX,registerCorrectBC_ZX, q_To_Protect2_ZX, qregister_test2_ZX) qbell_test_ZX.h(0) qbell_test_ZX.barrier() shor_encoding(qbell_test_ZX) new_qc1_ZX = qbell_test_ZX.compose(qc_Encoding_bit_flip,[9,10,11]) #### Error gates ###### new_qc1_ZX.barrier() new_qc1_ZX.z(0) new_qc1_ZX.x(9) new_qc2_ZX = new_qc1_ZX.compose(qcBit_flip_correct,[9,10,11]) shor_correct(new_qc2_ZX,q_To_Protect1_ZX , qCorrect_r1_ZX ,qCorrect_regB_ZX, qCorrect_r2_ZX,qCorrect_regC_ZX,qCorrect_r3_ZX,rCorrect1_ZX,rCorrect2_ZX,rCorrect3_ZX,registerCorrectBC_ZX) new_qc2_ZX.barrier() new_qc2_ZX.cx(0,9) new_qc2_ZX.draw(output='mpl', style=style, fold= 42) out_vector8 = execute(new_qc2,backend_statevector).result().get_statevector() reduced_state1 = partial_trace(out_vector8 , [1,2,3,4,5,6,7,8,10,11]) plot_state_qsphere(reduced_state1) q_To_Protect1_YX = QuantumRegister(1, name = 'state_to_protect1') qCorrect_r1_YX = QuantumRegister(2) qCorrect_regB_YX = QuantumRegister(1) qCorrect_r2_YX = QuantumRegister(2) qCorrect_regC_YX = QuantumRegister(1) qCorrect_r3_YX = QuantumRegister(2) rCorrect1_YX = ClassicalRegister(2, 'c1') rCorrect2_YX = ClassicalRegister(2, 'c2') rCorrect3_YX = ClassicalRegister(2, 'c3') registerCorrectBC_YX = ClassicalRegister(2, 'c') q_To_Protect2_YX = QuantumRegister(1, name = 'state_to_protect2') qregister_test2_YX = QuantumRegister(2) qbell_test_YX = QuantumCircuit(q_To_Protect1_YX, qCorrect_r1_YX,qCorrect_regB_YX, qCorrect_r2_YX,qCorrect_regC_YX,qCorrect_r3_YX,rCorrect1_YX,rCorrect2_YX,rCorrect3_YX,registerCorrectBC_YX, q_To_Protect2_YX, qregister_test2_YX) qbell_test_YX.h(0) qbell_test_YX.barrier() qbell_test_YX.draw(output='mpl', style=style) shor_encoding(qbell_test_YX) new_qc1_YX = qbell_test_YX.compose(qc_Encoding_bit_flip,[9,10,11]) #### Error gates ###### new_qc1_YX.barrier() new_qc1_YX.y(0) new_qc1_YX.x(9) new_qc2_YX = new_qc1_YX.compose(qcBit_flip_correct,[9,10,11]) shor_correct(new_qc2_YX,q_To_Protect1_YX , qCorrect_r1_YX ,qCorrect_regB_YX, qCorrect_r2_YX,qCorrect_regC_YX,qCorrect_r3_YX,rCorrect1_YX,rCorrect2_YX,rCorrect3_YX,registerCorrectBC_YX) new_qc2_YX.barrier() new_qc2_YX.cx(0,9) new_qc2_YX.draw(output='mpl', style=style, fold= 42) out_vector9 = execute(new_qc2_YX,backend_statevector).result().get_statevector() reduced_state2 = partial_trace(out_vector9 , [1,2,3,4,5,6,7,8,10,11]) plot_state_qsphere(reduced_state2) def random_error_gate(qcirc): if gate_errorX() == ['X']: ### Bit-flip in the qubit 0 ##### qcirc.x(0) elif gate_errorX() == ['Z']: ### phase-flip in the qubit 0 ##### qcirc.z(0) else: qcirc.i(0) if gate_errorX() == ['X']: ### Bit-flip in the qubit 9 ##### qcirc.x(9) elif gate_errorX() == ['Z']: ### phase-flip in the qubit 9 ##### qcirc.z(9) else: qcirc.i(9) return qcirc q_To_Protect1_Random = QuantumRegister(1, name = 'state_to_protect1') qCorrect_r1_Random = QuantumRegister(2) qCorrect_regB_Random = QuantumRegister(1) qCorrect_r2_Random = QuantumRegister(2) qCorrect_regC_Random = QuantumRegister(1) qCorrect_r3_Random = QuantumRegister(2) rCorrect1_Random = ClassicalRegister(2, 'c1') rCorrect2_Random = ClassicalRegister(2, 'c2') rCorrect3_Random = ClassicalRegister(2, 'c3') registerCorrectBC_Random = ClassicalRegister(2, 'c') q_To_Protect2_Random = QuantumRegister(1, name = 'state_to_protect2') qregister_test2_Random = QuantumRegister(2) qbell_test_Random = QuantumCircuit(q_To_Protect1_Random, qCorrect_r1_Random,qCorrect_regB_Random, qCorrect_r2_Random,qCorrect_regC_Random,qCorrect_r3_Random,rCorrect1_Random,rCorrect2_Random,rCorrect3_Random,registerCorrectBC_Random, q_To_Protect2_Random, qregister_test2_Random) qbell_test_Random.h(0) qbell_test_Random.barrier() shor_encoding(qbell_test_Random) new_qc1_Random = qbell_test_Random.compose(qc_Encoding_bit_flip,[9,10,11]) #### Error gates ###### new_qc1_Random.barrier() random_error_gate(new_qc1_Random) ################################ new_qc2_Random = new_qc1_Random.compose(qcBit_flip_correct,[9,10,11]) shor_correct(new_qc2_Random,q_To_Protect1_Random , qCorrect_r1_Random ,qCorrect_regB_Random, qCorrect_r2_Random,qCorrect_regC_Random,qCorrect_r3_Random,rCorrect1_Random,rCorrect2_Random,rCorrect3_Random,registerCorrectBC_Random) new_qc2_Random.barrier() new_qc2_Random.cx(0,9) new_qc2_Random.draw(output='mpl', style=style, fold= 42) out_vector10 = execute(new_qc2_Random,backend_statevector).result().get_statevector() reduced_state3 = partial_trace(out_vector10 , [1,2,3,4,5,6,7,8,10,11]) plot_state_qsphere(reduced_state3)
https://github.com/xtophe388/QISKIT
xtophe388
# Importing QISKit import math, sys from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister # Import basic plotting tools from qiskit.tools.visualization import plot_histogram # Import methods to connect with remote backends from qiskit import available_backends, execute, register, get_backend # Import token to use remote backends try: sys.path.append("../../") # go to parent dir import Qconfig qx_config = { "APItoken": Qconfig.APItoken, "url": Qconfig.config['url']} except: qx_config = { "APItoken":"YOUR_TOKEN_HERE", "url":"https://quantumexperience.ng.bluemix.net/api"} #to enable sleep import time #connect to remote API to be able to use remote simulators and real devices register(qx_config['APItoken'], qx_config['url']) print("Available backends:", available_backends()) def input_state(circ, q, n): """n-qubit input state for QFT that produces output 1.""" for j in range(n): circ.h(q[j]) circ.u1(math.pi/float(2**(j)), q[j]).inverse() def qft(circ, q, n): """n-qubit QFT on q in circ.""" for j in range(n): for k in range(j): circ.cu1(math.pi/float(2**(j-k)), q[j], q[k]) circ.h(q[j]) q = QuantumRegister(3) c = ClassicalRegister(3) qft3 = QuantumCircuit(q, c) input_state(qft3, q, 3) qft(qft3, q, 3) for i in range(3): qft3.measure(q[i], c[i]) print(qft3.qasm()) simulate = execute(qft3, backend="local_qasm_simulator", shots=1024).result() simulate.get_counts() backend = "ibmqx4" shots = 1024 if get_backend(backend).status["available"] is True: job_exp = execute(qft3, backend=backend, shots=shots) lapse = 0 interval = 10 while not job_exp.done: print('Status @ {} seconds'.format(interval * lapse)) print(job_exp.status) time.sleep(interval) lapse += 1 print(job_exp.status) results = job_exp.result() plot_histogram(results.get_counts())
https://github.com/0tt3r/QuaC-qiskit
0tt3r
# -*- coding: utf-8 -*- """This module contains objective functions for optimizing noise models. """ from concurrent import futures from typing import List import numpy as np from typing import Callable from scipy import optimize import nevergrad as ng from qiskit import QuantumCircuit from qiskit.providers import BaseBackend from qiskit.result import Result from quac_qiskit.models import QuacNoiseModel def optimize_noise_model_ng(guess_noise_model: QuacNoiseModel, circuits: List[QuantumCircuit], backend: BaseBackend, reference_result: Result, loss_function: Callable[[np.array], float]) -> QuacNoiseModel: """Refines T1 and T2 noise parameters until the divergence between the probability distributions of a provided list of circuits simulated with the plugin and run with the hardware is minimized using the Nevergrad TwoPointsDE optimizer :param guess_noise_model: a QuacNoiseModel object as an initial ideal guess :param circuits: a list of QuantumCircuit objects for loss computation :param backend: the backend simulator on which circuits should be run :param reference_result: the Qiskit Result object from running circuits on real hardware :param loss_function: the loss function that should be used for optimization (i.e., kl_objective_function) :return: an optimized QuacNoiseModel object """ arr = ng.p.Array(init=guess_noise_model.to_array()) arr.set_bounds(0, float('inf')) param = ng.p.Instrumentation(arr, circuits, backend, reference_result) optimizer = ng.optimizers.TwoPointsDE(parametrization=param, budget=100, num_workers=5) print(optimizer.num_workers) with futures.ThreadPoolExecutor(max_workers=optimizer.num_workers) as executor: result = optimizer.minimize(loss_function, executor=executor, batch_mode=True, verbosity=2) print(result[0][0].value) return QuacNoiseModel.from_array(result[0][0].value, backend.configuration().n_qubits) def optimize_noise_model(guess_noise_model: QuacNoiseModel, circuits: List[QuantumCircuit], backend: BaseBackend, reference_result: Result, loss_function: Callable[[np.array], float]) -> QuacNoiseModel: """Refines T1 and T2 noise parameters until the divergence between the probability distributions of a provided list of circuits simulated with the plugin and run with the hardware is minimized :param guess_noise_model: a QuacNoiseModel object as an initial ideal guess :param circuits: a list of QuantumCircuit objects for loss computation :param backend: the backend simulator on which circuits should be run :param reference_result: the Qiskit Result object from running circuits on real hardware :param loss_function: the loss function that should be used for optimization (i.e., kl_objective_function) :return: an optimized QuacNoiseModel object """ result = optimize.minimize(loss_function, guess_noise_model.to_array(), args=(circuits, backend, reference_result), method="Nelder-Mead", options={"disp": True, "adaptive": True}) return result.x
https://github.com/indian-institute-of-science-qc/qiskit-aakash
indian-institute-of-science-qc
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Decorator for using with Qiskit unit tests.""" import functools import os import sys import unittest from .utils import Path from .http_recorder import http_recorder from .testing_options import get_test_options def is_aer_provider_available(): """Check if the C++ simulator can be instantiated. Returns: bool: True if simulator executable is available """ # TODO: HACK FROM THE DEPTHS OF DESPAIR AS AER DOES NOT WORK ON MAC if sys.platform == 'darwin': return False try: import qiskit.providers.aer # pylint: disable=unused-import except ImportError: return False return True def requires_aer_provider(test_item): """Decorator that skips test if qiskit aer provider is not available Args: test_item (callable): function or class to be decorated. Returns: callable: the decorated function. """ reason = 'Aer provider not found, skipping test' return unittest.skipIf(not is_aer_provider_available(), reason)(test_item) def slow_test(func): """Decorator that signals that the test takes minutes to run. Args: func (callable): test function to be decorated. Returns: callable: the decorated function. """ @functools.wraps(func) def _wrapper(*args, **kwargs): skip_slow = not TEST_OPTIONS['run_slow'] if skip_slow: raise unittest.SkipTest('Skipping slow tests') return func(*args, **kwargs) return _wrapper def _get_credentials(test_object, test_options): """Finds the credentials for a specific test and options. Args: test_object (QiskitTestCase): The test object asking for credentials test_options (dict): Options after QISKIT_TESTS was parsed by get_test_options. Returns: Credentials: set of credentials Raises: ImportError: if the Exception: when the credential could not be set and they are needed for that set of options """ try: from qiskit.providers.ibmq.credentials import (Credentials, discover_credentials) except ImportError: raise ImportError('qiskit-ibmq-provider could not be found, and is ' 'required for mocking or executing online tests.') dummy_credentials = Credentials( 'dummyapiusersloginWithTokenid01', 'https://quantumexperience.ng.bluemix.net/api') if test_options['mock_online']: return dummy_credentials if os.getenv('USE_ALTERNATE_ENV_CREDENTIALS', ''): # Special case: instead of using the standard credentials mechanism, # load them from different environment variables. This assumes they # will always be in place, as is used by the Travis setup. return Credentials(os.getenv('IBMQ_TOKEN'), os.getenv('IBMQ_URL')) else: # Attempt to read the standard credentials. discovered_credentials = discover_credentials() if discovered_credentials: # Decide which credentials to use for testing. if len(discovered_credentials) > 1: try: # Attempt to use QE credentials. return discovered_credentials[dummy_credentials.unique_id()] except KeyError: pass # Use the first available credentials. return list(discovered_credentials.values())[0] # No user credentials were found. if test_options['rec']: raise Exception('Could not locate valid credentials. You need them for ' 'recording tests against the remote API.') test_object.log.warning('No user credentials were detected. ' 'Running with mocked data.') test_options['mock_online'] = True return dummy_credentials def requires_qe_access(func): """Decorator that signals that the test uses the online API: It involves: * determines if the test should be skipped by checking environment variables. * if the `USE_ALTERNATE_ENV_CREDENTIALS` environment variable is set, it reads the credentials from an alternative set of environment variables. * if the test is not skipped, it reads `qe_token` and `qe_url` from `Qconfig.py`, environment variables or qiskitrc. * if the test is not skipped, it appends `qe_token` and `qe_url` as arguments to the test function. Args: func (callable): test function to be decorated. Returns: callable: the decorated function. """ @functools.wraps(func) def _wrapper(self, *args, **kwargs): if TEST_OPTIONS['skip_online']: raise unittest.SkipTest('Skipping online tests') credentials = _get_credentials(self, TEST_OPTIONS) self.using_ibmq_credentials = credentials.is_ibmq() kwargs.update({'qe_token': credentials.token, 'qe_url': credentials.url}) decorated_func = func if TEST_OPTIONS['rec'] or TEST_OPTIONS['mock_online']: # For recording or for replaying existing cassettes, the test # should be decorated with @use_cassette. vcr_mode = 'new_episodes' if TEST_OPTIONS['rec'] else 'none' decorated_func = http_recorder( vcr_mode, Path.CASSETTES.value).use_cassette()(decorated_func) return decorated_func(self, *args, **kwargs) return _wrapper TEST_OPTIONS = get_test_options()
https://github.com/xtophe388/QISKIT
xtophe388
# Imports import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import QuantumProgram, QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import available_backends, get_backend, execute, register, least_busy from qiskit.tools.visualization import plot_histogram, circuit_drawer # Connecting to the IBM Quantum Experience import sys, getpass try: sys.path.append("../../") # go to parent dir import Qconfig qx_config = { "APItoken": Qconfig.APItoken, "url": Qconfig.config['url']} print('Qconfig loaded from %s.' % Qconfig.__file__) except: APItoken = getpass.getpass('Please input your token and hit enter: ') qx_config = { "APItoken": APItoken, "url":"https://quantumexperience.ng.bluemix.net/api"} print('Qconfig.py not found in qiskit-tutorial directory; Qconfig loaded using user input.') register(qx_config['APItoken'], qx_config['url']) device_shots = 1024 device_name = least_busy(available_backends({'simulator': False, 'local': False})) device = get_backend(device_name) device_coupling = device.configuration['coupling_map'] print("the best backend is " + device_name + " with coupling " + str(device_coupling)) # Creating registers q = QuantumRegister(2) c = ClassicalRegister(2) # quantum circuit to make an entangled bell state bell = QuantumCircuit(q, c) bell.h(q[0]) bell.cx(q[0], q[1]) # quantum circuit to measure q in the standard basis measureZZ = QuantumCircuit(q, c) measureZZ.measure(q[0], c[0]) measureZZ.measure(q[1], c[1]) bellZZ = bell+measureZZ # quantum circuit to measure q in the superposition basis measureXX = QuantumCircuit(q, c) measureXX.h(q[0]) measureXX.h(q[1]) measureXX.measure(q[0], c[0]) measureXX.measure(q[1], c[1]) bellXX = bell+measureXX # quantum circuit to measure ZX measureZX = QuantumCircuit(q, c) measureZX.h(q[0]) measureZX.measure(q[0], c[0]) measureZX.measure(q[1], c[1]) bellZX = bell+measureZX # quantum circuit to measure XZ measureXZ = QuantumCircuit(q, c) measureXZ.h(q[1]) measureXZ.measure(q[0], c[0]) measureXZ.measure(q[1], c[1]) bellXZ = bell+measureXZ circuits = [bellZZ,bellXX,bellZX,bellXZ] circuit_drawer(bellZZ) circuit_drawer(bellXX) circuit_drawer(bellZX) circuit_drawer(bellXZ) job = execute(circuits, backend=device_name, coupling_map=device_coupling, shots=device_shots) result = job.result() observable_first ={'00': 1, '01': -1, '10': 1, '11': -1} observable_second ={'00': 1, '01': 1, '10': -1, '11': -1} observable_correlated ={'00': 1, '01': -1, '10': -1, '11': 1} print('IZ = ' + str(result.average_data(bellZZ,observable_first))) print('ZI = ' + str(result.average_data(bellZZ,observable_second))) print('ZZ = ' + str(result.average_data(bellZZ,observable_correlated))) print('IX = ' + str(result.average_data(bellXX,observable_first))) print('XI = ' + str(result.average_data(bellXX,observable_second))) print('XX = ' + str(result.average_data(bellXX,observable_correlated))) print('ZX = ' + str(result.average_data(bellZX,observable_correlated))) print('XZ = ' + str(result.average_data(bellXZ,observable_correlated))) CHSH = lambda x : x[0]+x[1]+x[2]-x[3] measure = [measureZZ, measureZX, measureXX, measureXZ] local_backend = 'local_qasm_simulator' local_shots = 8192 sim_chsh_circuits = [] sim_x = [] sim_steps = 30 for step in range(sim_steps): theta = 2.0*np.pi*step/30 bell_middle = QuantumCircuit(q,c) bell_middle.ry(theta,q[0]) for m in measure: sim_chsh_circuits.append(bell+bell_middle+m) sim_x.append(theta) job = execute(sim_chsh_circuits, backend=local_backend, shots=local_shots) result = job.result() sim_chsh = [] circ = 0 for x in range(len(sim_x)): temp_chsh = [] for m in range(len(measure)): temp_chsh.append(result.average_data(sim_chsh_circuits[circ].name,observable_correlated)) circ += 1 sim_chsh.append(CHSH(temp_chsh)) real_chsh_circuits = [] real_x = [] real_steps = 10 for step in range(real_steps): theta = 2.0*np.pi*step/10 bell_middle = QuantumCircuit(q,c) bell_middle.ry(theta,q[0]) for m in measure: real_chsh_circuits.append(bell+bell_middle+m) real_x.append(theta) job = execute(real_chsh_circuits, backend=device_name, coupling_map=device_coupling, shots=device_shots) result = job.result() real_chsh = [] circ = 0 for x in range(len(real_x)): temp_chsh = [] for m in range(len(measure)): temp_chsh.append(result.average_data(real_chsh_circuits[circ].name,observable_correlated)) circ += 1 real_chsh.append(CHSH(temp_chsh)) plt.plot(sim_x, sim_chsh, 'r-', real_x, real_chsh, 'bo') plt.plot([0, 2*np.pi], [2, 2], 'b-') plt.plot([0, 2*np.pi], [-2, -2], 'b-') plt.grid() plt.ylabel('CHSH', fontsize=20) plt.xlabel(r'$Y(\theta)$', fontsize=20) plt.show() print(real_chsh) device_shots = 8192 # need more statistics for 3 and 4 qubit experiments # 2 - qubits # quantum circuit to make GHZ state q2 = QuantumRegister(2) c2 = ClassicalRegister(2) ghz = QuantumCircuit(q2, c2) ghz.h(q2[0]) ghz.cx(q2[0],q2[1]) # quantum circuit to measure q in standard basis measureZZ = QuantumCircuit(q2, c2) measureZZ.measure(q2[0], c2[0]) measureZZ.measure(q2[1], c2[1]) ghzZZ = ghz+measureZZ measureXX = QuantumCircuit(q2, c2) measureXX.h(q2[0]) measureXX.h(q2[1]) measureXX.measure(q2[0], c2[0]) measureXX.measure(q2[1], c2[1]) ghzXX = ghz+measureXX circuits2 = [ghzZZ, ghzXX] circuit_drawer(ghzZZ) circuit_drawer(ghzXX) job2 = execute(circuits2, backend=device_name, coupling_map=device_coupling, shots=device_shots) result2 = job2.result() plot_histogram(result2.get_counts(ghzZZ)) plot_histogram(result2.get_counts(ghzXX)) # 3 - qubits # quantum circuit to make GHZ state q3 = QuantumRegister(3) c3 = ClassicalRegister(3) ghz3 = QuantumCircuit(q3, c3) ghz3.h(q3[0]) ghz3.cx(q3[0],q3[1]) ghz3.cx(q3[1],q3[2]) # quantum circuit to measure q in standard basis measureZZZ = QuantumCircuit(q3, c3) measureZZZ.measure(q3[0], c3[0]) measureZZZ.measure(q3[1], c3[1]) measureZZZ.measure(q3[2], c3[2]) ghzZZZ = ghz3+measureZZZ measureXXX = QuantumCircuit(q3, c3) measureXXX.h(q3[0]) measureXXX.h(q3[1]) measureXXX.h(q3[2]) measureXXX.measure(q3[0], c3[0]) measureXXX.measure(q3[1], c3[1]) measureXXX.measure(q3[2], c3[2]) ghzXXX = ghz3+measureXXX circuits3 = [ghzZZZ, ghzXXX] circuit_drawer(ghzZZZ) circuit_drawer(ghzXXX) job3 = execute(circuits3, backend=device_name, coupling_map=device_coupling, shots=device_shots) result3 = job3.result() plot_histogram(result3.get_counts(ghzZZZ)) plot_histogram(result3.get_counts(ghzXXX)) # 4 - qubits # quantum circuit to make GHZ state q4 = QuantumRegister(4) c4 = ClassicalRegister(4) ghz4 = QuantumCircuit(q4, c4) ghz4.h(q4[0]) ghz4.cx(q4[0],q4[1]) ghz4.cx(q4[1],q4[2]) ghz4.h(q4[3]) ghz4.h(q4[2]) ghz4.cx(q4[3],q4[2]) ghz4.h(q4[3]) ghz4.h(q4[2]) # quantum circuit to measure q in standard basis measureZZZZ = QuantumCircuit(q4, c4) measureZZZZ.measure(q4[0], c4[0]) measureZZZZ.measure(q4[1], c4[1]) measureZZZZ.measure(q4[2], c4[2]) measureZZZZ.measure(q4[3], c4[3]) ghzZZZZ = ghz4+measureZZZZ measureXXXX = QuantumCircuit(q4, c4) measureXXXX.h(q4[0]) measureXXXX.h(q4[1]) measureXXXX.h(q4[2]) measureXXXX.h(q4[3]) measureXXXX.measure(q4[0], c4[0]) measureXXXX.measure(q4[1], c4[1]) measureXXXX.measure(q4[2], c4[2]) measureXXXX.measure(q4[3], c4[3]) ghzXXXX = ghz4+measureXXXX circuits4 = [ghzZZZZ, ghzXXXX] circuit_drawer(ghzZZZZ) circuit_drawer(ghzXXXX) job4 = execute(circuits4, backend=device_name, coupling_map=device_coupling, shots=device_shots) result4 = job4.result() plot_histogram(result4.get_counts(ghzZZZZ)) plot_histogram(result4.get_counts(ghzXXXX)) # quantum circuit to make GHZ state q3 = QuantumRegister(3) c3 = ClassicalRegister(3) ghz3 = QuantumCircuit(q3, c3) ghz3.h(q3[0]) ghz3.cx(q3[0],q3[1]) ghz3.cx(q3[0],q3[2]) # quantum circuit to measure q in standard basis measureZZZ = QuantumCircuit(q3, c3) measureZZZ.measure(q3[0], c3[0]) measureZZZ.measure(q3[1], c3[1]) measureZZZ.measure(q3[2], c3[2]) ghzZZZ = ghz3+measureZZZ circuits5 = [ghzZZZ] circuit_drawer(ghzZZZ) job5 = execute(circuits5, backend=device_name, coupling_map=device_coupling, shots=device_shots) result5 = job5.result() plot_histogram(result5.get_counts(ghzZZZ)) MerminM = lambda x : x[0]*x[1]*x[2]*x[3] observable ={'000': 1, '001': -1, '010': -1, '011': 1, '100': -1, '101': 1, '110': 1, '111': -1} # quantum circuit to measure q XXX measureXXX = QuantumCircuit(q3, c3) measureXXX.h(q3[0]) measureXXX.h(q3[1]) measureXXX.h(q3[2]) measureXXX.measure(q3[0], c3[0]) measureXXX.measure(q3[1], c3[1]) measureXXX.measure(q3[2], c3[2]) ghzXXX = ghz3+measureXXX # quantum circuit to measure q XYY measureXYY = QuantumCircuit(q3, c3) measureXYY.s(q3[1]).inverse() measureXYY.s(q3[2]).inverse() measureXYY.h(q3[0]) measureXYY.h(q3[1]) measureXYY.h(q3[2]) measureXYY.measure(q3[0], c3[0]) measureXYY.measure(q3[1], c3[1]) measureXYY.measure(q3[2], c3[2]) ghzXYY = ghz3+measureXYY # quantum circuit to measure q YXY measureYXY = QuantumCircuit(q3, c3) measureYXY.s(q3[0]).inverse() measureYXY.s(q3[2]).inverse() measureYXY.h(q3[0]) measureYXY.h(q3[1]) measureYXY.h(q3[2]) measureYXY.measure(q3[0], c3[0]) measureYXY.measure(q3[1], c3[1]) measureYXY.measure(q3[2], c3[2]) ghzYXY = ghz3+measureYXY # quantum circuit to measure q YYX measureYYX = QuantumCircuit(q3, c3) measureYYX.s(q3[0]).inverse() measureYYX.s(q3[1]).inverse() measureYYX.h(q3[0]) measureYYX.h(q3[1]) measureYYX.h(q3[2]) measureYYX.measure(q3[0], c3[0]) measureYYX.measure(q3[1], c3[1]) measureYYX.measure(q3[2], c3[2]) ghzYYX = ghz3+measureYYX circuits6 = [ghzXXX, ghzYYX, ghzYXY, ghzXYY] circuit_drawer(ghzXXX) circuit_drawer(ghzYYX) circuit_drawer(ghzYXY) circuit_drawer(ghzXYY) job6 = execute(circuits6, backend=device_name, coupling_map=device_coupling, shots=device_shots) result6 = job6.result() temp=[] temp.append(result6.average_data(ghzXXX,observable)) temp.append(result6.average_data(ghzYYX,observable)) temp.append(result6.average_data(ghzYXY,observable)) temp.append(result6.average_data(ghzXYY,observable)) print(MerminM(temp))
https://github.com/arnavdas88/QuGlassyIsing
arnavdas88
from qiskit.providers.aer import QasmSimulator from qiskit.providers.aer import AerSimulator from qiskit import Aer, transpile from qiskit.circuit.library import TwoLocal from qiskit.algorithms import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import EfficientSU2 from qiskit.visualization import plot_histogram from qiskit_glassydynamics.helpers import ising counts = [] values = [] def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) J_hamiltonian = ising.Ising1DHamiltonian(5) Bz_hamiltonian = ising.FieldHamiltonian( 5 , 'Z') Bx_hamiltonian = ising.FieldHamiltonian( 5 , 'X') print("=== Z ===") print(J_hamiltonian) print() print("=== Bz ===") print(Bz_hamiltonian) print() print("=== Bx ===") print(Bx_hamiltonian) H = - 1. * J_hamiltonian + 1. * Bz_hamiltonian - 1. * Bx_hamiltonian print() print("=== H ===") print(H) # 1D Ising Simulation # you can swap this for a real quantum device and keep the rest of the code the same! backend = QasmSimulator() # COBYLA usually works well for small problems like this one optimizer = COBYLA(maxiter=200) # EfficientSU2 is a standard heuristic chemistry ansatz from Qiskit's circuit library ansatz = EfficientSU2(5, reps=1) # set the algorithm vqe = VQE(ansatz, optimizer, quantum_instance=backend, callback=store_intermediate_result) # run it with the Hamiltonian we defined above result = vqe.compute_minimum_eigenvalue(H) print(result) plot_histogram(result.eigenstate)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit # Create a circuit with a register of three qubits circ = QuantumCircuit(3) # H gate on qubit 0, putting this qubit in a superposition of |0> + |1>. circ.h(0) # A CX (CNOT) gate on control qubit 0 and target qubit 1 generating a Bell state. circ.cx(0, 1) # CX (CNOT) gate on control qubit 0 and target qubit 2 resulting in a GHZ state. circ.cx(0, 2) # Draw the circuit circ.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import BasicAer, transpile, QuantumRegister, ClassicalRegister, QuantumCircuit qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) qc.h(0) qc.measure(0, 0) qc.draw('mpl')
https://github.com/TheGupta2012/QPE-Algorithms
TheGupta2012
from qiskit import QuantumCircuit, execute, transpile, Aer from qiskit.extensions import UnitaryGate,Initialize from qiskit.quantum_info import Statevector from qiskit.tools.visualization import plot_bloch_vector from qiskit.tools.visualization import plot_histogram,plot_bloch_multivector import numpy as np import os from time import sleep import sys sys.path.append("..") from scipy.stats import unitary_group import matplotlib.pyplot as plt %matplotlib inline os.makedirs(name = "Plots/1-qubit/",exist_ok=True) from Modules.vanilla_qpe import QPE from Modules.iterative_qpe import IQPE from Modules.normal_SPEA import SPEA from Modules.kitaev_qpe import KQPE # x gate u1 = QuantumCircuit(1) u1.x(0) u1.draw('mpl') # x gate u2 = QuantumCircuit(1) u2.p(2*np.pi*(1/6),0) u2.draw('mpl') backend = Aer.get_backend('qasm_simulator') os.makedirs(name = "Plots/1-qubit/x_gate/",exist_ok=True) x_path = "Plots/1-qubit/x_gate/" estimates = [] for precision in range(1,9): qpe = QPE(precision=precision,unitary = u1) qpe_circ = qpe.get_QPE(show = False) qc = QuantumCircuit(precision+1,precision) qc.x(precision) qc.h(precision) qc.append(qpe_circ, qargs = list(range(precision+1))) qc.measure(list(range(precision)),list(range(precision))) # display(qc.draw('mpl')) counts = execute(qc,backend=backend,shots = 2**10).result().get_counts() m = -1 for i,j in counts.items(): if j > m: m = j phase = i factor = 0.5 ans = 0.0 for i in range(precision): ans+= int(phase[i])*factor factor/=2 estimates.append(ans) plt.title("Phase by basic QPE for the unitary X",fontsize = 16) plt.plot([i for i in range(1,9)],estimates,color = 'g',linewidth = 2,marker = 'o',label = 'Estimates') plt.xlabel('Precision') plt.ylabel('Estimates') plt.grid() plt.legend() plt.savefig(x_path+"basic_qpe.JPG",dpi = 200) estimates = [] for precision in range(1,9): qpe = IQPE(precision=precision,unitary = u1,unknown=True) qc = QuantumCircuit(precision+1,precision) qc.x(1) qc.h(1) phase = qpe.get_circuit_phase(qc, qubits = [1], ancilla = 0,clbits = list(range(precision)),show = False) # display(qc.draw('mpl')) estimates.append(phase[1]) plt.title("Phase by iterative QPE for the unitary X",fontsize = 16) plt.plot([i for i in range(1,9)],estimates,color = 'g',linewidth = 2,marker = 'o',label = 'Estimates') plt.xlabel('Precision') plt.ylabel('Estimates') plt.grid() plt.legend() plt.savefig(x_path+"iqpe.JPG",dpi = 200) estimates = [] for resolution in range(10,40,5): qpe = SPEA(resolution = resolution,unitary = u1, error =3) result = qpe.get_eigen_pair(backend = backend) # display(qc.draw('mpl')) print("Result : ",result) estimates.append(result['theta']) plt.title("Phase by SQPE for the unitary X",fontsize = 16) plt.plot([i for i in range(10,40,5)],estimates,color = 'g',linewidth = 2,marker = 'o',label = 'Estimates') plt.plot([5,50],[0.5,0.5],color = 'black') plt.plot([5,50],[0,0],color = 'black') plt.plot([5,50],[1,1],color = 'black',label = 'Correct') plt.xlabel('Precision') plt.ylabel('Estimates') plt.grid() plt.legend() plt.savefig(x_path+"stat_qpe.JPG",dpi = 200) estimates = [] for precision in range(5,16): kqpe = KQPE(precision=precision,unitary = u1) kqpe_circ = kqpe.get_circuit() qc = QuantumCircuit(2+1,2) qc.x(2) qc.h(2) qc.append(kqpe_circ,qargs = [0,1,2]) phase = kqpe.get_phase(qc,backend = backend, ancilla = [0,1],clbits = [0,1],show = False) print("Precision :",precision) print("Phase:",phase) estimates.append(phase[0]) plt.title("Phase by Kitaev's Algorithm for the X gate",fontsize = 16) plt.plot([i for i in range(5,16)],estimates,color = 'magenta',alpha = 0.6,linewidth = 2,marker = 's',label = 'Estimates') plt.plot([5,17],[0.5,0.5],color = 'black') plt.plot([5,17],[-0.5,-0.5],color = 'black') plt.xlabel('Precision') plt.ylabel('Estimates') plt.grid() plt.legend() plt.savefig(x_path+"kitaev_qpe.JPG",dpi = 200) os.makedirs(name = "Plots/1-qubit/phase_gate/",exist_ok=True) phase_path = "Plots/1-qubit/phase_gate/" estimates = [] for precision in range(1,9): qpe = QPE(precision=precision,unitary = u2) qpe_circ = qpe.get_QPE(show = False) qc = QuantumCircuit(precision+1,precision) qc.x(precision) qc.append(qpe_circ, qargs = list(range(precision+1))) qc.measure(list(range(precision)),list(range(precision))) # display(qc.draw('mpl')) counts = execute(qc,backend=backend,shots = 2**10).result().get_counts() m = -1 for i,j in counts.items(): if j > m: m = j phase = i factor = 0.5 ans = 0.0 for i in range(precision): ans+= int(phase[i])*factor factor/=2 estimates.append(ans) plt.title("Phase by basic QPE for the unitary with phase(1/6)",fontsize = 16) plt.plot([i for i in range(1,9)],estimates,color = 'red',alpha = 0.8, linewidth = 2,marker = 'o',label = 'Estimates') plt.plot([0,10],[0.1667,0.1667], color = 'black') plt.xlabel('Precision') plt.ylabel('Estimates') plt.grid() plt.legend() plt.savefig(phase_path+"basic_qpe.JPG",dpi = 200) estimates = [] for precision in range(1,9): qpe = IQPE(precision=precision,unitary = u2,unknown=True) qc = QuantumCircuit(1+1,precision) qc.x(1) phase = qpe.get_circuit_phase(qc, qubits = [1], ancilla = 0,clbits = list(range(precision)),show = False) # display(qc.draw('mpl')) estimates.append(phase[1]) plt.title("Phase by iterative QPE for the unitary with phase(1/6)",fontsize = 16) plt.plot([i for i in range(1,9)],estimates,color = 'orange',alpha = 0.7,linewidth = 2,marker = 'o',label = 'Estimates') plt.plot([0,10],[0.1667,0.1667], color = 'black') plt.xlabel('Precision') plt.ylabel('Estimates') plt.grid() plt.legend() plt.savefig(phase_path+"iqpe.JPG",dpi = 200) estimates = [] for resolution in range(10,40,5): qpe = SPEA(resolution = resolution,unitary = u2, error =4) result = qpe.get_eigen_pair(backend = backend) print("Result : ",result) estimates.append(result['theta']) plt.title("Phase by SQPE for the unitary with phase(1/6)",fontsize = 16) plt.plot([i for i in range(10,40,5)],estimates,color = 'g',alpha = 0.7,linewidth = 2,marker = 'o',label = 'Estimates') plt.plot([5,50],[0.1667,0.1667],color = 'black') plt.plot([5,50],[0,0],color = 'black') plt.plot([5,50],[1,1],color = 'black',label = 'Correct') plt.xlabel('Precision') plt.ylabel('Estimates') plt.grid() plt.legend() plt.savefig(phase_path+"stat_qpe.JPG",dpi = 200) estimates = [] for precision in range(5,16): kqpe = KQPE(precision=precision,unitary = u2) kqpe_circ = kqpe.get_circuit() qc = QuantumCircuit(2+1,2) qc.x(2) qc.append(kqpe_circ,qargs = [0,1,2]) phase = kqpe.get_phase(qc,backend = backend, ancilla = [0,1],clbits = [0,1],show = False) # display(qc.draw('mpl')) print("Precision :",precision) print("Phase:",phase) estimates.append(phase[0]) plt.title("Phase by Kitaev's Algorithm for the unitary with phase(1/6)",fontsize = 16) plt.plot([i for i in range(5,16)],estimates,color = 'magenta',alpha = 0.6,linewidth = 2,marker = 's',label = 'Estimates') plt.plot([5,17],[0.1667,0.1667],color = 'black') plt.xlabel('Precision') plt.ylabel('Estimates') plt.grid() plt.legend() plt.savefig(phase_path+"kitaev_qpe.JPG",dpi = 200)
https://github.com/minnukota381/Quantum-Computing-Qiskit
minnukota381
from qiskit import * from qiskit.visualization import plot_bloch_multivector, visualize_transition, plot_histogram # Create a quantum circuit with 2 qubits # The default initial state of qubits will be |0> or [1,0] qc = QuantumCircuit(2) # Apply X gate to change the input or target qc.x(0) qc.x(1) #Applying the CNOT gate qc.cx(0,1) #Draw the circuit # qc.draw() qc.draw('mpl') #Get the backend for the circuit to display unitary matrix backend = Aer.get_backend('unitary_simulator') #execute the circuit using the backend out = execute(qc,backend).result().get_unitary() #import qiskit_textbook and display the combined unitary matrix from qiskit_textbook.tools import array_to_latex array_to_latex(out, pretext = "\\text{UnitaryMatrix} = ") #Get the backend for the circuit (simulator or realtime system) backend = Aer.get_backend('statevector_simulator') #execute the circuit using the backend out = execute(qc,backend).result().get_statevector() #import qiskit_textbook and display the statevector #from qiskit_textbook.tools import array_to_latex array_to_latex(out, pretext = "\\text{Statevector} = ") #execute the circuit and get the plain result out = execute(qc,backend).result() #getting the count of the result counts = out.get_counts() #plotting the histogram plot_histogram(counts)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister # Build a quantum circuit circuit = QuantumCircuit(3, 3) circuit.x(1) circuit.h(range(3)) circuit.cx(0, 1) circuit.measure(range(3), range(3)); print(circuit) circuit.draw() # Matplotlib Drawing circuit.draw(output='mpl') # Draw a new circuit with barriers and more registers q_a = QuantumRegister(3, name='qa') q_b = QuantumRegister(5, name='qb') c_a = ClassicalRegister(3) c_b = ClassicalRegister(5) circuit = QuantumCircuit(q_a, q_b, c_a, c_b) circuit.x(q_a[1]) circuit.x(q_b[1]) circuit.x(q_b[2]) circuit.x(q_b[4]) circuit.barrier() circuit.h(q_a) circuit.barrier(q_a) circuit.h(q_b) circuit.cswap(q_b[0], q_b[1], q_b[2]) circuit.cswap(q_b[2], q_b[3], q_b[4]) circuit.cswap(q_b[3], q_b[4], q_b[0]) circuit.barrier(q_b) circuit.measure(q_a, c_a) circuit.measure(q_b, c_b); # Draw the circuit circuit.draw(output='mpl') # Draw the circuit with reversed bit order circuit.draw(output='mpl', reverse_bits=True) # Draw the circuit without barriers circuit.draw(output='mpl', plot_barriers=False) # Draw the circuit without barriers and reverse bit order circuit.draw(output='mpl', plot_barriers=False, reverse_bits=True) # Set line length to 80 for above circuit circuit.draw(output='text') # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} circuit.draw(output='mpl', style=style) # Scale the mpl output to 1/2 the normal size circuit.draw(output='mpl', scale=0.5) from qiskit.tools.visualization import circuit_drawer circuit_drawer(circuit, output='mpl', plot_barriers=False) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/Spintronic6889/Introduction-of-Quantum-walk-its-application-on-search-and-decision-making
Spintronic6889
%matplotlib inline import matplotlib as mpl from random import randrange import numpy as np import matplotlib.pyplot as plt from random import randrange pose=[] for i in range(400): pose.append([]) #print(pose) #pose[-1]=1 #print(pose[-1]) pose[0]=200 for k in range(200): rand = randrange(0,2) if rand==0: #print(rand) pose[k+1]=pose[k]+1 if rand==1: pose[k+1]=pose[k]-1 #print(pose) yc=[] for e in range(400): yc.append([]) for q in range(400): yc[q]=0 for h in range(400): if pose[h]==q: yc[q]=yc[q]+1 #print((yc)) #print(len(yc)) xc = np.arange(0, 400, 1) plt.plot(yc) plt.xlim(150, 250)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np # Import Qiskit from qiskit import QuantumCircuit, transpile from qiskit_aer import AerSimulator # Construct quantum circuit circ = QuantumCircuit(2, 2) circ.h(0) circ.cx(0, 1) circ.measure([0,1], [0,1]) # Select the AerSimulator from the Aer provider simulator = AerSimulator(method='matrix_product_state') # Run and get counts, using the matrix_product_state method tcirc = transpile(circ, simulator) result = simulator.run(tcirc).result() counts = result.get_counts(0) counts circ = QuantumCircuit(2, 2) circ.h(0) circ.cx(0, 1) # Define a snapshot that shows the current state vector circ.save_statevector(label='my_sv') circ.save_matrix_product_state(label='my_mps') circ.measure([0,1], [0,1]) # Execute and get saved data tcirc = transpile(circ, simulator) result = simulator.run(tcirc).result() data = result.data(0) #print the result data data num_qubits = 50 circ = QuantumCircuit(num_qubits, num_qubits) # Create EPR state circ.h(0) for i in range (0, num_qubits-1): circ.cx(i, i+1) # Measure circ.measure(range(num_qubits), range(num_qubits)) tcirc = transpile(circ, simulator) result = simulator.run(tcirc).result() print("Time taken: {} sec".format(result.time_taken)) result.get_counts() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qBraid/qBraid
qBraid
# Copyright (C) 2024 qBraid # # This file is part of the qBraid-SDK # # The qBraid-SDK is free software released under the GNU General Public License v3 # or later. You can redistribute and/or modify it under the terms of the GPL v3. # See the LICENSE file in the project root or <https://www.gnu.org/licenses/gpl-3.0.html>. # # THERE IS NO WARRANTY for the qBraid-SDK, as per Section 15 of the GPL v3. """ Unit tests for OpenQASM 3 conversions """ import braket.circuits import numpy as np import qiskit from qbraid.interface import circuits_allclose from qbraid.transpiler.converter import transpile def test_one_qubit_qiskit_to_braket(): """Test converting qiskit to braket for one qubit circuit.""" qiskit_circuit = qiskit.QuantumCircuit(1) qiskit_circuit.h(0) qiskit_circuit.ry(np.pi / 2, 0) qasm3_program = transpile(qiskit_circuit, "qasm3") braket_circuit = transpile(qasm3_program, "braket") circuits_allclose(qiskit_circuit, braket_circuit, strict_gphase=True) def test_one_qubit_braket_to_qiskit(): """Test converting braket to qiskit for one qubit circuit.""" braket_circuit = braket.circuits.Circuit().h(0).ry(0, np.pi / 2) qasm3_program = transpile(braket_circuit, "qasm3") qiskit_circuit = transpile(qasm3_program, "qiskit") assert circuits_allclose(braket_circuit, qiskit_circuit, strict_gphase=True) def test_two_qubit_braket_to_qiskit(): """Test converting braket to qiskit for two qubit circuit.""" braket_circuit = braket.circuits.Circuit().h(0).cnot(0, 1) qasm3_program = transpile(braket_circuit, "qasm3") qiskit_circuit = transpile(qasm3_program, "qiskit") assert circuits_allclose(braket_circuit, qiskit_circuit, strict_gphase=True) def test_braket_to_qiskit_stdgates(): """Test converting braket to qiskit for standard gates.""" circuit = braket.circuits.Circuit() circuit.h([0, 1, 2, 3]) circuit.x([0, 1]) circuit.y(2) circuit.z(3) circuit.s(0) circuit.si(1) circuit.t(2) circuit.ti(3) circuit.rx(0, np.pi / 4) circuit.ry(1, np.pi / 2) circuit.rz(2, 3 * np.pi / 4) circuit.phaseshift(3, np.pi / 8) circuit.v(0) # circuit.vi(1) circuit.iswap(2, 3) circuit.swap(0, 2) circuit.swap(1, 3) circuit.cnot(0, 1) circuit.cphaseshift(2, 3, np.pi / 4) cirq_circuit = transpile(circuit, "cirq") qasm3_program = transpile(circuit, "qasm3") qasm2_program = transpile(cirq_circuit, "qasm2") qiskit_circuit_1 = transpile(qasm3_program, "qiskit") qiskit_circuit_2 = transpile(qasm2_program, "qiskit") assert circuits_allclose(circuit, qiskit_circuit_1, strict_gphase=True) assert circuits_allclose(circuit, qiskit_circuit_2, strict_gphase=False) def test_braket_to_qiskit_vi_sxdg(): """Test converting braket to qiskit with vi/sxdg gate with non-strict global phase comparison.""" circuit = braket.circuits.Circuit().vi(0) qasm3_program = transpile(circuit, "qasm3") qiskit_circuit = transpile(qasm3_program, "qiskit") assert circuits_allclose(circuit, qiskit_circuit, strict_gphase=False)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt import numpy as np from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler from qiskit.utils import algorithm_globals from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder, MinMaxScaler from qiskit_machine_learning.algorithms.classifiers import VQC from IPython.display import clear_output algorithm_globals.random_seed = 42 sampler1 = Sampler() sampler2 = Sampler() num_samples = 40 num_features = 2 features = 2 * algorithm_globals.random.random([num_samples, num_features]) - 1 labels = 1 * (np.sum(features, axis=1) >= 0) # in { 0, 1} features = MinMaxScaler().fit_transform(features) features.shape features[0:5, :] labels = OneHotEncoder(sparse=False).fit_transform(labels.reshape(-1, 1)) labels.shape labels[0:5, :] train_features, test_features, train_labels, test_labels = train_test_split( features, labels, train_size=30, random_state=algorithm_globals.random_seed ) train_features.shape def plot_dataset(): plt.scatter( train_features[np.where(train_labels[:, 0] == 0), 0], train_features[np.where(train_labels[:, 0] == 0), 1], marker="o", color="b", label="Label 0 train", ) plt.scatter( train_features[np.where(train_labels[:, 0] == 1), 0], train_features[np.where(train_labels[:, 0] == 1), 1], marker="o", color="g", label="Label 1 train", ) plt.scatter( test_features[np.where(test_labels[:, 0] == 0), 0], test_features[np.where(test_labels[:, 0] == 0), 1], marker="o", facecolors="w", edgecolors="b", label="Label 0 test", ) plt.scatter( test_features[np.where(test_labels[:, 0] == 1), 0], test_features[np.where(test_labels[:, 0] == 1), 1], marker="o", facecolors="w", edgecolors="g", label="Label 1 test", ) plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0) plt.plot([1, 0], [0, 1], "--", color="black") plot_dataset() plt.show() maxiter = 20 objective_values = [] # callback function that draws a live plot when the .fit() method is called def callback_graph(_, objective_value): clear_output(wait=True) objective_values.append(objective_value) plt.title("Objective function value against iteration") plt.xlabel("Iteration") plt.ylabel("Objective function value") stage1_len = np.min((len(objective_values), maxiter)) stage1_x = np.linspace(1, stage1_len, stage1_len) stage1_y = objective_values[:stage1_len] stage2_len = np.max((0, len(objective_values) - maxiter)) stage2_x = np.linspace(maxiter, maxiter + stage2_len - 1, stage2_len) stage2_y = objective_values[maxiter : maxiter + stage2_len] plt.plot(stage1_x, stage1_y, color="orange") plt.plot(stage2_x, stage2_y, color="purple") plt.show() plt.rcParams["figure.figsize"] = (12, 6) original_optimizer = COBYLA(maxiter=maxiter) ansatz = RealAmplitudes(num_features) initial_point = np.asarray([0.5] * ansatz.num_parameters) original_classifier = VQC( ansatz=ansatz, optimizer=original_optimizer, callback=callback_graph, sampler=sampler1 ) original_classifier.fit(train_features, train_labels) print("Train score", original_classifier.score(train_features, train_labels)) print("Test score ", original_classifier.score(test_features, test_labels)) original_classifier.save("vqc_classifier.model") loaded_classifier = VQC.load("vqc_classifier.model") loaded_classifier.warm_start = True loaded_classifier.neural_network.sampler = sampler2 loaded_classifier.optimizer = COBYLA(maxiter=80) loaded_classifier.fit(train_features, train_labels) print("Train score", loaded_classifier.score(train_features, train_labels)) print("Test score", loaded_classifier.score(test_features, test_labels)) train_predicts = loaded_classifier.predict(train_features) test_predicts = loaded_classifier.predict(test_features) # return plot to default figsize plt.rcParams["figure.figsize"] = (6, 4) plot_dataset() # plot misclassified data points plt.scatter( train_features[np.all(train_labels != train_predicts, axis=1), 0], train_features[np.all(train_labels != train_predicts, axis=1), 1], s=200, facecolors="none", edgecolors="r", linewidths=2, ) plt.scatter( test_features[np.all(test_labels != test_predicts, axis=1), 0], test_features[np.all(test_labels != test_predicts, axis=1), 1], s=200, facecolors="none", edgecolors="r", linewidths=2, ) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/aryashah2k/Quantum-Computing-Collection-Of-Resources
aryashah2k
from matplotlib.pyplot import bar labels = [] elements = [] for i in range(8): labels = labels + [i+1] elements = elements + [1] # visualize the values of elements in the list bar(labels,elements) # # 1st step - query # # change the sign of the marked element, i.e., multiply it by -1 # visualize the values of elements in the list bar(labels,elements) # # 1st step - inversion # # calculate the mean of all values # then reflect each element over the mean, e.g.: # if the mean is 0, then the reflection of 3 is -3 # if the mean is 1, then the reflection of 3 is -1 # if the mean is -1, then the reflection of 3 is -5 # visualize the values of elements in the list bar(labels,elements) # # 2nd step - query # # visualize the values of elements in the list bar(labels,elements) # # 2nd step - inversion # # visualize the values of elements in the list bar(labels,elements) # # your code is here # from matplotlib.pyplot import bar labels = [] elements = [] for i in range(8): labels = labels + [i+1] elements = elements + [1] # visualize the values of elements in the list bar(labels,elements) # visualize the values of elements in the list bar(labels,elements) # # 1st step - query # # flip the sign of the marked element elements[3] = -1 * elements[3] # visualize the values of elements in the list bar(labels,elements) # # 1st step - inversion # # summation of all values sum = 0 for i in range(len(elements)): sum += elements[i] # mean of all values mean = sum / len(elements) # reflection over the mean for i in range(len(elements)): value = elements[i] new_value = mean - (elements[i]-mean) elements[i] = new_value # visualize the values of elements in the list bar(labels,elements) # # 2nd step - query # # flip the sign of the marked element elements[3] = -1 * elements[3] # visualize the values of elements in the list bar(labels,elements) # # 2nd step - inversion # # summation of all values sum = 0 for i in range(len(elements)): sum += elements[i] # mean of all values mean = sum / len(elements) # reflection over mean for i in range(len(elements)): value = elements[i] new_value = mean - (elements[i]-mean) elements[i] = new_value # visualize the values of elements in the list bar(labels,elements) for i in range(3): # flip the sign of the marked element elements[3] = -1 * elements[3] # summation of all values sum = 0 for i in range(len(elements)): sum += elements[i] # mean of all values mean = sum / len(elements) # reflection over mean for i in range(len(elements)): value = elements[i] new_value = mean - (elements[i]-mean) elements[i] = new_value # visualize the values of elements in the list bar(labels,elements) def query(elements=[1],marked_elements=[0]): for i in marked_elements: elements[i] = -1 * elements[i] return elements def inversion (elements=[1]): # summation of all values summation = 0 for i in range(len(elements)): summation += elements[i] # mean of all values mean = summation / len(elements) # reflection over mean for i in range(len(elements)): value = elements[i] new_value = mean - (elements[i]-mean) elements[i] = new_value return elements from matplotlib.pyplot import bar # define the list of size 8 on which each element has value of 1 elements = [] for i in range(8): elements = elements + [1] # index of the marked element marked_elements = [3] # define the list of iterations iterations = [] # the list storing the values of the 4th element after each step L = [] # the first values iterations.append(0) L.append(elements[marked_elements[0]]) for step in range(20): # store the iteration iterations.append(step+1) # flip the sign of the marked element elements = query(elements,marked_elements) elements = inversion(elements) # store the new value of the 4th element L.append(elements[marked_elements[0]]) # visualize the values of the 4th elements after each iteration bar(iterations,L) print(iterations) print(L) def query(elements=[1],marked_elements=[0]): for i in marked_elements: elements[i] = -1 * elements[i] return elements def inversion (elements=[1]): # summation of all values summation = 0 for i in range(len(elements)): summation += elements[i] # mean of all values mean = summation / len(elements) # reflection over mean for i in range(len(elements)): value = elements[i] new_value = mean - (elements[i]-mean) elements[i] = new_value return elements from matplotlib.pyplot import bar # define the list of size 8 on which each element has value of 1 elements = [] for i in range(16): elements = elements + [1] # index of the marked element marked_elements = [10] # define the list of iterations iterations = [] # the list storing the values of the marked element after each step L = [] # the first values iterations.append(0) L.append(elements[marked_elements[0]]) for step in range(20): # store the iteration iterations.append(step+1) # flip the sign of the marked element elements = query(elements,marked_elements) elements = inversion(elements) # store the new value of the 4th element L.append(elements[marked_elements[0]]) # visualize the values of the marked elements after each iteration bar(iterations,L) print(iterations) print(L) def query(elements=[1],marked_elements=[0]): for i in marked_elements: elements[i] = -1 * elements[i] return elements def inversion (elements=[1]): # summation of all values summation = 0 for i in range(len(elements)): summation += elements[i] # mean of all values mean = summation / len(elements) # reflection over mean for i in range(len(elements)): value = elements[i] new_value = mean - (elements[i]-mean) elements[i] = new_value return elements from matplotlib.pyplot import bar # define the list of size 8 on which each element has value of 1 elements = [] for i in range(16): elements = elements + [1] # index of the marked element marked_elements = [4,7,9] # define the list of iterations iterations = [] # the list storing the values of the first element after each step L = [] # the first values iterations.append(0) L.append(elements[marked_elements[0]]) for step in range(20): # store the iteration iterations.append(step+1) # flip the sign of the marked element elements = query(elements,marked_elements) elements = inversion(elements) # store the new value of the first marked element L.append(elements[marked_elements[0]]) # visualizing the values of the first marked elements after each iteration bar(iterations,L) print(iterations) print(L) def query(elements=[1],marked_elements=[0]): for i in marked_elements: elements[i] = -1 * elements[i] return elements def inversion (elements=[1]): # summation of all values summation = 0 for i in range(len(elements)): summation += elements[i] # mean of all values mean = summation / len(elements) # reflection over mean for i in range(len(elements)): value = elements[i] new_value = mean - (elements[i]-mean) elements[i] = new_value return elements def length_of_list (elements=[1]): summation = 0 for el in elements: summation = summation + el**2 return round(summation**0.5,3) # define the list of size 8 on which each element has value of 1 elements = [] for i in range(16): elements = elements + [1] # index of the marked element marked_elements = [0,1,2,3] print("the initial length",length_of_list(elements)) for step in range(20): # store the iteration iterations.append(step+1) # flip the sign of the marked element elements = query(elements,marked_elements) print("step",step,"the length after query is ",length_of_list(elements)) elements = inversion(elements) print("step",step,"the length after inversion is ",length_of_list(elements)) def query(elements=[1],marked_elements=[0]): for i in marked_elements: elements[i] = -1 * elements[i] return elements def inversion (elements=[1]): # summation of all values summation = 0 for i in range(len(elements)): summation += elements[i] # mean of all values mean = summation / len(elements) # reflection over mean for i in range(len(elements)): value = elements[i] new_value = mean - (elements[i]-mean) elements[i] = new_value return elements def length_of_list (elements=[1]): summation = 0 for el in elements: summation = summation + el**2 return round(summation**0.5,3) # define the list of size 10 on which each element has value of 1 elements = [] for i in range(10): elements = elements + [1] # index of the marked element marked_elements = [9] print("the initial length",length_of_list(elements)) for step in range(20): # store the iteration iterations.append(step+1) # flip the sign of the marked element elements = query(elements,marked_elements) print("step",step,"the length after query is ",length_of_list(elements)) elements = inversion(elements) print("step",step,"the length after inversion is ",length_of_list(elements)) def query(elements=[1],marked_elements=[0]): for i in marked_elements: elements[i] = -1 * elements[i] return elements def inversion (elements=[1]): # summation of all values summation = 0 for i in range(len(elements)): summation += elements[i] # mean of all values mean = summation / len(elements) # reflection over mean for i in range(len(elements)): value = elements[i] new_value = mean - (elements[i]-mean) elements[i] = new_value return elements def length_of_list (elements=[1]): summation = 0 for el in elements: summation = summation + el**2 return round(summation**0.5,3) # print the elements of a given list with a given precision def print_list(L,precision): output = "" for i in range(len(L)): output = output + str(round(L[i],precision))+" " print(output) # define the list of size 8 on which each element has value of 1 elements = [] for i in range(8): elements = elements + [1/(8**0.5)] # index of the marked element marked_elements = [1] print("step 0") print("the list of elements is") print_list(elements,3) print("the initial length",length_of_list(elements)) for step in range(20): # store the iteration iterations.append(step+1) # flip the sign of the marked element elements = query(elements,marked_elements) elements = inversion(elements) print() print("after step",step+1) print("the list of elements is") print_list(elements,3) print("the length after iteration is ",length_of_list(elements)) def query(elements=[1],marked_elements=[0]): for i in marked_elements: elements[i] = -1 * elements[i] return elements def inversion (elements=[1]): # summation of all values summation = 0 for i in range(len(elements)): summation += elements[i] # mean of all values mean = summation / len(elements) # reflection over mean for i in range(len(elements)): value = elements[i] new_value = mean - (elements[i]-mean) elements[i] = new_value return elements def length_of_list (elements=[1]): summation = 0 for el in elements: summation = summation + el**2 return round(summation**0.5,3) # print the elements of a given list with a given precision def print_list(L,precision): output = "" for i in range(len(L)): output = output + str(round(L[i],precision))+" " print(output) # define the list of size 8 on which each element has value of 1 elements = [] for i in range(16): elements = elements + [1/(16**0.5)] # index of the marked element marked_elements = range(12) print("step 0") print("the list of elements is") print_list(elements,3) print("the initial length",length_of_list(elements)) for step in range(20): # store the iteration iterations.append(step+1) # flip the sign of the marked element elements = query(elements,marked_elements) elements = inversion(elements) print() print("after step",step+1) print("the list of elements is") print_list(elements,3) print("the length after iteration is ",length_of_list(elements))
https://github.com/Ben-Foxman/Quantum-Exploration
Ben-Foxman
# Superdense Coding Implementation Ben Foxman import matplotlib.pyplot as plt import numpy as np from qiskit import * bits = input("Enter 2 bits.") # the 2 bits to encode/decode assert bits in ['00', '01', '10', '11'] # p1 encodes by creating map from each of the 4 bell states to each of the 4 2-bit codes def encode(target): bell = QuantumCircuit(2, 2, name="bell") bell.h([0, 1]) # this entangles p1 and p2's qubit (on measurement, they both evaluate to 0 or 1) if target == '01': bell.x([0, 1]) elif target == '10': bell.z(0) elif target == '11': bell.z(0) bell.x([0, 1]) # '00'= identity, keep the initial bell states bell state return bell # now, p2 decodes the circuit def decode(circuit): # step 1: cnot it circuit.cx(0, 1) #step 2: h-gate and measure circuit.h(0) circuit.measure([0, 1], [0, 1]) return circuit backend = Aer.get_backend('statevector_simulator') # encode bits circ = encode(bits) # decode bits message = decode(circ) job = execute(message, backend) result = job.result() # print out the statevector. There should be a 1 at index n, where n (base 10) is the code print(np.round(result.get_statevector(), 2))
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test Qiskit's QuantumCircuit class for multiple registers.""" from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.converters.circuit_to_dag import circuit_to_dag from qiskit.test import QiskitTestCase from qiskit.circuit.exceptions import CircuitError class TestCircuitMultiRegs(QiskitTestCase): """QuantumCircuit Qasm tests.""" def test_circuit_multi(self): """Test circuit multi regs declared at start.""" qreg0 = QuantumRegister(2, "q0") creg0 = ClassicalRegister(2, "c0") qreg1 = QuantumRegister(2, "q1") creg1 = ClassicalRegister(2, "c1") circ = QuantumCircuit(qreg0, qreg1, creg0, creg1) circ.x(qreg0[1]) circ.x(qreg1[0]) meas = QuantumCircuit(qreg0, qreg1, creg0, creg1) meas.measure(qreg0, creg0) meas.measure(qreg1, creg1) qc = circ.compose(meas) circ2 = QuantumCircuit() circ2.add_register(qreg0) circ2.add_register(qreg1) circ2.add_register(creg0) circ2.add_register(creg1) circ2.x(qreg0[1]) circ2.x(qreg1[0]) meas2 = QuantumCircuit() meas2.add_register(qreg0) meas2.add_register(qreg1) meas2.add_register(creg0) meas2.add_register(creg1) meas2.measure(qreg0, creg0) meas2.measure(qreg1, creg1) qc2 = circ2.compose(meas2) dag_qc = circuit_to_dag(qc) dag_qc2 = circuit_to_dag(qc2) dag_circ2 = circuit_to_dag(circ2) dag_circ = circuit_to_dag(circ) self.assertEqual(dag_qc, dag_qc2) self.assertEqual(dag_circ, dag_circ2) def test_circuit_multi_name_collision(self): """Test circuit multi regs, with name collision.""" qreg0 = QuantumRegister(2, "q") qreg1 = QuantumRegister(3, "q") self.assertRaises(CircuitError, QuantumCircuit, qreg0, qreg1)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import BasicAer, transpile, QuantumRegister, ClassicalRegister, QuantumCircuit qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) qc.h(0) qc.measure(0, 0) qc.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import transpile from qiskit import QuantumCircuit from qiskit.providers.fake_provider import FakeVigoV2 backend = FakeVigoV2() qc = QuantumCircuit(2, 1) qc.h(0) qc.x(1) qc.cp(np.pi/4, 0, 1) qc.h(0) qc.measure([0], [0]) qc_basis = transpile(qc, backend) qc_basis.draw(output='mpl')
https://github.com/sebasmos/QuantumVE
sebasmos
!pip install tensorflow==2.4.1 !pip install tensorflow-quantum import tensorflow as tf import tensorflow_quantum as tfq import cirq import sympy import numpy as np # visualization tools %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit a, b = sympy.symbols('a b') # Create two qubits q0, q1 = cirq.GridQubit.rect(1, 2) # Create a circuit on these qubits using the parameters you created above. circuit = cirq.Circuit( cirq.rx(a).on(q0), cirq.ry(b).on(q1), cirq.CNOT(control=q0, target=q1)) SVGCircuit(circuit) # Calculate a state vector with a=0.5 and b=-0.5. resolver = cirq.ParamResolver({a: 0.5, b: -0.5}) output_state_vector = cirq.Simulator().simulate(circuit, resolver).final_state_vector output_state_vector z0 = cirq.Z(q0) qubit_map={q0: 0, q1: 1} z0.expectation_from_state_vector(output_state_vector, qubit_map).real z0x1 = 0.5 * z0 + cirq.X(q1) z0x1.expectation_from_state_vector(output_state_vector, qubit_map).real # Rank 1 tensor containing 1 circuit. circuit_tensor = tfq.convert_to_tensor([circuit]) print(circuit_tensor.shape) print(circuit_tensor.dtype) # Rank 1 tensor containing 2 Pauli operators. pauli_tensor = tfq.convert_to_tensor([z0, z0x1]) pauli_tensor.shape batch_vals = np.array(np.random.uniform(0, 2 * np.pi, (5, 2)), dtype=np.float32) cirq_results = [] cirq_simulator = cirq.Simulator() for vals in batch_vals: resolver = cirq.ParamResolver({a: vals[0], b: vals[1]}) final_state_vector = cirq_simulator.simulate(circuit, resolver).final_state_vector cirq_results.append( [z0.expectation_from_state_vector(final_state_vector, { q0: 0, q1: 1 }).real]) print('cirq batch results: \n {}'.format(np.array(cirq_results))) tfq.layers.Expectation()(circuit, symbol_names=[a, b], symbol_values=batch_vals, operators=z0) # Parameters that the classical NN will feed values into. control_params = sympy.symbols('theta_1 theta_2 theta_3') # Create the parameterized circuit. qubit = cirq.GridQubit(0, 0) model_circuit = cirq.Circuit( cirq.rz(control_params[0])(qubit), cirq.ry(control_params[1])(qubit), cirq.rx(control_params[2])(qubit)) SVGCircuit(model_circuit) # The classical neural network layers. controller = tf.keras.Sequential([ tf.keras.layers.Dense(10, activation='elu'), tf.keras.layers.Dense(3) ]) controller(tf.constant([[0.0],[1.0]])).numpy() # This input is the simulated miscalibration that the model will learn to correct. circuits_input = tf.keras.Input(shape=(), # The circuit-tensor has dtype `tf.string` dtype=tf.string, name='circuits_input') # Commands will be either `0` or `1`, specifying the state to set the qubit to. commands_input = tf.keras.Input(shape=(1,), dtype=tf.dtypes.float32, name='commands_input') dense_2 = controller(commands_input) # TFQ layer for classically controlled circuits. expectation_layer = tfq.layers.ControlledPQC(model_circuit, # Observe Z operators = cirq.Z(qubit)) expectation = expectation_layer([circuits_input, dense_2]) # The full Keras model is built from our layers. model = tf.keras.Model(inputs=[circuits_input, commands_input], outputs=expectation) #https://stackoverflow.com/questions/47605558/importerror-failed-to-import-pydot-you-must-install-pydot-and-graphviz-for-py !pip install pydot !pip install pydotplus !pip install graphviz tf.keras.utils.plot_model(model, show_shapes=True, dpi=70) # The command input values to the classical NN. commands = np.array([[0], [1]], dtype=np.float32) # The desired Z expectation value at output of quantum circuit. expected_outputs = np.array([[1], [-1]], dtype=np.float32) random_rotations = np.random.uniform(0, 2 * np.pi, 3) noisy_preparation = cirq.Circuit( cirq.rx(random_rotations[0])(qubit), cirq.ry(random_rotations[1])(qubit), cirq.rz(random_rotations[2])(qubit) ) datapoint_circuits = tfq.convert_to_tensor([ noisy_preparation ] * 2) # Make two copied of this circuit datapoint_circuits.shape model([datapoint_circuits, commands]).numpy() optimizer = tf.keras.optimizers.Adam(learning_rate=0.05) loss = tf.keras.losses.MeanSquaredError() model.compile(optimizer=optimizer, loss=loss) history = model.fit(x=[datapoint_circuits, commands], y=expected_outputs, epochs=30, verbose=0) plt.plot(history.history['loss']) plt.title("Learning to Control a Qubit") plt.xlabel("Iterations") plt.ylabel("Error in Control") plt.show() def check_error(command_values, desired_values): """Based on the value in `command_value` see how well you could prepare the full circuit to have `desired_value` when taking expectation w.r.t. Z.""" params_to_prepare_output = controller(command_values).numpy() full_circuit = noisy_preparation + model_circuit # Test how well you can prepare a state to get expectation the expectation # value in `desired_values` for index in [0, 1]: state = cirq_simulator.simulate( full_circuit, {s:v for (s,v) in zip(control_params, params_to_prepare_output[index])} ).final_state_vector expt = cirq.Z(qubit).expectation_from_state_vector(state, {qubit: 0}).real print(f'For a desired output (expectation) of {desired_values[index]} with' f' noisy preparation, the controller\nnetwork found the following ' f'values for theta: {params_to_prepare_output[index]}\nWhich gives an' f' actual expectation of: {expt}\n') check_error(commands, expected_outputs) model([datapoint_circuits, commands]) # Define inputs. commands_input = tf.keras.layers.Input(shape=(1), dtype=tf.dtypes.float32, name='commands_input') circuits_input = tf.keras.Input(shape=(), # The circuit-tensor has dtype `tf.string` dtype=tf.dtypes.string, name='circuits_input') operators_input = tf.keras.Input(shape=(1,), dtype=tf.dtypes.string, name='operators_input') # Define classical NN. controller = tf.keras.Sequential([ tf.keras.layers.Dense(10, activation='elu'), tf.keras.layers.Dense(3) ]) dense_2 = controller(commands_input) # Since you aren't using a PQC or ControlledPQC you must append # your model circuit onto the datapoint circuit tensor manually. full_circuit = tfq.layers.AddCircuit()(circuits_input, append=model_circuit) expectation_output = tfq.layers.Expectation()(full_circuit, symbol_names=control_params, symbol_values=dense_2, operators=operators_input) # Contruct your Keras model. two_axis_control_model = tf.keras.Model( inputs=[circuits_input, commands_input, operators_input], outputs=[expectation_output]) # The operators to measure, for each command. operator_data = tfq.convert_to_tensor([[cirq.X(qubit)], [cirq.Z(qubit)]]) # The command input values to the classical NN. commands = np.array([[0], [1]], dtype=np.float32) # The desired expectation value at output of quantum circuit. expected_outputs = np.array([[1], [-1]], dtype=np.float32) optimizer = tf.keras.optimizers.Adam(learning_rate=0.05) loss = tf.keras.losses.MeanSquaredError() two_axis_control_model.compile(optimizer=optimizer, loss=loss) history = two_axis_control_model.fit( x=[datapoint_circuits, commands, operator_data], y=expected_outputs, epochs=30, validation_split=0.2, verbose=2) plt.plot(history.history['loss']) plt.title("Learning to Control a Qubit") plt.xlabel("Iterations") plt.ylabel("Error in Control") plt.show() controller.predict(np.array([0,1])) # Define inputs. commands_input = tf.keras.layers.Input(shape=(1), dtype=tf.dtypes.float32, name='commands_input') circuits_input = tf.keras.Input(shape=(), # The circuit-tensor has dtype `tf.string` dtype=tf.dtypes.string, name='circuits_input') operators_input = tf.keras.Input(shape=(1,), dtype=tf.dtypes.string, name='operators_input') # Define classical NN. controller = tf.keras.Sequential([ tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(200, activation='relu'), tf.keras.layers.Dense(2000, activation='relu'), tf.keras.layers.Dense(3) ]) dense_2 = controller(commands_input) # Since you aren't using a PQC or ControlledPQC you must append # your model circuit onto the datapoint circuit tensor manually. full_circuit = tfq.layers.AddCircuit()(circuits_input, append=model_circuit) expectation_output = tfq.layers.Expectation()(full_circuit, symbol_names=control_params, symbol_values=dense_2, operators=operators_input) # Contruct your Keras model. two_axis_control_model = tf.keras.Model( inputs=[circuits_input, commands_input, operators_input], outputs=[expectation_output]) # The operators to measure, for each command. operator_data = tfq.convert_to_tensor([[cirq.X(qubit)], [cirq.Z(qubit)]]) # The command input values to the classical NN. commands = np.array([[0], [1]], dtype=np.float32) # The desired expectation value at output of quantum circuit. expected_outputs = np.array([[1], [-1]], dtype=np.float32) optimizer = tf.keras.optimizers.Adam(learning_rate=0.05) loss = tf.keras.losses.MeanSquaredError() two_axis_control_model.compile(optimizer=optimizer, loss=loss) history = two_axis_control_model.fit( x=[datapoint_circuits, commands, operator_data], y=expected_outputs, epochs=30, validation_split=0.2, verbose=2) plt.plot(history.history['loss']) plt.title("Learning to Control a Qubit") plt.xlabel("Iterations") plt.ylabel("Error in Control") plt.show() controller.predict(np.array([0,1]))
https://github.com/riddheshMarkandeya/shors-algorithm-quantum
riddheshMarkandeya
import math import numpy as np from qiskit import QuantumCircuit, Aer, transpile, execute from qiskit.visualization import plot_histogram, circuit_drawer from math import gcd from fractions import Fraction # Constants N = 15 x = 7 n_count = 9 # number of counting qubits # Controlled Unitary Operation def c_amod15(a, power): """Controlled multiplication by a mod 15""" U = QuantumCircuit(4) for _ in range(power): if a in [2, 13]: U.swap(2, 3) U.swap(1, 2) U.swap(0, 1) if a in [7, 8]: U.swap(0, 1) U.swap(1, 2) U.swap(2, 3) if a in [4, 11]: U.swap(1, 3) U.swap(0, 2) if a in [7, 11, 13]: for q in range(4): U.x(q) U = U.to_gate() U.name = f"{'U'}^{power}" c_U = U.control() return c_U # Inverse Quantum Fourier Transform def qft_dagger(n): """n-qubit QFTdagger the first n qubits in circ""" qc = QuantumCircuit(n) for qubit in range(n//2): qc.swap(qubit, n-qubit-1) for j in range(n): for m in range(j): qc.cp(-math.pi/float(2**(j-m)), m, j) qc.h(j) qc.name = "IQFT" return qc # Quantum Phase Estimation Circuit qc = QuantumCircuit(n_count + 4, n_count) qc.x(3 + n_count) for q in range(n_count): qc.h(q) for q in range(n_count): qc.append(c_amod15(x, 2**q), [q] + [i + n_count for i in range(4)]) qc.append(qft_dagger(n_count), range(n_count)) qc.measure(range(n_count), range(n_count)) # Visualize the Circuit circuit_drawer(qc, output='mpl', scale=0.7, fold=-1) # Simulate the Circuit simulator = Aer.get_backend('aer_simulator') transpiled_qc = transpile(qc, simulator) result = simulator.run(transpiled_qc, shots=1024).result() counts = result.get_counts(qc) # Plot histogram plot_histogram(counts) # Determine the order r def determine_order(counts): measured_str = max(counts, key=counts.get) measured = int(measured_str, 2) phase = measured / (2**n_count) frac = Fraction(phase).limit_denominator(N) return frac.denominator r = determine_order(counts) print(f"Order r: {r}") # Classical post-processing to factorize N factor_found = False if r % 2 == 0: plus = gcd(pow(x, r//2) + 1, N) minus = gcd(pow(x, r//2) - 1, N) if plus not in [1, N]: print(f"One factor of {N} is {plus}") factor_found = True if minus not in [1, N]: print(f"One factor of {N} is {minus}") factor_found = True if not factor_found: print("No factors found. Try a different random x.")
https://github.com/kaelynj/Qiskit-HubbardModel
kaelynj
%matplotlib inline import sys sys.path.append('./src') # Importing standard Qiskit libraries and configuring account #from qiskit import QuantumCircuit, execute, Aer, IBMQ #from qiskit.compiler import transpile, assemble #from qiskit.tools.jupyter import * #from qiskit.visualization import * import matplotlib.pyplot as plt import matplotlib.colors as mcolors import numpy as np import ClassicalHubbardEvolutionChain as chc import random as rand import scipy.linalg as la def get_bin(x, n=0): """ Get the binary representation of x. Parameters: x (int), n (int, number of digits)""" binry = format(x, 'b').zfill(n) sup = list( reversed( binry[0:int(len(binry)/2)] ) ) sdn = list( reversed( binry[int(len(binry)/2):len(binry)] ) ) return format(x, 'b').zfill(n) #============ Run Classical Evolution ============== #Define our basis states #States for 3 electrons with net spin up ''' states = [ [[1,1,0],[1,0,0]], [[1,1,0],[0,1,0]], [[1,1,0], [0,0,1]], [[1,0,1],[1,0,0]], [[1,0,1],[0,1,0]], [[1,0,1], [0,0,1]], [[0,1,1],[1,0,0]], [[0,1,1],[0,1,0]], [[0,1,1], [0,0,1]] ] ''' #States for 2 electrons in singlet state states = [ [[1,0,0],[1,0,0]], [[1,0,0],[0,1,0]], [[1,0,0],[0,0,1]], [[0,1,0],[1,0,0]], [[0,1,0],[0,1,0]], [[0,1,0],[0,0,1]], [[0,0,1],[1,0,0]], [[0,0,1],[0,1,0]], [[0,0,1],[0,0,1]] ] #''' #States for a single electron #states = [ [[1,0,0],[0,0,0]], [[0,1,0],[0,0,0]], [[0,0,1],[0,0,0]] ] #Possible initial wavefunctions #wfk = [0., 0., 0., 0., 1., 0., 0., 0., 0.] #Half-filling initial state wfk = [0., 0., 0., 0., 1.0, 0., 0., 0., 0.] #2 electron initial state #wfk = [0., 1., 0.] #1 electron initial state #System parameters t = 1.0 U = 2. classical_time_step = 0.01 classical_total_time = 500*0.01 times = np.arange(0., classical_total_time, classical_time_step) evolution, engs = chc.sys_evolve(states, wfk, t, U, classical_total_time, classical_time_step) #print(evolution) probs = [np.sum(x) for x in evolution] #print(probs) #print(np.sum(evolution[0])) print(engs) states_list = [] nsite = 3 for state in range(0, 2**(2*nsite)): state_bin = get_bin(state, 2*nsite) state_list = [[],[]] for mode in range(0,nsite): state_list[0].append(int(state_bin[mode])) state_list[1].append(int(state_bin[mode+nsite])) #print(state_list) states_list.append(state_list) #print(states_list[18]) #evolution2, engs2 = chc.sys_evolve(states_list, wfk_full, t, U, classical_total_time, classical_time_step) #System parameters t = 1.0 U = 2. classical_time_step = 0.01 classical_total_time = 500*0.01 times = np.arange(0., classical_total_time, classical_time_step) #Create full Hamiltonian wfk_full = np.zeros(len(states_list)) #wfk_full[18] = 1. #010010 wfk_full[21] = 1. #010101 #wfk_full[2] = 1. #000010 #evolution2, engs2 = chc.sys_evolve(states_list, wfk_full, t, U, classical_total_time, classical_time_step) def repel(l,state): if state[0][l]==1 and state[1][l]==1: return state else: return [] #Check if two states are different by a single hop def hop(psii, psij, hopping): #Check spin down hopp = 0 if psii[0]==psij[0]: #Create array of indices with nonzero values ''' indi = np.nonzero(psii[1])[0] indj = np.nonzero(psij[1])[0] if len(indi) != len(indj): return hopp print('ind_i: ',indi,' ind_j: ',indj) for i in range(len(indi)): if abs(indi[i]-indj[i])==1: hopp = -hopping print('Hopping Found: ',psii,' with: ',psij) return hopp ''' hops = [] for site in range(len(psii[0])): if psii[1][site] != psij[1][site]: hops.append(site) if len(hops)==2 and np.sum(psii[1]) == np.sum(psij[1]): if hops[1]-hops[0]==1: hopp = -hopping return hopp #Check spin up if psii[1]==psij[1]: ''' indi = np.nonzero(psii[0])[0] indj = np.nonzero(psij[0])[0] if len(indi) != len(indj): return hopp print('ind_i: ',indi,' ind_j: ',indj) for i in range(len(indi)): if abs(indi[i]-indj[i])==1: hopp = -hopping print('Hopping Found: ',psii,' with: ',psij) return hopp ''' hops = [] for site in range(len(psii[1])): if psii[0][site] != psij[0][site]: hops.append(site) if len(hops)==2 and np.sum(psii[0])==np.sum(psij[0]): if hops[1]-hops[0]==1: hopp = -hopping return hopp return hopp def get_hamiltonian(states, t, U): H = np.zeros((len(states),len(states)) ) #Construct Hamiltonian matrix for i in range(len(states)): psi_i = states[i] for j in range(i, len(states)): psi_j = states[j] if j==i: for l in range(0,len(states[0][0])): if psi_i == repel(l,psi_j): H[i,j] = U break else: #print('psi_i: ',psi_i,' psi_j: ',psi_j) H[i,j] = hop(psi_i, psi_j, t) H[j,i] = H[i,j] return H hamil = get_hamiltonian(states_list, t, U) print(hamil) print(states_list) print() print("Target state: ", states_list[21]) mapping = get_mapping(states_list) print('Second mapping set') print(mapping[1]) print(wfk_full) mapped_wfk = np.zeros(6) for i in range(len(mapping)): if 21 in mapping[i]: print("True for mapping set: ",i) def get_mapping(states): num_sites = len(states[0][0]) mode_list = [] for i in range(0,2*num_sites): index_list = [] for state_index in range(0,len(states)): state = states[state_index] #Check spin-up modes if i < num_sites: if state[0][i]==1: index_list.append(state_index) #Check spin-down modes else: if state[1][i-num_sites]==1: index_list.append(state_index) if index_list: mode_list.append(index_list) return mode_list def wfk_energy(wfk, hamil): eng = np.dot(np.conj(wfk), np.dot(hamil, wfk)) return eng def get_variance(wfk, h): h_squared = np.matmul(h, h) eng_squared = np.vdot(wfk, np.dot(h_squared, wfk)) squared_eng = np.vdot(wfk, np.dot(h, wfk)) var = np.sqrt(eng_squared - squared_eng) return var def sys_evolve(states, init_wfk, hopping, repulsion, total_time, dt): hamiltonian = get_hamiltonian(states, hopping, repulsion) t_operator = la.expm(-1j*hamiltonian*dt) mapping = get_mapping(states) print(mapping) #Initalize system tsteps = int(total_time/dt) evolve = np.zeros([tsteps, len(init_wfk)]) mode_evolve = np.zeros([tsteps, len(mapping)]) wfk = init_wfk energies = np.zeros(tsteps) #Store first time step in mode_evolve evolve[0] = np.multiply(np.conj(wfk), wfk) for i in range(0, len(mapping)): wfk_sum = 0. norm = 0. print("Mapping: ", mapping[i]) for j in mapping[i]: print(evolve[0][j]) wfk_sum += evolve[0][j] mode_evolve[0][i] = wfk_sum energies[0] = wfk_energy(wfk, hamiltonian) norm = np.sum(mode_evolve[0]) mode_evolve[0][:] = mode_evolve[0][:] / norm #print('wfk_sum: ',wfk_sum,' norm: ',norm) #print('Variance: ',get_variance(wfk, hamiltonian) ) #Now do time evolution print(mode_evolve[0]) times = np.arange(0., total_time, dt) for t in range(1, tsteps): wfk = np.dot(t_operator, wfk) evolve[t] = np.multiply(np.conj(wfk), wfk) #print(evolve[t]) energies[t] = wfk_energy(wfk, hamiltonian) for i in range(0, len(mapping)): norm = 0. wfk_sum = 0. for j in mapping[i]: wfk_sum += evolve[t][j] mode_evolve[t][i] = wfk_sum norm = np.sum(mode_evolve[t]) mode_evolve[t][:] = mode_evolve[t][:] / norm #Return time evolution return mode_evolve, energies evolution2, engs2 = sys_evolve(states_list, wfk_full, t, U, classical_total_time, classical_time_step) print(evolution2) #print(engs2) colors = list(mcolors.TABLEAU_COLORS.keys()) fig2, ax2 = plt.subplots(figsize=(20,10)) for i in range(3): #Create string label strup = "Site "+str(i+1)+r'$\uparrow$' strdwn = "Site "+str(i+1)+r'$\downarrow$' ax2.plot(times, evolution2[:,i], linestyle='-', color=str(colors[i]), linewidth=2, label=strup) ax2.plot(times, evolution2[:,i+3], linestyle='--', color=str(colors[i]), linewidth=2, label=strdwn) plt.legend() #print(evolution[10]) #H = np.array([[0., -t, 0.],[-t, 0., -t],[0., -t, 0.]]) #print(np.dot(np.conj(evolution[10]), np.dot(H, evolution[10]))) print(engs[0]) plt.plot(times, engs) plt.xlabel('Time') plt.ylabel('Energy') #Save data import json fname = './data/classical_010101.json' data = {'times': list(times)} for i in range(3): key1 = 'site_'+str(i)+'_up' key2 = 'site_'+str(i)+'_down' data[key1] = list(evolution2[:,i]) data[key2] = list(evolution2[:,i+3]) with open(fname, 'w') as fp: json.dump(data, fp, indent=4) #Create plots of the processed data fig2, ax2 = plt.subplots(figsize=(20,10)) colors = list(mcolors.TABLEAU_COLORS.keys()) cos = np.cos(np.sqrt(2)*times)**2 sit1 = "Site "+str(1)+r'$\uparrow$' sit2 = "Site "+str(2)+r'$\uparrow$' sit3 = "Site "+str(3)+r'$\uparrow$' #ax2.plot(times, evolution[:,0], marker='.', color='k', linewidth=2, label=sit1) #ax2.plot(times, evolution[:,1], marker='.', color=str(colors[0]), linewidth=2, label=sit2) #ax2.plot(times, evolution[:,2], marker='.', color=str(colors[1]), linewidth=1.5, label=sit3) #ax2.plot(times, cos, label='cosdat') #ax2.plot(times, np.zeros(len(times))) for i in range(3): #Create string label strup = "Site "+str(i+1)+r'$\uparrow$' strdwn = "Site "+str(i+1)+r'$\downarrow$' ax2.plot(times, evolution[:,i], linestyle='-', color=str(colors[i]), linewidth=2, label=strup) ax2.plot(times, evolution[:,i+3], linestyle='--', color=str(colors[i]), linewidth=2, label=strdwn) #ax2.set_ylim(0, 1.) ax2.set_xlim(0, classical_total_time) #ax2.set_xlim(0, 1.) ax2.set_xticks(np.arange(0,classical_total_time, 0.2)) #ax2.set_yticks(np.arange(0,1.1, 0.05)) ax2.tick_params(labelsize=16) ax2.set_title('Time Evolution of 3 Site One Dimensional Chain', fontsize=22) ax2.set_xlabel('Time', fontsize=24) ax2.set_ylabel('Probability', fontsize=24) ax2.legend(fontsize=20) #Try by constructing the matrix and finding the eigenvalues N = 3 Nup = 2 Ndwn = N - Nup t = 1. U = 2. #Check if two states are different by a single hop def hop(psii, psij): #Check spin down hopp = 0 if psii[0]==psij[0]: #Create array of indices with nonzero values indi = np.nonzero(psii[1])[0] indj = np.nonzero(psij[1])[0] for i in range(len(indi)): if abs(indi[i]-indj[i])==1: hopp = -t return hopp #Check spin up if psii[1]==psij[1]: indi = np.nonzero(psii[0])[0] indj = np.nonzero(psij[0])[0] for i in range(len(indi)): if abs(indi[i]-indj[i])==1: hopp = -t return hopp return hopp #On-site terms def repel(l,state): if state[0][l]==1 and state[1][l]==1: return state else: return [] #States for 3 electrons with net spin up states = [ [[1,1,0],[1,0,0]], [[1,1,0],[0,1,0]], [[1,1,0], [0,0,1]], [[1,0,1],[1,0,0]], [[1,0,1],[0,1,0]], [[1,0,1], [0,0,1]], [[0,1,1],[1,0,0]], [[0,1,1],[0,1,0]], [[0,1,1], [0,0,1]] ] #States for 2 electrons in singlet state #states = [ [[1,0,0],[1,0,0]], [[1,0,0],[0,1,0]], [[1,0,0],[0,0,1]], # [[0,1,0],[1,0,0]], [[0,1,0],[0,1,0]], [[0,1,0],[0,0,1]], # [[0,0,1],[1,0,0]], [[0,0,1],[0,1,0]], [[0,0,1],[0,0,1]] ] #States for a single electron states = [ [[1,0,0],[0,0,0]], [[0,1,0],[0,0,0]], [[0,0,1],[0,0,0]] ] H = np.zeros((len(states),len(states)) ) #Construct Hamiltonian matrix for i in range(len(states)): psi_i = states[i] for j in range(len(states)): psi_j = states[j] if j==i: for l in range(0,N): if psi_i == repel(l,psi_j): H[i,j] = U break else: H[i,j] = hop(psi_i, psi_j) print(H) results = la.eig(H) print() for i in range(len(results[0])): print('Eigenvalue: ',results[0][i]) print('Eigenvector: \n',results[1][i]) print('Norm: ', np.linalg.norm(results[1][i])) print('Density Matrix: ') print(np.outer(results[1][i],results[1][i])) print() dens_ops = [] eigs = [] for vec in results[1]: dens_ops.append(np.outer(results[1][i],results[1][i])) eigs.append(results[0][i]) print(dens_ops) dt = 0.01 tsteps = 450 times = np.arange(0., tsteps*dt, dt) t_op = la.expm(-1j*H*dt) #print(np.subtract(np.identity(len(H)), dt*H*1j)) #print(t_op) wfk = [0., 0., 0., 0., 1., 0., 0., 0., 0.] wfk = [0., 0., 0., 0., 1.0, 0., 0., 0., 0.] #2 electron initial state evolve = np.zeros([tsteps, len(wfk)]) mode_evolve = np.zeros([tsteps, 6]) evolve[0] = wfk #Figure out how to generalize this later #'''[[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 3, 6], [1, 4, 7], [2, 5, 8]] mode_evolve[0][0] = (evolve[0][0]+evolve[0][1]+evolve[0][2]) /2. mode_evolve[0][1] = (evolve[0][3]+evolve[0][4]+evolve[0][5]) /2. mode_evolve[0][2] = (evolve[0][6]+evolve[0][7]+evolve[0][8]) /2. mode_evolve[0][3] = (evolve[0][0]+evolve[0][3]+evolve[0][6]) /2. mode_evolve[0][4] = (evolve[0][1]+evolve[0][4]+evolve[0][7]) /2. mode_evolve[0][5] = (evolve[0][2]+evolve[0][5]+evolve[0][8]) /2. ''' mode_evolve[0][0] = (evolve[0][0]+evolve[0][1]+evolve[0][2]+evolve[0][3]+evolve[0][4]+evolve[0][5]) /3. mode_evolve[0][1] = (evolve[0][0]+evolve[0][1]+evolve[0][2]+evolve[0][6]+evolve[0][7]+evolve[0][8]) /3. mode_evolve[0][2] = (evolve[0][3]+evolve[0][4]+evolve[0][5]+evolve[0][6]+evolve[0][7]+evolve[0][8]) /3. mode_evolve[0][3] = (evolve[0][0]+evolve[0][3]+evolve[0][6]) /3. mode_evolve[0][4] = (evolve[0][1]+evolve[0][4]+evolve[0][7]) /3. mode_evolve[0][5] = (evolve[0][2]+evolve[0][5]+evolve[0][8]) /3. ''' print(mode_evolve[0]) #Define density matrices for t in range(1, tsteps): #t_op = la.expm(-1j*H*t) wfk = np.dot(t_op, wfk) evolve[t] = np.multiply(np.conj(wfk), wfk) norm = np.sum(evolve[t]) #print(evolve[t]) #Store data in modes rather than basis defined in 'states' variable #''' #Procedure for two electrons mode_evolve[t][0] = (evolve[t][0]+evolve[t][1]+evolve[t][2]) / (2) mode_evolve[t][1] = (evolve[t][3]+evolve[t][4]+evolve[t][5]) / (2) mode_evolve[t][2] = (evolve[t][6]+evolve[t][7]+evolve[t][8]) / (2) mode_evolve[t][3] = (evolve[t][0]+evolve[t][3]+evolve[t][6]) / (2) mode_evolve[t][4] = (evolve[t][1]+evolve[t][4]+evolve[t][7]) / (2) mode_evolve[t][5] = (evolve[t][2]+evolve[t][5]+evolve[t][8]) / (2) ''' mode_evolve[t][0] = (evolve[t][0]+evolve[t][1]+evolve[t][2]+evolve[t][3]+evolve[t][4]+evolve[t][5]) /3. mode_evolve[t][1] = (evolve[t][0]+evolve[t][1]+evolve[t][2]+evolve[t][6]+evolve[t][7]+evolve[t][8]) /3. mode_evolve[t][2] = (evolve[t][3]+evolve[t][4]+evolve[t][5]+evolve[t][6]+evolve[t][7]+evolve[t][8]) /3. mode_evolve[t][3] = (evolve[t][0]+evolve[t][3]+evolve[t][6]) /3. mode_evolve[t][4] = (evolve[t][1]+evolve[t][4]+evolve[t][7]) /3. mode_evolve[t][5] = (evolve[t][2]+evolve[t][5]+evolve[t][8]) /3. print(mode_evolve[t]) ''' #print(np.linalg.norm(evolve[t])) #print(len(evolve[:,0]) ) #print(len(times)) #print(evolve[:,0]) #print(min(evolve[:,0])) #Create plots of the processed data fig2, ax2 = plt.subplots(figsize=(20,10)) colors = list(mcolors.TABLEAU_COLORS.keys()) cos = np.cos(np.sqrt(2)*times)**2 sit1 = "Site "+str(1)+r'$\uparrow$' sit2 = "Site "+str(2)+r'$\uparrow$' sit3 = "Site "+str(3)+r'$\uparrow$' #ax2.plot(times, evolve[:,0], marker='.', color='k', linewidth=2, label=sit1) #ax2.plot(times, evolve[:,1], marker='.', color=str(colors[0]), linewidth=2, label=sit2) #ax2.plot(times, evolve[:,2], marker='.', color=str(colors[1]), linewidth=1.5, label=sit3) #ax2.plot(times, cos, label='cosdat') #ax2.plot(times, np.zeros(len(times))) for i in range(3): #Create string label strup = "Site "+str(i+1)+r'$\uparrow$' strdwn = "Site "+str(i+1)+r'$\downarrow$' ax2.plot(times, mode_evolve[:,i], linestyle='-', color=str(colors[i]), linewidth=2, label=strup) ax2.plot(times, mode_evolve[:,i+3], linestyle='--', color=str(colors[i]), linewidth=2, label=strdwn) #ax2.set_ylim(0, 1.) ax2.set_xlim(0, tsteps*dt+dt/2.) #ax2.set_xlim(0, 1.) ax2.set_xticks(np.arange(0,tsteps*dt+dt, 0.2)) #ax2.set_yticks(np.arange(0,1.1, 0.05)) ax2.tick_params(labelsize=16) ax2.set_title('Time Evolution of 3 Site One Dimensional Chain', fontsize=22) ax2.set_xlabel('Time', fontsize=24) ax2.set_ylabel('Probability', fontsize=24) ax2.legend(fontsize=20) dt = 0.1 tsteps = 50 times = np.arange(0., tsteps*dt, dt) t_op = la.expm(-1j*H*dt) #print(np.subtract(np.identity(len(H)), dt*H*1j)) #print(t_op) #wfk = [0., 1., 0., 0., .0, 0., 0., 0., 0.] #Half-filling initial state wfk0 = [0., 0., 0., 0., 1.0, 0., 0., 0., 0.] #2 electron initial state #wfk0 = [0., 1., 0.] #1 electron initial state evolve = np.zeros([tsteps, len(wfk0)]) mode_evolve = np.zeros([tsteps, 6]) evolve[0] = wfk0 #Figure out how to generalize this later #''' mode_evolve[0][0] = (evolve[0][0]+evolve[0][1]+evolve[0][2]) /2. mode_evolve[0][1] = (evolve[0][3]+evolve[0][4]+evolve[0][5]) /2. mode_evolve[0][2] = (evolve[0][6]+evolve[0][7]+evolve[0][8]) /2. mode_evolve[0][3] = (evolve[0][0]+evolve[0][3]+evolve[0][6]) /2. mode_evolve[0][4] = (evolve[0][1]+evolve[0][4]+evolve[0][7]) /2. mode_evolve[0][5] = (evolve[0][2]+evolve[0][5]+evolve[0][8]) /2. ''' mode_evolve[0][0] = (evolve[0][0]+evolve[0][1]+evolve[0][2]+evolve[0][3]+evolve[0][4]+evolve[0][5]) /3. mode_evolve[0][1] = (evolve[0][0]+evolve[0][1]+evolve[0][2]+evolve[0][6]+evolve[0][7]+evolve[0][8]) /3. mode_evolve[0][2] = (evolve[0][3]+evolve[0][4]+evolve[0][5]+evolve[0][6]+evolve[0][7]+evolve[0][8]) /3. mode_evolve[0][3] = (evolve[0][0]+evolve[0][3]+evolve[0][6]) /3. mode_evolve[0][4] = (evolve[0][1]+evolve[0][4]+evolve[0][7]) /3. mode_evolve[0][5] = (evolve[0][2]+evolve[0][5]+evolve[0][8]) /3. #''' #Define density matrices for t in range(1, tsteps): t_op = la.expm(-1j*H*t*dt) wfk = np.dot(t_op, wfk0) evolve[t] = np.multiply(np.conj(wfk), wfk) norm = np.sum(evolve[t]) print(evolve[t]) #Store data in modes rather than basis defined in 'states' variable #''' #Procedure for two electrons mode_evolve[t][0] = (evolve[t][0]+evolve[t][1]+evolve[t][2]) / (2) mode_evolve[t][1] = (evolve[t][3]+evolve[t][4]+evolve[t][5]) / (2) mode_evolve[t][2] = (evolve[t][6]+evolve[t][7]+evolve[t][8]) / (2) mode_evolve[t][3] = (evolve[t][0]+evolve[t][3]+evolve[t][6]) / (2) mode_evolve[t][4] = (evolve[t][1]+evolve[t][4]+evolve[t][7]) / (2) mode_evolve[t][5] = (evolve[t][2]+evolve[t][5]+evolve[t][8]) / (2) #Procedure for half-filling ''' mode_evolve[t][0] = (evolve[t][0]+evolve[t][1]+evolve[t][2]+evolve[t][3]+evolve[t][4]+evolve[t][5]) /3. mode_evolve[t][1] = (evolve[t][0]+evolve[t][1]+evolve[t][2]+evolve[t][6]+evolve[t][7]+evolve[t][8]) /3. mode_evolve[t][2] = (evolve[t][3]+evolve[t][4]+evolve[t][5]+evolve[t][6]+evolve[t][7]+evolve[t][8]) /3. mode_evolve[t][3] = (evolve[t][0]+evolve[t][3]+evolve[t][6]) /3. mode_evolve[t][4] = (evolve[t][1]+evolve[t][4]+evolve[t][7]) /3. mode_evolve[t][5] = (evolve[t][2]+evolve[t][5]+evolve[t][8]) /3. #''' #print(mode_evolve[t]) #print(np.linalg.norm(evolve[t])) #print(len(evolve[:,0]) ) #print(len(times)) #print(evolve[:,0]) #print(min(evolve[:,0])) #Create plots of the processed data fig2, ax2 = plt.subplots(figsize=(20,10)) colors = list(mcolors.TABLEAU_COLORS.keys()) cos = np.cos(np.sqrt(2)*times)**2 sit1 = "Site "+str(1)+r'$\uparrow$' sit2 = "Site "+str(2)+r'$\uparrow$' sit3 = "Site "+str(3)+r'$\uparrow$' #ax2.plot(times, evolve[:,0], marker='.', color='k', linewidth=2, label=sit1) #ax2.plot(times, evolve[:,1], marker='.', color=str(colors[0]), linewidth=2, label=sit2) #ax2.plot(times, evolve[:,2], marker='.', color=str(colors[1]), linewidth=1.5, label=sit3) #ax2.plot(times, cos, label='cosdat') #ax2.plot(times, np.zeros(len(times))) for i in range(3): #Create string label strup = "Site "+str(i+1)+r'$\uparrow$' strdwn = "Site "+str(i+1)+r'$\downarrow$' ax2.plot(times, mode_evolve[:,i], linestyle='-', color=str(colors[i]), linewidth=2, label=strup) ax2.plot(times, mode_evolve[:,i+3], linestyle='--', color=str(colors[i]), linewidth=2, label=strdwn) #ax2.set_ylim(0, 1.) ax2.set_xlim(0, tsteps*dt+dt/2.) #ax2.set_xlim(0, 1.) ax2.set_xticks(np.arange(0,tsteps*dt+dt, 0.2)) #ax2.set_yticks(np.arange(0,1.1, 0.05)) ax2.tick_params(labelsize=16) ax2.set_title('Time Evolution of 3 Site One Dimensional Chain', fontsize=22) ax2.set_xlabel('Time', fontsize=24) ax2.set_ylabel('Probability', fontsize=24) ax2.legend(fontsize=20) #Calculate total energy for 1D Hubbard model of N sites #Number of sites in chain N = 10 Ne = 10 #Filling factor nu = Ne/N #Hamiltonian parameters t = 2.0 #Hopping U = 4.0 #On-site repulsion state = np.zeros(2*N) #Add in space to populate array randomly, but do it by hand for now #Populate Psi n = 0 while n < Ne: site = rand.randint(0,N-1) spin = rand.randint(0,1) if state[site+spin*N]==0: state[site+spin*N] = 1 n+=1 print(state) #Loop over state and gather energy E = 0 ############# ADD UP ENERGY FROM STATE ############# #Add hoppings at edges if state[0]==1: if state[1]==0: E+=t/2. if state[N-1]==0: #Periodic boundary E+=t/2. if state[N]==1: if state[N+1]==0: E+=t/2. if state[-1]==0: E+=t/2. print('Ends of energy are: ',E) for i in range(1,N-1): print('i is: ',i) #Check spin up sites if site is occupied and if electron can hop if state[i]==1: if state[i+1]==0: E+=t/2. if state[i-1]==0: E+=t/2. #Check spin down sites if site is occupied and if electron can hop j = i+N if state[j]==1: if state[j+1]==0: E+=t/2. if state[j-1]==0: E+=t/2. #Check Hubbard repulsion terms for i in range(0,N): if state[i]==1 and state[i+N]==1: E+=U/4. print('Energy is: ',E) print('State is: ',state) #Try by constructing the matrix and finding the eigenvalues N = 3 Nup = 2 Ndwn = N - Nup t = 1.0 U = 2.5 #To generalize, try using permutations function but for now hard code this #Store a list of 2d list of all the states where the 2d list stores the spin-up occupation #and the spin down occupation states = [ [1,1,0,1,0,0], [1,1,0,0,1,0], [1,1,0,0,0,1], [1,0,1,1,0,0], [1,0,1,0,1,0], [1,0,1,0,0,1], [0,1,1,1,0,0], [0,1,1,0,1,0], [0,1,1,0,0,1] ] print(len(states)) H = np.zeros((len(states),len(states)) ) print(H[0,4]) print(states[0]) for i in range(len(states)): psi_i = states[i] for j in range(len(states)): psi_j = states[j] #Check over sites #Check rest of state for hopping or double occupation for l in range(1,N-1): #Check edges if psi_i[l]==1 and (psi_j[l+1]==1 and psi_i[l+1]==0) or (psi_j[l-1]==1 and psi_i[l-1]==0): H[i,j] = -t/2. break if psi_i[l+N]==1 and (psi_j[l+1+N]==1 and psi_i[l+1+N]==0) or (psi_j[l-1+N]==1 and psi_i[l-1+N]==0): H[i,j] = -t/2. break if psi_i==psi_j: for l in range(N): if psi_i[l]==1 and psi_j[l+N]==1: H[i,j] = U/4. break print(H) tst = [[0,1],[2,3]] print(tst[1][1]) psi_i = [[1,1,0],[1,0,0]] psi_j = [[1,1,0],[0,1,0]] print(psi_j[0]) print(psi_j[1], ' 1st: ',psi_j[1][0], ' 2nd: ',psi_j[1][1], ' 3rd: ',psi_j[1][2]) for l in range(N): print('l: ',l) if psi_j[1][l]==0 and psi_j[1][l-1]==1: psi_j[1][l]=1 psi_j[1][l-1]=0 print('1st') print(psi_j) break if psi_j[1][l-1]==0 and psi_j[1][l]==1: psi_j[1][l-1]=1 psi_j[1][l]=0 print('2nd') print(psi_j) break if psi_j[1][l]==0 and psi_j[1][l+1]==1: psi_j[1][l]=1 psi_j[1][l+1]=0 print('3rd: l=',l,' l+1=',l+1) print(psi_j) break if psi_j[1][l+1]==0 and psi_j[1][l]==1: psi_j[1][l+1]=1 psi_j[1][l]=0 print('4th') print(psi_j) break def hoptst(l,m,spin,state): #Spin is either 0 or 1 which corresponds to which array w/n state we're examining if (state[spin][l]==0 and state[spin][m]==1): state[spin][l]=1 state[spin][m]=0 return state elif (state[spin][m]==0 and state[spin][l]==1): state[spin][m]=1 state[spin][l]=0 return state else: return [] #Try using hoptst: print(hoptst(0,1,1,psi_j)) ### Function to permutate a given list # Python function to print permutations of a given list def permutation(lst): # If lst is empty then there are no permutations if len(lst) == 0: return [] # If there is only one element in lst then, only # one permuatation is possible if len(lst) == 1: return [lst] # Find the permutations for lst if there are # more than 1 characters l = [] # empty list that will store current permutation # Iterate the input(lst) and calculate the permutation for i in range(len(lst)): m = lst[i] # Extract lst[i] or m from the list. remLst is # remaining list remLst = lst[:i] + lst[i+1:] # Generating all permutations where m is first # element for p in permutation(remLst): l.append([m] + p) return l # Driver program to test above function data = list('1000') for p in permutation(data): print(p) import itertools items = [1,0,0] perms = itertools.permutations tst = 15.2 tst = np.full(3, tst) print(tst) H = np.array([[1, 1], [1, -1]]) H_2 = np.tensordot(H,H, 0) print(H_2) print('==============================') M = np.array([[0,1,1,0],[1,1,0,0],[1,0,1,0],[0,0,0,1]]) print(M) print(np.dot(np.conj(M.T),M))
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import unittest import qiskit from qiskit.circuit.library import TwoLocal from qiskit import BasicAer from qiskit.utils import QuantumInstance from qiskit.opflow import Z, I from volta.vqd import VQD from volta.utils import classical_solver class TestVQDSWAP(unittest.TestCase): def setUp(self): optimizer = qiskit.algorithms.optimizers.COBYLA() backend = QuantumInstance( backend=BasicAer.get_backend("qasm_simulator"), shots=50000, seed_simulator=42, seed_transpiler=42, ) hamiltonian = 1 / 2 * (Z ^ I) + 1 / 2 * (Z ^ Z) ansatz = TwoLocal(hamiltonian.num_qubits, ["ry", "rz"], "cx", reps=2) self.Algo = VQD( hamiltonian=hamiltonian, ansatz=ansatz, n_excited_states=1, beta=1.0, optimizer=optimizer, backend=backend, overlap_method="swap", ) self.Algo.run(verbose=0) self.eigenvalues, _ = classical_solver(hamiltonian) def test_energies_0(self): decimal_place = 1 want = self.eigenvalues[0] got = self.Algo.energies[0] message = ( "VQD with SWAP not working for the ground state of 1/2*((Z^I) + (Z^Z))" ) self.assertAlmostEqual(want, got, decimal_place, message) def test_energies_1(self): decimal_place = 1 want = self.eigenvalues[1] got = self.Algo.energies[1] message = "VQD with SWAP not working for the first excited state of 1/2*((Z^I) + (Z^Z))" self.assertAlmostEqual(want, got, decimal_place, message) class TestVQDDSWAP(unittest.TestCase): def setUp(self): optimizer = qiskit.algorithms.optimizers.COBYLA() # backend = BasicAer.get_backend("qasm_simulator") backend = QuantumInstance( backend=BasicAer.get_backend("qasm_simulator"), shots=50000, seed_simulator=42, seed_transpiler=42, ) hamiltonian = 1 / 2 * (Z ^ I) + 1 / 2 * (Z ^ Z) ansatz = TwoLocal(hamiltonian.num_qubits, ["ry", "rz"], "cx", reps=1) self.Algo = VQD( hamiltonian=hamiltonian, ansatz=ansatz, n_excited_states=1, beta=1.0, optimizer=optimizer, backend=backend, overlap_method="dswap", ) self.Algo.run(verbose=0) self.eigenvalues, _ = classical_solver(hamiltonian) def test_energies_0(self): decimal_place = 1 want = self.eigenvalues[0] got = self.Algo.energies[0] self.assertAlmostEqual( want, got, decimal_place, "VQD with DSWAP not working for the ground state of 1/2*((Z^I) + (Z^Z))", ) def test_energies_1(self): decimal_place = 1 want = self.eigenvalues[1] got = self.Algo.energies[1] self.assertAlmostEqual( want, got, decimal_place, "VQD with DSWAP not working for the first excited state of 1/2*((Z^I) + (Z^Z))", ) class TestVQDAmplitude(unittest.TestCase): def setUp(self): optimizer = qiskit.algorithms.optimizers.COBYLA() backend = QuantumInstance( backend=BasicAer.get_backend("qasm_simulator"), shots=50000, seed_simulator=42, seed_transpiler=42, ) hamiltonian = 1 / 2 * (Z ^ I) + 1 / 2 * (Z ^ Z) ansatz = TwoLocal(hamiltonian.num_qubits, ["ry", "rz"], "cx", reps=1) self.Algo = VQD( hamiltonian=hamiltonian, ansatz=ansatz, n_excited_states=1, beta=1.0, optimizer=optimizer, backend=backend, overlap_method="amplitude", ) self.Algo.run(verbose=0) self.eigenvalues, _ = classical_solver(hamiltonian) def test_energies_0(self): decimal_place = 1 want = self.eigenvalues[0] got = self.Algo.energies[0] self.assertAlmostEqual( want, got, decimal_place, "VQD with Excitation Amplitude not working for the ground state of 1/2*((Z^I) + (Z^Z))", ) def test_energies_1(self): decimal_place = 1 want = self.eigenvalues[1] got = self.Algo.energies[1] self.assertAlmostEqual( want, got, decimal_place, "VQD with Excitation Amplitude not working for the first excited state of 1/2*((Z^I) + (Z^Z))", ) class VQDRaiseError(unittest.TestCase): def test_not_implemented_overlapping_method(self): optimizer = qiskit.algorithms.optimizers.COBYLA() backend = QuantumInstance( backend=BasicAer.get_backend("qasm_simulator"), shots=50000 ) hamiltonian = 1 / 2 * (Z ^ I) + 1 / 2 * (Z ^ Z) ansatz = TwoLocal(hamiltonian.num_qubits, ["ry", "rz"], "cx", reps=2) with self.assertRaises(NotImplementedError): VQD( hamiltonian=hamiltonian, ansatz=ansatz, n_excited_states=1, beta=1.0, optimizer=optimizer, backend=backend, overlap_method="test", ), if __name__ == "__main__": unittest.main(argv=[""], verbosity=2, exit=False)
https://github.com/qiskit-community/qiskit-cold-atom
qiskit-community
from qiskit_cold_atom.spins import SpinSimulator from qiskit import QuantumCircuit, QuantumRegister backend = SpinSimulator() qc = QuantumCircuit(4) qc.measure_all() # confirm that an empty circuit will return '0 0 0 0' job = backend.run(qc, spin=3) print(job.result().get_counts()) from qiskit_nature.second_q.operators import SpinOp from qiskit_cold_atom.spins import SpinGate import numpy as np Hx = np.pi*SpinOp({"X_0": 1}) # generator of a rotation of angle pi around the x-axis rx_spin = SpinGate(name="rx_spin", num_modes=1, generator=Hx) qc = QuantumCircuit(QuantumRegister(1, "spin")) qc.append(rx_spin, [0]) qc.measure_all() qc.draw(output='mpl', style='clifford') job = backend.run(qc, spin=10) print(job.result().get_counts()) job = backend.run(qc, spin=6) print(job.result().get_counts()) from qiskit_cold_atom.spins import RLXGate qc = QuantumCircuit(QuantumRegister(1, "spin")) qc.append(RLXGate(np.pi/2), [0]) qc.measure_all() qc.draw(output='mpl', style="clifford") # The same circuit can also be built by the following shorthand notation # which is added to QuantumCircuit upon importing from qiskit_cold_atom.spins qc = QuantumCircuit(QuantumRegister(1, "spin")) qc.rlx(np.pi/2, 0) qc.measure_all() qc.draw(output='mpl', style="clifford") from qiskit.visualization import plot_histogram job = backend.run(qc, spin=10, shots=1000, seed=123) counts = job.result().get_counts() # convert counts to integers for better formatting plot_histogram({int(k):v for k,v in counts.items()}) Hzz = SpinOp({"Z_0 Z_1": np.pi}, num_spins=2) # generating Hamiltonian acting on two spins zz_gate = SpinGate(name="zz_spin", num_modes=2, generator=Hzz) qc = QuantumCircuit(QuantumRegister(2, "spin")) qc.rlx(np.pi/2, [0, 1]) qc.append(zz_gate, [0, 1]) qc.rlx(np.pi/2, [0, 1]) qc.measure_all() qc.draw(output='mpl', style="clifford") job = backend.run(qc, spin=1, shots=1000, seed=1234) print("counts: ", job.result().get_counts()) plot_histogram(job.result().get_counts()) # access the statevector print("\nstatevector :", job.result().get_statevector()) # accedd the unitary print("\ncircuit unitary : \n", job.result().get_unitary()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/swe-train/qiskit__qiskit
swe-train
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.circuit.library import QFT def create_qpe_circuit(theta, num_qubits): '''Creates a QPE circuit given theta and num_qubits.''' # Step 1: Create a circuit with two quantum registers and one classical register. first = QuantumRegister(size=num_qubits, name='first') # the first register for phase estimation second = QuantumRegister(size=1, name='second') # the second register for storing eigenvector |psi> classical = ClassicalRegister(size=num_qubits, name='readout') # classical register for readout qpe_circuit = QuantumCircuit(first, second, classical) # Step 2: Initialize the qubits. # All qubits are initialized in |0> by default, no extra code is needed to initialize the first register. qpe_circuit.x(second) # Initialize the second register with state |psi>, which is |1> in this example. # Step 3: Create superposition in the first register. qpe_circuit.barrier() # Add barriers to separate each step of the algorithm for better visualization. qpe_circuit.h(first) # Step 4: Apply a controlled-U^(2^j) black box. qpe_circuit.barrier() for j in range(num_qubits): qpe_circuit.cp(theta*2*np.pi*(2**j), j, num_qubits) # Theta doesn't contain the 2 pi factor. # Step 5: Apply an inverse QFT to the first register. qpe_circuit.barrier() qpe_circuit.compose(QFT(num_qubits, inverse=True), inplace=True) # Step 6: Measure the first register. qpe_circuit.barrier() qpe_circuit.measure(first, classical) return qpe_circuit num_qubits = 4 qpe_circuit_fixed_phase = create_qpe_circuit(1/2, num_qubits) # Create a QPE circuit with fixed theta=1/2. qpe_circuit_fixed_phase.draw('mpl') from qiskit.circuit import Parameter theta = Parameter('theta') # Create a parameter `theta` whose values can be assigned later. qpe_circuit_parameterized = create_qpe_circuit(theta, num_qubits) qpe_circuit_parameterized.draw('mpl') number_of_phases = 21 phases = np.linspace(0, 2, number_of_phases) individual_phases = [[ph] for ph in phases] # Phases need to be expressed as a list of lists. from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService() backend = "ibmq_qasm_simulator" # use the simulator from qiskit_ibm_runtime import Sampler, Session with Session(service=service, backend=backend): results = Sampler().run( [qpe_circuit_parameterized]*len(individual_phases), parameter_values=individual_phases ).result() from qiskit.tools.visualization import plot_histogram idx = 6 plot_histogram(results.quasi_dists[idx].binary_probabilities(), legend=[f'$\\theta$={phases[idx]:.3f}']) def most_likely_bitstring(results_dict): '''Finds the most likely outcome bit string from a result dictionary.''' return max(results_dict, key=results_dict.get) def find_neighbors(bitstring): '''Finds the neighbors of a bit string. Example: For bit string '1010', this function returns ('1001', '1011') ''' if bitstring == len(bitstring)*'0': neighbor_left = len(bitstring)*'1' else: neighbor_left = format((int(bitstring,2)-1), '0%sb'%len(bitstring)) if bitstring == len(bitstring)*'1': neighbor_right = len(bitstring)*'0' else: neighbor_right = format((int(bitstring,2)+1), '0%sb'%len(bitstring)) return (neighbor_left, neighbor_right) def estimate_phase(results_dict): '''Estimates the phase from a result dictionary of a QPE circuit.''' # Find the most likely outcome bit string N1 and its neighbors. num_1_key = most_likely_bitstring(results_dict) neighbor_left, neighbor_right = find_neighbors(num_1_key) # Get probabilities of N1 and its neighbors. num_1_prob = results_dict.get(num_1_key) neighbor_left_prob = results_dict.get(neighbor_left) neighbor_right_prob = results_dict.get(neighbor_right) # Find the second most likely outcome N2 and its probability P2 among the neighbors. if neighbor_left_prob is None: # neighbor_left doesn't exist if neighbor_right_prob is None: # both neighbors don't exist, N2 is N1 num_2_key = num_1_key num_2_prob = num_1_prob else: # If only neighbor_left doesn't exist, N2 is neighbor_right. num_2_key = neighbor_right num_2_prob = neighbor_right_prob elif neighbor_right_prob is None: # If only neighbor_right doesn't exist, N2 is neighbor_left. num_2_key = neighbor_left num_2_prob = neighbor_left_prob elif neighbor_left_prob > neighbor_right_prob: # Both neighbors exist and neighbor_left has higher probability, so N2 is neighbor_left. num_2_key = neighbor_left num_2_prob = neighbor_left_prob else: # Both neighbors exist and neighbor_right has higher probability, so N2 is neighor_right. num_2_key = neighbor_right num_2_prob = neighbor_right_prob # Calculate the estimated phases for N1 and N2. num_qubits = len(num_1_key) num_1_phase = (int(num_1_key, 2) / 2**num_qubits) num_2_phase = (int(num_2_key, 2) / 2**num_qubits) # Calculate the weighted average phase from N1 and N2. phase_estimated = (num_1_phase * num_1_prob + num_2_phase * num_2_prob) / (num_1_prob + num_2_prob) return phase_estimated qpe_solutions = [] for idx, result_dict in enumerate(results.quasi_dists): qpe_solutions.append(estimate_phase(result_dict.binary_probabilities())) ideal_solutions = np.append( phases[:(number_of_phases-1)//2], # first period np.subtract(phases[(number_of_phases-1)//2:-1], 1) # second period ) ideal_solutions = np.append(ideal_solutions, np.subtract(phases[-1], 2)) # starting point of the third period import matplotlib.pyplot as plt fig = plt.figure(figsize=(10, 6)) plt.plot(phases, ideal_solutions, '--', label='Ideal solutions') plt.plot(phases, qpe_solutions, 'o', label='QPE solutions') plt.title('Quantum Phase Estimation Algorithm') plt.xlabel('Input Phase') plt.ylabel('Output Phase') plt.legend() import qiskit_ibm_runtime qiskit_ibm_runtime.version.get_version_info() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/JessicaJohnBritto/Quantum-Computing-and-Information
JessicaJohnBritto
import pennylane as qml from pennylane import numpy as np # Basis State preparation def state_preparation(basis_id, n_qubits): bits = [int(x) for x in np.binary_repr(basis_id, width=n_qubits)] return qml.BasisStatePreparation(bits, wires=range(n_qubits)) #Testing state_preparation(3,5) # Swappping of quantum circuits def swap_bits(n_qubits): """A circuit that reverses the order of qubits, i.e., performs a SWAP such that [q1, q2, ..., qn] -> [qn, ... q2, q1]. Args: n_qubits (int): An integer value identifying the number of qubits. """ for i in range(int(n_qubits/2)): qml.SWAP(wires=[i,n_qubits-1-i]) # Conditional Rotation matrix def qft_rotations(n_qubits): """A circuit performs the QFT rotations on the specified qubits. Args: n_qubits (int): An integer value identifying the number of qubits. """ n = n_qubits for i in range(n): qml.Hadamard(wires=i) for jj in range(i+1,n,1): qml.ControlledPhaseShift(np.pi/(2**(jj-i)), wires=[jj,i]) pass def qft_node(basis_id, basis_id2, n_qubits): ''' A circuit performs addition of two numbers Args: basis_id (int): An integer value specifying the first number to be added. basis_id2 (int): An integer value specifying the second number to be added. n_qubits (int): An integer value identifying the number of qubits. ''' # Prepare the basis state |basis_id> bits = [int(x) for x in np.binary_repr(basis_id, width=n_qubits)] qml.BasisStatePreparation(bits, wires=range(n_qubits)) bits2 = [int(x) for x in np.binary_repr(basis_id2, width=n_qubits)] qml.BasisStatePreparation(bits2, wires=range(n_qubits, 2*(n_qubits),1)) qft_rotations(n_qubits) for i in range(0,n_qubits,1): k=0 for j in range(i+n_qubits,(2*n_qubits),1): qml.ControlledPhaseShift((np.pi/(2**(k))), wires=[j,i]) k+=1 (qml.adjoint)(qft_rotations)(n_qubits) return qml.sample(wires=[x for x in range(n_qubits)]) # basis_id stores a, basis_id2 stores b basis_id = int(input("Enter number a: ")) basis_id2 = int(input("Enter number b: ")) if len(np.binary_repr(basis_id))>len(np.binary_repr(basis_id2)): n_qubits = len(np.binary_repr(basis_id)) + 1 else: n_qubits = len(np.binary_repr(basis_id2)) + 1 dev = qml.device('default.qubit', wires=(2*n_qubits), shots=10) qnode = qml.QNode(qft_node, dev) k = qnode(basis_id, basis_id2, n_qubits) poww, summ = 0, 0 for l in reversed(k[0]): summ = summ + (2**poww)*l poww+=1 print(summ) def multiplier(basis_id, basis_id2, n_qubits): ''' A circuit performs multiplication of two numbers Args: basis_id (int): An integer value specifying the first number to be multiplied. basis_id2 (int): An integer value specifying the second number to be multiplied. n_qubits (int): An integer value identifying the number of qubits. ''' # Basis state preparation for 0, a, b respectively bits1 = [int(x) for x in np.binary_repr(0, width=2*n_qubits)] qml.BasisStatePreparation(bits1, wires=range(2*(n_qubits))) bits2 = [int(x) for x in np.binary_repr(basis_id, width=n_qubits)] qml.BasisStatePreparation(bits2, wires=range(2*n_qubits, 3*n_qubits)) bits3 = [int(x) for x in np.binary_repr(basis_id2, width=n_qubits)] qml.BasisStatePreparation(bits3, wires=range(3*n_qubits, 4*(n_qubits),1)) # Applying QFT on first 2*n_qubits as they store the basis state for |0> qft_rotations(2*n_qubits) # Applying Conditional Rotation operator with controls a_j and b_m and target as |0> for i in range(3*n_qubits, 4*n_qubits,1): for j in range(2*n_qubits, 3*n_qubits,1): for m in range(2*n_qubits): qml.ctrl(qml.PhaseShift(np.pi/(2**(-(5*n_qubits)-m+j+i+1)), wires=m),control=[j,i]) # Applying inverse QFT 2*n_qubits (qml.adjoint)(qft_rotations)(2*n_qubits) return qml.sample(wires=[x for x in range(2*n_qubits)]) # basis_id stores a, basis_id2 stores b basis_id = int(input("Enter number a: ")) basis_id2 = int(input("Enter number b: ")) # n_qubits takes the value of the number whose binary representation is the greatest among the two if len(np.binary_repr(basis_id))>len(np.binary_repr(basis_id2)): n_qubits = len(np.binary_repr(basis_id)) else: n_qubits = len(np.binary_repr(basis_id2)) # Creating QNode dev = qml.device('default.qubit', wires=(4*n_qubits), shots=10) qnode = qml.QNode(multiplier, dev) # Below code returns the sample containing measurements on the wires # print(qnode(basis_id,basis_id2,n_qubits)) # Below prints quantum circuit # print(qml.draw(qnode)(basis_id,basis_id2,n_qubits)) # k stores the sample of measurement values on each wire k = qnode(basis_id, basis_id2, n_qubits) # Converting k[0] to integer value # Considering only k[0] as all elements of the sample are identical poww, summ = 0, 0 for l in reversed(k[0]): summ = summ + (2**poww)*l poww+=1 print(summ)
https://github.com/donaldkaito/quantum-100knocks
donaldkaito
import numpy as np from qiskit import QuantumCircuit, Aer from qiskit.visualization import plot_bloch_multivector from qiskit.quantum_info import Statevector sim = Aer.get_backend("aer_simulator") # 13の2進数表記 binary_13 = f"{13:05b}" print(binary_13) new_binary = binary_13[:2] + ("0" if binary_13[2] == "1" else "1") + binary_13[3:] print(new_binary) def flip_3rd_digid(integer): binary = f"{integer:05b}" new_binary = binary[:2] + ("0" if binary[2] == "1" else "1") + binary[3:] return new_binary qc = QuantumCircuit(4, 2) # A QuantumCircuit with 4 qubits and 2 classical bits`` # Xゲートを配置せよ # <write your code> qc.barrier() # CNOTゲートを配置せよ # <write your code> qc.ccx(0, 1, 3) qc.barrier() qc.measure([2, 3], [0, 1]) qc.draw(output="mpl") qc = QuantumCircuit(4, 2) # A QuantumCircuit with 4 qubits and 2 classical bits`` # Xゲートを配置せよ qc.x([0, 1]) qc.barrier() # CNOTゲートを配置せよ qc.cx(0, 2) qc.cx(1, 2) qc.ccx(0, 1, 3) qc.barrier() qc.measure([2, 3], [0, 1]) qc.draw(output="mpl") qc = QuantumCircuit(1) # A QuantumCircuit with 1 qubits # 適切なゲートを配置せよ # <write your code > state = Statevector.from_instruction(qc) plot_bloch_multivector(state) qc = QuantumCircuit(1) # A QuantumCircuit with 1 qubits # 適切なゲートを配置せよ qc.h(0) state = Statevector.from_instruction(qc) plot_bloch_multivector(state) for state_label in ["+", "-"]: qc = QuantumCircuit(1,1) if state_label == "+": qc.initialize([1 / np.sqrt(2), 1 / np.sqrt(2)], 0) elif state_label == "-": qc.initialize([1 / np.sqrt(2), -1 / np.sqrt(2)], 0) qc.barrier() # 適切な測定基底をゲートを配置することで完成させよ # <write your code> qc.measure(0,0) counts = sim.run(qc).result().get_counts() print(f"|{state_label}> : ", "counts=",counts) qc.draw(output="mpl") for state_label in ["+", "-"]: qc = QuantumCircuit(1,1) if state_label == "+": qc.initialize([1 / np.sqrt(2), 1 / np.sqrt(2)], 0) elif state_label == "-": qc.initialize([1 / np.sqrt(2), -1 / np.sqrt(2)], 0) qc.barrier() # 適切な測定基底をゲートを配置することで完成させよ qc.h(0) qc.measure(0,0) counts = sim.run(qc).result().get_counts() print(f"|{state_label}> : ", "counts=",counts) qc.draw(output="mpl") for state_label in ["0", "1", "+", "-"]: for gate_label in ["X", "Z", "H", "ZH"]: qc = QuantumCircuit(1, 1) # 初期状態の設定 if state_label == "1": qc.initialize([0, 1], 0) elif state_label == "+": qc.initialize([1 / np.sqrt(2), 1 / np.sqrt(2)], 0) elif state_label == "-": qc.initialize([1 / np.sqrt(2), -1 / np.sqrt(2)], 0) # ゲートの配置 if gate_label =="X": qc.x(0) elif gate_label =="Z": qc.z(0) elif gate_label =="H": qc.h(0) elif gate_label =="ZH": qc.h(0) qc.z(0) # Statevectorは測定前に取得する必要がある state = Statevector.from_instruction(qc).data qc.measure(0, 0) counts = sim.run(qc).result().get_counts() print(f"{gate_label} |{state_label}> : ", "state=", state.round(3), "counts=",counts) print()
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test permutation quantum circuits, permutation gates, and quantum circuits that contain permutation gates.""" import io import unittest import numpy as np from qiskit import QuantumRegister from qiskit.test.base import QiskitTestCase from qiskit.circuit import QuantumCircuit from qiskit.circuit.exceptions import CircuitError from qiskit.circuit.library import Permutation, PermutationGate from qiskit.quantum_info import Operator from qiskit.qpy import dump, load class TestPermutationLibrary(QiskitTestCase): """Test library of permutation logic quantum circuits.""" def test_permutation(self): """Test permutation circuit.""" circuit = Permutation(num_qubits=4, pattern=[1, 0, 3, 2]) expected = QuantumCircuit(4) expected.swap(0, 1) expected.swap(2, 3) expected = Operator(expected) simulated = Operator(circuit) self.assertTrue(expected.equiv(simulated)) def test_permutation_bad(self): """Test that [0,..,n-1] permutation is required (no -1 for last element).""" self.assertRaises(CircuitError, Permutation, 4, [1, 0, -1, 2]) class TestPermutationGate(QiskitTestCase): """Tests for the PermutationGate class.""" def test_permutation(self): """Test that Operator can be constructed.""" perm = PermutationGate(pattern=[1, 0, 3, 2]) expected = QuantumCircuit(4) expected.swap(0, 1) expected.swap(2, 3) expected = Operator(expected) simulated = Operator(perm) self.assertTrue(expected.equiv(simulated)) def test_permutation_bad(self): """Test that [0,..,n-1] permutation is required (no -1 for last element).""" self.assertRaises(CircuitError, PermutationGate, [1, 0, -1, 2]) def test_permutation_array(self): """Test correctness of the ``__array__`` method.""" perm = PermutationGate([1, 2, 0]) # The permutation pattern means q1->q0, q2->q1, q0->q2, or equivalently # q0'=q1, q1'=q2, q2'=q0, where the primed values are the values after the # permutation. The following matrix is the expected unitary matrix for this. # As an example, the second column represents the result of applying # the permutation to |001>, i.e. to q2=0, q1=0, q0=1. We should get # q2'=q0=1, q1'=q2=0, q0'=q1=0, that is the state |100>. This corresponds # to the "1" in the 5 row. expected_op = np.array( [ [1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], ] ) self.assertTrue(np.array_equal(perm.__array__(dtype=int), expected_op)) def test_pattern(self): """Test the ``pattern`` method.""" pattern = [1, 3, 5, 0, 4, 2] perm = PermutationGate(pattern) self.assertTrue(np.array_equal(perm.pattern, pattern)) def test_inverse(self): """Test correctness of the ``inverse`` method.""" perm = PermutationGate([1, 3, 5, 0, 4, 2]) # We have the permutation 1->0, 3->1, 5->2, 0->3, 4->4, 2->5. # The inverse permutations is 0->1, 1->3, 2->5, 3->0, 4->4, 5->2, or # after reordering 3->0, 0->1, 5->2, 1->3, 4->4, 2->5. inverse_perm = perm.inverse() expected_inverse_perm = PermutationGate([3, 0, 5, 1, 4, 2]) self.assertTrue(np.array_equal(inverse_perm.pattern, expected_inverse_perm.pattern)) class TestPermutationGatesOnCircuit(QiskitTestCase): """Tests for quantum circuits containing permutations.""" def test_append_to_circuit(self): """Test method for adding Permutations to quantum circuit.""" qc = QuantumCircuit(5) qc.append(PermutationGate([1, 2, 0]), [0, 1, 2]) qc.append(PermutationGate([2, 3, 0, 1]), [1, 2, 3, 4]) self.assertIsInstance(qc.data[0].operation, PermutationGate) self.assertIsInstance(qc.data[1].operation, PermutationGate) def test_inverse(self): """Test inverse method for circuits with permutations.""" qc = QuantumCircuit(5) qc.append(PermutationGate([1, 2, 3, 0]), [0, 4, 2, 1]) qci = qc.inverse() qci_pattern = qci.data[0].operation.pattern expected_pattern = [3, 0, 1, 2] # The inverse permutations should be defined over the same qubits but with the # inverse permutation pattern. self.assertTrue(np.array_equal(qci_pattern, expected_pattern)) self.assertTrue(np.array_equal(qc.data[0].qubits, qci.data[0].qubits)) def test_reverse_ops(self): """Test reverse_ops method for circuits with permutations.""" qc = QuantumCircuit(5) qc.append(PermutationGate([1, 2, 3, 0]), [0, 4, 2, 1]) qcr = qc.reverse_ops() # The reversed circuit should have the permutation gate with the same pattern and over the # same qubits. self.assertTrue(np.array_equal(qc.data[0].operation.pattern, qcr.data[0].operation.pattern)) self.assertTrue(np.array_equal(qc.data[0].qubits, qcr.data[0].qubits)) def test_conditional(self): """Test adding conditional permutations.""" qc = QuantumCircuit(5, 1) qc.append(PermutationGate([1, 2, 0]), [2, 3, 4]).c_if(0, 1) self.assertIsNotNone(qc.data[0].operation.condition) def test_qasm(self): """Test qasm for circuits with permutations.""" qr = QuantumRegister(5, "q0") circuit = QuantumCircuit(qr) pattern = [2, 4, 3, 0, 1] permutation = PermutationGate(pattern) circuit.append(permutation, [0, 1, 2, 3, 4]) circuit.h(qr[0]) expected_qasm = ( "OPENQASM 2.0;\n" 'include "qelib1.inc";\n' "gate permutation__2_4_3_0_1_ q0,q1,q2,q3,q4 { swap q2,q3; swap q1,q4; swap q0,q3; }\n" "qreg q0[5];\n" "permutation__2_4_3_0_1_ q0[0],q0[1],q0[2],q0[3],q0[4];\n" "h q0[0];\n" ) self.assertEqual(expected_qasm, circuit.qasm()) def test_qpy(self): """Test qpy for circuits with permutations.""" circuit = QuantumCircuit(6, 1) circuit.cx(0, 1) circuit.append(PermutationGate([1, 2, 0]), [2, 4, 5]) circuit.h(4) print(circuit) qpy_file = io.BytesIO() dump(circuit, qpy_file) qpy_file.seek(0) new_circuit = load(qpy_file)[0] self.assertEqual(circuit, new_circuit) if __name__ == "__main__": unittest.main()
https://github.com/arthurfaria/QC_basic_agorithms_qiskit
arthurfaria
# Do the necessary imports import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import IBMQ, Aer, transpile, assemble from qiskit.visualization import plot_histogram, plot_bloch_multivector, array_to_latex from qiskit.extensions import Initialize from qiskit.ignis.verification import marginal_counts from qiskit.quantum_info import random_statevector # Loading your IBM Quantum account(s) provider = IBMQ.load_account() ## SETUP # Protocol uses 3 qubits and 2 classical bits in 2 different registers qr = QuantumRegister(3, name="q") # Protocol uses 3 qubits crz = ClassicalRegister(1, name="crz") # and 2 classical bits crx = ClassicalRegister(1, name="crx") # in 2 different registers teleportation_circuit = QuantumCircuit(qr, crz, crx) def create_bell_pair(qc, a, b): qc.h(a) qc.cx(a,b) qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.draw() def alice_gates(qc, psi, a): qc.cx(psi, a) qc.h(psi) qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) ## STEP 1 create_bell_pair(teleportation_circuit, 1, 2) ## STEP 2 teleportation_circuit.barrier() # Use barrier to separate steps alice_gates(teleportation_circuit, 0, 1) teleportation_circuit.draw() def measure_and_send(qc, a, b): """Measures qubits a & b and 'sends' the results to Bob""" qc.barrier() qc.measure(a,0) qc.measure(b,1) qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.barrier() # Use barrier to separate steps alice_gates(teleportation_circuit, 0, 1) measure_and_send(teleportation_circuit, 0 ,1) teleportation_circuit.draw() def bob_gates(qc, qubit, crz, crx): qc.x(qubit).c_if(crx, 1) # Apply gates if the registers qc.z(qubit).c_if(crz, 1) # are in the state '1' qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) ## STEP 1 create_bell_pair(teleportation_circuit, 1, 2) ## STEP 2 teleportation_circuit.barrier() # Use barrier to separate steps alice_gates(teleportation_circuit, 0, 1) ## STEP 3 measure_and_send(teleportation_circuit, 0, 1) ## STEP 4 teleportation_circuit.barrier() # Use barrier to separate steps bob_gates(teleportation_circuit, 2, crz, crx) teleportation_circuit.draw() # Create random 1-qubit state psi = random_statevector(2) # Display it nicely display(array_to_latex(psi, prefix="|\\psi\\rangle =")) # Show it on a Bloch sphere plot_bloch_multivector(psi) init_gate = Initialize(psi) init_gate.label = "init" ## SETUP qr = QuantumRegister(3, name="q") # Protocol uses 3 qubits crz = ClassicalRegister(1, name="crz") # and 2 classical registers crx = ClassicalRegister(1, name="crx") qc = QuantumCircuit(qr, crz, crx) ## STEP 0 # First, let's initialize Alice's q0 qc.append(init_gate, [0]) qc.barrier() ## STEP 1 # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() ## STEP 2 # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) ## STEP 3 # Alice then sends her classical bits to Bob measure_and_send(qc, 0, 1) ## STEP 4 # Bob decodes qubits bob_gates(qc, 2, crz, crx) # Display the circuit qc.draw() sim = Aer.get_backend('aer_simulator') qc.save_statevector() out_vector = sim.run(qc).result().get_statevector() plot_bloch_multivector(out_vector)
https://github.com/shell-raiser/Introduction-to-Quantum-Computing-Quantum-Algorithms-and-Qiskit
shell-raiser
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * #from ibm_quantum_widgets import * # Loading your IBM Q account(s) provider = IBMQ.load_account() from qiskit import assemble import numpy as np import matplotlib.pyplot as plt n=4 grover_ckt = QuantumCircuit(n+1, n) marked = [1,0,1,1] # 1101 element is marked (lsb to msb)=>13 def apply_oracle(n,marked,ckt): control0 = [i for i in range(n) if not marked[i]] ckt.x(control0) ckt.mct(list(range(n)),n) ckt.x(control0) ckt.draw() def reflect_uniform(ckt,n): ckt.h(list(range(n))) ckt.x(list(range(n))) ckt.mct(list(range(n)),n) ckt.x(list(range(n))) ckt.h(list(range(n))) ckt.x(n) pass grover_ckt.x(n) grover_ckt.barrier() grover_ckt.h(list(range(n))) grover_ckt.draw() svsim = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit qobj = assemble(grover_ckt) # Create a Qobj from the circuit for the simulator to run result = svsim.run(qobj).result() # Do the simulation and return the result statevector = result.data()['statevector'] statevector = statevector[:2**n] marked = [1,0,1,1] # Corresponds to integer 1101 in binary => 13 ket_a = np.zeros(2**n) ket_a[13] =1 ket_e = (np.ones(2**n) - ket_a)/np.sqrt(2**n -1) def get_projection(psi,e,a ): proj = [np.real(np.vdot(e,psi)), np.real(np.vdot(a,psi))] return proj def plt_vector(proj, axes =[0.0,1.0,0.0,1.0]): x_pos = 0 y_pos = 0 x_direct = proj[0] y_direct = proj[1] # Creating plot fig, ax = plt.subplots() ax.quiver(x_pos, y_pos, x_direct, y_direct,scale=1.0) ax.axis(axes) # show plot plt.show() proj = get_projection(statevector, ket_e, ket_a) plt_vector(proj) #grover_ckt.append(oracle, list(range(n+1))) apply_oracle(4,marked,grover_ckt) grover_ckt.barrier() grover_ckt.draw() reflect_uniform(grover_ckt,n) grover_ckt.barrier() grover_ckt.draw() svsim = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit qobj = assemble(grover_ckt) # Create a Qobj from the circuit for the simulator to run result = svsim.run(qobj).result() # Do the simulation and return the result statevector = result.data()['statevector'] statevector = statevector[:2**n] proj = get_projection(statevector, ket_e, ket_a) plt_vector(proj) apply_oracle(4,marked,grover_ckt) grover_ckt.barrier() reflect_uniform(grover_ckt,n) grover_ckt.barrier() grover_ckt.draw() svsim = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit qobj = assemble(grover_ckt) # Create a Qobj from the circuit for the simulator to run result = svsim.run(qobj).result() # Do the simulation and return the result statevector = result.data()['statevector'] statevector = statevector[:2**n] proj = get_projection(statevector, ket_e, ket_a) plt_vector(proj) apply_oracle(4,marked,grover_ckt) grover_ckt.barrier() reflect_uniform(grover_ckt,n) grover_ckt.barrier() grover_ckt.draw() svsim = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit qobj = assemble(grover_ckt) # Create a Qobj from the circuit for the simulator to run result = svsim.run(qobj).result() # Do the simulation and return the result statevector = result.data()['statevector'] statevector = statevector[:2**n] proj = get_projection(statevector, ket_e, ket_a) plt_vector(proj, axes = [-1.0,1.0,-1.0,1.0]) from math import * N = (math.sqrt(n**2)) theta0 = asin(1/N) theta0 T = int((((3.14/2)/theta0)-1)/2) T n=4 grover_ckt = QuantumCircuit(n+1, n) marked = [1,0,1,1] # 1101 element is marked (lsb to msb)=>13 grover_ckt.x(n) grover_ckt.barrier() grover_ckt.h(list(range(n+1))) grover_ckt.barrier() for _ in range(int(np.floor(T))): apply_oracle(4,marked,grover_ckt) grover_ckt.barrier() reflect_uniform(grover_ckt,n) grover_ckt.barrier() for j in range(n): grover_ckt.measure(j,j) grover_ckt.draw() sim = Aer.get_backend('qasm_simulator') # Tell Qiskit how to simulate our circuit qobj = assemble(grover_ckt) # Create a Qobj from the circuit for the simulator to run result = sim.run(qobj).result() # Do the simulation and return the result result counts = result.get_counts(grover_ckt) plot_histogram(counts)
https://github.com/Fabiha-Noshin/Quantum-Algorithms-with-Qiskit
Fabiha-Noshin
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ, execute, assemble from qiskit.providers.ibmq import least_busy from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * # Loading your IBM Quantum account(s) provider = IBMQ.load_account() ## Creating function for Equal Superposition states of two qubits: def initialize(qc): qc.h(0) # Applying H gates to both qubits qc.h(1) # and initializing grover circuit qc.barrier() grover_circuit = QuantumCircuit(2) initialize(grover_circuit) grover_circuit.draw('mpl') # Let's try to find the position of |11>: def oracle_11(qc): # Apply a controlled Z gate qc.cz(0,1) qc.barrier() oracle_11(grover_circuit) grover_circuit.draw('mpl') # Creating Grover's Diffusion operator: def u_g(qc): qc.h(0) qc.h(1) qc.x(0) qc.x(1) qc.h(1) qc.cx(0,1) qc.x(0) qc.h(1) qc.h(0) qc.x(1) qc.h(1) qc.barrier() u_g(grover_circuit) # temporary circuit just to see what U_s looks like grover_circuit.draw('mpl') # Finally we measure the circuit: grover_circuit.measure_all() grover_circuit.draw('mpl') # Simulating the Circuit: backend = Aer.get_backend('qasm_simulator') job = execute(grover_circuit, backend, shots = 1024) result = job.result() counts = result.get_counts() plot_histogram(counts) # Experimenting with real device: IBMQ.load_account() # Getting the least busy backend provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 2 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Running the circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor transpiled_grover_circuit = transpile(grover_circuit, backend, optimization_level=3) qobj = assemble(transpiled_grover_circuit) job = backend.run(qobj) job_monitor(job, interval=2) # Getting the results from the computation results = job.result() answer = results.get_counts(grover_circuit) plot_histogram(answer)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.timeline import draw, IQXDebugging from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) qc = transpile(qc, FakeBoeblingen(), scheduling_method='alap', layout_method='trivial') draw(qc, style=IQXDebugging())
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import ( MinimumEigenOptimizer, RecursiveMinimumEigenOptimizer, SolutionSample, OptimizationResultStatus, ) from qiskit_optimization import QuadraticProgram from qiskit.visualization import plot_histogram from typing import List, Tuple import numpy as np # create a QUBO qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) op, offset = qubo.to_ising() print("offset: {}".format(offset)) print("operator:") print(op) qp = QuadraticProgram() qp.from_ising(op, offset, linear=True) print(qp.prettyprint()) algorithm_globals.random_seed = 10598 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 0.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) # using QAOA exact = MinimumEigenOptimizer(exact_mes) # using the exact classical numpy minimum eigen solver exact_result = exact.solve(qubo) print(exact_result.prettyprint()) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) print("variable order:", [var.name for var in qaoa_result.variables]) for s in qaoa_result.samples: print(s) def get_filtered_samples( samples: List[SolutionSample], threshold: float = 0, allowed_status: Tuple[OptimizationResultStatus] = (OptimizationResultStatus.SUCCESS,), ): res = [] for s in samples: if s.status in allowed_status and s.probability > threshold: res.append(s) return res filtered_samples = get_filtered_samples( qaoa_result.samples, threshold=0.005, allowed_status=(OptimizationResultStatus.SUCCESS,) ) for s in filtered_samples: print(s) fvals = [s.fval for s in qaoa_result.samples] probabilities = [s.probability for s in qaoa_result.samples] np.mean(fvals) np.std(fvals) samples_for_plot = { " ".join(f"{qaoa_result.variables[i].name}={int(v)}" for i, v in enumerate(s.x)): s.probability for s in filtered_samples } samples_for_plot plot_histogram(samples_for_plot) rqaoa = RecursiveMinimumEigenOptimizer(qaoa, min_num_vars=1, min_num_vars_optimizer=exact) rqaoa_result = rqaoa.solve(qubo) print(rqaoa_result.prettyprint()) filtered_samples = get_filtered_samples( rqaoa_result.samples, threshold=0.005, allowed_status=(OptimizationResultStatus.SUCCESS,) ) samples_for_plot = { " ".join(f"{rqaoa_result.variables[i].name}={int(v)}" for i, v in enumerate(s.x)): s.probability for s in filtered_samples } samples_for_plot plot_histogram(samples_for_plot) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/JavaFXpert/quantum-circuit-pygame
JavaFXpert
# # Copyright 2019 the original author or authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np from qiskit import QuantumCircuit, QuantumRegister from model import circuit_node_types as node_types class CircuitGridModel(): """Grid-based model that is built when user interacts with circuit""" def __init__(self, max_wires, max_columns): self.max_wires = max_wires self.max_columns = max_columns self.nodes = np.empty((max_wires, max_columns), dtype = CircuitGridNode) def __str__(self): retval = '' for wire_num in range(self.max_wires): retval += '\n' for column_num in range(self.max_columns): # retval += str(self.nodes[wire_num][column_num]) + ', ' retval += str(self.get_node_gate_part(wire_num, column_num)) + ', ' return 'CircuitGridModel: ' + retval # def set_node(self, wire_num, column_num, node_type, radians=0, ctrl_a=-1, ctrl_b=-1, swap=-1): def set_node(self, wire_num, column_num, circuit_grid_node): self.nodes[wire_num][column_num] = \ CircuitGridNode(circuit_grid_node.node_type, circuit_grid_node.radians, circuit_grid_node.ctrl_a, circuit_grid_node.ctrl_b, circuit_grid_node.swap) # TODO: Decide whether to protect as shown below # if not self.nodes[wire_num][column_num]: # self.nodes[wire_num][column_num] = CircuitGridNode(node_type, radians) # else: # print('Node ', wire_num, column_num, ' not empty') def get_node(self, wire_num, column_num): return self.nodes[wire_num][column_num] def get_node_gate_part(self, wire_num, column_num): requested_node = self.nodes[wire_num][column_num] if requested_node and requested_node.node_type != node_types.EMPTY: # Node is occupied so return its gate return requested_node.node_type else: # Check for control nodes from gates in other nodes in this column nodes_in_column = self.nodes[:, column_num] for idx in range(self.max_wires): if idx != wire_num: other_node = nodes_in_column[idx] if other_node: if other_node.ctrl_a == wire_num or other_node.ctrl_b == wire_num: return node_types.CTRL elif other_node.swap == wire_num: return node_types.SWAP return node_types.EMPTY def get_gate_wire_for_control_node(self, control_wire_num, column_num): """Get wire for gate that belongs to a control node on the given wire""" gate_wire_num = -1 nodes_in_column = self.nodes[:, column_num] for wire_idx in range(self.max_wires): if wire_idx != control_wire_num: other_node = nodes_in_column[wire_idx] if other_node: if other_node.ctrl_a == control_wire_num or \ other_node.ctrl_b == control_wire_num: gate_wire_num = wire_idx print("Found gate: ", self.get_node_gate_part(gate_wire_num, column_num), " on wire: " , gate_wire_num) return gate_wire_num # def avail_gate_parts_for_node(self, wire_num, column_num): # retval = np.empty(0, dtype = np.int8) # node_gate_part = self.get_node_gate_part(wire_num, column_num) # if node_gate_part == node_types.EMPTY: # # No gate part in this node def compute_circuit(self): qr = QuantumRegister(self.max_wires, 'q') qc = QuantumCircuit(qr) for column_num in range(self.max_columns): for wire_num in range(self.max_wires): node = self.nodes[wire_num][column_num] if node: if node.node_type == node_types.IDEN: # Identity gate qc.iden(qr[wire_num]) elif node.node_type == node_types.X: if node.radians == 0: if node.ctrl_a != -1: if node.ctrl_b != -1: # Toffoli gate qc.ccx(qr[node.ctrl_a], qr[node.ctrl_b], qr[wire_num]) else: # Controlled X gate qc.cx(qr[node.ctrl_a], qr[wire_num]) else: # Pauli-X gate qc.x(qr[wire_num]) else: # Rotation around X axis qc.rx(node.radians, qr[wire_num]) elif node.node_type == node_types.Y: if node.radians == 0: if node.ctrl_a != -1: # Controlled Y gate qc.cy(qr[node.ctrl_a], qr[wire_num]) else: # Pauli-Y gate qc.y(qr[wire_num]) else: # Rotation around Y axis qc.ry(node.radians, qr[wire_num]) elif node.node_type == node_types.Z: if node.radians == 0: if node.ctrl_a != -1: # Controlled Z gate qc.cz(qr[node.ctrl_a], qr[wire_num]) else: # Pauli-Z gate qc.z(qr[wire_num]) else: if node.ctrl_a != -1: # Controlled rotation around the Z axis qc.crz(node.radians, qr[node.ctrl_a], qr[wire_num]) else: # Rotation around Z axis qc.rz(node.radians, qr[wire_num]) elif node.node_type == node_types.S: # S gate qc.s(qr[wire_num]) elif node.node_type == node_types.SDG: # S dagger gate qc.sdg(qr[wire_num]) elif node.node_type == node_types.T: # T gate qc.t(qr[wire_num]) elif node.node_type == node_types.TDG: # T dagger gate qc.tdg(qr[wire_num]) elif node.node_type == node_types.H: if node.ctrl_a != -1: # Controlled Hadamard qc.ch(qr[node.ctrl_a], qr[wire_num]) else: # Hadamard gate qc.h(qr[wire_num]) elif node.node_type == node_types.SWAP: if node.ctrl_a != -1: # Controlled Swap qc.cswap(qr[node.ctrl_a], qr[wire_num], qr[node.swap]) else: # Swap gate qc.swap(qr[wire_num], qr[node.swap]) return qc class CircuitGridNode(): """Represents a node in the circuit grid""" def __init__(self, node_type, radians=0.0, ctrl_a=-1, ctrl_b=-1, swap=-1): self.node_type = node_type self.radians = radians self.ctrl_a = ctrl_a self.ctrl_b = ctrl_b self.swap = swap def __str__(self): string = 'type: ' + str(self.node_type) string += ', radians: ' + str(self.radians) if self.radians != 0 else '' string += ', ctrl_a: ' + str(self.ctrl_a) if self.ctrl_a != -1 else '' string += ', ctrl_b: ' + str(self.ctrl_b) if self.ctrl_b != -1 else '' return string
https://github.com/Alice-Bob-SW/emulation-examples
Alice-Bob-SW
from qiskit import QuantumCircuit, execute, transpile from typing import Optional from matplotlib import pyplot as plt import numpy as np import scipy as sp from tqdm.notebook import tqdm import warnings # set default plot parameters plt.rcParams.update({ 'figure.facecolor': 'white', 'axes.facecolor': 'white', 'font.family': 'serif', 'font.size': 16, 'figure.dpi': 72.0, 'xtick.direction': 'in', 'ytick.direction': 'in', 'xtick.major.size': 5.0, 'xtick.minor.size': 2.5, 'ytick.major.size': 5.0, 'ytick.minor.size': 2.5, 'xtick.minor.visible': True, 'ytick.minor.visible': True, 'axes.grid': True, 'axes.titlesize': 'larger', 'axes.labelsize': 'larger', 'legend.fontsize': 'larger', 'grid.color': 'gray', 'grid.linestyle': '--', 'grid.alpha': 0.3, 'lines.linewidth': 1.0, 'figure.figsize': (16, 8) }) def fitted_curve(t, T, a, b): return a * np.exp(- t / T) + b def fit_typical_time(delay_durations, probs): with warnings.catch_warnings(): warnings.simplefilter("ignore") opt, _ = sp.optimize.curve_fit( fitted_curve, delay_durations, probs, p0=[np.median(delay_durations), probs[0] - probs[-1], probs[-1]], method='trf' ) return opt from qiskit_alice_bob_provider.local.provider import AliceBobLocalProvider from qiskit_alice_bob_provider.local.backend import ProcessorSimulator from qiskit_alice_bob_provider.processor.physical_cat import PhysicalCatProcessor from qiskit_aer import AerSimulator provider = AliceBobLocalProvider() provider.backends() backend = provider.get_backend('EMU:40Q:PHYSICAL_CATS') def build_bit_flip_circuit(delay_duration_s: float) -> QuantumCircuit: circ = QuantumCircuit(1, 1) circ.initialize(0) circ.delay(delay_duration_s, 0, unit='s') circ.measure(0, 0) return circ circ = build_bit_flip_circuit(10) circ.draw('mpl') nbars = np.linspace(4, 12, 7) delay_durations_s = np.logspace(-4, 10, 10) k1s = [100, 1_000, 10_000] k2 = 10_000_000 shots = 1_000 tbf_fitted = {} for k1 in tqdm(k1s): tbf_fitted[k1] = [] for nbar in tqdm(nbars): backend = provider.get_backend('EMU:40Q:PHYSICAL_CATS', average_nb_photons=nbar, kappa_1=k1, kappa_2=k2) jobs = [] for delay_duration_s in delay_durations_s: circ = build_bit_flip_circuit(delay_duration_s) jobs.append(execute(circ, backend, shots=shots)) results = [job.result() for job in jobs] flip_fractions = [r.get_counts().get('1', 0) / shots for r in results] Tbf, a, b = fit_typical_time(delay_durations_s, flip_fractions) tbf_fitted[k1].append(Tbf) plt.figure() plt.title('$T_{bf}=f(\\bar{n})$') plt.xlabel('$\\bar{n} = |\\alpha|^2$ (number of photons)') plt.ylabel('$T_{bf}$ [$s$]') for k1 in k1s: plt.plot(nbars, tbf_fitted[k1], label=f'$\\kappa_1$={k1:.0e}Hz, $\\kappa_1/\\kappa_2$={k1/k2:.0e}', lw=0.5, marker='o', ms=10) plt.semilogy() plt.legend() plt.show() def build_phase_flip_circuit(delay_duration_s: float) -> QuantumCircuit: circ = QuantumCircuit(1, 1) circ.initialize('+') circ.delay(delay_duration_s, 0, unit='s') circ.measure_x(0, 0) return circ circ = build_phase_flip_circuit(0.1) circ.draw('mpl') nbars = np.linspace(4, 16, 7) delay_durations_s = np.logspace(-8, -1, 10) k1s = [100, 1_000] k2 = 10_000_000 shots = 10_000 tpf_fitted = {} for k1 in tqdm(k1s): tpf_fitted[k1] = [] for nbar in tqdm(nbars): backend = provider.get_backend('EMU:40Q:PHYSICAL_CATS', average_nb_photons=nbar, kappa_1=k1, kappa_2=k2) jobs = [] for delay_duration_s in delay_durations_s: circ = build_phase_flip_circuit(delay_duration_s) jobs.append(execute(circ, backend, shots=shots)) results = [job.result() for job in jobs] flip_fractions = [r.get_counts().get('1', 0) / shots for r in results] Tpf, a, b = fit_typical_time(delay_durations_s, flip_fractions) tpf_fitted[k1].append(Tpf) plt.figure() plt.title('$T_{pf}=f(\\bar{n})$') plt.xlabel('$\\bar{n} = |\\alpha|^2$ (number of photons)') plt.ylabel('$\\Gamma_{pf}/2\\pi$ [kHz]') for k1 in k1s: plt.plot(nbars, 0.5/np.array(tpf_fitted[k1]) * 1e-3, label=f'$\\kappa_1$={k1:.0e}Hz, $\\kappa_1/\\kappa_2$={k1/k2:.0e}', lw=0.5, marker='o', ms=10) plt.legend() plt.show() def build_oscillation_circuit(angle: float) -> QuantumCircuit: circ = QuantumCircuit(1, 1) circ.initialize('+') circ.rz(angle, 0) circ.measure_x(0, 0) return circ circ = build_oscillation_circuit(np.pi / 6) circ.draw('mpl') nbars = [9, 16, 25] angles = np.linspace(0, 15 * np.pi, 150) shots = 10_000 k1 = 100 k2 = 10_000 curves = {} durations = {} for nbar in tqdm(nbars): curves[nbar] = [] durations[nbar] = [] backend = provider.get_backend('EMU:40Q:PHYSICAL_CATS', average_nb_photons=nbar, kappa_2=k2, kappa_1=k1) jobs = [] for angle in angles: circ = build_oscillation_circuit(angle) jobs.append(execute(circ, backend, shots=shots)) results = [job.result() for job in jobs] flip_fractions = [r.get_counts().get('1', 0) / shots for r in results] durations_ = [job.circuits()[0].duration * backend.dt for job in jobs] curves[nbar].append(flip_fractions) durations[nbar].append(durations_) plt.figure() plt.suptitle('Phase flip errors when rotating around the Z axis (Rz) as a function of the rotation angle') plt.title(f'$\\kappa_1/\\kappa_2$={k1/k2:.0e}') plt.xlabel('Rotation angle $\\theta$ [rad]') plt.ylabel('P(|+>)') for nbar in nbars: plt.plot(angles, np.squeeze(curves[nbar]), lw=0.5, marker='o', ms=5, label=f'$\\bar n$={nbar}') plt.legend() plt.show() plt.figure() plt.suptitle('Phase flip errors when rotating around the Z axis (Rz) as a function of the total circuit duration') plt.title(f'$\\kappa_1/\\kappa_2$={k1/k2:.0e}') plt.xlabel('Duration [µs]') plt.ylabel('P(|+>)') for nbar in nbars: plt.plot(np.squeeze(durations[nbar]) * 1e6, np.squeeze(curves[nbar]), lw=0.5, marker='o', ms=5, label=f'$\\bar n$={nbar}') plt.legend() plt.show()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse with pulse.build(name='my_example') as my_program: # Add instructions here pass my_program from qiskit.pulse import DriveChannel channel = DriveChannel(0) from qiskit.providers.fake_provider import FakeValencia backend = FakeValencia() with pulse.build(backend=backend, name='backend_aware') as backend_aware_program: channel = pulse.drive_channel(0) print(pulse.num_qubits()) # Raises an error as backend only has 5 qubits #pulse.drive_channel(100) with pulse.build(backend) as delay_5dt: pulse.delay(5, channel) from qiskit.pulse import library amp = 1 sigma = 10 num_samples = 128 gaus = pulse.library.Gaussian(num_samples, amp, sigma, name="Parametric Gaus") gaus.draw() import numpy as np times = np.arange(num_samples) gaussian_samples = np.exp(-1/2 *((times - num_samples / 2) ** 2 / sigma**2)) gaus = library.Waveform(gaussian_samples, name="WF Gaus") gaus.draw() gaus = library.gaussian(duration=num_samples, amp=amp, sigma=sigma, name="Lib Gaus") gaus.draw() with pulse.build() as schedule: pulse.play(gaus, channel) schedule.draw() with pulse.build() as schedule: pulse.play([0.001*i for i in range(160)], channel) schedule.draw() with pulse.build(backend) as schedule: pulse.set_frequency(4.5e9, channel) with pulse.build(backend) as schedule: pulse.shift_phase(np.pi, channel) from qiskit.pulse import Acquire, AcquireChannel, MemorySlot with pulse.build(backend) as schedule: pulse.acquire(1200, pulse.acquire_channel(0), MemorySlot(0)) with pulse.build(backend, name='Left align example') as program: with pulse.align_left(): gaussian_pulse = library.gaussian(100, 0.5, 20) pulse.play(gaussian_pulse, pulse.drive_channel(0)) pulse.play(gaussian_pulse, pulse.drive_channel(1)) pulse.play(gaussian_pulse, pulse.drive_channel(1)) program.draw() with pulse.build(backend, name='Right align example') as program: with pulse.align_right(): gaussian_pulse = library.gaussian(100, 0.5, 20) pulse.play(gaussian_pulse, pulse.drive_channel(0)) pulse.play(gaussian_pulse, pulse.drive_channel(1)) pulse.play(gaussian_pulse, pulse.drive_channel(1)) program.draw() with pulse.build(backend, name='example') as program: gaussian_pulse = library.gaussian(100, 0.5, 20) with pulse.align_equispaced(2*gaussian_pulse.duration): pulse.play(gaussian_pulse, pulse.drive_channel(0)) pulse.play(gaussian_pulse, pulse.drive_channel(1)) pulse.play(gaussian_pulse, pulse.drive_channel(1)) program.draw() with pulse.build(backend, name='example') as program: with pulse.align_sequential(): gaussian_pulse = library.gaussian(100, 0.5, 20) pulse.play(gaussian_pulse, pulse.drive_channel(0)) pulse.play(gaussian_pulse, pulse.drive_channel(1)) pulse.play(gaussian_pulse, pulse.drive_channel(1)) program.draw() with pulse.build(backend, name='Offset example') as program: with pulse.phase_offset(3.14, pulse.drive_channel(0)): pulse.play(gaussian_pulse, pulse.drive_channel(0)) with pulse.frequency_offset(10e6, pulse.drive_channel(0)): pulse.play(gaussian_pulse, pulse.drive_channel(0)) program.draw() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/GroenteLepel/qiskit-quantum-knn
GroenteLepel
"""The quantum KNN algorithm.""" from typing import Dict, Optional, Union import logging import itertools import numpy as np import scipy.stats as stats import qiskit as qk import qiskit.result as qres import qiskit.tools as qktools from qiskit.utils import QuantumInstance import qiskit.providers as qkp import qiskit.circuit.instruction as qinst from qiskit_quantum_knn.qknn._qknn import _QKNN from qiskit_quantum_knn.qknn import qknn_construction as qc from qiskit_quantum_knn.qknn.quantum_algorithm import QuantumAlgorithm from qiskit_quantum_knn.qknn.utils import get_subsystems_counts logger = logging.getLogger(__name__) UnionQInstBaseB = Union[QuantumInstance, qkp.BaseBackend] OptionalQInstance = Optional[UnionQInstBaseB] class QKNeighborsClassifier(QuantumAlgorithm): """ Quantum KNN algorithm. Maintains the construction of a QkNN Quantumcircuit, and manages the data corresponding with this circuit by setting up training and test data and maintaining the classes and labels to the data. Args: n_neighbors (int): number of neighbors to perform the voting. training_dataset (array-like): data shaped ``(n, d)``, with ``n`` the number of data points, and ``d`` the dimensionality. Corresponds to the training data, which is classified and will be used to classify new data. ``d`` must be a positive power of two, ``n`` not per se, because it can be zero-padded to fit on a quantum register. training_labels (array): the labels corresponding to the training data, must be ``len(n)``. test_dataset (array-like): data shaped ``(m, d)``, with ``m`` the the number of data points, and ``d`` the dimensionality. Describes test data which is used to test the algorithm and give an accuracy score. TODO: this is not implemented yet, for now a test is performed manually. data_points (array-like): data shaped ``(k, d)``, with ``k`` the number of data points, and ``d`` the dimensionality of the data. This is the unlabelled data which must be classified by the algorithm. quantum_instance (:class: `QuantumInstance` or :class: BaseBackend): the instance which ``qiskit`` will use to run the quantum algorithm. Example: Classify data using the Iris dataset. .. jupyter-execute:: from qiskit_quantum_knn.qknn import QKNeighborsClassifier from qiskit_quantum_knn.encoding import analog from qiskit.utils import QuantumInstance from sklearn import datasets import qiskit as qk # initialising the quantum instance backend = qk.BasicAer.get_backend('qasm_simulator') instance = QuantumInstance(backend, shots=10000) # initialising the qknn model qknn = QKNeighborsClassifier( n_neighbors=3, quantum_instance=instance ) n_variables = 2 # should be positive power of 2 n_train_points = 4 # can be any positive integer n_test_points = 2 # can be any positive integer # use iris dataset iris = datasets.load_iris() labels = iris.target data_raw = iris.data # encode data encoded_data = analog.encode(data_raw[:, :n_variables]) # now pick these indices from the data train_data = encoded_data[:n_train_points] train_labels = labels[:n_train_points] test_data = encoded_data[n_train_points:(n_train_points+n_test_points), :n_variables] test_labels = labels[n_train_points:(n_train_points+n_test_points)] qknn.fit(train_data, train_labels) qknn_prediction = qknn.predict(test_data) print(qknn_prediction) print(test_labels) """ def __init__(self, n_neighbors: int = 3, training_dataset: Optional[np.ndarray] = None, training_labels: Optional[np.ndarray] = None, test_dataset: Optional[np.ndarray] = None, data_points: Optional[np.ndarray] = None, quantum_instance: OptionalQInstance = None) -> None: super().__init__(quantum_instance) self.n_neighbors = n_neighbors # the datasets for training, testing and predicting self.training_dataset = None self.test_dataset = None self.data_points = None # dictionaries containing the class vs labels and reverse, respectively self.class_to_label = None self.label_to_class = None # the number of classes in the provided data sets self.num_classes = None # setup of the data self.training_dataset = training_dataset self.training_labels = training_labels self.test_dataset = test_dataset self.data_points = data_points # indicates the kind of instance this classifier is using, e.g. # _QSVM_Binary, _QSVM_Multiclass, or, in this case, _QKNN. This # instance has all the methods for running, testing and predicting. self.instance = _QKNN(self) def fit(self, X, y): """Fit the model using X as training data and y as target values Notes: There is no real "fitting" done here, since the data cannot be stored somewhere. It only assigns the values so that these cane be accessed when running. Args: X (array-like): Training data of shape [n_samples, n_features]. y (array-like): Target values of shape [n_samples]. """ # TODO: create some validation and checks for the provided data self.training_dataset = X self.training_labels = y @staticmethod def construct_circuit(state_to_classify: np.ndarray, oracle: qinst.Instruction, add_measurement: bool = False) -> qk.QuantumCircuit: r"""Construct one QkNN QuantumCircuit. The Oracle provided is mentioned in :afham2020:`Afham et al. (2020)` as the parameter :math:`\mathcal{W}`, and is created via the method :py:func:`~qiskit_quantum_knn.qknn.qknn_construction.create_oracle`. Args: state_to_classify (array-like): array of dimension ``N`` complex values describing the state to classify via kNN. oracle (qiskit Instruction): oracle :math:`\mathcal{W}` for applying training data. add_measurement (bool): controls if measurements must be added to the classical registers. Returns: QuantumCircuit: The constructed circuit. """ return qc.construct_circuit( state_to_classify, oracle, add_measurement ) @staticmethod def construct_circuits(data_to_predict, training_data) -> qk.QuantumCircuit: """Constructs all quantum circuits for each datum to classify. Args: data_to_predict (array): data points, 2-D array, of shape ``(N, D)``, where ``N`` is the number of data points and ``D`` is the dimensionality of the vector. ``D`` should coincide with the provided training data. training_data (array): data points which you want to know the distance of between :py:attr:`data_to_predict`. Returns: numpy.ndarray: The constructed circuits. Raises: ValueError: Quantum instance is not present. """ measurement = True # can be adjusted if statevector_sim oracle = qc.create_oracle(training_data) # parallel_map() creates QuantumCircuits in parallel to be executed by # a QuantumInstance logger.info("Starting parallel map for constructing circuits.") circuits = qktools.parallel_map( QKNeighborsClassifier.construct_circuit, data_to_predict, task_args=[ oracle, measurement ] ) logger.info("Done.") return circuits @staticmethod def execute_circuits(quantum_instance: UnionQInstBaseB, circuits) -> qres.Result: """Executes the provided circuits (type array-like).""" logger.info("Executing circuits") result = quantum_instance.execute(circuits) logger.info("Done.") return result def get_circuit_results(self, circuits, quantum_instance: OptionalQInstance = None) -> qres.Result: """Get the qiskit Results from the provided quantum circuits.""" self._quantum_instance = self._quantum_instance \ if quantum_instance is None else quantum_instance if self._quantum_instance is None: raise ValueError( "Either provide a quantum instance or set one up." ) return QKNeighborsClassifier.execute_circuits( self.quantum_instance, circuits ) @staticmethod def get_all_fidelities(circuit_results: qres.Result): r"""Get all contrasts. Gets the fidelity values which are calculated via :func:`calculate_fidelities` and saves these in an array. For more about fidelities, see :meth:`calculate_fidelities`. Args: circuit_results (qiskit.result.Result): the results from a QkNN circuit build using ``QKNeighborsClassifier``. Returns: array: all fidelities corresponding to the QkNN. """ logger.info("Getting fidelity values.") # get all counts from the circuit results all_counts = circuit_results.get_counts() # determine the length of the computational basis register by checking # the length of the count result # the -2 is there to compensate for the ' 0' or ' 1' at the end of # the key. num_qubits = len(list(all_counts[0].keys())[0]) - 2 # initialize the array which will hold the contrast values n_occurrences = len(all_counts) # number of occurring states n_datapoints = 2 ** num_qubits # number of data points all_fidelities = np.empty( shape=(n_occurrences, n_datapoints), ) # loop over all counted states for i, counts in enumerate(all_counts): # calculate the contrast values q(i) for this set of counts all_fidelities[i] = \ QKNeighborsClassifier.calculate_fidelities(counts) logger.info("Done.") return all_fidelities @staticmethod def calculate_fidelities(counts: Dict[str, int]) -> np.ndarray: r"""Calculate the fidelities :math:`F_i`. Calculates fidelities :math:`F_i` for each training state ``i`` in the computational basis of the kNN QuantumCircuit. The fidelity can be calculated via: .. math:: F_i = \frac{M}{2} \left(p_0 (i) - p_1 (i)\right) \cdot \ \left(1 - \left( p(0) - p(1) \right) ^2 \right) + \ \left( p(0) - p(1) \right). The values :math:`p(n)` are the probabilities that the control qubit is in state :math:`n`, and the values :math:`p_n (i)` are the probabilities that the computational basis is in state :math:`i` given the control qubit is in state :math:`n`. These values can be approximated by running the circuit :math:`T` times using: .. math:: p_n (i) \sim \bar{p}_n (i) = c_n(i) / T_n , \ p (n) \sim \bar{p} (n) = T_n / T, where :math:`c_n(i), T_n` are the counts of the computational basis in state :math:`i` given the control qubit in state :math:`n` and the control qubit in state :math:`n`, respectively. Args: counts (dict): counts pulled from a qiskit Result from the QkNN. Returns: array: the fidelity values. ndarray of length ``n_samples`` with each index ``i`` (representing state :math:`|i\rangle` from the computational basis) the fidelity belonging to :math:`|i\rangle`. """ # first get the total counts of 0 and 1 in the control qubit subsystem_counts = get_subsystems_counts(counts) # the counts from the control qubit are in the second register # by some magical qiskit reason control_counts = QKNeighborsClassifier.setup_control_counts( subsystem_counts[1] ) total_counts = control_counts['0'] + control_counts['1'] exp_fidelity = np.abs(control_counts['0'] - control_counts['1']) / \ total_counts # now get the counts for the fidelities define possible states that # the computational can be in. num_qubits = len(list(subsystem_counts[0].keys())[0]) comp_basis_states = \ list(itertools.product(['0', '1'], repeat=num_qubits)) # initialise dict which is going to contain the fidelity values fidelities = np.zeros(2 ** num_qubits, dtype=float) for comp_state in comp_basis_states: # convert list of '0's and '1's to one string e.g. # ('0', '1', '0') --> '010' comp_state = ''.join(comp_state) # init fidelity value for this state fidelity = 0. for control_state in control_counts.keys(): state_str = comp_state + ' ' + control_state if state_str not in counts: logger.debug( "State {0:s} not found in counts {1}. Adding" "naught to contrast value." .format( state_str, counts ) ) fidelity += 0 # added for readability else: fidelity += \ (-1) ** int(control_state) * \ (counts[state_str]) / control_counts[control_state] * \ (1 - exp_fidelity ** 2) index_state = int(comp_state, 2) fidelity *= 2 ** num_qubits / 2 fidelity += exp_fidelity fidelities[index_state] = fidelity return fidelities @staticmethod def calculate_contrasts(counts: Dict[str, int]) -> np.ndarray: r"""Calculate contrasts :math:`q(i)`. Calculates contrasts :math:`q(i)` for each training state ``i`` in the computational basis of the KNN QuantumCircuit. The contrasts are according to :afham2020:`Afham et al. (2020)`. .. math:: q(i) &= p_0(i) - p_1(i) \\ &= \frac{1 + F_i} {M + \sum_{j=1}^M F_j} - \ \frac{1 - F_i} {M - \sum_{j=1}^M F_j} \\ &= \frac{2(F_i - \langle F \rangle)} {M(1 - \langle F \rangle^2)}, and correspond linearly to the fidelity :math:`F_i` between the unclassified datum :math:`\psi` and :math:`\phi_i`. Args: counts (dict): counts pulled from a qiskit Result from the QkNN. Returns: array: the contrasts values. ndarray of length ``n_samples`` with each index ``i`` (representing state :math:`|i\rangle` from the computational basis) the contrast belonging to :math:`|i\rangle`. """ # first get the total counts of 0 and 1 in the control qubit subsystem_counts = get_subsystems_counts(counts) # the counts from the control qubit are in the second register # by some magical qiskit reason control_counts = QKNeighborsClassifier.setup_control_counts( subsystem_counts[1] ) # now get the counts for the contrasts define possible states that # the computational can be in. num_qubits = len(list(subsystem_counts[0].keys())[0]) comp_basis_states = \ list(itertools.product(['0', '1'], repeat=num_qubits)) # initialise dict which is going to contain the contrast values contrasts = np.zeros(2 ** num_qubits, dtype=float) for comp_state in comp_basis_states: # convert list of '0's and '1's to one string e.g. # ('0', '1', '0') --> '010' comp_state = ''.join(comp_state) # init contrast value for this state contrast = 0. for control_state in control_counts.keys(): state_str = comp_state + ' ' + control_state if state_str not in counts: logger.debug( "State {0:s} not found in counts {1}. Adding" "naught to contrast value." .format( state_str, counts ) ) contrast += 0 # added for readability else: contrast += \ (-1) ** int(control_state) * \ (counts[state_str]) / control_counts[control_state] index_state = int(comp_state, 2) contrasts[index_state] = contrast return contrasts @staticmethod def setup_control_counts(control_counts: Dict[str, int]) -> Dict[str, int]: """Sets up control counts dict. In Qiskit, if a certain value is not measured (or counted), it has no appearance in the ``counts`` dictionary from the :py:class:`Result`. Thus, this method checks if this has happened and adds a value with counts set to 0. Notes: This means that if the :py:attr:`control_counts` has both occurrences of ``0`` and ``1``, this method just returns that exact same dictionary, unmodified. Args: control_counts (dict): dictionary from a :py:class:`Result` representing the control qubit in the QkNN circuit. Returns: dict: The modified control counts. The same control_counts dict as provided but with non-counted occurrence added as well if needed. Raises: ValueError: if the provided dictionary does not coincide with the :py:class:`Result` from the QkNN. """ # constant describing the states possible in control_counts control_states = np.array(['0', '1']) # check if substition of 0 count value must be done if control_states[0] not in control_counts: to_substitute = int(control_states[0]) elif control_states[1] not in control_counts: to_substitute = int(control_states[1]) else: to_substitute = None if to_substitute is not None: # if to_substitute = 1, make it -1 * (1 - 1) = 0, else, make it # -1 * (0 - 1) = 1 sole_occurrence = -1 * (to_substitute - 1) logger.debug( "Only one value is counted in the control qubit: {0:d}," "setting the counts of state {1:d} to 0." .format( sole_occurrence, to_substitute ) ) control_counts = { str(to_substitute): 0, str(sole_occurrence): control_counts[str(sole_occurrence)] } return control_counts def majority_vote(self, labels: np.ndarray, fidelities: np.ndarray) -> np.ndarray: """Performs majority vote with the :math:`k` nearest to determine class. Args: labels (array-like): The labels of the training data provided to the :class:`QKNeighborsClassifier`. fidelities (array-like): The fidelities calculated using :meth:`get_all_fidelities'. Returns: ndarray: The labels resulted from the majority vote. """ logger.info("Performing majority vote.") # get the neighbors sorted on their distance (lowest first) per data # point. if np.any(fidelities < -0.2) or np.any(fidelities > 1.2): raise ValueError("Fidelities contain values outside range 0<=F<=1:" f"{fidelities[fidelities < -0.2]}" f"{fidelities[fidelities > 1.2]}") sorted_neighbors = np.argpartition( 1 - fidelities, -self.n_neighbors ) # get the number of participating values n_queries = len(labels) # modify the argpartition to remove any "filler" qubits, e.g. if 5 # train data are given, n_queries=5 but number of qubits states must # always be a positive number of 2 (will be 8 in example case) # these values can accidentally participate in the voting, hence these # must be removed sorted_neighbors = sorted_neighbors[sorted_neighbors < n_queries]\ .reshape(sorted_neighbors.shape[0], n_queries) if n_queries == 1: n_closest_neighbors = sorted_neighbors[:self.n_neighbors] else: # this is the case when more than one data point is given to this # majority vote, so the shape will be of (n_points, m) n_closest_neighbors = sorted_neighbors[:, :self.n_neighbors] # voters = np.take(data, indices_of_neighbors, axis=0) voter_labels = np.take(labels, n_closest_neighbors) if n_queries == 1: votes, counts = stats.mode(voter_labels) else: votes, counts = stats.mode(voter_labels, axis=1) logger.info("Done.") return votes.real.flatten() @property def ret(self) -> Dict: """ Returns result. Returns: Dict: return value(s). """ return self.instance.ret @ret.setter def ret(self, new_value): """ Sets result. Args: new_value: new value to set. """ self.instance.ret = new_value def predict(self, data) -> np.ndarray: """Predict the labels of the provided data.""" return self.instance.predict(data) def _run(self) -> Dict: return self.instance.run()
https://github.com/Qiskit-Extensions/circuit-knitting-toolbox
Qiskit-Extensions
import numpy as np from qiskit.circuit.random import random_circuit from qiskit.quantum_info import SparsePauliOp circuit = random_circuit(7, 6, max_operands=2, seed=1242) observable = SparsePauliOp(["ZIIIIII", "IIIZIII", "IIIIIIZ"]) circuit.draw("mpl", scale=0.8) from circuit_knitting.cutting.automated_cut_finding import ( find_cuts, OptimizationParameters, DeviceConstraints, ) # Specify settings for the cut-finding optimizer optimization_settings = OptimizationParameters(seed=111) # Specify the size of the QPUs available device_constraints = DeviceConstraints(qubits_per_subcircuit=4) cut_circuit, metadata = find_cuts(circuit, optimization_settings, device_constraints) print( f'Found solution using {len(metadata["cuts"])} cuts with a sampling ' f'overhead of {metadata["sampling_overhead"]}.\n' f'Lowest cost solution found: {metadata["minimum_reached"]}.' ) for cut in metadata["cuts"]: print(f"{cut[0]} at circuit instruction index {cut[1]}") cut_circuit.draw("mpl", scale=0.8, fold=-1) from circuit_knitting.cutting import cut_wires, expand_observables qc_w_ancilla = cut_wires(cut_circuit) observables_expanded = expand_observables(observable.paulis, circuit, qc_w_ancilla) qc_w_ancilla.draw("mpl", scale=0.8, fold=-1) from circuit_knitting.cutting import partition_problem partitioned_problem = partition_problem( circuit=qc_w_ancilla, observables=observables_expanded ) subcircuits = partitioned_problem.subcircuits subobservables = partitioned_problem.subobservables print( f"Sampling overhead: {np.prod([basis.overhead for basis in partitioned_problem.bases])}" ) subobservables subcircuits[0].draw("mpl", style="iqp", scale=0.8) subcircuits[1].draw("mpl", style="iqp", scale=0.8) from circuit_knitting.cutting import generate_cutting_experiments subexperiments, coefficients = generate_cutting_experiments( circuits=subcircuits, observables=subobservables, num_samples=1_000 ) print( f"{len(subexperiments[0]) + len(subexperiments[1])} total subexperiments to run on backend." )
https://github.com/qcware/qusetta
qcware
"""Translating circuits to and from ``qiskit``.""" import qiskit import qusetta as qs from typing import List __all__ = "Qiskit", class Qiskit(qs.Conversions): """Translation methods for qiskit's representation of a circuit. Example -------- Create a qiskit circuit. >>> import qiskit >>> circuit = qiskit.QuantumCircuit(2) >>> circuit.h(0) >>> circuit.cx(0, 1) Convert the qiskit circuit to a cirq circuit. >>> from qusetta import Qiskit >>> cirq_circuit = Qiskit.to_cirq(circuit) Notes ----- As we all know, qiskit is weird in the way that they index their qubits. In particular, they index qubits in reverse order compared to everyone else. Therefore, in order to ensure that the first bullet point is true, qusetta reverses the qubits of a qiskit circuit. Thus, as an example, a qusetta (or cirq, quasar) circuit ``["H(0)", "CX(0, 1)"]`` becomes a qiskit circuit ``["H(1)", "CX(1, 0)"]``. This is how we guarantee that the probability vectors are the same. """ @staticmethod def from_qusetta(circuit: List[str]) -> qiskit.QuantumCircuit: """Convert a qusetta circuit to a qiskit circuit. Parameters ---------- circuit : list of strings. See ``help(qusetta)`` for more details on how the list of strings should be formatted. Returns ------- qiskit_circuit : qiskit.QuantumCircuit. Examples -------- >>> from qusetta import Qiskit >>> >>> circuit = ["H(0)", "CX(0, 1)", "RX(PI/2)(0)", "SWAP(1, 2)"] >>> qiskit_circuit = Qiskit.from_qusetta(circuit) See the ``Qiskit`` class docstring for info on how the bit ordering is changed. """ n, new_circuit = -1, [] for gate in circuit: g, params, qubits = qs.gate_info(gate) n = max(max(qubits), n) new_circuit.append((g.lower(), params, qubits)) qiskit_circuit = qiskit.QuantumCircuit(n + 1) for g, params, qubits in new_circuit: # ibm is weird and reversed their qubits from everyone else. # So we reverse them here. qubits = tuple(n - q for q in qubits) getattr(qiskit_circuit, g)(*(params + qubits)) return qiskit_circuit @staticmethod def to_qusetta(circuit: qiskit.QuantumCircuit) -> List[str]: """Convert a qiskit circuit to a qusetta circuit. Parameters ---------- circuit : qiskit.QuantumCircuit object. Returns ------- qs_circuit : list of strings. See ``help(qusetta)`` for more details on how the list of strings should be formatted. Examples -------- >>> from qusetta import Qiskit >>> import qiskit >>> >>> circuit = qiskit.QuantumCircuit(3) >>> circuit.h(0) >>> circuit.cx(0, 1) >>> circuit.rx(1/2, 0) >>> circuit.swap(1, 2) >>> >>> print(Qiskit.to_qusetta(circuit)) ["H(2)", "CX(2, 1)", "RX(0.5)(2)", "SWAP(1, 0)"] Notice how the bits are reversed. See the ``Qiskit`` class docstring for more info. """ qs_circuit = [] for gate, qubits, _ in circuit: # _ refers to classical bits g = gate.name.upper() if g == "MEASURE": # ignore measure gates continue elif g == "ID": g = "I" elif g == "U1": g = "RZ" # same up to a phase factor elif g == "U2": # see below for why we reverse the qubits r = circuit.num_qubits - qubits[0].index - 1 qs_circuit.extend([ "RZ(%g - PI/2)(%d)" % (gate.params[1], r), "RX(PI/2)(%d)" % r, "RZ(%g + PI/2)(%d)" % (gate.params[0], r) ]) continue elif g == "U3": # see below for why we reverse the qubits r = circuit.num_qubits - qubits[0].index - 1 qs_circuit.extend([ "RZ(%g - PI/2)(%d)" % (gate.params[2], r), "RX(%g)(%d)" % (gate.params[0], r), "RZ(%g + PI/2)(%d)" % (gate.params[1], r) ]) continue if gate.params: g += "(" + ", ".join(str(x) for x in gate.params) + ")" # ibm is weird and reversed their qubits from everyone else. # So we reverse them here. g += "(" + ", ".join( str(circuit.num_qubits - q.index - 1) for q in qubits ) + ")" qs_circuit.append(g) return qs_circuit
https://github.com/mspronesti/qlearnkit
mspronesti
import warnings import logging import numpy as np from copy import deepcopy from typing import List, Dict, Union, Optional from qiskit import QuantumCircuit from qiskit.result import Result from qiskit.providers import Backend from qiskit.tools import parallel_map from qiskit.utils import QuantumInstance from sklearn.exceptions import NotFittedError from sklearn.base import ClusterMixin from ..quantum_estimator import QuantumEstimator from .centroid_initialization import random, kmeans_plus_plus, naive_sharding from .qkmeans_circuit import construct_circuit logger = logging.getLogger(__name__) class QKMeans(ClusterMixin, QuantumEstimator): """ The Quantum K-Means algorithm for classification Note: The naming conventions follow the KMeans from sklearn.cluster Example: Classify data using the Iris dataset. .. jupyter-execute:: import numpy as np import matplotlib.pyplot as plt from qlearnkit.algorithms import QKMeans from qiskit import BasicAer from qiskit.utils import QuantumInstance, algorithm_globals from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split seed = 42 algorithm_globals.random_seed = seed quantum_instance = QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=1024, optimization_level=1, seed_simulator=seed, seed_transpiler=seed) # Use iris data set for training and test data X, y = load_iris(return_X_y=True) num_features = 2 X = np.asarray([x[0:num_features] for x, y_ in zip(X, y) if y_ != 2]) y = np.asarray([y_ for x, y_ in zip(X, y) if y_ != 2]) qkmeans = QKMeans(n_clusters=3, quantum_instance=quantum_instance ) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=seed) qkmeans.fit(X_train) print(qkmeans.labels_) print(qkmeans.cluster_centers_) # Plot the results colors = ['blue', 'orange', 'green'] for i in range(X_train.shape[0]): plt.scatter(X_train[i, 0], X_train[i, 1], color=colors[qkmeans.labels_[i]]) plt.scatter(qkmeans.cluster_centers_[:, 0], qkmeans.cluster_centers_[:, 1], marker='*', c='g', s=150) plt.show() # Predict new points prediction = qkmeans.predict(X_test) print(prediction) """ def __init__( self, n_clusters: int = 6, quantum_instance: Optional[Union[QuantumInstance, Backend]] = None, *, init: Union[str, np.ndarray] = "kmeans++", n_init: int = 1, max_iter: int = 30, tol: float = 1e-4, random_state: int = 42, ): """ Args: n_clusters: The number of clusters to form as well as the number of centroids to generate. quantum_instance: the quantum instance to set. Can be a :class:`~qiskit.utils.QuantumInstance` or a :class:`~qiskit.providers.Backend` init: Method of initialization of centroids. n_init: Number of time the qkmeans algorithm will be run with different centroid seeds. max_iter: Maximum number of iterations of the qkmeans algorithm for a single run. tol: Tolerance with regard to the difference of the cluster centroids of two consecutive iterations to declare convergence. random_state: Determines random number generation for centroid initialization. """ super().__init__(quantum_instance=quantum_instance) self.n_clusters = n_clusters self.init = init self.max_iter = max_iter self.n_iter_ = 0 self.tol = tol self.n_init = n_init self.n_clusters = n_clusters self.random_state = random_state self.cluster_centers_ = None # do not rename : this name is needed for # `fit_predict` inherited method from # `ClusterMixin` base class self.labels_ = None def _init_centroid( self, X: np.ndarray, init: Union[str, np.ndarray], random_state: int ): """ Initializes the centroids according to the following criteria: 'kmeans++': Create cluster centroids using the k-means++ algorithm. 'random': Create random cluster centroids. 'naive_sharding': Create cluster centroids using deterministic naive sharding algorithm. If an array is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. Args: X: Training dataset. init: Method of initialization of centroids. random_state: Determines random number generation for centroid initialization. """ if isinstance(init, str): if init == "random": self.cluster_centers_ = random(X, self.n_clusters, random_state) elif init == "kmeans++": self.cluster_centers_ = kmeans_plus_plus( X, self.n_clusters, random_state ) elif init == "naive": self.cluster_centers_ = naive_sharding(X, self.n_clusters) else: raise ValueError( f"Unknown centroids initialization method {init}. " f"Expected random, kmeans++, naive or vector of " f"centers, but {init} was provided" ) else: self.cluster_centers_ = init def _recompute_centroids(self): """ Reassign centroid value to be the calculated mean value for each cluster. If a cluster is empty the corresponding centroid remains the same. """ for i in range(self.n_clusters): if np.sum(self.labels_ == i) != 0: self.cluster_centers_[i] = np.mean( self.X_train[self.labels_ == i], axis=0 ) def _compute_distances_centroids(self, counts: Dict[str, int]) -> List[int]: """ Compute distance, without explicitly measure it, of a point with respect to all the centroids using a dictionary of counts, which refers to the following circuit: .. parsed-literal:: ┌───┐ ┌───┐ |0anc>: ┤ H ├────────────■──────┤ H ├────────M └───┘ | └───┘ ┌───┐ ┌────┐ | |0>: ───┤ H ├───┤ U3 ├───X────────── └───┘ └────┘ | ┌───┐ ┌────┐ | |0>: ───┤ H ├───┤ U3 ├───X────────── └───┘ └────┘ Args: counts: Counts resulting after the simulation. Returns: The computed distance. """ distance_centroids = [0] * self.n_clusters x = 1 for i in range(0, self.n_clusters): binary = format(x, "b").zfill(self.n_clusters) distance_centroids[i] = counts[binary] if binary in counts else 0 x = x << 1 return distance_centroids def _get_distances_centroids(self, results: Result) -> np.ndarray: """ Retrieves distances from counts via :func:`_compute_distances_centroids` Args: results: :class:`~qiskit.Result` object of execution results Returns: np.ndarray of distances """ counts = results.get_counts() # compute distance from centroids using counts distances_list = list( map(lambda count: self._compute_distances_centroids(count), counts) ) return np.asarray(distances_list) def _construct_circuits(self, X_test: np.ndarray) -> List[QuantumCircuit]: """ Creates the circuits to be executed on the gated quantum computer for the classification process Args: X_test: The unclassified input data. Returns: List of quantum circuits created for the computation """ logger.info("Starting circuits construction ...") """ circuits = [] for xt in X_test: circuits.append(construct_circuit(xt, self.cluster_centers_, self.n_clusters)) """ circuits = parallel_map( construct_circuit, X_test, task_args=[self.cluster_centers_, self.n_clusters], ) logger.info("Done.") return circuits def fit(self, X: np.ndarray, y: np.ndarray = None): """ Fits the model using X as training dataset and y as training labels. For the qkmeans algorithm y is ignored. The fit model creates clusters from the training dataset given as input Args: X: training dataset y: Ignored. Kept here for API consistency Returns: trained QKMeans object """ self.X_train = np.asarray(X) self._init_centroid(self.X_train, self.init, self.random_state) self.labels_ = np.zeros(self.X_train.shape[0]) error = np.inf self.n_iter_ = 0 # while error not below tolerance, reiterate the # centroid computation for a maximum of `max_iter` times while error > self.tol and self.n_iter_ < self.max_iter: # construct circuits using training data # notice: the construction uses the centroids # which are recomputed after every iteration circuits = self._construct_circuits(self.X_train) # executing and computing distances from centroids results = self.execute(circuits) distances = self._get_distances_centroids(results) # assigning clusters and recomputing centroids self.labels_ = np.argmin(distances, axis=1) cluster_centers_old = deepcopy(self.cluster_centers_) self._recompute_centroids() # evaluating error and updating iteration count error = np.linalg.norm(self.cluster_centers_ - cluster_centers_old) self.n_iter_ = self.n_iter_ + 1 if self.n_iter_ == self.max_iter: warnings.warn( f"QKMeans failed to converge after " f"{self.max_iter} iterations." ) return self def predict(self, X_test: np.ndarray) -> np.ndarray: """Predict the labels of the provided data. Args: X_test: ndarray, test samples Returns: Index of the cluster each sample belongs to. """ if self.labels_ is None: raise NotFittedError( "This QKMeans instance is not fitted yet. " "Call 'fit' with appropriate arguments before using " "this estimator." ) circuits = self._construct_circuits(X_test) results = self.execute(circuits) distances = self._get_distances_centroids(results) predicted_labels = np.argmin(distances, axis=1) return predicted_labels def score( self, X: np.ndarray, y: np.ndarray = None, sample_weight: Optional[np.ndarray] = None, ) -> float: """ Returns Mean Silhouette Coefficient for all samples. Args: X: array of features y: Ignored. Not used, present here for API consistency by convention. sample_weight: Ignored. Not used, present here for API consistency by convention. Returns: Mean Silhouette Coefficient for all samples. """ from sklearn.metrics import silhouette_score predicted_labels = self.predict(X) return silhouette_score(X, predicted_labels)
https://github.com/qiskit-community/qiskit-pocket-guide
qiskit-community
from qiskit import QuantumCircuit,Aer,transpile from qiskit.visualization import plot_state_qsphere from math import pi backend = Aer.get_backend("aer_simulator_statevector") qc = QuantumCircuit(3) qc.rx(pi, 0) qc.ry(pi/8, 2) qc.swap(0, 2) qc.h(0) qc.cp(pi/2,0, 1) qc.cp(pi/4, 0, 2) qc.h(1) qc.cp(pi/2, 1, 2) qc.h(2) qc.save_statevector() tqc = transpile(qc, backend) job = backend.run(tqc) result = job.result() statevector = result.get_statevector() plot_state_qsphere(statevector) from qiskit.quantum_info import DensityMatrix, \ Operator from qiskit.visualization import plot_state_city dens_mat = 0.5*DensityMatrix.from_label('11') + \ 0.5*DensityMatrix.from_label('+0') tt_op = Operator.from_label('TT') dens_mat = dens_mat.evolve(tt_op) plot_state_city(dens_mat) from qiskit import QuantumCircuit,Aer,transpile from qiskit.visualization import plot_bloch_multivector from math import pi backend = Aer.get_backend("aer_simulator_statevector") qc = QuantumCircuit(3) qc.rx(pi, 0) qc.ry(pi/8, 2) qc.swap(0, 2) qc.h(0) qc.cp(pi/2,0, 1) qc.cp(pi/4, 0, 2) qc.h(1) qc.cp(pi/2, 1, 2) qc.h(2) qc.save_statevector() tqc = transpile(qc, backend) job = backend.run(tqc) result = job.result() statevector = result.get_statevector() plot_bloch_multivector(statevector) from qiskit.quantum_info import DensityMatrix, \ Operator from qiskit.visualization import plot_state_hinton dens_mat = 0.5*DensityMatrix.from_label('11') + \ 0.5*DensityMatrix.from_label('+0') tt_op = Operator.from_label('TT') dens_mat = dens_mat.evolve(tt_op) plot_state_hinton(dens_mat) from qiskit.quantum_info import DensityMatrix, \ Operator from qiskit.visualization import plot_state_paulivec dens_mat = 0.5*DensityMatrix.from_label('11') + \ 0.5*DensityMatrix.from_label('+0') tt_op = Operator.from_label('TT') dens_mat = dens_mat.evolve(tt_op) plot_state_paulivec(dens_mat)
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts # Import qubit states Zero (|0>) and One (|1>), Pauli operators (X, Y, Z), and the identity operator (I) from qiskit.opflow import Zero, One, X, Y, Z, I # Returns the XXX Heisenberg model for 3 spin-1/2 particles in a line def ex1_compute_H_heis3(): # FILL YOUR CODE IN HERE H = (I^X^X) + (X^X^I) + (I^Y^Y) + (Y^Y^I) + (I^Z^Z) + (Z^Z^I) # Return Hamiltonian return H from qc_grader.challenges.qgss_2022 import grade_lab4_ex1 # The grading function is expecting a PauliSumOp operator grade_lab4_ex1(ex1_compute_H_heis3()) # Returns the time evolution operator U_heis3(t) for a given time t assuming an XXX Heisenberg Hamiltonian for 3 spins-1/2 particles in a line def ex2_compute_U_heis3(t): # FILL YOUR CODE IN HERE H = ex1_compute_H_heis3() U = (t*H).exp_i() return U from qc_grader.challenges.qgss_2022 import grade_lab4_ex2 # The grading function is expecting a funtion that returns PauliSumOp operator grade_lab4_ex2(ex2_compute_U_heis3) # Define array of time points ts = np.linspace(0, np.pi, 100) # Define initial state |110> initial_state = One^One^Zero # Compute probability of remaining in |110> state over the array of time points # ~initial_state gives the bra of the initial state (<110|) # @ is short hand for matrix multiplication # ex2_compute_U_heis3(t) is the unitary time evolution at time t # t needs to be wrapped with float(t) to avoid a bug # (...).eval() returns the inner product <110|ex2_compute_U_heis3(t)|110> # np.abs(...)**2 is the modulus squared of the innner product which is the expectation value, or probability, of remaining in |110> probs_110 = [np.abs((~initial_state @ ex2_compute_U_heis3(float(t)) @ initial_state).eval())**2 for t in ts] # Plot evolution of |110> plt.plot(ts, probs_110, linewidth=2) plt.xlabel('time') plt.ylabel(r'probability of state $|110\rangle$') plt.title(r'Evolution of state $|110\rangle$ under $H_{Heis3}$') plt.ylim([-0.05,1.05]) plt.grid() plt.show() !pip install qiskit_ignis --quiet # Importing standard Qiskit modules from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile from qiskit.providers.aer import QasmSimulator from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.quantum_info import state_fidelity # load IBMQ Account data # IBMQ.save_account(TOKEN) # replace TOKEN with your API token string (https://quantum-computing.ibm.com/lab/docs/iql/manage/account/ibmq) provider = IBMQ.load_account() # Get backend for experiment provider = IBMQ.get_provider(hub='ibm-q') manila = provider.get_backend('ibmq_manila') # properties = manila.properties() # Simulated backend based on ibmq_manila's device noise profile sim_noisy_manila = QasmSimulator.from_backend(provider.get_backend('ibmq_manila')) # Noiseless simulated backend sim = QasmSimulator() # Parameterize variable t to be evaluated at t=pi later t = Parameter('t') # Build a subcircuit for XX(t) two-qubit gate def compute_XX_gate(t): XX_qr = QuantumRegister(2) XX_qc = QuantumCircuit(XX_qr, name='XX') XX_qc.ry(np.pi/2,[0,1]) XX_qc.cnot(0,1) XX_qc.rz(2 * t, 1) XX_qc.cnot(0,1) XX_qc.ry(-np.pi/2,[0,1]) # Convert custom quantum circuit into a gate XX = XX_qc.to_instruction() return XX # Build a subcircuit for YY(t) two-qubit gate def ex3_compute_YY_gate(t): # FILL YOUR CODE IN HERE YY_qr = QuantumRegister(2) YY_qc = QuantumCircuit(YY_qr, name='YY') YY_qc.s(0) YY_qc.s(1) XX = compute_XX_gate(t) YY_qc.append(XX, [YY_qr[0], YY_qr[1]]) YY_qc.sdg(0) YY_qc.sdg(1) YY = YY_qc.to_instruction() return YY from qc_grader.challenges.qgss_2022 import grade_lab4_ex3 # The grading function is expecting an Instruction grade_lab4_ex3(ex3_compute_YY_gate(t)) # Build a subcircuit for ZZ(t) two-qubit gate def ex4_compute_ZZ_gate(t): # FILL YOUR CODE IN HERE ZZ_qr = QuantumRegister(2) ZZ_qc = QuantumCircuit(ZZ_qr, name='ZZ') ZZ_qc.h(0) ZZ_qc.h(1) XX = compute_XX_gate(t) ZZ_qc.append(XX, [ZZ_qr[0], ZZ_qr[1]]) ZZ_qc.h(0) ZZ_qc.h(1) ZZ = ZZ_qc.to_instruction() return ZZ from qc_grader.challenges.qgss_2022 import grade_lab4_ex4 # The grading function is expecting an Instruction grade_lab4_ex4(ex4_compute_ZZ_gate(t)) # Combine subcircuits into a single multiqubit gate representing a single trotter step num_qubits = 3 # Define two-qubit interactions Parameterized by t XX = compute_XX_gate(t) YY = ex3_compute_YY_gate(t) ZZ = ex4_compute_ZZ_gate(t) Trot_qr = QuantumRegister(num_qubits) Trot_qc = QuantumCircuit(Trot_qr, name='Trot') for i in range(0, num_qubits - 1): Trot_qc.append(ZZ, [Trot_qr[i], Trot_qr[i+1]]) Trot_qc.append(YY, [Trot_qr[i], Trot_qr[i+1]]) Trot_qc.append(XX, [Trot_qr[i], Trot_qr[i+1]]) # Convert custom quantum circuit into a gate Trot_gate = Trot_qc.to_instruction() # Setup experiment parameters # The final time of the state evolution target_time = np.pi # DO NOT MODIFY # Number of trotter steps trotter_steps = 20 ### CAN BE >= 4 # Select which qubits to use for the simulation q_regs = [0,1,2] # Initialize quantum circuit for 3 qubits qr = QuantumRegister(5) qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on manila qubits (q_5, q_3, q_1) corresponding to the state |110>) qc.x([q_regs[2], q_regs[1]]) # For example this could be (q_regs=[2, 1, 0] which corresponds to => |110>) # Simulate time evolution under H_heis3 Hamiltonian for _ in range(trotter_steps): qc.append(Trot_gate, q_regs) # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({t: target_time/trotter_steps}) # Generate state tomography circuits to evaluate fidelity of simulation st_qcs = state_tomography_circuits(qc, q_regs) # Display circuit for confirmation # st_qcs[-1].decompose().draw() # view decomposition of trotter gates st_qcs[-1].draw() # only view trotter gates shots = 8192 reps = 4 # Pick the simulated or real backend for manila # backend = sim # Noiseless simulator backend = sim_noisy_manila # Simulator that mimics ibmq_manila # backend = manila # The real manila backend jobs = [] for _ in range(reps): # Execute job = execute(st_qcs, backend, shots=shots) print('Job ID', job.job_id()) jobs.append(job) for job in jobs: job_monitor(job) try: if job.error_message() is not None: print(job.error_message()) except: pass # Compute the state tomography based on the st_qcs quantum circuits and the results from those ciricuits def state_tomo(result, st_qcs): # The expected final state; necessary to determine state tomography fidelity target_state = (One^One^Zero).to_matrix() # DO NOT MODIFY # Fit state tomography results tomo_fitter = StateTomographyFitter(result, st_qcs) rho_fit = tomo_fitter.fit(method='lstsq') # Compute fidelity fid = state_fidelity(rho_fit, target_state) return fid # Compute tomography fidelities for each repetition fids = [] for job in jobs: fid = state_tomo(job.result(), st_qcs) fids.append(fid) # Share tomography fidelity of discord to compete and collaborate with other students print('state tomography fidelity on ' + str(backend) + ' = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids))) # Share what lectures and techniques were useful in optimizing your results print('Inspiration: Measurement error mitigation, Olivia Lanes\'s 2nd lecture') import qiskit.tools.jupyter %qiskit_version_table
https://github.com/shaurya010/Shor-s-Algorithm-
shaurya010
from qiskit import IBMQ from qiskit.utils import QuantumInstance from qiskit.algorithms import Shor IBMQ.enable_account('ENTER API KEY HERE') # Enter your API token here provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_qasm_simulator') # Specifies the quantum device print('\n Shors Algorithm') print('--------------------') print('\nExecuting...\n') factors = Shor(QuantumInstance(backend, shots=100, skip_qobj_validation=False)) result_dict = factors.factor(N=21, a=2) # Where N is the integer to be factored result = result_dict.factors print(result) print('\nPress any key to close') input()
https://github.com/1chooo/Quantum-Oracle
1chooo
#Program 2.1 Initialize qubit state from qiskit import QuantumCircuit import math qc = QuantumCircuit(4) qc.initialize([1,0],0) qc.initialize([0,1],1) qc.initialize([1/math.sqrt(2), 1/math.sqrt(2)],2) qc.initialize([1/math.sqrt(2), -1/math.sqrt(2)],3) qc.draw('mpl') #Program 2.2 Initialize qubit state and show Bloch sphere from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector import math qc = QuantumCircuit(4) qc.initialize([1,0],0) qc.initialize([0,1],1) qc.initialize([1/math.sqrt(2), 1/math.sqrt(2)],2) qc.initialize([1/math.sqrt(2), -1/math.sqrt(2)],3) state = Statevector.from_instruction(qc) display(qc.draw('mpl')) display(state.draw('bloch')) #Program 2.3 Show Bloch sphere from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector state = Statevector.from_instruction(qc) plot_bloch_multivector(state) #Program 2.4 Measure qubit state from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram qc = QuantumCircuit(4,4) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.initialize([0,1],2) qc.initialize([0,1],3) qc.measure([0,1,2,3],[0,1,2,3]) print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 2.5 Measure qubit state again from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram import math qc = QuantumCircuit(4,4) qc.initialize([1/math.sqrt(2), 1/math.sqrt(2)],0) qc.initialize([1/math.sqrt(2), -1/math.sqrt(2)],1) qc.initialize([1/math.sqrt(2), 1j/math.sqrt(2)],2) qc.initialize([1/math.sqrt(2), -1j/math.sqrt(2)],3) qc.measure([0,1,2,3],[0,1,2,3]) print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts)
https://github.com/PacktPublishing/Quantum-Computing-in-Practice-with-Qiskit-and-IBM-Quantum-Experience
PacktPublishing
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created Nov 2020 @author: hassi """ print("Ch 7: Understanding your circuits with the unitary simulator") print("------------------------------------------------------------") # Import the required Qiskit classes from qiskit import(QuantumCircuit, execute, Aer) # Import some math that we might need from math import pow import numpy as np np.set_printoptions(precision=3) # Create some circuits def circuits(): circuits=[] # Circuit 1 - one qubit in superposition circuit1 = QuantumCircuit(1,1) circuit1.h(0) # Circuit 2 - two qubits in superposition circuit2 = QuantumCircuit(2,2) circuit2.h([0,1]) # Circuit 3 - two entangled qubits circuit3 = QuantumCircuit(2,2) circuit3.h([0]) circuit3.cx(0,1) # Bundle the circuits in a list and return the list circuits=[circuit1,circuit2,circuit3] return(circuits) # Get unitary matrix from unitary simulator def show_unitary(circuit): global unit backend = Aer.get_backend('unitary_simulator') unit=execute(circuit, backend).result().get_unitary(circuit) print("Unitary matrix for the circuit:\n-------------------------------\n",unit) # Calculate and display the unitary matrix def calc_unitary(circuit,unitary): # Set number of shots shots=1000 # Calculate possible number of outcomes, 2^n qubits binary=int(pow(2,circuit.width()/2)) # Set the binary key for correct binary conversion bin_key='0'+str(int(circuit.width()/2))+'b' # Create a qubit vector based on all qubits in the ground state |0> and a results list for all possible outcomes. vector=[1] outcomes=[format(0, bin_key)+":"] for q in range (1,binary): vector.append(0) outcomes.append(format(q, bin_key)+":") qubits=np.array(vector) # Calculate the dot product of the unitary matrix and the qubits set by the qubits parameter. a_thru_d=np.dot(unitary,qubits) # Print the probabilities (counts) of the calculated outcome. calc_counts={} for out in range (0,len(a_thru_d)): calc_counts[outcomes[out]]=(int(pow(abs(a_thru_d[out]),2)*shots)) print("\nCalculated counts:\n------------------\n",calc_counts) # Automate creation of measurement gates from number of qubits # Run the circuit on the backend if circuit.width()==2: circuit.measure([0],[0]) else: circuit.measure([0,1],[0,1]) backend_count = Aer.get_backend('qasm_simulator') counts=execute(circuit, backend_count,shots=shots).result().get_counts(circuit) # Print the counts of the measured outcome. print("\nExecuted counts:\n----------------\n",counts,"\n") # Main loop def main(): user_input=1 print("\nEnter the number for the circuit to explore:\n--------------------------------------------") while user_input!=0: print("\n0. Exit \n1. One qubit superposition\n2. Two qubit superposition\n3. Two qubit entanglement\n4. Import QASM from IBM Quantum Experience") user_input=int(input()) if user_input!=0: if user_input==4: # From Qasm to Qiskit print("Paste a QASM string after stripping off any measurement gates:") qc = QuantumCircuit.from_qasm_str(input()) print("\nImported circuit:\n-----------------") else: circ=circuits() qc=circ[user_input-1] print("\nSelected circuit:\n-----------------") print(qc) show_unitary(qc) calc_unitary(qc,unit) else: print("Exiting") if __name__ == '__main__': main()
https://github.com/minminjao/qiskit1
minminjao
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from numpy import pi qreg_q = QuantumRegister(3, 'q') creg_c = ClassicalRegister(1, 'c') circuit = QuantumCircuit(qreg_q, creg_c) circuit.u(0, pi / 4, pi / 4, qreg_q[0]).c_if(creg_c, 0) circuit.x(qreg_q[0]) circuit.measure(qreg_q[0], creg_c[0]) from qiskit import Aer, execute simulator = Aer.get_backend('qasm_simulator') counts = execute(circuit, backend=simulator, shots=1000).result().get_counts(circuit) from qiskit.visualization import plot_histogram plot_histogram(counts)
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2021 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Tests for qiskit-terra/qiskit/quantum_info/synthesis/xx_decompose/qiskit.py . """ from statistics import mean import unittest import ddt import numpy as np from scipy.stats import unitary_group import qiskit from qiskit.circuit.quantumcircuit import QuantumCircuit from qiskit.quantum_info.operators import Operator from qiskit.quantum_info.synthesis.xx_decompose.decomposer import ( XXDecomposer, TwoQubitWeylDecomposition, ) from .utilities import canonical_matrix EPSILON = 1e-8 @ddt.ddt class TestXXDecomposer(unittest.TestCase): """Tests for decomposition of two-qubit unitaries over discrete gates from XX family.""" decomposer = XXDecomposer(euler_basis="PSX") def __init__(self, *args, seed=42, **kwargs): super().__init__(*args, **kwargs) self._random_state = np.random.Generator(np.random.PCG64(seed)) def test_random_compilation(self): """Test that compilation gives correct results.""" for _ in range(100): unitary = unitary_group.rvs(4, random_state=self._random_state) unitary /= np.linalg.det(unitary) ** (1 / 4) # decompose into CX, CX/2, and CX/3 circuit = self.decomposer(unitary, approximate=False) decomposed_unitary = Operator(circuit).data self.assertTrue(np.all(unitary - decomposed_unitary < EPSILON)) def test_compilation_determinism(self): """Test that compilation is stable under multiple calls.""" for _ in range(10): unitary = unitary_group.rvs(4, random_state=self._random_state) unitary /= np.linalg.det(unitary) ** (1 / 4) # decompose into CX, CX/2, and CX/3 circuit1 = self.decomposer(unitary, approximate=False) circuit2 = self.decomposer(unitary, approximate=False) self.assertEqual(circuit1, circuit2) @ddt.data(np.pi / 3, np.pi / 5, np.pi / 2) def test_default_embodiment(self, angle): """Test that _default_embodiment actually does yield XX gates.""" embodiment = self.decomposer._default_embodiment(angle) embodiment_matrix = Operator(embodiment).data self.assertTrue(np.all(canonical_matrix(angle, 0, 0) - embodiment_matrix < EPSILON)) def test_check_embodiment(self): """Test that XXDecomposer._check_embodiments correctly diagnoses il/legal embodiments.""" # build the member of the XX family corresponding to a single CX good_angle = np.pi / 2 good_embodiment = qiskit.QuantumCircuit(2) good_embodiment.h(0) good_embodiment.cx(0, 1) good_embodiment.h(1) good_embodiment.rz(np.pi / 2, 0) good_embodiment.rz(np.pi / 2, 1) good_embodiment.h(1) good_embodiment.h(0) good_embodiment.global_phase += np.pi / 4 # mismatch two members of the XX family bad_angle = np.pi / 10 bad_embodiment = qiskit.QuantumCircuit(2) # "self.assertDoesNotRaise" XXDecomposer(embodiments={good_angle: good_embodiment}) self.assertRaises( qiskit.exceptions.QiskitError, XXDecomposer, embodiments={bad_angle: bad_embodiment} ) def test_compilation_improvement(self): """Test that compilation to CX, CX/2, CX/3 improves over CX alone.""" slope, offset = (64 * 90) / 1000000, 909 / 1000000 + 1 / 1000 strength_table = self.decomposer._strength_to_infidelity( basis_fidelity={ strength: 1 - (slope * strength / (np.pi / 2) + offset) for strength in [np.pi / 2, np.pi / 4, np.pi / 6] }, approximate=True, ) limited_strength_table = {np.pi / 2: strength_table[np.pi / 2]} clever_costs = [] naive_costs = [] for _ in range(200): unitary = unitary_group.rvs(4, random_state=self._random_state) unitary /= np.linalg.det(unitary) ** (1 / 4) weyl_decomposition = TwoQubitWeylDecomposition(unitary) target = [getattr(weyl_decomposition, x) for x in ("a", "b", "c")] if target[-1] < -EPSILON: target = [np.pi / 2 - target[0], target[1], -target[2]] # decompose into CX, CX/2, and CX/3 clever_costs.append(self.decomposer._best_decomposition(target, strength_table)["cost"]) naive_costs.append( self.decomposer._best_decomposition(target, limited_strength_table)["cost"] ) # the following are taken from Fig 14 of the XX synthesis paper self.assertAlmostEqual(mean(clever_costs), 1.445e-2, delta=5e-3) self.assertAlmostEqual(mean(naive_costs), 2.058e-2, delta=5e-3) def test_error_on_empty_basis_fidelity(self): """Test synthesizing entangling gate with no entangling basis fails.""" decomposer = XXDecomposer(basis_fidelity={}) qc = QuantumCircuit(2) qc.cx(0, 1) mat = Operator(qc).to_matrix() with self.assertRaisesRegex( qiskit.exceptions.QiskitError, "Attempting to synthesize entangling gate with no controlled gates in basis set.", ): decomposer(mat) def test_no_error_on_empty_basis_fidelity_trivial_target(self): """Test synthesizing non-entangling gate with no entangling basis succeeds.""" decomposer = XXDecomposer(basis_fidelity={}) qc = QuantumCircuit(2) qc.x(0) qc.y(1) mat = Operator(qc).to_matrix() dqc = decomposer(mat) self.assertTrue(np.allclose(mat, Operator(dqc).to_matrix()))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit circ = QuantumCircuit(2, 2) circ.h(0) circ.cx(0, 1) circ.measure([0, 1], [0, 1]) circ.draw("mpl") from qiskit import transpile, schedule as build_schedule from qiskit.providers.fake_provider import FakeHanoi backend = FakeHanoi() transpiled_circ = transpile(circ, backend) # Undefined Hadamard is replaced by U1 schedule = build_schedule(transpiled_circ, backend) schedule.draw() from qiskit import pulse with pulse.build() as h_q0: pulse.play(pulse.library.Gaussian(duration=256, amp=0.2, sigma=50, name='custom'), pulse.DriveChannel(0)) circ.add_calibration('h', [0], h_q0) schedule = build_schedule(circ, backend) schedule.draw() circ = QuantumCircuit(2, 2) circ.x(0) circ.x(0) circ.x(1) circ.measure([0, 1], [0, 1]) circ.draw("mpl") schedule = build_schedule(circ, backend, method="as_late_as_possible") schedule.filter(channels=[pulse.DriveChannel(0), pulse.DriveChannel(1)]).draw() schedule = build_schedule(circ, backend, method="as_soon_as_possible") schedule.filter(channels=[pulse.DriveChannel(0), pulse.DriveChannel(1)]).draw() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/zeynepCankara/Introduction-Quantum-Programming
zeynepCankara
from matplotlib.pyplot import bar labels = [] L = [] for i in range(8): labels = labels + [i+1] L = L + [1] # visualize the values of elements in the list bar(labels,L) # # 1st step - query # # 4th element is marked flip the sign L[3] = -1 * L[3] # visualize the values of elements in the list bar(labels,L) # # 1st step - inversion # import numpy as np # find reflection over the mean sum = 0 for i in range(len(L)): sum += L[i] # mean of all values mean = sum / len(L) # reflection over the mean for i in range(len(L)): value = L[i] new_value = mean - (L[i]-mean) L[i] = new_value # visualize the values of elements in the list bar(labels,L) # # 2nd step - query # L[3] = -1 * L[3] # visualize the values of elements in the list bar(labels,L) # # 2nd step - inversion # sum = 0 for i in range(len(L)): sum += L[i] # mean of all values mean = sum / len(L) # reflection over the mean for i in range(len(L)): value = L[i] new_value = mean - (L[i]-mean) L[i] = new_value # visualize the values of elements in the list bar(labels,L) # # your code is here # # Construct the list with all elements 1 def query(L): L[3] = -1 * L[3] return L def inversion(L): sum = 0 for i in range(len(L)): sum += L[i] # mean of all values mean = sum / len(L) # reflection over the mean for i in range(len(L)): value = L[i] new_value = mean - (L[i]-mean) L[i] = new_value return L # iterate same steps 3 times for i in range(3): L = query(L) L = inversion(L) # visualize the values of elements in the list bar(labels,L) # # your code is here # labels = [] L = [] for i in range(16): labels = labels + [i+1] L = L + [1] def query(L): L[10] = -1 * L[10] return L def inversion(L): sum = 0 for i in range(len(L)): sum += L[i] # mean of all values mean = sum / len(L) # reflection over the mean for i in range(len(L)): value = L[i] new_value = mean - (L[i]-mean) L[i] = new_value return L # iterate the game 16 times for i in range(1, 17): L = query(L) L = inversion(L) print("Value of 11th element after ", i, " iteration: ", L[10] ) print() # visualize the values of elements in the list bar(labels,L) # # your code is here # N = 8 marked = 1 L = [] for i in range(N): L = L + [1/(N**0.5)] # print the elements of a given list with a given precision def print_list(L,precision): output = "" for i in range(len(L)): output = output + str(round(L[i],precision))+" " print(output) print_list(L,3) for i in range(10): print((i+1),"th iteration:") # flip the sign of the marked element L[marked] = -1 * L[marked] # print after query phase print_list(L,3) # summation of all values sum = 0 for i in range(len(L)): sum += L[i] # mean of all values mean = sum / len(L) print("mean = ",round(mean,3)) # reflection over mean for i in range(len(L)): value = L[i] new_value = mean - (L[i]-mean) L[i] = new_value # calculate the length of the list length_of_list = 0 for j in range(len(L)): length_of_list += L[j]*L[j] print("length of list is",round(length_of_list,3)) # print after inversion phase print_list(L,3) print() # visualize the values of elements in the list bar(labels,L) # # your code is here # N = 16 marked_elements = [0,2,9] L = [] for i in range(N): L = L + [1/(N**0.5)] # print the elements of a given list with a given precision def print_list(L,precision): output = "" for i in range(len(L)): output = output + str(round(L[i],precision))+" " print(output) print_list(L,3) for i in range(10): print((i+1),"th iteration:") # flip the sign of the marked element for marked in marked_elements: L[marked] = -1 * L[marked] # print after query phase print_list(L,3) # summation of all values sum = 0 for i in range(len(L)): sum += L[i] # mean of all values mean = sum / len(L) # reflection over mean for i in range(len(L)): value = L[i] new_value = mean - (L[i]-mean) L[i] = new_value # calculate the length of the list length_of_list = 0 for j in range(len(L)): length_of_list += L[j]*L[j] print("length of list is",round(length_of_list,3)) # print after inversion phase print_list(L,3) print() # # your code is here # N = 16 marked_elements = range(12) L = [] for i in range(N): L = L + [1/(N**0.5)] # print the elements of a given list with a given precision def print_list(L,precision): output = "" for i in range(len(L)): output = output + str(round(L[i],precision))+" " print(output) print_list(L,3) for i in range(10): print((i+1),"th iteration:") # flip the sign of the marked element for marked in marked_elements: L[marked] = -1 * L[marked] # print after query phase print_list(L,3) # summation of all values sum = 0 for i in range(len(L)): sum += L[i] # mean of all values mean = sum / len(L) # reflection over mean for i in range(len(L)): value = L[i] new_value = mean - (L[i]-mean) L[i] = new_value # calculate the length of the list length_of_list = 0 for j in range(len(L)): length_of_list += L[j]*L[j] print("length of list is",round(length_of_list,3)) # print after inversion phase print_list(L,3) print()
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=unused-argument """Waveform generators. A collection of functions that generate drawings from formatted input data. See py:mod:`qiskit.visualization.pulse_v2.types` for more info on the required data. In this module the input data is `types.PulseInstruction`. An end-user can write arbitrary functions that generate custom drawings. Generators in this module are called with the `formatter` and `device` kwargs. These data provides stylesheet configuration and backend system configuration. The format of generator is restricted to: ```python def my_object_generator(data: PulseInstruction, formatter: Dict[str, Any], device: DrawerBackendInfo) -> List[ElementaryData]: pass ``` Arbitrary generator function satisfying the above format can be accepted. Returned `ElementaryData` can be arbitrary subclasses that are implemented in the plotter API. """ from __future__ import annotations import re from fractions import Fraction from typing import Any import numpy as np from qiskit import pulse, circuit from qiskit.pulse import instructions, library from qiskit.visualization.exceptions import VisualizationError from qiskit.visualization.pulse_v2 import drawings, types, device_info def gen_filled_waveform_stepwise( data: types.PulseInstruction, formatter: dict[str, Any], device: device_info.DrawerBackendInfo ) -> list[drawings.LineData | drawings.BoxData | drawings.TextData]: """Generate filled area objects of the real and the imaginary part of waveform envelope. The curve of envelope is not interpolated nor smoothed and presented as stepwise function at each data point. Stylesheets: - The `fill_waveform` style is applied. Args: data: Waveform instruction data to draw. formatter: Dictionary of stylesheet settings. device: Backend configuration. Returns: List of `LineData`, `BoxData`, or `TextData` drawings. Raises: VisualizationError: When the instruction parser returns invalid data format. """ # generate waveform data waveform_data = _parse_waveform(data) channel = data.inst.channel # update metadata meta = waveform_data.meta qind = device.get_qubit_index(channel) meta.update({"qubit": qind if qind is not None else "N/A"}) if isinstance(waveform_data, types.ParsedInstruction): # Draw waveform with fixed shape xdata = waveform_data.xvals ydata = waveform_data.yvals # phase modulation if formatter["control.apply_phase_modulation"]: ydata = np.asarray(ydata, dtype=complex) * np.exp(1j * data.frame.phase) else: ydata = np.asarray(ydata, dtype=complex) return _draw_shaped_waveform( xdata=xdata, ydata=ydata, meta=meta, channel=channel, formatter=formatter ) elif isinstance(waveform_data, types.OpaqueShape): # Draw parametric pulse with unbound parameters # parameter name unbound_params = [] for pname, pval in data.inst.pulse.parameters.items(): if isinstance(pval, circuit.ParameterExpression): unbound_params.append(pname) pulse_data = data.inst.pulse if isinstance(pulse_data, library.SymbolicPulse): pulse_shape = pulse_data.pulse_type else: pulse_shape = "Waveform" return _draw_opaque_waveform( init_time=data.t0, duration=waveform_data.duration, pulse_shape=pulse_shape, pnames=unbound_params, meta=meta, channel=channel, formatter=formatter, ) else: raise VisualizationError("Invalid data format is provided.") def gen_ibmq_latex_waveform_name( data: types.PulseInstruction, formatter: dict[str, Any], device: device_info.DrawerBackendInfo ) -> list[drawings.TextData]: r"""Generate the formatted instruction name associated with the waveform. Channel name and ID string are removed and the rotation angle is expressed in units of pi. The controlled rotation angle associated with the CR pulse name is divided by 2. Note that in many scientific articles the controlled rotation angle implies the actual rotation angle, but in IQX backend the rotation angle represents the difference between rotation angles with different control qubit states. For example: - 'X90p_d0_abcdefg' is converted into 'X(\frac{\pi}{2})' - 'CR90p_u0_abcdefg` is converted into 'CR(\frac{\pi}{4})' Stylesheets: - The `annotate` style is applied. Notes: This generator can convert pulse names used in the IQX backends. If pulses are provided by the third party providers or the user defined, the generator output may be the as-is pulse name. Args: data: Waveform instruction data to draw. formatter: Dictionary of stylesheet settings. device: Backend configuration. Returns: List of `TextData` drawings. """ if data.is_opaque: return [] style = { "zorder": formatter["layer.annotate"], "color": formatter["color.annotate"], "size": formatter["text_size.annotate"], "va": "center", "ha": "center", } if isinstance(data.inst, pulse.instructions.Acquire): systematic_name = "Acquire" latex_name = None elif isinstance(data.inst, instructions.Delay): systematic_name = data.inst.name or "Delay" latex_name = None else: pulse_data = data.inst.pulse if pulse_data.name: systematic_name = pulse_data.name else: if isinstance(pulse_data, library.SymbolicPulse): systematic_name = pulse_data.pulse_type else: systematic_name = "Waveform" template = r"(?P<op>[A-Z]+)(?P<angle>[0-9]+)?(?P<sign>[pm])_(?P<ch>[dum])[0-9]+" match_result = re.match(template, systematic_name) if match_result is not None: match_dict = match_result.groupdict() sign = "" if match_dict["sign"] == "p" else "-" if match_dict["op"] == "CR": # cross resonance if match_dict["ch"] == "u": op_name = r"{\rm CR}" else: op_name = r"\overline{\rm CR}" # IQX name def is not standard. Echo CR is annotated with pi/4 rather than pi/2 angle_val = match_dict["angle"] frac = Fraction(int(int(angle_val) / 2), 180) if frac.numerator == 1: angle = rf"\pi/{frac.denominator:d}" else: angle = r"{num:d}/{denom:d} \pi".format( num=frac.numerator, denom=frac.denominator ) else: # single qubit pulse op_name = r"{{\rm {}}}".format(match_dict["op"]) angle_val = match_dict["angle"] if angle_val is None: angle = r"\pi" else: frac = Fraction(int(angle_val), 180) if frac.numerator == 1: angle = rf"\pi/{frac.denominator:d}" else: angle = r"{num:d}/{denom:d} \pi".format( num=frac.numerator, denom=frac.denominator ) latex_name = rf"{op_name}({sign}{angle})" else: latex_name = None text = drawings.TextData( data_type=types.LabelType.PULSE_NAME, channels=data.inst.channel, xvals=[data.t0 + 0.5 * data.inst.duration], yvals=[-formatter["label_offset.pulse_name"]], text=systematic_name, latex=latex_name, ignore_scaling=True, styles=style, ) return [text] def gen_waveform_max_value( data: types.PulseInstruction, formatter: dict[str, Any], device: device_info.DrawerBackendInfo ) -> list[drawings.TextData]: """Generate the annotation for the maximum waveform height for the real and the imaginary part of the waveform envelope. Maximum values smaller than the vertical resolution limit is ignored. Stylesheets: - The `annotate` style is applied. Args: data: Waveform instruction data to draw. formatter: Dictionary of stylesheet settings. device: Backend configuration. Returns: List of `TextData` drawings. """ if data.is_opaque: return [] style = { "zorder": formatter["layer.annotate"], "color": formatter["color.annotate"], "size": formatter["text_size.annotate"], "ha": "center", } # only pulses. if isinstance(data.inst, instructions.Play): # pulse operand = data.inst.pulse if isinstance(operand, (pulse.ParametricPulse, pulse.SymbolicPulse)): pulse_data = operand.get_waveform() else: pulse_data = operand xdata = np.arange(pulse_data.duration) + data.t0 ydata = pulse_data.samples else: return [] # phase modulation if formatter["control.apply_phase_modulation"]: ydata = np.asarray(ydata, dtype=complex) * np.exp(1j * data.frame.phase) else: ydata = np.asarray(ydata, dtype=complex) texts = [] # max of real part re_maxind = np.argmax(np.abs(ydata.real)) if np.abs(ydata.real[re_maxind]) > 0.01: # generator shows only 2 digits after the decimal point. if ydata.real[re_maxind] > 0: max_val = f"{ydata.real[re_maxind]:.2f}\n\u25BE" re_style = {"va": "bottom"} else: max_val = f"\u25B4\n{ydata.real[re_maxind]:.2f}" re_style = {"va": "top"} re_style.update(style) re_text = drawings.TextData( data_type=types.LabelType.PULSE_INFO, channels=data.inst.channel, xvals=[xdata[re_maxind]], yvals=[ydata.real[re_maxind]], text=max_val, styles=re_style, ) texts.append(re_text) # max of imag part im_maxind = np.argmax(np.abs(ydata.imag)) if np.abs(ydata.imag[im_maxind]) > 0.01: # generator shows only 2 digits after the decimal point. if ydata.imag[im_maxind] > 0: max_val = f"{ydata.imag[im_maxind]:.2f}\n\u25BE" im_style = {"va": "bottom"} else: max_val = f"\u25B4\n{ydata.imag[im_maxind]:.2f}" im_style = {"va": "top"} im_style.update(style) im_text = drawings.TextData( data_type=types.LabelType.PULSE_INFO, channels=data.inst.channel, xvals=[xdata[im_maxind]], yvals=[ydata.imag[im_maxind]], text=max_val, styles=im_style, ) texts.append(im_text) return texts def _draw_shaped_waveform( xdata: np.ndarray, ydata: np.ndarray, meta: dict[str, Any], channel: pulse.channels.PulseChannel, formatter: dict[str, Any], ) -> list[drawings.LineData | drawings.BoxData | drawings.TextData]: """A private function that generates drawings of stepwise pulse lines. Args: xdata: Array of horizontal coordinate of waveform envelope. ydata: Array of vertical coordinate of waveform envelope. meta: Metadata dictionary of the waveform. channel: Channel associated with the waveform to draw. formatter: Dictionary of stylesheet settings. Returns: List of drawings. Raises: VisualizationError: When the waveform color for channel is not defined. """ fill_objs: list[drawings.LineData | drawings.BoxData | drawings.TextData] = [] resolution = formatter["general.vertical_resolution"] # stepwise interpolation xdata: np.ndarray = np.concatenate((xdata, [xdata[-1] + 1])) ydata = np.repeat(ydata, 2) re_y = np.real(ydata) im_y = np.imag(ydata) time: np.ndarray = np.concatenate(([xdata[0]], np.repeat(xdata[1:-1], 2), [xdata[-1]])) # setup style options style = { "alpha": formatter["alpha.fill_waveform"], "zorder": formatter["layer.fill_waveform"], "linewidth": formatter["line_width.fill_waveform"], "linestyle": formatter["line_style.fill_waveform"], } try: color_real, color_imag = formatter["color.waveforms"][channel.prefix.upper()] except KeyError as ex: raise VisualizationError( f"Waveform color for channel type {channel.prefix} is not defined" ) from ex # create real part if np.any(re_y): # data compression re_valid_inds = _find_consecutive_index(re_y, resolution) # stylesheet re_style = {"color": color_real} re_style.update(style) # metadata re_meta = {"data": "real"} re_meta.update(meta) # active xy data re_xvals = time[re_valid_inds] re_yvals = re_y[re_valid_inds] # object real = drawings.LineData( data_type=types.WaveformType.REAL, channels=channel, xvals=re_xvals, yvals=re_yvals, fill=formatter["control.fill_waveform"], meta=re_meta, styles=re_style, ) fill_objs.append(real) # create imaginary part if np.any(im_y): # data compression im_valid_inds = _find_consecutive_index(im_y, resolution) # stylesheet im_style = {"color": color_imag} im_style.update(style) # metadata im_meta = {"data": "imag"} im_meta.update(meta) # active xy data im_xvals = time[im_valid_inds] im_yvals = im_y[im_valid_inds] # object imag = drawings.LineData( data_type=types.WaveformType.IMAG, channels=channel, xvals=im_xvals, yvals=im_yvals, fill=formatter["control.fill_waveform"], meta=im_meta, styles=im_style, ) fill_objs.append(imag) return fill_objs def _draw_opaque_waveform( init_time: int, duration: int, pulse_shape: str, pnames: list[str], meta: dict[str, Any], channel: pulse.channels.PulseChannel, formatter: dict[str, Any], ) -> list[drawings.LineData | drawings.BoxData | drawings.TextData]: """A private function that generates drawings of stepwise pulse lines. Args: init_time: Time when the opaque waveform starts. duration: Duration of opaque waveform. This can be None or ParameterExpression. pulse_shape: String that represents pulse shape. pnames: List of parameter names. meta: Metadata dictionary of the waveform. channel: Channel associated with the waveform to draw. formatter: Dictionary of stylesheet settings. Returns: List of drawings. """ fill_objs: list[drawings.LineData | drawings.BoxData | drawings.TextData] = [] fc, ec = formatter["color.opaque_shape"] # setup style options box_style = { "zorder": formatter["layer.fill_waveform"], "alpha": formatter["alpha.opaque_shape"], "linewidth": formatter["line_width.opaque_shape"], "linestyle": formatter["line_style.opaque_shape"], "facecolor": fc, "edgecolor": ec, } if duration is None or isinstance(duration, circuit.ParameterExpression): duration = formatter["box_width.opaque_shape"] box_obj = drawings.BoxData( data_type=types.WaveformType.OPAQUE, channels=channel, xvals=[init_time, init_time + duration], yvals=[ -0.5 * formatter["box_height.opaque_shape"], 0.5 * formatter["box_height.opaque_shape"], ], meta=meta, ignore_scaling=True, styles=box_style, ) fill_objs.append(box_obj) # parameter name func_repr = "{func}({params})".format(func=pulse_shape, params=", ".join(pnames)) text_style = { "zorder": formatter["layer.annotate"], "color": formatter["color.annotate"], "size": formatter["text_size.annotate"], "va": "bottom", "ha": "center", } text_obj = drawings.TextData( data_type=types.LabelType.OPAQUE_BOXTEXT, channels=channel, xvals=[init_time + 0.5 * duration], yvals=[0.5 * formatter["box_height.opaque_shape"]], text=func_repr, ignore_scaling=True, styles=text_style, ) fill_objs.append(text_obj) return fill_objs def _find_consecutive_index(data_array: np.ndarray, resolution: float) -> np.ndarray: """A helper function to return non-consecutive index from the given list. This drastically reduces memory footprint to represent a drawing, especially for samples of very long flat-topped Gaussian pulses. Tiny value fluctuation smaller than `resolution` threshold is removed. Args: data_array: The array of numbers. resolution: Minimum resolution of sample values. Returns: The compressed data array. """ try: vector = np.asarray(data_array, dtype=float) diff = np.diff(vector) diff[np.where(np.abs(diff) < resolution)] = 0 # keep left and right edges consecutive_l = np.insert(diff.astype(bool), 0, True) consecutive_r = np.append(diff.astype(bool), True) return consecutive_l | consecutive_r except ValueError: return np.ones_like(data_array).astype(bool) def _parse_waveform( data: types.PulseInstruction, ) -> types.ParsedInstruction | types.OpaqueShape: """A helper function that generates an array for the waveform with instruction metadata. Args: data: Instruction data set Raises: VisualizationError: When invalid instruction type is loaded. Returns: A data source to generate a drawing. """ inst = data.inst meta: dict[str, Any] = {} if isinstance(inst, instructions.Play): # pulse operand = inst.pulse if isinstance(operand, (pulse.ParametricPulse, pulse.SymbolicPulse)): # parametric pulse params = operand.parameters duration = params.pop("duration", None) if isinstance(duration, circuit.Parameter): duration = None if isinstance(operand, library.SymbolicPulse): pulse_shape = operand.pulse_type else: pulse_shape = "Waveform" meta["waveform shape"] = pulse_shape meta.update( { key: val.name if isinstance(val, circuit.Parameter) else val for key, val in params.items() } ) if data.is_opaque: # parametric pulse with unbound parameter if duration: meta.update( { "duration (cycle time)": inst.duration, "duration (sec)": inst.duration * data.dt if data.dt else "N/A", } ) else: meta.update({"duration (cycle time)": "N/A", "duration (sec)": "N/A"}) meta.update( { "t0 (cycle time)": data.t0, "t0 (sec)": data.t0 * data.dt if data.dt else "N/A", "phase": data.frame.phase, "frequency": data.frame.freq, "name": inst.name, } ) return types.OpaqueShape(duration=duration, meta=meta) else: # fixed shape parametric pulse pulse_data = operand.get_waveform() else: # waveform pulse_data = operand xdata = np.arange(pulse_data.duration) + data.t0 ydata = pulse_data.samples elif isinstance(inst, instructions.Delay): # delay xdata = np.arange(inst.duration) + data.t0 ydata = np.zeros(inst.duration) elif isinstance(inst, instructions.Acquire): # acquire xdata = np.arange(inst.duration) + data.t0 ydata = np.ones(inst.duration) acq_data = { "memory slot": inst.mem_slot.name, "register slot": inst.reg_slot.name if inst.reg_slot else "N/A", "discriminator": inst.discriminator.name if inst.discriminator else "N/A", "kernel": inst.kernel.name if inst.kernel else "N/A", } meta.update(acq_data) else: raise VisualizationError( "Unsupported instruction {inst} by " "filled envelope.".format(inst=inst.__class__.__name__) ) meta.update( { "duration (cycle time)": inst.duration, "duration (sec)": inst.duration * data.dt if data.dt else "N/A", "t0 (cycle time)": data.t0, "t0 (sec)": data.t0 * data.dt if data.dt else "N/A", "phase": data.frame.phase, "frequency": data.frame.freq, "name": inst.name, } ) return types.ParsedInstruction(xvals=xdata, yvals=ydata, meta=meta)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# useful additional packages import matplotlib.pyplot as plt import numpy as np import networkx as nx from qiskit_aer import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit_optimization.applications import Maxcut, Tsp from qiskit.algorithms.minimum_eigensolvers import SamplingVQE, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import SPSA from qiskit.utils import algorithm_globals from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer # Generating a graph of 4 nodes n = 4 # Number of nodes in graph G = nx.Graph() G.add_nodes_from(np.arange(0, n, 1)) elist = [(0, 1, 1.0), (0, 2, 1.0), (0, 3, 1.0), (1, 2, 1.0), (2, 3, 1.0)] # tuple is (i,j,weight) where (i,j) is the edge G.add_weighted_edges_from(elist) colors = ["r" for node in G.nodes()] pos = nx.spring_layout(G) def draw_graph(G, colors, pos): default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=0.8, ax=default_axes, pos=pos) edge_labels = nx.get_edge_attributes(G, "weight") nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=edge_labels) draw_graph(G, colors, pos) # Computing the weight matrix from the random graph w = np.zeros([n, n]) for i in range(n): for j in range(n): temp = G.get_edge_data(i, j, default=0) if temp != 0: w[i, j] = temp["weight"] print(w) best_cost_brute = 0 for b in range(2**n): x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))] cost = 0 for i in range(n): for j in range(n): cost = cost + w[i, j] * x[i] * (1 - x[j]) if best_cost_brute < cost: best_cost_brute = cost xbest_brute = x print("case = " + str(x) + " cost = " + str(cost)) colors = ["r" if xbest_brute[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) print("\nBest solution = " + str(xbest_brute) + " cost = " + str(best_cost_brute)) max_cut = Maxcut(w) qp = max_cut.to_quadratic_program() print(qp.prettyprint()) qubitOp, offset = qp.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) # solving Quadratic Program using exact classical eigensolver exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) result = exact.solve(qp) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # construct SamplingVQE optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) # run SamplingVQE result = vqe.compute_minimum_eigenvalue(qubitOp) # print results x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) # plot results colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) colors = ["r" if result.x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # Generating a graph of 3 nodes n = 3 num_qubits = n**2 tsp = Tsp.create_random_instance(n, seed=123) adj_matrix = nx.to_numpy_array(tsp.graph) print("distance\n", adj_matrix) colors = ["r" for node in tsp.graph.nodes] pos = [tsp.graph.nodes[node]["pos"] for node in tsp.graph.nodes] draw_graph(tsp.graph, colors, pos) from itertools import permutations def brute_force_tsp(w, N): a = list(permutations(range(1, N))) last_best_distance = 1e10 for i in a: distance = 0 pre_j = 0 for j in i: distance = distance + w[j, pre_j] pre_j = j distance = distance + w[pre_j, 0] order = (0,) + i if distance < last_best_distance: best_order = order last_best_distance = distance print("order = " + str(order) + " Distance = " + str(distance)) return last_best_distance, best_order best_distance, best_order = brute_force_tsp(adj_matrix, n) print( "Best order from brute force = " + str(best_order) + " with total distance = " + str(best_distance) ) def draw_tsp_solution(G, order, colors, pos): G2 = nx.DiGraph() G2.add_nodes_from(G) n = len(order) for i in range(n): j = (i + 1) % n G2.add_edge(order[i], order[j], weight=G[order[i]][order[j]]["weight"]) default_axes = plt.axes(frameon=True) nx.draw_networkx( G2, node_color=colors, edge_color="b", node_size=600, alpha=0.8, ax=default_axes, pos=pos ) edge_labels = nx.get_edge_attributes(G2, "weight") nx.draw_networkx_edge_labels(G2, pos, font_color="b", edge_labels=edge_labels) draw_tsp_solution(tsp.graph, best_order, colors, pos) qp = tsp.to_quadratic_program() print(qp.prettyprint()) from qiskit_optimization.converters import QuadraticProgramToQubo qp2qubo = QuadraticProgramToQubo() qubo = qp2qubo.convert(qp) qubitOp, offset = qubo.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) result = exact.solve(qubo) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("tsp objective:", result.eigenvalue.real + offset) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) result = vqe.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Utility functions for debugging and testing. """ from typing import Tuple import numpy as np from scipy.stats import unitary_group import qiskit.transpiler.synthesis.aqc.fast_gradient.fast_grad_utils as fgu def relative_error(a_mat: np.ndarray, b_mat: np.ndarray) -> float: """ Computes relative residual between two matrices in Frobenius norm. """ return float(np.linalg.norm(a_mat - b_mat, "fro")) / float(np.linalg.norm(b_mat, "fro")) def make_unit_vector(pos: int, nbits: int) -> np.ndarray: """ Makes a unit vector ``e = (0 ... 0 1 0 ... 0)`` of size ``2^n`` with unit at the position ``num``. **Note**: result depends on bit ordering. Args: pos: position of unit in vector. nbits: number of meaningful bit in the number "pos". Returns: unit vector of size ``2^n``. """ vec = np.zeros((2**nbits,), dtype=np.int64) vec[fgu.reverse_bits(pos, nbits, enable=True)] = 1 return vec def eye_int(n: int) -> np.ndarray: """ Creates an identity matrix with integer entries. Args: n: number of bits. Returns: unit matrix of size ``2^n`` with integer entries. """ return np.eye(2**n, dtype=np.int64) def kron3(a_mat: np.ndarray, b_mat: np.ndarray, c_mat: np.ndarray) -> np.ndarray: """ Computes Kronecker product of 3 matrices. """ return np.kron(a_mat, np.kron(b_mat, c_mat)) def kron5( a_mat: np.ndarray, b_mat: np.ndarray, c_mat: np.ndarray, d_mat: np.ndarray, e_mat: np.ndarray ) -> np.ndarray: """ Computes Kronecker product of 5 matrices. """ return np.kron(np.kron(np.kron(np.kron(a_mat, b_mat), c_mat), d_mat), e_mat) def rand_matrix(dim: int, kind: str = "complex") -> np.ndarray: """ Generates a random complex or integer value matrix. Args: dim: matrix size dim-x-dim. kind: "complex" or "randint". Returns: a random matrix. """ if kind == "complex": return ( np.random.rand(dim, dim).astype(np.cfloat) + np.random.rand(dim, dim).astype(np.cfloat) * 1j ) else: return np.random.randint(low=1, high=100, size=(dim, dim), dtype=np.int64) def make_test_matrices2x2(n: int, k: int, kind: str = "complex") -> Tuple[np.ndarray, np.ndarray]: """ Creates a ``2^n x 2^n`` random matrix made as a Kronecker product of identity ones and a single 1-qubit gate. This models a layer in quantum circuit with an arbitrary 1-qubit gate somewhere in the middle. Args: n: number of qubits. k: index of qubit a 1-qubit gate is acting on. kind: entries of the output matrix are defined as: "complex", "primes" or "randint". Returns: A tuple of (1) ``2^n x 2^n`` random matrix; (2) ``2 x 2`` matrix of 1-qubit gate used for matrix construction. """ if kind == "primes": a_mat = np.asarray([[2, 3], [5, 7]], dtype=np.int64) else: a_mat = rand_matrix(dim=2, kind=kind) m_mat = kron3(eye_int(k), a_mat, eye_int(n - k - 1)) return m_mat, a_mat def make_test_matrices4x4( n: int, j: int, k: int, kind: str = "complex" ) -> Tuple[np.ndarray, np.ndarray]: """ Creates a ``2^n x 2^n`` random matrix made as a Kronecker product of identity ones and a single 2-qubit gate. This models a layer in quantum circuit with an arbitrary 2-qubit gate somewhere in the middle. Args: n: number of qubits. j: index of the first qubit the 2-qubit gate acting on. k: index of the second qubit the 2-qubit gate acting on. kind: entries of the output matrix are defined as: "complex", "primes" or "randint". Returns: A tuple of (1) ``2^n x 2^n`` random matrix; (2) ``4 x 4`` matrix of 2-qubit gate used for matrix construction. """ if kind == "primes": a_mat = np.asarray([[2, 3], [5, 7]], dtype=np.int64) b_mat = np.asarray([[11, 13], [17, 19]], dtype=np.int64) c_mat = np.asarray([[47, 53], [41, 43]], dtype=np.int64) d_mat = np.asarray([[31, 37], [23, 29]], dtype=np.int64) else: a_mat, b_mat = rand_matrix(dim=2, kind=kind), rand_matrix(dim=2, kind=kind) c_mat, d_mat = rand_matrix(dim=2, kind=kind), rand_matrix(dim=2, kind=kind) if j < k: m_mat = kron5(eye_int(j), a_mat, eye_int(k - j - 1), b_mat, eye_int(n - k - 1)) + kron5( eye_int(j), c_mat, eye_int(k - j - 1), d_mat, eye_int(n - k - 1) ) else: m_mat = kron5(eye_int(k), b_mat, eye_int(j - k - 1), a_mat, eye_int(n - j - 1)) + kron5( eye_int(k), d_mat, eye_int(j - k - 1), c_mat, eye_int(n - j - 1) ) g_mat = np.kron(a_mat, b_mat) + np.kron(c_mat, d_mat) return m_mat, g_mat def rand_circuit(num_qubits: int, depth: int) -> np.ndarray: """ Generates a random circuit of unit blocks for debugging and testing. """ blocks = np.tile(np.arange(num_qubits).reshape(num_qubits, 1), depth) for i in range(depth): np.random.shuffle(blocks[:, i]) return blocks[0:2, :].copy() def rand_su_mat(dim: int) -> np.ndarray: """ Generates a random SU matrix. Args: dim: matrix size ``dim-x-dim``. Returns: random SU matrix. """ u_mat = unitary_group.rvs(dim) u_mat /= np.linalg.det(u_mat) ** (1.0 / float(dim)) return u_mat
https://github.com/epelaaez/QuantumLibrary
epelaaez
import numpy as np from qiskit.quantum_info import state_fidelity def schmidt_decomp_even(state): n = int(np.log2(len(state))) mat = state.reshape(2 ** (n // 2), 2 ** (n // 2)) u, s, v = np.linalg.svd(mat) a = [u[:, i].reshape(2 ** (n // 2), 1) for i in range(2 ** (n // 2))] b = [v[i, :].reshape(2 ** (n // 2), 1) for i in range(2 ** (n // 2))] new_state = np.sum([np.kron(a[i], b[i]) * s[i] for i in range(2 ** (n // 2))], axis=0) assert np.isclose(state_fidelity(state, new_state), 1), "Didnt work :(" return a, b, s n = 2 # must be even state = np.random.rand(2 ** n) state = state / np.linalg.norm(state) a, b, s = schmidt_decomp_even(state) from qiskit import QuantumCircuit, transpile from qiskit.quantum_info import Statevector, random_statevector from sympy import Matrix qc = QuantumCircuit(n) qc.ry(2 * np.arccos(s[0]), 0) qc.draw() Matrix(np.round(Statevector(qc), 5)) qc.cx(0, 1) qc.draw() Matrix(np.round(Statevector(qc), 5)) theta = 2 * np.arccos(a[0][0][0]) phi = np.real(np.log(a[0][1][0] / np.sin(np.arccos(a[0][0][0])), dtype='complex') / 1j) lamb = np.real(np.log(-a[1][0][0] / np.sin(np.arccos(a[0][0][0])), dtype='complex') / 1j) qc.u(theta, phi, lamb, 0) qc.draw() Matrix(np.round(Statevector(qc), 5)) theta = 2 * np.arccos(b[0][0][0]) phi = np.real(np.log(b[0][1][0] / np.sin(np.arccos(b[0][0][0])), dtype='complex') / 1j) lamb = np.real(np.log(-b[1][0][0] / np.sin(np.arccos(b[0][0][0])), dtype='complex') / 1j) qc.u(theta, phi, lamb, 1) qc.draw() Matrix(np.round(Statevector(qc.reverse_bits()), 5)) Matrix(np.round(state, 5)) def two_qubit_state(state): qc = QuantumCircuit(2) # Normalize state and get Schmidt decomposition state = state / np.linalg.norm(state) a, b, s = schmidt_decomp_even(state) # Phase 1 qc.ry(2 * np.arccos(s[0]), 0) # Phase 2 qc.cx(0, 1) # Phase 3 qc.unitary(np.block([a[0].flatten().T, a[1].flatten().T]).reshape(2, 2).T, 0) # Phase 4 qc.unitary(np.block([b[0].flatten().T, b[1].flatten().T]).reshape(2, 2).T, 1) return qc state = random_statevector(4).data qc = two_qubit_state(state) qc.decompose().draw() circ = Statevector(qc.reverse_bits()).data Matrix(np.round(circ, 5)) Matrix(np.round(state, 5)) for _ in range(100): state = random_statevector(4).data qc = two_qubit_state(state) circ = Statevector(qc.reverse_bits()).data assert np.allclose(circ, state)
https://github.com/anpaschool/quantum-computing
anpaschool
from qiskit import * from math import pi import numpy as np from qiskit.visualization import * import matplotlib.pyplot as plt qc = QuantumCircuit(1) qc.h(0) qc.draw(output='mpl') # Let's see the result backend = Aer.get_backend('statevector_simulator') out = execute(qc,backend).result().get_statevector() print(out) plot_bloch_multivector(out) # Run the quantum circuit on a unitary simulator backend backend = Aer.get_backend('unitary_simulator') job = execute(qc, backend) result = job.result() # Show the results print(result.get_unitary(qc, decimals=3)) qc = QuantumCircuit(2) qc.h(0) qc.x(1) qc.barrier() qc.h(1) qc.draw(output='mpl') # Let's see the result backend = Aer.get_backend('statevector_simulator') out = execute(qc,backend).result().get_statevector() print(out) plot_bloch_multivector(out) # Run the quantum circuit on a unitary simulator backend backend = Aer.get_backend('unitary_simulator') job = execute(qc, backend) result = job.result() # Show the results print(result.get_unitary(qc, decimals=3)) qc = QuantumCircuit(3) qc.h(0) qc.h(1) qc.h(2) qc.barrier() qc1 = qc.copy() qc.x(0) qc.y(1) qc.z(2) qc.barrier() qc2 = qc.copy() qc.x(0) qc.y(1) qc.z(2) qc.barrier() qc3 = qc.copy() qc.h(0) qc.h(1) qc.h(2) qc.draw(output='mpl') # Let's see the result backend = Aer.get_backend('statevector_simulator') out = execute(qc,backend).result().get_statevector() print(out) plot_bloch_multivector(out) # Run the quantum circuit on a unitary simulator backend backend = Aer.get_backend('unitary_simulator') job = execute(qc, backend) result = job.result() # Show the results print(result.get_unitary(qc, decimals=3)) # Let's see the result backend = Aer.get_backend('statevector_simulator') out = execute(qc1,backend).result().get_statevector() print(out) plot_bloch_multivector(out) # Let's see the result backend = Aer.get_backend('statevector_simulator') out = execute(qc2,backend).result().get_statevector() print(out) plot_bloch_multivector(out) # Let's see the result backend = Aer.get_backend('statevector_simulator') out = execute(qc3,backend).result().get_statevector() print(out) plot_bloch_multivector(out) qc = QuantumCircuit(1) qc.s(0) qc.draw(output='mpl') qc = QuantumCircuit(1) qc.sdg(0) qc.draw(output='mpl') qc = QuantumCircuit(1) qc.t(0) qc.draw(output='mpl') qc = QuantumCircuit(1) qc.tdg(0) qc.draw(output='mpl') qc = QuantumCircuit(1) qc.x(0) qc.barrier() qc1 = qc.copy() qc.h(0) qc.barrier() qc2 = qc.copy() qc.s(0) qc.barrier() qc3 = qc.copy() qc.s(0) qc.barrier() qc4 = qc.copy() qc.s(0) qc.barrier() qc5 = qc.copy() qc.sdg(0) qc.h(0) qc.barrier() qc6 = qc.copy() qc.draw(output='mpl') # Let's see the result backend = Aer.get_backend('statevector_simulator') out = execute(qc,backend).result().get_statevector() print(out) plot_bloch_multivector(out) # Let's see the result backend = Aer.get_backend('statevector_simulator') for qc in [qc1,qc2,qc3,qc4,qc5,qc6]: out = execute(qc,backend).result().get_statevector() print(out)
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test RemoveDiagonalGatesBeforeMeasure pass""" import unittest from copy import deepcopy from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister from qiskit.circuit.library import U1Gate, CU1Gate from qiskit.transpiler import PassManager from qiskit.transpiler.passes import RemoveDiagonalGatesBeforeMeasure, DAGFixedPoint from qiskit.converters import circuit_to_dag from qiskit.test import QiskitTestCase class TesRemoveDiagonalGatesBeforeMeasure(QiskitTestCase): """Test remove_diagonal_gates_before_measure optimizations.""" def test_optimize_1rz_1measure(self): """Remove a single RZGate qr0:-RZ--m-- qr0:--m- | | qr1:-----|-- ==> qr1:--|- | | cr0:-----.-- cr0:--.- """ qr = QuantumRegister(2, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.rz(0.1, qr[0]) circuit.measure(qr[0], cr[0]) dag = circuit_to_dag(circuit) expected = QuantumCircuit(qr, cr) expected.measure(qr[0], cr[0]) pass_ = RemoveDiagonalGatesBeforeMeasure() after = pass_.run(dag) self.assertEqual(circuit_to_dag(expected), after) def test_optimize_1z_1measure(self): """Remove a single ZGate qr0:--Z--m-- qr0:--m- | | qr1:-----|-- ==> qr1:--|- | | cr0:-----.-- cr0:--.- """ qr = QuantumRegister(2, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.z(qr[0]) circuit.measure(qr[0], cr[0]) dag = circuit_to_dag(circuit) expected = QuantumCircuit(qr, cr) expected.measure(qr[0], cr[0]) pass_ = RemoveDiagonalGatesBeforeMeasure() after = pass_.run(dag) self.assertEqual(circuit_to_dag(expected), after) def test_optimize_1t_1measure(self): """Remove a single TGate, SGate, TdgGate, SdgGate, U1Gate qr0:--T--m-- qr0:--m- | | qr1:-----|-- ==> qr1:--|- | | cr0:-----.-- cr0:--.- """ qr = QuantumRegister(2, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.t(qr[0]) circuit.measure(qr[0], cr[0]) dag = circuit_to_dag(circuit) expected = QuantumCircuit(qr, cr) expected.measure(qr[0], cr[0]) pass_ = RemoveDiagonalGatesBeforeMeasure() after = pass_.run(dag) self.assertEqual(circuit_to_dag(expected), after) def test_optimize_1s_1measure(self): """Remove a single SGate qr0:--S--m-- qr0:--m- | | qr1:-----|-- ==> qr1:--|- | | cr0:-----.-- cr0:--.- """ qr = QuantumRegister(2, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.s(qr[0]) circuit.measure(qr[0], cr[0]) dag = circuit_to_dag(circuit) expected = QuantumCircuit(qr, cr) expected.measure(qr[0], cr[0]) pass_ = RemoveDiagonalGatesBeforeMeasure() after = pass_.run(dag) self.assertEqual(circuit_to_dag(expected), after) def test_optimize_1tdg_1measure(self): """Remove a single TdgGate qr0:-Tdg-m-- qr0:--m- | | qr1:-----|-- ==> qr1:--|- | | cr0:-----.-- cr0:--.- """ qr = QuantumRegister(2, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.tdg(qr[0]) circuit.measure(qr[0], cr[0]) dag = circuit_to_dag(circuit) expected = QuantumCircuit(qr, cr) expected.measure(qr[0], cr[0]) pass_ = RemoveDiagonalGatesBeforeMeasure() after = pass_.run(dag) self.assertEqual(circuit_to_dag(expected), after) def test_optimize_1sdg_1measure(self): """Remove a single SdgGate qr0:-Sdg--m-- qr0:--m- | | qr1:------|-- ==> qr1:--|- | | cr0:------.-- cr0:--.- """ qr = QuantumRegister(2, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.sdg(qr[0]) circuit.measure(qr[0], cr[0]) dag = circuit_to_dag(circuit) expected = QuantumCircuit(qr, cr) expected.measure(qr[0], cr[0]) pass_ = RemoveDiagonalGatesBeforeMeasure() after = pass_.run(dag) self.assertEqual(circuit_to_dag(expected), after) def test_optimize_1u1_1measure(self): """Remove a single U1Gate qr0:--U1-m-- qr0:--m- | | qr1:-----|-- ==> qr1:--|- | | cr0:-----.-- cr0:--.- """ qr = QuantumRegister(2, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.append(U1Gate(0.1), [qr[0]]) circuit.measure(qr[0], cr[0]) dag = circuit_to_dag(circuit) expected = QuantumCircuit(qr, cr) expected.measure(qr[0], cr[0]) pass_ = RemoveDiagonalGatesBeforeMeasure() after = pass_.run(dag) self.assertEqual(circuit_to_dag(expected), after) def test_optimize_1rz_1z_1measure(self): """Remove a single RZ and leave the other Z qr0:-RZ--m-- qr0:----m- | | qr1:--Z--|-- ==> qr1:--Z-|- | | cr0:-----.-- cr0:----.- """ qr = QuantumRegister(2, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.rz(0.1, qr[0]) circuit.z(qr[1]) circuit.measure(qr[0], cr[0]) dag = circuit_to_dag(circuit) expected = QuantumCircuit(qr, cr) expected.z(qr[1]) expected.measure(qr[0], cr[0]) pass_ = RemoveDiagonalGatesBeforeMeasure() after = pass_.run(dag) self.assertEqual(circuit_to_dag(expected), after) def test_simple_if_else(self): """Test that the pass recurses into an if-else.""" pass_ = RemoveDiagonalGatesBeforeMeasure() base_test = QuantumCircuit(1, 1) base_test.z(0) base_test.measure(0, 0) base_expected = QuantumCircuit(1, 1) base_expected.measure(0, 0) test = QuantumCircuit(1, 1) test.if_else( (test.clbits[0], True), base_test.copy(), base_test.copy(), test.qubits, test.clbits ) expected = QuantumCircuit(1, 1) expected.if_else( (expected.clbits[0], True), base_expected.copy(), base_expected.copy(), expected.qubits, expected.clbits, ) self.assertEqual(pass_(test), expected) def test_nested_control_flow(self): """Test that the pass recurses into nested control flow.""" pass_ = RemoveDiagonalGatesBeforeMeasure() base_test = QuantumCircuit(2, 1) base_test.cz(0, 1) base_test.measure(0, 0) base_expected = QuantumCircuit(2, 1) base_expected.measure(1, 0) body_test = QuantumCircuit(2, 1) body_test.for_loop((0,), None, base_expected.copy(), body_test.qubits, body_test.clbits) body_expected = QuantumCircuit(2, 1) body_expected.for_loop( (0,), None, base_expected.copy(), body_expected.qubits, body_expected.clbits ) test = QuantumCircuit(2, 1) test.while_loop((test.clbits[0], True), body_test, test.qubits, test.clbits) expected = QuantumCircuit(2, 1) expected.while_loop( (expected.clbits[0], True), body_expected, expected.qubits, expected.clbits ) self.assertEqual(pass_(test), expected) class TesRemoveDiagonalControlGatesBeforeMeasure(QiskitTestCase): """Test remove diagonal control gates before measure.""" def test_optimize_1cz_2measure(self): """Remove a single CZGate qr0:--Z--m--- qr0:--m--- | | | qr1:--.--|-m- ==> qr1:--|-m- | | | | cr0:-----.-.- cr0:--.-.- """ qr = QuantumRegister(2, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.cz(qr[0], qr[1]) circuit.measure(qr[0], cr[0]) circuit.measure(qr[1], cr[0]) dag = circuit_to_dag(circuit) expected = QuantumCircuit(qr, cr) expected.measure(qr[0], cr[0]) expected.measure(qr[1], cr[0]) pass_ = RemoveDiagonalGatesBeforeMeasure() after = pass_.run(dag) self.assertEqual(circuit_to_dag(expected), after) def test_optimize_1crz_2measure(self): """Remove a single CRZGate qr0:-RZ--m--- qr0:--m--- | | | qr1:--.--|-m- ==> qr1:--|-m- | | | | cr0:-----.-.- cr0:--.-.- """ qr = QuantumRegister(2, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.crz(0.1, qr[0], qr[1]) circuit.measure(qr[0], cr[0]) circuit.measure(qr[1], cr[0]) dag = circuit_to_dag(circuit) expected = QuantumCircuit(qr, cr) expected.measure(qr[0], cr[0]) expected.measure(qr[1], cr[0]) pass_ = RemoveDiagonalGatesBeforeMeasure() after = pass_.run(dag) self.assertEqual(circuit_to_dag(expected), after) def test_optimize_1cu1_2measure(self): """Remove a single CU1Gate qr0:-CU1-m--- qr0:--m--- | | | qr1:--.--|-m- ==> qr1:--|-m- | | | | cr0:-----.-.- cr0:--.-.- """ qr = QuantumRegister(2, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.append(CU1Gate(0.1), [qr[0], qr[1]]) circuit.measure(qr[0], cr[0]) circuit.measure(qr[1], cr[0]) dag = circuit_to_dag(circuit) expected = QuantumCircuit(qr, cr) expected.measure(qr[0], cr[0]) expected.measure(qr[1], cr[0]) pass_ = RemoveDiagonalGatesBeforeMeasure() after = pass_.run(dag) self.assertEqual(circuit_to_dag(expected), after) def test_optimize_1rzz_2measure(self): """Remove a single RZZGate qr0:--.----m--- qr0:--m--- |zz | | qr1:--.----|-m- ==> qr1:--|-m- | | | | cr0:-------.-.- cr0:--.-.- """ qr = QuantumRegister(2, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.rzz(0.1, qr[0], qr[1]) circuit.measure(qr[0], cr[0]) circuit.measure(qr[1], cr[0]) dag = circuit_to_dag(circuit) expected = QuantumCircuit(qr, cr) expected.measure(qr[0], cr[0]) expected.measure(qr[1], cr[0]) pass_ = RemoveDiagonalGatesBeforeMeasure() after = pass_.run(dag) self.assertEqual(circuit_to_dag(expected), after) class TestRemoveDiagonalGatesBeforeMeasureOveroptimizations(QiskitTestCase): """Test situations where remove_diagonal_gates_before_measure should not optimize""" def test_optimize_1cz_1measure(self): """Do not remove a CZGate because measure happens on only one of the wires Compare with test_optimize_1cz_2measure. qr0:--Z--m--- | | qr1:--.--|--- | cr0:-----.--- """ qr = QuantumRegister(2, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.cz(qr[0], qr[1]) circuit.measure(qr[0], cr[0]) dag = circuit_to_dag(circuit) expected = deepcopy(dag) pass_ = RemoveDiagonalGatesBeforeMeasure() after = pass_.run(dag) self.assertEqual(expected, after) def test_do_not_optimize_with_conditional(self): """Diagonal gates with conditionals on a measurement target. See https://github.com/Qiskit/qiskit-terra/pull/2208#issuecomment-487238819 ░ ┌───┐┌─┐ qr_0: |0>────────────░─┤ H ├┤M├ ┌─────────┐ ░ └───┘└╥┘ qr_1: |0>┤ Rz(0.1) ├─░───────╫─ └─┬──┴──┬─┘ ░ ║ cr_0: 0 ══╡ = 1 ╞═══════════╩═ └─────┘ """ qr = QuantumRegister(2, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.rz(0.1, qr[1]).c_if(cr, 1) circuit.barrier() circuit.h(qr[0]) circuit.measure(qr[0], cr[0]) dag = circuit_to_dag(circuit) expected = deepcopy(dag) pass_ = RemoveDiagonalGatesBeforeMeasure() after = pass_.run(dag) self.assertEqual(expected, after) class TestRemoveDiagonalGatesBeforeMeasureFixedPoint(QiskitTestCase): """Test remove_diagonal_gates_before_measure optimizations in a transpiler, using fixed point.""" def test_optimize_rz_z(self): """Remove two swaps that overlap qr0:--RZ-Z--m-- qr0:--m-- | | cr0:--------.-- cr0:--.-- """ qr = QuantumRegister(1, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.rz(0.1, qr[0]) circuit.z(qr[0]) circuit.measure(qr[0], cr[0]) expected = QuantumCircuit(qr, cr) expected.measure(qr[0], cr[0]) pass_manager = PassManager() pass_manager.append( [RemoveDiagonalGatesBeforeMeasure(), DAGFixedPoint()], do_while=lambda property_set: not property_set["dag_fixed_point"], ) after = pass_manager.run(circuit) self.assertEqual(expected, after) if __name__ == "__main__": unittest.main()
https://github.com/psasanka1729/nisq-grover-qiskit-floquet-model
psasanka1729
L = 8; using PyCall using Random using LinearAlgebra using SparseArrays using DelimitedFiles file = raw"gates_list_"*string(L)*".txt" # Change for every L. M = readdlm(file) # Name. Gates_data_1 = M[:,1]; # Angle. Gates_data_2 = M[:,2]; # Qubit. Gates_data_3 = M[:,3]; Number_of_Gates = length(Gates_data_1) #Gates_data_2; SEED = 100 Random.seed!(SEED) NOISE = 2*rand(Float64,Number_of_Gates).-1; I2 = [1 0; 0 1]; Pauli_Z = [1 0; 0 -1]; Pauli_X = [0 1; 1 0] H = (1/sqrt(2))*[1 1; 1 -1] U_1(theta) = [1 0; 0 exp(1im*theta)]; Rx(theta) = sparse(exp(-1im*(theta/2)*collect(Pauli_X))); Rz(theta) = sparse(exp(-1im*(theta/2)*collect(Pauli_Z))); U1(theta) = sparse(exp(-1im*(theta/2)*(collect(Pauli_Z)-I2))); Hadamard(noise) = sparse(exp(-1im*(pi/2+noise)*collect(I2-H))) X(noise) = sparse(exp(-1im*(pi/2+noise)*collect(I2-Pauli_X))); Z_gate(noise) = sparse(exp(-1im*(pi/2+noise)*collect(I2-Pauli_Z))) Identity(dimension) = spdiagm(0 => ones(dimension)); int(x) = floor(Int,x); function single_qubit_gate_matrix(single_qubit_gate, qubit) ## The case Qubit=1 is treated differently because we need to # initialize the matrix as U before starting the kronecker product. if qubit == 1 gate_matrix = sparse(single_qubit_gate) for i=2:L gate_matrix = kron(gate_matrix, I2) end #= Single qubit gates acting on qubits othe than the first. =# else gate_matrix = I2 for i=2:L if i == qubit gate_matrix = kron(gate_matrix, single_qubit_gate) else gate_matrix = kron(gate_matrix, I2) end end end return gate_matrix end; function single_qubit_controlled_gate_exponential(single_qubit_gate, c, t) I2 = [1 0;0 1] Z = [1 0;0 -1] Matrices = Dict("I" => I2,"PI_1" => I2-Z,"U" => I2 - single_qubit_gate) p = fill("I", L) p[c] = "PI_1" p[t] = "U" H_matrix = Matrices[p[1]] for i = 2:L H_matrix = kron(H_matrix, Matrices[p[i]]) end #= pi/4 = (pi)/(2*2)=# return sparse(H_matrix)/4 end; function single_qubit_controlled_gate_matrix(single_qubit_gate,c,t) # c t Z = [1 0; 0 -1] # |0><0|. PI_0 = (I2+Z)/2 # |1><1|. PI_1 = (I2-Z)/2 Matrices = Dict("I" => I2,"PI_0" => PI_0,"U" => single_qubit_gate, "PI_1" => PI_1) p0 = fill("I", L) p1 = fill("I", L) p0[c] = "PI_0" p1[c] = "PI_1" p1[t] = "U" PI_0_matrix = Matrices[p0[1]] for i = 2:L PI_0_matrix = kron(PI_0_matrix,Matrices[p0[i]]) end PI_1_matrix = Matrices[p1[1]] for i = 2:L PI_1_matrix = kron(PI_1_matrix,Matrices[p1[i]]) end return sparse(PI_0_matrix + PI_1_matrix) end; #L = 2 #single_qubit_controlled_gate_matrix(Pauli_X,1,2) using PyCall py""" import numpy import numpy.linalg def adjoint(psi): return psi.conjugate().transpose() def psi_to_rho(psi): return numpy.outer(psi,psi.conjugate()) def exp_val(psi, op): return numpy.real(numpy.dot(adjoint(psi),op.dot(psi))) def norm_sq(psi): return numpy.real(numpy.dot(adjoint(psi),psi)) def normalize(psi,tol=1e-9): ns=norm_sq(psi)**0.5 if ns < tol: raise ValueError return psi/ns def is_herm(M,tol=1e-9): if M.shape[0]!=M.shape[1]: return False diff=M-adjoint(M) return max(numpy.abs(diff.flatten())) < tol def is_unitary(M,tol=1e-9): if M.shape[0]!=M.shape[1]: return False diff=M.dot(adjoint(M))-numpy.identity((M.shape[0])) return max(numpy.abs(diff.flatten())) < tol def eigu(U,tol=1e-9): (E_1,V_1)=numpy.linalg.eigh(U+adjoint(U)) U_1=adjoint(V_1).dot(U).dot(V_1) H_1=adjoint(V_1).dot(U+adjoint(U)).dot(V_1) non_diag_lst=[] j=0 while j < U_1.shape[0]: k=0 while k < U_1.shape[0]: if j!=k and abs(U_1[j,k]) > tol: if j not in non_diag_lst: non_diag_lst.append(j) if k not in non_diag_lst: non_diag_lst.append(k) k+=1 j+=1 if len(non_diag_lst) > 0: non_diag_lst=numpy.sort(numpy.array(non_diag_lst)) U_1_cut=U_1[non_diag_lst,:][:,non_diag_lst] (E_2_cut,V_2_cut)=numpy.linalg.eigh(1.j*(U_1_cut-adjoint(U_1_cut))) V_2=numpy.identity((U.shape[0]),dtype=V_2_cut.dtype) for j in range(len(non_diag_lst)): V_2[non_diag_lst[j],non_diag_lst]=V_2_cut[j,:] V_1=V_1.dot(V_2) U_1=adjoint(V_2).dot(U_1).dot(V_2) # Sort by phase U_1=numpy.diag(U_1) inds=numpy.argsort(numpy.imag(numpy.log(U_1))) return (U_1[inds],V_1[:,inds]) # = (U_d,V) s.t. U=V*U_d*V^\dagger """ U_0 = Identity(2^L)#[-1 0 0 0; 0 1 0 0; 0 0 1 0;0 0 0 1]; U_0[1,1] = -1 A = ones(2^L,2^L); U_x = (2/2^L)*A-Identity(2^L); # 2\s><s|-I G_exact = U_x*U_0; #V = py"eigu"(G_exact)[2]; function grover_delta(DELTA) U_list = [] GROVER_DELTA = Identity(2^L) # U_x for i = 1:Number_of_Gates if Gates_data_1[i] == "x" epsilon = NOISE[i] GROVER_DELTA *= single_qubit_gate_matrix(X(DELTA*epsilon), Gates_data_3[i]+1) #push!(U_list,single_qubit_gate_matrix(X(0.0), Gates_data_3[i]+1)) elseif Gates_data_1[i] == "h" epsilon = NOISE[i] GROVER_DELTA *= single_qubit_gate_matrix(Hadamard(DELTA*epsilon), Gates_data_3[i]+1) #push!(U_list,single_qubit_gate_matrix(Hadamard(0.0), Gates_data_3[i]+1)) elseif Gates_data_1[i] == "z" epsilon = NOISE[i] GROVER_DELTA *= single_qubit_gate_matrix(Z_gate(DELTA*epsilon), Gates_data_3[i]+1) #push!(U_list,single_qubit_gate_matrix(Z_gate(0.0), Gates_data_3[i]+1)) elseif Gates_data_1[i] == "rx" epsilon = NOISE[i] GROVER_DELTA *= single_qubit_gate_matrix(Rx(Gates_data_2[i]+DELTA*epsilon),Gates_data_3[i]+1) #push!(U_list,single_qubit_gate_matrix(Rx(Gates_data_2[i]),Gates_data_3[i]+1)) elseif Gates_data_1[i] == "rz" epsilon = NOISE[i] GROVER_DELTA *= single_qubit_gate_matrix(Rz(Gates_data_2[i]+DELTA*epsilon),Gates_data_3[i]+1) #push!(U_list,single_qubit_gate_matrix(Rz(Gates_data_2[i]),Gates_data_3[i]+1)) elseif Gates_data_1[i] == "u1" epsilon = NOISE[i] GROVER_DELTA *= single_qubit_gate_matrix(U1(Gates_data_2[i]+DELTA*epsilon),Gates_data_3[i]+1) #push!(U_list,single_qubit_gate_matrix(U1(Gates_data_2[i]),Gates_data_3[i]+1)) elseif Gates_data_1[i] == "cx" epsilon = NOISE[i] GROVER_DELTA *= single_qubit_controlled_gate_matrix(X(DELTA*epsilon), Gates_data_2[i]+1, Gates_data_3[i]+1) #push!(U_list, single_qubit_controlled_gate_matrix(Pauli_X, Gates_data_2[i]+1, Gates_data_3[i]+1)) else println("Kant") end end #= function kth_term(k) f_k = Identity(2^L); for i = k:length(U_list) f_k = f_k*collect(U_list[length(U_list)-i+k]) end #= Corresponding H for the kth term. =# if Gates_data_1[k] == "h" Qubit = Gates_data_3[k]+1 # qubit. H_k = single_qubit_gate_matrix(I2-H,Qubit) #= H_H = I2-H. =# elseif Gates_data_1[k] == "x" Qubit = Gates_data_3[k]+1 # qubit. H_k = single_qubit_gate_matrix([1 0;0 1]-[0 1;1 0],Qubit) #= H_X = I2-X. =# elseif Gates_data_1[k] == "z" Qubit = Gates_data_3[k]+1 # qubit. H_k = single_qubit_gate_matrix([1 0;0 1]-[1 0;0 -1],Qubit) #= H_Z = I2-Z. =# elseif Gates_data_1[k] == "rz" Qubit = Gates_data_3[k]+1 # qubit. H_k = single_qubit_gate_matrix([1 0;0 -1],Qubit) #= H_Z = I2-Z. =# elseif Gates_data_1[k] == "rx" Qubit = Gates_data_3[k]+1 # qubit. H_k = single_qubit_gate_matrix(Pauli_X,Qubit) #= H_Z = I2-Z. =# elseif Gates_data_1[k] == "cx" Angle = Gates_data_1[k] Control_Qubit = int(Gates_data_2[k])+1 Target_Qubit = int(Gates_data_3[k])+1 Z = [1 0;0 -1] #= H = ((I-Z)/2)_c \otimes ((I-X)/2)_t.=# Matrices = Dict("I" => [1 0;0 1],"U" => [1 0; 0 1]-[0 1;1 0], "PI_1" => [1 0;0 1]-[1 0;0 -1]) p1 = fill("I", L) p1[Control_Qubit] = "PI_1" p1[Target_Qubit] = "U" H_k = Matrices[p1[1]] for i = 2:L H_k = kron(H_k,Matrices[p1[i]]) end elseif Gates_data_1[k] == "u1" Qubit = Gates_data_3[k]+1 # qubit. H_k = single_qubit_gate_matrix(Pauli_Z-I2,Qubit) #= H_Z = I2-Z. =# else println(Gates_data_1[k]*" H_k cannot be calculated") end return f_k*H_k*(f_k') end; h_eff = zeros(2^L,2^L); for i = 1:length(U_list) h_eff += NOISE[i]*kth_term(i) end #h_eff_D = h_eff #h_eff_D = (V')*h_eff*(V) # Matrix in |0> and |xbar> basis. #E_eff_D = eigvals(h_eff_D) # Diagonalizing H_eff matrix. #E_eff_D_sorted = sort(real(E_eff_D),rev = true); # Soring the eigenvalues in descending order. #EIGU = py"eigu"(collect(-GROVER_DELTA')) #E_exact = real(1im*log.(EIGU[1])); # Eigenvalue. #return E_exact, E_eff_D_sorted return h_eff =# return -GROVER_DELTA' #return GROVER_DELTA end; #real.((collect(grover_delta(0.0))))-G_exact #= The following function returns the matrix of rolling operator. =# function One_Roll_Operator(number_of_qubits::Int64) #= Function converts a binary number to a decimal number. =# Bin2Dec(BinaryNumber) = parse(Int, string(BinaryNumber); base=2); #= Function converts a decimal number to a binary number. =# function Dec2Bin(DecimalNumber::Int64) init_binary = string(DecimalNumber, base = 2); #= While converting numbers from decimal to binary, for example, 1 is mapped to 1, to make sure that every numbers have N qubits in them, the following loop adds leading zeros to make the length of the binary string equal to N. Now, 1 is mapped to 000.....1 (string of length N). =# while length(init_binary) < number_of_qubits init_binary = "0"*init_binary end return init_binary end #= The following function takes a binary string as input and rolls the qubits by one and returns the rolled binary string. =# Roll_String_Once(binary_string) = binary_string[end]*binary_string[1:end-1] #= Initializing the rolling operator. =# R = zeros(Float64,2^number_of_qubits,2^number_of_qubits); #= The numbers are started from 0 to 2^L-1 because for L qubits, binary representation goes from 0 to 2^L-1.=# for i = 0:2^number_of_qubits-1 #= Steps in the following loop. (1) The number is converted from decimal to binary. (2) The qubits are rolled once. (3) The rolled binary number is converted to decimal number. (4) The corresponding position in R is replaced by 1. =# #= The index in R will be shifted by 1 as Julia counts from 1. =# R[i+1,Bin2Dec(Roll_String_Once(Dec2Bin(i)))+1] = 1 end return sparse(R) end; #= The following function returns the von-Neumann entropy of a given wavefunction. The sub-system size is L/2. =# function entanglement_entropy(Psi) sub_system_size = floor(Int,L/2) Psi = Psi/norm(Psi) function psi(s) return Psi[2^(sub_system_size)*s+1:2^(sub_system_size)*s+2^(sub_system_size)] end #= (s,s_p) element of the reduced density matrix is given by psi(s_p)^(\dagger)*psi(s). =# rhoA(s,s_p) = psi(s_p)' * psi(s) M = zeros(ComplexF64,2^sub_system_size,2^sub_system_size) #= Since the matrix is symmetric only terms above the diagonal will be calculated. =# for i = 0:2^sub_system_size-1 for j = 0:2^sub_system_size-1 if i <= j M[i+1,j+1] = rhoA(i,j) else M[i+1,j+1] = M[j+1,i+1]' end end end #= Eigenvalues of M. The small quantity is added to avoid singularity in log.=# w = eigvals(M).+1.e-10 return real(-sum([w[i]*log(w[i]) for i = 1:2^(sub_system_size)])) end; function average_entanglement_entropy(initial_wavefunction) initial_wavefunction = initial_wavefunction/norm(initial_wavefunction) R = One_Roll_Operator(L) rolled_wavefunction = R * initial_wavefunction rolled_entropies = [entanglement_entropy(rolled_wavefunction)] for i = 2:L rolled_wavefunction = R * rolled_wavefunction push!(rolled_entropies,entanglement_entropy(rolled_wavefunction)) end return sum(rolled_entropies)/L end; #H_EFF = h_eff_from_derivative(1.e-5); #= h_eff = H_EFF # Matrix in Z basis. h_eff = (V')*h_eff*(V) # Matrix in |0> and |xbar> basis. h_eff_D = h_eff[3:2^L,3:2^L];=# #h_eff_D """function Level_Statistics(n,Es) return min(abs(Es[n]-Es[n-1]),abs(Es[n+1]-Es[n])) / max(abs(Es[n]-Es[n-1]),abs(Es[n+1]-Es[n])) end; h_eff_level_statistics = Array{Float64, 1}(undef, 0) for i = 2:2^L-3 # relative index i.e length of the eigenvector array. push!(h_eff_level_statistics,Level_Statistics(i,h_eff_D )) end level_statistics_file = open("level_statistics.txt", "w") for i = 1:2^L-4 write(level_statistics_file, string(i)) write(level_statistics_file, "\t") # Add a tab indentation between the columns write(level_statistics_file, string(h_eff_level_statistics[i])) write(level_statistics_file, "\n") # Add a newline character to start a new line end close(level_statistics_file)"""; #h_eff_level_statistics #using Statistics #mean(h_eff_level_statistics) #Eigvals_h_eff = eigvals(collect(h_eff_D)); #Eigvecs_h_eff = eigvecs(collect(h_eff)); #= using Plots using DelimitedFiles using ColorSchemes using LaTeXStrings eigenvalue_file = open("compare_h_eff_G_exact_eigenvalues.txt", "w") Exact_list = [] Effec_list = [] delta_list = [] Num = 10; for i = 1:Num delta = 0.1*(i/Num) EE = -Grover_delta(delta) EIGU = py"eigu"(collect(EE)) Exact = real(1im*log.(EIGU[1]))[2:2^L-1] Effec = delta*real(Eigvals_h_eff) #println(Exact) #println(Effec) for j = 1:2^L-2 write(eigenvalue_file, string(delta)) write(eigenvalue_file, "\t") write(eigenvalue_file, string(Exact[j])) write(eigenvalue_file, "\t") write(eigenvalue_file, string(Effec[j])) write(eigenvalue_file, "\n") #py"Write_file2"(delta,Exact[j],Effec[j]) push!(delta_list,delta) push!(Exact_list, Exact[j]) push!(Effec_list, Effec[j]) #println(delta); end end delta = delta_list exact = Exact_list # exact energy. effec = Effec_list # effective energy. S_Page = 0.5*L*log(2)-0.5 gr() L = 4; S_Page = 0.5*L*log(2)-0.5 MyTitle = "L = 4 "; p = plot(delta,exact, seriestype = :scatter, markercolor = "firebrick1 ",#"red2", markerstrokewidth=0.0, markersize=3.2, thickness_scaling = 1.4, xlims=(0,0.3), ylims=(-3.14,3.14), #title = MyTitle, label = "Exact energy", legend = :bottomleft, dpi=500, #zcolor = entropy, grid = false, #colorbar_title = "Average entanglement entropy", font="CMU Serif", color = :jet1, right_margin = 5Plots.mm, left_margin = Plots.mm, titlefontsize=10, guidefontsize=13, tickfontsize=13, legendfontsize=15, framestyle = :box ) p = plot!(delta,effec, seriestype = :scatter, markercolor = "blue2", markershape=:pentagon,#:diamond, markerstrokewidth=0.0, markersize=2.2, thickness_scaling = 1.4, xlims=(0,0.1), ylims=(-3.14,3.14), #title = MyTitle, label = "Effective energy", legend = :bottomleft, dpi=100, #zcolor = entropy, grid = false, #colorbar_title = "Average entanglement entropy", font="CMU Serif", right_margin = 5Plots.mm, left_margin = Plots.mm, titlefontsize=10, guidefontsize=13, tickfontsize=13, legendfontsize=15, framestyle = :box ) plot!(size=(830,700)) xlabel!("Noise") ylabel!("Energy of the bulk states") #savefig("exact_effec_4_2000.png") =# """function KLd(Eigenvectors_Matrix) KL = [] for n = 1:2^L-1 # Eigenvector index goes from 1 to dim(H)-1. #= Here n is the index of the eigenstate e.g n = 3 denotes the third eigenstate of the h_eff matrix in sigma_z basis. =# #= Calculates the p(i) = |<i|n>|^2 for a given i. This is the moduli squared of the i-th component of the n-th eigenstate. This is because in the sigma_z basis <i|n> = i-th component of |n>. =# # Initialize the sum. KLd_sum = 0.0 # The sum goes from 1 to dim(H) i.e length of an eigenvector. for i = 1:2^L p = abs(Eigenvectors_Matrix[:,n][i])^2 + 1.e-9 # To avoid singularity in log. q = abs(Eigenvectors_Matrix[:,n+1][i])^2 + 1.e-9 KLd_sum += p*log(p/q) end #println(KLd_sum) push!(KL,KLd_sum) end return KL end;"""; #KLd_h_eff = KLd(Eigvecs_h_eff); #mean(KLd_h_eff) #= KLd_file = open("KLd.txt", "w") for i = 1:2^L-1 write(KLd_file , string(i)) write(KLd_file , "\t") # Add a tab indentation between the columns write(KLd_file , string(KLd_h_eff[i])) write(KLd_file , "\n") # Add a newline character to start a new line end # Close the file close(KLd_file)=# eigenvalue_file = open(string(L)*"_"*string(SEED)*"_eigenvalues.txt", "w"); deltas = [] Ys = [] Entropies = [] Num = 200 for i=0:Num println(i) delta = 0.1*i/Num Op = -collect(grover_delta(delta)) EIGU = py"eigu"(Op) deltas = string(delta) Y = real(1im*log.(EIGU[1])) V = EIGU[2] for j=1:2^L write(eigenvalue_file , string(delta)) write(eigenvalue_file , "\t") # Add a tab indentation between the columns write(eigenvalue_file , string(real(Y[j]))) write(eigenvalue_file , "\t") write(eigenvalue_file , string(average_entanglement_entropy(V[1:2^L,j:j]))) write(eigenvalue_file , "\n") # Add a newline character to start a new line #end #py"Write_file"(delta, real(Y[j]), average_entanglement_entropy(V[1:2^L,j:j])) end end close(eigenvalue_file) #= using Plots using DelimitedFiles using ColorSchemes #using CSV using LaTeXStrings #using PyPlot=# #= file = "eigenvalues.txt" M = readdlm(file) delta = M[:,1]; # eigenvalue index quasienergy = M[:,2]; # level stat entanglement = M[:,3]; # level stat std gr() MSW = 0.4 Linewidth = 0.6 Markersize = 1.7 MarkerStrokeWidth = 0.0; plot_font = "Computer Modern" default(fontfamily=plot_font) MyTitle = "L = "*string(L)*", Page Value = "*string(round(0.5*L*log(2)-0.5;digits = 2))*" "; p = plot(delta,quasienergy , seriestype = :scatter, markerstrokecolor = "grey30", markerstrokewidth=MarkerStrokeWidth, markersize=Markersize, thickness_scaling = 2.5, xlims=(0,0.4), ylims=(-3.2,3.2), title = "", label = "", #legend = :bottomleft, dpi=300, zcolor = entanglement, grid = false, #colorbar_title = "Average entanglement entropy", right_margin = Plots.mm, font="CMU Serif", color = :jet1, #:linear_bmy_10_95_c78_n256,#:diverging_rainbow_bgymr_45_85_c67_n256,#:linear_bmy_10_95_c78_n256,#:rainbow1, #right_margin = 2Plots.mm, left_margin = Plots.mm, titlefontsize=10, guidefontsize=10, tickfontsize=9, legendfontsize=8, framestyle = :box ) yticks!([-pi,-3*pi/4,-pi/2,-pi/4,0,pi/4,pi/2,3*pi/4,pi], [L"-\pi",L"-3\pi/4",L"-\pi/2",L"-\pi/4",L"0",L"\pi/4",L"\pi/2",L"3\pi/4",L"\pi"]) function ticks_length!(;tl=0.01) p = Plots.current() xticks, yticks = Plots.xticks(p)[1][1], Plots.yticks(p)[1][1] xl, yl = Plots.xlims(p), Plots.ylims(p) x1, y1 = zero(yticks) .+ xl[1], zero(xticks) .+ yl[1] sz = p.attr[:size] r = sz[1]/sz[2] dx, dy = tl*(xl[2] - xl[1]), tl*r*(yl[2] - yl[1]) plot!([xticks xticks]', [y1 y1 .+ dy]', c=:black, labels=false,linewidth = 1.3) plot!([x1 x1 .+ dx]', [yticks yticks]', c=:black, labels=false,linewidth = 1.3, xlims=xl, ylims=yl) return Plots.current() end ticks_length!(tl=0.005) plot!(size=(1200,800)) #plot!(yticks = ([(-pi) : (-pi/2): (-pi/4): 0: (pi/4) : (pi/2) : pi;], ["-\\pi", "-\\pi/2", "-\\pi/4","0","\\pi/4","\\pi/2","\\pi"])) #hline!([[-quasienergy]],lc=:deeppink1,linestyle= :dashdotdot,legend=false) #hline!([ [0]],lc=:deeppink1,linestyle= :dashdotdot,legend=false) #hline!([ [quasienergy]],lc=:deeppink1,linestyle= :dashdotdot,legend=false) xlabel!("Disorder strength, \$\\delta\$") ylabel!("Quasienergy, \$\\phi_{F}\$") plot!(background_color=:white) #savefig(string(L)*"_"*string(SEED)*"_plot_data_0.0_0.15.png") =# #round(0.5*L*log(2)-0.5;digits = 2)
https://github.com/ionq-samples/getting-started
ionq-samples
import numpy as np from qiskit import QuantumCircuit # Building the circuit # Create a Quantum Circuit acting on a quantum register of three qubits circ = QuantumCircuit(3) # Add a H gate on qubit 0, putting this qubit in superposition. circ.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting # the qubits in a Bell state. circ.cx(0, 1) # Add a CX (CNOT) gate on control qubit 0 and target qubit 2, putting # the qubits in a GHZ state. circ.cx(0, 2) # We can visualise the circuit using QuantumCircuit.draw() circ.draw('mpl') from qiskit.quantum_info import Statevector # Set the initial state of the simulator to the ground state using from_int state = Statevector.from_int(0, 2**3) # Evolve the state by the quantum circuit state = state.evolve(circ) #draw using latex state.draw('latex') from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * # Build #------ # Create a Quantum Circuit acting on the q register circuit = QuantumCircuit(2, 2) # Add a H gate on qubit 0 circuit.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1 circuit.cx(0, 1) # Map the quantum measurement to the classical bits circuit.measure([0,1], [0,1]) # END # Execute #-------- # Use Aer's qasm_simulator simulator = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # Grab results from the job result = job.result() # Return counts counts = result.get_counts(circuit) print("\nTotal count for 00 and 11 are:",counts) # END # Visualize #---------- # Using QuantumCircuit.draw(), as in previous example circuit.draw('mpl') # Analyze #-------- # Plot a histogram plot_histogram(counts) # END <h3 style="color: rgb(0, 125, 65)"><i>References</i></h3> https://qiskit.org/documentation/tutorials.html https://www.youtube.com/watch?v=P5cGeDKOIP0 https://qiskit.org/documentation/tutorials/circuits/01_circuit_basics.html https://docs.quantum-computing.ibm.com/lab/first-circuit
https://github.com/vm6502q/qiskit-qrack-provider
vm6502q
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import unittest import copy import pickle from multiprocessing import Pool from qiskit import assemble, transpile, QuantumCircuit from qiskit.providers.qrack.backends import QasmSimulator #from qiskit.providers.aer.backends.controller_wrappers import qasm_controller_execute from test.terra.reference import ref_algorithms, ref_measure, ref_1q_clifford from test.terra.common import QiskitAerTestCase class TestControllerExecuteWrappers(QiskitAerTestCase): """Basic functionality tests for pybind-generated wrappers""" #CFUNCS = [qasm_controller_execute()] #def test_deepcopy(self): # """Test that the functors are deepcopy-able.""" # for cfunc in self.CFUNCS: # cahpy = copy.deepcopy(cfunc) #def test_pickleable(self): # """Test that the functors are pickle-able (directly).""" # for cfunc in self.CFUNCS: # bites = pickle.dumps(cfunc) # cahpy = pickle.loads(bites) def _create_qobj(self, backend, noise_model=None): num_qubits = 2 circuit = QuantumCircuit(num_qubits) circuit.x(list(range(num_qubits))) qobj = assemble(transpile(circuit, backend), backend) opts = {'max_parallel_threads': 1} fqobj = backend._format_qobj(qobj, **opts, noise_model=noise_model) return fqobj.to_dict() def _map_and_test(self, cfunc, qobj): n = 2 with Pool(processes=1) as p: rs = p.map(cfunc, [copy.deepcopy(qobj) for _ in range(n)]) self.assertEqual(len(rs), n) for r in rs: self.assertTrue(r['success']) #def test_mappable_qasm(self): # """Test that the qasm controller can be mapped.""" # cfunc = qasm_controller_execute() # sim = QasmSimulator() # fqobj = self._create_qobj(sim) # self._map_and_test(cfunc, fqobj) #def test_mappable_statevector(self): # """Test that the statevector controller can be mapped.""" # cfunc = statevector_controller_execute() # sim = StatevectorSimulator() # fqobj = self._create_qobj(sim) # self._map_and_test(cfunc, fqobj) if __name__ == '__main__': unittest.main()
https://github.com/theflyingrahul/qiskitsummerschool2020
theflyingrahul
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits to represent the uncertainty num_uncertainty_qubits = 3 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # construct circuit for uncertainty model uncertainty_model = LogNormalDistribution( num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high) ) # plot probability distribution x = uncertainty_model.values y = uncertainty_model.probabilities plt.bar(x, y, width=0.2) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.show() # set the strike price (should be within the low and the high value of the uncertainty) strike_price_1 = 1.438 strike_price_2 = 2.584 # set the approximation scaling for the payoff function rescaling_factor = 0.25 # setup piecewise linear objective fcuntion breakpoints = [low, strike_price_1, strike_price_2] slopes = [0, 1, 0] offsets = [0, 0, strike_price_2 - strike_price_1] f_min = 0 f_max = strike_price_2 - strike_price_1 bull_spread_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, rescaling_factor=rescaling_factor, ) # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective bull_spread = bull_spread_objective.compose(uncertainty_model, front=True) # plot exact payoff function (evaluated on the grid of the uncertainty model) x = uncertainty_model.values y = np.minimum(np.maximum(0, x - strike_price_1), strike_price_2 - strike_price_1) plt.plot(x, y, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value (normalized to the [0, 1] interval) exact_value = np.dot(uncertainty_model.probabilities, y) exact_delta = sum( uncertainty_model.probabilities[np.logical_and(x >= strike_price_1, x <= strike_price_2)] ) print("exact expected value:\t%.4f" % exact_value) print("exact delta value: \t%.4f" % exact_delta) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=bull_spread, objective_qubits=[num_uncertainty_qubits], post_processing=bull_spread_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value:\t%.4f" % result.estimation_processed) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) # setup piecewise linear objective fcuntion breakpoints = [low, strike_price_1, strike_price_2] slopes = [0, 0, 0] offsets = [0, 1, 0] f_min = 0 f_max = 1 bull_spread_delta_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, ) # no approximation necessary, hence no rescaling factor # construct the A operator by stacking the uncertainty model and payoff function together bull_spread_delta = bull_spread_delta_objective.compose(uncertainty_model, front=True) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=bull_spread_delta, objective_qubits=[num_uncertainty_qubits] ) # construct amplitude estimation ae_delta = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_delta = ae_delta.estimate(problem) conf_int = np.array(result_delta.confidence_interval) print("Exact delta: \t%.4f" % exact_delta) print("Estimated value:\t%.4f" % result_delta.estimation) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/InvictusWingsSRL/QiskitTutorials
InvictusWingsSRL
#Libraries needed to implement and simulate quantum circuits from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, transpile from qiskit_aer import Aer from qiskit.primitives import BackendSampler #from qiskit.providers.aer import Aer, execute #Custem functions to simplify answers import Our_Qiskit_Functions as oq #a part of the library presented in arXiv:1903.04359v1. import numpy as np import math as m #Initialize backends simulators to visualize circuits S_simulator = Aer.backends(name='statevector_simulator')[0] Q_simulator = Aer.backends(name='qasm_simulator')[0] q = QuantumRegister(1) hello_qubit = QuantumCircuit(q) hello_qubit.id(q[0]) #job = execute(hello_qubit, S_simulator) new_circuit = transpile(hello_qubit, S_simulator) job = S_simulator.run(new_circuit) print('job = AerJob class: ', type(job)) result = job.result() print('result = Result class: ',type(result)) result.get_statevector() print('simulator: ', S_simulator) print('simulator type: ', type(S_simulator)) print('Aer.get_backend(name=statevector_simulator): ', Aer.get_backend(name='statevector_simulator')) print('backend type: ', type(Aer.get_backend(name='statevector_simulator'))) q = QuantumRegister(3) three_qubits = QuantumCircuit(q) three_qubits.id(q[0]) three_qubits.id(q[1]) three_qubits.id(q[2]) job = oq.execute(three_qubits, S_simulator) result = job.result() result.get_statevector() q = QuantumRegister(3) three_qubits = QuantumCircuit(q) three_qubits.x(q[0]) three_qubits.id(q[1]) three_qubits.id(q[2]) job = oq.execute(three_qubits, S_simulator) result = job.result() result.get_statevector() oq.Wavefunction(three_qubits) q = QuantumRegister(2) H_circuit = QuantumCircuit(q) H_circuit.h(q[0]) H_circuit.h(q[1]) oq.Wavefunction(H_circuit) q = QuantumRegister(2) H_circuit = QuantumCircuit(q) H_circuit.h(q[0]) H_circuit.id(q[1]) oq.Wavefunction(H_circuit) from qiskit import ClassicalRegister M_simulator = Aer.backends(name='qasm_simulator')[0] q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q[0]) qc.measure(q, c) job = oq.execute(qc, M_simulator) result = job.result() result.get_counts(qc) q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q[0]) qc.measure(q, c) M = oq.execute(qc, M_simulator, shots = 100).result().get_counts(qc) print('Dictionary entry 0: ', M['0']) print('Dictionary entry 1: ', M['1']) q = QuantumRegister(2) c = ClassicalRegister(2) qc = QuantumCircuit(q, c) qc.h(q[0]) qc.h(q[1]) qc.measure(q, c) M = oq.execute(qc, M_simulator).result().get_counts(qc) print(M) q = QuantumRegister(2) c = ClassicalRegister(2) qc = QuantumCircuit(q, c) qc.h(q[0]) qc.h(q[1]) qc.measure(q[0], c[0]) M = oq.execute(qc, M_simulator).result().get_counts(qc) print(M) q = QuantumRegister(2) c = ClassicalRegister(2) qc = QuantumCircuit(q, c) qc.id(q[0]) qc.x(q[1]) qc.measure(q, c) M = oq.execute(qc, M_simulator).result().get_counts(qc) print(M) q = QuantumRegister(2) qc = QuantumCircuit(q) qc.id(q[0]) qc.x(q[1]) oq.Wavefunction(qc) q = QuantumRegister(2) c = ClassicalRegister(2) qc = QuantumCircuit(q, c) qc.h(q[0]) qc.h(q[1]) qc.measure(q[0], c[0]) oq.Measurement(qc, shots = 1024) def Quantum_Coin_Flips(flips): ''' Simulates a perfect coin, measuring heads or tails, using a qubit ''' q = QuantumRegister(1) c = ClassicalRegister(1) perfect_coin = QuantumCircuit(q, c) perfect_coin.h(q[0]) perfect_coin.measure(q,c) M = oq.execute(perfect_coin, M_simulator, shots=flips).result().get_counts(perfect_coin) heads = M['0'] tails = M['1'] return heads, tails Heads, Tails = Quantum_Coin_Flips(100) if (Heads > Tails): print('Alice wins!') if (Heads < Tails): print('Bob wins!') if (Heads == Tails): print('Draw!') print(' ') print('Score: Alice: ', Heads, ' Bob: ', Tails)
https://github.com/abbarreto/qiskit2
abbarreto
%run init.ipynb 2*acos(sqrt(2/3)), 2*asin(sqrt(1/3)). cos(2*pi/3), sin(2*pi/3), cos(4*pi/3), sin(4*pi/3), cos(8*pi/3), sin(8*pi/3) cos(2*pi/3), sin(2*pi/3), cos(4*pi/3), sin(4*pi/3), cos(8*pi/3), sin(8*pi/3)
https://github.com/parton-quark/RLSB-CongX-Qiskit
parton-quark
# (c) Copyright 2020 Shin Nishio, parton@sfc.wide.ad.jp def tfc_to_qiskit(tfc_path): tfc_file = open(tfc_path, "r", encoding = "utf_8") # convert tfc_file into list of lines tfc_lines = tfc_file.readlines() # prepare .py file tfc_path_left = tfc_path.split('.') py_file_name = "RLSBCQ_" + str(tfc_path_left[0]) + ".py" py_file = open(py_file_name, "w", encoding = "utf_8") # py_file.write(text)で書き込める _write_head(py_file) tfc_line_number = 0 for tfc_line in tfc_lines: tfc_line_number += 1 if tfc_line.startswith('t'): _gt(py_file, tfc_line, valiables_dict) elif tfc_line.startswith('f'): _gf(py_file, tfc_line, valiables_dict) elif tfc_line.startswith('#'): _write_comment(py_file, tfc_line) elif tfc_line.startswith('.v'): # get list of valiables valiables_dict = _valiables(py_file, tfc_line) # make_register _prepare_register(py_file, valiables_dict) elif tfc_line.startswith('.i'): # get inputs input_dict = _inputs(py_file, tfc_line, valiables_dict) elif tfc_line.startswith('.o'): # get outputs output_dict = _outputs(py_file, tfc_line, valiables_dict) elif tfc_line.startswith('.ol'): # get outputs list ol_dict = _outputs_list(py_file, tfc_line, valiables_dict) elif tfc_line.startswith('.c'): # get constants constants_ = _constants(py_file, tfc_line, valiables_dict) elif tfc_line.startswith('BEGIN'): py_file.write('# BEGIN\n') elif tfc_line.startswith('END'): py_file.write('# END\n') py_file.close() else: print("The first letter of the" + tfc_line_number + "line of the input is strange.") #終わり tfc_file.close() return def _write_head(py_file): lisences = _license_info() # import SDKs import_qiskit = 'from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister\n' import_CongX = 'from CongX.extensions.standard import cnx\n' # Comments from RLSB-CongX-Qiskit comments_from_RLSB_CongX_Qiskit = '# Can be run by installing Qiskit and CongX.\n' + '# !pip install qiskit\n' + '# !pip install CongX\n' py_file.write(lisences) py_file.write(import_qiskit) py_file.write(import_CongX) py_file.write(comments_from_RLSB_CongX_Qiskit) def _license_info(): original_lisence = '# LISENCE\n' congx_lisence = '# This file is converted by RLSB-CongX-Qiskit. RLSB-CongX-Qiskit is written by Shin Nishio. bib file is https://github.com/parton-quark/RLSB-CongX-Qiskit/blob/master/RLSB-CongX-Qiskit.bib \n' license_info = original_lisence + congx_lisence return license_info def _prepare_register(py_file, valiables_dict): num_qubits = len(valiables_dict) q = 'q = QuantumRegister(' + str(num_qubits) + ')\n' # c = ClassicalRegister(0) qc = 'qc = QuantumCircuit(q)\n' py_file.write(q) py_file.write(qc) def _write_comment(py_file, tfc_line): # Write as it is py_file.write(tfc_line) def _gt(py_file, tfc_line, valiables_dict): ''' e.g. input t3 b,c,d {b:1, c:2, d:3} output qc.cnx(valiables_dict[b],valiables_dict[c],valiables_dict[d]) ''' # delete tn tfc_line = tfc_line.lstrip('t') # Delete the head number tfc_line = tfc_line.strip() tfc_line = tfc_line.strip(' ') operand_number = int(tfc_line[0]) tfc_line = tfc_line[2:] # make valuable list val_list = tfc_line.split(',') operand_list = [] for i in val_list: operand = valiables_dict[str(i)] operand_list.append(operand) operand_str = ', '.join(map(str, operand_list)) cnx = "qc.cnx(" + operand_str + ")" py_file.write(cnx) py_file.write('\n') def _gf(py_file, tfc_line, valiables_dict): message = 'Generalized Fredkin is under construction\n' return message def _valiables(py_file, tfc_line): ''' e.g. input .v a,b,c,d output {'a':0, 'b':1, 'c':2, 'd':3} ''' # delete str = '.v' tfc_line = tfc_line.lstrip('.v ') # remove whitespace tfc_line = tfc_line.strip() tfc_line = tfc_line.strip(' ') # make valuable list val_list = tfc_line.split(',') num_qubit = len(val_list) qubit_list = [i for i in range(num_qubit)] # make valuable_list and qubit_list to dict valiables_dict = dict(zip(val_list,qubit_list)) py_file.write('# valuables' + str(valiables_dict) + '\n') return valiables_dict def _inputs(py_file, tfc_line, valiables_dict): ''' e.g. input i. a,b,c,d output {'a':0, 'b':1, 'c':2, 'd':3} ''' # delete str = '.v' tfc_line = tfc_line.lstrip('.i') # remove whitespace tfc_line = tfc_line.strip() # make valuable list input_list = tfc_line.split(',') qubit_list = [] for i in input_list: qubit_number = valiables_dict[i] qubit_list.append(qubit_number) # make valuable_list and qubit_list to dict input_dict = dict(zip(input_list,qubit_list)) py_file.write('# inputs' + str(input_dict) + '\n') return input_dict def _outputs(py_file, tfc_line, valiables_dict): ''' e.g. input o. a,b,c,d output {'a':0, 'b':1, 'c':2, 'd':3} ''' # delete str = '.v' tfc_line = tfc_line.lstrip('.o') # remove whitespace tfc_line = tfc_line.strip() # make valuable list output_list = tfc_line.split(',') qubit_list = [] for i in output_list: qubit_number = valiables_dict[i] qubit_list.append(qubit_number) # make valuable_list and qubit_list to dict output_dict = dict(zip(output_list,qubit_list)) py_file.write('# outputs' + str(output_dict) + '\n') return output_dict def _outputs_list(py_file, tfc_line, valiables_dict): ''' e.g. input .ol b1,b2,b3,b4,b5,b6,b7,b8,b9 output {'a':0, 'b':1, 'c':2, 'd':3} ''' # delete str = '.v' tfc_line = tfc_line.lstrip('.ol') # remove whitespace tfc_line = tfc_line.strip() # make valuable list ol_list = tfc_line.split(',') qubit_list = [] for i in ol_list: qubit_number = valiables_dict[i] qubit_list.append(qubit_number) # make valuable_list and qubit_list to dict ol_dict = dict(zip(ol_list, qubit_list)) py_file.write('#' + str(ol_dict) + '\n') return ol_dict def _constants(py_file, tfc_line): ''' e.g. input .c 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 output {'c0':0, 'c1':0, 'c2':2, 'c3':3....} ''' # delete str = '.c' tfc_line = tfc_line.lstrip('.c') # remove whitespace tfc_line = tfc_line.strip() # make valuable list contstants = tfc_line.split(',') py_file.write('#' + str(contstants) + '\n') return contstants