repo
stringclasses
885 values
file
stringclasses
741 values
content
stringlengths
4
215k
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# You can make the bars more transparent to better see the ones that are behind # if they overlap. import numpy as np from qiskit.quantum_info import Statevector from qiskit.visualization import plot_state_city from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc = QuantumCircuit(2) qc.h([0, 1]) qc.cz(0,1) qc.ry(np.pi/3, 0) qc.rx(np.pi/5, 1) state = Statevector(qc) plot_state_city(state, alpha=0.6)
https://github.com/AMevans12/Quantum-Codes-Qiskit-Module-
AMevans12
import qiskit.quantum_info as qi from qiskit.circuit.library import FourierChecking from qiskit.visualization import plot_histogram f=[1,-1,-1,-1] g=[1,1,-1,-1] circ = FourierChecking(f=f, g=g) circ.draw(output='mpl') zero=qi.Statevector.from_label('00') sv=zero.evolve(circ) probs=sv.probabilities_dict() plot_histogram(probs) import qiskit.quantum_info as qi from qiskit.circuit.library import FourierChecking from qiskit.visualization import plot_histogram f=[1,-1,-1,-1] g=[1,1,-1,-1] circ = FourierChecking(f=f, g=g) circ.draw(output='mpl') zero=qi.Statevector.from_label('00') sv=zero.evolve(circ) probs=sv.probabilities_dict() plot_histogram(probs)
https://github.com/geduardo/Q-Snake-Qiskitcamp-Europe-2019
geduardo
import pew_tunnel as pew import pygame from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer import numpy as np ######################################################################### #FUNCTIONS ######################################################################### simulator = Aer.get_backend('qasm_simulator') shot=1 def Qand(First_bool,Second_bool): First_bool=bool(First_bool) Second_bool=bool(Second_bool) a = int(First_bool) b = int(Second_bool) qc = QuantumCircuit(3,1) if a == 1: qc.x(0) if b == 1: qc.x(1) qc.ccx(0, 1, 2) #toffoli qc.measure(2,0) job = execute(qc, simulator,shots=shot) counts = job.result().get_counts() state = [key for (key, value) in counts.items() if value ==1] return bool(int(state[0])) def Qnand(First_bool,Second_bool): First_bool=bool(First_bool) Second_bool=bool(Second_bool) a = int(First_bool) b = int(Second_bool) qc = QuantumCircuit(3,1) if a == 1: qc.x(0) if b == 1: qc.x(1) qc.ccx(0, 1, 2) #toffoli qc.x(2) qc.measure(2,0) job = execute(qc, simulator,shots=shot) counts = job.result().get_counts() state = [key for (key, value) in counts.items() if value ==1] return bool(int(state[0])) def Qor(First_bool,Second_bool): return Qnand(Qnand(First_bool,First_bool),Qnand(Second_bool,Second_bool)) def qrand(nbits): """generates nbits real random numbers using quantum state measurements in qiskit.""" circ = QuantumCircuit(1, 1) circ.h(0) circ.measure(0, 0) b=''#string holder for i in range(nbits): job=execute(circ, simulator,shots=shot) counts = job.result().get_counts() state = [key for (key, value) in counts.items() if value == 1] #find the measured state, this is a list b=b+state[0] #state[0] is a string return int(b, 2) def Pt(U0, E, L, betac, gamma_sqc): """return tunneling probability for square barrier""" return 1/ (np.cosh(betac * L)**2 + gamma_sqc * np.sinh(betac * L)**2) def beta(U0, E): """supply function for Pt""" return np.sqrt(2* (U0 - E)) def gamma_sq(U0, E): """supply function for Pt""" return 0.25 * ((1 - E/U0)/(E/U0) + (E/U0)/(1-E/U0) - 2) def theta(p_tunnel): """returns rotation angle corresponding to tunneling prob. p_tunnel""" return 2 * np.arcsin(np.sqrt(p_tunnel)) def tunnelres(U0, length_snake, L, betac, gamma_sqc): """returns 0 if tunnel, returns 1 if no tunnel""" P_t = Pt(U0, length_snake, L, betac, gamma_sqc) #get tunneling prob depending on current snake length theta_rot = theta(P_t) #get rot angle qr = QuantumRegister(1) cr = ClassicalRegister(1) circ = QuantumCircuit(qr, cr) circ.rx(theta_rot, qr[0]) circ.measure(qr, cr) job = execute(circ, simulator,shots=shot) counts = job.result().get_counts() state = [key for (key, value) in counts.items() if value == 1] return int(state[0]) ########################################################################## #MAIN ########################################################################## #initialize pew dis = pew.init() screen = pew.Pix() #set size bits = 3 ds= 2**bits #displazsize #set game starting parameters game_speed = 4 snake = [(2, 4)] dx, dy = 1, 0 apple_x, apple_y = 6, 5 screen.pixel(apple_x, apple_y, 1) howmanyapples = 1 #marker for total number of eaten apples, used for scoring #set graphics for probability display pygame.font.init() #gate backkgorund font1 = pygame.font.Font(None, 33) text = font1.render('Probability for tunneling is', True, (255, 0, 0)) dis.blit(text, (20, 330)) font2 = pygame.font.Font(None, 45) text2 = font2.render('100%', True, (255, 0, 0)) dis.blit(text2, (130, 360)) ima = pygame.image.load('pewblack.jpg') #tunneling parameters U0=37 #max snake length = 6x6 = 36 E=1 L=0.05 #optimal barrier size for nice tunneling probabilities #initialize tunneling tracker tunnel=0 #don't see other side as second barrier snakepos=1 #marker of snakepos, 1=head, increase towards tail headtunnel=0 #let the head tunnel again through other even if tail still in process while True: #snake runs #create barrier bar= [] for i in range(ds): screen.pixel(0, i, 2) screen.pixel(ds-1, i, 2) screen.pixel(i, 0, 2) screen.pixel(i, ds-1, 2) bar.append((0, i)) bar.append((ds-1, i)) bar.append((i, 0)) bar.append((i, ds-1)) #find the head if len(snake) > 1: x, y = snake[-2] screen.pixel(x, y, 1) x, y = snake[-1] screen.pixel(x, y, 3) #color the head yellow pew.show(screen) pew.tick(1 / game_speed) #get commands keys = pew.keys() if headtunnel==0: if keys & pew.K_UP and dy == 0: dx, dy = 0, -1 elif keys & pew.K_LEFT and dx == 0: dx, dy = -1, 0 elif keys & pew.K_RIGHT and dx == 0: dx, dy = 1, 0 elif keys & pew.K_DOWN and dy == 0: dx, dy = 0, 1 elif headtunnel==1: #steering not allowed during tunneling of the head (during two rounds) headtunnel=2 elif headtunnel>=2: headtunnel=0 x = (x + dx) % 8 y = (y + dy) % 8 ##TUNNELING PROCESS #snake tail tunnels if Qand(tunnel>0 ,snakepos<=len(snake)): #get segment for tunneling sx, sy = snake[-snakepos] E=len(snake)/2 #divide by two for lower tunnel prob for tail (lower mass->lower energy) tunnels = tunnelres(U0, E, L, beta(U0, E), gamma_sq(U0, E)) if tunnels==1: #tunnels snakepos+=1 else: #does not tunnel del snake[-snakepos] screen.pixel(sx, sy, 0) #reset if last segment tunneled if Qand(tunnel>0 ,snakepos==(len(snake)+1)): tunnel=0 snakepos=1 #snake head tunnels if Qand(headtunnel==0, (x, y) in bar): E=len(snake) tunnel = tunnelres(U0, E, L, beta(U0, E), gamma_sq(U0, E)) if Qand(tunnel==0, len(snake) != 1): #head doesn't tunnel --> game over break else: snakepos+=1 headtunnel+=1 elif headtunnel==1 and (x, y) in bar: headtunnel=0 #display tunneling prob. E = len(snake) if E > 1: prob = Pt(U0, E, L, beta(U0, E), gamma_sq(U0, E)) text3 = font2.render(str(int(round(prob * 100))) + '%', True, (255, 0, 0)) dis.blit(ima, (130, 360)) dis.blit(text3, (130, 360)) else: #if length of snake ==1 (only head), tunneling prob = 100% dis.blit(ima, (130, 360)) #cover the ultimate prob. display dis.blit(text2, (130, 360)) #text2 = '100%' #####TUNNEL END if (x, y) in snake: #exit, game over condition break snake.append((x, y)) #apple generation if Qand(x == apple_x, y == apple_y): screen.pixel(apple_x, apple_y, 0) apple_x, apple_y = snake[0] while Qor((apple_x, apple_y) in snake , (apple_x, apple_y) in bar): apple_x = qrand(bits) #random.getrandbits(3) #use this for pseudo random number gen, no qiskit needed apple_y = qrand(bits) #random.getrandbits(3) screen.pixel(apple_x, apple_y, 1) game_speed += 0.2 #increase game speed howmanyapples += 1 #increase number of eaten apples, score +1 else: x, y = snake.pop(0) screen.pixel(x, y, 0) text = pew.Pix.from_text("Game over!") #Game over message and closing for dx in range(-8, text.width): screen.blit(text, -dx, 1) pew.show(screen) pew.tick(1 / 12) text = pew.Pix.from_text("Score:" + str(int(howmanyapples))) #Score message for dx in range(-8, text.width): screen.blit(text, -dx, 1) pew.show(screen) pew.tick(1 / 12) pygame.quit()
https://github.com/pranavdurai10/quantum-gates
pranavdurai10
''' /////////////////////////////////////////////////////////////////////////// Code written by Pranav Durai for Quantum Computer on 31.05.2023 @ 21:26:45 Component: Controlled-NOT Gate (CNOT) Framework: Qiskit 0.43.0 /////////////////////////////////////////////////////////////////////////// ''' # Import necessary libraries from qiskit import QuantumCircuit, Aer, execute # Create a quantum circuit with two qubits circuit = QuantumCircuit(2) # Apply the CNOT gate with control qubit 0 and target qubit 1 circuit.cx(0, 1) # Measure the qubits circuit.measure_all() # Simulate the circuit using the local Aer simulator simulator = Aer.get_backend('qasm_simulator') job = execute(circuit, simulator, shots=1) # Get the result result = job.result() counts = result.get_counts(circuit) # Print the measurement outcome print("Measurement outcome:", list(counts.keys())[0])
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit circ = QuantumCircuit(2, 2) circ.h(0) circ.cx(0, 1) circ.measure(0, 0) circ.measure(1, 1) circ.draw('mpl') from qiskit import pulse from qiskit.pulse.library import Gaussian from qiskit.providers.fake_provider import FakeValencia backend = FakeValencia() with pulse.build(backend, name='hadamard') as h_q0: pulse.play(Gaussian(duration=128, amp=0.1, sigma=16), pulse.drive_channel(0)) h_q0.draw() circ.add_calibration('h', [0], h_q0) from qiskit import transpile from qiskit.providers.fake_provider import FakeHanoi backend = FakeHanoi() circ = transpile(circ, backend) print(backend.configuration().basis_gates) circ.draw('mpl', idle_wires=False) from qiskit import QuantumCircuit from qiskit.circuit import Gate circ = QuantumCircuit(1, 1) custom_gate = Gate('my_custom_gate', 1, [3.14, 1]) # 3.14 is an arbitrary parameter for demonstration circ.append(custom_gate, [0]) circ.measure(0, 0) circ.draw('mpl') with pulse.build(backend, name='custom') as my_schedule: pulse.play(Gaussian(duration=64, amp=0.2, sigma=8), pulse.drive_channel(0)) circ.add_calibration('my_custom_gate', [0], my_schedule, [3.14, 1]) # Alternatively: circ.add_calibration(custom_gate, [0], my_schedule) circ = transpile(circ, backend) circ.draw('mpl', idle_wires=False) circ = QuantumCircuit(2, 2) circ.append(custom_gate, [1]) from qiskit import QiskitError try: circ = transpile(circ, backend) except QiskitError as e: print(e) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Core module of the timeline drawer. This module provides the `DrawerCanvas` which is a collection of drawings. The canvas instance is not just a container of drawing objects, as it also performs data processing like binding abstract coordinates. Initialization ~~~~~~~~~~~~~~ The `DataCanvas` is not exposed to users as they are implicitly initialized in the interface function. It is noteworthy that the data canvas is agnostic to plotters. This means once the canvas instance is initialized we can reuse this data among multiple plotters. The canvas is initialized with a stylesheet. ```python canvas = DrawerCanvas(stylesheet=stylesheet) canvas.load_program(sched) canvas.update() ``` Once all properties are set, `.update` method is called to apply changes to drawings. Update ~~~~~~ To update the image, a user can set new values to canvas and then call the `.update` method. ```python canvas.set_time_range(2000, 3000) canvas.update() ``` All stored drawings are updated accordingly. The plotter API can access to drawings with `.collections` property of the canvas instance. This returns an iterator of drawings with the unique data key. If a plotter provides object handler for plotted shapes, the plotter API can manage the lookup table of the handler and the drawings by using this data key. """ from __future__ import annotations import warnings from collections.abc import Iterator from copy import deepcopy from functools import partial from enum import Enum import numpy as np from qiskit import circuit from qiskit.visualization.exceptions import VisualizationError from qiskit.visualization.timeline import drawings, types from qiskit.visualization.timeline.stylesheet import QiskitTimelineStyle class DrawerCanvas: """Data container for drawings.""" def __init__(self, stylesheet: QiskitTimelineStyle): """Create new data container.""" # stylesheet self.formatter = stylesheet.formatter self.generator = stylesheet.generator self.layout = stylesheet.layout # drawings self._collections: dict[str, drawings.ElementaryData] = {} self._output_dataset: dict[str, drawings.ElementaryData] = {} # vertical offset of bits self.bits: list[types.Bits] = [] self.assigned_coordinates: dict[types.Bits, float] = {} # visible controls self.disable_bits: set[types.Bits] = set() self.disable_types: set[str] = set() # time self._time_range = (0, 0) # graph height self.vmax = 0 self.vmin = 0 @property def time_range(self) -> tuple[int, int]: """Return current time range to draw. Calculate net duration and add side margin to edge location. Returns: Time window considering side margin. """ t0, t1 = self._time_range duration = t1 - t0 new_t0 = t0 - duration * self.formatter["margin.left_percent"] new_t1 = t1 + duration * self.formatter["margin.right_percent"] return new_t0, new_t1 @time_range.setter def time_range(self, new_range: tuple[int, int]): """Update time range to draw.""" self._time_range = new_range @property def collections(self) -> Iterator[tuple[str, drawings.ElementaryData]]: """Return currently active entries from drawing data collection. The object is returned with unique name as a key of an object handler. When the horizontal coordinate contains `AbstractCoordinate`, the value is substituted by current time range preference. """ yield from self._output_dataset.items() def add_data(self, data: drawings.ElementaryData): """Add drawing to collections. If the given object already exists in the collections, this interface replaces the old object instead of adding new entry. Args: data: New drawing to add. """ if not self.formatter["control.show_clbits"]: data.bits = [b for b in data.bits if not isinstance(b, circuit.Clbit)] self._collections[data.data_key] = data # pylint: disable=cyclic-import def load_program(self, program: circuit.QuantumCircuit): """Load quantum circuit and create drawing.. Args: program: Scheduled circuit object to draw. Raises: VisualizationError: When circuit is not scheduled. """ not_gate_like = (circuit.Barrier,) if getattr(program, "_op_start_times") is None: # Run scheduling for backward compatibility from qiskit import transpile from qiskit.transpiler import InstructionDurations, TranspilerError warnings.warn( "Visualizing un-scheduled circuit with timeline drawer has been deprecated. " "This circuit should be transpiled with scheduler though it consists of " "instructions with explicit durations.", DeprecationWarning, ) try: program = transpile( program, scheduling_method="alap", instruction_durations=InstructionDurations(), optimization_level=0, ) except TranspilerError as ex: raise VisualizationError( f"Input circuit {program.name} is not scheduled and it contains " "operations with unknown delays. This cannot be visualized." ) from ex for t0, instruction in zip(program.op_start_times, program.data): bits = list(instruction.qubits) + list(instruction.clbits) for bit_pos, bit in enumerate(bits): if not isinstance(instruction.operation, not_gate_like): # Generate draw object for gates gate_source = types.ScheduledGate( t0=t0, operand=instruction.operation, duration=instruction.operation.duration, bits=bits, bit_position=bit_pos, ) for gen in self.generator["gates"]: obj_generator = partial(gen, formatter=self.formatter) for datum in obj_generator(gate_source): self.add_data(datum) if len(bits) > 1 and bit_pos == 0: # Generate draw object for gate-gate link line_pos = t0 + 0.5 * instruction.operation.duration link_source = types.GateLink( t0=line_pos, opname=instruction.operation.name, bits=bits ) for gen in self.generator["gate_links"]: obj_generator = partial(gen, formatter=self.formatter) for datum in obj_generator(link_source): self.add_data(datum) if isinstance(instruction.operation, circuit.Barrier): # Generate draw object for barrier barrier_source = types.Barrier(t0=t0, bits=bits, bit_position=bit_pos) for gen in self.generator["barriers"]: obj_generator = partial(gen, formatter=self.formatter) for datum in obj_generator(barrier_source): self.add_data(datum) self.bits = list(program.qubits) + list(program.clbits) for bit in self.bits: for gen in self.generator["bits"]: # Generate draw objects for bit obj_generator = partial(gen, formatter=self.formatter) for datum in obj_generator(bit): self.add_data(datum) # update time range t_end = max(program.duration, self.formatter["margin.minimum_duration"]) self.set_time_range(t_start=0, t_end=t_end) def set_time_range(self, t_start: int, t_end: int): """Set time range to draw. Args: t_start: Left boundary of drawing in units of cycle time. t_end: Right boundary of drawing in units of cycle time. """ self.time_range = (t_start, t_end) def set_disable_bits(self, bit: types.Bits, remove: bool = True): """Interface method to control visibility of bits. Specified object in the blocked list will not be shown. Args: bit: A qubit or classical bit object to disable. remove: Set `True` to disable, set `False` to enable. """ if remove: self.disable_bits.add(bit) else: self.disable_bits.discard(bit) def set_disable_type(self, data_type: types.DataTypes, remove: bool = True): """Interface method to control visibility of data types. Specified object in the blocked list will not be shown. Args: data_type: A drawing data type to disable. remove: Set `True` to disable, set `False` to enable. """ if isinstance(data_type, Enum): data_type_str = str(data_type.value) else: data_type_str = data_type if remove: self.disable_types.add(data_type_str) else: self.disable_types.discard(data_type_str) def update(self): """Update all collections. This method should be called before the canvas is passed to the plotter. """ self._output_dataset.clear() self.assigned_coordinates.clear() # update coordinate y0 = -self.formatter["margin.top"] for bit in self.layout["bit_arrange"](self.bits): # remove classical bit if isinstance(bit, circuit.Clbit) and not self.formatter["control.show_clbits"]: continue # remove idle bit if not self._check_bit_visible(bit): continue offset = y0 - 0.5 self.assigned_coordinates[bit] = offset y0 = offset - 0.5 self.vmax = 0 self.vmin = y0 - self.formatter["margin.bottom"] # add data temp_gate_links = {} temp_data = {} for data_key, data in self._collections.items(): # deep copy to keep original data hash new_data = deepcopy(data) new_data.xvals = self._bind_coordinate(data.xvals) new_data.yvals = self._bind_coordinate(data.yvals) if data.data_type == str(types.LineType.GATE_LINK.value): temp_gate_links[data_key] = new_data else: temp_data[data_key] = new_data # update horizontal offset of gate links temp_data.update(self._check_link_overlap(temp_gate_links)) # push valid data for data_key, data in temp_data.items(): if self._check_data_visible(data): self._output_dataset[data_key] = data def _check_data_visible(self, data: drawings.ElementaryData) -> bool: """A helper function to check if the data is visible. Args: data: Drawing object to test. Returns: Return `True` if the data is visible. """ _barriers = [str(types.LineType.BARRIER.value)] _delays = [str(types.BoxType.DELAY.value), str(types.LabelType.DELAY.value)] def _time_range_check(_data): """If data is located outside the current time range.""" t0, t1 = self.time_range if np.max(_data.xvals) < t0 or np.min(_data.xvals) > t1: return False return True def _associated_bit_check(_data): """If any associated bit is not shown.""" if all(bit not in self.assigned_coordinates for bit in _data.bits): return False return True def _data_check(_data): """If data is valid.""" if _data.data_type == str(types.LineType.GATE_LINK.value): active_bits = [bit for bit in _data.bits if bit not in self.disable_bits] if len(active_bits) < 2: return False elif _data.data_type in _barriers and not self.formatter["control.show_barriers"]: return False elif _data.data_type in _delays and not self.formatter["control.show_delays"]: return False return True checks = [_time_range_check, _associated_bit_check, _data_check] if all(check(data) for check in checks): return True return False def _check_bit_visible(self, bit: types.Bits) -> bool: """A helper function to check if the bit is visible. Args: bit: Bit object to test. Returns: Return `True` if the bit is visible. """ _gates = [str(types.BoxType.SCHED_GATE.value), str(types.SymbolType.FRAME.value)] if bit in self.disable_bits: return False if self.formatter["control.show_idle"]: return True for data in self._collections.values(): if bit in data.bits and data.data_type in _gates: return True return False def _bind_coordinate(self, vals: Iterator[types.Coordinate]) -> np.ndarray: """A helper function to bind actual coordinates to an `AbstractCoordinate`. Args: vals: Sequence of coordinate objects associated with a drawing. Returns: Numpy data array with substituted values. """ def substitute(val: types.Coordinate): if val == types.AbstractCoordinate.LEFT: return self.time_range[0] if val == types.AbstractCoordinate.RIGHT: return self.time_range[1] if val == types.AbstractCoordinate.TOP: return self.vmax if val == types.AbstractCoordinate.BOTTOM: return self.vmin raise VisualizationError(f"Coordinate {val} is not supported.") try: return np.asarray(vals, dtype=float) except TypeError: return np.asarray(list(map(substitute, vals)), dtype=float) def _check_link_overlap( self, links: dict[str, drawings.GateLinkData] ) -> dict[str, drawings.GateLinkData]: """Helper method to check overlap of bit links. This method dynamically shifts horizontal position of links if they are overlapped. """ duration = self.time_range[1] - self.time_range[0] allowed_overlap = self.formatter["margin.link_interval_percent"] * duration # return y coordinates def y_coords(link: drawings.GateLinkData): return np.array([self.assigned_coordinates.get(bit, np.nan) for bit in link.bits]) # group overlapped links overlapped_group: list[list[str]] = [] data_keys = list(links.keys()) while len(data_keys) > 0: ref_key = data_keys.pop() overlaps = set() overlaps.add(ref_key) for key in data_keys[::-1]: # check horizontal overlap if np.abs(links[ref_key].xvals[0] - links[key].xvals[0]) < allowed_overlap: # check vertical overlap y0s = y_coords(links[ref_key]) y1s = y_coords(links[key]) v1 = np.nanmin(y0s) - np.nanmin(y1s) v2 = np.nanmax(y0s) - np.nanmax(y1s) v3 = np.nanmin(y0s) - np.nanmax(y1s) v4 = np.nanmax(y0s) - np.nanmin(y1s) if not (v1 * v2 > 0 and v3 * v4 > 0): overlaps.add(data_keys.pop(data_keys.index(key))) overlapped_group.append(list(overlaps)) # renew horizontal offset new_links = {} for overlaps in overlapped_group: if len(overlaps) > 1: xpos_mean = np.mean([links[key].xvals[0] for key in overlaps]) # sort link key by y position sorted_keys = sorted(overlaps, key=lambda x: np.nanmax(y_coords(links[x]))) x0 = xpos_mean - 0.5 * allowed_overlap * (len(overlaps) - 1) for ind, key in enumerate(sorted_keys): data = links[key] data.xvals = [x0 + ind * allowed_overlap] new_links[key] = data else: key = overlaps[0] new_links[key] = links[key] return {key: new_links[key] for key in links.keys()}
https://github.com/peiyong-addwater/Hackathon-QNLP
peiyong-addwater
import re import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import string from nltk.tokenize import sent_tokenize, word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer, SnowballStemmer from nltk import pos_tag, ne_chunk from nltk.chunk import tree2conlltags import os import seaborn as sns import matplotlib.pyplot as plt from collections import Counter import nltk nltk.download('stopwords') nltk.download('punkt') nltk.download('wordnet') nltk.download('averaged_perceptron_tagger') nltk.download('maxent_ne_chunker') nltk.download('words') import warnings warnings.filterwarnings("ignore") pd.set_option('display.width', 1000) pd.options.display.max_colwidth=120 print(os.getcwd()) columns = ["Id","Entity","Target","Text"] data = pd.read_csv("/app/data/twitter_training.csv", names=columns,header=None) data.head() df_train = data[["Text","Target"]] df_train = df_train.loc[(df_train["Target"]=='Positive') | (df_train["Target"]=='Negative')] df_train.head() df_train.info() df_train= df_train.drop_duplicates() df_train.info() sns.countplot(x="Target",data=df_train) data_val = pd.read_csv("/app/data/twitter_validation.csv", names=columns,header=None) data_val.head() df_val = data_val[['Text', 'Target']] df_val = df_val.loc[(df_val['Target'] == 'Positive') | (df_val['Target'] == 'Negative')] df_val.head() df_val.info() sns.countplot(x="Target",data=df_val) text_cleaning_re = "@\S+|https?:\S+|http?:\S|[^A-Za-z0-9]+" emoji_pattern = re.compile("[" u"\U0001F600-\U0001F64F" # emoticons u"\U0001F300-\U0001F5FF" # symbols & pictographs u"\U0001F680-\U0001F6FF" # transport & map symbols u"\U0001F1E0-\U0001F1FF" # flags (iOS) "]+", flags=re.UNICODE) stemmer = SnowballStemmer('english') def preprocess(text): text = re.sub(text_cleaning_re, ' ', str(text).lower()).strip() text = emoji_pattern.sub(r'', text) tokens = [] for token in text.split(): tokens.append(token) return " ".join(tokens) df_train["Text"] = df_train["Text"].apply(preprocess) df_train["Text"]= df_train["Text"].str.replace("im","i am") df_train["Text"].head() df_val["Text"] = df_val["Text"].apply(preprocess) df_val["Text"]=df_val["Text"].str.replace("im","i am") df_val["Text"].head()
https://github.com/ElePT/qiskit-algorithms-test
ElePT
# This code is part of Qiskit. # # (C) Copyright IBM 2021, 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """An algorithm to implement a Trotterization real time-evolution.""" from __future__ import annotations from qiskit import QuantumCircuit from qiskit_algorithms.time_evolvers.time_evolution_problem import TimeEvolutionProblem from qiskit_algorithms.time_evolvers.time_evolution_result import TimeEvolutionResult from qiskit_algorithms.time_evolvers.real_time_evolver import RealTimeEvolver from qiskit_algorithms.observables_evaluator import estimate_observables from qiskit.opflow import PauliSumOp from qiskit.circuit.library import PauliEvolutionGate from qiskit.circuit.parametertable import ParameterView from qiskit.primitives import BaseEstimator from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit.synthesis import ProductFormula, LieTrotter class TrotterQRTE(RealTimeEvolver): """Quantum Real Time Evolution using Trotterization. Type of Trotterization is defined by a ``ProductFormula`` provided. Examples: .. code-block:: python from qiskit.opflow import PauliSumOp from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit import QuantumCircuit from qiskit_algorithms import TimeEvolutionProblem from qiskit_algorithms.time_evolvers import TrotterQRTE from qiskit.primitives import Estimator operator = PauliSumOp(SparsePauliOp([Pauli("X"), Pauli("Z")])) initial_state = QuantumCircuit(1) time = 1 evolution_problem = TimeEvolutionProblem(operator, time, initial_state) # LieTrotter with 1 rep estimator = Estimator() trotter_qrte = TrotterQRTE(estimator=estimator) evolved_state = trotter_qrte.evolve(evolution_problem).evolved_state """ def __init__( self, product_formula: ProductFormula | None = None, estimator: BaseEstimator | None = None, num_timesteps: int = 1, ) -> None: """ Args: product_formula: A Lie-Trotter-Suzuki product formula. If ``None`` provided, the Lie-Trotter first order product formula with a single repetition is used. ``reps`` should be 1 to obtain a number of time-steps equal to ``num_timesteps`` and an evaluation of :attr:`.TimeEvolutionProblem.aux_operators` at every time-step. If ``reps`` is larger than 1, the true number of time-steps will be ``num_timesteps * reps``. num_timesteps: The number of time-steps the full evolution time is devided into (repetitions of ``product_formula``) estimator: An estimator primitive used for calculating expectation values of ``TimeEvolutionProblem.aux_operators``. """ self.product_formula = product_formula self.num_timesteps = num_timesteps self.estimator = estimator @property def product_formula(self) -> ProductFormula: """Returns a product formula.""" return self._product_formula @product_formula.setter def product_formula(self, product_formula: ProductFormula | None): """Sets a product formula. If ``None`` provided, sets the Lie-Trotter first order product formula with a single repetition.""" if product_formula is None: product_formula = LieTrotter() self._product_formula = product_formula @property def estimator(self) -> BaseEstimator | None: """ Returns an estimator. """ return self._estimator @estimator.setter def estimator(self, estimator: BaseEstimator) -> None: """ Sets an estimator. """ self._estimator = estimator @property def num_timesteps(self) -> int: """Returns the number of timesteps.""" return self._num_timesteps @num_timesteps.setter def num_timesteps(self, num_timesteps: int) -> None: """ Sets the number of time-steps. Raises: ValueError: If num_timesteps is not positive. """ if num_timesteps <= 0: raise ValueError( f"Number of time steps must be positive integer, {num_timesteps} provided" ) self._num_timesteps = num_timesteps @classmethod def supports_aux_operators(cls) -> bool: """ Whether computing the expectation value of auxiliary operators is supported. Returns: ``True`` if ``aux_operators`` expectations in the ``TimeEvolutionProblem`` can be evaluated, ``False`` otherwise. """ return True def evolve(self, evolution_problem: TimeEvolutionProblem) -> TimeEvolutionResult: """ Evolves a quantum state for a given time using the Trotterization method based on a product formula provided. The result is provided in the form of a quantum circuit. If auxiliary operators are included in the ``evolution_problem``, they are evaluated on the ``init_state`` and on the evolved state at every step (``num_timesteps`` times) using an estimator primitive provided. Args: evolution_problem: Instance defining evolution problem. For the included Hamiltonian, ``Pauli`` or ``PauliSumOp`` are supported by TrotterQRTE. Returns: Evolution result that includes an evolved state as a quantum circuit and, optionally, auxiliary operators evaluated for a resulting state on an estimator primitive. Raises: ValueError: If ``t_param`` is not set to ``None`` in the ``TimeEvolutionProblem`` (feature not currently supported). ValueError: If ``aux_operators`` provided in the time evolution problem but no estimator provided to the algorithm. ValueError: If the ``initial_state`` is not provided in the ``TimeEvolutionProblem``. ValueError: If an unsupported Hamiltonian type is provided. """ evolution_problem.validate_params() if evolution_problem.aux_operators is not None and self.estimator is None: raise ValueError( "The time evolution problem contained ``aux_operators`` but no estimator was " "provided. The algorithm continues without calculating these quantities. " ) # ensure the hamiltonian is a sparse pauli op hamiltonian = evolution_problem.hamiltonian if not isinstance(hamiltonian, (Pauli, PauliSumOp, SparsePauliOp)): raise ValueError( f"TrotterQRTE only accepts Pauli | PauliSumOp | SparsePauliOp, {type(hamiltonian)} " "provided." ) if isinstance(hamiltonian, PauliSumOp): hamiltonian = hamiltonian.primitive * hamiltonian.coeff elif isinstance(hamiltonian, Pauli): hamiltonian = SparsePauliOp(hamiltonian) t_param = evolution_problem.t_param free_parameters = hamiltonian.parameters if t_param is not None and free_parameters != ParameterView([t_param]): raise ValueError( f"Hamiltonian time parameters ({free_parameters}) do not match " f"evolution_problem.t_param ({t_param})." ) # make sure PauliEvolutionGate does not implement more than one Trotter step dt = evolution_problem.time / self.num_timesteps if evolution_problem.initial_state is not None: initial_state = evolution_problem.initial_state else: raise ValueError("``initial_state`` must be provided in the ``TimeEvolutionProblem``.") evolved_state = QuantumCircuit(initial_state.num_qubits) evolved_state.append(initial_state, evolved_state.qubits) if evolution_problem.aux_operators is not None: observables = [] observables.append( estimate_observables( self.estimator, evolved_state, evolution_problem.aux_operators, None, evolution_problem.truncation_threshold, ) ) else: observables = None if t_param is None: # the evolution gate single_step_evolution_gate = PauliEvolutionGate( hamiltonian, dt, synthesis=self.product_formula ) for n in range(self.num_timesteps): # if hamiltonian is time-dependent, bind new time-value at every step to construct # evolution for next step if t_param is not None: time_value = (n + 1) * dt bound_hamiltonian = hamiltonian.assign_parameters([time_value]) single_step_evolution_gate = PauliEvolutionGate( bound_hamiltonian, dt, synthesis=self.product_formula, ) evolved_state.append(single_step_evolution_gate, evolved_state.qubits) if evolution_problem.aux_operators is not None: observables.append( estimate_observables( self.estimator, evolved_state, evolution_problem.aux_operators, None, evolution_problem.truncation_threshold, ) ) evaluated_aux_ops = None if evolution_problem.aux_operators is not None: evaluated_aux_ops = observables[-1] return TimeEvolutionResult(evolved_state, evaluated_aux_ops, observables)
https://github.com/usamisaori/quantum-expressibility-entangling-capability
usamisaori
import numpy as np from qiskit.quantum_info import state_fidelity, Statevector def getStatevector(circuit): return Statevector(circuit).data import warnings warnings.filterwarnings('ignore') def P_haar(N, F): if F == 1: return 0 else: return (N - 1) * ((1 - F) ** (N - 2)) def KL(P, Q): epsilon = 1e-8 kl_divergence = 0.0 for p, q in zip(P, Q): kl_divergence += p * np.log( (p + epsilon) / (q + epsilon) ) return abs(kl_divergence) def expressibility(qubits, sampler, *, bins=100, epoch=3000, layer=1, encode=False, return_detail=False): unit = 1 / bins limits = [] probabilities = np.array([0] * bins) for i in range(1, bins + 1): limits.append(unit * i) for i in range(epoch): circuit_1 = sampler(layer=layer, qubits=qubits) circuit_2 = sampler(layer=layer, qubits=qubits) f = state_fidelity( getStatevector(circuit_1), getStatevector(circuit_2) ) for j in range(bins): if f <= limits[j]: probabilities[j] += 1 break pHaar_vqc = [ P_haar(2 ** qubits, f - (unit/2)) / bins for f in limits] probabilities = [ p / epoch for p in probabilities ] if return_detail: return pHaar_vqc, probabilities else: return KL(probabilities, pHaar_vqc)
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Quantum Operation Mixin.""" from abc import ABC, abstractmethod class Operation(ABC): """Quantum Operation Interface Class. For objects that can be added to a :class:`~qiskit.circuit.QuantumCircuit`. These objects include :class:`~qiskit.circuit.Gate`, :class:`~qiskit.circuit.Reset`, :class:`~qiskit.circuit.Barrier`, :class:`~qiskit.circuit.Measure`, and operators such as :class:`~qiskit.quantum_info.Clifford`. The main purpose is to add an :class:`~qiskit.circuit.Operation` to a :class:`~qiskit.circuit.QuantumCircuit` without synthesizing it before the transpilation. Example: Add a Clifford and a Toffoli gate to a QuantumCircuit. .. plot:: :include-source: from qiskit import QuantumCircuit from qiskit.quantum_info import Clifford, random_clifford qc = QuantumCircuit(3) cliff = random_clifford(2) qc.append(cliff, [0, 1]) qc.ccx(0, 1, 2) qc.draw('mpl') """ __slots__ = () @property @abstractmethod def name(self): """Unique string identifier for operation type.""" raise NotImplementedError @property @abstractmethod def num_qubits(self): """Number of qubits.""" raise NotImplementedError @property @abstractmethod def num_clbits(self): """Number of classical bits.""" raise NotImplementedError
https://github.com/amitcrypto/ARIA-Blocks-Qiskit
amitcrypto
# Copyright (c) Amit Kumar Chauhan, IIT Ropar, India. # Licensed under the GNU General Public License. # Importing standard Qiskit libraries and configuring account import qiskit from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * # Loading your IBM Q account(s) provider = IBMQ.load_account() # Creating qubits q = qiskit.QuantumRegister(128) circuit = qiskit.QuantumCircuit(q) # Applying CNOT gates on the register of qubits circuit.cx(q[4], q[0]) circuit.cx(q[6], q[0]) circuit.cx(q[5], q[1]) circuit.cx(q[4], q[2]) circuit.cx(q[7], q[2]) circuit.cx(q[5], q[3]) circuit.cx(q[6], q[4]) circuit.cx(q[7], q[4]) circuit.cx(q[6], q[5]) circuit.cx(q[6], q[7]) circuit.cx(q[5], q[6]) circuit.cx(q[4], q[6]) # Printing the circuit qc = circuit.draw() print(qc) # Estimating the circuit depth d = QuantumCircuit.depth(circuit) print('The Circuit Depth :=', d)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit.random import random_circuit circuit = random_circuit(2, 2, seed=0, measure=True).decompose(reps=1) display(circuit.draw("mpl")) from qiskit.primitives import Sampler sampler = Sampler() job = sampler.run(circuit) print(f">>> Job ID: {job.job_id()}") print(f">>> Job Status: {job.status()}") result = job.result() print(f">>> {result}") print(f" > Quasi-distribution: {result.quasi_dists[0]}") circuit = random_circuit(2, 2, seed=1, measure=True).decompose(reps=1) job = sampler.run(circuit) result = job.result() display(circuit.draw("mpl")) print(f">>> Quasi-distribution: {result.quasi_dists[0]}") circuits = ( random_circuit(2, 2, seed=0, measure=True).decompose(reps=1), random_circuit(2, 2, seed=1, measure=True).decompose(reps=1), ) job = sampler.run(circuits) result = job.result() [display(cir.draw("mpl")) for cir in circuits] print(f">>> Quasi-distribution: {result.quasi_dists}") from qiskit.circuit.library import RealAmplitudes circuit = RealAmplitudes(num_qubits=2, reps=2).decompose(reps=1) circuit.measure_all() parameter_values = [0, 1, 2, 3, 4, 5] job = sampler.run(circuit, parameter_values) result = job.result() display(circuit.draw("mpl")) print(f">>> Parameter values: {parameter_values}") print(f">>> Quasi-distribution: {result.quasi_dists[0]}") from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService(channel="ibm_quantum") backend = service.backend("ibmq_qasm_simulator") from qiskit.circuit.random import random_circuit circuit = random_circuit(2, 2, seed=0, measure=True).decompose(reps=1) display(circuit.draw("mpl")) from qiskit_ibm_runtime import Sampler sampler = Sampler(session=backend) job = sampler.run(circuit) print(f">>> Job ID: {job.job_id()}") print(f">>> Job Status: {job.status()}") result = job.result() print(f">>> {result}") print(f" > Quasi-distribution: {result.quasi_dists[0]}") print(f" > Metadata: {result.metadata[0]}") from qiskit_ibm_runtime import Options options = Options(optimization_level=3, environment={"log_level": "INFO"}) from qiskit_ibm_runtime import Options options = Options() options.resilience_level = 1 options.execution.shots = 2048 sampler = Sampler(session=backend, options=options) result = sampler.run(circuit).result() print(f">>> Metadata: {result.metadata[0]}") sampler = Sampler(session=backend, options=options) result = sampler.run(circuit, shots=1024).result() print(f">>> Metadata: {result.metadata[0]}") from qiskit_ibm_runtime import Options # optimization_level=3 adds dynamical decoupling # resilience_level=1 adds readout error mitigation options = Options(optimization_level=3, resilience_level=1) sampler = Sampler(session=backend, options=options) result = sampler.run(circuit).result() print(f">>> Quasi-distribution: {result.quasi_dists[0]}") print(f">>> Metadata: {result.metadata[0]}") from qiskit_ibm_runtime import Session, Estimator with Session(backend=backend, max_time="1h"): sampler = Sampler() result = sampler.run(circuit).result() print(f">>> Quasi-distribution from the first run: {result.quasi_dists[0]}") result = sampler.run(circuit).result() print(f">>> Quasi-distribution from the second run: {result.quasi_dists[0]}") from qiskit.circuit.random import random_circuit from qiskit.quantum_info import SparsePauliOp estimator_circuit = random_circuit(2, 2, seed=0).decompose(reps=1) display(estimator_circuit.draw("mpl")) observable = SparsePauliOp("XZ") print(f">>> Observable: {observable.paulis}") from qiskit_ibm_runtime import Session, Sampler, Estimator with Session(backend=backend): sampler = Sampler() estimator = Estimator() result = sampler.run(circuit).result() print(f">>> Quasi Distribution from the sampler job: {result.quasi_dists[0]}") result = estimator.run(estimator_circuit, observable).result() print(f">>> Expectation value from the estimator job: {result.values[0]}") from qiskit_ibm_runtime import Session, Sampler, Estimator with Session(backend=backend): sampler = Sampler() estimator = Estimator() sampler_job = sampler.run(circuit) estimator_job = estimator.run(estimator_circuit, observable) print(f">>> Quasi Distribution from the sampler job: {sampler_job.result().quasi_dists[0]}") print(f">>> Expectation value from the estimator job: {estimator_job.result().values[0]}") from qiskit_ibm_runtime import QiskitRuntimeService, Session, Sampler, Estimator, Options # 1. Initialize account service = QiskitRuntimeService(channel="ibm_quantum") # 2. Specify options, such as enabling error mitigation options = Options(resilience_level=1) # 3. Select a backend. backend = service.backend("ibmq_qasm_simulator") # 4. Create a session with Session(backend=backend): # 5. Create primitive instances sampler = Sampler(options=options) estimator = Estimator(options=options) # 6. Submit jobs sampler_job = sampler.run(circuit) estimator_job = estimator.run(estimator_circuit, observable) # 7. Get results print(f">>> Quasi Distribution from the sampler job: {sampler_job.result().quasi_dists[0]}") print(f">>> Expectation value from the estimator job: {estimator_job.result().values[0]}") import qiskit_ibm_runtime qiskit_ibm_runtime.version.get_version_info() from qiskit.tools.jupyter import * %qiskit_version_table %qiskit_copyright
https://github.com/ka-us-tubh/quantum-computing-qiskit-
ka-us-tubh
from ibm_quantum_widgets import CircuitComposer from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from numpy import pi qreg_q = QuantumRegister(4, 'q') creg_c = ClassicalRegister(4, 'c') circuit = QuantumCircuit(qreg_q, creg_c) circuit.x(qreg_q[3]) circuit.barrier(qreg_q[0], qreg_q[1], qreg_q[2], qreg_q[3]) circuit.h(qreg_q[0]) circuit.h(qreg_q[1]) circuit.h(qreg_q[2]) circuit.h(qreg_q[3]) circuit.barrier(qreg_q[0], qreg_q[1], qreg_q[2], qreg_q[3]) circuit.cx(qreg_q[2], qreg_q[3]) circuit.cx(qreg_q[0], qreg_q[3]) circuit.barrier(qreg_q[0], qreg_q[1], qreg_q[2], qreg_q[3]) circuit.h(qreg_q[0]) circuit.h(qreg_q[1]) circuit.h(qreg_q[2]) circuit.measure(qreg_q[0], creg_c[0]) circuit.measure(qreg_q[1], creg_c[1]) circuit.measure(qreg_q[2], creg_c[2]) editor = CircuitComposer(circuit=circuit) editor
https://github.com/Qiskit/feedback
Qiskit
import warnings warnings.filterwarnings('ignore') import datetime import os import json import numpy as np import matplotlib.pyplot as plt import scipy.optimize as opt from scipy import signal from qiskit import IBMQ, pulse, circuit from qiskit.visualization.pulse_v2 import IQXDebugging from qiskit.result import Result, marginal_counts from qiskit.providers.ibmq.utils.json_encoder import IQXJsonEncoder from qiskit.providers.ibmq.utils.json_decoder import decode_result class DateTimeEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, (datetime.datetime, datetime.date, datetime.time)): return obj.isoformat() elif isinstance(obj, datetime.timedelta): return (datetime.datetime.min + obj).time().isoformat() return super(DateTimeEncoder, self).default(obj) IBMQ.load_account() backend = IBMQ.get_provider("ibm-q-internal", "deployed", "default").get_backend("ibmq_lima") qubits = 0, 1 durs1 = 160, 880 durs2 = 320, 1760 basename = "lima_20210813" def get_params(sx_dur, cx_dur, sigma_r=4, cx_sigma=64, cx_risefall=2): return { "sx0": {"duration": sx_dur, "amp": 0., "sigma": sx_dur/sigma_r, "beta": 0.}, "sx1": {"duration": sx_dur, "amp": 0., "sigma": sx_dur/sigma_r, "beta": 0.}, "ecr": {"duration": cx_dur, "amp": 0., "phase": 0., "sigma": cx_sigma, "risefall_sigma_ratio": cx_risefall} } def rough_amp(qubits, amps, cals): amp = circuit.Parameter("amp") with pulse.build(backend, default_alignment="sequential") as sched: with pulse.align_left(): for ind, q in enumerate(qubits): sxcal = cals[f"sx{ind}"].copy() sxcal["amp"] = amp pulse.play(pulse.Drag(**sxcal), pulse.drive_channel(q)) pulse.measure(qubits, [pulse.MemorySlot(ind) for ind in range(len(qubits))]) return [sched.assign_parameters({amp: amp_val}, inplace=False) for amp_val in amps] def rough_amp_cr(qubits, amps, cals): amp = circuit.Parameter("amp") qc, qt = qubits with pulse.build(backend, default_alignment="sequential") as sched: sxcal = cals["sx0"] crcal = cals["ecr"].copy() crcal["amp"] = amp * np.exp(1j*crcal.pop("phase", 0.)) u_chan = pulse.control_channels(*qubits)[0] pulse.play(pulse.GaussianSquare(**crcal), u_chan) pulse.play(pulse.Drag(**sxcal), pulse.drive_channel(qc)) pulse.play(pulse.Drag(**sxcal), pulse.drive_channel(qc)) with pulse.phase_offset(np.pi, u_chan): pulse.play(pulse.GaussianSquare(**crcal), u_chan) pulse.measure([qt], [pulse.MemorySlot(0)]) return [sched.assign_parameters({amp: amp_val}, inplace=False) for amp_val in amps] def phase_cr(qubits, phases, cals): phase = circuit.Parameter("phase") qc, qt = qubits with pulse.build(backend, default_alignment="sequential") as sched: sxcal_c = cals["sx0"] sxcal_t = cals["sx1"] crcal = cals["ecr"].copy() crcal.pop("phase") crcal["amp"] *= np.exp(1j*phase) u_chan = pulse.control_channels(*qubits)[0] pulse.play(pulse.GaussianSquare(**crcal), u_chan) pulse.play(pulse.Drag(**sxcal_c), pulse.drive_channel(qc)) pulse.play(pulse.Drag(**sxcal_c), pulse.drive_channel(qc)) with pulse.phase_offset(np.pi, u_chan): pulse.play(pulse.GaussianSquare(**crcal), u_chan) pulse.play(pulse.Drag(**sxcal_t), pulse.drive_channel(qt)) pulse.measure([qt], [pulse.MemorySlot(0)]) return [sched.assign_parameters({phase: val}, inplace=False) for val in phases] def fine_amp(qubits, delta_amps, n_rep, cals): delta_amp = circuit.Parameter("delta_amp") with pulse.build(backend=backend, default_alignment="sequential") as sched_p: with pulse.align_left(): for ind, q in enumerate(qubits): sxcal = cals[f"sx{ind}"].copy() sxcal["amp"] += delta_amp sx_pulse = pulse.Drag(**sxcal) for _ in range(4 * n_rep): pulse.play(sx_pulse, pulse.drive_channel(q)) pulse.play(sx_pulse, pulse.drive_channel(q)) pulse.measure(qubits, [pulse.MemorySlot(ind) for ind in range(len(qubits))]) with pulse.build(backend=backend, default_alignment="sequential") as sched_m: with pulse.align_left(): for ind, q in enumerate(qubits): sxcal = cals[f"sx{ind}"].copy() sxcal["amp"] += delta_amp sx_pulse = pulse.Drag(**sxcal) with pulse.phase_offset(np.pi, pulse.drive_channel(q)): for _ in range(4 * n_rep): pulse.play(sx_pulse, pulse.drive_channel(q)) pulse.play(sx_pulse, pulse.drive_channel(q)) pulse.measure(qubits, [pulse.MemorySlot(ind) for ind in range(len(qubits))]) sched_p_assigned = [sched_p.assign_parameters({delta_amp: val}, inplace=False) for val in delta_amps] sched_m_assigned = [sched_m.assign_parameters({delta_amp: val}, inplace=False) for val in delta_amps] return sched_p_assigned + sched_m_assigned def fine_amp_cr(qubits, delta_amps, n_rep, cals): delta_amp = circuit.Parameter("delta_amp") qc, qt = qubits sxcal_c = cals["sx0"] sxcal_t = cals["sx1"] crcal = cals["ecr"].copy() _amp = (crcal["amp"] + delta_amp) * np.exp(1j*crcal.pop("phase", 0.)) crcal["amp"] = _amp with pulse.build(backend, default_alignment="sequential") as sched_p: u_chan = pulse.control_channels(*qubits)[0] for _ in range (4 * n_rep): pulse.play(pulse.GaussianSquare(**crcal), u_chan) pulse.play(pulse.Drag(**sxcal_c), pulse.drive_channel(qc)) pulse.play(pulse.Drag(**sxcal_c), pulse.drive_channel(qc)) with pulse.phase_offset(np.pi, u_chan): pulse.play(pulse.GaussianSquare(**crcal), u_chan) pulse.play(pulse.Drag(**sxcal_c), pulse.drive_channel(qc)) pulse.play(pulse.Drag(**sxcal_c), pulse.drive_channel(qc)) pulse.play(pulse.Drag(**sxcal_t), pulse.drive_channel(qt)) pulse.measure([qt], [pulse.MemorySlot(0)]) with pulse.build(backend=backend, default_alignment="sequential") as sched_m: u_chan = pulse.control_channels(*qubits)[0] for _ in range (4 * n_rep): with pulse.phase_offset(np.pi, u_chan): pulse.play(pulse.GaussianSquare(**crcal), u_chan) pulse.play(pulse.Drag(**sxcal_c), pulse.drive_channel(qc)) pulse.play(pulse.Drag(**sxcal_c), pulse.drive_channel(qc)) pulse.play(pulse.GaussianSquare(**crcal), u_chan) pulse.play(pulse.Drag(**sxcal_c), pulse.drive_channel(qc)) pulse.play(pulse.Drag(**sxcal_c), pulse.drive_channel(qc)) pulse.play(pulse.Drag(**sxcal_t), pulse.drive_channel(qt)) pulse.measure([qt], [pulse.MemorySlot(0)]) sched_p_assigned = [sched_p.assign_parameters({delta_amp: val}, inplace=False) for val in delta_amps] sched_m_assigned = [sched_m.assign_parameters({delta_amp: val}, inplace=False) for val in delta_amps] return sched_p_assigned + sched_m_assigned def fine_beta(qubits, delta_betas, n_rep, cals): delta_beta = circuit.Parameter("beta") with pulse.build(backend=backend, default_alignment="sequential") as sched_p: with pulse.align_left(): for ind, q in enumerate(qubits): sxcal = cals[f"sx{ind}"].copy() sxcal["beta"] += delta_beta sx_pulse = pulse.Drag(**sxcal) pulse.play(sx_pulse, pulse.drive_channel(q)) for _ in range(n_rep): pulse.play(sx_pulse, pulse.drive_channel(q)) with pulse.phase_offset(np.pi, pulse.drive_channel(q)): pulse.play(sx_pulse, pulse.drive_channel(q)) with pulse.phase_offset(0.5 * np.pi, pulse.drive_channel(q)): pulse.play(sx_pulse, pulse.drive_channel(q)) pulse.measure(qubits, [pulse.MemorySlot(ind) for ind in range(len(qubits))]) with pulse.build(backend=backend, default_alignment="sequential") as sched_m: with pulse.align_left(): for ind, q in enumerate(qubits): sxcal = cals[f"sx{ind}"].copy() sxcal["beta"] += delta_beta sx_pulse = pulse.Drag(**sxcal) pulse.play(sx_pulse, pulse.drive_channel(q)) for _ in range(n_rep): pulse.play(sx_pulse, pulse.drive_channel(q)) with pulse.phase_offset(np.pi, pulse.drive_channel(q)): pulse.play(sx_pulse, pulse.drive_channel(q)) with pulse.phase_offset(-0.5 * np.pi, pulse.drive_channel(q)): pulse.play(sx_pulse, pulse.drive_channel(q)) pulse.measure(qubits, [pulse.MemorySlot(ind) for ind in range(len(qubits))]) sched_p_assigned = [sched_p.assign_parameters({delta_beta: val}, inplace=False) for val in delta_betas] sched_m_assigned = [sched_m.assign_parameters({delta_beta: val}, inplace=False) for val in delta_betas] return sched_p_assigned + sched_m_assigned def run(scheds, exp_name, **options): fpstr = f"./{basename}_{exp_name}.json" if os.path.isfile(fpstr): with open(fpstr, "r") as fp: cache = json.load(fp) return Result.from_dict(cache) job = backend.run(scheds, **options) result = job.result(timeout=3600) with open(fpstr, "w") as fp: json.dump(result.to_dict(), fp, cls=DateTimeEncoder) return result def get_expval(result, ind, shots): res = [] for circ_res in result.get_counts(): counts = 0 for key, count in circ_res.items(): if key[::-1][ind] == "1": counts += count res.append(counts/shots) return 2 * (0.5 - np.asarray(res, dtype=float)) def find_cross_point(xdata, ydata1, ydata2, n=4, filt_dim=5): ydata1 = signal.savgol_filter(ydata1, filt_dim, 1) ydata2 = signal.savgol_filter(ydata2, filt_dim, 1) cross_points = xdata[1:][np.diff(np.sign(ydata1 - ydata2)) != 0] main_cross = cross_points[np.argmin(np.abs(cross_points))] idx = np.argmin(np.abs(xdata - main_cross)) x_reduced = xdata[idx-n:idx+n] y1_reduced = ydata1[idx-n:idx+n] y2_reduced = ydata2[idx-n:idx+n] p1 = np.polyfit(x_reduced, y1_reduced, 1) p2 = np.polyfit(x_reduced, y2_reduced, 1) cross_opt = (p2[1] - p1[1]) / (p1[0] - p2[0]) return cross_opt params1 = get_params(*durs1) params2 = get_params(*durs2) amps = np.linspace(-0.2, 0.2, 31) result = run( rough_amp(qubits, amps, params1) + rough_amp(qubits, amps, params2), "rough_amp", shots=128 ) fig, axs = plt.subplots(2, 1, sharex=True) fit_func = lambda x, a, b, f: a * np.cos(2 * np.pi * f * x) + b bounds = (0, -1, 0), (1, 1, np.inf) for qind, ax in enumerate(axs): expvals = np.split(get_expval(result, qind, 128), 2) for expval, params_dict, color in zip(expvals, (params1, params2), ("r", "b")): # freq init guess fft_data = np.fft.fft(expval - np.average(expval)) freqs = np.fft.fftfreq(len(amps), amps[1] - amps[0]) positive_freqs = freqs[freqs >= 0] positive_fft_data = fft_data[freqs >= 0] f0 = positive_freqs[np.argmax(np.abs(positive_fft_data))] # fit pcov, _ = opt.curve_fit(fit_func, amps, expval, p0=[1, 0, f0], bounds=bounds) # plot ax.plot(amps, expval, "o", color=color) ax.plot(amps, fit_func(amps, *pcov), ":", color=color) hpi_amp = 1/(2*pcov[2])/2 ax.axvline(hpi_amp, color=color) # update parameters print(f"qubit {qind} amp = {hpi_amp}") params_dict[f"sx{qind}"]["amp"] = hpi_amp delta_amps = np.linspace(-0.02, 0.02, 21) result = run( fine_amp(qubits, delta_amps, 1, params1) + fine_amp(qubits, delta_amps, 1, params2), "fine_amp1", shots=128 ) fig, axs = plt.subplots(2, 1, sharex=True) for qind, ax in enumerate(axs): expvals = np.split(get_expval(result, qind, 128), 2) for expval, params_dict, color in zip(expvals, (params1, params2), ("red", "blue")): yp, ym = np.split(expval, 2) p = find_cross_point(delta_amps, yp, ym) # plot ax.plot(delta_amps, yp, "^", color=color) ax.plot(delta_amps, ym, "v", color=color) ax.axvline(p, color=color) # update parameters print(f"qubit {qind}, Δamp = {p}") params_dict[f"sx{qind}"]["amp"] += p delta_betas = np.linspace(-10, 10, 21) result = run( fine_beta(qubits, delta_betas, 3, params1) + fine_beta(qubits, delta_betas, 3, params2), "fine_beta1", shots=1024 ) fig, axs = plt.subplots(2, 1, sharex=True) for qind, ax in enumerate(axs): expvals = np.split(get_expval(result, qind, 1024), 2) for expval, params_dict, color in zip(expvals, (params1, params2), ("red", "blue")): yp, ym = np.split(expval, 2) p = find_cross_point(delta_betas, yp, ym) # plot ax.plot(delta_betas, yp, "^", color=color) ax.plot(delta_betas, ym, "v", color=color) ax.axvline(p, color=color) # update parameters print(f"qubit {qind}, Δbeta = {p}") params_dict[f"sx{qind}"]["beta"] += p delta_amps = np.linspace(-0.005, 0.005, 21) result = run( fine_amp(qubits, delta_amps, 2, params1) + fine_amp(qubits, delta_amps, 2, params2), "fine_amp2", shots=128 ) fig, axs = plt.subplots(2, 1, sharex=True) for qind, ax in enumerate(axs): expvals = np.split(get_expval(result, qind, 128), 2) for expval, params_dict, color in zip(expvals, (params1, params2), ("red", "blue")): yp, ym = np.split(expval, 2) p = find_cross_point(delta_amps, yp, ym) # plot ax.plot(delta_amps, yp, "^", color=color) ax.plot(delta_amps, ym, "v", color=color) ax.axvline(p, color=color) # update parameters print(f"qubit {qind}, amp = {p}") params_dict[f"sx{qind}"]["amp"] += p amps = np.linspace(-0.8, 0.8, 51) result = run( rough_amp_cr(qubits, amps, params1) + rough_amp_cr(qubits, amps, params2), "rough_amp_cr", shots=128 ) fit_func = lambda x, a, b, f: a * np.cos(2 * np.pi * f * x) + b bounds = (0, -1, 0), (1, 1, np.inf) expvals = np.split(get_expval(result, 0, 128), 2) for expval, params_dict, color in zip(expvals, (params1, params2), ("r", "b")): # freq init guess fft_data = np.fft.fft(expval - np.average(expval)) freqs = np.fft.fftfreq(len(amps), amps[1] - amps[0]) positive_freqs = freqs[freqs >= 0] positive_fft_data = fft_data[freqs >= 0] f0 = positive_freqs[np.argmax(np.abs(positive_fft_data))] # fit pcov, _ = opt.curve_fit( fit_func, amps, expval, p0=[1, 0, f0], bounds=bounds, sigma=1/(1-np.abs(amps)) - 0.99, absolute_sigma=True, ) # plot plt.plot(amps, expval, "o", color=color) plt.plot(amps, fit_func(amps, *pcov), ":", color=color) hpi_amp = 1/(2*pcov[2])/2 plt.axvline(hpi_amp, color=color) # update parameters print(f"ECR amp = {hpi_amp}") params_dict["ecr"]["amp"] = hpi_amp phases = np.linspace(-np.pi, np.pi, 31) result = run( phase_cr(qubits, phases, params1) + phase_cr(qubits, phases, params2), "rough_phase_cr", shots=128 ) fit_func = lambda x, a, b, phi: a * np.cos(x - phi) + b bounds = (0, -1, -np.pi), (1, 1, np.pi) expvals = np.split(get_expval(result, 0, 128), 2) for expval, params_dict, color in zip(expvals, (params1, params2), ("r", "b")): # fit pcov, _ = opt.curve_fit(fit_func, phases, expval, p0=[1, 0, 0], bounds=bounds) # plot plt.plot(phases, expval, "o", color=color) plt.plot(phases, fit_func(phases, *pcov), ":", color=color) cr_phase = pcov[2] + np.pi if cr_phase > np.pi: cr_phase -= 2 * np.pi plt.axvline(cr_phase, color=color) # update parameters print(f"ECR phase = {cr_phase}") params_dict["ecr"]["phase"] = cr_phase delta_amps = np.linspace(-0.05, 0.05, 21) result = run( fine_amp_cr(qubits, delta_amps, 1, params1) + fine_amp_cr(qubits, delta_amps, 1, params2), "fine_amp_cr", shots=128 ) expvals = np.split(get_expval(result, 0, 128), 2) for expval, params_dict, color in zip(expvals, (params1, params2), ("red", "blue")): yp, ym = np.split(expval, 2) p = find_cross_point(delta_amps, yp, ym) # plot plt.plot(delta_amps, yp, "^", color=color) plt.plot(delta_amps, ym, "v", color=color) plt.axvline(p, color=color) # update parameters print(f"ECR Δamp = {p}") params_dict[f"ecr"]["amp"] += p params1 params2 from qiskit_experiments.calibration_management import BackendCalibrations from qiskit_experiments.calibration_management.parameter_value import ParameterValue from datetime import datetime import pandas as pd cal_manager = BackendCalibrations(backend=backend) # add sx schedule sx_amp = circuit.Parameter("amp") sx_dur = circuit.Parameter("τ") sx_beta = circuit.Parameter("β") sx_sigma = circuit.Parameter("σ") ch_d = pulse.DriveChannel(circuit.Parameter("ch0")) with pulse.build(name="sx") as sx_sched: pulse.play( pulse.Drag(duration=sx_dur, amp=sx_amp, sigma=sx_sigma, beta=sx_beta), ch_d ) cal_manager.add_schedule(sx_sched) # parameters for ecr ecr_amp = circuit.Parameter("amp") ecr_phase = circuit.Parameter("θ") ecr_dur = circuit.Parameter("τ") ecr_sigma = circuit.Parameter("σ") ch_u = backend.configuration().control(qubits)[0] with pulse.build(name="ecr", default_alignment="sequential") as ecr_sched: with pulse.phase_offset(ecr_phase, ch_u): pulse.play( pulse.GaussianSquare(duration=ecr_dur, amp=ecr_amp, sigma=ecr_sigma, risefall_sigma_ratio=2), ch_u ) pulse.call(cal_manager.get_template("sx", qubits=(qubits[0], ))) pulse.call(cal_manager.get_template("sx", qubits=(qubits[0], ))) pulse.play( pulse.GaussianSquare(duration=ecr_dur, amp=-ecr_amp, sigma=ecr_sigma, risefall_sigma_ratio=2), ch_u ) cal_manager.add_schedule(ecr_sched) for ind, param in enumerate([params1, params2]): group = ind + 1 # sx for qind in qubits: cal_manager.add_parameter_value( value=ParameterValue(value=param[f"sx{qind}"]["duration"], date_time=datetime.now(), group=f"sf{group}"), param=sx_dur, qubits=qind, schedule="sx", ) cal_manager.add_parameter_value( value=ParameterValue(value=param[f"sx{qind}"]["amp"], date_time=datetime.now(), group=f"sf{group}"), param=sx_amp, qubits=qind, schedule="sx", ) cal_manager.add_parameter_value( value=ParameterValue(value=param[f"sx{qind}"]["sigma"], date_time=datetime.now(), group=f"sf{group}"), param=sx_sigma, qubits=qind, schedule="sx", ) cal_manager.add_parameter_value( value=ParameterValue(value=param[f"sx{qind}"]["beta"], date_time=datetime.now(), group=f"sf{group}"), param=sx_beta, qubits=qind, schedule="sx", ) cal_manager.add_parameter_value( value=ParameterValue(value=qind, date_time=datetime.now(), group=f"sf{group}"), param=ch_d, qubits=qind, schedule="sx", ) # ecr cal_manager.add_parameter_value( value=ParameterValue(value=param["ecr"]["duration"], date_time=datetime.now(), group=f"sf{group}"), param=ecr_dur, qubits=qubits, schedule="ecr", ) cal_manager.add_parameter_value( value=ParameterValue(value=param["ecr"]["amp"], date_time=datetime.now(), group=f"sf{group}"), param=ecr_amp, qubits=qubits, schedule="ecr", ) cal_manager.add_parameter_value( value=ParameterValue(value=param["ecr"]["phase"], date_time=datetime.now(), group=f"sf{group}"), param=ecr_phase, qubits=qubits, schedule="ecr", ) cal_manager.add_parameter_value( value=ParameterValue(value=param["ecr"]["sigma"], date_time=datetime.now(), group=f"sf{group}"), param=ecr_sigma, qubits=qubits, schedule="ecr", ) cal_manager.add_parameter_value( value=ParameterValue(value=qubits[0], date_time=datetime.now(), group=f"sf{group}"), param=ch_d, qubits=qubits[0], schedule="ecr", ) df = pd.DataFrame(cal_manager.parameters_table()) df[df["schedule"].notna()].sort_values(["group", "schedule"]) df.query("schedule == 'ecr' and parameter in ['amp', 'τ']").sort_values(["parameter"]) fig, axs = plt.subplots(2, 1, sharex=True, figsize=(13, 8)) cal_manager.get_schedule("ecr", qubits=qubits, group="sf1").draw(backend=backend, axis=axs[0], style=IQXDebugging(**{"formatter.margin.left_percent": 0.1})) cal_manager.get_schedule("ecr", qubits=qubits, group="sf2").draw(backend=backend, axis=axs[1], style=IQXDebugging()) gates_to_output = {"sx": [0, 1], "ecr": [(0, 1)]} sf1_backend = cal_manager.export_backend( outputs=gates_to_output, basis_gates=["sx", "rz", "ecr"], coupling_map=[[0, 1]], group="sf1", ) sf2_backend = cal_manager.export_backend( outputs=gates_to_output, basis_gates=["sx", "rz", "ecr"], coupling_map=[[0, 1]], group="sf2", ) sf1_backend.configuration().basis_gates sf1_backend.configuration().coupling_map ecr_sched_sf1 = sf1_backend.defaults().instruction_schedule_map.get("ecr", (0, 1)) ecr_sched_sf1.draw(backend=backend) ecr_sched_sf1.metadata sf1_backend.defaults().instruction_schedule_map.get("rz", (0,)).metadata from qiskit_nature.drivers import PySCFDriver, UnitsType, Molecule from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import ParityMapper from qiskit.circuit.library import EfficientSU2 from qiskit.algorithms.optimizers import SPSA from qiskit.algorithms import VQE from qiskit_nature.algorithms.ground_state_solvers import GroundStateEigensolver from qiskit.utils import QuantumInstance molecule = Molecule( geometry=[['H', [0., 0., 0.]], ['H', [0., 0., 0.735]]], charge=0, multiplicity=1 ) driver = PySCFDriver(molecule = molecule, unit=UnitsType.ANGSTROM, basis='sto3g') es_problem = ElectronicStructureProblem(driver) qubit_converter = QubitConverter(ParityMapper(), two_qubit_reduction=True) ansatz = EfficientSU2(num_qubits=2, reps=1, entanglement='linear') optimizer = SPSA(maxiter=80) np.random.seed(5) initial_point = np.random.random(ansatz.num_parameters) def run_vqe(quantum_instance): local_vqe = VQE( ansatz=ansatz, optimizer=optimizer, initial_point=initial_point, quantum_instance=quantum_instance, ) local_vqe_groundstate_solver = GroundStateEigensolver(qubit_converter, local_vqe) res = local_vqe_groundstate_solver.solve(es_problem) print(f"Energy = {np.real(res.eigenenergies + res.nuclear_repulsion_energy)[0]}") return res, local_vqe.get_optimal_circuit() quantum_instance_sf1 = QuantumInstance(backend=sf1_backend, initial_layout=qubits) res_sf1, opt_circ_sf1 = run_vqe(quantum_instance_sf1) quantum_instance_sf2 = QuantumInstance(backend=sf2_backend, initial_layout=qubits) res_sf2, opt_circ_sf2 = run_vqe(quantum_instance_sf2) from qiskit import transpile transpiled_circ = transpile(opt_circ_sf1, sf1_backend); transpiled_circ.draw(output="mpl") transpiled_circ.calibrations.keys() from qiskit.algorithms import NumPyMinimumEigensolver np_solver = NumPyMinimumEigensolver() np_groundstate_solver = GroundStateEigensolver(qubit_converter, np_solver) np_result = np_groundstate_solver.solve(es_problem) target_energy = np.real(np_result.eigenenergies + np_result.nuclear_repulsion_energy)[0] print('Energy:', target_energy) get_ek = lambda res: np.real(res.eigenenergies + res.nuclear_repulsion_energy)[0] cs = [2, -1] extrapolate_energy = cs[0] * get_ek(res_sf1) + cs[1] * get_ek(res_sf2) print('Energy:', extrapolate_energy) print(res_sf1) print(res_sf2) import pickle with open("res_sf1.pk", "wb") as fp: pickle.dump(res_sf1, fp) with open("res_sf2.pk", "wb") as fp: pickle.dump(res_sf2, fp)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse dc = pulse.DriveChannel d0, d1, d2, d3, d4 = dc(0), dc(1), dc(2), dc(3), dc(4) with pulse.build(name='pulse_programming_in') as pulse_prog: pulse.play([1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1], d0) pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], d1) pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0], d2) pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], d3) pulse.play([1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0], d4) pulse_prog.draw()
https://github.com/indian-institute-of-science-qc/qiskit-aakash
indian-institute-of-science-qc
# This code is part of Qiskit. # # (C) Copyright IBM 2023 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-docstring,invalid-name,no-member,broad-except # pylint: disable=no-else-return, attribute-defined-outside-init # pylint: disable=import-error from qiskit_experiments.library import StateTomography import qiskit class StateTomographyBench: params = [2, 3, 4, 5] param_names = ["n_qubits"] version = "0.3.0" timeout = 120.0 def setup(self, _): self.qasm_backend = qiskit.BasicAer.get_backend("qasm_simulator") def time_state_tomography_bell(self, n_qubits): meas_qubits = [n_qubits - 2, n_qubits - 1] qr_full = qiskit.QuantumRegister(n_qubits) bell = qiskit.QuantumCircuit(qr_full) bell.h(qr_full[meas_qubits[0]]) bell.cx(qr_full[meas_qubits[0]], qr_full[meas_qubits[1]]) qst_exp = StateTomography(bell, measurement_qubits=meas_qubits) expdata = qst_exp.run(self.qasm_backend, shots=5000).block_for_results() expdata.analysis_results("state") expdata.analysis_results("state_fidelity") def time_state_tomography_cat(self, n_qubits): qr = qiskit.QuantumRegister(n_qubits, "qr") circ = qiskit.QuantumCircuit(qr, name="cat") circ.h(qr[0]) for i in range(1, n_qubits): circ.cx(qr[0], qr[i]) qst_exp = StateTomography(circ) expdata = qst_exp.run(self.qasm_backend, shots=5000).block_for_results() expdata.analysis_results("state") expdata.analysis_results("state_fidelity")
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import transpile from qiskit import QuantumCircuit from qiskit.providers.fake_provider import FakeVigoV2 backend = FakeVigoV2() qc = QuantumCircuit(2, 1) qc.h(0) qc.x(1) qc.cp(np.pi/4, 0, 1) qc.h(0) qc.measure([0], [0]) qc_basis = transpile(qc, backend) qc_basis.draw(output='mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumCircuit # Create a Quantum Circuit acting on a quantum register of three qubits circ = QuantumCircuit(3) # Add a H gate on qubit 0, putting this qubit in superposition. circ.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting # the qubits in a Bell state. circ.cx(0, 1) # Add a CX (CNOT) gate on control qubit 0 and target qubit 2, putting # the qubits in a GHZ state. circ.cx(0, 2) circ.draw('mpl') from qiskit.quantum_info import Statevector # Set the intial state of the simulator to the ground state using from_int state = Statevector.from_int(0, 2**3) # Evolve the state by the quantum circuit state = state.evolve(circ) #draw using latex state.draw('latex') from qiskit.visualization import array_to_latex #Alternative way of representing in latex array_to_latex(state) state.draw('qsphere') state.draw('hinton') from qiskit.quantum_info import Operator U = Operator(circ) # Show the results U.data # Create a Quantum Circuit meas = QuantumCircuit(3, 3) meas.barrier(range(3)) # map the quantum measurement to the classical bits meas.measure(range(3), range(3)) # The Qiskit circuit object supports composition. # Here the meas has to be first and front=True (putting it before) # as compose must put a smaller circuit into a larger one. qc = meas.compose(circ, range(3), front=True) #drawing the circuit qc.draw('mpl') # Adding the transpiler to reduce the circuit to QASM instructions # supported by the backend from qiskit import transpile # Use AerSimulator from qiskit_aer import AerSimulator backend = AerSimulator() # First we have to transpile the quantum circuit # to the low-level QASM instructions used by the # backend qc_compiled = transpile(qc, backend) # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is the default. job_sim = backend.run(qc_compiled, shots=1024) # Grab the results from the job. result_sim = job_sim.result() counts = result_sim.get_counts(qc_compiled) print(counts) from qiskit.visualization import plot_histogram plot_histogram(counts) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/drobiu/quantum-project
drobiu
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() from qiskit.circuit.library.standard_gates import XGate, HGate from operator import * n = 3 N = 8 #2**n index_colour_table = {} colour_hash_map = {} index_colour_table = {'000':"yellow", '001':"red", '010':"blue", '011':"red", '100':"green", '101':"blue", '110':"orange", '111':"red"} colour_hash_map = {"yellow":'100', "red":'011', "blue":'000', "green":'001', "orange":'010'} def database_oracle(index_colour_table, colour_hash_map): circ_database = QuantumCircuit(n + n) for i in range(N): circ_data = QuantumCircuit(n) idx = bin(i)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) # qiskit maps the rightmost bit as the 0th qubit -> qn, ..., q0 # we therefore reverse the index string -> q0, ..., qn data_gate = circ_data.to_gate(label=colour).control(num_ctrl_qubits=n, ctrl_state=idx, label="index-"+colour) circ_database.append(data_gate, list(range(n+n))) return circ_database # drawing the database oracle circuit print("Database Encoding") database_oracle(index_colour_table, colour_hash_map).draw() circ_data = QuantumCircuit(n) m = 4 idx = bin(m)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) print("Internal colour encoding for the colour green (as an example)"); circ_data.draw() def oracle_grover(database, data_entry): circ_grover = QuantumCircuit(n + n + 1) circ_grover.append(database, list(range(n+n))) target_reflection_gate = XGate().control(num_ctrl_qubits=n, ctrl_state=colour_hash_map[data_entry], label="Reflection of " + "\"" + data_entry + "\" Target") # control() missing 1 required positional argument: 'self' .... if only 'XGate' used instead of 'XGate()' # The “missing 1 required positional argument: 'self'” error is raised when you do not instantiate an object of a class before calling a class method. This error is also raised when you incorrectly instantiate a class. circ_grover.append(target_reflection_gate, list(range(n, n+n+1))) circ_grover.append(database, list(range(n+n))) return circ_grover print("Grover Oracle (target example: orange)") oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), "orange").decompose().draw() def mcz_gate(num_qubits): num_controls = num_qubits - 1 mcz_gate = QuantumCircuit(num_qubits) target_mcz = QuantumCircuit(1) target_mcz.z(0) target_mcz = target_mcz.to_gate(label="Z_Gate").control(num_ctrl_qubits=num_controls, ctrl_state=None, label="MCZ") mcz_gate.append(target_mcz, list(range(num_qubits))) return mcz_gate.reverse_bits() print("Multi-controlled Z (MCZ) Gate") mcz_gate(n).decompose().draw() def diffusion_operator(num_qubits): circ_diffusion = QuantumCircuit(num_qubits) qubits_list = list(range(num_qubits)) # Layer of H^n gates circ_diffusion.h(qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of Multi-controlled Z (MCZ) Gate circ_diffusion = circ_diffusion.compose(mcz_gate(num_qubits), qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of H^n gates circ_diffusion.h(qubits_list) return circ_diffusion print("Diffusion Circuit") diffusion_operator(n).draw() # Putting it all together ... !!! item = "green" print("Searching for the index of the colour", item) circuit = QuantumCircuit(n + n + 1, n) circuit.x(n + n) circuit.barrier() circuit.h(list(range(n))) circuit.h(n+n) circuit.barrier() unitary_oracle = oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), item).to_gate(label="Oracle Operator") unitary_diffuser = diffusion_operator(n).to_gate(label="Diffusion Operator") M = countOf(index_colour_table.values(), item) Q = int(np.pi * np.sqrt(N/M) / 4) for i in range(Q): circuit.append(unitary_oracle, list(range(n + n + 1))) circuit.append(unitary_diffuser, list(range(n))) circuit.barrier() circuit.measure(list(range(n)), list(range(n))) circuit.draw() backend_sim = Aer.get_backend('qasm_simulator') job_sim = backend_sim.run(transpile(circuit, backend_sim), shots=1024) result_sim = job_sim.result() counts = result_sim.get_counts(circuit) if M==1: print("Index of the colour", item, "is the index with most probable outcome") else: print("Indices of the colour", item, "are the indices the most probable outcomes") from qiskit.visualization import plot_histogram plot_histogram(counts)
https://github.com/Pitt-JonesLab/clonk_transpilation
Pitt-JonesLab
import sys sys.path.append("../..") from qiskit.quantum_info.random import random_unitary, random_clifford from qiskit import QuantumCircuit from clonk.utils.transpiler_passes.pass_manager_v2 import level_0_pass_manager from clonk.backend_utils import FakeAllToAll from clonk.utils.riswap_gates.riswap import RiSwapGate from clonk.utils.transpiler_passes.weyl_decompose import RootiSwapWeylDecomposition from qiskit.transpiler.passes import CountOps from qiskit.transpiler import PassManager from qiskit.circuit.library import CXGate N = 2000 basis_gate = RiSwapGate(0.5) pm0 = PassManager() pm0.append(RootiSwapWeylDecomposition(basis_gate=basis_gate)) pm0.append(CountOps()) res = 0 for _ in range(N): qc = QuantumCircuit(2) qc.append(random_clifford(2), [0, 1]) # random_unitary(dim=4) pm0.run(qc) res += pm0.property_set["count_ops"]["riswap"] print(res / N) N = 2000 basis_gate = CXGate() pm0 = PassManager() pm0.append(RootiSwapWeylDecomposition(basis_gate=basis_gate)) pm0.append(CountOps()) res = 0 for _ in range(N): qc = QuantumCircuit(2) qc.append(random_clifford(2), [0, 1]) # random_unitary(dim=4) pm0.run(qc) res += ( pm0.property_set["count_ops"]["cx"] if "cx" in pm0.property_set["count_ops"].keys() else 0 ) print(res / N) from qiskit.circuit.library import CPhaseGate import numpy as np basis_gate = CXGate() pm0 = PassManager() pm0.append(RootiSwapWeylDecomposition(basis_gate=basis_gate)) pm0.append(CountOps()) qc = QuantumCircuit(2) qc.append(CPhaseGate(np.pi / 2), [0, 1]) # random_unitary(dim=4) transp = pm0.run(qc) transp.draw(output="mpl") from qiskit import transpile transp = transpile(qc, basis_gates=["rz", "sx", "cx"], optimization_level=3) print(transp.draw(output="latex_source")) from qiskit.circuit.library import CPhaseGate import numpy as np basis_gate = RiSwapGate(0.5) pm0 = PassManager() pm0.append(RootiSwapWeylDecomposition(basis_gate=basis_gate)) pm0.append(CountOps()) qc = QuantumCircuit(2) qc.append(CPhaseGate(np.pi / 2), [0, 1]) # random_unitary(dim=4) transp = pm0.run(qc) print(transp.draw(output="latex"))
https://github.com/urwin419/QiskitChecker
urwin419
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) ### added y gate ### qc.cx(0, 1) qc.cx(1, 0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1, 0) qc.h(1) ### added h gate ### qc.h(0) return qc
https://github.com/TheGupta2012/QPE-Algorithms
TheGupta2012
from qiskit.providers.ibmq.managed import IBMQJobManager from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-education') from qiskit import QuantumCircuit, execute, transpile, Aer from qiskit.extensions import UnitaryGate, Initialize from qiskit.quantum_info import Statevector from qiskit.compiler import assemble from qiskit.tools.visualization import plot_bloch_vector from qiskit.tools.visualization import plot_histogram, plot_bloch_multivector import numpy as np from time import sleep import sys sys.path.append("..") from scipy.stats import unitary_group import matplotlib.pyplot as plt %matplotlib inline from Modules.changed_SPEA import bundled_SPEA_alternate q = QuantumCircuit(2) q.cp(2*np.pi*(1/4), 0, 1) q.draw('mpl') spe = bundled_SPEA_alternate(q, resolution=30, error=3, max_iters=10) jakarta = provider.get_backend('ibmq_jakarta') bogota = provider.get_backend('ibmq_bogota') thetas = [] for k in range(5): result = spe.get_eigen_pair( backend=jakarta, progress=True, randomize=True) print("Result is :", result) thetas.append(result['theta']) thetas plt.title("Plot for returned Eigenvalues", fontsize=16) plt.xlabel("Experiment number") plt.ylabel("Eigenvalues") plt.plot([0, 6], [0, 0], color='black') plt.plot([0, 6], [1, 1], color='black') plt.plot([0, 6], [0.25, 0.25], color='black') plt.plot(list(range(5)), thetas, label='Estimates', color='cyan', linewidth=2, marker='s') plt.legend() plt.grid()
https://github.com/kuehnste/QiskitTutorial
kuehnste
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.visualization import * from qiskit.quantum_info import state_fidelity # Magic function to render plots in the notebook after the cell executing the plot command %matplotlib inline qc = QuantumCircuit(3) qc.h(0) qc.cnot(0,1) qc.cnot(1,2) qc.measure_active() qc.draw(output='mpl') # Loading your IBM Q account IBMQ.load_account() provider = IBMQ.get_provider(group='open') # List the existing quantum devices and their number of qubits device_list = provider.backends(simulator=False) for dev in device_list: print(dev.name() + ': ' + str(dev.configuration().n_qubits) + ' qubits') # We choose one device which has enough qubits for our experiment and send the job to the device num_shots_hardware = 1024 hardware_backend = provider.get_backend('ibmq_quito') job = execute(qc, backend=hardware_backend, shots=num_shots_hardware) result = job.result() counts = result.get_counts() plot_histogram(counts, title='Run on hardware') simulator_backend = Aer.get_backend('qasm_simulator') counts_simulator = list() num_shots_simulator = [1024, 8192] for num_shots in num_shots_simulator: job = execute(qc, backend=simulator_backend, shots=num_shots) result_simulator = job.result() counts_simulator.append(result_simulator.get_counts()) # We plot a comparison between the different results plot_histogram([counts] + counts_simulator, title='Hardware vs. simulator', legend=['hardware ' + str(num_shots_hardware) + ' shots', 'simulator ' + str(num_shots_simulator[0]) + ' shots', 'simulator ' + str(num_shots_simulator[1]) + ' shots'])
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector qc = QuantumCircuit(2) qc.h(0) qc.x(1) state = Statevector(qc) plot_bloch_multivector(state)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# External imports from pylab import cm from sklearn import metrics import numpy as np import matplotlib.pyplot as plt # Qiskit imports from qiskit import QuantumCircuit from qiskit.circuit import ParameterVector from qiskit.visualization import circuit_drawer from qiskit.algorithms.optimizers import SPSA from qiskit.circuit.library import ZZFeatureMap from qiskit_machine_learning.kernels import TrainableFidelityQuantumKernel from qiskit_machine_learning.kernels.algorithms import QuantumKernelTrainer from qiskit_machine_learning.algorithms import QSVC from qiskit_machine_learning.datasets import ad_hoc_data class QKTCallback: """Callback wrapper class.""" def __init__(self) -> None: self._data = [[] for i in range(5)] def callback(self, x0, x1=None, x2=None, x3=None, x4=None): """ Args: x0: number of function evaluations x1: the parameters x2: the function value x3: the stepsize x4: whether the step was accepted """ self._data[0].append(x0) self._data[1].append(x1) self._data[2].append(x2) self._data[3].append(x3) self._data[4].append(x4) def get_callback_data(self): return self._data def clear_callback_data(self): self._data = [[] for i in range(5)] adhoc_dimension = 2 X_train, y_train, X_test, y_test, adhoc_total = ad_hoc_data( training_size=20, test_size=5, n=adhoc_dimension, gap=0.3, plot_data=False, one_hot=False, include_sample_total=True, ) plt.figure(figsize=(5, 5)) plt.ylim(0, 2 * np.pi) plt.xlim(0, 2 * np.pi) plt.imshow( np.asmatrix(adhoc_total).T, interpolation="nearest", origin="lower", cmap="RdBu", extent=[0, 2 * np.pi, 0, 2 * np.pi], ) plt.scatter( X_train[np.where(y_train[:] == 0), 0], X_train[np.where(y_train[:] == 0), 1], marker="s", facecolors="w", edgecolors="b", label="A train", ) plt.scatter( X_train[np.where(y_train[:] == 1), 0], X_train[np.where(y_train[:] == 1), 1], marker="o", facecolors="w", edgecolors="r", label="B train", ) plt.scatter( X_test[np.where(y_test[:] == 0), 0], X_test[np.where(y_test[:] == 0), 1], marker="s", facecolors="b", edgecolors="w", label="A test", ) plt.scatter( X_test[np.where(y_test[:] == 1), 0], X_test[np.where(y_test[:] == 1), 1], marker="o", facecolors="r", edgecolors="w", label="B test", ) plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0) plt.title("Ad hoc dataset for classification") plt.show() # Create a rotational layer to train. We will rotate each qubit the same amount. training_params = ParameterVector("θ", 1) fm0 = QuantumCircuit(2) fm0.ry(training_params[0], 0) fm0.ry(training_params[0], 1) # Use ZZFeatureMap to represent input data fm1 = ZZFeatureMap(2) # Create the feature map, composed of our two circuits fm = fm0.compose(fm1) print(circuit_drawer(fm)) print(f"Trainable parameters: {training_params}") # Instantiate quantum kernel quant_kernel = TrainableFidelityQuantumKernel(feature_map=fm, training_parameters=training_params) # Set up the optimizer cb_qkt = QKTCallback() spsa_opt = SPSA(maxiter=10, callback=cb_qkt.callback, learning_rate=0.05, perturbation=0.05) # Instantiate a quantum kernel trainer. qkt = QuantumKernelTrainer( quantum_kernel=quant_kernel, loss="svc_loss", optimizer=spsa_opt, initial_point=[np.pi / 2] ) # Train the kernel using QKT directly qka_results = qkt.fit(X_train, y_train) optimized_kernel = qka_results.quantum_kernel print(qka_results) # Use QSVC for classification qsvc = QSVC(quantum_kernel=optimized_kernel) # Fit the QSVC qsvc.fit(X_train, y_train) # Predict the labels labels_test = qsvc.predict(X_test) # Evalaute the test accuracy accuracy_test = metrics.balanced_accuracy_score(y_true=y_test, y_pred=labels_test) print(f"accuracy test: {accuracy_test}") plot_data = cb_qkt.get_callback_data() # callback data K = optimized_kernel.evaluate(X_train) # kernel matrix evaluated on the training samples plt.rcParams["font.size"] = 20 fig, ax = plt.subplots(1, 2, figsize=(14, 5)) ax[0].plot([i + 1 for i in range(len(plot_data[0]))], np.array(plot_data[2]), c="k", marker="o") ax[0].set_xlabel("Iterations") ax[0].set_ylabel("Loss") ax[1].imshow(K, cmap=cm.get_cmap("bwr", 20)) fig.tight_layout() plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/tomtuamnuq/compare-qiskit-ocean
tomtuamnuq
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit import numpy as np from qiskit.circuit.random import random_circuit from qiskit.circuit import Parameter from qiskit import IBMQ from qiskit.compiler import transpile from qiskit.converters import circuit_to_dag from qiskit.tools.visualization import dag_drawer IBMQ.load_account() # Load account from disk provider = IBMQ.get_provider(hub='ibm-q') n = 3 #number of qubits def superpos(qc,qr): for q in qr: qc.h(q) qreg_q = QuantumRegister(n, 'q') creg_c = ClassicalRegister(n, 'c') circuit = QuantumCircuit(qreg_q, creg_c) paras = [Parameter('p'+str(i)) for i in range(n)] superpos(circuit,qreg_q) for p in paras: circuit.rz(p,int(p.name[1:])) algorithm = random_circuit(n,n) circuit += algorithm superpos(circuit,qreg_q) circuit.measure(qreg_q,creg_c) circuit.draw(output='mpl') circuit_fixed = circuit.bind_parameters({p : np.pi * np.random.uniform(0, 2) for p in paras}) # note : compilation before binding has a better runtime # transpile the circuit for backend chip circuit_transpiled = transpile(circuit, backend=provider.get_backend('ibmq_16_melbourne'), optimization_level=3) print('gates = ', circuit_transpiled.count_ops()) print('depth = ', circuit_transpiled.depth()) # use appropriate optimization level for opt_lvl in range(4): circuit_transpiled = transpile(circuit, backend=provider.get_backend('ibmq_santiago'), optimization_level=opt_lvl) print("optimization level ",opt_lvl) print('gates = ', circuit_transpiled.count_ops()) print('depth = ', circuit_transpiled.depth()) circuit_transpiled.draw(output = 'mpl') dag = circuit_to_dag(circuit) dag_drawer(dag)
https://github.com/rohitgit1/Quantum-Computing-Summer-School
rohitgit1
from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector excited = Statevector.from_int(1, 2) plot_bloch_multivector(excited.data) from qiskit.tools.jupyter import * from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') backend = provider.get_backend('ibmq_armonk') backend_config = backend.configuration() assert backend_config.open_pulse, "Backend doesn't support Pulse" dt = backend_config.dt print(f"Sampling time: {dt*1e9} ns") backend_defaults = backend.defaults() import numpy as np # unit conversion factors -> all backend properties returned in SI (Hz, sec, etc) GHz = 1.0e9 # Gigahertz MHz = 1.0e6 # Megahertz us = 1.0e-6 # Microseconds ns = 1.0e-9 # Nanoseconds # We will find the qubit frequency for the following qubit. qubit = 0 # The Rabi sweep will be at the given qubit frequency. center_frequency_Hz = backend_defaults.qubit_freq_est[qubit] # The default frequency is given in Hz # warning: this will change in a future release print(f"Qubit {qubit} has an estimated frequency of {center_frequency_Hz / GHz} GHz.") from qiskit import pulse, assemble # This is where we access all of our Pulse features! from qiskit.pulse import Play from qiskit.pulse import pulse_lib # This Pulse module helps us build sampled pulses for common pulse shapes ### Collect the necessary channels drive_chan = pulse.DriveChannel(qubit) meas_chan = pulse.MeasureChannel(qubit) acq_chan = pulse.AcquireChannel(qubit) inst_sched_map = backend_defaults.instruction_schedule_map measure = inst_sched_map.get('measure', qubits=[0]) # Rabi experiment parameters # Drive amplitude values to iterate over: 50 amplitudes evenly spaced from 0 to 0.75 num_rabi_points = 50 drive_amp_min = 0 drive_amp_max = 0.75 drive_amps = np.linspace(drive_amp_min, drive_amp_max, num_rabi_points) # drive waveforms mush be in units of 16 drive_sigma = 80 # in dt drive_samples = 8*drive_sigma # in dt # Build the Rabi experiments: # A drive pulse at the qubit frequency, followed by a measurement, # where we vary the drive amplitude each time. rabi_schedules = [] for drive_amp in drive_amps: rabi_pulse = pulse_lib.gaussian(duration=drive_samples, amp=drive_amp, sigma=drive_sigma, name=f"Rabi drive amplitude = {drive_amp}") this_schedule = pulse.Schedule(name=f"Rabi drive amplitude = {drive_amp}") this_schedule += Play(rabi_pulse, drive_chan) # The left shift `<<` is special syntax meaning to shift the start time of the schedule by some duration this_schedule += measure << this_schedule.duration rabi_schedules.append(this_schedule) rabi_schedules[-1].draw(label=True, scaling=1.0) # assemble the schedules into a Qobj num_shots_per_point = 1024 rabi_experiment_program = assemble(rabi_schedules, backend=backend, meas_level=1, meas_return='avg', shots=num_shots_per_point, schedule_los=[{drive_chan: center_frequency_Hz}] * num_rabi_points) # RUN the job on a real device #job = backend.run(rabi_experiment_program) #print(job.job_id()) #from qiskit.tools.monitor import job_monitor #job_monitor(job) # OR retreive result from previous run job = backend.retrieve_job("5ef3bf17dc3044001186c011") rabi_results = job.result() import matplotlib.pyplot as plt plt.style.use('dark_background') scale_factor = 1e-14 # center data around 0 def baseline_remove(values): return np.array(values) - np.mean(values) rabi_values = [] for i in range(num_rabi_points): # Get the results for `qubit` from the ith experiment rabi_values.append(rabi_results.get_memory(i)[qubit]*scale_factor) rabi_values = np.real(baseline_remove(rabi_values)) plt.xlabel("Drive amp [a.u.]") plt.ylabel("Measured signal [a.u.]") plt.scatter(drive_amps, rabi_values, color='white') # plot real part of Rabi values plt.show() from scipy.optimize import curve_fit def fit_function(x_values, y_values, function, init_params): fitparams, conv = curve_fit(function, x_values, y_values, init_params) y_fit = function(x_values, *fitparams) return fitparams, y_fit fit_params, y_fit = fit_function(drive_amps, rabi_values, lambda x, A, B, drive_period, phi: (A*np.cos(2*np.pi*x/drive_period - phi) + B), [10, 0.1, 0.6, 0]) plt.scatter(drive_amps, rabi_values, color='white') plt.plot(drive_amps, y_fit, color='red') drive_period = fit_params[2] # get period of rabi oscillation plt.axvline(drive_period/2, color='red', linestyle='--') plt.axvline(drive_period, color='red', linestyle='--') plt.annotate("", xy=(drive_period, 0), xytext=(drive_period/2,0), arrowprops=dict(arrowstyle="<->", color='red')) plt.xlabel("Drive amp [a.u.]", fontsize=15) plt.ylabel("Measured signal [a.u.]", fontsize=15) plt.show() pi_amp = abs(drive_period / 2) print(f"Pi Amplitude = {pi_amp}") # Drive parameters # The drive amplitude for pi/2 is simply half the amplitude of the pi pulse drive_amp = pi_amp / 2 # x_90 is a concise way to say pi_over_2; i.e., an X rotation of 90 degrees x90_pulse = pulse_lib.gaussian(duration=drive_samples, amp=drive_amp, sigma=drive_sigma, name='x90_pulse') # Ramsey experiment parameters time_max_us = 1.8 time_step_us = 0.025 times_us = np.arange(0.1, time_max_us, time_step_us) # Convert to units of dt delay_times_dt = times_us * us / dt # create schedules for Ramsey experiment ramsey_schedules = [] for delay in delay_times_dt: this_schedule = pulse.Schedule(name=f"Ramsey delay = {delay * dt / us} us") this_schedule += Play(x90_pulse, drive_chan) this_schedule += Play(x90_pulse, drive_chan) << this_schedule.duration + int(delay) this_schedule += measure << this_schedule.duration ramsey_schedules.append(this_schedule) ramsey_schedules[-1].draw(label=True, scaling=1.0) # Execution settings num_shots = 256 detuning_MHz = 2 ramsey_frequency = round(center_frequency_Hz + detuning_MHz * MHz, 6) # need ramsey freq in Hz ramsey_program = assemble(ramsey_schedules, backend=backend, meas_level=1, meas_return='avg', shots=num_shots, schedule_los=[{drive_chan: ramsey_frequency}]*len(ramsey_schedules) ) # RUN the job on a real device #job = backend.run(ramsey_experiment_program) #print(job.job_id()) #from qiskit.tools.monitor import job_monitor #job_monitor(job) # OR retreive job from previous run job = backend.retrieve_job('5ef3ed3a84b1b70012374317') ramsey_results = job.result() ramsey_values = [] for i in range(len(times_us)): ramsey_values.append(ramsey_results.get_memory(i)[qubit]*scale_factor) fit_params, y_fit = fit_function(times_us, np.real(ramsey_values), lambda x, A, del_f_MHz, C, B: ( A * np.cos(2*np.pi*del_f_MHz*x - C) + B ), [5, 1./0.4, 0, 0.25] ) # Off-resonance component _, del_f_MHz, _, _, = fit_params # freq is MHz since times in us plt.scatter(times_us, np.real(ramsey_values), color='white') plt.plot(times_us, y_fit, color='red', label=f"df = {del_f_MHz:.2f} MHz") plt.xlim(0, np.max(times_us)) plt.xlabel('Delay between X90 pulses [$\mu$s]', fontsize=15) plt.ylabel('Measured Signal [a.u.]', fontsize=15) plt.title('Ramsey Experiment', fontsize=15) plt.legend() plt.show()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram from qiskit_optimization.translators import from_docplex_mp # Make a Docplex model from docplex.mp.model import Model mdl = Model("docplex model") x = mdl.binary_var("x") y = mdl.integer_var(lb=-1, ub=5, name="y") mdl.minimize(x + 2 * y) mdl.add_constraint(x - y == 3) mdl.add_constraint((x + y) * (x - y) <= 1) print(mdl.export_as_lp_string()) # load from a Docplex model mod = from_docplex_mp(mdl) print(type(mod)) print() print(mod.prettyprint()) # make an empty problem mod = QuadraticProgram("my problem") print(mod.prettyprint()) # Add variables mod.binary_var(name="x") mod.integer_var(name="y", lowerbound=-1, upperbound=5) mod.continuous_var(name="z", lowerbound=-1, upperbound=5) print(mod.prettyprint()) # Add objective function using dictionaries mod.minimize(constant=3, linear={"x": 1}, quadratic={("x", "y"): 2, ("z", "z"): -1}) print(mod.prettyprint()) # Add objective function using lists/arrays mod.minimize(constant=3, linear=[1, 0, 0], quadratic=[[0, 1, 0], [1, 0, 0], [0, 0, -1]]) print(mod.prettyprint()) print("constant:\t\t\t", mod.objective.constant) print("linear dict:\t\t\t", mod.objective.linear.to_dict()) print("linear array:\t\t\t", mod.objective.linear.to_array()) print("linear array as sparse matrix:\n", mod.objective.linear.coefficients, "\n") print("quadratic dict w/ index:\t", mod.objective.quadratic.to_dict()) print("quadratic dict w/ name:\t\t", mod.objective.quadratic.to_dict(use_name=True)) print( "symmetric quadratic dict w/ name:\t", mod.objective.quadratic.to_dict(use_name=True, symmetric=True), ) print("quadratic matrix:\n", mod.objective.quadratic.to_array(), "\n") print("symmetric quadratic matrix:\n", mod.objective.quadratic.to_array(symmetric=True), "\n") print("quadratic matrix as sparse matrix:\n", mod.objective.quadratic.coefficients) # Add linear constraints mod.linear_constraint(linear={"x": 1, "y": 2}, sense="==", rhs=3, name="lin_eq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense="<=", rhs=3, name="lin_leq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense=">=", rhs=3, name="lin_geq") print(mod.prettyprint()) # Add quadratic constraints mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="==", rhs=1, name="quad_eq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="<=", rhs=1, name="quad_leq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense=">=", rhs=1, name="quad_geq", ) print(mod.prettyprint()) lin_geq = mod.get_linear_constraint("lin_geq") print("lin_geq:", lin_geq.linear.to_dict(use_name=True), lin_geq.sense, lin_geq.rhs) quad_geq = mod.get_quadratic_constraint("quad_geq") print( "quad_geq:", quad_geq.linear.to_dict(use_name=True), quad_geq.quadratic.to_dict(use_name=True), quad_geq.sense, lin_geq.rhs, ) # Remove constraints mod.remove_linear_constraint("lin_eq") mod.remove_quadratic_constraint("quad_leq") print(mod.prettyprint()) sub = mod.substitute_variables(constants={"x": 0}, variables={"y": ("z", -1)}) print(sub.prettyprint()) sub = mod.substitute_variables(constants={"x": -1}) print(sub.status) from qiskit_optimization import QiskitOptimizationError try: sub = mod.substitute_variables(constants={"x": -1}, variables={"y": ("x", 1)}) except QiskitOptimizationError as e: print("Error: {}".format(e)) mod = QuadraticProgram() mod.binary_var(name="e") mod.binary_var(name="f") mod.continuous_var(name="g") mod.minimize(linear=[1, 2, 3]) print(mod.export_as_lp_string()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0, 1) qc.measure([0, 1], [0, 1]) qc.draw('mpl')
https://github.com/qclib/qclib
qclib
# Copyright 2021 qclib project. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ sparse state preparation """ import numpy as np import qiskit from qiskit import QuantumCircuit from qclib.gates.initialize_sparse import InitializeSparse from .lowrank import LowRankInitialize # pylint: disable=maybe-no-member class PivotInitialize(InitializeSparse): """Pivot State Preparation arXiv:2006.00016""" def __init__(self, params, label=None, opt_params=None): self._get_num_qubits(params) default_aux = False if opt_params is None: self.aux = default_aux else: if opt_params.get("aux") is None: self.aux = default_aux else: self.aux = opt_params.get("aux") self.non_zero = len(params) self.register = qiskit.QuantumRegister(self.num_qubits, name="q") self.index_differ = None self.ctrl_state = None if label is None: self.label = "PivotSP" super().__init__("PivotInitialize", self.num_qubits, params.items(), label=label) def _define(self): self.definition = self._define_initialize() def _define_initialize(self): target_size = np.log2(self.non_zero) target_size = np.ceil(target_size) target_size = int(target_size) if self.aux: anc, n_anci, pivot_circuit = self._circuit_with_ancilla(target_size) else: pivot_circuit = qiskit.QuantumCircuit(self.register) next_state = self.params.copy() index_nonzero = self._get_index_nz(self.num_qubits - target_size, next_state) while index_nonzero is not None: index_zero = self._get_index_zero(self.non_zero, next_state) circ, next_state = self._pivoting( index_nonzero, target_size, index_zero, next_state ) pivot_circuit.compose(circ, pivot_circuit.qubits, inplace=True) index_nonzero = self._get_index_nz( self.num_qubits - target_size, next_state ) dense_state = np.zeros(2 ** target_size, dtype=complex) for key, value in next_state: dense_state[int(key, 2)] = value if self.non_zero <= 2: initialize_circ = qiskit.QuantumCircuit(1) LowRankInitialize.initialize(initialize_circ, dense_state) else: initialize_circ = QuantumCircuit(target_size) LowRankInitialize.initialize(initialize_circ, dense_state) if self.aux: circuit = qiskit.QuantumCircuit(anc, self.register) nun_aux = n_anci - 1 circuit.compose( initialize_circ, circuit.qubits[nun_aux : nun_aux + target_size], inplace=True, ) circuit.barrier() circuit.compose(pivot_circuit.reverse_bits().reverse_ops(), inplace=True) else: circuit = qiskit.QuantumCircuit(self.num_qubits) circuit.compose(initialize_circ, circuit.qubits[:target_size], inplace=True) circuit.compose( pivot_circuit.reverse_bits().reverse_ops(), circuit.qubits, inplace=True ) return circuit def _circuit_with_ancilla(self, target_size): remain = list(range(self.num_qubits - target_size, self.num_qubits)) n_anci = len(remain) anc = qiskit.QuantumRegister(n_anci - 1, name="anc") pivot_circuit = qiskit.QuantumCircuit(anc, self.register) return anc, n_anci, pivot_circuit def _next_state( self, remain, target_cx, index_zero, next_state ): tab = {"0": "1", "1": "0"} new_state = {} for index, amp in next_state: if index[self.index_differ] == self.ctrl_state: n_index = "" for k, value in enumerate(index): if k in target_cx: n_index = n_index + tab[value] else: n_index = n_index + value else: n_index = index if n_index[remain[0] :] == index_zero[remain[0] :]: n_index = ( n_index[:self.index_differ] + tab[index[self.index_differ]] + n_index[self.index_differ + 1 :] ) new_state[n_index] = amp return new_state.items() def _pivoting(self, index_nonzero, target_size, index_zero, next_state): """pivot amplitudes of index_nonzero and self.index_zero""" target = list(range(self.num_qubits - target_size)) remain = list(range(self.num_qubits - target_size, self.num_qubits)) memory = qiskit.QuantumRegister(self.num_qubits) anc, circuit = self._initialize_circuit(memory, remain) self.index_differ = 0 for k in target: if index_nonzero[k] != index_zero[k]: self.index_differ = k break target_cx = [] self.ctrl_state = index_nonzero[self.index_differ] for k in target: if self.index_differ != k and index_nonzero[k] != index_zero[k]: circuit.cx(self.index_differ, k, ctrl_state=self.ctrl_state) target_cx.append(k) for k in remain: if index_nonzero[k] != index_zero[k]: circuit.cx(self.index_differ, k, ctrl_state=self.ctrl_state) target_cx.append(k) for k in remain: if index_zero[k] == "0": circuit.x(k) if self.aux: # apply mcx using mode v-chain self._mcxvchain(circuit, memory, anc, remain, self.index_differ) else: circuit.mcx(remain, self.index_differ) for k in remain: if index_zero[k] == "0": circuit.x(k) next_state = self._next_state( remain, target_cx, index_zero, next_state ) return circuit, next_state def _initialize_circuit(self, memory, remain): if self.aux: n_anci = len(remain) anc = qiskit.QuantumRegister(n_anci - 1, name="anc") circuit = qiskit.QuantumCircuit(memory, anc) else: circuit = qiskit.QuantumCircuit(memory) anc = None return anc, circuit def _get_index_zero(self, non_zero, state): index_zero = None for k in range(2**non_zero): index = f"{k:0{self.num_qubits}b}" not_exists = sum(1 for v in state if v[0] == index) == 0 if not_exists: index_zero = index break return index_zero @staticmethod def _get_index_nz(target_size, next_state): index_nonzero = None for index, _ in next_state: if index[:target_size] != target_size * "0": index_nonzero = index break return index_nonzero @staticmethod def _mcxvchain(circuit, memory, anc, lst_ctrl, tgt): """multi-controlled x gate with working qubits""" circuit.rccx(memory[lst_ctrl[0]], memory[lst_ctrl[1]], anc[0]) for j in range(2, len(lst_ctrl)): circuit.rccx(memory[lst_ctrl[j]], anc[j - 2], anc[j - 1]) circuit.cx(anc[len(lst_ctrl) - 2], tgt) for j in reversed(range(2, len(lst_ctrl))): circuit.rccx(memory[lst_ctrl[j]], anc[j - 2], anc[j - 1]) circuit.rccx(memory[lst_ctrl[0]], memory[lst_ctrl[1]], anc[0]) @staticmethod def initialize(q_circuit, state, qubits=None, opt_params=None): if qubits is None: q_circuit.append( PivotInitialize(state, opt_params=opt_params), q_circuit.qubits ) else: q_circuit.append(PivotInitialize(state, opt_params=opt_params), qubits)
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Quantum Operation Mixin.""" from abc import ABC, abstractmethod class Operation(ABC): """Quantum Operation Interface Class. For objects that can be added to a :class:`~qiskit.circuit.QuantumCircuit`. These objects include :class:`~qiskit.circuit.Gate`, :class:`~qiskit.circuit.Reset`, :class:`~qiskit.circuit.Barrier`, :class:`~qiskit.circuit.Measure`, and operators such as :class:`~qiskit.quantum_info.Clifford`. The main purpose is to add an :class:`~qiskit.circuit.Operation` to a :class:`~qiskit.circuit.QuantumCircuit` without synthesizing it before the transpilation. Example: Add a Clifford and a Toffoli gate to a QuantumCircuit. .. plot:: :include-source: from qiskit import QuantumCircuit from qiskit.quantum_info import Clifford, random_clifford qc = QuantumCircuit(3) cliff = random_clifford(2) qc.append(cliff, [0, 1]) qc.ccx(0, 1, 2) qc.draw('mpl') """ __slots__ = () @property @abstractmethod def name(self): """Unique string identifier for operation type.""" raise NotImplementedError @property @abstractmethod def num_qubits(self): """Number of qubits.""" raise NotImplementedError @property @abstractmethod def num_clbits(self): """Number of classical bits.""" raise NotImplementedError
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import transpile from qiskit import QuantumCircuit from qiskit.providers.fake_provider import FakeVigoV2 backend = FakeVigoV2() qc = QuantumCircuit(2, 1) qc.h(0) qc.x(1) qc.cp(np.pi/4, 0, 1) qc.h(0) qc.measure([0], [0]) qc_basis = transpile(qc, backend) qc_basis.draw(output='mpl')
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
# import all necessary objects and methods for quantum circuits from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from qiskit.tools.visualization import matplotlib_circuit_drawer as drawer # import randrange for random choices from random import randrange n = 5 m = 4 values_of_qubits = [] # we keep a record of the qubits also in a list qreg1 = QuantumRegister(n) # quantum register with n qubits creg1 = ClassicalRegister(n) # classical register with n bits mycircuit1 = QuantumCircuit(qreg1,creg1) # quantum circuit with quantum and classical registers # set each qubit to |1> for i in range(n): mycircuit1.x(qreg1[i]) # apply x-gate (NOT operator) values_of_qubits.append(1) # the value of each qubit is set to 1 # randomly pick m pairs of qubits for i in range(m): controller_qubit = randrange(n) target_qubit = randrange(n) # controller and target qubits should be different while controller_qubit == target_qubit: # if they are the same, we pick the target_qubit again target_qubit = randrange(n) # print our picked qubits print("the indices of the controller and target qubits are",controller_qubit,target_qubit) # apply cx-gate (CNOT operator) mycircuit1.cx(qreg1[controller_qubit],qreg1[target_qubit]) # we also trace the results if values_of_qubits[controller_qubit] == 1: # if the value of the controller qubit is 1, values_of_qubits[target_qubit] = 1 - values_of_qubits[target_qubit] # then flips the value of the target qubit # remark that 1-x gives the negation of x # measure the quantum register mycircuit1.measure(qreg1,creg1) print("Everything looks fine, let's continue ...") # draw the circuit drawer(mycircuit1) # re-execute this cell if you DO NOT see the circuit diagram # execute the circuit 100 times in the local simulator job = execute(mycircuit1,Aer.get_backend('qasm_simulator'),shots=100) counts = job.result().get_counts(mycircuit1) # print the reverse of the outcome for outcome in counts: reverse_outcome = '' for i in outcome: reverse_outcome = i + reverse_outcome print(reverse_outcome,"is observed",counts[outcome],"times") # the value of the qubits should be as follows based on our own calculation print(values_of_qubits) # import all necessary objects and methods for quantum circuits from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from qiskit.tools.visualization import matplotlib_circuit_drawer as drawer all_inputs=['00','01','10','11'] for input in all_inputs: qreg2 = QuantumRegister(2) # quantum register with 2 qubits creg2 = ClassicalRegister(2) # classical register with 2 bits mycircuit2 = QuantumCircuit(qreg2,creg2) # quantum circuit with quantum and classical registers #initialize the inputs if input[0]=='1': mycircuit2.x(qreg2[0]) # set the state of the first qubit to |1> if input[1]=='1': mycircuit2.x(qreg2[1]) # set the state of the second qubit to |1> # apply h-gate to both qubits mycircuit2.h(qreg2[0]) mycircuit2.h(qreg2[1]) # apply cx(first-qubit,second-qubit) mycircuit2.cx(qreg2[0],qreg2[1]) # apply h-gate to both qubits mycircuit2.h(qreg2[0]) mycircuit2.h(qreg2[1]) # measure both qubits mycircuit2.measure(qreg2,creg2) # execute the circuit 100 times in the local simulator job = execute(mycircuit2,Aer.get_backend('qasm_simulator'),shots=100) counts = job.result().get_counts(mycircuit2) for outcome in counts: # print the reverse of the outcomes reverse_outcome = '' for i in outcome: reverse_outcome = i + reverse_outcome print("our input is",input,"and",reverse_outcome,"is observed",counts[outcome],"times") # import all necessary objects and methods for quantum circuits from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from qiskit.tools.visualization import matplotlib_circuit_drawer as drawer all_inputs=['00','01','10','11'] for input in all_inputs: qreg3 = QuantumRegister(2) # quantum register with 2 qubits creg3 = ClassicalRegister(2) # classical register with 2 bits mycircuit3 = QuantumCircuit(qreg3,creg3) # quantum circuit with quantum and classical registers #initialize the inputs if input[0]=='1': mycircuit3.x(qreg3[0]) # set the value of the first qubit to |1> if input[1]=='1': mycircuit3.x(qreg3[1]) # set the value of the second qubit to |1> # apply cx(first-qubit,second-qubit) mycircuit3.cx(qreg3[0],qreg3[1]) # apply cx(second-qubit,first-qubit) mycircuit3.cx(qreg3[1],qreg3[0]) # apply cx(first-qubit,second-qubit) mycircuit3.cx(qreg3[0],qreg3[1]) mycircuit3.measure(qreg3,creg3) # execute the circuit 100 times in the local simulator job = execute(mycircuit3,Aer.get_backend('qasm_simulator'),shots=100) counts = job.result().get_counts(mycircuit3) for outcome in counts: # print the reverse of the outcomes reverse_outcome = '' for i in outcome: reverse_outcome = i + reverse_outcome print("our input is",input,"and",reverse_outcome,"is observed",counts[outcome],"times")
https://github.com/MonitSharma/Learn-Quantum-Machine-Learning
MonitSharma
import numpy as np zero_ket = np.array([[1], [0]]) print("|0> ket:\n", zero_ket) print("<0| bra:\n", zero_ket.T.conj()) zero_ket.T.conj() @ zero_ket one_ket = np.array([[0], [1]]) zero_ket.T.conj() @ one_ket zero_ket @ zero_ket.T.conj() ψ = np.array([[1], [0]])/np.sqrt(2) Π_0 = zero_ket @ zero_ket.T.conj() ψ.T.conj() @ Π_0 @ ψ from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit_aer import AerSimulator from qiskit.visualization import plot_histogram from qiskit.primitives import BackendEstimator, BackendSampler backend = AerSimulator() sampler = BackendSampler(backend) q = QuantumRegister(1) c = ClassicalRegister(1) circuit = QuantumCircuit(q, c) circuit.h(q[0]) circuit.measure(q, c) job = sampler.run(circuit, shots=100) result = job.result() counts = result.quasi_dists[0] plot_histogram(counts) ψ = np.array([[np.sqrt(2)/2], [np.sqrt(2)/2]]) Π_0 = zero_ket @ zero_ket.T.conj() probability_0 = ψ.T.conj() @ Π_0 @ ψ Π_0 @ ψ/np.sqrt(probability_0) c = ClassicalRegister(2) circuit = QuantumCircuit(q, c) circuit.h(q[0]) circuit.measure(q[0], c[0]) circuit.measure(q[0], c[1]) job = sampler.run(circuit, shots=100) result = job.result() counts = result.quasi_dists[0] plot_histogram(counts) q = QuantumRegister(2) c = ClassicalRegister(2) circuit = QuantumCircuit(q, c) circuit.h(q[0]) circuit.measure(q, c) job = sampler.run(circuit, shots=100) result = job.result() counts = result.quasi_dists[0] plot_histogram(counts) q = QuantumRegister(2) c = ClassicalRegister(2) circuit = QuantumCircuit(q, c) circuit.h(q[0]) circuit.cx(q[0], q[1]) circuit.measure(q, c) job = sampler.run(circuit, shots=100) result = job.result() counts = result.quasi_dists[0] plot_histogram(counts) ψ = np.array([[1], [1]])/np.sqrt(2) ρ = ψ @ ψ.T.conj() Π_0 = zero_ket @ zero_ket.T.conj() np.trace(Π_0 @ ρ) probability_0 = np.trace(Π_0 @ ρ) Π_0 @ ρ @ Π_0/probability_0 zero_ket = np.array([[1], [0]]) one_ket = np.array([[0], [1]]) ψ = (zero_ket + one_ket)/np.sqrt(2) print("Density matrix of the equal superposition") print(ψ @ ψ.T.conj()) print("Density matrix of the equally mixed state of |0><0| and |1><1|") print((zero_ket @ zero_ket.T.conj()+one_ket @ one_ket.T.conj())/2)
https://github.com/qiskit-community/qiskit-pocket-guide
qiskit-community
from qiskit.opflow.primitive_ops import PrimitiveOp from qiskit.quantum_info import Pauli primop_piXZ = PrimitiveOp(Pauli('-XZ')) print(primop_piXZ) print(type(primop_piXZ)) from qiskit.opflow import X, Z pauli_piXZ = -(X ^ Z) print(type(pauli_piXZ)) print(primop_piXZ.primitive .equiv(pauli_piXZ.primitive)) from qiskit import QuantumCircuit qc = QuantumCircuit(3) qc.h([0,1,2]) h_primop = PrimitiveOp(qc) print(h_primop) print(type(h_primop)) from qiskit.opflow import H hgates = H^3 print(hgates) print(type(hgates))
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
# useful additional packages import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, BasicAer, IBMQ # Creating registers qr = QuantumRegister(1) cr = ClassicalRegister(1) circuits = [] # Creating the circuits phase_vector = range(0,100) for phase_index in phase_vector: phase_shift = phase_index-50 phase = 2*np.pi*phase_shift/50 circuit_name = "phase_gate_%d"%phase_index qc_phase_gate = QuantumCircuit(qr, cr, name=circuit_name) qc_phase_gate.h(qr) qc_phase_gate.u1(phase, qr) qc_phase_gate.h(qr) qc_phase_gate.measure(qr[0], cr[0]) circuits.append(qc_phase_gate) # Visualising one of the circuits as an example circuits[25].draw(output='mpl') # To run using qasm simulator backend = BasicAer.get_backend('qasm_simulator') # the number of shots in the experiment shots = 1024 result = execute(circuits, backend=backend, shots=shots).result() probz = [] phase_value = [] for phase_index in phase_vector: phase_shift = phase_index - 50 phase_value.append(2*phase_shift/50) if '0' in result.get_counts(circuits[phase_index]): probz.append(2*result.get_counts(circuits[phase_index]).get('0')/shots-1) else: probz.append(-1) plt.plot(phase_value, probz, 'b',0.25,1/np.sqrt(2),'ro',0.5,0,'ko',1,-1,'go',-0.25,1/np.sqrt(2),'rx',-0.5,0,'kx',-1,-1,'gx') plt.xlabel('Phase value (Pi)') plt.ylabel('Eigenvalue of X') plt.show() # Creating registers qr = QuantumRegister(1) cr = ClassicalRegister(1) circuits = [] # Creating the circuits phase_vector = range(0,100) for phase_index in phase_vector: phase_shift = phase_index-50 phase = 2*np.pi*phase_shift/50 circuit_name = "phase_gate_%d"%phase_index qc_phase_gate = QuantumCircuit(qr, cr, name=circuit_name) qc_phase_gate.u3(phase,0,np.pi, qr) qc_phase_gate.measure(qr[0], cr[0]) circuits.append(qc_phase_gate) # Visualising one of the circuits as an example circuits[75].draw(output='mpl') # To run of qasm simulator backend = BasicAer.get_backend('qasm_simulator') # the number of shots in the experiment shots = 1024 result = execute(circuits, backend=backend, shots=shots).result() probz = [] phase_value = [] for phase_index in phase_vector: phase_shift = phase_index - 50 phase_value.append(2*phase_shift/50) if '0' in result.get_counts(circuits[phase_index]): probz.append(2*result.get_counts(circuits[phase_index]).get('0')/shots-1) else: probz.append(-1) plt.plot(phase_value, probz, 'b',0.5,0,'ko',1,-1,'go',-0.5,0,'kx',-1,-1,'gx') plt.xlabel('Phase value (Pi)') plt.ylabel('Eigenvalue of Z') plt.show()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, QuantumRegister from qiskit.circuit.library.standard_gates import HGate qc1 = QuantumCircuit(2) qc1.x(0) qc1.h(1) custom = qc1.to_gate().control(2) qc2 = QuantumCircuit(4) qc2.append(custom, [0, 3, 1, 2]) qc2.draw('mpl')
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Functions used for the analysis of randomized benchmarking results. """ from scipy.optimize import curve_fit import numpy as np from qiskit import QiskitError from ..tomography import marginal_counts from ...characterization.fitters import build_counts_dict_from_list try: from matplotlib import pyplot as plt HAS_MATPLOTLIB = True except ImportError: HAS_MATPLOTLIB = False class RBFitter: """ Class for fitters for randomized benchmarking """ def __init__(self, backend_result, cliff_lengths, rb_pattern=None): """ Args: backend_result: list of results (qiskit.Result). cliff_lengths: the Clifford lengths, 2D list i x j where i is the number of patterns, j is the number of cliffords lengths rb_pattern: the pattern for the rb sequences. """ if rb_pattern is None: rb_pattern = [[0]] self._cliff_lengths = cliff_lengths self._rb_pattern = rb_pattern self._raw_data = [] self._ydata = [] self._fit = [] self._nseeds = 0 self._result_list = [] self.add_data(backend_result) @property def raw_data(self): """Return raw data.""" return self._raw_data @property def cliff_lengths(self): """Return clifford lengths.""" return self.cliff_lengths @property def ydata(self): """Return ydata (means and std devs).""" return self._ydata @property def fit(self): """Return fit.""" return self._fit @property def seeds(self): """Return the number of loaded seeds.""" return self._nseeds @property def results(self): """Return all the results.""" return self._result_list def add_data(self, new_backend_result, rerun_fit=True): """ Add a new result. Re calculate the raw data, means and fit. Args: new_backend_result: list of rb results rerun_fit: re caculate the means and fit the result Additional information: Assumes that 'result' was executed is the output of circuits generated by randomized_becnhmarking_seq, """ if new_backend_result is None: return if not isinstance(new_backend_result, list): new_backend_result = [new_backend_result] for result in new_backend_result: self._result_list.append(result) # update the number of seeds *if* new ones # added. Note, no checking if we've done all the # cliffords for rbcirc in result.results: nseeds_circ = int(rbcirc.header.name.split('_')[-1]) if (nseeds_circ+1) > self._nseeds: self._nseeds = nseeds_circ+1 for result in self._result_list: if not len(result.results) == len(self._cliff_lengths[0]): raise ValueError( "The number of clifford lengths must match the number of " "results") if rerun_fit: self.calc_data() self.calc_statistics() self.fit_data() @staticmethod def _rb_fit_fun(x, a, alpha, b): """Function used to fit rb.""" # pylint: disable=invalid-name return a * alpha ** x + b def calc_data(self): """ Retrieve probabilities of success from execution results. Outputs results into an internal variable _raw_data which is a 3-dimensional list, where item (i,j,k) is the probability to measure the ground state for the set of qubits in pattern "i" for seed no. j and vector length self._cliff_lengths[i][k]. Additional information: Assumes that 'result' was executed is the output of circuits generated by randomized_becnhmarking_seq, """ circ_counts = {} circ_shots = {} for seedidx in range(self._nseeds): for circ, _ in enumerate(self._cliff_lengths[0]): circ_name = 'rb_length_%d_seed_%d' % (circ, seedidx) count_list = [] for result in self._result_list: try: count_list.append(result.get_counts(circ_name)) except (QiskitError, KeyError): pass circ_counts[circ_name] = \ build_counts_dict_from_list(count_list) circ_shots[circ_name] = sum(circ_counts[circ_name].values()) self._raw_data = [] startind = 0 for patt_ind in range(len(self._rb_pattern)): string_of_0s = '' string_of_0s = string_of_0s.zfill(len(self._rb_pattern[patt_ind])) self._raw_data.append([]) endind = startind+len(self._rb_pattern[patt_ind]) for i in range(self._nseeds): self._raw_data[-1].append([]) for k, _ in enumerate(self._cliff_lengths[patt_ind]): circ_name = 'rb_length_%d_seed_%d' % (k, i) counts_subspace = marginal_counts( circ_counts[circ_name], np.arange(startind, endind)) self._raw_data[-1][i].append( counts_subspace.get(string_of_0s, 0) / circ_shots[circ_name]) startind += (endind) def calc_statistics(self): """ Extract averages and std dev from the raw data (self._raw_data). Assumes that self._calc_data has been run. Output into internal _ydata variable: ydata is a list of dictionaries (length number of patterns). Dictionary ydata[i]: ydata[i]['mean'] is a numpy_array of length n; entry j of this array contains the mean probability of success over seeds, for vector length self._cliff_lengths[i][j]. And ydata[i]['std'] is a numpy_array of length n; entry j of this array contains the std of the probability of success over seeds, for vector length self._cliff_lengths[i][j]. """ self._ydata = [] for patt_ind in range(len(self._rb_pattern)): self._ydata.append({}) self._ydata[-1]['mean'] = np.mean(self._raw_data[patt_ind], 0) if len(self._raw_data[patt_ind]) == 1: # 1 seed self._ydata[-1]['std'] = None else: self._ydata[-1]['std'] = np.std(self._raw_data[patt_ind], 0) def fit_data(self): """ Fit the RB results to an exponential curve. Fit each of the patterns Puts the results into a list of fit dictionaries: where each dictionary corresponds to a pattern and has fields: 'params' - three parameters of rb_fit_fun. The middle one is the exponent. 'err' - the error limits of the parameters. 'epc' - error per Clifford """ self._fit = [] for patt_ind, (lens, qubits) in enumerate(zip(self._cliff_lengths, self._rb_pattern)): # if at least one of the std values is zero, then sigma is replaced # by None if not self._ydata[patt_ind]['std'] is None: sigma = self._ydata[patt_ind]['std'].copy() if len(sigma) - np.count_nonzero(sigma) > 0: sigma = None else: sigma = None params, pcov = curve_fit(self._rb_fit_fun, lens, self._ydata[patt_ind]['mean'], sigma=sigma, p0=(1.0, 0.95, 0.0), bounds=([-2, 0, -2], [2, 1, 2])) alpha = params[1] # exponent params_err = np.sqrt(np.diag(pcov)) alpha_err = params_err[1] nrb = 2 ** len(qubits) epc = (nrb-1)/nrb*(1-alpha) epc_err = epc*alpha_err/alpha self._fit.append({'params': params, 'params_err': params_err, 'epc': epc, 'epc_err': epc_err}) def plot_rb_data(self, pattern_index=0, ax=None, add_label=True, show_plt=True): """ Plot randomized benchmarking data of a single pattern. Args: pattern_index: which RB pattern to plot ax (Axes or None): plot axis (if passed in). add_label (bool): Add an EPC label show_plt (bool): display the plot. Raises: ImportError: If matplotlib is not installed. """ fit_function = self._rb_fit_fun if not HAS_MATPLOTLIB: raise ImportError('The function plot_rb_data needs matplotlib. ' 'Run "pip install matplotlib" before.') if ax is None: plt.figure() ax = plt.gca() xdata = self._cliff_lengths[pattern_index] # Plot the result for each sequence for one_seed_data in self._raw_data[pattern_index]: ax.plot(xdata, one_seed_data, color='gray', linestyle='none', marker='x') # Plot the mean with error bars ax.errorbar(xdata, self._ydata[pattern_index]['mean'], yerr=self._ydata[pattern_index]['std'], color='r', linestyle='--', linewidth=3) # Plot the fit ax.plot(xdata, fit_function(xdata, *self._fit[pattern_index]['params']), color='blue', linestyle='-', linewidth=2) ax.tick_params(labelsize=14) ax.set_xlabel('Clifford Length', fontsize=16) ax.set_ylabel('Ground State Population', fontsize=16) ax.grid(True) if add_label: bbox_props = dict(boxstyle="round,pad=0.3", fc="white", ec="black", lw=2) ax.text(0.6, 0.9, "alpha: %.3f(%.1e) EPC: %.3e(%.1e)" % (self._fit[pattern_index]['params'][1], self._fit[pattern_index]['params_err'][1], self._fit[pattern_index]['epc'], self._fit[pattern_index]['epc_err']), ha="center", va="center", size=14, bbox=bbox_props, transform=ax.transAxes) if show_plt: plt.show()
https://github.com/lynnlangit/learning-quantum
lynnlangit
import numpy as np from qiskit.algorithms.linear_solvers.numpy_linear_solver import NumPyLinearSolver from qiskit.algorithms.linear_solvers.hhl import HHL matrix = np.array([[1, -1/3], [-1/3, 1]]) vector = np.array([1, 0]) naive_hhl_solution = HHL().solve(matrix, vector) classical_solution = NumPyLinearSolver().solve(matrix, vector / np.linalg.norm(vector)) from qiskit.algorithms.linear_solvers.matrices.tridiagonal_toeplitz import TridiagonalToeplitz tridi_matrix = TridiagonalToeplitz(1, 1, -1 / 3) tridi_solution = HHL().solve(tridi_matrix, vector) print('classical state:', classical_solution.state) print('naive state:') print(naive_hhl_solution.state) print('tridiagonal state:') print(tridi_solution.state) print('classical Euclidean norm:', classical_solution.euclidean_norm) print('naive Euclidean norm:', naive_hhl_solution.euclidean_norm) print('tridiagonal Euclidean norm:', tridi_solution.euclidean_norm) from qiskit.quantum_info import Statevector naive_sv = Statevector(naive_hhl_solution.state).data tridi_sv = Statevector(tridi_solution.state).data # Extract the right vector components. 1000 corresponds to the index 8 and 1001 corresponds to the index 9 naive_full_vector = np.array([naive_sv[8], naive_sv[9]]) tridi_full_vector = np.array([tridi_sv[8], tridi_sv[9]]) print('naive raw solution vector:', naive_full_vector) print('tridi raw solution vector:', tridi_full_vector) naive_full_vector = np.real(naive_full_vector) tridi_full_vector = np.real(tridi_full_vector) print('full naive solution vector:', naive_hhl_solution.euclidean_norm*naive_full_vector/np.linalg.norm(naive_full_vector)) print('full tridi solution vector:', tridi_solution.euclidean_norm*tridi_full_vector/np.linalg.norm(tridi_full_vector)) print('classical state:', classical_solution.state) from scipy.sparse import diags num_qubits = 2 matrix_size = 2 ** num_qubits # entries of the tridiagonal Toeplitz symmetric matrix a = 1 b = -1/3 matrix = diags([b, a, b], [-1, 0, 1], shape=(matrix_size, matrix_size)).toarray() vector = np.array([1] + [0]*(matrix_size - 1)) # run the algorithms classical_solution = NumPyLinearSolver().solve(matrix, vector / np.linalg.norm(vector)) naive_hhl_solution = HHL().solve(matrix, vector) tridi_matrix = TridiagonalToeplitz(num_qubits, a, b) tridi_solution = HHL().solve(tridi_matrix, vector) print('classical euclidean norm:', classical_solution.euclidean_norm) print('naive euclidean norm:', naive_hhl_solution.euclidean_norm) print('tridiagonal euclidean norm:', tridi_solution.euclidean_norm) from qiskit import transpile num_qubits = list(range(1,5)) a = 1 b = -1/3 i=1 # calculate the circuit depths for different number of qubits to compare the use of resources naive_depths = [] tridi_depths = [] for nb in num_qubits: matrix = diags([b, a, b], [-1, 0, 1], shape=(2**nb, 2**nb)).toarray() vector = np.array([1] + [0]*(2**nb -1)) naive_hhl_solution = HHL().solve(matrix, vector) tridi_matrix = TridiagonalToeplitz(nb, a, b) tridi_solution = HHL().solve(tridi_matrix, vector) naive_qc = transpile(naive_hhl_solution.state,basis_gates=['id', 'rz', 'sx', 'x', 'cx']) tridi_qc = transpile(tridi_solution.state,basis_gates=['id', 'rz', 'sx', 'x', 'cx']) naive_depths.append(naive_qc.depth()) tridi_depths.append(tridi_qc.depth()) i +=1 sizes = [str(2**nb)+"x"+str(2**nb) for nb in num_qubits] columns = ['size of the system', 'quantum_solution depth', 'tridi_solution depth'] data = np.array([sizes, naive_depths, tridi_depths]) row_format ="{:>23}" * (len(columns) + 2) for team, row in zip(columns, data): print(row_format.format(team, *row)) print('excess:', [naive_depths[i] - tridi_depths[i] for i in range(0, len(naive_depths))]) from qiskit.algorithms.linear_solvers.observables import AbsoluteAverage, MatrixFunctional num_qubits = 1 matrix_size = 2 ** num_qubits # entries of the tridiagonal Toeplitz symmetric matrix a = 1 b = -1/3 matrix = diags([b, a, b], [-1, 0, 1], shape=(matrix_size, matrix_size)).toarray() vector = np.array([1] + [0]*(matrix_size - 1)) tridi_matrix = TridiagonalToeplitz(1, a, b) average_solution = HHL().solve(tridi_matrix, vector, AbsoluteAverage()) classical_average = NumPyLinearSolver().solve(matrix, vector / np.linalg.norm(vector), AbsoluteAverage()) print('quantum average:', average_solution.observable) print('classical average:', classical_average.observable) print('quantum circuit results:', average_solution.circuit_results) observable = MatrixFunctional(1, 1 / 2) functional_solution = HHL().solve(tridi_matrix, vector, observable) classical_functional = NumPyLinearSolver().solve(matrix, vector / np.linalg.norm(vector), observable) print('quantum functional:', functional_solution.observable) print('classical functional:', classical_functional.observable) print('quantum circuit results:', functional_solution.circuit_results) from qiskit import BasicAer backend = BasicAer.get_backend('qasm_simulator') hhl = HHL(1e-3, quantum_instance=backend) accurate_solution = hhl.solve(matrix, vector) classical_solution = NumPyLinearSolver().solve(matrix, vector / np.linalg.norm(vector)) print(accurate_solution.euclidean_norm) print(classical_solution.euclidean_norm) from qiskit import QuantumRegister, QuantumCircuit import numpy as np t = 2 # This is not optimal; As an exercise, set this to the # value that will get the best results. See section 8 for solution. nqubits = 4 # Total number of qubits nb = 1 # Number of qubits representing the solution nl = 2 # Number of qubits representing the eigenvalues theta = 0 # Angle defining |b> a = 1 # Matrix diagonal b = -1/3 # Matrix off-diagonal # Initialize the quantum and classical registers qr = QuantumRegister(nqubits) # Create a Quantum Circuit qc = QuantumCircuit(qr) qrb = qr[0:nb] qrl = qr[nb:nb+nl] qra = qr[nb+nl:nb+nl+1] # State preparation. qc.ry(2*theta, qrb[0]) # QPE with e^{iAt} for qu in qrl: qc.h(qu) qc.p(a*t, qrl[0]) qc.p(a*t*2, qrl[1]) qc.u(b*t, -np.pi/2, np.pi/2, qrb[0]) # Controlled e^{iAt} on \lambda_{1}: params=b*t qc.p(np.pi/2,qrb[0]) qc.cx(qrl[0],qrb[0]) qc.ry(params,qrb[0]) qc.cx(qrl[0],qrb[0]) qc.ry(-params,qrb[0]) qc.p(3*np.pi/2,qrb[0]) # Controlled e^{2iAt} on \lambda_{2}: params = b*t*2 qc.p(np.pi/2,qrb[0]) qc.cx(qrl[1],qrb[0]) qc.ry(params,qrb[0]) qc.cx(qrl[1],qrb[0]) qc.ry(-params,qrb[0]) qc.p(3*np.pi/2,qrb[0]) # Inverse QFT qc.h(qrl[1]) qc.rz(-np.pi/4,qrl[1]) qc.cx(qrl[0],qrl[1]) qc.rz(np.pi/4,qrl[1]) qc.cx(qrl[0],qrl[1]) qc.rz(-np.pi/4,qrl[0]) qc.h(qrl[0]) # Eigenvalue rotation t1=(-np.pi +np.pi/3 - 2*np.arcsin(1/3))/4 t2=(-np.pi -np.pi/3 + 2*np.arcsin(1/3))/4 t3=(np.pi -np.pi/3 - 2*np.arcsin(1/3))/4 t4=(np.pi +np.pi/3 + 2*np.arcsin(1/3))/4 qc.cx(qrl[1],qra[0]) qc.ry(t1,qra[0]) qc.cx(qrl[0],qra[0]) qc.ry(t2,qra[0]) qc.cx(qrl[1],qra[0]) qc.ry(t3,qra[0]) qc.cx(qrl[0],qra[0]) qc.ry(t4,qra[0]) qc.measure_all() print("Depth: %i" % qc.depth()) print("CNOTS: %i" % qc.count_ops()['cx']) qc.draw(fold=-1) from qiskit import BasicAer, ClassicalRegister, IBMQ from qiskit.compiler import transpile from qiskit.ignis.mitigation.measurement import (complete_meas_cal, # Measurement error mitigation functions CompleteMeasFitter, MeasurementFilter) provider = IBMQ.load_account() backend = provider.get_backend('ibmqx2') # calibrate using real hardware layout = [2,3,0,4] chip_qubits = 5 # Transpiled circuit for the real hardware qc_qa_cx = transpile(qc, backend=backend, initial_layout=layout) meas_cals, state_labels = complete_meas_cal(qubit_list=layout, qr=QuantumRegister(chip_qubits)) qcs = meas_cals + [qc_qa_cx] job = backend.run(qcs, shots=10)
https://github.com/Dpbm/scientific-research-1-quantum-oracles
Dpbm
import numpy as np from numpy import pi # importing Qiskit from qiskit import QuantumCircuit, transpile, assemble, Aer from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(3) qc.h(2) qc.cp(pi/2, 1, 2) qc.cp(pi/4, 0, 2) qc.h(1) qc.cp(pi/2, 0, 1) qc.h(0) qc.swap(0, 2) qc.draw() def qft_rotations(circuit, n): if n == 0: return circuit n -= 1 circuit.h(n) for qubit in range(n): circuit.cp(pi/2**(n-qubit), qubit, n) qft_rotations(circuit, n) def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft(circuit, n): qft_rotations(circuit, n) swap_registers(circuit, n) return circuit qc = QuantumCircuit(4) qft(qc,4) qc.draw() # Create the circuit qc = QuantumCircuit(3) # Encode the state 5 (101 in binary) qc.x(0) qc.x(2) qc.draw() sim = Aer.get_backend("aer_simulator") qc_init = qc.copy() qc_init.save_statevector() statevector = sim.run(qc_init).result().get_statevector() plot_bloch_multivector(statevector) qft(qc, 3) qc.draw() qc.save_statevector() statevector = sim.run(qc).result().get_statevector() plot_bloch_multivector(statevector)
https://github.com/samuraigab/Quantum-Basic-Algorithms
samuraigab
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ,execute from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * # Loading your IBM Quantum account(s) provider = IBMQ.load_account() # Criando um circuito de n qubits n = 4 qc = QuantumCircuit(n) #Desenhando o circuito qc.draw() backend = Aer.get_backend('statevector_simulator') results = execute(qc, backend).result().get_statevector() plot_bloch_multivector(qc) import matplotlib.pyplot as plt from IPython.display import display, Latex n = 1 qc = QuantumCircuit(n) print('Com probabilidade máxima (igual 1) o qubit se econtra no estado 0.') backend = Aer.get_backend('statevector_simulator') results = execute(qc,backend).result().get_counts() display(plot_histogram(results, figsize = (2,2))) state = execute(qc,backend).result().get_statevector() plot_bloch_multivector(state) # Colocando em superposição qc = QuantumCircuit(n) qc.h(0) display(qc.draw()) state = execute(qc,backend).result().get_statevector() plot_bloch_multivector(state) # print('--- O resultado abaixo mostra que temos um qubit em superposição.') # print("--- Apesar termos 50% de chance de medir o estado 0 ou 1, só conseguimos extrair um bit \ # de informação do sistema. O número de bits (clássicos) de informação extraídos \ # do sistema será, no máximo, igual ao número qubits") # print("--- O nosso resultado será 0 ou 1") qc = QuantumCircuit(n,1) qc.h(0) qc.measure(0,0) backend = Aer.get_backend('qasm_simulator') results = execute(qc,backend, shots=10000).result().get_counts() plot_histogram(results, figsize=(2,2)) n = 4 qc = QuantumCircuit(n) qc.id(0) # nao faz nada no qubit 0 qc.x(1) # flipa o qubit 1 --- 0->1 qc.h(2) # coloca o qubit 2 em superposição: |0> = |0> + |1> qc.x(3) # flipa o qubit 3 --- |0> -> |1> qc.h(3) # coloca o qubit 3 em superposção: |1> = |0> - |1> qc.draw() print("--------- Mostra a posição de cada um dos qubits na esfera de Bloch ---------") backend = Aer.get_backend('statevector_simulator') results = execute(qc,backend).result().get_statevector() plot_bloch_multivector(results) n = 1 qc = QuantumCircuit(n,1) qc.h(0) qc.measure(0,0) display(qc.draw()) # |0> ---> H ----->|0> + |1> print('----------O resultado da medida de um qubit em superposição.---------\n') shots = 10000 backend = Aer.get_backend('qasm_simulator') results = execute(qc,backend, shots=shots).result().get_counts() display(plot_histogram(results,figsize = (3,3))) state0 = results['0'] state1 = results['1'] print(f'Ao rodar {shots} vezes experimento, o resultado 0 apareceu {state0} \ vezes e resultado 1 ocorreu {state1} vezes') print("\n\n------ Visualização da medida do experimento rodando quatro vezes ------\n") for i in range(4): results = execute(qc,backend, shots = 1).result().get_counts() display(plot_histogram(results, figsize=(2,2))) # Run the code in this cell to see the widget from qiskit_textbook.widgets import gate_demo gate_demo(gates='pauli+h+rz') n = 2 qc = QuantumCircuit(n) qc.h(0) qc.h(1) # qc.measure(range(n), range(n)) display(qc.draw()) #|0> -> H -> |0> + |1> #|00> -> H|0>*Id|0> = (|0> + |1>)(|0>) = (|00> + |10>) Estado nao emaranhado backend = Aer.get_backend('statevector_simulator') results = execute(qc,backend).result().get_counts() plot_histogram(results, figsize = (3,3)) n = 2 qc = QuantumCircuit(n) qc.h(0) qc.cx(0,1) # qc.measure(0,0) # qc.measure(1,1) qc.draw() backend = Aer.get_backend('statevector_simulator') results = execute(qc,backend).result().get_counts() plot_histogram(results, figsize = (3,3)) #|0> -> H -> |0> + |1> #|00> -> H|0>*Id|0> = (|0> + |1>)(|0>) = (|00> + |10>) aplicar CNOT (|00> + |11>) - Estado Emaranhado
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
p = 0.2 import numpy as np from qiskit.circuit import QuantumCircuit class BernoulliA(QuantumCircuit): """A circuit representing the Bernoulli A operator.""" def __init__(self, probability): super().__init__(1) # circuit on 1 qubit theta_p = 2 * np.arcsin(np.sqrt(probability)) self.ry(theta_p, 0) class BernoulliQ(QuantumCircuit): """A circuit representing the Bernoulli Q operator.""" def __init__(self, probability): super().__init__(1) # circuit on 1 qubit self._theta_p = 2 * np.arcsin(np.sqrt(probability)) self.ry(2 * self._theta_p, 0) def power(self, k): # implement the efficient power of Q q_k = QuantumCircuit(1) q_k.ry(2 * k * self._theta_p, 0) return q_k A = BernoulliA(p) Q = BernoulliQ(p) from qiskit.algorithms import EstimationProblem problem = EstimationProblem( state_preparation=A, # A operator grover_operator=Q, # Q operator objective_qubits=[0], # the "good" state Psi1 is identified as measuring |1> in qubit 0 ) from qiskit.primitives import Sampler sampler = Sampler() from qiskit.algorithms import AmplitudeEstimation ae = AmplitudeEstimation( num_eval_qubits=3, # the number of evaluation qubits specifies circuit width and accuracy sampler=sampler, ) ae_result = ae.estimate(problem) print(ae_result.estimation) import matplotlib.pyplot as plt # plot estimated values gridpoints = list(ae_result.samples.keys()) probabilities = list(ae_result.samples.values()) plt.bar(gridpoints, probabilities, width=0.5 / len(probabilities)) plt.axvline(p, color="r", ls="--") plt.xticks(size=15) plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15) plt.title("Estimated Values", size=15) plt.ylabel("Probability", size=15) plt.xlabel(r"Amplitude $a$", size=15) plt.ylim((0, 1)) plt.grid() plt.show() print("Interpolated MLE estimator:", ae_result.mle) ae_circuit = ae.construct_circuit(problem) ae_circuit.decompose().draw( "mpl", style="iqx" ) # decompose 1 level: exposes the Phase estimation circuit! from qiskit import transpile basis_gates = ["h", "ry", "cry", "cx", "ccx", "p", "cp", "x", "s", "sdg", "y", "t", "cz"] transpile(ae_circuit, basis_gates=basis_gates, optimization_level=2).draw("mpl", style="iqx") from qiskit.algorithms import IterativeAmplitudeEstimation iae = IterativeAmplitudeEstimation( epsilon_target=0.01, # target accuracy alpha=0.05, # width of the confidence interval sampler=sampler, ) iae_result = iae.estimate(problem) print("Estimate:", iae_result.estimation) iae_circuit = iae.construct_circuit(problem, k=3) iae_circuit.draw("mpl", style="iqx") from qiskit.algorithms import MaximumLikelihoodAmplitudeEstimation mlae = MaximumLikelihoodAmplitudeEstimation( evaluation_schedule=3, # log2 of the maximal Grover power sampler=sampler, ) mlae_result = mlae.estimate(problem) print("Estimate:", mlae_result.estimation) from qiskit.algorithms import FasterAmplitudeEstimation fae = FasterAmplitudeEstimation( delta=0.01, # target accuracy maxiter=3, # determines the maximal power of the Grover operator sampler=sampler, ) fae_result = fae.estimate(problem) print("Estimate:", fae_result.estimation) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from math import pi import numpy as np import rustworkx as rx from qiskit_nature.second_q.hamiltonians.lattices import ( BoundaryCondition, HyperCubicLattice, Lattice, LatticeDrawStyle, LineLattice, SquareLattice, TriangularLattice, ) from qiskit_nature.second_q.hamiltonians import FermiHubbardModel num_nodes = 11 boundary_condition = BoundaryCondition.OPEN line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) line_lattice.draw() num_nodes = 11 boundary_condition = BoundaryCondition.PERIODIC line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) line_lattice.draw() line_lattice.draw_without_boundary() num_nodes = 11 boundary_condition = BoundaryCondition.PERIODIC edge_parameter = 1.0 + 1.0j onsite_parameter = 1.0 line_lattice = LineLattice( num_nodes=num_nodes, edge_parameter=edge_parameter, onsite_parameter=onsite_parameter, boundary_condition=boundary_condition, ) set(line_lattice.graph.weighted_edge_list()) line_lattice.to_adjacency_matrix() line_lattice.to_adjacency_matrix(weighted=True) rows = 5 cols = 4 boundary_condition = BoundaryCondition.OPEN square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) square_lattice.draw() rows = 5 cols = 4 boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.PERIODIC, ) # open in the x-direction, periodic in the y-direction square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) square_lattice.draw() rows = 5 cols = 4 edge_parameter = (1.0, 1.0 + 1.0j) boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.PERIODIC, ) # open in the x-direction, periodic in the y-direction onsite_parameter = 1.0 square_lattice = SquareLattice( rows=rows, cols=cols, edge_parameter=edge_parameter, onsite_parameter=onsite_parameter, boundary_condition=boundary_condition, ) set(square_lattice.graph.weighted_edge_list()) size = (3, 4, 5) boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.OPEN, BoundaryCondition.OPEN, ) cubic_lattice = HyperCubicLattice(size=size, boundary_condition=boundary_condition) # function for setting the positions def indextocoord_3d(index: int, size: tuple, angle) -> list: z = index // (size[0] * size[1]) a = index % (size[0] * size[1]) y = a // size[0] x = a % size[0] vec_x = np.array([1, 0]) vec_y = np.array([np.cos(angle), np.sin(angle)]) vec_z = np.array([0, 1]) return_coord = x * vec_x + y * vec_y + z * vec_z return return_coord.tolist() pos = dict([(index, indextocoord_3d(index, size, angle=pi / 4)) for index in range(np.prod(size))]) cubic_lattice.draw(style=LatticeDrawStyle(pos=pos)) rows = 4 cols = 3 boundary_condition = BoundaryCondition.OPEN triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) triangular_lattice.draw() rows = 4 cols = 3 boundary_condition = BoundaryCondition.PERIODIC triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) triangular_lattice.draw() graph = rx.PyGraph(multigraph=False) # multigraph shoud be False graph.add_nodes_from(range(6)) weighted_edge_list = [ (0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 3, 2.0), (4, 2, -1.0 + 2.0j), (4, 4, 3.0), (2, 5, -1.0), ] graph.add_edges_from(weighted_edge_list) # make a lattice general_lattice = Lattice(graph) set(general_lattice.graph.weighted_edge_list()) general_lattice.draw() general_lattice.draw(self_loop=True) general_lattice.draw(self_loop=True, style=LatticeDrawStyle(with_labels=True)) square_lattice = SquareLattice(rows=5, cols=4, boundary_condition=BoundaryCondition.PERIODIC) t = -1.0 # the interaction parameter v = 0.0 # the onsite potential u = 5.0 # the interaction parameter U fhm = FermiHubbardModel( square_lattice.uniform_parameters( uniform_interaction=t, uniform_onsite_potential=v, ), onsite_interaction=u, ) ham = fhm.second_q_op().simplify() print(ham) graph = rx.PyGraph(multigraph=False) # multiigraph shoud be False graph.add_nodes_from(range(6)) weighted_edge_list = [ (0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 3, 2.0), (4, 2, -1.0 + 2.0j), (4, 4, 3.0), (2, 5, -1.0), ] graph.add_edges_from(weighted_edge_list) general_lattice = Lattice(graph) # the lattice whose weights are seen as the interaction matrix. u = 5.0 # the interaction parameter U fhm = FermiHubbardModel(lattice=general_lattice, onsite_interaction=u) ham = fhm.second_q_op().simplify() print(ham) from qiskit_nature.second_q.problems import LatticeModelProblem num_nodes = 4 boundary_condition = BoundaryCondition.OPEN line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) fhm = FermiHubbardModel( line_lattice.uniform_parameters( uniform_interaction=t, uniform_onsite_potential=v, ), onsite_interaction=u, ) lmp = LatticeModelProblem(fhm) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import JordanWignerMapper numpy_solver = NumPyMinimumEigensolver() qubit_mapper = JordanWignerMapper() calc = GroundStateEigensolver(qubit_mapper, numpy_solver) res = calc.solve(lmp) print(res) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/mcoggins96/Quantum-Computing-UK-Repository
mcoggins96
print('\n Superdense Coding') print('--------------------------\n') from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute,IBMQ from qiskit.tools.monitor import job_monitor IBMQ.enable_account('ENTER API TOKEN') provider = IBMQ.get_provider(hub='ibm-q') q = QuantumRegister(2,'q') c = ClassicalRegister(2,'c') backend = provider.get_backend('ibmq_qasm_simulator') print('Provider: ',backend) #################### 00 ########################### circuit = QuantumCircuit(q,c) circuit.h(q[0]) # Hadamard gate applied to q0 circuit.cx(q[0],q[1]) # CNOT gate applied circuit.cx(q[0],q[1]) circuit.h(q[0]) circuit.measure(q,c) # Qubits measured job = execute(circuit, backend, shots=10) print('Executing Job...\n') job_monitor(job) counts = job.result().get_counts() print('RESULT: ',counts,'\n') #################### 10 ########################### circuit = QuantumCircuit(q,c) circuit.h(q[0]) circuit.cx(q[0],q[1]) circuit.x(q[0]) # X-gate applied circuit.cx(q[0],q[1]) circuit.h(q[0]) circuit.measure(q,c) job = execute(circuit, backend, shots=10) print('Executing Job...\n') job_monitor(job) counts = job.result().get_counts() print('RESULT: ',counts,'\n') #################### 01 ########################### circuit = QuantumCircuit(q,c) circuit.h(q[0]) circuit.cx(q[0],q[1]) circuit.z(q[0]) # Z-gate applied to q0 circuit.cx(q[0],q[1]) circuit.h(q[0]) circuit.measure(q,c) job = execute(circuit, backend, shots=10) print('Executing Job...\n') job_monitor(job) counts = job.result().get_counts() print('RESULT: ',counts,'\n') #################### 11 ########################### circuit = QuantumCircuit(q,c) circuit.h(q[0]) circuit.cx(q[0],q[1]) circuit.z(q[0]) # Z-gate applied circuit.x(q[0]) # X-gate applied circuit.cx(q[0],q[1]) circuit.h(q[0]) circuit.measure(q,c) job = execute(circuit, backend, shots=10) print('Executing Job...\n') job_monitor(job) counts = job.result().get_counts() print('RESULT: ',counts,'\n') print('Press any key to close') input()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver() problem = driver.run() print(problem) from qiskit_nature.second_q.problems import ElectronicBasis driver.run_pyscf() problem = driver.to_problem(basis=ElectronicBasis.MO, include_dipole=True) print(problem.basis) ao_problem = driver.to_problem(basis=ElectronicBasis.AO) print(ao_problem.basis) from qiskit_nature.second_q.formats.qcschema_translator import qcschema_to_problem qcschema = driver.to_qcschema() ao_problem = qcschema_to_problem(qcschema, basis=ElectronicBasis.AO) from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema basis_transformer = get_ao_to_mo_from_qcschema(qcschema) mo_problem = basis_transformer.transform(ao_problem) print(mo_problem.basis) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
rubenandrebarreiro
# import common packages import numpy as np from qiskit import Aer # lib from Qiskit Aqua from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver from qiskit.aqua.operators import Z2Symmetries from qiskit.aqua.components.optimizers import COBYLA # lib from Qiskit Aqua Chemistry from qiskit.chemistry import FermionicOperator from qiskit.chemistry.drivers import PySCFDriver, UnitsType from qiskit.chemistry.components.variational_forms import UCCSD from qiskit.chemistry.components.initial_states import HartreeFock # using driver to get fermionic Hamiltonian # PySCF example driver = PySCFDriver(atom='Li .0 .0 .0; H .0 .0 1.6', unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g') molecule = driver.run() # please be aware that the idx here with respective to original idx freeze_list = [0] remove_list = [-3, -2] # negative number denotes the reverse order map_type = 'parity' h1 = molecule.one_body_integrals h2 = molecule.two_body_integrals nuclear_repulsion_energy = molecule.nuclear_repulsion_energy num_particles = molecule.num_alpha + molecule.num_beta num_spin_orbitals = molecule.num_orbitals * 2 print("HF energy: {}".format(molecule.hf_energy - molecule.nuclear_repulsion_energy)) print("# of electrons: {}".format(num_particles)) print("# of spin orbitals: {}".format(num_spin_orbitals)) # prepare full idx of freeze_list and remove_list # convert all negative idx to positive remove_list = [x % molecule.num_orbitals for x in remove_list] freeze_list = [x % molecule.num_orbitals for x in freeze_list] # update the idx in remove_list of the idx after frozen, since the idx of orbitals are changed after freezing remove_list = [x - len(freeze_list) for x in remove_list] remove_list += [x + molecule.num_orbitals - len(freeze_list) for x in remove_list] freeze_list += [x + molecule.num_orbitals for x in freeze_list] # prepare fermionic hamiltonian with orbital freezing and eliminating, and then map to qubit hamiltonian # and if PARITY mapping is selected, reduction qubits energy_shift = 0.0 qubit_reduction = True if map_type == 'parity' else False ferOp = FermionicOperator(h1=h1, h2=h2) if len(freeze_list) > 0: ferOp, energy_shift = ferOp.fermion_mode_freezing(freeze_list) num_spin_orbitals -= len(freeze_list) num_particles -= len(freeze_list) if len(remove_list) > 0: ferOp = ferOp.fermion_mode_elimination(remove_list) num_spin_orbitals -= len(remove_list) qubitOp = ferOp.mapping(map_type=map_type, threshold=0.00000001) qubitOp = Z2Symmetries.two_qubit_reduction(qubitOp, num_particles) if qubit_reduction else qubitOp qubitOp.chop(10**-10) print(qubitOp.print_details()) print(qubitOp) # Using exact eigensolver to get the smallest eigenvalue exact_eigensolver = NumPyMinimumEigensolver(qubitOp) ret = exact_eigensolver.run() print('The computed energy is: {:.12f}'.format(ret.eigenvalue.real)) print('The total ground state energy is: {:.12f}'.format(ret.eigenvalue.real + energy_shift + nuclear_repulsion_energy)) # from qiskit import IBMQ # provider = IBMQ.load_account() backend = Aer.get_backend('statevector_simulator') # setup COBYLA optimizer max_eval = 200 cobyla = COBYLA(maxiter=max_eval) # setup HartreeFock state HF_state = HartreeFock(num_spin_orbitals, num_particles, map_type, qubit_reduction) # setup UCCSD variational form var_form = UCCSD(num_orbitals=num_spin_orbitals, num_particles=num_particles, active_occupied=[0], active_unoccupied=[0, 1], initial_state=HF_state, qubit_mapping=map_type, two_qubit_reduction=qubit_reduction, num_time_slices=1) # setup VQE vqe = VQE(qubitOp, var_form, cobyla) quantum_instance = QuantumInstance(backend=backend) results = vqe.run(quantum_instance) print('The computed ground state energy is: {:.12f}'.format(results.eigenvalue.real)) print('The total ground state energy is: {:.12f}'.format(results.eigenvalue.real + energy_shift + nuclear_repulsion_energy)) print("Parameters: {}".format(results.optimal_point)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/COFAlumni-USB/qiskit-fall-2022
COFAlumni-USB
#For Python and advanced manipulation import these packages try: import numpy as np except: !pip install numpy import numpy as np try: import qiskit except: !pip install qiskit import qiskit try: !pip install pylatexenc estilo = 'mpl' QuantumCircuit(1).draw(estilo) except: estilo = 'text' #Libraries for quantum circuits from qiskit import QuantumCircuit, execute #For calibration from qiskit import pulse, transpile from qiskit.pulse.library import Gaussian #Personalized gates from qiskit.circuit import Gate from qiskit import QiskitError #For information import qiskit.tools.jupyter from qiskit import IBMQ #Load our IBM Quantum account provider = IBMQ.enable_account("c8440457d4ccb10786816758f1ffd909ea528ea12c2ac744598dd73ec90d1476ffa9f58251d0db77b256bcb655f85be37e3163e5548178ed618bc2ec2c57fbf4") provider.backends() from qiskit.providers.ibmq import least_busy #This searches for the least busy backend, with 5 qubits small_devices = provider.backends(filters=lambda x: x.configuration().n_qubits == 5 and not x.configuration().simulator) least_busy(small_devices) #Once we saw which backend was lest busy, we choose it with .get_backend() provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') backend = provider.get_backend('ibmq_belem') backend_config = backend.configuration() print(backend_config) #Sampling time of the pulses dt = backend_config.dt print(f"Sampling time: {dt*1e9} ns") #Timing constraint of the backend backend.configuration().timing_constraints #We get those values and save it in a variable acquire_alignment = backend.configuration().timing_constraints['acquire_alignment'] granularity = backend.configuration().timing_constraints['granularity'] pulse_alignment = backend.configuration().timing_constraints['pulse_alignment'] lcm = np.lcm(acquire_alignment, pulse_alignment) print(f"Least common multiple of acquire_alignment and pulse_alignment: {lcm}") backend_defaults = backend.defaults() #Finding qubit's frequency #Defining units GHz = 1.0e9 # Gigahertz MHz = 1.0e6 # Megahertz us = 1.0e-6 # Microseconds ns = 1.0e-9 # Nanoseconds #We will work with the following qubit qubit = 0 #Center the sweep in a qubit estimated frequency in Hz center_frequency_Hz = backend_defaults.qubit_freq_est[qubit] print(f"Qubit {qubit} has an estimated frequency of {center_frequency_Hz / GHz} GHz.") # scale factor to remove factors of 10 from the data scale_factor = 1e-7 #Sweep 40 MHz around the estimated frequency frequency_span_Hz = 40 * MHz #With 1MHz steps frequency_step_Hz = 1 * MHz #Sweep 20 MHz above and 20 MHz below the estimated frequency frequency_min = center_frequency_Hz - frequency_span_Hz / 2 frequency_max = center_frequency_Hz + frequency_span_Hz / 2 #Array of the frequencies frequencies_GHz = np.arange(frequency_min / GHz, frequency_max / GHz, frequency_step_Hz / GHz) print(f"The sweep will go from {frequency_min / GHz} GHz to {frequency_max / GHz} GHz \ in steps of {frequency_step_Hz / MHz} MHz.") #This function returns the closest multiple between two values def get_closest_multiple_of(value, base_number): return int(value + base_number/2) - (int(value + base_number/2) % base_number) #Lenght of the pulse: it has to be multiple of 16 (granularity) def get_closest_multiple_of_16(num): return get_closest_multiple_of(num, granularity) #Lenght of the delay, converts s to dt def get_dt_from(sec): return get_closest_multiple_of(sec/dt, lcm) from qiskit.circuit import Parameter from qiskit.circuit import QuantumCircuit, Gate #Drive pulse parameters (us = microseconds) #Determines width of the Gaussian, but I need it for drive_duration drive_sigma_sec = 0.015 * us #Truncating parameter """Changed this parameter because I was getting three pulses in Measured Signal. With this new duration I get the envelope of the three pulses. This happens because the transitions of the qubit states (0/1) are not perfectly populated, so we get a mix of the other states.""" drive_duration_sec = drive_sigma_sec * 3.5 # For qubit frequency estimate from 5.09021 GHz to 5.09035 GHz use: # drive_duration_sec = drive_sigma_sec * 4 #Pulse's amplitude drive_amp = 0.05 #Base schedule freq = Parameter('freq') with pulse.build(backend=backend, default_alignment='sequential', name='Frequency sweep') as sweep_sched: #seconds_to_samples(s) gets the number of samples that will elapse in seconds on the active backend. drive_duration = get_closest_multiple_of_16(pulse.seconds_to_samples(drive_duration_sec)) #sigma is not required for Constant pulse #drive_sigma = pulse.seconds_to_samples(drive_sigma_sec) #Returns the qubit's DriveChannel on the active backend #Drive channels transmit signals to qubits which enact gate operations drive_chan = pulse.drive_channel(qubit) pulse.set_frequency(freq, drive_chan) #Drive pulse samples pulse.play(pulse.Constant(duration=drive_duration, amp=drive_amp, name='freq_sweep_excitation_pulse'), drive_chan) #Plot the pulse sweep_sched.draw() #Gate(name, num_qubits, params) creates a new gate sweep_gate = Gate("sweep", 1, [freq]) #Create the quantum circuit, 1 qubit, 1 bit qc_sweep = QuantumCircuit(1, 1) #Add our new gate sweep_gate to the quantum circuit qc_sweep.append(sweep_gate, [0]) qc_sweep.measure(0, 0) """This command: add_calibration(gate, qubits, schedule, params=None) registers a low-level, custom pulse definition for the given gate""" qc_sweep.add_calibration(sweep_gate, (0,), sweep_sched, [freq]) #Frequency settings for the sweep (MUST BE IN HZ) frequencies_Hz = frequencies_GHz*GHz #convert to Hz """This command: assign_parameters(parameters, inplace=False) assigns parameters to new parameters or values""" exp_sweep_circs = [qc_sweep.assign_parameters({freq: f}, inplace=False) for f in frequencies_Hz] from qiskit import schedule #schedule(circuits, backend) to schedule a circuit to a pulse Schedule, using the backend sweep_schedule = schedule(exp_sweep_circs[0], backend) #To show the schedule sweep_schedule.draw(backend=backend) #Each schedule will be repeated num_shots_per_frequency times num_shots_per_frequency = 1024 job = backend.run(exp_sweep_circs, meas_level=1, #kerneled data meas_return='avg', shots=num_shots_per_frequency) from qiskit.tools.monitor import job_monitor #Monitor the job status job_monitor(job) #Retrieve the results frequency_sweep_results = job.result(timeout=1200) #Plotting the results with matplotlib import matplotlib.pyplot as plt sweep_values = [] for i in range(len(frequency_sweep_results.results)): # Get the results from the ith experiment res = frequency_sweep_results.get_memory(i)*scale_factor # Get the results for `qubit` from this experiment sweep_values.append(res[qubit]) #Plot frequencies vs. real part of sweep values plt.scatter(frequencies_GHz, np.real(sweep_values), color='black') # plt.xlim([min(frequencies_GHz), max(frequencies_GHz)]) plt.xlabel("Frequency [GHz]") plt.ylabel("Measured signal [a.u.]") plt.show() #Using scipy for the curve fitting from scipy.optimize import curve_fit def fit_function(x_values, y_values, function, init_params): fitparams, conv = curve_fit(function, x_values, y_values, init_params) y_fit = function(x_values, *fitparams) return fitparams, y_fit #Fitting the curve. We use a Gaussian function for the fit """We need to assign the correct initial parameters for our data A is related to the height of the curve, B is related to the width of the Gaussian, C is the cut with the Y axis and q_freq is the estimated peak frequency of the curve.""" fit_params, y_fit = fit_function(frequencies_GHz, np.real(sweep_values), lambda x, A, q_freq, B, C: A*np.exp(-(x - q_freq) ** 2 / (2*B**2)) + C, [1.75e8, 5.090, 0.02, 0] # initial parameters for curve_fit ) #Plotting the data plt.scatter(frequencies_GHz, np.real(sweep_values), color='black') #and plotting the fit plt.plot(frequencies_GHz, y_fit, color='red') plt.xlim([min(frequencies_GHz), max(frequencies_GHz)]) plt.xlabel("Frequency [GHz]") plt.ylabel("Measured Signal [a.u.]") plt.show() A, rough_qubit_frequency, B, C = fit_params rough_qubit_frequency = rough_qubit_frequency*GHz # make sure qubit freq is in Hz print(f"We've updated our qubit frequency estimate from " f"{round(backend_defaults.qubit_freq_est[qubit] / GHz, 5)} GHz to {round(rough_qubit_frequency/GHz, 5)} GHz.") #Calibrating using a pi pulse #Pi pulses takes a qubit from |0> to |1> (X gate) #Rabi experiment parameters num_rabi_points = 50 #Drive amplitude values to iterate over #50 amplitudes evenly spaced from 0 to 0.75 using linspace drive_amp_min = 0 drive_amp_max = 0.55 #Changed this parameter drive_amps = np.linspace(drive_amp_min, drive_amp_max, num_rabi_points) # Build the Rabi experiments: """A drive pulse at the qubit frequency, followed by a measurement, where we vary the drive amplitude each time""" #This is similar to the frequency sweep schedule drive_amp = Parameter('drive_amp') with pulse.build(backend=backend, default_alignment='sequential', name='Rabi Experiment') as rabi_sched: drive_duration = get_closest_multiple_of_16(pulse.seconds_to_samples(drive_duration_sec)) # drive_sigma = pulse.seconds_to_samples(drive_sigma_sec) drive_chan = pulse.drive_channel(qubit) #With the rough_qubit_frequency found before pulse.set_frequency(rough_qubit_frequency, drive_chan) pulse.play(pulse.Constant(duration=drive_duration, amp=drive_amp, name='Rabi Pulse'), drive_chan) #New rabi gate rabi_gate = Gate("rabi", 1, [drive_amp]) #New quantum circuit for Rabi Experiment qc_rabi = QuantumCircuit(1, 1) #Add the rabi_gate we just defined qc_rabi.append(rabi_gate, [0]) #Measure the QC qc_rabi.measure(0, 0) #Add calibration to the rabi_gate qc_rabi.add_calibration(rabi_gate, (0,), rabi_sched, [drive_amp]) exp_rabi_circs = [qc_rabi.assign_parameters({drive_amp: a}, inplace=False) for a in drive_amps] #Create our schedule and draw it rabi_schedule = schedule(exp_rabi_circs[-1], backend) rabi_schedule.draw(backend=backend) num_shots_per_point = 1024 job = backend.run(exp_rabi_circs, meas_level=1, meas_return='avg', shots=num_shots_per_point) job_monitor(job) #Get the results rabi_results = job.result(timeout=120) """We need to extract the results and fit them to a sinusoidal curve The range of amplitudes we got will rotate (hopefully) the qubit several times around the Bloch sphere. We need to find the drive amplitude needed for the signal to oscillate from a maximum to a minimum (all |0> to all |1>) That's exactly what gives us the calibrated amplitud represented by the pi pulse """ #First we center the data around 0 def baseline_remove(values): return np.array(values) - np.mean(values) #Empty array for Rabi values rabi_values = [] #Remember we defined num_rabi_points initially at 50 for i in range(num_rabi_points): #Get the results for 'qubit' from the ith experiment rabi_values.append(rabi_results.get_memory(i)[qubit] * scale_factor) #We get the real values from the centered rabi_values rabi_values = np.real(baseline_remove(rabi_values)) #Plot the results plt.xlabel("Drive amp [a.u.]") plt.ylabel("Measured signal [a.u.]") #Plotting amplitudes vs Rabi values plt.scatter(drive_amps, rabi_values, color='black') plt.show() #Now we fit the curve, similarly to the frequencies fit #THIS PARAMETERS ARE FOR IBQM QUITO AND BELEM fit_params, y_fit = fit_function(drive_amps, rabi_values, lambda x, A, B, drive_period, phi: (A*np.cos(2*np.pi*x/drive_period - phi) + B), [1.4e8, 0, 0.16, 0]) plt.scatter(drive_amps, rabi_values, color='black') plt.plot(drive_amps, y_fit, color='red') drive_period = fit_params[2] #get period of rabi oscillation plt.xlabel("Drive amp [a.u.]", fontsize=15) plt.ylabel("Measured signal [a.u.]", fontsize=15) plt.show() #Pi pulse's amplitude needed for the signal to oscillate from maximum to minimum pi_amp = abs(drive_period / 2) print(f"Pi Amplitude = {pi_amp}") #We can define our pi pulse now with pulse.build(backend) as pi_pulse: drive_duration = get_closest_multiple_of_16(pulse.seconds_to_samples(drive_duration_sec)) # drive_sigma = pulse.seconds_to_samples(drive_sigma_sec) drive_chan = pulse.drive_channel(qubit) pulse.play(pulse.Constant(duration=drive_duration, amp=pi_amp, name='pi_pulse'), drive_chan) pi_pulse.draw() #Now we create a ground state to try our pi pulse qc_gnd = QuantumCircuit(1, 1) qc_gnd.measure(0, 0) #And its ground schedule gnd_schedule = schedule(qc_gnd, backend) gnd_schedule.draw(backend=backend) #We create the excited state with pulse.build(backend=backend, default_alignment='sequential', name='excited state') as exc_schedule: drive_chan = pulse.drive_channel(qubit) pulse.set_frequency(rough_qubit_frequency, drive_chan) pulse.call(pi_pulse) #And another QC for the excited state qc_exc = QuantumCircuit(1, 1) #Apply X gate to qubit 0 qc_exc.x(0) #And measure it qc_exc.measure(0, 0) #Then we add the calibration from the excited state's sched qc_exc.add_calibration("x", (0,), exc_schedule, []) #Now execute the exc state's schedule exec_schedule = schedule(qc_exc, backend) exec_schedule.draw(backend=backend) #Preparation schedules for the ground and excited states num_shots = 1024 job = backend.run([qc_gnd, qc_exc], #Choosing meas_level 1 for kerneled data meas_level=1, meas_return='single', shots=num_shots) job_monitor(job) gnd_exc_results = job.result(timeout=120) #Getting the ground and excited state's results gnd_results = gnd_exc_results.get_memory(0)[:, qubit]*scale_factor exc_results = gnd_exc_results.get_memory(1)[:, qubit]*scale_factor #Plotting results plt.figure() #Ground state in blue plt.scatter(np.real(gnd_results), np.imag(gnd_results), s=5, cmap='viridis', c='blue', alpha=0.5, label='Gnd state') #Excited state in red plt.scatter(np.real(exc_results), np.imag(exc_results), s=5, cmap='viridis', c='red', alpha=0.5, label='Exc state') plt.axis('square') #Plot a large black dot for the average result of the 0 and 1 states #Mean of real and imaginary parts of results mean_gnd = np.mean(gnd_results) mean_exc = np.mean(exc_results) plt.scatter(np.real(mean_gnd), np.imag(mean_gnd), s=100, cmap='viridis', c='black',alpha=1.0, label='Mean') plt.scatter(np.real(mean_exc), np.imag(mean_exc), s=100, cmap='viridis', c='black',alpha=1.0) plt.ylabel('Im [a.u.]', fontsize=15) plt.xlabel('Q (Real) [a.u.]', fontsize=15) plt.title("0-1 discrimination", fontsize=15) plt.legend() plt.show() """The mean value of the excited state is not in the center of the big red circle, this is due to the population of excited states (red dots) not being perfectly together, but several red dots are in the blue area.""" """Setting up a classifier function: returns 0 if a given point is closer to the mean of ground state results and returns 1 if the point is closer to the avg exc state results""" import math #This functions classifies the given state as |0> or |1>. def classify(point: complex): def distance(a, b): return math.sqrt((np.real(a) - np.real(b))**2 + (np.imag(a) - np.imag(b))**2) return int(distance(point, mean_exc) < distance(point, mean_gnd)) #T1 time: time it takes for a qubit to decay from exc_state to gnd_state """To measure T1 we use the pi pulse we've calibrated, then a measure pulse. But first we have to insert a delay""" #T1 experiment parameters time_max_sec = 450 * us time_step_sec = 6.5 * us delay_times_sec = np.arange(1 * us, time_max_sec, time_step_sec) #We define the delay delay = Parameter('delay') #Create another quantum circuit qc_t1 = QuantumCircuit(1, 1) #X Gate qc_t1.x(0) #Delay qc_t1.delay(delay, 0) #Measurement qc_t1.measure(0, 0) #Calibration on X gate with our pi pulse qc_t1.add_calibration("x", (0,), pi_pulse) exp_t1_circs = [qc_t1.assign_parameters({delay: get_dt_from(d)}, inplace=False) for d in delay_times_sec] #Schedule for T1 sched_idx = -1 t1_schedule = schedule(exp_t1_circs[sched_idx], backend) t1_schedule.draw(backend=backend) #Execution settings num_shots = 256 job = backend.run(exp_t1_circs, meas_level=1, meas_return='single', shots=num_shots) job_monitor(job) t1_results = job.result(timeout=120) #Getting the results to plot t1_values = [] for i in range(len(delay_times_sec)): iq_data = t1_results.get_memory(i)[:,qubit] * scale_factor #sum() returns the sum of all items. #map() returns a map object of the result after applying a given #function (sum) to each item of a given iterable. t1_values.append(sum(map(classify, iq_data)) / num_shots) plt.scatter(delay_times_sec/us, t1_values, color='black') plt.title("$T_1$ Experiment", fontsize=15) plt.xlabel('Delay before measurement [$\mu$s]', fontsize=15) plt.ylabel('Signal [a.u.]', fontsize=15) plt.show() #Fitting data with an exponential curve fit_params, y_fit = fit_function(delay_times_sec/us, t1_values, lambda x, A, C, T1: (A * np.exp(-x / T1) + C), [-3, 3, 100] ) _, _, T1 = fit_params plt.scatter(delay_times_sec/us, t1_values, color='black') plt.plot(delay_times_sec/us, y_fit, color='red', label=f"T1 = {T1:.2f} us") plt.xlim(0, np.max(delay_times_sec/us)) plt.title("$T_1$ Experiment", fontsize=15) plt.xlabel('Delay before measurement [$\mu$s]', fontsize=15) plt.ylabel('Signal [a.u.]', fontsize=15) plt.legend() plt.show() #Measure qubit frequency (precisely) with Ramsey Experiment #Apply a pi/2 pulse, wait some time, and then anothe pi/2 pulse. #Ramsey experiment parameters time_max_sec = 1.8 * us time_step_sec = 0.025 * us delay_times_sec = np.arange(0.1 * us, time_max_sec, time_step_sec) #Drive parameters #Drive amplitude for pi/2 is simply half the amplitude of the pi pulse drive_amp = pi_amp / 2 #Build the x_90 pulse, which is an X rotation of 90 degrees, a pi/2 rotation with pulse.build(backend) as x90_pulse: drive_duration = get_closest_multiple_of_16(pulse.seconds_to_samples(drive_duration_sec)) drive_sigma = pulse.seconds_to_samples(drive_sigma_sec) drive_chan = pulse.drive_channel(qubit) pulse.play(pulse.Constant(duration=drive_duration, amp=drive_amp, name='x90_pulse'), drive_chan) #Now we have to drive the pulses off-resonance an amount detuning_MHz detuning_MHz = 2 ramsey_frequency = round(rough_qubit_frequency + detuning_MHz * MHz, 6) #Ramsey freq in Hz #Pulse for Ramsey experiment delay = Parameter('delay') with pulse.build(backend=backend, default_alignment='sequential', name="Ramsey delay Experiment") as ramsey_schedule: drive_chan = pulse.drive_channel(qubit) pulse.set_frequency(ramsey_frequency, drive_chan) #X pulse, Delay, X pulse pulse.call(x90_pulse) pulse.delay(delay, drive_chan) pulse.call(x90_pulse) #Ramsey gate ramsey_gate = Gate("ramsey", 1, [delay]) #Another QC for Ramsey experiment qc_ramsey = QuantumCircuit(1, 1) #Adding the gate to the circuit qc_ramsey.append(ramsey_gate, [0]) qc_ramsey.measure(0, 0) qc_ramsey.add_calibration(ramsey_gate, (0,), ramsey_schedule, [delay]) exp_ramsey_circs = [qc_ramsey.assign_parameters({delay: get_dt_from(d)}, inplace=False) for d in delay_times_sec] ramsey_schedule = schedule(exp_ramsey_circs[2], backend) ramsey_schedule.draw(backend=backend) #Execution settings for Ramsey experimet num_shots = 256 job = backend.run(exp_ramsey_circs, meas_level=1, meas_return='single', shots=num_shots) job_monitor(job) ramsey_results = job.result(timeout=120) #Array for the results ramsey_values = [] for i in range(len(delay_times_sec)): iq_data = ramsey_results.get_memory(i)[:,qubit] * scale_factor ramsey_values.append(sum(map(classify, iq_data)) / num_shots) #Plotting the results plt.scatter(delay_times_sec/us, np.real(ramsey_values), color='black') plt.xlim(0, np.max(delay_times_sec/us)) plt.title("Ramsey Experiment", fontsize=15) plt.xlabel('Delay between X90 pulses [$\mu$s]', fontsize=15) plt.ylabel('Measured Signal [a.u.]', fontsize=15) plt.show() #Fitting data to a sinusoid fit_params, y_fit = fit_function(delay_times_sec/us, np.real(ramsey_values), lambda x, A, del_f_MHz, C, B: ( A * np.cos(2*np.pi*del_f_MHz*x - C) + B ), [5, 1.5, 0, 0.25] ) # Off-resonance component _, del_f_MHz, _, _, = fit_params # freq is MHz since times in us plt.scatter(delay_times_sec/us, np.real(ramsey_values), color='black') plt.plot(delay_times_sec/us, y_fit, color='red', label=f"df = {del_f_MHz:.2f} MHz") plt.xlim(0, np.max(delay_times_sec/us)) plt.xlabel('Delay between X90 pulses [$\mu$s]', fontsize=15) plt.ylabel('Measured Signal [a.u.]', fontsize=15) plt.title('Ramsey Experiment', fontsize=15) plt.legend() plt.show() precise_qubit_freq = rough_qubit_frequency + (detuning_MHz - del_f_MHz) * MHz # get new freq in Hz print(f"Our updated qubit frequency is now {round(precise_qubit_freq/GHz, 6)} GHz. " f"It used to be {round(rough_qubit_frequency / GHz, 6)} GHz") #Measuring coherence time (T2) with Hahn Echoes experiment #It's the same as Ramsey's experiment, with a pi pulse between the pi/2 #T2 experiment parameters tau_max_sec = 200 * us tau_step_sec = 4 * us delay_times_sec = np.arange(2 * us, tau_max_sec, tau_step_sec) #Define the delay and build the pulse for T2 delay = Parameter('delay') with pulse.build(backend=backend, default_alignment='sequential', name="T2 delay Experiment") as t2_schedule: drive_chan = pulse.drive_channel(qubit) pulse.set_frequency(precise_qubit_freq, drive_chan) #X pulse, delay, pi pulse, delay, X pulse pulse.call(x90_pulse) pulse.delay(delay, drive_chan) pulse.call(pi_pulse) pulse.delay(delay, drive_chan) pulse.call(x90_pulse) #Define T2 gate t2_gate = Gate("t2", 1, [delay]) #QC for T2 qc_t2 = QuantumCircuit(1, 1) #Add T2 gate qc_t2.append(t2_gate, [0]) qc_t2.measure(0, 0) #Add calibration with delay qc_t2.add_calibration(t2_gate, (0,), t2_schedule, [delay]) exp_t2_circs = [qc_t2.assign_parameters({delay: get_dt_from(d)}, inplace=False) for d in delay_times_sec] #Schedule for T2 and show it t2_schedule = schedule(exp_t2_circs[-1], backend) t2_schedule.draw(backend=backend) #Execution settings num_shots_per_point = 512 job = backend.run(exp_t2_circs, meas_level=1, #Kerneled data meas_return='single', shots=num_shots_per_point) job_monitor(job) #Getting results t2_results = job.result(timeout=120) #T2 empty array t2_values = [] #Retrieving results and adding them classified to the array for i in range(len(delay_times_sec)): iq_data = t2_results.get_memory(i)[:,qubit] * scale_factor t2_values.append(sum(map(classify, iq_data)) / num_shots_per_point) #Plot ressults for Hanh Echo experiment plt.scatter(2*delay_times_sec/us, t2_values, color='black') plt.xlabel('Delay between X90 pulse and $\pi$ pulse [$\mu$s]', fontsize=15) plt.ylabel('Measured Signal [a.u.]', fontsize=15) plt.title('Hahn Echo Experiment', fontsize=15) plt.show() #Fitting data with an exponential function fit_params, y_fit = fit_function(2*delay_times_sec/us, t2_values, lambda x, A, B, T2: (A * np.exp(-x / T2) + B), [-3, 0, 100]) _, _, T2 = fit_params #Plotting results and fit curve plt.scatter(2*delay_times_sec/us, t2_values, color='black') plt.plot(2*delay_times_sec/us, y_fit, color='red', label=f"T2 = {T2:.2f} us") plt.xlim(0, np.max(2*delay_times_sec/us)) plt.xlabel('Delay between X90 pulse and $\pi$ pulse [$\mu$s]', fontsize=15) plt.ylabel('Measured Signal [a.u.]', fontsize=15) plt.title('Hahn Echo Experiment', fontsize=15) plt.legend() plt.show() #Dynamical decoupling technique #Used to extract longer coherence times from qubits #Experiment parameters tau_sec_min = 1 * us tau_sec_max = 180 * us tau_step_sec = 4 * us taus_sec = np.arange(tau_sec_min, tau_sec_max, tau_step_sec) num_sequence = 1 print(f"Total time ranges from {2.*num_sequence*taus_sec[0] / us} to {2.*num_sequence*taus_sec[-1] / us} us") #This schedule is different from the others... delay = Parameter('delay') with pulse.build(backend=backend, default_alignment='sequential', name="T2DD delay Experiment") as T2DD_schedule: drive_chan = pulse.drive_channel(qubit) pulse.set_frequency(precise_qubit_freq, drive_chan) #X Pulse and Delay pulse.call(x90_pulse) pulse.delay(delay/2, drive_chan) for loop_counts in range(num_sequence): pulse.call(pi_pulse) pulse.delay(delay, drive_chan) with pulse.phase_offset(np.pi/2, pulse.drive_channel(qubit)): pulse.call(pi_pulse) pulse.delay(delay, drive_chan) pulse.call(pi_pulse) pulse.delay(delay, drive_chan) with pulse.phase_offset(np.pi/2, pulse.drive_channel(qubit)): pulse.call(pi_pulse) if loop_counts != num_sequence-1: pulse.delay(delay, drive_chan) pulse.delay(delay/2, drive_chan) pulse.call(x90_pulse) #Create new gate for T2 Dynamical Decouling T2DD_gate = Gate("T2DD", 1, [delay]) #Another QC qc_T2DD = QuantumCircuit(1, 1) qc_T2DD.append(T2DD_gate, [0]) qc_T2DD.measure(0, 0) qc_T2DD.add_calibration(T2DD_gate, (0,), T2DD_schedule, [delay]) exp_T2DD_circs = [qc_T2DD.assign_parameters({delay: get_dt_from(d)}, inplace=False) for d in taus_sec] #Schedule fot T2 D.D. T2DD_schedule = schedule(exp_T2DD_circs[-1], backend) T2DD_schedule.draw(backend=backend) num_shots_per_point = 1024 job = backend.run(exp_T2DD_circs, meas_level=1, meas_return='single', shots=num_shots_per_point) job_monitor(job) T2DD_results = job.result(timeout=120) times_sec = 4*num_sequence*taus_sec DD_values = [] for i in range(len(times_sec)): iq_data = T2DD_results.get_memory(i)[:,qubit] * scale_factor DD_values.append(sum(map(classify, iq_data)) / num_shots_per_point) plt.scatter(times_sec/us, DD_values, color='black') plt.xlim(0, np.max(times_sec/us)) plt.xlabel('Total time before measurement [$\mu$s]', fontsize=15) plt.ylabel('Measured Signal [a.u.]', fontsize=15) plt.title('Dynamical Decoupling Experiment', fontsize=15) plt.show() # Fit the data fit_func = lambda x, A, B, T2DD: (A * np.exp(-x / T2DD) + B) fitparams, conv = curve_fit(fit_func, times_sec/us, DD_values, [3.5, 0.8, 150]) _, _, T2DD = fitparams plt.scatter(times_sec/us, DD_values, color='black') plt.plot(times_sec/us, fit_func(times_sec/us, *fitparams), color='red', label=f"T2DD = {T2DD:.2f} us") plt.xlim([0, np.max(times_sec/us)]) plt.xlabel('Total time before measurement [$\mu$s]', fontsize=15) plt.ylabel('Measured Signal [a.u.]', fontsize=15) plt.title('Dynamical Decoupling Experiment', fontsize=15) plt.legend() plt.show() """That little oscillation in the DD experiment graph means that my qubit is not totally in resonance, it's still oscillating between two states. It can be fixed by adjusting parameters in every experiment, and improving the curve fittings."""
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
input_3sat_instance = ''' c example DIMACS-CNF 3-SAT p cnf 3 5 -1 -2 -3 0 1 -2 3 0 1 2 -3 0 1 -2 -3 0 -1 2 3 0 ''' import os import tempfile from qiskit.exceptions import MissingOptionalLibraryError from qiskit.circuit.library.phase_oracle import PhaseOracle fp = tempfile.NamedTemporaryFile(mode='w+t', delete=False) fp.write(input_3sat_instance) file_name = fp.name fp.close() oracle = None try: oracle = PhaseOracle.from_dimacs_file(file_name) except MissingOptionalLibraryError as ex: print(ex) finally: os.remove(file_name) from qiskit.algorithms import AmplificationProblem problem = None if oracle is not None: problem = AmplificationProblem(oracle, is_good_state=oracle.evaluate_bitstring) from qiskit.algorithms import Grover from qiskit.primitives import Sampler grover = Grover(sampler=Sampler()) result = None if problem is not None: result = grover.amplify(problem) print(result.assignment) from qiskit.tools.visualization import plot_histogram if result is not None: display(plot_histogram(result.circuit_results[0])) expression = '(w ^ x) & ~(y ^ z) & (x & y & z)' try: oracle = PhaseOracle(expression) problem = AmplificationProblem(oracle, is_good_state=oracle.evaluate_bitstring) grover = Grover(sampler=Sampler()) result = grover.amplify(problem) display(plot_histogram(result.circuit_results[0])) except MissingOptionalLibraryError as ex: print(ex) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/ho0-kim/Hamiltonian_Cycle_Problem_with_QC
ho0-kim
import numpy as np # QC-related libraries from qiskit import Aer, IBMQ, execute from qiskit.providers.ibmq import least_busy from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram # from qiskit.tools.visualization import plot_histogram from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import SPSA from qiskit.circuit.library import TwoLocal from qiskit.aqua import aqua_globals from qiskit.aqua import QuantumInstance from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.optimization.algorithms import MinimumEigenOptimizer from qiskit.optimization import QuadraticProgram import networkx as nx import matplotlib.pyplot as plt import matplotlib.axes as axes from docplex.mp.model import Model from qiskit.optimization.applications.ising.docplex import get_operator def not_in_edge( n, Edge ): set_edge = set() for i in range( n ): for k in range( n ): if ( i, k ) in Edge or ( k, i ) in Edge: continue else: set_edge.add( ( i, k ) ) return set_edge Vertex = { 0, 1, 2 } Edge = {(0,1), (1,2), (2,0) } n = len(Vertex) G = nx.Graph() G.add_nodes_from( np.arange( 0, n ) ) eList = list( Edge ) # (i,j): edge G.add_edges_from( eList ) colors = [ 'r' for node in G.nodes() ] pos = nx.spring_layout( G ) def draw_graph(G, colors, pos): default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos) nx.draw_networkx_edges(G, pos=pos ) draw_graph(G, colors, pos) # Create an instance of a model and variables with DOcplex. mdl = Model( name='HamiltonCycle' ) x = { ( i, p ): mdl.binary_var( name= 'x_{0}_{1}'.format( i, p ) ) for i in range( n ) for p in range( n ) } # Generate cost funciton P1 = 0 P2 = 0 H = 0 for i in range(n): P1 += ( 1 - mdl.sum( x[(i,j)] for j in range(n) ) ) ** 2 for j in range(n): P2 += ( 1 - mdl.sum( x[(i,j)] for i in range(n) ) ) ** 2 for ( i1, i2 ) in not_in_edge( n, Edge ): H += x[(i1,0)] * x[(i2,n-1)] H += mdl.sum( x[(i1,j)] * x[(i2,j+1)] for j in range(n-1) ) HamiltonCycleFunc = H + P1 + P2 # Set HamiltonCycleFunc to be minimized mdl.minimize( HamiltonCycleFunc ) qubitOp, offset = get_operator(mdl) print('Offset:', offset) # print('Ising Hamiltonian:') # print(qubitOp.print_details()) # mapping Ising Hamiltonian to Quadratic Program qp = QuadraticProgram() qp.from_ising(qubitOp, offset) #qp.to_docplex().prettyprint() # solving Quadratic Program using exact classical eigensolver exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) result = exact.solve(qp) print(result) #Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver(qubitOp) result = ee.run() x = sample_most_likely(result.eigenstate) print('energy:', result.eigenvalue.real) print('hamiltonian-cycle objective:', result.eigenvalue.real + offset) provider = IBMQ.load_account() simulator_backend = provider.get_backend("ibmq_qasm_simulator") aqua_globals.random_seed = np.random.default_rng(123) seed = 10598 backend = Aer.get_backend("qasm_simulator") quantum_instance = QuantumInstance(simulator_backend, shots=1024, seed_simulator=seed, seed_transpiler=seed) # construct VQE spsa = SPSA(maxiter=1000) ansatz = TwoLocal( qubitOp.num_qubits, rotation_blocks='ry', entanglement_blocks='cx', reps=2, entanglement='linear' ) vqe = VQE(operator=qubitOp, var_form=ansatz, optimizer=spsa, quantum_instance=quantum_instance) # run VQE result = vqe.run() # print results x = sample_most_likely(result.eigenstate) print('energy:', result.eigenvalue.real) print('time:', result.optimizer_time) print('hamiltonian-cycle objective:', result.eigenvalue.real + offset) print('solution:', x) # create minimum eigen optimizer based on VQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result)
https://github.com/andre-juan/dicke_states_preparation
andre-juan
import numpy as np import matplotlib.pyplot as plt import scipy # main classes and functions from qiskit import QuantumRegister, QuantumCircuit, Aer, execute # gates from qiskit.circuit.library import RYGate # visualization stuff from qiskit.visualization import plot_histogram def show_figure(fig): ''' auxiliar function to display plot even if it's not the last command of the cell from: https://github.com/Qiskit/qiskit-terra/issues/1682 ''' new_fig = plt.figure() new_mngr = new_fig.canvas.manager new_mngr.canvas.figure = fig fig.set_canvas(new_mngr.canvas) plt.show(fig) def test_circuit_qasm(qc, figsize=(12, 4)): ''' auxiliar function to simulate the execution of a quantum circuit using the qasm simulator. the quantum circuit to be simulates (qc) must have no measurements or classical registers. ''' # meausring qc.measure_all() ################################# backend = Aer.get_backend("qasm_simulator") job = execute(qc, backend, shots=1e5, seed_simulator=42) results = job.result() counts = results.get_counts() print(f"\nNumber of elements in result superposition: {len(counts)}\n") return plot_histogram(counts, title="Results", figsize=figsize) def test_circuit_sv(qc, print_stuff=False, figsize=(12, 4)): ''' auxiliar function to simulate the execution of a quantum circuit using the state vector simulator. optionally, prints the statevector components as well as the probabilities. ''' backend = Aer.get_backend("statevector_simulator") job = execute(qc, backend, seed_simulator=42) results = job.result() counts = results.get_counts() if print_stuff: sv = results.data(0)['statevector'] probs = sv**2 print(f"Statevector:\t{sv}\n") print(f"Probabilities:\t{probs}") print(f"\nNumber of elements in result superposition: {len(counts)}\n") return plot_histogram(counts, title="Results", figsize=figsize) def gate_i(n, draw=False): ''' returns the 2-qubit gate (i), introduced in Sec. 2.2 this gate is simply a cR_y between 2 CNOTs, with rotation angle given by 2*np.arccos(np.sqrt(1/n)) args: - `n`: int, defining the rotation angle; - `draw` : bool, determines if the circuit is drawn. ''' qc_i = QuantumCircuit(2) qc_i.cnot(0, 1) theta = 2*np.arccos(np.sqrt(1/n)) cry = RYGate(theta).control(ctrl_state="1") qc_i.append(cry, [1, 0]) qc_i.cnot(0, 1) #################################### gate_i = qc_i.to_gate() gate_i.name = "$(i)$" #################################### if draw: show_figure(qc_i.draw("mpl")) return gate_i def gate_ii_l(l, n, draw=False): ''' returns the 2-qubit gate (ii)_l, introduced in Sec. 2.2 this gate is simply a ccR_y between 2 CNOTs, with rotation angle given by 2*np.arccos(np.sqrt(l/n)) args: - `l`: int, defining the rotation angle; - `n`: int, defining the rotation angle; - `draw` : bool, determines if the circuit is drawn. ''' qc_ii = QuantumCircuit(3) qc_ii.cnot(0, 2) theta = 2*np.arccos(np.sqrt(l/n)) ccry = RYGate(theta).control(num_ctrl_qubits = 2, ctrl_state="11") qc_ii.append(ccry, [2, 1, 0]) qc_ii.cnot(0, 2) #################################### gate_ii = qc_ii.to_gate() gate_ii.name = f"$(ii)_{l}$" #################################### if draw: show_figure(qc_ii.draw("mpl")) return gate_ii def gate_scs_nk(n, k, draw=False): ''' returns the SCS_{n,k} gate, which is introduced in Definition 3 and if built of one 2-qubits (i) gate and k+1 3-qubits gates (ii)_l args: - `n`: int, used as argument of `gate_i()` and `gate_ii_l()`; - `k`: int, defines the size of the gate, as well as its topology; - `draw` : bool, determines if the circuit is drawn. ''' qc_scs = QuantumCircuit(k+1) qc_scs.append(gate_i(n), [k-1, k]) for l in range(2, k+1): qc_scs.append(gate_ii_l(l, n), [k-l, k-l+1, k]) #################################### gate_scs = qc_scs.to_gate() gate_scs.name = "SCS$_{" + f"{n},{k}" + "}$" #################################### if draw: show_figure(qc_scs.decompose().draw("mpl")) return gate_scs def first_block(n, k, l, draw=False): ''' returns the first block of unitaries products in Lemma 2. args: - `n`: int, used to calculate indices and as argument of `gate_scs_nk()`; - `k`: int, used to calculate indices and as argument of `gate_scs_nk()`; - `l`: int, used to calculate indices and as argument of `gate_scs_nk()`; - `draw` : bool, determines if the circuit is drawn. ''' qr = QuantumRegister(n) qc_first_block = QuantumCircuit(qr) # indices of qubits to which we append identities. n_first = l-k-1 n_last = n-l # this will be a list with the qubits indices to which # we append the SCS_{n,k} gate. idxs_scs = list(range(n)) # only if ther is an identity to append to first registers if n_first != 0: # correcting the qubits indices to which we apply SCS_{n, k} idxs_scs = idxs_scs[n_first:] # applying identity to first qubits qc_first_block.i(qr[:n_first]) if n_last !=0: idxs_scs = idxs_scs[:-n_last] # appending SCS_{n, k} to appropriate indices qc_first_block.append(gate_scs_nk(l, k), idxs_scs) # applying identity to last qubits qc_first_block.i(qr[-n_last:]) else: # appending SCS_{n, k} to appropriate indices qc_first_block.append(gate_scs_nk(l, k), idxs_scs) # string with the operator, to be used as gate label str_operator = "$1^{\otimes " + f'{n_first}' + "} \otimes$ SCS$_{" + f"{l},{k}" + "} \otimes 1^{\otimes " + f"{n_last}" + "}$" #################################### gate_first_block = qc_first_block.to_gate() gate_first_block.name = str_operator #################################### if draw: show_figure(qc_first_block.decompose().draw("mpl")) return gate_first_block def second_block(n, k, l, draw=False): ''' returns the second block of unitaries products in Lemma 2. args: - `n`: int, used to calculate indices and as argument of `gate_scs_nk()`; - `k`: int, used to calculate indices and as argument of `gate_scs_nk()`; - `l`: int, used to calculate indices and as argument of `gate_scs_nk()`; - `draw` : bool, determines if the circuit is drawn. ''' qr = QuantumRegister(n) qc_second_block = QuantumCircuit(qr) # here we only have identities added to last registers, so it's a bit simpler n_last = n-l idxs_scs = list(range(n)) if n_last !=0: idxs_scs = idxs_scs[:-n_last] # appending SCS_{n, k} to appropriate indices qc_second_block.append(gate_scs_nk(l, l-1), idxs_scs) qc_second_block.i(qr[-n_last:]) else: # appending SCS_{n, k} to appropriate indices qc_second_block.append(gate_scs_nk(l, l-1), idxs_scs) str_operator = "SCS$_{" + f"{l},{l-1}" + "} \otimes 1^{\otimes " + f"{n_last}" + "}$" #################################### gate_second_block = qc_second_block.to_gate() gate_second_block.name = str_operator #################################### if draw: show_figure(qc_second_block.decompose().draw("mpl")) return gate_second_block def dicke_state(n, k, draw=False, barrier=False, only_decomposed=False): ''' returns a quantum circuit with to prepare a Dicke state with arbitrary n, k this function essentially calls previous functions, wrapping the products in Lemma 2 within the appropriate for loops for the construction of U_{n, k}, which is applied to the initial state as prescribed. args: - `n`: int, number of qubits for the Dicke state; - `k`: int, hamming weight of states to be included in the superposition; - `draw` : bool, determines if the circuit is drawn; - `barrier` : bool, determines if barriers are added to the circuit; - `only_decomposed` : bool, determines if only the 3-fold decomposed circuit is drawn. ''' qr = QuantumRegister(n) qc = QuantumCircuit(qr) ######################################## # initial state qc.x(qr[-k:]) if barrier: qc.barrier() ######################################## # applying U_{n, k} # I didn't create a function to generate a U_{n, k} gate # because I wanted to keep the possibility of adding barriers, # which are quite nice for visualizing the circuit and its elements. # apply first term in Lemma 2 # notice how this range captures exactly the product bounds. # also, it's very important to invert the range, for the gates # to be applied in the correct order!! for l in range(k+1, n+1)[::-1]: qc.append(first_block(n, k, l), range(n)) if barrier: qc.barrier() # apply second term in Lemma 2 for l in range(2, k+1)[::-1]: qc.append(second_block(n, k, l), range(n)) if barrier: qc.barrier() ######################################## # drawing if draw: # draws only the 3-fold decomposed circuit. # this opens up to (i) and (ii)_l into its components. if only_decomposed: show_figure(qc.decompose().decompose().decompose().draw("mpl")) else: show_figure(qc.draw("mpl")) print() show_figure(qc.decompose().draw("mpl")) print() show_figure(qc.decompose().decompose().draw("mpl")) print() show_figure(qc.decompose().decompose().decompose().draw("mpl")) return qc n, k = 4, 2 qc = dicke_state(n, k, barrier=True, draw=True, only_decomposed=False) print(f"\nExpected number of elements in superposition: {scipy.special.comb(n, k):.0f}\n") test_circuit_sv(qc) n, k = 5, 3 qc = dicke_state(n, k, barrier=True, draw=True, only_decomposed=False) print(f"\nExpected number of elements in superposition: {scipy.special.comb(n, k):.0f}\n") test_circuit_sv(qc) n, k = 6, 4 qc = dicke_state(n, k, barrier=True, draw=True, only_decomposed=True) print(f"\nExpected number of elements in superposition: {scipy.special.comb(n, k):.0f}\n") test_circuit_sv(qc) n, k = 6, 2 qc = dicke_state(n, k, barrier=True, draw=True, only_decomposed=True) print(f"\nExpected number of elements in superposition: {scipy.special.comb(n, k):.0f}\n") test_circuit_sv(qc) n, k = 7, 4 qc = dicke_state(n, k, barrier=True, draw=True, only_decomposed=True) print(f"\nExpected number of elements in superposition: {scipy.special.comb(n, k):.0f}\n") test_circuit_sv(qc, figsize=(16, 4))
https://github.com/alexao8/QC-Qiskit
alexao8
#!/usr/bin/env python # coding: utf-8 # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') # Importing standard Qiskit libraries from qiskit import * from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.tools.monitor import job_monitor from qiskit.visualization import * from ibm_quantum_widgets import * # Loading your IBM Q account(s) provider = IBMQ.load_account() # In[2]: from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from numpy import pi qr = QuantumRegister(2) cr = ClassicalRegister(2) circuit = QuantumCircuit(qr, cr) # In[3]: circuit.draw(output = 'mpl') # In[4]: circuit.h(qr[0]) # In[5]: circuit.draw(output = 'mpl') # In[6]: circuit.cx(qr[0], qr[1]) # In[7]: circuit.measure(qr,cr) # In[8]: circuit.draw(output = 'mpl') # In[9]: simulator = Aer.get_backend('qasm_simulator') # In[10]: result = execute(circuit, backend = simulator).result() # In[11]: plot_histogram(result.get_counts(circuit)) # In[12]: provider = IBMQ.get_provider('ibm-q') # In[14]: qcomp = provider.get_backend('ibmq_16_melbourne') # In[15]: job = execute(circuit, backend = qcomp) # In[ ]: job_monitor(job)
https://github.com/NTU-ALComLab/SliQSim-Qiskit-Interface
NTU-ALComLab
# -*- coding: utf-8 -*- # Copyright 2018, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. """ Exception for errors raised by SliQSim simulator. """ from qiskit import QiskitError class SliQSimError(QiskitError): """Class for errors raised by the SliQSim simulator.""" def __init__(self, *message): """Set the error message.""" super().__init__(*message) self.message = ' '.join(message) def __str__(self): """Return the message.""" return repr(self.message)
https://github.com/msramalho/Teach-Me-Quantum
msramalho
from qiskit_aqua_chemistry import AquaChemistry from qiskit import IBMQ IBMQ.load_accounts() # Input dictionary to configure Qiskit AQUA Chemistry for the chemistry problem. aqua_chemistry_dict = { 'driver': {'name': 'HDF5'}, 'HDF5': {'hdf5_input': '0.7_sto-3g.hdf5'}, 'operator': {'name': 'hamiltonian'}, 'algorithm': {'name': 'VQE'}, 'optimizer': {'name': 'COBYLA'}, 'variational_form': {'name': 'UCCSD'}, 'initial_state': {'name': 'HartreeFock'}, 'backend': {'name': 'statevector_simulator'} } solver = AquaChemistry() result = solver.run(aqua_chemistry_dict) print('Ground state energy: {}'.format(result['energy'])) for line in result['printable']: print(line)
https://github.com/JouziP/MQITE
JouziP
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Nov 2 14:12:30 2022 @author: pejmanjouzdani """ import numpy as np import pandas as pd from qiskit import QuantumCircuit from BasicFunctions.functions import timing, getBinary, getGateStats from MultiQubitGate.functions import multiqubit class UpdateCircuit: def __init__(self,): pass def __call__(self, list_j, list_y_j, circ,): self.circ_new, self.multigate_gate_stat = self.updateCirc(list_j, list_y_j, circ) # return self.circ_new, self.multigate_gate_stat @staticmethod def updateCirc(list_j, list_y_j, circ,): nspins = circ.num_qubits circ_P = QuantumCircuit(nspins) multigate_gate_stat = pd.DataFrame() for im in range(len(list_j)): # print('\n8888888888888888 ') ####### imag m=list_j[im] h = getBinary(m, nspins) ### imag part y_j= list_y_j[im].imag if np.round(y_j, 4)==0: pass else: mult_gate, op_count = multiqubit(h, y_j) circ_P = circ_P.compose(mult_gate) ####### REAL ### replace 3 1 with Y y_j= -list_y_j[im].real h[np.nonzero(h)[0][0]]=2 if np.round(y_j, 4)==0: pass else: mult_gate, op_count =multiqubit(h, y_j) ####### statistics multigate_gate_stat = pd.concat((multigate_gate_stat, pd.DataFrame([op_count], index=[m])) ) circ_P = circ_P.compose(mult_gate) circ_new = circ_P.compose(circ) return circ_new, multigate_gate_stat
https://github.com/ACDuriez/Ising-VQE
ACDuriez
import numpy as np import networkx as nx import matplotlib.pyplot as plt from tqdm import tqdm from scipy.optimize import minimize from dataclasses import dataclass from qiskit.providers.fake_provider import FakeManila,FakeQuito,FakeLima,FakeKolkata,FakeNairobi from qiskit.transpiler import CouplingMap from qiskit.circuit import QuantumCircuit,ParameterVector,Parameter from qiskit.circuit.library import EfficientSU2 from qiskit.quantum_info import SparsePauliOp #from qiskit.opflow import PauliSumOp from qiskit.primitives import Estimator,Sampler,BackendEstimator from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.algorithms.optimizers import SLSQP,COBYLA,L_BFGS_B,QNSPSA,SPSA from qiskit_aer.noise import NoiseModel from qiskit_ibm_runtime import Session,Options,QiskitRuntimeService from qiskit_ibm_runtime import Estimator as IBM_Estimator from qiskit_ibm_runtime import Sampler as IBM_Sampler from qiskit_aer.primitives import Estimator as AerEstimator J = 1 h = 0.5 n_qubits = 4 def get_line_graph(n_qubits): """This function creates a linear lattice with open boundary conditions for a given number of qubits""" graph_line = nx.Graph() graph_line.add_nodes_from(range(n_qubits)) edge_list = [] for i in graph_line.nodes: if i < n_qubits-1: edge_list.append((i,i+1)) # Generate graph from the list of edges graph_line.add_edges_from(edge_list) return graph_line graph = get_line_graph(n_qubits) nx.draw_networkx(graph) #plotting the graph def get_h_op(graph,J=1.,hx=0.5,hz=0.,ap=0.): """Creates a general Ising hamiltonian for given values of the coupling, transverse field, longitudinal field and antiparallel field Args: graph: networkx graph of the lattice J: uniform coupling between first neighbors hx: transverse field parameter hz: longitudinal field parameter ap: antiparallel field at the boundaries""" num_qubits = len(graph.nodes()) sparse_list = [] # Uniform Z and X fields for qubit in graph.nodes(): # X field coeff = ('X',[qubit],-1*hx) sparse_list.append(coeff) # Z field coeff = ('Z',[qubit],-1*hz) sparse_list.append(coeff) # Anti-paralel field at the borders coeff = ('Z',[0],ap) #this is the positive field (order reversed) sparse_list.append(coeff) coeff = ('Z',[num_qubits-1],-1*ap) sparse_list.append(coeff) #Interaction field (ZZ) for i,j in graph.edges(): coeff = ('ZZ',[i,j],-1*J) sparse_list.append(coeff) hamiltonian = SparsePauliOp.from_sparse_list(sparse_list,num_qubits=num_qubits).simplify() return hamiltonian def get_kk_op(graph): """Creates the number of kinks operator""" sparse_list = [] for i,j in graph.edges(): coeff = ('II',[i,j],0.5) sparse_list.append(coeff) coeff = ('ZZ',[i,j],-0.5) sparse_list.append(coeff) kk_op = SparsePauliOp.from_sparse_list(sparse_list,num_qubits=len(graph.nodes)) return kk_op # We show the Hamiltonian with the crittical boundary field as well as # the number of kinks print(get_h_op(graph,J,h,ap=np.sqrt(1-h))) print(get_kk_op(graph)) exact_steps = 70 g_i = 0. g_f = 1.6 exact_g_values = np.linspace(g_i,g_f,exact_steps) def get_numpy_results(graph,J,h,g_values): """Returns the exact values of the energy and number of kinks for a given lattice, coupling, transverse field and values of the boundary field""" n_qubits = len(graph.nodes()) numpy_solver = NumPyMinimumEigensolver() E_values = [] kk_values = [] kk_op = get_kk_op(graph) #getting the (g-independent) number of kinks operator for g in g_values: h_op = get_h_op(graph,J,h,ap=g) #getting the hamiltonian operator for each g value result = numpy_solver.compute_minimum_eigenvalue(operator=h_op,aux_operators=[kk_op]) E_values.append(result.eigenvalue) kk_values.append(np.real(result.aux_operators_evaluated[0][0])) return E_values,kk_values exact_E,exact_kk = get_numpy_results(graph,J,h,exact_g_values) # getting the exact energy and number of kinks #Plotting f,ax = plt.subplots() plt.plot(exact_g_values,exact_E) plt.xlabel('boundary field') plt.ylabel('groundstate energy') inset_ax = f.add_axes([0.25, 0.3, 0.27, 0.27])# [left, bottom, width, height] inset_ax.plot(exact_g_values,exact_kk) inset_ax.set_ylabel('$<N_k>$') inset_ax.set_xlabel('boundary field') inset_ax.axvline(x=np.sqrt(1-h), color='red', linestyle='dashed') #indicating the critical boundary field plt.show() #Initialize runtime service = QiskitRuntimeService( channel='ibm_quantum', instance='ibm-q/open/main', token='your_token' ) backend = service.backend("ibmq_qasm_simulator") shots = 2**14 # shots for noisy simulations def get_ansatz_hva(graph, theta_list): """Creates the hamiltonian variaitonal ansatz for a given lattice graph and list of parameters. The parameters list must have a lenght of 3*n_layers, and must have a form (coupling_i,transverse_i,boundary_i) Args: graph: lattice graph theta_list: list of parameters """ n_qubits = len(graph.nodes()) n_layers = len(theta_list)//3 qc = QuantumCircuit(n_qubits) even_edges = [edge for edge in graph.edges() if edge[0]%2==0] odd_edges = [edge for edge in graph.edges() if edge[0]%2!=0] # initial_state qc.h(range(n_qubits)) for layer_index in range(n_layers): # Coupling term for pair in even_edges: qc.rzz(2 * theta_list[3*layer_index],pair[0],pair[1]) for pair in odd_edges: qc.rzz(2 * theta_list[3*layer_index],pair[0],pair[1]) # boundary field term qc.rz(2 *theta_list[3*layer_index+2],0) qc.rz(-2 * theta_list[3*layer_index+2], n_qubits-1) # transverse field term qc.rx(2 * theta_list[3*layer_index+1], range(n_qubits)) return qc layers_hva = 4 theta_list_hva = ParameterVector('θ',3*layers_hva) ansatz_hva = get_ansatz_hva(graph,theta_list_hva) ansatz_hva.draw('mpl',style='iqx') def get_ansatz_hea(graph,theta_list): """Creates the hardware efficient ansatz for a given lattice graph and list of parameters. The parameters list must have a lenght of 2*n_qubits_n_layers Args: graph: lattice graph theta_list: list of parameters """ nqubits = len(graph.nodes()) n_layers = len(theta_list)//(2*nqubits) assert len(theta_list)==2*n_qubits*n_layers, "The list of parameters does not have the correct size" qc = QuantumCircuit(nqubits) even_edges = [edge for edge in graph.edges() if edge[0]%2==0] odd_edges = [edge for edge in graph.edges() if edge[0]%2!=0] reversed_edges = [edge for edge in graph.edges()][::-1] for layer_index in range(n_layers): for qubit in range(nqubits): qc.ry(theta_list[2*(nqubits)*layer_index+qubit], qubit) # for pair in reversed_edges: # qc.cnot(pair[0],pair[1]) for pair in even_edges: qc.cnot(pair[0],pair[1]) for pair in odd_edges: qc.cnot(pair[0],pair[1]) for qubit in range(nqubits): qc.ry(theta_list[nqubits+2*(nqubits)*layer_index+qubit], qubit) return qc def get_ansatz_hea_ZNE(graph,theta_list): """Creates the folded version of hardware efficient ansatz for a given lattice graph and list of parameters. The parameters list must have a lenght of 2*n_qubits_n_layers. Used in the ZNE error mitigation protocol Args: graph: lattice graph theta_list: list of parameters """ nqubits = len(graph.nodes()) n_layers = len(theta_list)//(2*nqubits) assert len(theta_list)==2*n_qubits*n_layers, "The list of parameters does not have the correct size" qc = QuantumCircuit(nqubits) even_edges = [edge for edge in graph.edges() if edge[0]%2==0] odd_edges = [edge for edge in graph.edges() if edge[0]%2!=0] reversed_edges = [edge for edge in graph.edges()][::-1] for layer_index in range(n_layers): for qubit in range(nqubits): qc.ry(theta_list[2*(nqubits)*layer_index+qubit], qubit) # for pair in reversed_edges: # qc.cnot(pair[0],pair[1]) #folding even edges for pair in even_edges: qc.cnot(pair[0],pair[1]) qc.barrier() for pair in even_edges: qc.cnot(pair[0],pair[1]) qc.barrier() for pair in even_edges: qc.cnot(pair[0],pair[1]) qc.barrier() #folding odd edges for pair in odd_edges: qc.cnot(pair[0],pair[1]) qc.barrier() for pair in odd_edges: qc.cnot(pair[0],pair[1]) qc.barrier() for pair in odd_edges: qc.cnot(pair[0],pair[1]) qc.barrier() for qubit in range(nqubits): qc.ry(theta_list[nqubits+2*(nqubits)*layer_index+qubit], qubit) return qc # Here we define and show the circuit for the HEA layers_hea = 1 theta_list = ParameterVector('t',2*n_qubits*layers_hea) # The list of parameters must ansatz_hea = get_ansatz_hea(graph,theta_list) ansatz_hea.draw('mpl', style="iqx") # Here is the folded version of the HEA ansatz for the ZNE ansatz_hea = get_ansatz_hea_ZNE(graph,theta_list) ansatz_hea.draw('mpl', style="iqx") def get_estimator(session, server='qasm', shots=2**14, device=FakeKolkata(), options_rtm=Options(), seed=170): """Defines an estimator. Set 'qasm' for noiseless, 'noisy' for backend estimator and 'rtm' for the runtime estimator""" if server =='qasm': estimator = Estimator(options={'shots':shots,'seed':seed}) elif server == 'noisy': estimator = BackendEstimator(device,options={'shots':shots,'seed':seed}) elif server == 'rtm': estimator = IBM_Estimator(session=session,options=options_rtm) return estimator def get_extrapolation(value_k1,value_k2,extrap='lin'): """Returns the exponential extrapolation given the values for k=1 and k=2 noise factors""" k_values = [1.,2.] if extrap =='lin': y_values = [value_k1,value_k2] # Fit a linear regression model (polynomial of degree 1) coefficients = np.polyfit(k_values, y_values, 1) # The coefficients represent the slope (m) and y-intercept (b) of the line slope, intercept = coefficients extrapolation = intercept if extrap == 'exp': y_values = [np.abs(value_k1/value_k2),1.] ln_y = np.log(y_values) # Fit a linear regression model (polynomial of degree 1) coefficients_exp = np.polyfit(k_values, ln_y, 1) # The coefficients represent the slope (m) and y-intercept (b) of the line slope_exp, intercept_exp = coefficients_exp extrapolation = np.exp(intercept_exp)*value_k2 return extrapolation def vqe_opt_scipy(graph, service, backend, g=0.7071067811865476, h=0.5, ansatz_str='hea', layers=1, optimizer='SLSQP', maxiter=50, ftol=0., reps=1, zne=False, extrap='exp', shots=None, server='qasm', device=FakeNairobi(), options=Options()): """Runs the vqe for the Ising model with boundary fields for a single value of the boundary field, using the scipy optimization function. It gives data for the convergence of the optimization, which is the logs for each sampling, the mean and standart deviation of these samplings, and also the number of function evaluations Args: graph: networkx lattice graph service: service for runtime backend: backend for runtime (can include quantum backends) g: value of the boundary field h: value of the transverse field ansatz_str: choice of ansatz, 'hea' for HEA and 'hva' for HVA layers: number of layers for the ansatz optimizer: optimization algorithm, as string for scipy maxiter: maximum iterations for the optimization ftol: tolerance for convergence, for scipy reps: (int) number of initial parameters samplings zne: (bool) zne option extrap: type of extrapolation shots: number of shots, set to None for statevector simulations server: 'qasm' for noiseless, 'noisy' for aer, 'rtm' for runtime device: noise model for noisy simulations options: Options() class for runtime """ n_qubits = len(graph.nodes()) if ansatz_str == 'hea': theta_list = ParameterVector('θ',2*n_qubits*layers) ansatz = get_ansatz_hea(graph,theta_list) ansatz_k2 = get_ansatz_hea_ZNE(graph,theta_list) elif ansatz_str == 'hva': theta_list = ParameterVector('θ',3*layers) ansatz = get_ansatz_hva(graph,theta_list) ansatz_k2 = get_ansatz_hva(graph,theta_list) cost_operator = get_h_op(graph,hx=h,ap=g) #Defining Hamiltonian # Now we set the cost function, with no mitigation, linear or exp extrapolation if zne == False: def cost_function_vqe(theta): job = estimator.run(ansatz, cost_operator, theta) values = job.result().values[0] return values if zne == True: def cost_function_vqe(theta): job = estimator.run([ansatz,ansatz_k2], 2*[cost_operator], 2*[theta]) value_k1 = job.result().values[0] value_k2 = job.result().values[1] extrapolation = get_extrapolation(value_k1=value_k1,value_k2=value_k2,extrap=extrap) return extrapolation log_list = [] nfev_list = [] with Session(service=service,backend=backend) as session: estimator = get_estimator(server=server, shots=shots, device=device, session=session, options_rtm=options) for i in tqdm(range(reps)): random_point = np.random.random(ansatz.num_parameters) iter_list = [] result_sample = minimize(cost_function_vqe, x0=random_point, method=optimizer, callback=lambda xk: iter_list.append(list(xk)), options={'maxiter':maxiter,'disp':False,'ftol':ftol}) iters = len(iter_list) energy_list = estimator.run(iters*[ansatz],iters*[cost_operator],iter_list).result().values nfev_list.append(int(result_sample.nfev)) log_list.append(list(energy_list)) session.close() max_length = max(len(sublist) for sublist in log_list) # Finding the length of the largest list for sublist in log_list: if len(sublist) < max_length: last_element = sublist[-1] # Extracting the last element sublist.extend([last_element] * (max_length - len(sublist))) # Filling with the last element mean_list = [] std_list = [] for i in range(len(log_list[0])): values_list = [l[i] for l in log_list] mean_list.append(np.mean(values_list)) std_list.append(np.std(values_list)) return log_list,mean_list,std_list,nfev_list g_mag = 0.2 g_knk = 1.2 E_mag = NumPyMinimumEigensolver().compute_minimum_eigenvalue(get_h_op(graph,ap=g_mag)).eigenvalue E_knk = NumPyMinimumEigensolver().compute_minimum_eigenvalue(get_h_op(graph,ap=g_knk)).eigenvalue reps = 5 # we define the number of initial parameters samplings logs_hva_mag,avgs_hva_mag,stds_hva_mag,nfevs_hva_mag = vqe_opt_scipy(graph=graph, service=service, backend=backend, server='qasm', g=g_mag, layers=layers_hva, ansatz_str='hva', reps=reps, maxiter=300, shots=None, ftol=1e-16) avgs_list = avgs_hva_mag stds_list = stds_hva_mag g_value = g_mag exact_energy = E_mag #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") plt.xlim((0,40)) x_lim = 60 # plt.xlim(0,60) plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -10, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() logs_hva_knk,avgs_hva_knk,stds_hva_knk,nfevs_hva_knk = vqe_opt_scipy(graph=graph, service=service, backend=backend, server='qasm', g=g_knk, layers=layers_hva, ansatz_str='hva', reps=reps, maxiter=300, shots=None, ftol=1e-16) avgs_list = avgs_hva_knk stds_list = stds_hva_knk g_value = g_knk exact_energy = E_knk #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") plt.xlim((0,40)) x_lim = 60 # plt.xlim(0,60) plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -10, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() # Here we define a different callback which is suited for the SPSA implementation of qiskit intermediate_info = { 'nfev': [], 'parameters': [], 'energy': [], 'step_size': [], 'step_sucesss': [] } def callback(nfev, parameters, energy, step_size,step_sucess): intermediate_info['nfev'].append(nfev) intermediate_info['parameters'].append(parameters) intermediate_info['energy'].append(energy) intermediate_info['step_size'].append(step_size) intermediate_info['step_sucess'].append(step_sucess) @dataclass class VQELog: values: list parameters: list def update(self, count, parameters, mean, step_size, step_sucess): self.values.append(mean) self.parameters.append(parameters) print(f"Running circuit {count}", end="\r", flush=True) # Here is the main function def vqe_critical_spsa(graph, service, backend, device=FakeKolkata(), g=0.7071067811865476, layers=1, server='qasm', learning_rate=0.07, perturbation=0.1, maxiter=200, hx=0.5, options=Options(), zne=False, extrap='exp', reps=1, shots=2**14, ansatz_str='hea'): """Runs the vqe for the Ising model with boundary fields for a single value of the boundary field, using the scipy optimization function. It gives data for the convergence of the optimization, which is the logs for each sampling, the mean and standart deviation of these samplings, and also the number of function evaluations Args: graph: networkx lattice graph service: service for runtime backend: backend for runtime (can include quantum backends) g: value of the boundary field h: value of the transverse field ansatz_str: choice of ansatz, 'hea' for HEA and 'hva' for HVA layers: number of layers for the ansatz maxiter: maximum iterations for the optimization learning_rate: learning rate for the SPSA optimizer perturbation: perturbation for the SPSA optimizer reps: (int) number of initial parameters samplings zne: (bool) zne option extrap: type of extrapolation shots: number of shots, set to None for statevector simulations server: 'qasm' for noiseless, 'noisy' for aer, 'rtm' for runtime device: noise model for noisy simulations options: Options() class for runtime """ n_qubits = len(graph.nodes()) if ansatz_str == 'hea': theta_list = ParameterVector('θ',2*n_qubits*layers) ansatz = get_ansatz_hea(graph,theta_list) ansatz_k2 = get_ansatz_hea_ZNE(graph,theta_list) elif ansatz_str == 'hva': theta_list = ParameterVector('θ',3*layers) ansatz = get_ansatz_hva(graph,theta_list) ansatz_k2 = get_ansatz_hva(graph,theta_list) cost_operator = get_h_op(graph,hx=hx,ap=g) #Defining Hamiltonian # Now we set the cost function, with no mitigation, linear or exp extrapolation if zne == False: def cost_function_vqe(theta): job = estimator.run(ansatz, cost_operator, theta) values = job.result().values[0] return values if zne == True: def cost_function_vqe(theta): job = estimator.run([ansatz,ansatz_k2], 2*[cost_operator], 2*[theta]) value_k1 = job.result().values[0] value_k2 = job.result().values[1] return get_extrapolation(value_k1=value_k1,value_k2=value_k2,extrap=extrap) log_list = [] nfev_list = [] with Session(service=service,backend=backend) as session: # estimator = BackendEstimator(FakeNairobiV2(),options={'shots':shots}) estimator = get_estimator(server=server, shots=shots, device=device, session=session, options_rtm=options) for i in tqdm(range(reps)): log = VQELog([], []) spsa = SPSA(maxiter=maxiter, trust_region=True, learning_rate=learning_rate, perturbation=perturbation, callback=log.update) random_point = np.random.random(ansatz.num_parameters) result_sample = spsa.minimize(cost_function_vqe,x0=random_point) log_list.append(log) nfev_list.append(result_sample.nfev) session.close() max_length = max(len(sublist.values) for sublist in log_list) # Finding the length of the largest list for sublist in log_list: if len(sublist.values) < max_length: last_element = sublist[-1] # Extracting the last element sublist = list(sublist)[:].extend([last_element] * (max_length - len(sublist))) # Filling with the last element mean_list = [] std_list = [] for i in range(len(log_list[0].values)): values_list = [log.values[i] for log in log_list] mean_list.append(np.mean(values_list)) std_list.append(np.std(values_list)) return log_list,mean_list,std_list,nfev_list logs_hea_noisy_mag,avgs_hea_noisy_mag,stds_hea_noisy_mag,nfevs_hea_noisy_mag = vqe_critical_spsa(graph=graph, service=service, backend=backend, device=FakeKolkata(), g=g_mag, server='noisy', layers=1, maxiter=170, ansatz_str='hea', reps=5, zne=False, shots = shots ) avgs_list = avgs_hea_noisy_mag stds_list = stds_hea_noisy_mag g_value = g_mag exact_energy = E_mag #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization noisy g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -3, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() reps = 3 logs_hea_zne_mag,avgs_hea_zne_mag,stds_hea_zne_mag,nfevs_hea_zne_mag = vqe_critical_spsa(graph=graph, service=service, backend=backend, device=FakeKolkata(), g=g_mag, server='noisy', layers=1, maxiter=170, ansatz_str='hea', reps=reps, zne=True, extrap='exp', shots=shots ) avgs_list = avgs_hea_zne_mag stds_list = stds_hea_zne_mag g_value = g_mag exact_energy = E_mag #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") x_lim = 60 # plt.xlim(0,60) plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization mitigated g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -3, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() logs_hea_noisy_knk,avgs_hea_noisy_knk,stds_hea_noisy_knk,nfevs_hea_noisy_knk = vqe_critical_spsa(graph=graph, service=service, backend=backend, device=FakeKolkata(), g=g_knk, server='noisy', layers=1, maxiter=170, ansatz_str='hea', reps=reps, zne=False, shots=shots ) avgs_list = avgs_hea_noisy_knk stds_list = stds_hea_noisy_knk g_value = g_knk exact_energy = E_knk #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") x_lim = 60 # plt.xlim(0,60) plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization noisy g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -3, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() reps = 3 logs_hea_zne_knk,avgs_hea_zne_knk,stds_hea_zne_knk,nfevs_hea_zne_knk = vqe_critical_spsa(graph=graph, service=service, backend=backend, device=FakeKolkata(), g=g_knk, server='noisy', layers=1, maxiter=170, ansatz_str='hea', reps=reps, zne=True, extrap='exp', shots=shots ) avgs_list = avgs_hea_zne_knk stds_list = stds_hea_zne_knk g_value = g_knk exact_energy = E_knk #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") # plt.xlim(0,60) plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization mitigated g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -3, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() def vqe_phase_diagram(graph, g_values, optimizer, init_optimizer, service, backend, server='qasm', device=FakeNairobi(), angles_dict = {}, layers=1, hx=0.5, options=Options(), zne=False, extrap='exp', init_reps=1, shots=2**14, ansatz_str='hea'): """Runs the vqe to simulate the antiparallel model in the hardware efficient ansatz for different values of the antiparallel field. Returns the list of energies as well as a dictionary with the optimal angles for each value of the boundary field. Args: graph: networkx lattice graph g_values: list of values for the boundary field angles_dict: dictionary of angles optimizer: qiskit optimizer class init_optimizer: optimizer for the first point layers: layers for the ansatz service: service for runtime backend: backend for runtime (can include quantum backends) h: value of the transverse field ansatz_str: choice of ansatz, 'hea' for HEA and 'hva' for HVA reps: number of initial parameters samplings for the first point zne: (bool) zne option extrap: type of extrapolation shots: number of shots, set to None for statevector simulations server: 'qasm' for noiseless, 'noisy' for aer, 'rtm' for runtime device: noise model for noisy simulations options: Options() class for runtime """ n_qubits = len(graph.nodes()) if ansatz_str == 'hea': theta_list = ParameterVector('θ',2*n_qubits*layers) ansatz = get_ansatz_hea(graph,theta_list) ansatz_k2 = get_ansatz_hea_ZNE(graph,theta_list) elif ansatz_str == 'hva': theta_list = ParameterVector('θ',3*layers) ansatz = get_ansatz_hva(graph,theta_list) ansatz_k2 = get_ansatz_hva(graph,theta_list) E_values = [] rev_g_values = g_values[::-1] for i,g in enumerate(tqdm(rev_g_values)): cost_operator = get_h_op(graph,hx=hx,ap=g) #Defining Hamiltonian # Now we set the cost function, with no mitigation, linear or exp extrapolation if zne == False: def cost_function_vqe(theta): job = estimator.run(ansatz, cost_operator, theta) values = job.result().values[0] return values if zne == True: def cost_function_vqe(theta): job = estimator.run([ansatz,ansatz_k2], 2*[cost_operator], 2*[theta]) value_k1 = job.result().values[0] value_k2 = job.result().values[1] return get_extrapolation(value_k1=value_k1,value_k2=value_k2,extrap=extrap) if i == 0: sample = 0. for j in range(init_reps): #Performs sampling of initial parameters for the first point initial_point = np.random.uniform(0., 2*np.pi, size=ansatz.num_parameters) with Session(service=service,backend=backend) as session: estimator = get_estimator(server=server, shots=shots, device=device, session=session, options_rtm=options) result_sample = init_optimizer.minimize(fun=cost_function_vqe, x0=initial_point) session.close() if result_sample.fun < sample: sample = result_sample.fun result = result_sample initial_point = result.x else: with Session(service=service,backend=backend) as session: estimator = get_estimator(server=server, shots=shots, device=device, session=session, options_rtm=options) result = optimizer.minimize(fun=cost_function_vqe, x0=initial_point) session.close() E_values.append(result.fun) #optimal angles storage angles = list(result.x) angles_dict[str(round(g,5))] = angles return E_values,angles_dict def vqe_optimal(graph, service, backend, angles_opt, server='qasm', device=FakeNairobi(), layers=1, hx=0.5, options=Options(), zne=False, extrap='lin', shots=2**14, ansatz_str='hea'): """ Receives the optimal parameters for each value of the boundary field and runs the circuits to compute the energy as well as the number of kinks Args: graph: networkx lattice graph g_values: list of values for the boundary field angles_opt: dictionary of optimal angles service: service for runtime backend: backend for runtime (can include quantum backends) h: value of the transverse field ansatz_str: choice of ansatz, 'hea' for HEA and 'hva' for HVA layers: layers for the ansatz reps: number of initial parameters samplings for the first point zne: (bool) zne option extrap: type of extrapolation shots: number of shots, set to None for statevector simulations server: 'qasm' for noiseless, 'noisy' for aer, 'rtm' for runtime device: noise model for noisy simulations options: Options() class for runtime Returns: The values of the energy, number of kinks, and the associated values of g to facilitate plotting """ n_qubits = len(graph.nodes()) g_values = [float(k) for k in angles_opt.keys()] n_points = len(g_values) # Setting the ansatz if ansatz_str == 'hea': theta_list = ParameterVector('θ',2*n_qubits*layers) ansatz = get_ansatz_hea(graph,theta_list) ansatz_k2 = get_ansatz_hea_ZNE(graph,theta_list) elif ansatz_str == 'hva': theta_list = ParameterVector('θ',3*layers) ansatz = get_ansatz_hva(graph,theta_list) ansatz_k2 = get_ansatz_hva(graph,theta_list) # Getting the list of angles and hamiltonians angles_list = [] h_list = [] g_list = [] kk_op = get_kk_op(graph) E_values = [] kk_values = [] for g_str,angles in angles_opt.items(): g = float(g_str) g_list.append(g) h_list.append(get_h_op(graph,hx=hx,ap=g)) angles_list.append(angles) with Session(service=service,backend=backend) as session: estimator = get_estimator(server=server, shots=shots, device=device, session=session, options_rtm=options) result_h = estimator.run(n_points*[ansatz],h_list,angles_list).result() result_kk = estimator.run(n_points*[ansatz],n_points*[kk_op],angles_list).result() if zne == False: E_values = list(result_h.values) kk_values = list(result_kk.values) else: result_h_k2 = estimator.run(n_points*[ansatz_k2],h_list,angles_list).result() result_kk_k2 = estimator.run(n_points*[ansatz_k2],n_points*[kk_op],angles_list).result() for i in range(n_points): E_values.append(get_extrapolation(result_h.values[i],result_h_k2.values[i],extrap)) kk_values.append(get_extrapolation(result_kk.values[i],result_kk_k2.values[i],extrap)) session.close() return E_values,kk_values,g_list # We define the range of values of g used for the VQE implentation g_values = np.linspace(g_i,g_f,25) init_reps = 5 slsqp = SLSQP(150) init_slsqp = SLSQP(150) # We consider more iterations for the first point E_hva,angles_hva = vqe_phase_diagram(graph=graph, g_values=g_values, ansatz_str='hva', backend=backend, layers=layers_hva, optimizer=slsqp, init_optimizer=init_slsqp, service=service, server='qasm', shots=None, init_reps=init_reps) # Now we run the circuits one last time with the optimal parameters E_hva,kk_hva,g_hva = vqe_optimal(graph=graph, service=service, server='qasm', angles_opt=angles_hva, ansatz_str='hva', layers=layers_hva, backend=backend) #Plotting f,ax = plt.subplots() #plt.plot(g_values,E_3,'ro') plt.plot(exact_g_values,exact_E,label='exact') plt.plot(g_hva,E_hva,'ro',label='VQE') plt.xlabel('boundary field') plt.ylabel('groundstate energy') plt.legend() inset_ax = f.add_axes([0.24, 0.22, 0.3, 0.3]) # [left, bottom, width, height] plt.plot(exact_g_values,exact_kk) plt.plot(g_hva,kk_hva,'ro',markersize=4) inset_ax.set_xlabel('boundary field') inset_ax.set_ylabel("$<N_k>$") plt.show() init_reps = 2 spsa = SPSA(maxiter=300,trust_region=True,learning_rate=0.07,perturbation=0.1) init_spsa = SPSA(maxiter=300,trust_region=True,learning_rate=0.07,perturbation=0.1) # We consider more iterations for the first point # To perform the whole optimization using ZNE, just set zne = True # This step took 207 minutes to run on my machine E_hea_noisy,angles_hea_noisy = vqe_phase_diagram(graph=graph, g_values=g_values, ansatz_str='hea', backend=backend, layers=layers_hea, optimizer=spsa, init_optimizer=init_spsa, service=service, server='noisy', device=FakeKolkata(), zne=False, shots=shots, init_reps=init_reps) # Now we run the circuits one last time with the optimal parameters E_opt_hea_noisy,kk_opt_hea_noisy,g_hea = vqe_optimal(graph=graph, service=service, server='noisy', angles_opt=angles_hea_noisy, device=FakeKolkata(), ansatz_str='hea', layers=layers_hea, zne=False, backend=backend, shots=shots) #Plotting f,ax = plt.subplots() #plt.plot(g_values,E_3,'ro') plt.plot(exact_g_values,exact_E,label='exact') plt.plot(g_hea,E_opt_hea_noisy,'o',label='noisy') plt.xlabel('boundary field') plt.ylabel('groundstate energy') plt.legend() inset_ax = f.add_axes([0.24, 0.22, 0.3, 0.3]) # [left, bottom, width, height] plt.plot(exact_g_values,exact_kk) plt.plot(g_hea,kk_opt_hea_noisy,'o',markersize=4) inset_ax.set_xlabel('boundary field') inset_ax.set_ylabel("$<N_k>$") plt.show() # Now we run the circuits now using ZNE E_opt_hea_mitigated,kk_opt_hea_mitigated,g_hea = vqe_optimal(graph=graph, service=service, server='noisy', angles_opt=angles_hea_noisy, device=FakeKolkata(), ansatz_str='hea', layers=layers_hea, zne=True, extrap='exp', backend=backend, shots=shots) #Plotting f,ax = plt.subplots() #plt.plot(g_values,E_3,'ro') plt.plot(exact_g_values,exact_E,label='exact') plt.plot(g_hea,E_opt_hea_noisy,'o',label='noisy') plt.plot(g_hea,E_opt_hea_mitigated,'o',label='mitigated') plt.xlabel('boundary field') plt.ylabel('groundstate energy') plt.legend() inset_ax = f.add_axes([0.24, 0.22, 0.3, 0.3]) # [left, bottom, width, height] plt.plot(exact_g_values,exact_kk) plt.plot(g_hea,kk_opt_hea_noisy,'o',markersize=4) plt.plot(g_hea,kk_opt_hea_mitigated,'o',markersize=4) inset_ax.set_xlabel('boundary field') inset_ax.set_ylabel("$<N_k>$") plt.show() # First we get the optimal parameters with statevector simulations E_hea_noiseless,angles_hea_noiseless = vqe_phase_diagram(graph=graph, g_values=g_values, ansatz_str='hea', backend=backend, layers=layers_hea, optimizer=spsa, init_optimizer=init_spsa, service=service, server='qasm', shots=None, init_reps=init_reps) # Setting options for runtime # Noisy options fake_device = FakeKolkata() noise_model = NoiseModel.from_backend(fake_device) options_noisy = Options() options_noisy.execution.shots = shots options_noisy.simulator = { "noise_model": noise_model, "basis_gates": fake_device.configuration().basis_gates, "coupling_map": fake_device.configuration().coupling_map, "seed_simulator": 42 } options_noisy.optimization_level = 3 # no optimization options_noisy.resilience_level = 0 # M3 for Sampler and T-REx for Estimator # Mitigated options options_mitigated = Options() options_mitigated.execution.shots = shots options_mitigated.simulator = { "noise_model": noise_model, "basis_gates": fake_device.configuration().basis_gates, "coupling_map": fake_device.configuration().coupling_map } # Set number of shots, optimization_level and resilience_level options_mitigated.optimization_level = 3 options_mitigated.resilience_level = 1 # setting T-REX # Now we run the circuits in runtime with the optimal parameters # To run on runtime we set server = 'rtm' # First we run the unmitigated results E_opt_hea_noisy_rtm,kk_opt_hea_noisy_rtm,g_hea = vqe_optimal(graph=graph, service=service, server='rtm', options = options_noisy, angles_opt=angles_hea_noiseless, ansatz_str='hea', layers=layers_hea, zne=False, extrap='exp', backend=backend, shots=shots) # Now we run using ZNE and ZNE+T-REX # ZNE E_opt_hea_mitigated1_rtm,kk_opt_hea_mitigated1_rtm,g_hea = vqe_optimal(graph=graph, service=service, server='rtm', options = options_noisy, angles_opt=angles_hea_noiseless, ansatz_str='hea', layers=layers_hea, zne=True, extrap='exp', backend=backend, shots=shots) # ZNE + T-REX E_opt_hea_mitigated2_rtm,kk_opt_hea_mitigated2_rtm,g_hea = vqe_optimal(graph=graph, service=service, server='rtm', options = options_mitigated, angles_opt=angles_hea_noiseless, ansatz_str='hea', layers=layers_hea, zne=True, extrap='exp', backend=backend, shots=shots) #Plotting f,ax = plt.subplots() #plt.plot(g_values,E_3,'ro') plt.plot(exact_g_values,exact_E,label='exact') plt.plot(g_hea,E_opt_hea_noisy_rtm,'o',label='noisy') plt.plot(g_hea,E_opt_hea_mitigated1_rtm,'o',label='ZNE') plt.plot(g_hea,E_opt_hea_mitigated2_rtm,'o',label='ZNE+T-REX') plt.xlabel('boundary field') plt.ylabel('groundstate energy') plt.legend() inset_ax = f.add_axes([0.24, 0.22, 0.3, 0.3]) # [left, bottom, width, height] plt.plot(exact_g_values,exact_kk) plt.plot(g_hea,kk_opt_hea_noisy_rtm,'o',markersize=4) plt.plot(g_hea,kk_opt_hea_mitigated1_rtm,'o',markersize=4) plt.plot(g_hea,kk_opt_hea_mitigated2_rtm,'o',markersize=4) inset_ax.set_xlabel('boundary field') inset_ax.set_ylabel("$<N_k>$") plt.show()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.timeline import draw from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) qc = transpile(qc, FakeBoeblingen(), scheduling_method='alap', layout_method='trivial') draw(qc)
https://github.com/zeynepCankara/Introduction-Quantum-Programming
zeynepCankara
%run qlatvia.py draw_qubit() # line of reflection for Hadamard from matplotlib.pyplot import arrow arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red') sqrttwo=2**0.5 draw_quantum_state(0,1,"") draw_quantum_state(1/sqrttwo,-1/sqrttwo,"|->") %run qlatvia.py draw_qubit() # line of reflection for Hadamard from matplotlib.pyplot import arrow arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red') sqrttwo=2**0.5 draw_quantum_state(-1,0,"") draw_quantum_state(-1/sqrttwo,-1/sqrttwo,"-|+>") %run qlatvia.py draw_qubit() # line of reflection for Hadamard from matplotlib.pyplot import arrow arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red') sqrttwo=2**0.5 draw_quantum_state(0,-1,"") draw_quantum_state(-1/sqrttwo,1/sqrttwo,"-|->") # randomly create a 2-dimensional quantum state from math import cos, sin, pi from random import randrange def random_quantum_state2(): angle_degree = randrange(360) angle_radian = 2*pi*angle_degree/360 return [cos(angle_radian),sin(angle_radian)] %run qlatvia.py draw_qubit() # line of reflection for Hadamard from matplotlib.pyplot import arrow arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red') [x1,y1] = random_quantum_state2() print(x1,y1) sqrttwo=2**0.5 oversqrttwo = 1/sqrttwo [x2,y2] = [ oversqrttwo*x1 + oversqrttwo*y1 , oversqrttwo*x1 - oversqrttwo*y1 ] print(x2,y2) draw_quantum_state(x1,y1,"main") draw_quantum_state(x2,y2,"ref") # randomly create a 2-dimensional quantum state from math import cos, sin, pi from random import randrange def random_quantum_state2(): angle_degree = randrange(360) angle_radian = 2*pi*angle_degree/360 return [cos(angle_radian),sin(angle_radian)] %run qlatvia.py draw_qubit() [x1,y1] = random_quantum_state2() [x2,y2] = [x1,-y1] draw_quantum_state(x1,y1,"main") draw_quantum_state(x2,y2,"ref") # randomly create a 2-dimensional quantum state from math import cos, sin, pi from random import randrange def random_quantum_state2(): angle_degree = randrange(360) angle_radian = 2*pi*angle_degree/360 return [cos(angle_radian),sin(angle_radian)] %run qlatvia.py draw_qubit() # the line y=x from matplotlib.pyplot import arrow arrow(-1,-1,2,2,linestyle='dotted',color='red') [x1,y1] = random_quantum_state2() [x2,y2] = [y1,x1] draw_quantum_state(x1,y1,"main") draw_quantum_state(x2,y2,"ref")
https://github.com/urwin419/QiskitChecker
urwin419
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) ### replaced x gate ### qc.x(1) qc.cx(1, 0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1, 0) ### replaced x gate ### qc.x(1) return qc
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit.library import MCXGate gate = MCXGate(4) from qiskit import QuantumCircuit circuit = QuantumCircuit(5) circuit.append(gate, [0, 1, 4, 2, 3]) circuit.draw('mpl')
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
import qiskit import numpy as np import networkx as nx import matplotlib.pyplot as plt from collections import defaultdict from operator import itemgetter from scipy.optimize import minimize from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer from qiskit.aqua.algorithms import NumPyEigensolver from qiskit.quantum_info import Pauli from qiskit.aqua.operators import op_converter from qiskit.aqua.operators import WeightedPauliOperator from tsp_qaoa import marina_solution G=nx.Graph() i=1 G.add_node(i,pos=(i,i)) G.add_node(2,pos=(2,2)) G.add_node(3,pos=(1,0)) G.add_edge(1,2,weight=20.5) G.add_edge(1,3,weight=9.8) pos=nx.get_node_attributes(G,'pos') nx.draw(G,pos) labels = nx.get_edge_attributes(G,'weight') nx.draw_networkx_edge_labels(G,pos,edge_labels=labels) def append_zz_term(qc,q1,q2,gamma): qc.cx(q1,q2) qc.rz(2*gamma,q2) qc.cx(q1,q2) def get_cost_circuit(G,gamma): N=G.number_of_nodes() qc=QuantumCircuit(N,N) for i,j in G.edges(): append_zz_term(qc,i,j,gamma) return qc #print(get_cost_circuit(G,0.5)) def append_x_term(qc,q1,beta): qc.rx(2*beta,q1) def get_mixer_operator(G,beta): N=G.number_of_nodes() qc=QuantumCircuit(N,N) for n in G.nodes(): append_x_term(qc,n,beta) return qc #print(get_mixer_operator(G,0.5)) def get_QAOA_circuit(G,beta,gamma): assert(len(beta)==len(gamma)) N=G.number_of_nodes() qc=QuantumCircuit(N,N) qc.h(range(N)) p=len(beta) #aplicamos las p rotaciones for i in range(p): qc=qc.compose(get_cost_circuit(G,gamma[i])) qc=qc.compose(get_mixer_operator(G,beta[i])) qc.barrier(range(N)) qc.measure(range(N),range(N)) return qc print(get_QAOA_circuit(G,[0.5,0,6],[0.5,0,6])) def invert_counts(counts): return {k[::-1] :v for k,v in counts.items()} qc=get_QAOA_circuit(G,[0.5,0,6],[0.5,0,6]) backend=Aer.get_backend('qasm_simulator') job=execute(qc,backend) result=job.result() print(invert_counts(result.get_counts())) def maxcut_obj(x,G): cut=0 for i,j in G.edges(): if x[i]!=x[j]: cut = cut-1 return cut print(maxcut_obj("00011",G)) def compute_maxcut_energy(counts,G): energy=0 get_counts=0 total_counts=0 for meas, meas_count in counts.items(): obj_for_meas=maxcut_obj(meas,G) energy+=obj_for_meas*meas_count total_counts+=meas_count return energy/total_counts def get_black_box_objective(G,p): backend=Aer.get_backend('qasm_simulator') def f(theta): beta=theta[:p] gamma=theta[p:] qc=get_QAOA_circuit(G,beta,gamma) counts=execute(qc,backend,seed_simulator=10).result().get_counts() return compute_maxcut_energy(invert_counts(counts),G) return f p=5 obj=get_black_box_objective(G,p) init_point=np.array([0.8,2.2,0.83,2.15,0.37,2.4,6.1,2.2,3.8,6.1])#([2,2,1,1,1,1,1,1,1,1]) res_sample=minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True}) res_sample from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost from utils import mapeo_grafo cantidad_ciudades = 4 pesos, conexiones = None, None mejor_camino = None while not mejor_camino: pesos, conexiones = rand_graph(cantidad_ciudades) mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False) G = mapeo_grafo(conexiones, pesos) pos=nx.spring_layout(G) nx.draw(G,pos) labels = nx.get_edge_attributes(G,'weight') nx.draw_networkx_edge_labels(G,pos,edge_labels=labels) G pos=nx.get_node_attributes(G,'weight') pos labels = nx.get_edge_attributes(G,'weight') labels def funcion_costo(multiplicador_lagrange, cantidad_ciudades, pesos, conexiones ): N = G.number_of_nodes() N_square = N^2 # restriccion 1 for i in range(cantidad_ciudades): cur = sI(N_square) for j in range(num_cities): cur -= D(i, j) ret += cur**2 # retorna el indice de qubit por conversion al problema def quibit_indice(i, l, N): return i * N + l from qiskit.quantum_info.operators import Operator, Pauli # Create an operator XX = Operator(Pauli(label='XX')) # Add to a circuit circ = QuantumCircuit(2, 2) circ.append(XX, [0, 1]) circ.measure([0,1], [0,1]) circ.draw('mpl') # Add to a circuit circ = QuantumCircuit(2, 2) circ.append(a, [0]) #circ.measure([0,1], [0,1]) circ.draw('mpl') a = I - ( 0.5*(I+ Z))**2 a = Operator(a) a.is_unitary() print(I @ Z)
https://github.com/indian-institute-of-science-qc/qiskit-aakash
indian-institute-of-science-qc
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for the wrapper functionality.""" import io import unittest from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import BasicAer from qiskit import execute from qiskit.tools.monitor import job_monitor from qiskit.test import QiskitTestCase class TestJobMonitor(QiskitTestCase): """Tools test case.""" def test_job_monitor(self): """Test job_monitor""" qreg = QuantumRegister(2) creg = ClassicalRegister(2) qc = QuantumCircuit(qreg, creg) qc.h(qreg[0]) qc.cx(qreg[0], qreg[1]) qc.measure(qreg, creg) backend = BasicAer.get_backend("qasm_simulator") job_sim = execute([qc] * 10, backend) output = io.StringIO() job_monitor(job_sim, output=output) self.assertEqual(job_sim.status().name, "DONE") if __name__ == "__main__": unittest.main(verbosity=2)
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import numpy as np from qiskit import QuantumRegister, QuantumCircuit from qiskit.aqua.components.reciprocals import Reciprocal from qiskit.aqua.circuits.gates import mct class LongDivision(Reciprocal): """The Long Division Rotation for Reciprocals. It finds the reciprocal with long division method and rotates the ancillary qubit by C/lambda. This is a first order approximation of arcsin(C/lambda). """ CONFIGURATION = { 'name': 'LongDivision', 'description': 'reciprocal computation with long division and rotation of the ancilla qubit', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'reciprocal_long_division_schema', 'type': 'object', 'properties': { 'negative_evals': { 'type': 'boolean', 'default': False }, 'scale': { 'type': 'number', 'default': 0, }, 'precision': { 'type': ['integer', 'null'], 'default': None, }, 'evo_time': { 'type': ['number', 'null'], 'default': None }, 'lambda_min': { 'type': ['number', 'null'], 'default': None } }, 'additionalProperties': False }, } def __init__( self, scale=0, precision=None, negative_evals=False, evo_time=None, lambda_min=None ): """Constructor. Args: scale (float, optional): the scale of rotation angle, corresponds to HHL constant C precision (int, optional): number of qubits that defines the precision of long division negative_evals (bool, optional): indicate if negative eigenvalues need to be handled evo_time (float, optional): the evolution time lambda_min (float, optional): the smallest expected eigenvalue """ self.validate(locals()) super().__init__() self._negative_evals = negative_evals self._scale = scale self._precision = precision self._evo_time = evo_time self._lambda_min = lambda_min self._circuit = None self._ev = None self._rec = None self._anc = None self._reg_size = 0 self._neg_offset = 0 self._n = 0 def sv_to_resvec(self, statevector, num_q): half = int(len(statevector) / 2) sv_good = statevector[half:] vec = np.array([]) for i in range(2 ** num_q): vec = np.append(vec, sum(x for x in sv_good[i::2 ** num_q])) return vec def _ld_circuit(self): def subtract(a, b, b0, c, z,r, rj, n): qc = QuantumCircuit(a, b0, b, c, z, r) qc2 = QuantumCircuit(a, b0, b ,c, z,r) def subtract_in(qc, a, b, b0, c , z, r, n): """subtraction realized with ripple carry adder""" def maj(p, a, b, c): p.cx(c, b) p.cx(c, a) p.ccx(a, b, c) def uma(p, a, b, c): p.ccx(a, b, c) p.cx(c, a) p.cx(a, b) for i in range(n): qc.x(a[i]) maj(qc, c[0], a[0], b[n-2]) for i in range(n-2): maj(qc, b[n-2-i+self._neg_offset], a[i+1], b[n-3-i+self._neg_offset]) maj(qc, b[self._neg_offset+0], a[n-1], b0[0]) qc.cx(a[n-1], z[0]) uma(qc, b[self._neg_offset+0], a[n-1], b0[0]) for i in range(2, n): uma(qc, b[self._neg_offset+i-1], a[n-i], b[self._neg_offset+i-2]) uma(qc, c[0], a[0], b[n-2+self._neg_offset]) for i in range(n): qc.x(a[i]) qc.x(z[0]) def u_maj(p, a, b, c, r): p.ccx(c, r, b) p.ccx(c, r, a) p.mct([r, a, b], c, None, mode='noancilla') def u_uma(p, a, b, c, r): p.mct([r, a, b], c, None, mode='noancilla') p.ccx(c,r, a) p.ccx(a, r, b) def unsubtract(qc2, a, b, b0, c, z, r, n): """controlled inverse subtraction to uncompute the registers(when the result of the subtraction is negative)""" for i in range(n): qc2.cx(r, a[i]) u_maj(qc2, c[0], a[0], b[n-2],r) for i in range(n-2): u_maj(qc2, b[n-2-i+self._neg_offset], a[i+1], b[n-3-i+self._neg_offset], r) u_maj(qc2, b[self._neg_offset+0], a[n-1], b0[0], r) qc2.ccx(a[n-1],r, z[0]) u_uma(qc2, b[self._neg_offset+0], a[n-1], b0[0], r) for i in range(2, n): u_uma(qc2, b[self._neg_offset+i-1], a[n-i], b[self._neg_offset+i-2], r) u_uma(qc2, c[0], a[0], b[n-2+self._neg_offset], r) for i in range(n): qc2.cx(r, a[i]) un_qc = qc2.mirror() un_qc.cx(r, z[0]) return un_qc # assembling circuit for controlled subtraction subtract_in(qc, a, b, b0, c, z, r[rj], n) qc.x(a[n-1]) qc.cx(a[n-1], r[rj]) qc.x(a[n-1]) qc.x(r[rj]) qc += unsubtract(qc2, a, b, b0, c, z, r[rj], n) qc.x(r[rj]) return qc def shift_to_one(qc, b, anc, n): """controlled bit shifting for the initial alignment of the most significant bits """ for i in range(n-2): # set all the anc1 qubits to 1 qc.x(anc[i]) for j2 in range(n-2): # if msb is 1, change ancilla j2 to 0 qc.cx(b[0+self._neg_offset], anc[j2]) for i in np.arange(0,n-2): i = int(i) # which activates shifting with the 2 Toffoli gates qc.ccx(anc[j2], b[i+1+self._neg_offset], b[i+self._neg_offset]) qc.ccx(anc[j2], b[i+self._neg_offset], b[i+1+self._neg_offset]) for i in range(n-2): # negate all the ancilla qc.x(anc[i]) def shift_one_left(qc, b, n): for i in np.arange(n-1,0, -1): i = int(i) qc.cx(b[i-1], b[i]) qc.cx(b[i], b[i-1]) def shift_one_leftc(qc, b, ctrl, n): for i in np.arange(n-2,0, -1): i = int(i) qc.ccx(ctrl, b[i-1], b[i]) qc.ccx(ctrl, b[i], b[i-1]) return qc def shift_one_rightc(qc, b, ctrl, n): for i in np.arange(0, n-1): i = int(i) qc.ccx(ctrl, b[n-2-i+self._neg_offset], b[n-1-i+self._neg_offset]) qc.ccx(ctrl, b[n-1-i+self._neg_offset], b[n-2-i+self._neg_offset]) # executing long division: self._circuit.x(self._a[self._n-2]) shift_to_one(self._circuit, self._ev, self._anc1, self._n) #initial alignment of most significant bits for rj in range(self._precision): # iterated subtraction and shifting self._circuit += subtract(self._a, self._ev, self._b0, self._c, self._z, self._rec, rj, self._n) shift_one_left(self._circuit, self._a, self._n) for ish in range(self._n-2): # unshifting due to initial alignment shift_one_leftc(self._circuit, self._rec, self._anc1[ish], self._precision + self._num_ancillae) self._circuit.x(self._anc1[ish]) shift_one_rightc(self._circuit, self._ev, self._anc1[ish], self._num_ancillae) self._circuit.x(self._anc1[ish]) def _rotation(self): qc = self._circuit rec_reg = self._rec ancilla = self._anc if self._negative_evals: for i in range(0, self._precision + self._num_ancillae): qc.cu3(self._scale*2**(-i), 0, 0, rec_reg[i], ancilla) qc.cu3(2*np.pi, 0, 0, self._ev[0], ancilla) #correcting the sign else: for i in range(0, self._precision + self._num_ancillae): qc.cu3(self._scale*2**(-i), 0, 0, rec_reg[i], ancilla) self._circuit = qc self._rec = rec_reg self._anc = ancilla def construct_circuit(self, mode, inreg): """Construct the Long Division Rotation circuit. Args: mode (str): consctruction mode, 'matrix' not supported inreg (QuantumRegister): input register, typically output register of Eigenvalues Returns: QuantumCircuit containing the Long Division Rotation circuit. """ if mode == 'matrix': raise NotImplementedError('The matrix mode is not supported.') self._ev = inreg if self._scale == 0: self._scale = 2**-len(inreg) if self._negative_evals: self._neg_offset = 1 self._num_ancillae = len(self._ev) - self._neg_offset if self._num_ancillae < 3: self._num_ancillae = 3 if self._negative_evals == True: if self._num_ancillae < 4: self._num_ancillae = 4 self._n = self._num_ancillae + 1 if self._precision is None: self._precision = self._num_ancillae self._a = QuantumRegister(self._n, 'one') #register storing 1 self._b0 = QuantumRegister(1, 'b0') #extension of b - required by subtraction self._anc1 = QuantumRegister(self._num_ancillae-1, 'algn_anc') # ancilla for the initial shifting self._z = QuantumRegister(1, 'z') #subtraction overflow self._c = QuantumRegister(1, 'c') #carry self._rec = QuantumRegister(self._precision + self._num_ancillae, 'res') #reciprocal result self._anc = QuantumRegister(1, 'anc') qc = QuantumCircuit(self._a, self._b0, self._ev, self._anc1, self._c, self._z, self._rec, self._anc) self._circuit = qc self._ld_circuit() self._rotation() return self._circuit
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Special data types. """ from enum import Enum from typing import NamedTuple, List, Union, NewType, Tuple, Dict from qiskit import circuit ScheduledGate = NamedTuple( "ScheduledGate", [ ("t0", int), ("operand", circuit.Gate), ("duration", int), ("bits", List[Union[circuit.Qubit, circuit.Clbit]]), ("bit_position", int), ], ) ScheduledGate.__doc__ = "A gate instruction with embedded time." ScheduledGate.t0.__doc__ = "Time when the instruction is issued." ScheduledGate.operand.__doc__ = "Gate object associated with the gate." ScheduledGate.duration.__doc__ = "Time duration of the instruction." ScheduledGate.bits.__doc__ = "List of bit associated with the gate." ScheduledGate.bit_position.__doc__ = "Position of bit associated with this drawing source." GateLink = NamedTuple( "GateLink", [("t0", int), ("opname", str), ("bits", List[Union[circuit.Qubit, circuit.Clbit]])] ) GateLink.__doc__ = "Dedicated object to represent a relationship between instructions." GateLink.t0.__doc__ = "A position where the link is placed." GateLink.opname.__doc__ = "Name of gate associated with this link." GateLink.bits.__doc__ = "List of bit associated with the instruction." Barrier = NamedTuple( "Barrier", [("t0", int), ("bits", List[Union[circuit.Qubit, circuit.Clbit]]), ("bit_position", int)], ) Barrier.__doc__ = "Dedicated object to represent a barrier instruction." Barrier.t0.__doc__ = "A position where the barrier is placed." Barrier.bits.__doc__ = "List of bit associated with the instruction." Barrier.bit_position.__doc__ = "Position of bit associated with this drawing source." HorizontalAxis = NamedTuple( "HorizontalAxis", [("window", Tuple[int, int]), ("axis_map", Dict[int, int]), ("label", str)] ) HorizontalAxis.__doc__ = "Data to represent configuration of horizontal axis." HorizontalAxis.window.__doc__ = "Left and right edge of graph." HorizontalAxis.axis_map.__doc__ = "Mapping of apparent coordinate system and actual location." HorizontalAxis.label.__doc__ = "Label of horizontal axis." class BoxType(str, Enum): """Box type. SCHED_GATE: Box that represents occupation time by gate. DELAY: Box associated with delay. TIMELINE: Box that represents time slot of a bit. """ SCHED_GATE = "Box.ScheduledGate" DELAY = "Box.Delay" TIMELINE = "Box.Timeline" class LineType(str, Enum): """Line type. BARRIER: Line that represents barrier instruction. GATE_LINK: Line that represents a link among gates. """ BARRIER = "Line.Barrier" GATE_LINK = "Line.GateLink" class SymbolType(str, Enum): """Symbol type. FRAME: Symbol that represents zero time frame change (Rz) instruction. """ FRAME = "Symbol.Frame" class LabelType(str, Enum): """Label type. GATE_NAME: Label that represents name of gate. DELAY: Label associated with delay. GATE_PARAM: Label that represents parameter of gate. BIT_NAME: Label that represents name of bit. """ GATE_NAME = "Label.Gate.Name" DELAY = "Label.Delay" GATE_PARAM = "Label.Gate.Param" BIT_NAME = "Label.Bit.Name" class AbstractCoordinate(Enum): """Abstract coordinate that the exact value depends on the user preference. RIGHT: The horizontal coordinate at t0 shifted by the left margin. LEFT: The horizontal coordinate at tf shifted by the right margin. TOP: The vertical coordinate at the top of the canvas. BOTTOM: The vertical coordinate at the bottom of the canvas. """ RIGHT = "RIGHT" LEFT = "LEFT" TOP = "TOP" BOTTOM = "BOTTOM" class Plotter(str, Enum): """Name of timeline plotter APIs. MPL: Matplotlib plotter interface. Show timeline in 2D canvas. """ MPL = "mpl" # convenient type to represent union of drawing data DataTypes = NewType("DataType", Union[BoxType, LabelType, LineType, SymbolType]) # convenient type to represent union of values to represent a coordinate Coordinate = NewType("Coordinate", Union[float, AbstractCoordinate]) # Valid bit objects Bits = NewType("Bits", Union[circuit.Qubit, circuit.Clbit])
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
# let's define the vectors v=[-3,4,-5,6] u=[4,3,6,5] vu = 0 for i in range(len(v)): vu = vu + v[i]*u[i] print(v,u,vu) u = [-3,-4] uu = u[0]*u[0] + u[1]*u[1] print(u,u,uu) u = [-3,-4] neg_u=[3,4] v=[-4,3] neg_v=[4,-3] # let's define a function for inner product def inner(v_one,v_two): summation = 0 for i in range(len(v_one)): summation = summation + v_one[i]*v_two[i] # adding up pairwise multiplications return summation # return the inner product print("inner product of u and -v (",u," and ",neg_v,") is",inner(u,neg_v)) print("inner product of -u and v (",neg_u," and ",v,") is",inner(neg_u,v)) print("inner product of -u and -v (",neg_u," and ",neg_v,") is",inner(neg_u,neg_v)) # let's define a function for inner product def inner(v_one,v_two): summation = 0 for i in range(len(v_one)): summation = summation + v_one[i]*v_two[i] # adding up pairwise multiplications return summation # return the inner product v = [-1,2,-3,4] v_neg_two=[2,-4,6,-8] u=[-2,-1,5,2] u_three=[-6,-3,15,6] print("inner product of v and u is",inner(v,u)) print("inner product of -2v and 3u is",inner(v_neg_two,u_three))
https://github.com/HuangJunye/Qiskit-for-GameDev
HuangJunye
#!/usr/bin/env python3 from qiskit import QuantumRegister, ClassicalRegister from qiskit import QuantumCircuit, Aer, execute def run_qasm(qasm, backend_to_run="qasm_simulator"): qc = QuantumCircuit.from_qasm_str(qasm) backend = Aer.get_backend(backend_to_run) job_sim = execute(qc, backend) sim_result = job_sim.result() return sim_result.get_counts(qc)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.transpiler.passes import RemoveBarriers circuit = QuantumCircuit(1) circuit.x(0) circuit.barrier() circuit.h(0) circuit = RemoveBarriers()(circuit) circuit.draw('mpl')
https://github.com/shantomborah/Quantum-Algorithms
shantomborah
import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer, execute from qiskit.circuit import Gate # Define no. of message qubits n = 10 # Alice's end alice_prepare = np.random.choice([0,1], size=(n,), p=[0.5, 0.5]) alice_hadamard = np.random.choice([0,1], size=(n,), p=[0.5, 0.5]) circ = QuantumCircuit(n, n) # Preparation circ.reset(range(n)) for i in range(n): if alice_prepare[i] == 1: circ.x(i) circ.barrier() # Hadamard Transform for i in range(n): if alice_hadamard[i] == 1: circ.h(i) circ.barrier() # Eavesdropper circ.append(Gate(name="$Eve$", num_qubits=n, params=[]), range(n)) # Bob's end bob_hadamard = np.random.choice([0,1], size=(n,), p=[0.5, 0.5]) circ.barrier() # Hadamard Transform for i in range(n): if bob_hadamard[i] == 1: circ.h(i) circ.barrier() # Measurement circ.measure(range(n), range(n)) circ.draw('mpl', reverse_bits=True, scale=0.45) # Alice's end alice_prepare = np.random.choice([0,1], size=(n,), p=[0.5, 0.5]) alice_hadamard = np.random.choice([0,1], size=(n,), p=[0.5, 0.5]) circ = QuantumCircuit(n, n) # Preparation circ.reset(range(n)) for i in range(n): if alice_prepare[i] == 1: circ.x(i) circ.barrier() # Hadamard Transform for i in range(n): if alice_hadamard[i] == 1: circ.h(i) circ.barrier() # Bob's end bob_hadamard = np.random.choice([0,1], size=(n,), p=[0.5, 0.5]) # Hadamard Transform for i in range(n): if bob_hadamard[i] == 1: circ.h(i) circ.barrier() # Measurement circ.measure(range(n), range(n)) circ.draw('mpl', reverse_bits=True, scale=0.45) # Execute Circuit backend = Aer.get_backend('qasm_simulator') job = execute(circ, backend, shots=1) counts = job.result().get_counts(circ) bob_measure = list(counts.keys())[0][::-1] # Print Data print("".join(["Alice Prepared: ","".join([str(i) for i in alice_prepare])])) print("".join(["Alice H Transforms: ","".join([str(i) for i in alice_hadamard])])) print("".join(["Bob H Transforms: ","".join([str(i) for i in bob_hadamard])])) print("".join(["Bob Measurements: ", bob_measure])) # Extract Key alice_key = [] bob_key = [] for i in range(n): if alice_hadamard[i]==bob_hadamard[i]: alice_key.append(int(alice_prepare[i])) bob_key.append(int(bob_measure[i])) # Print Keys print("".join(["Alice extracts key as: ","".join([str(i) for i in alice_key])])) print("".join(["Bob extracts key as: ","".join([str(i) for i in bob_key])])) # Alice's end alice_prepare = np.random.choice([0,1], size=(n,), p=[0.5, 0.5]) alice_hadamard = np.random.choice([0,1], size=(n,), p=[0.5, 0.5]) circ = QuantumCircuit(n, 2*n) # Preparation circ.reset(range(n)) for i in range(n): if alice_prepare[i] == 1: circ.x(i) circ.barrier() # Hadamard Transform for i in range(n): if alice_hadamard[i] == 1: circ.h(i) circ.barrier() # Eavesdropper circ.measure(range(n), range(n)) # Bob's end bob_hadamard = np.random.choice([0,1], size=(n,), p=[0.5, 0.5]) circ.barrier() # Hadamard Transform for i in range(n): if bob_hadamard[i] == 1: circ.h(i) circ.barrier() # Measurement circ.measure(range(n), range(n,2*n)) circ.draw('mpl', reverse_bits=True, scale=0.45) # Execute Circuit backend = Aer.get_backend('qasm_simulator') job = execute(circ, backend, shots=1) counts = job.result().get_counts(circ) measure_data = list(counts.keys())[0][::-1] eve_measure = measure_data[0:n] bob_measure = measure_data[n:2*n] # Print Data print("".join(["Alice Prepared: ","".join([str(i) for i in alice_prepare])])) print("".join(["Alice H Transforms: ","".join([str(i) for i in alice_hadamard])])) print("".join(["Eve Measurements: ", eve_measure])) print("".join(["Bob H Transforms: ","".join([str(i) for i in bob_hadamard])])) print("".join(["Bob Measurements: ", bob_measure])) # Extract Key alice_key = [] bob_key = [] for i in range(n): if alice_hadamard[i]==bob_hadamard[i]: alice_key.append(int(alice_prepare[i])) bob_key.append(int(bob_measure[i])) # Print Keys print("".join(["Alice extracts key as: ","".join([str(i) for i in alice_key])])) print("".join(["Bob extracts key as: ","".join([str(i) for i in bob_key])]))
https://github.com/SaashaJoshi/IBM-Qiskit-Summer-School-2020
SaashaJoshi
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() # our backend is the Pulse Simulator from resources import helper from qiskit.providers.aer import PulseSimulator backend_sim = PulseSimulator() # sample duration for pulse instructions dt = 1e-9 # create the model duffing_model = helper.get_transmon(dt) # get qubit frequency from Duffing model qubit_lo_freq = duffing_model.hamiltonian.get_qubit_lo_from_drift() import numpy as np # visualization tools import matplotlib.pyplot as plt plt.style.use('dark_background') # unit conversion factors -> all backend properties returned in SI (Hz, sec, etc) GHz = 1.0e9 # Gigahertz MHz = 1.0e6 # Megahertz kHz = 1.0e3 # kilohertz us = 1.0e-6 # microseconds ns = 1.0e-9 # nanoseconds from qiskit import pulse from qiskit.pulse import Play, Acquire from qiskit.pulse.pulse_lib import GaussianSquare # qubit to be used throughout the notebook qubit = 0 ### Collect the necessary channels drive_chan = pulse.DriveChannel(qubit) meas_chan = pulse.MeasureChannel(qubit) acq_chan = pulse.AcquireChannel(qubit) # Construct a measurement schedule and add it to an InstructionScheduleMap meas_samples = 1200 meas_pulse = GaussianSquare(duration=meas_samples, amp=0.025, sigma=4, width=1150) measure_sched = Play(meas_pulse, meas_chan) | Acquire(meas_samples, acq_chan, pulse.MemorySlot(qubit)) inst_map = pulse.InstructionScheduleMap() inst_map.add('measure', [qubit], measure_sched) # save the measurement/acquire pulse for later measure = inst_map.get('measure', qubits=[qubit]) from qiskit.pulse import pulse_lib def build_rabi_pulse_schedule(drive_duration, drive_amp, drive_sigma): ### create a Rabi schedule (already done) ### create a Gaussian Rabi pulse using pulse_lib ### play Rabi pulse on the Rabi schedule and return rabi_schedule = pulse.Schedule(name='rabi_experiment') ### WRITE YOUR CODE BETWEEN THESE LINES - START rabi_pulse = pulse_lib.gaussian(duration=drive_duration, amp=drive_amp, sigma=drive_sigma) rabi_schedule = pulse.Schedule() rabi_schedule += Play(rabi_pulse, drive_chan) ### WRITE YOUR CODE BETWEEN THESE LINES - END # add measurement to rabi_schedule # << indicates time shift the beginning to the start of the schedule rabi_schedule += measure << rabi_schedule.duration return rabi_schedule # Gaussian pulse parameters, with varying amplitude drive_duration = 128 num_rabi_points = 41 drive_amps = np.linspace(0, 0.9, num_rabi_points) drive_sigma = 16 # now vary the amplitude for each drive amp rabi_schedules = [] for drive_amp in drive_amps: rabi_schedules.append(build_rabi_pulse_schedule(drive_duration, drive_amp, drive_sigma)) rabi_schedules[-1].draw() # assemble the schedules into a Qobj from qiskit import assemble rabi_qobj = assemble(**helper.get_params('rabi', globals())) answer1a = rabi_qobj # run the simulation rabi_result = backend_sim.run(rabi_qobj, duffing_model).result() # retrieve the data from the experiment rabi_values = helper.get_values_from_result(rabi_result, qubit) fit_params, y_fit = helper.fit_sinusoid(drive_amps, rabi_values, [1, 0, 0.5, 0]) plt.scatter(drive_amps, rabi_values, color='white') plt.plot(drive_amps, y_fit, color='red') drive_period = fit_params[2] # get period of rabi oscillation plt.axvline(0, color='red', linestyle='--') plt.axvline(drive_period/2, color='red', linestyle='--') plt.xlabel("Drive amp [a.u.]", fontsize=15) plt.ylabel("Measured signal [a.u.]", fontsize=15) plt.show() print("Pi pulse amplitude is %f"%float(drive_period/2)) # x_90 is a concise way to say pi_over_2; i.e., an X rotation of 90 degrees x90_pulse = pulse_lib.gaussian(duration=drive_duration, amp=drive_period/4, sigma=drive_sigma, name='x90_pulse') # Ramsey experiment parameters time_max_us = 0.4 time_step_us = 0.0035 times_us = np.arange(0.1, time_max_us, time_step_us) # Convert to units of dt delay_times_dt = times_us * us / dt def build_ramsey_pulse_schedule(delay): ### create a Ramsey pulse schedule (already done) ### play an x90 pulse on the drive channel ### play another x90 pulse after delay ### add measurement pulse to schedule ramsey_schedule = pulse.Schedule(name='ramsey_experiment') ### HINT: include delay by adding it to the duration of the schedule ### round delay to nearest integer with int(delay) ### WRITE YOUR CODE BETWEEN THESE LINES - START ramsey_schedule = pulse.Schedule() ramsey_schedule += Play(x90_pulse, drive_chan) ramsey_schedule += Play(x90_pulse, drive_chan) << ramsey_schedule.duration + int(delay) ramsey_schedule += measure << ramsey_schedule.duration ### WRITE YOUR CODE BETWEEN THESE LINES - END return ramsey_schedule # create schedules for Ramsey experiment ramsey_schedules = [] for delay in delay_times_dt: ramsey_schedules.append(build_ramsey_pulse_schedule(delay)) ramsey_schedules[-1].draw() # assemble the schedules into a Qobj # the helper will drive the pulses off-resonantly by an unknown value ramsey_qobj = assemble(**helper.get_params('ramsey', globals())) answer1b = ramsey_qobj # run the simulation ramsey_result = backend_sim.run(ramsey_qobj, duffing_model).result() # retrieve the data from the experiment ramsey_values = helper.get_values_from_result(ramsey_result, qubit) # off-resonance component fit_params, y_fit = helper.fit_sinusoid(times_us, ramsey_values, [1, 0.7, 0.1, 0.25]) _, _, ramsey_period_us, _, = fit_params del_f_MHz = 1/ramsey_period_us # freq is MHz since times in us plt.scatter(times_us, np.real(ramsey_values), color='white') plt.plot(times_us, y_fit, color='red', label=f"df = {del_f_MHz:.6f} MHz") plt.xlim(np.min(times_us), np.max(times_us)) plt.xlabel('Delay between X90 pulses [$\mu$s]', fontsize=15) plt.ylabel('Measured Signal [a.u.]', fontsize=15) plt.title('Ramsey Experiment', fontsize=15) plt.legend(loc=3) plt.show() print("Drive is off-resonant by %f MHz"%float(del_f_MHz)) name = 'Saasha Joshi' email = 'saashajoshi08@gmail.com' from grading_tools import grade grade(answer1a, name, email, 'lab6', 'ex1a') grade(answer1b, name, email, 'lab6', 'ex1b') from IPython.display import display, Javascript;display(Javascript('IPython.notebook.save_checkpoint();')); from grading_tools import send_code;send_code('ex1.ipynb')
https://github.com/filipecorrea/deutsch-jozsa
filipecorrea
import qiskit from qiskit import IBMQ # IBMQ.save_account('<IBMQ_API_TOKEN>') IBMQ.load_account() from qiskit import BasicAer from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import DeutschJozsa from qiskit.aqua.components.oracles import TruthTableOracle qiskit.__qiskit_version__ bitstr = '11110000' oracle = TruthTableOracle(bitstr) oracle.circuit.draw(output='mpl') dj = DeutschJozsa(oracle) backend = BasicAer.get_backend('qasm_simulator') result = dj.run(QuantumInstance(backend, shots=1024)) print('The truth table {} represents a {} function.'.format(bitstr, result['result'])) bitstr = '1' * 32 oracle = TruthTableOracle(bitstr) dj = DeutschJozsa(oracle) result = dj.run(QuantumInstance(backend, shots=1024)) print('The truth table {} represents a {} function.'.format(bitstr, result['result']))
https://github.com/ColibrITD-SAS/mpqp
ColibrITD-SAS
from qiskit import QuantumCircuit from . import circuit_constructor, circuit_eq def test_circuit_constructor(): gates_list = ["h", "hs", "hs", "i", "i", "h"] result = circuit_constructor(gates_list) result_dag = circuit_constructor(gates_list, True) expected = QuantumCircuit(6) expected.h(0) _ = expected.s(1), expected.h(1) _ = expected.s(2), expected.h(2) expected.h(5) expected_dag = QuantumCircuit(6) expected_dag.h(0) _ = expected_dag.h(1), expected_dag.sdg(1) _ = expected_dag.h(2), expected_dag.sdg(2) expected_dag.h(5) assert circuit_eq(result, expected) assert circuit_eq(result_dag, expected_dag)
https://github.com/DanKim44/CodingWithQiskitS2
DanKim44
#Coding With Qiskit S2E5 Dinner Party using Grover's Algorithm %matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.aqua.algorithms import Grover from qiskit.aqua.components.oracles import LogicalExpressionOracle from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.tools.visualization import * from qiskit.tools.monitor import job_monitor # Loading your IBM Q account(s) provider = IBMQ.load_account() log_expr = '((Olivia & Abe) | (Jin & Amira)) & ~(Abe & Amira)' algorithm = Grover(LogicalExpressionOracle(log_expr)) backend = BasicAer.get_backend('qasm_simulator') result = algorithm.run(backend) plot_histogram(result['measurement'], title="Possible Party Combinations", bar_labels=True) #Top to bottom: #Abe Amira Jin Oliva #Mapping to random Digital Logic Homework: F=(~A+~B+C)(~A+B+C)(A+~B+C)(A+B+~C)(A+B+C) log_expr2 = '( ~A & ~B & C ) | ( ~A & B & C ) | ( A & ~B & C ) | ( A & B & ~C ) | ( A & B & C )' algorithm2 = Grover(LogicalExpressionOracle(log_expr2)) result2 = algorithm2.run(backend) plot_histogram(result2['measurement'], title="Homework:)", bar_labels=True) #Matches with homework problem & LogicAid:)
https://github.com/quantumyatra/quantum_computing
quantumyatra
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, QuantumRegister,ClassicalRegister, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.providers.aer import UnitarySimulator n =1 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) circ.measure(q,c) # Change the background color in mpl style = {'backgroundcolor': 'lightblue'} circ.draw(output='mpl', style = style) simulator = Aer.get_backend('qasm_simulator') result = execute(circ, simulator).result() counts = result.get_counts(circ) plot_histogram(counts, title='Bell-State counts') n =1 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(circ, simulator).result() unitary = result.get_unitary(circ) print( unitary) n =2 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) circ.measure(q,c) # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} circ.draw(output='mpl', style = style) n =2 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(circ, simulator).result() unitary = result.get_unitary(circ) print( unitary) n =2 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[1]) circ.measure(q,c) # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} circ.draw(output='mpl', style = style) n =2 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[1]) # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(circ, simulator).result() unitary = result.get_unitary(circ) print( unitary) n =2 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) circ.h(q[1]) circ.measure(q,c) # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} circ.draw(output='mpl', style = style) simulator = Aer.get_backend('qasm_simulator') result = execute(circ, simulator).result() counts = result.get_counts(circ) plot_histogram(counts, title='Bell-State counts') n =2 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) circ.h(q[1]) # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(circ, simulator).result() unitary = result.get_unitary(circ) print( unitary) n = 3 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) circ.h(q[1]) circ.h(q[2]) circ.measure(q,c) # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} circ.draw(output='mpl', style = style) simulator = Aer.get_backend('qasm_simulator') result = execute(circ, simulator).result() counts = result.get_counts(circ) plot_histogram(counts, title='Bell-State counts') n =3 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) circ.h(q[1]) circ.h(q[2]) # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(circ, simulator).result() unitary = result.get_unitary(circ) print( unitary) n = 8 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) for k in range(8): circ.h(q[k]) circ.measure(q,c) # Change the background color in mpl style = {'backgroundcolor': 'lightpink'} circ.draw(output='mpl', style = style) simulator = Aer.get_backend('qasm_simulator') result = execute(circ, simulator).result() counts = result.get_counts(circ) plot_histogram(counts, title='Bell-State counts') n =8 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) for k in range(8): circ.h(q[k]) # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(circ, simulator).result() unitary = result.get_unitary(circ) print( unitary) unitary.shape
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1); tensored = bottom.tensor(top) tensored.draw('mpl')
https://github.com/dkp-quantum/Tutorials
dkp-quantum
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * import numpy as np # Create a quantum register with 3 qubits q3 = QuantumRegister(3,'q') # Create a classical register with 3 qubits c3 = ClassicalRegister(3,'c') # Create the quantum circuit with the measurement in one go. qc_ex2 = QuantumCircuit(q3,c3,name="ex1") qc_ex2.ry(2*np.pi/3,0) qc_ex2.cx(0,1) qc_ex2.cx(1,2) qc_ex2.barrier() qc_ex2.measure(q3,c3) qc_ex2.draw(output='mpl')# Now, add a Toffoli gate qc_toff = QuantumCircuit(q3,c3,name="ex1") backend_q = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. job_ex2 = execute(qc_ex2, backend_q, shots=4096) # Grab the results from the job. result_ex2 = job_ex2.result() plot_histogram(result_ex2.get_counts(qc_ex2)) # Create a quantum register with 3 qubits q3 = QuantumRegister(3,'q') # Create a classical register with 3 qubits c3 = ClassicalRegister(3,'c') # Create the quantum circuit without a Toffoli gate qc_toff = QuantumCircuit(q3,c3,name="ex1") qc_toff.ry(2*np.pi/3,0) qc_toff.h(1) qc_toff.h(2) qc_toff.barrier() qc_toff.measure(q3,c3) qc_toff.draw(output='mpl') # Execute the circuit on the qasm simulator. job_toff = execute(qc_toff, backend_q, shots=4096) # Grab the results from the job. result_toff = job_toff.result() plot_histogram(result_toff.get_counts(qc_toff)) # Now, add a Toffoli gate qc_toff = QuantumCircuit(q3,c3,name="ex1") qc_toff.ry(2*np.pi/3,0) qc_toff.h(1) qc_toff.h(2) qc_toff.ccx(1,2,0) qc_toff.barrier() qc_toff.measure(q3,c3) qc_toff.draw(output='mpl') # Execute the circuit on the qasm simulator. job_toff = execute(qc_toff, backend_q, shots=4096) # Grab the results from the job. result_toff = job_toff.result() plot_histogram(result_toff.get_counts(qc_toff)) # IBMQ.disable_account() provider = IBMQ.enable_account('TOKEN') provider = IBMQ.get_provider(hub='ibm-q-research') provider.backends() from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor from qiskit.tools.visualization import plot_gate_map, plot_error_map # Retrieve IBM Quantum device information backend_overview() # Let's get two quantum devices as an example backend_qx2 = provider.get_backend('ibmqx2') backend_vigo = provider.get_backend('ibmq_vigo') backend_monitor(backend_qx2) plot_error_map(backend_qx2) backend_monitor(backend_vigo) plot_error_map(backend_vigo) # Create a 5-qubit GHZ state (i.e. (|00000> + |11111>)/sqrt(2)) q5 = QuantumRegister(5,'q') c5 = ClassicalRegister(5,'c') ghz5= QuantumCircuit(q5,c5) ghz5.h(0) for i in range(1,5): ghz5.cx(0,i) ghz5.barrier() ghz5.measure(q5,c5) ghz5.draw(output='mpl') # Run the 5-qubit GHZ experiment on a 5-qubit device (try vigo) job_exp1 = execute(ghz5, backend=backend_vigo, shots=4096) job_monitor(job_exp1) # Grab experimental results result_vigo = job_exp1.result() counts_vigo = result_vigo.get_counts(ghz5) # Let's also try the same experiment on the 15-qubit device. job_exp2 = execute(ghz5, backend=provider.get_backend('ibmq_16_melbourne'), shots=4096) job_monitor(job_exp2) # Grab experimental results result_mel = job_exp2.result() counts_mel = result_mel.get_counts(ghz5) # Now, compare to theory by running it on qasm_simulator job_qasm = execute(ghz5,backend=backend_q) result_qasm = job_qasm.result() counts_qasm = result_qasm.get_counts(ghz5) # Plot both experimental and ideal results plot_histogram([counts_qasm,counts_vigo,counts_mel], color=['black','green','blue'], legend=['QASM','Vigo','Melbourne'],figsize = [20,8]) %matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * import numpy as np # Define a function that takes a QuantumCircuit (qc) # a qubit index (index) and a message string (msg) def encoding(qc, index, msg): if msg == 0: pass # To send 00 we do nothing elif msg == 1: qc.x(index) # To send 10 we apply an X-gate elif msg == 2: qc.z(index) # To send 01 we apply a Z-gate elif msg == 3: qc.z(index) # To send 11, we apply a Z-gate qc.x(index) # followed by an X-gate else: print("Invalid Message. Sending '00'.") def decoding(qc, a, b): qc.cx(a,b) qc.h(a) def qc_sdc(msg): # Create the quantum circuit with 2 qubits qc = QuantumCircuit(2) # First, an entangled pair is created between Alice and Bob # Bob has the first qubit, Alice has the second qubit. qc.h(0) qc.cx(0,1) qc.barrier() # Next, Bob encodes his message onto qubit 0. encoding(qc, 0, msg) qc.barrier() # Bob then sends his qubit to Alice. # After recieving qubit 0, Alice applies the recovery protocol: decoding(qc, 0, 1) # Finally, Alice measures her qubits to read Bob's message qc.measure_all() return qc backend_qasm = Aer.get_backend('qasm_simulator') rand_msg = np.random.randint(4) qc = qc_sdc(rand_msg) job_sim = execute(qc, backend_qasm, shots=1024) sim_result = job_sim.result() measurement_result = sim_result.get_counts(qc) print(measurement_result) plot_histogram(measurement_result) print("The random message was: %s" % rand_msg) qc.draw(output='mpl') from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor from qiskit.tools.visualization import plot_gate_map, plot_error_map # Retrieve IBM Quantum device information backend_overview() # Run the superdense coding experiment on a 5-qubit device (try london) job_sdc = execute(qc, backend=provider.get_backend('ibmq_london'), shots=4096) job_monitor(job_sdc) experiment_result = job_sdc.result().get_counts(qc) print("The random message was: %s" % rand_msg) plot_histogram(experiment_result) def create_bell_pair(qc, a, b): # Creates a bell pair in qc using qubits a & b qc.h(a) # Put qubit a into state |+> qc.cx(a,b) # CNOT with a as control and b as target qr = QuantumRegister(3) # Protocol uses 3 qubits cr1 = ClassicalRegister(1) # and 2 classical bits cr2 = ClassicalRegister(1) # in 2 different registers teleportation = QuantumCircuit(qr, cr1, cr2) ## STEP 1 # Entangle qubits q1 and q2 create_bell_pair(teleportation, 1, 2) teleportation.barrier() # And view the circuit so far: teleportation.draw(output='mpl') ## STEP 2 # Bob performs his gates teleportation.cx(0,1) teleportation.h(0) teleportation.barrier() # And view the circuit so far: teleportation.draw(output='mpl') ## STEP 3 # Bob measures his part teleportation.measure(0,0) teleportation.measure(1,1) # And view the circuit so far: teleportation.draw(output='mpl') # This function takes a QuantumCircuit (qc), qubit index # and ClassicalRegisters (cr1 & cr2) to decide which gates to apply def alice_recover(qc, index, cr1, cr2): # Here we use c_if to control our gates with a classical # bit instead of a qubit qc.z(index).c_if(cr1, 1) # Apply gates if the registers qc.x(index).c_if(cr2, 1) # are in the state '1' ## STEP 4 # Alice perform recovery alice_recover(teleportation, 2, cr1, cr2) # And view the circuit so far: teleportation.draw(output='mpl') def random_init(qc,r1,r2,index): ## STEP 0 # Bob prepares a quantum state to teleport # by applying a random rotation around y and z qc.ry(r1,index) qc.rz(r2,index) qc.barrier() def quantum_teleportation(qc): ## STEP 1 # Entangle qubits q1 and q2 create_bell_pair(qc, 1, 2) qc.barrier() ## STEP 2 # Bob performs his gates qc.cx(0,1) qc.h(0) qc.barrier() ## STEP 3 # Bob measures his part qc.measure(0,0) qc.measure(1,1) ## STEP 4 # Alice perform recovery alice_recover(qc, 2, cr1, cr2) qr = QuantumRegister(3) # Protocol uses 3 qubits cr1 = ClassicalRegister(1) # and 2 classical bits cr2 = ClassicalRegister(1) # in 2 different registers qc_teleportation = QuantumCircuit(qr, cr1, cr2) qc_ref = QuantumCircuit(qr) r1 = np.random.random()*np.pi r2 = np.random.random()*2*np.pi random_init(qc_ref, r1, r2, 0) random_init(qc_teleportation, r1, r2, 0) quantum_teleportation(qc_teleportation) qc_teleportation.draw(output='mpl') backend_sv = BasicAer.get_backend('statevector_simulator') in_vector = execute(qc_ref, backend_sv).result().get_statevector() out_vector = execute(qc_teleportation, backend_sv).result().get_statevector() plot_bloch_multivector(in_vector) plot_bloch_multivector(out_vector)
https://github.com/Qiskit/qiskit-transpiler-service
Qiskit
# Install the plugin # !pip install -e . import numpy as np from qiskit import QuantumCircuit from qiskit.quantum_info import random_clifford from qiskit.transpiler import PassManager from qiskit_transpiler_service.ai.synthesis import AILinearFunctionSynthesis from qiskit_transpiler_service.ai.collection import CollectLinearFunctions from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit_ibm_runtime import QiskitRuntimeService coupling_map = QiskitRuntimeService().backend("ibm_cairo").coupling_map circuit = QuantumCircuit(27) for c in range(3): nq = 8 qs = np.random.choice(range(circuit.num_qubits), size=nq, replace=False) circuit.compose(random_clifford(nq).to_circuit(), qubits=qs.tolist(), inplace=True) for q in qs: circuit.t(q) print( f"Original circuit -> Depth: {circuit.decompose(reps=3).depth()}, Gates(2q): {circuit.decompose(reps=3).num_nonlocal_gates()}" ) circuit.draw(output="mpl", fold=-1, scale=0.3, style="iqp") qiskit_lvl3_transpiler = generate_preset_pass_manager( optimization_level=3, coupling_map=coupling_map ) lvl3_transpiled_circuit = qiskit_lvl3_transpiler.run(circuit) print( f"Qiskit lvl3 Transpiler -> Depth: {lvl3_transpiled_circuit.decompose(reps=3).depth()}, Gates(2q): {lvl3_transpiled_circuit.decompose(reps=3).num_nonlocal_gates()}" ) lvl3_transpiled_circuit.draw(output="mpl", fold=-1, scale=0.2, style="iqp") ai_optimize_cliffords = PassManager( [ CollectLinearFunctions(), AILinearFunctionSynthesis(backend_name="ibm_cairo"), ] ) # AI Synthesis passes respect the coupling map and should run after transpiling ai_optimized_circuit = ai_optimize_cliffords.run(lvl3_transpiled_circuit) print( f"AI-Optimized circuit -> Depth: {ai_optimized_circuit.decompose(reps=3).depth()}, Gates(2q): {ai_optimized_circuit.decompose(reps=3).num_nonlocal_gates()}" ) ai_optimized_circuit.draw(output="mpl", fold=-1, scale=0.25, style="iqp")
https://github.com/mrvee-qC-bee/SCQC23
mrvee-qC-bee
from sklearn.datasets import load_iris iris_data = load_iris() print(iris_data.DESCR) features = iris_data.data labels = iris_data.target from sklearn.preprocessing import MinMaxScaler features = MinMaxScaler().fit_transform(features) import pandas as pd import seaborn as sns df = pd.DataFrame(iris_data.data, columns=iris_data.feature_names) df["class"] = pd.Series(iris_data.target) sns.pairplot(df, hue="class", palette="tab10") from sklearn.model_selection import train_test_split from qiskit.utils import algorithm_globals algorithm_globals.random_seed = 123 train_features, test_features, train_labels, test_labels = train_test_split( features, labels, train_size=0.8, random_state=algorithm_globals.random_seed ) from sklearn.svm import SVC svc = SVC() _ = svc.fit(train_features, train_labels) # suppress printing the return value train_score_c4 = svc.score(train_features, train_labels) test_score_c4 = svc.score(test_features, test_labels) print(f"Classical SVC on the training dataset: {train_score_c4:.2f}") print(f"Classical SVC on the test dataset: {test_score_c4:.2f}") from qiskit.circuit.library import EfficientSU2 circuit = EfficientSU2(num_qubits=3, reps=1, insert_barriers=True) circuit.decompose().draw(output='mpl') x = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2] encode = circuit.bind_parameters(x) encode.decompose().draw(output='mpl') from qiskit.circuit.library import ZZFeatureMap circuit = ZZFeatureMap(3, reps=1, insert_barriers=True) circuit.decompose().draw(output='mpl') x = [0.1,0.2,0.3] encode = circuit.bind_parameters(x) encode.decompose().draw(output='mpl') from qiskit.circuit.library import ZZFeatureMap x = [-0.1,0.2] # YOUR CODE HERE # circuit = # encode = circuit.decompose().draw(output='mpl') from qiskit.circuit.library import ZZFeatureMap num_features = features.shape[1] feature_map = ZZFeatureMap(feature_dimension=num_features, reps=1) feature_map.decompose().draw(output="mpl", fold=20) from qiskit.circuit.library import RealAmplitudes ansatz = RealAmplitudes(num_qubits=num_features, reps=3) ansatz.decompose().draw(output="mpl", fold=20) from qiskit.algorithms.optimizers import COBYLA optimizer = COBYLA(maxiter=100) from matplotlib import pyplot as plt from IPython.display import clear_output objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) def callback_graph(weights, obj_func_eval): clear_output(wait=True) objective_func_vals.append(obj_func_eval) plt.title("Objective function value against iteration") plt.xlabel("Iteration") plt.ylabel("Objective function value") plt.plot(range(len(objective_func_vals)), objective_func_vals) plt.show() from qiskit_ibm_runtime import QiskitRuntimeService, Session, Options, Estimator, Sampler service = QiskitRuntimeService(channel='ibm_quantum') service.backends() backend = service.backends(simulator=True)[0] print(backend) import time from qiskit_machine_learning.algorithms.classifiers import VQC # from qiskit.primitives import Sampler with Session(service = service, backend = backend): vqc = VQC( sampler=Sampler(), feature_map=feature_map, ansatz=ansatz, optimizer=optimizer, callback=callback_graph, ) # clear objective value history objective_func_vals = [] start = time.time() vqc.fit(train_features, train_labels) elapsed = time.time() - start print(f"Training time: {round(elapsed)} seconds") train_score_q4 = vqc.score(train_features, train_labels) test_score_q4 = vqc.score(test_features, test_labels) print(f"Quantum VQC on the training dataset: {train_score_q4:.2f}") print(f"Quantum VQC on the test dataset: {test_score_q4:.2f}") from qiskit.circuit.library import ZZFeatureMap, ZFeatureMap, PauliFeatureMap, StatePreparation num_features = features.shape[1] feature_map_ex = # Use any featuremap of your choice! feature_map_ex.decompose().draw(output="mpl", fold=20) from qiskit.circuit.library import RealAmplitudes, EfficientSU2, ExcitationPreserving, PauliTwoDesign, TwoLocal, NLocal ansatz_ex = # Use any ansatz of your choice! ansatz_ex.decompose().draw(output="mpl", fold=20) from qiskit.algorithms.optimizers import COBYLA, SPSA, L_BFGS_B, NELDER_MEAD, UMDA, TNC optimizer_ex = # Use any optimizer of your choice! import time from qiskit_machine_learning.algorithms.classifiers import VQC from qiskit.primitives import Sampler with Session(service = service, backend = backend): vqc_ex = VQC( feature_map=feature_map_ex, ansatz=ansatz_ex, optimizer=optimizer_ex, callback=callback_graph, ) # clear objective value history objective_func_vals = [] start = time.time() vqc_ex.fit(train_features, train_labels) elapsed = time.time() - start print(f"Training time: {round(elapsed)} seconds") train_score_q4_ex = vqc_ex.score(train_features, train_labels) test_score_q4_ex = vqc_ex.score(test_features, test_labels) print(f"Quantum VQC on the training dataset: {train_score_q4_ex:.2f}") print(f"Quantum VQC on the test dataset: {test_score_q4_ex:.2f}") from sklearn.decomposition import PCA features = PCA(n_components=2).fit_transform(features) plt.rcParams["figure.figsize"] = (6, 6) sns.scatterplot(x=features[:, 0], y=features[:, 1], hue=labels, palette="tab10") train_features, test_features, train_labels, test_labels = train_test_split( features, labels, train_size=0.8, random_state=algorithm_globals.random_seed ) svc.fit(train_features, train_labels) train_score_c2 = svc.score(train_features, train_labels) test_score_c2 = svc.score(test_features, test_labels) print(f"Classical SVC on the training dataset: {train_score_c2:.2f}") print(f"Classical SVC on the test dataset: {test_score_c2:.2f}") num_features = features.shape[1] feature_map = ZZFeatureMap(feature_dimension=num_features, reps=1) ansatz = RealAmplitudes(num_qubits=num_features, reps=3) ansatz.decompose().draw("mpl") from qiskit.algorithms.optimizers import COBYLA, SPSA, L_BFGS_B, NELDER_MEAD, UMDA, TNC optimizer = COBYLA(maxiter=50) from qiskit.primitives import Sampler with Session(service = service, backend = backend): vqc = VQC( feature_map=feature_map, ansatz=ansatz, optimizer=optimizer, callback=callback_graph, ) # clear objective value history objective_func_vals = [] # make the objective function plot look nicer. plt.rcParams["figure.figsize"] = (12, 6) start = time.time() vqc.fit(train_features, train_labels) elapsed = time.time() - start print(f"Training time: {round(elapsed)} seconds") train_score_q2_ra = vqc.score(train_features, train_labels) test_score_q2_ra = vqc.score(test_features, test_labels) print(f"Quantum VQC on the training dataset using RealAmplitudes: {train_score_q2_ra:.2f}") print(f"Quantum VQC on the test dataset using RealAmplitudes: {test_score_q2_ra:.2f}") from qiskit.circuit.library import EfficientSU2 ansatz = EfficientSU2(num_qubits=num_features, reps=3) optimizer = COBYLA(maxiter=100) with Session(service = service, backend = backend): vqc = VQC( feature_map=feature_map, ansatz=ansatz, optimizer=optimizer, callback=callback_graph, ) # clear objective value history objective_func_vals = [] start = time.time() vqc.fit(train_features, train_labels) elapsed = time.time() - start print(f"Training time: {round(elapsed)} seconds") train_score_q2_eff = vqc.score(train_features, train_labels) test_score_q2_eff = vqc.score(test_features, test_labels) print(f"Quantum VQC on the training dataset using EfficientSU2: {train_score_q2_eff:.2f}") print(f"Quantum VQC on the test dataset using EfficientSU2: {test_score_q2_eff:.2f}") print(f"Model | Test Score | Train Score") print(f"SVC, 4 features | {train_score_c4:10.2f} | {test_score_c4:10.2f}") print(f"VQC, 4 features, RealAmplitudes | {train_score_q4:10.2f} | {test_score_q4:10.2f}") print(f"----------------------------------------------------------") print(f"SVC, 2 features | {train_score_c2:10.2f} | {test_score_c2:10.2f}") print(f"VQC, 2 features, EfficientSU2 | {train_score_q2_eff:10.2f} | {test_score_q2_eff:10.2f}") print(f"VQC, 2 features, RealAmplitudes | {train_score_q2_ra:10.2f} | {test_score_q2_ra:10.2f}") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt import numpy as np from IPython.display import clear_output from qiskit import QuantumCircuit from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B from qiskit.circuit import Parameter from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit.utils import algorithm_globals from qiskit_machine_learning.algorithms.classifiers import NeuralNetworkClassifier, VQC from qiskit_machine_learning.algorithms.regressors import NeuralNetworkRegressor, VQR from qiskit_machine_learning.neural_networks import SamplerQNN, EstimatorQNN algorithm_globals.random_seed = 42 num_inputs = 2 num_samples = 20 X = 2 * algorithm_globals.random.random([num_samples, num_inputs]) - 1 y01 = 1 * (np.sum(X, axis=1) >= 0) # in { 0, 1} y = 2 * y01 - 1 # in {-1, +1} y_one_hot = np.zeros((num_samples, 2)) for i in range(num_samples): y_one_hot[i, y01[i]] = 1 for x, y_target in zip(X, y): if y_target == 1: plt.plot(x[0], x[1], "bo") else: plt.plot(x[0], x[1], "go") plt.plot([-1, 1], [1, -1], "--", color="black") plt.show() # construct QNN qc = QuantumCircuit(2) feature_map = ZZFeatureMap(2) ansatz = RealAmplitudes(2) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) qc.draw(output="mpl") estimator_qnn = EstimatorQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters ) # QNN maps inputs to [-1, +1] estimator_qnn.forward(X[0, :], algorithm_globals.random.random(estimator_qnn.num_weights)) # callback function that draws a live plot when the .fit() method is called def callback_graph(weights, obj_func_eval): clear_output(wait=True) objective_func_vals.append(obj_func_eval) plt.title("Objective function value against iteration") plt.xlabel("Iteration") plt.ylabel("Objective function value") plt.plot(range(len(objective_func_vals)), objective_func_vals) plt.show() # construct neural network classifier estimator_classifier = NeuralNetworkClassifier( estimator_qnn, optimizer=COBYLA(maxiter=60), callback=callback_graph ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit classifier to data estimator_classifier.fit(X, y) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score classifier estimator_classifier.score(X, y) # evaluate data points y_predict = estimator_classifier.predict(X) # plot results # red == wrongly classified for x, y_target, y_p in zip(X, y, y_predict): if y_target == 1: plt.plot(x[0], x[1], "bo") else: plt.plot(x[0], x[1], "go") if y_target != y_p: plt.scatter(x[0], x[1], s=200, facecolors="none", edgecolors="r", linewidths=2) plt.plot([-1, 1], [1, -1], "--", color="black") plt.show() estimator_classifier.weights # construct feature map feature_map = ZZFeatureMap(num_inputs) # construct ansatz ansatz = RealAmplitudes(num_inputs, reps=1) # construct quantum circuit qc = QuantumCircuit(num_inputs) qc.append(feature_map, range(num_inputs)) qc.append(ansatz, range(num_inputs)) qc.decompose().draw(output="mpl") # parity maps bitstrings to 0 or 1 def parity(x): return "{:b}".format(x).count("1") % 2 output_shape = 2 # corresponds to the number of classes, possible outcomes of the (parity) mapping. # construct QNN sampler_qnn = SamplerQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, interpret=parity, output_shape=output_shape, ) # construct classifier sampler_classifier = NeuralNetworkClassifier( neural_network=sampler_qnn, optimizer=COBYLA(maxiter=30), callback=callback_graph ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit classifier to data sampler_classifier.fit(X, y01) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score classifier sampler_classifier.score(X, y01) # evaluate data points y_predict = sampler_classifier.predict(X) # plot results # red == wrongly classified for x, y_target, y_p in zip(X, y01, y_predict): if y_target == 1: plt.plot(x[0], x[1], "bo") else: plt.plot(x[0], x[1], "go") if y_target != y_p: plt.scatter(x[0], x[1], s=200, facecolors="none", edgecolors="r", linewidths=2) plt.plot([-1, 1], [1, -1], "--", color="black") plt.show() sampler_classifier.weights # construct feature map, ansatz, and optimizer feature_map = ZZFeatureMap(num_inputs) ansatz = RealAmplitudes(num_inputs, reps=1) # construct variational quantum classifier vqc = VQC( feature_map=feature_map, ansatz=ansatz, loss="cross_entropy", optimizer=COBYLA(maxiter=30), callback=callback_graph, ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit classifier to data vqc.fit(X, y_one_hot) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score classifier vqc.score(X, y_one_hot) # evaluate data points y_predict = vqc.predict(X) # plot results # red == wrongly classified for x, y_target, y_p in zip(X, y_one_hot, y_predict): if y_target[0] == 1: plt.plot(x[0], x[1], "bo") else: plt.plot(x[0], x[1], "go") if not np.all(y_target == y_p): plt.scatter(x[0], x[1], s=200, facecolors="none", edgecolors="r", linewidths=2) plt.plot([-1, 1], [1, -1], "--", color="black") plt.show() from sklearn.datasets import make_classification from sklearn.preprocessing import MinMaxScaler X, y = make_classification( n_samples=10, n_features=2, n_classes=3, n_redundant=0, n_clusters_per_class=1, class_sep=2.0, random_state=algorithm_globals.random_seed, ) X = MinMaxScaler().fit_transform(X) plt.scatter(X[:, 0], X[:, 1], c=y) y_cat = np.empty(y.shape, dtype=str) y_cat[y == 0] = "A" y_cat[y == 1] = "B" y_cat[y == 2] = "C" print(y_cat) vqc = VQC( num_qubits=2, optimizer=COBYLA(maxiter=30), callback=callback_graph, ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit classifier to data vqc.fit(X, y_cat) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score classifier vqc.score(X, y_cat) predict = vqc.predict(X) print(f"Predicted labels: {predict}") print(f"Ground truth: {y_cat}") num_samples = 20 eps = 0.2 lb, ub = -np.pi, np.pi X_ = np.linspace(lb, ub, num=50).reshape(50, 1) f = lambda x: np.sin(x) X = (ub - lb) * algorithm_globals.random.random([num_samples, 1]) + lb y = f(X[:, 0]) + eps * (2 * algorithm_globals.random.random(num_samples) - 1) plt.plot(X_, f(X_), "r--") plt.plot(X, y, "bo") plt.show() # construct simple feature map param_x = Parameter("x") feature_map = QuantumCircuit(1, name="fm") feature_map.ry(param_x, 0) # construct simple ansatz param_y = Parameter("y") ansatz = QuantumCircuit(1, name="vf") ansatz.ry(param_y, 0) # construct a circuit qc = QuantumCircuit(1) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) # construct QNN regression_estimator_qnn = EstimatorQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters ) # construct the regressor from the neural network regressor = NeuralNetworkRegressor( neural_network=regression_estimator_qnn, loss="squared_error", optimizer=L_BFGS_B(maxiter=5), callback=callback_graph, ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit to data regressor.fit(X, y) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score the result regressor.score(X, y) # plot target function plt.plot(X_, f(X_), "r--") # plot data plt.plot(X, y, "bo") # plot fitted line y_ = regressor.predict(X_) plt.plot(X_, y_, "g-") plt.show() regressor.weights vqr = VQR( feature_map=feature_map, ansatz=ansatz, optimizer=L_BFGS_B(maxiter=5), callback=callback_graph, ) # create empty array for callback to store evaluations of the objective function objective_func_vals = [] plt.rcParams["figure.figsize"] = (12, 6) # fit regressor vqr.fit(X, y) # return to default figsize plt.rcParams["figure.figsize"] = (6, 4) # score result vqr.score(X, y) # plot target function plt.plot(X_, f(X_), "r--") # plot data plt.plot(X, y, "bo") # plot fitted line y_ = vqr.predict(X_) plt.plot(X_, y_, "g-") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile ghz = QuantumCircuit(15) ghz.h(0) ghz.cx(0, range(1, 15)) ghz.draw(output='mpl')
https://github.com/dlyongemallo/qiskit-zx-transpiler
dlyongemallo
# ZX transpiler pass for Qiskit # Copyright (C) 2023 David Yonge-Mallo # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. if __name__ == '__main__': import sys sys.path.append('..') from qiskit import transpile from qiskit.circuit import QuantumCircuit from qiskit.transpiler import PassManager from typing import Dict, List, Tuple import matplotlib.pyplot as plt # type: ignore from zxpass import ZXPass pass_manager = PassManager(ZXPass()) def _benchmark(subdir: str, circuit_name: str, as_plugin: bool = False) -> Tuple[float, float, float]: print(f"Circuit name: {circuit_name}") qc = QuantumCircuit.from_qasm_file(f"QASMBench/{subdir}/{circuit_name}/{circuit_name}.qasm") opt_qc = transpile(qc, basis_gates=['u3', 'cx'], optimization_level=3) if as_plugin: zx_qc = transpile(qc, optimization_method="zxpass", optimization_level=3) else: zx_qc = pass_manager.run(qc) print(f"Size - original: {qc.size()}, " f"optimized: {opt_qc.size()} ({qc.size() / opt_qc.size():.2f}), " f"zx: {zx_qc.size()} ({qc.size() / zx_qc.size():.2f})") print(f"Depth - original: {qc.depth()}, " f"optimized: {opt_qc.depth()} ({qc.depth() / opt_qc.depth():.2f}), " f"zx: {zx_qc.depth()} ({qc.depth() / zx_qc.depth():.2f})") print(f"Number of non-local gates - original: {qc.num_nonlocal_gates()}, ", end="") if qc.num_nonlocal_gates() != 0: print(f"optimized: {opt_qc.num_nonlocal_gates()}, zx: {zx_qc.num_nonlocal_gates()}, " f"ratio: {opt_qc.num_nonlocal_gates() / zx_qc.num_nonlocal_gates():.2f}") else: print("optimized: 0, zx: 0") print() return (qc.depth() / opt_qc.depth(), qc.depth() / zx_qc.depth(), qc.num_nonlocal_gates() / zx_qc.num_nonlocal_gates() if zx_qc.num_nonlocal_gates() != 0 else 0) def _save_plot(title: str, plot_index: List[str], data: Dict[str, List[float]], ylabel: str) -> None: width = 0.35 fig, ax = plt.subplots() ax.set_title(title) ax.set_ylabel(ylabel) x = range(len(plot_index)) ax.bar(x, data['qiskit'], width, label='qiskit') ax.bar([i + width for i in x], data['pyzx'], width, label='pyzx') ax.set_xticks([i + width / 2 for i in x]) ax.set_xticklabels(plot_index, rotation=90) ax.legend() plt.tight_layout() plt.savefig(f"{title.replace(' ', '_')}.png") def run_benchmarks() -> None: # List of circuits to benchmark, based on: https://github.com/Qiskit/qiskit/issues/4990#issuecomment-1157858632 small_benchmarks = ['wstate_n3', 'linearsolver_n3', 'fredkin_n3', 'dnn_n2', 'qrng_n4', 'adder_n4', 'deutsch_n2', 'cat_state_n4', 'basis_trotter_n4', 'qec_en_n5', 'toffoli_n3', 'grover_n2', 'hs4_n4', 'qaoa_n3', 'teleportation_n3', 'lpn_n5', 'vqe_uccsd_n4', 'quantumwalks_n2', 'variational_n4', 'qft_n4', 'iswap_n2', 'bell_n4', 'basis_change_n3', 'vqe_uccsd_n6', 'ising_n10', 'simon_n6', 'qpe_n9', 'qaoa_n6', 'bb84_n8', 'vqe_uccsd_n8', 'adder_n10', 'dnn_n8'] medium_benchmarks = ['bv_n14', 'multiplier_n15', 'sat_n11', 'qft_n18'] depth_ratio: Dict[str, List[float]] = {'qiskit': [], 'pyzx': []} num_nonlocal_ratio: Dict[str, List[float]] = {'qiskit': [], 'pyzx': []} plot_index = [] for benchmark in small_benchmarks: qiskit_depth, zx_depth, non_local_ratio = _benchmark('small', benchmark) depth_ratio['pyzx'].append(zx_depth) depth_ratio['qiskit'].append(qiskit_depth) num_nonlocal_ratio['pyzx'].append(non_local_ratio) num_nonlocal_ratio['qiskit'].append(1 if non_local_ratio != 0 else 0) plot_index.append(benchmark) for benchmark in medium_benchmarks: qiskit_depth, zx_depth, non_local_ratio = _benchmark('medium', benchmark) depth_ratio['pyzx'].append(zx_depth) depth_ratio['qiskit'].append(qiskit_depth) num_nonlocal_ratio['pyzx'].append(non_local_ratio) num_nonlocal_ratio['qiskit'].append(1 if non_local_ratio != 0 else 0) plot_index.append(benchmark) _save_plot('Depth compression ratio', plot_index, depth_ratio, 'depth_ratio') _save_plot('Ratio of non-local gates', plot_index, num_nonlocal_ratio, 'num_nonlocal_ratio') if __name__ == '__main__': run_benchmarks()
https://github.com/MonitSharma/Qiskit-Summer-School-and-Quantum-Challenges
MonitSharma
from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister import numpy as np def step_1_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 2 bits qc = QuantumCircuit(qr, cr) ####### your code goes here ####### ##1 Initialization q0, q1 = qr # apply Hadamard on the auxiliary qubit qc.h(q0) # put the system qubit into the |1> state qc.x(q1) ##2 Apply control-U operator as many times as needed to get the least significant phase bit # controlled-S is equivalent to CPhase with angle pi / 2 s_angle = np.pi / 2 # we want to apply controlled-S 2^k times k = 1 # calculate the angle of CPhase corresponding to 2^k applications of controlled-S cphase_angle = s_angle * 2**k # apply the controlled phase gate qc.cp(cphase_angle, q0, q1) ##3 Measure the auxiliary qubit in x-basis into the first classical bit # apply Hadamard to change to the X basis qc.h(q0) # measure the auxiliary qubit into the first classical bit c0, _ = cr qc.measure(q0, c0) return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") qc = QuantumCircuit(qr, cr) qc = step_1_circuit(qr, cr) qc.draw("mpl") # Submit your circuit from qc_grader.challenges.qgss_2023 import grade_lab4_ex1 grade_lab4_ex1(qc) def step_2_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 2 bits # begin with the circuit from Step 1 qc = step_1_circuit(qr, cr) ####### your code goes here ####### ##1 Reset and re-initialize the auxiliary qubit q0, q1 = qr # reset the auxiliary qubit qc.reset(q0) # apply Hadamard on the auxiiliary qubit qc.h(q0) ##2 Apply phase correction conditioned on the first classical bit c0, c1 = cr with qc.if_test((c0, 1)): qc.p(-np.pi / 2, q0) ##3 Apply control-U operator as many times as needed to get the next phase bit # controlled-S is equivalent to CPhase with angle pi / 2 s_angle = np.pi / 2 # we want to apply controlled-S 2^k times k = 0 # calculate the angle of CPhase corresponding to 2^k applications of controlled-S cphase_angle = s_angle * 2**k # apply the controlled phase gate qc.cp(cphase_angle, q0, q1) ##4 Measure the auxiliary qubit in x-basis into the second classical bit # apply Hadamard to change to the X basis qc.h(q0) # measure the auxiliary qubit into the first classical bit qc.measure(q0, c1) return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") qc = QuantumCircuit(qr, cr) qc = step_2_circuit(qr, cr) qc.draw("mpl") # Submit your circuit from qc_grader.challenges.qgss_2023 import grade_lab4_ex2 grade_lab4_ex2(qc) from qiskit_aer import AerSimulator sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() counts from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister import numpy as np def t_gate_ipe_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 3 bits qc = QuantumCircuit(qr, cr) ####### your code goes here ####### # Initialization q0, q1 = qr qc.h(q0) qc.x(q1) # Apply control-U operator as many times as needed to get the least significant phase bit t_angle = np.pi / 4 k = 2 cphase_angle = t_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis into the first classical bit qc.h(q0) c0, c1, c2 = cr qc.measure(q0, c0) # Reset and re-initialize the auxiliary qubit qc.reset(q0) qc.h(q0) # Apply phase correction conditioned on the first classical bit with qc.if_test((c0, 1)): qc.p(-np.pi / 2, q0) # Apply control-U operator as many times as needed to get the next phase bit k = 1 cphase_angle = t_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis into the second classical bit qc.h(q0) qc.measure(q0, c1) # Reset and re-initialize the auxiliary qubit qc.reset(q0) qc.h(q0) # Apply phase correction conditioned on the first and second classical bits with qc.if_test((c0, 1)): qc.p(-np.pi / 4, q0) with qc.if_test((c1, 1)): qc.p(-np.pi / 2, q0) # Apply control-U operator as many times as needed to get the next phase bit k = 0 cphase_angle = t_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis into the third classical bit qc.h(q0) qc.measure(q0, c2) return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(3, "c") qc = QuantumCircuit(qr, cr) qc = t_gate_ipe_circuit(qr, cr) qc.draw("mpl") from qiskit_aer import AerSimulator sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() counts # Submit your circuit from qc_grader.challenges.qgss_2023 import grade_lab4_ex3 grade_lab4_ex3(qc) from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister import numpy as np def u_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 2 bits qc = QuantumCircuit(qr, cr) # Initialization q0, q1 = qr qc.h(q0) qc.x(q1) # Apply control-U operator as many times as needed to get the least significant phase bit u_angle = 2 * np.pi / 3 k = 1 cphase_angle = u_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis into the first classical bit qc.h(q0) c0, c1 = cr qc.measure(q0, c0) # Reset and re-initialize the auxiliary qubit qc.reset(q0) qc.h(q0) # Apply phase correction conditioned on the first classical bit with qc.if_test((c0, 1)): qc.p(-np.pi / 2, q0) # Apply control-U operator as many times as needed to get the next phase bit k = 0 cphase_angle = u_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis into the second classical bit qc.h(q0) qc.measure(q0, c1) return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") qc = QuantumCircuit(qr, cr) qc = u_circuit(qr, cr) qc.draw("mpl") from qiskit_aer import AerSimulator sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() print(counts) success_probability = counts["01"] / counts.shots() print(f"Success probability: {success_probability}") from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister import numpy as np def u_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 1 bits qc = QuantumCircuit(qr, cr) # Initialization q0, q1 = qr qc.h(q0) qc.x(q1) # Apply control-U operator as many times as needed to get the least significant phase bit u_angle = 2 * np.pi / 3 k = 1 cphase_angle = u_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis qc.h(q0) (c0,) = cr qc.measure(q0, c0) return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(1, "c") qc = QuantumCircuit(qr, cr) qc = u_circuit(qr, cr) qc.draw("mpl") job = sim.run(qc, shots=15) result = job.result() counts = result.get_counts() print(counts) step1_bit: int ####### your code goes here ####### step1_bit = 1 if counts["1"] > counts["0"] else 0 print(step1_bit) # Submit your result from qc_grader.challenges.qgss_2023 import grade_lab4_ex4 grade_lab4_ex4(step1_bit) from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister import numpy as np def u_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 2 bits qc = QuantumCircuit(qr, cr) ####### your code goes here ####### # Initialization q0, q1 = qr if step1_bit: qc.x(q0) qc.x(q1) # Measure the auxiliary qubit c0, c1 = cr qc.measure(q0, c0) # Reset and re-initialize the auxiliary qubit qc.reset(q0) qc.h(q0) # Apply phase correction conditioned on the first classical bit with qc.if_test((c0, 1)): qc.p(-np.pi / 2, q0) # Apply control-U operator as many times as needed to get the next phase bit u_angle = 2 * np.pi / 3 k = 0 cphase_angle = u_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis into the second classical bit qc.h(q0) qc.measure(q0, c1) return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") qc = QuantumCircuit(qr, cr) qc = u_circuit(qr, cr) qc.draw("mpl") # Submit your result from qc_grader.challenges.qgss_2023 import grade_lab4_ex5 grade_lab4_ex5(qc) from qiskit_aer import AerSimulator sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() print(counts) success_probability = counts["01"] / counts.shots() print(f"Success probability: {success_probability}") from qiskit.circuit import Gate def iterative_phase_estimation( qr: QuantumRegister, cr: ClassicalRegister, controlled_unitaries: list[Gate], state_prep: Gate, ) -> QuantumCircuit: qc = QuantumCircuit(qr, cr) ####### your code goes here ####### auxiliary_qubit = qr[0] system_qubits = qr[1:] qc.append(state_prep, system_qubits) for i in range(len(cr)): k = len(cr) - 1 - i qc.reset(auxiliary_qubit) qc.h(auxiliary_qubit) for j in range(i): with qc.if_test((cr[j], 1)): qc.p(-np.pi / 2 ** (i - j), auxiliary_qubit) qc.append(controlled_unitaries[k], qr) qc.h(auxiliary_qubit) qc.measure(auxiliary_qubit, cr[i]) return qc from qiskit.circuit.library import CPhaseGate, XGate qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") s_angle = np.pi / 2 controlled_unitaries = [CPhaseGate(s_angle * 2**k) for k in range(2)] qc = iterative_phase_estimation(qr, cr, controlled_unitaries, XGate()) sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() counts from qiskit_ibm_provider import IBMProvider provider = IBMProvider() hub = "YOUR_HUB" group = "YOUR_GROUP" project = "YOUR_PROJECT" backend_name = "ibmq_manila" backend = provider.get_backend(backend_name, instance=f"{hub}/{group}/{project}") from qiskit import transpile qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") qc = QuantumCircuit(qr, cr) qc = step_2_circuit(qr, cr) qc_transpiled = transpile(qc, backend) job = backend.run(qc_transpiled, shots=1000, dynamic=True) job_id = job.job_id() print(job_id) retrieve_job = provider.retrieve_job(job_id) retrieve_job.status() from qiskit.tools.visualization import plot_histogram counts = retrieve_job.result().get_counts() plot_histogram(counts)
https://github.com/mlvqc/Byskit
mlvqc
from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') from qiskit import BasicAer from qiskit.tools.visualization import plot_histogram backend = BasicAer.get_backend('qasm_simulator') %matplotlib inline from byskit import byskit,gen_random_weights n_parent = 3 n_child = 3 parents,children = gen_random_weights(n_parent,n_child) b = byskit(backend,parents,children) b.circ.draw(output='mpl') results = b.execute_circ() plot_histogram(results.results().get_counts(b.circ)) n_parent = 2 n_child = 4 parents,children = gen_random_weights(n_parent,n_child) b = byskit(backend,parents,children) b.circ.draw(output='mpl') results = b.execute_circ() plot_histogram(results.results().get_counts(b.circ))
https://github.com/crabster/qiskit-learning
crabster
from argparse import ArgumentParser from qiskit import execute, BasicAer, IBMQ from qiskit.visualization import plot_histogram from qiskit.providers.ibmq import least_busy from qiskit.tools.monitor import job_monitor import matplotlib.pyplot as plt from circuits.test import test_circuit from circuits.quantum_teleportation import quantum_teleportation_example from circuits.superdense_coding import superdense_coding_example from circuits.deutsch_jozsa import deutsch_jozsa_example from circuits.bernstein_vazirani import bernstein_vazirani_example from circuits.quantum_fourier_transform import qft_example from circuits.quantum_phase_estimation import qpe_example parser = ArgumentParser(description='Run quantum circuit.') parser.add_argument('-b', '--backend', metavar='BE', default='qasm_simulator', choices=['auto', 'qasm_simulator', 'ibmqx2', 'ibmq_16_melbourne', 'ibmq_vigo', 'ibmq_ourense', 'ibmq_london', 'ibmq_burlington', 'ibmq_essex', 'ibmq_armonk', 'ibmq_rome'], help='backend BE on which will the circuit run') parser.add_argument('-c', '--circuit', metavar='QC', required=True, choices=['test', 'tp', 'sc', 'dj', 'bv', 'qft', 'qpe'], help='circuit QC to be run') parser.add_argument('--shots', type=int, default=1024, help='plot counts histogram of the result') parser.add_argument('--plot', action="store_true", help='plot counts histogram of the result') args = parser.parse_args() if args.circuit == 'test': qc = test_circuit() if args.circuit == 'tp': qc = quantum_teleportation_example() if args.circuit == 'sc': qc = superdense_coding_example() if args.circuit == 'dj': qc = deutsch_jozsa_example() if args.circuit == 'bv': qc = bernstein_vazirani_example() if args.circuit == 'qft': qc = qft_example() if args.circuit == 'qpe': qc = qpe_example() if args.backend == 'qasm_simulator': backend = BasicAer.get_backend('qasm_simulator') else: IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') if args.backend == 'auto': backends = provider.backends(filters=lambda b: b.configuration().n_qubits >= qc.num_qubits and not b.configuration().simulator and b.status().operational==True) backend = least_busy(backends) else: backend = provider.get_backend(args.backend) job = execute(qc, backend, shots=args.shots) job_monitor(job) counts = job.result().get_counts() print(counts) if args.plot: plot_histogram(counts) plt.show()
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for PTM quantum channel representation class.""" import copy import unittest import numpy as np from numpy.testing import assert_allclose from qiskit import QiskitError from qiskit.quantum_info.states import DensityMatrix from qiskit.quantum_info.operators.channel import PTM from .channel_test_case import ChannelTestCase class TestPTM(ChannelTestCase): """Tests for PTM channel representation.""" def test_init(self): """Test initialization""" mat4 = np.eye(4) / 2.0 chan = PTM(mat4) assert_allclose(chan.data, mat4) self.assertEqual(chan.dim, (2, 2)) self.assertEqual(chan.num_qubits, 1) mat16 = np.eye(16) / 4 chan = PTM(mat16) assert_allclose(chan.data, mat16) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(chan.num_qubits, 2) # Wrong input or output dims should raise exception self.assertRaises(QiskitError, PTM, mat16, input_dims=2, output_dims=4) # Non multi-qubit dimensions should raise exception self.assertRaises(QiskitError, PTM, np.eye(6) / 2, input_dims=3, output_dims=2) def test_circuit_init(self): """Test initialization from a circuit.""" circuit, target = self.simple_circuit_no_measure() op = PTM(circuit) target = PTM(target) self.assertEqual(op, target) def test_circuit_init_except(self): """Test initialization from circuit with measure raises exception.""" circuit = self.simple_circuit_with_measure() self.assertRaises(QiskitError, PTM, circuit) def test_equal(self): """Test __eq__ method""" mat = self.rand_matrix(4, 4, real=True) self.assertEqual(PTM(mat), PTM(mat)) def test_copy(self): """Test copy method""" mat = np.eye(4) with self.subTest("Deep copy"): orig = PTM(mat) cpy = orig.copy() cpy._data[0, 0] = 0.0 self.assertFalse(cpy == orig) with self.subTest("Shallow copy"): orig = PTM(mat) clone = copy.copy(orig) clone._data[0, 0] = 0.0 self.assertTrue(clone == orig) def test_clone(self): """Test clone method""" mat = np.eye(4) orig = PTM(mat) clone = copy.copy(orig) clone._data[0, 0] = 0.0 self.assertTrue(clone == orig) def test_is_cptp(self): """Test is_cptp method.""" self.assertTrue(PTM(self.depol_ptm(0.25)).is_cptp()) # Non-CPTP should return false self.assertFalse(PTM(1.25 * self.ptmI - 0.25 * self.depol_ptm(1)).is_cptp()) def test_compose_except(self): """Test compose different dimension exception""" self.assertRaises(QiskitError, PTM(np.eye(4)).compose, PTM(np.eye(16))) self.assertRaises(QiskitError, PTM(np.eye(4)).compose, 2) def test_compose(self): """Test compose method.""" # Random input test state rho = DensityMatrix(self.rand_rho(2)) # UnitaryChannel evolution chan1 = PTM(self.ptmX) chan2 = PTM(self.ptmY) chan = chan1.compose(chan2) rho_targ = rho.evolve(PTM(self.ptmZ)) self.assertEqual(rho.evolve(chan), rho_targ) # 50% depolarizing channel chan1 = PTM(self.depol_ptm(0.5)) chan = chan1.compose(chan1) rho_targ = rho.evolve(PTM(self.depol_ptm(0.75))) self.assertEqual(rho.evolve(chan), rho_targ) # Compose random ptm1 = self.rand_matrix(4, 4, real=True) ptm2 = self.rand_matrix(4, 4, real=True) chan1 = PTM(ptm1, input_dims=2, output_dims=2) chan2 = PTM(ptm2, input_dims=2, output_dims=2) rho_targ = rho.evolve(chan1).evolve(chan2) chan = chan1.compose(chan2) self.assertEqual(chan.dim, (2, 2)) self.assertEqual(rho.evolve(chan), rho_targ) chan = chan1 & chan2 self.assertEqual(chan.dim, (2, 2)) self.assertEqual(rho.evolve(chan), rho_targ) def test_dot(self): """Test dot method.""" # Random input test state rho = DensityMatrix(self.rand_rho(2)) # UnitaryChannel evolution chan1 = PTM(self.ptmX) chan2 = PTM(self.ptmY) rho_targ = rho.evolve(PTM(self.ptmZ)) self.assertEqual(rho.evolve(chan2.dot(chan1)), rho_targ) self.assertEqual(rho.evolve(chan2 @ chan1), rho_targ) # Compose random ptm1 = self.rand_matrix(4, 4, real=True) ptm2 = self.rand_matrix(4, 4, real=True) chan1 = PTM(ptm1, input_dims=2, output_dims=2) chan2 = PTM(ptm2, input_dims=2, output_dims=2) rho_targ = rho.evolve(chan1).evolve(chan2) self.assertEqual(rho.evolve(chan2.dot(chan1)), rho_targ) self.assertEqual(rho.evolve(chan2 @ chan1), rho_targ) def test_compose_front(self): """Test deprecated front compose method.""" # Random input test state rho = DensityMatrix(self.rand_rho(2)) # UnitaryChannel evolution chan1 = PTM(self.ptmX) chan2 = PTM(self.ptmY) chan = chan2.compose(chan1, front=True) rho_targ = rho.evolve(PTM(self.ptmZ)) self.assertEqual(rho.evolve(chan), rho_targ) # Compose random ptm1 = self.rand_matrix(4, 4, real=True) ptm2 = self.rand_matrix(4, 4, real=True) chan1 = PTM(ptm1, input_dims=2, output_dims=2) chan2 = PTM(ptm2, input_dims=2, output_dims=2) rho_targ = rho.evolve(chan1).evolve(chan2) chan = chan2.compose(chan1, front=True) self.assertEqual(chan.dim, (2, 2)) self.assertEqual(rho.evolve(chan), rho_targ) def test_expand(self): """Test expand method.""" rho0, rho1 = np.diag([1, 0]), np.diag([0, 1]) rho_init = DensityMatrix(np.kron(rho0, rho0)) chan1 = PTM(self.ptmI) chan2 = PTM(self.ptmX) # X \otimes I chan = chan1.expand(chan2) rho_targ = DensityMatrix(np.kron(rho1, rho0)) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init.evolve(chan), rho_targ) # I \otimes X chan = chan2.expand(chan1) rho_targ = DensityMatrix(np.kron(rho0, rho1)) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init.evolve(chan), rho_targ) # Completely depolarizing chan_dep = PTM(self.depol_ptm(1)) chan = chan_dep.expand(chan_dep) rho_targ = DensityMatrix(np.diag([1, 1, 1, 1]) / 4) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init.evolve(chan), rho_targ) def test_tensor(self): """Test tensor method.""" rho0, rho1 = np.diag([1, 0]), np.diag([0, 1]) rho_init = DensityMatrix(np.kron(rho0, rho0)) chan1 = PTM(self.ptmI) chan2 = PTM(self.ptmX) # X \otimes I chan = chan2.tensor(chan1) rho_targ = DensityMatrix(np.kron(rho1, rho0)) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init.evolve(chan), rho_targ) # I \otimes X chan = chan1.tensor(chan2) rho_targ = DensityMatrix(np.kron(rho0, rho1)) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init.evolve(chan), rho_targ) # Completely depolarizing chan_dep = PTM(self.depol_ptm(1)) chan = chan_dep.tensor(chan_dep) rho_targ = DensityMatrix(np.diag([1, 1, 1, 1]) / 4) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init.evolve(chan), rho_targ) def test_power(self): """Test power method.""" # 10% depolarizing channel p_id = 0.9 depol = PTM(self.depol_ptm(1 - p_id)) # Compose 3 times p_id3 = p_id**3 chan3 = depol.power(3) targ3 = PTM(self.depol_ptm(1 - p_id3)) self.assertEqual(chan3, targ3) def test_add(self): """Test add method.""" mat1 = 0.5 * self.ptmI mat2 = 0.5 * self.depol_ptm(1) chan1 = PTM(mat1) chan2 = PTM(mat2) targ = PTM(mat1 + mat2) self.assertEqual(chan1._add(chan2), targ) self.assertEqual(chan1 + chan2, targ) targ = PTM(mat1 - mat2) self.assertEqual(chan1 - chan2, targ) def test_add_qargs(self): """Test add method with qargs.""" mat = self.rand_matrix(8**2, 8**2) mat0 = self.rand_matrix(4, 4) mat1 = self.rand_matrix(4, 4) op = PTM(mat) op0 = PTM(mat0) op1 = PTM(mat1) op01 = op1.tensor(op0) eye = PTM(self.ptmI) with self.subTest(msg="qargs=[0]"): value = op + op0([0]) target = op + eye.tensor(eye).tensor(op0) self.assertEqual(value, target) with self.subTest(msg="qargs=[1]"): value = op + op0([1]) target = op + eye.tensor(op0).tensor(eye) self.assertEqual(value, target) with self.subTest(msg="qargs=[2]"): value = op + op0([2]) target = op + op0.tensor(eye).tensor(eye) self.assertEqual(value, target) with self.subTest(msg="qargs=[0, 1]"): value = op + op01([0, 1]) target = op + eye.tensor(op1).tensor(op0) self.assertEqual(value, target) with self.subTest(msg="qargs=[1, 0]"): value = op + op01([1, 0]) target = op + eye.tensor(op0).tensor(op1) self.assertEqual(value, target) with self.subTest(msg="qargs=[0, 2]"): value = op + op01([0, 2]) target = op + op1.tensor(eye).tensor(op0) self.assertEqual(value, target) with self.subTest(msg="qargs=[2, 0]"): value = op + op01([2, 0]) target = op + op0.tensor(eye).tensor(op1) self.assertEqual(value, target) def test_sub_qargs(self): """Test subtract method with qargs.""" mat = self.rand_matrix(8**2, 8**2) mat0 = self.rand_matrix(4, 4) mat1 = self.rand_matrix(4, 4) op = PTM(mat) op0 = PTM(mat0) op1 = PTM(mat1) op01 = op1.tensor(op0) eye = PTM(self.ptmI) with self.subTest(msg="qargs=[0]"): value = op - op0([0]) target = op - eye.tensor(eye).tensor(op0) self.assertEqual(value, target) with self.subTest(msg="qargs=[1]"): value = op - op0([1]) target = op - eye.tensor(op0).tensor(eye) self.assertEqual(value, target) with self.subTest(msg="qargs=[2]"): value = op - op0([2]) target = op - op0.tensor(eye).tensor(eye) self.assertEqual(value, target) with self.subTest(msg="qargs=[0, 1]"): value = op - op01([0, 1]) target = op - eye.tensor(op1).tensor(op0) self.assertEqual(value, target) with self.subTest(msg="qargs=[1, 0]"): value = op - op01([1, 0]) target = op - eye.tensor(op0).tensor(op1) self.assertEqual(value, target) with self.subTest(msg="qargs=[0, 2]"): value = op - op01([0, 2]) target = op - op1.tensor(eye).tensor(op0) self.assertEqual(value, target) with self.subTest(msg="qargs=[2, 0]"): value = op - op01([2, 0]) target = op - op0.tensor(eye).tensor(op1) self.assertEqual(value, target) def test_add_except(self): """Test add method raises exceptions.""" chan1 = PTM(self.ptmI) chan2 = PTM(np.eye(16)) self.assertRaises(QiskitError, chan1._add, chan2) self.assertRaises(QiskitError, chan1._add, 5) def test_multiply(self): """Test multiply method.""" chan = PTM(self.ptmI) val = 0.5 targ = PTM(val * self.ptmI) self.assertEqual(chan._multiply(val), targ) self.assertEqual(val * chan, targ) targ = PTM(self.ptmI * val) self.assertEqual(chan * val, targ) def test_multiply_except(self): """Test multiply method raises exceptions.""" chan = PTM(self.ptmI) self.assertRaises(QiskitError, chan._multiply, "s") self.assertRaises(QiskitError, chan.__rmul__, "s") self.assertRaises(QiskitError, chan._multiply, chan) self.assertRaises(QiskitError, chan.__rmul__, chan) def test_negate(self): """Test negate method""" chan = PTM(self.ptmI) targ = PTM(-self.ptmI) self.assertEqual(-chan, targ) if __name__ == "__main__": unittest.main()
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) qc.cx(1, 0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": ### added x gate ### qc.x(qubit) qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1, 0) qc.h(1) return qc
https://github.com/Axect/QuantumAlgorithms
Axect
import pennylane as qml from pennylane import numpy as np import matplotlib.pyplot as plt import scienceplots qml.drawer.use_style(style='sketch') def unitary_matrix_from_hermitian(A): eigenvalues, eigenvectors = np.linalg.eigh(A) D = np.diag(np.exp(2j * np.pi * eigenvalues)) U = np.dot(eigenvectors, np.dot(D, eigenvectors.conj().T)) return U def MultipleControlledRY(target_wire, control_wires, lamb1, lamb2): """ Apply a multiple controlled RY gate to the target wire, with control on the control wires. Args: target_wire (int): the target wire the RY gate acts on control_wires (list[int]): the control wires lamb (float): the eigenvalue. lamb should be converted to the qubit state (e.g. 0.25 (n=2) -> 01) """ n = len(control_wires) angle1 = 2 * np.arcsin(lamb1) lamb1_bin = format(int(lamb1 * 2**n), f'0{n}b') control_values1 = [int(bit) for bit in lamb1_bin] angle2 = 2 * np.arcsin(lamb2) lamb2_bin = format(int(lamb2 * 2**n), f'0{n}b') control_values2 = [int(bit) for bit in lamb2_bin] # print(control_values) qml.ctrl(qml.RY, control=control_wires, control_values=control_values1)(angle1, wires=target_wire) qml.ctrl(qml.RY, control=control_wires, control_values=control_values2)(angle2, wires=target_wire) dev = qml.device('default.qubit', wires=3) @qml.qnode(dev) def aqe_test(lamb1, lamb2): qml.PauliX(wires=2) MultipleControlledRY(0, [1, 2], lamb1, lamb2) return qml.state() lamb1 = 0.75 lamb2 = 0.25 qml.draw_mpl(aqe_test)(lamb1, lamb2) plt.show() state = aqe_test(lamb1, lamb2) print(state) @qml.qnode(dev) def aqe_test(lamb1, lamb2): qml.PauliX(wires=1) qml.PauliX(wires=2) MultipleControlledRY(0, [1, 2], lamb1, lamb2) return qml.state() state = aqe_test(lamb1, lamb2) print(state) qml.draw_mpl(aqe_test)(lamb1, lamb2) plt.show() A = np.array([[0.5, 0.25], [0.25, 0.5]]) U = unitary_matrix_from_hermitian(A) x = np.array([1, 0]) dev = qml.device('default.qubit', wires=3) @qml.qnode(dev) def qpe_test(U, x): # Encode the input vector x into the amplitudes of the state (here, only 2d vectors) qml.AmplitudeEmbedding(features=x, wires=2, normalize=True) # Apply Hadamard gate to the first n qubits qml.Hadamard(wires=0) qml.Hadamard(wires=1) # Apply controlled unitary operations qml.ControlledSequence(qml.QubitUnitary(U, wires=2), control=range(2)) # Apply inverse QFT qml.adjoint(qml.QFT)(wires=range(2)) # Measure c-register and return the probability distribution return qml.state() qml.draw_mpl(qpe_test)(U, x) plt.show() qpe_test(U, x).round(2) def gen_qmm(n: int, A): U = unitary_matrix_from_hermitian(A) U_inv = np.linalg.inv(U) dev1 = qml.device("default.qubit", wires=n+1) # c-register, encoding x dev2 = qml.device("lightning.qubit", wires=n+2, shots=10000, mcmc=True) # ancilla, c-register, encoding x @qml.qnode(dev1) def eigenvalue_circuit(x): # Encode the input vector x into the amplitudes of the state (here, only 2d vectors) qml.AmplitudeEmbedding(features=x, wires=n, normalize=True) # Apply Hadamard gate to the first n qubits for i in range(n): qml.Hadamard(wires=i) # Apply controlled unitary operations qml.ControlledSequence(qml.QubitUnitary(U, wires=n), control=range(n)) # Apply inverse QFT qml.adjoint(qml.QFT)(wires=range(n)) # Measure c-register and return the probability distribution return qml.probs(wires=range(n)) @qml.qnode(dev2) def final_circuit(x, lamb1, lamb2): # Encode the input vector x into the amplitudes of the state (here, only 2d vectors) qml.AmplitudeEmbedding(features=x, wires=n+1, normalize=True) # Apply Hadamard gate to the c-register for i in range(1, n+1): qml.Hadamard(wires=i) # Apply controlled unitary operations qml.ControlledSequence(qml.QubitUnitary(U, wires=n+1), control=range(1,n+1)) # Apply inverse QFT qml.adjoint(qml.QFT)(wires=range(1,n+1)) # Apply controlled rotations for |lambda> -> |lambda> (sqrt(1-lambda^2) |0> + lambda |1>) MultipleControlledRY([0], range(1, n+1), lamb1, lamb2) # Apply QFT qml.QFT(wires=range(1,n+1)) # Apply controlled unitary operations qml.ControlledSequence(qml.QubitUnitary(U_inv, wires=n+1), control=range(1,n+1)) # Apply Hadamard gate to the c-register for i in range(1, n+1): qml.Hadamard(wires=i) # Return the state of the last qubit and the measurement result return qml.sample(wires=[0, n+1]) def circuit(x): lamb_prob = eigenvalue_circuit(x) # lamb_cand = np.arange(2**n) / 2**n sorted_lamb_prob = np.argsort(lamb_prob)[::-1] lamb1 = sorted_lamb_prob[0] / 2**(n) lamb2 = sorted_lamb_prob[1] / 2**(n) print(lamb1, lamb2) samples = final_circuit(x, lamb1, lamb2) return samples return circuit, (dev1, eigenvalue_circuit), (dev2, final_circuit) A = np.array([[0.5, 0.25], [0.25, 0.5]]) x = np.array([1, 2]) A @ x eigv = np.linalg.eig(A) print(eigv) qmm_circuit, (dev1, ec), (dev2, fc) = gen_qmm(2, A) qml.draw_mpl(ec)(x) plt.show() qml.draw_mpl(fc)(x, 0.25, 0.75) plt.show() result = qmm_circuit(x) result meas_one = result[:,0] == 1 result_zero = result[meas_one & (result[:,1] == 0)] result_one = result[meas_one & (result[:,1] == 1)] from sklearn.metrics import confusion_matrix cm = confusion_matrix(result[:,0], result[:,1]) cm import matplotlib.pyplot as plt import seaborn as sns sns.heatmap(cm, annot=True, fmt='d') plt.show() res = np.array([result_zero.shape[0], result_one.shape[0]]) res np.sqrt(res) / np.linalg.norm(np.sqrt(res)) B = A @ x B / np.linalg.norm(B)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile from qiskit.visualization import plot_circuit_layout from qiskit.providers.fake_provider import FakeVigo backend = FakeVigo() ghz = QuantumCircuit(3, 3) ghz.h(0) ghz.cx(0,range(1,3)) ghz.barrier() ghz.measure(range(3), range(3)) new_circ_lv0 = transpile(ghz, backend=backend, optimization_level=0) plot_circuit_layout(new_circ_lv0, backend)
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
from IPython.display import IFrame IFrame(src="http://www.youtube.com/embed/tBnWG_95F9c", width=1920/2, height=1080/2) from qiskit import * circuit = QuantumCircuit(1,1) circuit.x(0) %matplotlib inline circuit.draw(output='mpl') simulator = Aer.get_backend('unitary_simulator') result = execute(circuit, backend=simulator).result() unitary = result.get_unitary() print(unitary) from qiskit import * circuit = QuantumCircuit(1,1) circuit.x(0) simulator = Aer.get_backend('statevector_simulator') result = execute(circuit, backend=simulator).result() statevector = result.get_statevector() print(statevector) # in the video, we imported from qiskit.tools.visualization. # this part of Qiskit has been moved to qiskit.visualization, and we recommend using qiskit.visualization instead from qiskit.visualization import plot_bloch_multivector plot_bloch_multivector(statevector) circuit = QuantumCircuit(1,1) circuit.x(0) circuit.measure([0], [0]) simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, backend=simulator, shots=1024).result() counts = result.get_counts() from qiskit.visualization import plot_histogram plot_histogram(counts) qiskit.__qiskit_version__ import qiskit.tools.jupyter %qiskit_copyright
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Symmetric informationally complete (SIC)-POVM tomography preparation basis. """ # Needed for functions import numpy as np # Import QISKit classes from qiskit import QuantumCircuit from .tomographybasis import TomographyBasis ########################################################################### # Built-in circuit functions ########################################################################### def sicpovm_preparation_circuit(op, qubit): """ Return a SIC-POVM projector preparation circuit. This circuit assumes the qubit is initialized in the Zp eigenstate [1, 0]. Params: op (str): SIC-POVM element label 'S0', 'S1', 'S2' or 'S3'. qubit (QuantumRegister tuple): qubit to be prepared. Returns: A QuantumCircuit object. """ circ = QuantumCircuit(qubit[0]) theta = -2 * np.arctan(np.sqrt(2)) if op == 'S1': circ.u3(theta, np.pi, 0.0, qubit) if op == 'S2': circ.u3(theta, np.pi / 3, 0.0, qubit) if op == 'S3': circ.u3(theta, -np.pi / 3, 0.0, qubit) return circ ########################################################################### # Matrix functions for built-in bases ########################################################################### def sicpovm_preparation_matrix(label): """ Return the matrix corresonding to a SIC-POVM preparation. Args: label (str): single-qubit SIC-POVM element label. Returns: A Numpy array for the SIC-POVM element. Allowed inputs and corresponding returned matrices are: 'S0' : [[1, 0], [0, 0]] 'S1' : [[1, np.sqrt(2)], [np.sqrt(2), 2]]/ 3 'S2' : [[1, exp(pi * 2j / 3) * sqrt(2)], [exp(-pi * 2j / 3) * sqrt(2), 2]] / 3 'S3' : [[1, exp(-pi * 2j / 3) * sqrt(2)], [exp(pi * 2j / 3) * sqrt(2), 2]] / 3 """ res = np.array([]) # Return matrix for allowed label if label == 'S0': res = np.array([[1, 0], [0, 0]], dtype=complex) if label == 'S1': res = np.array([[1, np.sqrt(2)], [np.sqrt(2), 2]], dtype=complex) / 3 if label == 'S2': res = np.array([[1, np.exp(np.pi * 2j / 3) * np.sqrt(2)], [np.exp(-np.pi * 2j / 3) * np.sqrt(2), 2]]) / 3 if label == 'S3': res = np.array([[1, np.exp(-np.pi * 2j / 3) * np.sqrt(2)], [np.exp(np.pi * 2j / 3) * np.sqrt(2), 2]]) / 3 return res ########################################################################### # PauliBasis Object ########################################################################### SICBasis = TomographyBasis('SIC', measurement=None, preparation=(('S0', 'S1', 'S2', 'S3'), sicpovm_preparation_circuit, sicpovm_preparation_matrix))
https://github.com/microsoft/qiskit-qir
microsoft
"""Docstring.""" from qiskit import QuantumCircuit, execute, QuantumRegister, ClassicalRegister from qiskit_aer import Aer class Random: """Demo random.""" def __init__(self): """Demo random.""" self.pow = 2 self.qasm = Aer.get_backend("aer_simulator") def run(self, number: int) -> int: """Run method.""" nb_qubits = number print("Generate random number") circ = QuantumRegister(nb_qubits, "the number") meas = ClassicalRegister(nb_qubits, "measurement") quant_circ = QuantumCircuit(circ, meas) for i in range(0, nb_qubits): quant_circ.x(i) quant_circ.measure(circ, meas) job = execute(quant_circ, self.qasm, shots=1, memory=True) result_sim = job.result() memory = result_sim.get_memory() result = int(memory[0], 2) + 1 return result def __repr__(self): return f"Random(circuit of: {self.pow})"
https://github.com/abhishekchak52/quantum-computing-course
abhishekchak52
%matplotlib inline import numpy as np import matplotlib.pyplot as plt # Importing standard Qiskit libraries from qiskit import QuantumCircuit, execute from qiskit.providers.aer import QasmSimulator from qiskit.visualization import * from qiskit.quantum_info import * q1_sv = Statevector.from_label('+') # Available basis states are 0, 1, +, -, l, r print(q1_sv.data) q1_sv.is_valid() print(q1_sv.probabilities_dict()) print(sum(q1_sv.probabilities())) outcome, new_sv = q1_sv.measure() # This returns two values print(f'The outcome of measurement was {outcome}') print(f'The collapsed statevector after measurement is {new_sv.data}') outcome2, new2_sv = new_sv.measure() # This returns two values print('Measured collapsed statevector') print(f'The outcome of measurement was {outcome2}') print(f'The collapsed statevector after measurement is {new2_sv.data}') q1_sv = Statevector.from_label('+') measured_values = [int(q1_sv.measure()[0]) for _ in range(1000)] print(f'Number of 0 measured: {measured_values.count(0)}, Number of 1 measured: {measured_values.count(1)}') q1_sv = Statevector.from_label('+') # Available basis states are 0, 1, +, -, l, r plot_bloch_multivector(q1_sv) op1 = Operator.from_label('X') # I, X, Y, Z, S, T, H print(op1.data) op1.is_unitary() op1_adj = op1.adjoint() print(op1_adj.data) res = op1*op1_adj print(res.data) q2_sv_0 = Statevector.from_label('+') plot_bloch_multivector(q2_sv_0) op1 = Operator.from_label('Z') q2_sv_1 = q2_sv_0.evolve(op1) plot_bloch_multivector(q2_sv_1) op2 = Operator.from_label('Z') q2_sv_2 = q2_sv_1.evolve(op2.adjoint()) plot_bloch_multivector(q2_sv_2) print(q2_sv_0 == q2_sv_2) qc = QuantumCircuit(1) qc.h(0) qc.z(0) qc.draw(output='mpl') visualize_transition(qc, trace=True) qc = QuantumCircuit(1) qc.h(0) qc.z(0) qc.measure_all() qc.draw(output='mpl') job = execute(qc, backend=QasmSimulator(), shots=1024) plot_histogram(job.result().get_counts()) job.result().get_counts()
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
from qiskit import * # import tudo do qiskit # Determina o número de qubits e de cbits a serem utilizados qr = QuantumRegister(2) # determina quantos qubits serão usados cr = ClassicalRegister(2) # determina quantos cbits serão usados # Constrói o circuito quântico qc = QuantumCircuit(qr, cr) # para o circuitos quânticos ficarem mais apresentáveis %matplotlib inline qc.draw(output='mpl') # mostra o circuito # adiciona a porta lógica de Hadamard ao circuito, aplicada no qubit (registro quântico) 0 qc.h(qr[0]); # tem que usar ; pra não dar aviso qc.draw(output = 'mpl') # o output = 'mpl' é para a figura ficar mais apresentável # adiciona uma controll-not ao circuito, com o controle sendo qr[0] e o target sendo qr[1] qc.cx(qr[0],qr[1]); # é importante sempre mandar mostrar o circuito, pra ter certeza que é realmente o que queremos construir qc.draw(output = 'mpl') # adiciona medidas em todos os qubits (a ser usada quando queremos acessar a distribuições de probabilidades) qc.measure(qr,cr); qc.draw(output = 'mpl') # Determina o backend a ser usado, que poder ser um simulador ou um chip real # Neste caso escolhemos o simulador qasm_simulator simulator = Aer.get_backend('qasm_simulator') # número de medidas para estimativa de uma distribuição de probabilidades nshots = 8192 # executa o circuito qc no backend escolhido result = execute(qc, backend = simulator, shots = nshots).result() # para visualizar o histograma da distribuicao de probabilidades from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(qc)) counts = result.get_counts(qc); counts, counts['00'] # carrega minha conta no IBMQ (o ID foi incluido no outro arquivo, nao precisa incluir aqui) qiskit.IBMQ.load_account(); #provider = IBMQ.get_provider('ibm-q') provider = IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') # determina em qual backend vamos executar o circuito device = provider.get_backend('ibmq_casablanca') # se certifica que o backend esta certo device.name() # executa o circuito quantico qc no CQ escolhido job = execute(qc, backend = device, shots = nshots) from qiskit.tools.monitor import job_monitor # para monitorar a execucao do circuito job_monitor(job) result = job.result() plot_histogram(result.get_counts(qc))
https://github.com/GroenteLepel/qiskit-quantum-knn
GroenteLepel
from qiskit_quantum_knn.qknn import QKNeighborsClassifier from qiskit_quantum_knn.encoding import analog from qiskit.utils import QuantumInstance from sklearn import datasets import qiskit as qk # initialising the quantum instance backend = qk.BasicAer.get_backend('qasm_simulator') instance = QuantumInstance(backend, shots=10000) # initialising the qknn model qknn = QKNeighborsClassifier( n_neighbors=3, quantum_instance=instance ) n_variables = 2 # should be positive power of 2 n_train_points = 4 # can be any positive integer n_test_points = 2 # can be any positive integer # use iris dataset iris = datasets.load_iris() labels = iris.target data_raw = iris.data # encode data encoded_data = analog.encode(data_raw[:, :n_variables]) # now pick these indices from the data train_data = encoded_data[:n_train_points] train_labels = labels[:n_train_points] test_data = encoded_data[n_train_points:(n_train_points+n_test_points), :n_variables] test_labels = labels[n_train_points:(n_train_points+n_test_points)] qknn.fit(train_data, train_labels) qknn_prediction = qknn.predict(test_data) print(qknn_prediction) print(test_labels) from qiskit_quantum_knn.qknn.qknn_construction import create_qknn test_data = [1, 0] train_data = [ [1, 0], [1, 0] ] circuit = create_qknn(test_data, train_data, add_measurement=True) print(circuit.draw())
https://github.com/qBraid/qBraid
qBraid
# Copyright (C) 2024 qBraid # # This file is part of the qBraid-SDK # # The qBraid-SDK is free software released under the GNU General Public License v3 # or later. You can redistribute and/or modify it under the terms of the GPL v3. # See the LICENSE file in the project root or <https://www.gnu.org/licenses/gpl-3.0.html>. # # THERE IS NO WARRANTY for the qBraid-SDK, as per Section 15 of the GPL v3. """ Module defining Qiskit OpenQASM conversions """ from typing import TYPE_CHECKING from qbraid_core._import import LazyLoader from qbraid.transpiler.annotations import weight qiskit = LazyLoader("qiskit", globals(), "qiskit") if TYPE_CHECKING: import qiskit as qiskit_ @weight(1) def qasm2_to_qiskit(qasm: str) -> "qiskit_.QuantumCircuit": """Returns a Qiskit circuit equivalent to the input OpenQASM 2 string. Args: qasm: OpenQASM 2 string to convert to a Qiskit circuit. Returns: Qiskit.QuantumCircuit object equivalent to the input OpenQASM 2 string. """ return qiskit.QuantumCircuit.from_qasm_str(qasm)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# You can show the phase of each state and use # degrees instead of radians from qiskit.quantum_info import DensityMatrix import numpy as np from qiskit import QuantumCircuit from qiskit.visualization import plot_state_qsphere qc = QuantumCircuit(2) qc.h([0, 1]) qc.cz(0,1) qc.ry(np.pi/3, 0) qc.rx(np.pi/5, 1) qc.z(1) matrix = DensityMatrix(qc) plot_state_qsphere(matrix, show_state_phases = True, use_degrees = True)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.circuit.quantumcircuitdata import CircuitInstruction from qiskit.circuit import Measure from qiskit.circuit.library import HGate, CXGate qr = QuantumRegister(2) cr = ClassicalRegister(2) instructions = [ CircuitInstruction(HGate(), [qr[0]], []), CircuitInstruction(CXGate(), [qr[0], qr[1]], []), CircuitInstruction(Measure(), [qr[0]], [cr[0]]), CircuitInstruction(Measure(), [qr[1]], [cr[1]]), ] circuit = QuantumCircuit.from_instructions(instructions) circuit.draw("mpl")
https://github.com/aryashah2k/Quantum-Computing-Collection-Of-Resources
aryashah2k
%matplotlib inline from qiskit import * from qiskit.visualization import * from qiskit.tools.monitor import * from qiskit.aqua import * from qiskit.aqua.components.oracles import * from qiskit.aqua.algorithms import * oracle = TruthTableOracle("0101") oracle.construct_circuit().draw(output='mpl') dj = DeutschJozsa(oracle) dj.construct_circuit(measurement=True).draw(output='mpl') backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend) result = dj.run(quantum_instance) print(result) oracle2 = TruthTableOracle('00000000') dj2 = DeutschJozsa(oracle2) result = dj2.run(quantum_instance) print("The function is",result['result']) backend = Aer.get_backend('qasm_simulator') oracle3 = TruthTableOracle('0001') g = Grover(oracle3, iterations=1) result = g.run(quantum_instance) print(result) expression = '(x | y) & (~y | z) & (~x | ~z | w) & (~x | y | z | ~w)' oracle4 = LogicalExpressionOracle(expression) g2 = Grover(oracle4, iterations = 3) result = g2.run(quantum_instance) print(result) backend = Aer.get_backend('qasm_simulator') expression2 = '(x & y & z & w) | (~x & ~y & ~z & ~w)' #expression2 = '(x & y) | (~x & ~y)' oracle5 = LogicalExpressionOracle(expression2, optimization = True) g3 = Grover(oracle5, incremental = True) result = g3.run(quantum_instance) print(result)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from qiskit import QuantumCircuit, transpile from qiskit.providers.fake_provider import FakeAuckland backend = FakeAuckland() ghz = QuantumCircuit(15) ghz.h(0) ghz.cx(0, range(1, 15)) depths = [] for _ in range(100): depths.append( transpile( ghz, backend, layout_method='trivial' # Fixed layout mapped in circuit order ).depth() ) plt.figure(figsize=(8, 6)) plt.hist(depths, align='left', color='#AC557C') plt.xlabel('Depth', fontsize=14) plt.ylabel('Counts', fontsize=14);
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile from qiskit.providers.fake_provider import FakeBoeblingen backend = FakeBoeblingen() ghz = QuantumCircuit(5) ghz.h(0) ghz.cx(0,range(1,5)) circ = transpile(ghz, backend, scheduling_method="asap") circ.draw(output='mpl')
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__