repo
stringclasses 885
values | file
stringclasses 741
values | content
stringlengths 4
215k
|
---|---|---|
https://github.com/gustavomirapalheta/Quantum-Computing-with-Qiskit
|
gustavomirapalheta
|
!pip install qutip -q
!pip install qiskit -q
!pip install qiskit[visualization] -q
!pip install git+https://github.com/qiskit-community/qiskit-textbook.git#subdirectory=qiskit-textbook-src -q
import numpy as np
np.set_printoptions(precision=3, suppress=True)
import qutip as qt
from matplotlib import pyplot as plt
%matplotlib inline
import pandas as pd
import sklearn as sk
import qiskit as qk
# Remember that qiskit has to be already installed in the Python environment.
# Otherwise the import command will fail
import qiskit as qk
# A circuit composed of just one qubit
qc = qk.QuantumCircuit(1)
qc.draw('mpl')
import qiskit as qiskit
# A qubit initialized in the state |0>
qc = qk.QuantumCircuit(1)
qc.initialize([1,0])
qc.draw('mpl')
import qiskit as qk
# A qubit initialized in |0> and a measurement
qc = qk.QuantumCircuit(1)
qc.initialize([1,0])
qc.measure_all()
qc.draw('mpl')
import qiskit as qk
# A list of possible measurements. The results of measurements are obtained
# by executing an object called backend
a = [print(i) for i in qk.Aer.backends()]
import qiskit as qk
qc = qk.QuantumCircuit(1)
qc.initialize([1,0],0)
qc.measure_all()
# Let's choose the statevector simulator from the Aer backend
backend = qk.Aer.get_backend('statevector_simulator')
# And execute the circuit qc in the simulator backend
# getting as final result the counts from 1.000 measures
# of the qubit state
result = qk.execute(qc, backend, shots=1000).result().get_counts()
result
import qiskit as qk
qc = qk.QuantumCircuit(1)
qc.initialize([1,0],0)
qc.measure_all()
backend = qk.Aer.get_backend('statevector_simulator')
result = qk.execute(qc, backend, shots=1000).result().get_counts()
qk.visualization.plot_histogram(result)
import qiskit as qk
qr = qk.QuantumRegister(1,'q0')
cr = qk.ClassicalRegister(1,'c0')
qc = qk.QuantumCircuit(qr, cr)
qc.initialize([1,0],0)
qc.measure(0,0)
qc.draw('mpl')
backend = qk.Aer.get_backend('statevector_simulator')
result = qk.execute(qc, backend, shots=1000).result().get_counts()
qk.visualization.plot_histogram(result)
import numpy as np
v0 = np.array([[1],[0]]);v0
v1 = np.array([[0],[1]]); v1
X = np.array([[0,1],[1,0]]); X
X.dot(v0)
X.dot(v1)
import qiskit as qk
qr = qk.QuantumRegister(1,"q0")
cr = qk.ClassicalRegister(1,"c0")
qc = qk.QuantumCircuit(qr, cr)
qc.initialize([1,0],0)
qc.x(0)
qc.measure(qr[0], cr[0])
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc, simulator, shots=1000).result().get_counts()
results
qk.visualization.plot_histogram(results)
import numpy as np
# Notice that we are creating the v0 matrix using the transpose operation
v0 = np.array([[1,0]]).T; v0
# Here it is created again de X matrix
X = np.array([[0,1],[1,0]]); X
# Multiplying v0 by the X matrix twice you get again v0
X.dot(X).dot(v0)
# Multiplying the X matrix by itself you get the Identity matrix
X.dot(X)
import qiskit as qk
qr = qk.QuantumRegister(1,'q0')
cr = qk.ClassicalRegister(1,'c0')
qc = qk.QuantumCircuit(qr, cr)
qc.initialize([1,0],0)
qc.x(0)
qc.x(0)
qc.measure(qr[0],cr[0])
qc.draw('mpl')
# The result of 1000 measures of the qubit above gives the |0> state as result
# in all measures
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=1000).result().get_counts()
results
qk.visualization.plot_histogram(results)
import qiskit as qk
qr = qk.QuantumRegister(1,'q0')
cr = qk.ClassicalRegister(1,'c0')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([2**-0.5,2**-0.5],0)
qc.measure(qr[0],cr[0])
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
v0 = np.array([[1,0]]).T; v0
H = np.array([[1,1],[1,-1]])/np.sqrt(2); H
H.dot(v0)
import qiskit as qk
qr = qk.QuantumRegister(1,'q0')
cr = qk.ClassicalRegister(1,'c0')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.h(qr[0])
qc.measure(qr[0],cr[0])
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc, simulator, shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import qiskit as qk
qr = qk.QuantumRegister(1,'q0')
cr = qk.ClassicalRegister(1,'c0')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([2**-0.5,-(2**-0.5)],0)
qc.measure(qr[0],cr[0])
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import qiskit as qk
qr = qk.QuantumRegister(1,'q0')
cr = qk.ClassicalRegister(1,'c0')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([2**-0.5,-(2**-0.5)],0)
qc.h(0)
qc.measure(qr[0],cr[0])
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import qiskit as qk
qr = qk.QuantumRegister(1,'q0')
cr = qk.ClassicalRegister(1,'c0')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([0,1],0)
qc.h(0)
qc.h(0)
qc.measure(qr[0],cr[0])
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
# First let's start with the qubit in the state |psi> = (|0> - |1>)/sqrt(2)
psi = np.array([[1,-1]]).T/(2**0.5); psi
H = np.array([[1,1],[1,-1]])/2**0.5; H
# Now let's pass the qubit Psi through an Hadamard gate.
# The result is a qubit in the state |1>
H.dot(psi)
# Let's start with a qubit in the state |1>, pass it through a
# a hadamard gate twice and check the result
v0 = np.array([[0,1]]).T; v0
H.dot(H).dot(v0)
# This means that if we multiply the H gate by itself the result
# will be an Identity matrix. Let's check it.
H.dot(H)
import qiskit as qk
qr = qk.QuantumRegister(2,'q')
cr = qk.ClassicalRegister(2,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.measure(qr,cr)
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
psi1 = np.array([[1,0]]).T; psi1
psi2 = np.array([[1,0]]).T; psi2
# In numpy the tensor product is calculated with the function kron
np.kron(psi1,psi2)
import qiskit as qk
qr = qk.QuantumRegister(2,'q')
cr = qk.ClassicalRegister(2,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.h(0)
qc.h(1)
qc.measure(qr,cr)
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
psi1 = np.array([[1,0]]).T;psi1
psi2 = np.array([[1,0]]).T;psi2
H = np.array([[1,1],[1,-1]])/2**0.5;H
# When we want to combine two vector states or gate matrices we tensor product them.
psi3 = np.kron(psi1,psi2);psi3
H2 = np.kron(H,H);H2
# When we want to pass a vetor through a gate we calculate the dot product
# of the total gate matrix with the total vector.
# As we have predicted, the resulting vector state has a=b=c=d=1/2
psi4 = H2.dot(psi3); psi4
import qiskit as qk
qr = qk.QuantumRegister(2,'q')
cr = qk.ClassicalRegister(2,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([0,1],0)
qc.initialize([0,1],1)
qc.h(0)
qc.h(1)
qc.measure(qr,cr)
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
psi1 = np.array([[0,1]]).T;psi1
psi2 = np.array([[0,1]]).T;psi2
H = np.array([[1,1],[1,-1]])/2**0.5;H
# When we want to combine two vector states or gate matrices we tensor product them.
psi3 = np.kron(psi1,psi2);psi3
H2 = np.kron(H,H);H2
# When we want to pass a vetor through a gate we calculate the dot product
# of the total gate matrix with the total vector.
# As we have predicted, the resulting vector state has a=b=c=d=1/2
psi4 = H2.dot(psi3); psi4
import qiskit as qk
qr = qk.QuantumRegister(2,'q')
cr = qk.ClassicalRegister(2,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.cnot(0,1)
qc.measure(qr,cr)
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc, simulator, shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C
v00 = np.array([[1,0,0,0]]).T;v00
# C.v00 = v00
C.dot(v00)
import qiskit as qk
qr = qk.QuantumRegister(2,'q')
cr = qk.ClassicalRegister(2,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([0,1],1)
qc.cnot(0,1)
qc.measure(qr,cr)
qc.draw('mpl')
# Please notice that Qiskit's qubits presentation order is reversed.
# Therefore 10 in the histogram's x axis should be read as 01 (from
# inside out or right to left).
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc, simulator, shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C
v01 = np.array([[0,1,0,0]]).T;v01
# C.v01 = v01
C.dot(v01)
import qiskit as qk
qr = qk.QuantumRegister(2,'q')
cr = qk.ClassicalRegister(2,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([0,1],0)
qc.initialize([1,0],1)
qc.cnot(0,1)
qc.measure(qr,cr)
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc, simulator, shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C
v10 = np.array([[0,0,1,0]]).T; v10
# C.v10 = v11
C.dot(v10)
import qiskit as qk
qr = qk.QuantumRegister(2,'q')
cr = qk.ClassicalRegister(2,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([0,1],0)
qc.initialize([0,1],1)
qc.cnot(0,1)
qc.measure(qr,cr)
qc.draw('mpl')
# Again remember to read qiskit qubits state presentation order
# from right to left. Therefore 01 in the x axis is in fact 10
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc, simulator, shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C
v11 = np.array([[0,0,0,1]]).T; v11
# C.v11 = v10
C.dot(v11)
import qiskit as qk
qr = qk.QuantumRegister(2, 'q')
cr = qk.ClassicalRegister(2, 'c')
qc = qk.QuantumCircuit(qr, cr)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.h(qr[0])
qc.cx(qr[0],qr[1])
qc.measure(qr, cr)
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
va = np.array([[1,0]]).T; va
vb = np.array([[1,0]]).T; vb
H = np.array([[1,1],[1,-1]])/2**0.5;H
vaH = H.dot(va); vaH
vaHvb = np.kron(vaH,vb); vaHvb
C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C
vout = C.dot(vaHvb); vout
import qiskit as qk
qr = qk.QuantumRegister(2, 'q')
cr = qk.ClassicalRegister(2, 'c')
qc = qk.QuantumCircuit(qr, cr)
qc.initialize([0,1],0)
qc.initialize([1,0],1)
qc.h(qr[0])
qc.cx(qr[0],qr[1])
qc.measure(qr, cr)
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
va = np.array([[0,1]]).T; va
vb = np.array([[1,0]]).T; vb
H = np.array([[1,1],[1,-1]])/2**0.5;H
vaH = H.dot(va); vaH
vaHvb = np.kron(vaH,vb); vaHvb
C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C
vout = C.dot(vaHvb); vout
# Get the IBM API key in: https://quantum-computing.ibm.com
# chave = 'My key is already saved in this environment'
# qk.IBMQ.save_account(chave)
# Load the account in the active session
qk.IBMQ.load_account()
# The default provider is é hub='ibm-q', group='open, project='main'
# The code below is executed as an example
provider_1 = qk.IBMQ.get_provider(hub='ibm-q', group='open', project='main')
# In the public provider we will use a cloud simulator.
backend_1 = provider_1.get_backend('ibmq_qasm_simulator')
# The provider listed below has unlimited jobs
provider_2 = qk.IBMQ.get_provider(hub='ibm-q-education', group='fgv-1', project='ml-business-app')
# For this provider we will use the ibmq_jakarta machine
backend_2 = provider_2.get_backend('ibmq_jakarta')
# With n Qubits we can generate a random number from 0 to 2^n - 1
n = 3
qr = qk.QuantumRegister(n,'q')
cr = qk.ClassicalRegister(n,'c')
qc = qk.QuantumCircuit(qr, cr)
# Applying a Hadamard to each of the three qubits
for i in range(n):
qc.h(q[i])
# Measuring the three qubits
qc.measure(q,c)
# Visualizing the circuit
qc.draw('mpl')
# qk.execute envia para o backend. Conferindo no iqmq explorer aparece o job
new_job = qk.execute(circ, backend_2, shots=1)
# this result is stored on the local machine. However, it will only be available
# after the job has been executed. It returns a python dictionary.
new_job.result().get_counts()
int(list(new_job.result().get_counts().keys())[0],2)
from qiskit import QuantumCircuit
circuit = QuantumCircuit(2, 2)
circuit.h(0)
circuit.cx(0,1)
circuit.measure([0,1], [0,1])
display(circuit.draw('mpl'))
from qiskit.providers.aer import AerSimulator
print(AerSimulator().run(circuit, shots=1000).result().get_counts())
print(AerSimulator().run(circuit, shots=1000).result().get_counts())
from qiskit import QuantumCircuit
circuito = QuantumCircuit(3,3)
for i in range(3):
circuito.h(i)
circuito.measure(i,i)
display(circuito.draw('mpl'))
from qiskit.providers.aer import AerSimulator
AerSimulator().run(circuito, shots = 1000).result().get_counts()
from qiskit import QuantumCircuit
qc = QuantumCircuit(4,4)
qc.x([0,1])
qc.cx([0,1],[2,2])
qc.ccx(0,1,3)
qc.measure([0,1,2,3],[0,1,2,3])
display(qc.draw(output='mpl'))
from qiskit.providers.aer import AerSimulator
AerSimulator().run(qc, shots = 10000).result().get_counts()
import qiskit as qk
qr = qk.QuantumRegister(1,'q')
cr = qk.ClassicalRegister(1,'c')
qc = qk.QuantumCircuit(qr, cr)
qc.initialize([1,0],0)
print("Circuit 1 - Registers Only")
display(qc.draw('mpl'))
qc.x(qr)
print("Circuit 1 - Quantum Register with a Gate X ")
display(qc.draw('mpl'))
job = qk.execute(experiments = qc,
backend = qk.Aer.get_backend('statevector_simulator'))
result1 = job.result().get_statevector()
print("Quantum Register Vector State")
from qiskit.tools.visualization import plot_bloch_multivector
display(plot_bloch_multivector(result1))
job = qk.execute(experiments = qc,
backend = qk.Aer.get_backend('unitary_simulator'))
print("Transformation Matrix (up to this stage)")
print(job.result().get_unitary())
qc.measure(qr, cr)
print()
print("Circuit 1 - Registers, Gate X and Quantum Register Measure")
display(qc.draw('mpl'))
print("Quantum Register Thousand Measures")
job = qk.execute(experiments = qc,
backend = qk.Aer.get_backend('statevector_simulator'),
shots = 1000)
print(job.result().get_counts())
print()
print("Result's Histogram")
from qiskit.tools.visualization import plot_histogram
plot_histogram(data = job.result().get_counts(), figsize=(4,3))
import qiskit as qk
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_bloch_multivector
qr = qk.QuantumRegister(3,'q')
cr = qk.ClassicalRegister(3,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.initialize([1,0],2)
display(qc.draw('mpl'))
sv = Statevector.from_label('000')
state_data = lambda qc,sv: np.round(np.asarray(sv.evolve(qc).data),4)
state_bloch = lambda qc,sv: plot_bloch_multivector(sv.evolve(qc).data, reverse_bits=True)
print(state_data(qc,sv))
state_bloch(qc,sv)
qc.x(0)
qc.barrier()
display(qc.draw('mpl'))
print(state_data(qc,sv))
display(state_bloch(qc,sv))
qc.h(1)
display(qc.draw('mpl'))
print(state_data(qc,sv))
state_bloch(qc,sv)
qc.cnot(1,2)
display(qc.draw("mpl"))
state_data(qc,sv)
state_bloch(qc,sv)
qc.cnot(0,1)
display(qc.draw('mpl'))
state_data(qc,sv)
qc.h(0)
qc.barrier()
display(qc.draw('mpl'))
state_data(qc,sv)
qc.measure(0,0)
qc.measure(1,1)
qc.barrier()
qc.cnot(1,2)
qc.cz(0,2)
qc.measure(2,2)
display(qc.draw('mpl'))
simulador = qk.Aer.get_backend('statevector_simulator')
resultado = qk.execute(qc, simulador, shots=10000).result()
qk.visualization.plot_histogram(resultado.get_counts())
import numpy as np
V = np.array([[3+2j],[4-2j]])
modV = np.real(V.T.conjugate().dot(V)[0,0])**0.5
Vn = V/modV; Vn
v0 = np.array([[1,0]]).T
v1 = np.array([[0,1]]).T
Vn[0,0]*v0 + Vn[1,0]*v1
import qiskit as qk
qr = qk.QuantumRegister(1,'q')
cr = qk.ClassicalRegister(1,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([Vn[0,0],Vn[1,0]],0)
qc.measure(qr[0],cr[0])
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
Vn[0,0].conjugate()*Vn[0,0]
Vn[1,0].conjugate()*Vn[1,0]
import numpy as np
CNOT = np.array([[1,0,0,0],
[0,1,0,0],
[0,0,0,1],
[0,0,1,0]])
CNOT.dot(CNOT)
import numpy as np
H = np.array([[1,1],[1,-1]])/2**0.5
H.dot(H)
import qiskit as qk
qr = qk.QuantumRegister(2,'q')
cr = qk.ClassicalRegister(2,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.measure(qr,cr)
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import qiskit as qk
qr = qk.QuantumRegister(2,'q')
cr = qk.ClassicalRegister(2,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.h(0)
qc.measure(qr,cr)
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import qiskit as qk
qr = qk.QuantumRegister(2,'q')
cr = qk.ClassicalRegister(2,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.h(0)
qc.cnot(qr[0],qr[1])
qc.measure(qr,cr)
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import qiskit as qk
qr = qk.QuantumRegister(2,'q')
cr = qk.ClassicalRegister(2,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.h(0)
qc.cnot(qr[0],qr[1])
qc.cnot(qr[0],qr[1])
qc.measure(qr,cr)
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import qiskit as qk
qr = qk.QuantumRegister(2,'q')
cr = qk.ClassicalRegister(2,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.h(0)
qc.cnot(qr[0],qr[1])
qc.cnot(qr[0],qr[1])
qc.h(0)
qc.measure(qr,cr)
qc.draw('mpl')
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
X = np.array([[0,1],
[1,0]])
X
X.conj().T.dot(X)
Y = np.array([[0,-1j],
[1j,0]])
Y
Y.conj().T.dot(Y)
Z = np.array([[1,0],
[0,-1]])
Z
Z.conj().T.dot(Z)
H = (X+Z)/np.sqrt(2); H
H.dot(Z).dot(H)
H.dot(X).dot(H)
-H.dot(Y).dot(H)
import numpy as np
S = np.array([[1,0],
[0,1j]])
S
S.conj().T.dot(S)
T = np.array([[1,0],
[0,np.exp(1j*np.pi/4)]])
T
T.conj().T.dot(T)
S = np.array([[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]); S
S.dot(v00)
S.dot(v01)
S.dot(v10)
S.dot(v11)
C = np.array([[1,0,0,0],
[0,1,0,0],
[0,0,0,1],
[0,0,1,0]]);C
C_ = np.array([[1,0,0,0],
[0,0,0,1],
[0,0,1,0],
[0,1,0,0]]);C_
C.dot(C_).dot(C)
v = v0 + v1; v
n = np.array([[0,0],[0,1]]); n
n.dot(v)
n_ = np.array([[1,0],[0,0]]);n_
I2 = np.identity(2); I2
I2 - n
n_.dot(v)
n.dot(n)
n_.dot(n_)
n.dot(n_)
n_.dot(n)
n+n_
n.dot(X)
X.dot(n_)
import numpy as np
n = np.array([[0,0],[0,1]]); n
n_ = np.array([[1,0],[0,0]]);n_
# ni nj operam em bits distintos. Como cada operador n atua em um vetor de
# 2 dimensões, ni nj é um operador de 4 dimensões. Sendo assim, fica implícito
# pelos subscritos que ni nj é um produto tensorial.
np.kron(n,n)
# O mesmo vale para n'i n'j
np.kron(n_,n_)
# Para ni n'j
np.kron(n,n_)
# E para n'i nj
np.kron(n_,n)
# Xi Xj são dois operadores 2x2 de inversão, cada um atuando em um bit
# distinto. Sendo assim, fazemos o produto tensorial entre ambos
# para obter XiXj
np.kron(X,X)
# No caso da expressão XiXj(ninj' + ni'nj) temos entre parênteses duas
# matrizes 4x4 (ninj'+ni'nj) e fora dos parênteses uma matriz 4x4 (XiXj)
# Sendo assim fazemos neste caso o produto matricial normal para
# calcular esta expressão.
np.kron(X,X).dot(np.kron(n,n_)+np.kron(n_,n))
# E por último somamos com o resultado inicial de ninj + ni'nj'
# Como pode-se ver, esta expressão gera o operador de SWAP
np.kron(n,n) + np.kron(n_,n_) + np.kron(X,X).dot(np.kron(n,n_)+np.kron(n_,n))
# É importante observar que ninj forma um operador que projeta um vetor de
# 4 dimensões (00, 01, 10, 11) em sua componente 11
np.kron(n,n)
# De maneira similar ni'nj' projeta um vetor de 4 dimensões em sua componente 00
np.kron(n_,n_)
# ni'nj projeta em 01
np.kron(n_,n)
# Assim como ninj' projeta em 10
np.kron(n,n_)
# E por último vemos que ni'nj' + ni'nj + ninj' + ninj = I
nn = np.kron(n,n)
nn_ = np.kron(n,n_)
n_n = np.kron(n_,n)
n_n_ = np.kron(n_,n_)
nn + nn_ + n_n + n_n_
import numpy as np
n = np.array([[0,0],[0,1]]); n
n_ = np.array([[1,0],[0,0]]);n_
# (n x n).(n_ x n_)
np.kron(n,n).dot(np.kron(n_,n_))
# Faz sentido que (ni x nj).(ni_ x nj_) seja o vetor nulo pois:
# ni_ x nj_ é um operador que recebe um vetor de 4 dimensões e
# produz como resultado apenas sua componente |00>. Por sua
# vez ni x nj é um operador que recebe um vetor de 4 dimensões
# e produz como resultado apenas sua componente |11>. Esta
# componente foi zerada pelo primeiro operador, logo o resultado
# será nulo. Isto vai acontecer sempre que a componente não
# zerada do primeiro operador for diferente da do segundo em
# outras palavras sempre que ij do primeiro for diferente de ij
# do segundo.
np.kron(n,n).dot(np.kron(n_,n_))
# Outra forma de entender é transformar (n x n).(n_ x n_) em
# (n.n_) x (n.n_). Como n é ortogonal a n_, a projeção de n
# em n_ dará zero também.
np.kron(n.dot(n_),n.dot(n_))
nn.dot(n_n_)
# (n_ x n).(n x n_)
np.kron(n_,n).dot(np.kron(n,n_))
n_n.dot(nn_)
# (n x n_).(n_ x n)
np.kron(n, n_).dot(np.kron(n_,n))
nn_.dot(n_n)
# (n_ x n_).(n x n)
np.kron(n_, n_).dot(np.kron(n, n))
n_n_.dot(nn)
NOT = np.array([[0,1],[1,0]]); NOT
NOT.dot(D0)
NOT.dot(D1)
AND = np.array([[1,1,1,0],[0,0,0,1]]); AND
AND.dot(np.kron(D0,D0))
AND.dot(np.kron(D0,D1))
AND.dot(np.kron(D1,D0))
AND.dot(np.kron(D1,D1))
OR = np.array([[1,0,0,0],[0,1,1,1]]); OR
OR.dot(np.kron(D0,D0))
OR.dot(np.kron(D0,D1))
OR.dot(np.kron(D1,D0))
OR.dot(np.kron(D1,D1))
NAND = np.array([[0,0,0,1],[1,1,1,0]]); NAND
NOT.dot(AND)
NOR = np.array([[0,1,1,1],[1,0,0,0]]);NOR
NOT.dot(OR)
np.kron(NOT,AND)
OR.dot(np.kron(NOT,AND))
NOT.dot(AND).dot(np.kron(NOT,NOT))
OR
NOT.dot(OR).dot(np.kron(NOT,NOT))
AND
import numpy as np
k = np.kron
XOR = np.array([[1,0,0,1],
[0,1,1,0]])
AND = np.array(([1,1,1,0],
[0,0,0,1]))
k(XOR,AND)
def criaCompat(nbits,nvezes):
nlins = 2**(nbits*nvezes)
ncols = 2**nbits
compat = np.zeros(nlins*ncols).reshape(nlins,ncols)
for i in range(ncols):
formato = "0" + str(nbits) + "b"
binario = format(i,formato)*nvezes
decimal = int(binario,2)
compat[decimal,i] = 1
return(compat)
criaCompat(2,2)
k(XOR,AND).dot(criaCompat(2,2))
import numpy as np
k = np.kron
def criaCompat(nbits,nvezes):
nlins = 2**(nbits*nvezes)
ncols = 2**nbits
compat = np.zeros(nlins*ncols).reshape(nlins,ncols)
for i in range(ncols):
formato = "0" + str(nbits) + "b"
binario = format(i,formato)*nvezes
decimal = int(binario,2)
compat[decimal,i] = 1
return(compat)
criaCompat(2,2)
NOT = np.array([[0,1],
[1,0]])
AND3 = np.array([[1,1,1,1,1,1,1,0],
[0,0,0,0,0,0,0,1]])
OR4 = np.array([[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]])
I2 = np.array([[1,0],
[0,1]])
t1z = k(NOT,k(NOT,I2))
t2z = k(NOT,k(I2,NOT))
t3z = k(I2,k(NOT,NOT))
t4z = k(I2,k(I2,I2))
ORz = k(AND3,k(AND3,k(AND3,AND3)))
ORz = OR4.dot(ORz).dot(k(t1z,k(t2z,k(t3z,t4z))))
t1c = k(NOT,k(I2,I2))
t2c = k(I2,k(NOT,I2))
t3c = k(I2,k(I2,NOT))
t4c = k(I2,k(I2,I2))
ORc = k(AND3,k(AND3,k(AND3,AND3)))
ORc = OR4.dot(ORc).dot(k(t1c,k(t2c,k(t3c,t4c))))
compat = criaCompat(3,8)
k(ORz,ORc).dot(compat)
import numpy as np
TOFFOLI = np.array([[1,0,0,0,0,0,0,0],
[0,1,0,0,0,0,0,0],
[0,0,1,0,0,0,0,0],
[0,0,0,1,0,0,0,0],
[0,0,0,0,1,0,0,0],
[0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,0,1],
[0,0,0,0,0,0,1,0]])
TOFFOLI.dot(TOFFOLI)
Z1 = np.array([[0,0,0,0,0,0,0,0],
[0,1,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0],
[0,0,0,1,0,0,0,0],
[0,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,1]])
Z1
Z1I4 = np.array([[0,0,0,0],
[1,0,0,0],
[0,0,0,0],
[0,1,0,0],
[0,0,0,0],
[0,0,1,0],
[0,0,0,0],
[0,0,0,1]])
TOFFOLI.dot(ZpY).dot(TOFFOLI).dot(Z1I4)
ZpY = np.zeros([8,8])
ZpY[0,0] = 1; ZpY[1,2] = 1; ZpY[2,1] = 1; ZpY[3,3] = 1
ZpY[4,4] = 1; ZpY[5,6] = 1; ZpY[6,5] = 1; ZpY[7,7] = 1
ZpY
Zfim = np.array([[1,0,1,0,1,0,1,0],
[0,1,0,1,0,1,0,1]])
Zfim.dot(TOFFOLI).dot(ZpY).dot(TOFFOLI).dot(Z1I4)
import numpy as np
fred = np.identity(8)
fred[5,5] = 0; fred[5,6] = 1
fred[6,5] = 1; fred[6,6] = 0
fred
fred.dot(fred)
import numpy as np
Fy0 = np.zeros([8,4])
Fy0[0,0] = 1; Fy0[1,1] = 1; Fy0[4,2] = 1; Fy0[5,3] = 1
Fy0
xYz = np.array([[1,1,0,0,1,1,0,0],
[0,0,1,1,0,0,1,1]])
xYz.dot(fred).dot(Fy0)
import numpy as np
q0 = np.array([[1,0]]).T; q0
q1 = np.array([[0,1]]).T; q1
q01 = np.kron(q0,q1); q01
H = np.array([[1,1],[1,-1]])/np.sqrt(2); H
H2 = np.kron(H,H); H2
H2.dot(q01)
I4 = np.eye(4); I4
I4.dot(H2).dot(q01)
I2 = np.eye(2); I2
HI2 = np.kron(H,I2); HI2
HI2.dot(I4).dot(H2).dot(q01)
X = np.array([[0,1],[1,0]]); X
I2 = np.eye(2); I2
I2X = np.kron(I2,X); I2X
HI2.dot(I2X).dot(H2).dot(q01)
CNOT = np.array([[1,0,0,0],
[0,1,0,0],
[0,0,0,1],
[0,0,1,0]])
CNOT
HI2.dot(CNOT).dot(H2).dot(q01)
X = np.array([[0,1],[1,0]]); X
I2 = np.eye(2); I2
XI2 = np.kron(X,I2); XI2
CNOT = np.array([[1,0,0,0],
[0,1,0,0],
[0,0,0,1],
[0,0,1,0]])
CNOT
CNOT.dot(XI2)
HI2.dot(CNOT).dot(XI2).dot(H2).dot(q01)
import qiskit as qk
import numpy as np
qr = qk.QuantumRegister(2,'q')
cr = qk.ClassicalRegister(1,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([0,1],1)
qc.h(0)
qc.h(1)
qc.barrier()
qc.barrier()
qc.h(0)
qc.measure(qr[0],cr[0])
qc.draw('mpl')
simulator = qk.Aer.get_backend("statevector_simulator")
results = qk.execute(qc, simulator).result().get_counts()
qk.visualization.plot_histogram(results)
import qiskit as qk
import numpy as np
qr = qk.QuantumRegister(2,'q')
cr = qk.ClassicalRegister(1,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([0,1],1)
qc.h(0)
qc.h(1)
qc.barrier()
qc.x(1)
qc.barrier()
qc.h(0)
qc.measure(qr[0],cr[0])
qc.draw('mpl')
simulator = qk.Aer.get_backend("statevector_simulator")
results = qk.execute(qc, simulator).result().get_counts()
qk.visualization.plot_histogram(results)
import qiskit as qk
import numpy as np
qr = qk.QuantumRegister(2,'q')
cr = qk.ClassicalRegister(1,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([0,1],1)
qc.h(0)
qc.h(1)
qc.barrier()
qc.cx(0,1)
qc.barrier()
qc.h(0)
qc.measure(qr[0],cr[0])
qc.draw('mpl')
simulator = qk.Aer.get_backend("statevector_simulator")
results = qk.execute(qc, simulator).result().get_counts()
qk.visualization.plot_histogram(results)
import qiskit as qk
import numpy as np
qr = qk.QuantumRegister(2,'q')
cr = qk.ClassicalRegister(1,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([0,1],1)
qc.h(0)
qc.h(1)
qc.barrier()
qc.x(0)
qc.cx(0,1)
qc.barrier()
qc.h(0)
qc.measure(qr[0],cr[0])
qc.draw('mpl')
simulator = qk.Aer.get_backend("statevector_simulator")
results = qk.execute(qc, simulator).result().get_counts()
qk.visualization.plot_histogram(results)
import qiskit as qk
qc = qk.QuantumCircuit(3,3)
qc.barrier()
qc.cnot(1,2)
qc.barrier()
qc.draw('mpl')
import qiskit as qk
qc = qk.QuantumCircuit(3,3)
qc.initialize([0,0,0,0,1,0,0,0],[0,1,2])
qc.h([0,1,2])
qc.barrier()
qc.cnot(1,2)
qc.barrier()
qc.h([0,1])
qc.measure([0,1],[0,1])
qc.draw('mpl')
def histograma(qc):
import qiskit as qk
from qiskit.visualization import plot_histogram
simulador = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulador,shots=10000).result().get_counts()
grafico = plot_histogram(results)
return(grafico)
histograma(qc)
import numpy as np
x1 = np.array([[1,0]]).T
x0 = np.array([[1,0]]).T
y = np.array([[0,1]]).T
psi0 = np.kron(y,np.kron(x1,x0)); psi0.T
import numpy as np
H = np.array([[1, 1],
[1,-1]])/np.sqrt(2)
H3 = np.kron(H,np.kron(H,H)); np.round(H3,3)
psi0 = np.array([[0,0,0,0,1,0,0,0]]).T
psi1 = H3.dot(psi0); psi1.T
CNOTsm = np.array([[1,0,0,0],
[0,0,0,1],
[0,0,1,0],
[0,1,0,0]])
I2 = np.array([[1,0],
[0,1]])
CNOTsm_I2 = np.kron(CNOTsm,I2)
psi0 = np.array([[0,0,0,0,1,0,0,0]]).T
CNOTsm_I2.dot(H3).dot(psi0).T
psi = np.array([[1,1,-1,-1]]).T/2
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H)
H2.dot(psi)
import qiskit as qk
qc = qk.QuantumCircuit(3,3)
qc.initialize([0,0,0,0,1,0,0,0],[0,1,2])
qc.h([0,1,2])
qc.barrier()
qc.cnot(0,2)
qc.barrier()
qc.h([0,1])
qc.measure([0,1],[0,1])
display(qc.draw('mpl'))
histograma(qc)
import numpy as np
v0 = np.array([[0,0,0,0,1,0,0,0]]).T; v0.T
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H); H3 = np.kron(H2,H)
H3.dot(v0).T
CNOTs_I_m = np.array([[1,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,0],
[0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,1],
[0,0,0,0,1,0,0,0],
[0,1,0,0,0,0,0,0],
[0,0,0,0,0,0,1,0],
[0,0,0,1,0,0,0,0]])
v0 = np.array([[0,0,0,0,1,0,0,0]]).T
CNOTs_I_m.dot(H3).dot(v0).T
psi = np.array([[+1,-1,+1,-1]]).T/2
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H)
H2.dot(psi)
import qiskit as qk
qc = qk.QuantumCircuit(3,3)
qc.initialize([0,0,0,0,1,0,0,0],[0,1,2])
qc.h([0,1,2])
qc.barrier()
qc.cnot(0,1)
qc.cnot(1,2)
qc.cnot(0,1)
qc.barrier()
qc.h([0,1])
qc.measure([0,1],[0,1])
display(qc.draw('mpl'))
histograma(qc)
v0 = np.array([[0,0,0,0,1,0,0,0]]).T
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H); H3 = np.kron(H2,H)
H3.dot(v0).T
CNOT_CNOT = np.array([[1,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,1,0],
[0,0,0,1,0,0,0,0],
[0,0,0,0,1,0,0,0],
[0,1,0,0,0,0,0,0],
[0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,1]])
v0 = np.array([[0,0,0,0,1,0,0,0]]).T
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H); H3 = np.kron(H2,H)
CNOT_CNOT.dot(H3).dot(v0).T
psi = np.array([[+1,-1,-1,+1]]).T/2
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H)
H2.dot(psi)
import numpy as np
CNOTsm = np.array([[1,0,0,0],
[0,0,0,1],
[0,0,1,0],
[0,1,0,0]])
I = np.array([[1,0],
[0,1]])
ISM = np.kron(I,CNOTsm)
SMI = np.kron(CNOTsm,I)
H = np.array([[1, 1],
[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H)
H3 = np.kron(H2,H)
IH2 = np.kron(I,H2)
v0 = np.array([[0,0,0,0,1,0,0,0]]).T
IH2.dot(ISM).dot(SMI).dot(ISM).dot(H3).dot(v0).round(3)
CNOT_CNOT = np.array([[1,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,1,0],
[0,0,0,1,0,0,0,0],
[0,0,0,0,1,0,0,0],
[0,1,0,0,0,0,0,0],
[0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,1]])
ISM.dot(SMI).dot(ISM)
import qiskit as qk
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_histogram
qr = qk.QuantumRegister(3,'q')
cr = qk.ClassicalRegister(3,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.initialize([0,1],2)
qc.h(0)
qc.h(1)
qc.h(2)
qc.barrier()
qc.barrier()
qc.h(0)
qc.h(1)
qc.measure(0,0)
qc.measure(1,1)
display(qc.draw('mpl'))
histograma(qc)
psi = np.array([[1,1,1,1]]).T/2
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H)
H2.dot(psi)
import qiskit as qk
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_histogram
qr = qk.QuantumRegister(3,'q')
cr = qk.ClassicalRegister(3,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.initialize([0,1],2)
qc.h(0)
qc.h(1)
qc.h(2)
qc.barrier()
qc.x(2)
qc.barrier()
qc.h(0)
qc.h(1)
qc.measure(0,0)
qc.measure(1,1)
display(qc.draw('mpl'))
histograma(qc)
psi = np.array([[1,1,1,1]]).T/2
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H)
H2.dot(psi)
import qiskit as qk
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_histogram
qr = qk.QuantumRegister(3,'q')
cr = qk.ClassicalRegister(3,'c')
qc = qk.QuantumCircuit(qr,cr)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.initialize([0,1],2)
qc.h(0)
qc.h(1)
qc.h(2)
qc.barrier()
qc.ccx(0,1,2)
qc.barrier()
qc.h(0)
qc.h(1)
qc.measure(0,0)
qc.measure(1,1)
display(qc.draw('mpl'))
histograma(qc)
import qiskit as qk
qrx = qk.QuantumRegister(2,'x')
qry = qk.QuantumRegister(2,'y')
qc = qk.QuantumCircuit(qrx,qry)
qc.barrier()
qc.cx(0,2)
qc.cx(0,3)
qc.cx(1,2)
qc.cx(1,3)
qc.barrier()
qc.draw('mpl')
def histograma(qc):
simulador = qk.Aer.get_backend('statevector_simulator')
resultado = qk.execute(qc,simulador,shots=10000).result()
contagens = resultado.get_counts()
grafico = qk.visualization.plot_histogram(contagens)
return(grafico)
def simon(initial_y, initial_x):
import qiskit as qk
qrx = qk.QuantumRegister(2,'x')
crx = qk.ClassicalRegister(4,'c')
qry = qk.QuantumRegister(2,'y')
qc = qk.QuantumCircuit(qrx,qry,crx)
qc.initialize(initial_x,qrx)
qc.initialize(initial_y,qry)
qc.barrier()
qc.cx(0,2)
qc.cx(0,3)
qc.cx(1,2)
qc.cx(1,3)
qc.barrier()
qc.measure([0,1,2,3],[0,1,2,3])
display(qc.draw('mpl'))
grafico = histograma(qc)
return(grafico)
simon([1,0,0,0],[1,0,0,0])
simon([1,0,0,0],[0,0,0,1])
simon([1,0,0,0],[0,1,0,0])
simon([1,0,0,0],[0,0,1,0])
import qiskit as qk
qrx = qk.QuantumRegister(2,'x')
crx = qk.ClassicalRegister(2,'c')
qry = qk.QuantumRegister(2,'y')
qc = qk.QuantumCircuit(qrx,qry,crx)
qc.initialize([1,0,0,0],qrx)
qc.initialize([1,0,0,0],qry)
qc.h([0,1])
qc.barrier()
qc.cx(0,2)
qc.cx(0,3)
qc.cx(1,2)
qc.cx(1,3)
qc.barrier()
qc.h([0,1])
qc.measure([0,1],[0,1])
display(qc.draw('mpl'))
histograma(qc)
import numpy as np
x0 = np.array([[1,0]]).T
x1 = np.array([[1,0]]).T
x1x0 = np.kron(x1,x0)
y0 = np.array([[1,0]]).T
y1 = np.array([[1,0]]).T
y1y0 = np.kron(y1,y0)
psi0 = np.kron(y1y0,x1x0)
psi0.T
H = np.array([[1,1],[1,-1]],dtype='int')
H2 = np.kron(H,H)
I2 = np.eye(4)
I2H2 = np.kron(I2,H2)
psi1 = I2H2.dot(psi0)/(np.sqrt(2)*np.sqrt(2))
I2H2.dot(psi0).T
Tf1_2 = np.eye(16)
Tf1_2 = Tf1_2[:,[0,5,2,7,4,1,6,3,8,9,10,11,12,13,14,15]]
psi2 = Tf1_2.dot(psi1); psi2.T*2
Tf2_3 = np.eye(16)
Tf2_3 = Tf2_3[:,[0,1,2,3,4,13,6,15,8,9,10,11,12,5,14,7]]
psi3 = Tf2_3.dot(psi2); psi3.T*2
Tf3_4 = np.eye(16)
Tf3_4 = Tf3_4[:,[0,1,6,3,4,5,2,7,8,9,10,15,12,13,14,11]]
psi4 = Tf3_4.dot(psi3); psi4.T*2
Tf4_5 = np.eye(16)
Tf4_5 = Tf4_5[:,[0,1,2,11,4,5,14,7,8,9,10,3,12,13,6,15]]
psi5 = Tf4_5.dot(psi4); psi5.T*2
I2 = np.eye(4)
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H)
I2H2 = np.kron(I2,H2)
psi6 = I2H2.dot(psi5)
print(psi6.T*2)
import numpy as np
I2 = np.eye(4, dtype='int');
H2 = np.array([[1, 1, 1, 1],
[1,-1, 1,-1],
[1, 1,-1,-1],
[1,-1,-1, 1]])/2;
I2H2 = np.kron(I2,H2);
print(I2H2*2)
import numpy as np
x0 = np.array([[1,0]]).T
x1 = np.array([[1,0]]).T
x2 = np.array([[1,0]]).T
x2x1x0 = np.kron(x2,np.kron(x1,x0))
x2x1x0.T
y0 = np.array([[1,0]]).T
y1 = np.array([[1,0]]).T
y2 = np.array([[1,0]]).T
y2y1y0 = np.kron(y2,np.kron(y1,y0))
y2y1y0.T
psi0 = np.kron(y2y1y0,x2x1x0)
psi0.T
I3 = np.eye(2**3)
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H)
H3 = np.kron(H,H2)
I3H3 = np.kron(I3,H3)
psi1 = I3H3.dot(psi0)
psi1.T.round(2)
n = 2*3 # 2 números de 3 digitos cada
Uf = np.eye(2**n) # 2^6 = 64 posições
Uf = Uf[:,[ 0, 9,18,27,12, 5,30,23,
8, 1,10,11, 4,13,14,15,
16,17, 2,19,20,21,22, 7,
24,25,26, 3,28,29, 6,31,
32,33,34,35,36,37,38,39,
40,41,42,43,44,45,46,47,
48,49,50,51,52,53,54,55,
56,57,58,59,60,61,62,63]]
psi5 = Uf.dot(psi1)
psi5.T.round(2)
psi6 = I3H3.dot(psi5)
psi6.T
np.where(psi6 > 0)[0]
[format(i,'#08b')[2:] for i in np.where(psi6 > 0)[0]]
import numpy as np
CCNOT = np.eye(8)
CCNOT = CCNOT[:,[0,1,2,7,4,5,6,3]]
CCNOT.dot(CCNOT)
import qiskit as qk
def qNAND(y0,x0):
x = qk.QuantumRegister(1,"x")
y = qk.QuantumRegister(1,"y")
z = qk.QuantumRegister(1,"z")
u = qk.QuantumRegister(1,"u")
c = qk.ClassicalRegister(3,'c')
qc = qk.QuantumCircuit(x,y,z,u,c)
# Put qubits u and z in state |0>
qc.initialize([1,0],z)
qc.initialize([1,0],u)
qc.initialize(y0,y)
qc.initialize(x0,x)
# Perform computation
qc.barrier()
qc.ccx(x,y,z)
qc.x(z)
# Copy CLASSICALY state of z to u
qc.cx(z,u)
qc.barrier()
# Reverse computation
qc.x(z)
qc.ccx(x,y,z)
qc.barrier()
# Measure results
qc.measure(x,c[0])
qc.measure(y,c[1])
qc.measure(u,c[2])
display(qc.draw('mpl'))
simulator = qk.Aer.get_backend("statevector_simulator")
results = qk.execute(qc, simulator, shots=10000).result().get_counts()
grafico = qk.visualization.plot_histogram(results)
return(grafico)
print("0 NAND 0 = 1")
qNAND([1,0],[1,0])
print("0 NAND 1 = 1")
qNAND([1,0],[0,1])
print("1 NAND 0 = 1")
qNAND([0,1],[1,0])
print("1 NAND 1 = 0")
qNAND([0,1],[0,1])
import qiskit as qk
def qOR(y0,x0):
x = qk.QuantumRegister(1,"x")
y = qk.QuantumRegister(1,"y")
z = qk.QuantumRegister(1,"z")
u = qk.QuantumRegister(1,"u")
c = qk.ClassicalRegister(3,'c')
# Initialize qubits
qc = qk.QuantumCircuit(x,y,z,u,c)
qc.initialize(x0,x)
qc.initialize(y0,y)
qc.initialize([1,0],z)
qc.initialize([1,0],u)
# Compute function
qc.barrier()
qc.x(x)
qc.x(y)
qc.ccx(x,y,z)
qc.x(z)
qc.cx(z,u)
qc.barrier()
# Reverse computation
qc.x(z)
qc.ccx(x,y,z)
qc.x(y)
qc.x(x)
qc.barrier()
# Measure results
qc.measure(x,c[0])
qc.measure(y,c[1])
qc.measure(u,c[2])
display(qc.draw('mpl'))
# Simulate circuit
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
grafico = qk.visualization.plot_histogram(results)
return(grafico)
qOR([1,0],[1,0])
qOR([1,0],[0,1])
qOR([0,1],[1,0])
qOR([0,1],[0,1])
import qiskit as qk
def qNXOR(y0,x0,calc=True,show=False):
##################################################
# Create registers #
##################################################
# Base registers
x = qk.QuantumRegister(1,"x")
y = qk.QuantumRegister(1,"y")
# Auxiliary register (for x and y)
z = qk.QuantumRegister(1,"z")
# Auxiliary register (to store x AND y)
a1 = qk.QuantumRegister(1,"a1")
# Auxiliary register (to store NOT(x) AND NOT(y))
a2 = qk.QuantumRegister(1,"a2")
# Auxiliary register (for a1 and a2)
b1 = qk.QuantumRegister(1,"b1")
# Auxiliary register (to store a1 OR a2)
b2 = qk.QuantumRegister(1,"b2")
# Classical Registers to store x,y and final measurement
c = qk.ClassicalRegister(3,"c")
##################################################
# Create Circuit #
##################################################
qc = qk.QuantumCircuit(x,y,z,a1,a2,b1,b2,c)
##################################################
# Initialize registers #
##################################################
qc.initialize(x0,x)
qc.initialize(y0,y)
qc.initialize([1,0],z)
qc.initialize([1,0],a1)
qc.initialize([1,0],a2)
qc.initialize([1,0],b1)
qc.initialize([1,0],b2)
###################################################
# Calculate x AND y. Copy result to a1. Reverse z #
###################################################
qc.barrier()
qc.ccx(x,y,z)
qc.cx(z,a1)
qc.ccx(x,y,z)
qc.barrier()
#########################################################
# Calc. NOT(x) AND NOT(y). Copy result to a2. Reverse z #
#########################################################
qc.barrier()
qc.x(x)
qc.x(y)
qc.ccx(x,y,z)
qc.cx(z,a2)
qc.ccx(x,y,z)
qc.x(y)
qc.x(x)
qc.barrier()
#################################################
# Calc. a1 OR a2. Copy result to b2. Reverse b1 #
#################################################
qc.barrier()
qc.x(a1)
qc.x(a2)
qc.ccx(a1,a2,b1)
qc.x(b1)
qc.cx(b1,b2)
qc.x(b1)
qc.ccx(a1,a2,b1)
qc.barrier()
#################################################
# Measure b2 #
#################################################
qc.measure(x,c[0])
qc.measure(y,c[1])
qc.measure(b2,c[2])
#################################################
# Draw circuit #
#################################################
if show:
display(qc.draw("mpl"))
#################################################
# Run circuit. Collect results #
#################################################
if calc:
simulator = qk.Aer.get_backend("statevector_simulator")
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
grafico = qk.visualization.plot_histogram(results)
return(grafico)
else:
return()
qNXOR([1,0],[1,0],False,True)
qNXOR([1,0],[1,0])
qNXOR([1,0],[0,1])
qNXOR([0,1],[1,0])
qNXOR([0,1],[0,1])
x0 = np.array([1,1])/np.sqrt(2)
y0 = np.array([1,1])/np.sqrt(2)
qNXOR(y0,x0)
import qiskit as qk
from qiskit.quantum_info.operators import Operator
qr = qk.QuantumRegister(6,"q")
cr = qk.ClassicalRegister(6,"c")
qc = qk.QuantumCircuit(qr,cr)
for i in range(6):
qc.initialize([1,0],i)
for i in range(3):
qc.h(i)
oracle = np.eye(2**6)
oracle[:,[ 0, 0]] = oracle[:,[ 0, 0]]
oracle[:,[ 1, 9]] = oracle[:,[ 9, 1]]
oracle[:,[ 2, 18]] = oracle[:,[ 18, 2]]
oracle[:,[ 3, 27]] = oracle[:,[ 27, 3]]
oracle[:,[ 4, 12]] = oracle[:,[ 12, 4]]
oracle[:,[ 5, 5]] = oracle[:,[ 5, 5]]
oracle[:,[ 6, 30]] = oracle[:,[ 30, 6]]
oracle[:,[ 7, 23]] = oracle[:,[ 23, 7]]
oracle = Operator(oracle)
qc.append(oracle,qr)
for i in range(3):
qc.h(i)
qc.barrier()
for i in range(3):
qc.measure(i,i)
display(qc.draw("mpl"))
simulator = qk.Aer.get_backend("statevector_simulator")
results = qk.execute(qc,simulator,shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
oracle = np.eye(8)
oracle[:,[2,6]] = oracle[:,[6,2]]
oracle
import numpy as np
x0 = np.array([[1,0]]).T
x1 = np.array([[1,0]]).T
psi0 = np.kron(x1,x0)
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H)
psi1 = H2.dot(psi0)
psi1.T
# Initialize a qubit y in state |1>
y = np.array([[0,1]]).T
# Pass it through a Hadamard gate and obtain state psi2a
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
psi2a = H.dot(y)
psi2a.T
psi2 = np.kron(psi2a,psi1)
psi2.T
oracle = np.eye(8)
oracle[:,[2,6]] = oracle[:,[6,2]]
oracle
psi3 = oracle.dot(psi2)
psi3.T
v0 = np.array([[10,20,-30,40,50]]).T
mu = np.mean(v0)
v0.T, mu
D = v0 - mu
D.T
v1 = 2*np.mean(v0)-v0
v1.T
import numpy as np
A = np.ones(5**2).reshape(5,5)
A = A/5
I = np.eye(5)
R = 2*A-I
R
R.dot(R)
n = 4
I = np.eye(n)
A = np.ones(n**2).reshape(n,n)/n
R = 2*A-I
R
I2 = np.eye(2)
I2R = np.kron(I2,R)
I2R
psi4 = I2R.dot(psi3)
psi4.T
import qiskit as qk
import numpy as np
from qiskit.quantum_info.operators import Operator
q = qk.QuantumRegister(3,'q')
c = qk.ClassicalRegister(3,'c')
qc = qk.QuantumCircuit(q,c)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.h(0)
qc.h(1)
qc.initialize([0,1],2)
qc.h(2)
qc.barrier()
oracle = np.eye(8)
oracle[:,[2,6]] = oracle[:,[6,2]]
oracle = Operator(oracle)
qc.append(oracle,q)
# n = 2 (two digits number to look for)
A = np.ones(4*4).reshape(4,4)/4
I4 = np.eye(4)
R = 2*A - I4
I2 = np.eye(2)
boost = np.kron(I2,R)
boost = Operator(boost)
qc.append(boost,q)
qc.barrier()
qc.measure(q[:2],c[:2])
display(qc.draw('mpl'))
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=1000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
x0 = np.array([[1,0]]).T
x1 = np.array([[1,0]]).T
x2 = np.array([[1,0]]).T
x2x1x0 = np.kron(x2,np.kron(x1,x0))
x2x1x0.T
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H)
H3 = np.kron(H,H2)
x = H3.dot(x2x1x0)
x.T
y0 = np.array([[0,1]]).T
y0.T
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
y = H.dot(y0)
y.T
psi0 = np.kron(y,x)
psi0.T
oracle = np.eye(16)
oracle[:,[5,13]] = oracle[:,[13,5]]
psi1 = oracle.dot(psi0)
psi1.T
# n = 8
A = np.ones(8*8).reshape(8,8)/8
I8 = np.eye(8)
R = 2*A-I8
R
I2 = np.eye(2)
I2R = np.kron(I2,R)
psi2 = I2R.dot(psi1)
psi2.T
0.625**2 + 0.625**2
psi3 = I2R.dot(oracle).dot(psi2)
psi3.T
0.687**2 + 0.687**2
I2R.dot(oracle).dot(psi3).T
T = I2R.dot(oracle)
psi = psi1
prob = []
for i in range(25):
prob.append(psi[5,0]**2 + psi[13,0]**2)
psi = T.dot(psi)
from matplotlib import pyplot as plt
plt.plot(list(range(25)), prob);
import qiskit as qk
import numpy as np
from qiskit.quantum_info.operators import Operator
q = qk.QuantumRegister(4,'q')
c = qk.ClassicalRegister(4,'c')
qc = qk.QuantumCircuit(q,c)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.initialize([1,0],2)
qc.h(0)
qc.h(1)
qc.h(2)
qc.initialize([0,1],3)
qc.h(3)
qc.barrier()
# Create oracle matrix
oracle = np.eye(16)
oracle[:,[5,13]] = oracle[:,[13,5]]
# Create rotation about the mean matrix
# n = 3 (three digits number to look for)
A = np.ones(8*8).reshape(8,8)/8
I8 = np.eye(8)
R = 2*A - I8
# Identity matrix to leave fourth qubit undisturbed
I2 = np.eye(2)
# Create second transformation matrix
boost = np.kron(I2,R)
# Combine oracle with second transformation matrix in
# an unique operator
T = boost.dot(oracle)
T = Operator(T)
# Apply operator twice (2 phase inversions and
# rotations about the mean)
qc.append(T,q)
qc.append(T,q)
qc.barrier()
qc.measure(q[:3],c[:3])
display(qc.draw('mpl'))
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=1000).result().get_counts()
qk.visualization.plot_histogram(results)
import qiskit as qk
import numpy as np
from qiskit.quantum_info.operators import Operator
q = qk.QuantumRegister(5,'q')
c = qk.ClassicalRegister(5,'c')
qc = qk.QuantumCircuit(q,c)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.initialize([1,0],2)
qc.initialize([1,0],3)
qc.h(0)
qc.h(1)
qc.h(2)
qc.h(3)
qc.initialize([0,1],4)
qc.h(4)
qc.barrier()
# Create oracle matrix
oracle = np.eye(32)
oracle[:,[13,29]] = oracle[:,[29,13]]
# Create rotation about the mean matrix
# n = 4 (four digits number to look for)
A = np.ones(16*16).reshape(16,16)/16
I16 = np.eye(16)
R = 2*A - I16
# Identity matrix to leave fifth qubit undisturbed
I2 = np.eye(2)
# Create second transformation matrix
boost = np.kron(I2,R)
# Combine oracle with second transformation matrix in
# an unique operator
T = boost.dot(oracle)
# n = 4. Therefore it will be necessary 4 T operations
# to get maximum probability.
Tn = T.dot(T).dot(T)
Tn = Operator(Tn)
# Apply operator Tn once (n phase inversions and
# rotations about the mean)
qc.append(Tn,q)
qc.barrier()
qc.measure(q[:4],c[:4])
display(qc.draw('mpl'))
simulator = qk.Aer.get_backend('statevector_simulator')
results = qk.execute(qc,simulator,shots=1000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
import pandas as pd
N = 35; a = 6
GCD = pd.DataFrame({'N':[N], 'a':[a], 'N-a':[N-a]})
while GCD.iloc[-1,2] != 0:
temp = GCD.iloc[-1].values
temp = np.sort(temp); temp[-1] = temp[-2] - temp[-3]
temp = pd.DataFrame(data = temp.reshape(-1,3), columns = ['N','a','N-a'])
GCD = GCD.append(temp, ignore_index=True)
GCD
import numpy as np
import pandas as pd
N = 15; a = 9
GCD = pd.DataFrame({'N':[N], 'a':[a], 'N-a':[N-a]})
while GCD.iloc[-1,2] != 0:
temp = GCD.iloc[-1].values
temp = np.sort(temp); temp[-1] = temp[-2] - temp[-3]
temp = pd.DataFrame(data = temp.reshape(-1,3), columns = ['N','a','N-a'])
GCD = GCD.append(temp, ignore_index=True)
GCD
import numpy as np
np.gcd(6,35), np.gcd(9,15)
import numpy as np
np.gcd(215,35), np.gcd(217,35)
20 % 7
import numpy as np
f = lambda x,a,N: a**x % N
[f(x,2,15) for x in range(10)]
import numpy as np
(13*35)%11, ((2%11)*(24%11))%11
import numpy as np
def f(x,a,N):
a0 = 1
for i in range(x):
a0 = ((a%N)*(a0))%N
return(a0)
[f(x,2,371) for x in range(8)]
[f(x,2,371) for x in range(154,159)]
[f(x,24,371) for x in range(77,81)]
import numpy as np
def fr(a,N):
ax = ((a%N)*(1))%N
x = 1
while ax != 1:
ax = ((a%N)*(ax))%N
x = x+1
return(x)
fr(2,371), fr(6,371), fr(24,371)
import numpy as np
def fr(a,N):
a0 = 1
a0 = ((a%N)*a0)%N
x = 2
find = False
while find==False:
a0 = ((a%N)*(a0))%N
if a0 == 1:
find = True
x = x+1
return(x-1)
N = 35
a = 2
fr(a,N)
2**(12/2)-1, 2**(12/2)+1
np.gcd(63,35), np.gcd(65,35)
import numpy as np
# Function to calculate the period of f(x) = a^x MOD N
def fr(a,N):
a1 = ((a%N)*(1))%N
x = 1
while a1 != 1:
a1 = ((a%N)*a1)%N
x = x+1
return(x)
# Function to factor N based on a
def factor(N, a=2):
r = fr(a,N)
g1 = a**(int(r/2)) - 1
g2 = a**(int(r/2)) + 1
f1 = np.gcd(g1,N)
f2 = np.gcd(g2,N)
return(f1,f2, f1*f2)
factor(247)
factor(1045)
import numpy as np
N = 15 # number to be factored
n = 4 # number of bits necessary to represent N
m = 8 # number of bits necessary to represent N^2
x = np.zeros(2**m).reshape(-1,1)
x[0,0] = 1
x.shape # since x is a 2^8 = 256 positions vector it will not be showed here
y = np.zeros(2**n).reshape(-1,1)
y[0,0] = 1; y.T # y is a 2^4 = 16 positions vector shown below
psi0 = np.kron(y,x)
psi0.shape # psi0 is a 256 x 16 = 4.096 positions vector
In = np.eye(2**n); In.shape
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
Hm = H.copy()
for i in range(1,m):
Hm = np.kron(Hm,H)
Hm.shape
psi1 = np.kron(In,Hm).dot(psi0); psi1.shape
|
https://github.com/jonasmaziero/computacao_quantica_qiskit
|
jonasmaziero
|
0.4*7.6
|
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
|
PabloMartinezAngerosa
|
from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost
from utils import mapeo_grafo
import qiskit
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
from collections import defaultdict
from operator import itemgetter
from scipy.optimize import minimize
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, assemble
from qiskit.quantum_info import Statevector
from qiskit.aqua.algorithms import NumPyEigensolver
from qiskit.quantum_info import Pauli
from qiskit.aqua.operators import op_converter
from qiskit.aqua.operators import WeightedPauliOperator
from qiskit.visualization import plot_histogram
from qiskit.providers.aer.extensions.snapshot_statevector import *
import json
import csv
# Gloabal _lambda variable
_LAMBDA = 10
_SHOTS = 10000
_UNIFORM_CONVERGENCE_SAMPLE = []
# returns the bit index for an alpha and j
def bit(i_city, l_time, num_cities):
return i_city * num_cities + l_time
# e^(cZZ)
def append_zz_term(qc, q_i, q_j, gamma, constant_term):
qc.cx(q_i, q_j)
qc.rz(2*gamma*constant_term,q_j)
qc.cx(q_i, q_j)
# e^(cZ)
def append_z_term(qc, q_i, gamma, constant_term):
qc.rz(2*gamma*constant_term, q_i)
# e^(cX)
def append_x_term(qc,qi,beta):
qc.rx(-2*beta, qi)
def get_not_edge_in(G):
N = G.number_of_nodes()
not_edge = []
for i in range(N):
for j in range(N):
if i != j:
buffer_tupla = (i,j)
in_edges = False
for edge_i, edge_j in G.edges():
if ( buffer_tupla == (edge_i, edge_j) or buffer_tupla == (edge_j, edge_i)):
in_edges = True
if in_edges == False:
not_edge.append((i, j))
return not_edge
def get_classical_simplified_z_term(G, _lambda):
# recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos
N = G.number_of_nodes()
E = G.edges()
# z term #
z_classic_term = [0] * N**2
# first term
for l in range(N):
for i in range(N):
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += -1 * _lambda
# second term
for l in range(N):
for j in range(N):
for i in range(N):
if i < j:
# z_il
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += _lambda / 2
# z_jl
z_jl_index = bit(j, l, N)
z_classic_term[z_jl_index] += _lambda / 2
# third term
for i in range(N):
for l in range(N):
for j in range(N):
if l < j:
# z_il
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += _lambda / 2
# z_ij
z_ij_index = bit(i, j, N)
z_classic_term[z_ij_index] += _lambda / 2
# fourth term
not_edge = get_not_edge_in(G) # include order tuples ej = (1,0), (0,1)
for edge in not_edge:
for l in range(N):
i = edge[0]
j = edge[1]
# z_il
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += _lambda / 4
# z_j(l+1)
l_plus = (l+1) % N
z_jlplus_index = bit(j, l_plus, N)
z_classic_term[z_jlplus_index] += _lambda / 4
# fifthy term
weights = nx.get_edge_attributes(G,'weight')
for edge_i, edge_j in G.edges():
weight_ij = weights.get((edge_i,edge_j))
weight_ji = weight_ij
for l in range(N):
# z_il
z_il_index = bit(edge_i, l, N)
z_classic_term[z_il_index] += weight_ij / 4
# z_jlplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_j, l_plus, N)
z_classic_term[z_jlplus_index] += weight_ij / 4
# add order term because G.edges() do not include order tuples #
# z_i'l
z_il_index = bit(edge_j, l, N)
z_classic_term[z_il_index] += weight_ji / 4
# z_j'lplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_i, l_plus, N)
z_classic_term[z_jlplus_index] += weight_ji / 4
return z_classic_term
def get_classical_simplified_zz_term(G, _lambda):
# recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos
N = G.number_of_nodes()
E = G.edges()
# zz term #
zz_classic_term = [[0] * N**2 for i in range(N**2) ]
# first term
for l in range(N):
for j in range(N):
for i in range(N):
if i < j:
# z_il
z_il_index = bit(i, l, N)
# z_jl
z_jl_index = bit(j, l, N)
zz_classic_term[z_il_index][z_jl_index] += _lambda / 2
# second term
for i in range(N):
for l in range(N):
for j in range(N):
if l < j:
# z_il
z_il_index = bit(i, l, N)
# z_ij
z_ij_index = bit(i, j, N)
zz_classic_term[z_il_index][z_ij_index] += _lambda / 2
# third term
not_edge = get_not_edge_in(G)
for edge in not_edge:
for l in range(N):
i = edge[0]
j = edge[1]
# z_il
z_il_index = bit(i, l, N)
# z_j(l+1)
l_plus = (l+1) % N
z_jlplus_index = bit(j, l_plus, N)
zz_classic_term[z_il_index][z_jlplus_index] += _lambda / 4
# fourth term
weights = nx.get_edge_attributes(G,'weight')
for edge_i, edge_j in G.edges():
weight_ij = weights.get((edge_i,edge_j))
weight_ji = weight_ij
for l in range(N):
# z_il
z_il_index = bit(edge_i, l, N)
# z_jlplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_j, l_plus, N)
zz_classic_term[z_il_index][z_jlplus_index] += weight_ij / 4
# add order term because G.edges() do not include order tuples #
# z_i'l
z_il_index = bit(edge_j, l, N)
# z_j'lplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_i, l_plus, N)
zz_classic_term[z_il_index][z_jlplus_index] += weight_ji / 4
return zz_classic_term
def get_classical_simplified_hamiltonian(G, _lambda):
# z term #
z_classic_term = get_classical_simplified_z_term(G, _lambda)
# zz term #
zz_classic_term = get_classical_simplified_zz_term(G, _lambda)
return z_classic_term, zz_classic_term
def get_cost_circuit(G, gamma, _lambda):
N = G.number_of_nodes()
N_square = N**2
qc = QuantumCircuit(N_square,N_square)
z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _lambda)
# z term
for i in range(N_square):
if z_classic_term[i] != 0:
append_z_term(qc, i, gamma, z_classic_term[i])
# zz term
for i in range(N_square):
for j in range(N_square):
if zz_classic_term[i][j] != 0:
append_zz_term(qc, i, j, gamma, zz_classic_term[i][j])
return qc
def get_mixer_operator(G,beta):
N = G.number_of_nodes()
qc = QuantumCircuit(N**2,N**2)
for n in range(N**2):
append_x_term(qc, n, beta)
return qc
def invert_counts(counts):
return {k[::-1] :v for k,v in counts.items()}
def get_QAOA_circuit(G, beta, gamma, _lambda):
assert(len(beta)==len(gamma))
N = G.number_of_nodes()
qc = QuantumCircuit(N**2,N**2)
# init min mix state
qc.h(range(N**2))
p = len(beta)
for i in range(p):
qc = qc.compose(get_cost_circuit(G, gamma[i], _lambda))
qc = qc.compose(get_mixer_operator(G, beta[i]))
qc.barrier(range(N**2))
qc.snapshot_statevector("final_state")
qc.measure(range(N**2),range(N**2))
return qc
def tsp_obj(x, G):
# obtenemos el valor evaluado en f(x_1, x_2,... x_n)
z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _LAMBDA)
cost = 0
# z term
for index in range(len(x)):
z = (int(x[index]) * 2 ) -1
cost += z_classic_term[index] * z
## zz term
for i in range(len(x)):
z_1 = (int(x[i]) * 2 ) -1
for j in range(len(x)):
z_2 = (int(x[j]) * 2 ) -1
cost += zz_classic_term[i][j] * z_1 * z_1
return cost
# Sample expectation value
def compute_tsp_energy(counts, G):
energy = 0
get_counts = 0
total_counts = 0
for meas, meas_count in counts.items():
obj_for_meas = tsp_obj(meas, G)
energy += obj_for_meas*meas_count
total_counts += meas_count
return energy/total_counts
# Sample expectation value
def compute_tsp_energy_2(counts, G):
energy = 0
get_counts = 0
total_counts = 0
for meas, meas_count in counts.items():
obj_for_meas = tsp_obj_2(meas, G, _LAMBDA)
energy += obj_for_meas*meas_count
total_counts += meas_count
mean = energy/total_counts
return mean
def tsp_obj_2(x, G,_lambda):
# obtenemos el valor evaluado en f(x_1, x_2,... x_n)
not_edge = get_not_edge_in(G)
N = G.number_of_nodes()
tsp_cost=0
#Distancia
weights = nx.get_edge_attributes(G,'weight')
for edge_i, edge_j in G.edges():
weight_ij = weights.get((edge_i,edge_j))
weight_ji = weight_ij
for l in range(N):
# x_il
x_il_index = bit(edge_i, l, N)
# x_jlplus
l_plus = (l+1) % N
x_jlplus_index = bit(edge_j, l_plus, N)
tsp_cost+= int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ij
# add order term because G.edges() do not include order tuples #
# x_i'l
x_il_index = bit(edge_j, l, N)
# x_j'lplus
x_jlplus_index = bit(edge_i, l_plus, N)
tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ji
#Constraint 1
for l in range(N):
penal1 = 1
for i in range(N):
x_il_index = bit(i, l, N)
penal1 -= int(x[x_il_index])
tsp_cost += _lambda * penal1**2
#Contstraint 2
for i in range(N):
penal2 = 1
for l in range(N):
x_il_index = bit(i, l, N)
penal2 -= int(x[x_il_index])
tsp_cost += _lambda*penal2**2
#Constraint 3
for edge in not_edge:
for l in range(N):
i = edge[0]
j = edge[1]
# x_il
x_il_index = bit(i, l, N)
# x_j(l+1)
l_plus = (l+1) % N
x_jlplus_index = bit(j, l_plus, N)
tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * _lambda
return tsp_cost
def get_black_box_objective(G,p):
backend = Aer.get_backend('qasm_simulator')
def f(theta):
beta = theta[:p]
gamma = theta[p:]
_lambda = _LAMBDA # get global _lambda
qc = get_QAOA_circuit(G, beta, gamma, _LAMBDA)
counts = execute(qc, backend, seed_simulator=10, shots=_SHOTS).result().get_counts()
return compute_tsp_energy(invert_counts(counts),G)
return f
def get_black_box_objective_2(G,p):
backend = Aer.get_backend('qasm_simulator')
sim = Aer.get_backend('aer_simulator')
def f(theta):
beta = theta[:p]
gamma = theta[p:]
#print(beta)
_lambda = _LAMBDA # get global _lambda
qc = get_QAOA_circuit(G, beta, gamma, _LAMBDA)
#print(beta)
result = execute(qc, backend, seed_simulator=10, shots=_SHOTS).result()
final_state_vector = result.data()["snapshots"]["statevector"]["final_state"][0]
state_vector = Statevector(final_state_vector)
probabilities = state_vector.probabilities()
# expected value
#print("prob-dict")
#print(state_vector.probabilities_dict())
probabilities_states = invert_counts(state_vector.probabilities_dict())
expected_value = 0
for state,probability in probabilities_states.items():
# get cost from state
cost = tsp_obj_2(state, G, _LAMBDA)
expected_value += cost*probability
#print(probabilities)
counts = result.get_counts()
#qc.save_statevector() # Tell simulator to save statevector
#qobj = assemble(qc) # Create a Qobj from the circuit for the simulator to run
#state_vector = sim.run(qobj).result().get_statevector()
#state_vector = Statevector(state_vector)
#probabilities = state_vector.probabilities()
mean = compute_tsp_energy_2(invert_counts(counts),G)
global _UNIFORM_CONVERGENCE_SAMPLE
_UNIFORM_CONVERGENCE_SAMPLE.append({
"beta" : beta,
"gamma" : gamma,
"counts" : counts,
"mean" : mean,
"probabilities" : probabilities,
"expected_value" : expected_value
})
return mean
return f
def compute_tsp_min_energy_2(counts, G):
energy = 0
get_counts = 0
total_counts = 0
min = 1000000000000000000000
index = 0
min_meas = ""
for meas, meas_count in counts.items():
index = index + 1
obj_for_meas = tsp_obj_2(meas, G, _LAMBDA)
if obj_for_meas < min:
min = obj_for_meas
min_meas = meas
return index, min, min_meas
def compute_tsp_min_energy_1(counts, G):
energy = 0
get_counts = 0
total_counts = 0
min = 1000000000000000000000
index = 0
min_meas = ""
for meas, meas_count in counts.items():
index = index + 1
obj_for_meas = tsp_obj(meas, G)
if obj_for_meas < min:
min = obj_for_meas
min_meas = meas
return index, min, min_meas
def test_counts_2(counts, G):
mean_energy2 = compute_tsp_energy_2(invert_counts(counts),G)
cantidad, min, min_meas = compute_tsp_min_energy_2(invert_counts(counts),G)
print("*************************")
print("En el algoritmo 2 (Marina) el valor esperado como resultado es " + str(mean_energy2))
print("El valor minimo de todos los evaluados es " + str(min) + " se evaluaron un total de " + str(cantidad))
print("El vector minimo es " + min_meas)
def test_counts_1(counts, G):
mean_energy1 = compute_tsp_energy(invert_counts(counts),G)
cantidad, min, min_meas = compute_tsp_min_energy_1(invert_counts(counts),G)
print("*************************")
print("En el algoritmo 1 (Pablo) el valor esperado como resultado es " + str(mean_energy1))
print("El valor minimo de todos los evaluados es " + str(min) + " se evaluaron un total de " + str(cantidad))
print("El vector minimo es " + min_meas)
def test_solution(grafo=None, p=7):
global _UNIFORM_CONVERGENCE_SAMPLE
_UNIFORM_CONVERGENCE_SAMPLE = []
if grafo == None:
cantidad_ciudades = 2
pesos, conexiones = None, None
mejor_camino = None
while not mejor_camino:
pesos, conexiones = rand_graph(cantidad_ciudades)
mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False)
G = mapeo_grafo(conexiones, pesos)
print(mejor_costo)
print(mejor_camino)
print(G.edges())
print(G.nodes())
else:
G = grafo
# beta [0,pi], gamma [0, 2pi]
# create bounds for beta [0,pi]
bounds = []
intial_random = []
for i in range(p):
bounds.append((0, np.pi))
intial_random.append(np.random.uniform(0,np.pi))
# create bounds for gamma [0,2*pi]
for i in range(p):
bounds.append((0, np.pi * 2))
intial_random.append(np.random.uniform(0,2*np.pi))
init_point = np.array(intial_random)
# Pablo Solutions
#obj = get_black_box_objective(G,p)
#res_sample_1 = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True})
#print(res_sample_1)
# Marina Solutions
obj = get_black_box_objective_2(G,p)
res_sample_2 = minimize(obj, init_point, method="COBYLA", options={"maxiter":2500,"disp":True})
print(res_sample_2)
#theta_1 = res_sample_1.x
theta_2 = res_sample_2.x
#beta = theta_1[:p]
#gamma = theta_1[p:]
#_lambda = _LAMBDA # get global _lambda
#qc = get_QAOA_circuit(G, beta, gamma, _LAMBDA)
#backend = Aer.get_backend('qasm_simulator')
#job_1 = execute(qc, backend, shots=_SHOTS)
#resutls_1 = job_1.result().get_counts()
#test_counts_1(resutls_1, G)
beta = theta_2[:p]
gamma = theta_2[p:]
_lambda = _LAMBDA # get global _lambda
qc = get_QAOA_circuit(G, beta, gamma, _LAMBDA)
backend = Aer.get_backend('qasm_simulator')
job_2 = execute(qc, backend, shots=_SHOTS)
resutls_2 = job_2.result().get_counts()
test_counts_2(resutls_2, G)
#print( _UNIFORM_CONVERGENCE_SAMPLE)
return job_2, G, _UNIFORM_CONVERGENCE_SAMPLE
def create_multiple_p_mismo_grafo():
header = ['p', 'state', 'probability', 'mean']
length_p = 10
with open('qaoa_multiple_p.csv', 'w', encoding='UTF8') as f:
writer = csv.writer(f)
# write the header
writer.writerow(header)
first_p = False
UNIFORM_CONVERGENCE_SAMPLE = []
for p in range(length_p):
p = p+1
if first_p == False:
job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(p=p)
first_p = True
else:
job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(grafo=G, p=p)
# Sort the JSON data based on the value of the brand key
UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"])
mean = UNIFORM_CONVERGENCE_SAMPLE[0]["mean"]
print(mean)
state = 0
for probability in UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"]:
state += 1
writer.writerow([p,state, probability,mean])
def create_multiple_p_mismo_grafo_multiples_instanncias():
header = ['instance','p','distance', 'mean']
length_p = 4
length_instances = 10
with open('qaoa_multiple_p_distance.csv', 'w', encoding='UTF8') as f:
writer = csv.writer(f)
# write the header
writer.writerow(header)
instance_index = 0
for instance in range(length_instances):
instance_index += 1
first_p = False
UNIFORM_CONVERGENCE_P = []
UNIFORM_CONVERGENCE_SAMPLE = []
for p in range(length_p):
p = p+1
print("p es igual " + str(p))
if first_p == False:
print("Vuelve a llamar a test_solution")
job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(p=p)
first_p = True
else:
job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(grafo=G, p=p)
# Sort the JSON data based on the value of the brand key
UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["expected_value"])
convergence_min = UNIFORM_CONVERGENCE_SAMPLE[0]
UNIFORM_CONVERGENCE_P.append({
"mean":convergence_min["expected_value"],
"probabilities": convergence_min["probabilities"]
})
print("expected value min con p =" + str(p) + " : " + str(convergence_min["expected_value"]))
cauchy_function_nk = UNIFORM_CONVERGENCE_P[len(UNIFORM_CONVERGENCE_P) - 1]
p_index = 0
for p_state in UNIFORM_CONVERGENCE_P:
p_index += 1
print(p_index)
mean = p_state["mean"]
#print(p_state)
print("expected value min")
print(mean)
distance_p_cauchy_function_nk = np.max(np.abs(cauchy_function_nk["probabilities"] - p_state["probabilities"]))
writer.writerow([instance_index, p_index, distance_p_cauchy_function_nk, mean])
if __name__ == '__main__':
#create_multiple_p_mismo_grafo()
create_multiple_p_mismo_grafo_multiples_instanncias()
def defult_init():
cantidad_ciudades = 2
pesos, conexiones = None, None
mejor_camino = None
while not mejor_camino:
pesos, conexiones = rand_graph(cantidad_ciudades)
mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False)
G = mapeo_grafo(conexiones, pesos)
print(mejor_costo)
print(mejor_camino)
print(G.edges())
print(G.nodes())
print("labels")
labels = nx.get_edge_attributes(G,'weight')
#z_term, zz_term = get_classical_simplified_hamiltonian(G, 1)
#print("z term")
#print(z_term)
#print("*****************")
#print("zz term")
#print(zz_term)
#print(get_QAOA_circuit(G, beta = [2,3], gamma = [4,5], _lambda = 1))
p = 5
obj = get_black_box_objective(G,p)
init_point = np.array([0.8,2.2,0.83,2.15,0.37,2.4,6.1,2.2,3.8,6.1])
#res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True})
#print(res_sample)
# Marina Solutions
obj = get_black_box_objective_2(G,p)
res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True})
print(res_sample)
theta_2 = [0.72685401, 2.15678239, 0.86389827, 2.19403121, 0.26916675, 2.19832144, 7.06651453, 3.20333137, 3.81301611, 6.08893568]
theta_1 = [0.90644898, 2.15994212, 1.8609325 , 2.14042604, 1.49126214, 2.4127999, 6.10529434, 2.18238732, 3.84056674, 6.07097744]
beta = theta_1[:p]
gamma = theta_1[p:]
_lambda = _LAMBDA # get global _lambda
qc = get_QAOA_circuit(G, beta, gamma, _LAMBDA)
backend = Aer.get_backend('qasm_simulator')
job = execute(qc, backend)
print(plot_histogram(job.result().get_counts(), color='midnightblue', title="New Histogram"))
beta = theta_2[:p]
gamma = theta_2[p:]
_lambda = _LAMBDA # get global _lambda
qc = get_QAOA_circuit(G, beta, gamma, _LAMBDA)
backend = Aer.get_backend('qasm_simulator')
job = execute(qc, backend)
print(plot_histogram(job.result().get_counts(), color='midnightblue', title="New Histogram"))
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
# Create a circuit with a register of three qubits
circ = QuantumCircuit(3)
# H gate on qubit 0, putting this qubit in a superposition of |0> + |1>.
circ.h(0)
# A CX (CNOT) gate on control qubit 0 and target qubit 1 generating a Bell state.
circ.cx(0, 1)
# CX (CNOT) gate on control qubit 0 and target qubit 2 resulting in a GHZ state.
circ.cx(0, 2)
# Draw the circuit
circ.draw('mpl')
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit.opflow import I, X, Y, Z
print(I, X, Y, Z)
print(1.5 * I)
print(2.5 * X)
print(X + 2.0 * Y)
print(X^Y^Z)
print(X @ Y @ Z)
print((X + Y) @ (Y + Z))
print((X + Y) ^ (Y + Z))
(I, X)
2.0 * X^Y^Z
print(1.1 * ((1.2 * X)^(Y + (1.3 * Z))))
from qiskit.opflow import (StateFn, Zero, One, Plus, Minus, H,
DictStateFn, VectorStateFn, CircuitStateFn, OperatorStateFn)
print(Zero, One)
print(Plus, Minus)
print(Zero.eval('0'))
print(Zero.eval('1'))
print(One.eval('1'))
print(Plus.eval('0'))
print(Minus.eval('1'))
One.adjoint()
~One
(2.0 + 3.0j) * Zero
print(Zero + One)
import math
v_zero_one = (Zero + One) / math.sqrt(2)
print(v_zero_one)
print(Plus + Minus)
print(~One @ One)
(~One @ One).eval()
(~v_zero_one @ v_zero_one).eval()
(~Minus @ One).eval()
print((~One).compose(One))
(~One).eval(One)
print(Zero^Plus)
print((Zero^Plus).to_circuit_op())
print(600 * ((One^5) + (Zero^5)))
print((One^Zero)^3)
print(((Plus^Minus)^2).to_matrix_op())
print(((Plus^One)^2).to_circuit_op())
print(((Plus^One)^2).to_matrix_op().sample())
print(StateFn({'0':1}))
print(StateFn({'0':1}) == Zero)
print(StateFn([0,1,1,0]))
from qiskit.circuit.library import RealAmplitudes
print(StateFn(RealAmplitudes(2)))
from qiskit.opflow import X, Y, Z, I, CX, T, H, S, PrimitiveOp
X
print(X.eval('0'))
X.eval('0').eval('1')
print(CX)
print(CX.to_matrix().real) # The imaginary part vanishes.
CX.eval('01') # 01 is the one in decimal. We get the first column.
CX.eval('01').eval('11') # This returns element with (zero-based) index (1, 3)
print(X @ One)
(X @ One).eval()
X.eval(One)
print(((~One^2) @ (CX.eval('01'))).eval())
print(((H^5) @ ((CX^2)^I) @ (I^(CX^2)))**2)
print((((H^5) @ ((CX^2)^I) @ (I^(CX^2)))**2) @ (Minus^5))
print(((H^I^I)@(X^I^I)@Zero))
print(~One @ Minus)
from qiskit.opflow import ListOp
print((~ListOp([One, Zero]) @ ListOp([One, Zero])))
print((~ListOp([One, Zero]) @ ListOp([One, Zero])).reduce())
print(StateFn(Z).adjoint())
StateFn(Z).adjoint()
print(StateFn(Z).adjoint().eval(Zero))
print(StateFn(Z).adjoint().eval(One))
print(StateFn(Z).adjoint().eval(Plus))
import numpy as np
from qiskit.opflow import I, X, Y, Z, H, CX, Zero, ListOp, PauliExpectation, PauliTrotterEvolution, CircuitSampler, MatrixEvolution, Suzuki
from qiskit.circuit import Parameter
from qiskit import Aer
two_qubit_H2 = (-1.0523732 * I^I) + \
(0.39793742 * I^Z) + \
(-0.3979374 * Z^I) + \
(-0.0112801 * Z^Z) + \
(0.18093119 * X^X)
print(two_qubit_H2)
evo_time = Parameter('θ')
evolution_op = (evo_time*two_qubit_H2).exp_i()
print(evolution_op) # Note, EvolvedOps print as exponentiations
print(repr(evolution_op))
h2_measurement = StateFn(two_qubit_H2).adjoint()
print(h2_measurement)
bell = CX @ (I ^ H) @ Zero
print(bell)
evo_and_meas = h2_measurement @ evolution_op @ bell
print(evo_and_meas)
trotterized_op = PauliTrotterEvolution(trotter_mode=Suzuki(order=2, reps=1)).convert(evo_and_meas)
# We can also set trotter_mode='suzuki' or leave it empty to default to first order Trotterization.
print(trotterized_op)
bound = trotterized_op.bind_parameters({evo_time: .5})
bound[1].to_circuit().draw()
# Note that XX was the only non-diagonal measurement in our H2 Observable
print(PauliExpectation(group_paulis=False).convert(h2_measurement))
print(PauliExpectation().convert(h2_measurement))
diagonalized_meas_op = PauliExpectation().convert(trotterized_op)
print(diagonalized_meas_op)
evo_time_points = list(range(8))
h2_trotter_expectations = diagonalized_meas_op.bind_parameters({evo_time: evo_time_points})
h2_trotter_expectations.eval()
sampler = CircuitSampler(backend=Aer.get_backend('aer_simulator'))
# sampler.quantum_instance.run_config.shots = 1000
sampled_trotter_exp_op = sampler.convert(h2_trotter_expectations)
sampled_trotter_energies = sampled_trotter_exp_op.eval()
print('Sampled Trotterized energies:\n {}'.format(np.real(sampled_trotter_energies)))
print('Before:\n')
print(h2_trotter_expectations.reduce()[0][0])
print('\nAfter:\n')
print(sampled_trotter_exp_op[0][0])
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/shantomborah/Quantum-Algorithms
|
shantomborah
|
# initialization
import numpy as np
# importing Qiskit
from qiskit import IBMQ, BasicAer
from qiskit.providers.ibmq import least_busy
from qiskit import QuantumCircuit, execute, Aer
from qiskit.tools.jupyter import *
provider = IBMQ.load_account()
# import basic plot tools
from qiskit.visualization import plot_histogram
def initialize(circuit, n, m):
circuit.h(range(n)) # Hadamard transform on measurment register
circuit.x(n+m-1) # X gate on last qubit
def c_amod15(a, x):
if a not in [2,7,8,11,13]:
raise ValueError("'a' must be 2,7,8,11 or 13") # remember that a needs to be co-prime with N
unitary = QuantumCircuit(4)
for iteration in range(x):
# bitwise arithmetic to represent modular exponentiation function
if a in [2,13]:
unitary.swap(0,1)
unitary.swap(1,2)
unitary.swap(2,3)
if a in [7,8]:
unitary.swap(2,3)
unitary.swap(1,2)
unitary.swap(0,1)
if a == 11:
unitary.swap(1,3)
unitary.swap(0,2)
if a in [7,11,13]:
for q in range(4):
unitary.x(q)
unitary = unitary.to_gate()
unitary.name = "%i^%i mod 15" % (a, x)
# But we need to make it a controlled operation for phase kickback
c_unitary = unitary.control()
return c_unitary
def modular_exponentiation(circuit, n, m, a):
for exp in range(n):
exponent = 2**exp
circuit.append(a_x_mod15(a, exponent), [exp] + list(range(n, n+m)))
from qiskit.circuit.library import QFT
def apply_iqft(circuit, measurement_qubits):
circuit.append(QFT( len(measurement_qubits), do_swaps=False).inverse(), measurement_qubits)
def shor_algo(n, m, a):
# set up the circuit
circ = QuantumCircuit(n+m, n)
# initialize the registers
initialize(circ, n, m)
circ.barrier()
# map modular exponentiation problem onto qubits
modular_exponentiation(circ, n, m, a)
circ.barrier()
# apply inverse QFT -- expose period
apply_iqft(circ, range(n))
# measure the measurement register
circ.measure(range(n), range(n))
return circ
n = 4; m = 4; a = 11
mycircuit = shor_algo(n, m, a)
mycircuit.draw('mpl')
simulator = Aer.get_backend('qasm_simulator')
counts = execute(mycircuit, backend=simulator, shots=1024).result().get_counts(mycircuit)
plot_histogram(counts)
for measured_value in counts:
print(f"Measured {int(measured_value[::-1], 2)}")
from math import gcd
from math import sqrt
from itertools import count, islice
for measured_value in counts:
measured_value_decimal = int(measured_value[::-1], 2)
print(f"Measured {measured_value_decimal}")
if measured_value_decimal % 2 != 0:
print("Failed. Measured value is not an even number")
continue
x = int((a ** (measured_value_decimal/2)) % 15)
if (x + 1) % 15 == 0:
print("Failed. x + 1 = 0 (mod N) where x = a^(r/2) (mod N)")
continue
guesses = gcd(x + 1, 15), gcd(x - 1, 15)
print(guesses)
def is_prime(n):
return n > 1 and all(n % i for i in islice(count(2), int(sqrt(n)-1)))
if is_prime(guesses[0]) and is_prime(guesses[1]):
print(f"**The prime factors are {guesses[0]} and {guesses[1]}**")
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver
from qiskit.primitives import Sampler
from qiskit_optimization.algorithms import GroverOptimizer, MinimumEigenOptimizer
from qiskit_optimization.translators import from_docplex_mp
from docplex.mp.model import Model
model = Model()
x0 = model.binary_var(name="x0")
x1 = model.binary_var(name="x1")
x2 = model.binary_var(name="x2")
model.minimize(-x0 + 2 * x1 - 3 * x2 - 2 * x0 * x2 - 1 * x1 * x2)
qp = from_docplex_mp(model)
print(qp.prettyprint())
grover_optimizer = GroverOptimizer(6, num_iterations=10, sampler=Sampler())
results = grover_optimizer.solve(qp)
print(results.prettyprint())
exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver())
exact_result = exact_solver.solve(qp)
print(exact_result.prettyprint())
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
# load necessary Runtime libraries
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session
backend = "ibmq_qasm_simulator" # use the simulator
from qiskit.circuit import Parameter
from qiskit.opflow import I, X, Z
mu = Parameter('$\\mu$')
ham_pauli = mu * X
cc = Parameter('$c$')
ww = Parameter('$\\omega$')
ham_res = -(1/2)*ww*(I^Z) + cc*(X^X) + (ham_pauli^I)
tt = Parameter('$t$')
U_ham = (tt*ham_res).exp_i()
from qiskit import transpile
from qiskit.circuit import ClassicalRegister
from qiskit.opflow import PauliTrotterEvolution, Suzuki
import numpy as np
num_trot_steps = 5
total_time = 10
cr = ClassicalRegister(1, 'c')
spec_op = PauliTrotterEvolution(trotter_mode=Suzuki(order=2, reps=num_trot_steps)).convert(U_ham)
spec_circ = spec_op.to_circuit()
spec_circ_t = transpile(spec_circ, basis_gates=['sx', 'rz', 'cx'])
spec_circ_t.add_register(cr)
spec_circ_t.measure(0, cr[0])
spec_circ_t.draw('mpl')
# fixed Parameters
fixed_params = {
cc: 0.3,
mu: 0.7,
tt: total_time
}
# Parameter value for single circuit
param_keys = list(spec_circ_t.parameters)
# run through all the ww values to create a List of Lists of Parameter value
num_pts = 101
wvals = np.linspace(-2, 2, num_pts)
param_vals = []
for wval in wvals:
all_params = {**fixed_params, **{ww: wval}}
param_vals.append([all_params[key] for key in param_keys])
with Session(backend=backend):
sampler = Sampler()
job = sampler.run(
circuits=[spec_circ_t]*num_pts,
parameter_values=param_vals,
shots=1e5
)
result = job.result()
Zexps = []
for dist in result.quasi_dists:
if 1 in dist:
Zexps.append(1 - 2*dist[1])
else:
Zexps.append(1)
from qiskit.opflow import PauliExpectation, Zero
param_bind = {
cc: 0.3,
mu: 0.7,
tt: total_time
}
init_state = Zero^2
obsv = I^Z
Zexp_exact = (U_ham @ init_state).adjoint() @ obsv @ (U_ham @ init_state)
diag_meas_op = PauliExpectation().convert(Zexp_exact)
Zexact_values = []
for w_set in wvals:
param_bind[ww] = w_set
Zexact_values.append(np.real(diag_meas_op.bind_parameters(param_bind).eval()))
import matplotlib.pyplot as plt
plt.style.use('dark_background')
fig, ax = plt.subplots(dpi=100)
ax.plot([-param_bind[mu], -param_bind[mu]], [0, 1], ls='--', color='purple')
ax.plot([param_bind[mu], param_bind[mu]], [0, 1], ls='--', color='purple')
ax.plot(wvals, Zexact_values, label='Exact')
ax.plot(wvals, Zexps, label=f"{backend}")
ax.set_xlabel(r'$\omega$ (arb)')
ax.set_ylabel(r'$\langle Z \rangle$ Expectation')
ax.legend()
import qiskit_ibm_runtime
qiskit_ibm_runtime.version.get_version_info()
from qiskit.tools.jupyter import *
%qiskit_version_table
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
# You can choose different colors for the real and imaginary parts of the density matrix.
from qiskit import QuantumCircuit
from qiskit.quantum_info import DensityMatrix
from qiskit.visualization import plot_state_city
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
state = DensityMatrix(qc)
plot_state_city(state, color=['midnightblue', 'crimson'], title="New State City")
|
https://github.com/Z-928/Bugs4Q
|
Z-928
|
# The snipplet above ==== is buggy version; the code below ==== is fixed version.
from math import pi,pow
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, BasicAer, execute
def IQFT(circuit, qin, n):
for i in range (int(n/2)):
circuit.swap(qin[i], qin[n -1 -i])
for i in range (n):
circuit.h(qin[i])
for j in range (i +1, n, 1):
circuit.cu1(-pi/ pow(2, j-i), qin[j], qin[i])
n = 3
qin = QuantumRegister(n)
cr = ClassicalRegister(n)
circuit = QuantumCircuit(qin, cr, name="Inverse_Quantum_Fourier_Transform")
circuit.h(qin)
circuit.z(qin[2])
circuit.s(qin[1])
circuit.z(qin[0])
circuit.t(qin[0])
IQFT(circuit, qin, n)
circuit.measure (qin, cr)
backend = BasicAer.get_backend("qasm_simulator")
result = execute(circuit, backend, shots = 500).result()
counts = result.get_counts(circuit)
print(counts)
#============
from math import pi,pow
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, BasicAer, execute
def QFT(n, inverse=False):
"""This function returns a circuit implementing the (inverse) QFT."""
circuit = QuantumCircuit(n, name='IQFT' if inverse else 'QFT')
# here's your old code, building the inverse QFT
for i in range(int(n/2)):
# note that I removed the qin register, since registers are not
# really needed and you can just use the qubit indices
circuit.swap(i, n - 1 - i)
for i in range(n):
circuit.h(i)
for j in range(i + 1, n, 1):
circuit.cu1(-pi / pow(2, j - i), j, i)
# now we invert it to get the regular QFT
if inverse:
circuit = circuit.inverse()
return circuit
n = 3
qin = QuantumRegister(n)
cr = ClassicalRegister(n)
circuit = QuantumCircuit(qin, cr)
circuit.h(qin)
circuit.z(qin[2])
circuit.s(qin[1])
circuit.z(qin[0])
circuit.t(qin[0])
# get the IQFT and add it to your circuit with ``compose``
# if you want the regular QFT, just set inverse=False
iqft = QFT(n, inverse=True)
circuit.compose(iqft, inplace=True)
circuit.measure (qin, cr)
backend = BasicAer.get_backend("qasm_simulator")
result = execute(circuit, backend, shots = 500).result()
counts = result.get_counts(circuit)
print(counts)
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""A swap strategy pass for blocks of commuting gates."""
from __future__ import annotations
from collections import defaultdict
from qiskit.circuit import Gate, QuantumCircuit, Qubit
from qiskit.converters import circuit_to_dag
from qiskit.dagcircuit import DAGCircuit, DAGOpNode
from qiskit.transpiler import TransformationPass, Layout, TranspilerError
from qiskit.transpiler.passes.routing.commuting_2q_gate_routing.swap_strategy import SwapStrategy
from qiskit.transpiler.passes.routing.commuting_2q_gate_routing.commuting_2q_block import (
Commuting2qBlock,
)
class Commuting2qGateRouter(TransformationPass):
"""A class to swap route one or more commuting gates to the coupling map.
This pass routes blocks of commuting two-qubit gates encapsulated as
:class:`.Commuting2qBlock` instructions. This pass will not apply to other instructions.
The mapping to the coupling map is done using swap strategies, see :class:`.SwapStrategy`.
The swap strategy should suit the problem and the coupling map. This transpiler pass
should ideally be executed before the quantum circuit is enlarged with any idle ancilla
qubits. Otherwise we may swap qubits outside of the portion of the chip we want to use.
Therefore, the swap strategy and its associated coupling map do not represent physical
qubits. Instead, they represent an intermediate mapping that corresponds to the physical
qubits once the initial layout is applied. The example below shows how to map a four
qubit :class:`.PauliEvolutionGate` to qubits 0, 1, 3, and 4 of the five qubit device with
the coupling map
.. parsed-literal::
0 -- 1 -- 2
|
3
|
4
To do this we use a line swap strategy for qubits 0, 1, 3, and 4 defined it in terms
of virtual qubits 0, 1, 2, and 3.
.. code-block:: python
from qiskit import QuantumCircuit
from qiskit.opflow import PauliSumOp
from qiskit.circuit.library import PauliEvolutionGate
from qiskit.transpiler import Layout, CouplingMap, PassManager
from qiskit.transpiler.passes import FullAncillaAllocation
from qiskit.transpiler.passes import EnlargeWithAncilla
from qiskit.transpiler.passes import ApplyLayout
from qiskit.transpiler.passes import SetLayout
from qiskit.transpiler.passes.routing.commuting_2q_gate_routing import (
SwapStrategy,
FindCommutingPauliEvolutions,
Commuting2qGateRouter,
)
# Define the circuit on virtual qubits
op = PauliSumOp.from_list([("IZZI", 1), ("ZIIZ", 2), ("ZIZI", 3)])
circ = QuantumCircuit(4)
circ.append(PauliEvolutionGate(op, 1), range(4))
# Define the swap strategy on qubits before the initial_layout is applied.
swap_strat = SwapStrategy.from_line([0, 1, 2, 3])
# Chose qubits 0, 1, 3, and 4 from the backend coupling map shown above.
backend_cmap = CouplingMap(couplinglist=[(0, 1), (1, 2), (1, 3), (3, 4)])
initial_layout = Layout.from_intlist([0, 1, 3, 4], *circ.qregs)
pm_pre = PassManager(
[
FindCommutingPauliEvolutions(),
Commuting2qGateRouter(swap_strat),
SetLayout(initial_layout),
FullAncillaAllocation(backend_cmap),
EnlargeWithAncilla(),
ApplyLayout(),
]
)
# Insert swap gates, map to initial_layout and finally enlarge with ancilla.
pm_pre.run(circ).draw("mpl")
This pass manager relies on the ``current_layout`` which corresponds to the qubit layout as
swap gates are applied. The pass will traverse all nodes in the dag. If a node should be
routed using a swap strategy then it will be decomposed into sub-instructions with swap
layers in between and the ``current_layout`` will be modified. Nodes that should not be
routed using swap strategies will be added back to the dag taking the ``current_layout``
into account.
"""
def __init__(
self,
swap_strategy: SwapStrategy | None = None,
edge_coloring: dict[tuple[int, int], int] | None = None,
) -> None:
r"""
Args:
swap_strategy: An instance of a :class:`.SwapStrategy` that holds the swap layers
that are used, and the order in which to apply them, to map the instruction to
the hardware. If this field is not given if should be contained in the
property set of the pass. This allows other passes to determine the most
appropriate swap strategy at run-time.
edge_coloring: An optional edge coloring of the coupling map (I.e. no two edges that
share a node have the same color). If the edge coloring is given then the commuting
gates that can be simultaneously applied given the current qubit permutation are
grouped according to the edge coloring and applied according to this edge
coloring. Here, a color is an int which is used as the index to define and
access the groups of commuting gates that can be applied simultaneously.
If the edge coloring is not given then the sets will be built-up using a
greedy algorithm. The edge coloring is useful to position gates such as
``RZZGate``\s next to swap gates to exploit CX cancellations.
"""
super().__init__()
self._swap_strategy = swap_strategy
self._bit_indices: dict[Qubit, int] | None = None
self._edge_coloring = edge_coloring
def run(self, dag: DAGCircuit) -> DAGCircuit:
"""Run the pass by decomposing the nodes it applies on.
Args:
dag: The dag to which we will add swaps.
Returns:
A dag where swaps have been added for the intended gate type.
Raises:
TranspilerError: If the swap strategy was not given at init time and there is
no swap strategy in the property set.
TranspilerError: If the quantum circuit contains more than one qubit register.
TranspilerError: If there are qubits that are not contained in the quantum register.
"""
if self._swap_strategy is None:
swap_strategy = self.property_set["swap_strategy"]
if swap_strategy is None:
raise TranspilerError("No swap strategy given at init or in the property set.")
else:
swap_strategy = self._swap_strategy
if len(dag.qregs) != 1:
raise TranspilerError(
f"{self.__class__.__name__} runs on circuits with one quantum register."
)
if len(dag.qubits) != next(iter(dag.qregs.values())).size:
raise TranspilerError("Circuit has qubits not contained in the qubit register.")
new_dag = dag.copy_empty_like()
current_layout = Layout.generate_trivial_layout(*dag.qregs.values())
# Used to keep track of nodes that do not decompose using swap strategies.
accumulator = new_dag.copy_empty_like()
for node in dag.topological_op_nodes():
if isinstance(node.op, Commuting2qBlock):
# Check that the swap strategy creates enough connectivity for the node.
self._check_edges(dag, node, swap_strategy)
# Compose any accumulated non-swap strategy gates to the dag
accumulator = self._compose_non_swap_nodes(accumulator, current_layout, new_dag)
# Decompose the swap-strategy node and add to the dag.
new_dag.compose(self.swap_decompose(dag, node, current_layout, swap_strategy))
else:
accumulator.apply_operation_back(node.op, node.qargs, node.cargs)
self._compose_non_swap_nodes(accumulator, current_layout, new_dag)
return new_dag
def _compose_non_swap_nodes(
self, accumulator: DAGCircuit, layout: Layout, new_dag: DAGCircuit
) -> DAGCircuit:
"""Add all the non-swap strategy nodes that we have accumulated up to now.
This method also resets the node accumulator to an empty dag.
Args:
layout: The current layout that keeps track of the swaps.
new_dag: The new dag that we are building up.
accumulator: A DAG to keep track of nodes that do not decompose
using swap strategies.
Returns:
A new accumulator with the same registers as ``new_dag``.
"""
# Add all the non-swap strategy nodes that we have accumulated up to now.
order = layout.reorder_bits(new_dag.qubits)
order_bits: list[int | None] = [None] * len(layout)
for idx, val in enumerate(order):
order_bits[val] = idx
new_dag.compose(accumulator, qubits=order_bits)
# Re-initialize the node accumulator
return new_dag.copy_empty_like()
def _position_in_cmap(self, dag: DAGCircuit, j: int, k: int, layout: Layout) -> tuple[int, ...]:
"""A helper function to track the movement of virtual qubits through the swaps.
Args:
j: The index of decision variable j (i.e. virtual qubit).
k: The index of decision variable k (i.e. virtual qubit).
layout: The current layout that takes into account previous swap gates.
Returns:
The position in the coupling map of the virtual qubits j and k as a tuple.
"""
bit0 = dag.find_bit(layout.get_physical_bits()[j]).index
bit1 = dag.find_bit(layout.get_physical_bits()[k]).index
return bit0, bit1
def _build_sub_layers(
self, current_layer: dict[tuple[int, int], Gate]
) -> list[dict[tuple[int, int], Gate]]:
"""A helper method to build-up sets of gates to simultaneously apply.
This is done with an edge coloring if the ``edge_coloring`` init argument was given or with
a greedy algorithm if not. With an edge coloring all gates on edges with the same color
will be applied simultaneously. These sublayers are applied in the order of their color,
which is an int, in increasing color order.
Args:
current_layer: All gates in the current layer can be applied given the qubit ordering
of the current layout. However, not all gates in the current layer can be applied
simultaneously. This function creates sub-layers by building up sub-layers
of gates. All gates in a sub-layer can simultaneously be applied given the coupling
map and current qubit configuration.
Returns:
A list of gate dicts that can be applied. The gates a position 0 are applied first.
A gate dict has the qubit tuple as key and the gate to apply as value.
"""
if self._edge_coloring is not None:
return self._edge_coloring_build_sub_layers(current_layer)
else:
return self._greedy_build_sub_layers(current_layer)
def _edge_coloring_build_sub_layers(
self, current_layer: dict[tuple[int, int], Gate]
) -> list[dict[tuple[int, int], Gate]]:
"""The edge coloring method of building sub-layers of commuting gates."""
sub_layers: list[dict[tuple[int, int], Gate]] = [
{} for _ in set(self._edge_coloring.values())
]
for edge, gate in current_layer.items():
color = self._edge_coloring[edge]
sub_layers[color][edge] = gate
return sub_layers
@staticmethod
def _greedy_build_sub_layers(
current_layer: dict[tuple[int, int], Gate]
) -> list[dict[tuple[int, int], Gate]]:
"""The greedy method of building sub-layers of commuting gates."""
sub_layers = []
while len(current_layer) > 0:
current_sub_layer, remaining_gates = {}, {}
blocked_vertices: set[tuple] = set()
for edge, evo_gate in current_layer.items():
if blocked_vertices.isdisjoint(edge):
current_sub_layer[edge] = evo_gate
# A vertex becomes blocked once a gate is applied to it.
blocked_vertices = blocked_vertices.union(edge)
else:
remaining_gates[edge] = evo_gate
current_layer = remaining_gates
sub_layers.append(current_sub_layer)
return sub_layers
def swap_decompose(
self, dag: DAGCircuit, node: DAGOpNode, current_layout: Layout, swap_strategy: SwapStrategy
) -> DAGCircuit:
"""Take an instance of :class:`.Commuting2qBlock` and map it to the coupling map.
The mapping is done with the swap strategy.
Args:
dag: The dag which contains the :class:`.Commuting2qBlock` we route.
node: A node whose operation is a :class:`.Commuting2qBlock`.
current_layout: The layout before the swaps are applied. This function will
modify the layout so that subsequent gates can be properly composed on the dag.
swap_strategy: The swap strategy used to decompose the node.
Returns:
A dag that is compatible with the coupling map where swap gates have been added
to map the gates in the :class:`.Commuting2qBlock` to the hardware.
"""
trivial_layout = Layout.generate_trivial_layout(*dag.qregs.values())
gate_layers = self._make_op_layers(dag, node.op, current_layout, swap_strategy)
# Iterate over and apply gate layers
max_distance = max(gate_layers.keys())
circuit_with_swap = QuantumCircuit(len(dag.qubits))
for i in range(max_distance + 1):
# Get current layer and replace the problem indices j,k by the corresponding
# positions in the coupling map. The current layer corresponds
# to all the gates that can be applied at the ith swap layer.
current_layer = {}
for (j, k), local_gate in gate_layers.get(i, {}).items():
current_layer[self._position_in_cmap(dag, j, k, current_layout)] = local_gate
# Not all gates that are applied at the ith swap layer can be applied at the same
# time. We therefore greedily build sub-layers.
sub_layers = self._build_sub_layers(current_layer)
# Apply sub-layers
for sublayer in sub_layers:
for edge, local_gate in sublayer.items():
circuit_with_swap.append(local_gate, edge)
# Apply SWAP gates
if i < max_distance:
for swap in swap_strategy.swap_layer(i):
(j, k) = [trivial_layout.get_physical_bits()[vertex] for vertex in swap]
circuit_with_swap.swap(j, k)
current_layout.swap(j, k)
return circuit_to_dag(circuit_with_swap)
def _make_op_layers(
self, dag: DAGCircuit, op: Commuting2qBlock, layout: Layout, swap_strategy: SwapStrategy
) -> dict[int, dict[tuple, Gate]]:
"""Creates layers of two-qubit gates based on the distance in the swap strategy."""
gate_layers: dict[int, dict[tuple, Gate]] = defaultdict(dict)
for node in op.node_block:
edge = (dag.find_bit(node.qargs[0]).index, dag.find_bit(node.qargs[1]).index)
bit0 = layout.get_virtual_bits()[dag.qubits[edge[0]]]
bit1 = layout.get_virtual_bits()[dag.qubits[edge[1]]]
distance = swap_strategy.distance_matrix[bit0, bit1]
gate_layers[distance][edge] = node.op
return gate_layers
def _check_edges(self, dag: DAGCircuit, node: DAGOpNode, swap_strategy: SwapStrategy):
"""Check if the swap strategy can create the required connectivity.
Args:
node: The dag node for which to check if the swap strategy provides enough connectivity.
swap_strategy: The swap strategy that is being used.
Raises:
TranspilerError: If there is an edge that the swap strategy cannot accommodate
and if the pass has been configured to raise on such issues.
"""
required_edges = set()
for sub_node in node.op:
edge = (dag.find_bit(sub_node.qargs[0]).index, dag.find_bit(sub_node.qargs[1]).index)
required_edges.add(edge)
# Check that the swap strategy supports all required edges
if not required_edges.issubset(swap_strategy.possible_edges):
raise TranspilerError(
f"{swap_strategy} cannot implement all edges in {required_edges}."
)
|
https://github.com/bagmk/qiskit-quantum-state-classifier
|
bagmk
|
import numpy as np
import copy
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister, Aer, execute, transpile, assemble
from qiskit.tools.visualization import *
from qiskit.ignis.mitigation.measurement import (complete_meas_cal, tensored_meas_cal,
CompleteMeasFitter, TensoredMeasFitter)
import json
from scipy.signal import savgol_filter
import time
from qiskit.tools.monitor import job_monitor
from o_utils import ora # classifier utilities
from o_plot import opl # utilities for result plot
from c_utils import new_cut # circuit building utilities
def json_dic_loader(dic_name):
f = open(data_directory+dic_name+'.json')
return json.load(f)
# common code for calling the classifier for ideal device and for real devices
def add_single_dic(target_data_list):
start_time = time.time()
print("started",time.strftime('%d/%m/%Y %H:%M:%S'),mitig_name,
"mitigation",mit_str,o_metric,model_name)
# added for D,S,M choice. Mainstream : mixed set of 20 states
first = 0
last = nb_states
if unique_char == "D":
last = int(nb_states/2)
elif unique_char == "S":
first = int(nb_states/2)
# get the classifier error curve in function of the number of shot and the "safe shot number"
error_curve, safe_rate, ernb = ora.provide_error_curve(PD_model=model_dic[model_name][first:last,:],
PD_test=PD_test[first:last,:],
trials=trials,
window=window,
epsilon=epsilon,
max_shots=max_shots,
pol=pol,
verbosality=verbosality)
tail = savgol_filter(ernb, window, pol, axis=0)
len_curve = len(error_curve)
safe_shot_nb = len_curve - int((window-1)/2) # OK
print('safe_shot_nb',safe_shot_nb, 'safe_rate',safe_rate, "nb trials:",trials)
err_rates = tail[int((window-1)/2),:]/trials
err_rate_max = np.max(err_rates)
err_rate_min = np.min(err_rates)
r=4
print("savgol interpolated error rate mean:", np.round(np.mean(err_rates),r),
"min:", np.round(err_rate_min,r),
"max:", np.round(err_rate_max,r), "for",
[ien for ien, jen in enumerate(err_rates) if jen == err_rate_max])
end_time = time.time()
#save the data in a list of dictionaries :
single_dic={"project":mitig_name,
"id_gates":id_gates,
"mitigation":mit_str,
"model":model_name,
"metric":o_metric, "device":project_device,
"curve_length":len_curve,
"shots": safe_shot_nb,
"shots_rate": safe_rate,
"error_curve":error_curve,
"trials":trials,"window":window,
"epsilon":epsilon,"SG_pol": pol,
"computation_time":end_time-start_time,
"time_completed":time.strftime('%d/%m/%Y %H:%M:%S'),
"trials":trials,
"QV": QV_dic[project_device],
"fidelity": fidelity_dic[project_device],
"error_nb":ernb}
target_data_list.append(single_dic)
print("completed",time.strftime('%d/%m/%Y %H:%M:%S'),mitig_name,
"mitigation",mit_str,o_metric,model_name,"\n")
simulator = Aer.get_backend('qasm_simulator')
#specify the layout of the devices
used_qubits = 5
qubit_list = [0,1,2,3,4]
#short_version = False
#program_name="QAD" # 1st pilot project GHZ Psi+ / W Phi+
program_name="AL2" # 2d pilot project W Psi+ / Wbar Phi+
Flag_char = "DS" # this for a mix of two types of separable states
if len(Flag_char) >= 2:
unique_char = "M"
else:
unique_char = Flag_char
# These dictionaries for the devices used in the study
if program_name == "QAD":
fidelity_dic = {'ibmq_athens': 0.925110, 'ibmq_valencia': 0.809101, 'ibmq_ourense': 0.802380,
"ibmqx2": 0.627392, 'ibmq_santiago': 0.919399, 'ibmq_vigo': 0.908840, 'ideal_device': 1.0}
data_directory = "data_files/"
elif program_name == "AL2":
fidelity_dic = {'ibmq_athens': 0.910145, 'ibmq_valencia': 0.794262, 'ibmq_ourense': 0.818974,
"ibmqx2": 0.359528, 'ibmq_santiago': 0.900024, 'ibmq_vigo': 0.841831, 'ideal_device': 1.0}
data_directory = "data2_files/"
QV_dic = {'ibmq_athens': 32.0, 'ibmq_valencia': 16.0, 'ibmq_ourense': 8.0,
"ibmqx2": 8.0, 'ibmq_santiago': 32.0, 'ibmq_vigo': 16.0, 'ideal_device': np.inf}
dev_dic = {'ibmq_santiago': "San",'ibmq_athens': "Ath", 'ibmq_valencia': "Val", 'ibmq_vigo': 'Vig','ibmq_ourense': "Our",
"ibmqx2": 'Yor', 'ideal_device': "Ide"}
# specify the device: here first the ideal noise-free device
project_device = 'ideal_device'
device_name = dev_dic[project_device]
# specify the nb of id gates between state creation and measurements
# zero for the ideal device
id_gates = 0
str_nb_id = str(id_gates)
zfilled = str_nb_id.zfill(4-len(str_nb_id))
# tail of the file names for RAM storage
mitig_name = program_name + "_" + device_name
project_name = mitig_name + "_" + unique_char + zfilled
print(mitig_name)
print(project_name)
# establish the result label list
# meas_calibs will be used for mitigation in the real device section
qr = QuantumRegister(used_qubits)
meas_calibs, label_list = complete_meas_cal(qubit_list=qubit_list, qr=qr, circlabel='mcal')
nb_labels=len(label_list)
print(nb_labels,label_list)
len(meas_calibs)
# permutation list
# here it is simple to write down the list,
# but a version using itertools will be wellcome for >5 qubits projects
if used_qubits == 5:
q_perm = [[0, 1, 2, 3, 4], [0, 1, 3, 2, 4], [0, 1, 4, 2, 3], [0, 2, 3, 1, 4], [0, 2, 4, 1, 3],
[0, 3, 4, 1, 2], [1, 2, 3, 0, 4], [1, 2, 4, 0, 3], [1, 3, 4, 0, 2], [2, 3, 4, 0, 1]]
else:
print("work in progress - meanwhile please provide the list of permutations")
# define the two subsets of 10 separable states
if program_name == "QAD":
state_1a = ["W","Phi+"]
state_1b = ["GHZ","Psi+"]
elif program_name == "ALT" or "AL2":
state_1a = ["W","Psi+"]
state_1b = ["Wbar","Phi+"]
l_states = state_1a+state_1b
l_states
# version 20 circuits for demonstration
# (in the version run on real devices: two batches of 10 circuits, "shallow" and "deep")
# these circuits limited to state creation are ready to be saved
# for ultimately building circuits adapted to noisy simulator and real devices
# as option, these circuits will include a row of id gates between creation and measurements
circ_ori = []
for i_s in range(0,len(l_states),2):
for perm in q_perm:
mycircuit = QuantumCircuit(used_qubits, used_qubits)
mycircuit = new_cut.circuit_builder(mycircuit, perm, l_states[i_s],l_states[i_s+1])
circ_ori.append(mycircuit)
# add measurement section to the circuit set newly created:
nb_states = len(circ_ori)
circ_ideal = copy.deepcopy(circ_ori)
for i_state in range(nb_states):
new_cut.add_barrier_and_measure(circ_ideal[i_state],qubit_list)
ideal_dic = {}
# execute on noise free simulator
s_sim = 12000
job_simul = execute(circ_ideal, backend=simulator, shots=s_sim)
tot_results_simul = job_simul.result()
# establish a dictionary of count results on noise free simulator:
# (this step is only useful if ram storage is performed)
void_counts = dict(zip(label_list, np.zeros(2**used_qubits)))
tot_results_sim_dic = {}
for i_state in range(nb_states):
counts_simul = copy.deepcopy(void_counts)
counts_simul.update(tot_results_simul.get_counts(i_state))
ideal_dic[str(i_state)]=counts_simul
i_state_test = 10
print(device_name, "circuit #",i_state_test)
circ_ideal[i_state_test].draw(output='mpl')
print(device_name, "circuit #",i_state_test)
plot_histogram(ideal_dic[str(i_state_test)],
legend=['noise free simulation'],
color = "b", figsize=(10.,5.))
i_state_test = 10
print(device_name, "circuit #",i_state_test)
circ_ideal[i_state_test].draw(output='mpl')
print(device_name, "circuit #",i_state_test)
plot_histogram(ideal_dic[str(i_state_test)],
legend=['noise free simulation'],
color = "b", figsize=(10.,5.))
# try loading the dictionary of results if its creation was skipped
if len(ideal_dic) == 0:
ideal_dic = json_dic_loader("ideal_dic_"+project_name)
nb_states = len(ideal_dic)
nb_labels = len(list(ideal_dic.values())[0])
s_sim = sum(list(ideal_dic.values())[0].values())
PD_ideal = np.ndarray((nb_states,nb_labels))
for i_state in range(nb_states):
PD_ideal[i_state, :] = list(ideal_dic[str(i_state)].values())
# now a little trick to get the ideal values from the simulator approximated values
with np.errstate(divide='ignore'): # ignore the divide by zero warning
PD_ideal = 1/np.round(s_sim/(PD_ideal))
# have a look at the matrix head and tail:
print("first and last state probability distributions:")
print(np.round(np.vstack((PD_ideal[0:1,:],PD_ideal[-1:,:])),4))
# here will be appended the data we want for the curve plot
ideal_data_list=[]
# you may want to skip this cell as it will require a long time
# because of the high number of trials required by the Monte Carlo simulation for each nb o shots value
# the following values are defined in the study summary (readme file):
trials=100 # to be set to 10000 if not demo
window=5 # shorter window than for the real device counts
epsilon = .001
min_shots = 5
max_shots = 100
pol=2
subset = None # variable not used here
verbosality = 5 # printing step for intermediate results when increasing the experiment shot number
PD_test = PD_ideal
mitigation_dic = {"Na": None}
o_metrics_desired = ['jensenshannon', 'sqeuclidean']
model_dic = {"ideal_sim": PD_ideal}
for mit_str, mitigation in mitigation_dic.items():
if mitigation != None: # thus only for counts on real device
PD_exper = get_clean_matrix(empirical_dic, mitigation=mitigation,
m_filter=meas_filter)
for o_metric in o_metrics_desired:
for model_name in model_dic.keys():
add_single_dic(ideal_data_list)
# get the stored results of the Monte Carlo simulation in case you skipped the previous step
if len(ideal_data_list) == 0:
ideal_data_list = json_dic_loader("ideal_device_data_list_"+project_name)
# have a look at the mean error rate curves and error rate at save shot number n_s
# NB the r_hat_mean curves and legend reported r_hat_max errors the unsmoothed values
opl.plot_curves(ideal_data_list,np.array([0,1]),
"Jensen-Shannon vs squared euclidean distance - $\epsilon=0.001$" ,
["model"], ["device","metric"],
right_xlimit = 20, bottom_ylimit = -0.001, top_ylimit = 0.05)
from qiskit import IBMQ
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q')
provider.backends()
project_device = 'ibmq_valencia'# you may choice here a different backend
device_name = dev_dic[project_device]
mitig_name = program_name + "_" + device_name
print(mitig_name)
#determine here the backend
device = provider.get_backend(project_device) # the backend names are listed here above
properties = device.properties()
coupling_map = device.configuration().coupling_map
# retrieve the corresponding measurement mitigation filter obtained at experimental time
# use a fake job because use of the from_dict method
simulator = Aer.get_backend('qasm_simulator')
fake_job_cal = execute(meas_calibs, backend=simulator, shots=1)
fake_cal_results = fake_job_cal.result()
cal_results_dic = json_dic_loader("cal_results_dic_"+mitig_name)
if 'date' in cal_results_dic.keys():
str(cal_results_dic['date'])
cal_results = fake_cal_results.from_dict(cal_results_dic)
meas_fitter = CompleteMeasFitter(cal_results, label_list, qubit_list=qubit_list, circlabel='mcal')
meas_filter = meas_fitter.filter
# have a look at the average measurement fidefily of this device:
print("Average Measurement Fidelity was: %f" % meas_fitter.readout_fidelity(), "for",project_device)
id_gates = 0
str_nb_id = str(id_gates)
zfilled = str_nb_id.zfill(4-len(str_nb_id))
project_name = mitig_name + "_" + unique_char + zfilled
print(project_name)
# transpile
verbose = True
summary_dic = {}
seed_transpiler_list = list(range(nb_states))
real_circs = []
start_time = time.strftime('%d/%m/%Y %H:%M:%S')
print("Start at DMY: ",start_time)
for i_state in list(range(nb_states)):
# prepare circuit to be transpiled
circuit = copy.deepcopy(circ_ori[i_state])
if id_gates > 0:
circuit.barrier()
for id_gates_index in range(id_gates):
for index, value in enumerate(qubit_list):
circuit.id(value)
new_cut.add_barrier_and_measure(circuit, qubit_list)
summary = []
depth_list = []
Q_state_opt_new = transpile(circuit, backend=device,
coupling_map = coupling_map,
seed_transpiler=seed_transpiler_list[i_state],
optimization_level=2,
initial_layout=qubit_list)
summary_dic[i_state] = {"depth": Q_state_opt_new.depth(),
'circuit':Q_state_opt_new}
real_circs.append(Q_state_opt_new)
if verbose:
print("circuit %2i" % i_state,"length",summary_dic[i_state]["depth"],
"DMY: ",time.strftime('%d/%m/%Y %H:%M:%S'))
end_time = time.strftime('%d/%m/%Y %H:%M:%S')
print("Completed at DMY: ",end_time)
i_state_test = 10
print(project_device, "circuit #",i_state_test,
"circuit length:",real_circs[i_state_test].depth()) #summary_dic[i_state_test]['depth'])
# you may want to skip this if large nb of id gates before measurement
real_circs[i_state_test].draw(output='mpl')
#check a circuit on noise-free simulator
job_simul = execute(real_circs[i_state_test], backend=simulator, shots=s_sim)
print(project_device, "circuit #",i_state_test, "on noise free simulator")
plot_histogram(job_simul.result().get_counts(),
legend=['noise free simulation'],
color = "b", figsize=(10.,5.))
#changing keys of dictionary for merging:
def key_change(ini_dict, i_subset):
ini_list = []
len_ini = len(ini_dict)
for i in range(len_ini):
ini_list.append(str(i+i_subset*len_ini))
return dict(zip(ini_list, list(ini_dict.values())))
if program_name == "QAD":
#retrieve the data corresponding to the 1st project
lfc = list(Flag_char)
circ_ideal =[]
empirical_dic = {}
for i_subset, subset in enumerate(lfc):
qasm_circs_dic = json_dic_loader('qasm_circs_dic_QAD_'+device_name+'_'+ subset + zfilled)
j=0 # j included for project with several transpilation sessions for each device - not used here
qasm_circs = qasm_circs_dic[str(j)]
nb_circs = len(qasm_circs)
for i_circs in range(nb_circs):
circ_ideal.append(QuantumCircuit().from_qasm_str(qasm_circs[i_circs]))
empirical_dic = {**empirical_dic,
**key_change(json_dic_loader("experimental"+"_"+mitig_name +"_"\
+subset+zfilled), i_subset)}
test_dic = copy.deepcopy(empirical_dic)
#nb_states = len(circ_ideal)
if program_name == "AL2":
empirical_dic = json_dic_loader('experimental_'+project_name)
test_dic = json_dic_loader('test_'+project_name)
def rectify_counts(tot_res, test_cqi,mitigation,m_filter) :
void_counts = dict(zip(label_list, np.zeros(2**used_qubits)))
try:
counts_results_real_test = tot_res[str(test_cqi)]
except KeyError as error:
counts_results_real_test = tot_res[test_cqi]
raw_counts_test = copy.deepcopy(void_counts)
raw_counts_test.update(counts_results_real_test)
if mitigation:
mitigated_results_test = meas_filter.apply(raw_counts_test, method = 'least_squares')
returned_counts = copy.deepcopy(void_counts)
returned_counts.update(mitigated_results_test)
else:
returned_counts = copy.deepcopy(raw_counts_test)
return returned_counts
def get_clean_matrix(dic, mitigation,m_filter):
clean_matrix = np.ndarray((nb_states,nb_labels))
for i_state in range(nb_states):
rectified_counts = rectify_counts(dic,i_state, mitigation,m_filter) # get a rectified counts dictionary
clean_matrix[i_state, :] = list(rectified_counts.values())
clean_matrix = clean_matrix/clean_matrix.sum(axis=1, keepdims=True)
return clean_matrix
# We need to create a first matrix version. It will then vary for each considered set of distribution
mitigation = False
PD_exper = get_clean_matrix(empirical_dic, mitigation=mitigation,
m_filter=meas_filter)
print("first and last state probability distributions:")
print(np.round(np.vstack((PD_exper[0:1,:],PD_exper[-1:,:])),3))
if program_name == "QAD":
PD_test = copy.deepcopy(PD_exper)
elif program_name == "AL2":
mitigation = False
PD_test = get_clean_matrix(test_dic, mitigation=mitigation,
m_filter=meas_filter)
print("first and last state probability distributions:")
print(np.round(np.vstack((PD_test[0:1,:],PD_test[-1:,:])),3))
# here will be appended the data we want for the final plot of this notebook
empirical_data_list=[]
# you may want to skip this cell as it will require a long time
# because of the high number of trials required by the Monte Carlo simulation for each nb o shots value
# the following values are defined in the study summary notebook:
trials=100 # should be 1000 if not demo
window=11
epsilon = .001
max_shots = 500
pol=2
verbosality = 10 # printing step for intermediate results when increasing the experiment shot number
# In this section you can easily make your choice of combinations:
# mitigation or not, metric, model
mitigation_dic = {"no":False, "yes" : True}
#mitigation_dic = {"no":False}
#mitigation_dic = {"yes" : True}
o_metrics_desired = ['jensenshannon', 'sqeuclidean']
#o_metrics_desired = ['jensenshannon']
#o_metrics_desired = ['sqeuclidean']
model_dic = {"empirical": PD_exper, "ideal_sim": PD_ideal}
#model_dic = {"empirical": PD_exper}
#model_dic = {"ideal_sim": PD_ideal}
# Obtain a sequence of results in form of a list of dictionaries
for mit_str, mitigation in mitigation_dic.items():
# here we toggle PD_exper as we toggled mitigation status
PD_exper = get_clean_matrix(empirical_dic, mitigation=mitigation,
m_filter=meas_filter)
PD_test = get_clean_matrix(test_dic, mitigation=mitigation,
m_filter=meas_filter)
for o_metric in o_metrics_desired:
print(project_name, model_dic.keys(), o_metric)
for model_name in model_dic.keys():
add_single_dic(empirical_data_list)
# get the stored results of the Monte Carlo simulation in case you skipped the previous step
if len(empirical_data_list) == 0:
empirical_data_list = json_dic_loader('Nemp_data_list_'+project_name)
# have a look at the mean error rate curves and error rate at save shot number n_s
# NB the r_hat_mean curves and legend reported r_hat_max errors are the unsmoothed values
opl.plot_curves(ideal_data_list + empirical_data_list,
np.array(range(2+len(empirical_data_list))),
"$\epsilon=0.001$" , ["device"],
["model","metric","mitigation","id_gates"],
right_xlimit = 80, bottom_ylimit = -0.02, top_ylimit = 1)
import winsound
duration = 2000 # milliseconds
freq = 800 # Hz
winsound.Beep(freq, duration)
import qiskit.tools.jupyter
%qiskit_version_table
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_nature.second_q.drivers import PySCFDriver
from qiskit_nature.second_q.problems import ElectronicBasis
driver = PySCFDriver()
driver.run_pyscf()
ao_problem = driver.to_problem(basis=ElectronicBasis.AO)
print(ao_problem.basis)
ao_hamil = ao_problem.hamiltonian
print(ao_hamil.electronic_integrals.alpha)
from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema
qcschema = driver.to_qcschema()
basis_transformer = get_ao_to_mo_from_qcschema(qcschema)
print(basis_transformer.initial_basis)
print(basis_transformer.final_basis)
mo_problem = basis_transformer.transform(ao_problem)
print(mo_problem.basis)
mo_hamil = mo_problem.hamiltonian
print(mo_hamil.electronic_integrals.alpha)
import numpy as np
from qiskit_nature.second_q.operators import ElectronicIntegrals
from qiskit_nature.second_q.problems import ElectronicBasis
from qiskit_nature.second_q.transformers import BasisTransformer
ao2mo_alpha = np.random.random((2, 2))
ao2mo_beta = np.random.random((2, 2))
basis_transformer = BasisTransformer(
ElectronicBasis.AO,
ElectronicBasis.MO,
ElectronicIntegrals.from_raw_integrals(ao2mo_alpha, h1_b=ao2mo_beta),
)
from qiskit_nature.second_q.drivers import PySCFDriver
driver = PySCFDriver(atom="Li 0 0 0; H 0 0 1.5")
full_problem = driver.run()
print(full_problem.molecule)
print(full_problem.num_particles)
print(full_problem.num_spatial_orbitals)
from qiskit_nature.second_q.transformers import FreezeCoreTransformer
fc_transformer = FreezeCoreTransformer()
fc_problem = fc_transformer.transform(full_problem)
print(fc_problem.num_particles)
print(fc_problem.num_spatial_orbitals)
print(fc_problem.hamiltonian.constants)
fc_transformer = FreezeCoreTransformer(remove_orbitals=[4, 5])
fc_problem = fc_transformer.transform(full_problem)
print(fc_problem.num_particles)
print(fc_problem.num_spatial_orbitals)
from qiskit_nature.second_q.drivers import PySCFDriver
driver = PySCFDriver(atom="Li 0 0 0; H 0 0 1.5")
full_problem = driver.run()
print(full_problem.num_particles)
print(full_problem.num_spatial_orbitals)
from qiskit_nature.second_q.transformers import ActiveSpaceTransformer
as_transformer = ActiveSpaceTransformer(2, 2)
as_problem = as_transformer.transform(full_problem)
print(as_problem.num_particles)
print(as_problem.num_spatial_orbitals)
print(as_problem.hamiltonian.electronic_integrals.alpha)
as_transformer = ActiveSpaceTransformer(2, 2, active_orbitals=[0, 4])
as_problem = as_transformer.transform(full_problem)
print(as_problem.num_particles)
print(as_problem.num_spatial_orbitals)
print(as_problem.hamiltonian.electronic_integrals.alpha)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Drawing objects for timeline drawer.
Drawing objects play two important roles:
- Allowing unittests of visualization module. Usually it is hard for image files to be tested.
- Removing program parser from each plotter interface. We can easily add new plotter.
This module is based on the structure of matplotlib as it is the primary plotter
of the timeline drawer. However this interface is agnostic to the actual plotter.
Design concept
~~~~~~~~~~~~~~
When we think about dynamically updating drawings, it will be most efficient to
update only the changed properties of drawings rather than regenerating entirely from scratch.
Thus the core :py:class:`~qiskit.visualization.timeline.core.DrawerCanvas` generates
all possible drawings in the beginning and then the canvas instance manages
visibility of each drawing according to the end-user request.
Data key
~~~~~~~~
In the abstract class ``ElementaryData`` common attributes to represent a drawing are
specified. In addition, drawings have the `data_key` property that returns an
unique hash of the object for comparison.
This key is generated from a data type, the location of the drawing in the canvas,
and associated qubit or classical bit objects.
See py:mod:`qiskit.visualization.timeline.types` for detail on the data type.
If a data key cannot distinguish two independent objects, you need to add a new data type.
The data key may be used in the plotter interface to identify the object.
Drawing objects
~~~~~~~~~~~~~~~
To support not only `matplotlib` but also multiple plotters, those drawings should be
universal and designed without strong dependency on modules in `matplotlib`.
This means drawings that represent primitive geometries are preferred.
It should be noted that there will be no unittest for each plotter API, which takes
drawings and outputs image data, we should avoid adding a complicated geometry
that has a context of the scheduled circuit program.
For example, a two qubit scheduled gate may be drawn by two rectangles that represent
time occupation of two quantum registers during the gate along with a line connecting
these rectangles to identify the pair. This shape can be represented with
two box-type objects with one line-type object instead of defining a new object dedicated
to the two qubit gate. As many plotters don't support an API that visualizes such
a linked-box shape, if we introduce such complex drawings and write a
custom wrapper function on top of the existing API,
it could be difficult to prevent bugs with the CI tools due to lack of
the effective unittest for image data.
Link between gates
~~~~~~~~~~~~~~~~~~
The ``GateLinkData`` is the special subclass of drawing that represents
a link between bits. Usually objects are associated to the specific bit,
but ``GateLinkData`` can be associated with multiple bits to illustrate relationship
between quantum or classical bits during a gate operation.
"""
from abc import ABC
from enum import Enum
from typing import Optional, Dict, Any, List, Union
import numpy as np
from qiskit import circuit
from qiskit.visualization.timeline import types
from qiskit.visualization.exceptions import VisualizationError
class ElementaryData(ABC):
"""Base class of the scheduled circuit visualization object.
Note that drawings are mutable.
"""
__hash__ = None
def __init__(
self,
data_type: Union[str, Enum],
xvals: Union[np.ndarray, List[types.Coordinate]],
yvals: Union[np.ndarray, List[types.Coordinate]],
bits: Optional[Union[types.Bits, List[types.Bits]]] = None,
meta: Optional[Dict[str, Any]] = None,
styles: Optional[Dict[str, Any]] = None,
):
"""Create new drawing.
Args:
data_type: String representation of this drawing.
xvals: Series of horizontal coordinate that the object is drawn.
yvals: Series of vertical coordinate that the object is drawn.
bits: Qubit or Clbit object bound to this drawing.
meta: Meta data dictionary of the object.
styles: Style keyword args of the object. This conforms to `matplotlib`.
"""
if bits and isinstance(bits, (circuit.Qubit, circuit.Clbit)):
bits = [bits]
if isinstance(data_type, Enum):
data_type = data_type.value
self.data_type = str(data_type)
self.xvals = xvals
self.yvals = yvals
self.bits = bits
self.meta = meta
self.styles = styles
@property
def data_key(self):
"""Return unique hash of this object."""
return str(
hash(
(
self.__class__.__name__,
self.data_type,
tuple(self.bits),
tuple(self.xvals),
tuple(self.yvals),
)
)
)
def __repr__(self):
return f"{self.__class__.__name__}(type={self.data_type}, key={self.data_key})"
def __eq__(self, other):
return isinstance(other, self.__class__) and self.data_key == other.data_key
class LineData(ElementaryData):
"""Drawing object that represents line shape."""
def __init__(
self,
data_type: Union[str, Enum],
xvals: Union[np.ndarray, List[types.Coordinate]],
yvals: Union[np.ndarray, List[types.Coordinate]],
bit: types.Bits,
meta: Dict[str, Any] = None,
styles: Dict[str, Any] = None,
):
"""Create new line.
Args:
data_type: String representation of this drawing.
xvals: Series of horizontal coordinate that the object is drawn.
yvals: Series of vertical coordinate that the object is drawn.
bit: Bit associated to this object.
meta: Meta data dictionary of the object.
styles: Style keyword args of the object. This conforms to `matplotlib`.
"""
super().__init__(
data_type=data_type, xvals=xvals, yvals=yvals, bits=bit, meta=meta, styles=styles
)
class BoxData(ElementaryData):
"""Drawing object that represents box shape."""
def __init__(
self,
data_type: Union[str, Enum],
xvals: Union[np.ndarray, List[types.Coordinate]],
yvals: Union[np.ndarray, List[types.Coordinate]],
bit: types.Bits,
meta: Dict[str, Any] = None,
styles: Dict[str, Any] = None,
):
"""Create new box.
Args:
data_type: String representation of this drawing.
xvals: Left and right coordinate that the object is drawn.
yvals: Top and bottom coordinate that the object is drawn.
bit: Bit associated to this object.
meta: Meta data dictionary of the object.
styles: Style keyword args of the object. This conforms to `matplotlib`.
Raises:
VisualizationError: When number of data points are not equals to 2.
"""
if len(xvals) != 2 or len(yvals) != 2:
raise VisualizationError("Length of data points are not equals to 2.")
super().__init__(
data_type=data_type, xvals=xvals, yvals=yvals, bits=bit, meta=meta, styles=styles
)
class TextData(ElementaryData):
"""Drawing object that represents a text on canvas."""
def __init__(
self,
data_type: Union[str, Enum],
xval: types.Coordinate,
yval: types.Coordinate,
bit: types.Bits,
text: str,
latex: Optional[str] = None,
meta: Dict[str, Any] = None,
styles: Dict[str, Any] = None,
):
"""Create new text.
Args:
data_type: String representation of this drawing.
xval: Horizontal coordinate that the object is drawn.
yval: Vertical coordinate that the object is drawn.
bit: Bit associated to this object.
text: A string to draw on the canvas.
latex: If set this string is used instead of `text`.
meta: Meta data dictionary of the object.
styles: Style keyword args of the object. This conforms to `matplotlib`.
"""
self.text = text
self.latex = latex
super().__init__(
data_type=data_type, xvals=[xval], yvals=[yval], bits=bit, meta=meta, styles=styles
)
class GateLinkData(ElementaryData):
"""A special drawing data type that represents bit link of multi-bit gates.
Note this object takes multiple bits and dedicates them to the bit link.
This may appear as a line on the canvas.
"""
def __init__(
self, xval: types.Coordinate, bits: List[types.Bits], styles: Dict[str, Any] = None
):
"""Create new bit link.
Args:
xval: Horizontal coordinate that the object is drawn.
bits: Bit associated to this object.
styles: Style keyword args of the object. This conforms to `matplotlib`.
"""
super().__init__(
data_type=types.LineType.GATE_LINK,
xvals=[xval],
yvals=[0],
bits=bits,
meta=None,
styles=styles,
)
|
https://github.com/grossiM/Qiskit_workshop1019
|
grossiM
|
# Importing standard Qiskit libraries
from qiskit import QuantumCircuit, transpile
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from ibm_quantum_widgets import *
# qiskit-ibmq-provider has been deprecated.
# Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail.
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options
# Loading your IBM Quantum account(s)
service = QiskitRuntimeService(channel="ibm_quantum")
# Invoke a primitive. For more details see https://qiskit.org/documentation/partners/qiskit_ibm_runtime/tutorials.html
# result = Sampler("ibmq_qasm_simulator").run(circuits).result()
# Built-in modules
import math
# Imports from Qiskit
from qiskit import QuantumCircuit
from qiskit.circuit.library import GroverOperator, MCMT, ZGate
from qiskit.visualization import plot_distribution
# Imports from Qiskit Runtime
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session
# Add your token below
service = QiskitRuntimeService(channel="ibm_quantum")
from qiskit import IBMQ
IBMQ.save_account('33b329939cf6fe545c64afb41b84e0993a774c578c2d3e3a07b2ed8644261511d4712974c684ae3050ca82dd8f4ca161930bb344995de7934be32214bdb17079')
|
https://github.com/hephaex/Quantum-Computing-Awesome-List
|
hephaex
|
import cirq
## Data qubit and target qubit
q0, q1 = cirq.LineQubit.range(2)
## Dictionary of oracles
oracles = {'0' : [], '1' : [cirq.X(q1)], 'x' : [cirq.CNOT(q0, q1)], 'notx' : [cirq.CNOT(q0, q1), cirq.X(q1)]}
def deutsch_algorithm(oracle):
## Yield a circuit for Deustch algorithm given operations implementing
yield cirq.X(q1)
yield cirq.H(q0), cirq.H(q1)
yield oracle
yield cirq.H(q0)
yield cirq.measure(q0)
for key, oracle in oracles.items():
print('Circuit for {} :'. format(key))
print(cirq.Circuit.from_ops(deutsch_algorithm(oracle)), end = "\n\n")
simulator = cirq.Simulator()
for key, oracle in oracles.items():
result = simulator.run(cirq.Circuit.from_ops(deutsch_algorithm(oracle)), repetitions=20)
print('Oracle : {:<4} results: {}'. format(key, result))
import cirq
q0, q1, q2 = cirq.LineQubit.range(3)
## Oracles for constant functions
constant = ([], [cirq.X(q2)])
## Oracles for balanced functions
balanced = ([cirq.CNOT(q0, q2)],
[cirq.CNOT(q1, q2)],
[cirq.CNOT(q0, q2), cirq.CNOT(q1, q2)],
[cirq.CNOT(q0, q2), cirq.X(q2)],
[cirq.CNOT(q1, q2), cirq.X(q2)],
[cirq.CNOT(q0, q2), cirq.CNOT(q1, q2), cirq.X(q2)]
)
def your_circuit(oracle):
## Phase kickback trick
yield cirq.X(q2), cirq.H(q2)
## Equal Superposition over input bits
yield cirq.H(q0), cirq.H(q1)
## Query the function
yield oracle
## interface to get result, put last qubit into |1>
yield cirq.H(q0), cirq.H(q1), cirq.H(q2)
## a final OR gate to put result in final qubit
yield cirq.X(q0), cirq.X(q1), cirq.CCX(q0, q1, q2)
yield cirq.measure(q2)
simulator = cirq.Simulator()
print("your result on constant functions:")
for oracle in constant:
result = simulator.run(cirq.Circuit.from_ops(your_circuit(oracle)), repetitions=10)
print(result)
print("your result on balanced functions:")
for oracle in balanced:
result = simulator.run(cirq.Circuit.from_ops(your_circuit(oracle)), repetitions=10)
print(result)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit.test.ibmq_mock import mock_get_backend
mock_get_backend('FakeVigo')
from qiskit import IBMQ
from qiskit.providers.ibmq.visualization import iplot_error_map
IBMQ.load_account()
provider = IBMQ.get_provider(group='open', project='main')
backend = provider.get_backend('ibmq_vigo')
iplot_error_map(backend, as_widget=True)
|
https://github.com/GIRISHBELANI/QC_Benchmarks_using_dm-simulator
|
GIRISHBELANI
|
min_qubits=2
max_qubits=8
max_circuits=1
num_shots=1000
backend_id="qasm_simulator"
hub="ibm-q"; group="open"; project="main"
provider_backend = None
exec_options = {}
# # ==========================
# # *** If using IBMQ hardware, run this once to authenticate
# from qiskit import IBMQ
# IBMQ.save_account('YOUR_API_TOKEN_HERE')
# # *** If you are part of an IBMQ group, set hub, group, and project name here
# hub="YOUR_HUB_NAME"; group="YOUR_GROUP_NAME"; project="YOUR_PROJECT_NAME"
# # *** This example shows how to specify an IBMQ backend using a known "backend_id"
# exec_options = { "optimization_level":3, "use_sessions":True, "resilience_level":1}
# backend_id="ibmq_belem"
# # ==========================
# # *** If using Azure Quantum, use this hub identifier and specify the desired backend_id
# # Identify your resources with env variables AZURE_QUANTUM_RESOURCE_ID and AZURE_QUANTUM_LOCATION
# hub="azure-quantum"; group="open"; project="QED-C App-Oriented Benchmarks - Qiskit Version"
# backend_id="<YOUR_BACKEND_NAME_HERE>"
# # ==========================
# The remaining examples create a provider instance and get a backend from it
# # An example using IonQ provider
# from qiskit_ionq import IonQProvider
# provider = IonQProvider() # Be sure to set the QISKIT_IONQ_API_TOKEN environment variable
# provider_backend = provider.get_backend("ionq_qpu")
# backend_id="ionq_qpu"
# # An example using BlueQubit provider
# import sys
# sys.path.insert(1, "../..")
# import os, bluequbit, _common.executors.bluequbit_executor as bluequbit_executor
# provider_backend = bluequbit.init()
# backend_id="BlueQubit-CPU"
# exec_options = { "executor": bluequbit_executor.run, "device":'cpu' }
# # *** Here's an example of using a typical custom provider backend (e.g. AQT simulator)
# import os
# from qiskit_aqt_provider import AQTProvider
# provider = AQTProvider(os.environ.get('AQT_ACCESS_KEY')) # get your key from environment
# provider_backend = provider.backends.aqt_qasm_simulator_noise_1
# backend_id="aqt_qasm_simulator_noise_1"
import os, hydrogen_lattice_benchmark
#backend_id="qasm_simulator"
# Additional arguments specific to Hydrogen Lattice benchmark method 2 plotting
hl_app_args = dict(
# display options for line plots (pairwise)
line_y_metrics=['energy', 'accuracy_ratio_error'], # + 'solution_quality', 'accuracy_ratio', 'solution_quality_error'
line_x_metrics=['iteration_count', 'cumulative_exec_time'], # + 'cumulative_elapsed_time'
plot_layout_style='grid', # plot layout, can be 'grid', 'stacked', or 'individual'
# display options for bar plots (exec time, accuracy ratio)
bar_y_metrics=["average_exec_times", "accuracy_ratio_error"],
bar_x_metrics=["num_qubits"],
use_logscale_for_times=False, # use log scale for cumulative exec time bar chart
show_elapsed_times=True, # include elapsed time in average_exec_times plot
# display options for area plots (multiplicative)
score_metric=['accuracy_ratio'], # + 'solution_quality'
x_metric=['cumulative_exec_time', 'cumulative_elapsed_time'], # + 'cumulative_opt_exec_time',
)
hydrogen_lattice_benchmark.load_data_and_plot(os.path.join('__data', backend_id, ''), backend_id=backend_id,
**hl_app_args)
import sys
sys.path.insert(1, "hydrogen-lattice/qiskit")
import hydrogen_lattice_benchmark
# define a custom Nelder-Mead minimizer function
from scipy.optimize import minimize
tol=0.01
max_iter=30
def my_minimizer(objective_function, initial_parameters, callback):
ret = minimize(objective_function,
x0=initial_parameters,
# a custom minimizer
method='nelder-mead',
options={'xatol':tol, 'fatol':tol, 'maxiter': max_iter, 'maxfev': max_iter, 'disp': False},
callback=callback)
print(f"\n... my_minimizer completed, return = \n{ret}")
return ret
# Additional arguments specific to Hydrogen Lattice benchmark method 2
hl_app_args = dict(
max_iter=30, # maximum minimizer iterations to perform
comfort=True, # show 'comfort dots' during execution
minimizer_function=my_minimizer, # use custom minimizer function
)
# Run the benchmark in method 2
hydrogen_lattice_benchmark.run(
min_qubits=min_qubits, max_qubits=max_qubits, max_circuits=max_circuits, num_shots=num_shots,
method=2,
backend_id=backend_id, provider_backend=provider_backend,
hub=hub, group=group, project=project, exec_options=exec_options,
**hl_app_args
)
import sys
sys.path.insert(1, "hydrogen-lattice/qiskit")
import hydrogen_lattice_benchmark
# Arguments specific to execution of single instance of the Hydrogen Lattice objective function
hl_app_args = dict(
num_qubits=4, # problem size, dexscribed by number of qubits
num_shots=1000, # number of shots to perform
radius=1.0, # select single problem radius, None = use first radius
parameter_mode=1, # 1 - use single theta parameter, 2 - map multiple thetas to pairs
thetas_array=[ 0.0 ], # use custom thetas_array
backend_id=backend_id,
provider_backend=provider_backend,
hub=hub, group=group,
project=project, exec_options=exec_options,
)
# Execute the objective function once with the given arguments
energy, key_metrics = hydrogen_lattice_benchmark.run_objective_function(**hl_app_args)
# Print the return value of energy
print(f"Final Energy value = {energy}")
# Print key metrics from execution
print(f"Key Metrics = {key_metrics}")
import sys
sys.path.insert(1, "hydrogen-lattice/qiskit")
import hydrogen_lattice_benchmark
# Arguments specific to Hydrogen Lattice benchmark method (2)
hl_app_args = dict(
min_qubits=2, # configure min, max widths, and shots here
max_qubits=4,
num_shots=1000,
max_circuits=4, # number of 'restarts' to perform at same radius
radius=0.75, # select single problem radius for multiple execution of same circuit
thetas_array=None, # specify a custom thetas_array
parameter_mode=1, # 1 - use single theta parameter, 2 - map multiple thetas to pairs
parameterized=False, # use Parameter objects in circuit, cache transpiled circuits for performance
max_iter=30, # maximum minimizer iterations to perform
minimizer_tolerance=0.001, # tolerance passed to the minimizer
comfort=True, # show 'comfort dots' during execution
# disable print of results at every iteration
show_results_summary=False,
# display options for bar plots (exec time, accuracy ratio)
bar_y_metrics=["average_exec_times", "accuracy_ratio_error"],
bar_x_metrics=["num_qubits"],
use_logscale_for_times=True, # use log scale for cumulative exec time bar chart
show_elapsed_times=True, # include elapsed time in average_exec_times plot
# disable options for line plots and area plots
line_y_metrics=None,
score_metric=None,
)
# Run the benchmark in method 2
hydrogen_lattice_benchmark.run(method=2,
backend_id=backend_id, provider_backend=provider_backend,
hub=hub, group=group, project=project, exec_options=exec_options,
**hl_app_args)
|
https://github.com/jonasmaziero/computacao_quantica_qiskit
|
jonasmaziero
| |
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Randomized tests of quantum synthesis."""
import unittest
from test.python.quantum_info.test_synthesis import CheckDecompositions
from hypothesis import given, strategies, settings
import numpy as np
from qiskit import execute
from qiskit.circuit import QuantumCircuit, QuantumRegister
from qiskit.extensions import UnitaryGate
from qiskit.providers.basicaer import UnitarySimulatorPy
from qiskit.quantum_info.random import random_unitary
from qiskit.quantum_info.synthesis.two_qubit_decompose import (
two_qubit_cnot_decompose,
TwoQubitBasisDecomposer,
Ud,
)
class TestSynthesis(CheckDecompositions):
"""Test synthesis"""
seed = strategies.integers(min_value=0, max_value=2**32 - 1)
rotation = strategies.floats(min_value=-np.pi * 10, max_value=np.pi * 10)
@given(seed)
def test_1q_random(self, seed):
"""Checks one qubit decompositions"""
unitary = random_unitary(2, seed=seed)
self.check_one_qubit_euler_angles(unitary)
self.check_one_qubit_euler_angles(unitary, "U3")
self.check_one_qubit_euler_angles(unitary, "U1X")
self.check_one_qubit_euler_angles(unitary, "PSX")
self.check_one_qubit_euler_angles(unitary, "ZSX")
self.check_one_qubit_euler_angles(unitary, "ZYZ")
self.check_one_qubit_euler_angles(unitary, "ZXZ")
self.check_one_qubit_euler_angles(unitary, "XYX")
self.check_one_qubit_euler_angles(unitary, "RR")
@settings(deadline=None)
@given(seed)
def test_2q_random(self, seed):
"""Checks two qubit decompositions"""
unitary = random_unitary(4, seed=seed)
self.check_exact_decomposition(unitary.data, two_qubit_cnot_decompose)
@given(strategies.tuples(*[seed] * 5))
def test_exact_supercontrolled_decompose_random(self, seeds):
"""Exact decomposition for random supercontrolled basis and random target"""
k1 = np.kron(random_unitary(2, seed=seeds[0]).data, random_unitary(2, seed=seeds[1]).data)
k2 = np.kron(random_unitary(2, seed=seeds[2]).data, random_unitary(2, seed=seeds[3]).data)
basis_unitary = k1 @ Ud(np.pi / 4, 0, 0) @ k2
decomposer = TwoQubitBasisDecomposer(UnitaryGate(basis_unitary))
self.check_exact_decomposition(random_unitary(4, seed=seeds[4]).data, decomposer)
@given(strategies.tuples(*[rotation] * 6), seed)
def test_cx_equivalence_0cx_random(self, rnd, seed):
"""Check random circuits with 0 cx gates locally equivalent to identity."""
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.u(rnd[0], rnd[1], rnd[2], qr[0])
qc.u(rnd[3], rnd[4], rnd[5], qr[1])
sim = UnitarySimulatorPy()
unitary = execute(qc, sim, seed_simulator=seed).result().get_unitary()
self.assertEqual(two_qubit_cnot_decompose.num_basis_gates(unitary), 0)
@given(strategies.tuples(*[rotation] * 12), seed)
def test_cx_equivalence_1cx_random(self, rnd, seed):
"""Check random circuits with 1 cx gates locally equivalent to a cx."""
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.u(rnd[0], rnd[1], rnd[2], qr[0])
qc.u(rnd[3], rnd[4], rnd[5], qr[1])
qc.cx(qr[1], qr[0])
qc.u(rnd[6], rnd[7], rnd[8], qr[0])
qc.u(rnd[9], rnd[10], rnd[11], qr[1])
sim = UnitarySimulatorPy()
unitary = execute(qc, sim, seed_simulator=seed).result().get_unitary()
self.assertEqual(two_qubit_cnot_decompose.num_basis_gates(unitary), 1)
@given(strategies.tuples(*[rotation] * 18), seed)
def test_cx_equivalence_2cx_random(self, rnd, seed):
"""Check random circuits with 2 cx gates locally equivalent to some circuit with 2 cx."""
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.u(rnd[0], rnd[1], rnd[2], qr[0])
qc.u(rnd[3], rnd[4], rnd[5], qr[1])
qc.cx(qr[1], qr[0])
qc.u(rnd[6], rnd[7], rnd[8], qr[0])
qc.u(rnd[9], rnd[10], rnd[11], qr[1])
qc.cx(qr[0], qr[1])
qc.u(rnd[12], rnd[13], rnd[14], qr[0])
qc.u(rnd[15], rnd[16], rnd[17], qr[1])
sim = UnitarySimulatorPy()
unitary = execute(qc, sim, seed_simulator=seed).result().get_unitary()
self.assertEqual(two_qubit_cnot_decompose.num_basis_gates(unitary), 2)
@given(strategies.tuples(*[rotation] * 24), seed)
def test_cx_equivalence_3cx_random(self, rnd, seed):
"""Check random circuits with 3 cx gates are outside the 0, 1, and 2 qubit regions."""
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.u(rnd[0], rnd[1], rnd[2], qr[0])
qc.u(rnd[3], rnd[4], rnd[5], qr[1])
qc.cx(qr[1], qr[0])
qc.u(rnd[6], rnd[7], rnd[8], qr[0])
qc.u(rnd[9], rnd[10], rnd[11], qr[1])
qc.cx(qr[0], qr[1])
qc.u(rnd[12], rnd[13], rnd[14], qr[0])
qc.u(rnd[15], rnd[16], rnd[17], qr[1])
qc.cx(qr[1], qr[0])
qc.u(rnd[18], rnd[19], rnd[20], qr[0])
qc.u(rnd[21], rnd[22], rnd[23], qr[1])
sim = UnitarySimulatorPy()
unitary = execute(qc, sim, seed_simulator=seed).result().get_unitary()
self.assertEqual(two_qubit_cnot_decompose.num_basis_gates(unitary), 3)
if __name__ == "__main__":
unittest.main()
|
https://github.com/AlphaMiyaL/Qiskit-Quantum-Journey
|
AlphaMiyaL
|
my_list = [1,3,5,2,4,2,5,8,0,7,6]
#classical computation method
def oracle(my_input):
winner =7
if my_input is winner:
response = True
else:
response = False
return response
for index, trial_number in enumerate(my_list):
if oracle(trial_number) is True:
print("Winner is found at index %i" %index)
print("%i calls to the oracle used " %(index +1))
break
#quantum implemenation
from qiskit import *
import matplotlib.pyplot as plt
import numpy as np
from qiskit.tools import job_monitor
# oracle circuit
oracle = QuantumCircuit(2, name='oracle')
oracle.cz(0,1)
oracle.to_gate()
oracle.draw(output='mpl')
backend = Aer.get_backend('statevector_simulator')
grover_circuit = QuantumCircuit(2,2)
grover_circuit.h([0,1])
grover_circuit.append(oracle,[0,1])
grover_circuit.draw(output='mpl')
job= execute(grover_circuit, backend=backend)
result= job.result()
sv= result.get_statevector()
np.around(sv,2)
#amplitude amplification
reflection = QuantumCircuit(2, name='reflection')
reflection.h([0,1])
reflection.z([0,1])
reflection.cz(0,1)
reflection.h([0,1])
reflection.to_gate()
reflection.draw(output='mpl')
#testing circuit on simulator
simulator = Aer.get_backend('qasm_simulator')
grover_circuit = QuantumCircuit(2,2)
grover_circuit.h([0,1])
grover_circuit.append(oracle,[0,1])
grover_circuit.append(reflection, [0,1])
grover_circuit.barrier()
grover_circuit.measure([0,1],[0,1])
grover_circuit.draw(output='mpl')
job= execute(grover_circuit,backend=simulator,shots=1)
result=job.result()
result.get_counts()
#testing on real backend system
IBMQ.load_account()
provider= IBMQ.get_provider('ibm-q')
qcomp= provider.get_backend('ibmq_manila')
job = execute(grover_circuit,backend=qcomp)
job_monitor(job)
result=job.result()
counts=result.get_counts(grover_circuit)
from qiskit.visualization import plot_histogram
plot_histogram(counts)
counts['11']
|
https://github.com/ayushidubal/qram
|
ayushidubal
|
from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.circuit.library import ZGate
from qiskit.quantum_info import Operator, Statevector
from qiskit.extensions import Initialize
from qiskit.providers.aer import AerSimulator
from qiskit.providers.aer.backends import statevector_simulator, qasm_simulator
from qiskit.visualization import plot_histogram, plot_state_city
from qiskit import Aer, execute, transpile
import numpy as np
def targets(n):
state1 = ""
state2 = ""
bits = ["0", "1"]
for i in range(n):
state1 += bits[i%2]
state2 += bits[1-(i%2)]
return state1, state2
def getData(input_array, mem_bits):
state = ""
for i in input_array:
state += bin(i)[2:].rjust(mem_bits, '0')
return state[::-1]
def decoder(addr_bits, aux_bits, n):
addr = QuantumRegister(addr_bits)
tau = QuantumRegister(aux_bits)
decoder = QuantumCircuit(addr, tau)
decoder.x(tau[0])
decoder.cx(addr[addr_bits-1], tau[1])
decoder.cx(tau[1], tau[0])
c = 1
for i in range(1, addr_bits-1):
p = 2**i
for j in range(p):
decoder.ccx(addr[addr_bits-i-1], tau[j], tau[p+j])
c += 1
for j in range(p):
decoder.cx(tau[p+j], tau[j])
p = aux_bits - 1 - c
for j in range(p):
decoder.ccx(addr[0], tau[j], tau[p+j])
c += 1
for j in range(p):
decoder.cx(tau[p+j], tau[j])
return decoder.to_gate(label = "Decoder")
def groverOracle(aux_bits, mem_bits, n):
winners = targets(mem_bits)
tau = QuantumRegister(aux_bits)
mem = QuantumRegister(mem_bits*n)
oracle = QuantumCircuit(tau, mem)
gate1 = ZGate().control(num_ctrl_qubits=mem_bits, ctrl_state=winners[0])
gate2 = ZGate().control(num_ctrl_qubits=mem_bits, ctrl_state=winners[1])
for i in range(aux_bits):
qubits = [mem[mem_bits*i + j] for j in range(mem_bits)]
oracle.append(gate1, qubits + [tau[i]])
oracle.append(gate2, qubits + [tau[i]])
return oracle.to_gate(label="Oracle")
def groverDiffuser(addr_bits):
d = 2**addr_bits
s = np.array([[1.0/np.sqrt(d)] for i in range(d)])
op = np.matmul(s, s.T)
U_S = Operator((2*op)-np.identity(d))
return U_S
def qram(input_array):
n = len(input_array)
if n < 8:
input_array += [0 for i in range(8-n)]
n = len(input_array)
addr_bits = len(bin(n-1)) - 2 # number of address bits
aux_bits = n # number of memory locations
mem_bits = len(bin(max(input_array))) - 2 # size of one memory location
addr = QuantumRegister(addr_bits, name="a") # address register
tau = QuantumRegister(aux_bits, name="tau") # auxillary register to store selected address
mem = QuantumRegister(mem_bits*n, name="m") # memory register
cr = ClassicalRegister(addr_bits) # to store final output
qram_circ = QuantumCircuit(addr, tau, mem, cr)
for i in range(addr_bits):
qram_circ.h(addr[i])
# Load data into qRAM
data = getData(input_array[::-1], mem_bits)
for i in range(len(data)):
if data[i] == "1":
qram_circ.x(mem[i])
# End of loading
# Entangle tau with addr
decode = decoder(addr_bits, aux_bits, n)
qram_circ.append(decode, addr[:] + tau[:])
# Grover oracle
oracle = groverOracle(aux_bits, mem_bits, n)
qram_circ.append(oracle, tau[:] + mem[:])
# End of grover oracle
# Detangle tau from addr
encode = decode.inverse()
encode.label = "Encoder"
qram_circ.append(encode, addr[:] + tau[:])
# Diffuser
U_S = groverDiffuser(addr_bits)
qram_circ.append(U_S, [addr[i] for i in range(addr_bits)])
# Measure
qram_circ.measure([addr[i] for i in range(addr_bits)], [cr[i] for i in range(addr_bits)])
return qram_circ
circ = qram([3, 2, 0, 1])
circ.draw('mpl')
backend = Aer.get_backend("qasm_simulator")
job = execute(circ, backend)
res = job.result()
counts = res.get_counts()
print(counts)
plot_histogram(counts)
circ = qram([1, 0, 3, 2, 3])
circ.draw('mpl')
backend = Aer.get_backend("qasm_simulator")
job = execute(circ, backend)
res = job.result()
counts = res.get_counts()
print(counts)
plot_histogram(counts)
circ = qram([0, 1, 3, 2, 2])
circ.draw('mpl')
backend = Aer.get_backend("qasm_simulator")
job = execute(circ, backend)
res = job.result()
counts = res.get_counts()
print(counts)
plot_histogram(counts)
|
https://github.com/ichen17/Learning-Qiskit
|
ichen17
|
# Importing Packages
from qiskit import IBMQ, Aer
from qiskit.providers.ibmq import least_busy
from qiskit import QuantumCircuit, transpile, assemble, QuantumRegister, ClassicalRegister
from qiskit.visualization import plot_histogram
from qiskit_textbook.tools import simon_oracle
bb = input("Enter the input string:\n")
### Using in-built "simon_oracle" from QISKIT
# importing Qiskit
from qiskit import IBMQ, Aer
from qiskit.providers.ibmq import least_busy
from qiskit import QuantumCircuit, transpile, assemble
# import basic plot tools
from qiskit.visualization import plot_histogram
from qiskit_textbook.tools import simon_oracle
n = len(bb)
simon_circuit = QuantumCircuit(n*2, n)
# Apply Hadamard gates before querying the oracle
simon_circuit.h(range(n))
# Apply barrier for visual separation
simon_circuit.barrier()
simon_circuit += simon_oracle(bb)
# Apply barrier for visual separation
simon_circuit.barrier()
# Apply Hadamard gates to the input register
simon_circuit.h(range(n))
# Measure qubits
simon_circuit.measure(range(n), range(n))
simon_circuit.draw(output="mpl")
# use local simulator
aer_sim = Aer.get_backend('aer_simulator')
shots = 500
qobj = assemble(simon_circuit, shots=shots)
results = aer_sim.run(qobj).result()
counts = results.get_counts()
print(counts)
plot_histogram(counts)
# Calculate the dot product of the results
def bdotz(b, z):
accum = 0
for i in range(len(b)):
accum += int(b[i]) * int(z[i])
return (accum % 2)
for z in counts:
print( '{}.{} = {} (mod 2)'.format(b, z, bdotz(b,z)) )
b = input("Enter a binary string:\n")
# Actual b = 011
b_rev = b[::-1]
flagbit = b_rev.find('1')
n=len(b)
q1=QuantumRegister(n,'q1')
q2=QuantumRegister(n,'q2')
c1=ClassicalRegister(n)
qc = QuantumCircuit(q1,q2,c1)
qc.barrier()
qc.h(q1)
qc.barrier()
for i in range(n):
qc.cx(q1[i],q2[i])
qc.barrier()
if flagbit != -1:
# print("test1")
for ind, bit in enumerate(b_rev):
# print("test2")
if bit == "1":
# print("test3")
qc.cx(flagbit, q2[ind])
qc.barrier()
qc.h(q1)
qc.barrier()
qc.measure(q1,c1)
qc.draw("mpl")
aer_sim = Aer.get_backend('aer_simulator')
shots = 500
qobj = assemble(qc, shots=shots)
results = aer_sim.run(qobj).result()
counts = results.get_counts()
print(counts)
plot_histogram(counts)
# Actual b = 011
b="1"
b_rev = "1"
flagbit = b_rev.find('1')
n=len(b)
q1=QuantumRegister(n,'q1')
q2=QuantumRegister(n,'q2')
c1=ClassicalRegister(n)
qc = QuantumCircuit(q1,q2,c1)
qc.barrier()
qc.h(q1)
qc.barrier()
for i in range(n):
qc.cx(q1[i],q2[i])
qc.barrier()
if flagbit != -1:
# print("test1")
for ind, bit in enumerate(b_rev):
# print("test2")
if bit == "1":
# print("test3")
qc.cx(flagbit, q2[ind])
qc.barrier()
qc.h(q1)
qc.barrier()
# qc.measure(q1,c1)
# qc.draw("mpl")
# Simulate the unitary
usim = Aer.get_backend('aer_simulator')
qc.save_unitary()
qobj = assemble(qc)
unitary = usim.run(qobj).result().get_unitary()
# Display the results:
array_to_latex(unitary, prefix="\\text{Circuit = } ")
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
top = QuantumCircuit(1)
top.x(0);
bottom = QuantumCircuit(2)
bottom.cry(0.2, 0, 1);
tensored = bottom.tensor(top)
tensored.draw('mpl')
|
https://github.com/tomtuamnuq/compare-qiskit-ocean
|
tomtuamnuq
|
import time, os, logging, warnings
from qiskit_optimization.algorithms import CplexOptimizer
warnings.filterwarnings("ignore", category=DeprecationWarning)
from qiskit.optimization.algorithms.optimization_algorithm import OptimizationResultStatus
from dwave.system import DWaveCliqueSampler
from utilities.helpers import create_dwave_meo, create_quadratic_programs_from_paths
TEST_DIR = 'TEST_DATA' + "/" + time.strftime("%d_%m_%Y") + "/DENSE/"
RES_DIR = 'RESULTS' + "/" + time.strftime("%d_%m_%Y") + "/DENSE/"
os.makedirs(RES_DIR, exist_ok=True)
TEST_DIR
# select linear programs to solve
qps = create_quadratic_programs_from_paths(TEST_DIR, True)
# init Optimizers
cplex = CplexOptimizer()
dwave = create_dwave_meo(DWaveCliqueSampler(), num_reads=4096)
prelabel = "clique_dense_"
logger = logging.getLogger()
logger.setLevel(logging.INFO)
warnings.filterwarnings("ignore", category=DeprecationWarning)
count_fail_dwave = 0
for qp_name, qp in qps.items() :
print(qp_name)
print("number of qubits: ", qp.get_num_vars())
output_file_handler = logging.FileHandler(filename=RES_DIR + qp.name + ".log")
logger.addHandler(output_file_handler)
# set problem label
dwave.min_eigen_solver.sampler.set_label(prelabel + qp_name + "_" + str(qp.get_num_vars()))
with open(RES_DIR + qp.name + '.res', 'w') as file:
file.write(str("Start " + qp.name + "\n " + str(qp.get_num_vars()) + " qubits needed"))
file.write("\n DWave Quantum: \n")
logger.info("\n DWave Quantum: \n ")
try:
res_classic = cplex.solve(qp)
res_quantum = dwave.solve(qp)
problem_id = str(res_quantum.min_eigen_solver_result.sampleset.info['problem_id'])
logger.info("\n problem id " + problem_id)
file.write("\n problem id: " + problem_id)
if res_quantum.status != OptimizationResultStatus.SUCCESS:
print("Dwave quantum solver found no solution.")
file.write("\n No solution found with DWave Quantum Solver \n")
count_fail_dwave = count_fail_dwave + 1
if count_fail_dwave == 3:
file.write("\n Stop testing DWave Quantum Solver \n")
break
else:
print("Dwave Quantum successful!")
count_fail_dwave = 0
if res_quantum.fval == res_classic.fval:
file.write("\n DWave quantum solver found optimal solution\n")
else:
print("\n optimal value Dwave quantum "+str(res_quantum.fval) \
+ " , cplex:"+ str(res_classic.fval))
file.write("\n DWave quantum solver:\n")
file.write(str(res_quantum))
file.write("\n CPLEX:\n")
file.write(str(res_classic))
except Exception as ex:
print(qp_name, " ", type(ex).__name__, " : ", ex)
file.write("\n Cplex or DWave solver produced an exception:\n")
file.write(str(ex))
count_fail_dwave = count_fail_dwave + 1
if count_fail_dwave == 3:
file.write("\n Stop testing because of Exception! \n")
break
logger.removeHandler(output_file_handler)
|
https://github.com/QuantumVic/discrete-time-quantum-walks
|
QuantumVic
|
from qiskit import *
import numpy as np
import matplotlib as mpl
from qiskit.tools.visualization import plot_histogram, plot_state_city
from qiskit.tools.monitor import job_monitor
state_sim = Aer.get_backend('statevector_simulator')
qasm_sim = Aer.get_backend('qasm_simulator')
unitary_sim = Aer.get_backend('unitary_simulator')
qiskit.__qiskit_version__ #developed in q0.14.0, q-terra0.11.0
# Definition of c_Increment, c_Decrement gates
def increment(qc,qr):
"""controlled-increment gate, cf. PhysRevA.72.032329"""
for i in range(num_qubits - 1):
qc.mct(qr[0:num_qubits - 1 - i], qr[num_qubits - 1 - i] , qr_aux)
def decrement(qc,qr):
"""controlled-decrement gate, cf. PhysRevA.72.032329"""
for i in range(num_qubits - 1):
qc.mct(qr[0:i+1], qr[i+1], qr_aux)
# Definition of QW cycle
def quantum_walk(qc,qr):
"""implement DTQW on a previously defined circuit and register cf. PhysRevA.72.032329"""
# coin operator
qc.h(qr[0])
# conditional shift
increment(qc,qr)
qc.x(qr[0])
decrement(qc,qr)
qc.x(qr[0])
def get_tot_gates(qc):
"""get the total number of basic gates of a circuit"""
tot_gates = 0
for key in qc.decompose().count_ops():
tot_gates = tot_gates + qc.decompose().count_ops()[key]
return tot_gates
def get_cx_gates(qc):
"""get the total number of cx gates of a circuit"""
cx_gates = qc.decompose().count_ops()['cx']
return cx_gates
# Analysis of gate number
x = [] # number of qubits
y = [] # number of gates of one QW step
for q in range(4,30):
# Total number of qubits (nodes + coin)
num_qubits = q
# Define qRegister and qCircuit
qr = QuantumRegister(num_qubits, 'qr')
cr = ClassicalRegister(num_qubits - 1, 'cr')
# We need (num_control - 2) aux qubits for mct
if num_qubits > 3:
qr_aux = QuantumRegister(num_qubits - 3, 'aux')
qc = QuantumCircuit(qr,qr_aux,cr)
else:
qr_aux = None
qc = QuantumCircuit(qr,cr)
# Running the QW
quantum_walk(qc,qr)
x.append(q)
y.append(get_cx_gates(qc))
print(x,y)
mpl.pyplot.plot(x,y)
mpl.pyplot.xlabel('number of qubits')
mpl.pyplot.ylabel('number of gates')
mpl.pyplot.title('Number of CX gates required for a QW step')
mpl.pyplot.grid(True)
mpl.pyplot.show()
|
https://github.com/drnickallgood/simonqiskit
|
drnickallgood
|
import sys
import logging
import matplotlib.pyplot as plt
import numpy as np
import operator
import itertools
#from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute, IBMQ
from qiskit.providers.ibmq import least_busy
from collections import OrderedDict
# AER is for simulators
from qiskit import Aer
from qiskit import QuantumCircuit
from qiskit import ClassicalRegister
from qiskit import QuantumRegister
from qiskit import execute
from qiskit import IBMQ
#from qiskit.providers.ibmq.managed import IBMQJobManager
from qiskit.tools.monitor import job_monitor
from qiskit.tools.visualization import plot_histogram
from qiskit.tools.visualization import circuit_drawer
from sympy import Matrix, pprint, MatrixSymbol, expand, mod_inverse
from qjob import QJob
def blackbox(period_string):
#### Blackbox Function #####
# QP's don't care about this, we do#
#############################
# Copy first register to second by using CNOT gates
for i in range(n):
#simonCircuit.cx(qr[i],qr[n+i])
simonCircuit.cx(qr[i],qr[n+i])
# get the small index j such it's "1"
j = -1
#reverse the string so that it takes
s = period_string[::-1]
for i, c in enumerate(s):
if c == "1":
j = i
break
# 1-1 and 2-1 mapping with jth qubit
# x is control to xor 2nd qubit with a
for i, c in enumerate(s):
if c == "1" and j >= 0:
#simonCircuit.x(qr[j])
simonCircuit.cx(qr[j], qr[n+i]) #the i-th qubit is flipped if s_i is 1
#simonCircuit.x(qr[j])
# Random peemutation
# This part is how we can get by with 1 query of the oracle and better
# simulates quantum behavior we'd expect
perm = list(np.random.permutation(n))
# init position
init = list(range(n))
i = 0
while i < n:
if init[i] != perm[i]:
k = perm.index(init[i])
simonCircuit.swap(qr[n+i],qr[n+k]) #swap gate on qubits
init[i], init[k] = init[k], init[i] # mark the swapped qubits
else:
i += 1
# Randomly flip qubit
# Seed random numbers for predictability / benchmark
for i in range(n):
if np.random.random() > 0.5:
simonCircuit.x(qr[n+i])
simonCircuit.barrier()
### END OF BLACKBOX FUNCTION
return simonCircuit
def run_circuit(circuit,backend):
# Default for this backend seems to be 1024 ibmqx2
shots = 1024
job = execute(simonCircuit,backend=backend, shots=shots)
job_monitor(job,interval=2)
results = job.result()
return results
'''
counts = results.get_counts()
#print("Getting Results...\n")
#print(qcounts)
#print("")
print("Submitting to IBM Q...\n")
print("\nIBM Q Backend %s: Resulting Values and Probabilities" % qbackend)
print("===============================================\n")
print("Simulated Runs:",shots,"\n")
# period, counts, prob,a0,a1,...,an
#
for key, val in qcounts.items():
prob = val / shots
print("Period:", key, ", Counts:", val, ", Probability:", prob)
print("")
'''
def guass_elim(results):
# Classical post processing via Guassian elimination for the linear equations
# Y a = 0
# k[::-1], we reverse the order of the bitstring
equations = list()
lAnswer = [ (k[::-1],v) for k,v in results.get_counts().items() if k != "0"*n ]
# Sort basis by probabilities
lAnswer.sort(key = lambda x: x[1], reverse=True)
Y = []
for k, v in lAnswer:
Y.append( [ int(c) for c in k ] )
Y = Matrix(Y)
Y_transformed = Y.rref(iszerofunc=lambda x: x % 2==0)
# convert rational and negatives in rref
def mod(x,modulus):
numer,denom = x.as_numer_denom()
return numer*mod_inverse(denom,modulus) % modulus
# Deal with negative and fractial values
Y_new = Y_transformed[0].applyfunc(lambda x: mod(x,2))
#print("\nThe hidden period a0, ... a%d only satisfies these equations:" %(n-1))
#print("===============================================================\n")
rows,cols = Y_new.shape
for r in range(rows):
Yr = [ "a"+str(i)+"" for i,v in enumerate(list(Y_new[r,:])) if v==1]
if len(Yr) > 0:
tStr = " xor ".join(Yr)
#single value is 0, only xor with perid string 0 to get
if len(tStr) == 2:
equations.append("period xor" + " 0 " + " = 0")
else:
equations.append("period" + " xor " + tStr + " = 0")
return equations
def print_list(results):
# Sort list by value
sorted_x = sorted(qcounts.items(), key=operator.itemgetter(1), reverse=True)
print("Sorted list of result strings by counts")
print("======================================\n")
for i in sorted_x:
print(i)
#print(sorted_x)
print("")
## easily create period strings
## We want to avoid using anything with all 0's as that gives us false results
## because anything mod2 00 will give results
def create_period_str(strlen):
str_list = list()
for i in itertools.product([0,1],repeat=strlen):
if "1" in ("".join(map(str,i))):
#print("".join(map(str,i)))
str_list.append("".join(map(str,i)))
return str_list
## function to get dot product of result string with the period string to verify, result should be 0
#check the wikipedia for simons formula
# DOT PRODUCT IS MOD 2 !!!!
# Result XOR ?? = 0 -- this is what we're looking for!
# We have to verify the period string with the ouptput using mod_2 addition aka XOR
# Simply xor the period string with the output string
# Simply xor the period string with the output string, result must be 0 or 0b0
def verify_string(ostr, pstr):
"""
Verify string with period string
Does dot product and then mod2 addition
"""
temp_list = list()
# loop through outstring, make into numpy array
for o in ostr:
temp_list.append(int(o))
ostr_arr = np.asarray(temp_list)
temp_list.clear()
# loop through period string, make into numpy array
for p in pstr:
temp_list.append(int(p))
pstr_arr = np.asarray(temp_list)
temp_list.clear()
# Per Simosn, we do the dot product of the np arrays and then do mod 2
results = np.dot(ostr_arr, pstr_arr)
if results % 2 == 0:
return True
return False
#### START ####
# hidden stringsn
period_strings_5qubit = list()
period_strings_5qubit = create_period_str(2)
period_strings_2bit = list()
period_strings_3bit = list()
period_strings_4bit = list()
period_strings_5bit = list()
period_strings_6bit = list()
period_strings_7bit = list()
# 2-bit strings
period_strings_2bit = create_period_str(2)
# 3-bit strings
period_strings_3bit = create_period_str(3)
# 4-bit strings
period_strings_4bit = create_period_str(4)
# 5-bit strings
period_strings_5bit = create_period_str(5)
# 6-bit strings
period_strings_6bit = create_period_str(6)
# 7-bit strings
period_strings_7bit = create_period_str(7)
# IBM Q stuff..
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q')
# 14 qubit (broken?)
melbourne = provider.get_backend('ibmq_16_melbourne')
#5 qubit backends
ibmqx2 = provider.get_backend('ibmqx2') # Yorktown
london = provider.get_backend('ibmq_london')
essex = provider.get_backend('ibmq_essex')
burlington = provider.get_backend('ibmq_burlington')
ourense = provider.get_backend('ibmq_ourense')
vigo = provider.get_backend('ibmq_vigo')
least = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits == 5 and not x.configuration().simulator and x.status().operational==True))
# Setup logging
# Will fail if file exists already -- because I'm lazy
'''
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
filename='results-2-7bit/' + melbourne.name() + '-2bit-12iter.txt',
filemode='x')
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
'''
#Nam comes back as ibmq_backend, get the part after ibmq
#least_name = least.name().split('_')[1]
#print("Least busy backend: " + least_name)
# 32 qubit qasm simulator - IBMQ
ibmq_sim = provider.get_backend('ibmq_qasm_simulator')
# Local Simulator,
local_sim = Aer.get_backend('qasm_simulator')
circuitList = list()
backend_list = dict()
#backend_list['local_sim'] = local_sim
backend_list['ibmqx2'] = ibmqx2
backend_list['london'] = london
backend_list['essex'] = essex
backend_list['burlington'] = burlington
backend_list['ourense'] = ourense
backend_list['melbourne'] = melbourne
backend_list['vigo'] = vigo
#backend14q_list['melbourne'] = melbourne
## DO NOT USE ITERATION FORMULA JUST HERE FOR REF
# Iterations = # of backends tested
# iteration formula = floor(log2(num_backends * num_shots)) = 14 here
# 2-bit period strings
ranJobs = list()
backname = "local_sim"
#2bit = 12 = 36 random functions , min = 35
#3bit = 54 = 37+ random functions, min = 372
#4bit = 26 = 390, min = 384
#5bit = 13 = 403, min = 385
#6bit = 7 = 441, min = 385
#7bit = 4 = 508, min = 385
iterations = 12
#o Jobs total = # of strings * iterations
total_jobs = iterations * len(period_strings_2bit)
job_start_idx = 1
circs = list()
dup_count = 0
# Idea here is we have are feeding hidden bitstrings and getting back results from the QC
# Create circuits
for period in period_strings_2bit:
#print(str(period))
n = len(period)
# Seed random number
print("=== Creating Circuit ===")
#logging.info("=== Creating Circuit: " + str(period) + " ===")
# This allows us to get consistent random functions generated for f(x)
np.random.seed(2) ## returns 0 duplicates for 2bit stings, 36 iterations
#np.random.seed(384) ## returns 21 duplicates for 3bit stings, 54 iterations
#np.random.seed(227)
for k in range(iterations):
# Generate circuit
qr = QuantumRegister(2*n)
cr = ClassicalRegister(n)
simonCircuit = QuantumCircuit(qr,cr)
# Hadamards prior to oracle
for i in range(n):
simonCircuit.h(qr[i])
simonCircuit.barrier()
# Oracle query
simonCircuit = blackbox(period)
# Apply hadamards again
for i in range(n):
simonCircuit.h(qr[i])
simonCircuit.barrier()
# Measure qubits, maybe change to just first qubit to measure
simonCircuit.measure(qr[0:n],cr)
circs.append(simonCircuit)
#### end iterations loop for debugging
# Check for duplicates
# We compare count_ops() to get the actual operations and order they're in
# count_ops returns OrderedDict
k = 0
while k < len(circs)-1:
if circs[k].count_ops() == circs[k+1].count_ops():
#print("\n=== Duplicates Found! ===")
#print("Index:" + str(k))
#print("Index:" + str(k+1))
dup_count = dup_count + 1
#print(circs[k].count_ops())
#print(circs[k+1].count_ops())
#print("=== End Duplcates ===")
k = k+2
else:
k = k+1
print("Total Circuits:" + str(len(circs)))
#logging.info("Total Circuits:" + str(len(circs)))
print("Total Duplicates:" + str(dup_count))
#logging.info("Total Duplicates:" + str(dup_count))
for circ in circs:
print(circ)
exit(1)
# Run Circuits
logging.info("\n=== Sending data to IBMQ Backend:" + melbourne.name() + " ===\n")
for circ in circs:
#print("Job: " + str(job_start_idx) + "/" + str(total_jobs))
logging.info("Job: " + str(job_start_idx) + "/" + str(total_jobs))
job = execute(circ,backend=melbourne, shots=1024)
#job = execute(circ,backend=local_sim, shots=1024)
job_start_idx += 1
job_monitor(job,interval=3)
# Store result, including period string
qj = QJob(job,circ,melbourne.name(), period)
ranJobs.append(qj)
# Go through and get correct vs incorrect in jobs
for qjob in ranJobs:
results = qjob.job.result()
counts = results.get_counts()
equations = guass_elim(results)
# Get period string
pstr = qjob.getPeriod()
obsv_strs = list()
str_cnt = 0
sorted_str = sorted(results.get_counts().items(), key=operator.itemgetter(1), reverse=True)
#print("==== RAW RESULTS ====")
#logging.info("==== RAW RESULTS ====")
#logging.info("Period String:" + qjob.getPeriod())
#logging.info(counts)
# Get just the observed strings
for string in sorted_str:
obsv_strs.append(string[0])
# go through and verify strings
for o in obsv_strs:
# Remember to re-reverse string so it's back to normal due to IBMQ Endianness
if verify_string(o,pstr):
# Goes through strings and counts
for string, count in counts.items():
if string == o:
#print("===== SET CORRECT =====")
#print("Correct String: " + string)
#logging.info("Correct String: " + string)
#print("Correct String Counts: " + str(count))
qjob.setCorrect(count)
else:
# lookup counts based on string
# counts is a dict()
for string, count in counts.items():
if string == o:
# Add value to incorrect holder in object
#print("===== SET INCORRECT =====")
#print("Incorrect String: " + string)
#logging.info("Incorrect String: " + string)
#print("Incorrect String Counts: " + str(count))
qjob.setIncorrect(count)
total_correct = 0
total_incorrect = 0
total_runs = (1024 * iterations) * len(period_strings_2bit)
for qjob in ranJobs:
total_correct += qjob.getCorrect()
total_incorrect += qjob.getIncorrect()
logging.info("\n\nTotal Runs: " + str(total_runs))
logging.info("Total Correct: " + str(total_correct))
logging.info("Prob Correct: " + str(float(total_correct) / float(total_runs)))
logging.info("Total Incorrect: " + str(total_incorrect))
logging.info("Prob Incorrect: " + str(float(total_incorrect) / float(total_runs)))
logging.info("Total Duplicates:" + str(dup_count))
exit(1)
# Least busy backend, for individual testing
#backend_list[least_name] = least
# Make Circuits for all period strings!
#for p in period_strings_5qubit:
for p in period_strings_14qubit:
# Circuit name = Simon_+ period string
#circuitName = "Simon-" + p
circuitName = p
n = len(p)
# For simons, we use the first n registers for control qubits
# We use the last n registers for data qubits.. which is why we need 2*n
qr = QuantumRegister(2*n)
cr = ClassicalRegister(n)
simonCircuit = QuantumCircuit(qr,cr,name=circuitName)
# Apply hadamards prior to oracle
for i in range(n):
simonCircuit.h(qr[i])
simonCircuit.barrier()
#call oracle for period string
simonCircuit = blackbox(p)
# Apply hadamards after blackbox
for i in range(n):
simonCircuit.h(qr[i])
simonCircuit.barrier()
# Measure qubits, maybe change to just first qubit to measure
simonCircuit.measure(qr[0:n],cr)
circuitList.append(simonCircuit)
# Run loop to send circuits to IBMQ..
local_sim_ranJobs = list()
ibmqx2_ranJobs = list()
london_ranJobs = list()
essex_ranJobs = list()
burlington_ranJobs = list()
ourense_ranJobs = list()
vigo_ranJobs = list()
ibmq_sim_ranJobs = list()
melbourne_ranJobs = list()
print("\n===== SENDING DATA TO IBMQ BACKENDS... =====\n")
ranJobs = list()
jcount = 1
jtotal = 500
for name in backend_list:
for circuit in circuitList:
job = execute(circuit,backend=backend_list[name], shots=1024)
# Keep tabs on running jobs
print("Running job on backend: " + name)
print("Running job: " + str(jcount) + "/" + str(jtotal))
jcount += 1
job_monitor(job,interval=5)
# Custom object to hold the job, circuit, and backend
qj = QJob(job,circuit,name)
#print(qj.backend())
# Append finished / ran job to list of jobs
ranJobs.append(qj)
for qjob in ranJobs:
# Results from each job
results = qjob.job.result()
# total counts from job
counts = results.get_counts()
# equations from each job
equations = guass_elim(results)
#period string encoded into name
pstr = qjob.circuit.name
#list of observed strings
obs_strings = list()
str_counts = 0
# Sorted strings from each job
sorted_str = sorted(results.get_counts().items(), key=operator.itemgetter(1), reverse=True)
# Get just the observed strings
for string in sorted_str:
obs_strings.append(string[0])
# go through and verify strings
for o in obs_strings:
# Remember to re-reverse string so it's back to normal due to IBMQ Endianness
if verify_string(o,pstr):
for string, count in counts.items():
if string == o:
#print("===== SET CORRECT =====")
qjob.setCorrect(count)
else:
# lookup counts based on string
# counts is a dict()
for string, count in counts.items():
if string == o:
# Add value to incorrect holder in object
#print("===== SET INCORRECT =====")
qjob.setIncorrect(count)
# Now we haev the stats finished, let's store them in a list based on their backend name
if qjob.backend() == "ibmqx2":
ibmqx2_ranJobs.append(qjob)
elif qjob.backend() == "london":
london_ranJobs.append(qjob)
elif qjob.backend() == "burlington":
burlington_ranJobs.append(qjob)
elif qjob.backend() == "essex":
essex_ranJobs.append(qjob)
elif qjob.backend() == "ourense":
ourense_ranJobs.append(qjob)
elif qjob.backend() == "vigo":
vigo_ranJobs.append(qjob)
elif qjob.backend() == "ibmq_sim":
ibmq_sim_ranJobs.append(qjob)
elif qjob.backend() == "melbourne":
melbourne_ranJobs.append(qjob)
elif qjob.backend() == "local_sim":
local_sim_ranJobs.append(qjob)
else:
continue
backends_5qubit_ranJobs = dict()
backends_14qubit_ranJobs = dict()
backends_sims_ranJobs = dict()
#q5b = ["ibmqx2", "vigo", "ourense", "london", "essex", "burlington"]
#q5b = ["ibmqx2"]
#q5b = ["vigo"]
#q5b = ["ourense"]
#q5b = ["london"]
q5b = ["essex"]
#q5b = ["burlington"]
q14b = ["melbourne"]
sims = ["local_sim"]
#sims = ["local_sim", "ibmq_sim"]
backends_5qubit_ranJobs['ibmqx2'] = ibmqx2_ranJobs
backends_5qubit_ranJobs['vigo'] = vigo_ranJobs
backends_5qubit_ranJobs['ourense'] = ourense_ranJobs
backends_5qubit_ranJobs['london'] = london_ranJobs
backends_5qubit_ranJobs['essex'] = essex_ranJobs
backends_5qubit_ranJobs['burlington'] = burlington_ranJobs
backends_14qubit_ranJobs['melbourne'] = melbourne_ranJobs
backends_sims_ranJobs['local_sim'] = local_sim_ranJobs
#backends_sims['ibmq_sim'] = ibmq_sim_ranJobs
# The idea here is to loop through the dictionary by using a name in the list of names above
# as such then, we can call dictionaries in a loop with that name, which contain the list of
# ran jobs
def printStats(backend, job_list):
'''
backend: backend name
job_list: list of ran jobs from backend
'''
total_correct = 0
total_incorrect = 0
# Total = shots = repeitions of circuit
# 1024 x 4 period strings we can use with 2-qubit = 4096
# Probably make this dynamic for 14-qubit
# 2 - 7 qubits = 142336 total runs
total = 142336
pcorrect = 0.00
pincorrect = 0.00
# Go through each job/period string's data
for job in job_list:
total_correct += job.getCorrect()
#print("Total Correct inc: " + str(total_correct))
total_incorrect += job.getIncorrect()
#print("Total INCorrect inc: " + str(total_incorrect))
# This is to handle when we use a simiulator, nothing should be incorrect to avoid dividing by 0
if total_incorrect == 0:
pincorrect = 0.00
else:
pincorrect = 100*(total_incorrect / total)
pcorrect = 100*(total_correct / total)
print("\n===== RESULTS - " + backend + " =====\n")
print("Total Results: " + str(total))
print("Total Correct Results: " + str(total_correct) + " -- " + str(pcorrect) + "%")
print("Total Inorrect Results: " + str(total_incorrect) + " -- " + str(pincorrect) + "%")
print("\n===================\n")
'''
for backend in sims:
printStats(backend, backends_sims_ranJobs[backend])
'''
#printStats(least_name, backends_5qubit_ranJobs[least_name])
# for each backend name in the backend name list...
'''
for backend in q5b:
printStats(backend, backends_5qubit_ranJobs[backend])
'''
# 14-qubit backend
for backend in q14b:
printStats(backend, backends_14qubit_ranJobs[backend])
|
https://github.com/JoelJJoseph/QUANTUM-TRADE
|
JoelJJoseph
|
import numpy as np
import networkx as nx
import qiskit
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, assemble
from qiskit.quantum_info import Statevector
from qiskit.aqua.algorithms import NumPyEigensolver
from qiskit.quantum_info import Pauli
from qiskit.aqua.operators import op_converter
from qiskit.aqua.operators import WeightedPauliOperator
from qiskit.visualization import plot_histogram
from qiskit.providers.aer.extensions.snapshot_statevector import *
from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost
from utils import mapeo_grafo
from collections import defaultdict
from operator import itemgetter
from scipy.optimize import minimize
import matplotlib.pyplot as plt
LAMBDA = 10
SEED = 10
SHOTS = 10000
# returns the bit index for an alpha and j
def bit(i_city, l_time, num_cities):
return i_city * num_cities + l_time
# e^(cZZ)
def append_zz_term(qc, q_i, q_j, gamma, constant_term):
qc.cx(q_i, q_j)
qc.rz(2*gamma*constant_term,q_j)
qc.cx(q_i, q_j)
# e^(cZ)
def append_z_term(qc, q_i, gamma, constant_term):
qc.rz(2*gamma*constant_term, q_i)
# e^(cX)
def append_x_term(qc,qi,beta):
qc.rx(-2*beta, qi)
def get_not_edge_in(G):
N = G.number_of_nodes()
not_edge = []
for i in range(N):
for j in range(N):
if i != j:
buffer_tupla = (i,j)
in_edges = False
for edge_i, edge_j in G.edges():
if ( buffer_tupla == (edge_i, edge_j) or buffer_tupla == (edge_j, edge_i)):
in_edges = True
if in_edges == False:
not_edge.append((i, j))
return not_edge
def get_classical_simplified_z_term(G, _lambda):
# recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos
N = G.number_of_nodes()
E = G.edges()
# z term #
z_classic_term = [0] * N**2
# first term
for l in range(N):
for i in range(N):
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += -1 * _lambda
# second term
for l in range(N):
for j in range(N):
for i in range(N):
if i < j:
# z_il
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += _lambda / 2
# z_jl
z_jl_index = bit(j, l, N)
z_classic_term[z_jl_index] += _lambda / 2
# third term
for i in range(N):
for l in range(N):
for j in range(N):
if l < j:
# z_il
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += _lambda / 2
# z_ij
z_ij_index = bit(i, j, N)
z_classic_term[z_ij_index] += _lambda / 2
# fourth term
not_edge = get_not_edge_in(G) # include order tuples ej = (1,0), (0,1)
for edge in not_edge:
for l in range(N):
i = edge[0]
j = edge[1]
# z_il
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += _lambda / 4
# z_j(l+1)
l_plus = (l+1) % N
z_jlplus_index = bit(j, l_plus, N)
z_classic_term[z_jlplus_index] += _lambda / 4
# fifthy term
weights = nx.get_edge_attributes(G,'weight')
for edge_i, edge_j in G.edges():
weight_ij = weights.get((edge_i,edge_j))
weight_ji = weight_ij
for l in range(N):
# z_il
z_il_index = bit(edge_i, l, N)
z_classic_term[z_il_index] += weight_ij / 4
# z_jlplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_j, l_plus, N)
z_classic_term[z_jlplus_index] += weight_ij / 4
# add order term because G.edges() do not include order tuples #
# z_i'l
z_il_index = bit(edge_j, l, N)
z_classic_term[z_il_index] += weight_ji / 4
# z_j'lplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_i, l_plus, N)
z_classic_term[z_jlplus_index] += weight_ji / 4
return z_classic_term
def tsp_obj_2(x, G,_lambda):
# obtenemos el valor evaluado en f(x_1, x_2,... x_n)
not_edge = get_not_edge_in(G)
N = G.number_of_nodes()
tsp_cost=0
#Distancia
weights = nx.get_edge_attributes(G,'weight')
for edge_i, edge_j in G.edges():
weight_ij = weights.get((edge_i,edge_j))
weight_ji = weight_ij
for l in range(N):
# x_il
x_il_index = bit(edge_i, l, N)
# x_jlplus
l_plus = (l+1) % N
x_jlplus_index = bit(edge_j, l_plus, N)
tsp_cost+= int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ij
# add order term because G.edges() do not include order tuples #
# x_i'l
x_il_index = bit(edge_j, l, N)
# x_j'lplus
x_jlplus_index = bit(edge_i, l_plus, N)
tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ji
#Constraint 1
for l in range(N):
penal1 = 1
for i in range(N):
x_il_index = bit(i, l, N)
penal1 -= int(x[x_il_index])
tsp_cost += _lambda * penal1**2
#Contstraint 2
for i in range(N):
penal2 = 1
for l in range(N):
x_il_index = bit(i, l, N)
penal2 -= int(x[x_il_index])
tsp_cost += _lambda*penal2**2
#Constraint 3
for edge in not_edge:
for l in range(N):
i = edge[0]
j = edge[1]
# x_il
x_il_index = bit(i, l, N)
# x_j(l+1)
l_plus = (l+1) % N
x_jlplus_index = bit(j, l_plus, N)
tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * _lambda
return tsp_cost
def get_classical_simplified_zz_term(G, _lambda):
# recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos
N = G.number_of_nodes()
E = G.edges()
# zz term #
zz_classic_term = [[0] * N**2 for i in range(N**2) ]
# first term
for l in range(N):
for j in range(N):
for i in range(N):
if i < j:
# z_il
z_il_index = bit(i, l, N)
# z_jl
z_jl_index = bit(j, l, N)
zz_classic_term[z_il_index][z_jl_index] += _lambda / 2
# second term
for i in range(N):
for l in range(N):
for j in range(N):
if l < j:
# z_il
z_il_index = bit(i, l, N)
# z_ij
z_ij_index = bit(i, j, N)
zz_classic_term[z_il_index][z_ij_index] += _lambda / 2
# third term
not_edge = get_not_edge_in(G)
for edge in not_edge:
for l in range(N):
i = edge[0]
j = edge[1]
# z_il
z_il_index = bit(i, l, N)
# z_j(l+1)
l_plus = (l+1) % N
z_jlplus_index = bit(j, l_plus, N)
zz_classic_term[z_il_index][z_jlplus_index] += _lambda / 4
# fourth term
weights = nx.get_edge_attributes(G,'weight')
for edge_i, edge_j in G.edges():
weight_ij = weights.get((edge_i,edge_j))
weight_ji = weight_ij
for l in range(N):
# z_il
z_il_index = bit(edge_i, l, N)
# z_jlplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_j, l_plus, N)
zz_classic_term[z_il_index][z_jlplus_index] += weight_ij / 4
# add order term because G.edges() do not include order tuples #
# z_i'l
z_il_index = bit(edge_j, l, N)
# z_j'lplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_i, l_plus, N)
zz_classic_term[z_il_index][z_jlplus_index] += weight_ji / 4
return zz_classic_term
def get_classical_simplified_hamiltonian(G, _lambda):
# z term #
z_classic_term = get_classical_simplified_z_term(G, _lambda)
# zz term #
zz_classic_term = get_classical_simplified_zz_term(G, _lambda)
return z_classic_term, zz_classic_term
def get_cost_circuit(G, gamma, _lambda):
N = G.number_of_nodes()
N_square = N**2
qc = QuantumCircuit(N_square,N_square)
z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _lambda)
# z term
for i in range(N_square):
if z_classic_term[i] != 0:
append_z_term(qc, i, gamma, z_classic_term[i])
# zz term
for i in range(N_square):
for j in range(N_square):
if zz_classic_term[i][j] != 0:
append_zz_term(qc, i, j, gamma, zz_classic_term[i][j])
return qc
def get_mixer_operator(G,beta):
N = G.number_of_nodes()
qc = QuantumCircuit(N**2,N**2)
for n in range(N**2):
append_x_term(qc, n, beta)
return qc
def get_QAOA_circuit(G, beta, gamma, _lambda):
assert(len(beta)==len(gamma))
N = G.number_of_nodes()
qc = QuantumCircuit(N**2,N**2)
# init min mix state
qc.h(range(N**2))
p = len(beta)
for i in range(p):
qc = qc.compose(get_cost_circuit(G, gamma[i], _lambda))
qc = qc.compose(get_mixer_operator(G, beta[i]))
qc.barrier(range(N**2))
qc.snapshot_statevector("final_state")
qc.measure(range(N**2),range(N**2))
return qc
def invert_counts(counts):
return {k[::-1] :v for k,v in counts.items()}
# Sample expectation value
def compute_tsp_energy_2(counts, G):
energy = 0
get_counts = 0
total_counts = 0
for meas, meas_count in counts.items():
obj_for_meas = tsp_obj_2(meas, G, LAMBDA)
energy += obj_for_meas*meas_count
total_counts += meas_count
mean = energy/total_counts
return mean
def get_black_box_objective_2(G,p):
backend = Aer.get_backend('qasm_simulator')
sim = Aer.get_backend('aer_simulator')
# function f costo
def f(theta):
beta = theta[:p]
gamma = theta[p:]
# Anzats
qc = get_QAOA_circuit(G, beta, gamma, LAMBDA)
result = execute(qc, backend, seed_simulator=SEED, shots= SHOTS).result()
final_state_vector = result.data()["snapshots"]["statevector"]["final_state"][0]
state_vector = Statevector(final_state_vector)
probabilities = state_vector.probabilities()
probabilities_states = invert_counts(state_vector.probabilities_dict())
expected_value = 0
for state,probability in probabilities_states.items():
cost = tsp_obj_2(state, G, LAMBDA)
expected_value += cost*probability
counts = result.get_counts()
mean = compute_tsp_energy_2(invert_counts(counts),G)
return mean
return f
def crear_grafo(cantidad_ciudades):
pesos, conexiones = None, None
mejor_camino = None
while not mejor_camino:
pesos, conexiones = rand_graph(cantidad_ciudades)
mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False)
G = mapeo_grafo(conexiones, pesos)
return G, mejor_costo, mejor_camino
def run_QAOA(p,ciudades, grafo):
if grafo == None:
G, mejor_costo, mejor_camino = crear_grafo(ciudades)
print("Mejor Costo")
print(mejor_costo)
print("Mejor Camino")
print(mejor_camino)
print("Bordes del grafo")
print(G.edges())
print("Nodos")
print(G.nodes())
print("Pesos")
labels = nx.get_edge_attributes(G,'weight')
print(labels)
else:
G = grafo
intial_random = []
# beta, mixer Hammiltonian
for i in range(p):
intial_random.append(np.random.uniform(0,np.pi))
# gamma, cost Hammiltonian
for i in range(p):
intial_random.append(np.random.uniform(0,2*np.pi))
init_point = np.array(intial_random)
obj = get_black_box_objective_2(G,p)
res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True})
print(res_sample)
if __name__ == '__main__':
# Run QAOA parametros: profundidad p, numero d ciudades,
run_QAOA(5, 3, None)
|
https://github.com/esloho/Qrangen
|
esloho
|
# Copyright (C) 2024 qBraid
#
# This file is part of the qBraid-SDK
#
# The qBraid-SDK is free software released under the GNU General Public License v3
# or later. You can redistribute and/or modify it under the terms of the GPL v3.
# See the LICENSE file in the project root or <https://www.gnu.org/licenses/gpl-3.0.html>.
#
# THERE IS NO WARRANTY for the qBraid-SDK, as per Section 15 of the GPL v3.
"""
Module defining QiskitBackend Class
"""
from typing import TYPE_CHECKING, Optional, Union
from qiskit_ibm_runtime import QiskitRuntimeService
from qbraid.programs import load_program
from qbraid.runtime.device import QuantumDevice
from qbraid.runtime.enums import DeviceStatus, DeviceType
from .job import QiskitJob
if TYPE_CHECKING:
import qiskit
import qiskit_ibm_runtime
import qbraid.runtime.qiskit
class QiskitBackend(QuantumDevice):
"""Wrapper class for IBM Qiskit ``Backend`` objects."""
def __init__(
self,
profile: "qbraid.runtime.TargetProfile",
service: "Optional[qiskit_ibm_runtime.QiskitRuntimeService]" = None,
):
"""Create a QiskitBackend."""
super().__init__(profile=profile)
self._service = service or QiskitRuntimeService()
self._backend = self._service.backend(self.id, instance=self.profile.get("instance"))
def __str__(self):
"""Official string representation of QuantumDevice object."""
return f"{self.__class__.__name__}('{self.id}')"
def status(self):
"""Return the status of this Device.
Returns:
str: The status of this Device
"""
if self.device_type == DeviceType.LOCAL_SIMULATOR:
return DeviceStatus.ONLINE
status = self._backend.status()
if status.operational:
if status.status_msg == "active":
return DeviceStatus.ONLINE
return DeviceStatus.UNAVAILABLE
return DeviceStatus.OFFLINE
def queue_depth(self) -> int:
"""Return the number of jobs in the queue for the ibm backend"""
if self.device_type == DeviceType.LOCAL_SIMULATOR:
return 0
return self._backend.status().pending_jobs
def transform(self, run_input: "qiskit.QuantumCircuit") -> "qiskit.QuantumCircuit":
"""Transpile a circuit for the device."""
program = load_program(run_input)
program.transform(self)
return program.program
def submit(
self,
run_input: "Union[qiskit.QuantumCircuit, list[qiskit.QuantumCircuit]]",
*args,
**kwargs,
) -> "qbraid.runtime.qiskit.QiskitJob":
"""Runs circuit(s) on qiskit backend via :meth:`~qiskit.execute`
Uses the :meth:`~qiskit.execute` method to create a :class:`~qiskit.providers.QuantumJob`
object, applies a :class:`~qbraid.runtime.qiskit.QiskitJob`, and return the result.
Args:
run_input: A circuit object to run on the IBM device.
Keyword Args:
shots (int): The number of times to run the task on the device. Default is 1024.
Returns:
qbraid.runtime.qiskit.QiskitJob: The job like object for the run.
"""
backend = self._backend
shots = kwargs.pop("shots", backend.options.get("shots"))
memory = kwargs.pop("memory", True) # Needed to get measurements
job = backend.run(run_input, *args, shots=shots, memory=memory, **kwargs)
return QiskitJob(job.job_id(), job=job, device=self)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# TODO: Remove after 0.7 and the deprecated methods are removed
# pylint: disable=unused-argument
"""
Two quantum circuit drawers based on:
0. Ascii art
1. LaTeX
2. Matplotlib
"""
import errno
import logging
import os
import subprocess
import tempfile
from PIL import Image
from qiskit import user_config
from qiskit.visualization import exceptions
from qiskit.visualization import latex as _latex
from qiskit.visualization import text as _text
from qiskit.visualization import utils
from qiskit.visualization import matplotlib as _matplotlib
logger = logging.getLogger(__name__)
def circuit_drawer(circuit,
scale=0.7,
filename=None,
style=None,
output=None,
interactive=False,
line_length=None,
plot_barriers=True,
reverse_bits=False,
justify=None):
"""Draw a quantum circuit to different formats (set by output parameter):
0. text: ASCII art TextDrawing that can be printed in the console.
1. latex: high-quality images, but heavy external software dependencies
2. matplotlib: purely in Python with no external dependencies
Args:
circuit (QuantumCircuit): the quantum circuit to draw
scale (float): scale of image to draw (shrink if < 1)
filename (str): file path to save image to
style (dict or str): dictionary of style or file name of style file.
This option is only used by the `mpl`, `latex`, and `latex_source`
output types. If a str is passed in that is the path to a json
file which contains that will be open, parsed, and then used just
as the input dict.
output (str): Select the output method to use for drawing the circuit.
Valid choices are `text`, `latex`, `latex_source`, `mpl`. By
default the 'text' drawer is used unless a user config file has
an alternative backend set as the default. If the output is passed
in that backend will always be used.
interactive (bool): when set true show the circuit in a new window
(for `mpl` this depends on the matplotlib backend being used
supporting this). Note when used with either the `text` or the
`latex_source` output type this has no effect and will be silently
ignored.
line_length (int): Sets the length of the lines generated by `text`
output type. This useful when the drawing does not fit in the
console. If None (default), it will try to guess the console width
using shutil.get_terminal_size(). However, if you're running in
jupyter the default line length is set to 80 characters. If you
don't want pagination at all, set `line_length=-1`.
reverse_bits (bool): When set to True reverse the bit order inside
registers for the output visualization.
plot_barriers (bool): Enable/disable drawing barriers in the output
circuit. Defaults to True.
justify (string): Options are `left`, `right` or `none`, if anything
else is supplied it defaults to left justified. It refers to where
gates should be placed in the output circuit if there is an option.
`none` results in each gate being placed in its own column. Currently
only supported by text drawer.
Returns:
PIL.Image: (output `latex`) an in-memory representation of the image
of the circuit diagram.
matplotlib.figure: (output `mpl`) a matplotlib figure object for the
circuit diagram.
String: (output `latex_source`). The LaTeX source code.
TextDrawing: (output `text`). A drawing that can be printed as ascii art
Raises:
VisualizationError: when an invalid output method is selected
ImportError: when the output methods requieres non-installed libraries.
.. _style-dict-doc:
The style dict kwarg contains numerous options that define the style of the
output circuit visualization. While the style dict is used by the `mpl`,
`latex`, and `latex_source` outputs some options in that are only used
by the `mpl` output. These options are defined below, if it is only used by
the `mpl` output it is marked as such:
textcolor (str): The color code to use for text. Defaults to
`'#000000'` (`mpl` only)
subtextcolor (str): The color code to use for subtext. Defaults to
`'#000000'` (`mpl` only)
linecolor (str): The color code to use for lines. Defaults to
`'#000000'` (`mpl` only)
creglinecolor (str): The color code to use for classical register lines
`'#778899'`(`mpl` only)
gatetextcolor (str): The color code to use for gate text `'#000000'`
(`mpl` only)
gatefacecolor (str): The color code to use for gates. Defaults to
`'#ffffff'` (`mpl` only)
barrierfacecolor (str): The color code to use for barriers. Defaults to
`'#bdbdbd'` (`mpl` only)
backgroundcolor (str): The color code to use for the background.
Defaults to `'#ffffff'` (`mpl` only)
fontsize (int): The font size to use for text. Defaults to 13 (`mpl`
only)
subfontsize (int): The font size to use for subtext. Defaults to 8
(`mpl` only)
displaytext (dict): A dictionary of the text to use for each element
type in the output visualization. The default values are:
{
'id': 'id',
'u0': 'U_0',
'u1': 'U_1',
'u2': 'U_2',
'u3': 'U_3',
'x': 'X',
'y': 'Y',
'z': 'Z',
'h': 'H',
's': 'S',
'sdg': 'S^\\dagger',
't': 'T',
'tdg': 'T^\\dagger',
'rx': 'R_x',
'ry': 'R_y',
'rz': 'R_z',
'reset': '\\left|0\\right\\rangle'
}
You must specify all the necessary values if using this. There is
no provision for passing an incomplete dict in. (`mpl` only)
displaycolor (dict): The color codes to use for each circuit element.
By default all values default to the value of `gatefacecolor` and
the keys are the same as `displaytext`. Also, just like
`displaytext` there is no provision for an incomplete dict passed
in. (`mpl` only)
latexdrawerstyle (bool): When set to True enable latex mode which will
draw gates like the `latex` output modes. (`mpl` only)
usepiformat (bool): When set to True use radians for output (`mpl`
only)
fold (int): The number of circuit elements to fold the circuit at.
Defaults to 20 (`mpl` only)
cregbundle (bool): If set True bundle classical registers (`mpl` only)
showindex (bool): If set True draw an index. (`mpl` only)
compress (bool): If set True draw a compressed circuit (`mpl` only)
figwidth (int): The maximum width (in inches) for the output figure.
(`mpl` only)
dpi (int): The DPI to use for the output image. Defaults to 150 (`mpl`
only)
margin (list): `mpl` only
creglinestyle (str): The style of line to use for classical registers.
Choices are `'solid'`, `'doublet'`, or any valid matplotlib
`linestyle` kwarg value. Defaults to `doublet`(`mpl` only)
"""
image = None
config = user_config.get_config()
# Get default from config file else use text
default_output = 'text'
if config:
default_output = config.get('circuit_drawer', 'text')
if output is None:
output = default_output
if output == 'text':
return _text_circuit_drawer(circuit, filename=filename,
line_length=line_length,
reverse_bits=reverse_bits,
plotbarriers=plot_barriers,
justify=justify)
elif output == 'latex':
image = _latex_circuit_drawer(circuit, scale=scale,
filename=filename, style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits,
justify=justify)
elif output == 'latex_source':
return _generate_latex_source(circuit,
filename=filename, scale=scale,
style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits,
justify=justify)
elif output == 'mpl':
image = _matplotlib_circuit_drawer(circuit, scale=scale,
filename=filename, style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits,
justify=justify)
else:
raise exceptions.VisualizationError(
'Invalid output type %s selected. The only valid choices '
'are latex, latex_source, text, and mpl' % output)
if image and interactive:
image.show()
return image
# -----------------------------------------------------------------------------
# Plot style sheet option
# -----------------------------------------------------------------------------
def qx_color_scheme():
"""Return default style for matplotlib_circuit_drawer (IBM QX style)."""
return {
"comment": "Style file for matplotlib_circuit_drawer (IBM QX Composer style)",
"textcolor": "#000000",
"gatetextcolor": "#000000",
"subtextcolor": "#000000",
"linecolor": "#000000",
"creglinecolor": "#b9b9b9",
"gatefacecolor": "#ffffff",
"barrierfacecolor": "#bdbdbd",
"backgroundcolor": "#ffffff",
"fold": 20,
"fontsize": 13,
"subfontsize": 8,
"figwidth": -1,
"dpi": 150,
"displaytext": {
"id": "id",
"u0": "U_0",
"u1": "U_1",
"u2": "U_2",
"u3": "U_3",
"x": "X",
"y": "Y",
"z": "Z",
"h": "H",
"s": "S",
"sdg": "S^\\dagger",
"t": "T",
"tdg": "T^\\dagger",
"rx": "R_x",
"ry": "R_y",
"rz": "R_z",
"reset": "\\left|0\\right\\rangle"
},
"displaycolor": {
"id": "#ffca64",
"u0": "#f69458",
"u1": "#f69458",
"u2": "#f69458",
"u3": "#f69458",
"x": "#a6ce38",
"y": "#a6ce38",
"z": "#a6ce38",
"h": "#00bff2",
"s": "#00bff2",
"sdg": "#00bff2",
"t": "#ff6666",
"tdg": "#ff6666",
"rx": "#ffca64",
"ry": "#ffca64",
"rz": "#ffca64",
"reset": "#d7ddda",
"target": "#00bff2",
"meas": "#f070aa"
},
"latexdrawerstyle": True,
"usepiformat": False,
"cregbundle": False,
"plotbarrier": False,
"showindex": False,
"compress": True,
"margin": [2.0, 0.0, 0.0, 0.3],
"creglinestyle": "solid",
"reversebits": False
}
# -----------------------------------------------------------------------------
# _text_circuit_drawer
# -----------------------------------------------------------------------------
def _text_circuit_drawer(circuit, filename=None, line_length=None, reverse_bits=False,
plotbarriers=True, justify=None, vertically_compressed=True):
"""
Draws a circuit using ascii art.
Args:
circuit (QuantumCircuit): Input circuit
filename (str): optional filename to write the result
line_length (int): Optional. Breaks the circuit drawing to this length. This
useful when the drawing does not fit in the console. If
None (default), it will try to guess the console width using
shutil.get_terminal_size(). If you don't want pagination
at all, set line_length=-1.
reverse_bits (bool): Rearrange the bits in reverse order.
plotbarriers (bool): Draws the barriers when they are there.
justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how
the circuit should be justified.
vertically_compressed (bool): Default is `True`. It merges the lines so the
drawing will take less vertical room.
Returns:
TextDrawing: An instances that, when printed, draws the circuit in ascii art.
"""
qregs, cregs, ops = utils._get_layered_instructions(circuit,
reverse_bits=reverse_bits,
justify=justify)
text_drawing = _text.TextDrawing(qregs, cregs, ops)
text_drawing.plotbarriers = plotbarriers
text_drawing.line_length = line_length
text_drawing.vertically_compressed = vertically_compressed
if filename:
text_drawing.dump(filename)
return text_drawing
# -----------------------------------------------------------------------------
# latex_circuit_drawer
# -----------------------------------------------------------------------------
def _latex_circuit_drawer(circuit,
scale=0.7,
filename=None,
style=None,
plot_barriers=True,
reverse_bits=False,
justify=None):
"""Draw a quantum circuit based on latex (Qcircuit package)
Requires version >=2.6.0 of the qcircuit LaTeX package.
Args:
circuit (QuantumCircuit): a quantum circuit
scale (float): scaling factor
filename (str): file path to save image to
style (dict or str): dictionary of style or file name of style file
reverse_bits (bool): When set to True reverse the bit order inside
registers for the output visualization.
plot_barriers (bool): Enable/disable drawing barriers in the output
circuit. Defaults to True.
justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how
the circuit should be justified.
Returns:
PIL.Image: an in-memory representation of the circuit diagram
Raises:
OSError: usually indicates that ```pdflatex``` or ```pdftocairo``` is
missing.
CalledProcessError: usually points errors during diagram creation.
"""
tmpfilename = 'circuit'
with tempfile.TemporaryDirectory() as tmpdirname:
tmppath = os.path.join(tmpdirname, tmpfilename + '.tex')
_generate_latex_source(circuit, filename=tmppath,
scale=scale, style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits, justify=justify)
image = None
try:
subprocess.run(["pdflatex", "-halt-on-error",
"-output-directory={}".format(tmpdirname),
"{}".format(tmpfilename + '.tex')],
stdout=subprocess.PIPE, stderr=subprocess.DEVNULL,
check=True)
except OSError as ex:
if ex.errno == errno.ENOENT:
logger.warning('WARNING: Unable to compile latex. '
'Is `pdflatex` installed? '
'Skipping latex circuit drawing...')
raise
except subprocess.CalledProcessError as ex:
with open('latex_error.log', 'wb') as error_file:
error_file.write(ex.stdout)
logger.warning('WARNING Unable to compile latex. '
'The output from the pdflatex command can '
'be found in latex_error.log')
raise
else:
try:
base = os.path.join(tmpdirname, tmpfilename)
subprocess.run(["pdftocairo", "-singlefile", "-png", "-q",
base + '.pdf', base])
image = Image.open(base + '.png')
image = utils._trim(image)
os.remove(base + '.png')
if filename:
image.save(filename, 'PNG')
except OSError as ex:
if ex.errno == errno.ENOENT:
logger.warning('WARNING: Unable to convert pdf to image. '
'Is `poppler` installed? '
'Skipping circuit drawing...')
raise
return image
def _generate_latex_source(circuit, filename=None,
scale=0.7, style=None, reverse_bits=False,
plot_barriers=True, justify=None):
"""Convert QuantumCircuit to LaTeX string.
Args:
circuit (QuantumCircuit): input circuit
scale (float): image scaling
filename (str): optional filename to write latex
style (dict or str): dictionary of style or file name of style file
reverse_bits (bool): When set to True reverse the bit order inside
registers for the output visualization.
plot_barriers (bool): Enable/disable drawing barriers in the output
circuit. Defaults to True.
justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how
the circuit should be justified.
Returns:
str: Latex string appropriate for writing to file.
"""
qregs, cregs, ops = utils._get_layered_instructions(circuit,
reverse_bits=reverse_bits,
justify=justify)
qcimg = _latex.QCircuitImage(qregs, cregs, ops, scale, style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits)
latex = qcimg.latex()
if filename:
with open(filename, 'w') as latex_file:
latex_file.write(latex)
return latex
# -----------------------------------------------------------------------------
# matplotlib_circuit_drawer
# -----------------------------------------------------------------------------
def _matplotlib_circuit_drawer(circuit,
scale=0.7,
filename=None,
style=None,
plot_barriers=True,
reverse_bits=False,
justify=None):
"""Draw a quantum circuit based on matplotlib.
If `%matplotlib inline` is invoked in a Jupyter notebook, it visualizes a circuit inline.
We recommend `%config InlineBackend.figure_format = 'svg'` for the inline visualization.
Args:
circuit (QuantumCircuit): a quantum circuit
scale (float): scaling factor
filename (str): file path to save image to
style (dict or str): dictionary of style or file name of style file
reverse_bits (bool): When set to True reverse the bit order inside
registers for the output visualization.
plot_barriers (bool): Enable/disable drawing barriers in the output
circuit. Defaults to True.
justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how
the circuit should be justified.
Returns:
matplotlib.figure: a matplotlib figure object for the circuit diagram
"""
qregs, cregs, ops = utils._get_layered_instructions(circuit,
reverse_bits=reverse_bits,
justify=justify)
qcd = _matplotlib.MatplotlibDrawer(qregs, cregs, ops, scale=scale, style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits)
return qcd.draw(filename)
|
https://github.com/RyosukeNORO/Shor-s-algorithm
|
RyosukeNORO
|
from qiskit import *
import numpy as np
import math
from qiskit.tools.visualization import plot_histogram
%matplotlib inline
N = 15
a = 13
math.gcd(a, N)
if a not in [2,7,8,11,13]:
raise ValueError("'a' must be 2,7,8,11 or 13")
n = 4 # number of qubits needed to represent number that will be done prime factorization
qr = QuantumRegister(2*n) # Prepare 2*n quantum registers as |x>|w> = |x3 x2 x1 x0>|w3 w2 w1 w0>
cr = ClassicalRegister(2*n)
qc = QuantumCircuit(qr, cr)
# Hadamard gates
for i in range(n):
qc.h(i)
# |w> -> |1>
qc.x(n)
# Implement U_f (f(x) = a^x (mod N)) U_f|x>|w> = |x>|w+f(x)> ("+" represents "XOR")
for i in range(n):
for j in range(2**i):
if a in [2,13]:
qc.cswap(i, n+2, n+3)
qc.cswap(i, n+1, n+2)
qc.cswap(i, n+0, n+1)
if a in [7,8]:
qc.cswap(i, n+0, n+1)
qc.cswap(i, n+1, n+2)
qc.cswap(i, n+2, n+3)
if a in [11]:
qc.cswap(i, n+0, n+2)
qc.cswap(i, n+1, n+3)
if a in [7,11,13,14]:
for k in range(n):
qc.cx(i, n+k)
qc.barrier()
# Implement QFTdagger
for i in range(n//2): # Swap the qubits
qc.swap(i, n-i-1)
for i in range(n):
for j in range(i):
qc.cu1(-np.pi/(2**(i-j)), j, i)
qc.h(i)
qc.barrier()
# Measure
qc.measure(range(n), range(n))
# Show quantum circuit
qc.draw(output='mpl', initial_state=True)
simulator = Aer.get_backend('qasm_simulator')
result = execute(qc, backend = simulator, shots=1024).result()
plot_histogram(result.get_counts())
|
https://github.com/joemoorhouse/quantum-mc
|
joemoorhouse
|
import sys
sys.path.append("..") # see os.getcwd()
import time
from quantum_mc.arithmetic.piecewise_linear_transform import PiecewiseLinearTransform3
import numpy as np
from qiskit.test.base import QiskitTestCase
import quantum_mc.calibration.fitting as ft
import quantum_mc.calibration.time_series as ts
from scipy.stats import multivariate_normal, norm
from qiskit.test.base import QiskitTestCase
from qiskit import execute, Aer, QuantumCircuit, QuantumRegister, ClassicalRegister, AncillaRegister
from qiskit.quantum_info import Statevector
#from qiskit_finance.circuit.library import NormalDistribution
from qiskit.circuit.library import NormalDistribution, LogNormalDistribution, IntegerComparator
from qiskit.utils import QuantumInstance
from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem
import matplotlib.pyplot as plt
cm = 1 / 2.54
correl = ft.get_correl("AAPL", "MSFT")
nbits = 3
bounds_std = 3.
num_qubits = [nbits, nbits]
sigma = correl
bounds = [(-bounds_std, bounds_std), (-bounds_std, bounds_std)]
mu = [0, 0]
# starting point is a multi-variate normal distribution
normal = NormalDistribution(num_qubits, mu=mu, sigma=sigma, bounds=bounds)
coeff_set = []
xs = []
ys = []
pl_set = []
for ticker in ["MSFT", "AAPL"]:
((cdf_x, cdf_y), sigma) = ft.get_cdf_data(ticker)
(x, y) = ft.get_fit_data(ticker, norm_to_rel = False)
(pl, coeffs) = ft.fit_piecewise_linear(x, y)
# scale, to apply an arbitrary delta (we happen to use the same value here, but could be different)
coeffs = ft.scaled_coeffs(coeffs, 1.0 if ticker == "MSFT" else 1.0)
coeff_set.append(coeffs)
xs.append(x)
ys.append(y)
# calculate the max and min P&Ls
pl_set.append(lambda z : ft.piecewise_linear(z, *coeff_set[0]))
pl_set.append(lambda z : ft.piecewise_linear(z, *coeff_set[1]))
p_max = max(pl_set[0](bounds_std), pl_set[1](bounds_std))
p_min = min(pl_set[0](-bounds_std), pl_set[1](-bounds_std))
# we discretise the transforms and create the circuits
transforms = []
i_to_js = []
i_to_xs = []
j_to_ys = []
for i, ticker in enumerate(["MSFT", "AAPL"]):
(i_0, i_1, a0, a1, a2, b0, b1, b2, i_to_j, i_to_x, j_to_y) = ft.integer_piecewise_linear_coeffs(coeff_set[i], x_min = -bounds_std, x_max = bounds_std, y_min = p_min, y_max = p_max, nbits_norm=nbits, nbits_extra = 1 if nbits == 2 else 2)
transforms.append(PiecewiseLinearTransform3(i_0, i_1, a0, a1, a2, b0, b1, b2, nbits = nbits))
i_to_js.append(np.vectorize(i_to_j))
i_to_xs.append(np.vectorize(i_to_x))
j_to_ys.append(np.vectorize(j_to_y))
p_min, p_max
i = np.arange(0, 2**nbits)
index = 0
cm = 1 / 2.54
fig = plt.figure(figsize=(8*cm,6*cm))
ax = fig.add_axes([0.2, 0.19, 0.77, 0.77])
fig.set_facecolor('w')
ax.plot(xs[index], ys[index], "o", markersize = 2, label = "Observed")
ax.plot(xs[index], np.vectorize(pl_set[index])(xs[index]), label = "Fitted")
ax.plot(i_to_xs[index](i), j_to_ys[index](i_to_js[index](i)), '--', label = "Fitted, discretised")
ax.set_xlabel('Normal return ($\sigma$)')
ax.set_ylabel('Empirical return ($\sigma$)')
ax.legend()
fig.savefig('piecewise_fit.pdf', formt='pdf', facecolor=fig.get_facecolor(), transparent=True)
fig = plt.figure(figsize=(8*cm,6*cm))
ax = fig.add_axes([0.2, 0.19, 0.77, 0.77])
fig.set_facecolor('w')
ax.plot(i, i_to_js[index](i))
ax.set_xlabel('Normal return integer')
ax.set_ylabel('Empirical return integer')
fig.savefig('piecewise_fit_ints.pdf', formt='pdf', facecolor=fig.get_facecolor(), transparent=True)
# starting point is a multi-variate normal distribution
single_normal = NormalDistribution(3, mu=0, sigma=1, bounds=(-3, 3) )
fig = plt.figure(figsize=(8*cm,6*cm))
ax = fig.add_axes([0.2, 0.19, 0.77, 0.77])
fig.set_facecolor('w')
ax.bar(np.arange(0, 2**3), single_normal._probabilities)
ax.set_yscale("log")
ax.set_xlabel('Register integer value pre-transform')
ax.set_ylabel('Probability')
fig.savefig('piecewise_transform_before.pdf', formt='pdf', facecolor=fig.get_facecolor(), transparent=True)
fig = plt.figure(figsize=(8*cm,6*cm))
ax = fig.add_axes([0.2, 0.19, 0.77, 0.77])
fig.set_facecolor('w')
ax.bar(i_to_js[0](np.arange(0, 2**3)), single_normal._probabilities)
ax.set_yscale("log")
ax.set_xlabel('Register integer value post-transform')
ax.set_ylabel('Probability')
fig.savefig('piecewise_transform_after.pdf', formt='pdf', facecolor=fig.get_facecolor(), transparent=True)
fig = plt.figure(figsize=(8*cm,6*cm))
ax = fig.add_axes([0.2, 0.19, 0.77, 0.77])
fig.set_facecolor('w')
plt.plot(xf2, pdf_fn(xf2), label = "Fitted")
ax.hist(rets, density = True, bins = 100, label = "Empirical")
ax.set_xlim(-6, 4)
ax.set_xlabel('Return ($\sigma$)')
ax.set_ylabel('Probability density')
ax.legend()
fig.savefig('hist_pdf_spline_fitted.pdf', format='pdf', facecolor=fig.get_facecolor(), transparent=True)
num_ancillas = transforms[0].num_ancilla_qubits
qr_input = QuantumRegister(nbits * 2, 'input') # 2 times 3 registers
qr_objective = QuantumRegister(1, 'objective')
qr_result = QuantumRegister(nbits * 2, 'result')
qr_ancilla = QuantumRegister(num_ancillas, 'ancilla')
output = ClassicalRegister(nbits * 2, 'output')
state_preparation = QuantumCircuit(qr_input, qr_objective, qr_result, qr_ancilla, output)
state_preparation.append(normal, qr_input)
for i in range(2):
offset = i * nbits
state_preparation.append(transforms[i], qr_input[offset:offset + nbits] + qr_result[:] + qr_ancilla[:])
# to calculate the cdf, we use an additional comparator
x_eval = 5
comparator = IntegerComparator(len(qr_result), x_eval + 1, geq=False)
state_preparation.append(comparator, qr_result[:] + qr_objective[:] + qr_ancilla[0:comparator.num_ancillas])
state_preparation.measure(qr_result, output)
# now check
check = False
if check:
job = execute(state_preparation, backend=Aer.get_backend('statevector_simulator'))
var_prob = 0
for i, a in enumerate(job.result().get_statevector()):
b = ('{0:0%sb}' % (len(qr_input) + 1)).format(i)[-(len(qr_input) + 1):]
prob = np.abs(a)**2
if prob > 1e-6 and b[0] == '1':
var_prob += prob
print('Operator CDF(%s)' % x_eval + ' = %.4f' % var_prob)
state_preparation.draw()
#state_preparation.draw()
fig = state_preparation.draw(output='mpl')
fig.savefig('../../../outputs/trans_circuit_detail.pdf', format='pdf', facecolor=fig.get_facecolor(), transparent=True, bbox_inches='tight')
counts = execute(state_preparation, Aer.get_backend('qasm_simulator'), shots = 100000).result().get_counts()
from qiskit.visualization import plot_histogram
plot_histogram(counts, title = "transform of normal")
vals = [int(i, 2) for i,j in counts.items()]
cnts = np.array([j for i,j in counts.items()])
plt.bar(vals, cnts)
vals2 = p_min * 2 + np.array(vals) * 2 * (p_max - p_min) / (2**(nbits * 2) - 1)
cnts = np.array([j for i,j in counts.items()])
cnts2 = cnts / np.sum(cnts)
fig = plt.figure(figsize=(8*cm,6*cm))
ax = fig.add_axes([0.2, 0.19, 0.77, 0.77])
fig.set_facecolor('w')
plt.bar(vals2, cnts2, width = 0.2)
ax.set_xlabel('Normalised P&L')
ax.set_ylabel('Probability')
ax.legend()
fig.savefig('pnl_quantum.pdf', format='pdf', facecolor=fig.get_facecolor(), transparent=True)
# based on Sascha's noise model
import qiskit.providers.aer.noise as noise
from qiskit.utils import QuantumInstance
# Noise settings
use_noise = True #False
error_scaling_factor = 2 ** 0 # Reference point: 1.0 (= no scaling)
error_prob_1_gate = 0.001 * error_scaling_factor
error_prob_2_gates = 0.001 * error_scaling_factor
error_prob_measure = 0.001 * error_scaling_factor
error_1 = noise.depolarizing_error(error_prob_1_gate, 1)
error_2 = noise.depolarizing_error(error_prob_2_gates, 2)
# Measurement errors
error_m = noise.pauli_error([('X', error_prob_measure), ('I', 1 - error_prob_measure)])
noise_model = noise.NoiseModel()
noise_model.add_all_qubit_quantum_error(error_1, ['u1', 'u2', 'u3'])
noise_model.add_all_qubit_quantum_error(error_2, ['cx'])
noise_model.add_all_qubit_quantum_error(error_m, "measure")
# Prepare IQAE
backend = Aer.get_backend(simulator)
qinstance = QuantumInstance(backend=backend,
seed_simulator=2,
seed_transpiler=2,
shots=shots,
noise_model=noise_model)
problem = EstimationProblem(state_preparation=state_preparation, objective_qubits=obj_qubit_ID)
iqae = IterativeAmplitudeEstimation(epsilon_target=epsilon, alpha=alpha, quantum_instance=qinstance)
result = iqae.estimate(problem)
IBMQ.save_account("543dce4ab356df3a024dfcf606c9d74a31277e39232f0429dacdb0e00daa3622d02865023f613afd659783251eb5bde6f06e9d0f5f1a95b03fdf8a0d34449bef")
provider = IBMQ.load_account()
provider.backends()
backend = provider.get_backend('ibmq_montreal')
from qiskit import IBMQ, transpile
from qiskit import QuantumCircuit
from qiskit.providers.aer import AerSimulator
from qiskit.test.mock import FakeMontreal
device_backend = FakeMontreal()
sim_be = AerSimulator.from_backend(device_backend)
#sim_ideal = AerSimulator()
#result = sim_ideal.run(transpile(state_preparation, sim_ideal)).result()
#counts = result.get_counts(0)
tcirc = transpile(state_preparation, sim_be)
result_noise = sim_be.run(tcirc).result()
counts_noise = result_noise.get_counts(0)
from qiskit.visualization import plot_histogram
plot_histogram(counts, title = "transform of normal")
vals = [int(i, 2) for i,j in counts.items()]
cnts = [j for i,j in counts.items()]
plt.bar(vals, cnts)
from qiskit import QuantumCircuit, execute
from qiskit import IBMQ, Aer
from qiskit.visualization import plot_histogram
from qiskit.providers.aer.noise import NoiseModel
# Build noise model from backend properties
#provider = IBMQ.load_account()
from qiskit.test.mock import FakeMontreal
backend = FakeMontreal()
#backend = provider.get_backend('ibmq_montreal')
noise_model = NoiseModel.from_backend(backend)
# Get coupling map from backend
coupling_map = backend.configuration().coupling_map
# Get basis gates from noise model
basis_gates = noise_model.basis_gates
counts = execute(state_preparation, Aer.get_backend('qasm_simulator'),
#shots = 500000,
coupling_map=coupling_map,
basis_gates=basis_gates,
noise_model=noise_model
).result().get_counts()
from qiskit.visualization import plot_histogram
plot_histogram(counts, title = "transform of normal")
vals = [int(i, 2) for i,j in counts.items()]
cnts = [j for i,j in counts.items()]
plt.bar(vals, cnts)
import qiskit.providers.aer.noise as noise
from qiskit.utils import QuantumInstance
print(time.strftime("%H:%M:%S", time.localtime()))
error_scaling_factor = 2 ** 0 # Reference point: 1.0 (= no scaling)
error_prob_1_gate = 0.001 * error_scaling_factor
error_prob_2_gates = 0.001 * error_scaling_factor
error_prob_measure = 0.001 * error_scaling_factor
error_1 = noise.depolarizing_error(error_prob_1_gate, 1)
error_2 = noise.depolarizing_error(error_prob_2_gates, 2)
# Measurement errors
error_m = noise.pauli_error([('X', error_prob_measure), ('I', 1 - error_prob_measure)])
noise_model = noise.NoiseModel()
noise_model.add_all_qubit_quantum_error(error_1, ['u1', 'u2', 'u3'])
noise_model.add_all_qubit_quantum_error(error_2, ['cx'])
noise_model.add_all_qubit_quantum_error(error_m, "measure")
# now do AE
problem = EstimationProblem(state_preparation=state_preparation,
objective_qubits=[len(qr_input)])
# target precision and confidence level
epsilon = 0.01
alpha = 0.05
qi = QuantumInstance(Aer.get_backend('aer_simulator'), noise_model=noise_model)
ae_cdf = IterativeAmplitudeEstimation(epsilon, alpha=alpha, quantum_instance=qi)
result_cdf = ae_cdf.estimate(problem)
conf_int = np.array(result_cdf.confidence_interval)
print('Estimated value:\t%.4f' % result_cdf.estimation)
print('Confidence interval: \t[%.4f, %.4f]' % tuple(conf_int))
#state_preparation.draw()
print(time.strftime("%H:%M:%S", time.localtime()))
def get_sims(normal_distribution):
import numpy as np
values = normal_distribution._values
probs = normal_distribution._probabilities
# we generate a bunch of realisation of values, based
upper_bounds = [0.0]
stop = 0.0
for val, prob in zip(values, probs):
stop += prob
upper_bounds.append(stop)
np.random.seed = 101
r = np.random.uniform(low=0.0, high=1.0, size=1000000)
indices = np.searchsorted(upper_bounds, r, side='left', sorter=None) - 1
g1, g2 = np.meshgrid(range(2**nbits), range(2**nbits), indexing="ij",)
i1 = g1.flatten()[indices]
i2 = g2.flatten()[indices]
#x = list(zip(*(grid.flatten() for grid in meshgrid)))
return i1, i2
i1, i2 = get_sims(normal)
j1 = i_to_js[0](i1)
j2 = i_to_js[1](i2)
j_tot = j1 + j2
import collections
counts = {}
for item in j_tot:
if item in counts:
counts[item] += 1
else:
counts[item] = 1
counts = collections.OrderedDict(sorted(counts.items()))
vals = [i for i,j in counts.items()]
cnts = [j for i,j in counts.items()]
plt.bar(vals, cnts)
vals2 = p_min * 2 + np.array(vals) * 2 * (p_max - p_min) / (2**(nbits * 2) - 1)
cnts = np.array([j for i,j in counts.items()])
cnts2 = cnts / np.sum(cnts)
fig = plt.figure(figsize=(8*cm,6*cm))
ax = fig.add_axes([0.2, 0.19, 0.77, 0.77])
fig.set_facecolor('w')
plt.bar(vals2, cnts2, width = 0.2)
ax.set_xlabel('Normalised P&L')
ax.set_ylabel('Probability')
ax.legend()
fig.savefig('pnl_classical.pdf', format='pdf', facecolor=fig.get_facecolor(), transparent=True)
sum = 0
for v,c in zip(vals, cnts):
if v <= 8:
sum += c
print(float(sum) / 1000000)
print(p_min * 2 + 14 * 2 * (p_max - p_min) / (2**(nbits * 2) - 1) )
correl = ft.get_correl("AAPL", "MSFT")
c = np.linalg.cholesky(correl)
r = np.random.normal(0, 1, size = (2, 1000000))
v = c@r
v1 = np.vectorize(pl_set[0])(v[0, :])
v2 = np.vectorize(pl_set[1])(v[1, :])
vt = v1 + v2
cm = 1 / 2.54
fig = plt.figure(figsize=(8*cm,6*cm))
ax = fig.add_axes([0.2, 0.19, 0.77, 0.77])
fig.set_facecolor('w')
_ = plt.hist(vt, bins = 200, density = True)
ax.set_xlabel('Normalised P&L')
ax.set_ylabel('Probability density')
ax.set_xlim(-10, 10)
fig.savefig('pnl_classical_continuous.pdf', format='pdf', facecolor=fig.get_facecolor(), transparent=True)
np.percentile(vt, 1.0)
import quantum_mc.calibration.time_series as ts
(cdf_c_x, cdf_c_y) = ts.ecdf(vt)
#(cdf_d_x, cdf_d_y) = ts.ecdf(vt)
sum = 0
cum_sum = []
for v,c in zip(vals, cnts):
sum += c
cum_sum.append(sum)
cum_sum = np.array(cum_sum)
cum_sum = cum_sum / np.max(cum_sum)
vals2 = p_min * 2 + np.array(vals) * 2 * (p_max - p_min) / (2**(nbits * 2) - 1)
vals_2bits = np.array([-10.70188609, -7.39985348, -6.29917595, -5.19849841, -2.99714334, -1.8964658, -0.79578826, 1.40556681, 2.50624435, 4.70759942])
cum_prob_2bits = np.array([0.003903, 0.007387, 0.010792, 0.010795, 0.462747, 0.537787, 0.98928, 0.992701, 0.996142, 1.])
fig = plt.figure(figsize=(8*cm,6*cm))
ax = fig.add_axes([0.2, 0.19, 0.77, 0.77])
fig.set_facecolor('w')
plt.plot(cdf_c_x, cdf_c_y, label = "Continuous", )
plt.plot(vals2, cum_sum, '--', label = "3 qubit")
plt.plot(vals_2bits, cum_prob_2bits, ':', label = "2 qubit")
ax.set_yscale("log")
ax.set_xlabel('Normalised P&L')
ax.set_ylabel('Cumulative probability')
ax.set_xlim(-8, 5)
#ax.set_ylim(0.001, 0.02)
ax.set_ylim(0.001, 0.999)
ax.legend()
fig.savefig('cdf_class_quant_log.pdf', format='pdf', facecolor=fig.get_facecolor(), transparent=True)
fig = plt.figure(figsize=(8*cm,6*cm))
ax = fig.add_axes([0.2, 0.19, 0.77, 0.77])
fig.set_facecolor('w')
plt.plot(cdf_c_x, cdf_c_y, label = "Continuous")
plt.plot(vals2, cum_sum, '--', label = "3 qubit")
plt.plot(vals_2bits, cum_prob_2bits, ':', label = "2 qubit")
#ax.set_yscale("log")
ax.set_xlabel('Normalised P&L')
ax.set_ylabel('Cumulative probability')
ax.set_xlim(-8, 5)
#ax.set_ylim(0.001, 0.02)
ax.set_ylim(0.001, 0.999)
ax.legend()
fig.savefig('cdf_class_quant_lin.pdf', format='pdf', facecolor=fig.get_facecolor(), transparent=True)
cont = np.interp([0.01, 0.025, 0.05], cdf_c_y, cdf_c_x)
quant3 = np.interp([0.01, 0.025, 0.05], cum_sum, vals2)
quant2 = np.interp([0.01, 0.025, 0.05], cum_prob_2bits, vals_2bits)
np.set_printoptions(formatter={'float': lambda x: "{0:0.2f}".format(x)})
print('Continuous')
print(cont)
print('3 qubits')
print(quant3)
print(abs(quant3/cont - 1) * 100)
print('2 qubits')
print(quant2)
print(abs(quant2/cont - 1) * 100)
print("Check")
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.providers.aer import QasmSimulator
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
# Suppress warnings
import warnings
warnings.filterwarnings('ignore')
def trotter_gate(dt, to_instruction = True):
qc = QuantumCircuit(2)
qc.rx(2*dt,0)
qc.rz(2*dt,1)
qc.h(1)
qc.cx(1,0)
qc.rz(-2*dt, 0)
qc.rx(-2*dt, 1)
qc.rz(2*dt, 1)
qc.cx(1,0)
qc.h(1)
qc.rz(2*dt, 0)
return qc.to_instruction() if to_instruction else qc
trotter_gate(np.pi / 6, to_instruction=False).draw("mpl")
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
Trot_gate = trotter_gate(dt)
# Number of trotter steps
trotter_steps = 15 ### CAN BE >= 4
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(7)
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
qc.x([5]) # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
# Simulate time evolution under H_heis3 Hamiltonian
for _ in range(trotter_steps):
qc.append(Trot_gate, [qr[3], qr[5]])
qc.cx(qr[3], qr[1])
qc.cx(qr[5], qr[3])
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time/trotter_steps})
t3_qc = transpile(qc, optimization_level=3, basis_gates=["sx", "cx", "rz"])
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(t3_qc, [qr[1], qr[3], qr[5]])
# Display circuit for confirmation
# st_qcs[-1].decompose().draw() # view decomposition of trotter gates
st_qcs[-1].draw("mpl") # only view trotter gates
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# backend = provider.get_backend("ibmq_jakarta")
shots = 8192
reps = 8
jobs = []
for _ in range(reps):
# execute
job = execute(st_qcs, backend, shots=shots)
print('Job ID', job.job_id())
jobs.append(job)
# QREM
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3)
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = []
for job in jobs:
mit_results.append( meas_fitter.filter.apply(job.result()) )
# Compute the state tomography based on the st_qcs quantum circuits and the results from those ciricuits
def state_tomo(result, st_qcs):
# The expected final state; necessary to determine state tomography fidelity
target_state = (One^One^Zero).to_matrix() # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
# Fit state tomography results
tomo_fitter = StateTomographyFitter(result, st_qcs)
rho_fit = tomo_fitter.fit(method='lstsq')
# Compute fidelity
fid = state_fidelity(rho_fit, target_state)
return fid
# Compute tomography fidelities for each repetition
fids = []
for result in mit_results:
fid = state_tomo(result, st_qcs)
fids.append(fid)
print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
|
https://github.com/2lambda123/Qiskit-qiskit
|
2lambda123
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test the RZXCalibrationBuilderNoEcho."""
from math import pi, erf
import numpy as np
from ddt import data, ddt
from qiskit.converters import circuit_to_dag
from qiskit import circuit, schedule, QiskitError
from qiskit.circuit.library.standard_gates import SXGate, RZGate
from qiskit.providers.fake_provider import FakeHanoi # TODO - include FakeHanoiV2, FakeSherbrooke
from qiskit.providers.fake_provider import FakeArmonk
from qiskit.pulse import (
ControlChannel,
DriveChannel,
GaussianSquare,
Waveform,
Play,
InstructionScheduleMap,
Schedule,
)
from qiskit.pulse import builder
from qiskit.pulse.transforms import target_qobj_transform
from qiskit.test import QiskitTestCase
from qiskit.transpiler import PassManager
from qiskit.transpiler.passes.calibration.builders import (
RZXCalibrationBuilder,
RZXCalibrationBuilderNoEcho,
)
class TestCalibrationBuilder(QiskitTestCase):
"""Test the Calibration Builder."""
# CR parameters
__risefall = 4
__angle = np.pi / 2
__granularity = 16
@staticmethod
def get_cr_play(cr_schedule, name):
"""A helper function to filter CR pulses."""
def _filter_func(time_inst):
return isinstance(time_inst[1], Play) and time_inst[1].pulse.name.startswith(name)
return cr_schedule.filter(_filter_func).instructions[0][1]
def compute_stretch_duration(self, play_gaussian_square_pulse, theta):
"""Compute duration of stretched Gaussian Square pulse."""
pulse = play_gaussian_square_pulse.pulse
sigma = pulse.sigma
width = self.compute_stretch_width(play_gaussian_square_pulse, theta)
duration = width + sigma * self.__risefall
return round(duration / self.__granularity) * self.__granularity
def compute_stretch_width(self, play_gaussian_square_pulse, theta):
"""Compute width of stretched Gaussian Square pulse."""
pulse = play_gaussian_square_pulse.pulse
sigma = pulse.sigma
width = pulse.width
risefall_area = sigma * np.sqrt(2 * np.pi) * erf(self.__risefall)
full_area = risefall_area + width
target_area = abs(theta) / self.__angle * full_area
return max(0, target_area - risefall_area)
def u0p_play(self, cr_schedule):
"""Returns the positive CR pulse from cr_schedule."""
return self.get_cr_play(cr_schedule, "CR90p_u")
def u0m_play(self, cr_schedule):
"""Returns the negative CR pulse from cr_schedule."""
return self.get_cr_play(cr_schedule, "CR90m_u")
def d1p_play(self, cr_schedule):
"""Returns the positive rotary echo pulse from cr_schedule."""
return self.get_cr_play(cr_schedule, "CR90p_d")
def d1m_play(self, cr_schedule):
"""Returns the negative rotary echo pulse from cr_schedule."""
return self.get_cr_play(cr_schedule, "CR90m_d")
@ddt
class TestRZXCalibrationBuilder(TestCalibrationBuilder):
"""Test RZXCalibrationBuilder."""
def build_forward(
self,
backend,
theta,
u0p_play,
d1p_play,
u0m_play,
d1m_play,
):
"""A helper function to generate reference pulse schedule for forward direction."""
duration = self.compute_stretch_duration(u0p_play, theta)
width = self.compute_stretch_width(u0p_play, theta)
with builder.build(
backend,
default_alignment="sequential",
default_transpiler_settings={"optimization_level": 0},
) as ref_sched:
with builder.align_left():
# Positive CRs
u0p_params = u0p_play.pulse.parameters
u0p_params["duration"] = duration
u0p_params["width"] = width
builder.play(
GaussianSquare(**u0p_params),
ControlChannel(0),
)
d1p_params = d1p_play.pulse.parameters
d1p_params["duration"] = duration
d1p_params["width"] = width
builder.play(
GaussianSquare(**d1p_params),
DriveChannel(1),
)
builder.x(0)
with builder.align_left():
# Negative CRs
u0m_params = u0m_play.pulse.parameters
u0m_params["duration"] = duration
u0m_params["width"] = width
builder.play(
GaussianSquare(**u0m_params),
ControlChannel(0),
)
d1m_params = d1m_play.pulse.parameters
d1m_params["duration"] = duration
d1m_params["width"] = width
builder.play(
GaussianSquare(**d1m_params),
DriveChannel(1),
)
builder.x(0)
return ref_sched
def build_reverse(
self,
backend,
theta,
u0p_play,
d1p_play,
u0m_play,
d1m_play,
):
"""A helper function to generate reference pulse schedule for backward direction."""
duration = self.compute_stretch_duration(u0p_play, theta)
width = self.compute_stretch_width(u0p_play, theta)
with builder.build(
backend,
default_alignment="sequential",
default_transpiler_settings={"optimization_level": 0},
) as ref_sched:
# Hadamard gates
builder.call_gate(RZGate(np.pi / 2), qubits=(0,))
builder.call_gate(SXGate(), qubits=(0,))
builder.call_gate(RZGate(np.pi / 2), qubits=(0,))
builder.call_gate(RZGate(np.pi / 2), qubits=(1,))
builder.call_gate(SXGate(), qubits=(1,))
builder.call_gate(RZGate(np.pi / 2), qubits=(1,))
with builder.align_left():
# Positive CRs
u0p_params = u0p_play.pulse.parameters
u0p_params["duration"] = duration
u0p_params["width"] = width
builder.play(
GaussianSquare(**u0p_params),
ControlChannel(0),
)
d1p_params = d1p_play.pulse.parameters
d1p_params["duration"] = duration
d1p_params["width"] = width
builder.play(
GaussianSquare(**d1p_params),
DriveChannel(1),
)
builder.x(0)
with builder.align_left():
# Negative CRs
u0m_params = u0m_play.pulse.parameters
u0m_params["duration"] = duration
u0m_params["width"] = width
builder.play(
GaussianSquare(**u0m_params),
ControlChannel(0),
)
d1m_params = d1m_play.pulse.parameters
d1m_params["duration"] = duration
d1m_params["width"] = width
builder.play(
GaussianSquare(**d1m_params),
DriveChannel(1),
)
builder.x(0)
# Hadamard gates
builder.call_gate(RZGate(np.pi / 2), qubits=(0,))
builder.call_gate(SXGate(), qubits=(0,))
builder.call_gate(RZGate(np.pi / 2), qubits=(0,))
builder.call_gate(RZGate(np.pi / 2), qubits=(1,))
builder.call_gate(SXGate(), qubits=(1,))
builder.call_gate(RZGate(np.pi / 2), qubits=(1,))
return ref_sched
@data(-np.pi / 4, 0.1, np.pi / 4, np.pi / 2, np.pi)
def test_rzx_calibration_cr_pulse_stretch(self, theta: float):
"""Test that cross resonance pulse durations are computed correctly."""
backend = FakeHanoi()
inst_map = backend.defaults().instruction_schedule_map
cr_schedule = inst_map.get("cx", (0, 1))
with builder.build() as test_sched:
RZXCalibrationBuilder.rescale_cr_inst(self.u0p_play(cr_schedule), theta)
self.assertEqual(
test_sched.duration, self.compute_stretch_duration(self.u0p_play(cr_schedule), theta)
)
@data(-np.pi / 4, 0.1, np.pi / 4, np.pi / 2, np.pi)
def test_rzx_calibration_rotary_pulse_stretch(self, theta: float):
"""Test that rotary pulse durations are computed correctly."""
backend = FakeHanoi()
inst_map = backend.defaults().instruction_schedule_map
cr_schedule = inst_map.get("cx", (0, 1))
with builder.build() as test_sched:
RZXCalibrationBuilder.rescale_cr_inst(self.d1p_play(cr_schedule), theta)
self.assertEqual(
test_sched.duration, self.compute_stretch_duration(self.d1p_play(cr_schedule), theta)
)
def test_raise(self):
"""Test that the correct error is raised."""
theta = np.pi / 4
qc = circuit.QuantumCircuit(2)
qc.rzx(theta, 0, 1)
dag = circuit_to_dag(qc)
backend = FakeArmonk()
inst_map = backend.defaults().instruction_schedule_map
_pass = RZXCalibrationBuilder(inst_map)
qubit_map = {qubit: i for i, qubit in enumerate(dag.qubits)}
with self.assertRaises(QiskitError):
for node in dag.gate_nodes():
qubits = [qubit_map[q] for q in node.qargs]
_pass.get_calibration(node.op, qubits)
def test_ecr_cx_forward(self):
"""Test that correct pulse sequence is generated for native CR pair."""
# Sufficiently large angle to avoid minimum duration, i.e. amplitude rescaling
theta = np.pi / 4
qc = circuit.QuantumCircuit(2)
qc.rzx(theta, 0, 1)
backend = FakeHanoi()
inst_map = backend.defaults().instruction_schedule_map
_pass = RZXCalibrationBuilder(inst_map)
test_qc = PassManager(_pass).run(qc)
cr_schedule = inst_map.get("cx", (0, 1))
ref_sched = self.build_forward(
backend,
theta,
self.u0p_play(cr_schedule),
self.d1p_play(cr_schedule),
self.u0m_play(cr_schedule),
self.d1m_play(cr_schedule),
)
self.assertEqual(schedule(test_qc, backend), target_qobj_transform(ref_sched))
def test_ecr_cx_reverse(self):
"""Test that correct pulse sequence is generated for non-native CR pair."""
# Sufficiently large angle to avoid minimum duration, i.e. amplitude rescaling
theta = np.pi / 4
qc = circuit.QuantumCircuit(2)
qc.rzx(theta, 1, 0)
backend = FakeHanoi()
inst_map = backend.defaults().instruction_schedule_map
_pass = RZXCalibrationBuilder(inst_map)
test_qc = PassManager(_pass).run(qc)
cr_schedule = inst_map.get("cx", (0, 1))
ref_sched = self.build_reverse(
backend,
theta,
self.u0p_play(cr_schedule),
self.d1p_play(cr_schedule),
self.u0m_play(cr_schedule),
self.d1m_play(cr_schedule),
)
self.assertEqual(schedule(test_qc, backend), target_qobj_transform(ref_sched))
def test_pass_alive_with_dcx_ish(self):
"""Test if the pass is not terminated by error with direct CX input."""
cx_sched = Schedule()
# Fake direct cr
cx_sched.insert(0, Play(GaussianSquare(800, 0.2, 64, 544), ControlChannel(1)), inplace=True)
# Fake direct compensation tone
# Compensation tone doesn't have dedicated pulse class.
# So it's reported as a waveform now.
compensation_tone = Waveform(0.1 * np.ones(800, dtype=complex))
cx_sched.insert(0, Play(compensation_tone, DriveChannel(0)), inplace=True)
inst_map = InstructionScheduleMap()
inst_map.add("cx", (1, 0), schedule=cx_sched)
theta = pi / 3
rzx_qc = circuit.QuantumCircuit(2)
rzx_qc.rzx(theta, 1, 0)
pass_ = RZXCalibrationBuilder(instruction_schedule_map=inst_map)
with self.assertWarns(UserWarning):
# User warning that says q0 q1 is invalid
cal_qc = PassManager(pass_).run(rzx_qc)
self.assertEqual(cal_qc, rzx_qc)
class TestRZXCalibrationBuilderNoEcho(TestCalibrationBuilder):
"""Test RZXCalibrationBuilderNoEcho."""
def build_forward(
self,
theta,
u0p_play,
d1p_play,
):
"""A helper function to generate reference pulse schedule for forward direction."""
duration = self.compute_stretch_duration(u0p_play, 2.0 * theta)
width = self.compute_stretch_width(u0p_play, 2.0 * theta)
with builder.build() as ref_sched:
# Positive CRs
u0p_params = u0p_play.pulse.parameters
u0p_params["duration"] = duration
u0p_params["width"] = width
builder.play(
GaussianSquare(**u0p_params),
ControlChannel(0),
)
d1p_params = d1p_play.pulse.parameters
d1p_params["duration"] = duration
d1p_params["width"] = width
builder.play(
GaussianSquare(**d1p_params),
DriveChannel(1),
)
builder.delay(duration, DriveChannel(0))
return ref_sched
def test_ecr_cx_forward(self):
"""Test that correct pulse sequence is generated for native CR pair.
.. notes::
No echo builder only supports native direction.
"""
# Sufficiently large angle to avoid minimum duration, i.e. amplitude rescaling
theta = np.pi / 4
qc = circuit.QuantumCircuit(2)
qc.rzx(theta, 0, 1)
backend = FakeHanoi()
inst_map = backend.defaults().instruction_schedule_map
_pass = RZXCalibrationBuilderNoEcho(inst_map)
test_qc = PassManager(_pass).run(qc)
cr_schedule = inst_map.get("cx", (0, 1))
ref_sched = self.build_forward(
theta,
self.u0p_play(cr_schedule),
self.d1p_play(cr_schedule),
)
self.assertEqual(schedule(test_qc, backend), target_qobj_transform(ref_sched))
# # TODO - write test for forward ECR native pulse
# def test_ecr_forward(self):
def test_pass_alive_with_dcx_ish(self):
"""Test if the pass is not terminated by error with direct CX input."""
cx_sched = Schedule()
# Fake direct cr
cx_sched.insert(0, Play(GaussianSquare(800, 0.2, 64, 544), ControlChannel(1)), inplace=True)
# Fake direct compensation tone
# Compensation tone doesn't have dedicated pulse class.
# So it's reported as a waveform now.
compensation_tone = Waveform(0.1 * np.ones(800, dtype=complex))
cx_sched.insert(0, Play(compensation_tone, DriveChannel(0)), inplace=True)
inst_map = InstructionScheduleMap()
inst_map.add("cx", (1, 0), schedule=cx_sched)
theta = pi / 3
rzx_qc = circuit.QuantumCircuit(2)
rzx_qc.rzx(theta, 1, 0)
pass_ = RZXCalibrationBuilderNoEcho(instruction_schedule_map=inst_map)
with self.assertWarns(UserWarning):
# User warning that says q0 q1 is invalid
cal_qc = PassManager(pass_).run(rzx_qc)
self.assertEqual(cal_qc, rzx_qc)
|
https://github.com/vm6502q/qiskit-qrack-provider
|
vm6502q
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Test circuits and reference outputs for snapshot state instructions.
"""
from numpy import array, sqrt
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit.providers.aer.extensions.snapshot import Snapshot
from qiskit.providers.aer.extensions.snapshot_statevector import *
def snapshot_state_circuits_deterministic(snapshot_label='snap',
snapshot_type='statevector',
post_measure=False):
"""Snapshot Statevector test circuits"""
circuits = []
num_qubits = 3
qr = QuantumRegister(num_qubits)
cr = ClassicalRegister(num_qubits)
regs = (qr, cr)
# State snapshot instruction acting on all qubits
snapshot = Snapshot(snapshot_label, snapshot_type, num_qubits)
# Snapshot |000>
circuit = QuantumCircuit(*regs)
if not post_measure:
circuit.append(snapshot, qr)
circuit.barrier(qr)
circuit.measure(qr, cr)
if post_measure:
circuit.append(snapshot, qr)
circuits.append(circuit)
# Snapshot |111>
circuit = QuantumCircuit(*regs)
circuit.x(qr)
if not post_measure:
circuit.append(snapshot, qr)
circuit.barrier(qr)
circuit.measure(qr, cr)
if post_measure:
circuit.append(snapshot, qr)
circuits.append(circuit)
return circuits
def snapshot_state_counts_deterministic(shots):
"""Snapshot Statevector test circuits reference counts."""
targets = []
# Snapshot |000>
targets.append({'0x0': shots})
# Snapshot |111>
targets.append({'0x7': shots})
return targets
def snapshot_state_pre_measure_statevector_deterministic():
"""Snapshot Statevector test circuits reference final statevector"""
targets = []
# Snapshot |000>
targets.append(array([1, 0, 0, 0, 0, 0, 0, 0], dtype=complex))
# Snapshot |111>
targets.append(array([0, 0, 0, 0, 0, 0, 0, 1], dtype=complex))
return targets
def snapshot_state_post_measure_statevector_deterministic():
"""Snapshot Statevector test circuits reference final statevector"""
targets = []
# Snapshot |000>
targets.append({'0x0': array([1, 0, 0, 0, 0, 0, 0, 0], dtype=complex)})
# Snapshot |111>
targets.append({'0x7': array([0, 0, 0, 0, 0, 0, 0, 1], dtype=complex)})
return targets
def snapshot_state_circuits_nondeterministic(snapshot_label='snap',
snapshot_type='statevector',
post_measure=False):
"""Snapshot Statevector test circuits"""
circuits = []
num_qubits = 3
qr = QuantumRegister(num_qubits)
cr = ClassicalRegister(num_qubits)
regs = (qr, cr)
# State snapshot instruction acting on all qubits
snapshot = Snapshot(snapshot_label, snapshot_type, num_qubits)
# Snapshot |000> + i|111>
circuit = QuantumCircuit(*regs)
circuit.h(qr[0])
circuit.s(qr[0])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[0], qr[2])
if not post_measure:
circuit.append(snapshot, qr)
circuit.barrier(qr)
circuit.measure(qr, cr)
if post_measure:
circuit.append(snapshot, qr)
circuits.append(circuit)
# Snapshot |+++>
circuit = QuantumCircuit(*regs)
circuit.h(qr)
if not post_measure:
circuit.append(snapshot, qr)
circuit.barrier(qr)
circuit.measure(qr, cr)
if post_measure:
circuit.append(snapshot, qr)
circuits.append(circuit)
return circuits
def snapshot_state_counts_nondeterministic(shots):
"""Snapshot Statevector test circuits reference counts."""
targets = []
# Snapshot |000> + i|111>
targets.append({'0x0': shots/2,
'0x7': shots/2})
# Snapshot |+++>
targets.append({'0x0': shots/8,
'0x1': shots/8,
'0x2': shots/8,
'0x3': shots/8,
'0x4': shots/8,
'0x5': shots/8,
'0x6': shots/8,
'0x7': shots/8})
return targets
def snapshot_state_pre_measure_statevector_nondeterministic():
"""Snapshot Statevector test circuits reference final statevector"""
targets = []
# Snapshot |000> + i|111>
targets.append(array([1, 0, 0, 0, 0, 0, 0, 1j], dtype=complex) / sqrt(2))
# Snapshot |+++>
targets.append(array([1, 1, 1, 1, 1, 1, 1, 1], dtype=complex) / sqrt(8))
return targets
def snapshot_state_post_measure_statevector_nondeterministic():
"""Snapshot Statevector test circuits reference final statevector"""
targets = []
# Snapshot |000> + i|111>
targets.append({'0x0': array([1, 0, 0, 0, 0, 0, 0, 0], dtype=complex),
'0x7': array([0, 0, 0, 0, 0, 0, 0, 1j], dtype=complex)})
# Snapshot |+++>
targets.append({'0x0': array([1, 0, 0, 0, 0, 0, 0, 0], dtype=complex),
'0x1': array([0, 1, 0, 0, 0, 0, 0, 0], dtype=complex),
'0x2': array([0, 0, 1, 0, 0, 0, 0, 0], dtype=complex),
'0x3': array([0, 0, 0, 1, 0, 0, 0, 0], dtype=complex),
'0x4': array([0, 0, 0, 0, 1, 0, 0, 0], dtype=complex),
'0x5': array([0, 0, 0, 0, 0, 1, 0, 0], dtype=complex),
'0x6': array([0, 0, 0, 0, 0, 0, 1, 0], dtype=complex),
'0x7': array([0, 0, 0, 0, 0, 0, 0, 1], dtype=complex)})
return targets
|
https://github.com/nahumsa/Introduction-to-IBM_Qiskit
|
nahumsa
|
import qiskit as qsk
import numpy as np
from qiskit.circuit.add_control import add_control
def _qft(circuit, qregister):
""" QFT on a circuit.
Parameters
------------------------------------------------
circuit(qiskit.QuantumCircuit): Quantum Circuit.
qregister(qiskit.QuantumRegister): Quantum register for the rotation.
Output
------------------------------------------------
circuit(qiskit.QuantumCircuit): Quantum Circuit with
qft.
"""
def qft_rotations(circuit, qregister):
""" Defines the rotations necessary for the QFT
in a recursive manner.
Parameters
------------------------------------------------
circuit(qiskit.QuantumCircuit): Quantum Circuit.
qregister(qiskit.QuantumRegister): Quantum register for the rotation.
Output
------------------------------------------------
circuit(qiskit.QuantumCircuit): Quantum Circuit with
qft.
"""
for i in reversed(qregister):
circuit.h(i)
for qubit in range(i.index):
circuit.cu1(np.pi/float(2**(i.index-qubit)), qregister[qubit], qregister[i.index])
return circuit
def qft_swap(circuit, qregister):
"""Swap registers for the QFT.
Parameters
------------------------------------------------
circuit(qiskit.QuantumCircuit): Quantum Circuit.
n(int): qubit to do the rotation.
Output
------------------------------------------------
circuit(qiskit.QuantumCircuit): Quantum Circuit with
qft.
"""
n = len(qregister)
for qubit in range(n//2):
circuit.swap(qregister[qubit], qregister[n-qubit-1])
return circuit
qft_rotations(circuit,qregister)
qft_swap(circuit, qregister)
return circuit
def qft(circuit,qregister):
"""QFT.
Parameters
------------------------------------------------
circuit(qiskit.QuantumCircuit): Quantum Circuit.
qregister(qiskit.QuantumRegister): Quantum register for the rotation.
Output
------------------------------------------------
circuit(qiskit.QuantumCircuit): Quantum Circuit with
qft.
"""
qft_circuit= _qft(qsk.QuantumCircuit(qregister, name='QFT'), qregister)
circuit.append(qft_circuit, qregister)
return circuit
def inverse_QFT(circuit,qregister):
""" Inverse QFT.
Parameters
------------------------------------------------
circuit(qiskit.QuantumCircuit): Quantum Circuit.
qregister(qiskit.QuantumRegister): Quantum register for the rotation.
Output
------------------------------------------------
circuit(qiskit.QuantumCircuit): Quantum Circuit with
qft.
"""
qft_circuit= _qft(qsk.QuantumCircuit(qregister, name='QFT'), qregister)
inverseqft = qft_circuit.inverse()
circuit.append(inverseqft, qregister)
return circuit
def qpe(circuit, unitary, precision, ancilla, init_state=None):
"""Applies the quantum phase estimation for a given unitary.
Parameters
------------------------------------------------
circuit(qiskit.QuantumCircuit): Quantum Circuit.
unitary(np.array): Unitary.
precision(QuantumRegister): Quantum register for the precision of the QPE.
ancilla(QuantumRegister): Quantum register for the ancilla,
must be len(unitary)//2 = n_ancilla.
init_state(list): Initial state for the ancilla qubit.
Output
------------------------------------------------
circuit(qiskit.QuantumCircuit): Quantum Circuit with
qft.
"""
#n_precision = len(precision)
n_ancilla = len(ancilla)
assert len(unitary)//2 == n_ancilla, "Ancilla qubits does't match the number needed to expand the eigenstate."
#Ancilla (need to add a way to initialize states)
if init_state is not None:
assert len(init_state) == 2**n_ancilla , "Initial state not valid."
circuit.initialize(init_state, ancilla)
#Precision
circuit.h(precision)
#Build unitary
U = qsk.extensions.UnitaryGate(unitary, label='U')
U_ctrl = add_control(U, num_ctrl_qubits=1, label='Controlled_U',ctrl_state=1)
repetitions = 1
for counting_qubit in precision:
for _ in range(repetitions):
circuit.append(U_ctrl, [counting_qubit,ancilla])
repetitions *= 2
inverse_QFT(circuit, precision)
return circuit
def QPE(circuit, unitary, precision, ancilla, init_state=None):
""" Inverse QPE.
Parameters
------------------------------------------------
circuit(qiskit.QuantumCircuit): Quantum Circuit.
unitary(np.array): Unitary.
precision(QuantumRegister): Quantum register for the precision of the QPE.
ancilla(QuantumRegister): Quantum register for the ancilla,
must be len(unitary)//2 = n_ancilla.
init_state(list): Initial state for the ancilla qubit.
Output
------------------------------------------------
circuit(qiskit.QuantumCircuit): Quantum Circuit with
qft.
"""
qpe_circuit = qsk.QuantumCircuit(precision, name='QPE')
qpe_circuit.add_register(ancilla)
qpe_circuit= qpe(qpe_circuit, unitary, precision, ancilla, init_state=init_state)
append_qbits = [i for i in precision]
for i in ancilla:
append_qbits.append(i)
circuit.append(qpe_circuit, append_qbits)
return circuit
def inverse_QPE(circuit, unitary, precision, ancilla, init_state=None):
""" Inverse QPE.
Parameters
------------------------------------------------
circuit(qiskit.QuantumCircuit): Quantum Circuit.
unitary(np.array): Unitary.
precision(QuantumRegister): Quantum register for the precision of the QPE.
ancilla(QuantumRegister): Quantum register for the ancilla,
must be len(unitary)//2 = n_ancilla.
init_state(list): Initial state for the ancilla qubit.
Output
------------------------------------------------
circuit(qiskit.QuantumCircuit): Quantum Circuit with
qft.
"""
qpe_circuit = qsk.QuantumCircuit(precision, name='QPE')
qpe_circuit.add_register(ancilla)
qpe_circuit= qpe(qpe_circuit, unitary, precision, ancilla, init_state=init_state)
inverseqpe = qpe_circuit.inverse()
append_qbits = [i for i in precision]
for i in ancilla:
append_qbits.append(i)
circuit.append(inverseqpe, append_qbits)
return circuit
|
https://github.com/hugoecarl/TSP-Problem-Study
|
hugoecarl
|
import math
import matplotlib.pyplot as plt
%matplotlib inline
class TSP:
def __init__(self):
self.flat_mat = flat_mat
self.n = 0
self.melhor_dist = 1e11
self.pontos = []
self.melhores_pontos = []
def busca_exaustiva(self, flat_mat, n, ite):
if ite == n:
dist = 0
for j in range(1, n):
dist += flat_mat[self.pontos[j-1] * n + self.pontos[j]]
dist += flat_mat[self.pontos[n-1] * n + self.pontos[0]]
if dist < self.melhor_dist:
self.melhor_dist = dist
self.melhores_pontos = self.pontos[:]
return
for i in range(n):
if self.pontos[i] == -1:
self.pontos[i] = ite
self.busca_exaustiva(flat_mat, n, ite + 1)
self.pontos[i] = -1
def dist_mat(self):
x = []
y = []
flat_mat = [] #matriz 1 dimensao contendo todas as distancias possiveis entre os pontos para facilitar cálculo.
while True:
try:
temp = input("Digite a coordenada x y: ").split()
x.append(float(temp[0]))
y.append(float(temp[1]))
except:
break
for i in range(len(x)):
for j in range(len(y)):
flat_mat.append(math.sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2))
return flat_mat, x, y
def get_results(self):
self.flat_mat, x, _ = self.dist_mat()
self.n = len(x)
self.pontos = [-1]*self.n
self.pontos[0] = 0
self.busca_exaustiva(self.flat_mat, self.n, 1)
return self.melhor_dist, self.melhores_pontos
Tsp = TSP()
distancia, pontos = Tsp.get_results()
print("Melhor distancia encontrada: ", distancia)
print("Melhor caminho encontrado: ", pontos)
#plota gráfico
def connectpoints(x,y,p1,p2):
x1, x2 = x[p1], x[p2]
y1, y2 = y[p1], y[p2]
plt.plot([x1,x2],[y1,y2],'ro-')
for i in range(1, len(pontos)):
connectpoints(x,y,pontos[i-1],pontos[i])
connectpoints(x,y,pontos[len(x)-1],pontos[0])
plt.title("Percurso")
plt.show()
%%time
%%cmd
python TSP.py < in-1.txt
type out-1.txt
python TSP.py < in-2.txt
type out-2.txt
python TSP.py < in-3.txt
type out-3.txt
python TSP.py < in-4.txt
type out-4.txt
from qiskit import IBMQ
import numpy as np
#IBMQ.save_account('seu-tokenIBMQ-para-rodar-localmente')
IBMQ.load_account()
from qiskit import Aer
from qiskit.tools.visualization import plot_histogram
from qiskit.circuit.library import TwoLocal
from qiskit.optimization.applications.ising import max_cut, tsp
from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver
from qiskit.aqua.components.optimizers import SPSA
from qiskit.aqua import aqua_globals
from qiskit.aqua import QuantumInstance
from qiskit.optimization.applications.ising.common import sample_most_likely
from qiskit.optimization.algorithms import MinimumEigenOptimizer
from qiskit.optimization.problems import QuadraticProgram
import logging
from qiskit.aqua import set_qiskit_aqua_logging
#Preparando os dados segundo os imputs do usuario para serem resolvidos pelo qiskit max 4 pontos por limitação de qubits
coord = []
flat_mat, x, y = TSP().dist_mat()
dist_mat = np.array(flat_mat).reshape(len(x),len(x))
for i, j in zip(x, y):
coord.append([i,j])
ins = tsp.TspData('TSP_Q', dim=len(x), coord=np.array(coord), w=dist_mat)
qubitOp, offset = tsp.get_operator(ins)
print('Offset:', offset)
print('Ising Hamiltonian:')
print(qubitOp.print_details())
#Usando o numpyMinimumEigensolver como o solver do problema para resolver de forma quantica
ee = NumPyMinimumEigensolver(qubitOp)
result = ee.run()
print('energy:', result.eigenvalue.real)
print('tsp objective:', result.eigenvalue.real + offset)
x_Q = sample_most_likely(result.eigenstate)
print('feasible:', tsp.tsp_feasible(x_Q))
z = tsp.get_tsp_solution(x_Q)
print('solution:', z)
print('solution objective:', tsp.tsp_value(z, ins.w))
for i in range(1, len(z)):
connectpoints(x,y,z[i-1],z[i])
connectpoints(x,y,z[len(x)-1],z[0])
plt.title("Percurso")
plt.show()
#instanciando o simulador ou o computador real importante lembrar que nao ira funcionar para mais de 4 pontos pelo numero de qubits disponibilizados pela IBM que sao apenas 16 para o simulador qasm e 15 para a maquina quantica
provider = IBMQ.get_provider(hub = 'ibm-q')
device = provider.get_backend('ibmq_16_melbourne')
aqua_globals.random_seed = np.random.default_rng(123)
seed = 10598
backend = Aer.get_backend('qasm_simulator')
#descomentar essa linha caso queira rodar na maquina real
#backend = device
quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed)
#rodando no simulador quantico
spsa = SPSA(maxiter=10)
ry = TwoLocal(qubitOp.num_qubits, 'ry', 'cz', reps=5, entanglement='linear')
vqe = VQE(qubitOp, ry, spsa, quantum_instance=quantum_instance)
result = vqe.run(quantum_instance)
print('energy:', result.eigenvalue.real)
print('time:', result.optimizer_time)
x = sample_most_likely(result.eigenstate)
print('feasible:', tsp.tsp_feasible(x_Q))
z = tsp.get_tsp_solution(x_Q)
print('solution:', z)
print('solution objective:', tsp.tsp_value(z, ins.w))
|
https://github.com/Juan-Varela11/BNL_2020_Summer_Internship
|
Juan-Varela11
|
import numpy as np
import matplotlib.pyplot as plt
from qiskit import IBMQ
import qiskit.pulse as pulse
import qiskit.pulse.pulse_lib as pulse_lib
from qiskit.compiler import assemble
from qiskit.qobj.utils import MeasLevel, MeasReturnType
from qiskit import IBMQ
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q-internal', group='deployed', project='default')
backend = provider.get_backend('ibmq_johannesburg')
backend_config = backend.configuration()
config = backend.configuration()
defaults = backend.defaults()
# qubit to use for exeperiment
control_qubit = 1
target_qubit = 0
control_channel_index = 1
# exp configuration
exps = 30
shots = 512
# Rabi pulse
cr_amps = np.linspace(0, 0.2, exps)
cr_samples = 200
cr_sigma = 4
cr_rise_fall = 16
# scaling factor for data returned by backend
# note: You may have to adjust this for the backend you use
scale_factor= 1e-14
[control_qubit, target_qubit] in config.coupling_map
defaults.qubit_freq_est[control_qubit] > defaults.qubit_freq_est[target_qubit]
config.u_channel_lo[control_channel_index]
# Create schedule
schedules = []
for ii, cr_amp in enumerate(cr_amps):
# drive pulse
cr_rabi_pulse_p = pulse_lib.gaussian_square(duration=cr_samples,
amp=cr_amp,
sigma=cr_sigma,
risefall=cr_rise_fall,
name='cr_rabi_pulse_p%d' % ii)
cr_rabi_pulse_m = pulse_lib.gaussian_square(duration=cr_samples,
amp=-cr_amp,
sigma=cr_sigma,
risefall=cr_rise_fall,
name='cr_rabi_pulse_m%d' % ii)
control_channel = pulse.ControlChannel(control_channel_index)
# We get the state preparation and measurement pulses we need from the
# defaults `circuit_instruction_map`
pi_pulse_q0 = defaults.circuit_instruction_map.get('u3', (control_qubit,), np.pi, 0, np.pi)
measure = defaults.circuit_instruction_map.get('measure', config.meas_map[0])
# add commands to schedule
schedule = pulse.Schedule(name='CR Rabi Experiment at drive amp = %s' % cr_amp)
schedule |= cr_rabi_pulse_p(control_channel)
schedule |= pi_pulse_q0 << schedule.duration
schedule |= cr_rabi_pulse_m(control_channel) << schedule.duration
schedule |= measure << schedule.duration
schedules.append(schedule)
schedules[1].draw(channels_to_plot=[pulse.DriveChannel(control_qubit),
pulse.DriveChannel(target_qubit),
control_channel,
pulse.MeasureChannel(control_qubit),
pulse.MeasureChannel(target_qubit)],
scaling=10.0, label=False, plot_range=(0, 700))
cr_rabi_qobj = assemble(schedules, backend, meas_level=MeasLevel.KERNELED,
meas_return=MeasReturnType.AVERAGE, shots=shots)
job = backend.run(cr_rabi_qobj)
job.job_id()
job.status()
cr_rabi_result = job.result(timeout=3600)
job = backend.retrieve_job('5e31bf8e0520030011cbdb08')
cr_rabi_results = job.result(timeout=120)
target_qubit_rabi_data = np.ones(exps, dtype=np.complex_)
control_qubit_rabi_data = np.ones(exps, dtype=np.complex_)
for i in range(exps):
target_qubit_rabi_data[i] = cr_rabi_result.get_memory(i)[target_qubit]
control_qubit_rabi_data[i] = cr_rabi_result.get_memory(i)[control_qubit]
# auto-phase the output measurement signal
def get_amplitude(vec):
i_signal = np.imag(vec)
r_signal = np.real(vec)
mvec = [np.mean(r_signal), np.mean(i_signal)]
src_mat = np.vstack((r_signal - mvec[0], i_signal - mvec[1])).T
(_, _, v_mat) = np.linalg.svd(src_mat)
dvec = v_mat[0, 0:2]
if dvec.dot(mvec) < 0:
dvec = -dvec
return src_mat.dot(dvec)
target_rabi_amp_data = get_amplitude(target_qubit_rabi_data)*scale_factor
control_rabi_amp_data = get_amplitude(control_qubit_rabi_data)*scale_factor
fit_func = lambda x,A,B,T,phi: (A*np.cos(2*np.pi*x/T+phi)+B)
#Fit the data
fitparams, conv = curve_fit(fit_func, cr_amps, target_rabi_amp_data, [3.0,0.0,0.1,0])
#get the pi amplitude
cr_pi_2_amp = (np.pi-fitparams[3])*fitparams[2]/4/np.pi
plt.plot(cr_amps, fit_func(cr_amps, *fitparams), color='red')
plt.axvline(cr_pi_2_amp, color='black', linestyle='dashed')
plt.scatter(cr_amps, target_rabi_amp_data, label='target qubit')
plt.scatter(cr_amps, control_rabi_amp_data, label='control qubit')
plt.xlim(0, 0.2)
plt.ylim(-5, 5)
plt.legend()
plt.xlabel('CR pulse amplitude, a.u.', fontsize=20)
plt.ylabel('Signal, a.u.', fontsize=20)
plt.title('CR Rabi oscillation', fontsize=20)
print(cr_pi_2_amp)
defaults.circuit_instruction_map.get('cx', (control_qubit, target_qubit)).draw(show_framechange_channels=False)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/DarkStarQuantumLab/Qauntum-trading-a-disturbance-in-the-force-of-supply-and-demand
|
DarkStarQuantumLab
|
!python3 -m pip install -q qiskit
!python3 -m pip install -q qiskit_ibm_runtime
from qiskit import IBMQ
from qiskit_ibm_runtime import QiskitRuntimeService, Session, Options, Sampler, Estimator
from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.quantum_info.operators import Operator
from qiskit.extensions.unitary import UnitaryGate
from qiskit.providers.aer import AerSimulator, Aer
from qiskit.execute_function import execute
import numpy as np
from typing import Dict, Optional
# ====================================
# pass IBM API Token
# ====================================
QiskitRuntimeService.save_account(channel='ibm_quantum', token="", overwrite=True)
num_players = 2
# define the payoff matrices. Assume, the 1st matrix is Alice's payoff, the secomd matrix is Bob's payoff
payoff_matrix =[[[3, 0],
[5, 1]],
[[3, 5],
[0, 1]]]
# players' matrices
# |C> strategy
# bob = [
# [1, 0],
# [0, 1]]
# |D> strategy
# bob = [
# [0, 1],
# [1, 0],
# ]
def alice_plays_quantum(theta:float, phi:float):
"""
Set up a quantum game for Alice playing quantum, and Bob playing classically.
Arg:
theta: the value of the theta parameter.
phi: the value of the phi parameter.
Returns:
qc: the class of 'qiskit.circuit.quantumcircuit.QuantumCircuit',
a constructed quantum circuit for the quantum game set up.
"""
alice = np.array([[np.exp(1.0j*phi)*np.cos(theta/2), np.sin(theta/2)],
[-np.sin(theta/2), np.exp(-1.0j*phi)*np.cos(theta/2)]])
bob = np.array([
[1, 0],
[0, 1]]).astype(complex)
qc = QuantumCircuit(num_players)
J = 1/np.sqrt(2)*np.array([[1.0, 0.0, 0.0, 1.0j],
[0.0, 1.0, 1.0j, 0.0],
[0.0, 1.0j, 1.0, 0.0],
[1.0j, 0.0, 0.0, 1.0]]).astype(complex)
J_unitary = UnitaryGate(Operator(J))
qc.append(J_unitary, [0,1])
qc.barrier()
unitary_alice = UnitaryGate(Operator(alice))
unitary_bob = UnitaryGate(Operator(bob))
qc.append(unitary_alice, [0])
qc.append(unitary_bob, [1])
qc.barrier()
Jdagger_unitary = UnitaryGate(Operator(J.conj().T))
qc.append(Jdagger_unitary, [0,1])
return qc
# test run
# define the simulator
simulator = Aer.get_backend('statevector_simulator')
theta = np.pi
phi = 0.0
qc = alice_plays_quantum(theta, phi)
results = execute(qc, simulator, shots=1024).result().get_counts()
results
# calculating payoffs
def get_payoff(counts):
"""
Calculate the reward for the players after the game ends.
"""
payoff_bob = []
payoff_alice = []
for strategy, prob in counts.items():
strategy_bob = int(strategy[1])
strategy_alice = int(strategy[0])
payoff_bob.append(prob * payoff_matrix[0][strategy_alice][strategy_bob])
payoff_alice.append(prob * payoff_matrix[0][strategy_bob][strategy_alice])
return sum(payoff_alice), sum(payoff_bob)
# change the size on the quantum space to explore more quantum strategies
space_size = 4
for phi in np.linspace(0, np.pi/2, space_size):
for theta in np.linspace(0, np.pi, space_size):
qc = alice_plays_quantum(theta, phi)
results = execute(qc, simulator, shots=1024).result().get_counts()
payoff_alice, payoff_bob = get_payoff(results)
print("theta = {}, phi = {}, results = {}, Alice's payoff {}, Bob's payoff {}".format(theta, phi, results, payoff_alice, payoff_bob))
print("Next Game")
qc = alice_plays_quantum(theta = np.pi/2, phi = np.pi/4)
job = simulator.run(qc, shots=2048)
result = job.result()
outputstate = result.get_statevector(qc, decimals=3)
print(outputstate)
from qiskit.visualization import plot_state_city
plot_state_city(outputstate)
from qiskit.visualization import plot_histogram
counts = result.get_counts()
plot_histogram(counts)
# probabilities of a certain outcome
counts
num_players = 2
def alice_bob_play_quantum(theta_a:float, phi_a:float, theta_b:float, phi_b:float, measure=False):
"""
Set up a quantum game. Both players have access to quantum strategies.
Args:
theta_a: Theta parameter for Alice's unitary.
phi_a: Phi parameter for Alice's unitary.
theta_b: Theta parameter for Bob's unitary.
phi_b: Phi parameter for Bob's unitary.
Returns:
qc: the class of 'qiskit.circuit.quantumcircuit.QuantumCircuit',
a constructed quantum circuit for the quantum game set up.
"""
alice = np.array([
[np.exp(1.0j*phi_a)*np.cos(theta_a/ 2), np.sin(theta_a / 2)],
[-np.sin(theta_a / 2), np.exp(-1.0j*phi_a)*np.cos(theta_a / 2)]])
bob = np.array([
[np.exp(1.0j*phi_b)*np.cos(theta_b / 2), np.sin(theta_b / 2)],
[-np.sin(theta_b / 2), np.exp(-1.0j*phi_b)*np.cos(theta_b / 2)]])
qc = QuantumCircuit(num_players)
J = 1/np.sqrt(2)*np.array([[1.0, 0.0, 0.0, 1.0j],
[0.0, 1.0, 1.0j, 0.0],
[0.0, 1.0j, 1.0, 0.0],
[1.0j, 0.0, 0.0, 1.0]]).astype(complex)
J_unitary = UnitaryGate(Operator(J))
qc.append(J_unitary, [0,1])
qc.barrier()
unitary_alice = UnitaryGate(Operator(alice))
unitary_bob = UnitaryGate(Operator(bob))
qc.append(unitary_alice, [0])
qc.append(unitary_bob, [1])
qc.barrier()
Jdagger_unitary = UnitaryGate(Operator(J.conj().T))
qc.append(Jdagger_unitary, [0,1])
if measure:
qc.measure_all()
return qc
alice_reward = 0
bob_reward = 0
draw = 0
space_size = 2
for phi1 in np.linspace(0, 2*np.pi, space_size):
for theta1 in np.linspace(0, np.pi, space_size):
for phi2 in np.linspace(0, 2*np.pi, space_size):
for theta2 in np.linspace(0, np.pi, space_size):
qc = alice_bob_play_quantum(theta1, phi1, theta2, phi2)
results = execute(qc, simulator, shots=1024).result().get_counts()
payoff_alice, payoff_bob = get_payoff(results)
# count winning
if payoff_alice > payoff_bob:
alice_reward += 1
elif payoff_bob > payoff_alice:
bob_reward += 1
else:
draw += 1
# print results
print("theta_alice = {}, phi_alice = {}, theta_bob = {}, phi_bob = {}".format(theta1, phi1, theta2, phi2 ))
print("results = {}, Alice's raward {}, Bob's reward {}".format(results, payoff_alice, payoff_bob))
print("Next Game")
print("===================================================")
print("In {} games Alice gets a higher reward than Bob.". format(alice_reward))
print("In {} games, Bob gets a higher reward than Alice.".format(bob_reward))
print("In {} games Alice and Bob get equal reward.".format(draw))
matrix = np.array([[1.0j, 0], [0, -1.0j]])
qc = QuantumCircuit(2)
gate = UnitaryGate(Operator(matrix))
J = 1/np.sqrt(2)*np.array([[1.0, 0.0, 0.0, 1.0j],
[0.0, 1.0, 1.0j, 0.0],
[0.0, 1.0j, 1.0, 0.0],
[1.0j, 0.0, 0.0, 1.0]]).astype(complex)
J_unitary = UnitaryGate(Operator(J))
qc.append(J_unitary, [0,1])
qc.barrier()
qc.append(gate, [0])
qc.append(gate, [1])
qc.barrier()
Jdagger_unitary = UnitaryGate(Operator(J.conj().T))
qc.append(Jdagger_unitary, [0,1])
results = execute(qc, simulator, shots=1024).result().get_counts()
alice_payoff, bob_payoff = get_payoff(results)
print("Strategy: {}".format(results))
print("Alice's payoff is {}, Bob's payoff is {}".format(alice_payoff, bob_payoff))
import matplotlib.pyplot as plt
space_size = 40
def payoff_plot():
"""
Plot expected payoff distribution for Alice.
"""
x = np.linspace(1, -1, space_size)
y = np.linspace(-1, 1, space_size)
X, Y = np.meshgrid(x, y)
Z = np.zeros(X.shape)
for i in range(0,space_size):
for inner in range(0, space_size):
if X[inner][i] < 0 and Y[inner][i] < 0:
qc = alice_bob_play_quantum(0, X[inner][i]*np.pi/2, 0, Y[inner][i]*np.pi/2)
payoff_alice, _ = get_payoff(execute(qc, simulator, shots=1024).result().get_counts())
Z[inner][i] = payoff_alice
elif X[inner][i] >= 0 and Y[inner][i] >= 0:
qc = alice_bob_play_quantum(X[inner][i]*np.pi, 0, Y[inner][i]*np.pi, 0)
payoff_alice, _ = get_payoff(execute(qc, simulator, shots=1024).result().get_counts())
Z[inner][i] = payoff_alice
elif X[inner][i] >= 0 and Y[inner][i] < 0:
qc = alice_bob_play_quantum(X[inner][i]*np.pi, 0, 0, Y[inner][i]*np.pi/2)
payoff_alice, _ = get_payoff(execute(qc, simulator, shots=1024).result().get_counts())
Z[inner][i] = payoff_alice
elif X[inner][i] < 0 and Y[inner][i] >= 0:
qc = alice_bob_play_quantum(0, X[inner][i]*np.pi/2, Y[inner][i]*np.pi, 0)
payoff_alice, _ = get_payoff(execute(qc, simulator, shots=1024).result().get_counts())
Z[inner][i] = payoff_alice
fig = plt.figure(figsize=(15, 10))
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, Z, cmap=plt.cm.coolwarm, antialiased=True)
ax.set(xlim=(-1, 1), ylim=(1, -1), xlabel="Bob strategy", ylabel='Alice strategy', zlabel="Alice's expected payoff")
plt.show()
payoff_plot()
def build_qcir_three_parameters(theta1, phi1, lmbda, theta2, phi2):
"""
Set up a quantum game. Both players have access to quantum strategies space
"""
alice = np.array([
[np.exp(1.0j*phi1)*np.cos(theta1/2), 1.0j*np.exp(1.0j * lmbda) * np.sin(theta1/2)],
[1.0j*np.exp(-1.0j * lmbda) * np.sin(theta1/2), np.exp(-1.0j*phi1)*np.cos(theta1/2)]])
bob = np.array([
[np.exp(1.0j*phi2)*np.cos(theta2/2), np.sin(theta2/2)],
[-np.sin(theta2/2), np.exp(-1.0j*phi2)*np.cos(theta2/2)]])
qc = QuantumCircuit(num_players)
J = 1/np.sqrt(2)*np.array([[1.0, 0.0, 0.0, 1.0j],
[0.0, 1.0, 1.0j, 0.0],
[0.0, 1.0j, 1.0, 0.0],
[1.0j, 0.0, 0.0, 1.0]]).astype(complex)
J_unitary = UnitaryGate(Operator(J))
qc.append(J_unitary, [0,1])
qc.barrier()
unitary_alice = UnitaryGate(Operator(alice))
unitary_bob = UnitaryGate(Operator(bob))
qc.append(unitary_alice, [0])
qc.append(unitary_bob, [1])
qc.barrier()
Jdagger_unitary = UnitaryGate(Operator(J.conj().T))
qc.append(Jdagger_unitary, [0,1])
return qc
alice_reward = 0
bob_reward = 0
draw = 0
space_size = 4
for phi1 in np.linspace(-np.pi, np.pi, space_size):
for theta1 in np.linspace(0, np.pi, space_size):
for phi2 in np.linspace(-np.pi, np.pi, space_size):
for theta2 in np.linspace(0, np.pi, space_size):
for lmbda in np.linspace(-np.pi, np.pi, 2*space_size):
qc = build_qcir_three_parameters(theta1, phi1, lmbda, theta2, phi2)
results = execute(qc, simulator, shots=1024).result().get_counts()
payoff_alice, payoff_bob = get_payoff(results)
# count winning
if payoff_alice > payoff_bob:
alice_reward += 1
elif payoff_bob > payoff_alice:
bob_reward += 1
else:
draw += 1
# print results
print("theta_alice = {}, phi_alice = {}, theta_bob = {}, phi_bob = {}".format(theta1, phi1, theta2, phi2 ))
print("results = {}, Alice's payoff {}, Bob's payoff {}".format(results, payoff_alice, payoff_bob))
print("Next Game")
print("===================================================")
print("In {} games Alice gets a higher reward than Bob.". format(alice_reward))
print("In {} games, Bob gets a higher reward than Alice.".format(bob_reward))
print("In {} games Alice and Bob get equal reward.".format(draw))
!python3 -m pip install -q qiskit-ibm-provider
from qiskit.providers.ibmq import least_busy
from qiskit_ibm_provider import IBMProvider
provider = IBMProvider()
# ====================================
# pass IBM API Token
# ====================================
provider.save_account(token=, overwrite=True)
small_devices = provider.backends(filters=lambda x: x.configuration().n_qubits == 5 and not x.configuration().simulator)
least_busy(small_devices)
backend = least_busy(small_devices)
qc = alice_bob_play_quantum(theta_a = 0, phi_a = 0, theta_b = np.pi/2, phi_b = 0, measure=True)
job = execute(qc, backend, optimization_level=2)
result = job.result()
counts = result.get_counts()
counts
plot_histogram(counts)
job = execute(qc, backend=Aer.get_backend('statevector_simulator'), shots=1024)
result = job.result()
counts = result.get_counts()
print(counts)
plot_histogram(counts)
from functools import reduce
from operator import add
from qiskit import quantum_info as qi
def mixed_strategy(alpha_a:float, alpha_b:float):
"""
Set up a quantum game. Both players have access to quantum strategies.
Args:
theta_a: Theta parameter for Alice's unitary.
phi_a: Phi parameter for Alice's unitary.
theta_b: Theta parameter for Bob's unitary.
phi_b: Phi parameter for Bob's unitary.
Returns:
qc: the class of 'qiskit.circuit.quantumcircuit.QuantumCircuit',
a constructed quantum circuit for the quantum game set up.
"""
qc = QuantumCircuit(2)
# Alice strategies
unitary1_a = np.eye(2).astype(complex)
unitary2_a = np.array([[-1.0j, 0],
[0, 1.0j]])
# Bob's strategies
unitary1_b = np.array([[0, 1],
[-1, 0]]).astype(complex)
unitary2_b = np.array([[0, -1.0j],
[-1.0j, 0]]).astype(complex)
# define probabilities for Alice
p1_a = np.cos(alpha_a / 2) ** 2
p2_a = np.sin(alpha_a/ 2) ** 2
# define probabilities for Bob
p1_b = np.cos(alpha_b / 2) ** 2
p2_b = np.sin(alpha_b/ 2) ** 2
# define the set of actions and their probability distribution.
mixed_strategy = [[(p1_a, unitary1_a), (p2_a, unitary2_a)], [(p1_b, unitary1_b), (p2_b, unitary2_b)]]
identity = np.eye(2)
J = 1/np.sqrt(2)*np.array([[1.0, 0.0, 0.0, 1.0j],
[0.0, 1.0, 1.0j, 0.0],
[0.0, 1.0j, 1.0, 0.0],
[1.0j, 0.0, 0.0, 1.0]]).astype(complex)
J_unitary = UnitaryGate(Operator(J))
qc.append(J_unitary, [0, 1])
rho = qi.DensityMatrix.from_instruction(qc)
for index, strategy in enumerate(mixed_strategy):
rho = reduce(add, (prob * rho.evolve(np.kron(*[strat if index == player else identity for player in range(num_players)])) for prob, strat in strategy))
rho = rho.evolve(Operator(J.conj().T))
return rho.probabilities()
payoff_matrix =[[[3, 0],
[5, 1]],
[[3, 5],
[0, 1]]]
for alpha_a in np.linspace(0, np.pi, 4):
for alpha_b in np.linspace(0, np.pi, 2):
print("alpha_a = ", alpha_a)
print("alpha_b = ", alpha_b)
prob = mixed_strategy(alpha_a, alpha_b)
print("prob = ", prob)
alice_matrix = np.reshape(payoff_matrix[0], (1,4))
bob_matrix = np.reshape(payoff_matrix[1], (1,4))
print("Alice's Payoff = ", np.round(np.dot(prob, alice_matrix[0]), 3))
print("Bob's Payoff = ", np.round(np.dot(prob, bob_matrix[0]),3))
print("=======================")
# probability of 1/2 and 1/2 yeilds the payoffs of 2.5 for each player.
prob = mixed_strategy(np.pi/2, np.pi/2)
print("prob = ", prob)
alice_matrix = np.reshape(payoff_matrix[0], (1,4))
bob_matrix = np.reshape(payoff_matrix[1], (1,4))
print("Alice's Payoff = ", np.round(np.dot(prob, alice_matrix[0]), 3))
print("Bob's Payoff = ", np.round(np.dot(prob, bob_matrix[0]),3))
|
https://github.com/MonitSharma/Qiskit-Summer-School-and-Quantum-Challenges
|
MonitSharma
|
!pip install -U -r grading_tools/requirements.txt
from IPython.display import clear_output
clear_output()
import numpy as np; pi = np.pi
from qiskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram
from copy import deepcopy as make_copy
def prepare_hets_circuit(depth, angle1, angle2):
hets_circ = QuantumCircuit(depth)
hets_circ.ry(angle1, 0)
hets_circ.rz(angle1, 0)
hets_circ.ry(angle1, 1)
hets_circ.rz(angle1, 1)
for ii in range(depth):
hets_circ.cx(0,1)
hets_circ.ry(angle2,0)
hets_circ.rz(angle2,0)
hets_circ.ry(angle2,1)
hets_circ.rz(angle2,1)
return hets_circ
hets_circuit = prepare_hets_circuit(2, pi/2, pi/2)
hets_circuit.draw()
def measure_zz_circuit(given_circuit):
zz_meas = make_copy(given_circuit)
zz_meas.measure_all()
return zz_meas
zz_meas = measure_zz_circuit(hets_circuit)
zz_meas.draw()
simulator = Aer.get_backend('qasm_simulator')
result = execute(zz_meas, backend = simulator, shots=10000).result()
counts = result.get_counts(zz_meas)
plot_histogram(counts)
def measure_zz(given_circuit, num_shots = 10000):
zz_meas = measure_zz_circuit(given_circuit)
result = execute(zz_meas, backend = simulator, shots = num_shots).result()
counts = result.get_counts(zz_meas)
if '00' not in counts:
counts['00'] = 0
if '01' not in counts:
counts['01'] = 0
if '10' not in counts:
counts['10'] = 0
if '11' not in counts:
counts['11'] = 0
total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10']
zz = counts['00'] + counts['11'] - counts['01'] - counts['10']
zz = zz / total_counts
return zz
zz = measure_zz(hets_circuit)
print("<ZZ> =", str(zz))
def measure_zi(given_circuit, num_shots = 10000):
zz_meas = measure_zz_circuit(given_circuit)
result = execute(zz_meas, backend = simulator, shots = num_shots).result()
counts = result.get_counts(zz_meas)
if '00' not in counts:
counts['00'] = 0
if '01' not in counts:
counts['01'] = 0
if '10' not in counts:
counts['10'] = 0
if '11' not in counts:
counts['11'] = 0
total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10']
zi = counts['00'] - counts['11'] + counts['01'] - counts['10']
zi = zi / total_counts
return zi
def measure_iz(given_circuit, num_shots = 10000):
zz_meas = measure_zz_circuit(given_circuit)
result = execute(zz_meas, backend = simulator, shots = num_shots).result()
counts = result.get_counts(zz_meas)
if '00' not in counts:
counts['00'] = 0
if '01' not in counts:
counts['01'] = 0
if '10' not in counts:
counts['10'] = 0
if '11' not in counts:
counts['11'] = 0
total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10']
iz = counts['00'] - counts['11'] - counts['01'] + counts['10']
iz = iz / total_counts
return iz
zi = measure_zi(hets_circuit)
print("<ZI> =", str(zi))
iz = measure_iz(hets_circuit)
print("<IZ> =", str(iz))
def measure_xx_circuit(given_circuit):
xx_meas = make_copy(given_circuit)
### WRITE YOUR CODE BETWEEN THESE LINES - START
xx_meas.h(0)
xx_meas.h(1)
xx_meas.measure_all()
### WRITE YOUR CODE BETWEEN THESE LINES - END
return xx_meas
xx_meas = measure_xx_circuit(hets_circuit)
xx_meas.draw()
def measure_xx(given_circuit, num_shots = 10000):
xx_meas = measure_xx_circuit(given_circuit)
result = execute(xx_meas, backend = simulator, shots = num_shots).result()
counts = result.get_counts(xx_meas)
if '00' not in counts:
counts['00'] = 0
if '01' not in counts:
counts['01'] = 0
if '10' not in counts:
counts['10'] = 0
if '11' not in counts:
counts['11'] = 0
total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10']
xx = counts['00'] + counts['11'] - counts['01'] - counts['10']
xx = xx / total_counts
return xx
xx = measure_xx(hets_circuit)
print("<XX> =", str(xx))
def get_energy(given_circuit, num_shots = 10000):
zz = measure_zz(given_circuit, num_shots = num_shots)
iz = measure_iz(given_circuit, num_shots = num_shots)
zi = measure_zi(given_circuit, num_shots = num_shots)
xx = measure_xx(given_circuit, num_shots = num_shots)
energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx
return energy
energy = get_energy(hets_circuit)
print("The energy of the trial state is", str(energy))
hets_circuit_plus = None
hets_circuit_minus = None
### WRITE YOUR CODE BETWEEN THESE LINES - START
hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2)
hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2)
### WRITE YOUR CODE BETWEEN THESE LINES - END
energy_plus = get_energy(hets_circuit_plus, num_shots=100000)
energy_minus = get_energy(hets_circuit_minus, num_shots=100000)
print(energy_plus, energy_minus)
name = 'Pon Rahul M'
email = 'ponrahul.21it@licet.ac.in'
### Do not change the lines below
from grading_tools import grade
grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1')
grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2')
grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3')
energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0
energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0
### WRITE YOUR CODE BETWEEN THESE LINES - START
energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100)
energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100)
energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000)
energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000)
energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000)
energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000)
### WRITE YOUR CODE BETWEEN THESE LINES - END
print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100)
print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000)
print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000)
### WRITE YOUR CODE BETWEEN THESE LINES - START
I = np.array([
[1, 0],
[0, 1]
])
X = np.array([
[0, 1],
[1, 0]
])
Z = np.array([
[1, 0],
[0, -1]
])
h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \
(0.39793742) * np.kron(I, Z) + \
(-0.3979374) * np.kron(Z, I) + \
(-0.0112801) * np.kron(Z, Z) + \
(0.18093119) * np.kron(X, X)
from numpy import linalg as LA
eigenvalues, eigenvectors = LA.eig(h2_hamiltonian)
for ii, eigenvalue in enumerate(eigenvalues):
print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}")
exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)]
exact_eigenvalue = np.min(eigenvalues)
print()
print("Minimum energy is", exact_eigenvalue)
### WRITE YOUR CODE BETWEEN THESE LINES - END
|
https://github.com/GIRISHBELANI/QC_Benchmarks_using_dm-simulator
|
GIRISHBELANI
|
!pip install qiskit[visualization]
# Imports for Qiskit
from qiskit import QuantumCircuit, execute, Aer, IBMQ
from qiskit.compiler import transpile, assemble
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from qiskit import *
from qiskit import IBMQ, Aer
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit.visualization import plot_histogram
import numpy as np
# Various imports
import numpy as np
from copy import deepcopy
from matplotlib import pyplot as plt
# IBMQ.save_account('Put your token')
# provider = IBMQ.load_account()
# IBMQ.get_provider(hub='ibm-q', group='open', project = 'main')
# Create the various registers needed
clock = QuantumRegister(2, name='clock')
input = QuantumRegister(1, name='b')
ancilla = QuantumRegister(1, name='ancilla')
measurement = ClassicalRegister(2, name='c')
# Create an empty circuit with the specified registers
circuit = QuantumCircuit(ancilla, clock, input, measurement)
circuit.barrier()
circuit.draw(output='mpl')
def qft_dagger(circ, q, n):
circ.h(clock[1]);
for j in reversed(range(n)):
for k in reversed(range(j+1,n)):
circ.cu1(-np.pi/float(2**(k-j)), q[k], q[j]);
circ.h(clock[0]);
circ.swap(clock[0], clock[1]);
def qft(circ, q, n):
circ.swap(clock[0], clock[1]);
circ.h(clock[0]);
for j in reversed(range(n)):
for k in reversed(range(j+1,n)):
circ.cu1(np.pi/float(2**(k-j)), q[k], q[j]);
circ.h(clock[1]);
def qpe(circ, clock, target):
circuit.barrier()
# e^{i*A*t}
circuit.cu(np.pi/2, -np.pi/2, np.pi/2, 3*np.pi/4, clock[0], input, label='U');
# e^{i*A*t*2}
circuit.cu(np.pi, np.pi, 0, 0, clock[1], input, label='U2');
circuit.barrier();
# Perform an inverse QFT on the register holding the eigenvalues
qft_dagger(circuit, clock, 2)
def inv_qpe(circ, clock, target):
# Perform a QFT on the register holding the eigenvalues
qft(circuit, clock, 2)
circuit.barrier()
# e^{i*A*t*2}
circuit.cu(np.pi, np.pi, 0, 0, clock[1], input, label='U2');
#circuit.barrier();
# e^{i*A*t}
circuit.cu(np.pi/2, np.pi/2, -np.pi/2, -3*np.pi/4, clock[0], input, label='U');
circuit.barrier()
def hhl(circ, ancilla, clock, input, measurement):
qpe(circ, clock, input)
circuit.barrier()
# This section is to test and implement C = 1
circuit.cry(np.pi, clock[0], ancilla)
circuit.cry(np.pi/3, clock[1], ancilla)
circuit.barrier()
circuit.measure(ancilla, measurement[0])
circuit.barrier()
inv_qpe(circ, clock, input)
# State preparation. (various initial values)
# (restart from the second cell if changed)
intial_state = [0,1]
# intial_state = [1,0]
# intial_state = [1/np.sqrt(2),1/np.sqrt(2)]
# intial_state = [np.sqrt(0.9),np.sqrt(0.1)]
circuit.initialize(intial_state, 3)
circuit.barrier()
# Perform a Hadamard Transform
circuit.h(clock)
hhl(circuit, ancilla, clock, input, measurement)
# Perform a Hadamard Transform
circuit.h(clock)
circuit.barrier()
circuit.measure(input, measurement[1])
circuit.draw('mpl',scale=1)
#print(circuit)
# Execute the circuit using the simulator
simulator = qiskit.BasicAer.get_backend('qasm_simulator')
job = execute(circuit, backend=simulator, shots=1000)
#Get the result of the execution
result = job.result()
# Get the counts, the frequency of each answer
counts = result.get_counts(circuit)
# Display the results
plot_histogram(counts)
bcknd = Aer.get_backend('statevector_simulator')
job_sim = execute(circuit, bcknd)
result = job_sim.result()
o_state_result = result.get_statevector(circuit, decimals=3)
print(o_state_result)
provider.backends()
# Choose the backend on which to run the circuit
backend = provider.get_backend('ibmq_santiago')
from qiskit.tools.monitor import job_monitor
# Execute the job
job_exp = execute(circuit, backend=backend, shots=8192)
# Monitor the job to know where we are in the queue
job_monitor(job_exp, interval = 2)
# Get the results from the computation
results = job_exp.result()
# Get the statistics
answer = results.get_counts(circuit)
# Plot the results
plot_histogram(answer)
# Auto generated circuit (almost) matching the form from the Wong paper (using cu gates)
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
beta = 0
cycle_time = 0.5
qr = QuantumRegister(4)
cr = ClassicalRegister(4)
qc = QuantumCircuit(qr, cr, name="main")
intial_state = [0,1]
qc.initialize(intial_state, qr[3])
qc.barrier(qr[0], qr[1], qr[2], qr[3])
qc.h(qr[1])
qc.h(qr[2])
qc.barrier(qr[0], qr[1], qr[2], qr[3])
# e^{i*A*t}
qc.cu(np.pi/2, -np.pi/2, np.pi/2, 3*np.pi/4, qr[1], qr[3], label='U');
# e^{i*A*t*2}
qc.cu(np.pi, np.pi, 0, 0, qr[2], qr[3], label='U2');
qc.barrier(qr[0], qr[1], qr[2], qr[3])
qc.h(qr[2])
qc.cu1(-3.14159/2, qr[1], qr[2])
qc.h(qr[1])
qc.swap(qr[2], qr[1])
qc.barrier(qr[0], qr[1], qr[2], qr[3])
qc.cry(3.14159, qr[1], qr[0])
qc.cry(3.14159/3, qr[2], qr[0])
qc.barrier(qr[0], qr[1], qr[2], qr[3])
qc.swap(qr[2], qr[1])
qc.h(qr[1])
qc.cu1(3.14159/2, qr[1], qr[2])
qc.h(qr[2])
qc.barrier(qr[0], qr[1], qr[2], qr[3])
# e^{i*A*t*2}
qc.cu(np.pi, np.pi, 0, 0, qr[2], qr[3], label='U2');
# e^{i*A*t}
qc.cu(np.pi/2, np.pi/2, -np.pi/2, -3*np.pi/4, qr[1], qr[3], label='U');
qc.barrier(qr[0], qr[1], qr[2], qr[3])
qc.h(qr[1])
qc.h(qr[2])
qc.barrier(qr[0], qr[1], qr[2], qr[3])
qc.measure(qr[0], cr[0])
qc.measure(qr[3], cr[3])
from qiskit import execute, Aer
backend = Aer.get_backend("qasm_simulator") # Use Aer qasm_simulator
job = execute(qc, backend, shots=1000)
result = job.result()
counts = result.get_counts(qc)
print("Total counts are:", counts)
# Draw the circuit
print(qc)
#qc.draw('mpl',scale=1)
# Plot a histogram
from qiskit.visualization import plot_histogram
plot_histogram(counts)
qc.draw('mpl',scale=1)
# Same example as above but using the U3 and U1 gates instead of U1
# Initialize with RY instead of "initialize()"
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
beta = 1
qr = QuantumRegister(4)
cr = ClassicalRegister(4)
qc = QuantumCircuit(qr, cr, name="main")
# intial_state = [0,1]
# qc.initialize(intial_state, qr[3])
qc.ry(3.14159*beta, qr[3])
qc.barrier(qr[0], qr[1], qr[2], qr[3])
qc.h(qr[1])
qc.h(qr[2])
qc.barrier(qr[0], qr[1], qr[2], qr[3])
# e^{i*A*t}
# qc.cu(np.pi/2, -np.pi/2, np.pi/2, 3*np.pi/4, qr[1], qr[3], label='U');
# The CU gate is equivalent to a CU1 on the control bit followed by a CU3
qc.u1(3*3.14159/4, qr[1])
qc.cu3(3.14159/2, -3.14159/2, 3.14159/2, qr[1], qr[3])
# e^{i*A*t*2}
# qc.cu(np.pi, np.pi, 0, 0, qr[2], qr[3], label='U2');
qc.cu3(3.14159, 3.14159, 0, qr[2], qr[3])
qc.barrier(qr[0], qr[1], qr[2], qr[3])
qc.h(qr[2])
qc.cu1(-3.14159/2, qr[1], qr[2])
qc.h(qr[1])
qc.swap(qr[2], qr[1])
qc.barrier(qr[0], qr[1], qr[2], qr[3])
qc.cry(3.14159, qr[1], qr[0])
qc.cry(3.14159/3, qr[2], qr[0])
qc.barrier(qr[0], qr[1], qr[2], qr[3])
qc.swap(qr[2], qr[1])
qc.h(qr[1])
qc.cu1(3.14159/2, qr[1], qr[2])
qc.h(qr[2])
qc.barrier(qr[0], qr[1], qr[2], qr[3])
# e^{i*A*t*2}
# qc.cu(np.pi, np.pi, 0, 0, qr[2], qr[3], label='U2');
qc.cu3(3.14159, 3.14159, 0, qr[2], qr[3])
# e^{i*A*t}
# qc.cu(np.pi/2, np.pi/2, -np.pi/2, -3*np.pi/4, qr[1], qr[3], label='U');
# The CU gate is equivalent to a CU1 on the control bit follwed by a CU3
qc.u1(-3*3.14159/4, qr[1])
qc.cu3(3.14159/2, 3.14159/2, -3.14159/2, qr[1], qr[3])
qc.barrier(qr[0], qr[1], qr[2], qr[3])
qc.h(qr[1])
qc.h(qr[2])
qc.barrier(qr[0], qr[1], qr[2], qr[3])
qc.measure(qr[0], cr[0])
qc.measure(qr[3], cr[3])
# qc.measure(qr, cr)
from qiskit import execute, Aer
backend = Aer.get_backend("qasm_simulator") # Use Aer qasm_simulator
job = execute(qc, backend, shots=1000)
result = job.result()
counts = result.get_counts(qc)
print("Total counts are:", counts)
# Draw the circuit
print(qc)
# Plot a histogram
from qiskit.visualization import plot_histogram
plot_histogram(counts)
qc.draw('mpl',scale=1)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_nature.second_q.drivers import PySCFDriver
driver = PySCFDriver()
problem = driver.run()
print(problem)
from qiskit_nature.second_q.problems import ElectronicBasis
driver.run_pyscf()
problem = driver.to_problem(basis=ElectronicBasis.MO, include_dipole=True)
print(problem.basis)
ao_problem = driver.to_problem(basis=ElectronicBasis.AO)
print(ao_problem.basis)
from qiskit_nature.second_q.formats.qcschema_translator import qcschema_to_problem
qcschema = driver.to_qcschema()
ao_problem = qcschema_to_problem(qcschema, basis=ElectronicBasis.AO)
from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema
basis_transformer = get_ao_to_mo_from_qcschema(qcschema)
mo_problem = basis_transformer.transform(ao_problem)
print(mo_problem.basis)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import qiskit.qasm3
program = """
OPENQASM 3.0;
include "stdgates.inc";
input float[64] a;
qubit[3] q;
bit[2] mid;
bit[3] out;
let aliased = q[0:1];
gate my_gate(a) c, t {
gphase(a / 2);
ry(a) c;
cx c, t;
}
gate my_phase(a) c {
ctrl @ inv @ gphase(a) c;
}
my_gate(a * 2) aliased[0], q[{1, 2}][0];
measure q[0] -> mid[0];
measure q[1] -> mid[1];
while (mid == "00") {
reset q[0];
reset q[1];
my_gate(a) q[0], q[1];
my_phase(a - pi/2) q[1];
mid[0] = measure q[0];
mid[1] = measure q[1];
}
if (mid[0]) {
let inner_alias = q[{0, 1}];
reset inner_alias;
}
out = measure q;
"""
circuit = qiskit.qasm3.loads(program)
circuit.draw("mpl")
|
https://github.com/AllenGabrielMarchen/HHL_implementation
|
AllenGabrielMarchen
|
#run.py
'''
참고 논문 :Low Complexity Quantum Matrix Inversion A기gorithm for non-Hermitian Matrices
해당 논문에서, non-Hermitian인 경우에 Hermitian으로 바꾸기 위해서 2*2의 행렬을 4*4 행렬로 바꾸었다.
밑의 주어진 코드를 통해 이해해보도록하자.
A = np.array([[2,-1],[1,4]])의 꼴로 주어진 A는 non-Hermitian의 꼴이다.
그러므로, 이를 def main - #Check if Hermitian 파트에서 다음과 같은 코드로 아래와 같은 Hermitian으로 바꾸게 된다.
(코드) A = np.vstack((np.hstack((np.zeros_like(A),A)),np.hstack((A.T, np.zeros_like(A)))))
이에 맞게 나머지 x와 b의 행렬의 형태도 4*1의 형태로 바꾸어주어야 한다.
즉, x = [ 0, 0, x1, x2]의 꼴로, 그리고 b는 [1 1 0 0]의 꼴로 바꾸어야 한다.
(결과)
[[ 0 0 2 -1]
[ 0 0 1 4]
[ 2 1 0 0]
[-1 4 0 0]]
'''
import numpy as np
from scipy.linalg import expm
from qiskit.extensions import UnitaryGate
from qiskit.circuit.add_control import add_control
from qiskit import Aer
import circuit
import hhl
import tools
def main(A,b,backend,shots,t,n_l,delta):
#Check if Hermitian
#위에서 언급한 바대로 non-Hermitian matrice인 A에 대해서 Hermitian으로 바꿔주는 과정
if np.allclose(A,A.T) == False:
print("Given A matrice is not Hermitian.")
print("Given Matrices will be transformed into Hermitian formation.")
A = np.vstack((np.hstack((np.zeros_like(A),A)),np.hstack((A.T, np.zeros_like(A))))) # Hermitian의 꼴로 바꿈
#A의 shape와 동일한 zero array를 생성하고, A의 왼쪽에 배치, horizontal 방향도 마찬가지.
b = np.hstack((b,np.zeros_like((np.shape(A)[0]-np.shape(b)[0],1))))
i = complex(0,1) #complex(real part, imaginary part)
U = expm(i*A*t) #여기서 A가 행렬로 주어졌기 때문에, 행렬을 exp에 올리기 위해서는 expm이라는 scipy 패키지가 필요함.
U_gate = UnitaryGate(U) #위에서 구성한 U라는 행렬로써 Unitary gate를 구성할 수 있음. (4*4) 행렬
CU = add_control(U_gate,1,ctrl_state=None, label="CU")
#CU라는 게이트 이름을 label에 저장
#control 되는 경우의 state를 지정 -> 해당사항 없음
#두번째 인자는 컨트롤 큐빗의 개수를 지정함.
n_b = int(np.log2(U.shape[0]))
#Ax =b의 꼴이고, b는 4*1의 shape이므로, A의 행의 개수와 동일함. 따라서, U의 행렬의 행의 개수와 동일함.
#행의 개수에 log2를 취하면 필요한 n_b의 값을 구할 수 있음.
#각각 HHL 알고리즘이 구현된 방식으로 결과를 얻는다
My_HHL_result = hhl.My_HHL(CU,b,n_l,n_b,backend,delta,shots,A,details = True,chevyshev = False)
print("\n")
qiskit_result = hhl.qiskit_HHL(A,b)
print("\n")
classical_result = hhl.classical_HHL(A,b)
print("\n")
#For normalized answer
print("<Un - normalized Case Comparision>")
print('Qiskit Error : {0}'.format(np.linalg.norm(qiskit_result[1]-classical_result[1])))
print('My HHL Error : {0}'.format(np.linalg.norm(My_HHL_result[1]-classical_result[1])))
print("\n")
print("<Normalized Case Comparision>")
print('Qiskit Error : {0}'.format(np.linalg.norm(qiskit_result[0]-classical_result[0])))
print('My HHL Error : {0}'.format(np.linalg.norm(My_HHL_result[0]-classical_result[0])))
if __name__ == "__main__":
#setups
A = np.array([[2,-1],[1,4]]) #non-Hermitian인 경우의 행렬에 대한 저장
b = np.array([1,1])
backend = Aer.get_backend('aer_simulator')
shots = 8192
t = np.pi*2/16
n_l = 3 #QPE 상에서 n_ㅣ는 하다마드로 초기화 되는 부분
delta = 1/16*(2**(n_l-1))
main(A,b,backend,shots,t,n_l,delta)
#my_hhl.py
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
import numpy as np
import circuit as circ
import tools
def My_HHL(CU,b,n_l,n_b,backend,delta,shots,A,details = True,chevyshev = False):
#circuit initialization
#qubit의 개수들을 정의한다.
n_f = 1
nb = int(np.log2(b.shape))
#정의된 qubit의 개수들을 기반으로 양자 레지스터들을 생성한다.
nl_rg = QuantumRegister(n_l, "l")
nb_rg = QuantumRegister(n_b, "b")
na_rg = QuantumRegister(n_l, "a")
nf_rg = QuantumRegister(n_f, "f")
#고전 레지스터들을 생성한다.
cf = ClassicalRegister(n_f, "classical_f")
cb = ClassicalRegister(n_b, "classical_b")
#생성된 레지스터들을 기반으로 비어있는 양자회로를 설치한다.
qc = QuantumCircuit(nf_rg,nl_rg, nb_rg, na_rg, cf, cb)
#isometry 패키지를 이용해서 normalized 된 b 행렬을 양자회로에 인코딩한다.
#즉. isometry라는 메서드는 어떤 행렬을 양자회로에 업로드 해주는 역할을 한다.
qc.isometry(b/np.linalg.norm(b), list(range(nb)), None)
qc.barrier(nf_rg,nl_rg,nb_rg)
#details는 양자 회로의 어떠한 instruction들을 세부적으로 표현할 것인지 아닌지에 대한 설정이다.
if details == True:
#compose를 이용해서 위에서 생성한 레지스터에 붙이는 경우, instruction 내의 모든 회로가 다 보임.
#또한, 더 많은 register들이 있는 회로에 적은 register들이 있는 회로를 가져다 붙이기 위해서는 compose에 인자로써 register가 적용될 순서를 명시해주어야함.
#구성한 circ 패키지 내에 있는 회로들을 compose를 이용해 가져다 붙이는 과정
#QPE -> Eigenvalue_inversion -> QPE_dagger 순으로 회로를 가져다 붙임
qc = qc.compose(circ.QPE(n_l,n_b,CU),nl_rg[:]+nb_rg[:])
qc = qc.compose(circ.Eigenvalue_inversion(n_l,delta,chevyshev),[nl_rg[2]]+[nl_rg[1]]+[nl_rg[0]]+nf_rg[:])
qc = qc.compose(circ.QPE_dagger(n_l,n_b,CU),nl_rg[:]+nb_rg[:])
else:
qc.append(circ.QPE(n_l,n_b,CU),nl_rg[:]+nb_rg[:])
qc.append(circ.Eigenvalue_inversion(n_l),[nl_rg[2]]+[nl_rg[1]]+[nl_rg[0]]+nf_rg[:])
qc.append(circ.QPE_dagger(n_l,n_b,CU),nl_rg[:]+nb_rg[:])
qc.barrier(nf_rg[:]+nl_rg[:]+nb_rg[:]) #레지스터의 이름과 그 안에 있는 큐비트들의 순서들을 조합하여 한번에 barrier를 세울 수 있음.
#측정 실시 파트
qc.measure(nf_rg,cf)
qc.measure(nb_rg,cb)
answer = circ.measurement(qc,n_l,n_b,CU,backend,shots)
qc.draw(output = 'mpl').savefig('./outputs/qc_HHL')
#Obtaining Normalized answer
normalized_result = tools.normalize_vector(answer, n_b)
#Obtaining Real Answer
'''
즉, normalized된 x값을 집어넣고, Ax = b 꼴에서 좌변을 계산한 후에 b와 몇배 차이인가를 알아내는 과정
여기서 몇배 차이를 나타내는게 constant임.
constant는 b와 같은 shape를 갖게 되고, ensemble로 얻어지는 양자회로의 특성상 explicit한 결과가 주어지지 않는다.
따라서, constant 벡터의 모든 요소들의 평균으로서 몇배 차이인지를 나타낸다.
'''
constant = b/(A @ normalized_result)
constant = (constant[0]+constant[1])/2
constant = np.mean(constant)
#결과 출력 파트
print('<My_HHL>')
print('Normalized Answer : {0}'.format(normalized_result))
print('Un-normalized Answer : {0}'.format(normalized_result * constant))
print('Normalize Constant: ' ,constant)
return [normalized_result,normalized_result * constant]
#classical_hhl.py
from qiskit.algorithms.linear_solvers.numpy_linear_solver import NumPyLinearSolver
import numpy as np
def classical_HHL(A,b):
#NumpyLinearSolver를 이용해서 주어진 행렬방정식을 풀어낸다.
'''
참고로, 여기선 un-normalized된 해로써 결과값이 나온다는 사실은 자명하다.
하지만 여기서 나온 해를 normalize를 통해서 my_hhl과 qiskit_hhl에서 내놓은 normalized된 해와의 차이를 분석하기 위해서
normalized Answer 또한 작성했다.
'''
sol = NumPyLinearSolver().solve(A, b)
sol_state = sol.state
norm_state = sol_state/np.linalg.norm(sol_state)
print('<Classical case using Numpy>')
if np.shape(b)[0] == 2:
sol_state = np.pad(sol_state,(2,0))
norm_state = np.pad(norm_state,(2,0))
print('Un-normalized Classical Numpy answer : {0}'.format(sol_state,(2,0)))
print('Normalized Classical Numpy answer : {0}'.format(norm_state,(2,0)))
return [norm_state,sol_state]
#qiskit_hhl.py
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer
from qiskit.quantum_info import Statevector
from qiskit.algorithms.linear_solvers.hhl import HHL
import numpy as np
def qiskit_HHL(A,b):
#해당 내용은 https://qiskit.org/textbook/ch-applications/hhl_tutorial.html의 solving 과정을 참고하였음
backend = Aer.get_backend('aer_simulator')
#qiskit HHL 코드를 불러옴
hhl = HHL(quantum_instance=backend)
#A, b에 대해서 HHL 회로를 구성
solution = hhl.solve(A, b)
#만들어진 회로를 그림으로 저장
solution.state.draw("mpl").savefig("./outputs/HHL_circuit_qiskit.png")
#연산된 상태를 상태 벡터의 형태로 결과를 얻음
naive_sv = Statevector(solution.state).data
#qubit수를 확인
num_qubit = solution.state.num_qubits
#상태 벡터에서 필요한 상태만을 골라서 저장함
naive_full_vector = np.array([naive_sv[2**(num_qubit-1)+i] for i in range(len(b))])
#실수 부분만 취함
naive_full_vector = np.real(naive_full_vector)
#얻어진 벡터를 normalize하여 반환
normalized_result = naive_full_vector/np.linalg.norm(naive_full_vector)
#마찬가지로 주어진 해를 통해 constant를 구함.
constant = b/(A @ normalized_result)
constant = (constant[0]+constant[1])/2
constant = np.mean(constant)
print('<Qiskit_HHL>')
print('Normalized Qiskit Answer : {0}'.format(normalized_result))
print('Un-normalized Qiskit Answer : {0}'.format(normalized_result * constant))
print('Normalize Constant: ' ,constant)
return [normalized_result,normalized_result * constant]
#circuit_parts.py
from qiskit.circuit.library.arithmetic.exact_reciprocal import ExactReciprocal
from qiskit.circuit.library.arithmetic.piecewise_chebyshev import PiecewiseChebyshev
from qiskit import QuantumCircuit, QuantumRegister,Aer
import numpy as np
def qft_dagger(n_l):
# <qft를 구현하는 과정에 있어서 SWAP gate에 대한 참고사항> - issue 해결에 대한 report 2022-09-02
# SWAP 게이트를 걸어주는 목적은 qiskit은 qubit을 반대방향으로 읽기 때문임.
# 하지만, SWAP 게이트를 위와 같은 이유로 걸어주게 된다고 하면,
# HHL 알고리즘 상에서 Eigeninversion 단계에서 문제가 생기게 됨.
# 즉, Eigeninversion에서는 SWAP이 된 상태를 인지하지 못하고 연산을 실시하여 잘못된 연산이 나오게 됨.
"""n-qubit QFTdagger the first n qubits in circ"""
nl_rg = QuantumRegister(n_l, "l")
qc = QuantumCircuit(nl_rg)
# Don't forget the Swaps!
#QFT의 역연산은 곧 QFT_dagger임을 기억하자.
for j in reversed(range(n_l)):
qc.h(j)
for m in reversed(range(j)):
qc.cp(-np.pi/float(2**(j-m)), m, j)
qc.name = "QFT†"
#display(qc.draw(output = 'mpl'))
return qc
def QPE(n_l,n_b,CU):
#circuit initialization for HHL
nl_rg = QuantumRegister(n_l, "l")
nb_rg = QuantumRegister(n_b, "b")
#QuantumRegister(size=None, name=None, bits=None)
qc = QuantumCircuit(nl_rg,nb_rg)
#display(qc.draw(output = 'mpl'))
qc.h(nl_rg)
qc.barrier(nl_rg[:]+nb_rg[:])
for l in range(n_l):
for power in range(2**(l)):
qc.append(CU, [nl_rg[l],nb_rg[0],nb_rg[1]])
#첫번째 큐비트는 2^0번, 이후 2^n꼴로 돌아가게 설계됨.
#https://qiskit.org/documentation/stubs/qiskit.circuit.ControlledGate.html append의 예제.
#즉, append의 첫번째 인자는 gate, 두번쨰 인자의 첫번째 요소는 control qubit, 이후 인자의 요소는 target qubit.
qc.barrier(nl_rg[:]+nb_rg[:])
qc.append(qft_dagger(n_l),nl_rg[:])
qc.barrier(nl_rg[:]+nb_rg[:])
qc.name = "QPE"
#display(qc.draw(output = 'mpl'))
return qc
def QPE_dagger(n_l,n_b,CU):
qc = QPE(n_l,n_b,CU)
qc = qc.inverse()
#여기서 inverse함수는 모든 rotation 각도까지도 반대로 입력해줌을 확인하였음.
#QPE dagger는 그저, QPE의 역과정이라고 생각하면 된다. 단, 각도는 반대방향이어야 함.
#따라서 여기서 inverse함수를 이용하여 QPE의 역과정, 즉, QPE dagger를 실시하였음
qc.name = 'QPE†'
return qc
def Eigenvalue_inversion(n_l,delta,chevyshev = False):
#Chevyshev 근사를 이용한 풀이방법.
#Qiskit에서 제공한 HHL 알고리즘 상에서는 Chevyshev 근사를 이용한 부분이 있었다.
#일단 Chevyshev 근사를 이용하는 경우, 기존 Taylor 근사보다 훨씬 빠르게 급수에 수렴한다는 장점이 있다.
#참고 문헌 : https://freshrimpsushi.github.io/posts/chebyshev-expansion/
#여기서는 위의 표현한 cos(theta)에 대한 표현을 Chevyshev근사를 이용해 theta값을 알아내겠다는 접근방법이다.
#하지만, 근사결과가 좋지 못하다는 점 때문에 Chevyshev 근사를 이용하는 대신에 직접 exact한 theta값을 알아내는 ExactReciprocal을 이용하였다.
if chevyshev == True:
print("Maybe using Chevyshev approximation is not accurate.")
#Using Chebychev Approx. (not recommended!)
nl_rg = QuantumRegister(n_l, "l")
na_rg = QuantumRegister(n_l, "a")
nf_rg = QuantumRegister(1, "f")
qc = QuantumCircuit(nl_rg, na_rg, nf_rg)
f_x, degree, breakpoints, num_state_qubits = lambda x: np.arcsin(1 / x), 2, [1,2,3,4], n_l
#degree : 함수를 polynomial로 근사할 떄, 최고차항 정의
#breakpoints는 구간을 나누는 느낌. : 근사를 할 떄, 다항식을 어떤 구간에서 나눠서 사용할 지
#l : eigenvalue를 표현
#f : rotation
#a : ancila
pw_approximation = PiecewiseChebyshev(f_x, degree, breakpoints, num_state_qubits)
pw_approximation._build()
qc.append(pw_approximation,nl_rg[:]+[nf_rg[0]]+na_rg[:]) #range(nl*2+1))
qc.name = 'Chevyshev_inversion'
return qc
else:
qc = ExactReciprocal(n_l, delta, neg_vals = True)
qc.name = 'Reciprocal_inversion'
return qc
#measurement.py
'''
주어진 회로에 대해 backend를 가지고서 시뮬레이션을 하기 위한 모듈
'''
from qiskit import QuantumCircuit, transpile, assemble
from qiskit.visualization import plot_histogram
def measurement(qc,n_l,n_b,CU,backend,shots):
t = transpile(qc, backend)
qobj = assemble(t, shots=shots)
results = backend.run(qobj).result()
answer = results.get_counts()
plot_histogram(answer, title="Output Histogram").savefig('./outputs/output_histogram.png',facecolor='#eeeeee')
return answer
#normalization.py
import numpy as np
#양자 회로를 통해서 얻어진 결과(dictionary)를 통해서 normalize된 결과 벡터 x를 구하는 함수
def normalize_vector(answer, nb):
#nb register에서 얻어질 수 있는 상태들을 dictionary의 key의 형태로 만들어 저장한다.
possible_states = [] #가능한 모든 상태들을 저장하기 위한 list
for s in range(2**(nb)):
possible_states.append(format(s, "b").zfill(nb)) #nb만큼의 자릿수에 대해서 binary의 형태로 모든 경우의 수를 생성.
#print(answer)
#flag register를 측정한 결과가 1이 나온 경우에 대해서 nb register의 결과를 순서대로 추가한다.
available_result = []
for i in possible_states:
for key in answer.keys(): #정답의 key 즉, 상태들을 받아옴.
if key[0:2] == i: #얻은 상태들이 가능한 상태에 존재한다면,
if int(key[-1]) == 1: #그리고 마지막 자릿수, f_register가 1의 값을 갖는다면,
available_result.append(answer[key]) #avaliable_result에 f가 1인 상태들이 나온 횟수를 append 하자.
else:
pass
else:
pass
#확률 분포를 상태 벡터의 형식으로 바꾸기 위해서 제곱근을 취한다.
available_result = np.sqrt(np.array(available_result)) #확률 진폭은 계수의 제곱의 형태로 나오기 때문.
#벡터의 크기가 1이 되도록 normalize해준다.
normalized_result = available_result/np.linalg.norm(available_result)
return normalized_result
|
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
|
PabloMartinezAngerosa
|
from tsp_qaoa import test_solution
from qiskit.visualization import plot_histogram
import networkx as nx
import numpy as np
import json
import csv
# Array of JSON Objects
# Sort the JSON data based on the value of the brand key
UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"])
# genera las distancias
index = -1
for sample in UNIFORM_CONVERGENCE_SAMPLE:
mean = sample["mean"]
index += 1
distance_p_ground_state = np.max(np.abs(UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"] - sample["probabilities"]))
UNIFORM_CONVERGENCE_SAMPLE[index]["distance_pgs"] = distance_p_ground_state
header = ['instance', 'iteration', 'distance']
length_instances = 2
with open('qaoa_multiple_distance.csv', 'w', encoding='UTF8') as f:
writer = csv.writer(f)
# write the header
writer.writerow(header)
for i in range(length_instances):
job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution()
iteration = 0
for sample in UNIFORM_CONVERGENCE_SAMPLE:
iteration += 1
mean = sample["mean"]
distance = sample["distance_pgs"]
state = 0
for probability in sample["probabilities"]:
state += 1
# write the data
data = [iteration, state, probability, mean]
writer.writerow(data)
writer_q.writerow([iteration, distance])
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
import numpy as np
from qiskit import compiler, BasicAer, QuantumRegister
from qiskit.converters import circuit_to_dag
from qiskit.transpiler import PassManager
from qiskit.transpiler.passes import Unroller
def convert_to_basis_gates(circuit):
# unroll the circuit using the basis u1, u2, u3, cx, and id gates
unroller = Unroller(basis=['u1', 'u2', 'u3', 'cx', 'id'])
pm = PassManager(passes=[unroller])
qc = compiler.transpile(circuit, BasicAer.get_backend('qasm_simulator'), pass_manager=pm)
return qc
def is_qubit(qb):
# check if the input is a qubit, which is in the form (QuantumRegister, int)
return isinstance(qb, tuple) and isinstance(qb[0], QuantumRegister) and isinstance(qb[1], int)
def is_qubit_list(qbs):
# check if the input is a list of qubits
for qb in qbs:
if not is_qubit(qb):
return False
return True
def summarize_circuits(circuits):
"""Summarize circuits based on QuantumCircuit, and four metrics are summarized.
Number of qubits and classical bits, and number of operations and depth of circuits.
The average statistic is provided if multiple circuits are inputed.
Args:
circuits (QuantumCircuit or [QuantumCircuit]): the to-be-summarized circuits
"""
if not isinstance(circuits, list):
circuits = [circuits]
ret = ""
ret += "Submitting {} circuits.\n".format(len(circuits))
ret += "============================================================================\n"
stats = np.zeros(4)
for i, circuit in enumerate(circuits):
dag = circuit_to_dag(circuit)
depth = dag.depth()
width = dag.width()
size = dag.size()
classical_bits = dag.num_cbits()
op_counts = dag.count_ops()
stats[0] += width
stats[1] += classical_bits
stats[2] += size
stats[3] += depth
ret = ''.join([ret, "{}-th circuit: {} qubits, {} classical bits and {} operations with depth {}\n op_counts: {}\n".format(
i, width, classical_bits, size, depth, op_counts)])
if len(circuits) > 1:
stats /= len(circuits)
ret = ''.join([ret, "Average: {:.2f} qubits, {:.2f} classical bits and {:.2f} operations with depth {:.2f}\n".format(
stats[0], stats[1], stats[2], stats[3])])
ret += "============================================================================\n"
return ret
|
https://github.com/Pitt-JonesLab/slam_decomposition
|
Pitt-JonesLab
|
import weylchamber
from qiskit.converters import circuit_to_dag
from qiskit import transpile
from qiskit.transpiler import PassManager
from qiskit.transpiler.passes import ConsolidateBlocks, Collect2qBlocks
from qiskit.quantum_info import Operator
from qiskit.circuit.library import SwapGate, CXGate
from tqdm import tqdm
from slam.utils.circuit_suite import benchmark_lambdas, benchmark_lambdas_no_qv
# benchmark_lambdas[9](6).draw(output="mpl")
from qiskit.transpiler import CouplingMap
map_option = ["a2a", "lattice"][1]
if map_option == "a2a":
coupling_map = CouplingMap.from_full(16)
elif map_option == "lattice":
coupling_map = CouplingMap.from_grid(4, 4)
coordinate_list = []
for lambda_item in tqdm(benchmark_lambdas[0:1]):
# load qiskit transpiler with pass for coupling map
induce_swaps = lambda qc: transpile(
qc, coupling_map=coupling_map, optimization_level=3
)
circuit = lambda_item(16)
circuit = induce_swaps(circuit)
# Proceed
pm = PassManager()
pm.append(Collect2qBlocks())
pm.append(ConsolidateBlocks(force_consolidate=True))
transp_circuit = pm.run(circuit)
dag = circuit_to_dag(transp_circuit)
for gate in dag.collect_2q_runs():
assert len(gate) == 1 # should be 1 bc of consolidation
d = Operator(gate[0].op).data
try:
coordinate_list.append(weylchamber.c1c2c3(d))
except ValueError:
# seems like some SWAPs were getting a rounding error and couldn't be converted to a Weyl chamber coordinate
# XXX manually add a SWAP - it only happens two or three times total anyway
coordinate_list.append(weylchamber.c1c2c3(SwapGate().to_matrix()))
coordinate_freq = {i: coordinate_list.count(i) for i in set(coordinate_list)}
# print(coordinate_freq[weylchamber.c1c2c3(SwapGate().to_matrix())])
# print(coordinate_freq[weylchamber.c1c2c3(CXGate().to_matrix())])
679 / (679 + 717)
import matplotlib.pyplot as plt
from slam.utils.visualize import fpath_images
plt.close()
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
from weylchamber import WeylChamber
w = WeylChamber()
##
for k, v in coordinate_freq.items():
ax.scatter3D(*k, s=0.75 * v, c="k")
##
w.labels = {}
w.render(ax)
# save as pdf and svg
plt.savefig(f"{fpath_images}/shot_chart_{map_option}.pdf", format="pdf")
plt.savefig(f"{fpath_images}/shot_chart_{map_option}.svg", format="svg")
fig.show()
|
https://github.com/mballarin97/mps_qnn
|
mballarin97
|
# This code is part of qcircha.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Uses the simulation results from `entanglement_characterization.py`
to evaluate the expressibility of a QNN, using the definition
in [Sim et al. 2019](https://arxiv.org/abs/1905.10876).
Such measure requires to construct a histogram of fidelities of states
generated by the QNN, to be compared with random states sampled from the
uniform Haar distribution. The default number of bins of the histogram is 100,
the number of fidelities used to build the histogram is 4950 ( = (100**2 - 100) / 2),
obtained by all possible different combinations of the 100 states generated by
`entanglement_characterization.py`
"""
import time
import json
import os
import sys
import numpy as np
import scipy as sp
from qiskit import Aer
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_theme()
from qcircha.circuits import *
from qcircha.circuit_selector import pick_circuit
from qcircha.entanglement_characterization import entanglement_characterization
from qcircha.entanglement.haar_entanglement import haar_discrete
from qcircha.utils import removekey
def kl_divergence(p, q, eps = 1e-20) :
"""
Compute the KL divergence between two probability
distributions
Parameters
----------
p : array-like of floats
First probability distribution
q : array-like of floats
Second probability distribution
Returns
-------
float
KL divergence of p and q
"""
# Eliminate divergences (check if safe to do)
q = np.array([max(eps, q_j) for q_j in q])
p = np.array([max(eps, p_j) for p_j in p])
#return np.sum(p * np.log(p/q))
return sp.stats.entropy(p, q, base=np.e)
def eval_kl(fidelities, n_bins=20, num_qubits=4):
"""
Evaluate KL divergence
Parameters
----------
fidelities : _type_
_description_
n_bins : int, optional
_description_, by default 20
num_qubits : int, optional
_description_, by default 4
Returns
-------
_type_
_description_
"""
discrete_haar = np.array([haar_discrete(x, 1/n_bins, 2 ** num_qubits) for x in np.linspace(0, 1, n_bins + 1)[:-1]])
y, _ = np.histogram(fidelities, range=(0, 1), bins=n_bins)
y = y / np.sum(y)
return kl_divergence(y, discrete_haar), y, discrete_haar
def inner_products(state_list, rep):
"""
"""
inner_p = []
num_tests = len(state_list[0, :, 0])
for i in range(num_tests):
for j in range(i):
tmp = np.abs(state_list[rep, i, :] @ np.conjugate(state_list[rep, j, :])) ** 2
inner_p.append(tmp)
return np.array(inner_p)
def compute_espressivity(num_qubits, repetitions, feature_map = None, var_ansatz=None, alternate = True,
backend='Aer', path='./data/expr/', plot=False, save=False, max_bond_dim=None):
if isinstance(repetitions, int):
reps = range(1, repetitions + 1)
else:
reps = repetitions
# Generate random states from QNN
st_list = []
for num_reps in reps:
ansatz = pick_circuit(num_qubits, num_reps, feature_map=feature_map,
var_ansatz=var_ansatz, alternate=alternate)
_, _, _, statevectors = entanglement_characterization(ansatz, backend=backend, get_statevector=True,
max_bond_dim = max_bond_dim)
statevectors = np.array(statevectors)
st_list.append(statevectors)
print("")
st_list = np.array(st_list)
# Evaluate inner products
res = []
for idx, rep in enumerate(reps):
res.append(inner_products(st_list, idx))
res = np.array(res)
# Build histogram of distribution and evaluate KL divergence with Haar
n_bins = 100
num_qubits = ansatz.metadata['num_qubits']
expressibility = [eval_kl(data, n_bins=n_bins, num_qubits = num_qubits)[0] for data in res]
if save == True:
# Save data
if not os.path.isdir(path):
os.makedirs(path)
timestamp = time.localtime()
save_as = time.strftime("%Y-%m-%d_%H-%M-%S", timestamp) + '_' + str(np.random.randint(0, 1000))
name = os.path.join(path, save_as)
# Save details of the ansatz
meta = dict({"n_bins": n_bins, "backend": backend})
circ_data = removekey(ansatz.metadata, ["num_reps", "params"])
meta.update(circ_data) # add metadata from the ansatz
with open(name+'.json', 'w') as file:
json.dump(meta, file, indent=4)
expressibility = np.array(expressibility, dtype=object)
np.save(name, expressibility, allow_pickle=True)
if plot == True:
fig = plt.figure(figsize=(9.6, 6))
plt.ylim([1e-3, 1])
plt.ylabel(r"$Expr. D_{KL}$")
plt.xlabel("Repetitions")
plt.yscale('log')
plt.plot(reps, expressibility, marker='o', ls='--')
plt.tight_layout()
plt.show()
return expressibility
if __name__ == '__main__':
# Fixing seed for reproducibility
# seed = 120
# np.random.seed(seed)
num_qubits = 6
feature_map = 'ZZFeatureMap'
var_ansatz = 'TwoLocal'
alternate = True
backend = 'Aer'
repetitions = num_qubits
path = './data/expr/'
compute_espressivity(num_qubits, repetitions, feature_map = feature_map, var_ansatz=var_ansatz, backend=backend,
path=path, plot = True, save = True)
|
https://github.com/RohanGautam/storeQ
|
RohanGautam
|
import qiskit as qk
from qiskit import QuantumCircuit, execute, Aer
from qiskit.visualization import plot_histogram, plot_bloch_vector
from sklearn.preprocessing import LabelBinarizer
from math import sqrt, pi
import numpy as np
import cv2
import math
from tqdm import tqdm
# custom :
from customLabelBinarizer import CustomLabelBinarizer
import imutils
info = "rohan"
org = cv2.imread('/home/rohan/Desktop/Python_files/quantumExploring/img/puppy.png')
img = cv2.cvtColor(org, cv2.COLOR_BGR2GRAY)
img = imutils.resize(img, width=100)
row1 = img[0]
# cv2.imshow("image", img)
# cv2.waitKey(0)
def closestPowerOfTwo(n):
return 2**math.ceil(math.log(n)/math.log(2))
def highestPowerOfTwo(img):
'''highest power of two amongst all rows'''
maxVal = max([closestPowerOfTwo(len(list(set(row)))) for row in img])
return (maxVal, int(math.log(maxVal,2)))
def removePadding(matrix):
'''remove padded zeroes from the matrix to give the original LabelBinarizer binary vectors'''
# calculate index of the '1' that has the furthest/max index.
# This will be the boundary, beyond which we will discard the columns (zeroes)
boundary = max([list(l).index(1) for l in matrix]) # index, begins from 0
print(boundary)
return matrix[:, :boundary+1] # return sliced matrix
powerVal, exponent = highestPowerOfTwo(img)
lb_binarizers = []
rows_circuits = []
def startUpload ():
print('[INFO] One-Hot encoding matrix rows')
for row in tqdm(img) :
# one-hot encode them -> convert them to binary vectors
# why? because sum of amplitudes we pass should be = 1
lb = CustomLabelBinarizer()
r_oneHot = lb.fit_transform(row)
lb_binarizers.append(lb)
# pad extra with zeroes, so that row length is the max power of 2
padNum = powerVal-r_oneHot.shape[1]
r_padded = np.hstack((r_oneHot, np.zeros((r_oneHot.shape[0], padNum), dtype=r_oneHot.dtype)))
# qbits = []
# # create qbits
circuits = []
for vector in r_padded:
qBitNum = exponent
qc = QuantumCircuit(qBitNum)
initial_state = vector # Define initial_state as |1>. sum of amplitudes = 1, has to be power of 2
qc.initialize(initial_state, list(range(qBitNum))) # Apply initialisation operation to the 0th qubit
# qc.draw()
circuits.append(qc)
rows_circuits.append(circuits)
backend = Aer.get_backend('statevector_simulator')
def getOneHotVector(qc):
result = execute(qc,backend).result()
out_state = result.get_statevector()
# print(out_state)
vector = [int(x.real) for x in out_state]
return vector
def startDownload():
finalImage = []
for i in tqdm(range(len(rows_circuits))):
row_circuit = rows_circuits[i]
retrievedVectors=[]
for circuit in row_circuit:
retrievedVectors.append(getOneHotVector(circuit))
retrievedVectors = np.array(retrievedVectors) # convert to numpy array
retrievedVectors = removePadding(retrievedVectors)
# set the lb_binarizer to lb_binarizers[-1] to make it seem like it was hazy(error before)
row = lb_binarizers[i].inverse_transform(retrievedVectors)# the final vector
print(row.shape)
finalImage.append(row)
finalImage = np.array(finalImage)
## show it :
cv2.imshow("Reconstructed image", finalImage)
cv2.waitKey(0)
# startUpload()
# startDownload()
|
https://github.com/1chooo/Quantum-Oracle
|
1chooo
|
from qiskit import QuantumCircuit
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
qc.draw("mpl")
|
https://github.com/mnp-club/Quantum_Computing_Workshop_2020
|
mnp-club
|
from qiskit import *
from qiskit.tools.jupyter import *
from qiskit.visualization import *
import matplotlib.pyplot as plotter
import numpy as np
from IPython.display import display, Math, Latex
%matplotlib inline
# Loading your IBM Q account(s)
provider = IBMQ.load_account()
def run_circuit(qc):
backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend
result = execute(qc, backend, shots = 200000).result() # we run the simulation
counts = result.get_counts() # we get the counts
return counts
THE ONLY TASK
qc1 = QuantumCircuit(2,2)
# preparing 'a' bell pair which is |beta_00> here
qc1.h(0)
qc1.cx(0,1)
qc1.barrier([0,1])
# Apply any pauli gate here
a = input("BE SKYLER. APPLY ANY OF THE FOUR PAULI GATES:")
if a == 'X':
qc1.x(1)
if a == 'Y':
qc1.y(1)
if a == 'Z':
qc1.z(1)
# if it's not any of them, it's I. So we don't need to do anything.
qc1.barrier([0,1])
# Change the state into standard states: |00>, |01>, |10>, |11> depending on the gate applied
qc1.cx(0,1)
qc1.h(0)
#Measure
qc1.measure([0,1],[0,1])
backend = Aer.get_backend('qasm_simulator')
result = execute(qc1, backend, shots = 1024).result()
counts = result.get_counts()
plot_histogram(counts)
# On observation we get this mapping
print('Skyler applied this gate: ')
if '00' in counts.keys():
print('I') # She bluffed. # Don't worry if you haven't considered this case. Happens.
elif '10' in counts.keys():
print('X')
elif '11' in counts.keys():
print('Y')
else:
print('Z')
plot_histogram(counts)
|
https://github.com/benkoehlL/Qiskit_Playground
|
benkoehlL
|
from argparse import ArgumentParser, Namespace, BooleanOptionalAction
from qiskit import QuantumCircuit as qc
from qiskit import QuantumRegister as qr
from qiskit import transpile
from qiskit_aer import AerSimulator
from qiskit.result import Counts
from matplotlib.pyplot import show, subplots, xticks, yticks
from math import pi, sqrt
from heapq import nlargest
class GroversAlgorithm:
def __init__(self,
title: str = "Grover's Algorithm",
n_qubits: int = 5,
search: set[int] = { 11, 9, 0, 3 },
shots: int = 1000,
fontsize: int = 10,
print: bool = False,
combine_states: bool = False) -> None:
"""
_summary_
Args:
title (str, optional): Window title. Defaults to "Grover's Algorithm".
n_qubits (int, optional): Number of qubits. Defaults to 5.
search (set[int], optional): Set of nonnegative integers to search for using Grover's algorithm. Defaults to { 11, 9, 0, 3 }.
shots (int, optional): Amount of times the algorithm is simulated. Defaults to 10000.
fontsize (int, optional): Histogram's font size. Defaults to 10.
print (bool, optional): Whether or not to print quantum circuit(s). Defaults to False.
combine_states (bool, optional): Whether to combine all non-winning states into 1 bar labeled "Others" or not. Defaults to False.
"""
# Parsing command line arguments
self._parser: ArgumentParser = ArgumentParser(description = "Run grover's algorithm via command line", add_help = False)
self._init_parser(title, n_qubits, search, shots, fontsize, print, combine_states)
self._args: Namespace = self._parser.parse_args()
# Set of nonnegative ints to search for
self.search: set[int] = set(self._args.search)
# Set of m N-qubit binary strings representing target state(s) (i.e. self.search in base 2)
self._targets: set[str] = { f"{s:0{self._args.n_qubits}b}" for s in self.search }
# N-qubit quantum register
self._qubits: qr = qr(self._args.n_qubits, "qubit")
def _print_circuit(self, circuit: qc, name: str) -> None:
"""Print quantum circuit.
Args:
circuit (qc): Quantum circuit to print.
name (str): Quantum circuit's name.
"""
print(f"\n{name}:\n{circuit}")
def _oracle(self, targets: set[str]) -> qc:
"""Mark target state(s) with negative phase.
Args:
targets (set[str]): N-qubit binary string(s) representing target state(s).
Returns:
qc: Quantum circuit representation of oracle.
"""
# Create N-qubit quantum circuit for oracle
oracle = qc(self._qubits, name = "Oracle")
for target in targets:
# Reverse target state since Qiskit uses little-endian for qubit ordering
target = target[::-1]
# Flip zero qubits in target
for i in range(self._args.n_qubits):
if target[i] == "0":
# Pauli-X gate
oracle.x(i)
# Simulate (N - 1)-control Z gate
# 1. Hadamard gate
oracle.h(self._args.n_qubits - 1)
# 2. (N - 1)-control Toffoli gate
oracle.mcx(list(range(self._args.n_qubits - 1)), self._args.n_qubits - 1)
# 3. Hadamard gate
oracle.h(self._args.n_qubits - 1)
# Flip back to original state
for i in range(self._args.n_qubits):
if target[i] == "0":
# Pauli-X gate
oracle.x(i)
# Display oracle, if applicable
if self._args.print: self._print_circuit(oracle, "ORACLE")
return oracle
def _diffuser(self) -> qc:
"""Amplify target state(s) amplitude, which decreases the amplitudes of other states
and increases the probability of getting the correct solution (i.e. target state(s)).
Returns:
qc: Quantum circuit representation of diffuser (i.e. Grover's diffusion operator).
"""
# Create N-qubit quantum circuit for diffuser
diffuser = qc(self._qubits, name = "Diffuser")
# Hadamard gate
diffuser.h(self._qubits)
# Oracle with all zero target state
diffuser.append(self._oracle({"0" * self._args.n_qubits}), list(range(self._args.n_qubits)))
# Hadamard gate
diffuser.h(self._qubits)
# Display diffuser, if applicable
if self._args.print: self._print_circuit(diffuser, "DIFFUSER")
return diffuser
def _grover(self) -> qc:
"""Create quantum circuit representation of Grover's algorithm,
which consists of 4 parts: (1) state preparation/initialization,
(2) oracle, (3) diffuser, and (4) measurement of resulting state.
Steps 2-3 are repeated an optimal number of times (i.e. Grover's
iterate) in order to maximize probability of success of Grover's algorithm.
Returns:
qc: Quantum circuit representation of Grover's algorithm.
"""
# Create N-qubit quantum circuit for Grover's algorithm
grover = qc(self._qubits, name = "Grover Circuit")
# Intialize qubits with Hadamard gate (i.e. uniform superposition)
grover.h(self._qubits)
# # Apply barrier to separate steps
grover.barrier()
# Apply oracle and diffuser (i.e. Grover operator) optimal number of times
for _ in range(int((pi / 4) * sqrt((2 ** self._args.n_qubits) / len(self._targets)))):
grover.append(self._oracle(self._targets), list(range(self._args.n_qubits)))
grover.append(self._diffuser(), list(range(self._args.n_qubits)))
# Measure all qubits once finished
grover.measure_all()
# Display grover circuit, if applicable
if self._args.print: self._print_circuit(grover, "GROVER CIRCUIT")
return grover
def _outcome(self, winners: list[str], counts: Counts) -> None:
"""Print top measurement(s) (state(s) with highest frequency)
and target state(s) in binary and decimal form, determine
if top measurement(s) equals target state(s), then print result.
Args:
winners (list[str]): State(s) (N-qubit binary string(s))
with highest probability of being measured.
counts (Counts): Each state and its respective frequency.
"""
print("WINNER(S):")
print(f"Binary = {winners}\nDecimal = {[ int(key, 2) for key in winners ]}\n")
print("TARGET(S):")
print(f"Binary = {self._targets}\nDecimal = {self.search}\n")
if not all(key in self._targets for key in winners): print("Target(s) not found...")
else:
winners_frequency, total = 0, 0
for value, frequency in counts.items():
if value in winners:
winners_frequency += frequency
total += frequency
print(f"Target(s) found with {winners_frequency / total:.2%} accuracy!")
def _show_histogram(self, histogram_data) -> None:
"""Print outcome and display histogram of simulation results.
Args:
data: Each state and its respective frequency.
"""
# State(s) with highest count and their frequencies
winners = { winner : histogram_data.get(winner) for winner in nlargest(len(self._targets), histogram_data, key = histogram_data.get) }
# Print outcome
self._outcome(list(winners.keys()), histogram_data)
# X-axis and y-axis value(s) for winners, respectively
winners_x_axis = [ str(winner) for winner in [*winners] ]
winners_y_axis = [ *winners.values() ]
# All other states (i.e. non-winners) and their frequencies
others = { state : frequency for state, frequency in histogram_data.items() if state not in winners }
# X-axis and y-axis value(s) for all other states, respectively
other_states_x_axis = "Others" if self._args.combine else [*others]
other_states_y_axis = [ sum([*others.values()]) ] if self._args.combine else [ *others.values() ]
# Create histogram for simulation results
figure, axes = subplots(num = "Grover's Algorithm — Results", layout = "constrained")
axes.bar(winners_x_axis, winners_y_axis, color = "green", label = "Target")
axes.bar(other_states_x_axis, other_states_y_axis, color = "red", label = "Non-target")
axes.legend(fontsize = self._args.fontsize)
axes.grid(axis = "y", ls = "dashed")
axes.set_axisbelow(True)
# Set histogram title, x-axis title, and y-axis title respectively
axes.set_title(f"Outcome of {self._args.shots} Simulations", fontsize = int(self._args.fontsize * 1.45))
axes.set_xlabel("States (Qubits)", fontsize = int(self._args.fontsize * 1.3))
axes.set_ylabel("Frequency", fontsize = int(self._args.fontsize * 1.3))
# Set font properties for x-axis and y-axis labels respectively
xticks(fontsize = self._args.fontsize, family = "monospace", rotation = 0 if self._args.combine else 70)
yticks(fontsize = self._args.fontsize, family = "monospace")
# Set properties for annotations displaying frequency above each bar
annotation = axes.annotate("",
xy = (0, 0),
xytext = (5, 5),
xycoords = "data",
textcoords = "offset pixels",
ha = "center",
va = "bottom",
family = "monospace",
weight = "bold",
fontsize = self._args.fontsize,
bbox = dict(facecolor = "white", alpha = 0.4, edgecolor = "None", pad = 0)
)
def _hover(event) -> None:
"""Display frequency above each bar upon hovering over it.
Args:
event: Matplotlib event.
"""
visibility = annotation.get_visible()
if event.inaxes == axes:
for bars in axes.containers:
for bar in bars:
cont, _ = bar.contains(event)
if cont:
x, y = bar.get_x() + bar.get_width() / 2, bar.get_y() + bar.get_height()
annotation.xy = (x, y)
annotation.set_text(y)
annotation.set_visible(True)
figure.canvas.draw_idle()
return
if visibility:
annotation.set_visible(False)
figure.canvas.draw_idle()
# Display histogram
id = figure.canvas.mpl_connect("motion_notify_event", _hover)
show()
figure.canvas.mpl_disconnect(id)
def run(self) -> None:
"""
Run Grover's algorithm simulation.
"""
# Simulate Grover's algorithm locally
backend = AerSimulator(method = "density_matrix")
# Generate optimized grover circuit for simulation
transpiled_circuit = transpile(self._grover(), backend, optimization_level = 2)
# Run Grover's algorithm simulation
job = backend.run(transpiled_circuit, shots = self._args.shots)
# Get simulation results
results = job.result()
# Get each state's histogram data (including frequency) from simulation results
data = results.get_counts()
# Display simulation results
self._show_histogram(data)
def _init_parser(self,
title: str,
n_qubits: int,
search: set[int],
shots: int,
fontsize: int,
print: bool,
combine_states: bool) -> None:
"""
Helper method to initialize command line argument parser.
Args:
title (str): Window title.
n_qubits (int): Number of qubits.
search (set[int]): Set of nonnegative integers to search for using Grover's algorithm.
shots (int): Amount of times the algorithm is simulated.
fontsize (int): Histogram's font size.
print (bool): Whether or not to print quantum circuit(s).
combine_states (bool): Whether to combine all non-winning states into 1 bar labeled "Others" or not.
"""
self._parser.add_argument("-H, --help",
action = "help",
help = "show this help message and exit")
self._parser.add_argument("-T, --title",
type = str,
default = title,
dest = "title",
metavar = "<title>",
help = f"window title (default: \"{title}\")")
self._parser.add_argument("-n, --n-qubits",
type = int,
default = n_qubits,
dest = "n_qubits",
metavar = "<n_qubits>",
help = f"number of qubits (default: {n_qubits})")
self._parser.add_argument("-s, --search",
default = search,
type = int,
nargs = "+",
dest = "search",
metavar = "<search>",
help = f"nonnegative integers to search for with Grover's algorithm (default: {search})")
self._parser.add_argument("-S, --shots",
type = int,
default = shots,
dest = "shots",
metavar = "<shots>",
help = f"amount of times the algorithm is simulated (default: {shots})")
self._parser.add_argument("-f, --font-size",
type = int,
default = fontsize,
dest = "fontsize",
metavar = "<font_size>",
help = f"histogram's font size (default: {fontsize})")
self._parser.add_argument("-p, --print",
action = BooleanOptionalAction,
type = bool,
default = print,
dest = "print",
help = f"whether or not to print quantum circuit(s) (default: {print})")
self._parser.add_argument("-c, --combine",
action = BooleanOptionalAction,
type = bool,
default = combine_states,
dest = "combine",
help = f"whether to combine all non-winning states into 1 bar labeled \"Others\" or not (default: {combine_states})")
if __name__ == "__main__":
GroversAlgorithm().run()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import qiskit.qasm3
program = """
OPENQASM 3.0;
include "stdgates.inc";
input float[64] a;
qubit[3] q;
bit[2] mid;
bit[3] out;
let aliased = q[0:1];
gate my_gate(a) c, t {
gphase(a / 2);
ry(a) c;
cx c, t;
}
gate my_phase(a) c {
ctrl @ inv @ gphase(a) c;
}
my_gate(a * 2) aliased[0], q[{1, 2}][0];
measure q[0] -> mid[0];
measure q[1] -> mid[1];
while (mid == "00") {
reset q[0];
reset q[1];
my_gate(a) q[0], q[1];
my_phase(a - pi/2) q[1];
mid[0] = measure q[0];
mid[1] = measure q[1];
}
if (mid[0]) {
let inner_alias = q[{0, 1}];
reset inner_alias;
}
out = measure q;
"""
circuit = qiskit.qasm3.loads(program)
circuit.draw("mpl")
|
https://github.com/dkp-quantum/Tutorials
|
dkp-quantum
|
%matplotlib inline
# Importing standard Qiskit libraries and configuring account
from qiskit import *
from qiskit.visualization import *
import numpy as np
# Exercise 1.
# Create the measurement circuit
ZZI = QuantumCircuit(4,1)
ZZI.h(3)
ZZI.cz(3,0)
ZZI.cz(3,1)
ZZI.h(3)
ZZI.barrier()
ZZI.measure(3,0)
ZZI.draw(output='mpl')
# Create the first test state, i.e. a|000> + b|111>
ztest1 = QuantumCircuit(4)
theta = np.random.random()*np.pi
phi = np.random.random()*2*np.pi
ztest1.ry(theta,0)
ztest1.rz(phi,0)
ztest1.cx(0,1)
ztest1.cx(0,2)
ztest1.barrier()
# Now add the measurement circuit
ztest1 = ztest1 + ZZI
ztest1.draw(output='mpl')
# Use Aer's qasm_simulator
backend_q = Aer.get_backend('qasm_simulator')
# Execute the circuit on the qasm simulator.
job_ztest1 = execute(ztest1, backend_q, shots=4096)
# Grab the results from the job.
result_ztest1 = job_ztest1.result()
plot_histogram(result_ztest1.get_counts(ztest1))
# Create the second test state, i.e. a|010> + b|101>
ztest2 = QuantumCircuit(4)
theta = np.random.random()*np.pi
phi = np.random.random()*2*np.pi
ztest2.ry(theta,0)
ztest2.rz(phi,0)
# Flip the second qubit
ztest2.x(1)
ztest2.cx(0,1)
ztest2.cx(0,2)
ztest2.barrier()
# Now add the measurement circuit
ztest2 = ztest2 + ZZI
ztest2.draw(output='mpl')
# Execute the circuit on the qasm simulator.
job_ztest2 = execute(ztest2, backend_q, shots=4096)
# Grab the results from the job.
result_ztest2 = job_ztest2.result()
plot_histogram(result_ztest2.get_counts(ztest2))
# Exercise 2.
# Create the measurement circuit
XXI = QuantumCircuit(4,1)
XXI.h(3)
XXI.cx(3,0)
XXI.cx(3,1)
XXI.h(3)
XXI.barrier()
XXI.measure(3,0)
XXI.draw(output='mpl')
# Create the first test state, i.e. a|+++> + b|--->
xtest1 = QuantumCircuit(4)
theta = np.random.random()*np.pi
phi = np.random.random()*2*np.pi
xtest1.ry(theta,0)
xtest1.rz(phi,0)
xtest1.cx(0,1)
xtest1.cx(0,2)
for i in range(3):
xtest1.h(i)
xtest1.barrier()
# Now add the measurement circuit
xtest1 = xtest1 + XXI
xtest1.draw(output='mpl')
# Execute the circuit on the qasm simulator.
job_xtest1 = execute(xtest1, backend_q, shots=4096)
# Grab the results from the job.
result_xtest1 = job_xtest1.result()
plot_histogram(result_xtest1.get_counts(xtest1))
# Create the first test state, i.e. a|+-+> + b|-+->
xtest2 = QuantumCircuit(4)
theta = np.random.random()*np.pi
phi = np.random.random()*2*np.pi
xtest2.ry(theta,0)
xtest2.rz(phi,0)
# Flip the second qubit
xtest2.x(1)
xtest2.cx(0,1)
xtest2.cx(0,2)
for i in range(3):
xtest2.h(i)
xtest2.barrier()
# Now add the measurement circuit
xtest2 = xtest2 + XXI
xtest2.draw(output='mpl')
# Execute the circuit on the qasm simulator.
job_xtest2 = execute(xtest2, backend_q, shots=4096)
# Grab the results from the job.
result_xtest2 = job_xtest2.result()
plot_histogram(result_xtest2.get_counts(xtest2))
%matplotlib inline
# Importing standard Qiskit libraries and configuring account
from qiskit import *
from qiskit.visualization import *
import numpy as np
def encoding_x(qc):
qc.cx(0,1)
qc.cx(0,2)
qc.barrier()
def measure_error(qc,error):
if error == 'x':
qc.h(3)
qc.h(4)
qc.cz(3,0)
qc.cz(3,1)
qc.cz(4,0)
qc.cz(4,2)
qc.h(3)
qc.h(4)
elif error == 'z':
qc.h(3)
qc.h(4)
qc.cx(3,0)
qc.cx(3,1)
qc.cx(4,0)
qc.cx(4,2)
qc.h(3)
qc.h(4)
qc.barrier()
# We don't need decoding for QEC,
# but we will use it for checking the answer
def decoding_x(qc):
qc.cx(0,2)
qc.cx(0,1)
qc.barrier()
def random_init(qc,theta,phi,index):
## Prepare a random single-qubit state
qc.ry(theta,index)
qc.rz(phi,index)
qc.barrier()
def random_init_inv(qc,theta,phi,index):
## Inverse of the random single-qubit state preparation
qc.rz(-phi,index)
qc.ry(-theta,index)
qc.barrier()
qec2x = QuantumCircuit(5,3)
# Initialize the first qubit in a random state
theta = np.random.random()*np.pi
qec2x.ry(theta,0)
# QEC encoding for correcting a bit-flip error
encoding_x(qec2x)
# Measurement
measure_error(qec2x,'x')
# Correction
# Correct the first qubit
qec2x.ccx(3,4,0)
# Correct the second qubit
qec2x.x(4)
qec2x.ccx(3,4,1)
qec2x.x(4)
# Correct the third qubit
qec2x.x(3)
qec2x.ccx(3,4,2)
qec2x.x(3)
qec2x.barrier()
# QEC decoding for correcting a bit-flip error
decoding_x(qec2x)
# Insert inverse of the random initial state preparation
# to check that the QEC has worked.
qec2x.ry(-theta,0)
qec2x.measure(0,0)
# Let's check the error syndrome
qec2x.measure(3,1)
qec2x.measure(4,2)
qec2x.draw(output='mpl')
# Execute the circuit on the qasm simulator.
job_qec2x_ref = execute(qec2x, backend_q, shots=4096)
# Grab the results from the job.
result_qec2x_ref = job_qec2x_ref.result()
plot_histogram(result_qec2x_ref.get_counts(qec2x))
# IBMQ.disable_account()
provider = IBMQ.enable_account('TOKEN')
from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor
from qiskit.tools.visualization import plot_gate_map, plot_error_map
# Retrieve IBM Quantum device information
backend_overview()
# Let's also try the same experiment on the 15-qubit device.
job_exp_qec2x = execute(qec2x, backend=provider.get_backend('ibmq_valencia'), shots=8192)
job_monitor(job_exp_qec2x)
# Grab experimental results
result_exp_qec2x = job_exp_qec2x.result()
plot_histogram(result_exp_qec2x.get_counts(qec2x))
# Define bit-flip errors with probability p
def bitflip(qc,qubit,p):
if np.random.binomial(1,p) == 1:
qc.x(qubit)
qec2x = QuantumCircuit(5,3)
# Initialize the first qubit in a random state
theta = np.random.random()*np.pi
qec2x.ry(theta,0)
# QEC encoding for correcting a bit-flip error
encoding_x(qec2x)
# Insert error
p=1
# bitflip(qec2x,0,p)
# bitflip(qec2x,1,p)
bitflip(qec2x,2,p)
qec2x.barrier()
# Measurement
measure_error(qec2x,'x')
# Correction
# Correct the first qubit
qec2x.ccx(3,4,0)
# Correct the second qubit
qec2x.x(4)
qec2x.ccx(3,4,1)
qec2x.x(4)
# Correct the third qubit
qec2x.x(3)
qec2x.ccx(3,4,2)
qec2x.x(3)
qec2x.barrier()
# QEC decoding for correcting a bit-flip error
decoding_x(qec2x)
# Insert inverse of the random initial state preparation
# to check that the QEC has worked.
qec2x.ry(-theta,0)
qec2x.measure(0,0)
# Let's check the error syndrome
qec2x.measure(3,1)
qec2x.measure(4,2)
qec2x.draw(output='mpl')
# Execute the circuit on the qasm simulator.
job_qec2x = execute(qec2x, backend_q, shots=4096)
# Grab the results from the job.
result_qec2x = job_qec2x.result()
plot_histogram(result_qec2x.get_counts(qec2x))
from qiskit.compiler import transpile
from qiskit.transpiler import PassManager, Layout
display(plot_error_map(provider.get_backend('ibmqx2')))
display(plot_error_map(provider.get_backend('ibmq_burlington')))
# Create a dummy circuit for default transpiler demonstration
qc = QuantumCircuit(4)
qc.h(0)
qc.swap(0,1)
qc.cx(1,0)
qc.s(3)
qc.x(3)
qc.h(3)
qc.h(0)
qc.cx(0,2)
qc.ccx(0,1,2)
qc.h(0)
print('Original circuit')
display(qc.draw(output='mpl'))
# Transpile the circuit to run on ibmqx2
qt_qx2 = transpile(qc,provider.get_backend('ibmqx2'))
print('Transpiled circuit for ibmqx2')
display(qt_qx2.draw(output='mpl'))
# Transpile the circuit to run on ibmq_burlington
qt_bu = transpile(qc,provider.get_backend('ibmq_burlington'))
print('Transpiled circuit for ibmqx_Burlington')
display(qt_bu.draw(output='mpl'))
# Print out some circuit properties
# Total nunmber of operations
print("Number of operations for ibmqx2 = %s" % qt_qx2.size())
print("Number of operations for ibmq_burlington = %s \n" % qt_bu.size())
# Circuit depth
print("Circuit depth for ibmqx2 = %s" % qt_qx2.depth())
print("Circuit depth for ibmq_burlington = %s \n" % qt_bu.depth())
# Number of qubits
print("Number of qubits for ibmqx2 = %s" % qt_qx2.width())
print("Number of qubits for ibmq_burlington = %s \n" % qt_bu.width())
# Breakdown of operations by type
print("Operations for ibmqx2: %s" % qt_qx2.count_ops())
print("Operations for ibmq_burlington: %s \n" % qt_bu.count_ops())
# Number of unentangled subcircuits in this circuit.
# In principle, each subcircuit can be executed on a different quantum device.
print("Number of unentangled subcircuits for ibmqx2 = %s" % qt_qx2.num_tensor_factors())
print("Number of unentangled subcircuits for ibmq_burlington = %s" % qt_bu.num_tensor_factors())
qr = QuantumRegister(4,'q')
cr = ClassicalRegister(4,'c')
qc_test = QuantumCircuit(qr,cr)
qc_test.h(0)
for i in range(3):
qc_test.cx(i,i+1)
qc_test.barrier()
qc_test.measure(qr,cr)
qc_test.draw(output='mpl')
qc_t = transpile(qc_test, backend = provider.get_backend('ibmq_london'))
# Display transpiled circuit
display(qc_t.draw(output='mpl'))
# Display the qubit layout
display(plot_error_map(provider.get_backend('ibmq_london')))
# Print out some circuit properties
# Total nunmber of operations
print("Number of operations = %s" % qc_t.size())
# Circuit depth
print("Circuit depth = %s" % qc_t.depth())
# Execute the circuit on the qasm simulator.
job_test = execute(qc_test, provider.get_backend('ibmq_london'), shots=8192)
job_monitor(job_test)
# Customize the layout
layout = Layout({qr[0]: 4, qr[1]: 3, qr[2]: 1, qr[3]:0})
# Map it onto 5 qubit backend ibmqx2
qc_test_new = transpile(qc_test, backend = provider.get_backend('ibmq_london'), initial_layout=layout, basis_gates=['u1','u2','u3','cx'])
display(qc_test_new.draw(output='mpl'))
# Print out some circuit properties
# Total nunmber of operations
print("Number of operations = %s" % qc_test_new.size())
# Circuit depth
print("Circuit depth = %s" % qc_test_new.depth())
# Execute the circuit on the qasm simulator.
job_test_new = execute(qc_test_new, provider.get_backend('ibmq_london'), shots=8192)
job_monitor(job_test_new)
# Now, compare the two
result_test = job_test.result()
result_test_new = job_test_new.result()
# Plot both experimental and ideal results
plot_histogram([result_test.get_counts(qc_test),result_test_new.get_counts(qc_test_new)],
color=['green','blue'],legend=['default','custom'],figsize = [20,8])
# Apply 4-qubit controlled x gate
qr = QuantumRegister(5,'q')
qc = QuantumCircuit(qr)
qc.h(0)
qc.h(1)
qc.h(3)
qc.ccx(0,1,2)
qc.ccx(2,3,4)
qc.ccx(0,1,2)
display(qc.draw(output='mpl'))
# Print out some circuit properties
# Total nunmber of operations
print("Number of operations = %s \n" % qc.size())
# Count different types of operations
print("Operation counts = %s \n" % qc.count_ops())
# Circuit depth
print("Circuit depth = %s" % qc.depth())
qc_t = transpile(qc, provider.get_backend('ibmq_valencia'))
display(qc_t.draw(output='mpl'))
# Print out some circuit properties
# Total nunmber of operations
print("Number of operations = %s" % qc_t.size())
# Circuit depth
print("Circuit depth = %s" % qc_t.depth())
# Transpile many times (20 times in this example) and pick the best one
trial = 20
# Use ibmq_valencia for example
backend_exp = provider.get_backend('ibmq_valencia')
tcircs0 = transpile([qc]*trial, backend_exp, optimization_level=0)
tcircs1 = transpile([qc]*trial, backend_exp, optimization_level=1)
tcircs2 = transpile([qc]*trial, backend_exp, optimization_level=2)
tcircs3 = transpile([qc]*trial, backend_exp, optimization_level=3)
import matplotlib.pyplot as plt
num_cx0 = [c.count_ops()['cx'] for c in tcircs0]
num_cx1 = [c.count_ops()['cx'] for c in tcircs1]
num_cx2 = [c.count_ops()['cx'] for c in tcircs2]
num_cx3 = [c.count_ops()['cx'] for c in tcircs3]
num_tot0 = [c.size() for c in tcircs0]
num_tot1 = [c.size() for c in tcircs1]
num_tot2 = [c.size() for c in tcircs2]
num_tot3 = [c.size() for c in tcircs3]
num_depth0 = [c.depth() for c in tcircs0]
num_depth1 = [c.depth() for c in tcircs1]
num_depth2 = [c.depth() for c in tcircs2]
num_depth3 = [c.depth() for c in tcircs3]
plt.rcParams.update({'font.size': 16})
# Plot the number of CNOT gates
plt.figure(figsize=(12,6))
plt.plot(range(len(num_cx0)),num_cx0,'r',label='level 0')
plt.plot(range(len(num_cx1)),num_cx1,'b',label='level 1')
plt.plot(range(len(num_cx2)),num_cx2,'g',label='level 2')
plt.plot(range(len(num_cx3)),num_cx3,'k',label='level 3')
plt.legend(loc='upper left')
plt.xlabel('Random trial')
plt.ylabel('# of cx gates')
plt.show()
# Plot total number of gates
plt.figure(figsize=(12,6))
plt.plot(range(len(num_tot0)),num_tot0,'r',label='level 0')
plt.plot(range(len(num_tot1)),num_tot1,'b',label='level 1')
plt.plot(range(len(num_tot2)),num_tot2,'g',label='level 2')
plt.plot(range(len(num_tot3)),num_tot3,'k',label='level 3')
plt.legend(loc='upper left')
plt.xlabel('Random trial')
plt.ylabel('# of total gates')
plt.show()
# Plot the number of CNOT gates
plt.figure(figsize=(12,6))
plt.plot(range(len(num_depth0)),num_depth0,'r',label='level 0')
plt.plot(range(len(num_depth1)),num_depth1,'b',label='level 1')
plt.plot(range(len(num_depth2)),num_depth2,'g',label='level 2')
plt.plot(range(len(num_depth3)),num_depth3,'k',label='level 3')
plt.legend(loc='upper left')
plt.xlabel('Random trial')
plt.ylabel('Circuit depth')
plt.show()
print('Opt0: Minimum # of cx gates = %s' % min(num_cx0))
print('Opt0: The best circuit is the circut %s \n' % num_cx0.index(min(num_cx0)))
print('Opt1: Minimum # of cx gates = %s' % min(num_cx1))
print('Opt1: The best circuit is the circut %s \n' % num_cx1.index(min(num_cx1)))
print('Opt2: Minimum # of cx gates = %s' % min(num_cx2))
print('Opt2: The best circuit is the circut %s \n' % num_cx2.index(min(num_cx2)))
print('Opt3: Minimum # of cx gates = %s' % min(num_cx3))
print('Opt3: The best circuit is the circut %s' % num_cx3.index(min(num_cx3)))
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import Operator
from qiskit.transpiler.passes import UnitarySynthesis
circuit = QuantumCircuit(1)
circuit.rx(0.8, 0)
unitary = Operator(circuit).data
unitary_circ = QuantumCircuit(1)
unitary_circ.unitary(unitary, [0])
synth = UnitarySynthesis(basis_gates=["h", "s"], method="sk")
out = synth(unitary_circ)
out.draw('mpl')
|
https://github.com/xtophe388/QISKIT
|
xtophe388
|
from qiskit import ClassicalRegister, QuantumRegister
from qiskit import QuantumCircuit, execute
from qiskit.tools.visualization import plot_histogram
# set up registers and program
qr = QuantumRegister(16)
cr = ClassicalRegister(16)
qc = QuantumCircuit(qr, cr)
# rightmost eight (qu)bits have ')' = 00101001
qc.x(qr[0])
qc.x(qr[3])
qc.x(qr[5])
# second eight (qu)bits have superposition of
# '8' = 00111000
# ';' = 00111011
# these differ only on the rightmost two bits
qc.h(qr[9]) # create superposition on 9
qc.cx(qr[9],qr[8]) # spread it to 8 with a CNOT
qc.x(qr[11])
qc.x(qr[12])
qc.x(qr[13])
# measure
for j in range(16):
qc.measure(qr[j], cr[j])
from qiskit import register, available_backends, get_backend
#import Qconfig and set APIToken and API url
try:
import sys
sys.path.append("../") # go to parent dir
import Qconfig
qx_config = {
"APItoken": Qconfig.APItoken,
"url": Qconfig.config['url']}
except Exception as e:
print(e)
qx_config = {
"APItoken":"YOUR_TOKEN_HERE",
"url":"https://quantumexperience.ng.bluemix.net/api"}
#set api
register(qx_config['APItoken'], qx_config['url'])
backend = "ibmq_qasm_simulator"
shots_sim = 128
job_sim = execute(qc, backend, shots=shots_sim)
stats_sim = job_sim.result().get_counts()
plot_histogram(stats_sim)
import matplotlib.pyplot as plt
%matplotlib inline
plt.rc('font', family='monospace')
def plot_smiley (stats, shots):
for bitString in stats:
char = chr(int( bitString[0:8] ,2)) # get string of the leftmost 8 bits and convert to an ASCII character
char += chr(int( bitString[8:16] ,2)) # do the same for string of rightmost 8 bits, and add it to the previous character
prob = stats[bitString] / shots # fraction of shots for which this result occurred
# create plot with all characters on top of each other with alpha given by how often it turned up in the output
plt.annotate( char, (0.5,0.5), va="center", ha="center", color = (0,0,0, prob ), size = 300)
if (prob>0.05): # list prob and char for the dominant results (occurred for more than 5% of shots)
print(str(prob)+"\t"+char)
plt.axis('off')
plt.show()
plot_smiley(stats_sim, shots_sim)
backends = available_backends()
backend = get_backend('ibmqx5')
print('Status of ibmqx5:',backend.status)
if backend.status["operational"] is True:
print("\nThe device is operational, so we'll submit the job.")
shots_device = 1000
job_device = execute(qc, backend, shots=shots_device)
stats_device = job_device.result().get_counts()
else:
print("\nThe device is not operational. Try again later.")
plot_smiley(stats_device, shots_device)
|
https://github.com/omarcostahamido/qiskit_app_carbon_design
|
omarcostahamido
|
from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit
from qiskit import Aer, IBMQ, execute
from qiskit.providers.aer import noise
from qiskit.tools.visualization import plot_histogram
from qiskit.tools.monitor import job_monitor
#IBMQ.enable_account(token, url='https://quantumexperience.ng.bluemix.net/api')
#IBMQ.active_accounts()
#IBMQ.backends()
def setup_noise(circuit,shots):
"""
This fucntion run a circuit on a simulated ibmq_16_melbourne device with noise
"""
# Basic device noise model
# List of gate times
# Note that the None parameter for u1, u2, u3 is because gate
# times are the same for all qubits
gate_times = [
('u1', None, 0), ('u2', None, 100), ('u3', None, 200),
('cx', [1, 0], 678), ('cx', [1, 2], 547), ('cx', [2, 3], 721),
('cx', [4, 3], 733), ('cx', [4, 10], 721), ('cx', [5, 4], 800),
('cx', [5, 6], 800), ('cx', [5, 9], 895), ('cx', [6, 8], 895),
('cx', [7, 8], 640), ('cx', [9, 8], 895), ('cx', [9, 10], 800),
('cx', [11, 10], 721), ('cx', [11, 3], 634), ('cx', [12, 2], 773),
('cx', [13, 1], 2286), ('cx', [13, 12], 1504), ('cx', [], 800)
]
device = IBMQ.get_backend('ibmq_16_melbourne')
properties = device.properties()
coupling_map = device.configuration().coupling_map
# Construct the noise model from backend properties
# and custom gate times
noise_model = noise.device.basic_device_noise_model(properties, gate_times=gate_times)
# Get the basis gates for the noise model
basis_gates = noise_model.basis_gates
# Select the QasmSimulator from the Aer provider
simulator = Aer.get_backend('qasm_simulator')
# Execute noisy simulation and get counts
result_noise = execute(circuit, simulator,shots=shots,noise_model=noise_model,
coupling_map=coupling_map, basis_gates=basis_gates).result().get_counts(circuit)
# print(result_noise)
#counts_noise = result_noise.get_counts(circ)
return result_noise
def emo_noise():
"""
This function simulate the emoticon function with noise, to perform noise we are limited to use
just a streactly set of emoticon because of constraints coming from the real device.
"""
# set up registers and program
qr = QuantumRegister(14)
cr = ClassicalRegister(14)
qc = QuantumCircuit(qr, cr)
# rightmost seven (qu)bits have ')' = 0101001
qc.x(qr[0])
qc.x(qr[3])
qc.x(qr[5])
# second seven (qu)bits have superposition of
# '8' = 0111000
# ';' = 0111011
# these differ only on the rightmost two bits
qc.h(qr[8]) # create superposition on 9
qc.cx(qr[8],qr[7]) # spread it to 8 with a CNOT
qc.x(qr[10])
qc.x(qr[11])
qc.x(qr[12])
# measure
for j in range(14):
qc.measure(qr[j], cr[j])
shots=400
## RUN THE SIMULATION
return synt_chr(setup_noise(qc,shots))
def synt_chr(stats, shots=None):
"""
This function transforms the binary the string of bits into ascii character
"""
n_list=[]
for bitString in stats:
char = chr(int( bitString[0:7] ,2)) # get string of the leftmost 7 bits and convert to an ASCII character
char += chr(int( bitString[7:14] ,2)) # do the same for string of rightmost 7 bits, and add it to the previous character
#prob = stats[bitString] / shots # fraction of shots for which this result occurred
n_list.append({"shots":stats[bitString],"value":char})
return n_list
def setup_noise_s(circuit,shots):
"""
This fucntion run a circuit on a simulated ibmq_16_melbourne device with noise
"""
# Basic device noise model
# List of gate times
# Note that the None parameter for u1, u2, u3 is because gate
# times are the same for all qubits
gate_times = [
('u1', None, 0), ('u2', None, 100), ('u3', None, 200),
('cx', [1, 0], 678), ('cx', [1, 2], 547), ('cx', [2, 3], 721),
('cx', [4, 3], 733), ('cx', [4, 10], 721), ('cx', [5, 4], 800),
('cx', [5, 6], 800), ('cx', [5, 9], 895), ('cx', [6, 8], 895),
('cx', [7, 8], 640), ('cx', [9, 8], 895), ('cx', [9, 10], 800),
('cx', [11, 10], 721), ('cx', [11, 3], 634), ('cx', [12, 2], 773),
('cx', [13, 1], 2286), ('cx', [13, 12], 1504), ('cx', [], 800)
]
device = IBMQ.get_backend('ibmq_16_melbourne')
properties = device.properties()
coupling_map = device.configuration().coupling_map
# Construct the noise model from backend properties
# and custom gate times
noise_model = noise.device.basic_device_noise_model(properties, gate_times=gate_times)
# Get the basis gates for the noise model
basis_gates = noise_model.basis_gates
# Select the QasmSimulator from the Aer provider
simulator = Aer.get_backend('qasm_simulator')
# Execute noisy simulation and get counts
result_noise = execute(circuit, simulator,shots=shots,noise_model=noise_model,
coupling_map=coupling_map, basis_gates=basis_gates).result()
# print(result_noise)
#counts_noise = result_noise.get_counts(circ)
return result_noise
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import numpy as np
from qiskit import QuantumCircuit
from qiskit.providers.fake_provider import FakeVigoV2
backend = FakeVigoV2()
qc = QuantumCircuit(2, 1)
qc.h(0)
qc.x(1)
qc.cp(np.pi/4, 0, 1)
qc.h(0)
qc.measure([0], [0])
qc.draw(output='mpl')
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import DensityMatrix
from qiskit.visualization import plot_state_city
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
# plot using a DensityMatrix
state = DensityMatrix(qc)
plot_state_city(state)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_optimization import QuadraticProgram
qp = QuadraticProgram()
qp.binary_var("x")
qp.binary_var("y")
qp.integer_var(lowerbound=0, upperbound=7, name="z")
qp.maximize(linear={"x": 2, "y": 1, "z": 1})
qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="LE", rhs=5.5, name="xyz_leq")
qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="GE", rhs=2.5, name="xyz_geq")
print(qp.prettyprint())
from qiskit_optimization.converters import InequalityToEquality
ineq2eq = InequalityToEquality()
qp_eq = ineq2eq.convert(qp)
print(qp_eq.prettyprint())
print(qp_eq.prettyprint())
from qiskit_optimization.converters import IntegerToBinary
int2bin = IntegerToBinary()
qp_eq_bin = int2bin.convert(qp_eq)
print(qp_eq_bin.prettyprint())
print(qp_eq_bin.prettyprint())
from qiskit_optimization.converters import LinearEqualityToPenalty
lineq2penalty = LinearEqualityToPenalty()
qubo = lineq2penalty.convert(qp_eq_bin)
print(qubo.prettyprint())
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/swe-train/qiskit__qiskit
|
swe-train
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Superoperator representation of a Quantum Channel."""
from __future__ import annotations
import copy as _copy
import math
from typing import TYPE_CHECKING
import numpy as np
from qiskit import _numpy_compat
from qiskit.circuit.instruction import Instruction
from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.operators.base_operator import BaseOperator
from qiskit.quantum_info.operators.channel.quantum_channel import QuantumChannel
from qiskit.quantum_info.operators.channel.transformations import _bipartite_tensor, _to_superop
from qiskit.quantum_info.operators.mixins import generate_apidocs
from qiskit.quantum_info.operators.op_shape import OpShape
from qiskit.quantum_info.operators.operator import Operator
if TYPE_CHECKING:
from qiskit.quantum_info.states.densitymatrix import DensityMatrix
from qiskit.quantum_info.states.statevector import Statevector
class SuperOp(QuantumChannel):
r"""Superoperator representation of a quantum channel.
The Superoperator representation of a quantum channel :math:`\mathcal{E}`
is a matrix :math:`S` such that the evolution of a
:class:`~qiskit.quantum_info.DensityMatrix` :math:`\rho` is given by
.. math::
|\mathcal{E}(\rho)\rangle\!\rangle = S |\rho\rangle\!\rangle
where the double-ket notation :math:`|A\rangle\!\rangle` denotes a vector
formed by stacking the columns of the matrix :math:`A`
*(column-vectorization)*.
See reference [1] for further details.
References:
1. C.J. Wood, J.D. Biamonte, D.G. Cory, *Tensor networks and graphical calculus
for open quantum systems*, Quant. Inf. Comp. 15, 0579-0811 (2015).
`arXiv:1111.6950 [quant-ph] <https://arxiv.org/abs/1111.6950>`_
"""
def __init__(
self,
data: QuantumCircuit | Instruction | BaseOperator | np.ndarray,
input_dims: tuple | None = None,
output_dims: tuple | None = None,
):
"""Initialize a quantum channel Superoperator operator.
Args:
data (QuantumCircuit or
Instruction or
BaseOperator or
matrix): data to initialize superoperator.
input_dims (tuple): the input subsystem dimensions.
[Default: None]
output_dims (tuple): the output subsystem dimensions.
[Default: None]
Raises:
QiskitError: if input data cannot be initialized as a
superoperator.
Additional Information:
If the input or output dimensions are None, they will be
automatically determined from the input data. If the input data is
a Numpy array of shape (4**N, 4**N) qubit systems will be used. If
the input operator is not an N-qubit operator, it will assign a
single subsystem with dimension specified by the shape of the input.
"""
# If the input is a raw list or matrix we assume that it is
# already a superoperator.
if isinstance(data, (list, np.ndarray)):
# We initialize directly from superoperator matrix
super_mat = np.asarray(data, dtype=complex)
# Determine total input and output dimensions
dout, din = super_mat.shape
input_dim = int(math.sqrt(din))
output_dim = int(math.sqrt(dout))
if output_dim**2 != dout or input_dim**2 != din:
raise QiskitError("Invalid shape for SuperOp matrix.")
op_shape = OpShape.auto(
dims_l=output_dims, dims_r=input_dims, shape=(output_dim, input_dim)
)
else:
# Otherwise we initialize by conversion from another Qiskit
# object into the QuantumChannel.
if isinstance(data, (QuantumCircuit, Instruction)):
# If the input is a Terra QuantumCircuit or Instruction we
# perform a simulation to construct the circuit superoperator.
# This will only work if the circuit or instruction can be
# defined in terms of instructions which have no classical
# register components. The instructions can be gates, reset,
# or Kraus instructions. Any conditional gates or measure
# will cause an exception to be raised.
data = self._init_instruction(data)
else:
# We use the QuantumChannel init transform to initialize
# other objects into a QuantumChannel or Operator object.
data = self._init_transformer(data)
# Now that the input is an operator we convert it to a
# SuperOp object
op_shape = data._op_shape
input_dim, output_dim = data.dim
rep = getattr(data, "_channel_rep", "Operator")
super_mat = _to_superop(rep, data._data, input_dim, output_dim)
# Initialize QuantumChannel
super().__init__(super_mat, op_shape=op_shape)
def __array__(self, dtype=None, copy=_numpy_compat.COPY_ONLY_IF_NEEDED):
dtype = self.data.dtype if dtype is None else dtype
return np.array(self.data, dtype=dtype, copy=copy)
@property
def _tensor_shape(self):
"""Return the tensor shape of the superoperator matrix"""
return 2 * tuple(reversed(self._op_shape.dims_l())) + 2 * tuple(
reversed(self._op_shape.dims_r())
)
@property
def _bipartite_shape(self):
"""Return the shape for bipartite matrix"""
return (self._output_dim, self._output_dim, self._input_dim, self._input_dim)
# ---------------------------------------------------------------------
# BaseOperator methods
# ---------------------------------------------------------------------
def conjugate(self):
ret = _copy.copy(self)
ret._data = np.conj(self._data)
return ret
def transpose(self):
ret = _copy.copy(self)
ret._data = np.transpose(self._data)
ret._op_shape = self._op_shape.transpose()
return ret
def adjoint(self):
ret = _copy.copy(self)
ret._data = np.conj(np.transpose(self._data))
ret._op_shape = self._op_shape.transpose()
return ret
def tensor(self, other: SuperOp) -> SuperOp:
if not isinstance(other, SuperOp):
other = SuperOp(other)
return self._tensor(self, other)
def expand(self, other: SuperOp) -> SuperOp:
if not isinstance(other, SuperOp):
other = SuperOp(other)
return self._tensor(other, self)
@classmethod
def _tensor(cls, a, b):
ret = _copy.copy(a)
ret._op_shape = a._op_shape.tensor(b._op_shape)
ret._data = _bipartite_tensor(
a._data, b.data, shape1=a._bipartite_shape, shape2=b._bipartite_shape
)
return ret
def compose(self, other: SuperOp, qargs: list | None = None, front: bool = False) -> SuperOp:
if qargs is None:
qargs = getattr(other, "qargs", None)
if not isinstance(other, SuperOp):
other = SuperOp(other)
# Validate dimensions are compatible and return the composed
# operator dimensions
new_shape = self._op_shape.compose(other._op_shape, qargs, front)
input_dims = new_shape.dims_r()
output_dims = new_shape.dims_l()
# Full composition of superoperators
if qargs is None:
if front:
data = np.dot(self._data, other.data)
else:
data = np.dot(other.data, self._data)
ret = SuperOp(data, input_dims, output_dims)
ret._op_shape = new_shape
return ret
# Compute tensor contraction indices from qargs
num_qargs_l, num_qargs_r = self._op_shape.num_qargs
if front:
num_indices = num_qargs_r
shift = 2 * num_qargs_l
right_mul = True
else:
num_indices = num_qargs_l
shift = 0
right_mul = False
# Reshape current matrix
# Note that we must reverse the subsystem dimension order as
# qubit 0 corresponds to the right-most position in the tensor
# product, which is the last tensor wire index.
tensor = np.reshape(self.data, self._tensor_shape)
mat = np.reshape(other.data, other._tensor_shape)
# Add first set of indices
indices = [2 * num_indices - 1 - qubit for qubit in qargs] + [
num_indices - 1 - qubit for qubit in qargs
]
final_shape = [np.prod(output_dims) ** 2, np.prod(input_dims) ** 2]
data = np.reshape(
Operator._einsum_matmul(tensor, mat, indices, shift, right_mul), final_shape
)
ret = SuperOp(data, input_dims, output_dims)
ret._op_shape = new_shape
return ret
# ---------------------------------------------------------------------
# Additional methods
# ---------------------------------------------------------------------
def _evolve(self, state, qargs=None):
"""Evolve a quantum state by the quantum channel.
Args:
state (DensityMatrix or Statevector): The input state.
qargs (list): a list of quantum state subsystem positions to apply
the quantum channel on.
Returns:
DensityMatrix: the output quantum state as a density matrix.
Raises:
QiskitError: if the quantum channel dimension does not match the
specified quantum state subsystem dimensions.
"""
# Prevent cyclic imports by importing DensityMatrix here
# pylint: disable=cyclic-import
from qiskit.quantum_info.states.densitymatrix import DensityMatrix
if not isinstance(state, DensityMatrix):
state = DensityMatrix(state)
if qargs is None:
# Evolution on full matrix
if state._op_shape.shape[0] != self._op_shape.shape[1]:
raise QiskitError(
"Operator input dimension is not equal to density matrix dimension."
)
# We reshape in column-major vectorization (Fortran order in Numpy)
# since that is how the SuperOp is defined
vec = np.ravel(state.data, order="F")
mat = np.reshape(
np.dot(self.data, vec), (self._output_dim, self._output_dim), order="F"
)
return DensityMatrix(mat, dims=self.output_dims())
# Otherwise we are applying an operator only to subsystems
# Check dimensions of subsystems match the operator
if state.dims(qargs) != self.input_dims():
raise QiskitError(
"Operator input dimensions are not equal to statevector subsystem dimensions."
)
# Reshape statevector and operator
tensor = np.reshape(state.data, state._op_shape.tensor_shape)
mat = np.reshape(self.data, self._tensor_shape)
# Construct list of tensor indices of statevector to be contracted
num_indices = len(state.dims())
indices = [num_indices - 1 - qubit for qubit in qargs] + [
2 * num_indices - 1 - qubit for qubit in qargs
]
tensor = Operator._einsum_matmul(tensor, mat, indices)
# Replace evolved dimensions
new_dims = list(state.dims())
output_dims = self.output_dims()
for i, qubit in enumerate(qargs):
new_dims[qubit] = output_dims[i]
new_dim = np.prod(new_dims)
# reshape tensor to density matrix
tensor = np.reshape(tensor, (new_dim, new_dim))
return DensityMatrix(tensor, dims=new_dims)
@classmethod
def _init_instruction(cls, instruction):
"""Convert a QuantumCircuit or Instruction to a SuperOp."""
# Convert circuit to an instruction
if isinstance(instruction, QuantumCircuit):
instruction = instruction.to_instruction()
# Initialize an identity superoperator of the correct size
# of the circuit
op = SuperOp(np.eye(4**instruction.num_qubits))
op._append_instruction(instruction)
return op
@classmethod
def _instruction_to_superop(cls, obj):
"""Return superop for instruction if defined or None otherwise."""
if not isinstance(obj, Instruction):
raise QiskitError("Input is not an instruction.")
chan = None
if obj.name == "reset":
# For superoperator evolution we can simulate a reset as
# a non-unitary superoperator matrix
chan = SuperOp(np.array([[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]))
if obj.name == "kraus":
kraus = obj.params
dim = len(kraus[0])
chan = SuperOp(_to_superop("Kraus", (kraus, None), dim, dim))
elif hasattr(obj, "to_matrix"):
# If instruction is a gate first we see if it has a
# `to_matrix` definition and if so use that.
try:
kraus = [obj.to_matrix()]
dim = len(kraus[0])
chan = SuperOp(_to_superop("Kraus", (kraus, None), dim, dim))
except QiskitError:
pass
return chan
def _append_instruction(self, obj, qargs=None):
"""Update the current Operator by apply an instruction."""
from qiskit.circuit.barrier import Barrier
chan = self._instruction_to_superop(obj)
if chan is not None:
# Perform the composition and inplace update the current state
# of the operator
op = self.compose(chan, qargs=qargs)
self._data = op.data
elif isinstance(obj, Barrier):
return
else:
# If the instruction doesn't have a matrix defined we use its
# circuit decomposition definition if it exists, otherwise we
# cannot compose this gate and raise an error.
if obj.definition is None:
raise QiskitError(f"Cannot apply Instruction: {obj.name}")
if not isinstance(obj.definition, QuantumCircuit):
raise QiskitError(
"{} instruction definition is {}; "
"expected QuantumCircuit".format(obj.name, type(obj.definition))
)
qubit_indices = {bit: idx for idx, bit in enumerate(obj.definition.qubits)}
for instruction in obj.definition.data:
if instruction.clbits:
raise QiskitError(
"Cannot apply instruction with classical bits:"
f" {instruction.operation.name}"
)
# Get the integer position of the flat register
if qargs is None:
new_qargs = [qubit_indices[tup] for tup in instruction.qubits]
else:
new_qargs = [qargs[qubit_indices[tup]] for tup in instruction.qubits]
self._append_instruction(instruction.operation, qargs=new_qargs)
# Update docstrings for API docs
generate_apidocs(SuperOp)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit, transpile
from qiskit_aer import AerSimulator
from qiskit.tools.visualization import plot_histogram
import random
circ = QuantumCircuit(40, 40)
# Initialize with a Hadamard layer
circ.h(range(40))
# Apply some random CNOT and T gates
qubit_indices = [i for i in range(40)]
for i in range(10):
control, target, t = random.sample(qubit_indices, 3)
circ.cx(control, target)
circ.t(t)
circ.measure(range(40), range(40))
# Create statevector method simulator
statevector_simulator = AerSimulator(method='statevector')
# Transpile circuit for backend
tcirc = transpile(circ, statevector_simulator)
# Try and run circuit
statevector_result = statevector_simulator.run(tcirc, shots=1).result()
print('This succeeded?: {}'.format(statevector_result.success))
print('Why not? {}'.format(statevector_result.status))
# Create extended stabilizer method simulator
extended_stabilizer_simulator = AerSimulator(method='extended_stabilizer')
# Transpile circuit for backend
tcirc = transpile(circ, extended_stabilizer_simulator)
extended_stabilizer_result = extended_stabilizer_simulator.run(tcirc, shots=1).result()
print('This succeeded?: {}'.format(extended_stabilizer_result.success))
small_circ = QuantumCircuit(2, 2)
small_circ.h(0)
small_circ.cx(0, 1)
small_circ.t(0)
small_circ.measure([0, 1], [0, 1])
# This circuit should give 00 or 11 with equal probability...
expected_results ={'00': 50, '11': 50}
tsmall_circ = transpile(small_circ, extended_stabilizer_simulator)
result = extended_stabilizer_simulator.run(
tsmall_circ, shots=100).result()
counts = result.get_counts(0)
print('100 shots in {}s'.format(result.time_taken))
plot_histogram([expected_results, counts],
legend=['Expected', 'Extended Stabilizer'])
# Add runtime options for extended stabilizer simulator
opts = {'extended_stabilizer_approximation_error': 0.03}
reduced_error = extended_stabilizer_simulator.run(
tsmall_circ, shots=100, **opts).result()
reduced_error_counts = reduced_error.get_counts(0)
print('100 shots in {}s'.format(reduced_error.time_taken))
plot_histogram([expected_results, reduced_error_counts],
legend=['Expected', 'Extended Stabilizer'])
print("The circuit above, with 100 shots at precision 0.03 "
"and default mixing time, needed {}s".format(int(reduced_error.time_taken)))
opts = {
'extended_stabilizer_approximation_error': 0.03,
'extended_stabilizer_mixing_time': 100
}
optimized = extended_stabilizer_simulator.run(
tsmall_circ, shots=100, **opts).result()
print('Dialing down the mixing time, we completed in just {}s'.format(optimized.time_taken))
# We set these options here only to make the example run more quickly.
opts = {'extended_stabilizer_mixing_time': 100}
multishot = extended_stabilizer_simulator.run(
tcirc, shots=100, **opts).result()
print("100 shots took {} s".format(multishot.time_taken))
opts = {
'extended_stabilizer_measure_sampling': True,
'extended_stabilizer_mixing_time': 100
}
measure_sampling = extended_stabilizer_simulator.run(
circ, shots=100, **opts).result()
print("With the optimization, 100 shots took {} s".format(result.time_taken))
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/Simultonian/hamilutor-qiskit
|
Simultonian
|
import pytest
from qiskit import QuantumCircuit
from ..trotter.simple import trotter
from ..utils import circuit_eq
from .group_trotter import generic
from ..grouping import Bitwise
from ..ordering import lexico
import itertools
def test_single_group_trotter_grouper():
group = {"ix": 1.0, "xi": -1.0}
result = generic(Bitwise, lexico, group)
expected = QuantumCircuit(2)
# Rotation
expected.h(0)
expected.h(1)
# Exponentiate
circuit = trotter({"iz": 1.0, "zi": -1.0})
expected = expected.compose(circuit)
# Anti-rotation
expected.h(0)
expected.h(1)
assert circuit_eq(result, expected)
def test_bitwise_simple_single_group():
group = {"ix": 1.0, "xi": -1.0}
# Checking for multiple number of repetitions
for reps in range(1, 5):
result = generic(Bitwise, lexico, group, t=1.0, reps=reps)
expected = QuantumCircuit(2)
for _ in range(reps):
# Rotation
expected.h(0)
expected.h(1)
# Exponentiate
circuit = trotter({"iz": 1.0, "zi": -1.0}, t=1.0 / reps)
expected = expected.compose(circuit)
# Anti-rotation
expected.h(0)
expected.h(1)
assert circuit_eq(result, expected)
two_group_hams = [
{"xx": 1.0, "zz": 2.0},
{"xx": 1.0, "zz": 2.0, "zi": 3.0},
{"xx": 1.0, "zz": 2.0, "zi": 3.0, "xy": 4.0},
]
two_group_groups = [
[
{"xx": 1.0},
{"zz": 2.0},
],
[
{"xx": 1.0},
{"zz": 2.0, "zi": 3.0},
],
[{"xx": 1.0}, {"zz": 2.0, "zi": 3.0}, {"xy": 4.0}],
]
two_num_qubits = [2, 2]
@pytest.mark.parametrize("reps", range(1, 5))
@pytest.mark.parametrize(
"h,groups,qubits", zip(two_group_hams, two_group_groups, two_num_qubits)
)
def test_bitwise_simple_multiple_groups(reps, h, groups, qubits):
# Checking for multiple number of repetitions.
result = generic(Bitwise, lexico, h, t=1.0, reps=reps)
check = False
# Check for all possible orders of the group
for order in itertools.permutations(groups):
expected = QuantumCircuit(qubits)
# Runs reps loop and trotters individual group.
for _ in range(reps):
for group in order:
circuit = trotter(group, t=1.0 / reps)
expected = expected.compose(circuit)
check = check or circuit_eq(result, expected)
assert check
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, clear_output
from qiskit.primitives import Estimator
from qiskit.algorithms.minimum_eigensolvers import VQE
from qiskit.algorithms.observables_evaluator import estimate_observables
from qiskit.algorithms.optimizers import COBYLA, SLSQP
from qiskit.circuit import QuantumCircuit, Parameter
from qiskit.circuit.library import TwoLocal
from qiskit.quantum_info import Pauli, SparsePauliOp
from qiskit.utils import algorithm_globals
from qiskit_nature.second_q.operators import FermionicOp
from qiskit_nature.second_q.mappers import JordanWignerMapper
def kronecker_delta_function(n: int, m: int) -> int:
"""An implementation of the Kronecker delta function.
Args:
n (int): The first integer argument.
m (int): The second integer argument.
Returns:
Returns 1 if n = m, else returns 0.
"""
return int(n == m)
def create_deuteron_hamiltonian(
N: int, hbar_omega: float = 7.0, V_0: float = -5.68658111
) -> SparsePauliOp:
"""Creates a version of the Deuteron Hamiltonian as a qubit operator.
Args:
N (int): An integer number that represents the dimension of the
basis.
hbar_omega (float, optional): The value of the product of hbar and omega. Defaults to 7.0.
V_0 (float, optional): The value of the potential energy. Defaults to -5.68658111.
Returns:
SparsePauliOp: The qubit-space Hamiltonian that represents the Deuteron.
"""
hamiltonian_terms = {}
for m in range(N):
for n in range(N):
label = "+_{} -_{}".format(str(n), str(m))
coefficient_kinect = (hbar_omega / 2) * (
(2 * n + 3 / 2) * kronecker_delta_function(n, m)
- np.sqrt(n * (n + (1 / 2))) * kronecker_delta_function(n, m + 1)
- np.sqrt((n + 1) * (n + (3 / 2)) * kronecker_delta_function(n, m - 1))
)
hamiltonian_terms[label] = coefficient_kinect
coefficient_potential = (
V_0 * kronecker_delta_function(n, 0) * kronecker_delta_function(n, m)
)
hamiltonian_terms[label] += coefficient_potential
hamiltonian = FermionicOp(hamiltonian_terms, num_spin_orbitals=N)
mapper = JordanWignerMapper()
qubit_hamiltonian = mapper.map(hamiltonian)
if not isinstance(qubit_hamiltonian, SparsePauliOp):
qubit_hamiltonian = qubit_hamiltonian.primitive
return qubit_hamiltonian
deuteron_hamiltonians = [create_deuteron_hamiltonian(i) for i in range(1, 5)]
for i, hamiltonian in enumerate(deuteron_hamiltonians):
print("Deuteron Hamiltonian: H_{}".format(i + 1))
print(hamiltonian)
print("\n")
theta = Parameter(r"$\theta$")
eta = Parameter(r"$\eta$")
wavefunction = QuantumCircuit(1)
wavefunction.ry(theta, 0)
wavefunction.draw("mpl")
wavefunction2 = QuantumCircuit(2)
wavefunction2.x(0)
wavefunction2.ry(theta, 1)
wavefunction2.cx(1, 0)
wavefunction2.draw("mpl")
wavefunction3 = QuantumCircuit(3)
wavefunction3.x(0)
wavefunction3.ry(eta, 1)
wavefunction3.ry(theta, 2)
wavefunction3.cx(2, 0)
wavefunction3.cx(0, 1)
wavefunction3.ry(-eta, 1)
wavefunction3.cx(0, 1)
wavefunction3.cx(1, 0)
wavefunction3.draw("mpl")
ansatz = [wavefunction, wavefunction2, wavefunction3]
reference_values = []
print("Exact binding energies calculated through numpy.linalg.eigh \n")
for i, hamiltonian in enumerate(deuteron_hamiltonians):
eigenvalues, eigenstates = np.linalg.eigh(hamiltonian.to_matrix())
reference_values.append(eigenvalues[0])
print("Exact binding energy for H_{}: {}".format(i + 1, eigenvalues[0]))
print(
"Results using Estimator for H_1, H_2 and H_3 with the ansatz given in the reference paper \n"
)
for i in range(3):
seed = 42
algorithm_globals.random_seed = seed
vqe = VQE(Estimator(), ansatz=ansatz[i], optimizer=SLSQP())
vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i])
binding_energy = vqe_result.optimal_value
print("Binding energy for H_{}: {} MeV".format(i + 1, binding_energy))
def callback(eval_count, parameters, mean, std):
# Overwrites the same line when printing
display("Evaluation: {}, Energy: {}, Std: {}".format(eval_count, mean, std))
clear_output(wait=True)
counts.append(eval_count)
values.append(mean)
params.append(parameters)
deviation.append(std)
plots = []
for i in range(3):
counts = []
values = []
params = []
deviation = []
seed = 42
algorithm_globals.random_seed = seed
vqe = VQE(Estimator(), ansatz=ansatz[i], optimizer=COBYLA(), callback=callback)
vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i])
plots.append([counts, values])
fig, ax = plt.subplots(nrows=3, ncols=1)
fig.set_size_inches((12, 12))
for i, plot in enumerate(plots):
ax[i].plot(plot[0], plot[1], "o-", label="COBYLA")
ax[i].axhline(
y=reference_values[i],
color="k",
linestyle="--",
label=f"Reference Value: {reference_values[i]}",
)
ax[i].legend()
ax[i].set_xlabel("Cost Function Evaluations", fontsize=15)
ax[i].set_ylabel(r"$\langle H_{} \rangle$ - Energy (MeV)".format(i + 1), fontsize=15)
plt.show()
twolocal_ansatzes = []
for i in range(1, 5):
ansatz = TwoLocal(
deuteron_hamiltonians[i - 1].num_qubits,
["rz", "ry"],
"cx",
entanglement="full",
reps=i,
initial_state=None,
)
twolocal_ansatzes.append(ansatz)
print("Results using Estimator for H_1, H_2, H_3 and H_4 with TwoLocal ansatz \n")
seed = 42
algorithm_globals.random_seed = seed
for i in range(4):
vqe = VQE(Estimator(), ansatz=twolocal_ansatzes[i], optimizer=SLSQP())
vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i])
binding_energy = vqe_result.optimal_value
print("Binding energy for H_{}:".format(i + 1), binding_energy, "MeV")
seed = 42
algorithm_globals.random_seed = seed
plots_tl = []
for i in range(4):
counts = []
values = []
params = []
deviation = []
vqe = VQE(
Estimator(),
ansatz=twolocal_ansatzes[i],
optimizer=SLSQP(),
callback=callback,
)
vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i])
plots_tl.append([counts, values])
fig, ax = plt.subplots(nrows=4, ncols=1)
fig.set_size_inches((15, 15))
for i, plot in enumerate(plots_tl):
ax[i].plot(plot[0], plot[1], "o-", label="COBYLA")
ax[i].axhline(
y=reference_values[i],
color="k",
linestyle="--",
label=f"Reference Value: {reference_values[i]}",
)
ax[i].legend()
ax[i].set_xlabel("Cost Function Evaluations", fontsize=15)
ax[i].set_ylabel(r"$\langle H_{} \rangle$ - Energy (MeV)".format(i + 1), fontsize=15)
plt.show()
def calculate_observables_exp_values(
quantum_circuit: QuantumCircuit, observables: list, angles: list
) -> list:
"""Calculate the expectation value of an observable given the quantum
circuit that represents the wavefunction and a list of parameters.
Args:
quantum_circuit (QuantumCircuit): A parameterized quantum circuit
that represents the wavefunction of the system.
observables (list): A list containing the observables that we want
to know the expectation values.
angles (list): A list with the values that will be used in the
'bind_parameters' method.
Returns:
list_exp_values (list): A list containing the expectation values
of the observables given as input.
"""
list_exp_values = []
for observable in observables:
exp_values = []
for angle in angles:
qc = quantum_circuit.bind_parameters({theta: angle})
result = estimate_observables(
Estimator(),
quantum_state=qc,
observables=[observable],
)
exp_values.append(result[0][0])
list_exp_values.append(exp_values)
return list_exp_values
angles = list(np.linspace(-np.pi, np.pi, 100))
observables = [
Pauli("IZ"),
Pauli("ZI"),
Pauli("XX"),
Pauli("YY"),
deuteron_hamiltonians[1],
]
h2_observables_exp_values = calculate_observables_exp_values(wavefunction2, observables, angles)
fig, ax = plt.subplots(nrows=2, ncols=1)
fig.set_size_inches((12, 12))
ax[0].plot(angles, h2_observables_exp_values[0], "o", label=r"$Z_0$")
ax[0].plot(angles, h2_observables_exp_values[1], "o", label=r"$Z_1$")
ax[0].plot(angles, h2_observables_exp_values[2], "o", label=r"$X_0X_1$")
ax[0].plot(angles, h2_observables_exp_values[3], "o", label=r"$Y_0Y_1$")
ax[0].axhline(
y=1,
color="k",
linestyle="--",
)
ax[0].axhline(y=-1, color="k", linestyle="--")
ax[0].legend()
ax[0].set_xlabel(r"Theta - $\theta$", fontsize=15)
ax[0].set_ylabel(r"$\langle O \rangle $ - Operator Expectation Value", fontsize=15)
ax[0].set_xticks(
[-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi],
labels=[r"$-\pi$", r"$-\pi/2$", "0", r"$\pi/2$", r"$\pi$"],
)
ax[0].set_title(
r"Expectation value of the observables $Z_0$, $Z_1$, $X_0X_1$ and $Y_0Y_1$ when we vary $\theta$ in the ansatz.",
fontsize=15,
)
ax[1].plot(angles, h2_observables_exp_values[4], "o")
ax[1].axhline(
y=reference_values[1],
color="k",
linestyle="--",
label="Binding Energy: {} MeV".format(np.round(reference_values[1], 3)),
)
ax[1].legend()
ax[1].set_xlabel(r"Theta - $\theta$", fontsize=15)
ax[1].set_ylabel(r"$\langle H_2 \rangle $ - Energy (MeV)", fontsize=15)
ax[1].set_xticks(
[-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi],
labels=[r"$-\pi$", r"$-\pi/2$", "0", r"$\pi/2$", r"$\pi$"],
)
ax[1].set_title(
r"Behavior of the expectation value of $H_2$ when we vary $\theta$ in the ansatz.", fontsize=15
)
plt.show()
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/lmarza/QuantumDeskCalculator
|
lmarza
|
import math
from qiskit import *
from utils import bcolors, executeQFT, evolveQFTStateSum, inverseQFT
pie = math.pi
def sum(a, b, qc):
n = len(a)-1
# Compute the Fourier transform of register a
for i in range(n+1):
executeQFT(qc, a, n-i, pie)
# Add the two numbers by evolving the Fourier transform F(ψ(reg_a))>
# to |F(ψ(reg_a+reg_b))>
for i in range(n+1):
evolveQFTStateSum(qc, a, b, n-i, pie)
# Compute the inverse Fourier transform of register a
for i in range(n+1):
inverseQFT(qc, a, i, pie)
|
https://github.com/swe-train/qiskit__qiskit
|
swe-train
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Tests for Backend Sampler V2."""
from __future__ import annotations
import unittest
from test import QiskitTestCase, combine
import numpy as np
from ddt import ddt
from numpy.typing import NDArray
from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister
from qiskit.circuit import Parameter
from qiskit.circuit.library import RealAmplitudes, UnitaryGate
from qiskit.primitives import PrimitiveResult, PubResult, StatevectorSampler
from qiskit.primitives.backend_sampler_v2 import BackendSamplerV2
from qiskit.primitives.containers import BitArray
from qiskit.primitives.containers.data_bin import DataBin
from qiskit.primitives.containers.sampler_pub import SamplerPub
from qiskit.providers import JobStatus
from qiskit.providers.backend_compat import BackendV2Converter
from qiskit.providers.basic_provider import BasicSimulator
from qiskit.providers.fake_provider import Fake7QPulseV1, GenericBackendV2
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
BACKENDS = [BasicSimulator(), Fake7QPulseV1(), BackendV2Converter(Fake7QPulseV1())]
@ddt
class TestBackendSamplerV2(QiskitTestCase):
"""Test for BackendSamplerV2"""
def setUp(self):
super().setUp()
self._shots = 10000
self._seed = 123
self._options = {"default_shots": self._shots, "seed_simulator": self._seed}
self._cases = []
hadamard = QuantumCircuit(1, 1, name="Hadamard")
hadamard.h(0)
hadamard.measure(0, 0)
self._cases.append((hadamard, None, {0: 5000, 1: 5000})) # case 0
bell = QuantumCircuit(2, name="Bell")
bell.h(0)
bell.cx(0, 1)
bell.measure_all()
self._cases.append((bell, None, {0: 5000, 3: 5000})) # case 1
pqc = RealAmplitudes(num_qubits=2, reps=2)
pqc.measure_all()
self._cases.append((pqc, [0] * 6, {0: 10000})) # case 2
self._cases.append((pqc, [1] * 6, {0: 168, 1: 3389, 2: 470, 3: 5973})) # case 3
self._cases.append((pqc, [0, 1, 1, 2, 3, 5], {0: 1339, 1: 3534, 2: 912, 3: 4215})) # case 4
self._cases.append((pqc, [1, 2, 3, 4, 5, 6], {0: 634, 1: 291, 2: 6039, 3: 3036})) # case 5
pqc2 = RealAmplitudes(num_qubits=2, reps=3)
pqc2.measure_all()
self._cases.append(
(pqc2, [0, 1, 2, 3, 4, 5, 6, 7], {0: 1898, 1: 6864, 2: 928, 3: 311})
) # case 6
def _assert_allclose(self, bitarray: BitArray, target: NDArray | BitArray, rtol=1e-1, atol=5e2):
self.assertEqual(bitarray.shape, target.shape)
for idx in np.ndindex(bitarray.shape):
int_counts = bitarray.get_int_counts(idx)
target_counts = (
target.get_int_counts(idx) if isinstance(target, BitArray) else target[idx]
)
max_key = max(max(int_counts.keys()), max(target_counts.keys()))
ary = np.array([int_counts.get(i, 0) for i in range(max_key + 1)])
tgt = np.array([target_counts.get(i, 0) for i in range(max_key + 1)])
np.testing.assert_allclose(ary, tgt, rtol=rtol, atol=atol, err_msg=f"index: {idx}")
@combine(backend=BACKENDS)
def test_sampler_run(self, backend):
"""Test run()."""
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
with self.subTest("single"):
bell, _, target = self._cases[1]
bell = pm.run(bell)
sampler = BackendSamplerV2(backend=backend, options=self._options)
job = sampler.run([bell], shots=self._shots)
result = job.result()
self.assertIsInstance(result, PrimitiveResult)
self.assertIsInstance(result.metadata, dict)
self.assertEqual(len(result), 1)
self.assertIsInstance(result[0], PubResult)
self.assertIsInstance(result[0].data, DataBin)
self.assertIsInstance(result[0].data.meas, BitArray)
self._assert_allclose(result[0].data.meas, np.array(target))
with self.subTest("single with param"):
pqc, param_vals, target = self._cases[2]
sampler = BackendSamplerV2(backend=backend, options=self._options)
pqc = pm.run(pqc)
params = (param.name for param in pqc.parameters)
job = sampler.run([(pqc, {params: param_vals})], shots=self._shots)
result = job.result()
self.assertIsInstance(result, PrimitiveResult)
self.assertIsInstance(result.metadata, dict)
self.assertEqual(len(result), 1)
self.assertIsInstance(result[0], PubResult)
self.assertIsInstance(result[0].data, DataBin)
self.assertIsInstance(result[0].data.meas, BitArray)
self._assert_allclose(result[0].data.meas, np.array(target))
with self.subTest("multiple"):
pqc, param_vals, target = self._cases[2]
sampler = BackendSamplerV2(backend=backend, options=self._options)
pqc = pm.run(pqc)
params = (param.name for param in pqc.parameters)
job = sampler.run(
[(pqc, {params: [param_vals, param_vals, param_vals]})], shots=self._shots
)
result = job.result()
self.assertIsInstance(result, PrimitiveResult)
self.assertIsInstance(result.metadata, dict)
self.assertEqual(len(result), 1)
self.assertIsInstance(result[0], PubResult)
self.assertIsInstance(result[0].data, DataBin)
self.assertIsInstance(result[0].data.meas, BitArray)
self._assert_allclose(result[0].data.meas, np.array([target, target, target]))
@combine(backend=BACKENDS)
def test_sampler_run_multiple_times(self, backend):
"""Test run() returns the same results if the same input is given."""
bell, _, _ = self._cases[1]
sampler = BackendSamplerV2(backend=backend, options=self._options)
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
bell = pm.run(bell)
result1 = sampler.run([bell], shots=self._shots).result()
meas1 = result1[0].data.meas
result2 = sampler.run([bell], shots=self._shots).result()
meas2 = result2[0].data.meas
self._assert_allclose(meas1, meas2, rtol=0)
@combine(backend=BACKENDS)
def test_sample_run_multiple_circuits(self, backend):
"""Test run() with multiple circuits."""
bell, _, target = self._cases[1]
sampler = BackendSamplerV2(backend=backend, options=self._options)
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
bell = pm.run(bell)
result = sampler.run([bell, bell, bell], shots=self._shots).result()
self.assertEqual(len(result), 3)
self._assert_allclose(result[0].data.meas, np.array(target))
self._assert_allclose(result[1].data.meas, np.array(target))
self._assert_allclose(result[2].data.meas, np.array(target))
@combine(backend=BACKENDS)
def test_sampler_run_with_parameterized_circuits(self, backend):
"""Test run() with parameterized circuits."""
pqc1, param1, target1 = self._cases[4]
pqc2, param2, target2 = self._cases[5]
pqc3, param3, target3 = self._cases[6]
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
pqc1, pqc2, pqc3 = pm.run([pqc1, pqc2, pqc3])
sampler = BackendSamplerV2(backend=backend, options=self._options)
result = sampler.run(
[(pqc1, param1), (pqc2, param2), (pqc3, param3)], shots=self._shots
).result()
self.assertEqual(len(result), 3)
self._assert_allclose(result[0].data.meas, np.array(target1))
self._assert_allclose(result[1].data.meas, np.array(target2))
self._assert_allclose(result[2].data.meas, np.array(target3))
@combine(backend=BACKENDS)
def test_run_1qubit(self, backend):
"""test for 1-qubit cases"""
qc = QuantumCircuit(1)
qc.measure_all()
qc2 = QuantumCircuit(1)
qc2.x(0)
qc2.measure_all()
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
qc, qc2 = pm.run([qc, qc2])
sampler = BackendSamplerV2(backend=backend, options=self._options)
result = sampler.run([qc, qc2], shots=self._shots).result()
self.assertEqual(len(result), 2)
for i in range(2):
self._assert_allclose(result[i].data.meas, np.array({i: self._shots}))
@combine(backend=BACKENDS)
def test_run_2qubit(self, backend):
"""test for 2-qubit cases"""
qc0 = QuantumCircuit(2)
qc0.measure_all()
qc1 = QuantumCircuit(2)
qc1.x(0)
qc1.measure_all()
qc2 = QuantumCircuit(2)
qc2.x(1)
qc2.measure_all()
qc3 = QuantumCircuit(2)
qc3.x([0, 1])
qc3.measure_all()
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
qc0, qc1, qc2, qc3 = pm.run([qc0, qc1, qc2, qc3])
sampler = BackendSamplerV2(backend=backend, options=self._options)
result = sampler.run([qc0, qc1, qc2, qc3], shots=self._shots).result()
self.assertEqual(len(result), 4)
for i in range(4):
self._assert_allclose(result[i].data.meas, np.array({i: self._shots}))
@combine(backend=BACKENDS)
def test_run_single_circuit(self, backend):
"""Test for single circuit case."""
sampler = BackendSamplerV2(backend=backend, options=self._options)
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
with self.subTest("No parameter"):
circuit, _, target = self._cases[1]
circuit = pm.run(circuit)
param_target = [
(None, np.array(target)),
({}, np.array(target)),
]
for param, target in param_target:
with self.subTest(f"{circuit.name} w/ {param}"):
result = sampler.run([(circuit, param)], shots=self._shots).result()
self.assertEqual(len(result), 1)
self._assert_allclose(result[0].data.meas, target)
with self.subTest("One parameter"):
circuit = QuantumCircuit(1, 1, name="X gate")
param = Parameter("x")
circuit.ry(param, 0)
circuit.measure(0, 0)
circuit = pm.run(circuit)
param_target = [
({"x": np.pi}, np.array({1: self._shots})),
({param: np.pi}, np.array({1: self._shots})),
({"x": np.array(np.pi)}, np.array({1: self._shots})),
({param: np.array(np.pi)}, np.array({1: self._shots})),
({"x": [np.pi]}, np.array({1: self._shots})),
({param: [np.pi]}, np.array({1: self._shots})),
({"x": np.array([np.pi])}, np.array({1: self._shots})),
({param: np.array([np.pi])}, np.array({1: self._shots})),
]
for param, target in param_target:
with self.subTest(f"{circuit.name} w/ {param}"):
result = sampler.run([(circuit, param)], shots=self._shots).result()
self.assertEqual(len(result), 1)
self._assert_allclose(result[0].data.c, target)
with self.subTest("More than one parameter"):
circuit, param, target = self._cases[3]
circuit = pm.run(circuit)
param_target = [
(param, np.array(target)),
(tuple(param), np.array(target)),
(np.array(param), np.array(target)),
((param,), np.array([target])),
([param], np.array([target])),
(np.array([param]), np.array([target])),
]
for param, target in param_target:
with self.subTest(f"{circuit.name} w/ {param}"):
result = sampler.run([(circuit, param)], shots=self._shots).result()
self.assertEqual(len(result), 1)
self._assert_allclose(result[0].data.meas, target)
@combine(backend=BACKENDS)
def test_run_reverse_meas_order(self, backend):
"""test for sampler with reverse measurement order"""
x = Parameter("x")
y = Parameter("y")
qc = QuantumCircuit(3, 3)
qc.rx(x, 0)
qc.rx(y, 1)
qc.x(2)
qc.measure(0, 2)
qc.measure(1, 1)
qc.measure(2, 0)
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
qc = pm.run(qc)
sampler = BackendSamplerV2(backend=backend)
sampler.options.seed_simulator = self._seed
result = sampler.run([(qc, [0, 0]), (qc, [np.pi / 2, 0])], shots=self._shots).result()
self.assertEqual(len(result), 2)
# qc({x: 0, y: 0})
self._assert_allclose(result[0].data.c, np.array({1: self._shots}))
# qc({x: pi/2, y: 0})
self._assert_allclose(result[1].data.c, np.array({1: self._shots / 2, 5: self._shots / 2}))
@combine(backend=BACKENDS)
def test_run_errors(self, backend):
"""Test for errors with run method"""
qc1 = QuantumCircuit(1)
qc1.measure_all()
qc2 = RealAmplitudes(num_qubits=1, reps=1)
qc2.measure_all()
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
qc1, qc2 = pm.run([qc1, qc2])
sampler = BackendSamplerV2(backend=backend)
with self.subTest("set parameter values to a non-parameterized circuit"):
with self.assertRaises(ValueError):
_ = sampler.run([(qc1, [1e2])]).result()
with self.subTest("missing all parameter values for a parameterized circuit"):
with self.assertRaises(ValueError):
_ = sampler.run([qc2]).result()
with self.assertRaises(ValueError):
_ = sampler.run([(qc2, [])]).result()
with self.assertRaises(ValueError):
_ = sampler.run([(qc2, None)]).result()
with self.subTest("missing some parameter values for a parameterized circuit"):
with self.assertRaises(ValueError):
_ = sampler.run([(qc2, [1e2])]).result()
with self.subTest("too many parameter values for a parameterized circuit"):
with self.assertRaises(ValueError):
_ = sampler.run([(qc2, [1e2] * 100)]).result()
with self.subTest("negative shots, run arg"):
with self.assertRaises(ValueError):
_ = sampler.run([qc1], shots=-1).result()
with self.subTest("negative shots, pub-like"):
with self.assertRaises(ValueError):
_ = sampler.run([(qc1, None, -1)]).result()
with self.subTest("negative shots, pub"):
with self.assertRaises(ValueError):
_ = sampler.run([SamplerPub(qc1, shots=-1)]).result()
with self.subTest("zero shots, run arg"):
with self.assertRaises(ValueError):
_ = sampler.run([qc1], shots=0).result()
with self.subTest("zero shots, pub-like"):
with self.assertRaises(ValueError):
_ = sampler.run([(qc1, None, 0)]).result()
with self.subTest("zero shots, pub"):
with self.assertRaises(ValueError):
_ = sampler.run([SamplerPub(qc1, shots=0)]).result()
with self.subTest("missing []"):
with self.assertRaisesRegex(ValueError, "An invalid Sampler pub-like was given"):
_ = sampler.run(qc1).result()
with self.subTest("missing [] for pqc"):
with self.assertRaisesRegex(ValueError, "Note that if you want to run a single pub,"):
_ = sampler.run((qc2, [0, 1])).result()
@combine(backend=BACKENDS)
def test_run_empty_parameter(self, backend):
"""Test for empty parameter"""
n = 5
qc = QuantumCircuit(n, n - 1)
qc.measure(range(n - 1), range(n - 1))
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
qc = pm.run(qc)
sampler = BackendSamplerV2(backend=backend, options=self._options)
with self.subTest("one circuit"):
result = sampler.run([qc], shots=self._shots).result()
self.assertEqual(len(result), 1)
self._assert_allclose(result[0].data.c, np.array({0: self._shots}))
with self.subTest("two circuits"):
result = sampler.run([qc, qc], shots=self._shots).result()
self.assertEqual(len(result), 2)
for i in range(2):
self._assert_allclose(result[i].data.c, np.array({0: self._shots}))
@combine(backend=BACKENDS)
def test_run_numpy_params(self, backend):
"""Test for numpy array as parameter values"""
qc = RealAmplitudes(num_qubits=2, reps=2)
qc.measure_all()
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
qc = pm.run(qc)
k = 5
params_array = np.linspace(0, 1, k * qc.num_parameters).reshape((k, qc.num_parameters))
params_list = params_array.tolist()
sampler = StatevectorSampler(seed=self._seed)
target = sampler.run([(qc, params_list)], shots=self._shots).result()
with self.subTest("ndarray"):
sampler = BackendSamplerV2(backend=backend, options=self._options)
result = sampler.run([(qc, params_array)], shots=self._shots).result()
self.assertEqual(len(result), 1)
self._assert_allclose(result[0].data.meas, target[0].data.meas)
with self.subTest("split a list"):
sampler = BackendSamplerV2(backend=backend, options=self._options)
result = sampler.run(
[(qc, params) for params in params_list], shots=self._shots
).result()
self.assertEqual(len(result), k)
for i in range(k):
self._assert_allclose(
result[i].data.meas, np.array(target[0].data.meas.get_int_counts(i))
)
@combine(backend=BACKENDS)
def test_run_with_shots_option(self, backend):
"""test with shots option."""
bell, _, _ = self._cases[1]
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
bell = pm.run(bell)
shots = 100
with self.subTest("run arg"):
sampler = BackendSamplerV2(backend=backend, options=self._options)
result = sampler.run([bell], shots=shots).result()
self.assertEqual(len(result), 1)
self.assertEqual(result[0].data.meas.num_shots, shots)
self.assertEqual(sum(result[0].data.meas.get_counts().values()), shots)
with self.subTest("default shots"):
sampler = BackendSamplerV2(backend=backend, options=self._options)
default_shots = sampler.options.default_shots
result = sampler.run([bell]).result()
self.assertEqual(len(result), 1)
self.assertEqual(result[0].data.meas.num_shots, default_shots)
self.assertEqual(sum(result[0].data.meas.get_counts().values()), default_shots)
with self.subTest("setting default shots"):
default_shots = 100
sampler = BackendSamplerV2(backend=backend, options=self._options)
sampler.options.default_shots = default_shots
self.assertEqual(sampler.options.default_shots, default_shots)
result = sampler.run([bell]).result()
self.assertEqual(len(result), 1)
self.assertEqual(result[0].data.meas.num_shots, default_shots)
self.assertEqual(sum(result[0].data.meas.get_counts().values()), default_shots)
with self.subTest("pub-like"):
sampler = BackendSamplerV2(backend=backend, options=self._options)
result = sampler.run([(bell, None, shots)]).result()
self.assertEqual(len(result), 1)
self.assertEqual(result[0].data.meas.num_shots, shots)
self.assertEqual(sum(result[0].data.meas.get_counts().values()), shots)
with self.subTest("pub"):
sampler = BackendSamplerV2(backend=backend, options=self._options)
result = sampler.run([SamplerPub(bell, shots=shots)]).result()
self.assertEqual(len(result), 1)
self.assertEqual(result[0].data.meas.num_shots, shots)
self.assertEqual(sum(result[0].data.meas.get_counts().values()), shots)
with self.subTest("multiple pubs"):
sampler = BackendSamplerV2(backend=backend, options=self._options)
shots1 = 100
shots2 = 200
result = sampler.run(
[
SamplerPub(bell, shots=shots1),
SamplerPub(bell, shots=shots2),
],
shots=self._shots,
).result()
self.assertEqual(len(result), 2)
self.assertEqual(result[0].data.meas.num_shots, shots1)
self.assertEqual(sum(result[0].data.meas.get_counts().values()), shots1)
self.assertEqual(result[1].data.meas.num_shots, shots2)
self.assertEqual(sum(result[1].data.meas.get_counts().values()), shots2)
@combine(backend=BACKENDS)
def test_run_shots_result_size(self, backend):
"""test with shots option to validate the result size"""
n = 7 # should be less than or equal to the number of qubits of backend
qc = QuantumCircuit(n)
qc.h(range(n))
qc.measure_all()
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
qc = pm.run(qc)
sampler = BackendSamplerV2(backend=backend, options=self._options)
result = sampler.run([qc], shots=self._shots).result()
self.assertEqual(len(result), 1)
self.assertLessEqual(result[0].data.meas.num_shots, self._shots)
self.assertEqual(sum(result[0].data.meas.get_counts().values()), self._shots)
@combine(backend=BACKENDS)
def test_primitive_job_status_done(self, backend):
"""test primitive job's status"""
bell, _, _ = self._cases[1]
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
bell = pm.run(bell)
sampler = BackendSamplerV2(backend=backend, options=self._options)
job = sampler.run([bell], shots=self._shots)
_ = job.result()
self.assertEqual(job.status(), JobStatus.DONE)
@combine(backend=BACKENDS)
def test_circuit_with_unitary(self, backend):
"""Test for circuit with unitary gate."""
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
with self.subTest("identity"):
gate = UnitaryGate(np.eye(2))
circuit = QuantumCircuit(1)
circuit.append(gate, [0])
circuit.measure_all()
circuit = pm.run(circuit)
sampler = BackendSamplerV2(backend=backend, options=self._options)
result = sampler.run([circuit], shots=self._shots).result()
self.assertEqual(len(result), 1)
self._assert_allclose(result[0].data.meas, np.array({0: self._shots}))
with self.subTest("X"):
gate = UnitaryGate([[0, 1], [1, 0]])
circuit = QuantumCircuit(1)
circuit.append(gate, [0])
circuit.measure_all()
circuit = pm.run(circuit)
sampler = BackendSamplerV2(backend=backend, options=self._options)
result = sampler.run([circuit], shots=self._shots).result()
self.assertEqual(len(result), 1)
self._assert_allclose(result[0].data.meas, np.array({1: self._shots}))
@combine(backend=BACKENDS)
def test_circuit_with_multiple_cregs(self, backend):
"""Test for circuit with multiple classical registers."""
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
cases = []
# case 1
a = ClassicalRegister(1, "a")
b = ClassicalRegister(2, "b")
c = ClassicalRegister(3, "c")
qc = QuantumCircuit(QuantumRegister(3), a, b, c)
qc.h(range(3))
qc.measure([0, 1, 2, 2], [0, 2, 4, 5])
qc = pm.run(qc)
target = {"a": {0: 5000, 1: 5000}, "b": {0: 5000, 2: 5000}, "c": {0: 5000, 6: 5000}}
cases.append(("use all cregs", qc, target))
# case 2
a = ClassicalRegister(1, "a")
b = ClassicalRegister(5, "b")
c = ClassicalRegister(3, "c")
qc = QuantumCircuit(QuantumRegister(3), a, b, c)
qc.h(range(3))
qc.measure([0, 1, 2, 2], [0, 2, 4, 5])
qc = pm.run(qc)
target = {
"a": {0: 5000, 1: 5000},
"b": {0: 2500, 2: 2500, 24: 2500, 26: 2500},
"c": {0: 10000},
}
cases.append(("use only a and b", qc, target))
# case 3
a = ClassicalRegister(1, "a")
b = ClassicalRegister(2, "b")
c = ClassicalRegister(3, "c")
qc = QuantumCircuit(QuantumRegister(3), a, b, c)
qc.h(range(3))
qc.measure(1, 5)
qc = pm.run(qc)
target = {"a": {0: 10000}, "b": {0: 10000}, "c": {0: 5000, 4: 5000}}
cases.append(("use only c", qc, target))
# case 4
a = ClassicalRegister(1, "a")
b = ClassicalRegister(2, "b")
c = ClassicalRegister(3, "c")
qc = QuantumCircuit(QuantumRegister(3), a, b, c)
qc.h(range(3))
qc.measure([0, 1, 2], [5, 5, 5])
qc = pm.run(qc)
target = {"a": {0: 10000}, "b": {0: 10000}, "c": {0: 5000, 4: 5000}}
cases.append(("use only c multiple qubits", qc, target))
# case 5
a = ClassicalRegister(1, "a")
b = ClassicalRegister(2, "b")
c = ClassicalRegister(3, "c")
qc = QuantumCircuit(QuantumRegister(3), a, b, c)
qc.h(range(3))
qc = pm.run(qc)
target = {"a": {0: 10000}, "b": {0: 10000}, "c": {0: 10000}}
cases.append(("no measure", qc, target))
for title, qc, target in cases:
with self.subTest(title):
sampler = BackendSamplerV2(backend=backend, options=self._options)
result = sampler.run([qc], shots=self._shots).result()
self.assertEqual(len(result), 1)
data = result[0].data
self.assertEqual(len(data), 3)
for creg in qc.cregs:
self.assertTrue(hasattr(data, creg.name))
self._assert_allclose(getattr(data, creg.name), np.array(target[creg.name]))
@combine(backend=BACKENDS)
def test_circuit_with_aliased_cregs(self, backend):
"""Test for circuit with aliased classical registers."""
q = QuantumRegister(3, "q")
c1 = ClassicalRegister(1, "c1")
c2 = ClassicalRegister(1, "c2")
qc = QuantumCircuit(q, c1, c2)
qc.ry(np.pi / 4, 2)
qc.cx(2, 1)
qc.cx(0, 1)
qc.h(0)
qc.measure(0, c1)
qc.measure(1, c2)
qc.z(2).c_if(c1, 1)
qc.x(2).c_if(c2, 1)
qc2 = QuantumCircuit(5, 5)
qc2.compose(qc, [0, 2, 3], [2, 4], inplace=True)
cregs = [creg.name for creg in qc2.cregs]
target = {
cregs[0]: {0: 4255, 4: 4297, 16: 720, 20: 726},
cregs[1]: {0: 5000, 1: 5000},
cregs[2]: {0: 8500, 1: 1500},
}
sampler = BackendSamplerV2(backend=backend, options=self._options)
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
qc2 = pm.run(qc2)
result = sampler.run([qc2], shots=self._shots).result()
self.assertEqual(len(result), 1)
data = result[0].data
self.assertEqual(len(data), 3)
for creg_name, creg in target.items():
self.assertTrue(hasattr(data, creg_name))
self._assert_allclose(getattr(data, creg_name), np.array(creg))
@combine(backend=BACKENDS)
def test_no_cregs(self, backend):
"""Test that the sampler works when there are no classical register in the circuit."""
qc = QuantumCircuit(2)
sampler = BackendSamplerV2(backend=backend, options=self._options)
with self.assertWarns(UserWarning):
result = sampler.run([qc]).result()
self.assertEqual(len(result), 1)
self.assertEqual(len(result[0].data), 0)
@combine(backend=BACKENDS)
def test_empty_creg(self, backend):
"""Test that the sampler works if provided a classical register with no bits."""
# Test case for issue #12043
q = QuantumRegister(1, "q")
c1 = ClassicalRegister(0, "c1")
c2 = ClassicalRegister(1, "c2")
qc = QuantumCircuit(q, c1, c2)
qc.h(0)
qc.measure(0, 0)
sampler = BackendSamplerV2(backend=backend, options=self._options)
result = sampler.run([qc], shots=self._shots).result()
self.assertEqual(result[0].data.c1.array.shape, (self._shots, 0))
@combine(backend=BACKENDS)
def test_diff_shots(self, backend):
"""Test of pubs with different shots"""
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
bell, _, target = self._cases[1]
bell = pm.run(bell)
sampler = BackendSamplerV2(backend=backend, options=self._options)
shots2 = self._shots + 2
target2 = {k: v + 1 for k, v in target.items()}
job = sampler.run([(bell, None, self._shots), (bell, None, shots2)])
result = job.result()
self.assertEqual(len(result), 2)
self.assertEqual(result[0].data.meas.num_shots, self._shots)
self._assert_allclose(result[0].data.meas, np.array(target))
self.assertEqual(result[1].data.meas.num_shots, shots2)
self._assert_allclose(result[1].data.meas, np.array(target2))
def test_job_size_limit_backend_v2(self):
"""Test BackendSamplerV2 respects backend's job size limit."""
class FakeBackendLimitedCircuits(GenericBackendV2):
"""Generic backend V2 with job size limit."""
@property
def max_circuits(self):
return 1
qc = QuantumCircuit(1)
qc.measure_all()
qc2 = QuantumCircuit(1)
qc2.x(0)
qc2.measure_all()
sampler = BackendSamplerV2(backend=FakeBackendLimitedCircuits(num_qubits=5))
result = sampler.run([qc, qc2], shots=self._shots).result()
self.assertIsInstance(result, PrimitiveResult)
self.assertEqual(len(result), 2)
self.assertIsInstance(result[0], PubResult)
self.assertIsInstance(result[1], PubResult)
self._assert_allclose(result[0].data.meas, np.array({0: self._shots}))
self._assert_allclose(result[1].data.meas, np.array({1: self._shots}))
def test_job_size_limit_backend_v1(self):
"""Test BackendSamplerV2 respects backend's job size limit."""
backend = Fake7QPulseV1()
config = backend.configuration()
config.max_experiments = 1
backend._configuration = config
qc = QuantumCircuit(1)
qc.measure_all()
qc2 = QuantumCircuit(1)
qc2.x(0)
qc2.measure_all()
sampler = BackendSamplerV2(backend=backend)
result = sampler.run([qc, qc2], shots=self._shots).result()
self.assertIsInstance(result, PrimitiveResult)
self.assertEqual(len(result), 2)
self.assertIsInstance(result[0], PubResult)
self.assertIsInstance(result[1], PubResult)
self._assert_allclose(result[0].data.meas, np.array({0: self._shots}))
self._assert_allclose(result[1].data.meas, np.array({1: self._shots}))
def test_iter_pub(self):
"""Test of an iterable of pubs"""
backend = BasicSimulator()
qc = QuantumCircuit(1)
qc.measure_all()
qc2 = QuantumCircuit(1)
qc2.x(0)
qc2.measure_all()
sampler = BackendSamplerV2(backend=backend)
result = sampler.run(iter([qc, qc2]), shots=self._shots).result()
self.assertIsInstance(result, PrimitiveResult)
self.assertEqual(len(result), 2)
self.assertIsInstance(result[0], PubResult)
self.assertIsInstance(result[1], PubResult)
self._assert_allclose(result[0].data.meas, np.array({0: self._shots}))
self._assert_allclose(result[1].data.meas, np.array({1: self._shots}))
if __name__ == "__main__":
unittest.main()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import numpy as np
# Import Qiskit
from qiskit import QuantumCircuit
from qiskit import Aer, transpile
from qiskit.tools.visualization import plot_histogram, plot_state_city
import qiskit.quantum_info as qi
Aer.backends()
simulator = Aer.get_backend('aer_simulator')
# Create circuit
circ = QuantumCircuit(2)
circ.h(0)
circ.cx(0, 1)
circ.measure_all()
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get counts
result = simulator.run(circ).result()
counts = result.get_counts(circ)
plot_histogram(counts, title='Bell-State counts')
# Run and get memory
result = simulator.run(circ, shots=10, memory=True).result()
memory = result.get_memory(circ)
print(memory)
# Increase shots to reduce sampling variance
shots = 10000
# Stabilizer simulation method
sim_stabilizer = Aer.get_backend('aer_simulator_stabilizer')
job_stabilizer = sim_stabilizer.run(circ, shots=shots)
counts_stabilizer = job_stabilizer.result().get_counts(0)
# Statevector simulation method
sim_statevector = Aer.get_backend('aer_simulator_statevector')
job_statevector = sim_statevector.run(circ, shots=shots)
counts_statevector = job_statevector.result().get_counts(0)
# Density Matrix simulation method
sim_density = Aer.get_backend('aer_simulator_density_matrix')
job_density = sim_density.run(circ, shots=shots)
counts_density = job_density.result().get_counts(0)
# Matrix Product State simulation method
sim_mps = Aer.get_backend('aer_simulator_matrix_product_state')
job_mps = sim_mps.run(circ, shots=shots)
counts_mps = job_mps.result().get_counts(0)
plot_histogram([counts_stabilizer, counts_statevector, counts_density, counts_mps],
title='Counts for different simulation methods',
legend=['stabilizer', 'statevector',
'density_matrix', 'matrix_product_state'])
from qiskit_aer import AerError
# Initialize a GPU backend
# Note that the cloud instance for tutorials does not have a GPU
# so this will raise an exception.
try:
simulator_gpu = Aer.get_backend('aer_simulator')
simulator_gpu.set_options(device='GPU')
except AerError as e:
print(e)
# Configure a single-precision statevector simulator backend
simulator = Aer.get_backend('aer_simulator_statevector')
simulator.set_options(precision='single')
# Run and get counts
result = simulator.run(circ).result()
counts = result.get_counts(circ)
print(counts)
# Construct quantum circuit without measure
circ = QuantumCircuit(2)
circ.h(0)
circ.cx(0, 1)
circ.save_statevector()
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get statevector
result = simulator.run(circ).result()
statevector = result.get_statevector(circ)
plot_state_city(statevector, title='Bell state')
# Construct quantum circuit without measure
circ = QuantumCircuit(2)
circ.h(0)
circ.cx(0, 1)
circ.save_unitary()
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get unitary
result = simulator.run(circ).result()
unitary = result.get_unitary(circ)
print("Circuit unitary:\n", np.asarray(unitary).round(5))
# Construct quantum circuit without measure
steps = 5
circ = QuantumCircuit(1)
for i in range(steps):
circ.save_statevector(label=f'psi_{i}')
circ.rx(i * np.pi / steps, 0)
circ.save_statevector(label=f'psi_{steps}')
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get saved data
result = simulator.run(circ).result()
data = result.data(0)
data
# Generate a random statevector
num_qubits = 2
psi = qi.random_statevector(2 ** num_qubits, seed=100)
# Set initial state to generated statevector
circ = QuantumCircuit(num_qubits)
circ.set_statevector(psi)
circ.save_state()
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get saved data
result = simulator.run(circ).result()
result.data(0)
# Use initilize instruction to set initial state
circ = QuantumCircuit(num_qubits)
circ.initialize(psi, range(num_qubits))
circ.save_state()
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get result data
result = simulator.run(circ).result()
result.data(0)
num_qubits = 2
rho = qi.random_density_matrix(2 ** num_qubits, seed=100)
circ = QuantumCircuit(num_qubits)
circ.set_density_matrix(rho)
circ.save_state()
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get saved data
result = simulator.run(circ).result()
result.data(0)
# Generate a random Clifford C
num_qubits = 2
stab = qi.random_clifford(num_qubits, seed=100)
# Set initial state to stabilizer state C|0>
circ = QuantumCircuit(num_qubits)
circ.set_stabilizer(stab)
circ.save_state()
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get saved data
result = simulator.run(circ).result()
result.data(0)
# Generate a random unitary
num_qubits = 2
unitary = qi.random_unitary(2 ** num_qubits, seed=100)
# Set initial state to unitary
circ = QuantumCircuit(num_qubits)
circ.set_unitary(unitary)
circ.save_state()
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get saved data
result = simulator.run(circ).result()
result.data(0)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
|
mathelatics
|
# Importing standard Qiskit libraries
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit import Aer, assemble
from qiskit.visualization import plot_histogram, plot_bloch_multivector, plot_state_qsphere, plot_state_city, plot_state_paulivec, plot_state_hinton
# Ignore warnings
import warnings
warnings.filterwarnings('ignore')
# Define backend
sim = Aer.get_backend('aer_simulator')
def createBellStates(inp1, inp2):
qc = QuantumCircuit(2)
qc.reset(range(2))
if inp1=='1':
qc.x(0)
if inp2=='1':
qc.x(1)
qc.barrier()
qc.h(0)
qc.cx(0,1)
qc.save_statevector()
qobj = assemble(qc)
result = sim.run(qobj).result()
state = result.get_statevector()
return qc, state, result
print('Note: Since these qubits are in entangled state, their state cannot be written as two separate qubit states. This also means that we lose information when we try to plot our state on separate Bloch spheres as seen below.\n')
inp1 = 0
inp2 = 1
qc, state, result = createBellStates(inp1, inp2)
display(plot_bloch_multivector(state))
# Uncomment below code in order to explore other states
#for inp2 in ['0', '1']:
#for inp1 in ['0', '1']:
#qc, state, result = createBellStates(inp1, inp2)
#print('For inputs',inp2,inp1,'Representation of Entangled States are:')
# Uncomment any of the below functions to visualize the resulting quantum states
# Draw the quantum circuit
#display(qc.draw())
# Plot states on QSphere
#display(plot_state_qsphere(state))
# Plot states on Bloch Multivector
#display(plot_bloch_multivector(state))
# Plot histogram
#display(plot_histogram(result.get_counts()))
# Plot state matrix like a city
#display(plot_state_city(state))
# Represent state matix using Pauli operators as the basis
#display(plot_state_paulivec(state))
# Plot state matrix as Hinton representation
#display(plot_state_hinton(state))
#print('\n')'''
from qiskit import IBMQ, execute
from qiskit.providers.ibmq import least_busy
from qiskit.tools import job_monitor
# Loading your IBM Quantum account(s)
provider = IBMQ.load_account()
backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 2
and not x.configuration().simulator
and x.status().operational==True))
def createBSRealDevice(inp1, inp2):
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
qc = QuantumCircuit(qr, cr)
qc.reset(range(2))
if inp1 == 1:
qc.x(0)
if inp2 == 1:
qc.x(1)
qc.barrier()
qc.h(0)
qc.cx(0,1)
qc.measure(qr, cr)
job = execute(qc, backend=backend, shots=100)
job_monitor(job)
result = job.result()
return qc, result
inp1 = 0
inp2 = 0
print('For inputs',inp2,inp1,'Representation of Entangled States are,')
#first results
qc, first_result = createBSRealDevice(inp1, inp2)
first_counts = first_result.get_counts()
# Draw the quantum circuit
display(qc.draw())
#second results
qc, second_result = createBSRealDevice(inp1, inp2)
second_counts = second_result.get_counts()
# Plot results on histogram with legend
legend = ['First execution', 'Second execution']
plot_histogram([first_counts, second_counts], legend=legend)
def ghzCircuit(inp1, inp2, inp3):
qc = QuantumCircuit(3)
qc.reset(range(3))
if inp1 == 1:
qc.x(0)
if inp2 == 1:
qc.x(1)
if inp3 == 1:
qc.x(2)
qc.barrier()
qc.h(0)
qc.cx(0,1)
qc.cx(0,2)
qc.save_statevector()
qobj = assemble(qc)
result = sim.run(qobj).result()
state = result.get_statevector()
return qc, state, result
print('Note: Since these qubits are in entangled state, their state cannot be written as two separate qubit states. This also means that we lose information when we try to plot our state on separate Bloch spheres as seen below.\n')
inp1 = 0
inp2 = 1
inp3 = 1
qc, state, result = ghzCircuit(inp1, inp2, inp3)
display(plot_bloch_multivector(state))
# Uncomment below code in order to explore other states
#for inp3 in ['0','1']:
#for inp2 in ['0','1']:
#for inp1 in ['0','1']:
#qc, state, result = ghzCircuit(inp1, inp2, inp3)
#print('For inputs',inp3,inp2,inp1,'Representation of GHZ States are:')
# Uncomment any of the below functions to visualize the resulting quantum states
# Draw the quantum circuit
#display(qc.draw())
# Plot states on QSphere
#display(plot_state_qsphere(state))
# Plot states on Bloch Multivector
#display(plot_bloch_multivector(state))
# Plot histogram
#display(plot_histogram(result.get_counts()))
# Plot state matrix like a city
#display(plot_state_city(state))
# Represent state matix using Pauli operators as the basis
#display(plot_state_paulivec(state))
# Plot state matrix as Hinton representation
#display(plot_state_hinton(state))
#print('\n')
def ghz5QCircuit(inp1, inp2, inp3, inp4, inp5):
qc = QuantumCircuit(5)
#qc.reset(range(5))
if inp1 == 1:
qc.x(0)
if inp2 == 1:
qc.x(1)
if inp3 == 1:
qc.x(2)
if inp4 == 1:
qc.x(3)
if inp5 == 1:
qc.x(4)
qc.barrier()
qc.h(0)
qc.cx(0,1)
qc.cx(0,2)
qc.cx(0,3)
qc.cx(0,4)
qc.save_statevector()
qobj = assemble(qc)
result = sim.run(qobj).result()
state = result.get_statevector()
return qc, state, result
# Explore GHZ States for input 00010. Note: the input has been stated in little-endian format.
inp1 = 0
inp2 = 1
inp3 = 0
inp4 = 0
inp5 = 0
qc, state, result = ghz5QCircuit(inp1, inp2, inp3, inp4, inp5)
print('For inputs',inp5,inp4,inp3,inp2,inp1,'Representation of GHZ States are:')
display(plot_state_qsphere(state))
print('\n')
# Explore GHZ States for input 11001. Note: the input has been stated in little-endian format.
inp1 = 1
inp2 = 0
inp3 = 0
inp4 = 1
inp5 = 1
qc, state, result = ghz5QCircuit(inp1, inp2, inp3, inp4, inp5)
print('For inputs',inp5,inp4,inp3,inp2,inp1,'Representation of GHZ States are:')
display(plot_state_qsphere(state))
print('\n')
# Explore GHZ States for input 01010. Note: the input has been stated in little-endian format.
inp1 = 0
inp2 = 1
inp3 = 0
inp4 = 1
inp5 = 0
qc, state, result = ghz5QCircuit(inp1, inp2, inp3, inp4, inp5)
print('For inputs',inp5,inp4,inp3,inp2,inp1,'Representation of GHZ States are:')
display(plot_state_qsphere(state))
print('\n')
# Uncomment below code in order to explore other states
#for inp5 in ['0','1']:
#for inp4 in ['0','1']:
#for inp3 in ['0','1']:
#for inp2 in ['0','1']:
#for inp1 in ['0','1']:
#qc, state, result = ghz5QCircuit(inp1, inp2, inp3, inp4, inp5)
#print('For inputs',inp5,inp4,inp3,inp2,inp1,'Representation of GHZ States are:')
# Uncomment any of the below functions to visualize the resulting quantum states
# Draw the quantum circuit
#display(qc.draw())
# Plot states on QSphere
#display(plot_state_qsphere(state))
# Plot states on Bloch Multivector
#display(plot_bloch_multivector(state))
# Plot histogram
#display(plot_histogram(result.get_counts()))
# Plot state matrix like a city
#display(plot_state_city(state))
# Represent state matix using Pauli operators as the basis
#display(plot_state_paulivec(state))
# Plot state matrix as Hinton representation
#display(plot_state_hinton(state))
#print('\n')
backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 5
and not x.configuration().simulator
and x.status().operational==True))
def create5QGHZRealDevice(inp1, inp2, inp3, inp4, inp5):
qr = QuantumRegister(5)
cr = ClassicalRegister(5)
qc = QuantumCircuit(qr, cr)
qc.reset(range(5))
if inp1=='1':
qc.x(0)
if inp2=='1':
qc.x(1)
if inp3=='1':
qc.x(1)
if inp4=='1':
qc.x(1)
if inp5=='1':
qc.x(1)
qc.barrier()
qc.h(0)
qc.cx(0,1)
qc.cx(0,2)
qc.cx(0,3)
qc.cx(0,4)
qc.measure(qr, cr)
job = execute(qc, backend=backend, shots=1000)
job_monitor(job)
result = job.result()
return qc, result
inp1 = 0
inp2 = 0
inp3 = 0
inp4 = 0
inp5 = 0
#first results
qc, first_result = create5QGHZRealDevice(inp1, inp2, inp3, inp4, inp5)
first_counts = first_result.get_counts()
# Draw the quantum circuit
display(qc.draw())
#second results
qc, second_result = create5QGHZRealDevice(inp1, inp2, inp3, inp4, inp5)
second_counts = second_result.get_counts()
print('For inputs',inp5,inp4,inp3,inp2,inp1,'Representation of GHZ circuit states are,')
# Plot results on histogram with legend
legend = ['First execution', 'Second execution']
plot_histogram([first_counts, second_counts], legend=legend)
import qiskit
qiskit.__qiskit_version__
|
https://github.com/mnp-club/Quantum_Computing_Workshop_2020
|
mnp-club
|
from qiskit import *
from qiskit.compiler import transpile, assemble
from qiskit.tools.jupyter import *
from qiskit.visualization import *
import matplotlib.pyplot as plotter
import numpy as np
from IPython.display import display, Math, Latex
%matplotlib inline
# Loading your IBM Q account(s)
provider = IBMQ.load_account()
qc1 = QuantumCircuit(3,3)
# All initialized to '0' by default.
qc1.x(0) #This is for the purpose of setting the control qubit to '1'
qc1.x(2) #As a result, the second target qubit becomes '1' while the first remains '0'. Now, lets's try swapping them.
#Fredkin gate:
def fredkin(qc):
qc.toffoli(0,1,2)
qc.toffoli(0,2,1)
qc.toffoli(0,1,2)
fredkin(qc1)
qc1.draw('mpl')
#First let's measure all three qubits.
#We're using the classical bits to store the result obtained on measuring each corresponding qubit.
qc1.measure(0,0)
qc1.measure(1,1)
qc1.measure(2,2)
#Now we use the same function we defined yesterday to run a quantum circuit
def run_circuit(qc2):
backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend
result = execute(qc2, backend, shots = 2000).result() # we run the simulation
counts = result.get_counts() # we get the counts
return counts
counts1=run_circuit(qc1)
print(counts1)
plot_histogram(counts1)
qc2 = QuantumCircuit(3,3)
# All initialized to '0' by default.
qc2.x(2) #The second target qubit is initialised to '1'
fredkin(qc2)
qc2.measure(0,0)
qc2.measure(1,1)
qc2.measure(2,2)
qc2.draw(output='mpl')
counts2=run_circuit(qc2)
print(counts2)
plot_histogram(counts2)
qc = QuantumCircuit(1)
#This is how we apply the rotation operators in Qiskit, mentioning the angle of rotation and qubit no. as parameters
qc.rx(np.pi/2, 0)
qc.draw('mpl')
def final_vector(qc):
backend = Aer.get_backend('statevector_simulator')
job = execute(qc, backend)
result = job.result()
outputstate = result.get_statevector(qc, decimals=3)
return outputstate
print(final_vector(qc))
# This prints the vector obtained on applying the above gate to the qubit state '0'
# The Pauli-X gate serves this purpose, as demonstrated below:
qc3 = QuantumCircuit(1)
theta = np.pi/7
qc3.x(0)
qc3.ry(theta, 0)
qc3.x(0)
print(final_vector(qc3))
qc3 = QuantumCircuit(1)
qc3.ry(-theta, 0)
print(final_vector(qc3))
#Run this code for different values of theta and see if the two vectors printed are equal in each case
qc4 = QuantumCircuit(1)
alpha = np.pi/2
beta = 0
gamma = np.pi/2
delta = np.pi
def A(qc, qbits, beta, gamma):
qc.ry(gamma/2, qbits)
qc.rz(beta, qbits)
def B(qc, qbits, beta, gamma, delta):
qc.rz(-(beta+delta)/2, qbits)
qc.ry(-gamma/2, qbits)
def C(qc, qbits, beta, delta):
qc.rz((delta-beta)/2, qbits)
C(qc4, 0, beta, delta)
qc4.x(0)
B(qc4, 0, beta, gamma, delta)
qc4.x(0)
A(qc4, 0, beta, gamma)
qc4.unitary([[1.j, 0.], [0., 1.j]], [0])
print(final_vector(qc4))
qc4 = QuantumCircuit(1)
qc4.h(0)
print(final_vector(qc4))
qc5 = QuantumCircuit(3, 3)
# Target qubit q1 is initially |1> and target qubit q2 is initially |0>.
qc5.x(0) # Control qubit initialized to |1> to see effects of controlled Hadamard.
qc5.x(1) # One target qubit initialized to |1>.
alpha = np.pi/2
beta = 0
gamma = np.pi/2
delta = np.pi
def A(qc, qbits, beta, gamma):
qc.ry(gamma/2, qbits)
qc.rz(beta, qbits)
def B(qc, qbits, beta, gamma, delta):
qc.rz(-(beta+delta)/2, qbits)
qc.ry(-gamma/2, qbits)
def C(qc, qbits, beta, delta):
qc.rz((delta-beta)/2, qbits)
C(qc5, [1, 2], beta, delta)
qc5.cx(0, [1, 2])
B(qc5, [1, 2], beta, gamma, delta)
qc5.cx(0, [1, 2])
A(qc5, [1, 2], beta, gamma)
qc5.s(0) # Using S gate because alpha = pi/2
qc5.measure(0, 0)
qc5.measure(1, 1)
qc5.measure(2, 2)
qc5.draw('mpl')
def run_circuit(qc):
backend = Aer.get_backend('qasm_simulator')
result = execute(qc, backend, shots = 10000).result()
counts = result.get_counts()
return counts
counts = run_circuit(qc5)
print(counts)
plot_histogram(counts)
qc_u3=QuantumCircuit(1)
qc_u3.u3(np.pi/6,-np.pi/2,np.pi/2,0)
print(final_vector(qc_u3))
qc_rx=QuantumCircuit(1)
qc_rx.rx(np.pi/6,0)
print(final_vector(qc_rx))
#Getting the same results will verify our observation stated above
######### Defining some constants and functions ##########
# Constants for the decomposition of Hadamard gate.
H_alpha = np.pi/2
H_beta = 0
H_gamma = np.pi/2
H_delta = np.pi
# V^2 = X
V = [[0.5+0.5j, 0.5-0.5j],
[0.5-0.5j, 0.5+0.5j]]
# Constants for the decomposition of V (where V^2 = X).
V_alpha = np.pi/4
V_beta = np.pi/2
V_gamma = -np.pi/2
V_delta = -np.pi/2
# Functions to implement A, B, C (generalized).
def A_gate(qc, qbits, beta, gamma):
qc.ry(gamma/2, qbits)
qc.rz(beta, qbits)
def B_gate(qc, qbits, beta, gamma, delta):
qc.rz(-(beta+delta)/2, qbits)
qc.ry(-gamma/2, qbits)
def C_gate(qc, qbits, beta, delta):
qc.rz((delta-beta)/2, qbits)
# Higher abstraction functions.
def controlled_V(qc, control, target):
C_gate(qc, target, V_beta, V_delta)
qc.cx(control, target)
B_gate(qc, target, V_beta, V_gamma, V_delta)
qc.cx(control, target)
A_gate(qc, target, V_beta, V_gamma)
qc.t(control) # Using T gate because V_alpha = pi/4.
def controlled_Vdg(qc, control, target):
C_gate(qc, target, V_beta, V_delta)
qc.cx(control, target)
B_gate(qc, target, V_beta, -V_gamma, V_delta)
qc.cx(control, target)
A_gate(qc, target, V_beta, -V_gamma)
qc.tdg(control) # Using Tdg gate because V_alpha = pi/4, so Vdg_alpha would be -pi/4.
def double_controlled_X(qc, control1, control2, target):
controlled_V(qc, control2, target)
qc.cx(control1, control2)
controlled_Vdg(qc, control2, target)
qc.cx(control1, control2)
controlled_V(qc, control1, target)
############ Constructing the circuit ##############
qc6 = QuantumCircuit(7, 5) # No need to measure ancillary qubits :P
# q0, q1, q2, q3 are control qubits
# q4, q5 are ancillary qubits
# q6 is the target qubit
# Change the following line to try different combinations of control qubits:
qc6.x([0,1,2,3])
C_gate(qc6, 6, H_beta, H_delta)
double_controlled_X(qc6, 0, 1, 4)
double_controlled_X(qc6, 2, 3, 5)
double_controlled_X(qc6, 4, 5, 6)
double_controlled_X(qc6, 2, 3, 5)
double_controlled_X(qc6, 0, 1, 4)
B_gate(qc6, 6, H_beta, H_gamma, H_delta)
double_controlled_X(qc6, 0, 1, 4)
double_controlled_X(qc6, 2, 3, 5)
double_controlled_X(qc6, 4, 5, 6)
double_controlled_X(qc6, 2, 3, 5)
double_controlled_X(qc6, 0, 1, 4)
A_gate(qc6, 6, H_beta, H_gamma)
qc6.s([0,1,2,3]) # Using S gate because H_alpha = pi/2.
qc6.measure(0, 0)
qc6.measure(1, 1)
qc6.measure(2, 2)
qc6.measure(3, 3)
qc6.measure(6, 4)
qc6.draw('mpl')
def run_circuit(qc):
backend = Aer.get_backend('qasm_simulator')
result = execute(qc, backend, shots = 2000).result()
counts = result.get_counts()
return counts
counts = run_circuit(qc6)
print(counts)
plot_histogram(counts)
|
https://github.com/matheusmtta/Quantum-Computing
|
matheusmtta
|
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
from qiskit import *
from qiskit.tools.visualization import plot_histogram
from IPython.display import display, Math, Latex
def BuildGHZ(n):
U = QuantumCircuit(n)
U.h(0)
for i in range(1, n):
U.cx(0, i)
U = U.to_gate()
U.name = 'Build GHZ'
#ctl_U = U.control() make it a controlled gate
return U
n = 5
mc = QuantumCircuit(n, n)
U = BuildGHZ(n)
mc.append(U, range(n))
mc.measure(range(n), range(n))
backend = BasicAer.get_backend('qasm_simulator')
atp = 1024
res = execute(mc, backend=backend, shots=atp).result()
ans = res.get_counts()
mc.draw('mpl')
plot_histogram(ans)
|
https://github.com/pkaran57/quantum-computing-final-project
|
pkaran57
|
import numpy as np
import networkx as nx
import qiskit
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, assemble
from qiskit.quantum_info import Statevector
from qiskit.aqua.algorithms import NumPyEigensolver
from qiskit.quantum_info import Pauli
from qiskit.aqua.operators import op_converter
from qiskit.aqua.operators import WeightedPauliOperator
from qiskit.visualization import plot_histogram
from qiskit.providers.aer.extensions.snapshot_statevector import *
from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost
from utils import mapeo_grafo
from collections import defaultdict
from operator import itemgetter
from scipy.optimize import minimize
import matplotlib.pyplot as plt
LAMBDA = 10
SEED = 10
SHOTS = 10000
# returns the bit index for an alpha and j
def bit(i_city, l_time, num_cities):
return i_city * num_cities + l_time
# e^(cZZ)
def append_zz_term(qc, q_i, q_j, gamma, constant_term):
qc.cx(q_i, q_j)
qc.rz(2*gamma*constant_term,q_j)
qc.cx(q_i, q_j)
# e^(cZ)
def append_z_term(qc, q_i, gamma, constant_term):
qc.rz(2*gamma*constant_term, q_i)
# e^(cX)
def append_x_term(qc,qi,beta):
qc.rx(-2*beta, qi)
def get_not_edge_in(G):
N = G.number_of_nodes()
not_edge = []
for i in range(N):
for j in range(N):
if i != j:
buffer_tupla = (i,j)
in_edges = False
for edge_i, edge_j in G.edges():
if ( buffer_tupla == (edge_i, edge_j) or buffer_tupla == (edge_j, edge_i)):
in_edges = True
if in_edges == False:
not_edge.append((i, j))
return not_edge
def get_classical_simplified_z_term(G, _lambda):
# recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos
N = G.number_of_nodes()
E = G.edges()
# z term #
z_classic_term = [0] * N**2
# first term
for l in range(N):
for i in range(N):
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += -1 * _lambda
# second term
for l in range(N):
for j in range(N):
for i in range(N):
if i < j:
# z_il
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += _lambda / 2
# z_jl
z_jl_index = bit(j, l, N)
z_classic_term[z_jl_index] += _lambda / 2
# third term
for i in range(N):
for l in range(N):
for j in range(N):
if l < j:
# z_il
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += _lambda / 2
# z_ij
z_ij_index = bit(i, j, N)
z_classic_term[z_ij_index] += _lambda / 2
# fourth term
not_edge = get_not_edge_in(G) # include order tuples ej = (1,0), (0,1)
for edge in not_edge:
for l in range(N):
i = edge[0]
j = edge[1]
# z_il
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += _lambda / 4
# z_j(l+1)
l_plus = (l+1) % N
z_jlplus_index = bit(j, l_plus, N)
z_classic_term[z_jlplus_index] += _lambda / 4
# fifthy term
weights = nx.get_edge_attributes(G,'weight')
for edge_i, edge_j in G.edges():
weight_ij = weights.get((edge_i,edge_j))
weight_ji = weight_ij
for l in range(N):
# z_il
z_il_index = bit(edge_i, l, N)
z_classic_term[z_il_index] += weight_ij / 4
# z_jlplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_j, l_plus, N)
z_classic_term[z_jlplus_index] += weight_ij / 4
# add order term because G.edges() do not include order tuples #
# z_i'l
z_il_index = bit(edge_j, l, N)
z_classic_term[z_il_index] += weight_ji / 4
# z_j'lplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_i, l_plus, N)
z_classic_term[z_jlplus_index] += weight_ji / 4
return z_classic_term
def tsp_obj_2(x, G,_lambda):
# obtenemos el valor evaluado en f(x_1, x_2,... x_n)
not_edge = get_not_edge_in(G)
N = G.number_of_nodes()
tsp_cost=0
#Distancia
weights = nx.get_edge_attributes(G,'weight')
for edge_i, edge_j in G.edges():
weight_ij = weights.get((edge_i,edge_j))
weight_ji = weight_ij
for l in range(N):
# x_il
x_il_index = bit(edge_i, l, N)
# x_jlplus
l_plus = (l+1) % N
x_jlplus_index = bit(edge_j, l_plus, N)
tsp_cost+= int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ij
# add order term because G.edges() do not include order tuples #
# x_i'l
x_il_index = bit(edge_j, l, N)
# x_j'lplus
x_jlplus_index = bit(edge_i, l_plus, N)
tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ji
#Constraint 1
for l in range(N):
penal1 = 1
for i in range(N):
x_il_index = bit(i, l, N)
penal1 -= int(x[x_il_index])
tsp_cost += _lambda * penal1**2
#Contstraint 2
for i in range(N):
penal2 = 1
for l in range(N):
x_il_index = bit(i, l, N)
penal2 -= int(x[x_il_index])
tsp_cost += _lambda*penal2**2
#Constraint 3
for edge in not_edge:
for l in range(N):
i = edge[0]
j = edge[1]
# x_il
x_il_index = bit(i, l, N)
# x_j(l+1)
l_plus = (l+1) % N
x_jlplus_index = bit(j, l_plus, N)
tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * _lambda
return tsp_cost
def get_classical_simplified_zz_term(G, _lambda):
# recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos
N = G.number_of_nodes()
E = G.edges()
# zz term #
zz_classic_term = [[0] * N**2 for i in range(N**2) ]
# first term
for l in range(N):
for j in range(N):
for i in range(N):
if i < j:
# z_il
z_il_index = bit(i, l, N)
# z_jl
z_jl_index = bit(j, l, N)
zz_classic_term[z_il_index][z_jl_index] += _lambda / 2
# second term
for i in range(N):
for l in range(N):
for j in range(N):
if l < j:
# z_il
z_il_index = bit(i, l, N)
# z_ij
z_ij_index = bit(i, j, N)
zz_classic_term[z_il_index][z_ij_index] += _lambda / 2
# third term
not_edge = get_not_edge_in(G)
for edge in not_edge:
for l in range(N):
i = edge[0]
j = edge[1]
# z_il
z_il_index = bit(i, l, N)
# z_j(l+1)
l_plus = (l+1) % N
z_jlplus_index = bit(j, l_plus, N)
zz_classic_term[z_il_index][z_jlplus_index] += _lambda / 4
# fourth term
weights = nx.get_edge_attributes(G,'weight')
for edge_i, edge_j in G.edges():
weight_ij = weights.get((edge_i,edge_j))
weight_ji = weight_ij
for l in range(N):
# z_il
z_il_index = bit(edge_i, l, N)
# z_jlplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_j, l_plus, N)
zz_classic_term[z_il_index][z_jlplus_index] += weight_ij / 4
# add order term because G.edges() do not include order tuples #
# z_i'l
z_il_index = bit(edge_j, l, N)
# z_j'lplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_i, l_plus, N)
zz_classic_term[z_il_index][z_jlplus_index] += weight_ji / 4
return zz_classic_term
def get_classical_simplified_hamiltonian(G, _lambda):
# z term #
z_classic_term = get_classical_simplified_z_term(G, _lambda)
# zz term #
zz_classic_term = get_classical_simplified_zz_term(G, _lambda)
return z_classic_term, zz_classic_term
def get_cost_circuit(G, gamma, _lambda):
N = G.number_of_nodes()
N_square = N**2
qc = QuantumCircuit(N_square,N_square)
z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _lambda)
# z term
for i in range(N_square):
if z_classic_term[i] != 0:
append_z_term(qc, i, gamma, z_classic_term[i])
# zz term
for i in range(N_square):
for j in range(N_square):
if zz_classic_term[i][j] != 0:
append_zz_term(qc, i, j, gamma, zz_classic_term[i][j])
return qc
def get_mixer_operator(G,beta):
N = G.number_of_nodes()
qc = QuantumCircuit(N**2,N**2)
for n in range(N**2):
append_x_term(qc, n, beta)
return qc
def get_QAOA_circuit(G, beta, gamma, _lambda):
assert(len(beta)==len(gamma))
N = G.number_of_nodes()
qc = QuantumCircuit(N**2,N**2)
# init min mix state
qc.h(range(N**2))
p = len(beta)
for i in range(p):
qc = qc.compose(get_cost_circuit(G, gamma[i], _lambda))
qc = qc.compose(get_mixer_operator(G, beta[i]))
qc.barrier(range(N**2))
qc.snapshot_statevector("final_state")
qc.measure(range(N**2),range(N**2))
return qc
def invert_counts(counts):
return {k[::-1] :v for k,v in counts.items()}
# Sample expectation value
def compute_tsp_energy_2(counts, G):
energy = 0
get_counts = 0
total_counts = 0
for meas, meas_count in counts.items():
obj_for_meas = tsp_obj_2(meas, G, LAMBDA)
energy += obj_for_meas*meas_count
total_counts += meas_count
mean = energy/total_counts
return mean
def get_black_box_objective_2(G,p):
backend = Aer.get_backend('qasm_simulator')
sim = Aer.get_backend('aer_simulator')
# function f costo
def f(theta):
beta = theta[:p]
gamma = theta[p:]
# Anzats
qc = get_QAOA_circuit(G, beta, gamma, LAMBDA)
result = execute(qc, backend, seed_simulator=SEED, shots= SHOTS).result()
final_state_vector = result.data()["snapshots"]["statevector"]["final_state"][0]
state_vector = Statevector(final_state_vector)
probabilities = state_vector.probabilities()
probabilities_states = invert_counts(state_vector.probabilities_dict())
expected_value = 0
for state,probability in probabilities_states.items():
cost = tsp_obj_2(state, G, LAMBDA)
expected_value += cost*probability
counts = result.get_counts()
mean = compute_tsp_energy_2(invert_counts(counts),G)
return mean
return f
def crear_grafo(cantidad_ciudades):
pesos, conexiones = None, None
mejor_camino = None
while not mejor_camino:
pesos, conexiones = rand_graph(cantidad_ciudades)
mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False)
G = mapeo_grafo(conexiones, pesos)
return G, mejor_costo, mejor_camino
def run_QAOA(p,ciudades, grafo):
if grafo == None:
G, mejor_costo, mejor_camino = crear_grafo(ciudades)
print("Mejor Costo")
print(mejor_costo)
print("Mejor Camino")
print(mejor_camino)
print("Bordes del grafo")
print(G.edges())
print("Nodos")
print(G.nodes())
print("Pesos")
labels = nx.get_edge_attributes(G,'weight')
print(labels)
else:
G = grafo
intial_random = []
# beta, mixer Hammiltonian
for i in range(p):
intial_random.append(np.random.uniform(0,np.pi))
# gamma, cost Hammiltonian
for i in range(p):
intial_random.append(np.random.uniform(0,2*np.pi))
init_point = np.array(intial_random)
obj = get_black_box_objective_2(G,p)
res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True})
print(res_sample)
if __name__ == '__main__':
# Run QAOA parametros: profundidad p, numero d ciudades,
run_QAOA(5, 3, None)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
circ = QuantumCircuit(2, 2)
circ.h(0)
circ.cx(0, 1)
circ.measure([0, 1], [0, 1])
circ.draw("mpl")
from qiskit import transpile, schedule as build_schedule
from qiskit.providers.fake_provider import FakeHanoi
backend = FakeHanoi()
transpiled_circ = transpile(circ, backend) # Undefined Hadamard is replaced by U1
schedule = build_schedule(transpiled_circ, backend)
schedule.draw()
from qiskit import pulse
with pulse.build() as h_q0:
pulse.play(pulse.library.Gaussian(duration=256, amp=0.2, sigma=50, name='custom'),
pulse.DriveChannel(0))
circ.add_calibration('h', [0], h_q0)
schedule = build_schedule(circ, backend)
schedule.draw()
circ = QuantumCircuit(2, 2)
circ.x(0)
circ.x(0)
circ.x(1)
circ.measure([0, 1], [0, 1])
circ.draw("mpl")
schedule = build_schedule(circ, backend, method="as_late_as_possible")
schedule.filter(channels=[pulse.DriveChannel(0), pulse.DriveChannel(1)]).draw()
schedule = build_schedule(circ, backend, method="as_soon_as_possible")
schedule.filter(channels=[pulse.DriveChannel(0), pulse.DriveChannel(1)]).draw()
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
# You can show the phase of each state and use
# degrees instead of radians
from qiskit.quantum_info import DensityMatrix
import numpy as np
from qiskit import QuantumCircuit
from qiskit.visualization import plot_state_qsphere
qc = QuantumCircuit(2)
qc.h([0, 1])
qc.cz(0,1)
qc.ry(np.pi/3, 0)
qc.rx(np.pi/5, 1)
qc.z(1)
matrix = DensityMatrix(qc)
plot_state_qsphere(matrix,
show_state_phases = True, use_degrees = True)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_nature.units import DistanceUnit
from qiskit_nature.second_q.drivers import PySCFDriver
driver = PySCFDriver(
atom="H 0 0 0; H 0 0 0.735",
basis="sto3g",
charge=0,
spin=0,
unit=DistanceUnit.ANGSTROM,
)
es_problem = driver.run()
from qiskit_nature.second_q.mappers import JordanWignerMapper
mapper = JordanWignerMapper()
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver
numpy_solver = NumPyMinimumEigensolver()
from qiskit.algorithms.minimum_eigensolvers import VQE
from qiskit.algorithms.optimizers import SLSQP
from qiskit.primitives import Estimator
from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD
ansatz = UCCSD(
es_problem.num_spatial_orbitals,
es_problem.num_particles,
mapper,
initial_state=HartreeFock(
es_problem.num_spatial_orbitals,
es_problem.num_particles,
mapper,
),
)
vqe_solver = VQE(Estimator(), ansatz, SLSQP())
vqe_solver.initial_point = [0.0] * ansatz.num_parameters
from qiskit.algorithms.minimum_eigensolvers import VQE
from qiskit.circuit.library import TwoLocal
tl_circuit = TwoLocal(
rotation_blocks=["h", "rx"],
entanglement_blocks="cz",
entanglement="full",
reps=2,
parameter_prefix="y",
)
another_solver = VQE(Estimator(), tl_circuit, SLSQP())
from qiskit_nature.second_q.algorithms import GroundStateEigensolver
calc = GroundStateEigensolver(mapper, vqe_solver)
res = calc.solve(es_problem)
print(res)
calc = GroundStateEigensolver(mapper, numpy_solver)
res = calc.solve(es_problem)
print(res)
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver
from qiskit_nature.second_q.drivers import GaussianForcesDriver
from qiskit_nature.second_q.mappers import DirectMapper
from qiskit_nature.second_q.problems import HarmonicBasis
driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log")
basis = HarmonicBasis([2, 2, 2, 2])
vib_problem = driver.run(basis=basis)
vib_problem.hamiltonian.truncation_order = 2
mapper = DirectMapper()
solver_without_filter = NumPyMinimumEigensolver()
solver_with_filter = NumPyMinimumEigensolver(
filter_criterion=vib_problem.get_default_filter_criterion()
)
gsc_wo = GroundStateEigensolver(mapper, solver_without_filter)
result_wo = gsc_wo.solve(vib_problem)
gsc_w = GroundStateEigensolver(mapper, solver_with_filter)
result_w = gsc_w.solve(vib_problem)
print(result_wo)
print("\n\n")
print(result_w)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/neelkamath/quantum-experiments
|
neelkamath
|
# Do the necessary imports
import numpy as np
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, BasicAer, IBMQ
from qiskit.visualization import plot_histogram, plot_bloch_multivector
### Creating 3 qubit and 2 classical bits in each separate register
qr = QuantumRegister(3)
crz = ClassicalRegister(1)
crx = ClassicalRegister(1)
teleportation_circuit = QuantumCircuit(qr, crz, crx)
### A third party eve helps to create an entangled state
def create_bell_pair(qc, a, b):
qc.h(a)
qc.cx(a, b)
create_bell_pair(teleportation_circuit, 1, 2)
teleportation_circuit.draw()
def alice_gates(qc, a, b):
qc.cx(a, b)
qc.h(a)
teleportation_circuit.barrier()
alice_gates(teleportation_circuit, 0, 1)
teleportation_circuit.draw()
def measure_and_send(qc, a, b):
qc.barrier()
qc.measure(a,0)
qc.measure(b,1)
teleportation_circuit.barrier()
measure_and_send(teleportation_circuit, 0, 1)
teleportation_circuit.draw()
def bob_gates(qc, qubit, crz, crx):
qc.x(qubit).c_if(crx, 1)
qc.z(qubit).c_if(crz, 1)
teleportation_circuit.barrier()
bob_gates(teleportation_circuit, 2, crz, crx)
teleportation_circuit.draw()
from qiskit.extensions import Initialize
import math
qc = QuantumCircuit(1)
initial_state = [0,1]
init_gate = Initialize(initial_state)
# qc.append(initialize_qubit, [0])
qr = QuantumRegister(3) # Protocol uses 3 qubits
crz = ClassicalRegister(1) # and 2 classical registers
crx = ClassicalRegister(1)
qc = QuantumCircuit(qr, crz, crx)
# First, let's initialise Alice's q0
qc.append(init_gate, [0])
qc.barrier()
# Now begins the teleportation protocol
create_bell_pair(qc, 1, 2)
qc.barrier()
# Send q1 to Alice and q2 to Bob
alice_gates(qc, 0, 1)
# Alice then sends her classical bits to Bob
measure_and_send(qc, 0, 1)
# Bob decodes qubits
bob_gates(qc, 2, crz, crx)
qc.draw()
backend = BasicAer.get_backend('statevector_simulator')
out_vector = execute(qc, backend).result().get_statevector()
plot_bloch_multivector(out_vector)
inverse_init_gate = init_gate.gates_to_uncompute()
qc.append(inverse_init_gate, [2])
qc.draw()
cr_result = ClassicalRegister(1)
qc.add_register(cr_result)
qc.measure(2,2)
qc.draw()
backend = BasicAer.get_backend('qasm_simulator')
counts = execute(qc, backend, shots=1024).result().get_counts()
plot_histogram(counts)
def bob_gates(qc, a, b, c):
qc.cz(a, c)
qc.cx(b, c)
qc = QuantumCircuit(3,1)
# First, let's initialise Alice's q0
qc.append(init_gate, [0])
qc.barrier()
# Now begins the teleportation protocol
create_bell_pair(qc, 1, 2)
qc.barrier()
# Send q1 to Alice and q2 to Bob
alice_gates(qc, 0, 1)
qc.barrier()
# Alice sends classical bits to Bob
bob_gates(qc, 0, 1, 2)
# We undo the initialisation process
qc.append(inverse_init_gate, [2])
# See the results, we only care about the state of qubit 2
qc.measure(2,0)
# View the results:
qc.draw()
from qiskit import IBMQ
IBMQ.save_account('### IMB TOKEN ')
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q')
provider.backends()
from qiskit.providers.ibmq import least_busy
backend = least_busy(provider.backends(filters=lambda b: b.configuration().n_qubits >= 3 and
not b.configuration().simulator and b.status().operational==True))
job_exp = execute(qc, backend=backend, shots=8192)
exp_result = job_exp.result()
exp_measurement_result = exp_result.get_counts(qc)
print(exp_measurement_result)
plot_histogram(exp_measurement_result)
error_rate_percent = sum([exp_measurement_result[result] for result in exp_measurement_result.keys() if result[0]=='1']) \
* 100./ sum(list(exp_measurement_result.values()))
print("The experimental error rate : ", error_rate_percent, "%")
|
https://github.com/IvanIsCoding/Quantum
|
IvanIsCoding
|
import numpy as np
# Importing standard Qiskit libraries
from qiskit import QuantumCircuit, transpile, Aer, IBMQ
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from ibm_quantum_widgets import *
from qiskit.providers.aer import QasmSimulator
# Loading your IBM Quantum account(s)
provider = IBMQ.load_account()
from qiskit.circuit.library.standard_gates import XGate, HGate
from operator import *
n = 3
N = 8 #2**n
index_colour_table = {}
colour_hash_map = {}
index_colour_table = {'000':"yellow", '001':"red", '010':"blue", '011':"red", '100':"green", '101':"blue", '110':"orange", '111':"red"}
colour_hash_map = {"yellow":'100', "red":'011', "blue":'000', "green":'001', "orange":'010'}
def database_oracle(index_colour_table, colour_hash_map):
circ_database = QuantumCircuit(n + n)
for i in range(N):
circ_data = QuantumCircuit(n)
idx = bin(i)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion
colour = index_colour_table[idx]
colour_hash = colour_hash_map[colour][::-1]
for j in range(n):
if colour_hash[j] == '1':
circ_data.x(j)
# qiskit maps the rightmost bit as the 0th qubit -> qn, ..., q0
# we therefore reverse the index string -> q0, ..., qn
data_gate = circ_data.to_gate(label=colour).control(num_ctrl_qubits=n, ctrl_state=idx, label="index-"+colour)
circ_database.append(data_gate, list(range(n+n)))
return circ_database
# drawing the database oracle circuit
print("Database Encoding")
database_oracle(index_colour_table, colour_hash_map).draw()
circ_data = QuantumCircuit(n)
m = 4
idx = bin(m)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion
colour = index_colour_table[idx]
colour_hash = colour_hash_map[colour][::-1]
for j in range(n):
if colour_hash[j] == '1':
circ_data.x(j)
print("Internal colour encoding for the colour green (as an example)");
circ_data.draw()
def oracle_grover(database, data_entry):
circ_grover = QuantumCircuit(n + n + 1)
circ_grover.append(database, list(range(n+n)))
target_reflection_gate = XGate().control(num_ctrl_qubits=n, ctrl_state=colour_hash_map[data_entry], label="Reflection of " + "\"" + data_entry + "\" Target")
# control() missing 1 required positional argument: 'self' .... if only 'XGate' used instead of 'XGate()'
# The “missing 1 required positional argument: 'self'” error is raised when you do not instantiate an object of a class before calling a class method. This error is also raised when you incorrectly instantiate a class.
circ_grover.append(target_reflection_gate, list(range(n, n+n+1)))
circ_grover.append(database, list(range(n+n)))
return circ_grover
print("Grover Oracle (target example: orange)")
oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), "orange").decompose().draw()
def mcz_gate(num_qubits):
num_controls = num_qubits - 1
mcz_gate = QuantumCircuit(num_qubits)
target_mcz = QuantumCircuit(1)
target_mcz.z(0)
target_mcz = target_mcz.to_gate(label="Z_Gate").control(num_ctrl_qubits=num_controls, ctrl_state=None, label="MCZ")
mcz_gate.append(target_mcz, list(range(num_qubits)))
return mcz_gate.reverse_bits()
print("Multi-controlled Z (MCZ) Gate")
mcz_gate(n).decompose().draw()
def diffusion_operator(num_qubits):
circ_diffusion = QuantumCircuit(num_qubits)
qubits_list = list(range(num_qubits))
# Layer of H^n gates
circ_diffusion.h(qubits_list)
# Layer of X^n gates
circ_diffusion.x(qubits_list)
# Layer of Multi-controlled Z (MCZ) Gate
circ_diffusion = circ_diffusion.compose(mcz_gate(num_qubits), qubits_list)
# Layer of X^n gates
circ_diffusion.x(qubits_list)
# Layer of H^n gates
circ_diffusion.h(qubits_list)
return circ_diffusion
print("Diffusion Circuit")
diffusion_operator(n).draw()
# Putting it all together ... !!!
item = "green"
print("Searching for the index of the colour", item)
circuit = QuantumCircuit(n + n + 1, n)
circuit.x(n + n)
circuit.barrier()
circuit.h(list(range(n)))
circuit.h(n+n)
circuit.barrier()
unitary_oracle = oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), item).to_gate(label="Oracle Operator")
unitary_diffuser = diffusion_operator(n).to_gate(label="Diffusion Operator")
M = countOf(index_colour_table.values(), item)
Q = int(np.pi * np.sqrt(N/M) / 4)
for i in range(Q):
circuit.append(unitary_oracle, list(range(n + n + 1)))
circuit.append(unitary_diffuser, list(range(n)))
circuit.barrier()
circuit.measure(list(range(n)), list(range(n)))
circuit.draw()
backend_sim = Aer.get_backend('qasm_simulator')
job_sim = backend_sim.run(transpile(circuit, backend_sim), shots=1024)
result_sim = job_sim.result()
counts = result_sim.get_counts(circuit)
if M==1:
print("Index of the colour", item, "is the index with most probable outcome")
else:
print("Indices of the colour", item, "are the indices the most probable outcomes")
from qiskit.visualization import plot_histogram
plot_histogram(counts)
|
https://github.com/Heisenbug-s-Dog/qnn_visualization
|
Heisenbug-s-Dog
|
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
pip install tensorflow==1.5.1
!pip -q install lucid>=0.3.8
!pip -q install umap-learn>=0.3.7
# General support
import math
import tensorflow as tf
import numpy as np
# For plots
import matplotlib.pyplot as plt
# Dimensionality reduction
import umap
from sklearn.manifold import TSNE
# General lucid code
from lucid.misc.io import save, show, load
import lucid.modelzoo.vision_models as models
# For rendering feature visualizations
import lucid.optvis.objectives as objectives
import lucid.optvis.param as param
import lucid.optvis.render as render
import lucid.optvis.transform as transform
model = models.InceptionV1()
model.load_graphdef()
# model.layers[7] is "mixed4c"
layer = "mixed4c"
print(model.layers[7])
raw_activations = model.layers[7].activations
activations = raw_activations[:100000]
print(activations.shape)
def whiten(full_activations):
correl = np.matmul(full_activations.T, full_activations) / len(full_activations)
correl = correl.astype("float32")
S = np.linalg.inv(correl)
S = S.astype("float32")
return S
S = whiten(raw_activations)
def normalize_layout(layout, min_percentile=1, max_percentile=99, relative_margin=0.1):
"""Removes outliers and scales layout to between [0,1]."""
# compute percentiles
mins = np.percentile(layout, min_percentile, axis=(0))
maxs = np.percentile(layout, max_percentile, axis=(0))
# add margins
mins -= relative_margin * (maxs - mins)
maxs += relative_margin * (maxs - mins)
# `clip` broadcasts, `[None]`s added only for readability
clipped = np.clip(layout, mins, maxs)
# embed within [0,1] along both axes
clipped -= clipped.min(axis=0)
clipped /= clipped.max(axis=0)
return clipped
layout = umap.UMAP(n_components=2, verbose=True, n_neighbors=20, min_dist=0.01, metric="cosine").fit_transform(activations)
## You can optionally use TSNE as well
# layout = TSNE(n_components=2, verbose=True, metric="cosine", learning_rate=10, perplexity=50).fit_transform(d)
layout = normalize_layout(layout)
plt.figure(figsize=(10, 10))
plt.scatter(x=layout[:,0],y=layout[:,1], s=2)
plt.show()
#
# Whitened, euclidean neuron objective
#
@objectives.wrap_objective
def direction_neuron_S(layer_name, vec, batch=None, x=None, y=None, S=None):
def inner(T):
layer = T(layer_name)
shape = tf.shape(layer)
x_ = shape[1] // 2 if x is None else x
y_ = shape[2] // 2 if y is None else y
if batch is None:
raise RuntimeError("requires batch")
acts = layer[batch, x_, y_]
vec_ = vec
if S is not None: vec_ = tf.matmul(vec_[None], S)[0]
# mag = tf.sqrt(tf.reduce_sum(acts**2))
dot = tf.reduce_mean(acts * vec_)
# cossim = dot/(1e-4 + mag)
return dot
return inner
#
# Whitened, cosine similarity objective
#
@objectives.wrap_objective
def direction_neuron_cossim_S(layer_name, vec, batch=None, x=None, y=None, cossim_pow=1, S=None):
def inner(T):
layer = T(layer_name)
shape = tf.shape(layer)
x_ = shape[1] // 2 if x is None else x
y_ = shape[2] // 2 if y is None else y
if batch is None:
raise RuntimeError("requires batch")
acts = layer[batch, x_, y_]
vec_ = vec
if S is not None: vec_ = tf.matmul(vec_[None], S)[0]
mag = tf.sqrt(tf.reduce_sum(acts**2))
dot = tf.reduce_mean(acts * vec_)
cossim = dot/(1e-4 + mag)
cossim = tf.maximum(0.1, cossim)
return dot * cossim ** cossim_pow
return inner
#
# Renders a batch of activations as icons
#
def render_icons(directions, model, layer, size=80, n_steps=128, verbose=False, S=None, num_attempts=2, cossim=True, alpha=True):
image_attempts = []
loss_attempts = []
# Render multiple attempts, and pull the one with the lowest loss score.
for attempt in range(num_attempts):
# Render an image for each activation vector
param_f = lambda: param.image(size, batch=directions.shape[0], fft=True, decorrelate=True, alpha=alpha)
if(S is not None):
if(cossim is True):
obj_list = ([
direction_neuron_cossim_S(layer, v, batch=n, S=S, cossim_pow=4) for n,v in enumerate(directions)
])
else:
obj_list = ([
direction_neuron_S(layer, v, batch=n, S=S) for n,v in enumerate(directions)
])
else:
obj_list = ([
objectives.direction_neuron(layer, v, batch=n) for n,v in enumerate(directions)
])
obj = objectives.Objective.sum(obj_list)
transforms = []
if alpha:
transforms.append(transform.collapse_alpha_random())
transforms.append(transform.pad(2, mode='constant', constant_value=1))
transforms.append(transform.jitter(4))
transforms.append(transform.jitter(4))
transforms.append(transform.jitter(8))
transforms.append(transform.jitter(8))
transforms.append(transform.jitter(8))
transforms.append(transform.random_scale([0.995**n for n in range(-5,80)] + [0.998**n for n in 2*list(range(20,40))]))
transforms.append(transform.random_rotate(list(range(-20,20))+list(range(-10,10))+list(range(-5,5))+5*[0]))
transforms.append(transform.jitter(2))
# This is the tensorflow optimization process.
# We can't use the lucid helpers here because we need to know the loss.
print("attempt: ", attempt)
with tf.Graph().as_default(), tf.Session() as sess:
learning_rate = 0.05
losses = []
trainer = tf.train.AdamOptimizer(learning_rate)
T = render.make_vis_T(model, obj, param_f, trainer, transforms)
loss_t, vis_op, t_image = T("loss"), T("vis_op"), T("input")
losses_ = [obj_part(T) for obj_part in obj_list]
tf.global_variables_initializer().run()
for i in range(n_steps):
loss, _ = sess.run([losses_, vis_op])
losses.append(loss)
if (i % 100 == 0):
print(i)
img = t_image.eval()
img_rgb = img[:,:,:,:3]
if alpha:
print("alpha true")
k = 0.8
bg_color = 0.0
img_a = img[:,:,:,3:]
img_merged = img_rgb*((1-k)+k*img_a) + bg_color * k*(1-img_a)
image_attempts.append(img_merged)
else:
print("alpha false")
image_attempts.append(img_rgb)
loss_attempts.append(losses[-1])
# Use the icon with the lowest loss
loss_attempts = np.asarray(loss_attempts)
loss_final = []
image_final = []
print("Merging best scores from attempts...")
for i, d in enumerate(directions):
# note, this should be max, it is not a traditional loss
mi = np.argmax(loss_attempts[:,i])
image_final.append(image_attempts[mi][i])
return (image_final, loss_final)
#
# Takes a list of x,y layout and bins them into grid cells
#
def grid(xpts=None, ypts=None, grid_size=(8,8), x_extent=(0., 1.), y_extent=(0., 1.)):
xpx_length = grid_size[0]
ypx_length = grid_size[1]
xpt_extent = x_extent
ypt_extent = y_extent
xpt_length = xpt_extent[1] - xpt_extent[0]
ypt_length = ypt_extent[1] - ypt_extent[0]
xpxs = ((xpts - xpt_extent[0]) / xpt_length) * xpx_length
ypxs = ((ypts - ypt_extent[0]) / ypt_length) * ypx_length
ix_s = range(grid_size[0])
iy_s = range(grid_size[1])
xs = []
for xi in ix_s:
ys = []
for yi in iy_s:
xpx_extent = (xi, (xi + 1))
ypx_extent = (yi, (yi + 1))
in_bounds_x = np.logical_and(xpx_extent[0] <= xpxs, xpxs <= xpx_extent[1])
in_bounds_y = np.logical_and(ypx_extent[0] <= ypxs, ypxs <= ypx_extent[1])
in_bounds = np.logical_and(in_bounds_x, in_bounds_y)
in_bounds_indices = np.where(in_bounds)[0]
ys.append(in_bounds_indices)
xs.append(ys)
return np.asarray(xs)
def render_layout(model, layer, S, xs, ys, activ, n_steps=512, n_attempts=2, min_density=10, grid_size=(10, 10), icon_size=80, x_extent=(0., 1.0), y_extent=(0., 1.0)):
grid_layout = grid(xpts=xs, ypts=ys, grid_size=grid_size, x_extent=x_extent, y_extent=y_extent)
icons = []
for x in range(grid_size[0]):
for y in range(grid_size[1]):
indices = grid_layout[x, y]
if len(indices) > min_density:
average_activation = np.average(activ[indices], axis=0)
icons.append((average_activation, x, y))
icons = np.asarray(icons)
icon_batch, losses = render_icons(icons[:,0], model, alpha=False, layer=layer, S=S, n_steps=n_steps, size=icon_size, num_attempts=n_attempts)
canvas = np.ones((icon_size * grid_size[0], icon_size * grid_size[1], 3))
for i, icon in enumerate(icon_batch):
y = int(icons[i, 1])
x = int(icons[i, 2])
canvas[(grid_size[0] - x - 1) * icon_size:(grid_size[0] - x) * icon_size, (y) * icon_size:(y + 1) * icon_size] = icon
return canvas
#
# Given a layout, renders an icon for the average of all the activations in each grid cell.
#
xs = layout[:, 0]
ys = layout[:, 1]
canvas = render_layout(model, layer, S, xs, ys, raw_activations, n_steps=512, grid_size=(20, 20), n_attempts=1)
show(canvas)
|
https://github.com/minnukota381/Quantum-Computing-Qiskit
|
minnukota381
|
from qiskit import *
from qiskit.visualization import plot_histogram
import numpy as np
# creating a constant oracle, input has no effect on the ouput
# Create a quantum circuit with 2 qubits. One as input and other as output
constant_oracle = QuantumCircuit(2)
# get a random number from 0 or 1
output = np.random.randint(2)
# what ever get in input, its having no effect.
# the output will be the random value 0 or 1
if output == 1:
constant_oracle.x(1)
# draw the circuit
constant_oracle.draw('mpl')
# creating a balanced oracle,
# perform CNOTs with first qubit input as a control and the second qubit output as the target.
balanced_oracle = QuantumCircuit(2)
# Place X-gate for input qubit
balanced_oracle.x(0)
# Use barrier as divider
balanced_oracle.barrier()
# Place Controlled-NOT gates
balanced_oracle.cx(0, 1)
# using barrier as a divider and avoid cancelling gates by the transpiler
balanced_oracle.barrier()
# Place X-gates
balanced_oracle.x(0)
# Show oracle
balanced_oracle.draw('mpl')
#initialise the input qubits in the state |+⟩
# and the output qubit in the state |−⟩
dj_circuit = QuantumCircuit(2, 1)
# Apply H-gates
dj_circuit.h(0)
# Put qubit in state |->
dj_circuit.x(1)
dj_circuit.h(1)
dj_circuit.draw('mpl')
# define the oracle function to use
#oracle_fn = constant_oracle
oracle_fn = balanced_oracle
# Add oracle function
dj_circuit += oracle_fn
dj_circuit.draw('mpl')
# perform H-gates on qubit and measure input register
dj_circuit.h(qubit)
dj_circuit.barrier()
# Measure
dj_circuit.measure(0, 0)
# Display circuit
dj_circuit.draw('mpl')
# check the output
# use local simulator
backend = BasicAer.get_backend('qasm_simulator')
shots = 1024
results = execute(dj_circuit, backend=backend, shots=shots).result()
answer = results.get_counts()
plot_histogram(answer)
|
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
|
PabloMartinezAngerosa
|
from tsp_qaoa import test_solution
from qiskit.visualization import plot_histogram
import networkx as nx
import numpy as np
import json
import csv
# Array of JSON Objects
header = ['instance','p','distance', 'mean']
length_p = 3
length_instances = 2
with open('qaoa_multiple_p_distance.csv', 'w', encoding='UTF8') as f:
writer = csv.writer(f)
# write the header
writer.writerow(header)
instance_index = 0
for instance in range(length_instances):
instance_index += 1
first_p = False
UNIFORM_CONVERGENCE_P = []
UNIFORM_CONVERGENCE_SAMPLE = []
for p in range(length_p):
p = p+1
if first_p == False:
print("Vuelve a llamar a test_solution")
job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(p=p)
first_p = True
else:
job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(grafo=G, p=p)
# Sort the JSON data based on the value of the brand key
UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"])
convergence_min = UNIFORM_CONVERGENCE_SAMPLE[0]
UNIFORM_CONVERGENCE_P.append({
"mean":convergence_min["mean"],
"probabilities": convergence_min["probabilities"]
})
cauchy_function_nk = UNIFORM_CONVERGENCE_P[len(UNIFORM_CONVERGENCE_P) - 1]
p_index = 0
for p_state in UNIFORM_CONVERGENCE_P:
p_index += 1
print(p_index)
mean = p_state["mean"]
print(p_state)
print(mean)
distance_p_cauchy_function_nk = np.max(np.abs(cauchy_function_nk["probabilities"] - p_state["probabilities"]))
writer.writerow([instance_index, p_index, distance_p_cauchy_function_nk, mean])
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
from qiskit import QuantumCircuit, transpile
from qiskit.providers.fake_provider import FakeAuckland
backend = FakeAuckland()
ghz = QuantumCircuit(15)
ghz.h(0)
ghz.cx(0, range(1, 15))
depths = []
gate_counts = []
non_local_gate_counts = []
levels = [str(x) for x in range(4)]
for level in range(4):
circ = transpile(ghz, backend, optimization_level=level)
depths.append(circ.depth())
gate_counts.append(sum(circ.count_ops().values()))
non_local_gate_counts.append(circ.num_nonlocal_gates())
fig, (ax1, ax2) = plt.subplots(2, 1)
ax1.bar(levels, depths, label='Depth')
ax1.set_xlabel("Optimization Level")
ax1.set_ylabel("Depth")
ax1.set_title("Output Circuit Depth")
ax2.bar(levels, gate_counts, label='Number of Circuit Operations')
ax2.bar(levels, non_local_gate_counts, label='Number of non-local gates')
ax2.set_xlabel("Optimization Level")
ax2.set_ylabel("Number of gates")
ax2.legend()
ax2.set_title("Number of output circuit gates")
fig.tight_layout()
plt.show()
|
https://github.com/Qubit-MU/Qiskit_Fall_Fest_2023
|
Qubit-MU
|
########################################
# ENTER YOUR NAME AND WISC EMAIL HERE: #
########################################
# Name: Rochelle Li
# Email: rli484@wisc.edu
## Run this cell to make sure your grader is setup correctly
%set_env QC_GRADE_ONLY=true
%set_env QC_GRADING_ENDPOINT=https://qac-grading.quantum-computing.ibm.com
from qiskit import QuantumCircuit
from qiskit.circuit import QuantumRegister, ClassicalRegister
qr = QuantumRegister(1)
cr = ClassicalRegister(2)
qc = QuantumCircuit(qr, cr)
# unpack the qubit and classical bits from the registers
(q0,) = qr
b0, b1 = cr
# apply Hadamard
qc.h(q0)
# measure
qc.measure(q0, b0)
# begin if test block. the contents of the block are executed if b0 == 1
with qc.if_test((b0, 1)):
# if the condition is satisfied (b0 == 1), then flip the bit back to 0
qc.x(q0)
# finally, measure q0 again
qc.measure(q0, b1)
qc.draw(output="mpl", idle_wires=False)
from qiskit_aer import AerSimulator
# initialize the simulator
backend_sim = AerSimulator()
# run the circuit
reset_sim_job = backend_sim.run(qc)
# get the results
reset_sim_result = reset_sim_job.result()
# retrieve the bitstring counts
reset_sim_counts = reset_sim_result.get_counts()
print(f"Counts: {reset_sim_counts}")
from qiskit.visualization import *
# plot histogram
plot_histogram(reset_sim_counts)
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
qc = QuantumCircuit(qr, cr)
q0, q1 = qr
b0, b1 = cr
qc.h(q0)
qc.measure(q0, b0)
## Write your code below this line ##
with qc.if_test((b0, 0)) as else_:
qc.x(1)
with else_:
qc.h(1)
## Do not change the code below this line ##
qc.measure(q1, b1)
qc.draw(output="mpl", idle_wires=False)
backend_sim = AerSimulator()
job_1 = backend_sim.run(qc)
result_1 = job_1.result()
counts_1 = result_1.get_counts()
print(f"Counts: {counts_1}")
# Grader Cell: Run this to submit your answer
from qc_grader.challenges.fall_fest23 import grade_ex3b
grade_ex3b(qc)
controls = QuantumRegister(2, name="control")
target = QuantumRegister(1, name="target")
mid_measure = ClassicalRegister(2, name="mid")
final_measure = ClassicalRegister(1, name="final")
base = QuantumCircuit(controls, target, mid_measure, final_measure)
def trial(
circuit: QuantumCircuit,
target: QuantumRegister,
controls: QuantumRegister,
measures: ClassicalRegister,
):
"""Probabilistically perform Rx(theta) on the target, where cos(theta) = 3/5."""
## Write your code below this line, making sure it's indented to where this comment begins from ##
c0,c1 = controls
(t0,) = target
b0, b1 = mid_measure
circuit.h(c0)
circuit.h(c1)
circuit.h(t0)
circuit.ccx(c0, c1, t0)
circuit.s(t0)
circuit.ccx(c0, c1, t0)
circuit.h(c0)
circuit.h(c1)
circuit.h(t0)
circuit.measure(c0, b0)
circuit.measure(c1, b1)
## Do not change the code below this line ##
qc = base.copy_empty_like()
trial(qc, target, controls, mid_measure)
qc.draw("mpl", cregbundle=False)
# Grader Cell: Run this to submit your answer
from qc_grader.challenges.fall_fest23 import grade_ex3c
grade_ex3c(qc)
def reset_controls(
circuit: QuantumCircuit, controls: QuantumRegister, measures: ClassicalRegister
):
"""Reset the control qubits if they are in |1>."""
## Write your code below this line, making sure it's indented to where this comment begins from ##
c0, c1 = controls
r0, r1 = measures
# circuit.h(c0)
# circuit.h(c1)
# circuit.measure(c0, r0)
# circuit.measure(c1, r1)
with circuit.if_test((r0, 1)):
circuit.x(c0)
with circuit.if_test((r1, 1)):
circuit.x(c1)
## Do not change the code below this line ##
qc = base.copy_empty_like()
trial(qc, target, controls, mid_measure)
reset_controls(qc, controls, mid_measure)
qc.measure(controls, mid_measure)
qc.draw("mpl", cregbundle=False)
# Grader Cell: Run this to submit your answer
from qc_grader.challenges.fall_fest23 import grade_ex3d
grade_ex3d(qc)
# Set the maximum number of trials
max_trials = 2
# Create a clean circuit with the same structure (bits, registers, etc) as the initial base we set up.
circuit = base.copy_empty_like()
# The first trial does not need to reset its inputs, since the controls are guaranteed to start in the |0> state.
trial(circuit, target, controls, mid_measure)
# Manually add the rest of the trials. In the future, we will be able to use a dynamic `while` loop to do this, but for now,
# we statically add each loop iteration with a manual condition check on each one.
# This involves more classical synchronizations than the while loop, but will suffice for now.
for _ in range(max_trials - 1):
reset_controls(circuit, controls, mid_measure)
with circuit.if_test((mid_measure, 0b00)) as else_:
# This is the success path, but Qiskit can't directly
# represent a negative condition yet, so we have an
# empty `true` block in order to use the `else` branch.
pass
with else_:
## Write your code below this line, making sure it's indented to where this comment begins from ##
# (t0,) = target
circuit.x(2)
trial(circuit, target, controls, mid_measure)
## Do not change the code below this line ##
# We need to measure the control qubits again to ensure we get their final results; this is a hardware limitation.
circuit.measure(controls, mid_measure)
# Finally, let's measure our target, to check that we're getting the rotation we desired.
circuit.measure(target, final_measure)
circuit.draw("mpl", cregbundle=False)
# Grader Cell: Run this to submit your answer
from qc_grader.challenges.fall_fest23 import grade_ex3e
grade_ex3e(circuit)
sim = AerSimulator()
job = sim.run(circuit, shots=1000)
result = job.result()
counts = result.get_counts()
plot_histogram(counts)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
# If you introduce a list with less colors than bars, the color of the bars will
# alternate following the sequence from the list.
import numpy as np
from qiskit.quantum_info import DensityMatrix
from qiskit import QuantumCircuit
from qiskit.visualization import plot_state_paulivec
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
qc = QuantumCircuit(2)
qc.h([0, 1])
qc.cz(0, 1)
qc.ry(np.pi/3, 0)
qc.rx(np.pi/5, 1)
matrix = DensityMatrix(qc)
plot_state_paulivec(matrix, color=['crimson', 'midnightblue', 'seagreen'])
|
https://github.com/qiskit-community/community.qiskit.org
|
qiskit-community
|
%matplotlib inline
# useful additional packages
#import math tools
import numpy as np
# We import the tools to handle general Graphs
import networkx as nx
# We import plotting tools
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
# importing Qiskit
from qiskit import Aer, IBMQ
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute
from qiskit.providers.ibmq import least_busy
from qiskit.tools.monitor import job_monitor
from qiskit.visualization import plot_histogram
# Generating the butterfly graph with 5 nodes
n = 5
V = np.arange(0,n,1)
E =[(0,1,1.0),(0,2,1.0),(1,2,1.0),(3,2,1.0),(3,4,1.0),(4,2,1.0)]
G = nx.Graph()
G.add_nodes_from(V)
G.add_weighted_edges_from(E)
# Generate plot of the Graph
colors = ['r' for node in G.nodes()]
default_axes = plt.axes(frameon=True)
pos = nx.spring_layout(G)
nx.draw_networkx(G, node_color=colors, node_size=600, alpha=1, ax=default_axes, pos=pos)
# Evaluate the function
step_size = 0.1;
a_gamma = np.arange(0, np.pi, step_size)
a_beta = np.arange(0, np.pi, step_size)
a_gamma, a_beta = np.meshgrid(a_gamma,a_beta)
F1 = 3-(np.sin(2*a_beta)**2*np.sin(2*a_gamma)**2-0.5*np.sin(4*a_beta)*np.sin(4*a_gamma))*(1+np.cos(4*a_gamma)**2)
# Grid search for the minimizing variables
result = np.where(F1 == np.amax(F1))
a = list(zip(result[0],result[1]))[0]
gamma = a[0]*step_size;
beta = a[1]*step_size;
# Plot the expetation value F1
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(a_gamma, a_beta, F1, cmap=cm.coolwarm, linewidth=0, antialiased=True)
ax.set_zlim(1,4)
ax.zaxis.set_major_locator(LinearLocator(3))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
plt.show()
#The smallest paramters and the expectation can be extracted
print('\n --- OPTIMAL PARAMETERS --- \n')
print('The maximal expectation value is: M1 = %.03f' % np.amax(F1))
print('This is attained for gamma = %.03f and beta = %.03f' % (gamma,beta))
# preapre the quantum and classical resisters
QAOA = QuantumCircuit(len(V), len(V))
# apply the layer of Hadamard gates to all qubits
QAOA.h(range(len(V)))
QAOA.barrier()
# apply the Ising type gates with angle gamma along the edges in E
for edge in E:
k = edge[0]
l = edge[1]
QAOA.cu1(-2*gamma, k, l)
QAOA.u1(gamma, k)
QAOA.u1(gamma, l)
# then apply the single qubit X - rotations with angle beta to all qubits
QAOA.barrier()
QAOA.rx(2*beta, range(len(V)))
# Finally measure the result in the computational basis
QAOA.barrier()
QAOA.measure(range(len(V)),range(len(V)))
### draw the circuit for comparison
QAOA.draw(output='mpl')
# Compute the value of the cost function
def cost_function_C(x,G):
E = G.edges()
if( len(x) != len(G.nodes())):
return np.nan
C = 0;
for index in E:
e1 = index[0]
e2 = index[1]
w = G[e1][e2]['weight']
C = C + w*x[e1]*(1-x[e2]) + w*x[e2]*(1-x[e1])
return C
# run on local simulator
backend = Aer.get_backend("qasm_simulator")
shots = 10000
simulate = execute(QAOA, backend=backend, shots=shots)
QAOA_results = simulate.result()
plot_histogram(QAOA_results.get_counts(),figsize = (8,6),bar_labels = False)
# Evaluate the data from the simulator
counts = QAOA_results.get_counts()
avr_C = 0
max_C = [0,0]
hist = {}
for k in range(len(G.edges())+1):
hist[str(k)] = hist.get(str(k),0)
for sample in list(counts.keys()):
# use sampled bit string x to compute C(x)
x = [int(num) for num in list(sample)]
tmp_eng = cost_function_C(x,G)
# compute the expectation value and energy distribution
avr_C = avr_C + counts[sample]*tmp_eng
hist[str(round(tmp_eng))] = hist.get(str(round(tmp_eng)),0) + counts[sample]
# save best bit string
if( max_C[1] < tmp_eng):
max_C[0] = sample
max_C[1] = tmp_eng
M1_sampled = avr_C/shots
print('\n --- SIMULATION RESULTS ---\n')
print('The sampled mean value is M1_sampled = %.02f while the true value is M1 = %.02f \n' % (M1_sampled,np.amax(F1)))
print('The approximate solution is x* = %s with C(x*) = %d \n' % (max_C[0],max_C[1]))
print('The cost function is distributed as: \n')
plot_histogram(hist,figsize = (8,6),bar_labels = False)
# Use the IBMQ essex device
provider = IBMQ.load_account()
backend = provider.get_backend('ibmq_essex')
shots = 2048
job_exp = execute(QAOA, backend=backend, shots=shots)
job_monitor(job_exp)
exp_results = job_exp.result()
plot_histogram(exp_results.get_counts(),figsize = (10,8),bar_labels = False)
# Evaluate the data from the experiment
counts = exp_results.get_counts()
avr_C = 0
max_C = [0,0]
hist = {}
for k in range(len(G.edges())+1):
hist[str(k)] = hist.get(str(k),0)
for sample in list(counts.keys()):
# use sampled bit string x to compute C(x)
x = [int(num) for num in list(sample)]
tmp_eng = cost_function_C(x,G)
# compute the expectation value and energy distribution
avr_C = avr_C + counts[sample]*tmp_eng
hist[str(round(tmp_eng))] = hist.get(str(round(tmp_eng)),0) + counts[sample]
# save best bit string
if( max_C[1] < tmp_eng):
max_C[0] = sample
max_C[1] = tmp_eng
M1_sampled = avr_C/shots
print('\n --- EXPERIMENTAL RESULTS ---\n')
print('The sampled mean value is M1_sampled = %.02f while the true value is M1 = %.02f \n' % (M1_sampled,np.amax(F1)))
print('The approximate solution is x* = %s with C(x*) = %d \n' % (max_C[0],max_C[1]))
print('The cost function is distributed as: \n')
plot_histogram(hist,figsize = (8,6),bar_labels = False)
import qiskit
qiskit.__qiskit_version__
|
https://github.com/Dpbm/scientific-research-1-quantum-oracles
|
Dpbm
|
%matplotlib inline
from qiskit import QuantumCircuit, QuantumRegister, transpile, ClassicalRegister
from qiskit.quantum_info import Statevector
from qiskit.visualization import array_to_latex, plot_histogram, plot_bloch_multivector
from qiskit.circuit.library import CHGate
from qiskit_aer import AerSimulator
from functools import partial
import numpy as np
from utils import get_image_path
show_unitary = partial(array_to_latex, max_size=100000)
show_state = lambda qc: Statevector(qc).draw('latex')
def get_unitary(qc, sim=AerSimulator()):
qc_copy = qc.copy()
qc_copy.save_unitary()
unitary = sim.run(transpile(qc_copy, sim), shots=1000).result().get_unitary()
return unitary
def measure(qc, sim=AerSimulator(), qubits=None):
qc_copy = qc.copy()
if(not qubits):
qc_copy.measure_all()
else:
qc_copy.measure(qubits, list(range(len(qubits))))
result = sim.run(transpile(qc_copy, sim), shots=1000).result().get_counts()
return result
mem = QuantumCircuit(2, name="QROM")
mem.cz(0,1)
display(mem.draw('mpl'))
show_unitary(get_unitary(mem))
qc = QuantumCircuit(2)
qc.x(range(2))
qc.append(mem, [0,1])
qc.x(range(2))
display(qc.draw('mpl'))
display(show_unitary(get_unitary(qc)))
show_state(qc)
mem = QuantumCircuit(2, name="QROM")
mem.cp(np.pi/3,0,1)
display(mem.draw('mpl'))
show_unitary(get_unitary(mem))
qc = QuantumCircuit(2)
qc.x(range(2))
qc.append(mem, [0,1])
qc.x(range(2))
display(qc.draw('mpl'))
display(show_unitary(get_unitary(qc)))
show_state(qc)
plot_bloch_multivector(qc)
qc = QuantumCircuit(3)
qc.x(range(2))
qc.h(2)
qc.barrier()
qc.append(mem, [0,1])
qc.barrier()
qc.cx(2,1)
qc.x(range(2))
qc.h(2)
display(qc.draw('mpl'))
display(show_unitary(get_unitary(qc)))
display(show_state(qc))
display(plot_histogram(measure(qc)))
qc = QuantumCircuit(1)
#qc.h(0)
qc.p(np.pi/2, 0)
#qc.barrier()
#qc.cx(1,0)
qc.h(0)
display(qc.draw('mpl'))
display(show_unitary(get_unitary(qc)))
display(show_state(qc))
display(plot_histogram(measure(qc)))
mem = QuantumCircuit(2, name="QROM")
mem.cp(np.pi/3,0,1)
mem.x(range(2))
mem.cp(np.pi/7,0,1)
mem.x(range(2))
display(mem.draw('mpl'))
show_unitary(get_unitary(mem))
qc = QuantumCircuit(2)
#qc.x(range(2))
qc.append(mem, [0,1])
#qc.x(range(2))
display(qc.draw('mpl'))
display(show_unitary(get_unitary(qc)))
show_state(qc)
mem = QuantumCircuit(2, name="qrom")
mem.ch(0,1)
mem.x(0)
mem.cry(np.pi/3, 0, 1)
mem.x(0)
display(mem.draw('mpl', filename=get_image_path("qrom_1.png")))
display(show_unitary(get_unitary(mem)))
show_state(mem)
addr = QuantumRegister(1, name="addr")
out = QuantumRegister(1, name="out")
q = QuantumRegister(1,name="q")
result = ClassicalRegister(1, "m")
qc = QuantumCircuit(addr, out, q, result)
qc.x(addr)
qc.barrier(addr)
qc.append(mem, [addr, out])
qc.cx(out, q)
display(qc.draw('mpl'))
display(show_unitary(get_unitary(qc)))
display(show_state(qc))
display(plot_histogram(measure(qc, qubits=[2])))
addr = QuantumRegister(1, name="addr")
out = QuantumRegister(1, name="out")
q = QuantumRegister(1,name="q")
result = ClassicalRegister(1, "m")
qc = QuantumCircuit(addr, out, q)
qc.h(addr)
qc.barrier(addr)
qc.append(mem, [addr, out])
qc.cx(out, q)
display(qc.draw('mpl', filename=get_image_path("qrom_1_usage.png")))
display(show_unitary(get_unitary(qc)))
display(show_state(qc))
#display(plot_histogram(measure(qc, qubits=[2])))
CCH = CHGate().control(1)
addr = QuantumRegister(2, name="addr")
data = QuantumRegister(2, name="data")
mem = QuantumCircuit(addr, data, name="qrom")
mem.x(addr[0])
mem.ccx(addr[0], addr[1], data[0])
mem.x(addr[0])
mem.barrier()
mem.append(CCH, [addr[0], addr[1], data[0]])
mem.ccx(addr[0], addr[1], data[1])
display(mem.draw('mpl'))
display(show_unitary(get_unitary(mem)))
show_state(mem)
addr = QuantumRegister(2, name="addr")
data = QuantumRegister(2, name="data")
q = QuantumRegister(1, name="q")
out = ClassicalRegister(1, name="c")
qc = QuantumCircuit(addr, data, q, out)
qc.x(range(2))
qc.barrier(addr)
qc.append(mem, [*addr, *data])
qc.cx(data[1], q[0])
qc.cx(data[0], q[0])
qc.append(mem, [*addr, *data])
qc.barrier(addr)
qc.x(range(2))
display(qc.draw('mpl'))
#display(show_unitary(get_unitary(qc)))
display(show_state(qc))
display(plot_histogram(measure(qc, qubits=[4])))
#memory with teleportation
addr = QuantumRegister(1, name="addr")
data = QuantumRegister(1, name="data")
mem = QuantumCircuit(addr, data, name="qrom")
mem.cry(np.pi/5, 0, 1)
display(mem.draw('mpl'))
display(show_unitary(get_unitary(mem)))
show_state(mem)
addr = QuantumRegister(1, name="addr")
data = QuantumRegister(2, name="data")
q = QuantumRegister(1, name="q")
out = ClassicalRegister(1, name="c")
qc = QuantumCircuit(addr, data, q, out)
qc.x(addr)
qc.barrier(addr)
qc.append(mem, [addr, data[0]])
qc.cx(data[0], q)
qc.barrier(addr)
qc.append(mem, [addr, data[0]])
qc.x(addr)
display(qc.draw('mpl'))
#display(show_unitary(get_unitary(qc)))
display(show_state(qc))
display(plot_histogram(measure(qc, qubits=[3])))
addr = QuantumRegister(1, name="addr")
data = QuantumRegister(2, name="data")
q = QuantumRegister(1, name="q")
out = ClassicalRegister(1, name="c")
qc = QuantumCircuit(addr, data, q, out)
qc.x(addr)
qc.barrier(addr)
qc.append(mem, [addr, data[0]])
qc.h(data[1])
qc.cx(data[1], q)
qc.cx(data[0], data[1])
qc.h(data[0])
qc.cx(data[1], q)
qc.cz(data[0], q)
display(qc.draw('mpl'))
#display(show_unitary(get_unitary(qc)))
display(show_state(qc))
display(plot_histogram(measure(qc, qubits=[3])))
display(plot_histogram(measure(qc, qubits=[1])))
(np.cos(np.pi/5/2))**2, (np.sin(np.pi/5/2))**2
qc = QuantumCircuit(3,3)
qc.ry(np.pi/5, 0)
qc.barrier()
qc.h(1)
qc.cx(1,2)
qc.barrier()
qc.cx(0,1)
qc.h(0)
qc.cx(1,2)
qc.cz(0,2)
qc.draw('mpl')
display(qc.draw('mpl'))
#display(show_unitary(get_unitary(qc)))
display(show_state(qc))
display(plot_histogram(measure(qc, qubits=[2])))
data = QuantumRegister(1, name="data")
teleportation_provider = QuantumRegister(1, name="t")
q = QuantumRegister(1, name="q")
meas = ClassicalRegister(1, name="out")
qram = QuantumCircuit(data, teleportation_provider, q,meas)
qram.h(teleportation_provider)
qram.cx(teleportation_provider, data)
qram.barrier()
qram.ry(np.pi/7, q)
qram.barrier()
qram.cx(q, teleportation_provider)
qram.h(q)
qram.cx(teleportation_provider, data)
qram.cz(q, data)
display(qram.draw('mpl'))
#display(show_unitary(get_unitary(qram)))
display(show_state(qram))
display(plot_histogram(measure(qram, qubits=[0])))
display(plot_histogram(measure(qram, qubits=[2])))
np.cos(np.pi/7/2)**2, np.sin(np.pi/7/2)**2
data = QuantumRegister(2, name="data")
teleportation_provider = QuantumRegister(2, name="t")
q = QuantumRegister(2, name="q")
meas = ClassicalRegister(1, name="out")
qram = QuantumCircuit(data, teleportation_provider, q,meas)
qram.h(teleportation_provider)
qram.cx(teleportation_provider, data)
qram.barrier()
qram.ry(np.pi/3, q[0])
qram.ry(np.pi/7, q[1])
qram.barrier()
qram.cx(q, teleportation_provider)
qram.h(q)
qram.cx(teleportation_provider, data)
qram.cz(q, data)
display(qram.draw('mpl', filename=get_image_path('qram.png')))
#display(show_unitary(get_unitary(qram)))
display(show_state(qram))
display(plot_histogram(measure(qram, qubits=[0])))
display(plot_histogram(measure(qram, qubits=[4])))
display(plot_histogram(measure(qram, qubits=[1])))
display(plot_histogram(measure(qram, qubits=[5])))
np.cos(np.pi/3/2)**2, np.sin(np.pi/3/2)**2
data = QuantumRegister(2, name="data")
teleportation_provider = QuantumRegister(2, name="t")
q = QuantumRegister(2, name="q")
meas = ClassicalRegister(1, name="out")
qram = QuantumCircuit(data, teleportation_provider, q,meas)
qram.h(teleportation_provider)
qram.cx(teleportation_provider, data)
qram.barrier()
qram.h(q[0])
qram.h(q[1])
qram.barrier()
qram.cx(q, teleportation_provider)
qram.h(q)
qram.cx(teleportation_provider, data)
qram.cz(q, data)
qram.barrier(label='second')
qram.cz(q, data)
qram.cx(teleportation_provider, data)
qram.h(q)
qram.cx(q, teleportation_provider)
qram.barrier()
qram.h(q[0])
qram.barrier()
qram.cx(q, teleportation_provider)
qram.h(q)
qram.cx(teleportation_provider, data)
qram.cz(q, data)
display(qram.draw('mpl'))
#display(show_unitary(get_unitary(qram)))
display(show_state(qram))
display(plot_histogram(measure(qram, qubits=[0])))
display(plot_histogram(measure(qram, qubits=[4])))
display(plot_histogram(measure(qram, qubits=[1])))
display(plot_histogram(measure(qram, qubits=[5])))
data = QuantumRegister(2, name="data")
teleportation_provider = QuantumRegister(1, name="t")
q = QuantumRegister(2, name="q")
meas = ClassicalRegister(1, name="out")
qram = QuantumCircuit(data, teleportation_provider, q,meas)
qram.h(teleportation_provider)
qram.cx(teleportation_provider, data)
qram.barrier()
qram.ry(np.pi/3, q[0])
qram.ry(np.pi/7, q[1])
qram.barrier()
qram.cx(q, teleportation_provider)
qram.h(q)
qram.cx(teleportation_provider, data)
qram.cz(q, data)
display(qram.draw('mpl', filename=get_image_path('qram.png')))
#display(show_unitary(get_unitary(qram)))
display(show_state(qram))
display(plot_histogram(measure(qram, qubits=[0])))
display(plot_histogram(measure(qram, qubits=[4])))
display(plot_histogram(measure(qram, qubits=[1])))
display(plot_histogram(measure(qram, qubits=[5])))
|
https://github.com/2lambda123/Qiskit-qiskit
|
2lambda123
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Tests basic functionality of the transpile function"""
import copy
import io
import math
import os
import sys
import unittest
from logging import StreamHandler, getLogger
from test import combine # pylint: disable=wrong-import-order
from unittest.mock import patch
import numpy as np
import rustworkx as rx
from ddt import data, ddt, unpack
from qiskit import BasicAer, ClassicalRegister, QuantumCircuit, QuantumRegister, pulse, qasm3, qpy
from qiskit.circuit import (
Clbit,
ControlFlowOp,
ForLoopOp,
Gate,
IfElseOp,
Parameter,
Qubit,
Reset,
SwitchCaseOp,
WhileLoopOp,
)
from qiskit.circuit.classical import expr
from qiskit.circuit.delay import Delay
from qiskit.circuit.library import (
CXGate,
CZGate,
HGate,
RXGate,
RYGate,
RZGate,
SXGate,
U1Gate,
U2Gate,
UGate,
XGate,
)
from qiskit.circuit.measure import Measure
from qiskit.compiler import transpile
from qiskit.converters import circuit_to_dag
from qiskit.dagcircuit import DAGOpNode, DAGOutNode
from qiskit.exceptions import QiskitError
from qiskit.providers.backend import BackendV2
from qiskit.providers.fake_provider import (
FakeBoeblingen,
FakeMelbourne,
FakeMumbaiV2,
FakeNairobiV2,
FakeRueschlikon,
FakeSherbrooke,
FakeVigo,
)
from qiskit.providers.options import Options
from qiskit.pulse import InstructionScheduleMap
from qiskit.quantum_info import Operator, random_unitary
from qiskit.test import QiskitTestCase, slow_test
from qiskit.tools import parallel
from qiskit.transpiler import CouplingMap, Layout, PassManager, TransformationPass
from qiskit.transpiler.exceptions import TranspilerError
from qiskit.transpiler.passes import BarrierBeforeFinalMeasurements, GateDirection, VF2PostLayout
from qiskit.transpiler.passmanager_config import PassManagerConfig
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager, level_0_pass_manager
from qiskit.transpiler.target import InstructionProperties, Target
class CustomCX(Gate):
"""Custom CX gate representation."""
def __init__(self):
super().__init__("custom_cx", 2, [])
def _define(self):
self._definition = QuantumCircuit(2)
self._definition.cx(0, 1)
def connected_qubits(physical: int, coupling_map: CouplingMap) -> set:
"""Get the physical qubits that have a connection to this one in the coupling map."""
for component in coupling_map.connected_components():
if physical in (qubits := set(component.graph.nodes())):
return qubits
raise ValueError(f"physical qubit {physical} is not in the coupling map")
@ddt
class TestTranspile(QiskitTestCase):
"""Test transpile function."""
def test_empty_transpilation(self):
"""Test that transpiling an empty list is a no-op. Regression test of gh-7287."""
self.assertEqual(transpile([]), [])
def test_pass_manager_none(self):
"""Test passing the default (None) pass manager to the transpiler.
It should perform the default qiskit flow:
unroll, swap_mapper, cx_direction, cx_cancellation, optimize_1q_gates
and should be equivalent to using tools.compile
"""
qr = QuantumRegister(2, "qr")
circuit = QuantumCircuit(qr)
circuit.h(qr[0])
circuit.h(qr[0])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[1], qr[0])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[1], qr[0])
coupling_map = [[1, 0]]
basis_gates = ["u1", "u2", "u3", "cx", "id"]
backend = BasicAer.get_backend("qasm_simulator")
circuit2 = transpile(
circuit,
backend=backend,
coupling_map=coupling_map,
basis_gates=basis_gates,
)
circuit3 = transpile(
circuit, backend=backend, coupling_map=coupling_map, basis_gates=basis_gates
)
self.assertEqual(circuit2, circuit3)
def test_transpile_basis_gates_no_backend_no_coupling_map(self):
"""Verify transpile() works with no coupling_map or backend."""
qr = QuantumRegister(2, "qr")
circuit = QuantumCircuit(qr)
circuit.h(qr[0])
circuit.h(qr[0])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[0], qr[1])
basis_gates = ["u1", "u2", "u3", "cx", "id"]
circuit2 = transpile(circuit, basis_gates=basis_gates, optimization_level=0)
resources_after = circuit2.count_ops()
self.assertEqual({"u2": 2, "cx": 4}, resources_after)
def test_transpile_non_adjacent_layout(self):
"""Transpile pipeline can handle manual layout on non-adjacent qubits.
circuit:
.. parsed-literal::
┌───┐
qr_0: ┤ H ├──■──────────── -> 1
└───┘┌─┴─┐
qr_1: ─────┤ X ├──■─────── -> 2
└───┘┌─┴─┐
qr_2: ──────────┤ X ├──■── -> 3
└───┘┌─┴─┐
qr_3: ───────────────┤ X ├ -> 5
└───┘
device:
0 - 1 - 2 - 3 - 4 - 5 - 6
| | | | | |
13 - 12 - 11 - 10 - 9 - 8 - 7
"""
qr = QuantumRegister(4, "qr")
circuit = QuantumCircuit(qr)
circuit.h(qr[0])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[1], qr[2])
circuit.cx(qr[2], qr[3])
coupling_map = FakeMelbourne().configuration().coupling_map
basis_gates = FakeMelbourne().configuration().basis_gates
initial_layout = [None, qr[0], qr[1], qr[2], None, qr[3]]
new_circuit = transpile(
circuit,
basis_gates=basis_gates,
coupling_map=coupling_map,
initial_layout=initial_layout,
)
qubit_indices = {bit: idx for idx, bit in enumerate(new_circuit.qubits)}
for instruction in new_circuit.data:
if isinstance(instruction.operation, CXGate):
self.assertIn([qubit_indices[x] for x in instruction.qubits], coupling_map)
def test_transpile_qft_grid(self):
"""Transpile pipeline can handle 8-qubit QFT on 14-qubit grid."""
qr = QuantumRegister(8)
circuit = QuantumCircuit(qr)
for i, _ in enumerate(qr):
for j in range(i):
circuit.cp(math.pi / float(2 ** (i - j)), qr[i], qr[j])
circuit.h(qr[i])
coupling_map = FakeMelbourne().configuration().coupling_map
basis_gates = FakeMelbourne().configuration().basis_gates
new_circuit = transpile(circuit, basis_gates=basis_gates, coupling_map=coupling_map)
qubit_indices = {bit: idx for idx, bit in enumerate(new_circuit.qubits)}
for instruction in new_circuit.data:
if isinstance(instruction.operation, CXGate):
self.assertIn([qubit_indices[x] for x in instruction.qubits], coupling_map)
def test_already_mapped_1(self):
"""Circuit not remapped if matches topology.
See: https://github.com/Qiskit/qiskit-terra/issues/342
"""
backend = FakeRueschlikon()
coupling_map = backend.configuration().coupling_map
basis_gates = backend.configuration().basis_gates
qr = QuantumRegister(16, "qr")
cr = ClassicalRegister(16, "cr")
qc = QuantumCircuit(qr, cr)
qc.cx(qr[3], qr[14])
qc.cx(qr[5], qr[4])
qc.h(qr[9])
qc.cx(qr[9], qr[8])
qc.x(qr[11])
qc.cx(qr[3], qr[4])
qc.cx(qr[12], qr[11])
qc.cx(qr[13], qr[4])
qc.measure(qr, cr)
new_qc = transpile(
qc,
coupling_map=coupling_map,
basis_gates=basis_gates,
initial_layout=Layout.generate_trivial_layout(qr),
)
qubit_indices = {bit: idx for idx, bit in enumerate(new_qc.qubits)}
cx_qubits = [instr.qubits for instr in new_qc.data if instr.operation.name == "cx"]
cx_qubits_physical = [
[qubit_indices[ctrl], qubit_indices[tgt]] for [ctrl, tgt] in cx_qubits
]
self.assertEqual(
sorted(cx_qubits_physical), [[3, 4], [3, 14], [5, 4], [9, 8], [12, 11], [13, 4]]
)
def test_already_mapped_via_layout(self):
"""Test that a manual layout that satisfies a coupling map does not get altered.
See: https://github.com/Qiskit/qiskit-terra/issues/2036
circuit:
.. parsed-literal::
┌───┐ ┌───┐ ░ ┌─┐
qn_0: ┤ H ├──■────────────■──┤ H ├─░─┤M├─── -> 9
└───┘ │ │ └───┘ ░ └╥┘
qn_1: ───────┼────────────┼────────░──╫──── -> 6
│ │ ░ ║
qn_2: ───────┼────────────┼────────░──╫──── -> 5
│ │ ░ ║
qn_3: ───────┼────────────┼────────░──╫──── -> 0
│ │ ░ ║
qn_4: ───────┼────────────┼────────░──╫──── -> 1
┌───┐┌─┴─┐┌──────┐┌─┴─┐┌───┐ ░ ║ ┌─┐
qn_5: ┤ H ├┤ X ├┤ P(2) ├┤ X ├┤ H ├─░──╫─┤M├ -> 4
└───┘└───┘└──────┘└───┘└───┘ ░ ║ └╥┘
cn: 2/════════════════════════════════╩══╩═
0 1
device:
0 -- 1 -- 2 -- 3 -- 4
| |
5 -- 6 -- 7 -- 8 -- 9
| |
10 - 11 - 12 - 13 - 14
| |
15 - 16 - 17 - 18 - 19
"""
basis_gates = ["u1", "u2", "u3", "cx", "id"]
coupling_map = [
[0, 1],
[0, 5],
[1, 0],
[1, 2],
[2, 1],
[2, 3],
[3, 2],
[3, 4],
[4, 3],
[4, 9],
[5, 0],
[5, 6],
[5, 10],
[6, 5],
[6, 7],
[7, 6],
[7, 8],
[7, 12],
[8, 7],
[8, 9],
[9, 4],
[9, 8],
[9, 14],
[10, 5],
[10, 11],
[10, 15],
[11, 10],
[11, 12],
[12, 7],
[12, 11],
[12, 13],
[13, 12],
[13, 14],
[14, 9],
[14, 13],
[14, 19],
[15, 10],
[15, 16],
[16, 15],
[16, 17],
[17, 16],
[17, 18],
[18, 17],
[18, 19],
[19, 14],
[19, 18],
]
q = QuantumRegister(6, name="qn")
c = ClassicalRegister(2, name="cn")
qc = QuantumCircuit(q, c)
qc.h(q[0])
qc.h(q[5])
qc.cx(q[0], q[5])
qc.p(2, q[5])
qc.cx(q[0], q[5])
qc.h(q[0])
qc.h(q[5])
qc.barrier(q)
qc.measure(q[0], c[0])
qc.measure(q[5], c[1])
initial_layout = [
q[3],
q[4],
None,
None,
q[5],
q[2],
q[1],
None,
None,
q[0],
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
]
new_qc = transpile(
qc, coupling_map=coupling_map, basis_gates=basis_gates, initial_layout=initial_layout
)
qubit_indices = {bit: idx for idx, bit in enumerate(new_qc.qubits)}
cx_qubits = [instr.qubits for instr in new_qc.data if instr.operation.name == "cx"]
cx_qubits_physical = [
[qubit_indices[ctrl], qubit_indices[tgt]] for [ctrl, tgt] in cx_qubits
]
self.assertEqual(sorted(cx_qubits_physical), [[9, 4], [9, 4]])
def test_transpile_bell(self):
"""Test Transpile Bell.
If all correct some should exists.
"""
backend = BasicAer.get_backend("qasm_simulator")
qubit_reg = QuantumRegister(2, name="q")
clbit_reg = ClassicalRegister(2, name="c")
qc = QuantumCircuit(qubit_reg, clbit_reg, name="bell")
qc.h(qubit_reg[0])
qc.cx(qubit_reg[0], qubit_reg[1])
qc.measure(qubit_reg, clbit_reg)
circuits = transpile(qc, backend)
self.assertIsInstance(circuits, QuantumCircuit)
def test_transpile_one(self):
"""Test transpile a single circuit.
Check that the top-level `transpile` function returns
a single circuit."""
backend = BasicAer.get_backend("qasm_simulator")
qubit_reg = QuantumRegister(2)
clbit_reg = ClassicalRegister(2)
qc = QuantumCircuit(qubit_reg, clbit_reg, name="bell")
qc.h(qubit_reg[0])
qc.cx(qubit_reg[0], qubit_reg[1])
qc.measure(qubit_reg, clbit_reg)
circuit = transpile(qc, backend)
self.assertIsInstance(circuit, QuantumCircuit)
def test_transpile_two(self):
"""Test transpile two circuits.
Check that the transpiler returns a list of two circuits.
"""
backend = BasicAer.get_backend("qasm_simulator")
qubit_reg = QuantumRegister(2)
clbit_reg = ClassicalRegister(2)
qubit_reg2 = QuantumRegister(2)
clbit_reg2 = ClassicalRegister(2)
qc = QuantumCircuit(qubit_reg, clbit_reg, name="bell")
qc.h(qubit_reg[0])
qc.cx(qubit_reg[0], qubit_reg[1])
qc.measure(qubit_reg, clbit_reg)
qc_extra = QuantumCircuit(qubit_reg, qubit_reg2, clbit_reg, clbit_reg2, name="extra")
qc_extra.measure(qubit_reg, clbit_reg)
circuits = transpile([qc, qc_extra], backend)
self.assertIsInstance(circuits, list)
self.assertEqual(len(circuits), 2)
for circuit in circuits:
self.assertIsInstance(circuit, QuantumCircuit)
def test_transpile_singleton(self):
"""Test transpile a single-element list with a circuit.
Check that `transpile` returns a single-element list.
See https://github.com/Qiskit/qiskit-terra/issues/5260
"""
backend = BasicAer.get_backend("qasm_simulator")
qubit_reg = QuantumRegister(2)
clbit_reg = ClassicalRegister(2)
qc = QuantumCircuit(qubit_reg, clbit_reg, name="bell")
qc.h(qubit_reg[0])
qc.cx(qubit_reg[0], qubit_reg[1])
qc.measure(qubit_reg, clbit_reg)
circuits = transpile([qc], backend)
self.assertIsInstance(circuits, list)
self.assertEqual(len(circuits), 1)
self.assertIsInstance(circuits[0], QuantumCircuit)
def test_mapping_correction(self):
"""Test mapping works in previous failed case."""
backend = FakeRueschlikon()
qr = QuantumRegister(name="qr", size=11)
cr = ClassicalRegister(name="qc", size=11)
circuit = QuantumCircuit(qr, cr)
circuit.u(1.564784764685993, -1.2378965763410095, 2.9746763177861713, qr[3])
circuit.u(1.2269835563676523, 1.1932982847014162, -1.5597357740824318, qr[5])
circuit.cx(qr[5], qr[3])
circuit.p(0.856768317675967, qr[3])
circuit.u(-3.3911273825190915, 0.0, 0.0, qr[5])
circuit.cx(qr[3], qr[5])
circuit.u(2.159209321625547, 0.0, 0.0, qr[5])
circuit.cx(qr[5], qr[3])
circuit.u(0.30949966910232335, 1.1706201763833217, 1.738408691990081, qr[3])
circuit.u(1.9630571407274755, -0.6818742967975088, 1.8336534616728195, qr[5])
circuit.u(1.330181833806101, 0.6003162754946363, -3.181264980452862, qr[7])
circuit.u(0.4885914820775024, 3.133297443244865, -2.794457469189904, qr[8])
circuit.cx(qr[8], qr[7])
circuit.p(2.2196187596178616, qr[7])
circuit.u(-3.152367609631023, 0.0, 0.0, qr[8])
circuit.cx(qr[7], qr[8])
circuit.u(1.2646005789809263, 0.0, 0.0, qr[8])
circuit.cx(qr[8], qr[7])
circuit.u(0.7517780502091939, 1.2828514296564781, 1.6781179605443775, qr[7])
circuit.u(0.9267400575390405, 2.0526277839695153, 2.034202361069533, qr[8])
circuit.u(2.550304293455634, 3.8250017126569698, -2.1351609599720054, qr[1])
circuit.u(0.9566260876600556, -1.1147561503064538, 2.0571590492298797, qr[4])
circuit.cx(qr[4], qr[1])
circuit.p(2.1899329069137394, qr[1])
circuit.u(-1.8371715243173294, 0.0, 0.0, qr[4])
circuit.cx(qr[1], qr[4])
circuit.u(0.4717053496327104, 0.0, 0.0, qr[4])
circuit.cx(qr[4], qr[1])
circuit.u(2.3167620677708145, -1.2337330260253256, -0.5671322899563955, qr[1])
circuit.u(1.0468499525240678, 0.8680750644809365, -1.4083720073192485, qr[4])
circuit.u(2.4204244021892807, -2.211701932616922, 3.8297006565735883, qr[10])
circuit.u(0.36660280497727255, 3.273119149343493, -1.8003362351299388, qr[6])
circuit.cx(qr[6], qr[10])
circuit.p(1.067395863586385, qr[10])
circuit.u(-0.7044917541291232, 0.0, 0.0, qr[6])
circuit.cx(qr[10], qr[6])
circuit.u(2.1830003849921527, 0.0, 0.0, qr[6])
circuit.cx(qr[6], qr[10])
circuit.u(2.1538343756723917, 2.2653381826084606, -3.550087952059485, qr[10])
circuit.u(1.307627685019188, -0.44686656993522567, -2.3238098554327418, qr[6])
circuit.u(2.2046797998462906, 0.9732961754855436, 1.8527865921467421, qr[9])
circuit.u(2.1665254613904126, -1.281337664694577, -1.2424905413631209, qr[0])
circuit.cx(qr[0], qr[9])
circuit.p(2.6209599970201007, qr[9])
circuit.u(0.04680566321901303, 0.0, 0.0, qr[0])
circuit.cx(qr[9], qr[0])
circuit.u(1.7728411151289603, 0.0, 0.0, qr[0])
circuit.cx(qr[0], qr[9])
circuit.u(2.4866395967434443, 0.48684511243566697, -3.0069186877854728, qr[9])
circuit.u(1.7369112924273789, -4.239660866163805, 1.0623389015296005, qr[0])
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits = transpile(circuit, backend)
self.assertIsInstance(circuits, QuantumCircuit)
def test_transpiler_layout_from_intlist(self):
"""A list of ints gives layout to correctly map circuit.
virtual physical
q1_0 - 4 ---[H]---
q2_0 - 5
q2_1 - 6 ---[H]---
q3_0 - 8
q3_1 - 9
q3_2 - 10 ---[H]---
"""
qr1 = QuantumRegister(1, "qr1")
qr2 = QuantumRegister(2, "qr2")
qr3 = QuantumRegister(3, "qr3")
qc = QuantumCircuit(qr1, qr2, qr3)
qc.h(qr1[0])
qc.h(qr2[1])
qc.h(qr3[2])
layout = [4, 5, 6, 8, 9, 10]
cmap = [
[1, 0],
[1, 2],
[2, 3],
[4, 3],
[4, 10],
[5, 4],
[5, 6],
[5, 9],
[6, 8],
[7, 8],
[9, 8],
[9, 10],
[11, 3],
[11, 10],
[11, 12],
[12, 2],
[13, 1],
[13, 12],
]
new_circ = transpile(
qc, backend=None, coupling_map=cmap, basis_gates=["u2"], initial_layout=layout
)
qubit_indices = {bit: idx for idx, bit in enumerate(new_circ.qubits)}
mapped_qubits = []
for instruction in new_circ.data:
mapped_qubits.append(qubit_indices[instruction.qubits[0]])
self.assertEqual(mapped_qubits, [4, 6, 10])
def test_mapping_multi_qreg(self):
"""Test mapping works for multiple qregs."""
backend = FakeRueschlikon()
qr = QuantumRegister(3, name="qr")
qr2 = QuantumRegister(1, name="qr2")
qr3 = QuantumRegister(4, name="qr3")
cr = ClassicalRegister(3, name="cr")
qc = QuantumCircuit(qr, qr2, qr3, cr)
qc.h(qr[0])
qc.cx(qr[0], qr2[0])
qc.cx(qr[1], qr3[2])
qc.measure(qr, cr)
circuits = transpile(qc, backend)
self.assertIsInstance(circuits, QuantumCircuit)
def test_transpile_circuits_diff_registers(self):
"""Transpile list of circuits with different qreg names."""
backend = FakeRueschlikon()
circuits = []
for _ in range(2):
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
circuit = QuantumCircuit(qr, cr)
circuit.h(qr[0])
circuit.cx(qr[0], qr[1])
circuit.measure(qr, cr)
circuits.append(circuit)
circuits = transpile(circuits, backend)
self.assertIsInstance(circuits[0], QuantumCircuit)
def test_wrong_initial_layout(self):
"""Test transpile with a bad initial layout."""
backend = FakeMelbourne()
qubit_reg = QuantumRegister(2, name="q")
clbit_reg = ClassicalRegister(2, name="c")
qc = QuantumCircuit(qubit_reg, clbit_reg, name="bell")
qc.h(qubit_reg[0])
qc.cx(qubit_reg[0], qubit_reg[1])
qc.measure(qubit_reg, clbit_reg)
bad_initial_layout = [
QuantumRegister(3, "q")[0],
QuantumRegister(3, "q")[1],
QuantumRegister(3, "q")[2],
]
with self.assertRaises(TranspilerError):
transpile(qc, backend, initial_layout=bad_initial_layout)
def test_parameterized_circuit_for_simulator(self):
"""Verify that a parameterized circuit can be transpiled for a simulator backend."""
qr = QuantumRegister(2, name="qr")
qc = QuantumCircuit(qr)
theta = Parameter("theta")
qc.rz(theta, qr[0])
transpiled_qc = transpile(qc, backend=BasicAer.get_backend("qasm_simulator"))
expected_qc = QuantumCircuit(qr)
expected_qc.append(RZGate(theta), [qr[0]])
self.assertEqual(expected_qc, transpiled_qc)
def test_parameterized_circuit_for_device(self):
"""Verify that a parameterized circuit can be transpiled for a device backend."""
qr = QuantumRegister(2, name="qr")
qc = QuantumCircuit(qr)
theta = Parameter("theta")
qc.rz(theta, qr[0])
transpiled_qc = transpile(
qc, backend=FakeMelbourne(), initial_layout=Layout.generate_trivial_layout(qr)
)
qr = QuantumRegister(14, "q")
expected_qc = QuantumCircuit(qr, global_phase=-1 * theta / 2.0)
expected_qc.append(U1Gate(theta), [qr[0]])
self.assertEqual(expected_qc, transpiled_qc)
def test_parameter_expression_circuit_for_simulator(self):
"""Verify that a circuit including expressions of parameters can be
transpiled for a simulator backend."""
qr = QuantumRegister(2, name="qr")
qc = QuantumCircuit(qr)
theta = Parameter("theta")
square = theta * theta
qc.rz(square, qr[0])
transpiled_qc = transpile(qc, backend=BasicAer.get_backend("qasm_simulator"))
expected_qc = QuantumCircuit(qr)
expected_qc.append(RZGate(square), [qr[0]])
self.assertEqual(expected_qc, transpiled_qc)
def test_parameter_expression_circuit_for_device(self):
"""Verify that a circuit including expressions of parameters can be
transpiled for a device backend."""
qr = QuantumRegister(2, name="qr")
qc = QuantumCircuit(qr)
theta = Parameter("theta")
square = theta * theta
qc.rz(square, qr[0])
transpiled_qc = transpile(
qc, backend=FakeMelbourne(), initial_layout=Layout.generate_trivial_layout(qr)
)
qr = QuantumRegister(14, "q")
expected_qc = QuantumCircuit(qr, global_phase=-1 * square / 2.0)
expected_qc.append(U1Gate(square), [qr[0]])
self.assertEqual(expected_qc, transpiled_qc)
def test_final_measurement_barrier_for_devices(self):
"""Verify BarrierBeforeFinalMeasurements pass is called in default pipeline for devices."""
qasm_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "qasm")
circ = QuantumCircuit.from_qasm_file(os.path.join(qasm_dir, "example.qasm"))
layout = Layout.generate_trivial_layout(*circ.qregs)
orig_pass = BarrierBeforeFinalMeasurements()
with patch.object(BarrierBeforeFinalMeasurements, "run", wraps=orig_pass.run) as mock_pass:
transpile(
circ,
coupling_map=FakeRueschlikon().configuration().coupling_map,
initial_layout=layout,
)
self.assertTrue(mock_pass.called)
def test_do_not_run_gatedirection_with_symmetric_cm(self):
"""When the coupling map is symmetric, do not run GateDirection."""
qasm_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "qasm")
circ = QuantumCircuit.from_qasm_file(os.path.join(qasm_dir, "example.qasm"))
layout = Layout.generate_trivial_layout(*circ.qregs)
coupling_map = []
for node1, node2 in FakeRueschlikon().configuration().coupling_map:
coupling_map.append([node1, node2])
coupling_map.append([node2, node1])
orig_pass = GateDirection(CouplingMap(coupling_map))
with patch.object(GateDirection, "run", wraps=orig_pass.run) as mock_pass:
transpile(circ, coupling_map=coupling_map, initial_layout=layout)
self.assertFalse(mock_pass.called)
def test_optimize_to_nothing(self):
"""Optimize gates up to fixed point in the default pipeline
See https://github.com/Qiskit/qiskit-terra/issues/2035
"""
# ┌───┐ ┌───┐┌───┐┌───┐ ┌───┐
# q0_0: ┤ H ├──■──┤ X ├┤ Y ├┤ Z ├──■──┤ H ├──■────■──
# └───┘┌─┴─┐└───┘└───┘└───┘┌─┴─┐└───┘┌─┴─┐┌─┴─┐
# q0_1: ─────┤ X ├───────────────┤ X ├─────┤ X ├┤ X ├
# └───┘ └───┘ └───┘└───┘
qr = QuantumRegister(2)
circ = QuantumCircuit(qr)
circ.h(qr[0])
circ.cx(qr[0], qr[1])
circ.x(qr[0])
circ.y(qr[0])
circ.z(qr[0])
circ.cx(qr[0], qr[1])
circ.h(qr[0])
circ.cx(qr[0], qr[1])
circ.cx(qr[0], qr[1])
after = transpile(circ, coupling_map=[[0, 1], [1, 0]], basis_gates=["u3", "u2", "u1", "cx"])
expected = QuantumCircuit(QuantumRegister(2, "q"), global_phase=-np.pi / 2)
msg = f"after:\n{after}\nexpected:\n{expected}"
self.assertEqual(after, expected, msg=msg)
def test_pass_manager_empty(self):
"""Test passing an empty PassManager() to the transpiler.
It should perform no transformations on the circuit.
"""
qr = QuantumRegister(2)
circuit = QuantumCircuit(qr)
circuit.h(qr[0])
circuit.h(qr[0])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[0], qr[1])
resources_before = circuit.count_ops()
pass_manager = PassManager()
out_circuit = pass_manager.run(circuit)
resources_after = out_circuit.count_ops()
self.assertDictEqual(resources_before, resources_after)
def test_move_measurements(self):
"""Measurements applied AFTER swap mapping."""
backend = FakeRueschlikon()
cmap = backend.configuration().coupling_map
qasm_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "qasm")
circ = QuantumCircuit.from_qasm_file(os.path.join(qasm_dir, "move_measurements.qasm"))
lay = [0, 1, 15, 2, 14, 3, 13, 4, 12, 5, 11, 6]
out = transpile(circ, initial_layout=lay, coupling_map=cmap, routing_method="stochastic")
out_dag = circuit_to_dag(out)
meas_nodes = out_dag.named_nodes("measure")
for meas_node in meas_nodes:
is_last_measure = all(
isinstance(after_measure, DAGOutNode)
for after_measure in out_dag.quantum_successors(meas_node)
)
self.assertTrue(is_last_measure)
@data(0, 1, 2, 3)
def test_init_resets_kept_preset_passmanagers(self, optimization_level):
"""Test initial resets kept at all preset transpilation levels"""
num_qubits = 5
qc = QuantumCircuit(num_qubits)
qc.reset(range(num_qubits))
num_resets = transpile(qc, optimization_level=optimization_level).count_ops()["reset"]
self.assertEqual(num_resets, num_qubits)
@data(0, 1, 2, 3)
def test_initialize_reset_is_not_removed(self, optimization_level):
"""The reset in front of initializer should NOT be removed at beginning"""
qr = QuantumRegister(1, "qr")
qc = QuantumCircuit(qr)
qc.initialize([1.0 / math.sqrt(2), 1.0 / math.sqrt(2)], [qr[0]])
qc.initialize([1.0 / math.sqrt(2), -1.0 / math.sqrt(2)], [qr[0]])
after = transpile(qc, basis_gates=["reset", "u3"], optimization_level=optimization_level)
self.assertEqual(after.count_ops()["reset"], 2, msg=f"{after}\n does not have 2 resets.")
def test_initialize_FakeMelbourne(self):
"""Test that the zero-state resets are remove in a device not supporting them."""
desired_vector = [1 / math.sqrt(2), 0, 0, 0, 0, 0, 0, 1 / math.sqrt(2)]
qr = QuantumRegister(3, "qr")
qc = QuantumCircuit(qr)
qc.initialize(desired_vector, [qr[0], qr[1], qr[2]])
out = transpile(qc, backend=FakeMelbourne())
out_dag = circuit_to_dag(out)
reset_nodes = out_dag.named_nodes("reset")
self.assertEqual(len(reset_nodes), 3)
def test_non_standard_basis(self):
"""Test a transpilation with a non-standard basis"""
qr1 = QuantumRegister(1, "q1")
qr2 = QuantumRegister(2, "q2")
qr3 = QuantumRegister(3, "q3")
qc = QuantumCircuit(qr1, qr2, qr3)
qc.h(qr1[0])
qc.h(qr2[1])
qc.h(qr3[2])
layout = [4, 5, 6, 8, 9, 10]
cmap = [
[1, 0],
[1, 2],
[2, 3],
[4, 3],
[4, 10],
[5, 4],
[5, 6],
[5, 9],
[6, 8],
[7, 8],
[9, 8],
[9, 10],
[11, 3],
[11, 10],
[11, 12],
[12, 2],
[13, 1],
[13, 12],
]
circuit = transpile(
qc, backend=None, coupling_map=cmap, basis_gates=["h"], initial_layout=layout
)
dag_circuit = circuit_to_dag(circuit)
resources_after = dag_circuit.count_ops()
self.assertEqual({"h": 3}, resources_after)
def test_hadamard_to_rot_gates(self):
"""Test a transpilation from H to Rx, Ry gates"""
qr = QuantumRegister(1)
qc = QuantumCircuit(qr)
qc.h(0)
expected = QuantumCircuit(qr, global_phase=np.pi / 2)
expected.append(RYGate(theta=np.pi / 2), [0])
expected.append(RXGate(theta=np.pi), [0])
circuit = transpile(qc, basis_gates=["rx", "ry"], optimization_level=0)
self.assertEqual(circuit, expected)
def test_basis_subset(self):
"""Test a transpilation with a basis subset of the standard basis"""
qr = QuantumRegister(1, "q1")
qc = QuantumCircuit(qr)
qc.h(qr[0])
qc.x(qr[0])
qc.t(qr[0])
layout = [4]
cmap = [
[1, 0],
[1, 2],
[2, 3],
[4, 3],
[4, 10],
[5, 4],
[5, 6],
[5, 9],
[6, 8],
[7, 8],
[9, 8],
[9, 10],
[11, 3],
[11, 10],
[11, 12],
[12, 2],
[13, 1],
[13, 12],
]
circuit = transpile(
qc, backend=None, coupling_map=cmap, basis_gates=["u3"], initial_layout=layout
)
dag_circuit = circuit_to_dag(circuit)
resources_after = dag_circuit.count_ops()
self.assertEqual({"u3": 1}, resources_after)
def test_check_circuit_width(self):
"""Verify transpilation of circuit with virtual qubits greater than
physical qubits raises error"""
cmap = [
[1, 0],
[1, 2],
[2, 3],
[4, 3],
[4, 10],
[5, 4],
[5, 6],
[5, 9],
[6, 8],
[7, 8],
[9, 8],
[9, 10],
[11, 3],
[11, 10],
[11, 12],
[12, 2],
[13, 1],
[13, 12],
]
qc = QuantumCircuit(15, 15)
with self.assertRaises(TranspilerError):
transpile(qc, coupling_map=cmap)
@data(0, 1, 2, 3)
def test_ccx_routing_method_none(self, optimization_level):
"""CCX without routing method."""
qc = QuantumCircuit(3)
qc.cx(0, 1)
qc.cx(1, 2)
out = transpile(
qc,
routing_method="none",
basis_gates=["u", "cx"],
initial_layout=[0, 1, 2],
seed_transpiler=0,
coupling_map=[[0, 1], [1, 2]],
optimization_level=optimization_level,
)
self.assertTrue(Operator(qc).equiv(out))
@data(0, 1, 2, 3)
def test_ccx_routing_method_none_failed(self, optimization_level):
"""CCX without routing method cannot be routed."""
qc = QuantumCircuit(3)
qc.ccx(0, 1, 2)
with self.assertRaises(TranspilerError):
transpile(
qc,
routing_method="none",
basis_gates=["u", "cx"],
initial_layout=[0, 1, 2],
seed_transpiler=0,
coupling_map=[[0, 1], [1, 2]],
optimization_level=optimization_level,
)
@data(0, 1, 2, 3)
def test_ms_unrolls_to_cx(self, optimization_level):
"""Verify a Rx,Ry,Rxx circuit transpile to a U3,CX target."""
qc = QuantumCircuit(2)
qc.rx(math.pi / 2, 0)
qc.ry(math.pi / 4, 1)
qc.rxx(math.pi / 4, 0, 1)
out = transpile(qc, basis_gates=["u3", "cx"], optimization_level=optimization_level)
self.assertTrue(Operator(qc).equiv(out))
@data(0, 1, 2, 3)
def test_ms_can_target_ms(self, optimization_level):
"""Verify a Rx,Ry,Rxx circuit can transpile to an Rx,Ry,Rxx target."""
qc = QuantumCircuit(2)
qc.rx(math.pi / 2, 0)
qc.ry(math.pi / 4, 1)
qc.rxx(math.pi / 4, 0, 1)
out = transpile(qc, basis_gates=["rx", "ry", "rxx"], optimization_level=optimization_level)
self.assertTrue(Operator(qc).equiv(out))
@data(0, 1, 2, 3)
def test_cx_can_target_ms(self, optimization_level):
"""Verify a U3,CX circuit can transpiler to a Rx,Ry,Rxx target."""
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
qc.rz(math.pi / 4, [0, 1])
out = transpile(qc, basis_gates=["rx", "ry", "rxx"], optimization_level=optimization_level)
self.assertTrue(Operator(qc).equiv(out))
@data(0, 1, 2, 3)
def test_measure_doesnt_unroll_ms(self, optimization_level):
"""Verify a measure doesn't cause an Rx,Ry,Rxx circuit to unroll to U3,CX."""
qc = QuantumCircuit(2, 2)
qc.rx(math.pi / 2, 0)
qc.ry(math.pi / 4, 1)
qc.rxx(math.pi / 4, 0, 1)
qc.measure([0, 1], [0, 1])
out = transpile(qc, basis_gates=["rx", "ry", "rxx"], optimization_level=optimization_level)
self.assertEqual(qc, out)
@data(
["cx", "u3"],
["cz", "u3"],
["cz", "rx", "rz"],
["rxx", "rx", "ry"],
["iswap", "rx", "rz"],
)
def test_block_collection_runs_for_non_cx_bases(self, basis_gates):
"""Verify block collection is run when a single two qubit gate is in the basis."""
twoq_gate, *_ = basis_gates
qc = QuantumCircuit(2)
qc.cx(0, 1)
qc.cx(1, 0)
qc.cx(0, 1)
qc.cx(0, 1)
out = transpile(qc, basis_gates=basis_gates, optimization_level=3)
self.assertLessEqual(out.count_ops()[twoq_gate], 2)
@unpack
@data(
(["u3", "cx"], {"u3": 1, "cx": 1}),
(["rx", "rz", "iswap"], {"rx": 6, "rz": 12, "iswap": 2}),
(["rx", "ry", "rxx"], {"rx": 6, "ry": 5, "rxx": 1}),
)
def test_block_collection_reduces_1q_gate(self, basis_gates, gate_counts):
"""For synthesis to non-U3 bases, verify we minimize 1q gates."""
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
out = transpile(qc, basis_gates=basis_gates, optimization_level=3)
self.assertTrue(Operator(out).equiv(qc))
self.assertTrue(set(out.count_ops()).issubset(basis_gates))
for basis_gate in basis_gates:
self.assertLessEqual(out.count_ops()[basis_gate], gate_counts[basis_gate])
@combine(
optimization_level=[0, 1, 2, 3],
basis_gates=[
["u3", "cx"],
["rx", "rz", "iswap"],
["rx", "ry", "rxx"],
],
)
def test_translation_method_synthesis(self, optimization_level, basis_gates):
"""Verify translation_method='synthesis' gets to the basis."""
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
out = transpile(
qc,
translation_method="synthesis",
basis_gates=basis_gates,
optimization_level=optimization_level,
)
self.assertTrue(Operator(out).equiv(qc))
self.assertTrue(set(out.count_ops()).issubset(basis_gates))
def test_transpiled_custom_gates_calibration(self):
"""Test if transpiled calibrations is equal to custom gates circuit calibrations."""
custom_180 = Gate("mycustom", 1, [3.14])
custom_90 = Gate("mycustom", 1, [1.57])
circ = QuantumCircuit(2)
circ.append(custom_180, [0])
circ.append(custom_90, [1])
with pulse.build() as q0_x180:
pulse.play(pulse.library.Gaussian(20, 1.0, 3.0), pulse.DriveChannel(0))
with pulse.build() as q1_y90:
pulse.play(pulse.library.Gaussian(20, -1.0, 3.0), pulse.DriveChannel(1))
# Add calibration
circ.add_calibration(custom_180, [0], q0_x180)
circ.add_calibration(custom_90, [1], q1_y90)
backend = FakeBoeblingen()
transpiled_circuit = transpile(
circ,
backend=backend,
layout_method="trivial",
)
self.assertEqual(transpiled_circuit.calibrations, circ.calibrations)
self.assertEqual(list(transpiled_circuit.count_ops().keys()), ["mycustom"])
self.assertEqual(list(transpiled_circuit.count_ops().values()), [2])
def test_transpiled_basis_gates_calibrations(self):
"""Test if the transpiled calibrations is equal to basis gates circuit calibrations."""
circ = QuantumCircuit(2)
circ.h(0)
with pulse.build() as q0_x180:
pulse.play(pulse.library.Gaussian(20, 1.0, 3.0), pulse.DriveChannel(0))
# Add calibration
circ.add_calibration("h", [0], q0_x180)
backend = FakeBoeblingen()
transpiled_circuit = transpile(
circ,
backend=backend,
)
self.assertEqual(transpiled_circuit.calibrations, circ.calibrations)
def test_transpile_calibrated_custom_gate_on_diff_qubit(self):
"""Test if the custom, non calibrated gate raises QiskitError."""
custom_180 = Gate("mycustom", 1, [3.14])
circ = QuantumCircuit(2)
circ.append(custom_180, [0])
with pulse.build() as q0_x180:
pulse.play(pulse.library.Gaussian(20, 1.0, 3.0), pulse.DriveChannel(0))
# Add calibration
circ.add_calibration(custom_180, [1], q0_x180)
backend = FakeBoeblingen()
with self.assertRaises(QiskitError):
transpile(circ, backend=backend, layout_method="trivial")
def test_transpile_calibrated_nonbasis_gate_on_diff_qubit(self):
"""Test if the non-basis gates are transpiled if they are on different qubit that
is not calibrated."""
circ = QuantumCircuit(2)
circ.h(0)
circ.h(1)
with pulse.build() as q0_x180:
pulse.play(pulse.library.Gaussian(20, 1.0, 3.0), pulse.DriveChannel(0))
# Add calibration
circ.add_calibration("h", [1], q0_x180)
backend = FakeBoeblingen()
transpiled_circuit = transpile(
circ,
backend=backend,
)
self.assertEqual(transpiled_circuit.calibrations, circ.calibrations)
self.assertEqual(set(transpiled_circuit.count_ops().keys()), {"u2", "h"})
def test_transpile_subset_of_calibrated_gates(self):
"""Test transpiling a circuit with both basis gate (not-calibrated) and
a calibrated gate on different qubits."""
x_180 = Gate("mycustom", 1, [3.14])
circ = QuantumCircuit(2)
circ.h(0)
circ.append(x_180, [0])
circ.h(1)
with pulse.build() as q0_x180:
pulse.play(pulse.library.Gaussian(20, 1.0, 3.0), pulse.DriveChannel(0))
circ.add_calibration(x_180, [0], q0_x180)
circ.add_calibration("h", [1], q0_x180) # 'h' is calibrated on qubit 1
transpiled_circ = transpile(circ, FakeBoeblingen(), layout_method="trivial")
self.assertEqual(set(transpiled_circ.count_ops().keys()), {"u2", "mycustom", "h"})
def test_parameterized_calibrations_transpile(self):
"""Check that gates can be matched to their calibrations before and after parameter
assignment."""
tau = Parameter("tau")
circ = QuantumCircuit(3, 3)
circ.append(Gate("rxt", 1, [2 * 3.14 * tau]), [0])
def q0_rxt(tau):
with pulse.build() as q0_rxt:
pulse.play(pulse.library.Gaussian(20, 0.4 * tau, 3.0), pulse.DriveChannel(0))
return q0_rxt
circ.add_calibration("rxt", [0], q0_rxt(tau), [2 * 3.14 * tau])
transpiled_circ = transpile(circ, FakeBoeblingen(), layout_method="trivial")
self.assertEqual(set(transpiled_circ.count_ops().keys()), {"rxt"})
circ = circ.assign_parameters({tau: 1})
transpiled_circ = transpile(circ, FakeBoeblingen(), layout_method="trivial")
self.assertEqual(set(transpiled_circ.count_ops().keys()), {"rxt"})
def test_inst_durations_from_calibrations(self):
"""Test that circuit calibrations can be used instead of explicitly
supplying inst_durations.
"""
qc = QuantumCircuit(2)
qc.append(Gate("custom", 1, []), [0])
with pulse.build() as cal:
pulse.play(pulse.library.Gaussian(20, 1.0, 3.0), pulse.DriveChannel(0))
qc.add_calibration("custom", [0], cal)
out = transpile(qc, scheduling_method="alap")
self.assertEqual(out.duration, cal.duration)
@data(0, 1, 2, 3)
def test_multiqubit_gates_calibrations(self, opt_level):
"""Test multiqubit gate > 2q with calibrations works
Adapted from issue description in https://github.com/Qiskit/qiskit-terra/issues/6572
"""
circ = QuantumCircuit(5)
custom_gate = Gate("my_custom_gate", 5, [])
circ.append(custom_gate, [0, 1, 2, 3, 4])
circ.measure_all()
backend = FakeBoeblingen()
with pulse.build(backend, name="custom") as my_schedule:
pulse.play(
pulse.library.Gaussian(duration=128, amp=0.1, sigma=16), pulse.drive_channel(0)
)
pulse.play(
pulse.library.Gaussian(duration=128, amp=0.1, sigma=16), pulse.drive_channel(1)
)
pulse.play(
pulse.library.Gaussian(duration=128, amp=0.1, sigma=16), pulse.drive_channel(2)
)
pulse.play(
pulse.library.Gaussian(duration=128, amp=0.1, sigma=16), pulse.drive_channel(3)
)
pulse.play(
pulse.library.Gaussian(duration=128, amp=0.1, sigma=16), pulse.drive_channel(4)
)
pulse.play(
pulse.library.Gaussian(duration=128, amp=0.1, sigma=16), pulse.ControlChannel(1)
)
pulse.play(
pulse.library.Gaussian(duration=128, amp=0.1, sigma=16), pulse.ControlChannel(2)
)
pulse.play(
pulse.library.Gaussian(duration=128, amp=0.1, sigma=16), pulse.ControlChannel(3)
)
pulse.play(
pulse.library.Gaussian(duration=128, amp=0.1, sigma=16), pulse.ControlChannel(4)
)
circ.add_calibration("my_custom_gate", [0, 1, 2, 3, 4], my_schedule, [])
trans_circ = transpile(circ, backend, optimization_level=opt_level, layout_method="trivial")
self.assertEqual({"measure": 5, "my_custom_gate": 1, "barrier": 1}, trans_circ.count_ops())
@data(0, 1, 2, 3)
def test_circuit_with_delay(self, optimization_level):
"""Verify a circuit with delay can transpile to a scheduled circuit."""
qc = QuantumCircuit(2)
qc.h(0)
qc.delay(500, 1)
qc.cx(0, 1)
out = transpile(
qc,
scheduling_method="alap",
basis_gates=["h", "cx"],
instruction_durations=[("h", 0, 200), ("cx", [0, 1], 700)],
optimization_level=optimization_level,
)
self.assertEqual(out.duration, 1200)
def test_delay_converts_to_dt(self):
"""Test that a delay instruction is converted to units of dt given a backend."""
qc = QuantumCircuit(2)
qc.delay(1000, [0], unit="us")
backend = FakeRueschlikon()
backend.configuration().dt = 0.5e-6
out = transpile([qc, qc], backend)
self.assertEqual(out[0].data[0].operation.unit, "dt")
self.assertEqual(out[1].data[0].operation.unit, "dt")
out = transpile(qc, dt=1e-9)
self.assertEqual(out.data[0].operation.unit, "dt")
def test_scheduling_backend_v2(self):
"""Test that scheduling method works with Backendv2."""
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
qc.measure_all()
backend = FakeMumbaiV2()
out = transpile([qc, qc], backend, scheduling_method="alap")
self.assertIn("delay", out[0].count_ops())
self.assertIn("delay", out[1].count_ops())
@data(1, 2, 3)
def test_no_infinite_loop(self, optimization_level):
"""Verify circuit cost always descends and optimization does not flip flop indefinitely."""
qc = QuantumCircuit(1)
qc.ry(0.2, 0)
out = transpile(
qc, basis_gates=["id", "p", "sx", "cx"], optimization_level=optimization_level
)
# Expect a -pi/2 global phase for the U3 to RZ/SX conversion, and
# a -0.5 * theta phase for RZ to P twice, once at theta, and once at 3 pi
# for the second and third RZ gates in the U3 decomposition.
expected = QuantumCircuit(
1, global_phase=-np.pi / 2 - 0.5 * (-0.2 + np.pi) - 0.5 * 3 * np.pi
)
expected.p(-np.pi, 0)
expected.sx(0)
expected.p(np.pi - 0.2, 0)
expected.sx(0)
error_message = (
f"\nOutput circuit:\n{out!s}\n{Operator(out).data}\n"
f"Expected circuit:\n{expected!s}\n{Operator(expected).data}"
)
self.assertEqual(out, expected, error_message)
@data(0, 1, 2, 3)
def test_transpile_preserves_circuit_metadata(self, optimization_level):
"""Verify that transpile preserves circuit metadata in the output."""
circuit = QuantumCircuit(2, metadata={"experiment_id": "1234", "execution_number": 4})
circuit.h(0)
circuit.cx(0, 1)
cmap = [
[1, 0],
[1, 2],
[2, 3],
[4, 3],
[4, 10],
[5, 4],
[5, 6],
[5, 9],
[6, 8],
[7, 8],
[9, 8],
[9, 10],
[11, 3],
[11, 10],
[11, 12],
[12, 2],
[13, 1],
[13, 12],
]
res = transpile(
circuit,
basis_gates=["id", "p", "sx", "cx"],
coupling_map=cmap,
optimization_level=optimization_level,
)
self.assertEqual(circuit.metadata, res.metadata)
@data(0, 1, 2, 3)
def test_transpile_optional_registers(self, optimization_level):
"""Verify transpile accepts circuits without registers end-to-end."""
qubits = [Qubit() for _ in range(3)]
clbits = [Clbit() for _ in range(3)]
qc = QuantumCircuit(qubits, clbits)
qc.h(0)
qc.cx(0, 1)
qc.cx(1, 2)
qc.measure(qubits, clbits)
out = transpile(qc, FakeBoeblingen(), optimization_level=optimization_level)
self.assertEqual(len(out.qubits), FakeBoeblingen().configuration().num_qubits)
self.assertEqual(len(out.clbits), len(clbits))
@data(0, 1, 2, 3)
def test_translate_ecr_basis(self, optimization_level):
"""Verify that rewriting in ECR basis is efficient."""
circuit = QuantumCircuit(2)
circuit.append(random_unitary(4, seed=1), [0, 1])
circuit.barrier()
circuit.cx(0, 1)
circuit.barrier()
circuit.swap(0, 1)
circuit.barrier()
circuit.iswap(0, 1)
res = transpile(circuit, basis_gates=["u", "ecr"], optimization_level=optimization_level)
self.assertEqual(res.count_ops()["ecr"], 9)
self.assertTrue(Operator(res).equiv(circuit))
def test_optimize_ecr_basis(self):
"""Test highest optimization level can optimize over ECR."""
circuit = QuantumCircuit(2)
circuit.swap(1, 0)
circuit.iswap(0, 1)
res = transpile(circuit, basis_gates=["u", "ecr"], optimization_level=3)
self.assertEqual(res.count_ops()["ecr"], 1)
self.assertTrue(Operator(res).equiv(circuit))
def test_approximation_degree_invalid(self):
"""Test invalid approximation degree raises."""
circuit = QuantumCircuit(2)
circuit.swap(0, 1)
with self.assertRaises(QiskitError):
transpile(circuit, basis_gates=["u", "cz"], approximation_degree=1.1)
def test_approximation_degree(self):
"""Test more approximation gives lower-cost circuit."""
circuit = QuantumCircuit(2)
circuit.swap(0, 1)
circuit.h(0)
circ_10 = transpile(
circuit,
basis_gates=["u", "cx"],
translation_method="synthesis",
approximation_degree=0.1,
)
circ_90 = transpile(
circuit,
basis_gates=["u", "cx"],
translation_method="synthesis",
approximation_degree=0.9,
)
self.assertLess(circ_10.depth(), circ_90.depth())
@data(0, 1, 2, 3)
def test_synthesis_translation_method_with_single_qubit_gates(self, optimization_level):
"""Test that synthesis basis translation works for solely 1q circuit"""
qc = QuantumCircuit(3)
qc.h(0)
qc.h(1)
qc.h(2)
res = transpile(
qc,
basis_gates=["id", "rz", "x", "sx", "cx"],
translation_method="synthesis",
optimization_level=optimization_level,
)
expected = QuantumCircuit(3, global_phase=3 * np.pi / 4)
expected.rz(np.pi / 2, 0)
expected.rz(np.pi / 2, 1)
expected.rz(np.pi / 2, 2)
expected.sx(0)
expected.sx(1)
expected.sx(2)
expected.rz(np.pi / 2, 0)
expected.rz(np.pi / 2, 1)
expected.rz(np.pi / 2, 2)
self.assertEqual(res, expected)
@data(0, 1, 2, 3)
def test_synthesis_translation_method_with_gates_outside_basis(self, optimization_level):
"""Test that synthesis translation works for circuits with single gates outside bassis"""
qc = QuantumCircuit(2)
qc.swap(0, 1)
res = transpile(
qc,
basis_gates=["id", "rz", "x", "sx", "cx"],
translation_method="synthesis",
optimization_level=optimization_level,
)
if optimization_level != 3:
self.assertTrue(Operator(qc).equiv(res))
self.assertNotIn("swap", res.count_ops())
else:
# Optimization level 3 eliminates the pointless swap
self.assertEqual(res, QuantumCircuit(2))
@data(0, 1, 2, 3)
def test_target_ideal_gates(self, opt_level):
"""Test that transpile() with a custom ideal sim target works."""
theta = Parameter("θ")
phi = Parameter("ϕ")
lam = Parameter("λ")
target = Target(num_qubits=2)
target.add_instruction(UGate(theta, phi, lam), {(0,): None, (1,): None})
target.add_instruction(CXGate(), {(0, 1): None})
target.add_instruction(Measure(), {(0,): None, (1,): None})
qubit_reg = QuantumRegister(2, name="q")
clbit_reg = ClassicalRegister(2, name="c")
qc = QuantumCircuit(qubit_reg, clbit_reg, name="bell")
qc.h(qubit_reg[0])
qc.cx(qubit_reg[0], qubit_reg[1])
result = transpile(qc, target=target, optimization_level=opt_level)
self.assertEqual(Operator.from_circuit(result), Operator.from_circuit(qc))
@data(0, 1, 2, 3)
def test_transpile_with_custom_control_flow_target(self, opt_level):
"""Test transpile() with a target and constrol flow ops."""
target = FakeMumbaiV2().target
target.add_instruction(ForLoopOp, name="for_loop")
target.add_instruction(WhileLoopOp, name="while_loop")
target.add_instruction(IfElseOp, name="if_else")
target.add_instruction(SwitchCaseOp, name="switch_case")
circuit = QuantumCircuit(6, 1)
circuit.h(0)
circuit.measure(0, 0)
circuit.cx(0, 1)
circuit.cz(0, 2)
circuit.append(CustomCX(), [1, 2], [])
with circuit.for_loop((1,)):
circuit.cx(0, 1)
circuit.cz(0, 2)
circuit.append(CustomCX(), [1, 2], [])
with circuit.if_test((circuit.clbits[0], True)) as else_:
circuit.cx(0, 1)
circuit.cz(0, 2)
circuit.append(CustomCX(), [1, 2], [])
with else_:
circuit.cx(3, 4)
circuit.cz(3, 5)
circuit.append(CustomCX(), [4, 5], [])
with circuit.while_loop((circuit.clbits[0], True)):
circuit.cx(3, 4)
circuit.cz(3, 5)
circuit.append(CustomCX(), [4, 5], [])
with circuit.switch(circuit.cregs[0]) as case_:
with case_(0):
circuit.cx(0, 1)
circuit.cz(0, 2)
circuit.append(CustomCX(), [1, 2], [])
with case_(1):
circuit.cx(1, 2)
circuit.cz(1, 3)
circuit.append(CustomCX(), [2, 3], [])
transpiled = transpile(
circuit, optimization_level=opt_level, target=target, seed_transpiler=12434
)
# Tests of the complete validity of a circuit are mostly done at the indiviual pass level;
# here we're just checking that various passes do appear to have run.
self.assertIsInstance(transpiled, QuantumCircuit)
# Assert layout ran.
self.assertIsNot(getattr(transpiled, "_layout", None), None)
def _visit_block(circuit, qubit_mapping=None):
for instruction in circuit:
qargs = tuple(qubit_mapping[x] for x in instruction.qubits)
self.assertTrue(target.instruction_supported(instruction.operation.name, qargs))
if isinstance(instruction.operation, ControlFlowOp):
for block in instruction.operation.blocks:
new_mapping = {
inner: qubit_mapping[outer]
for outer, inner in zip(instruction.qubits, block.qubits)
}
_visit_block(block, new_mapping)
# Assert unrolling ran.
self.assertNotIsInstance(instruction.operation, CustomCX)
# Assert translation ran.
self.assertNotIsInstance(instruction.operation, CZGate)
# Assert routing ran.
_visit_block(
transpiled,
qubit_mapping={qubit: index for index, qubit in enumerate(transpiled.qubits)},
)
@data(1, 2, 3)
def test_transpile_identity_circuit_no_target(self, opt_level):
"""Test circuit equivalent to identity is optimized away for all optimization levels >0.
Reproduce taken from https://github.com/Qiskit/qiskit-terra/issues/9217
"""
qr1 = QuantumRegister(3, "state")
qr2 = QuantumRegister(2, "ancilla")
cr = ClassicalRegister(2, "c")
qc = QuantumCircuit(qr1, qr2, cr)
qc.h(qr1[0])
qc.cx(qr1[0], qr1[1])
qc.cx(qr1[1], qr1[2])
qc.cx(qr1[1], qr1[2])
qc.cx(qr1[0], qr1[1])
qc.h(qr1[0])
empty_qc = QuantumCircuit(qr1, qr2, cr)
result = transpile(qc, optimization_level=opt_level)
self.assertEqual(empty_qc, result)
@data(0, 1, 2, 3)
def test_initial_layout_with_loose_qubits(self, opt_level):
"""Regression test of gh-10125."""
qc = QuantumCircuit([Qubit(), Qubit()])
qc.cx(0, 1)
transpiled = transpile(qc, initial_layout=[1, 0], optimization_level=opt_level)
self.assertIsNotNone(transpiled.layout)
self.assertEqual(
transpiled.layout.initial_layout, Layout({0: qc.qubits[1], 1: qc.qubits[0]})
)
@data(0, 1, 2, 3)
def test_initial_layout_with_overlapping_qubits(self, opt_level):
"""Regression test of gh-10125."""
qr1 = QuantumRegister(2, "qr1")
qr2 = QuantumRegister(bits=qr1[:])
qc = QuantumCircuit(qr1, qr2)
qc.cx(0, 1)
transpiled = transpile(qc, initial_layout=[1, 0], optimization_level=opt_level)
self.assertIsNotNone(transpiled.layout)
self.assertEqual(
transpiled.layout.initial_layout, Layout({0: qc.qubits[1], 1: qc.qubits[0]})
)
@combine(opt_level=[0, 1, 2, 3], basis=[["rz", "x"], ["rx", "z"], ["rz", "y"], ["ry", "x"]])
def test_paulis_to_constrained_1q_basis(self, opt_level, basis):
"""Test that Pauli-gate circuits can be transpiled to constrained 1q bases that do not
contain any root-Pauli gates."""
qc = QuantumCircuit(1)
qc.x(0)
qc.barrier()
qc.y(0)
qc.barrier()
qc.z(0)
transpiled = transpile(qc, basis_gates=basis, optimization_level=opt_level)
self.assertGreaterEqual(set(basis) | {"barrier"}, transpiled.count_ops().keys())
self.assertEqual(Operator(qc), Operator(transpiled))
@ddt
class TestPostTranspileIntegration(QiskitTestCase):
"""Test that the output of `transpile` is usable in various other integration contexts."""
def _regular_circuit(self):
a = Parameter("a")
regs = [
QuantumRegister(2, name="q0"),
QuantumRegister(3, name="q1"),
ClassicalRegister(2, name="c0"),
]
bits = [Qubit(), Qubit(), Clbit()]
base = QuantumCircuit(*regs, bits)
base.h(0)
base.measure(0, 0)
base.cx(0, 1)
base.cz(0, 2)
base.cz(0, 3)
base.cz(1, 4)
base.cx(1, 5)
base.measure(1, 1)
base.append(CustomCX(), [3, 6])
base.append(CustomCX(), [5, 4])
base.append(CustomCX(), [5, 3])
base.append(CustomCX(), [2, 4]).c_if(base.cregs[0], 3)
base.ry(a, 4)
base.measure(4, 2)
return base
def _control_flow_circuit(self):
a = Parameter("a")
regs = [
QuantumRegister(2, name="q0"),
QuantumRegister(3, name="q1"),
ClassicalRegister(2, name="c0"),
]
bits = [Qubit(), Qubit(), Clbit()]
base = QuantumCircuit(*regs, bits)
base.h(0)
base.measure(0, 0)
with base.if_test((base.cregs[0], 1)) as else_:
base.cx(0, 1)
base.cz(0, 2)
base.cz(0, 3)
with else_:
base.cz(1, 4)
with base.for_loop((1, 2)):
base.cx(1, 5)
base.measure(2, 2)
with base.while_loop((2, False)):
base.append(CustomCX(), [3, 6])
base.append(CustomCX(), [5, 4])
base.append(CustomCX(), [5, 3])
base.append(CustomCX(), [2, 4])
base.ry(a, 4)
base.measure(4, 2)
with base.switch(base.cregs[0]) as case_:
with case_(0, 1):
base.cz(3, 5)
with case_(case_.DEFAULT):
base.cz(1, 4)
base.append(CustomCX(), [2, 4])
base.append(CustomCX(), [3, 4])
return base
def _control_flow_expr_circuit(self):
a = Parameter("a")
regs = [
QuantumRegister(2, name="q0"),
QuantumRegister(3, name="q1"),
ClassicalRegister(2, name="c0"),
]
bits = [Qubit(), Qubit(), Clbit()]
base = QuantumCircuit(*regs, bits)
base.h(0)
base.measure(0, 0)
with base.if_test(expr.equal(base.cregs[0], 1)) as else_:
base.cx(0, 1)
base.cz(0, 2)
base.cz(0, 3)
with else_:
base.cz(1, 4)
with base.for_loop((1, 2)):
base.cx(1, 5)
base.measure(2, 2)
with base.while_loop(expr.logic_not(bits[2])):
base.append(CustomCX(), [3, 6])
base.append(CustomCX(), [5, 4])
base.append(CustomCX(), [5, 3])
base.append(CustomCX(), [2, 4])
base.ry(a, 4)
base.measure(4, 2)
with base.switch(expr.bit_and(base.cregs[0], 2)) as case_:
with case_(0, 1):
base.cz(3, 5)
with case_(case_.DEFAULT):
base.cz(1, 4)
base.append(CustomCX(), [2, 4])
base.append(CustomCX(), [3, 4])
return base
@data(0, 1, 2, 3)
def test_qpy_roundtrip(self, optimization_level):
"""Test that the output of a transpiled circuit can be round-tripped through QPY."""
transpiled = transpile(
self._regular_circuit(),
backend=FakeMelbourne(),
optimization_level=optimization_level,
seed_transpiler=2022_10_17,
)
# Round-tripping the layout is out-of-scope for QPY while it's a private attribute.
transpiled._layout = None
buffer = io.BytesIO()
qpy.dump(transpiled, buffer)
buffer.seek(0)
round_tripped = qpy.load(buffer)[0]
self.assertEqual(round_tripped, transpiled)
@data(0, 1, 2, 3)
def test_qpy_roundtrip_backendv2(self, optimization_level):
"""Test that the output of a transpiled circuit can be round-tripped through QPY."""
transpiled = transpile(
self._regular_circuit(),
backend=FakeMumbaiV2(),
optimization_level=optimization_level,
seed_transpiler=2022_10_17,
)
# Round-tripping the layout is out-of-scope for QPY while it's a private attribute.
transpiled._layout = None
buffer = io.BytesIO()
qpy.dump(transpiled, buffer)
buffer.seek(0)
round_tripped = qpy.load(buffer)[0]
self.assertEqual(round_tripped, transpiled)
@data(0, 1, 2, 3)
def test_qpy_roundtrip_control_flow(self, optimization_level):
"""Test that the output of a transpiled circuit with control flow can be round-tripped
through QPY."""
if optimization_level == 3 and sys.platform == "win32":
self.skipTest(
"This test case triggers a bug in the eigensolver routine on windows. "
"See #10345 for more details."
)
backend = FakeMelbourne()
transpiled = transpile(
self._control_flow_circuit(),
backend=backend,
basis_gates=backend.configuration().basis_gates
+ ["if_else", "for_loop", "while_loop", "switch_case"],
optimization_level=optimization_level,
seed_transpiler=2022_10_17,
)
# Round-tripping the layout is out-of-scope for QPY while it's a private attribute.
transpiled._layout = None
buffer = io.BytesIO()
qpy.dump(transpiled, buffer)
buffer.seek(0)
round_tripped = qpy.load(buffer)[0]
self.assertEqual(round_tripped, transpiled)
@data(0, 1, 2, 3)
def test_qpy_roundtrip_control_flow_backendv2(self, optimization_level):
"""Test that the output of a transpiled circuit with control flow can be round-tripped
through QPY."""
backend = FakeMumbaiV2()
backend.target.add_instruction(IfElseOp, name="if_else")
backend.target.add_instruction(ForLoopOp, name="for_loop")
backend.target.add_instruction(WhileLoopOp, name="while_loop")
backend.target.add_instruction(SwitchCaseOp, name="switch_case")
transpiled = transpile(
self._control_flow_circuit(),
backend=backend,
optimization_level=optimization_level,
seed_transpiler=2022_10_17,
)
# Round-tripping the layout is out-of-scope for QPY while it's a private attribute.
transpiled._layout = None
buffer = io.BytesIO()
qpy.dump(transpiled, buffer)
buffer.seek(0)
round_tripped = qpy.load(buffer)[0]
self.assertEqual(round_tripped, transpiled)
@data(0, 1, 2, 3)
def test_qpy_roundtrip_control_flow_expr(self, optimization_level):
"""Test that the output of a transpiled circuit with control flow including `Expr` nodes can
be round-tripped through QPY."""
if optimization_level == 3 and sys.platform == "win32":
self.skipTest(
"This test case triggers a bug in the eigensolver routine on windows. "
"See #10345 for more details."
)
backend = FakeMelbourne()
transpiled = transpile(
self._control_flow_expr_circuit(),
backend=backend,
basis_gates=backend.configuration().basis_gates
+ ["if_else", "for_loop", "while_loop", "switch_case"],
optimization_level=optimization_level,
seed_transpiler=2023_07_26,
)
buffer = io.BytesIO()
qpy.dump(transpiled, buffer)
buffer.seek(0)
round_tripped = qpy.load(buffer)[0]
self.assertEqual(round_tripped, transpiled)
@data(0, 1, 2, 3)
def test_qpy_roundtrip_control_flow_expr_backendv2(self, optimization_level):
"""Test that the output of a transpiled circuit with control flow including `Expr` nodes can
be round-tripped through QPY."""
backend = FakeMumbaiV2()
backend.target.add_instruction(IfElseOp, name="if_else")
backend.target.add_instruction(ForLoopOp, name="for_loop")
backend.target.add_instruction(WhileLoopOp, name="while_loop")
backend.target.add_instruction(SwitchCaseOp, name="switch_case")
transpiled = transpile(
self._control_flow_circuit(),
backend=backend,
optimization_level=optimization_level,
seed_transpiler=2023_07_26,
)
buffer = io.BytesIO()
qpy.dump(transpiled, buffer)
buffer.seek(0)
round_tripped = qpy.load(buffer)[0]
self.assertEqual(round_tripped, transpiled)
@data(0, 1, 2, 3)
def test_qasm3_output(self, optimization_level):
"""Test that the output of a transpiled circuit can be dumped into OpenQASM 3."""
transpiled = transpile(
self._regular_circuit(),
backend=FakeMelbourne(),
optimization_level=optimization_level,
seed_transpiler=2022_10_17,
)
# TODO: There's not a huge amount we can sensibly test for the output here until we can
# round-trip the OpenQASM 3 back into a Terra circuit. Mostly we're concerned that the dump
# itself doesn't throw an error, though.
self.assertIsInstance(qasm3.dumps(transpiled).strip(), str)
@data(0, 1, 2, 3)
def test_qasm3_output_control_flow(self, optimization_level):
"""Test that the output of a transpiled circuit with control flow can be dumped into
OpenQASM 3."""
backend = FakeMumbaiV2()
backend.target.add_instruction(IfElseOp, name="if_else")
backend.target.add_instruction(ForLoopOp, name="for_loop")
backend.target.add_instruction(WhileLoopOp, name="while_loop")
backend.target.add_instruction(SwitchCaseOp, name="switch_case")
transpiled = transpile(
self._control_flow_circuit(),
backend=backend,
optimization_level=optimization_level,
seed_transpiler=2022_10_17,
)
# TODO: There's not a huge amount we can sensibly test for the output here until we can
# round-trip the OpenQASM 3 back into a Terra circuit. Mostly we're concerned that the dump
# itself doesn't throw an error, though.
self.assertIsInstance(
qasm3.dumps(transpiled, experimental=qasm3.ExperimentalFeatures.SWITCH_CASE_V1).strip(),
str,
)
@data(0, 1, 2, 3)
def test_qasm3_output_control_flow_expr(self, optimization_level):
"""Test that the output of a transpiled circuit with control flow and `Expr` nodes can be
dumped into OpenQASM 3."""
backend = FakeMumbaiV2()
backend.target.add_instruction(IfElseOp, name="if_else")
backend.target.add_instruction(ForLoopOp, name="for_loop")
backend.target.add_instruction(WhileLoopOp, name="while_loop")
backend.target.add_instruction(SwitchCaseOp, name="switch_case")
transpiled = transpile(
self._control_flow_circuit(),
backend=backend,
optimization_level=optimization_level,
seed_transpiler=2023_07_26,
)
# TODO: There's not a huge amount we can sensibly test for the output here until we can
# round-trip the OpenQASM 3 back into a Terra circuit. Mostly we're concerned that the dump
# itself doesn't throw an error, though.
self.assertIsInstance(
qasm3.dumps(transpiled, experimental=qasm3.ExperimentalFeatures.SWITCH_CASE_V1).strip(),
str,
)
@data(0, 1, 2, 3)
def test_transpile_target_no_measurement_error(self, opt_level):
"""Test that transpile with a target which contains ideal measurement works
Reproduce from https://github.com/Qiskit/qiskit-terra/issues/8969
"""
target = Target()
target.add_instruction(Measure(), {(0,): None})
qc = QuantumCircuit(1, 1)
qc.measure(0, 0)
res = transpile(qc, target=target, optimization_level=opt_level)
self.assertEqual(qc, res)
def test_transpile_final_layout_updated_with_post_layout(self):
"""Test that the final layout is correctly set when vf2postlayout runs.
Reproduce from #10457
"""
def _get_index_layout(transpiled_circuit: QuantumCircuit, num_source_qubits: int):
"""Return the index layout of a transpiled circuit"""
layout = transpiled_circuit.layout
if layout is None:
return list(range(num_source_qubits))
pos_to_virt = {v: k for k, v in layout.input_qubit_mapping.items()}
qubit_indices = []
for index in range(num_source_qubits):
qubit_idx = layout.initial_layout[pos_to_virt[index]]
if layout.final_layout is not None:
qubit_idx = layout.final_layout[transpiled_circuit.qubits[qubit_idx]]
qubit_indices.append(qubit_idx)
return qubit_indices
vf2_post_layout_called = False
def callback(**kwargs):
nonlocal vf2_post_layout_called
if isinstance(kwargs["pass_"], VF2PostLayout):
vf2_post_layout_called = True
self.assertIsNotNone(kwargs["property_set"]["post_layout"])
backend = FakeVigo()
qubits = 3
qc = QuantumCircuit(qubits)
for i in range(5):
qc.cx(i % qubits, int(i + qubits / 2) % qubits)
tqc = transpile(qc, backend=backend, seed_transpiler=4242, callback=callback)
self.assertTrue(vf2_post_layout_called)
self.assertEqual([3, 2, 1], _get_index_layout(tqc, qubits))
class StreamHandlerRaiseException(StreamHandler):
"""Handler class that will raise an exception on formatting errors."""
def handleError(self, record):
raise sys.exc_info()
class TestLogTranspile(QiskitTestCase):
"""Testing the log_transpile option."""
def setUp(self):
super().setUp()
logger = getLogger()
self.addCleanup(logger.setLevel, logger.level)
logger.setLevel("DEBUG")
self.output = io.StringIO()
logger.addHandler(StreamHandlerRaiseException(self.output))
self.circuit = QuantumCircuit(QuantumRegister(1))
def assertTranspileLog(self, log_msg):
"""Runs the transpiler and check for logs containing specified message"""
transpile(self.circuit)
self.output.seek(0)
# Filter unrelated log lines
output_lines = self.output.readlines()
transpile_log_lines = [x for x in output_lines if log_msg in x]
self.assertTrue(len(transpile_log_lines) > 0)
def test_transpile_log_time(self):
"""Check Total Transpile Time is logged"""
self.assertTranspileLog("Total Transpile Time")
class TestTranspileCustomPM(QiskitTestCase):
"""Test transpile function with custom pass manager"""
def test_custom_multiple_circuits(self):
"""Test transpiling with custom pass manager and multiple circuits.
This tests created a deadlock, so it needs to be monitored for timeout.
See: https://github.com/Qiskit/qiskit-terra/issues/3925
"""
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
pm_conf = PassManagerConfig(
initial_layout=None,
basis_gates=["u1", "u2", "u3", "cx"],
coupling_map=CouplingMap([[0, 1]]),
backend_properties=None,
seed_transpiler=1,
)
passmanager = level_0_pass_manager(pm_conf)
transpiled = passmanager.run([qc, qc])
expected = QuantumCircuit(QuantumRegister(2, "q"))
expected.append(U2Gate(0, 3.141592653589793), [0])
expected.cx(0, 1)
self.assertEqual(len(transpiled), 2)
self.assertEqual(transpiled[0], expected)
self.assertEqual(transpiled[1], expected)
@ddt
class TestTranspileParallel(QiskitTestCase):
"""Test transpile() in parallel."""
def setUp(self):
super().setUp()
# Force parallel execution to True to test multiprocessing for this class
original_val = parallel.PARALLEL_DEFAULT
def restore_default():
parallel.PARALLEL_DEFAULT = original_val
self.addCleanup(restore_default)
parallel.PARALLEL_DEFAULT = True
@data(0, 1, 2, 3)
def test_parallel_multiprocessing(self, opt_level):
"""Test parallel dispatch works with multiprocessing."""
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
qc.measure_all()
backend = FakeMumbaiV2()
pm = generate_preset_pass_manager(opt_level, backend)
res = pm.run([qc, qc])
for circ in res:
self.assertIsInstance(circ, QuantumCircuit)
@data(0, 1, 2, 3)
def test_parallel_with_target(self, opt_level):
"""Test that parallel dispatch works with a manual target."""
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
qc.measure_all()
target = FakeMumbaiV2().target
res = transpile([qc] * 3, target=target, optimization_level=opt_level)
self.assertIsInstance(res, list)
for circ in res:
self.assertIsInstance(circ, QuantumCircuit)
@data(0, 1, 2, 3)
def test_parallel_dispatch(self, opt_level):
"""Test that transpile in parallel works for all optimization levels."""
backend = FakeRueschlikon()
qr = QuantumRegister(16)
cr = ClassicalRegister(16)
qc = QuantumCircuit(qr, cr)
qc.h(qr[0])
for k in range(1, 15):
qc.cx(qr[0], qr[k])
qc.measure(qr, cr)
qlist = [qc for k in range(15)]
tqc = transpile(
qlist, backend=backend, optimization_level=opt_level, seed_transpiler=424242
)
result = backend.run(tqc, seed_simulator=4242424242, shots=1000).result()
counts = result.get_counts()
for count in counts:
self.assertTrue(math.isclose(count["0000000000000000"], 500, rel_tol=0.1))
self.assertTrue(math.isclose(count["0111111111111111"], 500, rel_tol=0.1))
def test_parallel_dispatch_lazy_cal_loading(self):
"""Test adding calibration by lazy loading in parallel environment."""
class TestAddCalibration(TransformationPass):
"""A fake pass to test lazy pulse qobj loading in parallel environment."""
def __init__(self, target):
"""Instantiate with target."""
super().__init__()
self.target = target
def run(self, dag):
"""Run test pass that adds calibration of SX gate of qubit 0."""
dag.add_calibration(
"sx",
qubits=(0,),
schedule=self.target["sx"][(0,)].calibration, # PulseQobj is parsed here
)
return dag
backend = FakeMumbaiV2()
# This target has PulseQobj entries that provides a serialized schedule data
pass_ = TestAddCalibration(backend.target)
pm = PassManager(passes=[pass_])
self.assertIsNone(backend.target["sx"][(0,)]._calibration._definition)
qc = QuantumCircuit(1)
qc.sx(0)
qc_copied = [qc for _ in range(10)]
qcs_cal_added = pm.run(qc_copied)
ref_cal = backend.target["sx"][(0,)].calibration
for qc_test in qcs_cal_added:
added_cal = qc_test.calibrations["sx"][((0,), ())]
self.assertEqual(added_cal, ref_cal)
@data(0, 1, 2, 3)
def test_backendv2_and_basis_gates(self, opt_level):
"""Test transpile() with BackendV2 and basis_gates set."""
backend = FakeNairobiV2()
qc = QuantumCircuit(5)
qc.h(0)
qc.cz(0, 1)
qc.cz(0, 2)
qc.cz(0, 3)
qc.cz(0, 4)
qc.measure_all()
tqc = transpile(
qc,
backend=backend,
basis_gates=["u", "cz"],
optimization_level=opt_level,
seed_transpiler=12345678942,
)
op_count = set(tqc.count_ops())
self.assertEqual({"u", "cz", "measure", "barrier"}, op_count)
for inst in tqc.data:
if inst.operation.name not in {"u", "cz"}:
continue
qubits = tuple(tqc.find_bit(x).index for x in inst.qubits)
self.assertIn(qubits, backend.target.qargs)
@data(0, 1, 2, 3)
def test_backendv2_and_coupling_map(self, opt_level):
"""Test transpile() with custom coupling map."""
backend = FakeNairobiV2()
qc = QuantumCircuit(5)
qc.h(0)
qc.cz(0, 1)
qc.cz(0, 2)
qc.cz(0, 3)
qc.cz(0, 4)
qc.measure_all()
cmap = CouplingMap.from_line(5, bidirectional=False)
tqc = transpile(
qc,
backend=backend,
coupling_map=cmap,
optimization_level=opt_level,
seed_transpiler=12345678942,
)
op_count = set(tqc.count_ops())
self.assertTrue({"rz", "sx", "x", "cx", "measure", "barrier"}.issuperset(op_count))
for inst in tqc.data:
if len(inst.qubits) == 2:
qubit_0 = tqc.find_bit(inst.qubits[0]).index
qubit_1 = tqc.find_bit(inst.qubits[1]).index
self.assertEqual(qubit_1, qubit_0 + 1)
def test_transpile_with_multiple_coupling_maps(self):
"""Test passing a different coupling map for every circuit"""
backend = FakeNairobiV2()
qc = QuantumCircuit(3)
qc.cx(0, 2)
# Add a connection between 0 and 2 so that transpile does not change
# the gates
cmap = CouplingMap.from_line(7)
cmap.add_edge(0, 2)
with self.assertRaisesRegex(TranspilerError, "Only a single input coupling"):
# Initial layout needed to prevent transpiler from relabeling
# qubits to avoid doing the swap
transpile(
[qc] * 2,
backend,
coupling_map=[backend.coupling_map, cmap],
initial_layout=(0, 1, 2),
)
@data(0, 1, 2, 3)
def test_backend_and_custom_gate(self, opt_level):
"""Test transpile() with BackendV2, custom basis pulse gate."""
backend = FakeNairobiV2()
inst_map = InstructionScheduleMap()
inst_map.add("newgate", [0, 1], pulse.ScheduleBlock())
newgate = Gate("newgate", 2, [])
circ = QuantumCircuit(2)
circ.append(newgate, [0, 1])
tqc = transpile(
circ, backend, inst_map=inst_map, basis_gates=["newgate"], optimization_level=opt_level
)
self.assertEqual(len(tqc.data), 1)
self.assertEqual(tqc.data[0].operation, newgate)
qubits = tuple(tqc.find_bit(x).index for x in tqc.data[0].qubits)
self.assertIn(qubits, backend.target.qargs)
@ddt
class TestTranspileMultiChipTarget(QiskitTestCase):
"""Test transpile() with a disjoint coupling map."""
def setUp(self):
super().setUp()
class FakeMultiChip(BackendV2):
"""Fake multi chip backend."""
def __init__(self):
super().__init__()
graph = rx.generators.directed_heavy_hex_graph(3)
num_qubits = len(graph) * 3
rng = np.random.default_rng(seed=12345678942)
rz_props = {}
x_props = {}
sx_props = {}
measure_props = {}
delay_props = {}
self._target = Target("Fake multi-chip backend", num_qubits=num_qubits)
for i in range(num_qubits):
qarg = (i,)
rz_props[qarg] = InstructionProperties(error=0.0, duration=0.0)
x_props[qarg] = InstructionProperties(
error=rng.uniform(1e-6, 1e-4), duration=rng.uniform(1e-8, 9e-7)
)
sx_props[qarg] = InstructionProperties(
error=rng.uniform(1e-6, 1e-4), duration=rng.uniform(1e-8, 9e-7)
)
measure_props[qarg] = InstructionProperties(
error=rng.uniform(1e-3, 1e-1), duration=rng.uniform(1e-8, 9e-7)
)
delay_props[qarg] = None
self._target.add_instruction(XGate(), x_props)
self._target.add_instruction(SXGate(), sx_props)
self._target.add_instruction(RZGate(Parameter("theta")), rz_props)
self._target.add_instruction(Measure(), measure_props)
self._target.add_instruction(Delay(Parameter("t")), delay_props)
cz_props = {}
for i in range(3):
for root_edge in graph.edge_list():
offset = i * len(graph)
edge = (root_edge[0] + offset, root_edge[1] + offset)
cz_props[edge] = InstructionProperties(
error=rng.uniform(1e-5, 5e-3), duration=rng.uniform(1e-8, 9e-7)
)
self._target.add_instruction(CZGate(), cz_props)
@property
def target(self):
return self._target
@property
def max_circuits(self):
return None
@classmethod
def _default_options(cls):
return Options(shots=1024)
def run(self, circuit, **kwargs):
raise NotImplementedError
self.backend = FakeMultiChip()
@data(0, 1, 2, 3)
def test_basic_connected_circuit(self, opt_level):
"""Test basic connected circuit on disjoint backend"""
qc = QuantumCircuit(5)
qc.h(0)
qc.cx(0, 1)
qc.cx(0, 2)
qc.cx(0, 3)
qc.cx(0, 4)
qc.measure_all()
tqc = transpile(qc, self.backend, optimization_level=opt_level)
for inst in tqc.data:
qubits = tuple(tqc.find_bit(x).index for x in inst.qubits)
op_name = inst.operation.name
if op_name == "barrier":
continue
self.assertIn(qubits, self.backend.target[op_name])
@data(0, 1, 2, 3)
def test_triple_circuit(self, opt_level):
"""Test a split circuit with one circuit component per chip."""
qc = QuantumCircuit(30)
qc.h(0)
qc.h(10)
qc.h(20)
qc.cx(0, 1)
qc.cx(0, 2)
qc.cx(0, 3)
qc.cx(0, 4)
qc.cx(0, 5)
qc.cx(0, 6)
qc.cx(0, 7)
qc.cx(0, 8)
qc.cx(0, 9)
qc.ecr(10, 11)
qc.ecr(10, 12)
qc.ecr(10, 13)
qc.ecr(10, 14)
qc.ecr(10, 15)
qc.ecr(10, 16)
qc.ecr(10, 17)
qc.ecr(10, 18)
qc.ecr(10, 19)
qc.cy(20, 21)
qc.cy(20, 22)
qc.cy(20, 23)
qc.cy(20, 24)
qc.cy(20, 25)
qc.cy(20, 26)
qc.cy(20, 27)
qc.cy(20, 28)
qc.cy(20, 29)
qc.measure_all()
if opt_level == 0:
with self.assertRaises(TranspilerError):
tqc = transpile(qc, self.backend, optimization_level=opt_level, seed_transpiler=42)
return
tqc = transpile(qc, self.backend, optimization_level=opt_level, seed_transpiler=42)
for inst in tqc.data:
qubits = tuple(tqc.find_bit(x).index for x in inst.qubits)
op_name = inst.operation.name
if op_name == "barrier":
continue
self.assertIn(qubits, self.backend.target[op_name])
def test_disjoint_control_flow(self):
"""Test control flow circuit on disjoint coupling map."""
qc = QuantumCircuit(6, 1)
qc.h(0)
qc.ecr(0, 1)
qc.cx(0, 2)
qc.measure(0, 0)
with qc.if_test((qc.clbits[0], True)):
qc.reset(0)
qc.cz(1, 0)
qc.h(3)
qc.cz(3, 4)
qc.cz(3, 5)
target = self.backend.target
target.add_instruction(Reset(), {(i,): None for i in range(target.num_qubits)})
target.add_instruction(IfElseOp, name="if_else")
tqc = transpile(qc, target=target)
edges = set(target.build_coupling_map().graph.edge_list())
def _visit_block(circuit, qubit_mapping=None):
for instruction in circuit:
if instruction.operation.name == "barrier":
continue
qargs = tuple(qubit_mapping[x] for x in instruction.qubits)
self.assertTrue(target.instruction_supported(instruction.operation.name, qargs))
if isinstance(instruction.operation, ControlFlowOp):
for block in instruction.operation.blocks:
new_mapping = {
inner: qubit_mapping[outer]
for outer, inner in zip(instruction.qubits, block.qubits)
}
_visit_block(block, new_mapping)
elif len(qargs) == 2:
self.assertIn(qargs, edges)
self.assertIn(instruction.operation.name, target)
_visit_block(
tqc,
qubit_mapping={qubit: index for index, qubit in enumerate(tqc.qubits)},
)
def test_disjoint_control_flow_shared_classical(self):
"""Test circuit with classical data dependency between connected components."""
creg = ClassicalRegister(19)
qc = QuantumCircuit(25)
qc.add_register(creg)
qc.h(0)
for i in range(18):
qc.cx(0, i + 1)
for i in range(18):
qc.measure(i, creg[i])
with qc.if_test((creg, 0)):
qc.h(20)
qc.ecr(20, 21)
qc.ecr(20, 22)
qc.ecr(20, 23)
qc.ecr(20, 24)
target = self.backend.target
target.add_instruction(Reset(), {(i,): None for i in range(target.num_qubits)})
target.add_instruction(IfElseOp, name="if_else")
tqc = transpile(qc, target=target)
def _visit_block(circuit, qubit_mapping=None):
for instruction in circuit:
if instruction.operation.name == "barrier":
continue
qargs = tuple(qubit_mapping[x] for x in instruction.qubits)
self.assertTrue(target.instruction_supported(instruction.operation.name, qargs))
if isinstance(instruction.operation, ControlFlowOp):
for block in instruction.operation.blocks:
new_mapping = {
inner: qubit_mapping[outer]
for outer, inner in zip(instruction.qubits, block.qubits)
}
_visit_block(block, new_mapping)
_visit_block(
tqc,
qubit_mapping={qubit: index for index, qubit in enumerate(tqc.qubits)},
)
@slow_test
@data(2, 3)
def test_six_component_circuit(self, opt_level):
"""Test input circuit with more than 1 component per backend component."""
qc = QuantumCircuit(42)
qc.h(0)
qc.h(10)
qc.h(20)
qc.cx(0, 1)
qc.cx(0, 2)
qc.cx(0, 3)
qc.cx(0, 4)
qc.cx(0, 5)
qc.cx(0, 6)
qc.cx(0, 7)
qc.cx(0, 8)
qc.cx(0, 9)
qc.ecr(10, 11)
qc.ecr(10, 12)
qc.ecr(10, 13)
qc.ecr(10, 14)
qc.ecr(10, 15)
qc.ecr(10, 16)
qc.ecr(10, 17)
qc.ecr(10, 18)
qc.ecr(10, 19)
qc.cy(20, 21)
qc.cy(20, 22)
qc.cy(20, 23)
qc.cy(20, 24)
qc.cy(20, 25)
qc.cy(20, 26)
qc.cy(20, 27)
qc.cy(20, 28)
qc.cy(20, 29)
qc.h(30)
qc.cx(30, 31)
qc.cx(30, 32)
qc.cx(30, 33)
qc.h(34)
qc.cx(34, 35)
qc.cx(34, 36)
qc.cx(34, 37)
qc.h(38)
qc.cx(38, 39)
qc.cx(39, 40)
qc.cx(39, 41)
qc.measure_all()
tqc = transpile(qc, self.backend, optimization_level=opt_level, seed_transpiler=42)
for inst in tqc.data:
qubits = tuple(tqc.find_bit(x).index for x in inst.qubits)
op_name = inst.operation.name
if op_name == "barrier":
continue
self.assertIn(qubits, self.backend.target[op_name])
def test_six_component_circuit_level_1(self):
"""Test input circuit with more than 1 component per backend component."""
opt_level = 1
qc = QuantumCircuit(42)
qc.h(0)
qc.h(10)
qc.h(20)
qc.cx(0, 1)
qc.cx(0, 2)
qc.cx(0, 3)
qc.cx(0, 4)
qc.cx(0, 5)
qc.cx(0, 6)
qc.cx(0, 7)
qc.cx(0, 8)
qc.cx(0, 9)
qc.ecr(10, 11)
qc.ecr(10, 12)
qc.ecr(10, 13)
qc.ecr(10, 14)
qc.ecr(10, 15)
qc.ecr(10, 16)
qc.ecr(10, 17)
qc.ecr(10, 18)
qc.ecr(10, 19)
qc.cy(20, 21)
qc.cy(20, 22)
qc.cy(20, 23)
qc.cy(20, 24)
qc.cy(20, 25)
qc.cy(20, 26)
qc.cy(20, 27)
qc.cy(20, 28)
qc.cy(20, 29)
qc.h(30)
qc.cx(30, 31)
qc.cx(30, 32)
qc.cx(30, 33)
qc.h(34)
qc.cx(34, 35)
qc.cx(34, 36)
qc.cx(34, 37)
qc.h(38)
qc.cx(38, 39)
qc.cx(39, 40)
qc.cx(39, 41)
qc.measure_all()
tqc = transpile(qc, self.backend, optimization_level=opt_level, seed_transpiler=42)
for inst in tqc.data:
qubits = tuple(tqc.find_bit(x).index for x in inst.qubits)
op_name = inst.operation.name
if op_name == "barrier":
continue
self.assertIn(qubits, self.backend.target[op_name])
@data(0, 1, 2, 3)
def test_shared_classical_between_components_condition(self, opt_level):
"""Test a condition sharing classical bits between components."""
creg = ClassicalRegister(19)
qc = QuantumCircuit(25)
qc.add_register(creg)
qc.h(0)
for i in range(18):
qc.cx(0, i + 1)
for i in range(18):
qc.measure(i, creg[i])
qc.ecr(20, 21).c_if(creg, 0)
tqc = transpile(qc, self.backend, optimization_level=opt_level)
def _visit_block(circuit, qubit_mapping=None):
for instruction in circuit:
if instruction.operation.name == "barrier":
continue
qargs = tuple(qubit_mapping[x] for x in instruction.qubits)
self.assertTrue(
self.backend.target.instruction_supported(instruction.operation.name, qargs)
)
if isinstance(instruction.operation, ControlFlowOp):
for block in instruction.operation.blocks:
new_mapping = {
inner: qubit_mapping[outer]
for outer, inner in zip(instruction.qubits, block.qubits)
}
_visit_block(block, new_mapping)
_visit_block(
tqc,
qubit_mapping={qubit: index for index, qubit in enumerate(tqc.qubits)},
)
@data(0, 1, 2, 3)
def test_shared_classical_between_components_condition_large_to_small(self, opt_level):
"""Test a condition sharing classical bits between components."""
creg = ClassicalRegister(2)
qc = QuantumCircuit(25)
qc.add_register(creg)
# Component 0
qc.h(24)
qc.cx(24, 23)
qc.measure(24, creg[0])
qc.measure(23, creg[1])
# Component 1
qc.h(0).c_if(creg, 0)
for i in range(18):
qc.ecr(0, i + 1).c_if(creg, 0)
tqc = transpile(qc, self.backend, optimization_level=opt_level, seed_transpiler=123456789)
def _visit_block(circuit, qubit_mapping=None):
for instruction in circuit:
if instruction.operation.name == "barrier":
continue
qargs = tuple(qubit_mapping[x] for x in instruction.qubits)
self.assertTrue(
self.backend.target.instruction_supported(instruction.operation.name, qargs)
)
if isinstance(instruction.operation, ControlFlowOp):
for block in instruction.operation.blocks:
new_mapping = {
inner: qubit_mapping[outer]
for outer, inner in zip(instruction.qubits, block.qubits)
}
_visit_block(block, new_mapping)
_visit_block(
tqc,
qubit_mapping={qubit: index for index, qubit in enumerate(tqc.qubits)},
)
# Check that virtual qubits that interact with each other via quantum links are placed into
# the same component of the coupling map.
initial_layout = tqc.layout.initial_layout
coupling_map = self.backend.target.build_coupling_map()
components = [
connected_qubits(initial_layout[qc.qubits[23]], coupling_map),
connected_qubits(initial_layout[qc.qubits[0]], coupling_map),
]
self.assertLessEqual({initial_layout[qc.qubits[i]] for i in [23, 24]}, components[0])
self.assertLessEqual({initial_layout[qc.qubits[i]] for i in range(19)}, components[1])
# Check clbits are in order.
# Traverse the output dag over the sole clbit, checking that the qubits of the ops
# go in order between the components. This is a sanity check to ensure that routing
# doesn't reorder a classical data dependency between components. Inside a component
# we have the dag ordering so nothing should be out of order within a component.
tqc_dag = circuit_to_dag(tqc)
qubit_map = {qubit: index for index, qubit in enumerate(tqc_dag.qubits)}
input_node = tqc_dag.input_map[tqc_dag.clbits[0]]
first_meas_node = tqc_dag._multi_graph.find_successors_by_edge(
input_node._node_id, lambda edge_data: isinstance(edge_data, Clbit)
)[0]
# The first node should be a measurement
self.assertIsInstance(first_meas_node.op, Measure)
# This should be in the first component
self.assertIn(qubit_map[first_meas_node.qargs[0]], components[0])
op_node = tqc_dag._multi_graph.find_successors_by_edge(
first_meas_node._node_id, lambda edge_data: isinstance(edge_data, Clbit)
)[0]
while isinstance(op_node, DAGOpNode):
self.assertIn(qubit_map[op_node.qargs[0]], components[1])
op_node = tqc_dag._multi_graph.find_successors_by_edge(
op_node._node_id, lambda edge_data: isinstance(edge_data, Clbit)
)[0]
@data(1, 2, 3)
def test_shared_classical_between_components_condition_large_to_small_reverse_index(
self, opt_level
):
"""Test a condition sharing classical bits between components."""
creg = ClassicalRegister(2)
qc = QuantumCircuit(25)
qc.add_register(creg)
# Component 0
qc.h(0)
qc.cx(0, 1)
qc.measure(0, creg[0])
qc.measure(1, creg[1])
# Component 1
qc.h(24).c_if(creg, 0)
for i in range(23, 5, -1):
qc.ecr(24, i).c_if(creg, 0)
tqc = transpile(qc, self.backend, optimization_level=opt_level, seed_transpiler=2023)
def _visit_block(circuit, qubit_mapping=None):
for instruction in circuit:
if instruction.operation.name == "barrier":
continue
qargs = tuple(qubit_mapping[x] for x in instruction.qubits)
self.assertTrue(
self.backend.target.instruction_supported(instruction.operation.name, qargs)
)
if isinstance(instruction.operation, ControlFlowOp):
for block in instruction.operation.blocks:
new_mapping = {
inner: qubit_mapping[outer]
for outer, inner in zip(instruction.qubits, block.qubits)
}
_visit_block(block, new_mapping)
_visit_block(
tqc,
qubit_mapping={qubit: index for index, qubit in enumerate(tqc.qubits)},
)
# Check that virtual qubits that interact with each other via quantum links are placed into
# the same component of the coupling map.
initial_layout = tqc.layout.initial_layout
coupling_map = self.backend.target.build_coupling_map()
components = [
connected_qubits(initial_layout[qc.qubits[0]], coupling_map),
connected_qubits(initial_layout[qc.qubits[6]], coupling_map),
]
self.assertLessEqual({initial_layout[qc.qubits[i]] for i in range(2)}, components[0])
self.assertLessEqual({initial_layout[qc.qubits[i]] for i in range(6, 25)}, components[1])
# Check clbits are in order.
# Traverse the output dag over the sole clbit, checking that the qubits of the ops
# go in order between the components. This is a sanity check to ensure that routing
# doesn't reorder a classical data dependency between components. Inside a component
# we have the dag ordering so nothing should be out of order within a component.
tqc_dag = circuit_to_dag(tqc)
qubit_map = {qubit: index for index, qubit in enumerate(tqc_dag.qubits)}
input_node = tqc_dag.input_map[tqc_dag.clbits[0]]
first_meas_node = tqc_dag._multi_graph.find_successors_by_edge(
input_node._node_id, lambda edge_data: isinstance(edge_data, Clbit)
)[0]
# The first node should be a measurement
self.assertIsInstance(first_meas_node.op, Measure)
# This shoulde be in the first ocmponent
self.assertIn(qubit_map[first_meas_node.qargs[0]], components[0])
op_node = tqc_dag._multi_graph.find_successors_by_edge(
first_meas_node._node_id, lambda edge_data: isinstance(edge_data, Clbit)
)[0]
while isinstance(op_node, DAGOpNode):
self.assertIn(qubit_map[op_node.qargs[0]], components[1])
op_node = tqc_dag._multi_graph.find_successors_by_edge(
op_node._node_id, lambda edge_data: isinstance(edge_data, Clbit)
)[0]
@data(1, 2, 3)
def test_chained_data_dependency(self, opt_level):
"""Test 3 component circuit with shared clbits between each component."""
creg = ClassicalRegister(1)
qc = QuantumCircuit(30)
qc.add_register(creg)
# Component 0
qc.h(0)
for i in range(9):
qc.cx(0, i + 1)
measure_op = Measure()
qc.append(measure_op, [9], [creg[0]])
# Component 1
qc.h(10).c_if(creg, 0)
for i in range(11, 20):
qc.ecr(10, i).c_if(creg, 0)
measure_op = Measure()
qc.append(measure_op, [19], [creg[0]])
# Component 2
qc.h(20).c_if(creg, 0)
for i in range(21, 30):
qc.cz(20, i).c_if(creg, 0)
measure_op = Measure()
qc.append(measure_op, [29], [creg[0]])
tqc = transpile(qc, self.backend, optimization_level=opt_level, seed_transpiler=2023)
def _visit_block(circuit, qubit_mapping=None):
for instruction in circuit:
if instruction.operation.name == "barrier":
continue
qargs = tuple(qubit_mapping[x] for x in instruction.qubits)
self.assertTrue(
self.backend.target.instruction_supported(instruction.operation.name, qargs)
)
if isinstance(instruction.operation, ControlFlowOp):
for block in instruction.operation.blocks:
new_mapping = {
inner: qubit_mapping[outer]
for outer, inner in zip(instruction.qubits, block.qubits)
}
_visit_block(block, new_mapping)
_visit_block(
tqc,
qubit_mapping={qubit: index for index, qubit in enumerate(tqc.qubits)},
)
# Check that virtual qubits that interact with each other via quantum links are placed into
# the same component of the coupling map.
initial_layout = tqc.layout.initial_layout
coupling_map = self.backend.target.build_coupling_map()
components = [
connected_qubits(initial_layout[qc.qubits[0]], coupling_map),
connected_qubits(initial_layout[qc.qubits[10]], coupling_map),
connected_qubits(initial_layout[qc.qubits[20]], coupling_map),
]
self.assertLessEqual({initial_layout[qc.qubits[i]] for i in range(10)}, components[0])
self.assertLessEqual({initial_layout[qc.qubits[i]] for i in range(10, 20)}, components[1])
self.assertLessEqual({initial_layout[qc.qubits[i]] for i in range(20, 30)}, components[2])
# Check clbits are in order.
# Traverse the output dag over the sole clbit, checking that the qubits of the ops
# go in order between the components. This is a sanity check to ensure that routing
# doesn't reorder a classical data dependency between components. Inside a component
# we have the dag ordering so nothing should be out of order within a component.
tqc_dag = circuit_to_dag(tqc)
qubit_map = {qubit: index for index, qubit in enumerate(tqc_dag.qubits)}
input_node = tqc_dag.input_map[tqc_dag.clbits[0]]
first_meas_node = tqc_dag._multi_graph.find_successors_by_edge(
input_node._node_id, lambda edge_data: isinstance(edge_data, Clbit)
)[0]
self.assertIsInstance(first_meas_node.op, Measure)
self.assertIn(qubit_map[first_meas_node.qargs[0]], components[0])
op_node = tqc_dag._multi_graph.find_successors_by_edge(
first_meas_node._node_id, lambda edge_data: isinstance(edge_data, Clbit)
)[0]
while not isinstance(op_node.op, Measure):
self.assertIn(qubit_map[op_node.qargs[0]], components[1])
op_node = tqc_dag._multi_graph.find_successors_by_edge(
op_node._node_id, lambda edge_data: isinstance(edge_data, Clbit)
)[0]
self.assertIn(qubit_map[op_node.qargs[0]], components[1])
op_node = tqc_dag._multi_graph.find_successors_by_edge(
op_node._node_id, lambda edge_data: isinstance(edge_data, Clbit)
)[0]
while not isinstance(op_node.op, Measure):
self.assertIn(qubit_map[op_node.qargs[0]], components[2])
op_node = tqc_dag._multi_graph.find_successors_by_edge(
op_node._node_id, lambda edge_data: isinstance(edge_data, Clbit)
)[0]
self.assertIn(qubit_map[op_node.qargs[0]], components[2])
@data("sabre", "stochastic", "basic", "lookahead")
def test_basic_connected_circuit_dense_layout(self, routing_method):
"""Test basic connected circuit on disjoint backend"""
qc = QuantumCircuit(5)
qc.h(0)
qc.cx(0, 1)
qc.cx(0, 2)
qc.cx(0, 3)
qc.cx(0, 4)
qc.measure_all()
tqc = transpile(
qc,
self.backend,
layout_method="dense",
routing_method=routing_method,
seed_transpiler=42,
)
for inst in tqc.data:
qubits = tuple(tqc.find_bit(x).index for x in inst.qubits)
op_name = inst.operation.name
if op_name == "barrier":
continue
self.assertIn(qubits, self.backend.target[op_name])
# Lookahead swap skipped for performance
@data("sabre", "stochastic", "basic")
def test_triple_circuit_dense_layout(self, routing_method):
"""Test a split circuit with one circuit component per chip."""
qc = QuantumCircuit(30)
qc.h(0)
qc.h(10)
qc.h(20)
qc.cx(0, 1)
qc.cx(0, 2)
qc.cx(0, 3)
qc.cx(0, 4)
qc.cx(0, 5)
qc.cx(0, 6)
qc.cx(0, 7)
qc.cx(0, 8)
qc.cx(0, 9)
qc.ecr(10, 11)
qc.ecr(10, 12)
qc.ecr(10, 13)
qc.ecr(10, 14)
qc.ecr(10, 15)
qc.ecr(10, 16)
qc.ecr(10, 17)
qc.ecr(10, 18)
qc.ecr(10, 19)
qc.cy(20, 21)
qc.cy(20, 22)
qc.cy(20, 23)
qc.cy(20, 24)
qc.cy(20, 25)
qc.cy(20, 26)
qc.cy(20, 27)
qc.cy(20, 28)
qc.cy(20, 29)
qc.measure_all()
tqc = transpile(
qc,
self.backend,
layout_method="dense",
routing_method=routing_method,
seed_transpiler=42,
)
for inst in tqc.data:
qubits = tuple(tqc.find_bit(x).index for x in inst.qubits)
op_name = inst.operation.name
if op_name == "barrier":
continue
self.assertIn(qubits, self.backend.target[op_name])
@data("sabre", "stochastic", "basic", "lookahead")
def test_triple_circuit_invalid_layout(self, routing_method):
"""Test a split circuit with one circuit component per chip."""
qc = QuantumCircuit(30)
qc.h(0)
qc.h(10)
qc.h(20)
qc.cx(0, 1)
qc.cx(0, 2)
qc.cx(0, 3)
qc.cx(0, 4)
qc.cx(0, 5)
qc.cx(0, 6)
qc.cx(0, 7)
qc.cx(0, 8)
qc.cx(0, 9)
qc.ecr(10, 11)
qc.ecr(10, 12)
qc.ecr(10, 13)
qc.ecr(10, 14)
qc.ecr(10, 15)
qc.ecr(10, 16)
qc.ecr(10, 17)
qc.ecr(10, 18)
qc.ecr(10, 19)
qc.cy(20, 21)
qc.cy(20, 22)
qc.cy(20, 23)
qc.cy(20, 24)
qc.cy(20, 25)
qc.cy(20, 26)
qc.cy(20, 27)
qc.cy(20, 28)
qc.cy(20, 29)
qc.measure_all()
with self.assertRaises(TranspilerError):
transpile(
qc,
self.backend,
layout_method="trivial",
routing_method=routing_method,
seed_transpiler=42,
)
# Lookahead swap skipped for performance reasons
@data("sabre", "stochastic", "basic")
def test_six_component_circuit_dense_layout(self, routing_method):
"""Test input circuit with more than 1 component per backend component."""
qc = QuantumCircuit(42)
qc.h(0)
qc.h(10)
qc.h(20)
qc.cx(0, 1)
qc.cx(0, 2)
qc.cx(0, 3)
qc.cx(0, 4)
qc.cx(0, 5)
qc.cx(0, 6)
qc.cx(0, 7)
qc.cx(0, 8)
qc.cx(0, 9)
qc.ecr(10, 11)
qc.ecr(10, 12)
qc.ecr(10, 13)
qc.ecr(10, 14)
qc.ecr(10, 15)
qc.ecr(10, 16)
qc.ecr(10, 17)
qc.ecr(10, 18)
qc.ecr(10, 19)
qc.cy(20, 21)
qc.cy(20, 22)
qc.cy(20, 23)
qc.cy(20, 24)
qc.cy(20, 25)
qc.cy(20, 26)
qc.cy(20, 27)
qc.cy(20, 28)
qc.cy(20, 29)
qc.h(30)
qc.cx(30, 31)
qc.cx(30, 32)
qc.cx(30, 33)
qc.h(34)
qc.cx(34, 35)
qc.cx(34, 36)
qc.cx(34, 37)
qc.h(38)
qc.cx(38, 39)
qc.cx(39, 40)
qc.cx(39, 41)
qc.measure_all()
tqc = transpile(
qc,
self.backend,
layout_method="dense",
routing_method=routing_method,
seed_transpiler=42,
)
for inst in tqc.data:
qubits = tuple(tqc.find_bit(x).index for x in inst.qubits)
op_name = inst.operation.name
if op_name == "barrier":
continue
self.assertIn(qubits, self.backend.target[op_name])
@data(0, 1, 2, 3)
def test_transpile_target_with_qubits_without_ops(self, opt_level):
"""Test qubits without operations aren't ever used."""
target = Target(num_qubits=5)
target.add_instruction(XGate(), {(i,): InstructionProperties(error=0.5) for i in range(3)})
target.add_instruction(HGate(), {(i,): InstructionProperties(error=0.5) for i in range(3)})
target.add_instruction(
CXGate(), {edge: InstructionProperties(error=0.5) for edge in [(0, 1), (1, 2), (2, 0)]}
)
qc = QuantumCircuit(3)
qc.x(0)
qc.cx(0, 1)
qc.cx(0, 2)
tqc = transpile(qc, target=target, optimization_level=opt_level)
invalid_qubits = {3, 4}
self.assertEqual(tqc.num_qubits, 5)
for inst in tqc.data:
for bit in inst.qubits:
self.assertNotIn(tqc.find_bit(bit).index, invalid_qubits)
@data(0, 1, 2, 3)
def test_transpile_target_with_qubits_without_ops_with_routing(self, opt_level):
"""Test qubits without operations aren't ever used."""
target = Target(num_qubits=5)
target.add_instruction(XGate(), {(i,): InstructionProperties(error=0.5) for i in range(4)})
target.add_instruction(HGate(), {(i,): InstructionProperties(error=0.5) for i in range(4)})
target.add_instruction(
CXGate(),
{edge: InstructionProperties(error=0.5) for edge in [(0, 1), (1, 2), (2, 0), (2, 3)]},
)
qc = QuantumCircuit(4)
qc.x(0)
qc.cx(0, 1)
qc.cx(0, 2)
qc.cx(1, 3)
qc.cx(0, 3)
tqc = transpile(qc, target=target, optimization_level=opt_level)
invalid_qubits = {
4,
}
self.assertEqual(tqc.num_qubits, 5)
for inst in tqc.data:
for bit in inst.qubits:
self.assertNotIn(tqc.find_bit(bit).index, invalid_qubits)
@data(0, 1, 2, 3)
def test_transpile_target_with_qubits_without_ops_circuit_too_large(self, opt_level):
"""Test qubits without operations aren't ever used and error if circuit needs them."""
target = Target(num_qubits=5)
target.add_instruction(XGate(), {(i,): InstructionProperties(error=0.5) for i in range(3)})
target.add_instruction(HGate(), {(i,): InstructionProperties(error=0.5) for i in range(3)})
target.add_instruction(
CXGate(), {edge: InstructionProperties(error=0.5) for edge in [(0, 1), (1, 2), (2, 0)]}
)
qc = QuantumCircuit(4)
qc.x(0)
qc.cx(0, 1)
qc.cx(0, 2)
qc.cx(0, 3)
with self.assertRaises(TranspilerError):
transpile(qc, target=target, optimization_level=opt_level)
@data(0, 1, 2, 3)
def test_transpile_target_with_qubits_without_ops_circuit_too_large_disconnected(
self, opt_level
):
"""Test qubits without operations aren't ever used if a disconnected circuit needs them."""
target = Target(num_qubits=5)
target.add_instruction(XGate(), {(i,): InstructionProperties(error=0.5) for i in range(3)})
target.add_instruction(HGate(), {(i,): InstructionProperties(error=0.5) for i in range(3)})
target.add_instruction(
CXGate(), {edge: InstructionProperties(error=0.5) for edge in [(0, 1), (1, 2), (2, 0)]}
)
qc = QuantumCircuit(5)
qc.x(0)
qc.x(1)
qc.x(3)
qc.x(4)
with self.assertRaises(TranspilerError):
transpile(qc, target=target, optimization_level=opt_level)
@data(0, 1, 2, 3)
def test_transpile_does_not_affect_backend_coupling(self, opt_level):
"""Test that transpiliation of a circuit does not mutate the `CouplingMap` stored by a V2
backend. Regression test of gh-9997."""
if opt_level == 3:
raise unittest.SkipTest("unitary resynthesis fails due to gh-10004")
qc = QuantumCircuit(127)
for i in range(1, 127):
qc.ecr(0, i)
backend = FakeSherbrooke()
original_map = copy.deepcopy(backend.coupling_map)
transpile(qc, backend, optimization_level=opt_level)
self.assertEqual(original_map, backend.coupling_map)
@combine(
optimization_level=[0, 1, 2, 3],
scheduling_method=["asap", "alap"],
)
def test_transpile_target_with_qubits_without_delays_with_scheduling(
self, optimization_level, scheduling_method
):
"""Test qubits without operations aren't ever used."""
no_delay_qubits = [1, 3, 4]
target = Target(num_qubits=5, dt=1)
target.add_instruction(
XGate(), {(i,): InstructionProperties(duration=160) for i in range(4)}
)
target.add_instruction(
HGate(), {(i,): InstructionProperties(duration=160) for i in range(4)}
)
target.add_instruction(
CXGate(),
{
edge: InstructionProperties(duration=800)
for edge in [(0, 1), (1, 2), (2, 0), (2, 3)]
},
)
target.add_instruction(
Delay(Parameter("t")), {(i,): None for i in range(4) if i not in no_delay_qubits}
)
qc = QuantumCircuit(4)
qc.x(0)
qc.cx(0, 1)
qc.cx(0, 2)
qc.cx(1, 3)
qc.cx(0, 3)
tqc = transpile(
qc,
target=target,
optimization_level=optimization_level,
scheduling_method=scheduling_method,
)
invalid_qubits = {
4,
}
self.assertEqual(tqc.num_qubits, 5)
for inst in tqc.data:
for bit in inst.qubits:
self.assertNotIn(tqc.find_bit(bit).index, invalid_qubits)
if isinstance(inst.operation, Delay):
self.assertNotIn(tqc.find_bit(bit).index, no_delay_qubits)
|
https://github.com/soultanis/Quantum-SAT-Solver
|
soultanis
|
# Import the Qiskit SDK.
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit import available_backends, execute, Aer
from qiskit.tools.visualization import plot_histogram, circuit_drawer, plot_state
# Define the number of n-qbits.
n = 6
# Create a Quantum Register with n-qbits.
q = QuantumRegister(n)
# Create a Classical Register with n-bits.
c = ClassicalRegister(n)
# Create a Quantum Circuit
qc = QuantumCircuit(q, c)
# Init with |1>
qc.x(q[0])
qc.x(q[1])
# Add H-gate to get superposition.
qc.h(q[0])
qc.h(q[1])
# Apply the oracle 11.
qc.cx(q[0],q[1],q[2])
qc.x(q[0])
qc.x(q[1])
qc.cx(q[0],q[1],q[3])
qc.x(q[0])
qc.x(q[1])
qc.x(q[0])
qc.cx(q[0],q[4])
qc.x(q[0])
qc.x(q[2])
qc.x(q[3])
qc.x(q[4])
qc.x(q[5])
qc.cx(q[2],q[3],q[4],q[5])
qc.x(q[2])
qc.x(q[3])
qc.x(q[4])
qc.x(q[5])
qc.z(q[5])
qc.x(q[2])
qc.x(q[3])
qc.x(q[4])
qc.x(q[5])
qc.cx(q[2],q[3],q[4],q[5])
qc.x(q[2])
qc.x(q[3])
qc.x(q[4])
qc.x(q[5])
qc.x(q[0])
qc.cx(q[0],q[4])
qc.x(q[0])
qc.x(q[0])
qc.x(q[1])
qc.cx(q[0],q[1],q[3])
qc.x(q[0])
qc.x(q[1])
qc.cx(q[0],q[1],q[2])
# Apply the grover-algorithm 11
# Measure qubit to bit. .
qc.measure(q, c)
# Get Aer backend.
backend_sim = Aer.get_backend('qasm_simulator')
# Compile and run the Quantum circuit on a simulator backend.
sim_result1 = execute(qc, backend_sim, shots=1000).result()
counts1 = sim_result1.get_counts(qc)
# Show the results as text and plot.
print("Simulation: ", sim_result1)
print("Output: ", counts1)
plot_histogram(counts1)
circuit_drawer(qc)
|
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
|
shesha-raghunathan
|
# useful additional packages
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
# useful math functions
from math import pi, cos, acos, sqrt
# importing the QISKit
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit import available_backends, execute, register, get_backend
import sys, getpass
try:
sys.path.append("../../") # go to parent dir
import Qconfig
qx_config = {
"APItoken": Qconfig.APItoken,
"url": Qconfig.config['url']}
print('Qconfig loaded from %s.' % Qconfig.__file__)
except:
APItoken = getpass.getpass('Please input your token and hit enter: ')
qx_config = {
"APItoken": APItoken,
"url":"https://quantumexperience.ng.bluemix.net/api"}
print('Qconfig.py not found in qiskit-tutorial directory; Qconfig loaded using user input.')
# import basic plot tools
from qiskit.tools.visualization import plot_histogram
M = 16 # Maximum number of physical qubits available
numberOfCoins = 8 # This number should be up to M-1, where M is the number of qubits available
indexOfFalseCoin = 6 # This should be 0, 1, ..., numberOfCoins - 1, where we use Python indexing
if numberOfCoins < 4 or numberOfCoins >= M:
raise Exception("Please use numberOfCoins between 4 and ", M-1)
if indexOfFalseCoin < 0 or indexOfFalseCoin >= numberOfCoins:
raise Exception("indexOfFalseCoin must be between 0 and ", numberOfCoins-1)
# Creating registers
# numberOfCoins qubits for the binary query string and 1 qubit for working and recording the result of quantum balance
qr = QuantumRegister(numberOfCoins+1)
# for recording the measurement on qr
cr = ClassicalRegister(numberOfCoins+1)
circuitName = "QueryStateCircuit"
queryStateCircuit = QuantumCircuit(qr, cr)
N = numberOfCoins
# Create uniform superposition of all strings of length N
for i in range(N):
queryStateCircuit.h(qr[i])
# Perform XOR(x) by applying CNOT gates sequentially from qr[0] to qr[N-1] and storing the result to qr[N]
for i in range(N):
queryStateCircuit.cx(qr[i], qr[N])
# Measure qr[N] and store the result to cr[N]. We continue if cr[N] is zero, or repeat otherwise
queryStateCircuit.measure(qr[N], cr[N])
# we proceed to query the quantum beam balance if the value of cr[0]...cr[N] is all zero
# by preparing the Hadamard state of |1>, i.e., |0> - |1> at qr[N]
queryStateCircuit.x(qr[N]).c_if(cr, 0)
queryStateCircuit.h(qr[N]).c_if(cr, 0)
# we rewind the computation when cr[N] is not zero
for i in range(N):
queryStateCircuit.h(qr[i]).c_if(cr, 2**N)
k = indexOfFalseCoin
# Apply the quantum beam balance on the desired superposition state (marked by cr equal to zero)
queryStateCircuit.cx(qr[k], qr[N]).c_if(cr, 0)
# Apply Hadamard transform on qr[0] ... qr[N-1]
for i in range(N):
queryStateCircuit.h(qr[i]).c_if(cr, 0)
# Measure qr[0] ... qr[N-1]
for i in range(N):
queryStateCircuit.measure(qr[i], cr[i])
backend = "local_qasm_simulator"
shots = 1 # We perform a one-shot experiment
results = execute(queryStateCircuit, backend=backend, shots=shots).result()
answer = results.get_counts()
for key in answer.keys():
if key[0:1] == "1":
raise Exception("Fail to create desired superposition of balanced query string. Please try again")
plot_histogram(answer)
from collections import Counter
for key in answer.keys():
normalFlag, _ = Counter(key[1:]).most_common(1)[0] #get most common label
for i in range(2,len(key)):
if key[i] != normalFlag:
print("False coin index is: ", len(key) - i - 1)
|
https://github.com/qiskit-community/prototype-qrao
|
qiskit-community
|
import numpy as np
from qiskit.utils import QuantumInstance
from qiskit.algorithms.minimum_eigen_solvers import VQE
from qiskit.circuit.library import RealAmplitudes
from qiskit.algorithms.optimizers import SPSA
from qiskit_aer import Aer
from qrao import (
QuantumRandomAccessEncoding,
QuantumRandomAccessOptimizer,
SemideterministicRounding,
)
from qrao.utils import get_random_maxcut_qp
# Generate a random QUBO in the form of a QuadraticProgram
problem = get_random_maxcut_qp(degree=3, num_nodes=6, seed=3, draw=True)
print(problem.export_as_lp_string())
# Create an encoding object with a maximum of 3 variables per qubit, aka a (3,1,p)-QRAC
encoding = QuantumRandomAccessEncoding(max_vars_per_qubit=3)
# Encode the QUBO problem into an encoded Hamiltonian operator
encoding.encode(problem)
# This is our encoded operator
print(f"Our encoded Hamiltonian is:\n( {encoding.qubit_op} ).\n")
print(
"We achieve a compression ratio of "
f"({encoding.num_vars} binary variables : {encoding.num_qubits} qubits) "
f"≈ {encoding.compression_ratio}.\n"
)
# Create a QuantumInstance for solving the relaxed Hamiltonian using VQE
relaxed_qi = QuantumInstance(backend=Aer.get_backend("aer_simulator"), shots=1024)
# Set up the variational quantum eigensolver (ansatz width is determined by the encoding)
vqe = VQE(
ansatz=RealAmplitudes(encoding.num_qubits),
optimizer=SPSA(maxiter=50),
quantum_instance=relaxed_qi,
)
# Use semideterministic rounding, known as "Pauli rounding"
# in https://arxiv.org/pdf/2111.03167v2.pdf
# (This is the default if no rounding scheme is specified.)
rounding_scheme = SemideterministicRounding()
# Construct the optimizer
qrao = QuantumRandomAccessOptimizer(
encoding=encoding, min_eigen_solver=vqe, rounding_scheme=rounding_scheme
)
# Solve the optimization problem
results = qrao.solve(problem)
qrao_fval = results.fval
print(results)
# relaxed function value
results.relaxed_fval
# optimal function value
results.fval
# optimal value
results.x
# status
results.status
print(
f"The obtained solution places a partition between nodes {np.where(results.x == 0)[0]} "
f"and nodes {np.where(results.x == 1)[0]}."
)
results.relaxed_results
results.rounding_results.samples
# pylint: disable=wrong-import-order
from qiskit_optimization.algorithms import CplexOptimizer
cplex_optimizer = CplexOptimizer()
cplex_results = cplex_optimizer.solve(problem)
exact_fval = cplex_results.fval
cplex_results
approximation_ratio = qrao_fval / exact_fval
print("QRAO Approximate Optimal Function Value:", qrao_fval)
print("Exact Optimal Function Value:", exact_fval)
print(f"Approximation Ratio: {approximation_ratio:.2f}")
import qiskit.tools.jupyter # pylint: disable=unused-import,wrong-import-order
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
from docplex.mp.model import Model
from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver
from qiskit.algorithms.optimizers import COBYLA
from qiskit.primitives import Sampler
from qiskit_optimization.algorithms import CobylaOptimizer, MinimumEigenOptimizer
from qiskit_optimization.algorithms.admm_optimizer import ADMMParameters, ADMMOptimizer
from qiskit_optimization.translators import from_docplex_mp
# If CPLEX is installed, you can uncomment this line to import the CplexOptimizer.
# CPLEX can be used in this tutorial to solve the convex continuous problem,
# but also as a reference to solve the QUBO, or even the full problem.
#
# from qiskit.optimization.algorithms import CplexOptimizer
# define COBYLA optimizer to handle convex continuous problems.
cobyla = CobylaOptimizer()
# define QAOA via the minimum eigen optimizer
qaoa = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA()))
# exact QUBO solver as classical benchmark
exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) # to solve QUBOs
# in case CPLEX is installed it can also be used for the convex problems, the QUBO,
# or as a benchmark for the full problem.
#
# cplex = CplexOptimizer()
# construct model using docplex
mdl = Model("ex6")
v = mdl.binary_var(name="v")
w = mdl.binary_var(name="w")
t = mdl.binary_var(name="t")
u = mdl.continuous_var(name="u")
mdl.minimize(v + w + t + 5 * (u - 2) ** 2)
mdl.add_constraint(v + 2 * w + t + u <= 3, "cons1")
mdl.add_constraint(v + w + t >= 1, "cons2")
mdl.add_constraint(v + w == 1, "cons3")
# load quadratic program from docplex model
qp = from_docplex_mp(mdl)
print(qp.prettyprint())
admm_params = ADMMParameters(
rho_initial=1001, beta=1000, factor_c=900, maxiter=100, three_block=True, tol=1.0e-6
)
# define QUBO optimizer
qubo_optimizer = exact
# qubo_optimizer = cplex # uncomment to use CPLEX instead
# define classical optimizer
convex_optimizer = cobyla
# convex_optimizer = cplex # uncomment to use CPLEX instead
# initialize ADMM with classical QUBO and convex optimizer
admm = ADMMOptimizer(
params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer
)
# run ADMM to solve problem
result = admm.solve(qp)
print(result.prettyprint())
plt.plot(result.state.residuals)
plt.xlabel("Iterations")
plt.ylabel("Residuals")
plt.show()
# define QUBO optimizer
qubo_optimizer = qaoa
# define classical optimizer
convex_optimizer = cobyla
# convex_optimizer = cplex # uncomment to use CPLEX instead
# initialize ADMM with quantum QUBO optimizer and classical convex optimizer
admm_q = ADMMOptimizer(
params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer
)
# run ADMM to solve problem
result_q = admm_q.solve(qp)
print(result.prettyprint())
plt.clf()
plt.plot(result_q.state.residuals)
plt.xlabel("Iterations")
plt.ylabel("Residuals")
plt.show()
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
A collection of functions that decide the layout of an output image.
See :py:mod:`~qiskit.visualization.timeline.types` for more info on the required data.
There are 2 types of layout functions in this module.
1. layout.bit_arrange
In this stylesheet entry the input data is a list of `types.Bits` and returns a
sorted list of `types.Bits`.
The function signature of the layout is restricted to:
```python
def my_layout(bits: List[types.Bits]) -> List[types.Bits]:
# your code here: sort input bits and return list of bits
```
2. layout.time_axis_map
In this stylesheet entry the input data is `Tuple[int, int]` that represents horizontal
axis limit of the output image. The layout function returns `types.HorizontalAxis` data
which is consumed by the plotter API to make horizontal axis.
The function signature of the layout is restricted to:
```python
def my_layout(time_window: Tuple[int, int]) -> types.HorizontalAxis:
# your code here: create and return axis config
```
Arbitrary layout function satisfying the above format can be accepted.
"""
import warnings
from typing import List, Tuple
import numpy as np
from qiskit import circuit
from qiskit.visualization.exceptions import VisualizationError
from qiskit.visualization.timeline import types
def qreg_creg_ascending(bits: List[types.Bits]) -> List[types.Bits]:
"""Sort bits by ascending order.
Bit order becomes Q0, Q1, ..., Cl0, Cl1, ...
Args:
bits: List of bits to sort.
Returns:
Sorted bits.
"""
qregs = []
cregs = []
for bit in bits:
if isinstance(bit, circuit.Qubit):
qregs.append(bit)
elif isinstance(bit, circuit.Clbit):
cregs.append(bit)
else:
raise VisualizationError(f"Unknown bit {bit} is provided.")
with warnings.catch_warnings():
warnings.simplefilter("ignore")
qregs = sorted(qregs, key=lambda x: x.index, reverse=False)
cregs = sorted(cregs, key=lambda x: x.index, reverse=False)
return qregs + cregs
def qreg_creg_descending(bits: List[types.Bits]) -> List[types.Bits]:
"""Sort bits by descending order.
Bit order becomes Q_N, Q_N-1, ..., Cl_N, Cl_N-1, ...
Args:
bits: List of bits to sort.
Returns:
Sorted bits.
"""
qregs = []
cregs = []
for bit in bits:
if isinstance(bit, circuit.Qubit):
qregs.append(bit)
elif isinstance(bit, circuit.Clbit):
cregs.append(bit)
else:
raise VisualizationError(f"Unknown bit {bit} is provided.")
qregs = sorted(qregs, key=lambda x: x.index, reverse=True)
cregs = sorted(cregs, key=lambda x: x.index, reverse=True)
return qregs + cregs
def time_map_in_dt(time_window: Tuple[int, int]) -> types.HorizontalAxis:
"""Layout function for the horizontal axis formatting.
Generate equispaced 6 horizontal axis ticks.
Args:
time_window: Left and right edge of this graph.
Returns:
Axis formatter object.
"""
# shift time axis
t0, t1 = time_window
# axis label
axis_loc = np.linspace(max(t0, 0), t1, 6)
axis_label = axis_loc.copy()
# consider time resolution
label = "System cycle time (dt)"
formatted_label = [f"{val:.0f}" for val in axis_label]
return types.HorizontalAxis(
window=(t0, t1), axis_map=dict(zip(axis_loc, formatted_label)), label=label
)
|
https://github.com/C2QA/bosonic-qiskit
|
C2QA
|
from qiskit import QuantumRegister
class QumodeRegister:
"""Wrapper to QisKit QuantumRegister to represent multiple qubits per qumode.
Implements __getitem__ to make QumodeRegister appear to work just like QuantumRegister with instances of CVCircuit.
"""
def __init__(
self, num_qumodes: int, num_qubits_per_qumode: int = 2, name: str = None
):
"""Initialize QumodeRegister
Args:
num_qumodes (int): total number of qumodes
num_qubits_per_qumode (int, optional): Number of qubits representing each qumode. Defaults to 2.
name (str, optional): Name of register. Defaults to None.
"""
self.size = num_qumodes * num_qubits_per_qumode
self.num_qumodes = num_qumodes
self.num_qubits_per_qumode = num_qubits_per_qumode
self.cutoff = QumodeRegister.calculate_cutoff(num_qubits_per_qumode)
# Aggregate the QuantumRegister representing these qumodes as
# extending the class confuses QisKit when overriding __getitem__().
# It doesn't expect a list of Qubit back when indexing a single value
# (i.e., qmr[0] is represented by multiple qubits).
self.qreg = QuantumRegister(size=self.size, name=name)
@staticmethod
def calculate_cutoff(num_qubits_per_qumode: int):
return 2**num_qubits_per_qumode
def get_qumode_index(self, qubit):
"""Get the qumode index for the given qubit in this register"""
qubit_index = self.qreg.index(qubit)
return qubit_index // self.num_qubits_per_qumode
def __iter__(self):
"""Iterate over the list of lists representing the qubits for each qumode in the register"""
return QumodeIterator(self)
def __getitem__(self, key):
"""Return a list of QisKit Qubit for each indexed qumode
Args:
key (slice or int): index into qumode register
Raises:
ValueError: if slice or int not provided
Returns:
list: ;ost pf qubits from QuantumRegister representing qumode
"""
start = None
stop = self.size
step = None
if isinstance(key, slice):
start_index = key.start if key.start else 0
stop_index = key.stop if key.stop else self.size
start = self.num_qubits_per_qumode * start_index
stop = (
self.num_qubits_per_qumode * stop_index
) + self.num_qubits_per_qumode
step = (key.step * self.num_qubits_per_qumode) if key.step else None
elif isinstance(key, int):
start = self.num_qubits_per_qumode * key
stop = start + self.num_qubits_per_qumode
else:
raise ValueError("Must provide slice or int.")
return self.qreg[start:stop:step]
def __len__(self):
"""The length of a QumodeRegister is the number of qumodes (not the num_qumodes * num_qubits_per_qumode)"""
return self.num_qumodes
def __contains__(self, qubit):
"""Return true if this QumodeRegister contains the given qubit. This allows callers to use `in` python syntax."""
return qubit in self.qreg
class QumodeIterator:
"""Iterate over the list of lists representing the qubits for each qumode in the register"""
def __init__(self, register: QumodeRegister):
self._index = 0
self._register = register
def __iter__(self):
return self
def __next__(self):
if self._index < self._register.num_qumodes:
next = self._register[self._index]
self._index += 1
return next
else:
raise StopIteration
|
https://github.com/usamisaori/qLipschitz
|
usamisaori
|
from sklearn import datasets
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
X_train, Y_train = datasets.make_circles(n_samples=500, noise=0.09, factor=0.4)
X_test, Y_test = datasets.make_circles(n_samples=200, noise=0.09, factor=0.4)
print('Training Data:')
print(X_train[:10])
print('\nTraining Label:')
print(Y_train[:10])
plt.scatter(X_train[:, 0], X_train[:, 1], c=Y_train)
plt.show()
print(f'Total datas: {len(X_train)}')
print(f'labels: {list(set(Y_train))}')
print(f' - label 0 datas: {len(list(filter(lambda x: x==0, Y_train)))}')
print(f' - label 1 datas: {len(list(filter(lambda x: x==1, Y_train)))}')
Z_train = (X_train[:, 0] ** 2 + X_train[:, 1] ** 2) ** 0.5
temp = np.zeros((X_train.shape[0], len(X_train[0]) + 1))
temp[:, :-1] = X_train
temp[:, -1] = Z_train
X_train2 = temp
Z_test = (X_test[:, 0] ** 2 + X_test[:, 1] ** 2) ** 0.5
temp = np.zeros((X_test.shape[0], len(X_test[0]) + 1))
temp[:, :-1] = X_test
temp[:, -1] = Z_test
X_test2 = temp
print('Solved Training Data:')
print(X_train2[:10])
def plot3D(X, Y):
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(
X[:, 0], X[:, 1], X[:, 2],
zdir='z', s=30, c=Y, depthshade=True
)
plt.show()
plot3D(X_train2, Y_train)
X, Y = datasets.load_iris(return_X_y=True)
X_train_0 = X[0:30]
X_train_1 = X[50:80]
X_train_iris = np.vstack((X_train_0, X_train_1))
Y_train_0 = Y[0:30]
Y_train_1 = Y[50:80]
Y_train_iris = np.vstack((Y_train_0, Y_train_1)).flatten()
X, Y = datasets.load_iris(return_X_y=True)
X_test_0 = X[30:50]
X_test_1 = X[80:100]
X_test_iris = np.vstack((X_test_0, X_test_1))
Y_test_0 = Y[30:50]
Y_test_1 = Y[80:100]
Y_test_iris = np.vstack((Y_test_0, Y_test_1)).flatten()
X_train_iris = (X_train_iris - X_train_iris.min(axis=0)) / (X_train_iris.max(axis=0) - X_train_iris.min(axis=0))
X_test_iris = (X_test_iris - X_test_iris.min(axis=0)) / (X_test_iris.max(axis=0) - X_test_iris.min(axis=0))
import qiskit
from qiskit import QuantumCircuit
from qiskit import Aer, execute
qasm_backend = Aer.get_backend('qasm_simulator')
params = [
[[-1.18991246e-01, -8.69694713e-01, 1.43722811e-03],
[ 3.47641545e+00, -4.73632073e-02, 1.97135609e+00],
[ 1.95775707e+00, -1.12139160e-02, -6.21796144e-03]],
[[ 2.02460380e-02, -2.25797547e+00, 5.14234265e-03],
[-1.71552299e-02, 2.46283604e-03, -1.03805722e-02],
[-2.37244982e-03, -3.35799404e-03, 6.10191152e-03]]
]
params_iris = [
[[-3.42142600e-02, -5.45047534e-03, 8.11905347e-01],
[-1.52484152e+00, 1.49884676e+00, -1.25408626e-02],
[-1.89515860e-03, 1.35760410e-02, 8.22999582e-03],
[ 1.39102114e+00, 4.19729865e-01, 1.60000380e-04]],
[[ 7.88431068e-01, -8.86177264e-01, 1.33830291e-02],
[-3.71228143e-03, -1.12994101e-02, -1.27897783e-02],
[ 9.45954683e-03, -3.34659883e-03, 1.17217829e-02],
[ 1.98256181e-02, -1.07358054e-02, 7.53621360e-03]]
]
def createInputCircuit(data):
qubits_num = len(data)
qcircuit = QuantumCircuit(qubits_num, qubits_num)
qubits = qcircuit.qubits
for i, d in enumerate(data):
qcircuit.rx(d * np.pi, qubits[i])
return qcircuit
# Test 1: create input circuit
test1_circuit = createInputCircuit(X_train2[0])
test1_circuit.draw(output='mpl')
def createModelCircuit(params):
qubits_num = len(params[0])
qcircuit = QuantumCircuit(qubits_num, qubits_num)
qubits = qcircuit.qubits
for i in range(qubits_num):
qcircuit.u3(*params[0][i], qubits[i])
for i in range(qubits_num - 1):
qcircuit.cz(qubits[i], qubits[i + 1])
qcircuit.cz(qubits[0], qubits[qubits_num - 1])
for i in range(qubits_num):
qcircuit.u3(*params[1][i], qubits[i])
return qcircuit
# Test 2: create model circuit
test2_circuit = createModelCircuit(params)
test2_circuit.draw(output='mpl')
def createCircuit(params, data):
input_circuit = createInputCircuit(data)
model_circuit = createModelCircuit(params)
full_circuit = input_circuit.compose(model_circuit)
return full_circuit
# Test 3-1: create full quantum circuit - circle
test3_circuit = createCircuit(params, X_train2[0])
test3_circuit.draw(output='mpl')
# Test 3-2: create full quantum circuit - iris
test3_circuit = createCircuit(params_iris, X_train_iris[1])
test3_circuit.draw(output='mpl')
def predict(model, data):
qubits_num = len(data)
input_circuit = createInputCircuit(data)
qcircuit = input_circuit.compose(model)
# the measurement
qcircuit.measure(list(range(qubits_num)), list(range(qubits_num)))
# job execution
shots = 1000
job_sim = execute(qcircuit, qasm_backend, shots=shots)
result_sim = job_sim.result()
counts = result_sim.get_counts(qcircuit)
p1 = 0
for i in range(2 ** (qubits_num - 1)):
comb = str(bin(i + 2 ** (qubits_num - 1))[2:])
p1 += counts.get(comb, 0)
p1 /= shots
if p1 > 0.5:
return 1
else:
return 0
def accuracy(model, datas, labels):
predictions = [ predict(model, data) for data in datas ]
acc = 0
for i, p in enumerate(predictions):
if p == labels[i]:
acc += 1
return acc / len(predictions)
def evaluate(model, X_test, Y_test):
acc = accuracy(model, X_test, Y_test)
print("FINAL ACCURACY: {:0.2f}%".format(acc * 100))
# Test 4: evaluate noiseless model
test4_circuit = createModelCircuit(params_iris)
evaluate(test4_circuit, X_train_iris, Y_train_iris)
evaluate(test4_circuit, X_test_iris, Y_test_iris)
from qiskit.providers.aer.noise import NoiseModel
from qiskit.providers.aer.utils import insert_noise
from qiskit.providers.aer.noise import pauli_error, depolarizing_error
def createNoiseModel(p, errorType):
# QuantumError objects
if errorType == 'bit_flip':
error = pauli_error([('X', p), ('I', 1 - p)])
elif errorType == 'phase_flip':
error = pauli_error([('Z', p), ('I', 1 - p)])
elif errorType == 'depolarizing':
error = depolarizing_error(p, num_qubits=1)
## two-qubits quantumError objects
if errorType == 'depolarizing':
error_2qubits = depolarizing_error(p, num_qubits=2)
else:
error_2qubits = error.tensor(error)
# Add errors to noise model
noise_model = NoiseModel()
noise_model.add_all_qubit_quantum_error(error, ['u3'])
noise_model.add_all_qubit_quantum_error(error_2qubits, ['cz'])
return noise_model
def createNoisyModelCircuit(params, p, errorType):
noise_model = createNoiseModel(p, errorType)
model_circuit = createModelCircuit(params)
return insert_noise(model_circuit, noise_model)
# Test 5-1: create noisy model circuit - circle
test5_p = 0.001
test5_circuit = createNoisyModelCircuit(params, test5_p, 'phase_flip')
test5_circuit.draw(output='mpl')
# Test 5-2: create noisy model circuit - iris
test5_p = 0.001
test5_circuit = createNoisyModelCircuit(params_iris, test5_p, 'bit_flip')
test5_circuit.draw(output='mpl')
# Test 6-1: evaluate noisy model - circle
test6_p = 0.001
models_type = [
'noiseless', 'bit_flip', 'phase_flip', 'depolarizing'
]
test6_circuits = [
createModelCircuit(params),
createNoisyModelCircuit(params, test6_p, 'bit_flip'),
createNoisyModelCircuit(params, test6_p, 'phase_flip'),
createNoisyModelCircuit(params, test6_p, 'depolarizing')
]
for i, model_type in enumerate(models_type):
print(f'Evaluate <{model_type}>: ')
evaluate(test6_circuits[i], X_test2, Y_test)
print()
# Test 6-2: evaluate noisy model - iris
test6_p = 0.5
models_type = [
'noiseless', 'bit_flip', 'phase_flip', 'depolarizing'
]
test6_circuits = [
createModelCircuit(params_iris),
createNoisyModelCircuit(params_iris, test6_p, 'bit_flip'),
createNoisyModelCircuit(params_iris, test6_p, 'phase_flip'),
createNoisyModelCircuit(params_iris, test6_p, 'depolarizing')
]
for i, model_type in enumerate(models_type):
print(f'Evaluate <{model_type}>: ')
evaluate(test6_circuits[i], X_test_iris, Y_test_iris)
print()
from functools import reduce
Dag = lambda matrix: matrix.conj().T
Kron = lambda *matrices: reduce(np.kron, matrices)
from qiskit.quantum_info import DensityMatrix, Statevector
def getDensityMatrix(circuit):
return DensityMatrix(circuit).data
def getStatevector(circuit):
return Statevector(circuit).data
psi_0 = np.array([1.0, 0.0])
psi_1 = np.array([0.0, 1.0])
I = np.eye(2)
M_0 = psi_0.reshape([2, 1]) @ psi_0.reshape([1, 2]).conj()
M_1 = psi_1.reshape([2, 1]) @ psi_1.reshape([1, 2]).conj()
def getMeasurements(qubits_num):
measurement_0 = [M_0]
measurement_1 = [M_1]
for i in range(qubits_num - 1):
measurement_0.append(I)
measurement_1.append(I)
return [
Kron(*measurement_0),
Kron(*measurement_1)
]
# Test 7: test measure
test7_M_0, test7_M_1 = getMeasurements(qubits_num=3)
# 2: |0> - X -
test7_1_circuit = QuantumCircuit(3, 3)
test7_1_circuit.x(test7_1_circuit.qubits[2])
test7_1_circuit.draw(output='mpl')
test7_1_density_matrix = getDensityMatrix(test7_1_circuit)
test7_1_p1 = np.trace( test7_M_1 @ test7_1_density_matrix @ Dag(test7_M_1) )
print(test7_1_p1) # should be 1
# 2: |0> - H -
test7_2_circuit = QuantumCircuit(3, 3)
test7_2_circuit.h(test7_2_circuit.qubits[2])
test7_2_circuit.draw(output='mpl')
test7_2_density_matrix = getDensityMatrix(test7_2_circuit)
test7_2_p1 = np.trace( test7_M_1 @ test7_2_density_matrix @ Dag(test7_M_1) )
print(test7_2_p1) # should be 0.5
test7_M_0, test7_M_1 = getMeasurements(qubits_num=4)
# 3: |0> - H -
test7_3_circuit = QuantumCircuit(4, 4)
test7_3_circuit.h(test7_3_circuit.qubits[3])
test7_3_circuit.draw(output='mpl')
test7_3_density_matrix = getDensityMatrix(test7_3_circuit)
test7_3_p1 = np.trace( test7_M_1 @ test7_3_density_matrix @ Dag(test7_M_1) )
print(test7_3_p1) # should be 0.5
def powerSets(items):
N = len(items)
combs = []
for i in range(2 ** N):
comb = []
for j in range(N):
if (i >> j) % 2:
comb.append(items[j])
combs.append(comb)
return combs
# Test 8: calculate power sets
print(powerSets([0, 1]))
class Algorithm:
def __init__(self, model_circuit, measurements, outputs):
# DensityMatrix of model
self.E = getDensityMatrix(model_circuit)
# Measurements
self.M = dict()
for index, output in enumerate(outputs):
self.M[output] = measurements[index]
# Outputs
self.O = outputs
self.O_ = powerSets(outputs)
# Test 9: algorithm objects
test9_circuit = createModelCircuit(params_iris)
test9_A = Algorithm(test9_circuit, getMeasurements(qubits_num=4), [0, 1])
print(test9_A.E.shape)
print(test9_A.O)
print(test9_A.O_)
from scipy.linalg import sqrtm
def D(rou, sigma):
A = rou - sigma
A_ = sqrtm( np.dot( A.conj().T, A ) )
return 0.5 * np.linalg.norm( np.trace(A_) )
# Test 10: trace distance example
from math import isclose
# example from: quantumnanophotonics.org/media/Module2Lecture8.pdf
test10_rou = np.array([[2.0, 0.0], [0.0, 1.0]]) / 3
test10_sigma = np.array([[3.0, 0.0], [0.0, 1.0]]) / 4
assert isclose(D(test10_rou, test10_sigma), 1/12)
# Test 11: calculate input states' distance
test11_rou = getDensityMatrix(createInputCircuit(X_train2[0]))
test11_sigma = getDensityMatrix(createInputCircuit(X_train2[1]))
print(D(test11_rou, test11_rou)) # should be 0
print(D(test11_rou, test11_sigma))
def d(A, rou, sigma):
distance = 0
for output in A.O:
trace = np.trace(
Dag(A.M[output]) @ A.M[output] @
(A.E @ (rou - sigma) @ Dag(A.E))
)
distance += np.linalg.norm(trace)
return distance / 2
# Test 12: calculate total variation distance
test12_circuit = createModelCircuit(params)
test12_A = Algorithm(test12_circuit, getMeasurements(qubits_num=3), [0, 1])
test12_rou = getDensityMatrix(createInputCircuit(X_train2[0]))
test12_sigma = getDensityMatrix(createInputCircuit(X_train2[1]))
print(d(test12_A, test12_rou, test12_rou))
print(d(test12_A, test12_rou, test12_sigma))
def Lipschitz(A):
E, M, O, O_ = A.E, A.M, A.O, A.O_
# Step 1: Calculate W_i
W = dict()
for i in O:
W[i] = Dag(E) @ Dag(M[i]) @ M[i] @ E
# Step 2: Calculate K_star
K_star = 0; vectors = [None, None]
M_star = np.zeros(E.shape)
for S in O_:
if len(S) == 0:
continue
# calculate M_S = Σ Wi
M_S = np.zeros(E.shape).astype('complex64')
for i in S:
M_S += W[i]
# calculate eigenvalues and eigenvectors of M_S
eigenvalues, eigenvectors = np.linalg.eigh(M_S)
min_index = np.where(eigenvalues == eigenvalues.min())
max_index = np.where(eigenvalues == eigenvalues.max())
# calculate K_S
K_S = np.linalg.norm(eigenvalues[max_index][0] - eigenvalues[min_index][0])
if K_S > K_star:
K_star = K_S
vectors[0] = eigenvectors.T[max_index][0]
vectors[1] = eigenvectors.T[min_index][0]
return K_star, np.array(vectors)
# Test 13: calculate lipschitz constant
print('Classifier for centric circle: ')
test13_1_circuit = createModelCircuit(params)
test13_1_A = Algorithm(test13_1_circuit, getMeasurements(qubits_num=3), [0, 1])
print(Lipschitz(test13_1_A))
print('\nClassifier for Iris: ')
test13_2_circuit = createModelCircuit(params_iris)
test13_2_A = Algorithm(test13_2_circuit, getMeasurements(qubits_num=4), [0, 1])
print(Lipschitz(test13_2_A))
# Test 14-1: calculate lipschitz constant in noisy model
test14_p = [0.0001, 0.001, 0.05, 0.1]
models_type = [
'noiseless', 'bit_flip', 'phase_flip', 'depolarizing'
]
print('Classifier for centric circle: ')
for p in test14_p:
test14_1_circuits = [
createModelCircuit(params),
createNoisyModelCircuit(params, p, 'bit_flip'),
createNoisyModelCircuit(params, p, 'phase_flip'),
createNoisyModelCircuit(params, p, 'depolarizing')
]
print(f'p: {p}')
for i, model_type in enumerate(models_type):
test14_1_noisy_A = Algorithm(test14_1_circuits[i], getMeasurements(qubits_num=3), [0, 1])
print(f'{model_type} model: {Lipschitz(test14_1_noisy_A)[0]}')
print()
# Test 14-2: calculate lipschitz constant in noisy model
test14_p = [0.0001, 0.001, 0.05, 0.1]
models_type = [
'noiseless', 'bit_flip', 'phase_flip', 'depolarizing'
]
print('Classifier for Iris: ')
for p in test14_p:
test14_2_circuits = [
createModelCircuit(params_iris),
createNoisyModelCircuit(params_iris, p, 'bit_flip'),
createNoisyModelCircuit(params_iris, p, 'phase_flip'),
createNoisyModelCircuit(params_iris, p, 'depolarizing')
]
print(f'p: {p}')
for i, model_type in enumerate(models_type):
test14_2_noisy_A = Algorithm(test14_2_circuits[i], getMeasurements(qubits_num=4), [0, 1])
print(f'{model_type} model: {Lipschitz(test14_2_noisy_A)[0]}')
print()
def FairVeriQ(A, epsilon, delta):
# epsilon <= 1 and delta > 0
K_star, kernel = Lipschitz(A)
if delta >= K_star * epsilon:
return True, None
else:
return False, kernel
# Test 15-1: find proper epsilon - circle
import random
# D(rou, sigma) <= epsilon
indices = []
while len(indices) < 50:
a = random.randint(0, len(X_train2) - 1)
b = random.randint(0, len(X_train2) - 1)
if a != b:
indices.append([a, b])
distances = []
for pair in indices:
rou = getDensityMatrix(createInputCircuit(X_train2[pair[0]]))
sigma = getDensityMatrix(createInputCircuit(X_train2[pair[1]]))
distances.append(D(rou, sigma))
print('find proper epsilon - centric circle')
print(f'Mean distance: {sum(distances) / len(distances)}')
print(f'Max distance: {max(distances)}')
print(f'Min distance: {min(distances)}')
# Test 15-2: find proper epsilon - iris
# D(rou, sigma) <= epsilon
indices = []
while len(indices) < 50:
a = random.randint(0, len(X_train_iris) - 1)
b = random.randint(0, len(X_train_iris) - 1)
if a != b:
indices.append([a, b])
distances = []
for pair in indices:
rou = getDensityMatrix(createInputCircuit(X_train_iris[pair[0]]))
sigma = getDensityMatrix(createInputCircuit(X_train_iris[pair[1]]))
distances.append(D(rou, sigma))
print('find proper epsilon - centric iris')
print(f'Mean distance: {sum(distances) / len(distances)}')
print(f'Max distance: {max(distances)}')
print(f'Min distance: {min(distances)}')
# Test 16-1: find proper delta - circle
test16_1_circuit = createModelCircuit(params)
test16_1_A = Algorithm(test16_1_circuit, getMeasurements(qubits_num=3), [0, 1])
# d(A(rou), A(sigma)) <= delta
indices = []
while len(indices) < 50:
a = random.randint(0, len(X_train2) - 1)
b = random.randint(0, len(X_train2) - 1)
if a != b:
indices.append([a, b])
distances = []
for pair in indices:
rou = getDensityMatrix(createInputCircuit(X_train2[pair[0]]))
sigma = getDensityMatrix(createInputCircuit(X_train2[pair[1]]))
distances.append(d(test16_1_A, rou, sigma))
print('find proper delta - circle')
print(f'Mean distance: {sum(distances) / len(distances)}')
print(f'Max distance: {max(distances)}')
print(f'Min distance: {min(distances)}')
# Test 16-2: find proper delta - iris
test16_2_circuit = createModelCircuit(params_iris)
test16_2_A = Algorithm(test16_2_circuit, getMeasurements(qubits_num=4), [0, 1])
# d(A(rou), A(sigma)) <= delta
indices = []
while len(indices) < 50:
a = random.randint(0, len(X_train_iris) - 1)
b = random.randint(0, len(X_train_iris) - 1)
if a != b:
indices.append([a, b])
distances = []
for pair in indices:
rou = getDensityMatrix(createInputCircuit(X_train_iris[pair[0]]))
sigma = getDensityMatrix(createInputCircuit(X_train_iris[pair[1]]))
distances.append(d(test16_2_A, rou, sigma))
print('find proper delta - iris')
print(f'Mean distance: {sum(distances) / len(distances)}')
print(f'Max distance: {max(distances)}')
print(f'Min distance: {min(distances)}')
# Test 17-1: fairness verifying - circle
test17_1_circuit = createNoisyModelCircuit(params, p=0.001, errorType='bit_flip')
test17_1_A = Algorithm(test17_1_circuit, getMeasurements(qubits_num=3), [0, 1])
print(f'Lipschitz constant: {Lipschitz(test17_1_A)[0]}\n')
test17_1_fairness_params = [
# epsilon, delta
[1, 1], [0.9, 0.89], [0.6, 0.58], [0.6, 0.59]
]
for epsilon, delta in test17_1_fairness_params:
flag, kernel = FairVeriQ(test17_1_A, epsilon, delta)
print(f'A is ({epsilon},{delta})-fair: <{flag}>')
if not flag:
print(f' - bias kernel pair is: {kernel}')
print()
# Test 17-2: fairness verifying - iris
test17_2_circuit = createNoisyModelCircuit(params_iris, p=0.001, errorType='phase_flip')
test17_2_A = Algorithm(test17_2_circuit, getMeasurements(qubits_num=4), [0, 1])
print(f'Lipschitz constant: {Lipschitz(test17_2_A)[0]}\n')
test17_2_fairness_params = [
# epsilon, delta
[1, 0.99], [0.8, 0.79], [0.5, 0.3]
]
for epsilon, delta in test17_2_fairness_params:
flag, kernel = FairVeriQ(test17_2_A, epsilon, delta)
print(f'A is ({epsilon},{delta})-fair: <{flag}>')
if not flag:
print(f' - bias kernel pair is: {kernel}')
print()
def generateBiasPair(sigma, kernel, epsilon):
psi, phi = kernel
size = len(psi)
psi = psi.reshape(size, 1) @ Dag(psi.reshape(size, 1))
phi = phi.reshape(size, 1) @ Dag(phi.reshape(size, 1))
rou_psi = epsilon * psi + (1 - epsilon) * sigma
rou_phi = epsilon * phi + (1 - epsilon) * sigma
return np.array([
rou_psi, rou_phi
])
# Test 18: generate bias pair
test18_circuit = createNoisyModelCircuit(params_iris, p=0.01, errorType='depolarizing')
test18_A = Algorithm(test18_circuit, getMeasurements(qubits_num=4), [0, 1])
print(f'Lipschitz constant: {Lipschitz(test17_2_A)[0]}\n')
flag, kernel = FairVeriQ(test18_A, epsilon=0.9, delta=0.3)
print(f'fairness: {flag}')
assert (not flag)
test18_sigma = getDensityMatrix(createInputCircuit(X_train_iris[11]))
test18_bias_pair = generateBiasPair(test18_sigma, kernel, epsilon=0.9)
test18_rou_psi, test18_rou_phi = test18_bias_pair
# print(test18_bias_pair)
print(f'epsilon=0.9, delta=0.3')
print('D: ', D(test18_rou_psi, test18_rou_phi))
print('d: ', d(test18_A, test18_rou_psi, test18_rou_phi))
|
https://github.com/Alice-Bob-SW/qiskit-alice-bob-provider
|
Alice-Bob-SW
|
from typing import Iterator, Tuple
import pytest
from qiskit import QuantumCircuit, transpile
from qiskit.extensions.quantum_initializer import Initialize
from qiskit_alice_bob_provider.local.backend import ProcessorSimulator
from qiskit_alice_bob_provider.processor.description import (
ProcessorDescription,
)
from .processor_fixture import SimpleAllToAllProcessor, SimpleProcessor
def gen_circuits() -> Iterator[Tuple[str, QuantumCircuit, int]]:
circ = QuantumCircuit(2, 2)
circ.initialize('0', 0)
circ.initialize('+', 1)
circ.x(0)
circ.rz(11, 1)
circ.cx(0, 1)
circ.measure(0, 0)
circ.measure_x(1, 1)
yield ('qubits_competing_for_duration', circ, 11100110)
sub_sub_circ = QuantumCircuit(2, 0)
sub_sub_circ.x(0)
sub_sub_circ.rz(11, 1)
sub_circ = QuantumCircuit(2, 0)
sub_circ.append(sub_sub_circ.to_instruction(), [1, 0])
circ = QuantumCircuit(2, 2)
circ.initialize('0', 0)
circ.initialize('+', 1)
circ.append(sub_circ.to_instruction(), [1, 0])
circ.cx(0, 1)
circ.measure(0, 0)
circ.measure_x(1, 1)
yield ('sub_circuits', circ, 11100110)
def gen_all_to_all_circuits() -> Iterator[Tuple[str, QuantumCircuit, int]]:
circ = QuantumCircuit(2, 2)
circ.initialize('0', 0) # 1e3
circ.initialize('+', 1) # 1e2
circ.x(0) # 1e7
circ.t(1) # 1e6
circ.cx(0, 1) # 1e1
circ.measure(0, 0) # 1e5
circ.measure_x(1, 1) # 1e4
yield ('qubits_competing_for_duration', circ, 10101010)
sub_sub_circ = QuantumCircuit(2, 0)
sub_sub_circ.x(0) # 1e7
sub_sub_circ.t(1) # 1e6
sub_circ = QuantumCircuit(2, 0)
sub_circ.append(sub_sub_circ.to_instruction(), [1, 0])
circ = QuantumCircuit(2, 2)
circ.initialize('0', 0) # 1e3
circ.initialize('+', 1) # 1e2
circ.append(sub_circ.to_instruction(), [1, 0])
circ.cx(0, 1) # 1e1
circ.measure(0, 0) # 1e5
circ.measure_x(1, 1) # 1e4
yield ('sub_circuits', circ, 10101010)
@pytest.mark.parametrize(
'tup,proc',
[(tup, SimpleAllToAllProcessor(1)) for tup in gen_all_to_all_circuits()]
+ [(tup, SimpleProcessor(1)) for tup in gen_circuits()],
)
def test_circuit(
tup: Tuple[str, QuantumCircuit, int], proc: ProcessorDescription
) -> None:
_, circ, expected_duration = tup
backend = ProcessorSimulator(proc)
transpiled = transpile(circ, backend)
try:
assert transpiled.duration == expected_duration
except AssertionError:
print('==== Original circuit ====')
print(circ)
print('==== Transpiled circuit ====')
print(transpiled)
raise
@pytest.mark.parametrize(
'proc',
[
SimpleProcessor(1),
SimpleAllToAllProcessor(1),
],
)
def test_reset_to_initialize(proc: ProcessorDescription) -> None:
circ = QuantumCircuit(1, 0)
circ.reset(0)
backend = ProcessorSimulator(proc)
transpiled = transpile(circ, backend)
initializes = transpiled.get_instructions('initialize')
print(circ)
print(transpiled)
assert len(initializes) == 1
assert isinstance(initializes[0].operation, Initialize)
assert initializes[0].operation.params[0] == '0'
assert len(transpiled.get_instructions('reset')) == 0
|
https://github.com/gustavomirapalheta/Quantum-Computing-with-Qiskit
|
gustavomirapalheta
|
import numpy as np
D0 = np.array([[1],[0]]); D0
NOT = np.array([[0,1],[1,0]]); NOT
NOT.dot(D0)
D1 = np.array([[0],[1]]); D1
NOT.dot(D1)
AND = np.array([[1,1,1,0],[0,0,0,1]]); AND
AND.dot(np.kron(D0,D0))
AND.dot(np.kron(D0,D1))
AND.dot(np.kron(D1,D0))
AND.dot(np.kron(D1,D1))
OR = np.array([[1,0,0,0],[0,1,1,1]]); OR
OR.dot(np.kron(D0,D0))
OR.dot(np.kron(D0,D1))
OR.dot(np.kron(D1,D0))
OR.dot(np.kron(D1,D1))
NAND = np.array([[0,0,0,1],[1,1,1,0]]); NAND
NOT.dot(AND)
NOR = np.array([[0,1,1,1],[1,0,0,0]]);NOR
NOT.dot(OR)
np.kron(NOT,AND)
OR.dot(np.kron(NOT,AND))
NOT.dot(AND).dot(np.kron(NOT,NOT))
OR
NOT.dot(OR).dot(np.kron(NOT,NOT))
AND
import numpy as np
k = np.kron
XOR = np.array([[1,0,0,1],
[0,1,1,0]])
AND = np.array(([1,1,1,0],
[0,0,0,1]))
k(XOR,AND)
def criaCompat(nbits,nvezes):
nlins = 2**(nbits*nvezes)
ncols = 2**nbits
compat = np.zeros(nlins*ncols).reshape(nlins,ncols)
for i in range(ncols):
formato = "0" + str(nbits) + "b"
binario = format(i,formato)*nvezes
decimal = int(binario,2)
compat[decimal,i] = 1
return(compat)
criaCompat(2,2)
k(XOR,AND).dot(criaCompat(2,2))
import numpy as np
k = np.kron
def criaCompat(nbits,nvezes):
nlins = 2**(nbits*nvezes)
ncols = 2**nbits
compat = np.zeros(nlins*ncols).reshape(nlins,ncols)
for i in range(ncols):
formato = "0" + str(nbits) + "b"
binario = format(i,formato)*nvezes
decimal = int(binario,2)
compat[decimal,i] = 1
return(compat)
criaCompat(2,2)
NOT = np.array([[0,1],
[1,0]])
AND3 = np.array([[1,1,1,1,1,1,1,0],
[0,0,0,0,0,0,0,1]])
OR4 = np.array([[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]])
I2 = np.array([[1,0],
[0,1]])
t1z = k(NOT,k(NOT,I2))
t2z = k(NOT,k(I2,NOT))
t3z = k(I2,k(NOT,NOT))
t4z = k(I2,k(I2,I2))
ORz = k(AND3,k(AND3,k(AND3,AND3)))
ORz = OR4.dot(ORz).dot(k(t1z,k(t2z,k(t3z,t4z))))
t1c = k(NOT,k(I2,I2))
t2c = k(I2,k(NOT,I2))
t3c = k(I2,k(I2,NOT))
t4c = k(I2,k(I2,I2))
ORc = k(AND3,k(AND3,k(AND3,AND3)))
ORc = OR4.dot(ORc).dot(k(t1c,k(t2c,k(t3c,t4c))))
compat = criaCompat(3,8)
k(ORz,ORc).dot(compat)
import numpy as np
TOFFOLI = np.array([[1,0,0,0,0,0,0,0],
[0,1,0,0,0,0,0,0],
[0,0,1,0,0,0,0,0],
[0,0,0,1,0,0,0,0],
[0,0,0,0,1,0,0,0],
[0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,0,1],
[0,0,0,0,0,0,1,0]])
TOFFOLI.dot(TOFFOLI)
import numpy as np
Z1 = np.array([[0,0,0,0,0,0,0,0],
[1,1,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0],
[0,0,1,1,0,0,0,0],
[0,0,0,0,0,0,0,0],
[0,0,0,0,1,1,0,0],
[0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,1,1]])
Z1
Z1I4 = np.array([[0,0,0,0],
[1,0,0,0],
[0,0,0,0],
[0,1,0,0],
[0,0,0,0],
[0,0,1,0],
[0,0,0,0],
[0,0,0,1]])
Z1I4
ZpY = np.zeros([8,8])
ZpY[0,0] = 1; ZpY[1,2] = 1; ZpY[2,1] = 1; ZpY[3,3] = 1
ZpY[4,4] = 1; ZpY[5,6] = 1; ZpY[6,5] = 1; ZpY[7,7] = 1
ZpY
Zfim = np.array([[1,0,1,0,1,0,1,0],
[0,1,0,1,0,1,0,1]])
Zfim.dot(TOFFOLI).dot(ZpY).dot(TOFFOLI).dot(Z1I4)
import numpy as np
fred = np.identity(8)
fred[5,5] = 0; fred[5,6] = 1
fred[6,5] = 1; fred[6,6] = 0
fred
fred.dot(fred)
import numpy as np
Fy0 = np.zeros([8,4])
Fy0[0,0] = 1; Fy0[1,1] = 1; Fy0[4,2] = 1; Fy0[5,3] = 1
Fy0
xYz = np.array([[1,1,0,0,1,1,0,0],
[0,0,1,1,0,0,1,1]])
xYz.dot(fred).dot(Fy0)
|
https://github.com/theflyingrahul/qiskitsummerschool2020
|
theflyingrahul
|
!pip install -U -r grading_tools/requirements.txt
from IPython.display import clear_output
clear_output()
import numpy as np; pi = np.pi
from qiskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram
from copy import deepcopy as make_copy
def prepare_hets_circuit(depth, angle1, angle2):
hets_circ = QuantumCircuit(depth)
hets_circ.ry(angle1, 0)
hets_circ.rz(angle1, 0)
hets_circ.ry(angle1, 1)
hets_circ.rz(angle1, 1)
for ii in range(depth):
hets_circ.cx(0,1)
hets_circ.ry(angle2,0)
hets_circ.rz(angle2,0)
hets_circ.ry(angle2,1)
hets_circ.rz(angle2,1)
return hets_circ
hets_circuit = prepare_hets_circuit(2, pi/2, pi/2)
hets_circuit.draw()
def measure_zz_circuit(given_circuit):
zz_meas = make_copy(given_circuit)
zz_meas.measure_all()
return zz_meas
zz_meas = measure_zz_circuit(hets_circuit)
zz_meas.draw()
simulator = Aer.get_backend('qasm_simulator')
result = execute(zz_meas, backend = simulator, shots=10000).result()
counts = result.get_counts(zz_meas)
plot_histogram(counts)
def measure_zz(given_circuit, num_shots = 10000):
zz_meas = measure_zz_circuit(given_circuit)
result = execute(zz_meas, backend = simulator, shots = num_shots).result()
counts = result.get_counts(zz_meas)
if '00' not in counts:
counts['00'] = 0
if '01' not in counts:
counts['01'] = 0
if '10' not in counts:
counts['10'] = 0
if '11' not in counts:
counts['11'] = 0
total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10']
zz = counts['00'] + counts['11'] - counts['01'] - counts['10']
zz = zz / total_counts
return zz
zz = measure_zz(hets_circuit)
print("<ZZ> =", str(zz))
def measure_zi(given_circuit, num_shots = 10000):
zz_meas = measure_zz_circuit(given_circuit)
result = execute(zz_meas, backend = simulator, shots = num_shots).result()
counts = result.get_counts(zz_meas)
if '00' not in counts:
counts['00'] = 0
if '01' not in counts:
counts['01'] = 0
if '10' not in counts:
counts['10'] = 0
if '11' not in counts:
counts['11'] = 0
total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10']
zi = counts['00'] - counts['11'] + counts['01'] - counts['10']
zi = zi / total_counts
return zi
def measure_iz(given_circuit, num_shots = 10000):
zz_meas = measure_zz_circuit(given_circuit)
result = execute(zz_meas, backend = simulator, shots = num_shots).result()
counts = result.get_counts(zz_meas)
if '00' not in counts:
counts['00'] = 0
if '01' not in counts:
counts['01'] = 0
if '10' not in counts:
counts['10'] = 0
if '11' not in counts:
counts['11'] = 0
total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10']
iz = counts['00'] - counts['11'] - counts['01'] + counts['10']
iz = iz / total_counts
return iz
zi = measure_zi(hets_circuit)
print("<ZI> =", str(zi))
iz = measure_iz(hets_circuit)
print("<IZ> =", str(iz))
def measure_xx_circuit(given_circuit):
xx_meas = make_copy(given_circuit)
### WRITE YOUR CODE BETWEEN THESE LINES - START
xx_meas.h(0)
xx_meas.h(1)
xx_meas.measure_all()
### WRITE YOUR CODE BETWEEN THESE LINES - END
return xx_meas
xx_meas = measure_xx_circuit(hets_circuit)
xx_meas.draw()
def measure_xx(given_circuit, num_shots = 10000):
xx_meas = measure_xx_circuit(given_circuit)
result = execute(xx_meas, backend = simulator, shots = num_shots).result()
counts = result.get_counts(xx_meas)
if '00' not in counts:
counts['00'] = 0
if '01' not in counts:
counts['01'] = 0
if '10' not in counts:
counts['10'] = 0
if '11' not in counts:
counts['11'] = 0
total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10']
xx = counts['00'] + counts['11'] - counts['01'] - counts['10']
xx = xx / total_counts
return xx
xx = measure_xx(hets_circuit)
print("<XX> =", str(xx))
def get_energy(given_circuit, num_shots = 10000):
zz = measure_zz(given_circuit, num_shots = num_shots)
iz = measure_iz(given_circuit, num_shots = num_shots)
zi = measure_zi(given_circuit, num_shots = num_shots)
xx = measure_xx(given_circuit, num_shots = num_shots)
energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx
return energy
energy = get_energy(hets_circuit)
print("The energy of the trial state is", str(energy))
hets_circuit_plus = None
hets_circuit_minus = None
### WRITE YOUR CODE BETWEEN THESE LINES - START
hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2)
hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2)
### WRITE YOUR CODE BETWEEN THESE LINES - END
energy_plus = get_energy(hets_circuit_plus, num_shots=100000)
energy_minus = get_energy(hets_circuit_minus, num_shots=100000)
print(energy_plus, energy_minus)
name = 'Pon Rahul M'
email = 'ponrahul.21it@licet.ac.in'
### Do not change the lines below
from grading_tools import grade
grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1')
grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2')
grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3')
energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0
energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0
### WRITE YOUR CODE BETWEEN THESE LINES - START
energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100)
energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100)
energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000)
energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000)
energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000)
energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000)
### WRITE YOUR CODE BETWEEN THESE LINES - END
print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100)
print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000)
print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000)
### WRITE YOUR CODE BETWEEN THESE LINES - START
I = np.array([
[1, 0],
[0, 1]
])
X = np.array([
[0, 1],
[1, 0]
])
Z = np.array([
[1, 0],
[0, -1]
])
h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \
(0.39793742) * np.kron(I, Z) + \
(-0.3979374) * np.kron(Z, I) + \
(-0.0112801) * np.kron(Z, Z) + \
(0.18093119) * np.kron(X, X)
from numpy import linalg as LA
eigenvalues, eigenvectors = LA.eig(h2_hamiltonian)
for ii, eigenvalue in enumerate(eigenvalues):
print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}")
exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)]
exact_eigenvalue = np.min(eigenvalues)
print()
print("Minimum energy is", exact_eigenvalue)
### WRITE YOUR CODE BETWEEN THESE LINES - END
|
https://github.com/sebastianvromero/qecc_shor9q
|
sebastianvromero
|
import random
import numpy as np
from qiskit import QuantumCircuit, AncillaRegister, QuantumRegister, execute, Aer
def normalize_state(a = 1, b = 0):
norm = np.sqrt(a * np.conjugate(a) + b * np.conjugate(b))
return [a / norm, b / norm]
def modulus_and_phase(a):
return (np.absolute(a), np.angle(a))
def int_to_binary(value, n_bits = 17, reverse = True):
value = int(value)
if value != 0:
bound = int(np.ceil(np.log2(value)))
if n_bits < bound: n_bits = bound
binary_format = '{0:0' + str(n_bits) + 'b}'
binary = binary_format.format(value)
if reverse: return binary[ : : -1]
else: return binary
def binary_to_int(value, reverse = True):
if reverse: value = value[ : : -1]
return int(value, 2)
def get_state(circuit, precision = 10, fancy_print = False):
# Let's simulate our circuit in order to get the final state vector!
svsim = Aer.get_backend('statevector_simulator')
# Do the simulation, return the result and get the state vector
result = execute(circuit, svsim).result().get_statevector()
if int(precision) < 8: precision = 8
result = result.round(precision)
# Returns non-zero values
state_indices = result.nonzero()[0]
states = np.empty(0)
for index in state_indices:
binary_state = int_to_binary(index)
states = np.append(states , [result[index], binary_state])
if fancy_print:
string = ''
for index in range(0, len(states), 2):
coef, bstate = states[index], states[index + 1]
string = string + f'{coef} |{bstate}> '
print(string)
return states
def random_noise(gate_label = 'Noise', reveal_error = False):
# Our circuit has 9-qubits
gate_circuit = QuantumCircuit(9, name = gate_label)
# Define randomly the number of errors to apply from 0 (no errors) up to 2
number_of_errors = random.choice(range(3))
types_of_errors = ['X', 'Y', 'Z']
qubits_wo_errors = list(range(9))
qpacks_wo_errors = list(range(9))
global gate_reveal_label
gate_reveal_label = 'I' * 9
def str_assignment(string, index, char):
string = list(string)
string[index] = str(char)
string = ''.join(string)
return string
while number_of_errors > 0:
qubit_assigned = random.choice(qpacks_wo_errors)
type_error = random.choice(types_of_errors)
number_of_errors -= 1
qubits_wo_errors.remove(qubit_assigned)
gate_reveal_label = str_assignment(gate_reveal_label, qubit_assigned, type_error)
# Remove 3-qubits packs after assign error to qubit in it
if qubit_assigned in list(range(3)):
qpacks_wo_errors = [elem for elem in qpacks_wo_errors if elem > 2]
elif qubit_assigned in list(range(3, 6)):
qpacks_wo_errors = [elem for elem in qpacks_wo_errors if (elem < 3 or elem > 5)]
else:
qpacks_wo_errors = [elem for elem in qpacks_wo_errors if elem < 6]
# Can't repeat quantum error gate applied
if type_error == 'Y':
gate_circuit.y(qubit_assigned)
break
elif type_error == 'X':
gate_circuit.x(qubit_assigned)
try: # Maybe we don't have this errors to remove
types_of_errors.remove('X')
types_of_errors.remove('Y')
except:
pass
else:
gate_circuit.z(qubit_assigned)
try: # Maybe we don't have this errors to remove
types_of_errors.remove('Y')
types_of_errors.remove('Z')
except:
pass
# Assign identity gate for the rest of qubits
for qubit in qubits_wo_errors:
gate_circuit.i(qubit)
gate = gate_circuit.to_gate()
if reveal_error: gate.label = 'Noise:\n' + gate_reveal_label
return gate
def check_error_to_ancilla(state, error = None):
if error is None: error = gate_reveal_label
binary = state[1]
error_types = ['X0', 'X1', 'X2', 'Z ']
state_ancillas = [binary[3 : 5], binary[8 : 10], binary[13 : 15], binary[-2 : ]]
ancillas = {}
for key, anc in zip(error_types, state_ancillas): ancillas[key] = anc
first_pack = list(range(0, 7, 3))
second_pack = list(range(1, 8, 3))
third_pack = list(range(2, 9, 3))
def ancilla_label(value):
if value == 0: return '10'
elif value == 1: return '11'
else: return '01'
expected = {}
for key in error_types: expected[key] = '00'
for qubit, gate in enumerate(list(error)):
n_pack = qubit // 3
key = 'X' + str(n_pack)
n_xerr = qubit % 3
if gate == 'I': continue
elif gate == 'X':
if qubit in first_pack:
expected[key] = ancilla_label(n_xerr)
elif qubit in second_pack:
expected[key] = ancilla_label(n_xerr)
else:
expected[key] = ancilla_label(n_xerr)
elif gate == 'Z':
expected['Z '] = ancilla_label(n_pack)
else:
expected['Z '] = ancilla_label(n_pack)
if qubit in first_pack:
expected[key] = ancilla_label(n_xerr)
elif qubit in second_pack:
expected[key] = ancilla_label(n_xerr)
else:
expected[key] = ancilla_label(n_xerr)
print('Error Anc. expected Anc. state Equal?\n' + '-' * 40)
for key in error_types:
print(f' {key} {expected[key]} {ancillas[key]} {expected[key] == ancillas[key]}')
def cnotnot(gate_label = 'CNOTNOT'):
gate_circuit = QuantumCircuit(3, name = gate_label)
gate_circuit.cnot(0, 1)
gate_circuit.cnot(0, 2)
gate = gate_circuit.to_gate()
return gate
def czz(gate_label = 'CZZ'):
gate_circuit = QuantumCircuit(3, name = gate_label)
gate_circuit.cz(0, 1)
gate_circuit.cz(0, 2)
gate = gate_circuit.to_gate()
return gate
def invccnot(gate_label = 'invCCNOT'):
gate_circuit = QuantumCircuit(3, name = gate_label)
gate_circuit.x(0)
gate_circuit.ccx(0, 1, 2)
gate_circuit.x(0)
gate = gate_circuit.to_gate()
return gate
def c6x(gate_label = 'C6X'):
gate_circuit = QuantumCircuit(7, name = gate_label)
for index in range(1, 7):
gate_circuit.cnot(0, index)
gate = gate_circuit.to_gate()
return gate
def invccz(gate_label = 'invCCZ'):
gate_circuit = QuantumCircuit(3, name = gate_label)
gate_circuit.x(0)
gate_circuit.h(2)
gate_circuit.ccx(0, 1, 2)
gate_circuit.h(2)
gate_circuit.x(0)
gate = gate_circuit.to_gate()
return gate
def ccz(gate_label = 'CCZ'):
gate_circuit = QuantumCircuit(3, name = gate_label)
gate_circuit.h(2)
gate_circuit.ccx(0, 1, 2)
gate_circuit.h(2)
gate = gate_circuit.to_gate()
return gate
|
https://github.com/jonasmaziero/computacao_quantica_qiskit
|
jonasmaziero
|
import numpy as np
N = 10**7; d = np.arange(2,N+1,1); dl = np.zeros(len(d)); nv = np.zeros(len(d))
n = 1
for j in range(2,len(d)):
nv[j] = n
dl[j] = 2**n
if d[j] >= dl[j]:
n += 1
from matplotlib import pyplot as plt
plt.plot(d,d, label=r'$d$')
plt.plot(d,dl, label=r'$dl$')
plt.xlabel(r'$d$'); plt.ylabel(r'$dl$'); plt.show()
plt.plot(d,nv, label=r'$n$')
plt.xlabel(r'$d$'); plt.ylabel(r'$n$'); plt.show()
|
https://github.com/ColibrITD-SAS/mpqp
|
ColibrITD-SAS
|
from mpqp.execution.vqa import *
from mpqp import QCircuit
from mpqp.gates import *
from sympy import symbols
x, y, z = symbols("x y z")
circuit = QCircuit([Rx(x, 0), Ry(y, 1), Rz(z,0), Rz(z,1), CNOT(0,1)])
print(circuit)
from mpqp.measures import Observable, ExpectationMeasure
from mpqp.execution import IBMDevice, run
import numpy as np
matrix = np.array([[4, 2, 3, 8],
[2, -3, 1, 0],
[3, 1, -1, 5],
[8, 0, 5, 2]])
hamiltonian = Observable(matrix)
circuit.add(ExpectationMeasure([0, 1], observable=hamiltonian, shots=0))
minimize(circuit, Optimizer.COBYLA, IBMDevice.AER_SIMULATOR, optimizer_options={"maxiter":200})
circuit2 = circuit.without_measurements()
def cost_function(params):
r1 = run(circuit2, IBMDevice.AER_SIMULATOR_STATEVECTOR, {x: params[0], y: params[1], z: params[2]})
r2 = run(circuit, IBMDevice.AER_SIMULATOR, {x: params[0], y: params[1], z: params[2]})
return abs(r1.amplitudes[0]) - np.sqrt(r2.expectation_value**3)
minimize(cost_function, Optimizer.COBYLA, nb_params=3, optimizer_options={"maxiter":200})
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test TrotterQRTE."""
import unittest
from test.python.algorithms import QiskitAlgorithmsTestCase
from ddt import ddt, data, unpack
import numpy as np
from scipy.linalg import expm
from numpy.testing import assert_raises
from qiskit_algorithms.time_evolvers import TimeEvolutionProblem, TrotterQRTE
from qiskit.primitives import Estimator
from qiskit import QuantumCircuit
from qiskit.circuit.library import ZGate
from qiskit.quantum_info import Statevector, Pauli, SparsePauliOp
from qiskit.utils import algorithm_globals
from qiskit.circuit import Parameter
from qiskit.opflow import PauliSumOp, X, MatrixOp
from qiskit.synthesis import SuzukiTrotter, QDrift
@ddt
class TestTrotterQRTE(QiskitAlgorithmsTestCase):
"""TrotterQRTE tests."""
def setUp(self):
super().setUp()
self.seed = 50
algorithm_globals.random_seed = self.seed
@data(
(
None,
Statevector([0.29192658 - 0.45464871j, 0.70807342 - 0.45464871j]),
),
(
SuzukiTrotter(),
Statevector([0.29192658 - 0.84147098j, 0.0 - 0.45464871j]),
),
)
@unpack
def test_trotter_qrte_trotter_single_qubit(self, product_formula, expected_state):
"""Test for default TrotterQRTE on a single qubit."""
with self.assertWarns(DeprecationWarning):
operator = PauliSumOp(SparsePauliOp([Pauli("X"), Pauli("Z")]))
initial_state = QuantumCircuit(1)
time = 1
evolution_problem = TimeEvolutionProblem(operator, time, initial_state)
trotter_qrte = TrotterQRTE(product_formula=product_formula)
evolution_result_state_circuit = trotter_qrte.evolve(evolution_problem).evolved_state
np.testing.assert_array_almost_equal(
Statevector.from_instruction(evolution_result_state_circuit).data, expected_state.data
)
@data((SparsePauliOp(["X", "Z"]), None), (SparsePauliOp(["X", "Z"]), Parameter("t")))
@unpack
def test_trotter_qrte_trotter(self, operator, t_param):
"""Test for default TrotterQRTE on a single qubit with auxiliary operators."""
if not t_param is None:
operator = SparsePauliOp(operator.paulis, np.array([t_param, 1]))
# LieTrotter with 1 rep
aux_ops = [Pauli("X"), Pauli("Y")]
initial_state = QuantumCircuit(1)
time = 3
num_timesteps = 2
evolution_problem = TimeEvolutionProblem(
operator, time, initial_state, aux_ops, t_param=t_param
)
estimator = Estimator()
expected_psi, expected_observables_result = self._get_expected_trotter_qrte(
operator,
time,
num_timesteps,
initial_state,
aux_ops,
t_param,
)
expected_evolved_state = Statevector(expected_psi)
algorithm_globals.random_seed = 0
trotter_qrte = TrotterQRTE(estimator=estimator, num_timesteps=num_timesteps)
evolution_result = trotter_qrte.evolve(evolution_problem)
np.testing.assert_array_almost_equal(
Statevector.from_instruction(evolution_result.evolved_state).data,
expected_evolved_state.data,
)
aux_ops_result = evolution_result.aux_ops_evaluated
expected_aux_ops_result = [
(expected_observables_result[-1][0], {"variance": 0, "shots": 0}),
(expected_observables_result[-1][1], {"variance": 0, "shots": 0}),
]
means = [element[0] for element in aux_ops_result]
expected_means = [element[0] for element in expected_aux_ops_result]
np.testing.assert_array_almost_equal(means, expected_means)
vars_and_shots = [element[1] for element in aux_ops_result]
expected_vars_and_shots = [element[1] for element in expected_aux_ops_result]
observables_result = evolution_result.observables
expected_observables_result = [
[(o, {"variance": 0, "shots": 0}) for o in eor] for eor in expected_observables_result
]
means = [sub_element[0] for element in observables_result for sub_element in element]
expected_means = [
sub_element[0] for element in expected_observables_result for sub_element in element
]
np.testing.assert_array_almost_equal(means, expected_means)
for computed, expected in zip(vars_and_shots, expected_vars_and_shots):
self.assertAlmostEqual(computed.pop("variance", 0), expected["variance"], 2)
self.assertEqual(computed.pop("shots", 0), expected["shots"])
@data(
(
PauliSumOp(SparsePauliOp([Pauli("XY"), Pauli("YX")])),
Statevector([-0.41614684 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j, 0.90929743 + 0.0j]),
),
(
PauliSumOp(SparsePauliOp([Pauli("ZZ"), Pauli("ZI"), Pauli("IZ")])),
Statevector([-0.9899925 - 0.14112001j, 0.0 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j]),
),
(
Pauli("YY"),
Statevector([0.54030231 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j, 0.0 + 0.84147098j]),
),
)
@unpack
def test_trotter_qrte_trotter_two_qubits(self, operator, expected_state):
"""Test for TrotterQRTE on two qubits with various types of a Hamiltonian."""
# LieTrotter with 1 rep
initial_state = QuantumCircuit(2)
evolution_problem = TimeEvolutionProblem(operator, 1, initial_state)
trotter_qrte = TrotterQRTE()
evolution_result = trotter_qrte.evolve(evolution_problem)
np.testing.assert_array_almost_equal(
Statevector.from_instruction(evolution_result.evolved_state).data, expected_state.data
)
@data(
(QuantumCircuit(1), Statevector([0.23071786 - 0.69436148j, 0.4646314 - 0.49874749j])),
(
QuantumCircuit(1).compose(ZGate(), [0]),
Statevector([0.23071786 - 0.69436148j, 0.4646314 - 0.49874749j]),
),
)
@unpack
def test_trotter_qrte_qdrift(self, initial_state, expected_state):
"""Test for TrotterQRTE with QDrift."""
with self.assertWarns(DeprecationWarning):
operator = PauliSumOp(SparsePauliOp([Pauli("X"), Pauli("Z")]))
time = 1
evolution_problem = TimeEvolutionProblem(operator, time, initial_state)
algorithm_globals.random_seed = 0
trotter_qrte = TrotterQRTE(product_formula=QDrift())
evolution_result = trotter_qrte.evolve(evolution_problem)
np.testing.assert_array_almost_equal(
Statevector.from_instruction(evolution_result.evolved_state).data,
expected_state.data,
)
@data((Parameter("t"), {}), (None, {Parameter("x"): 2}), (None, None))
@unpack
def test_trotter_qrte_trotter_param_errors(self, t_param, param_value_dict):
"""Test TrotterQRTE with raising errors for parameters."""
with self.assertWarns(DeprecationWarning):
operator = Parameter("t") * PauliSumOp(SparsePauliOp([Pauli("X")])) + PauliSumOp(
SparsePauliOp([Pauli("Z")])
)
initial_state = QuantumCircuit(1)
self._run_error_test(initial_state, operator, None, None, t_param, param_value_dict)
@data(([Pauli("X"), Pauli("Y")], None))
@unpack
def test_trotter_qrte_trotter_aux_ops_errors(self, aux_ops, estimator):
"""Test TrotterQRTE with raising errors."""
with self.assertWarns(DeprecationWarning):
operator = PauliSumOp(SparsePauliOp([Pauli("X")])) + PauliSumOp(
SparsePauliOp([Pauli("Z")])
)
initial_state = QuantumCircuit(1)
self._run_error_test(initial_state, operator, aux_ops, estimator, None, None)
@data(
(X, QuantumCircuit(1)),
(MatrixOp([[1, 1], [0, 1]]), QuantumCircuit(1)),
(PauliSumOp(SparsePauliOp([Pauli("X")])) + PauliSumOp(SparsePauliOp([Pauli("Z")])), None),
(
SparsePauliOp([Pauli("X"), Pauli("Z")], np.array([Parameter("a"), Parameter("b")])),
QuantumCircuit(1),
),
)
@unpack
def test_trotter_qrte_trotter_hamiltonian_errors(self, operator, initial_state):
"""Test TrotterQRTE with raising errors for evolution problem content."""
self._run_error_test(initial_state, operator, None, None, None, None)
@staticmethod
def _run_error_test(initial_state, operator, aux_ops, estimator, t_param, param_value_dict):
time = 1
algorithm_globals.random_seed = 0
trotter_qrte = TrotterQRTE(estimator=estimator)
with assert_raises(ValueError):
evolution_problem = TimeEvolutionProblem(
operator,
time,
initial_state,
aux_ops,
t_param=t_param,
param_value_map=param_value_dict,
)
_ = trotter_qrte.evolve(evolution_problem)
@staticmethod
def _get_expected_trotter_qrte(operator, time, num_timesteps, init_state, observables, t_param):
"""Compute reference values for Trotter evolution via exact matrix exponentiation."""
dt = time / num_timesteps
observables = [obs.to_matrix() for obs in observables]
psi = Statevector(init_state).data
if t_param is None:
ops = [Pauli(op).to_matrix() * np.real(coeff) for op, coeff in operator.to_list()]
observable_results = []
observable_results.append([np.real(np.conj(psi).dot(obs).dot(psi)) for obs in observables])
for n in range(num_timesteps):
if t_param is not None:
time_value = (n + 1) * dt
bound = operator.assign_parameters([time_value])
ops = [Pauli(op).to_matrix() * np.real(coeff) for op, coeff in bound.to_list()]
for op in ops:
psi = expm(-1j * op * dt).dot(psi)
observable_results.append(
[np.real(np.conj(psi).dot(obs).dot(psi)) for obs in observables]
)
return psi, observable_results
if __name__ == "__main__":
unittest.main()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
top = QuantumCircuit(1)
top.x(0);
bottom = QuantumCircuit(2)
bottom.cry(0.2, 0, 1);
tensored = bottom.tensor(top)
tensored.draw('mpl')
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.