repo
stringclasses
885 values
file
stringclasses
741 values
content
stringlengths
4
215k
https://github.com/aryashah2k/Quantum-Computing-Collection-Of-Resources
aryashah2k
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, execute, Aer, IBMQ # Loading your IBM Q account(s) provider = IBMQ.load_account() n = 1000 circ = QuantumCircuit(n,n) circ.h(0) for i in range(1,n): circ.cx(0,i) circ.measure(range(n),range(n)) backend = Aer.get_backend("qasm_simulator") job = execute(circ,backend) print(job.result().get_counts())
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Maximum-Likelihood estimation quantum process tomography fitter """ import numpy as np from qiskit import QiskitError from qiskit.quantum_info.operators import Choi from .base_fitter import TomographyFitter from .cvx_fit import cvxpy, cvx_fit from .lstsq_fit import lstsq_fit class ProcessTomographyFitter(TomographyFitter): """Maximum-Likelihood estimation process tomography fitter.""" def fit(self, method='auto', standard_weights=True, beta=0.5, **kwargs): """ Reconstruct a quantum channel using CVXPY convex optimization. Args: method (str): The fitter method 'auto', 'cvx' or 'lstsq'. standard_weights (bool, optional): Apply weights to tomography data based on count probability (default: True) beta (float): hedging parameter for converting counts to probabilities (default: 0.5) **kwargs (optional): kwargs for fitter method. Returns: Choi: The fitted Choi-matrix J for the channel that maximizes ||basis_matrix * vec(J) - data||_2. The Numpy matrix can be obtained from `Choi.data`. Additional Information: Choi matrix ----------- The Choi matrix object is a QuantumChannel representation which may be converted to other representations using the classes `SuperOp`, `Kraus`, `Stinespring`, `PTM`, `Chi` from the module `qiskit.quantum_info.operators`. The raw matrix data for the representation may be obtained by `channel.data`. Fitter method ------------- The 'cvx' fitter method used CVXPY convex optimization package. The 'lstsq' method uses least-squares fitting (linear inversion). The 'auto' method will use 'cvx' if the CVXPY package is found on the system, otherwise it will default to 'lstsq'. Objective function ------------------ This fitter solves the constrained least-squares minimization: minimize: ||a * x - b ||_2 subject to: x >> 0 (PSD) trace(x) = dim (trace) partial_trace(x) = identity (trace_preserving) where: a is the matrix of measurement operators a[i] = vec(M_i).H b is the vector of expectation value data for each projector b[i] ~ Tr[M_i.H * x] = (a * x)[i] x is the vectorized Choi-matrix to be fitted PSD constraint -------------- The PSD keyword constrains the fitted matrix to be postive-semidefinite. For the 'lstsq' fitter method the fitted matrix is rescaled using the method proposed in Reference [1]. For the 'cvx' fitter method the convex constraint makes the optimization problem a SDP. If PSD=False the fitted matrix will still be constrained to be Hermitian, but not PSD. In this case the optimization problem becomes a SOCP. Trace constraint ---------------- The trace keyword constrains the trace of the fitted matrix. If trace=None there will be no trace constraint on the fitted matrix. This constraint should not be used for process tomography and the trace preserving constraint should be used instead. Trace preserving (TP) constraint -------------------------------- The trace_preserving keyword constrains the fitted matrix to be TP. This should only be used for process tomography, not state tomography. Note that the TP constraint implicitly enforces the trace of the fitted matrix to be equal to the square-root of the matrix dimension. If a trace constraint is also specified that differs f rom this value the fit will likely fail. Note that this can only be used for the CVX method. CVXPY Solvers: ------- Various solvers can be called in CVXPY using the `solver` keyword argument. Solvers included in CVXPY are: 'CVXOPT': SDP and SOCP (default solver) 'SCS' : SDP and SOCP 'ECOS' : SOCP only See the documentation on CVXPY for more information on solvers. References: [1] J Smolin, JM Gambetta, G Smith, Phys. Rev. Lett. 108, 070502 (2012). Open access: arXiv:1106.5458 [quant-ph]. """ # Get fitter data data, basis_matrix, weights = self._fitter_data(standard_weights, beta) # Calculate trace of Choi-matrix from projector length _, cols = np.shape(basis_matrix) dim = int(np.sqrt(np.sqrt(cols))) if dim ** 4 != cols: raise ValueError("Input data does not correspond " "to a process matrix.") # Choose automatic method if method == 'auto': if cvxpy is None: method = 'lstsq' else: method = 'cvx' if method == 'lstsq': return Choi(lstsq_fit(data, basis_matrix, weights=weights, trace=dim, **kwargs)) if method == 'cvx': return Choi(cvx_fit(data, basis_matrix, weights=weights, trace=dim, trace_preserving=True, **kwargs)) raise QiskitError('Unrecognised fit method {}'.format(method))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.visualization.timeline import draw as timeline_draw from qiskit import QuantumCircuit, transpile from qiskit.providers.fake_provider import FakeBoeblingen backend = FakeBoeblingen() ghz = QuantumCircuit(5) ghz.h(0) ghz.cx(0,range(1,5)) circ = transpile(ghz, backend, scheduling_method="asap") timeline_draw(circ)
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import qiskit from qiskit import QuantumCircuit # creating a quantum circuit qc = QuantumCircuit(3) qc.z(0) qc.s(1) qc.t(2) qc.cx(0,1) qc.h(2) qc.ccx(0, 1, 2) qc.draw(output='mpl') # inverse of the quantum circuit inverse_qc = qc.inverse() # to draw the quantum circuit inverse_qc.draw(output='mpl') # If we measure the quantum circuit's each qubit's states qc.measure() # to draw the quantum circuit qc.draw(output='mpl') # inverse of the measured quantum circuit's qubit is not possible inverse_qc = qc.inverse() qc.measure() # to draw the quantum circuit inverse_qc.draw(output='mpl') # creating a quantum circuit m_circuit = QuantumCircuit(3) m_circuit.h(2) m_circuit.ccx(0, 1, 2) m_circuit.cz(2, 1) # draw the circuit m_circuit.draw(output='mpl') m_gate = m_circuit.to_gate() type(m_gate) new_circuit = QuantumCircuit(5) new_circuit.append(m_gate, [1, 2, 4]) new_circuit.draw(output='mpl') #decompose the circuit new_circuit.decompose().draw(output='mpl') from qiskit import QuantumCircuit, transpile, Aer my_circuit = QuantumCircuit(3) my_circuit.t(1) my_circuit.h(0) my_circuit.ccx(2,1,0) my_circuit.s(2) my_circuit.t(0) my_circuit.draw() my_gate = my_circuit.to_gate() my_gate my_inv_gate = my_gate.inverse() my_inv_gate my_inv_gate.name = 'My Inverse Gate' new_circuit = QuantumCircuit(3) new_circuit.append(my_inv_gate, [0,1,2]) new_circuit.draw() new_circuit.decompose().draw() my_circuit = QuantumCircuit(2) my_circuit.cx(1,0) my_circuit.cx(0,1) my_circuit.cx(1,0) my_circuit.draw() my_gate = my_circuit.to_gate() my_gate.name = "My Gate" my_controlled_gate = my_gate.control() new_circuit = QuantumCircuit(3) new_circuit.append(my_controlled_gate, [0, 1, 2]) new_circuit.draw() new_circuit.decompose().draw() from qiskit import Aer, IBMQ, QuantumCircuit, execute, transpile, assemble from qiskit.providers.aer.noise import NoiseModel from qiskit.visualization import histogram my_qc = QuantumCircuit(5) my_qc.h(0) for q in range(4): my_qc.cx(0, q+1) my_qc.measure_all() my_qc.draw() ## What is the qsphere ? ## What is the unitary simulator ? ## How can i convert a Unitary Matrix to a set of One and Two Qubit gates ? ## How can i change qiskit's defoult behaviour ? ## How do i use parameterization circuit in Qiskit ? ## Why does qiskit order it's qubit the way it does ? ## How i combine two quantum circuits ? ## What is the difference between gates and instructions ? ## How can i use a specific version of qiskit ? ## How can i implement a multi controlled Toffoli Gate ? ## How can i monitor a job send to IBM Quantum ? ## How can i convert a quantum circuit to QASM ? my_circuit = QuantumCircuit(3) my_circuit.t(1) my_circuit.h(0) my_circuit.ccx(2,1,0) my_circuit.s(2) my_circuit.t(0) my_circuit.draw('latex') my_circuit.draw('latex_source') print(my_circuit.draw('latex_source')) ## How can i bundle several circuit into a single job ? ## How can i save circuit Drawings to Different File Types ? ## How can i contruct a quantum volume circuit ? ## What trick can i do with draw methods ? ## How i can find reduced quantum states using qiskit ? ## In What different ways can i draw a quantum circuit ? ## How can i use a classical register for quantum compuation ? ## What is circuit depth and how can i calculate it ? ## How can i choose initial layout for the traspiler ? ## What are the Ancillary Qubits and how are they usefull ? ## What are registers ? ## How can i create a custom gate from matrix ? ## How can i find expectation value for an operator ? ## How can i measure the qubit midway through a quantum circuit ? ## How can i transpile a quantum circuit ? ## How can i make a noise model with qiskit ? ## How can i create a custome controlled gate ? ## How can i choose the best backend from a provider ? ## How can i perform state tomography ? ## How can i reset a qubit in a quantum circuit ## How do i perform a unitary projection in a quantum circuit ? ## How do i debuge an issue in transpiler ? ## How can i estimate Pi using a quantum computer ? ## How do i initialize a mixed states ? ## What is gate fidelity and how do i canculate it ? ## How do i check the state fedility with noisy simulator ? ## How do i change the fitter algorithm in a state tomography experiment ?
https://github.com/qiskit-community/qiskit-alt
qiskit-community
import qiskit_alt qiskit_alt.project.ensure_init(calljulia="juliacall", compile=False) julia = qiskit_alt.project.julia Main = julia.Main julia.Main.zeros(3) type(julia.Main.zeros(3)) from qiskit_nature.drivers import UnitsType, Molecule from qiskit_nature.drivers.second_quantization import ElectronicStructureDriverType, ElectronicStructureMoleculeDriver # Specify the geometry of the H_2 molecule geometry = [['H', [0., 0., 0.]], ['H', [0., 0., 0.735]]] basis = 'sto3g' molecule = Molecule(geometry=geometry, charge=0, multiplicity=1) driver = ElectronicStructureMoleculeDriver(molecule, basis=basis, driver_type=ElectronicStructureDriverType.PYSCF) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper es_problem = ElectronicStructureProblem(driver) second_q_op = es_problem.second_q_ops() fermionic_hamiltonian = second_q_op[0] qubit_converter = QubitConverter(mapper=JordanWignerMapper()) nature_qubit_op = qubit_converter.convert(fermionic_hamiltonian) nature_qubit_op.primitive import qiskit_alt.electronic_structure fermi_op = qiskit_alt.electronic_structure.fermionic_hamiltonian(geometry, basis) pauli_op = qiskit_alt.electronic_structure.jordan_wigner(fermi_op) pauli_op.simplify() # The Julia Pauli operators use a different sorting convention; we sort again for comparison. %run ../bench/jordan_wigner_nature_time.py nature_times %run ../bench/jordan_wigner_alt_time.py alt_times [t_nature / t_qk_alt for t_nature, t_qk_alt in zip(nature_times, alt_times)] %run ../bench/fermionic_nature_time.py nature_times %run ../bench/fermionic_alt_time.py alt_times [t_nature / t_qk_alt for t_nature, t_qk_alt in zip(nature_times, alt_times)] from qiskit_alt.pauli_operators import QuantumOps, PauliSum_to_SparsePauliOp import numpy as np m = np.random.rand(2**3, 2**3) # 3-qubit operator m = Main.convert(Main.Matrix, m) # Convert PythonCall.PyArray to a native Julia type pauli_sum = QuantumOps.PauliSum(m) # This is a wrapped Julia object PauliSum_to_SparsePauliOp(pauli_sum) # Convert to qiskit.quantum_info.SparsePauliOp %run ../bench/from_matrix_quantum_info.py %run ../bench/from_matrix_alt.py [t_pyqk / t_qk_alt for t_pyqk, t_qk_alt in zip(pyqk_times, qk_alt_times)] %run ../bench/pauli_from_list_qinfo.py %run ../bench/pauli_from_list_alt.py [x / y for x,y in zip(quantum_info_times, qkalt_times)] import qiskit.tools.jupyter d = qiskit.__qiskit_version__._version_dict d['qiskit_alt'] = qiskit_alt.__version__ %qiskit_version_table # %load_ext julia.magic # %julia using Random: randstring #%julia pauli_strings = [randstring("IXYZ", 10) for _ in 1:1000] # None; # %julia import Pkg; Pkg.add("BenchmarkTools") #%julia using BenchmarkTools: @btime #%julia @btime QuantumOps.PauliSum($pauli_strings) #None; #%julia pauli_sum = QuantumOps.PauliSum(pauli_strings); #%julia println(length(pauli_sum)) #%julia println(pauli_sum[1]) #6.9 * 2.29 / .343 # Ratio of time to construct PauliSum via qiskit_alt to time in pure Julia
https://github.com/madmen2/QASM
madmen2
import qiskit.quantum_info as qi from qiskit.circuit.library import FourierChecking from qiskit.tools.visualization import plot_histogram #Fourier checking algoirthm f=[1,-1,-1,-1] g=[1,1,-1,-1] #if probability of fouriere checking f,g > 0 = correlation circ = FourierChecking(f=f,g=g) circ.draw() zero = qi.Statevector.from_label('00') sv = zero.evolve(circ) probs = sv.probabilities_dict() plot_histogram(probs) # fourier transform of function g is correlated
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
import numpy as np # Import Qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer, execute from qiskit.tools.visualization import plot_histogram, plot_state_city # List Aer backends Aer.backends() from qiskit.providers.aer import QasmSimulator, StatevectorSimulator, UnitarySimulator # Construct quantum circuit qr = QuantumRegister(2, 'qr') cr = ClassicalRegister(2, 'cr') circ = QuantumCircuit(qr, cr) circ.h(qr[0]) circ.cx(qr[0], qr[1]) circ.measure(qr, cr) # Select the QasmSimulator from the Aer provider simulator = Aer.get_backend('qasm_simulator') # Execute and get counts result = execute(circ, simulator).result() counts = result.get_counts(circ) plot_histogram(counts, title='Bell-State counts') # Construct quantum circuit qr = QuantumRegister(2, 'qr') cr = ClassicalRegister(2, 'cr') circ = QuantumCircuit(qr, cr) circ.h(qr[0]) circ.cx(qr[0], qr[1]) circ.measure(qr, cr) # Select the QasmSimulator from the Aer provider simulator = Aer.get_backend('qasm_simulator') # Execute and get memory result = execute(circ, simulator, shots=10, memory=True).result() memory = result.get_memory(circ) print(memory) # Construct an empty quantum circuit qr = QuantumRegister(2) cr = ClassicalRegister(2) circ = QuantumCircuit(qr, cr) circ.measure(qr, cr) # Set the initial state opts = {"initial_statevector": np.array([1, 0, 0, 1] / np.sqrt(2))} # Select the QasmSimulator from the Aer provider simulator = Aer.get_backend('qasm_simulator') # Execute and get counts result = execute(circ, simulator, backend_options=opts).result() counts = result.get_counts(circ) plot_histogram(counts, title="Bell initial statevector") # Construct quantum circuit without measure qr = QuantumRegister(2, 'qr') circ = QuantumCircuit(qr) circ.h(qr[0]) circ.cx(qr[0], qr[1]) # Select the StatevectorSimulator from the Aer provider simulator = Aer.get_backend('statevector_simulator') # Execute and get counts result = execute(circ, simulator).result() statevector = result.get_statevector(circ) plot_state_city(statevector, title='Bell state') # Construct quantum circuit with measure qr = QuantumRegister(2, 'qr') cr = ClassicalRegister(2, 'cr') circ = QuantumCircuit(qr, cr) circ.h(qr[0]) circ.cx(qr[0], qr[1]) circ.measure(qr, cr) # Select the StatevectorSimulator from the Aer provider simulator = Aer.get_backend('statevector_simulator') # Execute and get counts result = execute(circ, simulator).result() statevector = result.get_statevector(circ) plot_state_city(statevector, title='Bell state post-measurement') # Construct an empty quantum circuit qr = QuantumRegister(2) circ = QuantumCircuit(qr) circ.iden(qr) # Set the initial state opts = {"initial_statevector": np.array([1, 0, 0, 1] / np.sqrt(2))} # Select the StatevectorSimulator from the Aer provider simulator = Aer.get_backend('statevector_simulator') # Execute and get counts result = execute(circ, simulator, backend_options=opts).result() statevector = result.get_statevector(circ) plot_state_city(statevector, title="Bell initial statevector") # Construct an empty quantum circuit qr = QuantumRegister(2) circ = QuantumCircuit(qr) circ.h(qr[0]) circ.cx(qr[0], qr[1]) # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(circ, simulator).result() unitary = result.get_unitary(circ) print("Circuit unitary:\n", unitary) # Construct an empty quantum circuit qr = QuantumRegister(2) circ = QuantumCircuit(qr) circ.iden(qr) # Set the initial unitary opts = {"initial_unitary": np.array([[ 1, 1, 0, 0], [ 0, 0, 1, -1], [ 0, 0, 1, 1], [ 1, -1, 0, 0]] / np.sqrt(2))} # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(circ, simulator, backend_options=opts).result() unitary = result.get_unitary(circ) unitary = result.get_unitary(circ) print("Initial Unitary:\n", unitary)
https://github.com/theflyingrahul/qiskitsummerschool2020
theflyingrahul
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import json from typing import Any, Callable, Optional, Tuple, Union from urllib.parse import urljoin from qiskit import QuantumCircuit, execute from qiskit.providers import JobStatus from qiskit.providers.ibmq.job import IBMQJob from .api import get_server_endpoint, send_request, get_access_token, get_submission_endpoint from .exercises import get_question_id from .util import compute_cost, get_provider, get_job, circuit_to_json, get_job_urls, uses_multiqubit_gate def _circuit_criteria( circuit: QuantumCircuit, max_qubits: Optional[int] = None, min_cost: Optional[int] = None, check_gates: Optional[bool] = False ) -> Tuple[Optional[int], Optional[int]]: if max_qubits is not None and circuit.num_qubits > max_qubits: print(f'Your circuit has {circuit.num_qubits} qubits, which exceeds the maximum allowed.') print(f'Please reduce the number of qubits in your circuit to below {max_qubits}.') return None, None try: if check_gates and not uses_multiqubit_gate(circuit): print('Your circuit appears to not use any multi-quibit gates.') print('Please review your circuit and try again.') return None, None cost = compute_cost(circuit) if min_cost is not None and cost < min_cost: print(f'Your circuit cost ({cost}) is too low. But if you are convinced that your circuit\n' 'is correct, please let us know in the `#ibm-quantum-challenge-2020` Slack channel.') return None, None return circuit.num_qubits, cost except Exception as err: print(f'Unable to compute cost: {err}') return None, None def _circuit_grading( circuit: QuantumCircuit, lab_id: str, ex_id: str, is_submit: Optional[bool] = False, max_qubits: Optional[int] = None, min_cost: Optional[int] = None, check_gates: Optional[bool] = False ) -> Tuple[Optional[dict], Optional[str]]: payload = None server = None if not isinstance(circuit, QuantumCircuit): print(f'Expected a QuantumCircuit, but was given {type(circuit)}') print(f'Please provide a circuit as your answer.') return None, None if not is_submit: server = get_server_endpoint(lab_id, ex_id) if not server: print('Could not find a valid grading server or ' 'the grading servers are down right now.') return None, None else: server = None _, cost = _circuit_criteria( circuit, max_qubits=max_qubits, min_cost=min_cost, check_gates=check_gates ) if cost is not None: payload = { 'answer': circuit_to_json(circuit) } if is_submit: payload['questionNumber'] = get_question_id(lab_id, ex_id) else: payload['question_id'] = get_question_id(lab_id, ex_id) return payload, server def _job_grading( job_or_id: Union[IBMQJob, str], lab_id: str, ex_id: str, is_submit: Optional[bool] = False ) -> Tuple[Optional[dict], Optional[str]]: if not isinstance(job_or_id, IBMQJob) and not isinstance(job_or_id, str): print(f'Expected an IBMQJob or a job ID, but was given {type(job_or_id)}') print(f'Please submit a job as your answer.') return None, None if not is_submit: server = get_server_endpoint(lab_id, ex_id) if not server: print('Could not find a valid grading server or the grading ' 'servers are down right now.') return None, None else: server = None job = get_job(job_or_id) if isinstance(job_or_id, str) else job_or_id if not job: print('An invalid or non-existent job was specified.') return None, None job_status = job.status() if job_status in [JobStatus.CANCELLED, JobStatus.ERROR]: print(f'Job did not successfully complete: {job_status.value}.') return None, None elif job_status is not JobStatus.DONE: print(f'Job has not yet completed: {job_status.value}.') print(f'Please wait for the job (id: {job.job_id()}) to complete then try again.') return None, None header = job.result().header.to_dict() if 'qc_cost' not in header: if is_submit: print('An unprepared answer was specified. ' 'Please prepare() and grade() answer before submitting.') else: print('An unprepared answer was specified. Please prepare() answer before grading.') return None, None download_url, result_url = get_job_urls(job) if not download_url or not result_url: print('Unable to obtain job URLs') return None, None payload = { 'answer': json.dumps({ 'download_url': download_url, 'result_url': result_url }) } if is_submit: payload['questionNumber'] = get_question_id(lab_id, ex_id) else: payload['question_id'] = get_question_id(lab_id, ex_id) return payload, server def _number_grading( answer: int, lab_id: str, ex_id: str, is_submit: Optional[bool] = False ) -> Tuple[Optional[dict], Optional[str]]: if not isinstance(answer, int): print(f'Expected a integer, but was given {type(answer)}') print(f'Please provide a number as your answer.') return None, None if not is_submit: server = get_server_endpoint(lab_id, ex_id) if not server: print('Could not find a valid grading server ' 'or the grading servers are down right now.') return None, None else: server = None payload = { 'answer': str(answer) } if is_submit: payload['questionNumber'] = get_question_id(lab_id, ex_id) else: payload['question_id'] = get_question_id(lab_id, ex_id) return payload, server def prepare_circuit( circuit: QuantumCircuit, max_qubits: Optional[int] = 28, min_cost: Optional[int] = None, check_gates: Optional[bool] = False, **kwargs ) -> Optional[IBMQJob]: job = None if not isinstance(circuit, QuantumCircuit): print(f'Expected a QuantumCircuit, but was given {type(circuit)}') print(f'Please provide a circuit.') return None _, cost = _circuit_criteria( circuit, max_qubits=max_qubits, min_cost=min_cost, check_gates=check_gates ) if cost is not None: if 'backend' not in kwargs: kwargs['backend'] = get_provider().get_backend('ibmq_qasm_simulator') # execute experiments print('Starting experiment. Please wait...') job = execute( circuit, qobj_header={ 'qc_cost': cost }, **kwargs ) print(f'You may monitor the job (id: {job.job_id()}) status ' 'and proceed to grading when it successfully completes.') return job def prepare_solver( solver_func: Callable, lab_id: str, ex_id: str, problem_set: Optional[Any] = None, max_qubits: Optional[int] = 28, min_cost: Optional[int] = None, check_gates: Optional[bool] = False, **kwargs ) -> Optional[IBMQJob]: job = None if not callable(solver_func): print(f'Expected a function, but was given {type(solver_func)}') print(f'Please provide a function that returns a QuantumCircuit.') return None server = get_server_endpoint(lab_id, ex_id) if not server: print('Could not find a valid grading server or the grading servers are down right now.') return endpoint = server + 'problem-set' index, value = get_problem_set(lab_id, ex_id, endpoint) print(f'Running {solver_func.__name__}...') qc_1 = solver_func(problem_set) _, cost = _circuit_criteria( qc_1, max_qubits=max_qubits, min_cost=min_cost, check_gates=check_gates ) if value and index is not None and index >= 0 and cost is not None: qc_2 = solver_func(value) if 'backend' not in kwargs: kwargs['backend'] = get_provider().get_backend('ibmq_qasm_simulator') # execute experiments print('Starting experiments. Please wait...') job = execute( [qc_1, qc_2], qobj_header={ 'qc_index': [None, index], 'qc_cost': cost }, **kwargs ) print(f'You may monitor the job (id: {job.job_id()}) status ' 'and proceed to grading when it successfully completes.') return job def grade_circuit( circuit: QuantumCircuit, lab_id: str, ex_id: str, max_qubits: Optional[int] = 28, min_cost: Optional[int] = None ) -> bool: payload, server = _circuit_grading( circuit, lab_id, ex_id, is_submit=False, max_qubits=max_qubits, min_cost=min_cost ) if payload: print('Grading your answer. Please wait...') return grade_answer( payload, server + 'validate-answer' ) return False def grade_job( job_or_id: Union[IBMQJob, str], lab_id: str, ex_id: str ) -> bool: payload, server = _job_grading(job_or_id, lab_id, ex_id, is_submit=False) if payload: print('Grading your answer. Please wait...') return grade_answer( payload, server + 'validate-answer' ) return False def grade_number( answer: int, lab_id: str, ex_id: str ) -> bool: payload, server = _number_grading(answer, lab_id, ex_id, is_submit=False) if payload: print('Grading your answer. Please wait...') return grade_answer( payload, server + 'validate-answer' ) return False def submit_circuit( circuit: QuantumCircuit, lab_id: str, ex_id: str, max_qubits: Optional[int] = 28, min_cost: Optional[int] = None ) -> bool: payload, _ = _circuit_grading( circuit, lab_id, ex_id, is_submit=True, max_qubits=max_qubits, min_cost=min_cost ) if payload: print('Submitting your answer. Please wait...') return submit_answer(payload) return False def submit_job( job_or_id: IBMQJob, lab_id: str, ex_id: str, ) -> bool: payload, _ = _job_grading(job_or_id, lab_id, ex_id, is_submit=True) if payload: print('Submitting your answer. Please wait...') return submit_answer(payload) return False def submit_number( answer: int, lab_id: str, ex_id: str ) -> bool: payload, _ = _number_grading(answer, lab_id, ex_id, is_submit=True) if payload: print('Submitting your answer. Please wait...') return submit_answer(payload) return False def get_problem_set( lab_id: str, ex_id: str, endpoint: str ) -> Tuple[Optional[int], Optional[Any]]: problem_set_response = None try: payload = {'question_id': get_question_id(lab_id, ex_id)} problem_set_response = send_request(endpoint, query=payload, method='GET') except Exception as err: print('Unable to obtain the problem set') if problem_set_response: status = problem_set_response.get('status') if status == 'valid': try: index = problem_set_response.get('index') value = json.loads(problem_set_response.get('value')) return index, value except Exception as err: print(f'Problem set could not be processed: {err}') else: cause = problem_set_response.get('cause') print(f'Problem set failed: {cause}') return None, None def grade_answer(payload: dict, endpoint: str, cost: Optional[int] = None) -> bool: try: answer_response = send_request(endpoint, body=payload) status = answer_response.get('status', None) cause = answer_response.get('cause', None) score = cost if cost else answer_response.get('score', None) handle_grade_response(status, score=score, cause=cause) return status == 'valid' or status is True except Exception as err: print(f'Failed: {err}') return False def submit_answer(payload: dict) -> bool: try: access_token = get_access_token() baseurl = get_submission_endpoint() endpoint = urljoin(baseurl, './challenges/answers') submit_response = send_request( endpoint, body=payload, query={'access_token': access_token} ) status = submit_response.get('status', None) if status is None: status = submit_response.get('valid', None) cause = submit_response.get('cause', None) handle_submit_response(status, cause=cause) return status == 'valid' or status is True except Exception as err: print(f'Failed: {err}') return False def handle_grade_response( status: Optional[str], score: Optional[int] = None, cause: Optional[str] = None ) -> None: if status == 'valid': print('\nCongratulations 🎉! Your answer is correct.') if score is not None: print(f'Your score is {score}.') elif status == 'invalid': print(f'\nOops 😕! {cause}') print('Please review your answer and try again.') elif status == 'notFinished': print(f'Job has not finished: {cause}') print(f'Please wait for the job to complete then try again.') else: print(f'Failed: {cause}') print('Unable to grade your answer.') def handle_submit_response( status: Union[str, bool], cause: Optional[str] = None ) -> None: if status == 'valid' or status is True: print('\nSuccess 🎉! Your answer has been submitted.') elif status == 'invalid' or status is False: print(f'\nOops 😕! {"Your answer is incorrect" if cause is None else cause}') print('Make sure your answer is correct and successfully graded before submitting.') elif status == 'notFinished': print(f'Job has not finished: {cause}') print(f'Please wait for the job to complete, grade it, and then try to submit again.') else: print(f'Failed: {cause}') print('Unable to submit your answer at this time.')
https://github.com/grossiM/Qiskit_workshop1019
grossiM
import pylab import numpy as np from qiskit import BasicAer from qiskit.tools.visualization import plot_histogram from qiskit.aqua import QuantumInstance from qiskit.aqua import run_algorithm from qiskit.aqua.algorithms import Grover from qiskit.aqua.components.oracles import LogicalExpressionOracle, TruthTableOracle input_3sat_instance = ''' c example DIMACS-CNF 3-SAT p cnf 3 5 -1 -2 -3 0 1 -2 3 0 1 2 -3 0 1 -2 -3 0 -1 2 3 0 ''' oracle = LogicalExpressionOracle(input_3sat_instance) grover = Grover(oracle) backend = BasicAer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024) result = grover.run(quantum_instance) print(result['result']) plot_histogram(result['measurement']) params = { 'problem': { 'name': 'search', }, 'algorithm': { 'name': 'Grover' }, 'oracle': { 'name': 'LogicalExpressionOracle', 'expression': input_3sat_instance }, 'backend': { 'shots': 1000, }, } result_dict = run_algorithm(params, backend=backend) plot_histogram(result_dict['measurement']) expression = '(w ^ x) & ~(y ^ z) & (x & y & z)' oracle = LogicalExpressionOracle(expression) grover = Grover(oracle) result = grover.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=1024)) plot_histogram(result['measurement']) truthtable = '1000000000000001' oracle = TruthTableOracle(truthtable) grover = Grover(oracle) result = grover.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=1024)) plot_histogram(result['measurement']) #solution from hide_toggle import hide_toggle hide_toggle(for_next=True) sat_cnf = ''' c prova.cnf c p cnf 2 2 1 -2 0 -1 2 0 ''' print(sat_cnf) oracle_2 = LogicalExpressionOracle(sat_cnf) my_grover = Grover(oracle_2) backend = BasicAer.get_backend('qasm_simulator') quantum_grover = QuantumInstance(backend, shots=1024) result = grover.run(quantum_grover) print(result['result'])
https://github.com/tushdon2/Qiskit_Hackathon_IITR_2021
tushdon2
# importing required libraries from tensorflow import keras import os from pathlib import Path # downloading the ImageNet model with output layer removed and input shape (224, 224, 3) base_model = keras.applications.VGG16( weights = 'imagenet', input_shape = (224, 224, 3), include_top = False) base_model.summary() # Freeze base model base_model.trainable = False # Create inputs with correct shape inputs = keras.Input(shape=(224, 224, 3)) x = base_model(inputs, training=False) # Add pooling layer or flatten layer x = keras.layers.GlobalAveragePooling2D()(x) # Add final dense layer outputs = keras.layers.Dense(6, activation = 'softmax')(x) # Combine inputs and outputs to create model model = keras.Model(inputs, outputs) model.summary() # compile the model model.compile(loss='categorical_crossentropy', metrics=['accuracy']) # Augment the Data datagen = keras.preprocessing.image.ImageDataGenerator( samplewise_center = True, # set each sample mean to 0 rotation_range = 10, # randomly rotate images in the range (degrees, 0 to 180) zoom_range = 0.1, # Randomly zoom image width_shift_range = 0.1, # randomly shift images horizontally (fraction of total width) height_shift_range = 0.1, # randomly shift images vertically (fraction of total height) horizontal_flip = True, # randomly flip images vertical_flip = True) # load and iterate training dataset dirPath = os.path.join(Path(os.path.realpath("__file__")).parent.parent, "assets/data") train_it = datagen.flow_from_directory(dirPath + "/train", target_size = (224, 224), color_mode = 'rgb', class_mode = "categorical", batch_size = 8) # load and iterate validation dataset valid_it = datagen.flow_from_directory(dirPath + "/valid", target_size = (224, 224), color_mode = 'rgb', class_mode = "categorical", batch_size = 8) # Train the Model model.fit(train_it, validation_data = valid_it, steps_per_epoch = train_it.samples/train_it.batch_size, validation_steps = valid_it.samples/valid_it.batch_size, epochs = 15) # # Unfreeze the base model # base_model.trainable = True # # Compile the model with a low learning rate # model.compile(optimizer=keras.optimizers.RMSprop(learning_rate = 0.0001), # loss='categorical_crossentropy', metrics=['accuracy']) # model.fit(train_it, # validation_data = valid_it, # steps_per_epoch = train_it.samples/train_it.batch_size, # validation_steps = valid_it.samples/valid_it.batch_size, # epochs = 8) # saving the trained model dirPath = os.path.join(Path(os.path.realpath("__file__")).parent.parent, "assets/model") if not os.path.exists(dirPath): os.makedirs(dirPath) model.save(dirPath + "/hand_gesture_classify_model.h5")
https://github.com/tomtuamnuq/compare-qiskit-ocean
tomtuamnuq
import time, os, logging, warnings import numpy as np from qiskit import IBMQ from qiskit.test.mock import FakeMumbai from qiskit.providers.aer import AerSimulator from qiskit.providers.aer.noise import NoiseModel from qiskit_optimization.algorithms import CplexOptimizer from qiskit_optimization.algorithms.optimization_algorithm import OptimizationResultStatus from utilities.helpers import create_qaoa_meo, create_quadratic_programs_from_paths TEST_DIR = 'TEST_DATA' + "/" + time.strftime("%d_%m_%Y") + "/SPARSE/" RES_DIR = 'RESULTS' + "/" + time.strftime("%d_%m_%Y") + "/SPARSE/" os.makedirs(RES_DIR, exist_ok=True) TEST_DIR logger = logging.getLogger() max_iter = 5 # set maximum number of optimizer iterations def qaoa_callback(eval_ct: int, opt_pars: np.ndarray, mean: float, stdev: float) -> None: """Print number of iteration in QAOA and log.""" print("Evaluation count:", eval_ct) logger.info(f"\n Evaluation count {eval_ct} with parameters {opt_pars} and mean {mean:.2f}") if eval_ct == max_iter: logger.info(" reached maximum number of evaluations \n") # select linear programs to solve qps = create_quadratic_programs_from_paths(TEST_DIR) # init local backend simulator with noise model device = FakeMumbai() local = AerSimulator.from_backend(device) noise_model = NoiseModel.from_backend(device) conf = device.configuration() # init IBM Q Experience Simulator IBMQ.load_account() ibmq = IBMQ.get_provider(hub='ibm-q').get_backend('simulator_statevector') # init Optimizers cplex = CplexOptimizer() quantum_instance_kwargs = {"shots": 4096, "noise_model": noise_model, "optimization_level": 3} qaoa_local_sim = create_qaoa_meo(backend=local, max_iter=max_iter, **quantum_instance_kwargs) qaoa_ibmq_sim = create_qaoa_meo(backend=ibmq, coupling_map=conf.coupling_map, basis_gates=conf.basis_gates, max_iter=max_iter, qaoa_callback=qaoa_callback, **quantum_instance_kwargs) # set online job informations in IBM Q Experience qaoa_ibmq_sim.min_eigen_solver.quantum_instance.backend_options["job_tags"] = ["qaoa", "sparse", "mumbai"] def set_job_name(qp): qaoa_ibmq_sim.min_eigen_solver.quantum_instance.backend_options["job_name"] = "qaoa_sparse_5_" \ + qp.name + "_" + str(qp.get_num_vars()) warnings.filterwarnings("ignore", category=DeprecationWarning) logger.setLevel(logging.INFO) count_fail_qaoa = 0 for qp_name, qp in qps.items() : print(qp_name) print("number of qubits: ", qp.get_num_vars()) output_file_handler = logging.FileHandler(filename=RES_DIR + qp.name + ".log") logger.addHandler(output_file_handler) if qp.get_num_vars() >= 15: set_job_name(qp) qaoa = qaoa_ibmq_sim logstring = "ibmq_simulator_statevector" else: qaoa = qaoa_local_sim logstring = "local_qasm_simulator" with open(RES_DIR + qp.name + '.res', 'w') as file: file.write(str("Start " + qp.name + "\n " + str(qp.get_num_vars()) + " qubits needed")) file.write("\n " + logstring + " \n") logger.info("\n " + logstring + " \n") print(logstring) try: res_classic = cplex.solve(qp) res_quantum = qaoa.solve(qp) if res_quantum.status != OptimizationResultStatus.SUCCESS: print("QAOA minimum eigen solver found no solution.") file.write("\n QAOA minimum eigen solver found no solution. \n") count_fail_qaoa = count_fail_qaoa + 1 if count_fail_qaoa == 3: file.write("\n Stop testing \n") break else: print("QAOA minimum eigen solver successful!") count_fail_qaoa = 0 if res_quantum.fval == res_classic.fval: file.write("\n QAOA found optimal solution\n") else: print("\n optimal value QAOA "+str(res_quantum.fval) \ + " , cplex:"+ str(res_classic.fval)) file.write("\n QAOA:\n") file.write(str(res_quantum)) file.write("\n CPLEX:\n") file.write(str(res_classic)) except Exception as ex: print(qp_name, " ", type(ex).__name__, " : ", ex) file.write("\n Cplex or QAOA solver produced an exception:\n") file.write(str(ex)) count_fail_qaoa = count_fail_qaoa + 1 if count_fail_qaoa == 3: file.write("\n Stop testing because of Exception! \n") break logger.removeHandler(output_file_handler)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram qp = QuadraticProgram() qp.binary_var("x") qp.binary_var("y") qp.integer_var(lowerbound=0, upperbound=7, name="z") qp.maximize(linear={"x": 2, "y": 1, "z": 1}) qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="LE", rhs=5.5, name="xyz_leq") qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="GE", rhs=2.5, name="xyz_geq") print(qp.prettyprint()) from qiskit_optimization.converters import InequalityToEquality ineq2eq = InequalityToEquality() qp_eq = ineq2eq.convert(qp) print(qp_eq.prettyprint()) print(qp_eq.prettyprint()) from qiskit_optimization.converters import IntegerToBinary int2bin = IntegerToBinary() qp_eq_bin = int2bin.convert(qp_eq) print(qp_eq_bin.prettyprint()) print(qp_eq_bin.prettyprint()) from qiskit_optimization.converters import LinearEqualityToPenalty lineq2penalty = LinearEqualityToPenalty() qubo = lineq2penalty.convert(qp_eq_bin) print(qubo.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
''' This program sets up the Half Adder and the Full Adder and creates a .tex file with the gate geometry. It also evaluates the result with a qasm quantum simulator ''' from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, \ execute, result, Aer import os import shutil import numpy as np import lib.adder as adder import lib.quantum_logic as logic LaTex_folder_Adder_gates = str(os.getcwd())+'/Latex_quantum_gates/Adder-gates/' if not os.path.exists(LaTex_folder_Adder_gates): os.makedirs(LaTex_folder_Adder_gates) else: shutil.rmtree(LaTex_folder_Adder_gates) os.makedirs(LaTex_folder_Adder_gates) qubit_space = ['0','1'] ## Half Adder (my version) print("Test Half Adder (my version",'\n') for add0 in qubit_space: # loop over all possible additions for add1 in qubit_space: q = QuantumRegister(3, name = 'q') c = ClassicalRegister(2, name = 'c') qc = QuantumCircuit(q,c) for qubit in q: qc.reset(qubit) # initialisation if(add0== '1'): qc.x(q[0]) if(add1 == '1'): qc.x(q[1]) adder.Half_Adder(qc, q[0],q[1],q[2]) qc.measure(q[0], c[0]) qc.measure(q[2], c[1]) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) results = job.result() count = results.get_counts() print('|0', add0, '>', '+', '|0', add1, '>', '\t', count) ## Plot a sketch of the gate q = QuantumRegister(3, name = 'q') c = ClassicalRegister(2, name = 'c') qc = QuantumCircuit(q,c) qc.reset(q[2]) adder.Half_Adder(qc, q[0],q[1],q[2]) qc.measure(q[1], c[0]) qc.measure(q[2], c[1]) LaTex_code = qc.draw(output='latex_source', justify=None) # draw the circuit f_name = 'Half_Adder_gate_Benjamin.tex' with open(LaTex_folder_Adder_gates+f_name, 'w') as f: f.write(LaTex_code) ## Half Adder for two qubits (Beyond Classical book version) print("Test Half Adder Beyond Classical") for add0 in qubit_space: # loop over all possible additions for add1 in qubit_space: q = QuantumRegister(5, name = 'q') c = ClassicalRegister(2, name = 'c') qc = QuantumCircuit(q,c) # initialisation if(add0 == '1'): qc.x(q[0]) if(add1 == '1'): qc.x(q[1]) logic.XOR(qc, q[0],q[1],q[2]) qc.barrier(q) logic.AND(qc, q[0], q[1], q[3]) qc.barrier(q) qc.measure(q[2], c[0]) qc.measure(q[3], c[1]) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) results = job.result() count = results.get_counts() print('|0', add0, '>', '+', '|0', add1, '>', '\t', count) if(add0=='0' and add1=='1'): LaTex_code = qc.draw(output='latex_source', justify=None) # draw the circuit f_name = 'Half_Adder_gate_Beyond_Classical.tex' with open(LaTex_folder_Adder_gates+f_name, 'w') as f: f.write(LaTex_code) ## Full Adder for addition of two-qubits |q1>, |q2>, and a carry bit |qd> # from another calculation using a anxiliary bit |q0> with a carry qubit |cq> # which is initialised to |0> # iteration over all possible values for |q1>, |q2>, and |qd> print('\n',"Full Adder Test (my version)") for qubit_2 in qubit_space: for qubit_1 in qubit_space: for qubit_d in qubit_space: string_q1 = str(qubit_1) string_q2 = str(qubit_2) string_qd = str(qubit_d) q1 = QuantumRegister(1, name ='q1') q2 = QuantumRegister(1, name = 'q2') qd = QuantumRegister(1, name = 'qd') q0 = QuantumRegister(1, name = 'q0') c = ClassicalRegister(2, name = 'c') qc = QuantumCircuit(q1,q2,qd,q0,c) for qubit in q1: qc.reset(qubit) for qubit in q2: qc.reset(qubit) for qubit in qd: qc.reset(qubit) for qubit in q0: qc.reset(qubit) # initialise qubits which should be added for i, qubit in enumerate(q1): if(string_q1[i] == '1'): qc.x(qubit) print(1,end="") else: print(0,end="") print('\t',end="") for i, qubit in enumerate(q2): if(string_q2[i] == '1'): qc.x(qubit) print(1,end="") else: print(0,end="") print('\t',end="") for i, qubit in enumerate(qd): if(string_qd[i] == '1'): qc.x(qubit) print(1,end="") else: print(0,end="") print('\t',end="") adder.Full_Adder(qc, q1, q2, qd, q0, c[0]) qc.measure(q0, c[1]) # check the results backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) results = job.result() count = results.get_counts() print('|', qubit_1, '>', '+', '|', qubit_2, '>', '+', '|', qubit_d, '> = ' , '\t', count) if(qubit_1 == '0' and qubit_2 == '0' and qubit_d == '0'): LaTex_code = qc.draw(output='latex_source') # draw the circuit f_name = 'Full_Adder_gate_Benjamin.tex' with open(LaTex_folder_Adder_gates+f_name, 'w') as f: f.write(LaTex_code) ## Test for adding two two-qubit numbers |q1> and |q2> for qubit1_0 in qubit_space: for qubit1_1 in qubit_space: for qubit2_0 in qubit_space: for qubit2_1 in qubit_space: string_q1 = str(qubit1_1)+str(qubit1_0) string_q2 = str(qubit2_1)+str(qubit2_0) q1 = QuantumRegister(2, name ='q1') q2 = QuantumRegister(2, name = 'q2') # qubit to store carry over for significiant bit q0 = QuantumRegister(1, name = 'q0') c = ClassicalRegister(3, name = 'c') qc = QuantumCircuit(q1,q2,q0,c) for qubit in q1: qc.reset(qubit) qc.reset(q2) qc.reset(q0) # initialise qubits which should be added for i, qubit in enumerate(q1): if(string_q1[i] == '1'): qc.x(qubit) print(1,end="") else: print(0,end="") print('\t',end="") for i, qubit in enumerate(q2): if(string_q2[i] == '1'): qc.x(qubit) print(1,end="") else: print(0,end="") print('\t',end="") adder.Half_Adder(qc,q1[-1],q2[-1],q0) qc.measure(q2[-1],c[0]) adder.Full_Adder(qc, q1[-2],q2[-2], q0, q2[-1], c[1]) qc.measure(q2[-1], c[2]) # check the results backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) results = job.result() count = results.get_counts() print('|', qubit1_1, qubit1_0, '>', '+', '|', qubit2_1, qubit2_0, '> = ' , '\t', count) if(qubit1_1 == '0' and qubit1_0 == '1' and qubit2_1 == '0' and qubit2_0 == '0'): LaTex_code = qc.draw(output='latex_source') # draw the circuit # export QASM code qc.qasm(filename="one_plus_one.qasm") f_name = 'Adder_gate_for_two_two-qubit_numbers.tex' with open(LaTex_folder_Adder_gates+f_name, 'w') as f: f.write(LaTex_code) ## Adder for two arbitrary binary numbers # randomly draw number of bits from the numbers to add bit_number_q1 = int(np.ceil(10*np.random.rand()))+2 bit_number_q2 = int(np.ceil(10*np.random.rand()))+2 # prepare two random binary numbers string_q1 = [] string_q2 = [] for i in range(bit_number_q1): #string_q1.append(1) string_q1.append(int(np.round(np.random.rand()))) for i in range(bit_number_q2): string_q2.append(int(np.round(np.random.rand()))) while(len(string_q1)<len(string_q2)): string_q1 = np.insert(string_q1, 0, 0, axis=0) while(len(string_q1)>len(string_q2)): string_q2 = np.insert(string_q2, 0, 1, axis=0) string_q1 = np.array(string_q1) string_q2 = np.array(string_q2) q1 = QuantumRegister(len(string_q1), name = 'q1') q2 = QuantumRegister(len(string_q2), name = 'q2') # qubit to store carry over for initial half adder q0 = QuantumRegister(1, name = 'q0') c = ClassicalRegister(len(string_q1)+1, name = 'c') qc = QuantumCircuit(q1,q2,q0,c) for qubit in q1: qc.reset(qubit) for qubit in q2: qc.reset(qubit) qc.reset(q0) # initialise qubits which should be added for i, qubit in enumerate(q1): if(string_q1[i] == 1): qc.x(qubit) print(1,end="") else: print(0,end="") print('\n',end="") for i, qubit in enumerate(q2): if(string_q2[i] == 1): qc.x(qubit) print(1,end="") else: print(0,end="") print('\n') # initial addition of least significant bits and determining carry bit adder.Half_Adder(qc, q1[-1], q2[-1], q0) qc.measure(q2[-1], c[0]) # adding of next significant bits adder.Full_Adder(qc, q1[-2], q2[-2], q0, q2[-1], c[1]) # adding of other digits by full adder cascade for i in range(2, len(string_q1)): adder.Full_Adder(qc, q1[-i-1], # bit to add q2[-i-1], # bit to add #(and to measure as next significant bit) q2[-i+1], # carry from last calculation q2[-i], # carry for next calculation c[i]) qc.measure(q2[-len(string_q1)+1], c[len(string_q1)]) # check the results backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=10) results = job.result() count = results.get_counts() print(count) LaTex_code = qc.draw(output='latex_source') # draw the circuit f_name = 'Adder_gate_for_'+str(string_q1)+'_and_'+str(string_q2)+'.tex' print(f_name) with open(LaTex_folder_Adder_gates+f_name, 'w') as f: f.write(LaTex_code)
https://github.com/mballarin97/mps_qnn
mballarin97
# This code is part of qcircha. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Functions to create and manage QNNs, in addition to some pre-defined structures. It is used as an intermediate step to create QNNs using the definitions in the script `circuit.py`. Circuits for the `ZZFeatureMap` and `TwoLocal` schemes with all possible entangling topologies are defined. """ # Import necessary modules from qiskit import QuantumCircuit from qiskit.circuit.library import ZZFeatureMap, TwoLocal from qcircha.circuits import * def pick_circuit(num_qubits, num_reps, feature_map = 'ZZFeatureMap', var_ansatz = 'TwoLocal', alternate=True): """ Select a circuit with a feature map and a variational block. Examples below. Each block must have reps = 1, and then specify the correct number of repetitions is ensured by the :py:func:`general_qnn`. Available circuits: - 'ZZFeatureMap' : circuit with linear entanglement, used as feature map in the Power of Quantum Neural networks by Abbas et al. - 'TwoLocal' : circuit with linear entanglement, used as ansatz in the Power of Quantum Neural networks by Abbas et al. - 'Circuit15' : circuit with ring entanglement, defined in (n.15 from Kim et al.) - 'Circuit12' : circuit with linear entanglement and a piramidal structure, defined in (n.12 from Kim et al.) - 'Circuit1' : circuit without entanglement with two single qubits rotations per qubit (n.1 from Kim et al.) - 'Identity' : identity circuit - 'Circuit9' : circuit n. 9 from Kim et al. - variations of TwoLocal structures are present. Parameters ---------- num_qubits : int Number of qubits num_reps : int Number of repetitions feature_map : str or :py:class:`QuantumCircuit`, optional Type of feature map. Available options in the description. If a :py:class:`QuantumCircuit` it is used instead of the default ones. Default to 'ZZFeatureMap'. ansatz : str or :py:class:`QuantumCircuit`, optional Type of feature map. Available options in the description. If a :py:class:`QuantumCircuit` it is used instead of the default ones. Default to 'TwoLocal'. alternate : bool, optional If the feature map and the variational ansatz should be alternated in the disposition (True) or if first apply ALL the feature map repetitions and then all the ansatz repetitions (False). Default to True. Return ------ :py:class:`QuantumCircuit` quantum circuit with the correct structure """ feature_map = _select_circ(num_qubits, feature_map) var_ansatz = _select_circ(num_qubits, var_ansatz) # Build the PQC ansatz = general_qnn(num_reps, feature_map=feature_map, var_ansatz=var_ansatz, alternate=alternate, barrier=True) return ansatz def _select_circ(num_qubits, circ = 'ZZFeatureMap'): """ Select the circuit based on the possibilities Available circuits: - 'ZZFeatureMap' : circuit with linear entanglement, used as feature map in the Power of Quantum Neural networks by Abbas et al. - 'TwoLocal' : circuit with linear entanglement, used as ansatz in the Power of Quantum Neural networks by Abbas et al. - 'Circuit15' : circuit with ring entanglement, defined in (n.15 from Kim et al.) - 'Circuit12' : circuit with linear entanglement and a piramidal structure, defined in (n.12 from Kim et al.) - 'Circuit1' : easy circuit without entanglement (n.1 from Kim et al.) - 'circuit9' : circuit n. 9 from Kim et al. Parameters ---------- num_qubits : int Number of qubits circ : str or :py:class:`QuantumCircuit`, optional Type of circuit. Available options in the description. If a :py:class:`QuantumCircuit` it is used instead of the default ones. Default to 'ZZFeatureMap'. Return ------ :py:class:`QuantumCircuit` Selected quantum circuit """ # If it is a quantum circuit, directly return that. # Otherwise, go through the list if not isinstance(circ, QuantumCircuit): circ = circ.lower() if circ == 'zzfeaturemap': circ = ZZFeatureMap(num_qubits, reps=1, entanglement='linear') elif circ == 'twolocal': circ = TwoLocal(num_qubits, 'ry', 'cx', 'linear', reps=1, skip_final_rotation_layer=True) elif circ == 'twolocalx': circ = TwoLocal(num_qubits, 'rx', 'cx', 'linear', reps=1, skip_final_rotation_layer=True, name = "TwoLocalX") elif circ == 'twolocalz': circ = TwoLocal(num_qubits, 'rz', 'cx', 'linear', reps=1, skip_final_rotation_layer=True, name="TwoLocalZ") elif circ == 'zzfeaturemap_ring': circ = ZZFeatureMap(num_qubits, reps=1, entanglement='circular') elif circ == 'twolocal_ring': circ = TwoLocal(num_qubits, 'ry', 'cx', 'circular', reps=1, skip_final_rotation_layer=True) elif circ == 'zzfeaturemap_full': circ = ZZFeatureMap(num_qubits, reps=1, entanglement='full') elif circ == 'twolocal_full': circ = TwoLocal(num_qubits, 'ry', 'cx', 'full', reps=1, skip_final_rotation_layer=True) elif circ == 'twolocal_plus': circ = TwoLocal(num_qubits, ['rz', 'ry'], 'cx', 'linear', reps=1, skip_final_rotation_layer=True, name = 'TwoLocal_plus') elif circ == 'twolocal_plus_ring': circ = TwoLocal(num_qubits, ['rz', 'ry'], 'cx', 'circular', reps=1, skip_final_rotation_layer=True, name='TwoLocal_plus') elif circ == 'twolocal_plus_full': circ = TwoLocal(num_qubits, ['rz', 'ry'], 'cx', 'full', reps=1, skip_final_rotation_layer=True, name='TwoLocal_plus') elif circ == 'twolocal_parametric2q': circ = TwoLocal(num_qubits, 'ry', 'crz', 'linear', reps=1, skip_final_rotation_layer=True, name='TwoLocal_parametricRz') elif circ == 'twolocal_parametric2q_ring': circ = TwoLocal(num_qubits, 'ry', 'crz', 'circular', reps=1, skip_final_rotation_layer=True, name='TwoLocal_parametricRz') elif circ == 'twolocal_parametric2q_full': circ = TwoLocal(num_qubits, 'ry', 'crz', 'full', reps=1, skip_final_rotation_layer=True, name='TwoLocal_parametricRz') elif circ == 'twolocal_h_parametric2q': circ = TwoLocal(num_qubits, 'h', 'crx', 'linear', reps=1, skip_final_rotation_layer=True, name='TwoLocal_h_parametricRz') elif circ == 'twolocal_h_parametric2q_ring': circ = TwoLocal(num_qubits, 'h', 'crx', 'circular', reps=1, skip_final_rotation_layer=True, name='TwoLocal_h_parametricRz') elif circ == 'twolocal_h_parametric2q_full': circ = TwoLocal(num_qubits, 'h', 'crx', 'full', reps=1, skip_final_rotation_layer=True, name='TwoLocal_h_parametricRz') elif circ == 'circuit15': circ = circuit15(num_qubits, num_reps=1, barrier=False) elif circ == 'circuit12': circ = circuit12(num_qubits, num_reps=1, piramidal=True, barrier=False) elif circ == 'circuit9': circ = circuit9(num_qubits, num_reps=1, barrier = False) elif circ == 'circuit10': circ = circuit10(num_qubits, num_reps=1, barrier=False) elif circ == 'circuit1': circ = circuit1(num_qubits, num_reps = 1, barrier = False) elif circ == 'identity': circ = identity(num_qubits) elif circ == 'mps': circ = mps_circ(num_qubits) else: raise ValueError(f'Circuit {circ} is not implemented.') return circ
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumCircuit from qiskit.circuit.library.arithmetic.piecewise_chebyshev import PiecewiseChebyshev f_x, degree, breakpoints, num_state_qubits = lambda x: np.arcsin(1 / x), 2, [2, 4], 2 pw_approximation = PiecewiseChebyshev(f_x, degree, breakpoints, num_state_qubits) pw_approximation._build() qc = QuantumCircuit(pw_approximation.num_qubits) qc.h(list(range(num_state_qubits))) qc.append(pw_approximation.to_instruction(), qc.qubits) qc.draw(output='mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.providers.fake_provider import FakeHanoi backend = FakeHanoi() config = backend.configuration() # Basic Features print("This backend is called {0}, and is on version {1}. It has {2} qubit{3}. It " "{4} OpenPulse programs. The basis gates supported on this device are {5}." "".format(config.backend_name, config.backend_version, config.n_qubits, '' if config.n_qubits == 1 else 's', 'supports' if config.open_pulse else 'does not support', config.basis_gates)) config.dt # units of seconds config.meas_levels config.dtm config.meas_map config.drive(0) config.measure(0) config.acquire(0) props = backend.properties() def describe_qubit(qubit, properties): """Print a string describing some of reported properties of the given qubit.""" # Conversion factors from standard SI units us = 1e6 ns = 1e9 GHz = 1e-9 print("Qubit {0} has a \n" " - T1 time of {1} microseconds\n" " - T2 time of {2} microseconds\n" " - U2 gate error of {3}\n" " - U2 gate duration of {4} nanoseconds\n" " - resonant frequency of {5} GHz".format( qubit, properties.t1(qubit) * us, properties.t2(qubit) * us, properties.gate_error('sx', qubit), properties.gate_length('sx', qubit) * ns, properties.frequency(qubit) * GHz)) describe_qubit(0, props) defaults = backend.defaults() q0_freq = defaults.qubit_freq_est[0] # Hz q0_meas_freq = defaults.meas_freq_est[0] # Hz GHz = 1e-9 print("DriveChannel(0) defaults to a modulation frequency of {} GHz.".format(q0_freq * GHz)) print("MeasureChannel(0) defaults to a modulation frequency of {} GHz.".format(q0_meas_freq * GHz)) calibrations = defaults.instruction_schedule_map print(calibrations) measure_schedule = calibrations.get('measure', range(config.n_qubits)) measure_schedule.draw(backend=backend) # You can use `has` to see if an operation is defined. Ex: Does qubit 3 have an x gate defined? calibrations.has('x', 3) # Some circuit operations take parameters. U1 takes a rotation angle: calibrations.get('u1', 0, P0=3.1415) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/JackHidary/quantumcomputingbook
JackHidary
# install release containing NeutralAtomDevice and IonDevice classes !pip install cirq~=0.5.0 import cirq import numpy as np import cirq.ion as ci from cirq import Simulator import itertools import random ### number of qubits qubit_num = 5 ### define your qubits as line qubits for a linear ion trap qubit_list = cirq.LineQubit.range(qubit_num) ### make your ion trap device with desired gate times and qubits us = 1000*cirq.Duration(nanos=1) ion_device = ci.IonDevice(measurement_duration=100*us, twoq_gates_duration=200*us, oneq_gates_duration=10*us, qubits=qubit_list) # Single Qubit Z rotation by Pi/5 radians ion_device.validate_gate(cirq.Rz(np.pi/5)) # Single Qubit X rotation by Pi/7 radians ion_device.validate_gate(cirq.Rx(np.pi/7)) # Molmer-Sorensen gate by Pi/4 ion_device.validate_gate(cirq.MS(np.pi/4)) #Controlled gate with non-integer exponent (rotation angle must be a multiple of pi) ion_device.validate_gate(cirq.TOFFOLI) ### length of your hidden string string_length = qubit_num-1 ### generate all possible strings of length string_length, and randomly choose one as your hidden string all_strings = ["".join(seq) for seq in itertools.product("01", repeat=string_length)] hidden_string = random.choice(all_strings) ### make the circuit for BV with clifford gates circuit = cirq.Circuit() circuit.append([cirq.X(qubit_list[qubit_num-1])]) for i in range(qubit_num): circuit.append([cirq.H(qubit_list[i])]) for i in range(qubit_num-1): if hidden_string[i] == '1': circuit.append([cirq.CNOT(qubit_list[i], qubit_list[qubit_num-1])]) for i in range(qubit_num - 1): circuit.append([cirq.H(qubit_list[i])]) circuit.append([cirq.measure(qubit_list[i])]) print("Doing Bernstein-Vazirani algorithm with hidden string", hidden_string, "\n") print("Clifford Circuit:\n") print(circuit, "\n") ### convert the clifford circuit into circuit with ion trap native gates ion_circuit = ion_device.decompose_circuit(circuit) print(repr(ion_circuit)) print("Iontrap Circuit: \n", ion_circuit, "\n") ### convert the clifford circuit into circuit with ion trap native gates ion_circuit = ion_device.decompose_circuit(circuit) optimized_ion_circuit=cirq.merge_single_qubit_gates_into_phased_x_z(ion_circuit) print("Iontrap Circuit: \n", ion_circuit, "\n") ### run the ion trap circuit simulator = Simulator() clifford_result = simulator.run(circuit) result = simulator.run(ion_circuit) measurement_results = '' for i in range(qubit_num-1): if result.measurements[str(i)][0][0]: measurement_results += '1' else: measurement_results += '0' print("Hidden string is:", hidden_string) print("Measurement results are:", measurement_results) print("Found answer using Bernstein-Vazirani:", hidden_string == measurement_results)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumCircuit from qiskit.circuit.library.arithmetic.piecewise_chebyshev import PiecewiseChebyshev f_x, degree, breakpoints, num_state_qubits = lambda x: np.arcsin(1 / x), 2, [2, 4], 2 pw_approximation = PiecewiseChebyshev(f_x, degree, breakpoints, num_state_qubits) pw_approximation._build() qc = QuantumCircuit(pw_approximation.num_qubits) qc.h(list(range(num_state_qubits))) qc.append(pw_approximation.to_instruction(), qc.qubits) qc.draw(output='mpl')
https://github.com/renatawong/quantum-maxcut
renatawong
''' (C) Renata Wong (CGU-CoIC, NCTS-NTU) 2023 This is the accompanying code for the paper "Bioinspired Quantum Oracle Circuits for Biomolecular Solutions of the Maximum Cut Problem" by Weng-Long Chang, Renata Wong, Yu-Hao Chen, Wen-Yu Chung, Ju-Chin Chen, and Athanasios V. Vasilakos ''' from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister import numpy as np ''' Create the quantum circuit for the 3-vertex example num_vertices = n = number of vertices num_enges = m = number of edges ''' ''' PLEASE FILL IN THE EDGE LIST FOR YOUR GRAPH IN THE LINE BELOW ''' permanent_edge_list = [[0,1], [1,2]] # t is the maximum possible number of edges in a cut and is assumed to be known upfront t = 2 num_vertices = len({x for l in permanent_edge_list for x in l}) num_edges = len(permanent_edge_list) range_z = (num_edges * (num_edges + 3)) / 2 range_r = 2 * num_edges range_s = num_edges aux = QuantumRegister(1, 'aux') z_reg = QuantumRegister(range_z, 'z_reg') s_reg = QuantumRegister(range_s, 's_reg') r_reg = QuantumRegister(range_r, 'r_reg') x_reg = QuantumRegister(num_vertices, 'x_reg') readout = ClassicalRegister(num_vertices, 'out') qc = QuantumCircuit(x_reg, r_reg, s_reg, z_reg, aux, readout) system_size = qc.num_qubits print('System size:', system_size) ''' Create r_matrix to store indices of the register r_reg ''' r_matrix = [ [0 for j in range(2)] for i in range(num_edges)] rij = 0 for i in range(num_edges): for j in range(2): r_matrix[i][j] = rij rij += 1 #print('r matrix', r_matrix) ''' Create z_matrix to store indices of z_reg Note that i starts with index 1, not 0. ''' z_matrix = [ [ 0 for j in range(num_edges + 1) ] for i in range(num_edges + 1) ] zij = 0 for i in range(1, num_edges + 1): for j in range(i + 1): z_matrix[i][j] = zij zij += 1 #print('z matrix', z_matrix) ''' Define the EIIAC subcircuit ''' sq = QuantumRegister(5,'sq') sc = QuantumCircuit(sq, name='EIIAC') sc.x(sq[1]) sc.ccx(sq[0], sq[1], sq[2]) sc.x(sq[1]) sc.x(sq[0]) sc.ccx(sq[0], sq[1], sq[3]) sc.x(sq[0]) sc.x(sq[2]) sc.x(sq[3]) sc.ccx(sq[2], sq[3], sq[4]) sc.x(sq[2]) sc.x(sq[3]) eiiac = sc.to_instruction() ''' Initialize the system and set it in a uniform superpostion ''' for qubit in s_reg: qc.x(qubit) for qubit in x_reg: qc.h(qubit) qc.x(aux) qc.h(aux) #qc.barrier() ''' NOTE: There will always be an even number of solutions, since under maximum cut 101 is the same as 010. For Fig. 1 in the paper, we set the number of solutions to 2. YOU MAY NEED TO ADJUST THE NUMBER OF SOLUTIONS. ''' num_solutions = 2 num_runs = int(np.ceil(np.pi * np.sqrt((2**num_vertices) / num_solutions)) / 4) print('Number of iterations:', num_runs) ''' Amplitude amplification ''' for run in range(num_runs): # Apply EIIAC # It is assumed that the two vertices in the x_reg share an edge edge_list = permanent_edge_list.copy() for index, edge in enumerate(edge_list): [index_v1, index_v2] = edge cfe_qubits = [] cfe_qubits += [x_reg[index_v1]] cfe_qubits += [x_reg[index_v2]] cfe_qubits += [r_reg[k] for k in range(2*index, 2*index+2)] cfe_qubits += [s_reg[index]] qc.append(eiiac, cfe_qubits) #qc.barrier() # Apply INO if t > 0: qc.cx(s_reg[0], z_reg[1]) # Apply PNO if t < num_edges: qc.x(s_reg[0]) qc.cx(s_reg[0], z_reg[0]) qc.x(s_reg[0]) # Apply CIO and CPO for i in range(1, num_edges): for j in reversed(range(i+1)): if j+1 <= t and num_edges-i+j == t: qc.ccx(s_reg[i], z_reg[z_matrix[i][j]], z_reg[z_matrix[i+1][j+1]]) if j <= t and num_edges-i+j-1 == t: qc.x(s_reg[i]) qc.ccx(s_reg[i], z_reg[z_matrix[i][j]], z_reg[z_matrix[i+1][j+1]]) qc.x(s_reg[i]) ''' Which qubit of register z_reg is used here depends on how many edges are there in the cut. For the example in Fig. 1 we expect 2 edges, and therefore we choose qubit 2 (counting from 0, 1, 2, etc.). This qubit should be in the state 1. YOU MAY NEED TO ADJUST THE CONTROL QUBIT IN THE CX GATE. ''' #qc.barrier() qc.cx(z_reg[z_matrix[num_edges][t]], aux) #qc.barrier() ''' Uncomputing CIO, CPO, PNO, INO, and EIIAC, ''' # uncompute CIO and CPO for i in range(1, num_edges): for j in reversed(range(i+1)): if j+1 <= t and num_edges-i+j == t: qc.ccx(s_reg[i], z_reg[z_matrix[i][j]], z_reg[z_matrix[i+1][j+1]]) if j <= t and num_edges-i+j-1 == t: qc.x(s_reg[i]) qc.ccx(s_reg[i], z_reg[z_matrix[i][j]], z_reg[z_matrix[i+1][j+1]]) qc.x(s_reg[i]) # Uncompute PNO if t < num_edges: qc.x(s_reg[0]) qc.cx(s_reg[0], z_reg[0]) qc.x(s_reg[0]) # Uncompute INO if t > 0: qc.cx(s_reg[0], z_reg[1]) # Uncompute EIIAC index = len(edge_list) - 1 for edge in reversed(edge_list): [index_v1, index_v2] = edge cfe_qubits = [] cfe_qubits += [x_reg[index_v1]] cfe_qubits += [x_reg[index_v2]] cfe_qubits += [r_reg[k] for k in range(2*index, 2*index+2)] cfe_qubits += [s_reg[index]] index -= 1 qc.append(eiiac.inverse(), cfe_qubits) ''' Diffusion operations ''' qc.barrier() for qubit in x_reg: qc.h(qubit) qc.x(qubit) qc.h(x_reg[len(x_reg) - 1]) multiplexer = [x_reg[i] for i in range(len(x_reg) - 1)] qc.mcx(multiplexer, x_reg[len(x_reg) - 1]) qc.h(x_reg[len(x_reg) - 1]) for qubit in x_reg: qc.x(qubit) qc.h(qubit) #qc.barrier() ''' Measurement ''' cuts = [] for i in range(len(x_reg)): cuts.append(x_reg[i]) # Reverse the order in which the output is shown so that it can be read from left to right. cuts.reverse() qc.measure(cuts, readout) from qiskit import Aer, execute from qiskit.visualization import plot_histogram from qiskit.providers.aer import QasmSimulator, StatevectorSimulator simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend = simulator, shots = 1024).result() counts = result.get_counts() # Uncomment to save the output #plot_histogram(counts).savefig('example.svg') plot_histogram(counts) qc.draw('mpl')
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ This module contains the definition of a base class for feature map. Several types of commonly used approaches. """ from collections import OrderedDict import copy import itertools import logging import numpy as np from qiskit import QuantumCircuit, QuantumRegister from qiskit.quantum_info import Pauli from qiskit.qasm import pi from sympy.core.numbers import NaN, Float from qiskit.aqua import Operator from qiskit.aqua.components.feature_maps import FeatureMap, self_product logger = logging.getLogger(__name__) class PauliExpansion(FeatureMap): """ Mapping data with the second order expansion followed by entangling gates. Refer to https://arxiv.org/pdf/1804.11326.pdf for details. """ CONFIGURATION = { 'name': 'PauliExpansion', 'description': 'Pauli expansion for feature map (any order)', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'Pauli_Expansion_schema', 'type': 'object', 'properties': { 'depth': { 'type': 'integer', 'default': 2, 'minimum': 1 }, 'entangler_map': { 'type': ['array', 'null'], 'default': None }, 'entanglement': { 'type': 'string', 'default': 'full', 'oneOf': [ {'enum': ['full', 'linear']} ] }, 'paulis': { 'type': ['array'], "items": { "type": "string" }, 'default': ['Z', 'ZZ'] } }, 'additionalProperties': False } } def __init__(self, feature_dimension, depth=2, entangler_map=None, entanglement='full', paulis=['Z', 'ZZ'], data_map_func=self_product): """Constructor. Args: feature_dimension (int): number of features depth (int): the number of repeated circuits entangler_map (list[list]): describe the connectivity of qubits, each list describes [source, target], or None for full entanglement. Note that the order is the list is the order of applying the two-qubit gate. entanglement (str): ['full', 'linear'], generate the qubit connectivitiy by predefined topology paulis (str): a comma-seperated string for to-be-used paulis data_map_func (Callable): a mapping function for data x """ self.validate(locals()) super().__init__() self._num_qubits = self._feature_dimension = feature_dimension self._depth = depth if entangler_map is None: self._entangler_map = self.get_entangler_map(entanglement, feature_dimension) else: self._entangler_map = self.validate_entangler_map(entangler_map, feature_dimension) self._pauli_strings = self._build_subset_paulis_string(paulis) self._data_map_func = data_map_func self._magic_num = np.nan self._param_pos = OrderedDict() self._circuit_template = self._build_circuit_template() def _build_subset_paulis_string(self, paulis): # fill out the paulis to the number of qubits temp_paulis = [] for pauli in paulis: len_pauli = len(pauli) for possible_pauli_idx in itertools.combinations(range(self._num_qubits), len_pauli): string_temp = ['I'] * self._num_qubits for idx in range(len(possible_pauli_idx)): string_temp[-possible_pauli_idx[idx] - 1] = pauli[-idx - 1] temp_paulis.append(''.join(string_temp)) # clean up string that can not be entangled. final_paulis = [] for pauli in temp_paulis: where_z = np.where(np.asarray(list(pauli[::-1])) != 'I')[0] if len(where_z) == 1: final_paulis.append(pauli) else: is_valid = True for src, targ in itertools.combinations(where_z, 2): if [src, targ] not in self._entangler_map: is_valid = False break if is_valid: final_paulis.append(pauli) else: logger.warning("Due to the limited entangler_map," " {} is skipped.".format(pauli)) logger.info("Pauli terms include: {}".format(final_paulis)) return final_paulis def _build_circuit_template(self): x = np.asarray([self._magic_num] * self._num_qubits) qr = QuantumRegister(self._num_qubits, name='q') qc = self.construct_circuit(x, qr) for index in range(len(qc.data)): gate_param = qc.data[index][0].params param_sub_pos = [] for x in range(len(gate_param)): if isinstance(gate_param[x], NaN): param_sub_pos.append(x) if param_sub_pos != []: self._param_pos[index] = param_sub_pos return qc def _extract_data_for_rotation(self, pauli, x): where_non_i = np.where(np.asarray(list(pauli[::-1])) != 'I')[0] return x[where_non_i] def _construct_circuit_with_template(self, x): coeffs = [self._data_map_func(self._extract_data_for_rotation(pauli, x)) for pauli in self._pauli_strings] * self._depth qc = copy.deepcopy(self._circuit_template) data_idx = 0 for key, value in self._param_pos.items(): new_param = coeffs[data_idx] for pos in value: qc.data[key].params[pos] = Float(2. * new_param) # rotation angle is 2x data_idx += 1 return qc def construct_circuit(self, x, qr=None, inverse=False): """ Construct the second order expansion based on given data. Args: x (numpy.ndarray): 1-D to-be-transformed data. qr (QauntumRegister): the QuantumRegister object for the circuit, if None, generate new registers with name q. inverse (bool): whether or not inverse the circuit Returns: QuantumCircuit: a quantum circuit transform data x. """ if not isinstance(x, np.ndarray): raise TypeError("x must be numpy array.") if x.ndim != 1: raise ValueError("x must be 1-D array.") if x.shape[0] != self._num_qubits: raise ValueError("number of qubits and data dimension must be the same.") if qr is None: qc = self._construct_circuit_with_template(x) else: qc = QuantumCircuit(qr) for _ in range(self._depth): for i in range(self._num_qubits): qc.u2(0, pi, qr[i]) for pauli in self._pauli_strings: coeff = self._data_map_func(self._extract_data_for_rotation(pauli, x)) p = Pauli.from_label(pauli) qc += Operator.construct_evolution_circuit([[coeff, p]], 1, 1, qr) if inverse: qc = qc.inverse() return qc
https://github.com/aaghazaly/quantum-project-using-qiskit
aaghazaly
from argparse import ArgumentParser, Namespace, BooleanOptionalAction from qiskit import QuantumCircuit as qc from qiskit import QuantumRegister as qr from qiskit import transpile from qiskit_aer import AerSimulator from qiskit.result import Counts from matplotlib.pyplot import show, subplots, xticks, yticks from math import pi, sqrt from heapq import nlargest class GroversAlgorithm: def __init__(self, title: str = "Grover's Algorithm", n_qubits: int = 5, search: set[int] = { 11, 9, 0, 3 }, shots: int = 1000, fontsize: int = 10, print: bool = False, combine_states: bool = False) -> None: """ _summary_ Args: title (str, optional): Window title. Defaults to "Grover's Algorithm". n_qubits (int, optional): Number of qubits. Defaults to 5. search (set[int], optional): Set of nonnegative integers to search for using Grover's algorithm. Defaults to { 11, 9, 0, 3 }. shots (int, optional): Amount of times the algorithm is simulated. Defaults to 10000. fontsize (int, optional): Histogram's font size. Defaults to 10. print (bool, optional): Whether or not to print quantum circuit(s). Defaults to False. combine_states (bool, optional): Whether to combine all non-winning states into 1 bar labeled "Others" or not. Defaults to False. """ # Parsing command line arguments self._parser: ArgumentParser = ArgumentParser(description = "Run grover's algorithm via command line", add_help = False) self._init_parser(title, n_qubits, search, shots, fontsize, print, combine_states) self._args: Namespace = self._parser.parse_args() # Set of nonnegative ints to search for self.search: set[int] = set(self._args.search) # Set of m N-qubit binary strings representing target state(s) (i.e. self.search in base 2) self._targets: set[str] = { f"{s:0{self._args.n_qubits}b}" for s in self.search } # N-qubit quantum register self._qubits: qr = qr(self._args.n_qubits, "qubit") def _print_circuit(self, circuit: qc, name: str) -> None: """Print quantum circuit. Args: circuit (qc): Quantum circuit to print. name (str): Quantum circuit's name. """ print(f"\n{name}:\n{circuit}") def _oracle(self, targets: set[str]) -> qc: """Mark target state(s) with negative phase. Args: targets (set[str]): N-qubit binary string(s) representing target state(s). Returns: qc: Quantum circuit representation of oracle. """ # Create N-qubit quantum circuit for oracle oracle = qc(self._qubits, name = "Oracle") for target in targets: # Reverse target state since Qiskit uses little-endian for qubit ordering target = target[::-1] # Flip zero qubits in target for i in range(self._args.n_qubits): if target[i] == "0": # Pauli-X gate oracle.x(i) # Simulate (N - 1)-control Z gate # 1. Hadamard gate oracle.h(self._args.n_qubits - 1) # 2. (N - 1)-control Toffoli gate oracle.mcx(list(range(self._args.n_qubits - 1)), self._args.n_qubits - 1) # 3. Hadamard gate oracle.h(self._args.n_qubits - 1) # Flip back to original state for i in range(self._args.n_qubits): if target[i] == "0": # Pauli-X gate oracle.x(i) # Display oracle, if applicable if self._args.print: self._print_circuit(oracle, "ORACLE") return oracle def _diffuser(self) -> qc: """Amplify target state(s) amplitude, which decreases the amplitudes of other states and increases the probability of getting the correct solution (i.e. target state(s)). Returns: qc: Quantum circuit representation of diffuser (i.e. Grover's diffusion operator). """ # Create N-qubit quantum circuit for diffuser diffuser = qc(self._qubits, name = "Diffuser") # Hadamard gate diffuser.h(self._qubits) # Oracle with all zero target state diffuser.append(self._oracle({"0" * self._args.n_qubits}), list(range(self._args.n_qubits))) # Hadamard gate diffuser.h(self._qubits) # Display diffuser, if applicable if self._args.print: self._print_circuit(diffuser, "DIFFUSER") return diffuser def _grover(self) -> qc: """Create quantum circuit representation of Grover's algorithm, which consists of 4 parts: (1) state preparation/initialization, (2) oracle, (3) diffuser, and (4) measurement of resulting state. Steps 2-3 are repeated an optimal number of times (i.e. Grover's iterate) in order to maximize probability of success of Grover's algorithm. Returns: qc: Quantum circuit representation of Grover's algorithm. """ # Create N-qubit quantum circuit for Grover's algorithm grover = qc(self._qubits, name = "Grover Circuit") # Intialize qubits with Hadamard gate (i.e. uniform superposition) grover.h(self._qubits) # # Apply barrier to separate steps grover.barrier() # Apply oracle and diffuser (i.e. Grover operator) optimal number of times for _ in range(int((pi / 4) * sqrt((2 ** self._args.n_qubits) / len(self._targets)))): grover.append(self._oracle(self._targets), list(range(self._args.n_qubits))) grover.append(self._diffuser(), list(range(self._args.n_qubits))) # Measure all qubits once finished grover.measure_all() # Display grover circuit, if applicable if self._args.print: self._print_circuit(grover, "GROVER CIRCUIT") return grover def _outcome(self, winners: list[str], counts: Counts) -> None: """Print top measurement(s) (state(s) with highest frequency) and target state(s) in binary and decimal form, determine if top measurement(s) equals target state(s), then print result. Args: winners (list[str]): State(s) (N-qubit binary string(s)) with highest probability of being measured. counts (Counts): Each state and its respective frequency. """ print("WINNER(S):") print(f"Binary = {winners}\nDecimal = {[ int(key, 2) for key in winners ]}\n") print("TARGET(S):") print(f"Binary = {self._targets}\nDecimal = {self.search}\n") if not all(key in self._targets for key in winners): print("Target(s) not found...") else: winners_frequency, total = 0, 0 for value, frequency in counts.items(): if value in winners: winners_frequency += frequency total += frequency print(f"Target(s) found with {winners_frequency / total:.2%} accuracy!") def _show_histogram(self, histogram_data) -> None: """Print outcome and display histogram of simulation results. Args: data: Each state and its respective frequency. """ # State(s) with highest count and their frequencies winners = { winner : histogram_data.get(winner) for winner in nlargest(len(self._targets), histogram_data, key = histogram_data.get) } # Print outcome self._outcome(list(winners.keys()), histogram_data) # X-axis and y-axis value(s) for winners, respectively winners_x_axis = [ str(winner) for winner in [*winners] ] winners_y_axis = [ *winners.values() ] # All other states (i.e. non-winners) and their frequencies others = { state : frequency for state, frequency in histogram_data.items() if state not in winners } # X-axis and y-axis value(s) for all other states, respectively other_states_x_axis = "Others" if self._args.combine else [*others] other_states_y_axis = [ sum([*others.values()]) ] if self._args.combine else [ *others.values() ] # Create histogram for simulation results figure, axes = subplots(num = "Grover's Algorithm — Results", layout = "constrained") axes.bar(winners_x_axis, winners_y_axis, color = "green", label = "Target") axes.bar(other_states_x_axis, other_states_y_axis, color = "red", label = "Non-target") axes.legend(fontsize = self._args.fontsize) axes.grid(axis = "y", ls = "dashed") axes.set_axisbelow(True) # Set histogram title, x-axis title, and y-axis title respectively axes.set_title(f"Outcome of {self._args.shots} Simulations", fontsize = int(self._args.fontsize * 1.45)) axes.set_xlabel("States (Qubits)", fontsize = int(self._args.fontsize * 1.3)) axes.set_ylabel("Frequency", fontsize = int(self._args.fontsize * 1.3)) # Set font properties for x-axis and y-axis labels respectively xticks(fontsize = self._args.fontsize, family = "monospace", rotation = 0 if self._args.combine else 70) yticks(fontsize = self._args.fontsize, family = "monospace") # Set properties for annotations displaying frequency above each bar annotation = axes.annotate("", xy = (0, 0), xytext = (5, 5), xycoords = "data", textcoords = "offset pixels", ha = "center", va = "bottom", family = "monospace", weight = "bold", fontsize = self._args.fontsize, bbox = dict(facecolor = "white", alpha = 0.4, edgecolor = "None", pad = 0) ) def _hover(event) -> None: """Display frequency above each bar upon hovering over it. Args: event: Matplotlib event. """ visibility = annotation.get_visible() if event.inaxes == axes: for bars in axes.containers: for bar in bars: cont, _ = bar.contains(event) if cont: x, y = bar.get_x() + bar.get_width() / 2, bar.get_y() + bar.get_height() annotation.xy = (x, y) annotation.set_text(y) annotation.set_visible(True) figure.canvas.draw_idle() return if visibility: annotation.set_visible(False) figure.canvas.draw_idle() # Display histogram id = figure.canvas.mpl_connect("motion_notify_event", _hover) show() figure.canvas.mpl_disconnect(id) def run(self) -> None: """ Run Grover's algorithm simulation. """ # Simulate Grover's algorithm locally backend = AerSimulator(method = "density_matrix") # Generate optimized grover circuit for simulation transpiled_circuit = transpile(self._grover(), backend, optimization_level = 2) # Run Grover's algorithm simulation job = backend.run(transpiled_circuit, shots = self._args.shots) # Get simulation results results = job.result() # Get each state's histogram data (including frequency) from simulation results data = results.get_counts() # Display simulation results self._show_histogram(data) def _init_parser(self, title: str, n_qubits: int, search: set[int], shots: int, fontsize: int, print: bool, combine_states: bool) -> None: """ Helper method to initialize command line argument parser. Args: title (str): Window title. n_qubits (int): Number of qubits. search (set[int]): Set of nonnegative integers to search for using Grover's algorithm. shots (int): Amount of times the algorithm is simulated. fontsize (int): Histogram's font size. print (bool): Whether or not to print quantum circuit(s). combine_states (bool): Whether to combine all non-winning states into 1 bar labeled "Others" or not. """ self._parser.add_argument("-H, --help", action = "help", help = "show this help message and exit") self._parser.add_argument("-T, --title", type = str, default = title, dest = "title", metavar = "<title>", help = f"window title (default: \"{title}\")") self._parser.add_argument("-n, --n-qubits", type = int, default = n_qubits, dest = "n_qubits", metavar = "<n_qubits>", help = f"number of qubits (default: {n_qubits})") self._parser.add_argument("-s, --search", default = search, type = int, nargs = "+", dest = "search", metavar = "<search>", help = f"nonnegative integers to search for with Grover's algorithm (default: {search})") self._parser.add_argument("-S, --shots", type = int, default = shots, dest = "shots", metavar = "<shots>", help = f"amount of times the algorithm is simulated (default: {shots})") self._parser.add_argument("-f, --font-size", type = int, default = fontsize, dest = "fontsize", metavar = "<font_size>", help = f"histogram's font size (default: {fontsize})") self._parser.add_argument("-p, --print", action = BooleanOptionalAction, type = bool, default = print, dest = "print", help = f"whether or not to print quantum circuit(s) (default: {print})") self._parser.add_argument("-c, --combine", action = BooleanOptionalAction, type = bool, default = combine_states, dest = "combine", help = f"whether to combine all non-winning states into 1 bar labeled \"Others\" or not (default: {combine_states})") if __name__ == "__main__": GroversAlgorithm().run()
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) ### added h gate ### qc.h(1) qc.cx(1, 0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1, 0) qc.h(1) return qc
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# You can show the phase of each state and use # degrees instead of radians from qiskit.quantum_info import DensityMatrix import numpy as np from qiskit import QuantumCircuit from qiskit.visualization import plot_state_qsphere qc = QuantumCircuit(2) qc.h([0, 1]) qc.cz(0,1) qc.ry(np.pi/3, 0) qc.rx(np.pi/5, 1) qc.z(1) matrix = DensityMatrix(qc) plot_state_qsphere(matrix, show_state_phases = True, use_degrees = True)
https://github.com/mspronesti/qlearnkit
mspronesti
# TODO: uncomment the next line after release qlearnkit 0.2.0 #!pip install qlearnkit !pip install matplotlib import numpy as np from qlearnkit.algorithms.qsvm import QSVClassifier from sklearn.preprocessing import MinMaxScaler from sklearn.datasets import load_iris from sklearn.svm import SVC from matplotlib import pyplot as plt from qiskit import BasicAer from qiskit.circuit.library import PauliFeatureMap from qiskit.utils import QuantumInstance # import some data to play with iris = load_iris() mms = MinMaxScaler() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset X = mms.fit_transform(X) y = iris.target seed = 42 encoding_map = PauliFeatureMap(2) quantum_instance = QuantumInstance(BasicAer.get_backend('statevector_simulator'), shots=1024, optimization_level=1, seed_simulator=seed, seed_transpiler=seed) svc = SVC(kernel='linear') qsvc = QSVClassifier(encoding_map=encoding_map, quantum_instance=quantum_instance) svc.fit(X,y) qsvc.fit(X,y) h = 0.1 # step size in the mesh # create a mesh to plot in x_min, x_max = X[:, 0].min() - 0.2, X[:, 0].max() + 0.2 y_min, y_max = X[:, 1].min() - 0.2, X[:, 1].max() + 0.2 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['SVC with linear kernel', 'QSVC with Pauli feature map'] for i, clf in enumerate((svc, qsvc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. plt.subplot(2, 1, i + 1) plt.subplots_adjust(wspace=0.4, hspace=0.4) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap="RdBu", alpha=0.8) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap="RdBu",edgecolor="grey" ) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title(titles[i]) plt.show()
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
# Checking the version of PYTHON; we only support > 3.5 import sys if sys.version_info < (3,5): raise Exception('Please use Python version 3.5 or greater.') # useful additional packages import numpy as np import random import re # regular expressions module # importing the QISKit from qiskit import QuantumCircuit, QuantumProgram #import Qconfig # Quantum program setup Q_program = QuantumProgram() #Q_program.set_api(Qconfig.APItoken, Qconfig.config['url']) # set the APIToken and API url # Creating registers qr = Q_program.create_quantum_register("qr", 2) cr = Q_program.create_classical_register("cr", 4) singlet = Q_program.create_circuit('singlet', [qr], [cr]) singlet.x(qr[0]) singlet.x(qr[1]) singlet.h(qr[0]) singlet.cx(qr[0],qr[1]) ## Alice's measurement circuits # measure the spin projection of Alice's qubit onto the a_1 direction (X basis) measureA1 = Q_program.create_circuit('measureA1', [qr], [cr]) measureA1.h(qr[0]) measureA1.measure(qr[0],cr[0]) # measure the spin projection of Alice's qubit onto the a_2 direction (W basis) measureA2 = Q_program.create_circuit('measureA2', [qr], [cr]) measureA2.s(qr[0]) measureA2.h(qr[0]) measureA2.t(qr[0]) measureA2.h(qr[0]) measureA2.measure(qr[0],cr[0]) # measure the spin projection of Alice's qubit onto the a_3 direction (standard Z basis) measureA3 = Q_program.create_circuit('measureA3', [qr], [cr]) measureA3.measure(qr[0],cr[0]) ## Bob's measurement circuits # measure the spin projection of Bob's qubit onto the b_1 direction (W basis) measureB1 = Q_program.create_circuit('measureB1', [qr], [cr]) measureB1.s(qr[1]) measureB1.h(qr[1]) measureB1.t(qr[1]) measureB1.h(qr[1]) measureB1.measure(qr[1],cr[1]) # measure the spin projection of Bob's qubit onto the b_2 direction (standard Z basis) measureB2 = Q_program.create_circuit('measureB2', [qr], [cr]) measureB2.measure(qr[1],cr[1]) # measure the spin projection of Bob's qubit onto the b_3 direction (V basis) measureB3 = Q_program.create_circuit('measureB3', [qr], [cr]) measureB3.s(qr[1]) measureB3.h(qr[1]) measureB3.tdg(qr[1]) measureB3.h(qr[1]) measureB3.measure(qr[1],cr[1]) ## Lists of measurement circuits aliceMeasurements = [measureA1, measureA2, measureA3] bobMeasurements = [measureB1, measureB2, measureB3] # Define the number of singlets N numberOfSinglets = 500 aliceMeasurementChoices = [random.randint(1, 3) for i in range(numberOfSinglets)] # string b of Alice bobMeasurementChoices = [random.randint(1, 3) for i in range(numberOfSinglets)] # string b' of Bob circuits = [] # the list in which the created circuits will be stored for i in range(numberOfSinglets): # create the name of the i-th circuit depending on Alice's and Bob's measurement choices circuitName = str(i) + ':A' + str(aliceMeasurementChoices[i]) + '_B' + str(bobMeasurementChoices[i]) # create the joint measurement circuit # add Alice's and Bob's measurement circuits to the singlet state curcuit Q_program.add_circuit(circuitName, singlet + # singlet state circuit aliceMeasurements[aliceMeasurementChoices[i]-1] + # measurement circuit of Alice bobMeasurements[bobMeasurementChoices[i]-1] # measurement circuit of Bob ) # add the created circuit to the circuits list circuits.append(circuitName) print(circuits[0]) result = Q_program.execute(circuits, backend='local_qasm_simulator', shots=1, max_credits=5, wait=10, timeout=240) print(result) result.get_counts(circuits[0]) abPatterns = [ re.compile('..00$'), # search for the '..00' output (Alice obtained -1 and Bob obtained -1) re.compile('..01$'), # search for the '..01' output re.compile('..10$'), # search for the '..10' output (Alice obtained -1 and Bob obtained 1) re.compile('..11$') # search for the '..11' output ] aliceResults = [] # Alice's results (string a) bobResults = [] # Bob's results (string a') for i in range(numberOfSinglets): res = list(result.get_counts(circuits[i]).keys())[0] # extract the key from the dict and transform it to str; execution result of the i-th circuit if abPatterns[0].search(res): # check if the key is '..00' (if the measurement results are -1,-1) aliceResults.append(-1) # Alice got the result -1 bobResults.append(-1) # Bob got the result -1 if abPatterns[1].search(res): aliceResults.append(1) bobResults.append(-1) if abPatterns[2].search(res): # check if the key is '..10' (if the measurement results are -1,1) aliceResults.append(-1) # Alice got the result -1 bobResults.append(1) # Bob got the result 1 if abPatterns[3].search(res): aliceResults.append(1) bobResults.append(1) aliceKey = [] # Alice's key string k bobKey = [] # Bob's key string k' # comparing the stings with measurement choices for i in range(numberOfSinglets): # if Alice and Bob have measured the spin projections onto the a_2/b_1 or a_3/b_2 directions if (aliceMeasurementChoices[i] == 2 and bobMeasurementChoices[i] == 1) or (aliceMeasurementChoices[i] == 3 and bobMeasurementChoices[i] == 2): aliceKey.append(aliceResults[i]) # record the i-th result obtained by Alice as the bit of the secret key k bobKey.append(- bobResults[i]) # record the multiplied by -1 i-th result obtained Bob as the bit of the secret key k' keyLength = len(aliceKey) # length of the secret key abKeyMismatches = 0 # number of mismatching bits in Alice's and Bob's keys for j in range(keyLength): if aliceKey[j] != bobKey[j]: abKeyMismatches += 1 # function that calculates CHSH correlation value def chsh_corr(result): # lists with the counts of measurement results # each element represents the number of (-1,-1), (-1,1), (1,-1) and (1,1) results respectively countA1B1 = [0, 0, 0, 0] # XW observable countA1B3 = [0, 0, 0, 0] # XV observable countA3B1 = [0, 0, 0, 0] # ZW observable countA3B3 = [0, 0, 0, 0] # ZV observable for i in range(numberOfSinglets): res = list(result.get_counts(circuits[i]).keys())[0] # if the spins of the qubits of the i-th singlet were projected onto the a_1/b_1 directions if (aliceMeasurementChoices[i] == 1 and bobMeasurementChoices[i] == 1): for j in range(4): if abPatterns[j].search(res): countA1B1[j] += 1 if (aliceMeasurementChoices[i] == 1 and bobMeasurementChoices[i] == 3): for j in range(4): if abPatterns[j].search(res): countA1B3[j] += 1 if (aliceMeasurementChoices[i] == 3 and bobMeasurementChoices[i] == 1): for j in range(4): if abPatterns[j].search(res): countA3B1[j] += 1 # if the spins of the qubits of the i-th singlet were projected onto the a_3/b_3 directions if (aliceMeasurementChoices[i] == 3 and bobMeasurementChoices[i] == 3): for j in range(4): if abPatterns[j].search(res): countA3B3[j] += 1 # number of the results obtained from the measurements in a particular basis total11 = sum(countA1B1) total13 = sum(countA1B3) total31 = sum(countA3B1) total33 = sum(countA3B3) # expectation values of XW, XV, ZW and ZV observables (2) expect11 = (countA1B1[0] - countA1B1[1] - countA1B1[2] + countA1B1[3])/total11 # -1/sqrt(2) expect13 = (countA1B3[0] - countA1B3[1] - countA1B3[2] + countA1B3[3])/total13 # 1/sqrt(2) expect31 = (countA3B1[0] - countA3B1[1] - countA3B1[2] + countA3B1[3])/total31 # -1/sqrt(2) expect33 = (countA3B3[0] - countA3B3[1] - countA3B3[2] + countA3B3[3])/total33 # -1/sqrt(2) corr = expect11 - expect13 + expect31 + expect33 # calculate the CHSC correlation value (3) return corr corr = chsh_corr(result) # CHSH correlation value # CHSH inequality test print('CHSH correlation value: ' + str(round(corr, 3))) # Keys print('Length of the key: ' + str(keyLength)) print('Number of mismatching bits: ' + str(abKeyMismatches) + '\n') # measurement of the spin projection of Alice's qubit onto the a_2 direction (W basis) measureEA2 = Q_program.create_circuit('measureEA2', [qr], [cr]) measureEA2.s(qr[0]) measureEA2.h(qr[0]) measureEA2.t(qr[0]) measureEA2.h(qr[0]) measureEA2.measure(qr[0],cr[2]) # measurement of the spin projection of Allice's qubit onto the a_3 direction (standard Z basis) measureEA3 = Q_program.create_circuit('measureEA3', [qr], [cr]) measureEA3.measure(qr[0],cr[2]) # measurement of the spin projection of Bob's qubit onto the b_1 direction (W basis) measureEB1 = Q_program.create_circuit('measureEB1', [qr], [cr]) measureEB1.s(qr[1]) measureEB1.h(qr[1]) measureEB1.t(qr[1]) measureEB1.h(qr[1]) measureEB1.measure(qr[1],cr[3]) # measurement of the spin projection of Bob's qubit onto the b_2 direction (standard Z measurement) measureEB2 = Q_program.create_circuit('measureEB2', [qr], [cr]) measureEB2.measure(qr[1],cr[3]) # lists of measurement circuits eveMeasurements = [measureEA2, measureEA3, measureEB1, measureEB2] # list of Eve's measurement choices # the first and the second elements of each row represent the measurement of Alice's and Bob's qubits by Eve respectively eveMeasurementChoices = [] for j in range(numberOfSinglets): if random.uniform(0, 1) <= 0.5: # in 50% of cases perform the WW measurement eveMeasurementChoices.append([0, 2]) else: # in 50% of cases perform the ZZ measurement eveMeasurementChoices.append([1, 3]) circuits = [] # the list in which the created circuits will be stored for j in range(numberOfSinglets): # create the name of the j-th circuit depending on Alice's, Bob's and Eve's choices of measurement circuitName = str(j) + ':A' + str(aliceMeasurementChoices[j]) + '_B' + str(bobMeasurementChoices[j] + 2) + '_E' + str(eveMeasurementChoices[j][0]) + str(eveMeasurementChoices[j][1] - 1) # create the joint measurement circuit # add Alice's and Bob's measurement circuits to the singlet state curcuit Q_program.add_circuit(circuitName, singlet + # singlet state circuit eveMeasurements[eveMeasurementChoices[j][0]-1] + # Eve's measurement circuit of Alice's qubit eveMeasurements[eveMeasurementChoices[j][1]-1] + # Eve's measurement circuit of Bob's qubit aliceMeasurements[aliceMeasurementChoices[j]-1] + # measurement circuit of Alice bobMeasurements[bobMeasurementChoices[j]-1] # measurement circuit of Bob ) # add the created circuit to the circuits list circuits.append(circuitName) result = Q_program.execute(circuits, backend='local_qasm_simulator', shots=1, max_credits=5, wait=10, timeout=240) print(result) print(str(circuits[0]) + '\t' + str(result.get_counts(circuits[0]))) ePatterns = [ re.compile('00..$'), # search for the '00..' result (Eve obtained the results -1 and -1 for Alice's and Bob's qubits) re.compile('01..$'), # search for the '01..' result (Eve obtained the results 1 and -1 for Alice's and Bob's qubits) re.compile('10..$'), re.compile('11..$') ] aliceResults = [] # Alice's results (string a) bobResults = [] # Bob's results (string a') # list of Eve's measurement results # the elements in the 1-st column are the results obtaned from the measurements of Alice's qubits # the elements in the 2-nd column are the results obtaned from the measurements of Bob's qubits eveResults = [] # recording the measurement results for j in range(numberOfSinglets): res = list(result.get_counts(circuits[j]).keys())[0] # extract a key from the dict and transform it to str # Alice and Bob if abPatterns[0].search(res): # check if the key is '..00' (if the measurement results are -1,-1) aliceResults.append(-1) # Alice got the result -1 bobResults.append(-1) # Bob got the result -1 if abPatterns[1].search(res): aliceResults.append(1) bobResults.append(-1) if abPatterns[2].search(res): # check if the key is '..10' (if the measurement results are -1,1) aliceResults.append(-1) # Alice got the result -1 bobResults.append(1) # Bob got the result 1 if abPatterns[3].search(res): aliceResults.append(1) bobResults.append(1) # Eve if ePatterns[0].search(res): # check if the key is '00..' eveResults.append([-1, -1]) # results of the measurement of Alice's and Bob's qubits are -1,-1 if ePatterns[1].search(res): eveResults.append([1, -1]) if ePatterns[2].search(res): eveResults.append([-1, 1]) if ePatterns[3].search(res): eveResults.append([1, 1]) aliceKey = [] # Alice's key string a bobKey = [] # Bob's key string a' eveKeys = [] # Eve's keys; the 1-st column is the key of Alice, and the 2-nd is the key of Bob # comparing the strings with measurement choices (b and b') for j in range(numberOfSinglets): # if Alice and Bob measured the spin projections onto the a_2/b_1 or a_3/b_2 directions if (aliceMeasurementChoices[j] == 2 and bobMeasurementChoices[j] == 1) or (aliceMeasurementChoices[j] == 3 and bobMeasurementChoices[j] == 2): aliceKey.append(aliceResults[j]) # record the i-th result obtained by Alice as the bit of the secret key k bobKey.append(-bobResults[j]) # record the multiplied by -1 i-th result obtained Bob as the bit of the secret key k' eveKeys.append([eveResults[j][0], -eveResults[j][1]]) # record the i-th bits of the keys of Eve keyLength = len(aliceKey) # length of the secret skey abKeyMismatches = 0 # number of mismatching bits in the keys of Alice and Bob eaKeyMismatches = 0 # number of mismatching bits in the keys of Eve and Alice ebKeyMismatches = 0 # number of mismatching bits in the keys of Eve and Bob for j in range(keyLength): if aliceKey[j] != bobKey[j]: abKeyMismatches += 1 if eveKeys[j][0] != aliceKey[j]: eaKeyMismatches += 1 if eveKeys[j][1] != bobKey[j]: ebKeyMismatches += 1 eaKnowledge = (keyLength - eaKeyMismatches)/keyLength # Eve's knowledge of Bob's key ebKnowledge = (keyLength - ebKeyMismatches)/keyLength # Eve's knowledge of Alice's key corr = chsh_corr(result) # CHSH inequality test print('CHSH correlation value: ' + str(round(corr, 3)) + '\n') # Keys print('Length of the key: ' + str(keyLength)) print('Number of mismatching bits: ' + str(abKeyMismatches) + '\n') print('Eve\'s knowledge of Alice\'s key: ' + str(round(eaKnowledge * 100, 2)) + ' %') print('Eve\'s knowledge of Bob\'s key: ' + str(round(ebKnowledge * 100, 2)) + ' %')
https://github.com/minminjao/qiskit1
minminjao
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() circ=QuantumCircuit(2) circ.h(0) circ.cx(0,1) meas=QuantumCircuit(2,2) meas.barrier(range(2)) circ.add_register(meas.cregs[0]) qc=circ.compose(meas) circ.draw('mpl') meas.measure(range(2),range(2)) circ.draw('mpl') job=backend.run(circ)
https://github.com/mett29/Shor-s-Algorithm
mett29
from qiskit import QuantumCircuit, Aer, execute, IBMQ from qiskit.utils import QuantumInstance import numpy as np from qiskit.algorithms import Shor IBMQ.enable_account('ENTER API TOKEN HERE') # Enter your API token here provider = IBMQ.get_provider(hub='ibm-q') backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1000) my_shor = Shor(quantum_instance) result_dict = my_shor.factor(15) print(result_dict)
https://github.com/yaelbh/qiskit-projectq-provider
yaelbh
# -*- coding: utf-8 -*- # Copyright 2018, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. """ Example use of the ProjectQ based simulators """ import os from qiskit_addon_projectq import ProjectQProvider from qiskit import execute, QuantumCircuit, QuantumRegister, ClassicalRegister def use_projectq_backends(): ProjectQ = ProjectQProvider() qasm_sim = ProjectQ.get_backend('projectq_qasm_simulator') sv_sim = ProjectQ.get_backend('projectq_statevector_simulator') qr = QuantumRegister(2, 'qr') cr = ClassicalRegister(2, 'cr') qc = QuantumCircuit(qr, cr) qc.h(qr[0]) qc.cx(qr[0], qr[1]) # ProjectQ statevector simulator result = execute(qc, backend=sv_sim).result() print("final quantum amplitude vector: ") print(result.get_statevector(qc)) qc.measure(qr, cr) # ProjectQ simulator result = execute(qc, backend=qasm_sim, shots=100).result() print("counts: ") print(result.get_counts(qc)) if __name__ == "__main__": use_projectq_backends()
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
#!/usr/bin/env python3 # This code is part of Qiskit. # # (C) Copyright IBM 2021 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Utility to check that slow imports are not used in the default path.""" import subprocess import sys # This is not unused: importing it sets up sys.modules import qiskit # pylint: disable=unused-import def _main(): optional_imports = [ "networkx", "sympy", "pydot", "pygments", "ipywidgets", "scipy.stats", "matplotlib", "qiskit.providers.aer", "qiskit.providers.ibmq", "qiskit.ignis", "qiskit.aqua", "docplex", ] modules_imported = [] for mod in optional_imports: if mod in sys.modules: modules_imported.append(mod) if not modules_imported: sys.exit(0) res = subprocess.run( [sys.executable, "-X", "importtime", "-c", "import qiskit"], capture_output=True, encoding="utf8", check=True, ) import_tree = [ x.split("|")[-1] for x in res.stderr.split("\n") if "RuntimeWarning" not in x or "warnings.warn" not in x ] indent = -1 matched_module = None for module in import_tree: line_indent = len(module) - len(module.lstrip()) module_name = module.strip() if module_name in modules_imported: if indent > 0: continue indent = line_indent matched_module = module_name if indent > 0: if line_indent < indent: print(f"ERROR: {matched_module} is imported via {module_name}") indent = -1 matched_module = None sys.exit(len(modules_imported)) if __name__ == "__main__": _main()
https://github.com/hugoecarl/TSP-Problem-Study
hugoecarl
with open('in-exemplo.txt', 'r') as f: print(f.read()) with open('out-exemplo.txt', 'r') as f: print(f.read()) import time import matplotlib.pyplot as plt import pandas as pd import os import subprocess %matplotlib inline #Roda entradas def roda_com_entrada(executavel, arquivo_in, envs = '1', deb = '0'): with open(arquivo_in) as f: start = time.perf_counter() a = f.read() proc = subprocess.run([executavel], input=a, text=True, capture_output=True, env=dict(OMP_NUM_THREADS=envs, DEBUG=deb, **os.environ)) end = time.perf_counter() f.close() ret = '' for i in a: if i == "\n": break ret += i return (proc.stdout, end - start, int(ret)) #retorna tamanho do tour apartir do stdout def tamanho_tour(out): buf = '' for i in out: if i == " ": return float(buf) buf += i #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] tempos_2 = [] resultados1 = [] resultados2 = [] resultados3 = [] #Usando as mesmas entradas for i in range(8): print("Rodando entrada: "+str(i)) a = roda_com_entrada('./busca_local_antigo','busca-exaustiva/in-'+str(i)+'.txt') b = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt') c = roda_com_entrada('./heuristico/heuristico','busca-exaustiva/in-'+str(i)+'.txt') tempos.append(a[1]) tempos_1.append(b[1]) tempos_2.append(c[1]) tamanho_entradas.append(a[2]) resultados1.append(tamanho_tour(a[0])) resultados2.append(tamanho_tour(b[0])) resultados3.append(tamanho_tour(c[0])) #Teste com entrada um pouco maior print("Rodando entrada: 8") tempos.append(roda_com_entrada('./busca_local_antigo','maior.txt')[1]) tempos_1.append(roda_com_entrada('./busca-exaustiva/busca-exaustiva','maior.txt')[1]) tempos_2.append(roda_com_entrada('./heuristico/heuristico','maior.txt')[1]) tamanho_entradas.append(roda_com_entrada('./busca-local/busca-local','maior.txt')[2]) resultados1.append(tamanho_tour(roda_com_entrada('./busca_local_antigo','maior.txt')[0])) resultados2.append(tamanho_tour(roda_com_entrada('./busca-exaustiva/busca-exaustiva','maior.txt')[0])) resultados3.append(tamanho_tour(roda_com_entrada('./heuristico/heuristico','maior.txt')[0])) plt.title("Comparacao Desempenho") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos_1) plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_2) plt.legend(["busca-exaustiva", "busca-local","heuristico"]) plt.show() plt.title("Comparacao Desempenho") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_2) plt.legend(["busca-local","heuristico"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-local-tempo"] = pd.Series(tempos) df["busca-exaustiva-tempo"] = pd.Series(tempos_1) df["heuristica-tempo"] = pd.Series(tempos_2) df["busca-local-resultado"] = pd.Series(resultados1) df["busca-exaustiva-resultado"] = pd.Series(resultados2) df["heuristica-resultado"] = pd.Series(resultados3) df df.describe() #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] tempos_2 = [] tempos_3 = [] tempos_4 = [] tempos_5 = [] #Usando as mesmas entradas for i in range(7): print("Rodando entrada: "+str(i)) a = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt') b = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','2') c = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','3') d = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','4') e = roda_com_entrada('./busca_local_antigo','busca-local/in-'+str(i)+'.txt') f = roda_com_entrada('./busca-local/busca-local-gpu','busca-local/in-'+str(i)+'.txt') tempos.append(a[1]) tempos_1.append(b[1]) tempos_2.append(c[1]) tempos_3.append(d[1]) tempos_4.append(e[1]) tempos_5.append(f[1]) tamanho_entradas.append(a[2]) plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_1) plt.plot(tamanho_entradas, tempos_2) plt.plot(tamanho_entradas, tempos_3) plt.legend(["1 thread otimizado", "2 threads otimizado","3 threads otimizado", "4 threads otimizado", "Sem otimizações"]) plt.show() plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos_3) plt.plot(tamanho_entradas, tempos_5) plt.legend(["4 thread otimizado", "GPU"]) plt.show() plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_4) plt.legend(["1 thread otimizado", "Sem otimizações"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-local-1-thread"] = pd.Series(tempos) df["busca-local-2-threads"] = pd.Series(tempos_1) df["busca-local-3-threads"] = pd.Series(tempos_2) df["busca-local-4-threads"] = pd.Series(tempos_3) df["busca-local-gpu"] = pd.Series(tempos_5) df["busca-local-semopt"] = pd.Series(tempos_4) df #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] #Usando as mesmas entradas for i in range(7): print("Rodando entrada: "+str(i)) a = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt', '1', '1') b = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt', '1', '0') tempos.append(a[1]) tempos_1.append(b[1]) tamanho_entradas.append(a[2]) plt.title("Comparacao Desempenho Busca Exaustiva") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_1) plt.legend(["Exaustivo Simples", "Exaustivo Branch and Bound"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-exaustiva-simples"] = pd.Series(tempos) df["busca-exaustiva-branchnbound"] = pd.Series(tempos_1) df
https://github.com/dimple12M/Qiskit-Certification-Guide
dimple12M
from qiskit import * from qiskit.quantum_info import Statevector from math import pi qc=QuantumCircuit(3) qc.h(range(2)) qc.x(2) qc.ccx(0,1,2) qc.ry(pi,0) qc.ch(1,2) qc.tdg(2) qc.cx(1,0) qc.measure_all() qc.draw(output="mpl") qc.size() qc.width() qc.depth() qc.num_qubits qc.count_ops() qc=QuantumCircuit(3) qc.h(range(2)) qc.x(2) qc.ccx(0,1,2) qc.ry(pi,0) qc.ch(1,2) qc.tdg(2) qc.cx(1,0) qc.measure_all() qc.draw(output="mpl") qc.size() qc=QuantumCircuit(3) qc.h(range(2)) qc.x(2) qc.ccx(0,1,2) qc.ry(pi,0) qc.ch(1,2) qc.tdg(2) qc.cx(1,0) qc.measure_all() qc.draw(output="mpl") qc.width() qc.qregs qc.qubits qc.num_qubits qc.cregs qc.clbits qc.num_clbits qc=QuantumCircuit(1) qc.h(0) qc.draw(output="mpl") qc.depth() qc=QuantumCircuit(1) qc.h(0) qc.y(0) qc.draw(output="mpl") qc.depth() #Let's apply a barrier gate with no arguments qc=QuantumCircuit(1) qc.h(0) qc.h(0) qc.y(0) qc.draw(output="mpl") qc.depth() qc=QuantumCircuit(3) qc.h(range(2)) qc.x(2) qc.draw(output="mpl") qc.depth() qc=QuantumCircuit(3) qc.h(range(2)) qc.x(2) qc.ccx(0,1,2) qc.draw(output="mpl") qc.depth() qc=QuantumCircuit(3) qc.h(range(2)) qc.x(2) qc.ccx(0,1,2) qc.ry(pi,0) qc.ch(1,2) qc.draw(output="mpl") qc.depth() qc=QuantumCircuit(3) qc.h(range(2)) qc.x(2) qc.ccx(0,1,2) qc.ry(pi,0) qc.ch(1,2) qc.tdg(2) qc.draw(output="mpl") qc.depth() qc=QuantumCircuit(3) qc.h(range(2)) qc.x(2) qc.ccx(0,1,2) qc.ry(pi,0) qc.ch(1,2) qc.tdg(2) qc.cx(1,0) qc.draw(output="mpl") qc.depth() qc=QuantumCircuit(3) qc.h(range(2)) qc.x(2) qc.barrier() qc.ccx(0,1,2) qc.barrier() qc.ry(pi,0) qc.ch(1,2) qc.barrier() qc.tdg(2) qc.cx(1,0) qc.draw(output="mpl") qc.depth() qc=QuantumCircuit(3) qc.h(range(2)) qc.x(2) qc.barrier() qc.ccx(0,1,2) qc.barrier() qc.ry(pi,0) qc.ch(1,2) qc.barrier() qc.tdg(2) qc.barrier() qc.cx(1,0) qc.draw(output="mpl") qc.depth() qc=QuantumCircuit(3) qc.h(range(2)) qc.x(2) qc.barrier() qc.ccx(0,1,2) qc.barrier() qc.ry(pi,0) qc.ch(1,2) qc.barrier() qc.tdg(2) qc.cx(1,0) qc.measure_all() qc.draw(output="mpl") qc.depth() qc=QuantumCircuit(3) qc.h(range(2)) qc.x(2) qc.barrier() qc.ccx(0,1,2) qc.barrier() qc.ry(pi,0) qc.ch(1,2) qc.barrier() qc.tdg(2) qc.cx(1,0) qc.measure_all() qc.draw(output="mpl") qc.qubits qc.num_qubits qc=QuantumCircuit(3) qc.h(range(2)) qc.x(2) qc.barrier() qc.ccx(0,1,2) qc.barrier() qc.ry(pi,0) qc.ch(1,2) qc.barrier() qc.tdg(2) qc.cx(1,0) qc.measure_all() qc.draw(output="mpl") qc.count_ops()
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/mlvqc/Byskit
mlvqc
from qiskit import IBMQ IBMQ.load_account() # provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') provider = IBMQ.get_provider(hub='ibm-q-oxford', group='on-boarding', project='on-boarding-proj') from qiskit import BasicAer backend = BasicAer.get_backend('unitary_simulator') %matplotlib inline from byskit import byskit,gen_random_weights n_parent = 3 n_child = 3 parents,children = gen_random_weights(n_parent,n_child) b = byskit(backend,parents,children) b.circ.draw(output='mpl') results = b.execute_circ() plot_histogram(results.get_counts(b.circ)) n_parent = 2 n_child = 4 parents,children = gen_random_weights(n_parent,n_child) b = byskit(backend,parents,children) b.circ.draw(output='mpl') results = b.execute_circ() plot_histogram(results.get_counts(b.circ))
https://github.com/GabrielPontolillo/QiskitPBT
GabrielPontolillo
import random import numpy as np from qiskit import QuantumCircuit from QiskitPBT.case_studies.grovers_algorithm.grovers_algorithm import grovers_algorithm from QiskitPBT.case_studies.grovers_algorithm.grovers_algorithm_helpers import RandomGroversOracleMarkedStatesPairGenerator from QiskitPBT.property import Property class GroversAlgorithmLowerRegisterMinus(Property): # specify the inputs that are to be generated def get_input_generators(self): return [RandomGroversOracleMarkedStatesPairGenerator(4, 6)] # specify the preconditions for the test def preconditions(self, oracle_pair): oracle, marked_states = oracle_pair if len(marked_states) == 0 or len(marked_states) > 2**(oracle.num_qubits - 1) - 1: return False return True # specify the operations to be performed on the input def operations(self, oracle_pair): oracle, marked_states = oracle_pair # one qubit is workspace N = 2**(oracle.num_qubits-1) # number of marked states is used to identify the number of grover iterations to apply M = len(marked_states) # src Nielsen and Chuang, quantum computation and quantum information n_iterations = int(np.floor((np.pi/4) * np.sqrt((N/M)))) circ = grovers_algorithm(oracle, n_iterations) # should be - baseline = QuantumCircuit(1, 1) baseline.x(0) baseline.h(0) self.statistical_analysis.assert_equal(self, [circ.num_qubits - 1], circ, [0], baseline)
https://github.com/MonitSharma/Qiskit-Summer-School-and-Quantum-Challenges
MonitSharma
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, assemble, Aer, IBMQ, execute from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector, plot_histogram from qiskit_textbook.problems import dj_problem_oracle def lab1_ex1(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE # # qc.x(0) return qc state = Statevector.from_instruction(lab1_ex1()) plot_bloch_multivector(state) from qc_grader import grade_lab1_ex1 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex1(lab1_ex1()) def lab1_ex2(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE # # qc.h(0) return qc state = Statevector.from_instruction(lab1_ex2()) plot_bloch_multivector(state) from qc_grader import grade_lab1_ex2 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex2(lab1_ex2()) def lab1_ex3(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE # # qc.x(0) qc.h(0) return qc state = Statevector.from_instruction(lab1_ex3()) plot_bloch_multivector(state) from qc_grader import grade_lab1_ex3 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex3(lab1_ex3()) def lab1_ex4(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE # # qc.h(0) qc.sdg(0) return qc state = Statevector.from_instruction(lab1_ex4()) plot_bloch_multivector(state) from qc_grader import grade_lab1_ex4 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex4(lab1_ex4()) def lab1_ex5(): qc = QuantumCircuit(2,2) # this time, we not only want two qubits, but also two classical bits for the measurement # # # FILL YOUR CODE IN HERE # # qc.h(0) qc.cx(0,1) qc.x(0) return qc qc = lab1_ex5() qc.draw() # we draw the circuit from qc_grader import grade_lab1_ex5 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex5(lab1_ex5()) qc.measure(0, 0) # we perform a measurement on qubit q_0 and store the information on the classical bit c_0 qc.measure(1, 1) # we perform a measurement on qubit q_1 and store the information on the classical bit c_1 backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend counts = execute(qc, backend, shots = 1000).result().get_counts() # we run the simulation and get the counts plot_histogram(counts) # let us plot a histogram to see the possible outcomes and corresponding probabilities def lab1_ex6(): # # # FILL YOUR CODE IN HERE # # qc = QuantumCircuit(3,3) qc.h(0) qc.cx(0,1) qc.cx(1,2) qc.y(1) return qc qc = lab1_ex6() qc.draw() # we draw the circuit from qc_grader import grade_lab1_ex6 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex6(lab1_ex6()) oraclenr = 4 # determines the oracle (can range from 1 to 5) oracle = dj_problem_oracle(oraclenr) # gives one out of 5 oracles oracle.name = "DJ-Oracle" def dj_classical(n, input_str): # build a quantum circuit with n qubits and 1 classical readout bit dj_circuit = QuantumCircuit(n+1,1) # Prepare the initial state corresponding to your input bit string for i in range(n): if input_str[i] == '1': dj_circuit.x(i) # append oracle dj_circuit.append(oracle, range(n+1)) # measure the fourth qubit dj_circuit.measure(n,0) return dj_circuit n = 4 # number of qubits input_str = '1111' dj_circuit = dj_classical(n, input_str) dj_circuit.draw() # draw the circuit input_str = '1111' dj_circuit = dj_classical(n, input_str) qasm_sim = Aer.get_backend('qasm_simulator') transpiled_dj_circuit = transpile(dj_circuit, qasm_sim) qobj = assemble(transpiled_dj_circuit, qasm_sim) results = qasm_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) def lab1_ex7(): min_nr_inputs = 2 max_nr_inputs = 9 return [min_nr_inputs, max_nr_inputs] from qc_grader import grade_lab1_ex7 # Note that the grading function is expecting a list of two integers grade_lab1_ex7(lab1_ex7()) n=4 def psi_0(n): qc = QuantumCircuit(n+1,n) # Build the state (|00000> - |10000>)/sqrt(2) # # # FILL YOUR CODE IN HERE # # qc.x(4) qc.h(4) return qc dj_circuit = psi_0(n) dj_circuit.draw() def psi_1(n): # obtain the |psi_0> = |00001> state qc = psi_0(n) # create the superposition state |psi_1> # # qc.h(0) qc.h(1) qc.h(2) qc.h(3) # # qc.barrier() return qc dj_circuit = psi_1(n) dj_circuit.draw() def psi_2(oracle,n): # circuit to obtain psi_1 qc = psi_1(n) # append the oracle qc.append(oracle, range(n+1)) return qc dj_circuit = psi_2(oracle, n) dj_circuit.draw() def lab1_ex8(oracle, n): # note that this exercise also depends on the code in the functions psi_0 (In [24]) and psi_1 (In [25]) qc = psi_2(oracle, n) # apply n-fold hadamard gate # # # FILL YOUR CODE IN HERE # # qc.h(0) qc.h(1) qc.h(2) qc.h(3) # add the measurement by connecting qubits to classical bits # # qc.measure(0,0) qc.measure(1,1) qc.measure(2,2) qc.measure(3,3) # # return qc dj_circuit = lab1_ex8(oracle, n) dj_circuit.draw() from qc_grader import grade_lab1_ex8 # Note that the grading function is expecting a quantum circuit with measurements grade_lab1_ex8(lab1_ex8(dj_problem_oracle(4),n)) qasm_sim = Aer.get_backend('qasm_simulator') transpiled_dj_circuit = transpile(dj_circuit, qasm_sim) qobj = assemble(transpiled_dj_circuit) results = qasm_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/abhik-99/Qiskit-Summer-School
abhik-99
# import SymPy and define symbols import sympy as sp sp.init_printing(use_unicode=True) wr = sp.Symbol('\omega_r') # resonator frequency wq = sp.Symbol('\omega_q') # qubit frequency g = sp.Symbol('g', real=True) # vacuum Rabi coupling Delta = sp.Symbol('Delta', real=True) # wr - wq; defined later # import operator relations and define them from sympy.physics.quantum.boson import BosonOp a = BosonOp('a') # resonator photon annihilation operator from sympy.physics.quantum import pauli, Dagger, Commutator from sympy.physics.quantum.operatorordering import normal_ordered_form # Pauli matrices sx = pauli.SigmaX() sy = pauli.SigmaY() sz = pauli.SigmaZ() # qubit raising and lowering operators splus = pauli.SigmaPlus() sminus = pauli.SigmaMinus() # define J-C Hamiltonian in terms of diagonal and non-block diagonal terms H0 = wr*Dagger(a)*a - (1/2)*wq*sz; H1 = 0 H2 = g*(Dagger(a)*sminus + a*splus); HJC = H0 + H1 + H2; HJC # print # using the above method for finding the ansatz eta = Commutator(H0, H2); eta pauli.qsimplify_pauli(normal_ordered_form(eta.doit().expand())) A = sp.Symbol('A') B = sp.Symbol('B') eta = A * Dagger(a) * sminus - B * a * splus; pauli.qsimplify_pauli(normal_ordered_form(Commutator(H0, eta).doit().expand())) H2 S1 = eta.subs(A, g/Delta) S1 = S1.subs(B, g/Delta); S1.factor() Heff = H0 + H1 + 0.5*pauli.qsimplify_pauli(normal_ordered_form(Commutator(H2, S1).doit().expand())).simplify(); Heff from qiskit.tools.jupyter import * from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') backend = provider.get_backend('ibmq_armonk') backend_config = backend.configuration() assert backend_config.open_pulse, "Backend doesn't support Pulse" dt = backend_config.dt print(f"Sampling time: {dt*1e9} ns") backend_defaults = backend.defaults() import numpy as np # unit conversion factors -> all backend properties returned in SI (Hz, sec, etc) GHz = 1.0e9 # Gigahertz MHz = 1.0e6 # Megahertz kHz = 1.0e3 us = 1.0e-6 # Microseconds ns = 1.0e-9 # Nanoseconds # We will find the qubit frequency for the following qubit. qubit = 0 # The sweep will be centered around the estimated qubit frequency. center_frequency_Hz = backend_defaults.qubit_freq_est[qubit] # The default frequency is given in Hz # warning: this will change in a future release print(f"Qubit {qubit} has an estimated frequency of {center_frequency_Hz / GHz} GHz.") # scale factor to remove factors of 10 from the data scale_factor = 1e-14 # We will sweep 40 MHz around the estimated frequency frequency_span_Hz = 40 * MHz # in steps of 1 MHz. frequency_step_Hz = 1 * MHz # We will sweep 20 MHz above and 20 MHz below the estimated frequency frequency_min = center_frequency_Hz - frequency_span_Hz / 2 frequency_max = center_frequency_Hz + frequency_span_Hz / 2 # Construct an np array of the frequencies for our experiment frequencies_GHz = np.arange(frequency_min / GHz, frequency_max / GHz, frequency_step_Hz / GHz) print(f"The sweep will go from {frequency_min / GHz} GHz to {frequency_max / GHz} GHz \ in steps of {frequency_step_Hz / MHz} MHz.") from qiskit import pulse # This is where we access all of our Pulse features! inst_sched_map = backend_defaults.instruction_schedule_map measure = inst_sched_map.get('measure', qubits=[qubit]) x_pulse = inst_sched_map.get('x', qubits=[qubit]) ### Collect the necessary channels drive_chan = pulse.DriveChannel(qubit) meas_chan = pulse.MeasureChannel(qubit) acq_chan = pulse.AcquireChannel(qubit) # Create the base schedule # Start with drive pulse acting on the drive channel schedule = pulse.Schedule(name='Frequency sweep') schedule += x_pulse # The left shift `<<` is special syntax meaning to shift the start time of the schedule by some duration schedule += measure << schedule.duration # Create the frequency settings for the sweep (MUST BE IN HZ) frequencies_Hz = frequencies_GHz*GHz schedule_frequencies = [{drive_chan: freq} for freq in frequencies_Hz] schedule.draw(label=True, scaling=0.8) from qiskit import assemble frequency_sweep_program = assemble(schedule, backend=backend, meas_level=1, meas_return='avg', shots=1024, schedule_los=schedule_frequencies) # RUN the job on a real device job = backend.run(frequency_sweep_program) print(job.job_id()) from qiskit.tools.monitor import job_monitor job_monitor(job) # OR retreive result from previous run # job = backend.retrieve_job('5ef3b081fbc24b001275b03b') frequency_sweep_results = job.result() import matplotlib.pyplot as plt plt.style.use('dark_background') sweep_values = [] for i in range(len(frequency_sweep_results.results)): # Get the results from the ith experiment res = frequency_sweep_results.get_memory(i)*scale_factor # Get the results for `qubit` from this experiment sweep_values.append(res[qubit]) plt.scatter(frequencies_GHz, np.real(sweep_values), color='white') # plot real part of sweep values plt.xlim([min(frequencies_GHz), max(frequencies_GHz)]) plt.xlabel("Frequency [GHz]") plt.ylabel("Measured signal [a.u.]") plt.show() from scipy.optimize import curve_fit def fit_function(x_values, y_values, function, init_params): fitparams, conv = curve_fit(function, x_values, y_values, init_params) y_fit = function(x_values, *fitparams) return fitparams, y_fit fit_params, y_fit = fit_function(frequencies_GHz, np.real(sweep_values), lambda x, A, q_freq, B, C: (A / np.pi) * (B / ((x - q_freq)**2 + B**2)) + C, [5, 4.975, 1, 3] # initial parameters for curve_fit ) plt.scatter(frequencies_GHz, np.real(sweep_values), color='white') plt.plot(frequencies_GHz, y_fit, color='red') plt.xlim([min(frequencies_GHz), max(frequencies_GHz)]) plt.xlabel("Frequency [GHz]") plt.ylabel("Measured Signal [a.u.]") plt.show() # Create the schedules for 0 and 1 schedule_0 = pulse.Schedule(name='0') schedule_0 += measure schedule_1 = pulse.Schedule(name='1') schedule_1 += x_pulse schedule_1 += measure << schedule_1.duration schedule_0.draw() schedule_1.draw() frequency_span_Hz = 320 * kHz frequency_step_Hz = 8 * kHz center_frequency_Hz = backend_defaults.meas_freq_est[qubit] print(f"Qubit {qubit} has an estimated readout frequency of {center_frequency_Hz / GHz} GHz.") frequency_min = center_frequency_Hz - frequency_span_Hz / 2 frequency_max = center_frequency_Hz + frequency_span_Hz / 2 frequencies_GHz = np.arange(frequency_min / GHz, frequency_max / GHz, frequency_step_Hz / GHz) print(f"The sweep will go from {frequency_min / GHz} GHz to {frequency_max / GHz} GHz\ in steps of {frequency_step_Hz / MHz} MHz.") num_shots_per_frequency = 2048 frequencies_Hz = frequencies_GHz*GHz schedule_los = [{meas_chan: freq} for freq in frequencies_Hz] cavity_sweep_0 = assemble(schedule_0, backend=backend, meas_level=1, meas_return='avg', shots=num_shots_per_frequency, schedule_los=schedule_los) cavity_sweep_1 = assemble(schedule_1, backend=backend, meas_level=1, meas_return='avg', shots=num_shots_per_frequency, schedule_los=schedule_los) # RUN the job on a real device #job_0 = backend.run(cavity_sweep_0) #job_monitor(job_0) #job_0.error_message() #job_1 = backend.run(cavity_sweep_1) #job_monitor(job_1) #job_1.error_message() # OR retreive result from previous run job_0 = backend.retrieve_job('5efa5b447c0d6800137fff1c') job_1 = backend.retrieve_job('5efa6b2720eee10013be46b4') cavity_sweep_0_results = job_0.result() cavity_sweep_1_results = job_1.result() scale_factor = 1e-14 sweep_values_0 = [] for i in range(len(cavity_sweep_0_results.results)): res_0 = cavity_sweep_0_results.get_memory(i)*scale_factor sweep_values_0.append(res_0[qubit]) sweep_values_1 = [] for i in range(len(cavity_sweep_1_results.results)): res_1 = cavity_sweep_1_results.get_memory(i)*scale_factor sweep_values_1.append(res_1[qubit]) plotx = frequencies_Hz/kHz ploty_0 = np.abs(sweep_values_0) ploty_1 = np.abs(sweep_values_1) plt.plot(plotx, ploty_0, color='blue', marker='.') # plot real part of sweep values plt.plot(plotx, ploty_1, color='red', marker='.') # plot real part of sweep values plt.legend([r'$\vert0\rangle$', r'$\vert1\rangle$']) plt.grid() plt.xlabel("Frequency [kHz]") plt.ylabel("Measured signal [a.u.]") plt.yscale('log') plt.show()
https://github.com/renatawong/classical-shadow-vqe
renatawong
''' (C) 2023 Renata Wong Electronic structure problem with classical shadows, as presented in https://arxiv.org/abs/2103.07510 This code uses Qiskit as platform. The shadow is constructed based on derandomized Hamiltonian. The molecules tested are: H2 (6-31s basis), LiH (sto3g basis), BeH2 (sto3g), H2O (sto3g), and NH3 (sto3g). The coordinates for NH3 were taken from 'Algorithms for Computer Detection of Symmetry Elementsin Molecular Systems'. ''' import time import numpy as np from collections import Counter import matplotlib.pyplot as plt from qiskit import QuantumCircuit, execute from qiskit_aer.primitives import Estimator as AerEstimator from qiskit_aer import QasmSimulator from qiskit.quantum_info import SparsePauliOp from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import BravyiKitaevMapper, JordanWignerMapper, ParityMapper from qiskit_nature.second_q.circuit.library import UCCSD, HartreeFock from qiskit_nature.second_q.algorithms import VQEUCCFactory from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP, COBYLA, SPSA # Estimator primitive is based on the Statevector construct = algebraic simulation from qiskit.primitives import Estimator from qiskit.utils import algorithm_globals from modified_derandomization import modified_derandomized_classical_shadow from predicting_quantum_properties.data_acquisition_shadow import derandomized_classical_shadow from predicting_quantum_properties.prediction_shadow import estimate_exp import qiskit_nature qiskit_nature.settings.use_pauli_sum_op = False import h5py H5PY_DEFAULT_READONLY=1 ''' DEFINING DRIVERS FOR THE MOLECULES ''' H2_driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="6-31g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) LiH_driver = PySCFDriver( atom="Li 0 0 0; H 0 0 1.599", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) BeH2_driver = PySCFDriver( atom="Be 0 0 0; H 0 0 1.3264; H 0 0 -1.3264", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) H2O_driver = PySCFDriver( atom="O 0.0 0.0 0.0; H 0.757 0.586 0.0; H -0.757 0.586 0.0", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) NH3_driver = PySCFDriver( atom="N 0 0 0; H 0 0 1.008000; H 0.950353 0 -0.336000; H -0.475176 -0.823029 -0.336000", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) ''' FORMATTING HAMILTONIAN ''' def process_hamiltonian(hamiltonian, derandomize = False): hamiltonian_observables = [] hamiltonian_coefficients = [] for observable in hamiltonian.paulis: op_list = [] for op_index, pauli_op in enumerate(observable): pauli_op = str(pauli_op) if pauli_op == 'I' or pauli_op == 'X' or pauli_op == 'Y' or pauli_op == 'Z': op_list.append((pauli_op, op_index)) hamiltonian_observables.append(op_list) hamiltonian_coefficients = hamiltonian.coeffs.real system_size = len(hamiltonian_observables[0]) # removing all occurrences of Pauli-I, for all-Pauli-I there is an empty list left # these observables are needed for estimate_exp() observables_xyze = [] for observable in hamiltonian_observables: XYZE = [] for pauli in observable: if pauli[0] != 'I': XYZE.append(pauli) observables_xyze.append(XYZE) # derandomisation procedure requires that coefficients are non-negative if derandomize == True: absolute_coefficients = [abs(coeffcient) for coeffcient in hamiltonian_coefficients] # removing the empty list as well # these observables are needed for derandomisation procedure observables_xyz = [] for idx, observable in enumerate(observables_xyze): if observable: observables_xyz.append(observable) else: absolute_coefficients.pop(idx) return system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients return system_size, observables_xyze, hamiltonian_coefficients ''' COST FUNCTION AND HELPER FUNCTIONS ''' def basis_change_circuit(pauli_op): # Generating circuit with just the basis change operators # # pauli_op: n-qubit Pauli operator basis_change = QuantumCircuit(ansatz.num_qubits, ansatz.num_qubits) for idx, op in enumerate(pauli_op): if op == 'X': basis_change.h(idx) if op == 'Y': basis_change.h(idx) basis_change.p(-np.pi/2, idx) return basis_change def ground_state_energy_from_shadow(operators, params): backend = QasmSimulator(method='statevector', shots=1) pauli_op_dict = Counter(tuple(x) for x in operators) shadow = [] for pauli_op in pauli_op_dict: qc = ansatz.bind_parameters(params) qc = qc.compose(basis_change_circuit(pauli_op)) qc.measure(reversed(range(system_size)), range(system_size)) result = execute(qc, backend, shots=pauli_op_dict[pauli_op]).result() counts = result.get_counts() # given in order q0 q1 ... qn-1 after register reversal in qc.measure for count in counts: for _ in range(counts[count]): # number of repeated measurement values output_str = list(count) output = [int(i) for i in output_str] eigenvals = [x+1 if x == 0 else x-2 for x in output] snapshot = [(op, eigenval) for op, eigenval in zip(pauli_op, eigenvals)] shadow.append(snapshot) expectation_value = 0.0 for term, weight in zip(observables_xyze, hamiltonian_coefficients): sum_product, match_count = estimate_exp(shadow, term) if match_count != 0: expectation_value += (weight * sum_product / match_count) return expectation_value ''' EXPERIMENTS ''' start_time = time.time() all_molecules_rmse_errors = [] # CALCULATING FERMIONIC HAMILTONIAN AND CONVERTING TO QUBIT HAMILTONIAN MOLECULES = ['LiH'] for molecule in MOLECULES: rmse_errors = [] if molecule == 'H2': problem = H2_driver.run() if molecule == 'LiH': problem = LiH_driver.run() if molecule == 'BeH2': problem = BeH2_driver.run() if molecule == 'H2O': problem = H2O_driver.run() if molecule == 'NH3': problem = NH3_driver.run() hamiltonian = problem.hamiltonian second_q_op = hamiltonian.second_q_op() bk_mapper = BravyiKitaevMapper() #(num_particles=problem.num_particles) #BravyiKitaevMapper() bkencoded_hamiltonian = bk_mapper.map(second_q_op) #print('Qubit Hamiltonian in Bravyi-Kitaev encoding', bkencoded_hamiltonian) # process the Hamiltonian to obtain properly formatted data hamiltonian_data = process_hamiltonian(bkencoded_hamiltonian, derandomize = True) system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients = hamiltonian_data ''' VARIATIONAL ANSATZ ''' ansatz = UCCSD( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, initial_state=HartreeFock( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, ), ) ''' Running VQE on the Hamiltonian obtained from PySCFDriver using Statevector simulator (Estimator primitive) ''' #estimator = Estimator() # If shots = None, it calculates the exact expectation values. Otherwise, it samples from normal distributions # with standard errors as standard deviations using normal distribution approximation. #estimator.set_options(shots = None) #estimator = AerEstimator() #estimator.set_options(approximation=False, shots=None) #vqe_solver = VQE(estimator, ansatz, SLSQP()) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = np.zeros(ansatz.num_parameters) calc = GroundStateEigensolver(bk_mapper, vqe_solver) result = calc.solve(problem) print(result.raw_result) #print('NUMBER OF OPERATORS | DERANDOMISED OPERATORS | AVERAGE RMSE ERROR\n') measurement_range = [50, 250, 500, 750, 1000, 1250, 1500, 1750] for num_operators in measurement_range: derandomized_hamiltonian = derandomized_classical_shadow(observables_xyz, 50, system_size, weight=absolute_coefficients) tuples = (tuple(pauli) for pauli in derandomized_hamiltonian) counts = Counter(tuples) print('Original derandomized Hamiltonian', counts) # derandomized classical shadow will usually either undergenerate or overgenerate derandomized operators # adjusting for this issue: while sum(counts.values()) != num_operators: for key, value in zip(counts.keys(), counts.values()): sum_counts = sum(counts.values()) if sum_counts == num_operators: break if sum_counts < num_operators: # generate additional operators from the existing ones by increasing the number of counts counts[key] += 1 if sum_counts > num_operators: # remove the element with highest count max_element_key = [k for k, v in counts.items() if v == max(counts.values())][0] counts[max_element_key] -= 1 print('Size-adjusted derandomized Hamiltonian', counts) # translate the Counter to a set of derandomized operators new_derandomized_hamiltonian = [] for key, value in counts.items(): for _ in range(value): new_derandomized_hamiltonian.append(list(key)) #print('Size-adjusted derandomized Hamiltonian', new_derandomized_hamiltonian) expectation_values = [] num_experiments = 10 for iteration in range(num_experiments): expectation_value = ground_state_energy_from_shadow(new_derandomized_hamiltonian, result.raw_result.optimal_point) expectation_values.append(expectation_value) print("EXPERIMENT {}: GROUND STATE ENERGY FOUND = {}".format(iteration, expectation_value)) rmse_derandomised_cs = np.sqrt(np.sum([(expectation_values[i] - result.raw_result.optimal_value)**2 for i in range(num_experiments)])/num_experiments) rmse_errors.append(rmse_derandomised_cs) print('{} | {} | {}'.format(num_operators, counts, rmse_derandomised_cs)) all_molecules_rmse_errors.append(rmse_errors) elapsed_time = time.time() - start_time print("Execution time = ", time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) import matplotlib.pyplot as plt points = measurement_range num_points = len(points) plt.plot([i for i in points], [rmse_errors[i] for i in range(num_points)], 'r', label='derandomized classical shadow') plt.xlabel('Number of measurements') plt.ylabel('Average RMSE error') plt.legend(loc=1)
https://github.com/unitaryfund/mitiq
unitaryfund
# Copyright (C) Unitary Fund # # This source code is licensed under the GPL license (v3) found in the # LICENSE file in the root directory of this source tree. """Qiskit utility functions.""" from functools import partial from typing import Optional, Tuple import numpy as np import numpy.typing as npt import qiskit from qiskit import QuantumCircuit from qiskit.providers import Backend from qiskit_aer import AerSimulator # Noise simulation packages from qiskit_aer.noise import NoiseModel from qiskit_aer.noise.errors.standard_errors import depolarizing_error from mitiq import Executor, MeasurementResult, Observable def initialized_depolarizing_noise(noise_level: float) -> NoiseModel: """Initializes a depolarizing noise Qiskit NoiseModel. Args: noise_level: The noise strength as a float, e.g., 0.01 is 1%. Returns: A Qiskit depolarizing NoiseModel. """ # initialize a qiskit noise model noise_model = NoiseModel() # we assume the same depolarizing error for each # gate of the standard IBM basis noise_model.add_all_qubit_quantum_error( depolarizing_error(noise_level, 1), ["u1", "u2", "u3"] ) noise_model.add_all_qubit_quantum_error( depolarizing_error(noise_level, 2), ["cx"] ) return noise_model def execute(circuit: QuantumCircuit, obs: npt.NDArray[np.complex64]) -> float: """Simulates a noiseless evolution and returns the expectation value of some observable. Args: circuit: The input Qiskit circuit. obs: The observable to measure as a NumPy array. Returns: The expectation value of obs as a float. """ return execute_with_noise(circuit, obs, noise_model=None) def execute_with_shots( circuit: QuantumCircuit, obs: npt.NDArray[np.complex64], shots: int ) -> float: """Simulates the evolution of the circuit and returns the expectation value of the observable. Args: circuit: The input Qiskit circuit. obs: The observable to measure as a NumPy array. shots: The number of measurements. Returns: The expectation value of obs as a float. """ return execute_with_shots_and_noise( circuit, obs, noise_model=None, shots=shots, ) def execute_with_noise( circuit: QuantumCircuit, obs: npt.NDArray[np.complex64], noise_model: NoiseModel, ) -> float: """Simulates the evolution of the noisy circuit and returns the exact expectation value of the observable. Args: circuit: The input Qiskit circuit. obs: The observable to measure as a NumPy array. noise_model: The input Qiskit noise model. Returns: The expectation value of obs as a float. """ # Avoid mutating circuit circ = circuit.copy() circ.save_density_matrix() if noise_model is None: basis_gates = None else: basis_gates = noise_model.basis_gates + ["save_density_matrix"] # execution of the experiment backend = AerSimulator(method="density_matrix", noise_model=noise_model) exec_circuit = qiskit.transpile( circ, backend=backend, basis_gates=basis_gates, # we want all gates to be actually applied, # so we skip any circuit optimization optimization_level=0, ) job = backend.run(exec_circuit, shots=1) rho = job.result().data()["density_matrix"] expectation = np.real(np.trace(rho @ obs)) return expectation def execute_with_shots_and_noise( circuit: QuantumCircuit, obs: npt.NDArray[np.complex64], noise_model: NoiseModel, shots: int, seed: Optional[int] = None, ) -> float: """Simulates the evolution of the noisy circuit and returns the statistical estimate of the expectation value of the observable. Args: circuit: The input Qiskit circuit. obs: The observable to measure as a NumPy array. noise_model: The input Qiskit noise model. shots: The number of measurements. seed: Optional seed for qiskit simulator. Returns: The expectation value of obs as a float. """ # Avoid mutating circuit circ = circuit.copy() # we need to modify the circuit to measure obs in its eigenbasis # we do this by appending a unitary operation # obtains a U s.t. obs = U diag(eigvals) U^dag eigvals, U = np.linalg.eigh(obs) circ.unitary(np.linalg.inv(U), qubits=range(circ.num_qubits)) circ.measure_all() if noise_model is None: basis_gates = None else: basis_gates = noise_model.basis_gates # execution of the experiment backend = AerSimulator(method="density_matrix", noise_model=noise_model) exec_circuit = qiskit.transpile( circ, backend=backend, basis_gates=basis_gates, # we want all gates to be actually applied, # so we skip any circuit optimization optimization_level=0, ) job = backend.run(exec_circuit, shots=shots, seed_simulator=seed) counts = job.result().get_counts() expectation = 0 for bitstring, count in counts.items(): expectation += ( eigvals[int(bitstring[0 : circ.num_qubits], 2)] * count / shots ) return expectation def sample_bitstrings( circuit: QuantumCircuit, backend: Optional[Backend] = None, noise_model: Optional[NoiseModel] = None, shots: int = 10000, measure_all: bool = False, qubit_indices: Optional[Tuple[int]] = None, ) -> MeasurementResult: """Returns measurement bitstrings obtained from executing the input circuit on a Qiskit backend (passed as an argument). Note that the input circuit must contain measurement gates (unless ``measure_all`` is ``True``). Args: circuit: The input Qiskit circuit. backend: A real or fake Qiskit backend. The input circuit should be transpiled into a compatible gate set. It may be necessary to set ``optimization_level=0`` when transpiling. noise_model: A valid Qiskit ``NoiseModel`` object. This option is used if and only if ``backend`` is ``None``. In this case a default density matrix simulator is used with ``optimization_level=0``. shots: The number of measurements. measure_all: If True, measurement gates are applied to all qubits. qubit_indices: Optional qubit indices associated to bitstrings. Returns: The measured bitstrings casted as a Mitiq :class:`.MeasurementResult` object. """ if measure_all: circuit = circuit.measure_all(inplace=False) if backend: job = backend.run(circuit, shots=shots) elif noise_model: backend = AerSimulator( method="density_matrix", noise_model=noise_model ) exec_circuit = qiskit.transpile( circuit, backend=backend, basis_gates=noise_model.basis_gates, # we want all gates to be actually applied, # so we skip any circuit optimization optimization_level=0, ) job = backend.run(exec_circuit, shots=shots) else: raise ValueError( "Either a backend or a noise model must be given as input." ) counts = job.result().get_counts(circuit) bitstrings = [] for key, val in counts.items(): bitstring = [int(c) for c in key] for _ in range(val): bitstrings.append(bitstring) return MeasurementResult( result=bitstrings, qubit_indices=qubit_indices, ) def compute_expectation_value_on_noisy_backend( circuit: QuantumCircuit, obs: Observable, backend: Optional[Backend] = None, noise_model: Optional[NoiseModel] = None, shots: int = 10000, measure_all: bool = False, qubit_indices: Optional[Tuple[int]] = None, ) -> complex: """Returns the noisy expectation value of the input Mitiq observable obtained from executing the input circuit on a Qiskit backend. Args: circuit: The input Qiskit circuit. obs: The Mitiq observable to compute the expectation value of. backend: A real or fake Qiskit backend. The input circuit should be transpiled into a compatible gate set. noise_model: A valid Qiskit ``NoiseModel`` object. This option is used if and only if ``backend`` is ``None``. In this case a default density matrix simulator is used with ``optimization_level=0``. shots: The number of measurements. measure_all: If True, measurement gates are applied to all qubits. qubit_indices: Optional qubit indices associated to bitstrings. Returns: The noisy expectation value. """ execute = partial( sample_bitstrings, backend=backend, noise_model=noise_model, shots=shots, measure_all=measure_all, qubit_indices=qubit_indices, ) executor = Executor(execute) return executor.evaluate(circuit, obs)[0]
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# External imports from pylab import cm from sklearn import metrics import numpy as np import matplotlib.pyplot as plt # Qiskit imports from qiskit import QuantumCircuit from qiskit.circuit import ParameterVector from qiskit.visualization import circuit_drawer from qiskit.algorithms.optimizers import SPSA from qiskit.circuit.library import ZZFeatureMap from qiskit_machine_learning.kernels import TrainableFidelityQuantumKernel from qiskit_machine_learning.kernels.algorithms import QuantumKernelTrainer from qiskit_machine_learning.algorithms import QSVC from qiskit_machine_learning.datasets import ad_hoc_data class QKTCallback: """Callback wrapper class.""" def __init__(self) -> None: self._data = [[] for i in range(5)] def callback(self, x0, x1=None, x2=None, x3=None, x4=None): """ Args: x0: number of function evaluations x1: the parameters x2: the function value x3: the stepsize x4: whether the step was accepted """ self._data[0].append(x0) self._data[1].append(x1) self._data[2].append(x2) self._data[3].append(x3) self._data[4].append(x4) def get_callback_data(self): return self._data def clear_callback_data(self): self._data = [[] for i in range(5)] adhoc_dimension = 2 X_train, y_train, X_test, y_test, adhoc_total = ad_hoc_data( training_size=20, test_size=5, n=adhoc_dimension, gap=0.3, plot_data=False, one_hot=False, include_sample_total=True, ) plt.figure(figsize=(5, 5)) plt.ylim(0, 2 * np.pi) plt.xlim(0, 2 * np.pi) plt.imshow( np.asmatrix(adhoc_total).T, interpolation="nearest", origin="lower", cmap="RdBu", extent=[0, 2 * np.pi, 0, 2 * np.pi], ) plt.scatter( X_train[np.where(y_train[:] == 0), 0], X_train[np.where(y_train[:] == 0), 1], marker="s", facecolors="w", edgecolors="b", label="A train", ) plt.scatter( X_train[np.where(y_train[:] == 1), 0], X_train[np.where(y_train[:] == 1), 1], marker="o", facecolors="w", edgecolors="r", label="B train", ) plt.scatter( X_test[np.where(y_test[:] == 0), 0], X_test[np.where(y_test[:] == 0), 1], marker="s", facecolors="b", edgecolors="w", label="A test", ) plt.scatter( X_test[np.where(y_test[:] == 1), 0], X_test[np.where(y_test[:] == 1), 1], marker="o", facecolors="r", edgecolors="w", label="B test", ) plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0) plt.title("Ad hoc dataset for classification") plt.show() # Create a rotational layer to train. We will rotate each qubit the same amount. training_params = ParameterVector("θ", 1) fm0 = QuantumCircuit(2) fm0.ry(training_params[0], 0) fm0.ry(training_params[0], 1) # Use ZZFeatureMap to represent input data fm1 = ZZFeatureMap(2) # Create the feature map, composed of our two circuits fm = fm0.compose(fm1) print(circuit_drawer(fm)) print(f"Trainable parameters: {training_params}") # Instantiate quantum kernel quant_kernel = TrainableFidelityQuantumKernel(feature_map=fm, training_parameters=training_params) # Set up the optimizer cb_qkt = QKTCallback() spsa_opt = SPSA(maxiter=10, callback=cb_qkt.callback, learning_rate=0.05, perturbation=0.05) # Instantiate a quantum kernel trainer. qkt = QuantumKernelTrainer( quantum_kernel=quant_kernel, loss="svc_loss", optimizer=spsa_opt, initial_point=[np.pi / 2] ) # Train the kernel using QKT directly qka_results = qkt.fit(X_train, y_train) optimized_kernel = qka_results.quantum_kernel print(qka_results) # Use QSVC for classification qsvc = QSVC(quantum_kernel=optimized_kernel) # Fit the QSVC qsvc.fit(X_train, y_train) # Predict the labels labels_test = qsvc.predict(X_test) # Evalaute the test accuracy accuracy_test = metrics.balanced_accuracy_score(y_true=y_test, y_pred=labels_test) print(f"accuracy test: {accuracy_test}") plot_data = cb_qkt.get_callback_data() # callback data K = optimized_kernel.evaluate(X_train) # kernel matrix evaluated on the training samples plt.rcParams["font.size"] = 20 fig, ax = plt.subplots(1, 2, figsize=(14, 5)) ax[0].plot([i + 1 for i in range(len(plot_data[0]))], np.array(plot_data[2]), c="k", marker="o") ax[0].set_xlabel("Iterations") ax[0].set_ylabel("Loss") ax[1].imshow(K, cmap=cm.get_cmap("bwr", 20)) fig.tight_layout() plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/MonitSharma/Learn-Quantum-Machine-Learning
MonitSharma
import numpy as np n_samples = 100 p_1 = 0.2 x_data = np.random.binomial(1, p_1, (n_samples,)) print(x_data) frequency_of_zeros, frequency_of_ones = 0, 0 for x in x_data: if x: frequency_of_ones += 1/n_samples else: frequency_of_zeros += 1/n_samples print(frequency_of_ones+frequency_of_zeros) import matplotlib.pyplot as plt %matplotlib inline p_0 = np.linspace(0, 1, 100) p_1 = 1-p_0 fig, ax = plt.subplots() ax.set_xlim(-1.2, 1.2) ax.set_ylim(-1.2, 1.2) ax.spines['left'].set_position('center') ax.spines['bottom'].set_position('center') ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.set_xlabel("$p_0$") ax.xaxis.set_label_coords(1.0, 0.5) ax.set_ylabel("$p_1$") ax.yaxis.set_label_coords(0.5, 1.0) plt.plot(p_0, p_1) p = np.array([[0.8], [0.2]]) np.linalg.norm(p, ord=1) Π_0 = np.array([[1, 0], [0, 0]]) np.linalg.norm(Π_0 @ p, ord=1) Π_1 = np.array([[0, 0], [0, 1]]) np.linalg.norm(Π_1 @ p, ord=1) p = np.array([[.5], [.5]]) M = np.array([[0.7, 0.6], [0.3, 0.4]]) np.linalg.norm(M @ p, ord=1) ϵ = 10e-10 p_0 = np.linspace(ϵ, 1-ϵ, 100) p_1 = 1-p_0 H = -(p_0*np.log2(p_0) + p_1*np.log2(p_1)) fig, ax = plt.subplots() ax.set_xlim(0, 1) ax.set_ylim(0, -np.log2(0.5)) ax.set_xlabel("$p_0$") ax.set_ylabel("$H$") plt.plot(p_0, H) plt.axvline(x=0.5, color='k', linestyle='--') # %pip install qiskit from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit_aer import AerSimulator from qiskit.visualization import plot_histogram, plot_bloch_multivector from qiskit.primitives import BackendEstimator, BackendSampler import numpy as np π = np.pi backend = AerSimulator(method='statevector') q = QuantumRegister(1) c = ClassicalRegister(1) circuit = QuantumCircuit(q, c) circuit.measure(q, c) circuit.draw(output='mpl') sampler = BackendSampler(backend=backend) result = sampler.run(circuit).result() print(result.quasi_dists[0]) # get the statevcector from qiskit.quantum_info import Statevector q = QuantumRegister(1) c = ClassicalRegister(1) circuit = QuantumCircuit(q, c) state = Statevector.from_instruction(circuit) print(state) plot_bloch_multivector(state) circuit = QuantumCircuit(q, c) circuit.ry(π/2, q[0]) circuit.measure(q, c) circuit.draw(output='mpl') job = sampler.run(circuit) result = job.result() print(result.quasi_dists[0]) plot_histogram(result.quasi_dists[0]) circuit = QuantumCircuit(q, c) circuit.ry(π/2, q[0]) # get statevector state = Statevector.from_instruction(circuit) print(state) plot_bloch_multivector(state) circuit = QuantumCircuit(q, c) circuit.x(q[0]) circuit.ry(π/2, q[0]) # get statevector state = Statevector.from_instruction(circuit) print(state) plot_bloch_multivector(state) circuit.measure(q, c) job = sampler.run(circuit) result = job.result() print(result.quasi_dists[0]) plot_histogram(result.quasi_dists[0]) circuit = QuantumCircuit(q, c) circuit.ry(π/2, q[0]) circuit.ry(π/2, q[0]) circuit.measure(q, c) job = sampler.run(circuit) result = job.result() print(result.quasi_dists[0]) plot_histogram(result.quasi_dists[0]) q0 = np.array([[1], [0]]) q1 = np.array([[1], [0]]) np.kron(q0, q1) q = QuantumRegister(2) c = ClassicalRegister(2) circuit = QuantumCircuit(q, c) circuit.h(q[0]) circuit.cx(q[0], q[1]) circuit.measure(q, c) job = sampler.run(circuit) result = job.result() print(result.quasi_dists[0]) plot_histogram(result.quasi_dists[0])
https://github.com/shell-raiser/Qiskit-Developer-Certification-Notes-and-Code
shell-raiser
import qiskit qiskit.__qiskit_version__ from qiskit import IBMQ IBMQ.save_account('TOKEN HERE') # Replace your API token with 'TOKEN HERE' IBMQ.load_account()
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
#Assign these values as per your requirements. global min_qubits,max_qubits,skip_qubits,max_circuits,num_shots,Noise_Inclusion min_qubits=4 max_qubits=15 #reference files are upto 12 Qubits only skip_qubits=2 max_circuits=3 num_shots=4092 gate_counts_plots = True Noise_Inclusion = False saveplots = False Memory_utilization_plot = True Type_of_Simulator = "built_in" #Inputs are "built_in" or "FAKE" or "FAKEV2" backend_name = "FakeGuadalupeV2" #Can refer to the README files for the available backends #Change your Specification of Simulator in Declaring Backend Section #By Default : built_in -> qasm_simulator and FAKE -> FakeSantiago() and FAKEV2 -> FakeSantiagoV2() import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, transpile, execute from qiskit.opflow import PauliTrotterEvolution, Suzuki from qiskit.opflow.primitive_ops import PauliSumOp import time,os,json import matplotlib.pyplot as plt # Import from Qiskit Aer noise module from qiskit_aer.noise import (NoiseModel, QuantumError, ReadoutError,pauli_error, depolarizing_error, thermal_relaxation_error,reset_error) # Benchmark Name benchmark_name = "VQE Simulation" # Selection of basis gate set for transpilation # Note: selector 1 is a hardware agnostic gate set basis_selector = 1 basis_gates_array = [ [], ['rx', 'ry', 'rz', 'cx'], # a common basis set, default ['cx', 'rz', 'sx', 'x'], # IBM default basis set ['rx', 'ry', 'rxx'], # IonQ default basis set ['h', 'p', 'cx'], # another common basis set ['u', 'cx'] # general unitaries basis gates ] np.random.seed(0) def get_QV(backend): import json # Assuming backend.conf_filename is the filename and backend.dirname is the directory path conf_filename = backend.dirname + "/" + backend.conf_filename # Open the JSON file with open(conf_filename, 'r') as file: # Load the JSON data data = json.load(file) # Extract the quantum_volume parameter QV = data.get('quantum_volume', None) return QV def checkbackend(backend_name,Type_of_Simulator): if Type_of_Simulator == "built_in": available_backends = [] for i in Aer.backends(): available_backends.append(i.name) if backend_name in available_backends: platform = backend_name return platform else: print(f"incorrect backend name or backend not available. Using qasm_simulator by default !!!!") print(f"available backends are : {available_backends}") platform = "qasm_simulator" return platform elif Type_of_Simulator == "FAKE" or Type_of_Simulator == "FAKEV2": import qiskit.providers.fake_provider as fake_backends if hasattr(fake_backends,backend_name) is True: print(f"Backend {backend_name} is available for type {Type_of_Simulator}.") backend_class = getattr(fake_backends,backend_name) backend_instance = backend_class() return backend_instance else: print(f"Backend {backend_name} is not available or incorrect for type {Type_of_Simulator}. Executing with FakeSantiago!!!") if Type_of_Simulator == "FAKEV2": backend_class = getattr(fake_backends,"FakeSantiagoV2") else: backend_class = getattr(fake_backends,"FakeSantiago") backend_instance = backend_class() return backend_instance if Type_of_Simulator == "built_in": platform = checkbackend(backend_name,Type_of_Simulator) #By default using "Qasm Simulator" backend = Aer.get_backend(platform) QV_=None print(f"{platform} device is capable of running {backend.num_qubits}") print(f"backend version is {backend.backend_version}") elif Type_of_Simulator == "FAKE": basis_selector = 0 backend = checkbackend(backend_name,Type_of_Simulator) QV_ = get_QV(backend) platform = backend.properties().backend_name +"-"+ backend.properties().backend_version #Replace this string with the backend Provider's name as this is used for Plotting. max_qubits=backend.configuration().n_qubits print(f"{platform} device is capable of running {backend.configuration().n_qubits}") print(f"{platform} has QV={QV_}") if max_qubits > 30: print(f"Device is capable with max_qubits = {max_qubits}") max_qubit = 30 print(f"Using fake backend {platform} with max_qubits {max_qubits}") elif Type_of_Simulator == "FAKEV2": basis_selector = 0 if "V2" not in backend_name: backend_name = backend_name+"V2" backend = checkbackend(backend_name,Type_of_Simulator) QV_ = get_QV(backend) platform = backend.name +"-" +backend.backend_version max_qubits=backend.num_qubits print(f"{platform} device is capable of running {backend.num_qubits}") print(f"{platform} has QV={QV_}") if max_qubits > 30: print(f"Device is capable with max_qubits = {max_qubits}") max_qubit = 30 print(f"Using fake backend {platform} with max_qubits {max_qubits}") else: print("Enter valid Simulator.....") # saved circuits for display QC_ = None Hf_ = None CO_ = None ################### Circuit Definition ####################################### # Construct a Qiskit circuit for VQE Energy evaluation with UCCSD ansatz # param: n_spin_orbs - The number of spin orbitals. # return: return a Qiskit circuit for this VQE ansatz def VQEEnergy(n_spin_orbs, na, nb, circuit_id=0, method=1): # number of alpha spin orbitals norb_a = int(n_spin_orbs / 2) # construct the Hamiltonian qubit_op = ReadHamiltonian(n_spin_orbs) # allocate qubits num_qubits = n_spin_orbs qr = QuantumRegister(num_qubits) qc = QuantumCircuit(qr, name=f"vqe-ansatz({method})-{num_qubits}-{circuit_id}") # initialize the HF state Hf = HartreeFock(num_qubits, na, nb) qc.append(Hf, qr) # form the list of single and double excitations excitationList = [] for occ_a in range(na): for vir_a in range(na, norb_a): excitationList.append((occ_a, vir_a)) for occ_b in range(norb_a, norb_a+nb): for vir_b in range(norb_a+nb, n_spin_orbs): excitationList.append((occ_b, vir_b)) for occ_a in range(na): for vir_a in range(na, norb_a): for occ_b in range(norb_a, norb_a+nb): for vir_b in range(norb_a+nb, n_spin_orbs): excitationList.append((occ_a, vir_a, occ_b, vir_b)) # get cluster operators in Paulis pauli_list = readPauliExcitation(n_spin_orbs, circuit_id) # loop over the Pauli operators for index, PauliOp in enumerate(pauli_list): # get circuit for exp(-iP) cluster_qc = ClusterOperatorCircuit(PauliOp, excitationList[index]) # add to ansatz qc.append(cluster_qc, [i for i in range(cluster_qc.num_qubits)]) # method 1, only compute the last term in the Hamiltonian if method == 1: # last term in Hamiltonian qc_with_mea, is_diag = ExpectationCircuit(qc, qubit_op[1], num_qubits) # return the circuit return qc_with_mea # now we need to add the measurement parts to the circuit # circuit list qc_list = [] diag = [] off_diag = [] global normalization normalization = 0.0 # add the first non-identity term identity_qc = qc.copy() identity_qc.measure_all() qc_list.append(identity_qc) # add to circuit list diag.append(qubit_op[1]) normalization += abs(qubit_op[1].coeffs[0]) # add to normalization factor diag_coeff = abs(qubit_op[1].coeffs[0]) # add to coefficients of diagonal terms # loop over rest of terms for index, p in enumerate(qubit_op[2:]): # get the circuit with expectation measurements qc_with_mea, is_diag = ExpectationCircuit(qc, p, num_qubits) # accumulate normalization normalization += abs(p.coeffs[0]) # add to circuit list if non-diagonal if not is_diag: qc_list.append(qc_with_mea) else: diag_coeff += abs(p.coeffs[0]) # diagonal term if is_diag: diag.append(p) # off-diagonal term else: off_diag.append(p) # modify the name of diagonal circuit qc_list[0].name = qubit_op[1].primitive.to_list()[0][0] + " " + str(np.real(diag_coeff)) normalization /= len(qc_list) return qc_list # Function that constructs the circuit for a given cluster operator def ClusterOperatorCircuit(pauli_op, excitationIndex): # compute exp(-iP) exp_ip = pauli_op.exp_i() # Trotter approximation qc_op = PauliTrotterEvolution(trotter_mode=Suzuki(order=1, reps=1)).convert(exp_ip) # convert to circuit qc = qc_op.to_circuit(); qc.name = f'Cluster Op {excitationIndex}' global CO_ if CO_ == None or qc.num_qubits <= 4: if qc.num_qubits < 7: CO_ = qc # return this circuit return qc # Function that adds expectation measurements to the raw circuits def ExpectationCircuit(qc, pauli, nqubit, method=2): # copy the unrotated circuit raw_qc = qc.copy() # whether this term is diagonal is_diag = True # primitive Pauli string PauliString = pauli.primitive.to_list()[0][0] # coefficient coeff = pauli.coeffs[0] # basis rotation for i, p in enumerate(PauliString): target_qubit = nqubit - i - 1 if (p == "X"): is_diag = False raw_qc.h(target_qubit) elif (p == "Y"): raw_qc.sdg(target_qubit) raw_qc.h(target_qubit) is_diag = False # perform measurements raw_qc.measure_all() # name of this circuit raw_qc.name = PauliString + " " + str(np.real(coeff)) # save circuit global QC_ if QC_ == None or nqubit <= 4: if nqubit < 7: QC_ = raw_qc return raw_qc, is_diag # Function that implements the Hartree-Fock state def HartreeFock(norb, na, nb): # initialize the quantum circuit qc = QuantumCircuit(norb, name="Hf") # alpha electrons for ia in range(na): qc.x(ia) # beta electrons for ib in range(nb): qc.x(ib+int(norb/2)) # Save smaller circuit global Hf_ if Hf_ == None or norb <= 4: if norb < 7: Hf_ = qc # return the circuit return qc ################ Helper Functions # Function that converts a list of single and double excitation operators to Pauli operators def readPauliExcitation(norb, circuit_id=0): # load pre-computed data filename = os.path.join(f'ansatzes/{norb}_qubit_{circuit_id}.txt') with open(filename) as f: data = f.read() ansatz_dict = json.loads(data) # initialize Pauli list pauli_list = [] # current coefficients cur_coeff = 1e5 # current Pauli list cur_list = [] # loop over excitations for ext in ansatz_dict: if cur_coeff > 1e4: cur_coeff = ansatz_dict[ext] cur_list = [(ext, ansatz_dict[ext])] elif abs(abs(ansatz_dict[ext]) - abs(cur_coeff)) > 1e-4: pauli_list.append(PauliSumOp.from_list(cur_list)) cur_coeff = ansatz_dict[ext] cur_list = [(ext, ansatz_dict[ext])] else: cur_list.append((ext, ansatz_dict[ext])) # add the last term pauli_list.append(PauliSumOp.from_list(cur_list)) # return Pauli list return pauli_list # Get the Hamiltonian by reading in pre-computed file def ReadHamiltonian(nqubit): # load pre-computed data filename = os.path.join(f'Hamiltonians/{nqubit}_qubit.txt') with open(filename) as f: data = f.read() ham_dict = json.loads(data) # pauli list pauli_list = [] for p in ham_dict: pauli_list.append( (p, ham_dict[p]) ) # build Hamiltonian ham = PauliSumOp.from_list(pauli_list) # return Hamiltonian return ham # Create an empty noise model noise_parameters = NoiseModel() if Type_of_Simulator == "built_in": # Add depolarizing error to all single qubit gates with error rate 0.05% and to all two qubit gates with error rate 0.5% depol_one_qb_error = 0.05 depol_two_qb_error = 0.005 noise_parameters.add_all_qubit_quantum_error(depolarizing_error(depol_one_qb_error, 1), ['rx', 'ry', 'rz']) noise_parameters.add_all_qubit_quantum_error(depolarizing_error(depol_two_qb_error, 2), ['cx']) # Add amplitude damping error to all single qubit gates with error rate 0.0% and to all two qubit gates with error rate 0.0% amp_damp_one_qb_error = 0.0 amp_damp_two_qb_error = 0.0 noise_parameters.add_all_qubit_quantum_error(depolarizing_error(amp_damp_one_qb_error, 1), ['rx', 'ry', 'rz']) noise_parameters.add_all_qubit_quantum_error(depolarizing_error(amp_damp_two_qb_error, 2), ['cx']) # Add reset noise to all single qubit resets reset_to_zero_error = 0.005 reset_to_one_error = 0.005 noise_parameters.add_all_qubit_quantum_error(reset_error(reset_to_zero_error, reset_to_one_error),["reset"]) # Add readout error p0given1_error = 0.000 p1given0_error = 0.000 error_meas = ReadoutError([[1 - p1given0_error, p1given0_error], [p0given1_error, 1 - p0given1_error]]) noise_parameters.add_all_qubit_readout_error(error_meas) #print(noise_parameters) elif Type_of_Simulator == "FAKE"or"FAKEV2": noise_parameters = NoiseModel.from_backend(backend) #print(noise_parameters) ### Analysis methods to be expanded and eventually compiled into a separate analysis.py file import math, functools def hellinger_fidelity_with_expected(p, q): """ p: result distribution, may be passed as a counts distribution q: the expected distribution to be compared against References: `Hellinger Distance @ wikipedia <https://en.wikipedia.org/wiki/Hellinger_distance>`_ Qiskit Hellinger Fidelity Function """ p_sum = sum(p.values()) q_sum = sum(q.values()) if q_sum == 0: print("ERROR: polarization_fidelity(), expected distribution is invalid, all counts equal to 0") return 0 p_normed = {} for key, val in p.items(): p_normed[key] = val/p_sum # if p_sum != 0: # p_normed[key] = val/p_sum # else: # p_normed[key] = 0 q_normed = {} for key, val in q.items(): q_normed[key] = val/q_sum total = 0 for key, val in p_normed.items(): if key in q_normed.keys(): total += (np.sqrt(val) - np.sqrt(q_normed[key]))**2 del q_normed[key] else: total += val total += sum(q_normed.values()) # in some situations (error mitigation) this can go negative, use abs value if total < 0: print(f"WARNING: using absolute value in fidelity calculation") total = abs(total) dist = np.sqrt(total)/np.sqrt(2) fidelity = (1-dist**2)**2 return fidelity def polarization_fidelity(counts, correct_dist, thermal_dist=None): """ Combines Hellinger fidelity and polarization rescaling into fidelity calculation used in every benchmark counts: the measurement outcomes after `num_shots` algorithm runs correct_dist: the distribution we expect to get for the algorithm running perfectly thermal_dist: optional distribution to pass in distribution from a uniform superposition over all states. If `None`: generated as `uniform_dist` with the same qubits as in `counts` returns both polarization fidelity and the hellinger fidelity Polarization from: `https://arxiv.org/abs/2008.11294v1` """ num_measured_qubits = len(list(correct_dist.keys())[0]) #print(num_measured_qubits) counts = {k.zfill(num_measured_qubits): v for k, v in counts.items()} # calculate hellinger fidelity between measured expectation values and correct distribution hf_fidelity = hellinger_fidelity_with_expected(counts,correct_dist) # to limit cpu and memory utilization, skip noise correction if more than 16 measured qubits if num_measured_qubits > 16: return { 'fidelity':hf_fidelity, 'hf_fidelity':hf_fidelity } # if not provided, generate thermal dist based on number of qubits if thermal_dist == None: thermal_dist = uniform_dist(num_measured_qubits) # set our fidelity rescaling value as the hellinger fidelity for a depolarized state floor_fidelity = hellinger_fidelity_with_expected(thermal_dist, correct_dist) # rescale fidelity result so uniform superposition (random guessing) returns fidelity # rescaled to 0 to provide a better measure of success of the algorithm (polarization) new_floor_fidelity = 0 fidelity = rescale_fidelity(hf_fidelity, floor_fidelity, new_floor_fidelity) return { 'fidelity':fidelity, 'hf_fidelity':hf_fidelity } ## Uniform distribution function commonly used def rescale_fidelity(fidelity, floor_fidelity, new_floor_fidelity): """ Linearly rescales our fidelities to allow comparisons of fidelities across benchmarks fidelity: raw fidelity to rescale floor_fidelity: threshold fidelity which is equivalent to random guessing new_floor_fidelity: what we rescale the floor_fidelity to Ex, with floor_fidelity = 0.25, new_floor_fidelity = 0.0: 1 -> 1; 0.25 -> 0; 0.5 -> 0.3333; """ rescaled_fidelity = (1-new_floor_fidelity)/(1-floor_fidelity) * (fidelity - 1) + 1 # ensure fidelity is within bounds (0, 1) if rescaled_fidelity < 0: rescaled_fidelity = 0.0 if rescaled_fidelity > 1: rescaled_fidelity = 1.0 return rescaled_fidelity def uniform_dist(num_state_qubits): dist = {} for i in range(2**num_state_qubits): key = bin(i)[2:].zfill(num_state_qubits) dist[key] = 1/(2**num_state_qubits) return dist from matplotlib.patches import Rectangle import matplotlib.cm as cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap, Normalize from matplotlib.patches import Circle ############### Color Map functions # Create a selection of colormaps from which to choose; default to custom_spectral cmap_spectral = plt.get_cmap('Spectral') cmap_greys = plt.get_cmap('Greys') cmap_blues = plt.get_cmap('Blues') cmap_custom_spectral = None # the default colormap is the spectral map cmap = cmap_spectral cmap_orig = cmap_spectral # current cmap normalization function (default None) cmap_norm = None default_fade_low_fidelity_level = 0.16 default_fade_rate = 0.7 # Specify a normalization function here (default None) def set_custom_cmap_norm(vmin, vmax): global cmap_norm if vmin == vmax or (vmin == 0.0 and vmax == 1.0): print("... setting cmap norm to None") cmap_norm = None else: print(f"... setting cmap norm to [{vmin}, {vmax}]") cmap_norm = Normalize(vmin=vmin, vmax=vmax) # Remake the custom spectral colormap with user settings def set_custom_cmap_style( fade_low_fidelity_level=default_fade_low_fidelity_level, fade_rate=default_fade_rate): #print("... set custom map style") global cmap, cmap_custom_spectral, cmap_orig cmap_custom_spectral = create_custom_spectral_cmap( fade_low_fidelity_level=fade_low_fidelity_level, fade_rate=fade_rate) cmap = cmap_custom_spectral cmap_orig = cmap_custom_spectral # Create the custom spectral colormap from the base spectral def create_custom_spectral_cmap( fade_low_fidelity_level=default_fade_low_fidelity_level, fade_rate=default_fade_rate): # determine the breakpoint from the fade level num_colors = 100 breakpoint = round(fade_low_fidelity_level * num_colors) # get color list for spectral map spectral_colors = [cmap_spectral(v/num_colors) for v in range(num_colors)] #print(fade_rate) # create a list of colors to replace those below the breakpoint # and fill with "faded" color entries (in reverse) low_colors = [0] * breakpoint #for i in reversed(range(breakpoint)): for i in range(breakpoint): # x is index of low colors, normalized 0 -> 1 x = i / breakpoint # get color at this index bc = spectral_colors[i] r0 = bc[0] g0 = bc[1] b0 = bc[2] z0 = bc[3] r_delta = 0.92 - r0 #print(f"{x} {bc} {r_delta}") # compute saturation and greyness ratio sat_ratio = 1 - x #grey_ratio = 1 - x ''' attempt at a reflective gradient if i >= breakpoint/2: xf = 2*(x - 0.5) yf = pow(xf, 1/fade_rate)/2 grey_ratio = 1 - (yf + 0.5) else: xf = 2*(0.5 - x) yf = pow(xf, 1/fade_rate)/2 grey_ratio = 1 - (0.5 - yf) ''' grey_ratio = 1 - math.pow(x, 1/fade_rate) #print(f" {xf} {yf} ") #print(f" {sat_ratio} {grey_ratio}") r = r0 + r_delta * sat_ratio g_delta = r - g0 b_delta = r - b0 g = g0 + g_delta * grey_ratio b = b0 + b_delta * grey_ratio #print(f"{r} {g} {b}\n") low_colors[i] = (r,g,b,z0) #print(low_colors) # combine the faded low colors with the regular spectral cmap to make a custom version cmap_custom_spectral = ListedColormap(low_colors + spectral_colors[breakpoint:]) #spectral_colors = [cmap_custom_spectral(v/10) for v in range(10)] #for i in range(10): print(spectral_colors[i]) #print("") return cmap_custom_spectral # Make the custom spectral color map the default on module init set_custom_cmap_style() # Arrange the stored annotations optimally and add to plot def anno_volumetric_data(ax, depth_base=2, label='Depth', labelpos=(0.2, 0.7), labelrot=0, type=1, fill=True): # sort all arrays by the x point of the text (anno_offs) global x_anno_offs, y_anno_offs, anno_labels, x_annos, y_annos all_annos = sorted(zip(x_anno_offs, y_anno_offs, anno_labels, x_annos, y_annos)) x_anno_offs = [a for a,b,c,d,e in all_annos] y_anno_offs = [b for a,b,c,d,e in all_annos] anno_labels = [c for a,b,c,d,e in all_annos] x_annos = [d for a,b,c,d,e in all_annos] y_annos = [e for a,b,c,d,e in all_annos] #print(f"{x_anno_offs}") #print(f"{y_anno_offs}") #print(f"{anno_labels}") for i in range(len(anno_labels)): x_anno = x_annos[i] y_anno = y_annos[i] x_anno_off = x_anno_offs[i] y_anno_off = y_anno_offs[i] label = anno_labels[i] if i > 0: x_delta = abs(x_anno_off - x_anno_offs[i - 1]) y_delta = abs(y_anno_off - y_anno_offs[i - 1]) if y_delta < 0.7 and x_delta < 2: y_anno_off = y_anno_offs[i] = y_anno_offs[i - 1] - 0.6 #x_anno_off = x_anno_offs[i] = x_anno_offs[i - 1] + 0.1 ax.annotate(label, xy=(x_anno+0.0, y_anno+0.1), arrowprops=dict(facecolor='black', shrink=0.0, width=0.5, headwidth=4, headlength=5, edgecolor=(0.8,0.8,0.8)), xytext=(x_anno_off + labelpos[0], y_anno_off + labelpos[1]), rotation=labelrot, horizontalalignment='left', verticalalignment='baseline', color=(0.2,0.2,0.2), clip_on=True) if saveplots == True: plt.savefig("VolumetricPlotSample.jpg") # Plot one group of data for volumetric presentation def plot_volumetric_data(ax, w_data, d_data, f_data, depth_base=2, label='Depth', labelpos=(0.2, 0.7), labelrot=0, type=1, fill=True, w_max=18, do_label=False, do_border=True, x_size=1.0, y_size=1.0, zorder=1, offset_flag=False, max_depth=0, suppress_low_fidelity=False): # since data may come back out of order, save point at max y for annotation i_anno = 0 x_anno = 0 y_anno = 0 # plot data rectangles low_fidelity_count = True last_y = -1 k = 0 # determine y-axis dimension for one pixel to use for offset of bars that start at 0 (_, dy) = get_pixel_dims(ax) # do this loop in reverse to handle the case where earlier cells are overlapped by later cells for i in reversed(range(len(d_data))): x = depth_index(d_data[i], depth_base) y = float(w_data[i]) f = f_data[i] # each time we star a new row, reset the offset counter # DEVNOTE: this is highly specialized for the QA area plots, where there are 8 bars # that represent time starting from 0 secs. We offset by one pixel each and center the group if y != last_y: last_y = y; k = 3 # hardcoded for 8 cells, offset by 3 #print(f"{i = } {x = } {y = }") if max_depth > 0 and d_data[i] > max_depth: #print(f"... excessive depth (2), skipped; w={y} d={d_data[i]}") break; # reject cells with low fidelity if suppress_low_fidelity and f < suppress_low_fidelity_level: if low_fidelity_count: break else: low_fidelity_count = True # the only time this is False is when doing merged gradation plots if do_border == True: # this case is for an array of x_sizes, i.e. each box has different width if isinstance(x_size, list): # draw each of the cells, with no offset if not offset_flag: ax.add_patch(box_at(x, y, f, type=type, fill=fill, x_size=x_size[i], y_size=y_size, zorder=zorder)) # use an offset for y value, AND account for x and width to draw starting at 0 else: ax.add_patch(box_at((x/2 + x_size[i]/4), y + k*dy, f, type=type, fill=fill, x_size=x+ x_size[i]/2, y_size=y_size, zorder=zorder)) # this case is for only a single cell else: ax.add_patch(box_at(x, y, f, type=type, fill=fill, x_size=x_size, y_size=y_size)) # save the annotation point with the largest y value if y >= y_anno: x_anno = x y_anno = y i_anno = i # move the next bar down (if using offset) k -= 1 # if no data rectangles plotted, no need for a label if x_anno == 0 or y_anno == 0: return x_annos.append(x_anno) y_annos.append(y_anno) anno_dist = math.sqrt( (y_anno - 1)**2 + (x_anno - 1)**2 ) # adjust radius of annotation circle based on maximum width of apps anno_max = 10 if w_max > 10: anno_max = 14 if w_max > 14: anno_max = 18 scale = anno_max / anno_dist # offset of text from end of arrow if scale > 1: x_anno_off = scale * x_anno - x_anno - 0.5 y_anno_off = scale * y_anno - y_anno else: x_anno_off = 0.7 y_anno_off = 0.5 x_anno_off += x_anno y_anno_off += y_anno # print(f"... {xx} {yy} {anno_dist}") x_anno_offs.append(x_anno_off) y_anno_offs.append(y_anno_off) anno_labels.append(label) if do_label: ax.annotate(label, xy=(x_anno+labelpos[0], y_anno+labelpos[1]), rotation=labelrot, horizontalalignment='left', verticalalignment='bottom', color=(0.2,0.2,0.2)) x_annos = [] y_annos = [] x_anno_offs = [] y_anno_offs = [] anno_labels = [] # init arrays to hold annotation points for label spreading def vplot_anno_init (): global x_annos, y_annos, x_anno_offs, y_anno_offs, anno_labels x_annos = [] y_annos = [] x_anno_offs = [] y_anno_offs = [] anno_labels = [] # Number of ticks on volumetric depth axis max_depth_log = 22 # average transpile factor between base QV depth and our depth based on results from QV notebook QV_transpile_factor = 12.7 # format a number using K,M,B,T for large numbers, optionally rounding to 'digits' decimal places if num > 1 # (sign handling may be incorrect) def format_number(num, digits=0): if isinstance(num, str): num = float(num) num = float('{:.3g}'.format(abs(num))) sign = '' metric = {'T': 1000000000000, 'B': 1000000000, 'M': 1000000, 'K': 1000, '': 1} for index in metric: num_check = num / metric[index] if num_check >= 1: num = round(num_check, digits) sign = index break numstr = f"{str(num)}" if '.' in numstr: numstr = numstr.rstrip('0').rstrip('.') return f"{numstr}{sign}" # Return the color associated with the spcific value, using color map norm def get_color(value): # if there is a normalize function installed, scale the data if cmap_norm: value = float(cmap_norm(value)) if cmap == cmap_spectral: value = 0.05 + value*0.9 elif cmap == cmap_blues: value = 0.00 + value*1.0 else: value = 0.0 + value*0.95 return cmap(value) # Return the x and y equivalent to a single pixel for the given plot axis def get_pixel_dims(ax): # transform 0 -> 1 to pixel dimensions pixdims = ax.transData.transform([(0,1),(1,0)])-ax.transData.transform((0,0)) xpix = pixdims[1][0] ypix = pixdims[0][1] #determine x- and y-axis dimension for one pixel dx = (1 / xpix) dy = (1 / ypix) return (dx, dy) ############### Helper functions # return the base index for a circuit depth value # take the log in the depth base, and add 1 def depth_index(d, depth_base): if depth_base <= 1: return d if d == 0: return 0 return math.log(d, depth_base) + 1 # draw a box at x,y with various attributes def box_at(x, y, value, type=1, fill=True, x_size=1.0, y_size=1.0, alpha=1.0, zorder=1): value = min(value, 1.0) value = max(value, 0.0) fc = get_color(value) ec = (0.5,0.5,0.5) return Rectangle((x - (x_size/2), y - (y_size/2)), x_size, y_size, alpha=alpha, edgecolor = ec, facecolor = fc, fill=fill, lw=0.5*y_size, zorder=zorder) # draw a circle at x,y with various attributes def circle_at(x, y, value, type=1, fill=True): size = 1.0 value = min(value, 1.0) value = max(value, 0.0) fc = get_color(value) ec = (0.5,0.5,0.5) return Circle((x, y), size/2, alpha = 0.7, # DEVNOTE: changed to 0.7 from 0.5, to handle only one cell edgecolor = ec, facecolor = fc, fill=fill, lw=0.5) def box4_at(x, y, value, type=1, fill=True, alpha=1.0): size = 1.0 value = min(value, 1.0) value = max(value, 0.0) fc = get_color(value) ec = (0.3,0.3,0.3) ec = fc return Rectangle((x - size/8, y - size/2), size/4, size, alpha=alpha, edgecolor = ec, facecolor = fc, fill=fill, lw=0.1) # Draw a Quantum Volume rectangle with specified width and depth, and grey-scale value def qv_box_at(x, y, qv_width, qv_depth, value, depth_base): #print(f"{qv_width} {qv_depth} {depth_index(qv_depth, depth_base)}") return Rectangle((x - 0.5, y - 0.5), depth_index(qv_depth, depth_base), qv_width, edgecolor = (value,value,value), facecolor = (value,value,value), fill=True, lw=1) def bkg_box_at(x, y, value=0.9): size = 0.6 return Rectangle((x - size/2, y - size/2), size, size, edgecolor = (.75,.75,.75), facecolor = (value,value,value), fill=True, lw=0.5) def bkg_empty_box_at(x, y): size = 0.6 return Rectangle((x - size/2, y - size/2), size, size, edgecolor = (.75,.75,.75), facecolor = (1.0,1.0,1.0), fill=True, lw=0.5) # Plot the background for the volumetric analysis def plot_volumetric_background(max_qubits=11, QV=32, depth_base=2, suptitle=None, avail_qubits=0, colorbar_label="Avg Result Fidelity"): if suptitle == None: suptitle = f"Volumetric Positioning\nCircuit Dimensions and Fidelity Overlaid on Quantum Volume = {QV}" QV0 = QV qv_estimate = False est_str = "" if QV == 0: # QV = 0 indicates "do not draw QV background or label" QV = 2048 elif QV < 0: # QV < 0 indicates "add est. to label" QV = -QV qv_estimate = True est_str = " (est.)" if avail_qubits > 0 and max_qubits > avail_qubits: max_qubits = avail_qubits max_width = 13 if max_qubits > 11: max_width = 18 if max_qubits > 14: max_width = 20 if max_qubits > 16: max_width = 24 if max_qubits > 24: max_width = 33 #print(f"... {avail_qubits} {max_qubits} {max_width}") plot_width = 6.8 plot_height = 0.5 + plot_width * (max_width / max_depth_log) #print(f"... {plot_width} {plot_height}") # define matplotlib figure and axis; use constrained layout to fit colorbar to right fig, ax = plt.subplots(figsize=(plot_width, plot_height), constrained_layout=True) plt.suptitle(suptitle) plt.xlim(0, max_depth_log) plt.ylim(0, max_width) # circuit depth axis (x axis) xbasis = [x for x in range(1,max_depth_log)] xround = [depth_base**(x-1) for x in xbasis] xlabels = [format_number(x) for x in xround] ax.set_xlabel('Circuit Depth') ax.set_xticks(xbasis) plt.xticks(xbasis, xlabels, color='black', rotation=45, ha='right', va='top', rotation_mode="anchor") # other label options #plt.xticks(xbasis, xlabels, color='black', rotation=-60, ha='left') #plt.xticks(xbasis, xlabels, color='black', rotation=-45, ha='left', va='center', rotation_mode="anchor") # circuit width axis (y axis) ybasis = [y for y in range(1,max_width)] yround = [1,2,3,4,5,6,7,8,10,12,15] # not used now ylabels = [str(y) for y in yround] # not used now #ax.set_ylabel('Circuit Width (Number of Qubits)') ax.set_ylabel('Circuit Width') ax.set_yticks(ybasis) #create simple line plot (not used right now) #ax.plot([0, 10],[0, 10]) log2QV = math.log2(QV) QV_width = log2QV QV_depth = log2QV * QV_transpile_factor # show a quantum volume rectangle of QV = 64 e.g. (6 x 6) if QV0 != 0: ax.add_patch(qv_box_at(1, 1, QV_width, QV_depth, 0.87, depth_base)) else: ax.add_patch(qv_box_at(1, 1, QV_width, QV_depth, 0.91, depth_base)) # the untranspiled version is commented out - we do not show this by default # also show a quantum volume rectangle un-transpiled # ax.add_patch(qv_box_at(1, 1, QV_width, QV_width, 0.80, depth_base)) # show 2D array of volumetric cells based on this QV_transpiled # DEVNOTE: we use +1 only to make the visuals work; s/b without # Also, the second arg of the min( below seems incorrect, needs correction maxprod = (QV_width + 1) * (QV_depth + 1) for w in range(1, min(max_width, round(QV) + 1)): # don't show VB squares if width greater than known available qubits if avail_qubits != 0 and w > avail_qubits: continue i_success = 0 for d in xround: # polarization factor for low circuit widths maxtest = maxprod / ( 1 - 1 / (2**w) ) # if circuit would fail here, don't draw box if d > maxtest: continue if w * d > maxtest: continue # guess for how to capture how hardware decays with width, not entirely correct # # reduce maxtext by a factor of number of qubits > QV_width # # just an approximation to account for qubit distances # if w > QV_width: # over = w - QV_width # maxtest = maxtest / (1 + (over/QV_width)) # draw a box at this width and depth id = depth_index(d, depth_base) # show vb rectangles; if not showing QV, make all hollow (or less dark) if QV0 == 0: #ax.add_patch(bkg_empty_box_at(id, w)) ax.add_patch(bkg_box_at(id, w, 0.95)) else: ax.add_patch(bkg_box_at(id, w, 0.9)) # save index of last successful depth i_success += 1 # plot empty rectangle after others d = xround[i_success] id = depth_index(d, depth_base) ax.add_patch(bkg_empty_box_at(id, w)) # Add annotation showing quantum volume if QV0 != 0: t = ax.text(max_depth_log - 2.0, 1.5, f"QV{est_str}={QV}", size=12, horizontalalignment='right', verticalalignment='center', color=(0.2,0.2,0.2), bbox=dict(boxstyle="square,pad=0.3", fc=(.9,.9,.9), ec="grey", lw=1)) # add colorbar to right of plot plt.colorbar(cm.ScalarMappable(cmap=cmap), cax=None, ax=ax, shrink=0.6, label=colorbar_label, panchor=(0.0, 0.7)) return ax # Function to calculate circuit depth def calculate_circuit_depth(qc): # Calculate the depth of the circuit depth = qc.depth() return depth def calculate_transpiled_depth(qc,basis_selector): # use either the backend or one of the basis gate sets if basis_selector == 0: qc = transpile(qc, backend) else: basis_gates = basis_gates_array[basis_selector] qc = transpile(qc, basis_gates=basis_gates, seed_transpiler=0) transpiled_depth = qc.depth() return transpiled_depth,qc def plot_fidelity_data(fidelity_data, Hf_fidelity_data, title): avg_fidelity_means = [] avg_Hf_fidelity_means = [] avg_num_qubits_values = list(fidelity_data.keys()) # Calculate the average fidelity and Hamming fidelity for each unique number of qubits for num_qubits in avg_num_qubits_values: avg_fidelity = np.average(fidelity_data[num_qubits]) avg_fidelity_means.append(avg_fidelity) avg_Hf_fidelity = np.mean(Hf_fidelity_data[num_qubits]) avg_Hf_fidelity_means.append(avg_Hf_fidelity) return avg_fidelity_means,avg_Hf_fidelity_means list_of_gates = [] def list_of_standardgates(): import qiskit.circuit.library as lib from qiskit.circuit import Gate import inspect # List all the attributes of the library module gate_list = dir(lib) # Filter out non-gate classes (like functions, variables, etc.) gates = [gate for gate in gate_list if isinstance(getattr(lib, gate), type) and issubclass(getattr(lib, gate), Gate)] # Get method names from QuantumCircuit circuit_methods = inspect.getmembers(QuantumCircuit, inspect.isfunction) method_names = [name for name, _ in circuit_methods] # Map gate class names to method names gate_to_method = {} for gate in gates: gate_class = getattr(lib, gate) class_name = gate_class.__name__.replace('Gate', '').lower() # Normalize class name for method in method_names: if method == class_name or method == class_name.replace('cr', 'c-r'): gate_to_method[gate] = method break # Add common operations that are not strictly gates additional_operations = { 'Measure': 'measure', 'Barrier': 'barrier', } gate_to_method.update(additional_operations) for k,v in gate_to_method.items(): list_of_gates.append(v) def update_counts(gates,custom_gates): operations = {} for key, value in gates.items(): operations[key] = value for key, value in custom_gates.items(): if key in operations: operations[key] += value else: operations[key] = value return operations def get_gate_counts(gates,custom_gate_defs): result = gates.copy() # Iterate over the gate counts in the quantum circuit for gate, count in gates.items(): if gate in custom_gate_defs: custom_gate_ops = custom_gate_defs[gate] # Multiply custom gate operations by the count of the custom gate in the circuit for _ in range(count): result = update_counts(result, custom_gate_ops) # Remove the custom gate entry as we have expanded it del result[gate] return result dict_of_qc = dict() custom_gates_defs = dict() # Function to count operations recursively def count_operations(qc): dict_of_qc.clear() circuit_traverser(qc) operations = dict() operations = dict_of_qc[qc.name] del dict_of_qc[qc.name] # print("operations :",operations) # print("dict_of_qc :",dict_of_qc) for keys in operations.keys(): if keys not in list_of_gates: for k,v in dict_of_qc.items(): if k in operations.keys(): custom_gates_defs[k] = v operations=get_gate_counts(operations,custom_gates_defs) custom_gates_defs.clear() return operations def circuit_traverser(qc): dict_of_qc[qc.name]=dict(qc.count_ops()) for i in qc.data: if str(i.operation.name) not in list_of_gates: qc_1 = i.operation.definition circuit_traverser(qc_1) def get_memory(): import resource usage = resource.getrusage(resource.RUSAGE_SELF) max_mem = usage.ru_maxrss/1024 #in MB return max_mem def analyzer(qc,references,num_qubits): # total circuit name (pauli string + coefficient) total_name = qc.name # pauli string pauli_string = total_name.split()[0] # get the correct measurement if (len(total_name.split()) == 2): correct_dist = references[pauli_string] else: circuit_id = int(total_name.split()[2]) correct_dist = references[f"Qubits - {num_qubits} - {circuit_id}"] return correct_dist,total_name # Max qubits must be 12 since the referenced files only go to 12 qubits MAX_QUBITS = 12 method = 1 def run (min_qubits=min_qubits, max_qubits=max_qubits, skip_qubits=2, max_circuits=max_circuits, num_shots=num_shots): creation_times = [] elapsed_times = [] quantum_times = [] circuit_depths = [] transpiled_depths = [] fidelity_data = {} Hf_fidelity_data = {} numckts = [] mem_usage = [] algorithmic_1Q_gate_counts = [] algorithmic_2Q_gate_counts = [] transpiled_1Q_gate_counts = [] transpiled_2Q_gate_counts = [] print(f"{benchmark_name} Benchmark Program - {platform}") #defining all the standard gates supported by qiskit in a list if gate_counts_plots == True: list_of_standardgates() max_qubits = max(max_qubits, min_qubits) # max must be >= min # validate parameters (smallest circuit is 4 qubits and largest is 10 qubits) max_qubits = min(max_qubits, MAX_QUBITS) min_qubits = min(max(4, min_qubits), max_qubits) if min_qubits % 2 == 1: min_qubits += 1 # min_qubits must be even skip_qubits = max(1, skip_qubits) if method == 2: max_circuits = 1 if max_qubits < 4: print(f"Max number of qubits {max_qubits} is too low to run method {method} of VQE algorithm") return global max_ckts max_ckts = max_circuits global min_qbits,max_qbits,skp_qubits min_qbits = min_qubits max_qbits = max_qubits skp_qubits = skip_qubits print(f"min, max qubits = {min_qubits} {max_qubits}") # Execute Benchmark Program N times for multiple circuit sizes for input_size in range(min_qubits, max_qubits + 1, skip_qubits): # reset random seed np.random.seed(0) # determine the number of circuits to execute for this group num_circuits = min(3, max_circuits) num_qubits = input_size fidelity_data[num_qubits] = [] Hf_fidelity_data[num_qubits] = [] # decides number of electrons na = int(num_qubits/4) nb = int(num_qubits/4) # random seed np.random.seed(0) numckts.append(num_circuits) # create the circuit for given qubit size and simulation parameters, store time metric ts = time.time() # circuit list qc_list = [] # Method 1 (default) if method == 1: # loop over circuits for circuit_id in range(num_circuits): # construct circuit qc_single = VQEEnergy(num_qubits, na, nb, circuit_id, method) qc_single.name = qc_single.name + " " + str(circuit_id) # add to list qc_list.append(qc_single) # method 2 elif method == 2: # construct all circuits qc_list = VQEEnergy(num_qubits, na, nb, 0, method) print(qc_list) print(f"************\nExecuting [{len(qc_list)}] circuits with num_qubits = {num_qubits}") for qc in qc_list: print("*********************************************") #print(f"qc of {qc} qubits for qc_list value: {qc_list}") # get circuit id if method == 1: circuit_id = qc.name.split()[2] else: circuit_id = qc.name.split()[0] #creation time creation_time = time.time() - ts creation_times.append(creation_time) #print(qc) print(f"creation time = {creation_time*1000} ms") # Calculate gate count for the algorithmic circuit (excluding barriers and measurements) if gate_counts_plots == True: operations = count_operations(qc) n1q = 0; n2q = 0 if operations != None: for key, value in operations.items(): if key == "measure": continue if key == "barrier": continue if key.startswith("c") or key.startswith("mc"): n2q += value else: n1q += value print("operations: ",operations) algorithmic_1Q_gate_counts.append(n1q) algorithmic_2Q_gate_counts.append(n2q) # collapse the sub-circuit levels used in this benchmark (for qiskit) qc=qc.decompose() #print(qc) # Calculate circuit depth depth = calculate_circuit_depth(qc) circuit_depths.append(depth) # Calculate transpiled circuit depth transpiled_depth,qc = calculate_transpiled_depth(qc,basis_selector) transpiled_depths.append(transpiled_depth) #print(qc) print(f"Algorithmic Depth = {depth} and Normalized Depth = {transpiled_depth}") if gate_counts_plots == True: # Calculate gate count for the transpiled circuit (excluding barriers and measurements) tr_ops = qc.count_ops() #print("tr_ops = ",tr_ops) tr_n1q = 0; tr_n2q = 0 if tr_ops != None: for key, value in tr_ops.items(): if key == "measure": continue if key == "barrier": continue if key.startswith("c"): tr_n2q += value else: tr_n1q += value transpiled_1Q_gate_counts.append(tr_n1q) transpiled_2Q_gate_counts.append(tr_n2q) print(f"Algorithmic 1Q gates = {n1q} ,Algorithmic 2Q gates = {n2q}") print(f"Normalized 1Q gates = {tr_n1q} ,Normalized 2Q gates = {tr_n2q}") #execution if Type_of_Simulator == "built_in": #To check if Noise is required if Noise_Inclusion == True: noise_model = noise_parameters else: noise_model = None ts = time.time() job = execute(qc, backend, shots=num_shots, noise_model=noise_model) elif Type_of_Simulator == "FAKE" or Type_of_Simulator == "FAKEV2" : ts = time.time() job = backend.run(qc,shots=num_shots, noise_model=noise_parameters) #retrieving the result result = job.result() #print(result) #calculating elapsed time elapsed_time = time.time() - ts elapsed_times.append(elapsed_time) # Calculate quantum processing time quantum_time = result.time_taken quantum_times.append(quantum_time) print(f"Elapsed time = {elapsed_time*1000} ms and Quantum Time = {quantum_time*1000} ms") #counts in result object counts = result.get_counts() # load pre-computed data if len(qc.name.split()) == 2: filename = os.path.join(f'_common/precalculated_data_{num_qubits}_qubit.json') with open(filename) as f: references = json.load(f) else: filename = os.path.join(f'_common/precalculated_data_{num_qubits}_qubit_method2.json') with open(filename) as f: references = json.load(f) #Correct distribution to compare with counts correct_dist,total_name = analyzer(qc,references,num_qubits) #fidelity calculation comparision of counts and correct_dist fidelity_dict = polarization_fidelity(counts, correct_dist) print(fidelity_dict) # modify fidelity based on the coefficient if (len(total_name.split()) == 2): fidelity_dict *= ( abs(float(total_name.split()[1])) / normalization ) fidelity_data[num_qubits].append(fidelity_dict['fidelity']) Hf_fidelity_data[num_qubits].append(fidelity_dict['hf_fidelity']) #maximum memory utilization (if required) if Memory_utilization_plot == True: max_mem = get_memory() print(f"Maximum Memory Utilized: {max_mem} MB") mem_usage.append(max_mem) print("*********************************************") ########## # print a sample circuit print("Sample Circuit:"); print(QC_ if QC_ != None else " ... too large!") print("\nHartree Fock Generator 'Hf' ="); print(Hf_ if Hf_ != None else " ... too large!") print("\nCluster Operator Example 'Cluster Op' ="); print(CO_ if CO_ != None else " ... too large!") return (creation_times, elapsed_times, quantum_times, circuit_depths, transpiled_depths, fidelity_data, Hf_fidelity_data, numckts , algorithmic_1Q_gate_counts, algorithmic_2Q_gate_counts, transpiled_1Q_gate_counts, transpiled_2Q_gate_counts,mem_usage) # Execute the benchmark program, accumulate metrics, and calculate circuit depths (creation_times, elapsed_times, quantum_times, circuit_depths,transpiled_depths, fidelity_data, Hf_fidelity_data, numckts, algorithmic_1Q_gate_counts, algorithmic_2Q_gate_counts, transpiled_1Q_gate_counts, transpiled_2Q_gate_counts,mem_usage) = run() # Define the range of qubits for the x-axis num_qubits_range = range(min_qbits, max_qbits+1,skp_qubits) print("num_qubits_range =",num_qubits_range) # Calculate average creation time, elapsed time, quantum processing time, and circuit depth for each number of qubits avg_creation_times = [] avg_elapsed_times = [] avg_quantum_times = [] avg_circuit_depths = [] avg_transpiled_depths = [] avg_1Q_algorithmic_gate_counts = [] avg_2Q_algorithmic_gate_counts = [] avg_1Q_Transpiled_gate_counts = [] avg_2Q_Transpiled_gate_counts = [] max_memory = [] start = 0 for num in numckts: avg_creation_times.append(np.mean(creation_times[start:start+num])) avg_elapsed_times.append(np.mean(elapsed_times[start:start+num])) avg_quantum_times.append(np.mean(quantum_times[start:start+num])) avg_circuit_depths.append(np.mean(circuit_depths[start:start+num])) avg_transpiled_depths.append(np.mean(transpiled_depths[start:start+num])) if gate_counts_plots == True: avg_1Q_algorithmic_gate_counts.append(int(np.mean(algorithmic_1Q_gate_counts[start:start+num]))) avg_2Q_algorithmic_gate_counts.append(int(np.mean(algorithmic_2Q_gate_counts[start:start+num]))) avg_1Q_Transpiled_gate_counts.append(int(np.mean(transpiled_1Q_gate_counts[start:start+num]))) avg_2Q_Transpiled_gate_counts.append(int(np.mean(transpiled_2Q_gate_counts[start:start+num]))) if Memory_utilization_plot == True:max_memory.append(np.max(mem_usage[start:start+num])) start += num # Calculate the fidelity data avg_f, avg_Hf = plot_fidelity_data(fidelity_data, Hf_fidelity_data, "Fidelity Comparison") # Plot histograms for average creation time, average elapsed time, average quantum processing time, and average circuit depth versus the number of qubits # Add labels to the bars def autolabel(rects,ax,str='{:.3f}',va='top',text_color="black"): for rect in rects: height = rect.get_height() ax.annotate(str.format(height), # Formatting to two decimal places xy=(rect.get_x() + rect.get_width() / 2, height / 2), xytext=(0, 0), textcoords="offset points", ha='center', va=va,color=text_color,rotation=90) bar_width = 0.3 # Determine the number of subplots and their arrangement if Memory_utilization_plot and gate_counts_plots: fig, (ax1, ax2, ax3, ax4, ax5, ax6, ax7) = plt.subplots(7, 1, figsize=(18, 30)) # Plotting for both memory utilization and gate counts # ax1, ax2, ax3, ax4, ax5, ax6, ax7 are available elif Memory_utilization_plot: fig, (ax1, ax2, ax3, ax6, ax7) = plt.subplots(5, 1, figsize=(18, 30)) # Plotting for memory utilization only # ax1, ax2, ax3, ax6, ax7 are available elif gate_counts_plots: fig, (ax1, ax2, ax3, ax4, ax5, ax6) = plt.subplots(6, 1, figsize=(18, 30)) # Plotting for gate counts only # ax1, ax2, ax3, ax4, ax5, ax6 are available else: fig, (ax1, ax2, ax3, ax6) = plt.subplots(4, 1, figsize=(18, 30)) # Default plotting # ax1, ax2, ax3, ax6 are available fig.suptitle(f"General Benchmarks : {platform} - {benchmark_name}", fontsize=16) for i in range(len(avg_creation_times)): #converting seconds to milli seconds by multiplying 1000 avg_creation_times[i] *= 1000 ax1.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) x = ax1.bar(num_qubits_range, avg_creation_times, color='deepskyblue') autolabel(ax1.patches, ax1) ax1.set_xlabel('Number of Qubits') ax1.set_ylabel('Average Creation Time (ms)') ax1.set_title('Average Creation Time vs Number of Qubits',fontsize=14) ax2.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) for i in range(len(avg_elapsed_times)): #converting seconds to milli seconds by multiplying 1000 avg_elapsed_times[i] *= 1000 for i in range(len(avg_quantum_times)): #converting seconds to milli seconds by multiplying 1000 avg_quantum_times[i] *= 1000 Elapsed= ax2.bar(np.array(num_qubits_range) - bar_width / 2, avg_elapsed_times, width=bar_width, color='cyan', label='Elapsed Time') Quantum= ax2.bar(np.array(num_qubits_range) + bar_width / 2, avg_quantum_times,width=bar_width, color='deepskyblue',label ='Quantum Time') autolabel(Elapsed,ax2,str='{:.1f}') autolabel(Quantum,ax2,str='{:.1f}') ax2.set_xlabel('Number of Qubits') ax2.set_ylabel('Average Time (ms)') ax2.set_title('Average Time vs Number of Qubits') ax2.legend() ax3.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) Normalized = ax3.bar(np.array(num_qubits_range) - bar_width / 2, avg_transpiled_depths, color='cyan', label='Normalized Depth', width=bar_width) # Adjust width here Algorithmic = ax3.bar(np.array(num_qubits_range) + bar_width / 2,avg_circuit_depths, color='deepskyblue', label='Algorithmic Depth', width=bar_width) # Adjust width here autolabel(Normalized,ax3,str='{:.2f}') autolabel(Algorithmic,ax3,str='{:.2f}') ax3.set_xlabel('Number of Qubits') ax3.set_ylabel('Average Circuit Depth') ax3.set_title('Average Circuit Depth vs Number of Qubits') ax3.legend() if gate_counts_plots == True: ax4.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) Normalized_1Q_counts = ax4.bar(np.array(num_qubits_range) - bar_width / 2, avg_1Q_Transpiled_gate_counts, color='cyan', label='Normalized Gate Counts', width=bar_width) # Adjust width here Algorithmic_1Q_counts = ax4.bar(np.array(num_qubits_range) + bar_width / 2, avg_1Q_algorithmic_gate_counts, color='deepskyblue', label='Algorithmic Gate Counts', width=bar_width) # Adjust width here autolabel(Normalized_1Q_counts,ax4,str='{}') autolabel(Algorithmic_1Q_counts,ax4,str='{}') ax4.set_xlabel('Number of Qubits') ax4.set_ylabel('Average 1-Qubit Gate Counts') ax4.set_title('Average 1-Qubit Gate Counts vs Number of Qubits') ax4.legend() ax5.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) Normalized_2Q_counts = ax5.bar(np.array(num_qubits_range) - bar_width / 2, avg_2Q_Transpiled_gate_counts, color='cyan', label='Normalized Gate Counts', width=bar_width) # Adjust width here Algorithmic_2Q_counts = ax5.bar(np.array(num_qubits_range) + bar_width / 2, avg_2Q_algorithmic_gate_counts, color='deepskyblue', label='Algorithmic Gate Counts', width=bar_width) # Adjust width here autolabel(Normalized_2Q_counts,ax5,str='{}') autolabel(Algorithmic_2Q_counts,ax5,str='{}') ax5.set_xlabel('Number of Qubits') ax5.set_ylabel('Average 2-Qubit Gate Counts') ax5.set_title('Average 2-Qubit Gate Counts vs Number of Qubits') ax5.legend() ax6.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) Hellinger = ax6.bar(np.array(num_qubits_range) - bar_width / 2, avg_Hf, width=bar_width, label='Hellinger Fidelity',color='cyan') # Adjust width here Normalized = ax6.bar(np.array(num_qubits_range) + bar_width / 2, avg_f, width=bar_width, label='Normalized Fidelity', color='deepskyblue') # Adjust width here autolabel(Hellinger,ax6,str='{:.2f}') autolabel(Normalized,ax6,str='{:.2f}') ax6.set_xlabel('Number of Qubits') ax6.set_ylabel('Average Value') ax6.set_title("Fidelity Comparison") ax6.legend() if Memory_utilization_plot == True: ax7.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) x = ax7.bar(num_qubits_range, max_memory, color='turquoise', width=bar_width, label="Memory Utilizations") autolabel(ax7.patches, ax7) ax7.set_xlabel('Number of Qubits') ax7.set_ylabel('Maximum Memory Utilized (MB)') ax7.set_title('Memory Utilized vs Number of Qubits',fontsize=14) plt.tight_layout(rect=[0, 0, 1, 0.96]) if saveplots == True: plt.savefig("ParameterPlotsSample.jpg") plt.show() # Quantum Volume Plot Suptitle = f"Volumetric Positioning - {platform}" appname=benchmark_name if QV_ == None: QV=2048 else: QV=QV_ depth_base =2 ax = plot_volumetric_background(max_qubits=max_qbits, QV=QV,depth_base=depth_base, suptitle=Suptitle, colorbar_label="Avg Result Fidelity") w_data = num_qubits_range # determine width for circuit w_max = 0 for i in range(len(w_data)): y = float(w_data[i]) w_max = max(w_max, y) d_tr_data = avg_transpiled_depths f_data = avg_f plot_volumetric_data(ax, w_data, d_tr_data, f_data, depth_base, fill=True,label=appname, labelpos=(0.4, 0.6), labelrot=15, type=1, w_max=w_max) anno_volumetric_data(ax, depth_base,label=appname, labelpos=(0.4, 0.6), labelrot=15, type=1, fill=False)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, QuantumRegister from qiskit.circuit.library.standard_gates import HGate qc1 = QuantumCircuit(2) qc1.x(0) qc1.h(1) custom = qc1.to_gate().control(2) qc2 = QuantumCircuit(4) qc2.append(custom, [0, 3, 1, 2]) qc2.draw('mpl')
https://github.com/qiskit-community/qiskit-cold-atom
qiskit-community
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """tests for circuit_to_cold_atom functions""" from typing import Dict from qiskit import QuantumCircuit from qiskit.test import QiskitTestCase from qiskit.circuit import Parameter from qiskit.providers import BackendV1 as Backend from qiskit.providers.models import BackendConfiguration from qiskit_cold_atom.exceptions import QiskitColdAtomError from qiskit_cold_atom.circuit_tools import CircuitTools, WireOrder # These imports are needed to decorate the quantum circuit import qiskit_cold_atom.spins # pylint: disable=unused-import import qiskit_cold_atom.fermions # pylint: disable=unused-import class DummyBackend(Backend): """dummy backend class for test purposes only""" def __init__(self, config_dict: Dict): super().__init__(configuration=BackendConfiguration.from_dict(config_dict)) def run(self, run_input, **options): pass @classmethod def _default_options(cls): pass class TestCircuitToColdAtom(QiskitTestCase): """circuit to cold atom tests.""" def setUp(self): super().setUp() # Set up a dummy backend from a configuration dictionary test_config = { "backend_name": "test_backend", "backend_version": "0.0.1", "simulator": True, "local": True, "coupling_map": None, "description": "dummy backend for testing purposes only", "basis_gates": ["hop, int"], "memory": False, "n_qubits": 5, "conditional": False, "max_shots": 100, "max_experiments": 2, "open_pulse": False, "gates": [ { "coupling_map": [[0], [1], [2], [3], [4]], "name": "rlz", "parameters": ["delta"], "qasm_def": "gate rLz(delta) {}", }, { "coupling_map": [[0], [1], [2]], "name": "rlz2", "parameters": ["chi"], "qasm_def": "gate rlz2(chi) {}", }, { "coupling_map": [[0], [1], [2], [3], [4]], "name": "rlx", "parameters": ["omega"], "qasm_def": "gate rx(omega) {}", }, ], "supported_instructions": [ "delay", "rlx", "rlz", "rlz2", "measure", "barrier", ], } self.dummy_backend = DummyBackend(test_config) def test_circuit_to_cold_atom(self): """test the circuit_to_cold_atom function""" circ1 = QuantumCircuit(3) circ1.rlx(0.5, [0, 1]) circ1.rlz(0.3, [1, 2]) circ1.measure_all() circ2 = QuantumCircuit(2) circ2.rlz2(0.5, 1) circ2.measure_all() shots = 10 target_output = { "experiment_0": { "instructions": [ ["rlx", [0], [0.5]], ["rlx", [1], [0.5]], ["rlz", [1], [0.3]], ["rlz", [2], [0.3]], ["barrier", [0, 1, 2], []], ["measure", [0], []], ["measure", [1], []], ["measure", [2], []], ], "num_wires": 3, "shots": shots, "wire_order": "sequential", }, "experiment_1": { "instructions": [ ["rlz2", [1], [0.5]], ["barrier", [0, 1], []], ["measure", [0], []], ["measure", [1], []], ], "num_wires": 2, "shots": shots, "wire_order": "sequential", }, } actual_output = CircuitTools.circuit_to_cold_atom( [circ1, circ2], backend=self.dummy_backend, shots=shots ) self.assertEqual(actual_output, target_output) def test_validate_circuits(self): """test the validation of circuits against the backend configuration""" with self.subTest("test size of circuit"): circ = QuantumCircuit(6) circ.rlx(0.4, 2) with self.assertRaises(QiskitColdAtomError): CircuitTools.validate_circuits(circ, backend=self.dummy_backend) with self.subTest("test support of native instructions"): circ = QuantumCircuit(4) # add gate that is not supported by the backend circ.fhop([0.5], [0, 1, 2, 3]) with self.assertRaises(QiskitColdAtomError): CircuitTools.validate_circuits(circ, backend=self.dummy_backend) with self.subTest("check gate coupling map"): circ = QuantumCircuit(5) circ.rlz2(0.5, 4) with self.assertRaises(QiskitColdAtomError): CircuitTools.validate_circuits(circ, backend=self.dummy_backend) with self.subTest("test max. allowed circuits"): circuits = [QuantumCircuit(2)] * 3 with self.assertRaises(QiskitColdAtomError): CircuitTools.circuit_to_cold_atom(circuits=circuits, backend=self.dummy_backend) with self.subTest("test max. allowed shots"): circuits = QuantumCircuit(2) with self.assertRaises(QiskitColdAtomError): CircuitTools.circuit_to_cold_atom( circuits=circuits, backend=self.dummy_backend, shots=1000 ) with self.subTest("test running with unbound parameters"): theta = Parameter("θ") circ = QuantumCircuit(1) circ.rlx(theta, 0) with self.assertRaises(QiskitColdAtomError): CircuitTools.validate_circuits(circ, backend=self.dummy_backend) def test_circuit_to_data(self): """test the circuit to data method""" circ = QuantumCircuit(3) circ.rlx(0.5, [0, 1]) circ.rlz(0.3, [1, 2]) circ.measure_all() target_output = [ ["rlx", [0], [0.5]], ["rlx", [1], [0.5]], ["rlz", [1], [0.3]], ["rlz", [2], [0.3]], ["barrier", [0, 1, 2], []], ["measure", [0], []], ["measure", [1], []], ["measure", [2], []], ] actual_output = CircuitTools.circuit_to_data(circ, backend=self.dummy_backend) self.assertEqual(actual_output, target_output) def test_convert_wire_order(self): """test the convert_wire_order method""" num_sites = 4 num_species = 3 # conversion rule: i -> (i % num_sites) * num_species + i // num_sites wires_sequential = [0, 1, 4, 5, 8, 9] wires_interleaved = [0, 3, 1, 4, 2, 5] with self.subTest("test sequential to interleaved"): wires_converted = CircuitTools.convert_wire_order( wires=wires_sequential, convention_from=WireOrder.SEQUENTIAL, convention_to=WireOrder.INTERLEAVED, num_sites=num_sites, num_species=num_species, ) self.assertEqual(wires_converted, wires_interleaved) with self.subTest("test interleaved to sequential"): wires_converted = CircuitTools.convert_wire_order( wires=wires_interleaved, convention_from=WireOrder.INTERLEAVED, convention_to=WireOrder.SEQUENTIAL, num_sites=num_sites, num_species=num_species, ) self.assertEqual(wires_converted, wires_sequential)
https://github.com/henrik-dreyer/MPS-in-Qiskit
henrik-dreyer
import prepare_MPS as mps import numpy as np from qiskit import BasicAer, execute #Create Random MPS with size 4, bond dimension 4 and physical dimension 2 (qubits) N=4 d=2 chi=4 phi_final=np.random.rand(chi) phi_initial=np.random.rand(chi) A=mps.create_random_tensors(N,chi,d) #Create the circuit. The 'reg' register corresponds to the 'MPS' register in the picture above qc, reg = mps.MPS_to_circuit(A, phi_initial, phi_final) #Run the circuit on the statevector simulator backend = BasicAer.get_backend("statevector_simulator") job = execute(qc, backend) result = job.result() psi_out=result.get_statevector() #Contract out the ancilla with the known state psi_out=psi_out.reshape(d**N,chi) exp=psi_out.dot(phi_final) #Prepare the MPS classically thr,_=mps.create_statevector(A,phi_initial,phi_final,qiskit_ordering=True) #Compare the resulting vectors (fixing phase and normalization) exp=mps.normalize(mps.extract_phase(exp)) thr=mps.normalize(mps.extract_phase(thr)) print("The MPS is \n {}".format(thr)) print("The statevector produced by the circuit is \n {}".format(exp)) from qiskit import ClassicalRegister N=5 chi=2 #The following is the standard representation of a GHZ state in terms of MPS phi_initial=np.array([1,1]) phi_final=np.array([1,1]) T=np.zeros((d,chi,chi)) T[0,0,0]=1 T[1,1,1]=1 A=[] for _ in range(N): A.append(T) #Create the circuit, store the relevant wavefunction is register 'reg' and measure qc, reg = mps.MPS_to_circuit(A, phi_initial, phi_final) creg=ClassicalRegister(N) qc.add_register(creg) qc.measure(reg,creg) #Run on a simulator backend = BasicAer.get_backend("qasm_simulator") job = execute(qc, backend) result = job.result() counts = result.get_counts(qc) print("\nTotal counts are:",counts)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.timeline import draw from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) qc = transpile(qc, FakeBoeblingen(), scheduling_method='alap', layout_method='trivial') draw(qc)
https://github.com/mcoggins96/Quantum-Computing-UK-Repository
mcoggins96
# Copyright 2021 qclib project. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Toffoli decomposition explained in Lemma 8 from Quantum Circuits for Isometries. https://arxiv.org/abs/1501.06911 ''' from numpy import pi from qiskit import QuantumCircuit from qiskit.circuit import Gate class Toffoli(Gate): def __init__(self, cancel=None): self.cancel = cancel super().__init__('toffoli', 3, [], "Toffoli") def _define(self): self.definition = QuantumCircuit(3) theta = pi / 4. control_qubits = self.definition.qubits[:2] target_qubit = self.definition.qubits[-1] if self.cancel != 'left': self.definition.u(theta=-theta, phi=0., lam=0., qubit=target_qubit) self.definition.cx(control_qubits[0], target_qubit) self.definition.u(theta=-theta, phi=0., lam=0., qubit=target_qubit) self.definition.cx(control_qubits[1], target_qubit) if self.cancel != 'right': self.definition.u(theta=theta, phi=0., lam=0., qubit=target_qubit) self.definition.cx(control_qubits[0], target_qubit) self.definition.u(theta=theta, phi=0., lam=0., qubit=target_qubit) @staticmethod def ccx(circuit, controls=None, target=None, cancel=None): if controls is None or target is None: circuit.append(Toffoli(cancel), circuit.qubits[:3]) else: circuit.append(Toffoli(cancel), [*controls, target])
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumCircuit from qiskit.quantum_info import DensityMatrix from qiskit.visualization import plot_state_hinton qc = QuantumCircuit(2) qc.h([0, 1]) qc.cz(0,1) qc.ry(np.pi/3 , 0) qc.rx(np.pi/5, 1) state = DensityMatrix(qc) plot_state_hinton(state, title="New Hinton Plot")
https://github.com/MonitSharma/Learn-Quantum-Computing-with-Qiskit
MonitSharma
#initialization import matplotlib.pyplot as plt import numpy as np import math # importing Qiskit from qiskit import transpile from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister # import basic plot tools and circuits from qiskit.visualization import plot_histogram from qiskit.circuit.library import QFT from qiskit.primitives import Sampler, Estimator qpe = QuantumCircuit(4, 3) qpe.x(3) qpe.draw('mpl') for qubit in range(3): qpe.h(qubit) qpe.draw('mpl') repetitions = 1 for counting_qubit in range(3): for i in range(repetitions): qpe.cp(math.pi/4, counting_qubit, 3); # controlled-T repetitions *= 2 qpe.draw('mpl') qpe.barrier() # Apply inverse QFT qpe = qpe.compose(QFT(3, inverse=True), [0,1,2]) # Measure qpe.barrier() for n in range(3): qpe.measure(n,n) qpe.draw('mpl') sampler = Sampler() result = sampler.run(qpe).result() answer = result.quasi_dists[0] plot_histogram(answer) # Create and set up circuit qpe2 = QuantumCircuit(4, 3) # Apply H-Gates to counting qubits: for qubit in range(3): qpe2.h(qubit) # Prepare our eigenstate |psi>: qpe2.x(3) # Do the controlled-U operations: angle = 2*math.pi/3 repetitions = 1 for counting_qubit in range(3): for i in range(repetitions): qpe2.cp(angle, counting_qubit, 3); repetitions *= 2 # Do the inverse QFT: qpe2 = qpe2.compose(QFT(3, inverse=True), [0,1,2]) # Measure of course! for n in range(3): qpe2.measure(n,n) qpe2.draw('mpl') # Let's see the results! result = sampler.run(qpe2).result() answer = result.quasi_dists[0] plot_histogram(answer) # Create and set up circuit qpe3 = QuantumCircuit(6, 5) # Apply H-Gates to counting qubits: for qubit in range(5): qpe3.h(qubit) # Prepare our eigenstate |psi>: qpe3.x(5) # Do the controlled-U operations: angle = 2*math.pi/3 repetitions = 1 for counting_qubit in range(5): for i in range(repetitions): qpe3.cp(angle, counting_qubit, 5); repetitions *= 2 # Do the inverse QFT: qpe3 = qpe3.compose(QFT(5, inverse=True), range(5)) # Measure of course! qpe3.barrier() for n in range(5): qpe3.measure(n,n) qpe3.draw('mpl') # Let's see the results! result = sampler.run(qpe3).result() answer = result.quasi_dists[0] plot_histogram(answer) qpe.draw('mpl') from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService() service.backends() # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to nqubits service = QiskitRuntimeService() backend = service.least_busy(operational=True,min_num_qubits=5) print(backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager pm = generate_preset_pass_manager(optimization_level=3, backend=backend,seed_transpiler=11) qc = pm.run(qpe) qpe.draw('mpl',idle_wires=False) # get the results from the computation from qiskit.primitives import BackendSampler sampler = BackendSampler(backend) result = sampler.run(qpe).result() answer = result.quasi_dists[0] plot_histogram(answer)
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2023 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import enum import math import ddt import qiskit.qasm2 from qiskit.circuit import Gate, library as lib from qiskit.test import QiskitTestCase from test import combine # pylint: disable=wrong-import-order # We need to use this enum a _bunch_ of times, so let's not give it a long name. # pylint: disable=invalid-name class T(enum.Enum): # This is a deliberately stripped-down list that doesn't include most of the expression-specific # tokens, because we don't want to complicate matters with those in tests of the general parser # errors. We test the expression subparser elsewhere. OPENQASM = "OPENQASM" BARRIER = "barrier" CREG = "creg" GATE = "gate" IF = "if" INCLUDE = "include" MEASURE = "measure" OPAQUE = "opaque" QREG = "qreg" RESET = "reset" PI = "pi" ARROW = "->" EQUALS = "==" SEMICOLON = ";" COMMA = "," LPAREN = "(" RPAREN = ")" LBRACKET = "[" RBRACKET = "]" LBRACE = "{" RBRACE = "}" ID = "q" REAL = "1.5" INTEGER = "1" FILENAME = '"qelib1.inc"' def bad_token_parametrisation(): """Generate the test cases for the "bad token" tests; this makes a sequence of OpenQASM 2 statements, then puts various invalid tokens after them to verify that the parser correctly throws an error on them.""" token_set = frozenset(T) def without(*tokens): return token_set - set(tokens) # ddt isn't a particularly great parametriser - it'll only correctly unpack tuples and lists in # the way we really want, but if we want to control the test id, we also have to set `__name__` # which isn't settable on either of those. We can't use unpack, then, so we just need a class # to pass. class BadTokenCase: def __init__(self, statement, disallowed, name=None): self.statement = statement self.disallowed = disallowed self.__name__ = name for statement, disallowed in [ # This should only include stopping points where the next token is somewhat fixed; in # places where there's a real decision to be made (such as number of qubits in a gate, # or the statement type in a gate body), there should be a better error message. # # There's a large subset of OQ2 that's reducible to a regular language, so we _could_ # define that, build a DFA for it, and use that to very quickly generate a complete set # of tests. That would be more complex to read and verify for correctness, though. ( "", without( T.OPENQASM, T.ID, T.INCLUDE, T.OPAQUE, T.GATE, T.QREG, T.CREG, T.IF, T.RESET, T.BARRIER, T.MEASURE, T.SEMICOLON, ), ), ("OPENQASM", without(T.REAL, T.INTEGER)), ("OPENQASM 2.0", without(T.SEMICOLON)), ("include", without(T.FILENAME)), ('include "qelib1.inc"', without(T.SEMICOLON)), ("opaque", without(T.ID)), ("opaque bell", without(T.LPAREN, T.ID, T.SEMICOLON)), ("opaque bell (", without(T.ID, T.RPAREN)), ("opaque bell (a", without(T.COMMA, T.RPAREN)), ("opaque bell (a,", without(T.ID, T.RPAREN)), ("opaque bell (a, b", without(T.COMMA, T.RPAREN)), ("opaque bell (a, b)", without(T.ID, T.SEMICOLON)), ("opaque bell (a, b) q1", without(T.COMMA, T.SEMICOLON)), ("opaque bell (a, b) q1,", without(T.ID, T.SEMICOLON)), ("opaque bell (a, b) q1, q2", without(T.COMMA, T.SEMICOLON)), ("gate", without(T.ID)), ("gate bell (", without(T.ID, T.RPAREN)), ("gate bell (a", without(T.COMMA, T.RPAREN)), ("gate bell (a,", without(T.ID, T.RPAREN)), ("gate bell (a, b", without(T.COMMA, T.RPAREN)), ("gate bell (a, b) q1", without(T.COMMA, T.LBRACE)), ("gate bell (a, b) q1,", without(T.ID, T.LBRACE)), ("gate bell (a, b) q1, q2", without(T.COMMA, T.LBRACE)), ("qreg", without(T.ID)), ("qreg reg", without(T.LBRACKET)), ("qreg reg[", without(T.INTEGER)), ("qreg reg[5", without(T.RBRACKET)), ("qreg reg[5]", without(T.SEMICOLON)), ("creg", without(T.ID)), ("creg reg", without(T.LBRACKET)), ("creg reg[", without(T.INTEGER)), ("creg reg[5", without(T.RBRACKET)), ("creg reg[5]", without(T.SEMICOLON)), ("CX", without(T.LPAREN, T.ID, T.SEMICOLON)), ("CX(", without(T.PI, T.INTEGER, T.REAL, T.ID, T.LPAREN, T.RPAREN)), ("CX()", without(T.ID, T.SEMICOLON)), ("CX q", without(T.LBRACKET, T.COMMA, T.SEMICOLON)), ("CX q[", without(T.INTEGER)), ("CX q[0", without(T.RBRACKET)), ("CX q[0]", without(T.COMMA, T.SEMICOLON)), ("CX q[0],", without(T.ID, T.SEMICOLON)), ("CX q[0], q", without(T.LBRACKET, T.COMMA, T.SEMICOLON)), # No need to repeatedly "every" possible number of arguments. ("measure", without(T.ID)), ("measure q", without(T.LBRACKET, T.ARROW)), ("measure q[", without(T.INTEGER)), ("measure q[0", without(T.RBRACKET)), ("measure q[0]", without(T.ARROW)), ("measure q[0] ->", without(T.ID)), ("measure q[0] -> c", without(T.LBRACKET, T.SEMICOLON)), ("measure q[0] -> c[", without(T.INTEGER)), ("measure q[0] -> c[0", without(T.RBRACKET)), ("measure q[0] -> c[0]", without(T.SEMICOLON)), ("reset", without(T.ID)), ("reset q", without(T.LBRACKET, T.SEMICOLON)), ("reset q[", without(T.INTEGER)), ("reset q[0", without(T.RBRACKET)), ("reset q[0]", without(T.SEMICOLON)), ("barrier", without(T.ID, T.SEMICOLON)), ("barrier q", without(T.LBRACKET, T.COMMA, T.SEMICOLON)), ("barrier q[", without(T.INTEGER)), ("barrier q[0", without(T.RBRACKET)), ("barrier q[0]", without(T.COMMA, T.SEMICOLON)), ("if", without(T.LPAREN)), ("if (", without(T.ID)), ("if (cond", without(T.EQUALS)), ("if (cond ==", without(T.INTEGER)), ("if (cond == 0", without(T.RPAREN)), ("if (cond == 0)", without(T.ID, T.RESET, T.MEASURE)), ]: for token in disallowed: yield BadTokenCase(statement, token.value, name=f"'{statement}'-{token.name.lower()}") def eof_parametrisation(): for tokens in [ ("OPENQASM", "2.0", ";"), ("include", '"qelib1.inc"', ";"), ("opaque", "bell", "(", "a", ",", "b", ")", "q1", ",", "q2", ";"), ("gate", "bell", "(", "a", ",", "b", ")", "q1", ",", "q2", "{", "}"), ("qreg", "qr", "[", "5", "]", ";"), ("creg", "cr", "[", "5", "]", ";"), ("CX", "(", ")", "q", "[", "0", "]", ",", "q", "[", "1", "]", ";"), ("measure", "q", "[", "0", "]", "->", "c", "[", "0", "]", ";"), ("reset", "q", "[", "0", "]", ";"), ("barrier", "q", ";"), # No need to test every combination of `if`, really. ("if", "(", "cond", "==", "0", ")", "CX q[0], q[1];"), ]: prefix = "" for token in tokens[:-1]: prefix = f"{prefix} {token}".strip() yield prefix @ddt.ddt class TestIncompleteStructure(QiskitTestCase): PRELUDE = "OPENQASM 2.0; qreg q[5]; creg c[5]; creg cond[1];" @ddt.idata(bad_token_parametrisation()) def test_bad_token(self, case): """Test that the parser raises an error when an incorrect token is given.""" statement = case.statement disallowed = case.disallowed prelude = "" if statement.startswith("OPENQASM") else self.PRELUDE full = f"{prelude} {statement} {disallowed}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "needed .*, but instead"): qiskit.qasm2.loads(full) @ddt.idata(eof_parametrisation()) def test_eof(self, statement): """Test that the parser raises an error when the end-of-file is reached instead of a token that is required.""" prelude = "" if statement.startswith("OPENQASM") else self.PRELUDE full = f"{prelude} {statement}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "unexpected end-of-file"): qiskit.qasm2.loads(full) def test_loading_directory(self): """Test that the correct error is raised when a file fails to open.""" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "failed to read"): qiskit.qasm2.load(".") class TestVersion(QiskitTestCase): def test_invalid_version(self): program = "OPENQASM 3.0;" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "can only handle OpenQASM 2.0"): qiskit.qasm2.loads(program) program = "OPENQASM 2.1;" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "can only handle OpenQASM 2.0"): qiskit.qasm2.loads(program) program = "OPENQASM 20.e-1;" with self.assertRaises(qiskit.qasm2.QASM2ParseError): qiskit.qasm2.loads(program) def test_openqasm_must_be_first_statement(self): program = "qreg q[0]; OPENQASM 2.0;" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "only the first statement"): qiskit.qasm2.loads(program) @ddt.ddt class TestScoping(QiskitTestCase): def test_register_use_before_definition(self): program = "CX after[0], after[1]; qreg after[2];" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "not defined in this scope"): qiskit.qasm2.loads(program) program = "qreg q[2]; measure q[0] -> c[0]; creg c[2];" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "not defined in this scope"): qiskit.qasm2.loads(program) @combine( definer=["qreg reg[2];", "creg reg[2];", "gate reg a {}", "opaque reg a;"], bad_definer=["qreg reg[2];", "creg reg[2];"], ) def test_register_already_defined(self, definer, bad_definer): program = f"{definer} {bad_definer}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "already defined"): qiskit.qasm2.loads(program) def test_qelib1_not_implicit(self): program = """ OPENQASM 2.0; qreg q[2]; cx q[0], q[1]; """ with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "'cx' is not defined"): qiskit.qasm2.loads(program) def test_cannot_access_gates_before_definition(self): program = """ qreg q[2]; cx q[0], q[1]; gate cx a, b { CX a, b; } """ with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "'cx' is not defined"): qiskit.qasm2.loads(program) def test_cannot_access_gate_recursively(self): program = """ gate cx a, b { cx a, b; } """ with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "'cx' is not defined"): qiskit.qasm2.loads(program) def test_cannot_access_qubits_from_previous_gate(self): program = """ gate cx a, b { CX a, b; } gate other c { CX a, b; } """ with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "'a' is not defined"): qiskit.qasm2.loads(program) def test_cannot_access_parameters_from_previous_gate(self): program = """ gate first(a, b) q { U(a, 0, b) q; } gate second q { U(a, 0, b) q; } """ with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, "'a' is not a parameter.*defined" ): qiskit.qasm2.loads(program) def test_cannot_access_quantum_registers_within_gate(self): program = """ qreg q[2]; gate my_gate a { CX a, q; } """ with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "'q' is a quantum register"): qiskit.qasm2.loads(program) def test_parameters_not_defined_outside_gate(self): program = """ gate my_gate(a) q {} qreg qr[2]; U(a, 0, 0) qr; """ with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, "'a' is not a parameter.*defined" ): qiskit.qasm2.loads(program) def test_qubits_not_defined_outside_gate(self): program = """ gate my_gate(a) q {} U(0, 0, 0) q; """ with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "'q' is not defined"): qiskit.qasm2.loads(program) @ddt.data('include "qelib1.inc";', "gate h q { }") def test_gates_cannot_redefine(self, definer): program = f"{definer} gate h q {{ }}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "already defined"): qiskit.qasm2.loads(program) def test_cannot_use_undeclared_register_conditional(self): program = "qreg q[1]; if (c == 0) U(0, 0, 0) q[0];" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "not defined"): qiskit.qasm2.loads(program) @ddt.ddt class TestTyping(QiskitTestCase): @ddt.data( "CX q[0], U;", "measure U -> c[0];", "measure q[0] -> U;", "reset U;", "barrier U;", "if (U == 0) CX q[0], q[1];", "gate my_gate a { U(0, 0, 0) U; }", ) def test_cannot_use_gates_incorrectly(self, usage): program = f"qreg q[2]; creg c[2]; {usage}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "'U' is a gate"): qiskit.qasm2.loads(program) @ddt.data( "measure q[0] -> q[1];", "if (q == 0) CX q[0], q[1];", "q q[0], q[1];", "gate my_gate a { U(0, 0, 0) q; }", ) def test_cannot_use_qregs_incorrectly(self, usage): program = f"qreg q[2]; creg c[2]; {usage}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "'q' is a quantum register"): qiskit.qasm2.loads(program) @ddt.data( "CX q[0], c[1];", "measure c[0] -> c[1];", "reset c[0];", "barrier c[0];", "c q[0], q[1];", "gate my_gate a { U(0, 0, 0) c; }", ) def test_cannot_use_cregs_incorrectly(self, usage): program = f"qreg q[2]; creg c[2]; {usage}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "'c' is a classical register"): qiskit.qasm2.loads(program) def test_cannot_use_parameters_incorrectly(self): program = "gate my_gate(p) q { CX p, q; }" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "'p' is a parameter"): qiskit.qasm2.loads(program) def test_cannot_use_qubits_incorrectly(self): program = "gate my_gate(p) q { U(q, q, q) q; }" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "'q' is a gate qubit"): qiskit.qasm2.loads(program) @ddt.data(("h", 0), ("h", 2), ("CX", 0), ("CX", 1), ("CX", 3), ("ccx", 2), ("ccx", 4)) @ddt.unpack def test_gates_accept_only_valid_number_qubits(self, gate, bad_count): arguments = ", ".join(f"q[{i}]" for i in range(bad_count)) program = f'include "qelib1.inc"; qreg q[5];\n{gate} {arguments};' with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "takes .* quantum arguments?"): qiskit.qasm2.loads(program) @ddt.data(("U", 2), ("U", 4), ("rx", 0), ("rx", 2), ("u3", 1)) @ddt.unpack def test_gates_accept_only_valid_number_parameters(self, gate, bad_count): arguments = ", ".join("0" for _ in [None] * bad_count) program = f'include "qelib1.inc"; qreg q[5];\n{gate}({arguments}) q[0];' with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "takes .* parameters?"): qiskit.qasm2.loads(program) @ddt.ddt class TestGateDefinition(QiskitTestCase): def test_no_zero_qubit(self): program = "gate zero {}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "gates must act on at least one"): qiskit.qasm2.loads(program) program = "gate zero(a) {}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "gates must act on at least one"): qiskit.qasm2.loads(program) def test_no_zero_qubit_opaque(self): program = "opaque zero;" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "gates must act on at least one"): qiskit.qasm2.loads(program) program = "opaque zero(a);" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "gates must act on at least one"): qiskit.qasm2.loads(program) def test_cannot_subscript_qubit(self): program = """ gate my_gate a { CX a[0], a[1]; } """ with self.assertRaises(qiskit.qasm2.QASM2ParseError): qiskit.qasm2.loads(program) def test_cannot_repeat_parameters(self): program = "gate my_gate(a, a) q {}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "already defined"): qiskit.qasm2.loads(program) def test_cannot_repeat_qubits(self): program = "gate my_gate a, a {}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "already defined"): qiskit.qasm2.loads(program) def test_qubit_cannot_shadow_parameter(self): program = "gate my_gate(a) a {}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "already defined"): qiskit.qasm2.loads(program) @ddt.data("measure q -> c;", "reset q", "if (c == 0) U(0, 0, 0) q;", "gate my_x q {}") def test_definition_cannot_contain_nonunitary(self, statement): program = f"OPENQASM 2.0; creg c[5]; gate my_gate q {{ {statement} }}" with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, "only gate applications are valid" ): qiskit.qasm2.loads(program) def test_cannot_redefine_u(self): program = "gate U(a, b, c) q {}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "already defined"): qiskit.qasm2.loads(program) def test_cannot_redefine_cx(self): program = "gate CX a, b {}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "already defined"): qiskit.qasm2.loads(program) @ddt.ddt class TestBitResolution(QiskitTestCase): def test_disallow_out_of_range(self): with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "out-of-range"): qiskit.qasm2.loads("qreg q[2]; U(0, 0, 0) q[2];") with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "out-of-range"): qiskit.qasm2.loads("qreg q[2]; creg c[2]; measure q[2] -> c[0];") with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "out-of-range"): qiskit.qasm2.loads("qreg q[2]; creg c[2]; measure q[0] -> c[2];") @combine( conditional=[True, False], call=[ "CX q1[0], q1[0];", "CX q1, q1[0];", "CX q1[0], q1;", "CX q1, q1;", "ccx q1[0], q1[1], q1[0];", "ccx q2, q1, q2[0];", ], ) def test_disallow_duplicate_qubits(self, call, conditional): program = """ include "qelib1.inc"; qreg q1[3]; qreg q2[3]; qreg q3[3]; """ if conditional: program += "creg cond[1]; if (cond == 0) " program += call with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "duplicate qubit"): qiskit.qasm2.loads(program) @ddt.data( (("q1[1]", "q2[2]"), "CX q1, q2"), (("q1[1]", "q2[2]"), "CX q2, q1"), (("q1[3]", "q2[2]"), "CX q1, q2"), (("q1[2]", "q2[3]", "q3[3]"), "ccx q1, q2, q3"), (("q1[2]", "q2[3]", "q3[3]"), "ccx q2, q3, q1"), (("q1[2]", "q2[3]", "q3[3]"), "ccx q3, q1, q2"), (("q1[2]", "q2[3]", "q3[3]"), "ccx q1, q2[0], q3"), (("q1[2]", "q2[3]", "q3[3]"), "ccx q2[0], q3, q1"), (("q1[2]", "q2[3]", "q3[3]"), "ccx q3, q1, q2[0]"), ) @ddt.unpack def test_incorrect_gate_broadcast_lengths(self, registers, call): setup = 'include "qelib1.inc";\n' + "\n".join(f"qreg {reg};" for reg in registers) program = f"{setup}\n{call};" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "cannot resolve broadcast"): qiskit.qasm2.loads(program) cond = "creg cond[1];\nif (cond == 0)" program = f"{setup}\n{cond} {call};" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "cannot resolve broadcast"): qiskit.qasm2.loads(program) @ddt.data( ("qreg q[2]; creg c[2];", "q[0] -> c"), ("qreg q[2]; creg c[2];", "q -> c[0]"), ("qreg q[1]; creg c[2];", "q -> c[0]"), ("qreg q[2]; creg c[1];", "q[0] -> c"), ("qreg q[2]; creg c[3];", "q -> c"), ) @ddt.unpack def test_incorrect_measure_broadcast_lengths(self, setup, operands): program = f"{setup}\nmeasure {operands};" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "cannot resolve broadcast"): qiskit.qasm2.loads(program) program = f"{setup}\ncreg cond[1];\nif (cond == 0) measure {operands};" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "cannot resolve broadcast"): qiskit.qasm2.loads(program) @ddt.ddt class TestCustomInstructions(QiskitTestCase): def test_cannot_use_custom_before_definition(self): program = "qreg q[2]; my_gate q[0], q[1];" class MyGate(Gate): def __init__(self): super().__init__("my_gate", 2, []) with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, "cannot use .* before definition" ): qiskit.qasm2.loads( program, custom_instructions=[qiskit.qasm2.CustomInstruction("my_gate", 0, 2, MyGate)], ) def test_cannot_misdefine_u(self): program = "qreg q[1]; U(0.5, 0.25) q[0]" with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, "custom instruction .* mismatched" ): qiskit.qasm2.loads( program, custom_instructions=[qiskit.qasm2.CustomInstruction("U", 2, 1, lib.U2Gate)] ) def test_cannot_misdefine_cx(self): program = "qreg q[1]; CX q[0]" with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, "custom instruction .* mismatched" ): qiskit.qasm2.loads( program, custom_instructions=[qiskit.qasm2.CustomInstruction("CX", 0, 1, lib.XGate)] ) def test_builtin_is_typechecked(self): program = "qreg q[1]; my(0.5) q[0];" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "'my' takes 2 quantum arguments"): qiskit.qasm2.loads( program, custom_instructions=[ qiskit.qasm2.CustomInstruction("my", 1, 2, lib.RXXGate, builtin=True) ], ) with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "'my' takes 2 parameters"): qiskit.qasm2.loads( program, custom_instructions=[ qiskit.qasm2.CustomInstruction("my", 2, 1, lib.U2Gate, builtin=True) ], ) def test_cannot_define_builtin_twice(self): program = "gate builtin q {}; gate builtin q {};" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "'builtin' is already defined"): qiskit.qasm2.loads( program, custom_instructions=[ qiskit.qasm2.CustomInstruction("builtin", 0, 1, lambda: Gate("builtin", 1, [])) ], ) def test_cannot_redefine_custom_u(self): program = "gate U(a, b, c) q {}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "already defined"): qiskit.qasm2.loads( program, custom_instructions=[ qiskit.qasm2.CustomInstruction("U", 3, 1, lib.UGate, builtin=True) ], ) def test_cannot_redefine_custom_cx(self): program = "gate CX a, b {}" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "already defined"): qiskit.qasm2.loads( program, custom_instructions=[ qiskit.qasm2.CustomInstruction("CX", 0, 2, lib.CXGate, builtin=True) ], ) @combine( program=["gate my(a) q {}", "opaque my(a) q;"], builtin=[True, False], ) def test_custom_definition_must_match_gate(self, program, builtin): with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "'my' is mismatched"): qiskit.qasm2.loads( program, custom_instructions=[ qiskit.qasm2.CustomInstruction("my", 1, 2, lib.RXXGate, builtin=builtin) ], ) with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "'my' is mismatched"): qiskit.qasm2.loads( program, custom_instructions=[ qiskit.qasm2.CustomInstruction("my", 2, 1, lib.U2Gate, builtin=builtin) ], ) def test_cannot_have_duplicate_customs(self): customs = [ qiskit.qasm2.CustomInstruction("my", 1, 2, lib.RXXGate), qiskit.qasm2.CustomInstruction("x", 0, 1, lib.XGate), qiskit.qasm2.CustomInstruction("my", 1, 2, lib.RZZGate), ] with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "duplicate custom instruction"): qiskit.qasm2.loads("", custom_instructions=customs) def test_qiskit_delay_float_input_wraps_exception(self): program = "opaque delay(t) q; qreg q[1]; delay(1.5) q[0];" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "can only accept an integer"): qiskit.qasm2.loads(program, custom_instructions=qiskit.qasm2.LEGACY_CUSTOM_INSTRUCTIONS) def test_u0_float_input_wraps_exception(self): program = "opaque u0(n) q; qreg q[1]; u0(1.1) q[0];" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "must be an integer"): qiskit.qasm2.loads(program, custom_instructions=qiskit.qasm2.LEGACY_CUSTOM_INSTRUCTIONS) @ddt.ddt class TestCustomClassical(QiskitTestCase): @ddt.data("cos", "exp", "sin", "sqrt", "tan", "ln") def test_cannot_override_builtin(self, builtin): with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, r"cannot override builtin"): qiskit.qasm2.loads( "", custom_classical=[qiskit.qasm2.CustomClassical(builtin, 1, math.exp)], ) def test_duplicate_names_disallowed(self): with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, r"duplicate custom classical"): qiskit.qasm2.loads( "", custom_classical=[ qiskit.qasm2.CustomClassical("f", 1, math.exp), qiskit.qasm2.CustomClassical("f", 1, math.exp), ], ) def test_cannot_shadow_custom_instruction(self): with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"custom classical.*naming clash" ): qiskit.qasm2.loads( "", custom_instructions=[ qiskit.qasm2.CustomInstruction("f", 0, 1, lib.RXGate, builtin=True) ], custom_classical=[qiskit.qasm2.CustomClassical("f", 1, math.exp)], ) def test_cannot_shadow_builtin_instruction(self): with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"custom classical.*cannot shadow" ): qiskit.qasm2.loads( "", custom_classical=[qiskit.qasm2.CustomClassical("U", 1, math.exp)], ) def test_cannot_shadow_with_gate_definition(self): with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, r"'f' is already defined"): qiskit.qasm2.loads( "gate f q {}", custom_classical=[qiskit.qasm2.CustomClassical("f", 1, math.exp)], ) @ddt.data("qreg", "creg") def test_cannot_shadow_with_register_definition(self, regtype): with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, r"'f' is already defined"): qiskit.qasm2.loads( f"{regtype} f[2];", custom_classical=[qiskit.qasm2.CustomClassical("f", 1, math.exp)], ) @ddt.data((0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)) @ddt.unpack def test_mismatched_argument_count(self, n_good, n_bad): arg_string = ", ".join(["0" for _ in [None] * n_bad]) program = f""" qreg q[1]; U(f({arg_string}), 0, 0) q[0]; """ with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"custom function argument-count mismatch" ): qiskit.qasm2.loads( program, custom_classical=[qiskit.qasm2.CustomClassical("f", n_good, lambda *_: 0)] ) def test_output_type_error_is_caught(self): program = """ qreg q[1]; U(f(), 0, 0) q[0]; """ with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, r"user.*returned non-float"): qiskit.qasm2.loads( program, custom_classical=[qiskit.qasm2.CustomClassical("f", 0, lambda: "not a float")], ) def test_inner_exception_is_wrapped(self): inner_exception = Exception("custom exception") def raises(): raise inner_exception program = """ qreg q[1]; U(raises(), 0, 0) q[0]; """ with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, "caught exception when constant folding" ) as excinfo: qiskit.qasm2.loads( program, custom_classical=[qiskit.qasm2.CustomClassical("raises", 0, raises)] ) assert excinfo.exception.__cause__ is inner_exception def test_cannot_be_used_as_gate(self): program = """ qreg q[1]; f(0) q[0]; """ with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"'f' is a custom classical function" ): qiskit.qasm2.loads( program, custom_classical=[qiskit.qasm2.CustomClassical("f", 1, lambda x: x)] ) def test_cannot_be_used_as_qarg(self): program = """ U(0, 0, 0) f; """ with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"'f' is a custom classical function" ): qiskit.qasm2.loads( program, custom_classical=[qiskit.qasm2.CustomClassical("f", 1, lambda x: x)] ) def test_cannot_be_used_as_carg(self): program = """ qreg q[1]; measure q[0] -> f; """ with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"'f' is a custom classical function" ): qiskit.qasm2.loads( program, custom_classical=[qiskit.qasm2.CustomClassical("f", 1, lambda x: x)] ) @ddt.ddt class TestStrict(QiskitTestCase): @ddt.data( "gate my_gate(p0, p1,) q0, q1 {}", "gate my_gate(p0, p1) q0, q1, {}", "opaque my_gate(p0, p1,) q0, q1;", "opaque my_gate(p0, p1) q0, q1,;", 'include "qelib1.inc"; qreg q[2]; cu3(0.5, 0.25, 0.125,) q[0], q[1];', 'include "qelib1.inc"; qreg q[2]; cu3(0.5, 0.25, 0.125) q[0], q[1],;', "qreg q[2]; barrier q[0], q[1],;", 'include "qelib1.inc"; qreg q[1]; rx(sin(pi,)) q[0];', ) def test_trailing_comma(self, program): with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, r"\[strict\] .*trailing comma"): qiskit.qasm2.loads("OPENQASM 2.0;\n" + program, strict=True) def test_trailing_semicolon_after_gate(self): program = "OPENQASM 2.0; gate my_gate q {};" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, r"\[strict\] .*extra semicolon"): qiskit.qasm2.loads(program, strict=True) def test_empty_statement(self): program = "OPENQASM 2.0; ;" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, r"\[strict\] .*empty statement"): qiskit.qasm2.loads(program, strict=True) def test_required_version_regular(self): program = "qreg q[1];" with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"\[strict\] the first statement" ): qiskit.qasm2.loads(program, strict=True) def test_required_version_empty(self): with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"\[strict\] .*needed a version statement" ): qiskit.qasm2.loads("", strict=True) def test_barrier_requires_args(self): program = "OPENQASM 2.0; qreg q[2]; barrier;" with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"\[strict\] barrier statements must have at least one" ): qiskit.qasm2.loads(program, strict=True)
https://github.com/qiskit-community/qiskit-dell-runtime
qiskit-community
import itertools import json import numpy as np from numpy.random import RandomState from qiskit import QuantumCircuit, QuantumRegister from qiskit.compiler import transpile from cvxopt import matrix, solvers # pylint: disable=import-error class QKA: def __init__(self, feature_map, backend, initial_layout=None, user_messenger=None): self.feature_map = feature_map self.feature_map_circuit = self.feature_map.construct_circuit self.backend = backend self.initial_layout = initial_layout self.num_parameters = self.feature_map._num_parameters self._user_messenger = user_messenger self.result = {} self.kernel_matrix = KernelMatrix( feature_map=self.feature_map, backend=self.backend, initial_layout=self.initial_layout ) def spsa_parameters(self): spsa_params = np.zeros((5)) spsa_params[0] = 0.05 # a spsa_params[1] = 0.1 # c spsa_params[2] = 0.602 # alpha spsa_params[3] = 0.101 # gamma spsa_params[4] = 0 # A return spsa_params def cvxopt_solver(self, K, y, C, max_iters=10000, show_progress=False): if y.ndim == 1: y = y[:, np.newaxis] H = np.outer(y, y) * K f = -np.ones(y.shape) n = K.shape[1] # number of training points y = y.astype("float") P = matrix(H) q = matrix(f) G = matrix(np.vstack((-np.eye((n)), np.eye((n))))) h = matrix(np.vstack((np.zeros((n, 1)), np.ones((n, 1)) * C))) A = matrix(y, y.T.shape) b = matrix(np.zeros(1), (1, 1)) solvers.options["maxiters"] = max_iters solvers.options["show_progress"] = show_progress ret = solvers.qp(P, q, G, h, A, b, kktsolver="ldl") return ret def spsa_step_one(self, lambdas, spsa_params, count): prng = RandomState(count) c_spsa = float(spsa_params[1]) / np.power(count + 1, spsa_params[3]) delta = 2 * prng.randint(0, 2, size=np.shape(lambdas)[0]) - 1 lambda_plus = lambdas + c_spsa * delta lambda_minus = lambdas - c_spsa * delta return lambda_plus, lambda_minus, delta def spsa_step_two(self, cost_plus, cost_minus, lambdas, spsa_params, delta, count): a_spsa = float(spsa_params[0]) / np.power(count + 1 + spsa_params[4], spsa_params[2]) c_spsa = float(spsa_params[1]) / np.power(count + 1, spsa_params[3]) g_spsa = (cost_plus - cost_minus) * delta / (2.0 * c_spsa) lambdas_new = lambdas - a_spsa * g_spsa lambdas_new = lambdas_new.flatten() cost_final = (cost_plus + cost_minus) / 2 return cost_final, lambdas_new def align_kernel(self, data, labels, initial_kernel_parameters=None, maxiters=1, C=1): if initial_kernel_parameters is not None: lambdas = initial_kernel_parameters else: lambdas = np.random.uniform(-1.0, 1.0, size=(self.num_parameters)) spsa_params = self.spsa_parameters() lambda_save = [] cost_final_save = [] for count in range(maxiters): lambda_plus, lambda_minus, delta = self.spsa_step_one( lambdas=lambdas, spsa_params=spsa_params, count=count ) kernel_plus = self.kernel_matrix.construct_kernel_matrix( x1_vec=data, x2_vec=data, parameters=lambda_plus ) kernel_minus = self.kernel_matrix.construct_kernel_matrix( x1_vec=data, x2_vec=data, parameters=lambda_minus ) ret_plus = self.cvxopt_solver(K=kernel_plus, y=labels, C=C) cost_plus = -1 * ret_plus["primal objective"] ret_minus = self.cvxopt_solver(K=kernel_minus, y=labels, C=C) cost_minus = -1 * ret_minus["primal objective"] cost_final, lambda_best = self.spsa_step_two( cost_plus=cost_plus, cost_minus=cost_minus, lambdas=lambdas, spsa_params=spsa_params, delta=delta, count=count, ) lambdas = lambda_best interim_result = {"cost": cost_final, "kernel_parameters": lambdas} print(interim_result) self._user_messenger.publish(interim_result) lambda_save.append(lambdas) cost_final_save.append(cost_final) # Evaluate aligned kernel matrix with optimized set of # parameters averaged over last 10% of SPSA steps: num_last_lambdas = int(len(lambda_save) * 0.10) if num_last_lambdas > 0: last_lambdas = np.array(lambda_save)[-num_last_lambdas:, :] lambdas = np.sum(last_lambdas, axis=0) / num_last_lambdas else: lambdas = np.array(lambda_save)[-1, :] kernel_best = self.kernel_matrix.construct_kernel_matrix( x1_vec=data, x2_vec=data, parameters=lambdas ) self.result["aligned_kernel_parameters"] = lambdas self.result["aligned_kernel_matrix"] = kernel_best return self.result class KernelMatrix: def __init__(self, feature_map, backend, initial_layout=None): self._feature_map = feature_map self._feature_map_circuit = self._feature_map.construct_circuit self._backend = backend self._initial_layout = initial_layout self.results = {} def construct_kernel_matrix(self, x1_vec, x2_vec, parameters=None): is_identical = False if np.array_equal(x1_vec, x2_vec): is_identical = True experiments = [] measurement_basis = "0" * self._feature_map._num_qubits if is_identical: my_product_list = list( itertools.combinations(range(len(x1_vec)), 2) ) # all pairwise combos of datapoint indices for index_1, index_2 in my_product_list: circuit_1 = self._feature_map_circuit( x=x1_vec[index_1], parameters=parameters, name="{}_{}".format(index_1, index_2) ) circuit_2 = self._feature_map_circuit( x=x1_vec[index_2], parameters=parameters, inverse=True ) circuit = circuit_1.compose(circuit_2) circuit.measure_all() experiments.append(circuit) experiments = transpile( experiments, backend=self._backend, initial_layout=self._initial_layout ) program_data = self._backend.run(experiments, shots=8192).result() self.results["program_data"] = program_data mat = np.eye( len(x1_vec), len(x1_vec) ) # kernel matrix element on the diagonal is always 1 for experiment, [index_1, index_2] in enumerate(my_product_list): counts = program_data.get_counts(experiment=experiment) shots = sum(counts.values()) mat[index_1][index_2] = ( counts.get(measurement_basis, 0) / shots ) # kernel matrix element is the probability of measuring all 0s mat[index_2][index_1] = mat[index_1][index_2] # kernel matrix is symmetric return mat else: for index_1, point_1 in enumerate(x1_vec): for index_2, point_2 in enumerate(x2_vec): circuit_1 = self._feature_map_circuit( x=point_1, parameters=parameters, name="{}_{}".format(index_1, index_2) ) circuit_2 = self._feature_map_circuit( x=point_2, parameters=parameters, inverse=True ) circuit = circuit_1.compose(circuit_2) circuit.measure_all() experiments.append(circuit) experiments = transpile( experiments, backend=self._backend, initial_layout=self._initial_layout ) program_data = self._backend.run(experiments, shots=8192).result() self.results["program_data"] = program_data mat = np.zeros((len(x1_vec), len(x2_vec))) i = 0 for index_1, _ in enumerate(x1_vec): for index_2, _ in enumerate(x2_vec): counts = program_data.get_counts(experiment=i) shots = sum(counts.values()) mat[index_1][index_2] = counts.get(measurement_basis, 0) / shots i += 1 return mat
https://github.com/MonitSharma/Qiskit-Summer-School-and-Quantum-Challenges
MonitSharma
# upgrade/update pip library !pip install --upgrade pip # install the last official version of the grader from IBM's Qiskit Community !pip install git+https://github.com/qiskit-community/Quantum-Challenge-Grader.git@main # import the quantum circuit, Aer, # and execute instruction # from the IBM' Qiskit library from qiskit import QuantumCircuit, Aer, execute # import the numpy library import numpy as np # import the plot histogram function # from the IBM's Qiskit Visualization module from qiskit.visualization import plot_histogram # import the plotting from # the Matplotlib's Pyplot module import matplotlib.pyplot as plt # import the GCD (Greatest Common Divisor) # from the built-in mathematics module from math import gcd # define the function to genera the quantum circuit # for the Quantum Fourier Transform (QFT) on n qubits def qft(n): # creates a quantum circuit with n qubits, # implementing the Quantum Fourier Transform (QFT) circuit = QuantumCircuit(n) # define the function to perform the Swap gates # on the quantum registers of the quantum circuit # for the Quantum Fourier Transform (QFT) on n qubits def swap_registers( circuit, n ): # for a number of iterations equal to half of # the number of qubits used on the quantum circuit # for the Quantum Fourier Transform (QFT) for qubit in range( n // 2 ): # apply the Swap gate between the kth qubit and # the (n - k)th qubit on the quantum register defined before circuit.swap( qubit, ( n - qubit - 1 ) ) # return the quantum circuit with the Swap gates # applied on the n qubits of the quantum register, # to implement the Quantum Fourier Transform (QFT) return circuit # define the function to perform the Controlled-Phase gates # on the quantum registers of the quantum circuit # for the Quantum Fourier Transform (QFT) on n qubits # (it is applied to the first n qubits, # and without the Swap gates performed) def qft_rotations( circuit, n ): # if it is the last opposite iteration if n == 0: # return with the Controlled-Phase gates # on the quantum registers of the quantum circuit # for the Quantum Fourier Transform (QFT) on n qubits # (it is applied to the first n qubits, # and without the Swap gates performed) return circuit # iterates on the opposite direction, # setting a new nth iteration n -= 1 # apply the Hadamard gate to the kth qubit, # on the quantum register defined before, # and iterating on the opposite direction circuit.h(n) # for the remaining qubits to consider # i the kth opposite iteration for qubit in range(n): # apply the Controlled-Phase gate for # the theta angle equal to (pi / 2)^(n - k), # with control on the nth qubit and target on the kth qubit circuit.cp( ( np.pi / 2 )**( n - qubit ), qubit, n ) # call this fuction recursively for # the next opposite iteration qft_rotations( circuit, n ) # perform the Controlled-Phase gates # on the quantum registers of the quantum circuit # for the Quantum Fourier Transform (QFT) on n qubits # (it is applied to the first n qubits, # and without the Swap gates performed) qft_rotations( circuit, n ) # perform the Swap gates on the quantum registers of # the quantum circuit for the Quantum Fourier Transform (QFT) on n qubits swap_registers( circuit, n ) # return the quantum circuit with n qubits, # implementing the Quantum Fourier Transform (QFT) return circuit # define the function to genera the quantum circuit # for the Inverse Quantum Fourier Transform (IQFT) on n qubits def qft_dagger( circuit, n ): # note: do not forget to apply again the Swap gates # to peform its inverse operation # for a number of iterations equal to half of # the number of qubits used on the quantum circuit # for the Inverse Quantum Fourier Transform (IQFT) for qubit in range( n // 2 ): # apply the Swap gate between the kth qubit and # the (n - k)th qubit on the quantum register defined before circuit.swap( qubit, ( n - qubit - 1 ) ) # for each number of qubits of the quantum register defined before, # to consider in the current jth iteration for j in range(n): # for each mth qubit of the quantum register defined before, # to consider in the current iteration for m in range(j): # apply the Controlled-Phase gate for # the theta angle equal to -pi / ( 2^( j - m ) ), # with control on the mth qubit and target on the jth qubit qc.cp( -np.pi / float( 2**( j - m ) ), m, j ) # apply the Hadamard gate to the jth qubit # on the quantum register defined before qc.h(j) # define the size n of the quantum register to # store the phase information phase_register_size = 4 # create a quantum circuit with a quantum register # with n qubits and a classical register with n bits, # to implement the Quantum Phase Estimation (QPE) for n = 4 qubits qpe4 = QuantumCircuit( ( phase_register_size + 1 ), phase_register_size ) #################################################### #### insert your code here #### # define the function to perform the Quantum Hadamard Transform on # the n qubits of the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE) def apply_quantum_hadamard_transform( circuit, n ): # for each qubit of the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE) for n qubits for qubit_idx in range(n): # apply the Hadamard gate to the current ith qubit circuit.h(qubit_idx) # define the function to perform the Controlled-Phase gates on # the n qubits of the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE), # as part of the Quantum Fourier Transform (QFT) def apply_controlled_phases( theta, circuit, n ): # for each ith step according to # the number of n qubits used for step in range(n): # compute the iteration parameter t # as a power of 2, according to the current step t = 2**step # for each iteration according to # the iteration parameter t for _ in range(t): # apply the Controlled-Phase gate for the theta angle, # with control on the ith qubit and target on the last qubit circuit.cp( theta, step, n ) # define the function to perform the Swap gates on # the n qubits of the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE), # as part of the Quantum Fourier Transform (QFT) def apply_swaps( circuit, n ): # for a number of iterations equal to half of # the number of phase counting qubits used # on the resepective quantum circuit # for the Quantum Fourier Transform (QFT) for qubit_idx in range( phase_register_size // 2 ): # apply the Swap gate between the kth qubit and # the (n - k)th qubit on the quantum register defined before circuit.swap( qubit_idx, ( n - qubit_idx - 1 ) ) # define the function to perform # the Inverse Quantum Fourier Transform (IQFT) on # the n qubits of the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE) def apply_quantum_fourier_transform_inverse( circuit, n ): # for each qubit on the quantum register for j in range(n): # for each additional mth qubit ranging to # the current jth qubit being iterated before for m in range(j): # apply the Controlled-Phase gate for # the theta angle equal to -pi / ( 2^( j - m ) ), # with control on the mth qubit and target on the jth qubit circuit.cp( -np.pi / float( 2**( j - m ) ), m, j ) # apply the Hadamard gate to the jth qubit (system's qubit) circuit.h(j) # define the function to perform a measurement of # all the n qubits on the quantum register of a quantum circuit, # and storing the classical outcomes on the n bits of # the classical register of that same quantum circuit def measure_all_qubits(circuit, n): # for each pair of qubits and bits for j in range(n): # measure the current qubit on the quantum register, # and stores the classical outcome obtained # in the current bit on the classical register circuit.measure(j, j) # define the function to perform the Quantum Phase Estimation (QPE) # according to a theta angle given, on a quantum circuit of n qubits def quantum_phase_estimation( theta, circuit, n ): # perform the Quantum Hadamard Transform on # the n qubits of the quantum register of # the quantum circuit implementing # the Quantum Phase Estimation (QPE) apply_quantum_hadamard_transform( circuit, n ) # apply the Pauli-X gate to the last qubit on # the quantum register of the quantum circuit of # the Quantum Phase Estimation (QPE) circuit.x(n) # apply a barrier to the quantum circuit of # the Quantum Phase Estimation (QPE) circuit.barrier() # perform the Controlled-Phase gates on # the n qubits of the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE), # as part of the Quantum Fourier Transform (QFT) apply_controlled_phases( theta, circuit, n ) # apply a barrier to the quantum circuit of # the Quantum Phase Estimation (QPE) circuit.barrier() # perform the Swap gates on the n qubits of # the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE), # as part of the Quantum Fourier Transform (QFT) apply_swaps( circuit, n ) # apply a barrier to the quantum circuit of # the Quantum Phase Estimation (QPE) circuit.barrier() # perform the Inverse Quantum Fourier Transform (IQFT) on # the n qubits of the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE) apply_quantum_fourier_transform_inverse( circuit, n ) # apply a barrier to the quantum circuit of # the Quantum Phase Estimation (QPE) circuit.barrier() # perform a measurement of all the n qubits on # the quantum register of the quantum circuit of # the Quantum Phase Estimation (QPE) and storing # the classical outcomes on the n bits of # the classical register of that same quantum circuit measure_all_qubits( circuit, n ) #################################################### # define the theta angle to be equal to (2 * pi) / 3 theta = ( 2 * np.pi ) / 3 # perform the Quantum Phase Estimation (QPE) # according to the theta angle defined, # on the quantum circuit of n qubits defined before quantum_phase_estimation( theta, qpe4, phase_register_size ) # draw the quantum circuit implementing # the Quantum Phase Estimation (QPE) defined before qpe4.draw("mpl") # run this cell to simulate 'qpe4' and # to plot the histogram of the result # create the Aer Simulator object sim = Aer.get_backend("aer_simulator") # define the number of shots shots = 20000 # execute the simulation for the Quantum Phase Estimation (QPE), # with n = 4 counting qubits, and retrieve # the result counts of this quantum simulation count_qpe4 = execute( qpe4, sim, shots=shots ).result().get_counts() # plot the histogram of the result counts of the quantum simulation # for the Quantum Phase Estimation (QPE), with n = 4 counting qubits plot_histogram( count_qpe4, figsize=(9,5) ) # submit your answer # import the grader for the exercise 1 of the lab 3 from qc_grader.challenges.qgss_2023 import grade_lab3_ex1 # grade the exercise 1 of the lab 3 grade_lab3_ex1( count_qpe4 ) # process the result count data to determine accuracy of # the estimated phase and grab the highest probability measurement # define the maximum number of counts which will be obtained max_binary_counts = 0 # define the maximum binary value which will be obtained max_binary_val = "" # for each count obtained from the quantum simulation of # the Quantum Phase Estimation (QPE) for key, item in count_qpe4.items(): # if the current number of counts is greater than # the current maximum number of counts obtained if item > max_binary_counts: # update the maximum number of counts obtained max_binary_counts = item # update the maximum binary value obtained max_binary_val = key ######################################### #### your function to convert a binary #### #### string to a decimal number goes here #### # define the function to convert # a binary string to a decimal number def bin_to_decimal( binary_string ): # return a binary string # converted to a decimal number return int( binary_string, 2 ) # calculate the estimated phase obtained # from the quantum simulation of # the Quantum Phase Estimation (QPE) estimated_phase = ( bin_to_decimal(max_binary_val) / 2**phase_register_size ) # calculate the phase accuracy # which can be obtained from # the quantum simulation of # the Quantum Phase Estimation (QPE) # with the quantum circuit defined before, # inverse of the highest power of 2 # (i.e. smallest decimal) this quantum circuit can estimate phase_accuracy_window = 2**( -phase_register_size ) # submit your answer # import the grader for the exercise 2 of the lab 3 from qc_grader.challenges.qgss_2023 import grade_lab3_ex2 # grade the exercise 2 of the lab 3 grade_lab3_ex2( [ estimated_phase, phase_accuracy_window ] ) # import the IBM's Provider from # the Qiskit's IBM Provider module from qiskit_ibm_provider import IBMProvider # import the transpile function from # the IBM's Qikist Compiler module from qiskit.compiler import transpile # create an IBM's Provider object provider = IBMProvider() # define the hub for the IBM's Provider hub = "summer-school-6" # define the group for the IBM's Provider group = "group-3" # define the project for the IBM's Provider project = "7048813929" # define the backend's name for the IBM's Provider backend_name = "ibmq_manila" # retrieve the backend from the IBM's Provider backend = provider.get_backend( backend_name, instance=f"{hub}/{group}/{project}" ) ########################################## #### your code goes here #### # define the initial maximum quantum circuit depth obtained max_depth = 1e-20 # define the initial minimum quantum circuit depth obtained min_depth = 1e20 # define the number of trials to transpile/optimize # the quantum circuit for the Quantum Phase Estimation (QPE) num_trials = 10 # for each trial to transpile/optimize the quantum circuit # for the Quantum Phase Estimation (QPE) for _ in range(num_trials): # transpile/optimize the quantum circuit # for the Quantum Phase Estimation (QPE), # for the current considering trial transpiled_qpe4 = transpile( qpe4, backend, optimization_level=3 ) # retrieve the quantum circuit depth of # the transpiled/optimized quantum circuit # for the Quantum Phase Estimation (QPE) transpiled_qpe4_depth = transpiled_qpe4.depth() # if the quantum circuit depth of # the transpiled/optimized quantum circuit # for the Quantum Phase Estimation (QPE) # is greater than the current maximum # quantum circuit depth obtained if transpiled_qpe4_depth > max_depth: # update the maximum quantum circuit depth # obtained with the current quantum circuit depth max_depth = transpiled_qpe4_depth # update the quantum circuit with the maximum depth # with the current quantum circuit transpiled/optimized max_depth_qpe = transpiled_qpe4 # if the quantum circuit depth of # the transpiled/optimized quantum circuit # for the Quantum Phase Estimation (QPE) # is lower than the current minimum # quantum circuit depth obtained if transpiled_qpe4_depth < min_depth: # update the minimum quantum circuit depth # obtained with the current quantum circuit depth min_depth = transpiled_qpe4_depth # update the quantum circuit with the minimum depth # with the current quantum circuit transpiled/optimized min_depth_qpe = transpiled_qpe4 ########################################## # submit your answer # import the grader for the exercise 3 of the lab 3 from qc_grader.challenges.qgss_2023 import grade_lab3_ex3 # grade the exercise 3 of the lab 3 grade_lab3_ex3( [ max_depth_qpe, min_depth_qpe ] ) # define the number of shots #shots = 2000 # OPTIONAL: run the minimum depth quantum circuit for # the Quantum Phase Estimation (QPE) # execute and retrieve the job for the simulation # for the Quantum Phase Estimation (QPE), # with n = 4 counting qubits, and retrieve # the result counts of this quantum simulation, # using the minimum quantum circuit depth #job_min_qpe4 = backend.run( min_depth_qpe, sim, shots=shots ) # print the id of the job of the simulation # for the Quantum Phase Estimation (QPE), # with n = 4 counting qubits, and retrieve # the result counts of this quantum simulation, # using the minimum quantum circuit depth #print( job_min_qpe4.job_id() ) # gather the result counts data # execute the simulation for the Quantum Phase Estimation (QPE), # with n = 4 counting qubits, and retrieve # the result counts of this quantum simulation, # using the minimum quantum circuit depth #count_min_qpe4 = job_min_qpe4.result().get_counts() # plot the histogram of the result counts of the quantum simulation # for the Quantum Phase Estimation (QPE), with n = 4 counting qubits, # and using the minimum quantum circuit depth #plot_histogram( count_min_qpe4, figsize=(9,5) ) # OPTIONAL: run the maximum depth quantum circuit for # the Quantum Phase Estimation (QPE) # execute and retrieve the job for the simulation # for the Quantum Phase Estimation (QPE), # with n = 4 counting qubits, and retrieve # the result counts of this quantum simulation, # using the maximum quantum circuit depth #job_max_qpe4 = backend.run( max_depth_qpe, sim, shots=shots ) # print the id of the job of the simulation # for the Quantum Phase Estimation (QPE), # with n = 4 counting qubits, and retrieve # the result counts of this quantum simulation, # using the maximum quantum circuit depth #print( job_max_qpe4.job_id() ) # gather the result counts data # execute the simulation for the Quantum Phase Estimation (QPE), # with n = 4 counting qubits, and retrieve # the result counts of this quantum simulation, # using the maximum quantum circuit depth #count_max_qpe4 = job_max_qpe4.result().get_counts() # plot the histogram of the result counts of the quantum simulation # for the Quantum Phase Estimation (QPE), with n = 4 counting qubits, # and using the maximum quantum circuit depth #plot_histogram( count_max_qpe4, figsize=(9,5) ) # define the function to perform the Quantum Hadamard Transform on # the n qubits of the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE) def apply_quantum_hadamard_transform( circuit, n ): # for each qubit of the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE) for n qubits for qubit_idx in range(n): # apply the Hadamard gate to the current ith qubit circuit.h(qubit_idx) # define the function to perform the Controlled-Phase gates on # the n qubits of the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE), # as part of the Quantum Fourier Transform (QFT) def apply_controlled_phases( theta, circuit, n ): # for each ith step according to # the number of n qubits used for step in range(n): # compute the iteration parameter t # as a power of 2, according to the current step t = 2**step # for each iteration according to # the iteration parameter t for _ in range(t): # apply the Controlled-Phase gate for the theta angle, # with control on the ith qubit and target on the last qubit circuit.cp( theta, step, n ) # define the function to perform the Swap gates on # the n qubits of the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE), # as part of the Quantum Fourier Transform (QFT) def apply_swaps( circuit, n ): # for a number of iterations equal to half of # the number of phase counting qubits used # on the resepective quantum circuit # for the Quantum Fourier Transform (QFT) for qubit_idx in range( phase_register_size // 2 ): # apply the Swap gate between the kth qubit and # the (n - k)th qubit on the quantum register defined before circuit.swap( qubit_idx, ( n - qubit_idx - 1 ) ) # define the function to perform # the Inverse Quantum Fourier Transform (IQFT) on # the n qubits of the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE) def apply_quantum_fourier_transform_inverse( circuit, n ): # for each jth qubit on the quantum register for j in range(n): # for each additional mth qubit ranging to # the current jth qubit being iterated before for m in range(j): # apply the Controlled-Phase gate for # the theta angle equal to -pi / ( 2^( j - m ) ), # with control on the mth qubit and target on the jth qubit circuit.cp( -np.pi / float( 2**( j - m ) ), m, j ) # apply the Hadamard gate to the jth qubit circuit.h(j) # define the function to perform a measurement of # all the n qubits on the quantum register of a quantum circuit, # and storing the classical outcomes on the n bits of # the classical register of that same quantum circuit def measure_all_qubits( circuit, n ): # for each pair of qubits and bits for j in range(n): # measure the current qubit on the quantum register, # and stores the classical outcome obtained # in the current bit on the classical register circuit.measure(j, j) # define the function to create a quantum circuit, # implementing the Quantum Phase Estimation (QPE) on (n + 1) qubits def qpe_circuit(register_size): ######################################### #### your code goes here #### # define the theta phase angle to estimate theta = 1/7 # create the quantum circuit with a quantum register with (n + 1) qubits # and a classical register with n bits, intended to implement # the Quantum Phase Estimation (QPE) on n qubits qpe = QuantumCircuit( ( register_size + 1 ), register_size ) # perform the Quantum Hadamard Transform on # the n qubits of the quantum register of # the quantum circuit implementing # the Quantum Phase Estimation (QPE) apply_quantum_hadamard_transform( qpe, register_size ) # apply the Pauli-X gate to the last qubit on # the quantum register of the quantum circuit of # the Quantum Phase Estimation (QPE) qpe.x(register_size) # apply a barrier to the quantum circuit of # the Quantum Phase Estimation (QPE) qpe.barrier() # perform the Controlled-Phase gates on # the n qubits of the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE), # as part of the Quantum Fourier Transform (QFT) apply_controlled_phases( theta, qpe, register_size ) # apply a barrier to the quantum circuit of # the Quantum Phase Estimation (QPE) qpe.barrier() # perform the Swap gates on the n qubits of # the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE), # as part of the Quantum Fourier Transform (QFT) apply_swaps( qpe, register_size ) # apply a barrier to the quantum circuit of # the Quantum Phase Estimation (QPE) qpe.barrier() # perform the Inverse Quantum Fourier Transform (IQFT) on # the n qubits of the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE) apply_quantum_fourier_transform_inverse( qpe, register_size ) # apply a barrier to the quantum circuit of # the Quantum Phase Estimation (QPE) qpe.barrier() # perform a measurement of all the n qubits on # the quantum register of the quantum circuit of # the Quantum Phase Estimation (QPE) and storing # the classical outcomes on the n bits of # the classical register of that same quantum circuit measure_all_qubits( qpe, register_size ) # return the quantum circuit, implementing # the Quantum Phase Estimation (QPE) on n qubits return qpe ######################################### # run this cell to simulate 'qpe' and # to plot the histogram of the result # define several quantum register sizes # equal to n, allowing to vary them #reg_size = 4 reg_size = 5 #reg_size = 6 #reg_size = 7 #reg_size = 8 # create a quantum circuit for # the Quantum Phase Estimation (QPE), # given the quantum register defined before, # with n counting qubits qpe_check = qpe_circuit( reg_size ) # create the Aer Simulator object sim = Aer.get_backend("aer_simulator") # define the number of shots shots = 10000 # execute the simulation for the Quantum Phase Estimation (QPE), # with n counting qubits, and retrieve its result counts count_qpe = execute( qpe_check, sim, shots=shots ).result().get_counts() # plot the histogram of the result counts of the quantum simulation # for the Quantum Phase Estimation (QPE), with n counting qubits plot_histogram( count_qpe, figsize=(9,5) ) # process the result count data to determine accuracy of # the estimated phase and grab the highest probability measurement # define the maximum number of counts which will be obtained max_binary_counts = 0 # define the maximum binary value which will be obtained max_binary_val = "" # for each count obtained from the quantum simulation of # the Quantum Phase Estimation (QPE) for key, item in count_qpe.items(): # if the current number of counts is greater than # the current maximum number of counts obtained if item > max_binary_counts: # update the maximum number of counts obtained max_binary_counts = item # update the maximum binary value obtained max_binary_val = key ######################################### #### your function to convert a binary #### #### string to a decimal number goes here #### # define the function to convert # a binary string to a decimal number def bin_to_decimal( binary_string ): # return a binary string # converted to a decimal number return int( binary_string, 2 ) # calculate the estimated phase obtained # from the quantum simulation of # the Quantum Phase Estimation (QPE) estimated_phase = ( bin_to_decimal(max_binary_val) / 2**reg_size ) # print the estimated phase obtained # from the quantum simulation of # the Quantum Phase Estimation (QPE) print("Estimated Phase:", estimated_phase) # calculate the phase accuracy # which can be obtained from # the quantum simulation of # the Quantum Phase Estimation (QPE) # with the quantum circuit defined before, # inverse of the highest power of 2 # (i.e. smallest decimal) this quantum circuit can estimate phase_accuracy_window = 2**( -reg_size ) # print the phase accuracy # which can be obtained from # the quantum simulation of # the Quantum Phase Estimation (QPE) # with the quantum circuit defined before, # inverse of the highest power of 2 # (i.e. smallest decimal) this quantum circuit can estimate print("Phase Accuracy Window:", phase_accuracy_window) # define the theta phase angle, # which was pretended to be estimated theta = 1 / 7 # compute the accuracy of the estimated phase, # as the distance between the estimated phase # and the theta phase angle, which was pretended to be estimated accuracy_estimated_phase = abs( theta - estimated_phase ) # print the accuracy of the estimated phase, # as the distance between the estimated phase # and the theta phase angle, which was pretended to be estimated print("Accuracy of the Estimated Phase:", accuracy_estimated_phase) ### put your answer here ### # to estimate accurately the phase information to be within 2^(-6) # we need n + 1 = 6 (=) n = 5 qubits to store the phase information required_register_size = 5 ### submit your answer ### # import the grader for the exercise 4 of the lab 3 from qc_grader.challenges.qgss_2023 import grade_lab3_ex4 # grade the exercise 4 of the lab 3 grade_lab3_ex4( required_register_size ) # create 7 mod 15 unitary operator # for a quantum circuit N = 15 # define the number of m qubits required # for the 7 mod 15 operator to be executed m = int( np.ceil( np.log2( N ) ) ) # create the quantum circuit with # a quantum register of m qubits # to implement the 7 mod 15 unitary operator U_qc = QuantumCircuit( m ) # apply the Pauli-X gate to all the m qubits of # the quantum register of the quantum circuit # implementing the 7 mod 15 unitary operator U_qc.x( range(m) ) # apply the Swap gate between the 2nd qubit and # the 3rd qubit on the quantum register of # the quantum circuit implementing # the 7 mod 15 unitary operator U_qc.swap(1, 2) # apply the Swap gate between the 3rd qubit and # the 4th qubit on the quantum register of # the quantum circuit implementing # the 7 mod 15 unitary operator U_qc.swap(2, 3) # apply the Swap gate between the 1st qubit and # the 4th qubit on the quantum register of # the quantum circuit implementing # the 7 mod 15 unitary operator U_qc.swap(0, 3) # convert the quantum circuit implementing # the 7 mod 15 unitary operator to # a quantum unitary gate U = U_qc.to_gate() # define the name of the 7 mod 15 # unitary operator created before U.name ="{}Mod{}".format(7, N) # your code goes here # print the number of qubits print("Num. qubits: m =", m); # define the quantum circuits for the inputs # |1> = |0001>, |2> = |0010>, and |5> = |0101> ######################################### # create the a quantum circuit with m qubits, # for the input state |1> = |0001> qcirc_input_1 = QuantumCircuit(m) # apply the Pauli-X gate to # the 1st qubit of the quantum register of # the quantum circuit defined before qcirc_input_1.x(0) # apply the U gate to all # the m qubits of the quantum register of # the quantum circuit defined before qcirc_input_1.append( U, range(m) ) # measure all the m qubits of # the quantum register of # the quantum circuit defined before qcirc_input_1.measure_all() ######################################### # create the a quantum circuit with m qubits, # for input state |2> = |0010> qcirc_input_2 = QuantumCircuit(m) # apply the Pauli-X gate to # the 2nd qubit of the quantum register of # the quantum circuit defined before qcirc_input_2.x(1) # apply the U gate to all # the m qubits of the quantum register of # the quantum circuit defined before qcirc_input_2.append( U, range(m) ) # measure all the m qubits of # the quantum register of # the quantum circuit defined before qcirc_input_2.measure_all() ######################################### # create the a quantum circuit with m qubits, # for input state |5> = |0101> qcirc_input_5 = QuantumCircuit(m) # apply the Pauli-X gate to # the 1st qubit of the quantum register of # the quantum circuit defined before qcirc_input_5.x(0) # apply the Pauli-X gate to # the 3rd qubit of the quantum register of # the quantum circuit defined before qcirc_input_5.x(2) # apply the U gate to all # the m qubits of the quantum register of # the quantum circuit defined before qcirc_input_5.append( U, range(m) ) # measure all the m qubits of # the quantum register of # the quantum circuit defined before qcirc_input_5.measure_all() ######################################### # run this cell to simulate 'qcirc' and to plot the histogram of the result # create the Aer Simulator object sim = Aer.get_backend("aer_simulator") # define the number of shots shots = 20000 # save the count data for the input state |1> = |0001> input_1 = execute(qcirc_input_1, sim, shots=shots).result().get_counts() # save the count data for the input state |2> = |0010> input_2 = execute(qcirc_input_2, sim, shots=shots).result().get_counts() # save the count data for the input state |5> = |0101> input_5 = execute(qcirc_input_5, sim, shots=shots).result().get_counts() # submit your answer # import the grader for the exercise 5 of the lab 3 from qc_grader.challenges.qgss_2023 import grade_lab3_ex5 # grade the exercise 5 of the lab 3 grade_lab3_ex5( [ input_1, input_2, input_5 ] ) # create an unitary quantum circuit # with a quantum register of m qubits unitary_circ = QuantumCircuit(m) #### your code goes here #### # for each iteration in a range of 2^2 = 4 for _ in range( 2**2 ): # apply the U gate on all # the m qubits on the quantum register unitary_circ.append( U, range(m) ) # create a Unitary Simulator object sim = Aer.get_backend("unitary_simulator") # execute the quantum simulation of # an unitary quantum circuit with # a quantum register of m qubits, # defined before, retrieving its unitary operator unitary = execute( unitary_circ, sim ).result().get_unitary() # submit your answer # import the grader for the exercise 6 of the lab 3 from qc_grader.challenges.qgss_2023 import grade_lab3_ex6 # grade the exercise 6 of the lab 3 grade_lab3_ex6( unitary, unitary_circ ) # define the function to built a 2^k-Controlled-U gate object, # which repeats the action of the operator U, 2^k times def cU_multi(k): # define the size n of the system's quantum register sys_register_size = 4 # create the quantum circuit with n qubits on # the system's quantum register, to build # a 2^k-Controlled-U gate object circ = QuantumCircuit( sys_register_size ) # for each iteration ranging until 2^k for _ in range(2**k): # apply the U gate to all the n qubits on # the system's quantum register of # the quantum circuit to represent # the 2^k-Controlled-U gate circ.append(U, range(sys_register_size)) # convert the operator resulting from the construction of # the quantum circuit defined before, to a quantum gate U_multi = circ.to_gate() # define the name of the 2^k-Controlled-U gate, # as being a "7 Mod 15 gate" U_multi.name = "7Mod15_[2^{}]".format(k) # set this 2^k-Controlled-U gate as multi-qubit gate, # depending on a given control qubit cU_multi = U_multi.control() # return the 2^k-Controlled-U gate object, # which repeats the action of the operator U, 2^k times return cU_multi # define the size m of the quantum register # for the phase counting of the qubits phase_register_size = 8 # define the size n of the quantum register # for the successive applications of # the 2^k-Controlled-U gate defined before cu_register_size = 4 # create the Quantum Circuit needed to run # with m = 8 qubits for the phase counting # and with n = 4 qubits for the successive # applications of the 2^k-Controlled-U gate # defined before, to implement the Shor's Algorithm # for Factoring, based on Quantum Phase Estimation (QPE) shor_qpe = QuantumCircuit( ( phase_register_size + cu_register_size ), phase_register_size ) # perform the Quantum Hadamard Transform on # the m qubits for the phase counting of # the quantum register of the quantum circuit # implementing the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE) apply_quantum_hadamard_transform( shor_qpe, phase_register_size ) # apply the Pauli-X gate to the last qubit on # the quantum register of the quantum circuit to # implement the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE) shor_qpe.x( phase_register_size ) # apply a barrier to the quantum circuit to # implement the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE) shor_qpe.barrier() # for each kth qubit on the quantum register # for the phase counting of the qubits for k in range( phase_register_size ): # retrieve the 2^k-Controlled-U gate object, # which repeats the action of the operator U, # 2^k times, defined before cU = cU_multi(k) # apply the 2^k-Controlled-U gate object, # which repeats the action of the operator U, # 2^k times, defined before, for the kth iteration, # to the quantum circuit to implement # the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE) shor_qpe.append( cU, [k] + list( range( phase_register_size, ( phase_register_size + cu_register_size ) ) ) ) # apply a barrier to the quantum circuit to # implement the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE) shor_qpe.barrier() # perform the Swap gates on the n qubits of # the quantum register of the quantum circuit # implementing the Quantum Phase Estimation (QPE), # as part of the Quantum Fourier Transform (QFT), # required to build the quantum circuit to implement # the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE) apply_swaps(shor_qpe, phase_register_size) # apply a barrier to the quantum circuit to # implement the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE) shor_qpe.barrier() # perform the Inverse Quantum Fourier Transform (IQFT) on # the m qubits for the phase counting of # the quantum register of the quantum circuit # implementing the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE) apply_quantum_fourier_transform_inverse( shor_qpe, phase_register_size ) # apply a barrier to the quantum circuit to # implement the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE) shor_qpe.barrier() # perform a measurement of all # the m qubits for the phase counting of # the quantum register of the quantum circuit # implementing the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE) shor_qpe.measure( range( phase_register_size ), range( phase_register_size ) ) # draw the quantum circuit implementing # the quantum circuit to # implement the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE) shor_qpe.draw("mpl") # run this cell to simulate 'shor_qpe' and # to plot the histogram of the results # create an Aer Simulator object sim = Aer.get_backend("aer_simulator") # define the number of shots shots = 20000 # execute the quantum simulation for # the quantum circuit for the Shor's Algorithm, # based on Quantum Phase Estimation (QPE), # with n phase counting qubits, and retrieve # the result counts of this quantum simulation shor_qpe_counts = execute(shor_qpe, sim, shots=shots).result().get_counts() # plot the histogram of the result counts of the quantum simulation # for the quantum circuit for the Shor's Algorithm, based on # Quantum Phase Estimation (QPE), with n phase counting qubits plot_histogram( shor_qpe_counts, figsize=(9,5) ) # submit your answer # import the grader for the exercise 7 of the lab 3 from qc_grader.challenges.qgss_2023 import grade_lab3_ex7 # grade the exercise 7 of the lab 3 grade_lab3_ex7( shor_qpe_counts ) # import the Fraction object # from the built-in fractions module from fractions import Fraction # print the number '0.666', # as an unlimited Fraction object print( "Unlimited Fraction(0.666):", Fraction(0.666), '\n') # print the number '0.666', # as a limited Fraction object # with the denominator of 15 print( "Limited Fraction(0.666), with a max. denominator of 15:", Fraction(0.666).limit_denominator(15) ) # create a list with the estimated phases of the result counts # obtained from the execution of the quantum simulation # for the Quantum Phase Estimation (QPE), with n counting qubits estimated_phases = [ bin_to_decimal(binary_val) / 2**phase_register_size for binary_val in shor_qpe_counts ] # print the list with the estimated phases of the result counts # obtained from the execution of the quantum simulation # for the Quantum Phase Estimation (QPE), with n counting qubits print( "Estimated Phases:", estimated_phases ) # create a list of with the estimated phases of the result counts # obtained from the execution of the quantum simulation # for the Quantum Phase Estimation (QPE), with n counting qubits, # represented as Fraction objects with the format s/r shor_qpe_fractions = [ Fraction(estimated_phase).limit_denominator(15) for estimated_phase in estimated_phases ] # print the list of with the estimated phases of the result counts # obtained from the execution of the quantum simulation # for the Quantum Phase Estimation (QPE), with n counting qubits, # represented as Fraction objects with the format s/r print( "Estimated Fractions:", shor_qpe_fractions ) # submit your answer # import the grader for the exercise 8 of the lab 3 from qc_grader.challenges.qgss_2023 import grade_lab3_ex8 # grade the exercise 8 of the lab 3 grade_lab3_ex8( shor_qpe_fractions ) # define the function to create and execute # the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE), # with k phase counting qubits def shor_qpe(k): # define the co-prime a a = 7 # define the number N to factor N = 15 # compute the number m of # additional qubits required m = int( np.ceil( np.log2(N) ) ) ################################################# # step 1. Begin a while loop until a nontrivial guess is found #### your code goes here #### # define the boolean flag to determine # if a non trivial guess was found, initially as False non_trivial_guess_found = False # while no trivial factor guess was found, # execute the while loop while( not non_trivial_guess_found ): ################################################# # step 2a. construct a QPE quantum circuit # with m phase counting qubits to guess # the phase phi = s/r, using the function # cU_multi() defined before #### your code goes here #### # create a quantum circuit for # the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE), # with k phase counting qubits, # and additional m qubits for # the successive applications of # the 2^k-Controlled-U gate defined before qc = QuantumCircuit( ( k + m ), k) # perform the Quantum Hadamard Transform on # the k phase counting qubits of the respective # quantum register of the quantum circuit # for the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE) apply_quantum_hadamard_transform( qc, k ) # apply a Pauli-X gate to the last # phase counting qubit of the respective # quantum register of the quantum circuit # for the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE) qc.x(k) # apply a barrier to the quantum circuit for # the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE), # with k phase counting qubits, # and additional m qubits for # the successive applications of # the 2^k-Controlled-U gate defined before qc.barrier() # for each kth qubit on the quantum register # for the phase counting of the qubits for k_i in range(k): # retrieve the 2^k-Controlled-U gate object, # which repeats the action of the operator U, # 2^k times, defined before cU = cU_multi(k_i) # apply the 2^k-Controlled-U gate object, # which repeats the action of the operator U, # 2^k times, defined before, for the kth iteration, # to the quantum circuit for the Shor's Algorithm # for Factoring, based on Quantum Phase Estimation (QPE), # with k phase counting qubits, and additional m qubits # for the successive applications of # the 2^k-Controlled-U gate defined before qc.append( cU, [k_i] + list( range( k, ( k + m ) ) ) ) # apply a barrier to the quantum circuit for # the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE), # with k phase counting qubits, # and additional m qubits for # the successive applications of # the 2^k-Controlled-U gate defined before qc.barrier() # perform the Swap gates on the k # phase counting qubits of the respective # quantum register of the quantum circuit # for the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE), # as part of the Quantum Fourier Transform (QFT) apply_swaps( qc, k ) # apply a barrier to the quantum circuit for # the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE), # with k phase counting qubits, # and additional m qubits for # the successive applications of # the 2^k-Controlled-U gate defined before qc.barrier() # perform the Inverse Quantum Fourier Transform (IQFT) on # the k phase counting qubits of the respective # quantum register of the quantum circuit # for the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE) apply_quantum_fourier_transform_inverse( qc, k ) # apply a barrier to the quantum circuit for # the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE), # with k phase counting qubits, # and additional m qubits for # the successive applications of # the 2^k-Controlled-U gate defined before qc.barrier() # perform a measurement of all # the k phase counting qubits of the respective # quantum register of the quantum circuit # for the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE) qc.measure( range(k), range(k) ) ################################################# # step 2b. run the QPE quantum circuit with a single shot, # record the results and convert the estimated phase # bitstring to a decimal format #### your code goes here #### # create an Aer Simulator object sim = Aer.get_backend("aer_simulator") # define the number of shots shots = 1 # execute the simulation for the Quantum Phase Estimation (QPE), # with n counting qubits, and retrieve the result counts # obtained from this quantum simulation shor_qpe_counts = execute( qc, sim, shots=shots ).result().get_counts() # plot the histogram of the result counts of the quantum simulation # for the Quantum Phase Estimation (QPE), with n counting qubits plot_histogram( shor_qpe_counts, figsize=(9,5) ) # compute the estimated phases from the result counts # obtained from the quantum simulation of the quantum circuit # implementing the Shor's Algorithm for Factoring, # based on Quantum Phase Estimation (QPE) estimated_phases = [ bin_to_decimal( binary_val ) / 2**k for binary_val in shor_qpe_counts ] ################################################# # step 3. use the Fraction object to find the guess for r #### your code goes here #### # convert the estimated phase to a fraction s/r format fraction_s_r = [ Fraction(estimated_phase).limit_denominator(N) for estimated_phase in estimated_phases ][0] # retrieve the numerator s and the denominator r # from the estimated phase represented as a fraction s, r = fraction_s_r.numerator, fraction_s_r.denominator ################################################# # step 4. now that r has been found, use the built-in # greatest common divisor function to determine # the guesses for a factor of N # build the list of guesses for possible non-trivial factors of N guesses = [ gcd( a**( r // 2 ) - 1, N ), gcd( a**( r // 2 ) + 1, N ) ] ################################################# # step 5. for each guess in guesses, check if # at least one is a non-trivial factor, # i.e., ( ( guess != 1 ) or ( guess != N ) ) # and ( N % guess == 0 ) #### your code goes here #### # for each of the guesses computed before for guess in guesses: # if the current guess is not a trivial factor if ( ( ( guess != 1 ) or ( guess != N ) ) and ( N % guess == 0 ) ): # update the boolean flag to determine # if a non trivial guess was found, as True non_trivial_guess_found = True # break the current for loop break ################################################# # step 6. if a non-trivial factor is found return # the list 'guesses', otherwise # continue the while loop # return the list of the guesses, # containing a non-trivial factor of N return guesses ################################################# # submit your circuit # import the grader for the exercise 9 of the lab 3 from qc_grader.challenges.qgss_2023 import grade_lab3_ex9 # grade the exercise 9 of the lab 3 grade_lab3_ex9( shor_qpe ) # import the IBM's Qiskit Jupyter Tools import qiskit.tools.jupyter # show the table of the IBM's Qiskit version %qiskit_version_table
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
# useful additional packages import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import Aer from qiskit_chemistry import QiskitChemistry import warnings warnings.filterwarnings('ignore') # setup qiskit_chemistry logging import logging from qiskit_chemistry import set_qiskit_chemistry_logging set_qiskit_chemistry_logging(logging.ERROR) # choose among DEBUG, INFO, WARNING, ERROR, CRITICAL and NOTSET # from qiskit import IBMQ # IBMQ.load_accounts() # First, we use classical eigendecomposition to get ground state energy (including nuclear repulsion energy) as reference. qiskit_chemistry_dict = { 'driver': {'name': 'HDF5'}, 'HDF5': {'hdf5_input': 'H2/H2_equilibrium_0.735_sto-3g.hdf5'}, 'operator': {'name':'hamiltonian', 'qubit_mapping': 'parity', 'two_qubit_reduction': True}, 'algorithm': {'name': 'ExactEigensolver'} } solver = QiskitChemistry() result = solver.run(qiskit_chemistry_dict) print('Ground state energy (classical): {:.12f}'.format(result['energy'])) # Second, we use variational quantum eigensolver (VQE) qiskit_chemistry_dict['algorithm']['name'] = 'VQE' qiskit_chemistry_dict['optimizer'] = {'name': 'SPSA', 'max_trials': 350} qiskit_chemistry_dict['variational_form'] = {'name': 'RYRZ', 'depth': 3, 'entanglement':'full'} backend = Aer.get_backend('statevector_simulator') solver = QiskitChemistry() result = solver.run(qiskit_chemistry_dict, backend=backend) print('Ground state energy (quantum) : {:.12f}'.format(result['energy'])) print("====================================================") # You can also print out other info in the field 'printable' for line in result['printable']: print(line) # select H2 or LiH to experiment with molecule='H2' qiskit_chemistry_dict = { 'driver': {'name': 'HDF5'}, 'HDF5': {'hdf5_input': ''}, 'operator': {'name':'hamiltonian', 'qubit_mapping': 'parity', 'two_qubit_reduction': True}, 'algorithm': {'name': ''}, 'optimizer': {'name': 'SPSA', 'max_trials': 350}, 'variational_form': {'name': 'RYRZ', 'depth': 3, 'entanglement':'full'} } # choose which backend want to use # backend = Aer.get_backend('statevector_simulator') backend = Aer.get_backend('qasm_simulator') backend_cfg = {'shots': 1024} algos = ['ExactEigensolver', 'VQE'] if molecule == 'LiH': mol_distances = np.arange(0.6, 5.1, 0.1) qiskit_chemistry_dict['operator']['freeze_core'] = True qiskit_chemistry_dict['operator']['orbital_reduction'] = [-3, -2] qiskit_chemistry_dict['optimizer']['max_trials'] = 2500 qiskit_chemistry_dict['variational_form']['depth'] = 5 else: mol_distances = np.arange(0.2, 4.1, 0.1) energy = np.zeros((len(algos), len(mol_distances))) for j, algo in enumerate(algos): qiskit_chemistry_dict['algorithm']['name'] = algo if algo == 'ExactEigensolver': qiskit_chemistry_dict.pop('backend', None) elif algo == 'VQE': qiskit_chemistry_dict['backend'] = backend_cfg print("Using {}".format(algo)) for i, dis in enumerate(mol_distances): print("Processing atomic distance: {:1.1f} Angstrom".format(dis), end='\r') qiskit_chemistry_dict['HDF5']['hdf5_input'] = "{}/{:1.1f}_sto-3g.hdf5".format(molecule, dis) result = solver.run(qiskit_chemistry_dict, backend=backend if algo == 'VQE' else None) energy[j][i] = result['energy'] print("\n") for i, algo in enumerate(algos): plt.plot(mol_distances, energy[i], label=algo) plt.xlabel('Atomic distance (Angstrom)') plt.ylabel('Energy') plt.legend() plt.show()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.pulse_v2 import draw from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.measure_all() qc = transpile(qc, FakeBoeblingen(), layout_method='trivial') sched = schedule(qc, FakeBoeblingen()) draw(sched, backend=FakeBoeblingen())
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer, MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from docplex.mp.model import Model model = Model() x0 = model.binary_var(name="x0") x1 = model.binary_var(name="x1") x2 = model.binary_var(name="x2") model.minimize(-x0 + 2 * x1 - 3 * x2 - 2 * x0 * x2 - 1 * x1 * x2) qp = from_docplex_mp(model) print(qp.prettyprint()) grover_optimizer = GroverOptimizer(6, num_iterations=10, sampler=Sampler()) results = grover_optimizer.solve(qp) print(results.prettyprint()) exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qp) print(exact_result.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/henrik-dreyer/TASP-for-Qiskit
henrik-dreyer
import numpy as np from qiskit.aqua.algorithms import VQE, ExactEigensolver from qiskit.chemistry.aqua_extensions.components.variational_forms import UCCSD from qiskit.aqua.components.variational_forms import TASP from qiskit.chemistry.aqua_extensions.components.initial_states import HartreeFock from qiskit.aqua.components.optimizers import COBYLA from qiskit import BasicAer from qiskit.chemistry.drivers import PySCFDriver, UnitsType from qiskit.chemistry import FermionicOperator from qiskit.aqua import QuantumInstance #Classical part: set up molecular data, map to WeightedPauliOperator and find exact solution dist=0.735 driver = PySCFDriver(atom="H .0 .0 .0; H .0 .0 " + str(dist), unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g') molecule = driver.run() repulsion_energy = molecule.nuclear_repulsion_energy num_spin_orbitals=molecule.num_orbitals*2 map_type='jordan_wigner' ferOp = FermionicOperator(h1=molecule.one_body_integrals, h2=molecule.two_body_integrals) qubitOp = ferOp.mapping(map_type=map_type, threshold=0.00000001) exact_solution = ExactEigensolver(qubitOp).run()['energy'] exact_solution=exact_solution+repulsion_energy #Set up initial state and UCCSD variational form with standard parameters HF_state=HartreeFock(qubitOp.num_qubits, num_spin_orbitals, num_particles, map_type) varform_UCCSD = UCCSD(qubitOp.num_qubits, depth=1, num_orbitals=num_spin_orbitals, num_particles=num_particles, active_occupied=None, active_unoccupied=None, initial_state=HF_state, qubit_mapping='jordan_wigner', two_qubit_reduction=False, num_time_slices=1, shallow_circuit_concat=True, z2_symmetries=None) #Run VQE using UCCSD variational form and compare with exact solution print('Molecule H2 at bond length ' + str(dist)) print('Running VQE with UCCSD. This may take a few minutes. Some intermediary energies while you wait:') opt_iter=15 optimizer = COBYLA(maxiter=opt_iter) n_shots=1000 instance=QuantumInstance(backend=BasicAer.get_backend("qasm_simulator"), shots=n_shots) vqe_instance = VQE(qubitOp, varform_UCCSD, optimizer=optimizer) result=vqe_instance.run(instance) energy=result['energy']+repulsion_energy print('Optimal energy is ' + str(energy) +'. Exact result is ' + str(exact_solution)) #Split the Hamiltonian into the abovementioned pieces diag_one_body=np.diag(np.diagonal(molecule.one_body_integrals)) offdiag_one_body=molecule.one_body_integrals-diag_one_body diag_two_body=np.zeros((num_spin_orbitals,num_spin_orbitals,num_spin_orbitals,num_spin_orbitals)) hop_two_body=np.zeros((num_spin_orbitals,num_spin_orbitals,num_spin_orbitals,num_spin_orbitals)) ex_two_body=np.zeros((num_spin_orbitals,num_spin_orbitals,num_spin_orbitals,num_spin_orbitals)) for i1 in range(num_spin_orbitals): for i2 in range(num_spin_orbitals): for i3 in range(num_spin_orbitals): for i4 in range(num_spin_orbitals): if i2==i3: if i1==i4: diag_two_body[i1,i2,i3,i4]=molecule.two_body_integrals[i1,i2,i3,i4] else: hop_two_body[i1,i2,i3,i4]=molecule.two_body_integrals[i1,i2,i3,i4] else: ex_two_body[i1,i2,i3,i4]=molecule.two_body_integrals[i1,i2,i3,i4] H_diag=FermionicOperator(h1=diag_one_body,h2=diag_two_body) H_hop=FermionicOperator(h1=offdiag_one_body,h2=hop_two_body) H_ex=FermionicOperator(h1=np.zeros((num_spin_orbitals,num_spin_orbitals)),h2=ex_two_body) H_diag=H_diag.mapping(map_type=map_type, threshold=0.00000001) H_hop=H_hop.mapping(map_type=map_type, threshold=0.00000001) H_ex=H_ex.mapping(map_type=map_type, threshold=0.00000001) h_list=[H_ex, H_hop, H_diag] #Define TASP variational form (the TASP class file is attached to original comment) S=1 varform_TASP=TASP(num_spin_orbitals, depth=S, h_list=h_list, initial_state=HF_state) print('Running VQE with TASP. This may take a few minutes. Some intermediary energies while you wait:') vqe_instance = VQE(qubitOp, varform_TASP, optimizer=optimizer) result=vqe_instance.run(instance) energy=result['energy']+repulsion_energy print('Optimal energy is ' + str(energy) +'. Exact result is ' + str(exact_solution)) n_param_UCCSD=varform_UCCSD.num_parameters qc_UCCSD=varform_UCCSD.construct_circuit(np.random.rand(n_param_UCCSD)) print('Number of parameters for UCCSD:', n_param_UCCSD) print('Depth for UCCSD:', qc_UCCSD.depth()) print('Gate counts:', qc_UCCSD.count_ops()) n_param_TASP=varform_TASP.num_parameters qc_TASP=varform_TASP.construct_circuit(np.random.rand(n_param_TASP)) print('Number of parameters for TASP:', n_param_TASP) print('Depth for TASP:', qc_TASP.depth()) print('Gate counts:', qc_TASP.count_ops())
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
from tsp_qaoa import test_solution from qiskit.visualization import plot_histogram import networkx as nx import numpy as np import json import csv # Array of JSON Objects header = ['instance', 'iteration', 'distance'] length_instances = 40 with open('qaoa_multiple_distance.csv', 'w', encoding='UTF8') as f: writer = csv.writer(f) # write the header writer.writerow(header) for instance in range(length_instances): job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution() # Sort the JSON data based on the value of the brand key UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"]) index = -1 for sample in UNIFORM_CONVERGENCE_SAMPLE: mean = sample["mean"] index += 1 distance_p_ground_state = np.max(np.abs(UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"] - sample["probabilities"])) UNIFORM_CONVERGENCE_SAMPLE[index]["distance_pgs"] = distance_p_ground_state iteration = 0 for sample in UNIFORM_CONVERGENCE_SAMPLE: iteration += 1 mean = sample["mean"] distance = sample["distance_pgs"] writer.writerow([instance,iteration, distance])
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
#General imports import numpy as np #Operator Imports from qiskit.opflow import Z, X, I, StateFn, CircuitStateFn, SummedOp from qiskit.opflow.gradients import Gradient, NaturalGradient, QFI, Hessian #Circuit imports from qiskit.circuit import QuantumCircuit, QuantumRegister, Parameter, ParameterVector, ParameterExpression from qiskit.circuit.library import EfficientSU2 # Instantiate the quantum state a = Parameter('a') b = Parameter('b') q = QuantumRegister(1) qc = QuantumCircuit(q) qc.h(q) qc.rz(a, q[0]) qc.rx(b, q[0]) # Instantiate the Hamiltonian observable H = (2 * X) + Z # Combine the Hamiltonian observable and the state op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.) # Print the operator corresponding to the expectation value print(op) params = [a, b] # Define the values to be assigned to the parameters value_dict = {a: np.pi / 4, b: np.pi} # Convert the operator and the gradient target params into the respective operator grad = Gradient().convert(operator = op, params = params) # Print the operator corresponding to the Gradient print(grad) # Assign the parameters and evaluate the gradient grad_result = grad.assign_parameters(value_dict).eval() print('Gradient', grad_result) # Define the Hamiltonian with fixed coefficients H = 0.5 * X - 1 * Z # Define the parameters w.r.t. we want to compute the gradients params = [a, b] # Define the values to be assigned to the parameters value_dict = { a: np.pi / 4, b: np.pi} # Combine the Hamiltonian observable and the state into an expectation value operator op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.) print(op) # Convert the expectation value into an operator corresponding to the gradient w.r.t. the state parameters using # the parameter shift method. state_grad = Gradient(grad_method='param_shift').convert(operator=op, params=params) # Print the operator corresponding to the gradient print(state_grad) # Assign the parameters and evaluate the gradient state_grad_result = state_grad.assign_parameters(value_dict).eval() print('State gradient computed with parameter shift', state_grad_result) # Convert the expectation value into an operator corresponding to the gradient w.r.t. the state parameter using # the linear combination of unitaries method. state_grad = Gradient(grad_method='lin_comb').convert(operator=op, params=params) # Print the operator corresponding to the gradient print(state_grad) # Assign the parameters and evaluate the gradient state_grad_result = state_grad.assign_parameters(value_dict).eval() print('State gradient computed with the linear combination method', state_grad_result) # Convert the expectation value into an operator corresponding to the gradient w.r.t. the state parameter using # the finite difference method. state_grad = Gradient(grad_method='fin_diff').convert(operator=op, params=params) # Print the operator corresponding to the gradient print(state_grad) # Assign the parameters and evaluate the gradient state_grad_result = state_grad.assign_parameters(value_dict).eval() print('State gradient computed with finite difference', state_grad_result) # Besides the method to compute the circuit gradients resp. QFI, a regularization method can be chosen: # `ridge` or `lasso` with automatic parameter search or `perturb_diag_elements` or `perturb_diag` # which perturb the diagonal elements of the QFI. nat_grad = NaturalGradient(grad_method='lin_comb', qfi_method='lin_comb_full', regularization='ridge').convert( operator=op, params=params) # Assign the parameters and evaluate the gradient nat_grad_result = nat_grad.assign_parameters(value_dict).eval() print('Natural gradient computed with linear combination of unitaries', nat_grad_result) # Instantiate the Hamiltonian observable H = X # Instantiate the quantum state with two parameters a = Parameter('a') b = Parameter('b') q = QuantumRegister(1) qc = QuantumCircuit(q) qc.h(q) qc.rz(a, q[0]) qc.rx(b, q[0]) # Combine the Hamiltonian observable and the state op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.) # Convert the operator and the hessian target coefficients into the respective operator hessian = Hessian().convert(operator = op, params = [a, b]) # Define the values to be assigned to the parameters value_dict = {a: np.pi / 4, b: np.pi/4} # Assign the parameters and evaluate the Hessian w.r.t. the Hamiltonian coefficients hessian_result = hessian.assign_parameters(value_dict).eval() print('Hessian \n', np.real(np.array(hessian_result))) # Define parameters params = [a, b] # Get the operator object representing the Hessian state_hess = Hessian(hess_method='param_shift').convert(operator=op, params=params) # Assign the parameters and evaluate the Hessian hessian_result = state_hess.assign_parameters(value_dict).eval() print('Hessian computed using the parameter shift method\n', (np.array(hessian_result))) # Get the operator object representing the Hessian state_hess = Hessian(hess_method='lin_comb').convert(operator=op, params=params) # Assign the parameters and evaluate the Hessian hessian_result = state_hess.assign_parameters(value_dict).eval() print('Hessian computed using the linear combination of unitaries method\n', (np.array(hessian_result))) # Get the operator object representing the Hessian using finite difference state_hess = Hessian(hess_method='fin_diff').convert(operator=op, params=params) # Assign the parameters and evaluate the Hessian hessian_result = state_hess.assign_parameters(value_dict).eval() print('Hessian computed with finite difference\n', (np.array(hessian_result))) # Wrap the quantum circuit into a CircuitStateFn state = CircuitStateFn(primitive=qc, coeff=1.) # Convert the state and the parameters into the operator object that represents the QFI qfi = QFI(qfi_method='lin_comb_full').convert(operator=state, params=params) # Define the values for which the QFI is to be computed values_dict = {a: np.pi / 4, b: 0.1} # Assign the parameters and evaluate the QFI qfi_result = qfi.assign_parameters(values_dict).eval() print('full QFI \n', np.real(np.array(qfi_result))) # Convert the state and the parameters into the operator object that represents the QFI # and set the approximation to 'block_diagonal' qfi = QFI('overlap_block_diag').convert(operator=state, params=params) # Assign the parameters and evaluate the QFI qfi_result = qfi.assign_parameters(values_dict).eval() print('Block-diagonal QFI \n', np.real(np.array(qfi_result))) # Convert the state and the parameters into the operator object that represents the QFI # and set the approximation to 'diagonal' qfi = QFI('overlap_diag').convert(operator=state, params=params) # Assign the parameters and evaluate the QFI qfi_result = qfi.assign_parameters(values_dict).eval() print('Diagonal QFI \n', np.real(np.array(qfi_result))) # Execution Imports from qiskit import Aer from qiskit.utils import QuantumInstance # Algorithm Imports from qiskit.algorithms import VQE from qiskit.algorithms.optimizers import CG from qiskit.opflow import I, X, Z from qiskit.circuit import QuantumCircuit, ParameterVector from scipy.optimize import minimize # Instantiate the system Hamiltonian h2_hamiltonian = -1.05 * (I ^ I) + 0.39 * (I ^ Z) - 0.39 * (Z ^ I) - 0.01 * (Z ^ Z) + 0.18 * (X ^ X) # This is the target energy h2_energy = -1.85727503 # Define the Ansatz wavefunction = QuantumCircuit(2) params = ParameterVector('theta', length=8) it = iter(params) wavefunction.ry(next(it), 0) wavefunction.ry(next(it), 1) wavefunction.rz(next(it), 0) wavefunction.rz(next(it), 1) wavefunction.cx(0, 1) wavefunction.ry(next(it), 0) wavefunction.ry(next(it), 1) wavefunction.rz(next(it), 0) wavefunction.rz(next(it), 1) # Define the expectation value corresponding to the energy op = ~StateFn(h2_hamiltonian) @ StateFn(wavefunction) grad = Gradient(grad_method='lin_comb') qi_sv = QuantumInstance(Aer.get_backend('aer_simulator_statevector'), shots=1, seed_simulator=2, seed_transpiler=2) #Conjugate Gradient algorithm optimizer = CG(maxiter=50) # Gradient callable vqe = VQE(wavefunction, optimizer=optimizer, gradient=grad, quantum_instance=qi_sv) result = vqe.compute_minimum_eigenvalue(h2_hamiltonian) print('Result:', result.optimal_value, 'Reference:', h2_energy) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# Necessary imports import numpy as np import matplotlib.pyplot as plt from torch import Tensor from torch.nn import Linear, CrossEntropyLoss, MSELoss from torch.optim import LBFGS from qiskit import QuantumCircuit from qiskit.utils import algorithm_globals from qiskit.circuit import Parameter from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit_machine_learning.neural_networks import SamplerQNN, EstimatorQNN from qiskit_machine_learning.connectors import TorchConnector # Set seed for random generators algorithm_globals.random_seed = 42 # Generate random dataset # Select dataset dimension (num_inputs) and size (num_samples) num_inputs = 2 num_samples = 20 # Generate random input coordinates (X) and binary labels (y) X = 2 * algorithm_globals.random.random([num_samples, num_inputs]) - 1 y01 = 1 * (np.sum(X, axis=1) >= 0) # in { 0, 1}, y01 will be used for SamplerQNN example y = 2 * y01 - 1 # in {-1, +1}, y will be used for EstimatorQNN example # Convert to torch Tensors X_ = Tensor(X) y01_ = Tensor(y01).reshape(len(y)).long() y_ = Tensor(y).reshape(len(y), 1) # Plot dataset for x, y_target in zip(X, y): if y_target == 1: plt.plot(x[0], x[1], "bo") else: plt.plot(x[0], x[1], "go") plt.plot([-1, 1], [1, -1], "--", color="black") plt.show() # Set up a circuit feature_map = ZZFeatureMap(num_inputs) ansatz = RealAmplitudes(num_inputs) qc = QuantumCircuit(num_inputs) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) qc.draw("mpl") # Setup QNN qnn1 = EstimatorQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters ) # Set up PyTorch module # Note: If we don't explicitly declare the initial weights # they are chosen uniformly at random from [-1, 1]. initial_weights = 0.1 * (2 * algorithm_globals.random.random(qnn1.num_weights) - 1) model1 = TorchConnector(qnn1, initial_weights=initial_weights) print("Initial weights: ", initial_weights) # Test with a single input model1(X_[0, :]) # Define optimizer and loss optimizer = LBFGS(model1.parameters()) f_loss = MSELoss(reduction="sum") # Start training model1.train() # set model to training mode # Note from (https://pytorch.org/docs/stable/optim.html): # Some optimization algorithms such as LBFGS need to # reevaluate the function multiple times, so you have to # pass in a closure that allows them to recompute your model. # The closure should clear the gradients, compute the loss, # and return it. def closure(): optimizer.zero_grad() # Initialize/clear gradients loss = f_loss(model1(X_), y_) # Evaluate loss function loss.backward() # Backward pass print(loss.item()) # Print loss return loss # Run optimizer step4 optimizer.step(closure) # Evaluate model and compute accuracy y_predict = [] for x, y_target in zip(X, y): output = model1(Tensor(x)) y_predict += [np.sign(output.detach().numpy())[0]] print("Accuracy:", sum(y_predict == y) / len(y)) # Plot results # red == wrongly classified for x, y_target, y_p in zip(X, y, y_predict): if y_target == 1: plt.plot(x[0], x[1], "bo") else: plt.plot(x[0], x[1], "go") if y_target != y_p: plt.scatter(x[0], x[1], s=200, facecolors="none", edgecolors="r", linewidths=2) plt.plot([-1, 1], [1, -1], "--", color="black") plt.show() # Define feature map and ansatz feature_map = ZZFeatureMap(num_inputs) ansatz = RealAmplitudes(num_inputs, entanglement="linear", reps=1) # Define quantum circuit of num_qubits = input dim # Append feature map and ansatz qc = QuantumCircuit(num_inputs) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) # Define SamplerQNN and initial setup parity = lambda x: "{:b}".format(x).count("1") % 2 # optional interpret function output_shape = 2 # parity = 0, 1 qnn2 = SamplerQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, interpret=parity, output_shape=output_shape, ) # Set up PyTorch module # Reminder: If we don't explicitly declare the initial weights # they are chosen uniformly at random from [-1, 1]. initial_weights = 0.1 * (2 * algorithm_globals.random.random(qnn2.num_weights) - 1) print("Initial weights: ", initial_weights) model2 = TorchConnector(qnn2, initial_weights) # Define model, optimizer, and loss optimizer = LBFGS(model2.parameters()) f_loss = CrossEntropyLoss() # Our output will be in the [0,1] range # Start training model2.train() # Define LBFGS closure method (explained in previous section) def closure(): optimizer.zero_grad(set_to_none=True) # Initialize gradient loss = f_loss(model2(X_), y01_) # Calculate loss loss.backward() # Backward pass print(loss.item()) # Print loss return loss # Run optimizer (LBFGS requires closure) optimizer.step(closure); # Evaluate model and compute accuracy y_predict = [] for x in X: output = model2(Tensor(x)) y_predict += [np.argmax(output.detach().numpy())] print("Accuracy:", sum(y_predict == y01) / len(y01)) # plot results # red == wrongly classified for x, y_target, y_ in zip(X, y01, y_predict): if y_target == 1: plt.plot(x[0], x[1], "bo") else: plt.plot(x[0], x[1], "go") if y_target != y_: plt.scatter(x[0], x[1], s=200, facecolors="none", edgecolors="r", linewidths=2) plt.plot([-1, 1], [1, -1], "--", color="black") plt.show() # Generate random dataset num_samples = 20 eps = 0.2 lb, ub = -np.pi, np.pi f = lambda x: np.sin(x) X = (ub - lb) * algorithm_globals.random.random([num_samples, 1]) + lb y = f(X) + eps * (2 * algorithm_globals.random.random([num_samples, 1]) - 1) plt.plot(np.linspace(lb, ub), f(np.linspace(lb, ub)), "r--") plt.plot(X, y, "bo") plt.show() # Construct simple feature map param_x = Parameter("x") feature_map = QuantumCircuit(1, name="fm") feature_map.ry(param_x, 0) # Construct simple feature map param_y = Parameter("y") ansatz = QuantumCircuit(1, name="vf") ansatz.ry(param_y, 0) qc = QuantumCircuit(1) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) # Construct QNN qnn3 = EstimatorQNN(circuit=qc, input_params=[param_x], weight_params=[param_y]) # Set up PyTorch module # Reminder: If we don't explicitly declare the initial weights # they are chosen uniformly at random from [-1, 1]. initial_weights = 0.1 * (2 * algorithm_globals.random.random(qnn3.num_weights) - 1) model3 = TorchConnector(qnn3, initial_weights) # Define optimizer and loss function optimizer = LBFGS(model3.parameters()) f_loss = MSELoss(reduction="sum") # Start training model3.train() # set model to training mode # Define objective function def closure(): optimizer.zero_grad(set_to_none=True) # Initialize gradient loss = f_loss(model3(Tensor(X)), Tensor(y)) # Compute batch loss loss.backward() # Backward pass print(loss.item()) # Print loss return loss # Run optimizer optimizer.step(closure) # Plot target function plt.plot(np.linspace(lb, ub), f(np.linspace(lb, ub)), "r--") # Plot data plt.plot(X, y, "bo") # Plot fitted line y_ = [] for x in np.linspace(lb, ub): output = model3(Tensor([x])) y_ += [output.detach().numpy()[0]] plt.plot(np.linspace(lb, ub), y_, "g-") plt.show() # Additional torch-related imports import torch from torch import cat, no_grad, manual_seed from torch.utils.data import DataLoader from torchvision import datasets, transforms import torch.optim as optim from torch.nn import ( Module, Conv2d, Linear, Dropout2d, NLLLoss, MaxPool2d, Flatten, Sequential, ReLU, ) import torch.nn.functional as F # Train Dataset # ------------- # Set train shuffle seed (for reproducibility) manual_seed(42) batch_size = 1 n_samples = 100 # We will concentrate on the first 100 samples # Use pre-defined torchvision function to load MNIST train data X_train = datasets.MNIST( root="./data", train=True, download=True, transform=transforms.Compose([transforms.ToTensor()]) ) # Filter out labels (originally 0-9), leaving only labels 0 and 1 idx = np.append( np.where(X_train.targets == 0)[0][:n_samples], np.where(X_train.targets == 1)[0][:n_samples] ) X_train.data = X_train.data[idx] X_train.targets = X_train.targets[idx] # Define torch dataloader with filtered data train_loader = DataLoader(X_train, batch_size=batch_size, shuffle=True) n_samples_show = 6 data_iter = iter(train_loader) fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) while n_samples_show > 0: images, targets = data_iter.__next__() axes[n_samples_show - 1].imshow(images[0, 0].numpy().squeeze(), cmap="gray") axes[n_samples_show - 1].set_xticks([]) axes[n_samples_show - 1].set_yticks([]) axes[n_samples_show - 1].set_title("Labeled: {}".format(targets[0].item())) n_samples_show -= 1 # Test Dataset # ------------- # Set test shuffle seed (for reproducibility) # manual_seed(5) n_samples = 50 # Use pre-defined torchvision function to load MNIST test data X_test = datasets.MNIST( root="./data", train=False, download=True, transform=transforms.Compose([transforms.ToTensor()]) ) # Filter out labels (originally 0-9), leaving only labels 0 and 1 idx = np.append( np.where(X_test.targets == 0)[0][:n_samples], np.where(X_test.targets == 1)[0][:n_samples] ) X_test.data = X_test.data[idx] X_test.targets = X_test.targets[idx] # Define torch dataloader with filtered data test_loader = DataLoader(X_test, batch_size=batch_size, shuffle=True) # Define and create QNN def create_qnn(): feature_map = ZZFeatureMap(2) ansatz = RealAmplitudes(2, reps=1) qc = QuantumCircuit(2) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) # REMEMBER TO SET input_gradients=True FOR ENABLING HYBRID GRADIENT BACKPROP qnn = EstimatorQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, input_gradients=True, ) return qnn qnn4 = create_qnn() # Define torch NN module class Net(Module): def __init__(self, qnn): super().__init__() self.conv1 = Conv2d(1, 2, kernel_size=5) self.conv2 = Conv2d(2, 16, kernel_size=5) self.dropout = Dropout2d() self.fc1 = Linear(256, 64) self.fc2 = Linear(64, 2) # 2-dimensional input to QNN self.qnn = TorchConnector(qnn) # Apply torch connector, weights chosen # uniformly at random from interval [-1,1]. self.fc3 = Linear(1, 1) # 1-dimensional output from QNN def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(x.shape[0], -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.qnn(x) # apply QNN x = self.fc3(x) return cat((x, 1 - x), -1) model4 = Net(qnn4) # Define model, optimizer, and loss function optimizer = optim.Adam(model4.parameters(), lr=0.001) loss_func = NLLLoss() # Start training epochs = 10 # Set number of epochs loss_list = [] # Store loss history model4.train() # Set model to training mode for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad(set_to_none=True) # Initialize gradient output = model4(data) # Forward pass loss = loss_func(output, target) # Calculate loss loss.backward() # Backward pass optimizer.step() # Optimize weights total_loss.append(loss.item()) # Store loss loss_list.append(sum(total_loss) / len(total_loss)) print("Training [{:.0f}%]\tLoss: {:.4f}".format(100.0 * (epoch + 1) / epochs, loss_list[-1])) # Plot loss convergence plt.plot(loss_list) plt.title("Hybrid NN Training Convergence") plt.xlabel("Training Iterations") plt.ylabel("Neg. Log Likelihood Loss") plt.show() torch.save(model4.state_dict(), "model4.pt") qnn5 = create_qnn() model5 = Net(qnn5) model5.load_state_dict(torch.load("model4.pt")) model5.eval() # set model to evaluation mode with no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model5(data) if len(output.shape) == 1: output = output.reshape(1, *output.shape) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print( "Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%".format( sum(total_loss) / len(total_loss), correct / len(test_loader) / batch_size * 100 ) ) # Plot predicted labels n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) model5.eval() with no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model5(data[0:1]) if len(output.shape) == 1: output = output.reshape(1, *output.shape) pred = output.argmax(dim=1, keepdim=True) axes[count].imshow(data[0].numpy().squeeze(), cmap="gray") axes[count].set_xticks([]) axes[count].set_yticks([]) axes[count].set_title("Predicted {}".format(pred.item())) count += 1 import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np # Import Qiskit from qiskit import QuantumCircuit from qiskit import Aer, transpile from qiskit.tools.visualization import plot_histogram, plot_state_city import qiskit.quantum_info as qi Aer.backends() simulator = Aer.get_backend('aer_simulator') # Create circuit circ = QuantumCircuit(2) circ.h(0) circ.cx(0, 1) circ.measure_all() # Transpile for simulator simulator = Aer.get_backend('aer_simulator') circ = transpile(circ, simulator) # Run and get counts result = simulator.run(circ).result() counts = result.get_counts(circ) plot_histogram(counts, title='Bell-State counts') # Run and get memory result = simulator.run(circ, shots=10, memory=True).result() memory = result.get_memory(circ) print(memory) # Increase shots to reduce sampling variance shots = 10000 # Stabilizer simulation method sim_stabilizer = Aer.get_backend('aer_simulator_stabilizer') job_stabilizer = sim_stabilizer.run(circ, shots=shots) counts_stabilizer = job_stabilizer.result().get_counts(0) # Statevector simulation method sim_statevector = Aer.get_backend('aer_simulator_statevector') job_statevector = sim_statevector.run(circ, shots=shots) counts_statevector = job_statevector.result().get_counts(0) # Density Matrix simulation method sim_density = Aer.get_backend('aer_simulator_density_matrix') job_density = sim_density.run(circ, shots=shots) counts_density = job_density.result().get_counts(0) # Matrix Product State simulation method sim_mps = Aer.get_backend('aer_simulator_matrix_product_state') job_mps = sim_mps.run(circ, shots=shots) counts_mps = job_mps.result().get_counts(0) plot_histogram([counts_stabilizer, counts_statevector, counts_density, counts_mps], title='Counts for different simulation methods', legend=['stabilizer', 'statevector', 'density_matrix', 'matrix_product_state']) from qiskit_aer import AerError # Initialize a GPU backend # Note that the cloud instance for tutorials does not have a GPU # so this will raise an exception. try: simulator_gpu = Aer.get_backend('aer_simulator') simulator_gpu.set_options(device='GPU') except AerError as e: print(e) # Configure a single-precision statevector simulator backend simulator = Aer.get_backend('aer_simulator_statevector') simulator.set_options(precision='single') # Run and get counts result = simulator.run(circ).result() counts = result.get_counts(circ) print(counts) # Construct quantum circuit without measure circ = QuantumCircuit(2) circ.h(0) circ.cx(0, 1) circ.save_statevector() # Transpile for simulator simulator = Aer.get_backend('aer_simulator') circ = transpile(circ, simulator) # Run and get statevector result = simulator.run(circ).result() statevector = result.get_statevector(circ) plot_state_city(statevector, title='Bell state') # Construct quantum circuit without measure circ = QuantumCircuit(2) circ.h(0) circ.cx(0, 1) circ.save_unitary() # Transpile for simulator simulator = Aer.get_backend('aer_simulator') circ = transpile(circ, simulator) # Run and get unitary result = simulator.run(circ).result() unitary = result.get_unitary(circ) print("Circuit unitary:\n", np.asarray(unitary).round(5)) # Construct quantum circuit without measure steps = 5 circ = QuantumCircuit(1) for i in range(steps): circ.save_statevector(label=f'psi_{i}') circ.rx(i * np.pi / steps, 0) circ.save_statevector(label=f'psi_{steps}') # Transpile for simulator simulator = Aer.get_backend('aer_simulator') circ = transpile(circ, simulator) # Run and get saved data result = simulator.run(circ).result() data = result.data(0) data # Generate a random statevector num_qubits = 2 psi = qi.random_statevector(2 ** num_qubits, seed=100) # Set initial state to generated statevector circ = QuantumCircuit(num_qubits) circ.set_statevector(psi) circ.save_state() # Transpile for simulator simulator = Aer.get_backend('aer_simulator') circ = transpile(circ, simulator) # Run and get saved data result = simulator.run(circ).result() result.data(0) # Use initilize instruction to set initial state circ = QuantumCircuit(num_qubits) circ.initialize(psi, range(num_qubits)) circ.save_state() # Transpile for simulator simulator = Aer.get_backend('aer_simulator') circ = transpile(circ, simulator) # Run and get result data result = simulator.run(circ).result() result.data(0) num_qubits = 2 rho = qi.random_density_matrix(2 ** num_qubits, seed=100) circ = QuantumCircuit(num_qubits) circ.set_density_matrix(rho) circ.save_state() # Transpile for simulator simulator = Aer.get_backend('aer_simulator') circ = transpile(circ, simulator) # Run and get saved data result = simulator.run(circ).result() result.data(0) # Generate a random Clifford C num_qubits = 2 stab = qi.random_clifford(num_qubits, seed=100) # Set initial state to stabilizer state C|0> circ = QuantumCircuit(num_qubits) circ.set_stabilizer(stab) circ.save_state() # Transpile for simulator simulator = Aer.get_backend('aer_simulator') circ = transpile(circ, simulator) # Run and get saved data result = simulator.run(circ).result() result.data(0) # Generate a random unitary num_qubits = 2 unitary = qi.random_unitary(2 ** num_qubits, seed=100) # Set initial state to unitary circ = QuantumCircuit(num_qubits) circ.set_unitary(unitary) circ.save_state() # Transpile for simulator simulator = Aer.get_backend('aer_simulator') circ = transpile(circ, simulator) # Run and get saved data result = simulator.run(circ).result() result.data(0) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test Operator construction, including OpPrimitives and singletons.""" import unittest from test.python.opflow import QiskitOpflowTestCase import numpy as np from qiskit import QuantumCircuit, BasicAer, execute from qiskit.circuit import ParameterVector from qiskit.quantum_info import Statevector from qiskit.opflow import ( StateFn, Zero, One, Plus, Minus, PrimitiveOp, CircuitOp, SummedOp, H, I, Z, X, Y, CX, CircuitStateFn, DictToCircuitSum, ) class TestStateConstruction(QiskitOpflowTestCase): """State Construction tests.""" def test_state_singletons(self): """state singletons test""" self.assertEqual(Zero.primitive, {"0": 1}) self.assertEqual(One.primitive, {"1": 1}) self.assertEqual((Zero ^ 5).primitive, {"00000": 1}) self.assertEqual((One ^ 5).primitive, {"11111": 1}) self.assertEqual(((Zero ^ One) ^ 3).primitive, {"010101": 1}) def test_zero_broadcast(self): """zero broadcast test""" np.testing.assert_array_almost_equal(((H ^ 5) @ Zero).to_matrix(), (Plus ^ 5).to_matrix()) def test_state_to_matrix(self): """state to matrix test""" np.testing.assert_array_equal(Zero.to_matrix(), np.array([1, 0])) np.testing.assert_array_equal(One.to_matrix(), np.array([0, 1])) np.testing.assert_array_almost_equal( Plus.to_matrix(), (Zero.to_matrix() + One.to_matrix()) / (np.sqrt(2)) ) np.testing.assert_array_almost_equal( Minus.to_matrix(), (Zero.to_matrix() - One.to_matrix()) / (np.sqrt(2)) ) # TODO Not a great test because doesn't test against validated values # or test internal representation. Fix this. gnarly_state = (One ^ Plus ^ Zero ^ Minus * 0.3) @ StateFn( Statevector.from_label("r0+l") ) + (StateFn(X ^ Z ^ Y ^ I) * 0.1j) gnarly_mat = gnarly_state.to_matrix() gnarly_mat_separate = (One ^ Plus ^ Zero ^ Minus * 0.3).to_matrix() gnarly_mat_separate = np.dot( gnarly_mat_separate, StateFn(Statevector.from_label("r0+l")).to_matrix() ) gnarly_mat_separate = gnarly_mat_separate + (StateFn(X ^ Z ^ Y ^ I) * 0.1j).to_matrix() np.testing.assert_array_almost_equal(gnarly_mat, gnarly_mat_separate) def test_qiskit_result_instantiation(self): """qiskit result instantiation test""" qc = QuantumCircuit(3) # REMEMBER: This is Qubit 2 in Operator land. qc.h(0) sv_res = execute(qc, BasicAer.get_backend("statevector_simulator")).result() sv_vector = sv_res.get_statevector() qc_op = PrimitiveOp(qc) @ Zero qasm_res = execute( qc_op.to_circuit(meas=True), BasicAer.get_backend("qasm_simulator") ).result() np.testing.assert_array_almost_equal( StateFn(sv_res).to_matrix(), [0.5**0.5, 0.5**0.5, 0, 0, 0, 0, 0, 0] ) np.testing.assert_array_almost_equal( StateFn(sv_vector).to_matrix(), [0.5**0.5, 0.5**0.5, 0, 0, 0, 0, 0, 0] ) np.testing.assert_array_almost_equal( StateFn(qasm_res).to_matrix(), [0.5**0.5, 0.5**0.5, 0, 0, 0, 0, 0, 0], decimal=1 ) np.testing.assert_array_almost_equal( ((I ^ I ^ H) @ Zero).to_matrix(), [0.5**0.5, 0.5**0.5, 0, 0, 0, 0, 0, 0] ) np.testing.assert_array_almost_equal( qc_op.to_matrix(), [0.5**0.5, 0.5**0.5, 0, 0, 0, 0, 0, 0] ) def test_state_meas_composition(self): """state meas composition test""" pass # print((~Zero^4).eval(Zero^4)) # print((~One^4).eval(Zero^4)) # print((~One ^ 4).eval(One ^ 4)) # print(StateFn(I^Z, is_measurement=True).eval(One^2)) def test_add_direct(self): """add direct test""" wf = StateFn({"101010": 0.5, "111111": 0.3}) + (Zero ^ 6) self.assertEqual(wf.primitive, {"101010": 0.5, "111111": 0.3, "000000": 1.0}) wf = (4 * StateFn({"101010": 0.5, "111111": 0.3})) + ((3 + 0.1j) * (Zero ^ 6)) self.assertEqual( wf.primitive, {"000000": (3 + 0.1j), "101010": (2 + 0j), "111111": (1.2 + 0j)} ) def test_circuit_state_fn_from_dict_as_sum(self): """state fn circuit from dict as sum test""" statedict = {"1010101": 0.5, "1000000": 0.1, "0000000": 0.2j, "1111111": 0.5j} sfc_sum = CircuitStateFn.from_dict(statedict) self.assertIsInstance(sfc_sum, SummedOp) for sfc_op in sfc_sum.oplist: self.assertIsInstance(sfc_op, CircuitStateFn) samples = sfc_op.sample() self.assertIn(list(samples.keys())[0], statedict) self.assertEqual(sfc_op.coeff, statedict[list(samples.keys())[0]]) np.testing.assert_array_almost_equal(StateFn(statedict).to_matrix(), sfc_sum.to_matrix()) def test_circuit_state_fn_from_dict_initialize(self): """state fn circuit from dict initialize test""" statedict = {"101": 0.5, "100": 0.1, "000": 0.2, "111": 0.5} sfc = CircuitStateFn.from_dict(statedict) self.assertIsInstance(sfc, CircuitStateFn) samples = sfc.sample() np.testing.assert_array_almost_equal( StateFn(statedict).to_matrix(), np.round(sfc.to_matrix(), decimals=1) ) for k, v in samples.items(): self.assertIn(k, statedict) # It's ok if these are far apart because the dict is sampled. self.assertAlmostEqual(v, np.abs(statedict[k]) ** 0.5, delta=0.5) # Follows same code path as above, but testing to be thorough sfc_vector = CircuitStateFn.from_vector(StateFn(statedict).to_matrix()) np.testing.assert_array_almost_equal(StateFn(statedict).to_matrix(), sfc_vector.to_matrix()) # #1276 def test_circuit_state_fn_from_complex_vector_initialize(self): """state fn circuit from complex vector initialize test""" sfc = CircuitStateFn.from_vector(np.array([1j / np.sqrt(2), 0, 1j / np.sqrt(2), 0])) self.assertIsInstance(sfc, CircuitStateFn) def test_sampling(self): """state fn circuit from dict initialize test""" statedict = {"101": 0.5 + 1.0j, "100": 0.1 + 2.0j, "000": 0.2 + 0.0j, "111": 0.5 + 1.0j} sfc = CircuitStateFn.from_dict(statedict) circ_samples = sfc.sample() dict_samples = StateFn(statedict).sample() vec_samples = StateFn(statedict).to_matrix_op().sample() for k, v in circ_samples.items(): self.assertIn(k, dict_samples) self.assertIn(k, vec_samples) # It's ok if these are far apart because the dict is sampled. self.assertAlmostEqual(v, np.abs(dict_samples[k]) ** 0.5, delta=0.5) self.assertAlmostEqual(v, np.abs(vec_samples[k]) ** 0.5, delta=0.5) def test_dict_to_circuit_sum(self): """Test DictToCircuitSum converter.""" # Test qubits < entires, so dict is converted to Initialize CircuitStateFn dict_state_3q = StateFn({"101": 0.5, "100": 0.1, "000": 0.2, "111": 0.5}) circuit_state_3q = DictToCircuitSum().convert(dict_state_3q) self.assertIsInstance(circuit_state_3q, CircuitStateFn) np.testing.assert_array_almost_equal( dict_state_3q.to_matrix(), circuit_state_3q.to_matrix() ) # Test qubits >= entires, so dict is converted to Initialize CircuitStateFn dict_state_4q = dict_state_3q ^ Zero circuit_state_4q = DictToCircuitSum().convert(dict_state_4q) self.assertIsInstance(circuit_state_4q, SummedOp) np.testing.assert_array_almost_equal( dict_state_4q.to_matrix(), circuit_state_4q.to_matrix() ) # Test VectorStateFn conversion vect_state_3q = dict_state_3q.to_matrix_op() circuit_state_3q_vect = DictToCircuitSum().convert(vect_state_3q) self.assertIsInstance(circuit_state_3q_vect, CircuitStateFn) np.testing.assert_array_almost_equal( vect_state_3q.to_matrix(), circuit_state_3q_vect.to_matrix() ) def test_circuit_permute(self): r"""Test the CircuitStateFn's .permute method""" perm = range(7)[::-1] c_op = ( ((CX ^ 3) ^ X) @ (H ^ 7) @ (X ^ Y ^ Z ^ I ^ X ^ X ^ X) @ (Y ^ (CX ^ 3)) @ (X ^ Y ^ Z ^ I ^ X ^ X ^ X) ) @ Zero c_op_perm = c_op.permute(perm) self.assertNotEqual(c_op, c_op_perm) c_op_id = c_op_perm.permute(perm) self.assertEqual(c_op, c_op_id) def test_primitive_param_binding(self): """Test that assign_parameters binds parameters of both the underlying primitive and coeffs.""" theta = ParameterVector("theta", 2) # only OperatorStateFn can have a primitive with a parameterized coefficient op = StateFn(theta[0] * X) * theta[1] bound = op.assign_parameters(dict(zip(theta, [0.2, 0.3]))) self.assertEqual(bound.coeff, 0.3) self.assertEqual(bound.primitive.coeff, 0.2) # #6003 def test_flatten_statefn_composed_with_composed_op(self): """Test that composing a StateFn with a ComposedOp constructs a single ComposedOp""" circuit = QuantumCircuit(1) vector = [1, 0] ex = ~StateFn(I) @ (CircuitOp(circuit) @ StateFn(vector)) self.assertEqual(len(ex), 3) self.assertEqual(ex.eval(), 1) def test_tensorstate_to_matrix(self): """Test tensored states to matrix works correctly with a global coefficient. Regression test of Qiskit/qiskit-terra#9398. """ state = 0.5 * (Plus ^ Zero) expected = 1 / (2 * np.sqrt(2)) * np.array([1, 0, 1, 0]) np.testing.assert_almost_equal(state.to_matrix(), expected) if __name__ == "__main__": unittest.main()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
p = 0.2 import numpy as np from qiskit.circuit import QuantumCircuit class BernoulliA(QuantumCircuit): """A circuit representing the Bernoulli A operator.""" def __init__(self, probability): super().__init__(1) # circuit on 1 qubit theta_p = 2 * np.arcsin(np.sqrt(probability)) self.ry(theta_p, 0) class BernoulliQ(QuantumCircuit): """A circuit representing the Bernoulli Q operator.""" def __init__(self, probability): super().__init__(1) # circuit on 1 qubit self._theta_p = 2 * np.arcsin(np.sqrt(probability)) self.ry(2 * self._theta_p, 0) def power(self, k): # implement the efficient power of Q q_k = QuantumCircuit(1) q_k.ry(2 * k * self._theta_p, 0) return q_k A = BernoulliA(p) Q = BernoulliQ(p) from qiskit.algorithms import EstimationProblem problem = EstimationProblem( state_preparation=A, # A operator grover_operator=Q, # Q operator objective_qubits=[0], # the "good" state Psi1 is identified as measuring |1> in qubit 0 ) from qiskit.primitives import Sampler sampler = Sampler() from qiskit.algorithms import AmplitudeEstimation ae = AmplitudeEstimation( num_eval_qubits=3, # the number of evaluation qubits specifies circuit width and accuracy sampler=sampler, ) ae_result = ae.estimate(problem) print(ae_result.estimation) import matplotlib.pyplot as plt # plot estimated values gridpoints = list(ae_result.samples.keys()) probabilities = list(ae_result.samples.values()) plt.bar(gridpoints, probabilities, width=0.5 / len(probabilities)) plt.axvline(p, color="r", ls="--") plt.xticks(size=15) plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15) plt.title("Estimated Values", size=15) plt.ylabel("Probability", size=15) plt.xlabel(r"Amplitude $a$", size=15) plt.ylim((0, 1)) plt.grid() plt.show() print("Interpolated MLE estimator:", ae_result.mle) ae_circuit = ae.construct_circuit(problem) ae_circuit.decompose().draw( "mpl", style="iqx" ) # decompose 1 level: exposes the Phase estimation circuit! from qiskit import transpile basis_gates = ["h", "ry", "cry", "cx", "ccx", "p", "cp", "x", "s", "sdg", "y", "t", "cz"] transpile(ae_circuit, basis_gates=basis_gates, optimization_level=2).draw("mpl", style="iqx") from qiskit.algorithms import IterativeAmplitudeEstimation iae = IterativeAmplitudeEstimation( epsilon_target=0.01, # target accuracy alpha=0.05, # width of the confidence interval sampler=sampler, ) iae_result = iae.estimate(problem) print("Estimate:", iae_result.estimation) iae_circuit = iae.construct_circuit(problem, k=3) iae_circuit.draw("mpl", style="iqx") from qiskit.algorithms import MaximumLikelihoodAmplitudeEstimation mlae = MaximumLikelihoodAmplitudeEstimation( evaluation_schedule=3, # log2 of the maximal Grover power sampler=sampler, ) mlae_result = mlae.estimate(problem) print("Estimate:", mlae_result.estimation) from qiskit.algorithms import FasterAmplitudeEstimation fae = FasterAmplitudeEstimation( delta=0.01, # target accuracy maxiter=3, # determines the maximal power of the Grover operator sampler=sampler, ) fae_result = fae.estimate(problem) print("Estimate:", fae_result.estimation) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.pulse_v2 import draw, IQXDebugging from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.measure_all() qc = transpile(qc, FakeBoeblingen(), layout_method='trivial') sched = schedule(qc, FakeBoeblingen()) draw(sched, style=IQXDebugging(), backend=FakeBoeblingen())
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import pandas as pd import itertools import cma import os import sys import argparse import pickle import random import re from pprint import pprint import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute from qiskit import Aer from qiskit import IBMQ from qiskit.compiler import transpile from qiskit.providers.aer.noise.noise_model import NoiseModel from qiskit.test.mock import * from qiskit.providers.aer import AerSimulator, QasmSimulator from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter import mitiq IBMQ.load_account() # provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst') provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') print("provider:", provider) real_device = provider.get_backend('ibmq_jakarta') def qrem_encoder(num_qubits: int, initial_layout: list) -> list: qr = QuantumRegister(num_qubits) meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') return transpile(meas_calibs, initial_layout=initial_layout, basis_gates=["sx", "rz", "cx"]) def execute_circuits(qcs: list, backend) -> (qiskit.providers.Job, str): job = exec meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') def qrem_decoder():
https://github.com/MonitSharma/Qiskit-Summer-School-and-Quantum-Challenges
MonitSharma
import numpy as np import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts # Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z) from qiskit.opflow import Zero, One, I, X, Y, Z # Suppress warnings import warnings warnings.filterwarnings('ignore') # Returns the matrix representation of the XXX Heisenberg model for 3 spin-1/2 particles in a line def H_heis3(): # Interactions (I is the identity matrix; X, Y, and Z are Pauli matricies; ^ is a tensor product) XXs = (I^X^X) + (X^X^I) YYs = (I^Y^Y) + (Y^Y^I) ZZs = (I^Z^Z) + (Z^Z^I) # Sum interactions H = XXs + YYs + ZZs # Return Hamiltonian return H # Returns the matrix representation of U_heis3(t) for a given time t assuming an XXX Heisenberg Hamiltonian for 3 spins-1/2 particles in a line def U_heis3(t): # Compute XXX Hamiltonian for 3 spins in a line H = H_heis3() # Return the exponential of -i multipled by time t multipled by the 3 spin XXX Heisenberg Hamilonian return (t * H).exp_i() # Define array of time points ts = np.linspace(0, np.pi, 100) # Define initial state |110> initial_state = One^One^Zero # Compute probability of remaining in |110> state over the array of time points # ~initial_state gives the bra of the initial state (<110|) # @ is short hand for matrix multiplication # U_heis3(t) is the unitary time evolution at time t # t needs to be wrapped with float(t) to avoid a bug # (...).eval() returns the inner product <110|U_heis3(t)|110> # np.abs(...)**2 is the modulus squared of the innner product which is the expectation value, or probability, of remaining in |110> probs_110 = [np.abs((~initial_state @ U_heis3(float(t)) @ initial_state).eval())**2 for t in ts] # Plot evolution of |110> plt.plot(ts, probs_110) plt.xlabel('time') plt.ylabel(r'probability of state $|110\rangle$') plt.title(r'Evolution of state $|110\rangle$ under $H_{Heis3}$') plt.grid() plt.show() # Importing standard Qiskit modules from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile from qiskit.providers.aer import QasmSimulator from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.quantum_info import state_fidelity # suppress warnings import warnings warnings.filterwarnings('ignore') # load IBMQ Account data # IBMQ.save_account(TOKEN) # replace TOKEN with your API token string (https://quantum-computing.ibm.com/lab/docs/iql/manage/account/ibmq) provider = IBMQ.load_account() # Get backend for experiment provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') jakarta = provider.get_backend('ibmq_jakarta') # properties = jakarta.properties() # Simulated backend based on ibmq_jakarta's device noise profile sim_noisy_jakarta = QasmSimulator.from_backend(provider.get_backend('ibmq_jakarta')) # Noiseless simulated backend sim = QasmSimulator() # Parameterize variable t to be evaluated at t=pi later t = Parameter('t') # Build a subcircuit for XX(t) two-qubit gate XX_qr = QuantumRegister(2) XX_qc = QuantumCircuit(XX_qr, name='XX') XX_qc.ry(np.pi/2,[0,1]) XX_qc.cnot(0,1) XX_qc.rz(2 * t, 1) XX_qc.cnot(0,1) XX_qc.ry(-np.pi/2,[0,1]) # Convert custom quantum circuit into a gate XX = XX_qc.to_instruction() # Build a subcircuit for YY(t) two-qubit gate YY_qr = QuantumRegister(2) YY_qc = QuantumCircuit(YY_qr, name='YY') YY_qc.rx(np.pi/2,[0,1]) YY_qc.cnot(0,1) YY_qc.rz(2 * t, 1) YY_qc.cnot(0,1) YY_qc.rx(-np.pi/2,[0,1]) # Convert custom quantum circuit into a gate YY = YY_qc.to_instruction() # Build a subcircuit for ZZ(t) two-qubit gate ZZ_qr = QuantumRegister(2) ZZ_qc = QuantumCircuit(ZZ_qr, name='ZZ') ZZ_qc.cnot(0,1) ZZ_qc.rz(2 * t, 1) ZZ_qc.cnot(0,1) # Convert custom quantum circuit into a gate ZZ = ZZ_qc.to_instruction() # Combine subcircuits into a single multiqubit gate representing a single trotter step num_qubits = 3 Trot_qr = QuantumRegister(num_qubits) Trot_qc = QuantumCircuit(Trot_qr, name='Trot') for i in range(0, num_qubits - 1): Trot_qc.append(ZZ, [Trot_qr[i], Trot_qr[i+1]]) Trot_qc.append(YY, [Trot_qr[i], Trot_qr[i+1]]) Trot_qc.append(XX, [Trot_qr[i], Trot_qr[i+1]]) # Convert custom quantum circuit into a gate Trot_gate = Trot_qc.to_instruction() # The final time of the state evolution target_time = np.pi # Number of trotter steps trotter_steps = 4 ### CAN BE >= 4 # Initialize quantum circuit for 3 qubits qr = QuantumRegister(7) qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>) qc.x([3,5]) # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) # Simulate time evolution under H_heis3 Hamiltonian for _ in range(trotter_steps): qc.append(Trot_gate, [qr[1], qr[3], qr[5]]) # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({t: target_time/trotter_steps}) # Generate state tomography circuits to evaluate fidelity of simulation st_qcs = state_tomography_circuits(qc, [qr[1], qr[3], qr[5]]) # Display circuit for confirmation # st_qcs[-1].decompose().draw() # view decomposition of trotter gates st_qcs[-1].draw() # only view trotter gates shots = 8192 reps = 8 backend = sim_noisy_jakarta # reps = 8 # backend = jakarta jobs = [] for _ in range(reps): # execute job = execute(st_qcs, backend, shots=shots) print('Job ID', job.job_id()) jobs.append(job) for job in jobs: job_monitor(job) try: if job.error_message() is not None: print(job.error_message()) except: pass # Compute the state tomography based on the st_qcs quantum circuits and the results from those ciricuits def state_tomo(result, st_qcs): # The expected final state; necessary to determine state tomography fidelity target_state = (One^One^Zero).to_matrix() # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) # Fit state tomography results tomo_fitter = StateTomographyFitter(result, st_qcs) rho_fit = tomo_fitter.fit(method='lstsq') # Compute fidelity fid = state_fidelity(rho_fit, target_state) return fid # Compute tomography fidelities for each repetition fids = [] for job in jobs: fid = state_tomo(job.result(), st_qcs) fids.append(fid) print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids))) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/UST-QuAntiL/qiskit-service
UST-QuAntiL
# ****************************************************************************** # Copyright (c) 2023 University of Stuttgart # # See the NOTICE file(s) distributed with this work for additional # information regarding copyright ownership. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** from qiskit import QiskitError from qiskit.providers.jobstatus import JOB_FINAL_STATES from qiskit_ionq import IonQProvider def get_qpu(token, qpu_name): provider = IonQProvider(token) if "simulator" not in qpu_name: qpu_name = qpu_name.replace(" ", "-").lower() ionq_signature = "ionq_qpu." qpu_name = ionq_signature + qpu_name return provider.get_backend(qpu_name) def execute_job(transpiled_circuit, shots, backend): """Generate qObject from transpiled circuit and execute it. Return result.""" try: job = backend.run(transpiled_circuit, shots=shots) job_status = job.status() while job_status not in JOB_FINAL_STATES: print("The job is still running") job_status = job.status() job_result = job.result() print("\nJob result:") print(job_result) job_result_dict = job_result.to_dict() print(job_result_dict) try: statevector = job_result.get_statevector() print("\nState vector:") print(statevector) except QiskitError: statevector = None print("No statevector available!") try: counts = job_result.get_counts() print("\nCounts:") print(counts) except QiskitError: counts = None print("No counts available!") try: unitary = job_result.get_unitary() print("\nUnitary:") print(unitary) except QiskitError: unitary = None print("No unitary available!") return {'job_result_raw': job_result_dict, 'statevector': statevector, 'counts': counts, 'unitary': unitary} except Exception: return None
https://github.com/JouziP/MQITE
JouziP
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jun 8 18:22:28 2022 Created on Thu Oct 13 10:29:00 2022 @author: pej """ import numpy as np import pandas as pd from qiskit import QuantumCircuit from MultiQubitGate.functions import multiqubit from BasicFunctions.functions import getBinary, getState from Phase.PhaseFunctions.computeAmplFromShots import computeAmplFromShots #################################################################### #################################################################### #################################################################### #################################################################### ################### When c0 == 0 def getRealPart(df_ampl, ### amplitude |c_j| computed from shots circ_U, circ_UQU, Q, significant_figure, nspins, shots, j_ref, machine_precision=10, ): ''' for the scenario where j_ref=0 is NOT in df_ampl.index or c_0 == 0 ''' # ################## FOR COMPARISON # #### df_comp_exact, ### this is exact c_j for benchmark # circ_state = getState(circ_UQU, machine_precision) # vec=circ_state[df_ampl.index, : ] # df_comp_exact = pd.DataFrame(vec, df_ampl.index) # ################## circ_adj = QuantumCircuit(nspins+1) _gamma = -np.pi/4 circ_adj.ry(_gamma, qubit=-1) ### R_gamma circ_adj.x(qubit=-1) ### X ### U ### attaches U to the q=1 ... q=n qubits, while q=0 is the ancillary circ_adj = circ_adj.compose(QuantumCircuit.copy(circ_U) ) ### control-Q ; Ancillary - n target for (q,o) in enumerate(Q): if o==1: circ_adj.cx(-1, q) if o==2: circ_adj.cy(-1, q) if o==3: circ_adj.cz(-1, q) ### U^ circ_adj = circ_adj.compose(QuantumCircuit.copy(circ_U).inverse()) ### control-P_{0 j_ref} circ_adj.x(qubit=nspins) J1 = list(getBinary(j_ref, nspins)) + [0] for (q,o) in enumerate(J1): if o==1: circ_adj.cx(nspins, q) circ_adj.x(nspins) ### S and H on ancillary circ_adj.s(-1) circ_adj.h(nspins) #################### for each j2 The T_{j_ref -> j2} is different indexs = df_ampl.index ### the observed bit strings from shots; j's parts_real= [[ 0]] # ref part_indexs=[j_ref] for j2 in indexs: #### T Gate p_12_int = j2^j_ref ## operator P_12 = getBinary(p_12_int, nspins).tolist()+[0] #bitstring array of p12 mult_gate, op_count = multiqubit(P_12, np.pi/4) # turned into T gate circ_uhu_adj = circ_adj.compose( mult_gate ) #add to the circuit ##### from shots m1, __ = computeAmplFromShots(circ_uhu_adj, shots, j_ref) m1 = np.round(m1, significant_figure) #### amplitude from shots c2_2 = df_ampl[0][j2]**2 ### |c_j|^2 c2_2 = np.round(c2_2, significant_figure) #### compute the cos of theta real_part = (m1 - (1/4) * c2_2**2 * (np.cos(_gamma/2)**2) - (1/4)*(np.sin(_gamma/2))**2 )/ ((-1/2) * np.cos(_gamma/2) * np.sin(_gamma/2)) #### round to allowed prcision real_part = np.round(real_part, significant_figure) ### collect results parts_real.append([ real_part, # df_comp_exact[0][j2].real ]) part_indexs.append(j2) parts_real = pd.DataFrame(parts_real, index= part_indexs).round(significant_figure) parts_real.columns=[ 'c_real_sim', # 'c_real_exct' ] return parts_real if __name__=='__main__': pass from Amplitude.Amplitude import Amplitude ################################################################ ################################################################ ##################### FOR TEST ####################### ################################################################ ################################################################ ################################################################ ################################################################ ################################################################ def getRandomU(nspins, num_layers=10): circ = QuantumCircuit(nspins) for l in range(num_layers): for i in range(nspins): ############## q=np.random.randint(nspins) g=np.random.randint(1, 4) p=np.random.uniform(-1,1) if g==1: circ.rx(p,q) if g==2: circ.ry(p,q) if g==2: circ.rz(p,q) ############## q=np.random.randint(nspins-1) circ.cnot(q, q+1) return circ ################################################################ ################################################################ def getRandomQ(nspins): Q = np.random.randint(0,2, size=nspins) return Q ################################################################ ################################################################ def getCircUQU(circ, Q): circ_uhu=QuantumCircuit.copy(circ) for (q,o) in enumerate(Q): if o==0: pass if o==1: circ_uhu.x(q) if o==2: circ_uhu.y(q) if o==3: circ_uhu.z(q) circ_uhu=circ_uhu.compose(QuantumCircuit.copy(circ).inverse()) return circ_uhu ################################################################ ################################################################ seed = 1211 np.random.seed(seed) ################################################################ ################################################################ nspins = 6 # >=2 num_layers =2 num_itr =1 machine_precision = 10 shots = 1000 eta = 100 significant_figures = 3#np.log10(np.sqrt(shots)).astype(int) circ_U = getRandomU(nspins, num_layers) Q = getRandomQ(nspins) circ_UQU = getCircUQU(circ_U, Q) print('Q=', Q) ## ### amplitude |c_j| computed from shots localAmplitudeObj = Amplitude(circ_U, circ_UQU, shots, eta, significant_figures, machine_precision) localAmplitudeObj() df_ampl = localAmplitudeObj.df_ampl ######## EXCLUDE index 0 try: df_ampl = df_ampl.drop(index=0) except: pass print('df_ampl') print(df_ampl) print() #### choose the ref j_ref = np.random.randint(0, 2**nspins) while j_ref in df_ampl.index: j_ref = np.random.randint(0, 2**nspins) print('j_ref = ' , j_ref) print('number of js = ' , df_ampl.shape[0]) parts_real = getRealPart(df_ampl, ### amplitude |c_j| computed from shots circ_U, circ_UQU, Q, significant_figures, nspins, shots, j_ref, ) print(parts_real) # print('\n\n##### sign errors') # num_error = 0 # for jj in parts_real.index: # if parts_real['c_real_exct'][jj]>=0 and parts_real['c_real_sim'][jj]>=0: # num_error+= 0 # else: # if parts_real['c_real_exct'][jj]<0 and parts_real['c_real_sim'][jj]<0: # num_error+= 0 # else: # print(parts_real['c_real_exct'][jj], ' ', parts_real['c_real_sim'][jj]) # num_error+= 1 # print('error %= ', # np.round(num_error/parts_real.shape[0]*100, 2), # 'num incorrect = ', # num_error, # 'total = ', # parts_real.shape[0] # ) # print('\n\n##### L2 norm') # error_L2 = 0 # for jj in parts_real.index: # diff = np.abs(parts_real['c_real_exct'][jj] - parts_real['c_real_sim'][jj]) # error = diff/( + 10**(-1*significant_figures) + np.abs(parts_real['c_real_exct'][jj] ) ) # print(error) # error_L2+= error/parts_real.shape[0] # print('---') # print(error_L2)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from sklearn.datasets import make_blobs # example dataset features, labels = make_blobs(n_samples=20, n_features=2, centers=2, random_state=3, shuffle=True) import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler features = MinMaxScaler(feature_range=(0, np.pi)).fit_transform(features) train_features, test_features, train_labels, test_labels = train_test_split( features, labels, train_size=15, shuffle=False ) # number of qubits is equal to the number of features num_qubits = 2 # number of steps performed during the training procedure tau = 100 # regularization parameter C = 1000 from qiskit import BasicAer from qiskit.circuit.library import ZFeatureMap from qiskit.utils import algorithm_globals from qiskit_machine_learning.kernels import FidelityQuantumKernel algorithm_globals.random_seed = 12345 feature_map = ZFeatureMap(feature_dimension=num_qubits, reps=1) qkernel = FidelityQuantumKernel(feature_map=feature_map) from qiskit_machine_learning.algorithms import PegasosQSVC pegasos_qsvc = PegasosQSVC(quantum_kernel=qkernel, C=C, num_steps=tau) # training pegasos_qsvc.fit(train_features, train_labels) # testing pegasos_score = pegasos_qsvc.score(test_features, test_labels) print(f"PegasosQSVC classification test score: {pegasos_score}") grid_step = 0.2 margin = 0.2 grid_x, grid_y = np.meshgrid( np.arange(-margin, np.pi + margin, grid_step), np.arange(-margin, np.pi + margin, grid_step) ) meshgrid_features = np.column_stack((grid_x.ravel(), grid_y.ravel())) meshgrid_colors = pegasos_qsvc.predict(meshgrid_features) import matplotlib.pyplot as plt plt.figure(figsize=(5, 5)) meshgrid_colors = meshgrid_colors.reshape(grid_x.shape) plt.pcolormesh(grid_x, grid_y, meshgrid_colors, cmap="RdBu", shading="auto") plt.scatter( train_features[:, 0][train_labels == 0], train_features[:, 1][train_labels == 0], marker="s", facecolors="w", edgecolors="r", label="A train", ) plt.scatter( train_features[:, 0][train_labels == 1], train_features[:, 1][train_labels == 1], marker="o", facecolors="w", edgecolors="b", label="B train", ) plt.scatter( test_features[:, 0][test_labels == 0], test_features[:, 1][test_labels == 0], marker="s", facecolors="r", edgecolors="r", label="A test", ) plt.scatter( test_features[:, 0][test_labels == 1], test_features[:, 1][test_labels == 1], marker="o", facecolors="b", edgecolors="b", label="B test", ) plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0) plt.title("Pegasos Classification") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test QASM simulator.""" import os import unittest import io from logging import StreamHandler, getLogger import sys import numpy as np from qiskit import execute from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister from qiskit.compiler import transpile, assemble from qiskit.providers.basicaer import QasmSimulatorPy from qiskit.test import providers class StreamHandlerRaiseException(StreamHandler): """Handler class that will raise an exception on formatting errors.""" def handleError(self, record): raise sys.exc_info() class TestBasicAerQasmSimulator(providers.BackendTestCase): """Test the Basic qasm_simulator.""" backend_cls = QasmSimulatorPy def setUp(self): super().setUp() self.seed = 88 qasm_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "qasm") qasm_filename = os.path.join(qasm_dir, "example.qasm") transpiled_circuit = QuantumCircuit.from_qasm_file(qasm_filename) transpiled_circuit.name = "test" transpiled_circuit = transpile(transpiled_circuit, backend=self.backend) self.qobj = assemble(transpiled_circuit, shots=1000, seed_simulator=self.seed) logger = getLogger() self.addCleanup(logger.setLevel, logger.level) logger.setLevel("DEBUG") self.log_output = io.StringIO() logger.addHandler(StreamHandlerRaiseException(self.log_output)) def assertExecuteLog(self, log_msg): """Runs execute and check for logs containing specified message""" shots = 100 qr = QuantumRegister(2, "qr") cr = ClassicalRegister(4, "cr") circuit = QuantumCircuit(qr, cr) execute(circuit, backend=self.backend, shots=shots, seed_simulator=self.seed) self.log_output.seek(0) # Filter unrelated log lines output_lines = self.log_output.readlines() execute_log_lines = [x for x in output_lines if log_msg in x] self.assertTrue(len(execute_log_lines) > 0) def test_submission_log_time(self): """Check Total Job Submission Time is logged""" self.assertExecuteLog("Total Job Submission Time") def test_qasm_simulator_single_shot(self): """Test single shot run.""" shots = 1 self.qobj.config.shots = shots result = self.backend.run(self.qobj).result() self.assertEqual(result.success, True) def test_measure_sampler_repeated_qubits(self): """Test measure sampler if qubits measured more than once.""" shots = 100 qr = QuantumRegister(2, "qr") cr = ClassicalRegister(4, "cr") circuit = QuantumCircuit(qr, cr) circuit.x(qr[1]) circuit.measure(qr[0], cr[0]) circuit.measure(qr[1], cr[1]) circuit.measure(qr[1], cr[2]) circuit.measure(qr[0], cr[3]) target = {"0110": shots} job = execute(circuit, backend=self.backend, shots=shots, seed_simulator=self.seed) result = job.result() counts = result.get_counts(0) self.assertEqual(counts, target) def test_measure_sampler_single_qubit(self): """Test measure sampler if single-qubit is measured.""" shots = 100 num_qubits = 5 qr = QuantumRegister(num_qubits, "qr") cr = ClassicalRegister(1, "cr") for qubit in range(num_qubits): circuit = QuantumCircuit(qr, cr) circuit.x(qr[qubit]) circuit.measure(qr[qubit], cr[0]) target = {"1": shots} job = execute(circuit, backend=self.backend, shots=shots, seed_simulator=self.seed) result = job.result() counts = result.get_counts(0) self.assertEqual(counts, target) def test_measure_sampler_partial_qubit(self): """Test measure sampler if single-qubit is measured.""" shots = 100 num_qubits = 5 qr = QuantumRegister(num_qubits, "qr") cr = ClassicalRegister(4, "cr") # ░ ░ ░ ┌─┐ ░ # qr_0: ──────░─────░─────░─┤M├─░──── # ┌───┐ ░ ░ ┌─┐ ░ └╥┘ ░ # qr_1: ┤ X ├─░─────░─┤M├─░──╫──░──── # └───┘ ░ ░ └╥┘ ░ ║ ░ # qr_2: ──────░─────░──╫──░──╫──░──── # ┌───┐ ░ ┌─┐ ░ ║ ░ ║ ░ ┌─┐ # qr_3: ┤ X ├─░─┤M├─░──╫──░──╫──░─┤M├ # └───┘ ░ └╥┘ ░ ║ ░ ║ ░ └╥┘ # qr_4: ──────░──╫──░──╫──░──╫──░──╫─ # ░ ║ ░ ║ ░ ║ ░ ║ # cr: 4/═════════╩═════╩═════╩═════╩═ # 1 0 2 3 circuit = QuantumCircuit(qr, cr) circuit.x(qr[3]) circuit.x(qr[1]) circuit.barrier(qr) circuit.measure(qr[3], cr[1]) circuit.barrier(qr) circuit.measure(qr[1], cr[0]) circuit.barrier(qr) circuit.measure(qr[0], cr[2]) circuit.barrier(qr) circuit.measure(qr[3], cr[3]) target = {"1011": shots} job = execute(circuit, backend=self.backend, shots=shots, seed_simulator=self.seed) result = job.result() counts = result.get_counts(0) self.assertEqual(counts, target) def test_qasm_simulator(self): """Test data counts output for single circuit run against reference.""" result = self.backend.run(self.qobj).result() shots = 1024 threshold = 0.04 * shots counts = result.get_counts("test") target = { "100 100": shots / 8, "011 011": shots / 8, "101 101": shots / 8, "111 111": shots / 8, "000 000": shots / 8, "010 010": shots / 8, "110 110": shots / 8, "001 001": shots / 8, } self.assertDictAlmostEqual(counts, target, threshold) def test_if_statement(self): """Test if statements.""" shots = 100 qr = QuantumRegister(3, "qr") cr = ClassicalRegister(3, "cr") # ┌───┐┌─┐ ┌─┐ # qr_0: ┤ X ├┤M├──────────┤M├────── # ├───┤└╥┘┌─┐ └╥┘┌─┐ # qr_1: ┤ X ├─╫─┤M├────────╫─┤M├─── # └───┘ ║ └╥┘ ┌───┐ ║ └╥┘┌─┐ # qr_2: ──────╫──╫──┤ X ├──╫──╫─┤M├ # ║ ║ └─╥─┘ ║ ║ └╥┘ # ║ ║ ┌──╨──┐ ║ ║ ║ # cr: 3/══════╩══╩═╡ 0x3 ╞═╩══╩══╩═ # 0 1 └─────┘ 0 1 2 circuit_if_true = QuantumCircuit(qr, cr) circuit_if_true.x(qr[0]) circuit_if_true.x(qr[1]) circuit_if_true.measure(qr[0], cr[0]) circuit_if_true.measure(qr[1], cr[1]) circuit_if_true.x(qr[2]).c_if(cr, 0x3) circuit_if_true.measure(qr[0], cr[0]) circuit_if_true.measure(qr[1], cr[1]) circuit_if_true.measure(qr[2], cr[2]) # ┌───┐┌─┐ ┌─┐ # qr_0: ┤ X ├┤M├───────┤M├────── # └┬─┬┘└╥┘ └╥┘┌─┐ # qr_1: ─┤M├──╫─────────╫─┤M├─── # └╥┘ ║ ┌───┐ ║ └╥┘┌─┐ # qr_2: ──╫───╫──┤ X ├──╫──╫─┤M├ # ║ ║ └─╥─┘ ║ ║ └╥┘ # ║ ║ ┌──╨──┐ ║ ║ ║ # cr: 3/══╩═══╩═╡ 0x3 ╞═╩══╩══╩═ # 1 0 └─────┘ 0 1 2 circuit_if_false = QuantumCircuit(qr, cr) circuit_if_false.x(qr[0]) circuit_if_false.measure(qr[0], cr[0]) circuit_if_false.measure(qr[1], cr[1]) circuit_if_false.x(qr[2]).c_if(cr, 0x3) circuit_if_false.measure(qr[0], cr[0]) circuit_if_false.measure(qr[1], cr[1]) circuit_if_false.measure(qr[2], cr[2]) job = execute( [circuit_if_true, circuit_if_false], backend=self.backend, shots=shots, seed_simulator=self.seed, ) result = job.result() counts_if_true = result.get_counts(circuit_if_true) counts_if_false = result.get_counts(circuit_if_false) self.assertEqual(counts_if_true, {"111": 100}) self.assertEqual(counts_if_false, {"001": 100}) def test_bit_cif_crossaffect(self): """Test if bits in a classical register other than the single conditional bit affect the conditioned operation.""" # ┌───┐ ┌─┐ # q0_0: ────────┤ H ├──────────┤M├ # ┌───┐ └─╥─┘ ┌─┐ └╥┘ # q0_1: ┤ X ├─────╫──────┤M├────╫─ # ├───┤ ║ └╥┘┌─┐ ║ # q0_2: ┤ X ├─────╫───────╫─┤M├─╫─ # └───┘┌────╨─────┐ ║ └╥┘ ║ # c0: 3/═════╡ c0_0=0x1 ╞═╩══╩══╬═ # └──────────┘ 1 2 ║ # c1: 1/════════════════════════╩═ # 0 shots = 100 qr = QuantumRegister(3) cr = ClassicalRegister(3) cr1 = ClassicalRegister(1) circuit = QuantumCircuit(qr, cr, cr1) circuit.x([qr[1], qr[2]]) circuit.measure(qr[1], cr[1]) circuit.measure(qr[2], cr[2]) circuit.h(qr[0]).c_if(cr[0], True) circuit.measure(qr[0], cr1[0]) job = execute(circuit, backend=self.backend, shots=shots, seed_simulator=self.seed) result = job.result().get_counts() target = {"0 110": 100} self.assertEqual(result, target) def test_teleport(self): """Test teleportation as in tutorials""" # ┌─────────┐ ┌───┐ ░ ┌─┐ # qr_0: ┤ Ry(π/4) ├───────■──┤ H ├─░─┤M├──────────────────── # └──┬───┬──┘ ┌─┴─┐└───┘ ░ └╥┘┌─┐ # qr_1: ───┤ H ├─────■──┤ X ├──────░──╫─┤M├───────────────── # └───┘ ┌─┴─┐└───┘ ░ ║ └╥┘ ┌───┐ ┌───┐ ┌─┐ # qr_2: ───────────┤ X ├───────────░──╫──╫──┤ Z ├──┤ X ├─┤M├ # └───┘ ░ ║ ║ └─╥─┘ └─╥─┘ └╥┘ # ║ ║ ┌──╨──┐ ║ ║ # cr0: 1/═════════════════════════════╩══╬═╡ 0x1 ╞═══╬════╬═ # 0 ║ └─────┘┌──╨──┐ ║ # cr1: 1/════════════════════════════════╩════════╡ 0x1 ╞═╬═ # 0 └─────┘ ║ # cr2: 1/═════════════════════════════════════════════════╩═ # 0 self.log.info("test_teleport") pi = np.pi shots = 2000 qr = QuantumRegister(3, "qr") cr0 = ClassicalRegister(1, "cr0") cr1 = ClassicalRegister(1, "cr1") cr2 = ClassicalRegister(1, "cr2") circuit = QuantumCircuit(qr, cr0, cr1, cr2, name="teleport") circuit.h(qr[1]) circuit.cx(qr[1], qr[2]) circuit.ry(pi / 4, qr[0]) circuit.cx(qr[0], qr[1]) circuit.h(qr[0]) circuit.barrier(qr) circuit.measure(qr[0], cr0[0]) circuit.measure(qr[1], cr1[0]) circuit.z(qr[2]).c_if(cr0, 1) circuit.x(qr[2]).c_if(cr1, 1) circuit.measure(qr[2], cr2[0]) job = execute(circuit, backend=self.backend, shots=shots, seed_simulator=self.seed) results = job.result() data = results.get_counts("teleport") alice = { "00": data["0 0 0"] + data["1 0 0"], "01": data["0 1 0"] + data["1 1 0"], "10": data["0 0 1"] + data["1 0 1"], "11": data["0 1 1"] + data["1 1 1"], } bob = { "0": data["0 0 0"] + data["0 1 0"] + data["0 0 1"] + data["0 1 1"], "1": data["1 0 0"] + data["1 1 0"] + data["1 0 1"] + data["1 1 1"], } self.log.info("test_teleport: circuit:") self.log.info(circuit.qasm()) self.log.info("test_teleport: data %s", data) self.log.info("test_teleport: alice %s", alice) self.log.info("test_teleport: bob %s", bob) alice_ratio = 1 / np.tan(pi / 8) ** 2 bob_ratio = bob["0"] / float(bob["1"]) error = abs(alice_ratio - bob_ratio) / alice_ratio self.log.info("test_teleport: relative error = %s", error) self.assertLess(error, 0.05) def test_memory(self): """Test memory.""" # ┌───┐ ┌─┐ # qr_0: ┤ H ├──■─────┤M├─── # └───┘┌─┴─┐ └╥┘┌─┐ # qr_1: ─────┤ X ├────╫─┤M├ # └┬─┬┘ ║ └╥┘ # qr_2: ──────┤M├─────╫──╫─ # ┌───┐ └╥┘ ┌─┐ ║ ║ # qr_3: ┤ X ├──╫──┤M├─╫──╫─ # └───┘ ║ └╥┘ ║ ║ # cr0: 2/══════╬═══╬══╩══╩═ # ║ ║ 0 1 # ║ ║ # cr1: 2/══════╩═══╩═══════ # 0 1 qr = QuantumRegister(4, "qr") cr0 = ClassicalRegister(2, "cr0") cr1 = ClassicalRegister(2, "cr1") circ = QuantumCircuit(qr, cr0, cr1) circ.h(qr[0]) circ.cx(qr[0], qr[1]) circ.x(qr[3]) circ.measure(qr[0], cr0[0]) circ.measure(qr[1], cr0[1]) circ.measure(qr[2], cr1[0]) circ.measure(qr[3], cr1[1]) shots = 50 job = execute(circ, backend=self.backend, shots=shots, memory=True) result = job.result() memory = result.get_memory() self.assertEqual(len(memory), shots) for mem in memory: self.assertIn(mem, ["10 00", "10 11"]) def test_unitary(self): """Test unitary gate instruction""" max_qubits = 4 x_mat = np.array([[0, 1], [1, 0]]) # Test 1 to max_qubits for random n-qubit unitary gate for i in range(max_qubits): num_qubits = i + 1 # Apply X gate to all qubits multi_x = x_mat for _ in range(i): multi_x = np.kron(multi_x, x_mat) # Target counts shots = 1024 target_counts = {num_qubits * "1": shots} # Test circuit qr = QuantumRegister(num_qubits, "qr") cr = ClassicalRegister(num_qubits, "cr") circuit = QuantumCircuit(qr, cr) circuit.unitary(multi_x, qr) circuit.measure(qr, cr) job = execute(circuit, self.backend, shots=shots) result = job.result() counts = result.get_counts(0) self.assertEqual(counts, target_counts) if __name__ == "__main__": unittest.main()
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * nshots = 8192 IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibmq_bogota') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor, backend_overview, backend_monitor from qiskit.tools.visualization import plot_histogram q0 = QuantumRegister(1); q1 = QuantumRegister(1) c0 = ClassicalRegister(1); c1 = ClassicalRegister(1) qc = QuantumCircuit(q0,q1,c0,c1) qc.h(q0); qc.cx(q0,q1) # emaranhamento compartilhado entre Alice e Bob qc.barrier() qc.x(q0); qc.sdg(q0); qc.h(q0); qc.measure(q0,c0) # Medida de Alice qc.barrier() qc.z(q1).c_if(c0, 1) # acao de Bob condicionada no cbit enviado por Alice qc.barrier() qc.sdg(q1); qc.h(q1); qc.measure(q1,c1) # passa da base circular pra computacional qc.draw(output='mpl') jobS = execute(qc, backend = simulator, shots = nshots) plot_histogram(jobS.result().get_counts(qc))
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from transpile_benchy.metrics.gate_counts import ( DepthMetric, TotalMetric, TotalSwaps, ) from qiskit.circuit.library import iSwapGate from qiskit.transpiler import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from mirror_gates.utilities import SubsMetric from mirror_gates.logging import transpile_benchy_logger from clonk.backend_utils.coupling_map import Tree, Corral tree = Tree() corral = Corral(num_snails=18) # N = 4 # coupling_map = CouplingMap.from_line(N) # coupling_map = CouplingMap.from_heavy_hex(5) square = CouplingMap.from_grid(6, 6) from transpile_benchy.library import CircuitLibrary library = CircuitLibrary.from_txt("../../circuits/medium_circuits.txt") # library = CircuitLibrary.from_txt("../../circuits/debug.txt") # XXX set consolidate to False # this is allowed only because my pass manager will preserve consolidation # see post_stage, I call fastconsolidate manually # NOTE: use TotalSwaps to verify baselines have > 0 swaps # otherwise, there is no room for improvement. # we can include these if we want to show our methods will still work # but somewhat trivial since we just append VF2Layout metrics = [ DepthMetric(consolidate=False), TotalMetric(consolidate=False), TotalSwaps(consolidate=False), SubsMetric(), ] transpilers = [ QiskitLevel3(square, name="Qiskit-square"), Mirage(square, name="Mirage-square"), # QiskitLevel3(tree, name="Qiskit-tree"), # Mirage(tree, name="Mirage-tree"), QiskitLevel3(corral, name="Qiskit-corral"), Mirage(corral, name="Mirage-corral"), ] from transpile_benchy.benchmark import Benchmark benchmark = Benchmark( transpilers=transpilers, circuit_library=library, metrics=metrics, logger=transpile_benchy_logger, num_runs=1, ) benchmark.run() # print(benchmark) # print(benchmark) benchmark.summary_statistics(transpilers[2], transpilers[3]) from transpile_benchy.render import plot_benchmark plot_benchmark( benchmark, save=0, legend_show=1, filename="grid", color_override=[0, 3, 6, 7], )
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
from qiskit import ClassicalRegister # Create a Classical Register with 2 bits. c = ClassicalRegister(2) from qiskit import QuantumRegister # Create a Quantum Register with 2 qubits. q = QuantumRegister(2) from qiskit import QuantumCircuit # Create a Quantum Circuit qc = QuantumCircuit(q, c) # perform a measurement of our qubits into our bits qc.measure(q, c); # ; hides the output # Jupyter command to activate matplotlib and allow the preview of our circuit %matplotlib inline from qiskit.tools.visualization import matplotlib_circuit_drawer as draw draw(qc) # visualize quantum circuit # Try both and use the one you like best from qiskit.tools.visualization import circuit_drawer as draw2 draw2(qc) # visualize quantum circuit # if you want to save it to a file from qiskit.tools.visualization import circuit_drawer diagram = circuit_drawer(qc, filename="my_first_quantum_circuit.png") diagram.show() # or even open it on an external program (no need to save first) # get the QASM representation of our circuit print(qc.qasm())
https://github.com/andre-juan/quantum_nearest_neighbors
andre-juan
import numpy as np from scipy.linalg import expm from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, Aer, execute from qiskit.circuit import AncillaQubit from qiskit.visualization import plot_histogram from qiskit.circuit.library.standard_gates import XGate, ZGate, HGate from qiskit.circuit.add_control import add_control from qiskit.extensions import UnitaryGate import matplotlib.pyplot as plt def show_figure(fig): ''' auxiliar function to display plot even if it's not the last command of the cell from: https://github.com/Qiskit/qiskit-terra/issues/1682 ''' new_fig = plt.figure() new_mngr = new_fig.canvas.manager new_mngr.canvas.figure = fig fig.set_canvas(new_mngr.canvas) plt.show(fig) def test_circuit(qc): ''' auxiliar function, to test intermediate steps, looking at measurement results this function allows the inspection of the amplitudes of states, at any point of the circuit (call it with the desired circuit) ''' cr = ClassicalRegister(qc.num_qubits, "creg_test") qc_cr = QuantumCircuit(cr) qc_test = qc + qc_cr for i in range(qc.num_qubits): qc_test.measure(i, i) ################################# backend = Aer.get_backend("qasm_simulator") job = execute(qc_test, backend, shots=1e5, seed_simulator=42) results = job.result() counts = results.get_counts() return plot_histogram(counts, title="Results", figsize=(12, 4)) def construct_input_state(X_test): ''' construct quantum state from bit string X_test ''' # number of features n = len(X_test) # build the circuit qr_input = QuantumRegister(n, "features_input") qc_input = QuantumCircuit(qr_input) for i in range(n): if X_test[i] == "1": qc_input.x(i) return qc_input def construct_training_set_state(X, y): ''' construct quantum superposition of training dataset from: - X: feature matrix - y: target array returns the circuit as well as the number of features, n ''' # number of examples N = X.shape[0] # number of features n = X.shape[1] # full dataset, of the form [[X], [y]] dataset = np.append(X, y.reshape((-1, 1)), axis=1) # n+1 because the last register will encode the class! amplitudes = np.zeros(2**(n+1)) # integer representation of binary strings in training dataset # notice the [::-1], which is necessary to adjust the endianness! data_points_X = [int("".join(str(i) for i in X[j])[::-1], 2) for j in range(dataset.shape[0])] # integer representation considering also the class # IMPORTANT: sum 2**n for elements in class 1 # this is necessary to encode also the class, in n+1 registers! data_points = [x + 2**n if y[i] == 1 else x for i, x in enumerate(data_points_X)] # set amplitudesof existing datapoints amplitudes[data_points] = 1 # normalize amplitudes amplitudes = amplitudes/np.sqrt(amplitudes.sum()) ################################################### # build the circuit qr_features = QuantumRegister(n, "features_train") qr_target = QuantumRegister(1, "target_train") qc_training = QuantumCircuit(qr_features, qr_target) qc_training.initialize(amplitudes, [qr_features, qr_target]) return qc_training, n def construct_ancilla_state(): ''' construct ancilla register ''' # build the circuit qr_anc = QuantumRegister(1, "anc") qc_anc = QuantumCircuit(qr_anc) qc_anc.draw("mpl") return qc_anc def construct_initial_state(X, y, X_test, draw=False): ''' conjugate elements of the initial state (input, training dataset and ancilla) in a single quantum circuit returns the circuit as well as the number of features, n ''' qc_input = construct_input_state(X_test) qc_training, n = construct_training_set_state(X, y) qc_anc = construct_ancilla_state() qc = qc_input + qc_training + qc_anc qc.barrier() if draw: print("\nInitial state:") show_figure(qc.draw("mpl")) return qc, n def step1(qc, draw=False): qc.h(-1) qc.barrier() if draw: print("\nStep 1:") show_figure(qc.draw("mpl")) return qc def step2(qc, n, draw=False): for i in range(n): qc.cnot(i, n+i) qc.barrier() if draw: print("\nStep 2:") show_figure(qc.draw("mpl")) return qc def step3(qc, n, draw): # matrices of 1 and \sigma_z to be exponentiated below # source of the matrix exponential methods below: # https://quantumcomputing.stackexchange.com/questions/10317/quantum-circuit-to-implement-matrix-exponential idtt = np.eye(2) sz = np.array([[1,0], [0,-1]]) ################################################### # define the exponentiated unitaries U_1_minus = expm(-1j * (np.pi/(2*4)) * ((idtt-sz)/2)) U_1_plus = expm(1j * (np.pi/(2*4)) * ((idtt-sz)/2)) # defining controlled gates u1m = add_control(operation=UnitaryGate(U_1_minus, label="$U_1^-$"), num_ctrl_qubits=1, ctrl_state=0, label="$CU_1^-$") u1p = add_control(operation=UnitaryGate(U_1_plus, label="$U_1^+$"), num_ctrl_qubits=1, ctrl_state=1, label="$CU_1^+$") # getting the registers registers = qc.qregs # register labels registers_labels = [qr.name for qr in qc.qregs] qr_features = registers[registers_labels.index("features_train")] qr_anc = registers[registers_labels.index("anc")] # build a circuit to apply the unitary above # this will be combined with the main circuit later on (notice: same registers!!). qc_u = QuantumCircuit(qr_features, qr_anc) for i in range(n): # apply the unitaries qc_u.append(u1p, [qr_anc[0], qr_features[i]]) qc_u.append(u1m, [qr_anc[0], qr_features[i]]) ################################################### # combine the U circuit above to the main circuit qc = qc.combine(qc_u) qc.barrier() ################################################### if draw: print("\nStep 3:") show_figure(qc.draw("mpl")) return qc def step4(qc, draw): qc.h(-1) qc.barrier() if draw: print("\nStep 4:") show_figure(qc.draw("mpl")) return qc def measurement(qc, draw_final): ''' implements the measurement of the circuit ''' # getting the registers registers = qc.qregs registers_labels = [qr.name for qr in qc.qregs] qr_anc = registers[registers_labels.index("anc")] qr_target = registers[registers_labels.index("target_train")] ###########################3 cr_anc = ClassicalRegister(1, "c_anc") qc_cr_anc = QuantumCircuit(cr_anc) cr_class = ClassicalRegister(1, "c_class") qc_cr_class = QuantumCircuit(cr_class) qc = qc + qc_cr_anc + qc_cr_class qc.measure(qr_anc, cr_anc) qc.measure(qr_target, cr_class) if draw_final: print("\nStep 5 (measurement):") show_figure(qc.draw("mpl")) return qc def run(qc): ''' runs the circuit, display results and return both predicted class and probability distribution of prediction ''' backend = Aer.get_backend("qasm_simulator") n_shots = 1e4 job = execute(qc, backend, shots=n_shots, seed_simulator=42) results = job.result() counts = results.get_counts() # filtering out measurements of ancila = |1> (last register) keys = list(counts.keys()).copy() for key in keys: if key[-1] == "1": counts.pop(key) show_figure(plot_histogram(counts, title="Results", figsize=(12, 4))) #################################### # final prediction # dictionary of counts sorted by value (sbv), decreasing order... counts_sbv = dict(sorted(counts.items(), key=lambda item: item[1], reverse=True)) # ...will have its first key (first [0]) corresponding to the class with highest count (thus, probability!) # the key is of the form "class ancilla", thus, to get the actual class, get the first character (second [0]) y_pred = list(counts_sbv.keys())[0][0] # also display probabilities (predict_proba) n_norm = sum(list(counts.values())) y_proba = {"p(c={})".format(classe[0]): count/n_norm for classe, count in counts_sbv.items()} print("\nProbability of belonging to each class:\n") for k, v in y_proba.items(): print("{} = {:.3f}".format(k, v)) print("\n") print("*"*30) print("="*30) print("*"*30) print("\n") print("Final prediction:\n") print("y({}) = {}".format(X_test, y_pred)) return y_pred, y_proba def quantum_nearest_neighbors(qc, n, X_test, draw=False, draw_final=False): qc = step1(qc, draw) qc = step2(qc, n, draw) qc = step3(qc, n, draw) qc = step4(qc, draw) qc = measurement(qc, draw_final) y_pred, y_proba = run(qc) return y_pred, y_proba X = np.array([[0, 0, 0, 0], [0, 0, 0, 1], [1, 1, 1, 0], [1, 1, 1, 1]]) # balanced y = np.array([0, 0, 1, 1]) ############################################# X_test = "0010" ############################################# qc, n = construct_initial_state(X, y, X_test) quantum_nearest_neighbors(qc, n, X_test) X = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 1, 1], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) # imbalanced y = np.array([0, 0, 0, 1, 1]) ############################################# X_test = "10101" ############################################# qc, n = construct_initial_state(X, y, X_test) quantum_nearest_neighbors(qc, n, X_test) X = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0]]) # imbalanced y = np.array([0, 0, 0, 1, 1]) ############################################# X_test = "001111" ############################################# qc, n = construct_initial_state(X, y, X_test) quantum_nearest_neighbors(qc, n, X_test) # modified dataset to cause ambiguity # (notice how many examples have the central "11") X = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0]]) # imbalanced y = np.array([0, 0, 0, 1, 1]) ############################################# X_test = "001100" ############################################# qc, n = construct_initial_state(X, y, X_test) quantum_nearest_neighbors(qc, n, X_test) # modified dataset to cause ambiguity # (notice how many examples have the central "11") X = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 0, 0, 1, 1]]) # imbalanced y = np.array([0, 0, 0, 1, 1, 1]) ############################################# X_test = "001100" ############################################# qc, n = construct_initial_state(X, y, X_test) quantum_nearest_neighbors(qc, n, X_test)
https://github.com/RigiResearch/qiskit-fall-fest-22-public
RigiResearch
# Imports from Qiskit Terra from qiskit.circuit import QuantumCircuit from qiskit.visualization import plot_bloch_vector, plot_bloch_multivector, plot_state_qsphere, plot_histogram, visualize_transition from qiskit.quantum_info import Pauli, PauliList, Statevector # Imports from Qiskit Aer from qiskit import Aer, execute # Creation of multi-qubit circuit q_multi = QuantumCircuit() # Mention multi-quantum and classical bits in args # Display circuit q_multi.draw() cx_circ = QuantumCircuit() # Mention number of quantum and classical bits in args # Apply CX gate to the qubits [0 - Control qubit; 1 - Target qubit] # Draw the circuit cx_circ.draw() # Bloch Sphere visualization state = Statevector(cx_circ) # Statevector of the circuit plot_bloch_multivector(state) # Let's measaure the multi-qubit circuit cx_circ.measure() # Add measurement gate with appropriate args # Draw the circuit cx_circ.draw() # Import the backend backend = Aer.get_backend('qasm_simulator') # Creating a job and extracting results job = execute(cx_circ, backend = backend, shots = 1024) result = job.result() counts = result.get_counts() # Plotting the counts plot_histogram(counts) # Do you know some of the quantum gates are reversible? # Can you verify what happens when you apply these gates twice? reverse_gate_circ = QuantumCircuit(2, 2) # Apply 2 CX gates on the same qubits ## APPLY GATE 1 HERE ## ## APPLY GATE 2 HERE ## # Draw circuit reverse_gate_circ.draw() # Send the circuit to a simulator to check the results! # Your blank canvas to apply the Toffoli gate! # Let us contruct the circuit for the first Bell state |phi+> entangled_circ = QuantumCircuit(2, 2) # Apply H gate follwoed by a CX gate on the qubits [0 - Control qubit; 1 - Target qubit] # Draw the circuit entangled_circ.draw() # Let's measaure the multi-qubit circuit entangled_circ.measure([0, 1], [0, 1]) # Add measurement gate with appropriate args # Draw the circuit entangled_circ.draw() # Import the backend backend = Aer.get_backend('qasm_simulator') # Creating a job and extracting results job = execute(entangled_circ, backend = backend, shots = 1024) result = job.result() counts = result.get_counts() # Plotting the counts plot_histogram(counts) # Don't forget Qiskit uses a little-endian notation ! # Do you know there are 4 different Bell States? Can you build a circuit for the rest 3 Bell States?
https://github.com/tomtuamnuq/compare-qiskit-ocean
tomtuamnuq
import time, warnings import numpy as np from qiskit import IBMQ from qiskit.test.mock import FakeMumbai from qiskit.providers.aer import AerSimulator from qiskit.providers.aer.noise import NoiseModel from qiskit_optimization.algorithms import CplexOptimizer from utilities.helpers import create_qaoa_meo, create_quadratic_programs_from_paths DIR = 'TEST_DATA' + "/" + time.strftime("%d_%m_%Y") DIR def job_callback(job_id, job_status, queue_position, job): # BUG ? This is not called and not set in quantum instance (see info logging) print(job_id) print(job_status) print(queue_position) print(job) def qaoa_callback(eval_ct: int, opt_pars: np.ndarray, mean: float, stdev: float) -> None: """Print number of iteration in QAOA.""" print("Evaluation count:", eval_ct) # select linear programs to solve qps_dense = create_quadratic_programs_from_paths(DIR + "/DENSE/") qp_dense = qps_dense['test_3'] qps_sparse = create_quadratic_programs_from_paths(DIR + "/SPARSE/") qp_sparse = qps_sparse['test_3'] # init local backend simulator with noise model device = FakeMumbai() local = AerSimulator.from_backend(device) noise_model = NoiseModel.from_backend(device) conf = device.configuration() # init IBM Q Experience Simulator IBMQ.load_account() ibmq = IBMQ.get_provider(hub='ibm-q').get_backend('simulator_statevector') # init Optimizers cplex = CplexOptimizer() quantum_instance_kwargs = {"shots": 4096, "noise_model": noise_model, "job_callback": job_callback, "optimization_level": 3} qaoa_local_sim = create_qaoa_meo(backend=local, **quantum_instance_kwargs) qaoa_ibmq_sim = create_qaoa_meo(backend=ibmq, coupling_map=conf.coupling_map, basis_gates=conf.basis_gates, max_iter=5, qaoa_callback=qaoa_callback, **quantum_instance_kwargs) # solve classically cplex.solve(qp_sparse) # solve by using noise model with local qasm sim qaoa_local_sim.solve(qp_sparse) cplex.solve(qp_dense) qaoa_local_sim.solve(qp_dense) # solve by using noise model with IBM Q Experience simulator qp_sparse = qps_sparse['test_7'] warnings.filterwarnings("ignore", category=DeprecationWarning) qaoa_ibmq_sim.solve(qp_sparse) cplex.solve(qp_sparse) # solve by using noise model with IBM Q Experience simulator qp_dense = qps_dense['test_15'] warnings.filterwarnings("ignore", category=DeprecationWarning) qaoa_ibmq_sim.solve(qp_dense) cplex.solve(qp_dense)
https://github.com/epelaaez/QuantumLibrary
epelaaez
from qiskit import * import numpy as np n = 5 control_reg = QuantumRegister(n, 'c') target_reg = QuantumRegister(1, 't') ancilla_reg = QuantumRegister(1, 'a') circuit = QuantumCircuit(control_reg, target_reg, ancilla_reg) circuit.mct(control_reg[:int(np.ceil(n/2))], ancilla_reg[0]) circuit.mct(control_reg[int(np.ceil(n/2)):] + ancilla_reg[:], target_reg[0]) circuit.mct(control_reg[:int(np.ceil(n/2))], ancilla_reg[0]) circuit.mct(control_reg[int(np.ceil(n/2)):] + ancilla_reg[:], target_reg[0]) circuit.draw('mpl') def n_m_2_ancilla(circuit, control_reg, target_reg, ancilla_reg): n = len(control_reg) # first mountain circuit.ccx(ancilla_reg[-1], control_reg[-1], target_reg[0]) for i in range(n - 4, -1, -1): circuit.ccx(ancilla_reg[i], control_reg[i + 2], ancilla_reg[i + 1]) circuit.ccx(control_reg[0], control_reg[1], ancilla_reg[0]) for i in range(0, n - 3): circuit.ccx(ancilla_reg[i], control_reg[i + 2], ancilla_reg[i + 1]) circuit.ccx(ancilla_reg[-1], control_reg[-1], target_reg[0]) # second mountain, i.e., uncomputation for i in range(n - 4, -1, -1): circuit.ccx(ancilla_reg[i], control_reg[i + 2], ancilla_reg[i + 1]) circuit.ccx(control_reg[0], control_reg[1], ancilla_reg[0]) for i in range(0, n - 3): circuit.ccx(ancilla_reg[i], control_reg[i + 2], ancilla_reg[i + 1]) n = 5 control_reg = QuantumRegister(n, 'c') target_reg = QuantumRegister(1, 't') ancilla_reg = QuantumRegister(n - 2, 'a') circuit = QuantumCircuit(control_reg, target_reg, ancilla_reg) n_m_2_ancilla(circuit, control_reg, target_reg, ancilla_reg) circuit.draw('mpl') n = 7 control_reg = QuantumRegister(n, 'c') target_reg = QuantumRegister(1, 't') ancilla_reg = QuantumRegister(1, 'a') circuit = QuantumCircuit(control_reg, target_reg, ancilla_reg) for _ in range(2): # first gate controls = [i for i in range(n) if i % 2 == 0] target = [-1] ancilla = [i for i in range(n) if i not in controls] while len(ancilla) != len(controls) - 2: ancilla.pop(0) n_m_2_ancilla(circuit, controls, target, ancilla) circuit.barrier() # second gate controls = [i for i in range(n) if i % 2 == 1] + [n + 1] target = [-2] ancilla = [i for i in range(n) if i not in controls] while len(ancilla) != len(controls) - 2: ancilla.pop(0) n_m_2_ancilla(circuit, controls, target, ancilla) circuit.barrier() circuit.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel line = LineLattice(2) fermi = FermiHubbardModel.uniform_parameters(line, 2.0, 4.0, 3.0) print(fermi.second_q_ops()) # Note: the trailing `s` from qiskit_nature.second_q.hamiltonians.lattices import LineLattice from qiskit_nature.second_q.hamiltonians import FermiHubbardModel line = LineLattice(2) fermi = FermiHubbardModel(line.uniform_parameters(2.0, 4.0), 3.0) print(fermi.second_q_op()) # Note: NO trailing `s` import numpy as np from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) fermi = FermiHubbardModel.from_parameters(interaction, 3.0) print(fermi.second_q_ops()) # Note: the trailing `s` import numpy as np from qiskit_nature.second_q.hamiltonians.lattices import Lattice from qiskit_nature.second_q.hamiltonians import FermiHubbardModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) lattice = Lattice.from_adjacency_matrix(interaction) fermi = FermiHubbardModel(lattice, 3.0) print(fermi.second_q_op()) # Note: NO trailing `s` from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice from qiskit_nature.problems.second_quantization.lattice.models import IsingModel line = LineLattice(2) ising = IsingModel.uniform_parameters(line, 2.0, 4.0) print(ising.second_q_ops()) # Note: the trailing `s` from qiskit_nature.second_q.hamiltonians.lattices import LineLattice from qiskit_nature.second_q.hamiltonians import IsingModel line = LineLattice(2) ising = IsingModel(line.uniform_parameters(2.0, 4.0)) print(ising.second_q_op()) # Note: NO trailing `s` import numpy as np from qiskit_nature.problems.second_quantization.lattice.models import IsingModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) ising = IsingModel.from_parameters(interaction) print(ising.second_q_ops()) # Note: the trailing `s` import numpy as np from qiskit_nature.second_q.hamiltonians.lattices import Lattice from qiskit_nature.second_q.hamiltonians import IsingModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) lattice = Lattice.from_adjacency_matrix(interaction) ising = IsingModel(lattice) print(ising.second_q_op()) # Note: NO trailing `s` import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/carstenblank/dc-qiskit-qml
carstenblank
import qiskit from qiskit_aer.backends.aerbackend import AerBackend from dc_qiskit_qml.encoding_maps import NormedAmplitudeEncoding from dc_qiskit_qml.distance_based.hadamard import QmlHadamardNeighborClassifier from dc_qiskit_qml.distance_based.hadamard.state import QmlGenericStateCircuitBuilder from dc_qiskit_qml.distance_based.hadamard.state.sparsevector import QiskitNativeStatePreparation initial_state_builder = QmlGenericStateCircuitBuilder(QiskitNativeStatePreparation()) execution_backend: AerBackend = qiskit.Aer.get_backend('qasm_simulator') qml = QmlHadamardNeighborClassifier(backend=execution_backend, shots=8192, classifier_circuit_factory=initial_state_builder, encoding_map=NormedAmplitudeEncoding()) import numpy as np from sklearn.preprocessing import StandardScaler, Normalizer from sklearn.pipeline import Pipeline from sklearn.datasets import load_wine from sklearn.decomposition import PCA X, y = load_wine(return_X_y=True) X_train = X[[33, 88, 144]] y_train = y[[33, 88, 144]] X_test = X[[28, 140]] y_test = y[[28, 140]] pipeline = Pipeline([ ('scaler', StandardScaler()), ('pca2', PCA(n_components=2)), ('l2norm', Normalizer(norm='l2', copy=True)), ('qml', qml) ]) import matplotlib.pyplot as plt _X = pipeline.fit_transform(X, y) _X_train = pipeline.transform(X_train) _X_test = pipeline.transform(X_test) colors = ['red', 'blue', 'green', 'orange'] plt.scatter( _X[:,0], _X[:,1], color=[colors[yy] for yy in y]) plt.scatter( _X_train[:,0], _X_train[:,1], color=[colors[yy] for yy in y_train], marker='x', s=200) plt.scatter( _X_test[:,0], _X_test[:,1], color=[colors[yy] for yy in y_test], marker='o', s=200) plt.show() pipeline.fit(X_train, y_train) pipeline.predict(X_test), y_test qml._last_predict_circuits[0].draw(output='mpl', fold=-1)
https://github.com/jvscursulim/qamp_fall22_project
jvscursulim
import medmnist import matplotlib.pyplot as plt import numpy as np import torch import torch.nn as nn import torch.optim as optim import torch.utils.data as data import torchvision.transforms as transforms from medmnist import INFO, Evaluator from tqdm import tqdm from qiskit.circuit import QuantumCircuit, Parameter from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit.utils import QuantumInstance, algorithm_globals from qiskit.opflow import AerPauliExpectation from qiskit_aer import Aer from qiskit_machine_learning.neural_networks import CircuitQNN, TwoLayerQNN from qiskit_machine_learning.connectors import TorchConnector from qpie import QPIE from neqr import NEQR from skimage.transform import resize import torch.nn.functional as F flags = ["pathmnist", "octmnist", "pneumoniamnist", "chestmnist", "dermamnist", "retinamnist", "breastmnist", "bloodmnist", "tissuemnist", "organcmnist", "organsmnist", "organmnist3d", "nodulemnist3d", "adrenalmnist3d", "fracturemnist3d", "vesselmnist3d", "synapsemnist3d"] NUM_EPOCHS = 3 BATCH_SIZE = 128 lr = 0.001 data_flag = flags[2] info = INFO[data_flag] task = info["task"] n_channel = info["n_channels"] n_classes = len(info["label"]) DataClass = getattr(medmnist, info["python_class"]) data_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=[.5], std=[.5])]) train_dataset = DataClass(split='train', transform=data_transform) test_dataset = DataClass(split='test', transform=data_transform) len(train_dataset.imgs) train_dataset.imgs.shape train_dataset.imgs[0].shape plt.imshow(train_dataset.imgs[0], cmap="gray") plt.show() train_loader = data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True) train_loader_at_eval = data.DataLoader(dataset=train_dataset, batch_size=2*BATCH_SIZE, shuffle=True) test_loader = data.DataLoader(dataset=test_dataset, batch_size=2*BATCH_SIZE, shuffle=False) class Net(nn.Module): def __init__(self, in_channels, num_classes) -> None: super(Net, self).__init__() self.layer1 = nn.Sequential(nn.Conv2d(in_channels=in_channels, out_channels=16, kernel_size=3), nn.BatchNorm2d(16), nn.ReLU()) self.layer2 = nn.Sequential(nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer3 = nn.Sequential(nn.Conv2d(in_channels=16, out_channels=64, kernel_size=3), nn.BatchNorm2d(64), nn.ReLU()) self.layer4 = nn.Sequential(nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3), nn.BatchNorm2d(64), nn.ReLU()) self.layer5 = nn.Sequential(nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.fc = nn.Sequential(nn.Linear(64 * 4 * 4, 128), nn.ReLU(), nn.Linear(128, 128), nn.ReLU(), nn.Linear(128, num_classes)) def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.layer5(x) x = x.view(x.size(0), -1) x = self.fc(x) return x model = Net(in_channels=n_channel, num_classes=n_classes) if task == "multi-label, binary-class": criterion = nn.BCEWithLogitsLoss() else: criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=lr) # optimizer = optim.LBFGS(model.parameters(), lr=lr) for epoch in range(NUM_EPOCHS): train_correct = 0 train_total = 0 test_correct = 0 test_total = 0 model.train() for inputs, targets in tqdm(train_loader): # forward + backward + optimize optimizer.zero_grad() outputs = model(inputs) if task == 'multi-label, binary-class': targets = targets.to(torch.float32) loss = criterion(outputs, targets) else: targets = targets.squeeze().long() loss = criterion(outputs, targets) loss.backward() optimizer.step() def test(split): model.eval() y_true = torch.tensor([]) y_score = torch.tensor([]) data_loader = train_loader_at_eval if split == 'train' else test_loader with torch.no_grad(): for inputs, targets in data_loader: outputs = model(inputs) if task == 'multi-label, binary-class': targets = targets.to(torch.float32) outputs = outputs.softmax(dim=-1) else: targets = targets.squeeze().long() outputs = outputs.softmax(dim=-1) targets = targets.float().resize_(len(targets), 1) y_true = torch.cat((y_true, targets), 0) y_score = torch.cat((y_score, outputs), 0) y_true = y_true.numpy() y_score = y_score.detach().numpy() evaluator = Evaluator(data_flag, split) metrics = evaluator.evaluate(y_score) print('%s auc: %.3f acc:%.3f' % (split, *metrics)) print('==> Evaluating ...') test('train') test('test') algorithm_globals.random_seed = 42 qi = QuantumInstance(backend=Aer.get_backend("statevector_simulator")) # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def create_qnn(): feature_map = ZZFeatureMap(2) ansatz = RealAmplitudes(2, reps=1) qnn = TwoLayerQNN(2, feature_map=feature_map, ansatz=ansatz, input_gradients=True, exp_val=AerPauliExpectation(), quantum_instance=qi) return qnn from torch import cat class HybridNet(nn.Module): def __init__(self, qnn): super().__init__() self.conv1 = nn.Conv2d(1, 2, kernel_size=5) self.conv2 = nn.Conv2d(2, 16, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(256, 64) self.fc2 = nn.Linear(64, 2) # 2-dimensional input to QNN self.qnn = TorchConnector(qnn) # Apply torch connector, weights chosen # uniformly at random from interval [-1,1]. self.fc3 = nn.Linear(1, 1) # 1-dimensional output from QNN def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(x.shape[0], -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.qnn(x) # apply QNN x = self.fc3(x) return cat((x, 1 - x), -1) qnn = create_qnn() model4 = HybridNet(qnn) data_transform = transforms.Compose([transforms.ToTensor()]) train_dataset = DataClass(split='train', transform=data_transform) test_dataset = DataClass(split='test', transform=data_transform) train_loader = data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True) train_loader_at_eval = data.DataLoader(dataset=train_dataset, batch_size=2*BATCH_SIZE, shuffle=True) test_loader = data.DataLoader(dataset=test_dataset, batch_size=2*BATCH_SIZE, shuffle=False) if task == "multi-label, binary-class": criterion = nn.BCEWithLogitsLoss() else: criterion = nn.CrossEntropyLoss() for epoch in range(NUM_EPOCHS): train_correct = 0 train_total = 0 test_correct = 0 test_total = 0 model4.train() for inputs, targets in tqdm(train_loader): # forward + backward + optimize optimizer.zero_grad() outputs = model4(inputs) if task == 'multi-label, binary-class': targets = targets.to(torch.float32) loss = criterion(outputs, targets) else: targets = targets.squeeze().long() loss = criterion(outputs, targets) loss.backward() optimizer.step() def test(split): model4.eval() y_true = torch.tensor([]) y_score = torch.tensor([]) data_loader = train_loader_at_eval if split == 'train' else test_loader with torch.no_grad(): for inputs, targets in data_loader: outputs = model4(inputs) if task == 'multi-label, binary-class': targets = targets.to(torch.float32) outputs = outputs.softmax(dim=-1) else: targets = targets.squeeze().long() outputs = outputs.softmax(dim=-1) targets = targets.float().resize_(len(targets), 1) y_true = torch.cat((y_true, targets), 0) y_score = torch.cat((y_score, outputs), 0) y_true = y_true.numpy() y_score = y_score.detach().numpy() evaluator = Evaluator(data_flag, split) metrics = evaluator.evaluate(y_score) print('%s auc: %.3f acc: %.3f' % (split, *metrics)) print('==> Evaluating ...') test('train') test('test')
https://github.com/tstopa/Qiskit_for_high_schools
tstopa
from qiskit.visualization import plot_bloch_vector %matplotlib inline plot_bloch_vector([0,0,1], title="Standard Qubit Value") plot_bloch_vector([1,0,0], title="Qubit in the state |+⟩") from qiskit import * from math import pi from qiskit.visualization import plot_bloch_multivector qcA = QuantumCircuit(1) qcA.x(0) backend = Aer.get_backend('statevector_simulator') out = execute(qcA,backend).result().get_statevector() plot_bloch_multivector(out) qcB = QuantumCircuit(1) qcB.h(0) backend = Aer.get_backend('statevector_simulator') out = execute(qcB,backend).result().get_statevector() plot_bloch_multivector(out)
https://github.com/helenup/Quantum-Euclidean-Distance
helenup
from qiskit import * from qiskit import BasicAer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute qreg = QuantumRegister(3, 'qreg') creg = ClassicalRegister(3, 'creg') qc = QuantumCircuit (qreg, creg) # Initial state |01> qc.x(qreg[1]) #swap_test qc.h(qreg[0]) #Apply superposition on the ancilla qubit qc.cswap( qreg[0], qreg[1], qreg[2] ) qc.h(qreg[0]) qc.barrier() qc.measure(qreg[0], creg[0]) display(qc.draw(output="mpl")) #Result shots = 1024 job = execute(qc,Aer.get_backend('qasm_simulator'),shots=shots) job_result = job.result() counts = job_result.get_counts(qc) print(counts) # The results agree with the swap test function, where if the P|0> = 0.5 on the ancilla(control) qubit #means the states are orthogonal, and if the P|0>=1 indicates the states are identical.
https://github.com/chunfuchen/qiskit-chemistry
chunfuchen
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ This trial wavefunction is a Unitary Coupled-Cluster Single and Double excitations variational form. For more information, see https://arxiv.org/abs/1805.04340 """ import logging import sys import numpy as np from qiskit import QuantumRegister, QuantumCircuit from qiskit.tools import parallel_map from qiskit.tools.events import TextProgressBar from qiskit.aqua import Operator, aqua_globals from qiskit.aqua.components.variational_forms import VariationalForm from qiskit.chemistry.fermionic_operator import FermionicOperator from qiskit.chemistry import MP2Info from qiskit.chemistry import QMolecule as qm logger = logging.getLogger(__name__) class UCCSD(VariationalForm): """ This trial wavefunction is a Unitary Coupled-Cluster Single and Double excitations variational form. For more information, see https://arxiv.org/abs/1805.04340 """ CONFIGURATION = { 'name': 'UCCSD', 'description': 'UCCSD Variational Form', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'uccsd_schema', 'type': 'object', 'properties': { 'depth': { 'type': 'integer', 'default': 1, 'minimum': 1 }, 'num_orbitals': { 'type': 'integer', 'default': 4, 'minimum': 1 }, 'num_particles': { 'type': 'integer', 'default': 2, 'minimum': 1 }, 'active_occupied': { 'type': ['array', 'null'], 'default': None }, 'active_unoccupied': { 'type': ['array', 'null'], 'default': None }, 'qubit_mapping': { 'type': 'string', 'default': 'parity', 'oneOf': [ {'enum': ['jordan_wigner', 'parity', 'bravyi_kitaev']} ] }, 'two_qubit_reduction': { 'type': 'boolean', 'default': False }, 'mp2_reduction': { 'type': 'boolean', 'default': False }, 'num_time_slices': { 'type': 'integer', 'default': 1, 'minimum': 1 }, }, 'additionalProperties': False }, 'depends': [ { 'pluggable_type': 'initial_state', 'default': { 'name': 'HartreeFock', } }, ], } def __init__(self, num_qubits, depth, num_orbitals, num_particles, active_occupied=None, active_unoccupied=None, initial_state=None, qubit_mapping='parity', two_qubit_reduction=False, mp2_reduction=False, num_time_slices=1, cliffords=None, sq_list=None, tapering_values=None, symmetries=None, shallow_circuit_concat=True): """Constructor. Args: num_orbitals (int): number of spin orbitals depth (int): number of replica of basic module num_particles (int): number of particles active_occupied (list): list of occupied orbitals to consider as active space active_unoccupied (list): list of unoccupied orbitals to consider as active space initial_state (InitialState): An initial state object. qubit_mapping (str): qubit mapping type. two_qubit_reduction (bool): two qubit reduction is applied or not. num_time_slices (int): parameters for dynamics. cliffords ([Operator]): list of unitary Clifford transformation sq_list ([int]): position of the single-qubit operators that anticommute with the cliffords tapering_values ([int]): array of +/- 1 used to select the subspace. Length has to be equal to the length of cliffords and sq_list symmetries ([Pauli]): represent the Z2 symmetries shallow_circuit_concat (bool): indicate whether to use shallow (cheap) mode for circuit concatenation """ self.validate(locals()) super().__init__() self._cliffords = cliffords self._sq_list = sq_list self._tapering_values = tapering_values self._symmetries = symmetries if self._cliffords is not None and self._sq_list is not None and \ self._tapering_values is not None and self._symmetries is not None: self._qubit_tapering = True else: self._qubit_tapering = False self._num_qubits = num_orbitals if not two_qubit_reduction else num_orbitals - 2 self._num_qubits = self._num_qubits if not self._qubit_tapering else self._num_qubits - len(sq_list) if self._num_qubits != num_qubits: raise ValueError('Computed num qubits {} does not match actual {}' .format(self._num_qubits, num_qubits)) self._depth = depth self._num_orbitals = num_orbitals self._num_particles = num_particles if self._num_particles > self._num_orbitals: raise ValueError('# of particles must be less than or equal to # of orbitals.') self._initial_state = initial_state self._qubit_mapping = qubit_mapping self._two_qubit_reduction = two_qubit_reduction self._num_time_slices = num_time_slices self._shallow_circuit_concat = shallow_circuit_concat self._single_excitations, self._double_excitations = \ UCCSD.compute_excitation_lists(num_particles, num_orbitals, active_occupied, active_unoccupied) self._single_excitations = [] print('{} are the old doubles'.format(self._double_excitations)) print(mp2_reduction) if mp2_reduction: print('Getting new doubles') self._double_excitations = get_mp2_doubles(self._single_excitations,self._double_excitations) print('{} are the new doubles'.format(self._double_excitations)) self._hopping_ops, self._num_parameters = self._build_hopping_operators() self._bounds = [(-np.pi, np.pi) for _ in range(self._num_parameters)] self._logging_construct_circuit = True def _build_hopping_operators(self): from .uccsd import UCCSD hopping_ops = [] if logger.isEnabledFor(logging.DEBUG): TextProgressBar(sys.stderr) results = parallel_map(UCCSD._build_hopping_operator, self._single_excitations + self._double_excitations, task_args=(self._num_orbitals, self._num_particles, self._qubit_mapping, self._two_qubit_reduction, self._qubit_tapering, self._symmetries, self._cliffords, self._sq_list, self._tapering_values), num_processes=aqua_globals.num_processes) hopping_ops = [qubit_op for qubit_op in results if qubit_op is not None] num_parameters = len(hopping_ops) * self._depth return hopping_ops, num_parameters @staticmethod def _build_hopping_operator(index, num_orbitals, num_particles, qubit_mapping, two_qubit_reduction, qubit_tapering, symmetries, cliffords, sq_list, tapering_values): def check_commutativity(op_1, op_2): com = op_1 * op_2 - op_2 * op_1 com.zeros_coeff_elimination() return True if com.is_empty() else False h1 = np.zeros((num_orbitals, num_orbitals)) h2 = np.zeros((num_orbitals, num_orbitals, num_orbitals, num_orbitals)) if len(index) == 2: i, j = index h1[i, j] = 1.0 h1[j, i] = -1.0 elif len(index) == 4: i, j, k, m = index h2[i, j, k, m] = 1.0 h2[m, k, j, i] = -1.0 dummpy_fer_op = FermionicOperator(h1=h1, h2=h2) qubit_op = dummpy_fer_op.mapping(qubit_mapping) qubit_op = qubit_op.two_qubit_reduced_operator(num_particles) \ if two_qubit_reduction else qubit_op if qubit_tapering: for symmetry in symmetries: symmetry_op = Operator(paulis=[[1.0, symmetry]]) symm_commuting = check_commutativity(symmetry_op, qubit_op) if not symm_commuting: break if qubit_tapering: if symm_commuting: qubit_op = Operator.qubit_tapering(qubit_op, cliffords, sq_list, tapering_values) else: qubit_op = None if qubit_op is None: logger.debug('Excitation ({}) is skipped since it is not commuted ' 'with symmetries'.format(','.join([str(x) for x in index]))) return qubit_op def construct_circuit(self, parameters, q=None): """ Construct the variational form, given its parameters. Args: parameters (numpy.ndarray): circuit parameters q (QuantumRegister): Quantum Register for the circuit. Returns: QuantumCircuit: a quantum circuit with given `parameters` Raises: ValueError: the number of parameters is incorrect. """ from .uccsd import UCCSD if len(parameters) != self._num_parameters: raise ValueError('The number of parameters has to be {}'.format(self._num_parameters)) if q is None: q = QuantumRegister(self._num_qubits, name='q') if self._initial_state is not None: circuit = self._initial_state.construct_circuit('circuit', q) else: circuit = QuantumCircuit(q) if logger.isEnabledFor(logging.DEBUG) and self._logging_construct_circuit: logger.debug("Evolving hopping operators:") TextProgressBar(sys.stderr) self._logging_construct_circuit = False num_excitations = len(self._hopping_ops) results = parallel_map(UCCSD._construct_circuit_for_one_excited_operator, [(self._hopping_ops[index % num_excitations], parameters[index]) for index in range(self._depth * num_excitations)], task_args=(q, self._num_time_slices), num_processes=aqua_globals.num_processes) for qc in results: if self._shallow_circuit_concat: circuit.data += qc.data else: circuit += qc return circuit @staticmethod def _construct_circuit_for_one_excited_operator(qubit_op_and_param, qr, num_time_slices): qubit_op, param = qubit_op_and_param qc = qubit_op.evolve(None, param * -1j, 'circuit', num_time_slices, qr) return qc @property def preferred_init_points(self): """Getter of preferred initial points based on the given initial state.""" if self._initial_state is None: return None else: bitstr = self._initial_state.bitstr if bitstr is not None: return np.zeros(self._num_parameters, dtype=np.float) else: return None @staticmethod def compute_excitation_lists(num_particles, num_orbitals, active_occ_list=None, active_unocc_list=None, same_spin_doubles=True): """ Computes single and double excitation lists Args: num_particles: Total number of particles num_orbitals: Total number of spin orbitals active_occ_list: List of occupied orbitals to include, indices are 0 to n where n is num particles // 2 active_unocc_list: List of unoccupied orbitals to include, indices are 0 to m where m is (num_orbitals - num particles) // 2 same_spin_doubles: True to include alpha,alpha and beta,beta double excitations as well as alpha,beta pairings. False includes only alpha,beta Returns: Single and double excitation lists """ if num_particles < 2 or num_particles % 2 != 0: raise ValueError('Invalid number of particles {}'.format(num_particles)) if num_orbitals < 4 or num_orbitals % 2 != 0: raise ValueError('Invalid number of orbitals {}'.format(num_orbitals)) if num_orbitals <= num_particles: raise ValueError('No unoccupied orbitals') if active_occ_list is not None: active_occ_list = [i if i >= 0 else i + num_particles // 2 for i in active_occ_list] for i in active_occ_list: if i >= num_particles // 2: raise ValueError('Invalid index {} in active active_occ_list {}' .format(i, active_occ_list)) if active_unocc_list is not None: active_unocc_list = [i + num_particles // 2 if i >= 0 else i + num_orbitals // 2 for i in active_unocc_list] for i in active_unocc_list: if i < 0 or i >= num_orbitals // 2: raise ValueError('Invalid index {} in active active_unocc_list {}' .format(i, active_unocc_list)) if active_occ_list is None or len(active_occ_list) <= 0: active_occ_list = [i for i in range(0, num_particles // 2)] if active_unocc_list is None or len(active_unocc_list) <= 0: active_unocc_list = [i for i in range(num_particles // 2, num_orbitals // 2)] single_excitations = [] double_excitations = [] logger.debug('active_occ_list {}'.format(active_occ_list)) logger.debug('active_unocc_list {}'.format(active_unocc_list)) beta_idx = num_orbitals // 2 for occ_alpha in active_occ_list: for unocc_alpha in active_unocc_list: single_excitations.append([occ_alpha, unocc_alpha]) for occ_beta in [i + beta_idx for i in active_occ_list]: for unocc_beta in [i + beta_idx for i in active_unocc_list]: single_excitations.append([occ_beta, unocc_beta]) for occ_alpha in active_occ_list: for unocc_alpha in active_unocc_list: for occ_beta in [i + beta_idx for i in active_occ_list]: for unocc_beta in [i + beta_idx for i in active_unocc_list]: double_excitations.append([occ_alpha, unocc_alpha, occ_beta, unocc_beta]) if same_spin_doubles and len(active_occ_list) > 1 and len(active_unocc_list) > 1: for i, occ_alpha in enumerate(active_occ_list[:-1]): for j, unocc_alpha in enumerate(active_unocc_list[:-1]): for occ_alpha_1 in active_occ_list[i + 1:]: for unocc_alpha_1 in active_unocc_list[j + 1:]: double_excitations.append([occ_alpha, unocc_alpha, occ_alpha_1, unocc_alpha_1]) up_active_occ_list = [i + beta_idx for i in active_occ_list] up_active_unocc_list = [i + beta_idx for i in active_unocc_list] for i, occ_beta in enumerate(up_active_occ_list[:-1]): for j, unocc_beta in enumerate(up_active_unocc_list[:-1]): for occ_beta_1 in up_active_occ_list[i + 1:]: for unocc_beta_1 in up_active_unocc_list[j + 1:]: double_excitations.append([occ_beta, unocc_beta, occ_beta_1, unocc_beta_1]) logger.debug('single_excitations ({}) {}'.format(len(single_excitations), single_excitations)) logger.debug('double_excitations ({}) {}'.format(len(double_excitations), double_excitations)) return single_excitations, double_excitations def get_mp2_doubles(single_excitations, double_excitations): print('Is the class still populated with the correct info: ', qm.nuclear_repulsion_energy) mp2 = MP2Info(qm, single_excitations, double_excitations, threshold=1e-3) mp2_doubles = mp2._mp2_doubles return mp2_doubles
https://github.com/jwalaQ/my-qiskit-textbook-solutions
jwalaQ
from qiskit import Aer, execute, QuantumCircuit, QuantumRegister from qiskit.visualization import plot_bloch_multivector,plot_histogram input_bit = QuantumRegister(1,'input') output_bit = QuantumRegister(1,'output') garbage_bit = QuantumRegister(1,'garbage') Uf = QuantumCircuit(input_bit,output_bit,garbage_bit) Uf.cx(input_bit,output_bit) # Uf.draw('mpl',justify=None) Vf = QuantumCircuit(input_bit,output_bit,garbage_bit) Vf.cx(input_bit,garbage_bit) Vf.cx(input_bit,output_bit) # Vf.draw('mpl',justify=None) qc = Uf + Vf.inverse() # qc.draw('mpl') final_output_bit = QuantumRegister(1,'final_output') copy = QuantumCircuit(output_bit,final_output_bit) copy.cx(output_bit,final_output_bit) # copy.draw('mpl',justify='None') (Vf.inverse() + copy + Vf).draw(output='mpl',justify='None') qc0 = QuantumCircuit(input_bit,output_bit,garbage_bit,final_output_bit) qc0 = qc0 + Vf.inverse() + copy + Vf qc0.draw('mpl',justify='none') qasm_sim = Aer.get_backend('qasm_simulator') qc0.measure_all() result = execute(qc0,backend=qasm_sim).result() counts = result.get_counts() plot_histogram(counts) qc1 = QuantumCircuit(input_bit,output_bit,garbage_bit,final_output_bit) qc1.x(0) qc1 = qc1 + Vf.inverse() + copy + Vf qc1.draw('mpl',justify='none') qc1.measure_all() result = execute(qc1,backend=qasm_sim).result() counts = result.get_counts() plot_histogram(counts) qc = QuantumCircuit(input_bit,output_bit,garbage_bit,final_output_bit) qc.x(1) qc = qc + Vf.inverse() + copy + Vf qc = qc.reverse_bits() qc.draw('mpl',justify='none') qc.measure_all() result = execute(qc,backend=qasm_sim).result() counts = result.get_counts() plot_histogram(counts) qc = QuantumCircuit(input_bit,output_bit,garbage_bit,final_output_bit) qc.x([0,1]) qc = qc + Vf.inverse() + copy + Vf qc = qc.reverse_bits() qc.draw('mpl',justify='none') qc.measure_all() result = execute(qc,backend=qasm_sim).result() counts = result.get_counts() plot_histogram(counts) import qiskit qiskit.__qiskit_version__
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse d0 = pulse.DriveChannel(0) x90 = pulse.Gaussian(10, 0.1, 3) x180 = pulse.Gaussian(10, 0.2, 3) with pulse.build() as hahn_echo: with pulse.align_equispaced(duration=100): pulse.play(x90, d0) pulse.play(x180, d0) pulse.play(x90, d0) hahn_echo.draw()
https://github.com/FerjaniMY/Quantum_Steganography
FerjaniMY
from qiskit import * import numpy as np import matplotlib.pyplot as plt from qiskit.visualization import plot_histogram # Creating registers with n qubits n =7 # for a local backend n can go as up as 23, after that it raises a Memory Error qr = QuantumRegister(n, name='qr') cr = ClassicalRegister(n, name='cr') qc = QuantumCircuit(qr, cr, name='QC') """ qr2 = QuantumRegister(n, name='qr') cr2= ClassicalRegister(n, name='cr') qc2 = QuantumCircuit(qr2, cr2, name='QC') for i in range(n): qc2.h(i) qc2.measure(qr2,cr2) qc2.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') execute(qc2, backend = simulator) result = execute(qc2, backend = simulator).result() k=list(result.get_counts(qc2))[0] print(k) """ # Generate a random number in the range of available qubits [0,65536)) alice_key = np.random.randint(0,2**n)# we can remplace it by a key from a quantum key generator alice_key = np.binary_repr(alice_key,n) print(alice_key) for i in range(len(alice_key)): if alice_key[i]=='1': qc.x(qr[i]) B=[] for i in range(len(alice_key)): if 0.5 < np.random.random(): qc.h(qr[i]) B.append("H") else: B.append("S") pass qc.barrier() print("Alice Basis",B) %config InlineBackend.figure_format = 'svg' qc.draw(output='mpl') C=[] for i in range(len(alice_key)): if 0.5 < np.random.random(): qc.h(qr[i]) C.append("H") else: C.append("S") qc.barrier() for i in range(len(alice_key)): qc.measure(qr[i],cr[i]) print("Bob Basis",C) qc.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') execute(qc, backend = simulator) result = execute(qc, backend = simulator).result() print("Bob key :",list(result.get_counts(qc))[0]) print("Bob Basis",C) print("Alice key :",alice_key) print("Alice Basis :",B) def sifted_key(A_basis,B_basis,key): correct_basis=[] sifted_key='' for i in range(len(A_basis)): if A_basis[i]==B_basis[i]: correct_basis.append(i) sifted_key+=key[i] else: pass return sifted_key,correct_basis a=sifted_key(B,C,alice_key) print("sifted key",a[0]) print("Basis",a[1]) BB84_key=a[0] def wordToBV(s) : #convert text to binar a_byte_array = bytearray(s, "utf8") byte_list = [] for byte in a_byte_array: binary_representation = bin(byte) byte_list.append(binary_representation[9-n:]) #chop off the "0b" at the beginning. can also truncate the binary to fit on a device with N qubits #binary has 2 extra digits for "0b", so it starts at 9 for our 7 bit operation. print(byte_list) circuit_array = [] length = len(byte_list) for i in range(length): s = byte_list[i] #do all this stuff for every letter # We need a circuit with n qubits, plus one ancilla qubit # Also need n classical bits to write the output to bv_circuit = QuantumCircuit(n+1, n) # put ancilla in state |-> bv_circuit.h(n) bv_circuit.z(n) # Apply Hadamard gates before querying the oracle for i in range(n): bv_circuit.h(i) # Apply barrier bv_circuit.barrier() # Apply the inner-product oracle s = s[::-1] # reverse s to fit qiskit's qubit ordering for q in range(n): if s[q] == '0': bv_circuit.i(q) else: bv_circuit.cx(q, n) # Apply barrier bv_circuit.barrier() #Apply Hadamard gates after querying the oracle for i in range(n): bv_circuit.h(i) # Measurement for i in range(n): bv_circuit.measure(i, i) circuit_array.append(bv_circuit) return circuit_array circuit_to_run = wordToBV('Qiskit')#Secret Msg circuit_to_run[0].draw(output='mpl') backend = BasicAer.get_backend('qasm_simulator') shots = 4096 results = execute(circuit_to_run[::-1], backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) def encrypt(BB84_key, letter): """Calculates XOR""" b = int(BB84_key, 2) x = ord(letter) return format(b ^ x, "b") def stega_encoder(LM, carrier_msg): """Encodes LM bits message into carrier_msg""" message = "" size = len(LM[0]) i = 0 for j, bitstring in enumerate(LM): for k, digit in enumerate(bitstring): while (not carrier_msg[i].isalpha()): message += carrier_msg[i] i += 1 if digit == "1": letter = carrier_msg[i].upper() message += letter else: message += carrier_msg[i] i += 1 if i < len(carrier_msg): message += carrier_msg[i:] return message def stega_decoder(new_carrier_msg, BB84_key): """Decodes secret message from new_carrier_msg""" b = int(BB84_key, 2) message = "" bitstring = "" for char in new_carrier_msg: if char.isalpha(): if char.isupper(): bitstring += "1" else: bitstring += "0" if len(bitstring) == 7: x = int(bitstring, 2) message += chr(b ^ x) bitstring = "" return message a = chr(1110100) str(a) encrypt(BB84_key,'q') secret_msg='qiskit' L=[] for c in secret_msg: L.append(encrypt(BB84_key,c)) carrier_msg='aaaa aaa aaa aaaa aaaaaaa aaaaaaa aaaaaaa aaabaaa' new_carrier_msg=stega_encoder(L, carrier_msg) new_carrier_msg stega_decoder(new_carrier_msg, BB84_key)
https://github.com/Aurelien-Pelissier/IBMQ-Quantum-Programming
Aurelien-Pelissier
import sys import numpy as np from matplotlib import pyplot as plt from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, visualization from random import randint def to_binary(N,n_bit): Nbin = np.zeros(n_bit, dtype=bool) for i in range(1,n_bit+1): bit_state = (N % (2**i) != 0) if bit_state: N -= 2**(i-1) Nbin[n_bit-i] = bit_state return Nbin def modular_multiplication(qc,a,N): """ applies the unitary operator that implements modular multiplication function x -> a*x(modN) Only works for the particular case x -> 7*x(mod15)! """ for i in range(0,3): qc.x(i) qc.cx(2,1) qc.cx(1,2) qc.cx(2,1) qc.cx(1,0) qc.cx(0,1) qc.cx(1,0) qc.cx(3,0) qc.cx(0,1) qc.cx(1,0) def quantum_period(a, N, n_bit): # Quantum part print(" Searching the period for N =", N, "and a =", a) qr = QuantumRegister(n_bit) cr = ClassicalRegister(n_bit) qc = QuantumCircuit(qr,cr) simulator = Aer.get_backend('qasm_simulator') s0 = randint(1, N-1) # Chooses random int sbin = to_binary(s0,n_bit) # Turns to binary print("\n Starting at \n s =", s0, "=", "{0:b}".format(s0), "(bin)") # Quantum register is initialized with s (in binary) for i in range(0,n_bit): if sbin[n_bit-i-1]: qc.x(i) s = s0 r=-1 # makes while loop run at least 2 times # Applies modular multiplication transformation until we come back to initial number s while s != s0 or r <= 0: r+=1 # sets up circuit structure qc.measure(qr, cr) modular_multiplication(qc,a,N) qc.draw('mpl') # runs circuit and processes data job = execute(qc,simulator, shots=10) result_counts = job.result().get_counts(qc) result_histogram_key = list(result_counts)[0] # https://qiskit.org/documentation/stubs/qiskit.result.Result.get_counts.html#qiskit.result.Result.get_counts s = int(result_histogram_key, 2) print(" ", result_counts) plt.show() print("\n Found period r =", r) return r if __name__ == '__main__': a = 7 N = 15 n_bit=5 r = quantum_period(a, N, n_bit)
https://github.com/dhanton/quantum-chess
dhanton
import math from qiskit import QuantumCircuit, QuantumRegister from qiskit.quantum_info.operators import Operator from qiskit import Aer from qiskit import execute from qiskit.tools.visualization import plot_histogram backend = Aer.get_backend('qasm_simulator') MAX_QUBIT_MEMORY = backend.MAX_QUBIT_MEMORY b = math.sqrt(2) iSwap = Operator([ [1, 0, 0, 0], [0, 0, 1j, 0], [0, 1j, 0, 0], [0, 0, 0, 1], ]) #when the controlled qubit holds if a path is clear #then this gate can be understood as the slide gate iSwap_controlled = Operator([ [1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1j, 0, 0, 0, 0, 0], [0, 1j, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1], ]) iSwap_sqrt = Operator([ [1, 0, 0, 0], [0, 1/b, 1j/b, 0], [0, 1j/b, 1/b, 0], [0, 0, 0, 1], ]) #in base s, t, control iSwap_sqrt_controlled = Operator([ [1, 0, 0, 0, 0, 0, 0, 0], [0, 1/b, 1j/b, 0, 0, 0, 0, 0], [0, 1j/b, 1/b, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1], ]) def perform_standard_jump(engine, source, target): qsource = engine.get_qubit(source.x, source.y) qtarget = engine.get_qubit(target.x, target.y) engine.qcircuit.unitary(iSwap, [qsource, qtarget], label='iSwap') def perform_capture_jump(engine, source, target): qsource = engine.get_qubit(source.x, source.y) qtarget = engine.get_qubit(target.x, target.y) #this ancilla qubit is going to hold the captured piece captured_piece = engine.aregister[0] engine.qcircuit.reset(captured_piece) engine.qcircuit.unitary(iSwap, [qtarget, captured_piece], label='iSwap') engine.qcircuit.unitary(iSwap, [qsource, qtarget], label='iSwap') def perform_split_jump(engine, source, target1, target2): qsource = engine.get_qubit(source.x, source.y) qtarget1 = engine.get_qubit(target1.x, target1.y) qtarget2 = engine.get_qubit(target2.x, target2.y) engine.qcircuit.unitary(iSwap_sqrt, [qtarget1, qsource], label='iSwap_sqrt') engine.qcircuit.unitary(iSwap, [qsource, qtarget2], label='iSwap') def perform_merge_jump(engine, source1, source2, target): qsource1 = engine.get_qubit(source1.x, source1.y) qsource2 = engine.get_qubit(source2.x, source2.y) qtarget = engine.get_qubit(target.x, target.y) engine.qcircuit.unitary(iSwap, [qtarget, qsource2], label='iSwap') engine.qcircuit.unitary(iSwap_sqrt, [qsource1, qtarget], label='iSwap_sqrt') def perform_standard_slide(engine, source, target): control_qubits = [] for point in engine.qchess.get_path_points(source, target): control_qubits.append(engine.get_qubit(point.x, point.y)) engine.qcircuit.x(engine.get_qubit(point.x, point.y)) qsource = engine.get_qubit(source.x, source.y) qtarget = engine.get_qubit(target.x, target.y) path_ancilla = engine.aregister[0] engine.qcircuit.reset(path_ancilla) engine.qcircuit.x(path_ancilla) engine.qcircuit.mct(control_qubits, path_ancilla, engine.mct_register, mode='advanced') engine.qcircuit.unitary(iSwap_controlled, [qsource, qtarget, path_ancilla]) for point in engine.qchess.get_path_points(source, target): engine.qcircuit.x(engine.get_qubit(point.x, point.y)) """ *The source piece has already been collapsed before this is called* So the basic idea behind this circuit is that if: -The path is clear (doesn't matter if target is empty or not) OR -The path is not clear but the target is empty Then there's no double occupancy and the piece can capture. """ def perform_capture_slide(engine, source, target): control_qubits = [] for point in engine.qchess.get_path_points(source, target): control_qubits.append(engine.get_qubit(point.x, point.y)) engine.qcircuit.x(engine.get_qubit(point.x, point.y)) qsource = engine.get_qubit(source.x, source.y) qtarget = engine.get_qubit(target.x, target.y) #holds if the path is clear or not path_ancilla = engine.aregister[0] engine.qcircuit.reset(path_ancilla) engine.qcircuit.x(path_ancilla) engine.qcircuit.mct(control_qubits, path_ancilla, engine.mct_register, mode='advanced') #holds the final condition that's going to be measured cond_ancilla = engine.aregister[1] engine.qcircuit.reset(cond_ancilla) #holds the captured piece captured_piece = engine.aregister[2] engine.qcircuit.reset(captured_piece) #path is not blocked engine.qcircuit.x(path_ancilla) engine.qcircuit.cx(path_ancilla, cond_ancilla) engine.qcircuit.x(path_ancilla) #blocked but target empty engine.qcircuit.x(qtarget) engine.qcircuit.ccx(qtarget, path_ancilla, cond_ancilla) engine.qcircuit.x(qtarget) engine.qcircuit.measure(cond_ancilla, engine.cbit_misc[0]) engine.qcircuit.unitary(iSwap_controlled, [qtarget, captured_piece, path_ancilla]).c_if(engine.cbit_misc, 1) engine.qcircuit.unitary(iSwap_controlled, [qsource, qtarget, path_ancilla]).c_if(engine.cbit_misc, 1) for qubit in control_qubits: engine.qcircuit.x(qubit) result = execute(engine.qcircuit, backend=backend, shots=1).result() #since get_counts() gives '1 00000001' #a bit hacky but I don't know any other way to get this result cbit_value = int(list(result.get_counts().keys())[0].split(' ')[0]) return (cbit_value == 1) """ Since the differences between both operations are only two gates, it's useful to implement them together. The args (single, double1, double2) are split: (source, target1, target2) merge: (target, source1, source2) """ def _slide_split_merge(engine, single, double1, double2, is_split): qsingle = engine.get_qubit(single.x, single.y) qdouble1 = engine.get_qubit(double1.x, double1.y) qdouble2 = engine.get_qubit(double2.x, double2.y) #get all qubits in first path control_qubits1 = [] for point in engine.qchess.get_path_points(single, double1): control_qubits1.append(engine.get_qubit(point.x, point.y)) engine.qcircuit.x(engine.get_qubit(point.x, point.y)) #holds if the first path is clear or not path_ancilla1 = engine.aregister[0] engine.qcircuit.reset(path_ancilla1) engine.qcircuit.x(path_ancilla1) #perform their combined CNOT engine.qcircuit.mct(control_qubits1, path_ancilla1, engine.mct_register, mode='advanced') #undo the X for qubit in control_qubits1: engine.qcircuit.x(qubit) #get all qubits in second path control_qubits2 = [] for point in engine.qchess.get_path_points(single, double2): control_qubits2.append(engine.get_qubit(point.x, point.y)) engine.qcircuit.x(engine.get_qubit(point.x, point.y)) #holds if the second path is clear or not path_ancilla2 = engine.aregister[1] engine.qcircuit.reset(path_ancilla2) engine.qcircuit.x(path_ancilla2) #perform their combined CNOT engine.qcircuit.mct(control_qubits2, path_ancilla2, engine.mct_register, mode='advanced') for qubit in control_qubits2: engine.qcircuit.x(qubit) #holds the control for jump and slide control_ancilla = engine.aregister[2] engine.qcircuit.reset(control_ancilla) engine.qcircuit.x(control_ancilla) #perform the split/merge engine.qcircuit.x(path_ancilla1) engine.qcircuit.x(path_ancilla2) engine.qcircuit.ccx(path_ancilla1, path_ancilla2, control_ancilla) if is_split: engine.qcircuit.unitary(iSwap_sqrt_controlled, [qdouble1, qsingle, control_ancilla]) engine.qcircuit.unitary(iSwap_controlled, [qsingle, qdouble2, control_ancilla]) else: engine.qcircuit.unitary(iSwap_controlled, [qsingle, qdouble2, control_ancilla]) engine.qcircuit.unitary(iSwap_sqrt_controlled, [qdouble1, qsingle, control_ancilla]) engine.qcircuit.x(path_ancilla1) engine.qcircuit.x(path_ancilla2) #reset the control engine.qcircuit.reset(control_ancilla) engine.qcircuit.x(control_ancilla) #perform one jump engine.qcircuit.x(path_ancilla1) engine.qcircuit.ccx(path_ancilla1, path_ancilla2, control_ancilla) engine.qcircuit.unitary(iSwap_controlled, [qdouble1, qsingle, control_ancilla]) engine.qcircuit.x(path_ancilla1) #reset the control engine.qcircuit.reset(control_ancilla) engine.qcircuit.x(control_ancilla) #perform the other jump engine.qcircuit.x(path_ancilla2) engine.qcircuit.ccx(path_ancilla1, path_ancilla2, control_ancilla) engine.qcircuit.unitary(iSwap_controlled, [qsingle, qdouble2, control_ancilla]) engine.qcircuit.x(path_ancilla2) def perform_split_slide(engine, source, target1, target2): _slide_split_merge(engine, source, target1, target2, is_split=True) def perform_merge_slide(engine, source1, source2, target): _slide_split_merge(engine, target, source1, source2, is_split=False) def perform_standard_en_passant(engine, source, target, ep_target): qsource = engine.get_qubit(source.x, source.y) qtarget = engine.get_qubit(target.x, target.y) qep_target = engine.get_qubit(ep_target.x, ep_target.y) captured_ancilla = engine.aregister[0] engine.qcircuit.reset(captured_ancilla) #holds if both source and ep_target are empty or not at the same time both_pieces_ancilla = engine.aregister[1] engine.qcircuit.reset(both_pieces_ancilla) engine.qcircuit.ccx(qsource, qep_target, both_pieces_ancilla) engine.qcircuit.x(both_pieces_ancilla) engine.qcircuit.unitary(iSwap_controlled, [qep_target, captured_ancilla, both_pieces_ancilla]) engine.qcircuit.unitary(iSwap_controlled, [qsource, qtarget, both_pieces_ancilla]) def perform_capture_en_passant(engine, source, target, ep_target): qsource = engine.get_qubit(source.x, source.y) qtarget = engine.get_qubit(target.x, target.y) qep_target = engine.get_qubit(ep_target.x, ep_target.y) #since this move can capture two pieces at the same time, #we need two ancillas to hold them captured_ancilla1 = engine.aregister[0] engine.qcircuit.reset(captured_ancilla1) captured_ancilla2 = engine.aregister[1] engine.qcircuit.reset(captured_ancilla2) #holds if any of target, ep_target exist #Note: It's impossible for them to exist at the same time (during this function's call), # since if they did that would mean that target piece has reached its position # after the pawn moved and thus EP would not be not a valid move. any_piece_ancilla = engine.aregister[2] engine.qcircuit.reset(any_piece_ancilla) engine.qcircuit.cx(qep_target, any_piece_ancilla) engine.qcircuit.cx(qtarget, any_piece_ancilla) engine.qcircuit.x(any_piece_ancilla) engine.qcircuit.unitary(iSwap_controlled, [qep_target, captured_ancilla1, any_piece_ancilla]) engine.qcircuit.unitary(iSwap_controlled, [qtarget, captured_ancilla2, any_piece_ancilla]) engine.qcircuit.unitary(iSwap_controlled, [qsource, qtarget, any_piece_ancilla]) #path holds all points that must be empty for the move to be valid (excluding targets) def perform_castle(engine, king_source, rook_source, king_target, rook_target, path=None): qking_source = engine.get_qubit(king_source.x, king_source.y) qrook_source = engine.get_qubit(rook_source.x, rook_source.y) qking_target = engine.get_qubit(king_target.x, king_target.y) qrook_target = engine.get_qubit(rook_target.x, rook_target.y) if path: #holds all the qubits of the path control_qubits = [] for point in path: control_qubits.append(engine.get_qubit(point.x, point.y)) engine.qcircuit.x(engine.get_qubit(point.x, point.y)) #holds if the path is empty or not path_ancilla = engine.aregister[0] engine.qcircuit.reset(path_ancilla) engine.qcircuit.x(path_ancilla) engine.qcircuit.mct(control_qubits, path_ancilla, engine.mct_register, mode='advanced') #undo the x for qubit in control_qubits: engine.qcircuit.x(qubit) #perform the movement engine.qcircuit.unitary(iSwap_controlled, [qking_source, qking_target, path_ancilla]) engine.qcircuit.unitary(iSwap_controlled, [qrook_source, qrook_target, path_ancilla]) else: #perform the movement engine.qcircuit.unitary(iSwap, [qking_source, qking_target]) engine.qcircuit.unitary(iSwap, [qrook_source, qrook_target])
https://github.com/PayalSolanki2906/Quantum_algorithms_using_Qiskit
PayalSolanki2906
from qiskit import QuantumCircuit, assemble, Aer from math import pi, sqrt, exp from qiskit.visualization import plot_bloch_multivector, plot_histogram sim = Aer.get_backend('aer_simulator') qc = QuantumCircuit(1) qc.x(0) qc.draw() qc.save_statevector() qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() plot_bloch_multivector(state) qc = QuantumCircuit(1) qc.y(0) qc.draw() qc.save_statevector() qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() plot_bloch_multivector(state) qc = QuantumCircuit(1) qc.z(0) qc.draw() qc.save_statevector() qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() plot_bloch_multivector(state) qc = QuantumCircuit(1) qc.h(0) qc.draw() qc.save_statevector() qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() plot_bloch_multivector(state) qc = QuantumCircuit(1) qc.p(pi/4, 0) qc.draw() qc = QuantumCircuit(1) qc.s(0) # Apply S-gate to qubit 0 qc.sdg(0) # Apply Sdg-gate to qubit 0 qc.draw() qc = QuantumCircuit(1) qc.t(0) # Apply T-gate to qubit 0 qc.tdg(0) # Apply Tdg-gate to qubit 0 qc.draw() qc = QuantumCircuit(1) qc.u(pi/2, 0, pi, 0) qc.draw() qc.save_statevector() qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() plot_bloch_multivector(state) initial_state =[1/sqrt(2), -1/sqrt(2)] # Define state |q_0> qc = QuantumCircuit(1) # Must redefine qc qc.initialize(initial_state, 0) # Initialize the 0th qubit in the state `initial_state` qc.save_statevector() # Save statevector qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() # Execute the circuit print(state) # Print the result qobj = assemble(qc) results = sim.run(qobj).result().get_counts() plot_histogram(results) initial_state =[1/sqrt(2), 1/sqrt(2)] # Define state |q_0> qc = QuantumCircuit(1) # Must redefine qc qc.initialize(initial_state, 0) # Initialize the 0th qubit in the state `initial_state` qc.save_statevector() # Save statevector qobj = assemble(qc) state = sim.run(qobj).result().get_statevector() # Execute the circuit print(state) # Print the result qobj = assemble(qc) results = sim.run(qobj).result().get_counts() plot_histogram(results) # Create the Y-measurement function: def x_measurement(qc, qubit, cbit): """Measure 'qubit' in the X-basis, and store the result in 'cbit'""" qc.s(qubit) qc.h(qubit) qc.measure(qubit, cbit) return qc initial_state = [1/sqrt(2), -complex(0,1)/sqrt(2)] # Initialize our qubit and measure it qc = QuantumCircuit(1,1) qc.initialize(initial_state, 0) x_measurement(qc, 0, 0) # measure qubit 0 to classical bit 0 qc.draw() qobj = assemble(qc) # Assemble circuit into a Qobj that can be run counts = sim.run(qobj).result().get_counts() # Do the simulation, returning the state vector plot_histogram(counts) # Display the output on measurement of state vector
https://github.com/tigerjack/qiskit_grover
tigerjack
circuit = None oracle_simple = None execute = None Aer = None IBMQ = None least_busy = None def _import_modules(): print("Importing modules") global circuit, oracle_simple, execute, least_busy import circuit import oracle_simple from qiskit import execute from qiskit.backends.ibmq import least_busy # To be used from REPL def build_and_infos(n, x_stars, real=False, online=False, backend_name=None): _import_modules() oracles = [] for i in range(len(x_stars)): oracles.append(oracle_simple.OracleSimple(n, x_stars[i])) gc, n_qubits = circuit.get_circuit(n, oracles) if real: online = True backend, max_credits, shots = get_appropriate_backend( n_qubits, real, online, backend_name) res = get_compiled_circuit_infos(gc, backend, max_credits, shots) return res # To be used from REPL def build_and_run(n, x_stars, real=False, online=False, backend_name=None): """ This just build the grover circuit for the specific n and x_star and run them on the selected backend. It may be convenient to use in an interactive shell for quick testing. """ _import_modules() oracles = [] for i in range(len(x_stars)): oracles.append(oracle_simple.OracleSimple(n, x_stars[i])) gc, n_qubits = circuit.get_circuit(n, oracles) if real: online = True backend, max_credits, shots = get_appropriate_backend( n_qubits, real, online, backend_name) return run_grover_algorithm(gc, backend, max_credits, shots) def get_appropriate_backend(n, real, online, backend_name): # Online, real or simuator? if (not online): global Aer from qiskit import Aer max_credits = 10 shots = 4098 print("Local simulator backend") backend = Aer.get_backend('qasm_simulator') # list of online devices: ibmq_qasm_simulator, ibmqx2, ibmqx4, ibmqx5, ibmq_16_melbourne else: global IBMQ from qiskit import IBMQ print("Online {0} backend".format("real" if real else "simulator")) max_credits = 3 shots = 4098 import Qconfig IBMQ.load_accounts() if (backend_name is not None): backend = IBMQ.get_backend(backend_name) else: large_enough_devices = IBMQ.backends( filters=lambda x: x.configuration()['n_qubits'] >= n and x.configuration()[ 'simulator'] == (not real) ) backend = least_busy(large_enough_devices) print("Backend name is {0}; max_credits = {1}, shots = {2}".format( backend, max_credits, shots)) return backend, max_credits, shots def get_compiled_circuit_infos(qc, backend, max_credits, shots): result = {} print("Getting infos ... ") backend_coupling = backend.configuration()['coupling_map'] from qiskit import compile grover_compiled = compile( qc, backend=backend, coupling_map=backend_coupling, shots=shots) grover_compiled_qasm = grover_compiled.experiments[ 0].header.compiled_circuit_qasm result['n_gates'] = len(grover_compiled_qasm.split("\n")) - 4 return result def run_grover_algorithm(qc, backend, max_credits, shots): """ Run the grover algorithm, i.e. the quantum circuit qc. :param qc: The (qiskit) quantum circuit :param real: False (default) to run the circuit on a simulator backend, True to run on a real backend :param backend_name: None (default) to run the circuit on the default backend (local qasm for simulation, least busy IBMQ device for a real backend); otherwise, it should contain the name of the backend you want to use. :returns: Result of the computations, i.e. the dictionary of result counts for an execution. :rtype: dict """ _import_modules() pending_jobs = backend.status()['pending_jobs'] print("Backend has {0} pending jobs".format(pending_jobs)) print("Compiling ... ") job = execute(qc, backend, shots=shots, max_credits=max_credits) print("Job id is {0}".format(job.job_id())) print( "At this point, if any error occurs, you can always retrieve the job results using the backend name and the job id using the utils/retrieve_job_results.py script" ) if pending_jobs > 1: s = input( "Do you want to wait for the job to go up in the queue list or exit the program(q)? If you exit now you can still retrieve the job results later on using the backend name and the job id w/ the utils/retrieve_job_results.py script" ) if (s == "q"): print( "WARNING: Take note of backend name and job id to retrieve the job" ) from sys import exit exit() result = job.result() return result.get_counts(qc) def get_max_key_value(counts): mx = max(counts.keys(), key=(lambda key: counts[key])) total = sum(counts.values()) confidence = counts[mx] / total return mx, confidence def main(): import argparse parser = argparse.ArgumentParser(description="Grover algorithm") parser.add_argument( 'n', metavar='n', type=int, help='the number of bits used to store the oracle data.') parser.add_argument( 'x_stars', metavar='x_star', type=int, nargs='+', help='the number(s) for which the oracle returns 1, in the range [0..2**n-1].' ) parser.add_argument( '-r', '--real', action='store_true', help='Invoke the real device (implies -o). Default is simulator.') parser.add_argument( '-o', '--online', action='store_true', help='Use the online IBMQ devices. Default is local (simulator). This option is automatically set when we want to use a real device (see -r).' ) parser.add_argument( '-i', '--infos', action='store_true', help='Print only infos on the circuit built for the specific backend (such as the number of gates) without executing it.' ) parser.add_argument( '-b', '--backend_name', help="The name of the backend. It makes sense only for online ibmq devices and it's useless otherwise. If not specified, the program automatically choose the least busy ibmq backend." ) parser.add_argument( '--img_dir', help='If you want to store the image of the circuit, you need to specify the directory.' ) parser.add_argument( '--plot', action='store_true', help='Plot the histogram of the results. Default is false') args = parser.parse_args() n = args.n x_stars = args.x_stars print("n: {0}, x_stars: {1}".format(n, x_stars)) real = args.real online = True if real else args.online infos = args.infos backend_name = args.backend_name img_dir = args.img_dir plot = args.plot print("real: {0}, online: {1}, infos: {2}, backend_name: {3}".format( real, online, infos, backend_name)) _import_modules() oracles = [] for i in range(len(x_stars)): oracles.append(oracle_simple.OracleSimple(n, x_stars[i])) gc, n_qubits = circuit.get_circuit(n, oracles) if (img_dir is not None): from qiskit.tools.visualization import circuit_drawer circuit_drawer( gc, filename=img_dir + "grover_{0}_{1}.png".format(n, x_stars[0])) backend, max_credits, shots = get_appropriate_backend( n_qubits, real, online, backend_name) if (infos): res = get_compiled_circuit_infos(gc, backend, max_credits, shots) for k, v in res.items(): print("{0} --> {1}".format(k, v)) else: # execute counts = run_grover_algorithm(gc, backend, max_credits, shots) print(counts) max, confidence = get_max_key_value(counts) print("Max value: {0}, confidence {1}".format(max, confidence)) if (plot): from qiskit.tools.visualization import plot_histogram plot_histogram(counts) print("END") # Assumption: if run from console we're inside src/.. dir if __name__ == "__main__": main()
https://github.com/ctuning/ck-qiskit
ctuning
import numpy as np import IPython import ipywidgets as widgets import colorsys import matplotlib.pyplot as plt from qiskit import QuantumCircuit,QuantumRegister,ClassicalRegister from qiskit import execute, Aer, BasicAer from qiskit.visualization import plot_bloch_multivector from qiskit.tools.jupyter import * from qiskit.visualization import * import os import glob import moviepy.editor as mpy import seaborn as sns sns.set() '''========State Vector=======''' def getStateVector(qc): '''get state vector in row matrix form''' backend = BasicAer.get_backend('statevector_simulator') job = execute(qc,backend).result() vec = job.get_statevector(qc) return vec def vec_in_braket(vec: np.ndarray) -> str: '''get bra-ket notation of vector''' nqubits = int(np.log2(len(vec))) state = '' for i in range(len(vec)): rounded = round(vec[i], 3) if rounded != 0: basis = format(i, 'b').zfill(nqubits) state += np.str(rounded).replace('-0j', '+0j') state += '|' + basis + '\\rangle + ' state = state.replace("j", "i") return state[0:-2].strip() def vec_in_text_braket(vec): return '$$\\text{{State:\n $|\\Psi\\rangle = $}}{}$$'\ .format(vec_in_braket(vec)) def writeStateVector(vec): return widgets.HTMLMath(vec_in_text_braket(vec)) '''==========Bloch Sphere =========''' def getBlochSphere(qc): '''plot multi qubit bloch sphere''' vec = getStateVector(qc) return plot_bloch_multivector(vec) def getBlochSequence(path,figs): '''plot block sphere sequence and save it to a folder for gif movie creation''' try: os.mkdir(path) except: print('Directory already exist') for i,fig in enumerate(figs): fig.savefig(path+"/rot_"+str(i)+".png") return def getBlochGif(figs,path,fname,fps,remove = True): '''create gif movie from provided images''' file_list = glob.glob(path + "/*.png") list.sort(file_list, key=lambda x: int(x.split('_')[1].split('.png')[0])) clip = mpy.ImageSequenceClip(file_list, fps=fps) clip.write_gif('{}.gif'.format(fname), fps=fps) '''remove all image files after gif creation''' if remove: for file in file_list: os.remove(file) return '''=========Matrix=================''' def getMatrix(qc): '''get numpy matrix representing a circuit''' backend = BasicAer.get_backend('unitary_simulator') job = execute(qc, backend) ndArray = job.result().get_unitary(qc, decimals=3) Matrix = np.matrix(ndArray) return Matrix def plotMatrix(M): '''visualize a matrix using seaborn heatmap''' MD = [["0" for i in range(M.shape[0])] for j in range(M.shape[1])] for i in range(M.shape[0]): for j in range(M.shape[1]): r = M[i,j].real im = M[i,j].imag MD[i][j] = str(r)[0:4]+ " , " +str(im)[0:4] plt.figure(figsize = [2*M.shape[1],M.shape[0]]) sns.heatmap(np.abs(M),\ annot = np.array(MD),\ fmt = '',linewidths=.5,\ cmap='Blues') return '''=========Measurement========''' def getCount(qc): backend= Aer.get_backend('qasm_simulator') result = execute(qc,backend).result() counts = result.get_counts(qc) return counts def plotCount(counts,figsize): plot_histogram(counts) '''========Phase============''' def getPhaseCircle(vec): '''get phase color, angle and radious of phase circir''' Phase = [] for i in range(len(vec)): angles = (np.angle(vec[i]) + (np.pi * 4)) % (np.pi * 2) rgb = colorsys.hls_to_rgb(angles / (np.pi * 2), 0.5, 0.5) mag = np.abs(vec[i]) Phase.append({"rgb":rgb,"mag": mag,"ang":angles}) return Phase def getPhaseDict(QCs): '''get a dictionary of state vector phase circles for each quantum circuit and populate phaseDict list''' phaseDict = [] for qc in QCs: vec = getStateVector(qc) Phase = getPhaseCircle(vec) phaseDict.append(Phase) return phaseDict def plotiPhaseCircle(phaseDict,depth,path,show=False,save=False): '''plot any quantum circuit phase circle diagram from provided phase Dictionary''' r = 0.30 dx = 1.0 nqubit = len(phaseDict[0]) fig = plt.figure(figsize = [depth,nqubit]) for i in range(depth): x0 = i for j in range(nqubit): y0 = j+1 try: mag = phaseDict[i][j]['mag'] ang = phaseDict[i][j]['ang'] rgb = phaseDict[i][j]['rgb'] ax=plt.gca() circle1= plt.Circle((dx+x0,y0), radius = r, color = 'white') ax.add_patch(circle1) circle2= plt.Circle((dx+x0,y0), radius= r*mag, color = rgb) ax.add_patch(circle2) line = plt.plot((dx+x0,dx+x0+(r*mag*np.cos(ang))),\ (y0,y0+(r*mag*np.sin(ang))),color = "black") except: ax=plt.gca() circle1= plt.Circle((dx+x0,y0), radius = r, color = 'white') ax.add_patch(circle1) plt.ylim(nqubit+1,0) plt.yticks([y+1 for y in range(nqubit)]) plt.xticks([x for x in range(depth+2)]) plt.xlabel("Circuit Depth") plt.ylabel("Basis States") if show: plt.show() plt.savefig(path+".png") plt.close(fig) if save: plt.savefig(path +".png") plt.close(fig) return def plotiPhaseCircle_rotated(phaseDict,depth,path,show=False,save=False): '''plot any quantum circuit phase circle diagram from provided phase Dictionary''' r = 0.30 dy = 1.0 nqubit = len(phaseDict[0]) fig = plt.figure(figsize = [nqubit,depth]) for i in range(depth): y0 = i for j in range(nqubit): x0 = j+1 try: mag = phaseDict[i][j]['mag'] ang = phaseDict[i][j]['ang'] rgb = phaseDict[i][j]['rgb'] ax=plt.gca() circle1= plt.Circle((x0,dy+y0), radius = r, color = 'white') ax.add_patch(circle1) circle2= plt.Circle((x0,dy+y0), radius= r*mag, color = rgb) ax.add_patch(circle2) line = plt.plot((x0,x0+(r*mag*np.cos(ang))),\ (dy+y0,dy+y0+(r*mag*np.sin(ang))),color = "black") except: ax=plt.gca() circle1= plt.Circle((x0,dy+y0), radius = r, color = 'white') ax.add_patch(circle1) plt.ylim(0,depth+1) plt.yticks([x+1 for x in range(depth)]) plt.xticks([y for y in range(nqubit+2)]) plt.ylabel("Circuit Depth") plt.xlabel("Basis States") if show: plt.show() plt.savefig(path+".png") plt.close(fig) if save: plt.savefig(path +".png") plt.close(fig) return def getPhaseSequence(QCs,path,rotated=False): '''plot a sequence of phase circle diagram for a given sequence of quantum circuits''' try: os.mkdir(path) except: print("Directory already exist") depth = len(QCs) phaseDict =[] for i,qc in enumerate(QCs): vec = getStateVector(qc) Phase = getPhaseCircle(vec) phaseDict.append(Phase) ipath = path + "phase_" + str(i) if rotated: plotiPhaseCircle_rotated(phaseDict,depth,ipath,save=True,show=False) else: plotiPhaseCircle(phaseDict,depth,ipath,save=True,show=False) return def getPhaseGif(path,fname,fps,remove = True): '''create a gif movie file from phase circle figures''' file_list = glob.glob(path+ "/*.png") list.sort(file_list, key=lambda x: int(x.split('_')[1].split('.png')[0])) clip = mpy.ImageSequenceClip(file_list, fps=fps) clip.write_gif('{}.gif'.format(fname), fps=fps) '''remove all image files after gif creation''' if remove: for file in file_list: os.remove(file) return
https://github.com/qiskit-community/prototype-quantum-kernel-training
qiskit-community
from typing import List, Callable, Union from qiskit import QuantumCircuit from qiskit.circuit import ParameterVector # To visualize circuit creation process from qiskit.visualization import circuit_drawer # For a dataset with 12 features; and 2 features per qubit FEATURE_DIMENSION = 12 NUM_QUBITS = int(FEATURE_DIMENSION / 2) # Qiskit feature maps should generally be QuantumCircuits or extensions of QuantumCircuit feature_map = QuantumCircuit(NUM_QUBITS) user_params = ParameterVector("θ", NUM_QUBITS) # Create circuit layer with trainable parameters for i in range(NUM_QUBITS): feature_map.ry(user_params[i], feature_map.qubits[i]) print(circuit_drawer(feature_map)) # Linear entanglement entanglement = [[i, i + 1] for i in range(NUM_QUBITS - 1)] for source, target in entanglement: feature_map.cz(feature_map.qubits[source], feature_map.qubits[target]) feature_map.barrier() print(circuit_drawer(feature_map)) input_params = ParameterVector("x", FEATURE_DIMENSION) for i in range(NUM_QUBITS): feature_map.rz(input_params[2 * i + 1], feature_map.qubits[i]) feature_map.rx(input_params[2 * i], feature_map.qubits[i]) print(circuit_drawer(feature_map)) class ExampleFeatureMap(QuantumCircuit): """The Example Feature Map circuit""" def __init__( self, feature_dimension: int, entanglement: Union[str, List[List[int]], Callable[[int], List[int]]] = None, name: str = "ExampleFeatureMap", ) -> None: """Create a new Example Feature Map circuit. Args: feature_dimension: The number of features entanglement: Entanglement scheme to be used in second layer name: Name of QuantumCircuit object Raises: ValueError: ExampleFeatureMap requires an even number of input features """ if (feature_dimension % 2) != 0: raise ValueError( """ Example feature map requires an even number of input features. """ ) self.feature_dimension = feature_dimension self.entanglement = entanglement self.training_parameters = None # Call the QuantumCircuit initialization num_qubits = feature_dimension / 2 super().__init__( num_qubits, name=name, ) # Build the feature map circuit self._generate_feature_map() def _generate_feature_map(self): # If no entanglement scheme specified, use linear entanglement if self.entanglement is None: self.entanglement = [[i, i + 1] for i in range(self.num_qubits - 1)] # Vector of data parameters input_params = ParameterVector("x", self.feature_dimension) training_params = ParameterVector("θ", self.num_qubits) # Create an initial rotation layer of trainable parameters for i in range(self.num_qubits): self.ry(training_params[i], self.qubits[i]) self.training_parameters = training_params # Create the entanglement layer for source, target in self.entanglement: self.cz(self.qubits[source], self.qubits[target]) self.barrier() # Create a circuit representation of the data group for i in range(self.num_qubits): self.rz(input_params[2 * i + 1], self.qubits[i]) self.rx(input_params[2 * i], self.qubits[i]) feature_map = ExampleFeatureMap(feature_dimension=10) circuit_drawer(feature_map) #import qiskit.tools.jupyter # #%qiskit_version_table #%qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/ElePT/qiskit-algorithms-test
ElePT
# This code is part of Qiskit. # # (C) Copyright IBM 2021, 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """An algorithm to implement a Trotterization real time-evolution.""" from __future__ import annotations from qiskit import QuantumCircuit from qiskit_algorithms.time_evolvers.time_evolution_problem import TimeEvolutionProblem from qiskit_algorithms.time_evolvers.time_evolution_result import TimeEvolutionResult from qiskit_algorithms.time_evolvers.real_time_evolver import RealTimeEvolver from qiskit_algorithms.observables_evaluator import estimate_observables from qiskit.opflow import PauliSumOp from qiskit.circuit.library import PauliEvolutionGate from qiskit.circuit.parametertable import ParameterView from qiskit.primitives import BaseEstimator from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit.synthesis import ProductFormula, LieTrotter class TrotterQRTE(RealTimeEvolver): """Quantum Real Time Evolution using Trotterization. Type of Trotterization is defined by a ``ProductFormula`` provided. Examples: .. code-block:: python from qiskit.opflow import PauliSumOp from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit import QuantumCircuit from qiskit_algorithms import TimeEvolutionProblem from qiskit_algorithms.time_evolvers import TrotterQRTE from qiskit.primitives import Estimator operator = PauliSumOp(SparsePauliOp([Pauli("X"), Pauli("Z")])) initial_state = QuantumCircuit(1) time = 1 evolution_problem = TimeEvolutionProblem(operator, time, initial_state) # LieTrotter with 1 rep estimator = Estimator() trotter_qrte = TrotterQRTE(estimator=estimator) evolved_state = trotter_qrte.evolve(evolution_problem).evolved_state """ def __init__( self, product_formula: ProductFormula | None = None, estimator: BaseEstimator | None = None, num_timesteps: int = 1, ) -> None: """ Args: product_formula: A Lie-Trotter-Suzuki product formula. If ``None`` provided, the Lie-Trotter first order product formula with a single repetition is used. ``reps`` should be 1 to obtain a number of time-steps equal to ``num_timesteps`` and an evaluation of :attr:`.TimeEvolutionProblem.aux_operators` at every time-step. If ``reps`` is larger than 1, the true number of time-steps will be ``num_timesteps * reps``. num_timesteps: The number of time-steps the full evolution time is devided into (repetitions of ``product_formula``) estimator: An estimator primitive used for calculating expectation values of ``TimeEvolutionProblem.aux_operators``. """ self.product_formula = product_formula self.num_timesteps = num_timesteps self.estimator = estimator @property def product_formula(self) -> ProductFormula: """Returns a product formula.""" return self._product_formula @product_formula.setter def product_formula(self, product_formula: ProductFormula | None): """Sets a product formula. If ``None`` provided, sets the Lie-Trotter first order product formula with a single repetition.""" if product_formula is None: product_formula = LieTrotter() self._product_formula = product_formula @property def estimator(self) -> BaseEstimator | None: """ Returns an estimator. """ return self._estimator @estimator.setter def estimator(self, estimator: BaseEstimator) -> None: """ Sets an estimator. """ self._estimator = estimator @property def num_timesteps(self) -> int: """Returns the number of timesteps.""" return self._num_timesteps @num_timesteps.setter def num_timesteps(self, num_timesteps: int) -> None: """ Sets the number of time-steps. Raises: ValueError: If num_timesteps is not positive. """ if num_timesteps <= 0: raise ValueError( f"Number of time steps must be positive integer, {num_timesteps} provided" ) self._num_timesteps = num_timesteps @classmethod def supports_aux_operators(cls) -> bool: """ Whether computing the expectation value of auxiliary operators is supported. Returns: ``True`` if ``aux_operators`` expectations in the ``TimeEvolutionProblem`` can be evaluated, ``False`` otherwise. """ return True def evolve(self, evolution_problem: TimeEvolutionProblem) -> TimeEvolutionResult: """ Evolves a quantum state for a given time using the Trotterization method based on a product formula provided. The result is provided in the form of a quantum circuit. If auxiliary operators are included in the ``evolution_problem``, they are evaluated on the ``init_state`` and on the evolved state at every step (``num_timesteps`` times) using an estimator primitive provided. Args: evolution_problem: Instance defining evolution problem. For the included Hamiltonian, ``Pauli`` or ``PauliSumOp`` are supported by TrotterQRTE. Returns: Evolution result that includes an evolved state as a quantum circuit and, optionally, auxiliary operators evaluated for a resulting state on an estimator primitive. Raises: ValueError: If ``t_param`` is not set to ``None`` in the ``TimeEvolutionProblem`` (feature not currently supported). ValueError: If ``aux_operators`` provided in the time evolution problem but no estimator provided to the algorithm. ValueError: If the ``initial_state`` is not provided in the ``TimeEvolutionProblem``. ValueError: If an unsupported Hamiltonian type is provided. """ evolution_problem.validate_params() if evolution_problem.aux_operators is not None and self.estimator is None: raise ValueError( "The time evolution problem contained ``aux_operators`` but no estimator was " "provided. The algorithm continues without calculating these quantities. " ) # ensure the hamiltonian is a sparse pauli op hamiltonian = evolution_problem.hamiltonian if not isinstance(hamiltonian, (Pauli, PauliSumOp, SparsePauliOp)): raise ValueError( f"TrotterQRTE only accepts Pauli | PauliSumOp | SparsePauliOp, {type(hamiltonian)} " "provided." ) if isinstance(hamiltonian, PauliSumOp): hamiltonian = hamiltonian.primitive * hamiltonian.coeff elif isinstance(hamiltonian, Pauli): hamiltonian = SparsePauliOp(hamiltonian) t_param = evolution_problem.t_param free_parameters = hamiltonian.parameters if t_param is not None and free_parameters != ParameterView([t_param]): raise ValueError( f"Hamiltonian time parameters ({free_parameters}) do not match " f"evolution_problem.t_param ({t_param})." ) # make sure PauliEvolutionGate does not implement more than one Trotter step dt = evolution_problem.time / self.num_timesteps if evolution_problem.initial_state is not None: initial_state = evolution_problem.initial_state else: raise ValueError("``initial_state`` must be provided in the ``TimeEvolutionProblem``.") evolved_state = QuantumCircuit(initial_state.num_qubits) evolved_state.append(initial_state, evolved_state.qubits) if evolution_problem.aux_operators is not None: observables = [] observables.append( estimate_observables( self.estimator, evolved_state, evolution_problem.aux_operators, None, evolution_problem.truncation_threshold, ) ) else: observables = None if t_param is None: # the evolution gate single_step_evolution_gate = PauliEvolutionGate( hamiltonian, dt, synthesis=self.product_formula ) for n in range(self.num_timesteps): # if hamiltonian is time-dependent, bind new time-value at every step to construct # evolution for next step if t_param is not None: time_value = (n + 1) * dt bound_hamiltonian = hamiltonian.assign_parameters([time_value]) single_step_evolution_gate = PauliEvolutionGate( bound_hamiltonian, dt, synthesis=self.product_formula, ) evolved_state.append(single_step_evolution_gate, evolved_state.qubits) if evolution_problem.aux_operators is not None: observables.append( estimate_observables( self.estimator, evolved_state, evolution_problem.aux_operators, None, evolution_problem.truncation_threshold, ) ) evaluated_aux_ops = None if evolution_problem.aux_operators is not None: evaluated_aux_ops = observables[-1] return TimeEvolutionResult(evolved_state, evaluated_aux_ops, observables)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from qiskit import QuantumCircuit, transpile from qiskit.providers.fake_provider import FakeAuckland backend = FakeAuckland() ghz = QuantumCircuit(15) ghz.h(0) ghz.cx(0, range(1, 15)) depths = [] gate_counts = [] non_local_gate_counts = [] levels = [str(x) for x in range(4)] for level in range(4): circ = transpile(ghz, backend, optimization_level=level) depths.append(circ.depth()) gate_counts.append(sum(circ.count_ops().values())) non_local_gate_counts.append(circ.num_nonlocal_gates()) fig, (ax1, ax2) = plt.subplots(2, 1) ax1.bar(levels, depths, label='Depth') ax1.set_xlabel("Optimization Level") ax1.set_ylabel("Depth") ax1.set_title("Output Circuit Depth") ax2.bar(levels, gate_counts, label='Number of Circuit Operations') ax2.bar(levels, non_local_gate_counts, label='Number of non-local gates') ax2.set_xlabel("Optimization Level") ax2.set_ylabel("Number of gates") ax2.legend() ax2.set_title("Number of output circuit gates") fig.tight_layout() plt.show()
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test StateVectorSimulatorPy.""" import unittest import numpy as np from qiskit.providers.basicaer import StatevectorSimulatorPy from qiskit.test import ReferenceCircuits from qiskit.test import providers from qiskit import QuantumRegister, QuantumCircuit, execute from qiskit.quantum_info.random import random_unitary from qiskit.quantum_info import state_fidelity class StatevectorSimulatorTest(providers.BackendTestCase): """Test BasicAer statevector simulator.""" backend_cls = StatevectorSimulatorPy circuit = None def test_run_circuit(self): """Test final state vector for single circuit run.""" # Set test circuit self.circuit = ReferenceCircuits.bell_no_measure() # Execute result = super().test_run_circuit() actual = result.get_statevector(self.circuit) # state is 1/sqrt(2)|00> + 1/sqrt(2)|11>, up to a global phase self.assertAlmostEqual((abs(actual[0])) ** 2, 1 / 2) self.assertEqual(actual[1], 0) self.assertEqual(actual[2], 0) self.assertAlmostEqual((abs(actual[3])) ** 2, 1 / 2) def test_measure_collapse(self): """Test final measurement collapses statevector""" # Set test circuit self.circuit = ReferenceCircuits.bell() # Execute result = super().test_run_circuit() actual = result.get_statevector(self.circuit) # The final state should be EITHER |00> OR |11> diff_00 = np.linalg.norm(np.array([1, 0, 0, 0]) - actual) ** 2 diff_11 = np.linalg.norm(np.array([0, 0, 0, 1]) - actual) ** 2 success = np.allclose([diff_00, diff_11], [0, 2]) or np.allclose([diff_00, diff_11], [2, 0]) # state is 1/sqrt(2)|00> + 1/sqrt(2)|11>, up to a global phase self.assertTrue(success) def test_unitary(self): """Test unitary gate instruction""" num_trials = 10 max_qubits = 3 # Test 1 to max_qubits for random n-qubit unitary gate for i in range(max_qubits): num_qubits = i + 1 psi_init = np.zeros(2**num_qubits) psi_init[0] = 1.0 qr = QuantumRegister(num_qubits, "qr") for _ in range(num_trials): # Create random unitary unitary = random_unitary(2**num_qubits) # Compute expected output state psi_target = unitary.data.dot(psi_init) # Simulate output on circuit circuit = QuantumCircuit(qr) circuit.unitary(unitary, qr) job = execute(circuit, self.backend) result = job.result() psi_out = result.get_statevector(0) fidelity = state_fidelity(psi_target, psi_out) self.assertGreater(fidelity, 0.999) def test_global_phase(self): """Test global_phase""" n_qubits = 4 qr = QuantumRegister(n_qubits) circ = QuantumCircuit(qr) circ.x(qr) circ.global_phase = 0.5 self.circuit = circ result = super().test_run_circuit() actual = result.get_statevector(self.circuit) expected = np.exp(1j * circ.global_phase) * np.repeat([[0], [1]], [n_qubits**2 - 1, 1]) self.assertTrue(np.allclose(actual, expected)) def test_global_phase_composite(self): """Test global_phase""" n_qubits = 4 qr = QuantumRegister(n_qubits) circ = QuantumCircuit(qr) circ.x(qr) circ.global_phase = 0.5 gate = circ.to_gate() comp = QuantumCircuit(qr) comp.append(gate, qr) comp.global_phase = 0.1 self.circuit = comp result = super().test_run_circuit() actual = result.get_statevector(self.circuit) expected = np.exp(1j * 0.6) * np.repeat([[0], [1]], [n_qubits**2 - 1, 1]) self.assertTrue(np.allclose(actual, expected)) if __name__ == "__main__": unittest.main()
https://github.com/JessicaJohnBritto/Quantum-Computing-and-Information
JessicaJohnBritto
## Importing Packages import cirq import numpy as np from cirq.contrib.svg import SVGCircuit import matplotlib.pyplot as plt ## Defining QFT and Inverse QFT def qft_rotations(n_qubits): """A circuit performs the QFT rotations on the specified qubits. Args: n_qubits (list): List of qubits. """ n = len(n_qubits) for i in range(n): k = 0 yield cirq.H(n_qubits[i]) for jj in range(i+1,n,1): k = k+1 yield (cirq.CZ ** (1/(2**(k))))(n_qubits[jj], n_qubits[i]) pass def inverse_qft(n_qubits): """A circuit performs the inverse of QFT rotations on the specified qubits. Args: n_qubits (list): List of qubits. """ n = len(n_qubits) n_qubits1 = np.flip(n_qubits) for i in range(n): k = 0 yield cirq.H(n_qubits1[i]) for jj in range(i+1,n,1): k = k+1 yield (cirq.CZ ** (-1/(2**(k))))(n_qubits1[jj], n_qubits1[i]) # """Visually check the inverse QFT circuit.""" # qubits = cirq.LineQubit.range(4) # qft = cirq.Circuit(inverse_qft(qubits)) # SVGCircuit(qft) """Visually check the QFT circuit.""" qubits = cirq.LineQubit.range(2) qft = cirq.Circuit(qft_rotations(qubits)) SVGCircuit(qft) cirq.unitary(qft) #Defining Quantum Adder def quantum_adder(n_qubits): ''' A circuit performs addition of two numbers Args: n_qubits (list): list of qubits representing the binary representation of ('binary(a)'+'binary(b)'). ''' n = len(n_qubits) # Appending the first half of the qubits to list - kk kk =[n_qubits[i] for i in range(0, int(len(n_qubits)/2),1)] # Perfoms QFT on the first half of the qubits, i.e, on the first number yield qft_rotations(kk) for i in range(0,int(n/2),1): k=0 for j in range(i+int(n/2),(n),1): yield (cirq.CZ ** (1/(2**(k))))(n_qubits[j], n_qubits[i]) k+=1 yield inverse_qft(kk) circuit = cirq.Circuit() # Inputting the two integers in a and b a = int(input("Enter the first number: ")) b = int(input("Enter the second number: ")) c = max(len(np.binary_repr(a)), len(np.binary_repr(b))) + 1 a_bit = np.binary_repr(a, width = c) b_bit = np.binary_repr(b, width = c) # Combined form of binary(a) and binary(b) c1 = a_bit+b_bit qubits = cirq.LineQubit.range(len(c1)) # Preparing Basis State for c1 by applying X-gate on the qubit corresponding to the index of c1 being 1 circuit.append(cirq.X(qubits[i]) for i in range(len(c1)) if c1[i]=='1') circuit.append(quantum_adder(qubits)) # Measuring the first half of the qubits k = [qubits[i] for i in range(0, int(len(qubits)/2),1)] circuit.append(cirq.measure(k, key = 'ab')) simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=1) # print(result.data) c = result.histogram(key="ab") # Retrieving the result from Counter print(list(c)[0]) # print(cirq.ResultDict('ab')) # cirq.plot_state_histogram(result) # SVGCircuit(circuit) def quantum_multiplier(n_qubits): ''' A circuit performs multiplication of two numbers Args: n_qubits (list): list of qubits representing the binary representation of ('binary(a)'+'binary(b)'). ''' n = len(n_qubits) # Appending the first half of the qubits to list - kk kk =[n_qubits[i] for i in range(0, int(len(n_qubits)/2),1)] # Perfoms QFT on the first half of the qubits, i.e, on the first number yield qft_rotations(kk) for i in range(int(3*n/4), n,1): for j in range(int(n/2), int(3*n/4),1): for m in range(int(n/2)): yield (cirq.CCZ ** (1/(2**(-(5*n/4)-m+j+i+1))))(n_qubits[j], n_qubits[i], n_qubits[m]) yield inverse_qft(kk) pass circuit = cirq.Circuit() # Inputting the two integers in a and b a = int(input("Enter the first number: ")) b = int(input("Enter the second number: ")) c = max(len(np.binary_repr(a)), len(np.binary_repr(b))) + 1 a1 = np.binary_repr(0, width = 2*c) a_bit = np.binary_repr(a, width = c) b_bit = np.binary_repr(b, width = c) # Combined form of binary(0), binary(a) and binary(b) c1 = a1 + a_bit+b_bit qubits = cirq.LineQubit.range(len(c1)) # Preparing Basis State for c1 by applying X-gate on the qubit corresponding to the index of c1 being 1 circuit.append(cirq.X(qubits[i]) for i in range(len(c1)) if c1[i]=='1') circuit.append(quantum_multiplier(qubits)) k = [qubits[i] for i in range(0, int(len(qubits)/2),1)] # Measuring the first half of the qubits circuit.append(cirq.measure(k, key = 'ab')) simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=1) # print(result.data) c = result.histogram(key="ab") # Retrieving the result from Counter print(list(c)[0]) # SVGCircuit(circuit) # a = 3 # b = 2 # a_bit = np.binary_repr(a) # # print(a_bit) # b_bit = np.binary_repr(b) # # print(a_bit+ b_bit) # c = a_bit+b_bit # print(c) # qubits = cirq.LineQubit.range(len(c)) # # print(k,f,g,h) # circuit = cirq.Circuit(quantum_adder(qubits)) # SVGCircuit(circuit) # state2 = cirq.Simulator().simulate(circuit, initial_state=1110).state_vector() # print(state2) # print(cirq.dirac_notation(state2)) # circuit.append(cirq.measure(qubits)) # simulator = cirq.Simulator() # result = simulator.run(circuit, repetitions=2) # print(result) # SVGCircuit(circuit) # k = cirq.big_endian_int_to_bits(3, bit_count = 4) # print(k) # for i in range(len(qubits)): # qubits[i] = np.pad(np.array([k[i]]), (2*len(qubits)-1,0)) class MyGate(cirq.Gate): def _init_(self): super(MyGate, self) def _num_qubits_(self): return 1 def _circuit_diagram_info_(self, args): return "MyGate" class MyGate(cirq.Gate): def _init_(self): super(MyGate, self) def _num_qubits_(self): return 1 def _unitary_(self): return np.array([[1,0], [0,1]]) def _circuit_diagram_info_(self, args): return "MyGate" mygate = MyGate() qubits = cirq.LineQubit(0) circuit = cirq.Circuit([cirq.H(qubits), mygate(qubits)]) SVGCircuit(circuit) class MG(cirq.Gate): def __init__(self, k): super(MG, self) self.k = k def _num_qubits_(self): return 2 def _unitary_(self): return np.array([[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0, np.sin(self.k)]]) def _circuit_diagram_info_(self, args): return "ctrl", f"R({self.k})" mg = MG(k=np.pi) qubits = cirq.LineQubit.range(2) circuit = cirq.Circuit(mg(*qubits)) SVGCircuit(circuit) cirq.unitary(circuit) ## QFT gate class QFT(cirq.Gate): def __init__(self, n_qubits): super(QFT, self) self.n_qubits = n_qubits def _num_qubits_(self): return self.n_qubits def _decompose_(self, n_qubits): n = len(n_qubits) for i in range(n): k = 0 yield cirq.H(n_qubits[i]) for jj in range(i+1,n,1): k = k+1 yield (cirq.CZ ** (1/(2**(k))))(n_qubits[jj], n_qubits[i]) def _circuit_diagram_info_(self, args): return ["QFT"] * self.num_qubits() # qubits = cirq.LineQubit.range(2) # circuit = cirq.Circuit(QFT(n_qubits = 2).on(*qubits)) # SVGCircuit(circuit) # cirq.unitary(circuit) ## Quantum Multiplier gate class qmulti(cirq.Gate): def __init__(self, n_qubits): super(qmulti, self) self.n_qubits = n_qubits def _num_qubits_(self): return self.n_qubits def _decompose_(self, n_qubits): n = len(n_qubits) kk =[n_qubits[i] for i in range(0, int(len(n_qubits)/2),1)] yield QFT(n_qubits = int(n/2)).on(*kk) for i in range(int(3*n/4), n, 1): for j in range(int(n/2), int(3*n/4),1): for m in range(int(n/2)): yield (cirq.CCZ ** (1/(2**(-(5*n/4)-m+j+i+1))))(n_qubits[j], n_qubits[i], n_qubits[m]) yield cirq.inverse(QFT(n_qubits = int(n/2)).on(*kk)) def _circuit_diagram_info_(self, args): return ["QMultiplier"] * self.num_qubits() circuit = cirq.Circuit() # Inputting the two integers in a and b a = int(input("Enter the first number: ")) b = int(input("Enter the second number: ")) c = max(len(np.binary_repr(a)), len(np.binary_repr(b))) + 1 a1 = np.binary_repr(0, width = 2*c) a_bit = np.binary_repr(a, width = c) b_bit = np.binary_repr(b, width = c) # Combined form of binary(0), binary(a) and binary(b) c1 = a1 + a_bit+b_bit qubits = cirq.LineQubit.range(len(c1)) # Preparing Basis State for c1 by applying X-gate on the qubit corresponding to the index of c1 being 1 circuit.append(cirq.X(qubits[i]) for i in range(len(c1)) if c1[i]=='1') circuit.append(qmulti(n_qubits = len(qubits)).on(*qubits)) k = [qubits[i] for i in range(0, int(len(qubits)/2),1)] # Measuring the first half of the qubits circuit.append(cirq.measure(k, key = 'ab')) simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=1) c = result.histogram(key="ab") # Retrieving the result from Counter print(list(c)[0])
https://github.com/hritiksauw199/Qiskit-textbook-solutions
hritiksauw199
import numpy as np from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, assemble, transpile from qiskit.visualization import plot_histogram from qiskit_textbook.problems import dj_problem_oracle def dj_oracle(case, n): # We need to make a QuantumCircuit object to return # This circuit has n+1 qubits: the size of the input, # plus one output qubit oracle_qc = QuantumCircuit(n+1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1,2**n) # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, '0'+str(n)+'b') # Next, we place the first X-gates. Each digit in our binary string # corresponds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for qubit in range(n): oracle_qc.cx(qubit, n) # Next, place the final X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(n) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate def dj_algorithm(oracle, n): dj_circuit = QuantumCircuit(n+1, n) # Set up the output qubit: dj_circuit.x(n) dj_circuit.h(n) # And set up the input register: for qubit in range(n): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(n+1)) # Finally, perform the H-gates again and measure: for qubit in range(n): dj_circuit.h(qubit) for i in range(n): dj_circuit.measure(i, i) return dj_circuit n = 4 oracle = dj_problem_oracle(1) dj_circuit = dj_algorithm(oracle, n) dj_circuit.draw() sim = Aer.get_backend('aer_simulator') transpiled_dj_circuit = transpile(dj_circuit, sim) qobj = assemble(transpiled_dj_circuit) results = sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) oracle = dj_problem_oracle(2) dj_circuit = dj_algorithm(oracle, n) dj_circuit.draw() sim = Aer.get_backend('aer_simulator') transpiled_dj_circuit = transpile(dj_circuit, sim) qobj = assemble(transpiled_dj_circuit) results = sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) oracle = dj_problem_oracle(3) dj_circuit = dj_algorithm(oracle, n) dj_circuit.draw() sim = Aer.get_backend('aer_simulator') transpiled_dj_circuit = transpile(dj_circuit, sim) qobj = assemble(transpiled_dj_circuit) results = sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) oracle = dj_problem_oracle(4) dj_circuit = dj_algorithm(oracle, n) dj_circuit.draw() sim = Aer.get_backend('aer_simulator') transpiled_dj_circuit = transpile(dj_circuit, sim) qobj = assemble(transpiled_dj_circuit) results = sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) oracle = dj_problem_oracle(5) dj_circuit = dj_algorithm(oracle, n) dj_circuit.draw() sim = Aer.get_backend('aer_simulator') transpiled_dj_circuit = transpile(dj_circuit, sim) qobj = assemble(transpiled_dj_circuit) results = sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/abbarreto/qiskit2
abbarreto
%run init.ipynb %run init.ipynb p = symbols('p') Ubf = Matrix([[sqrt(1-p),-sqrt(p),0,0],[0,0,sqrt(p),sqrt(1-p)],[0,0,sqrt(1-p),-sqrt(p)],[sqrt(p),sqrt(1-p),0,0]]) Ubf Ubf*Ubf.T, Ubf.T*Ubf g = symbols('gamma') Uad = Matrix([[sqrt(1-g),0,0,sqrt(g)],[0,1,0,0],[0,0,1,0],[-sqrt(g),0,0,sqrt(1-g)]]) Uad, Uad*Uad.T, Uad.T*Uad
https://github.com/chunfuchen/qiskit-chemistry
chunfuchen
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import unittest from parameterized import parameterized import qiskit from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms.adaptive import VQE from qiskit.aqua.components.variational_forms import RYRZ from qiskit.aqua.components.optimizers import COBYLA, SPSA from test.common import QiskitChemistryTestCase from qiskit.chemistry.drivers import HDF5Driver from qiskit.chemistry.core import Hamiltonian, TransformationType, QubitMappingType class TestEnd2End(QiskitChemistryTestCase): """End2End tests.""" def setUp(self): super().setUp() driver = HDF5Driver(hdf5_input=self._get_resource_path('test_driver_hdf5.hdf5')) self.qmolecule = driver.run() core = Hamiltonian(transformation=TransformationType.FULL, qubit_mapping=QubitMappingType.PARITY, two_qubit_reduction=True, freeze_core=False, orbital_reduction=[]) self.qubit_op, self.aux_ops = core.run(self.qmolecule) self.reference_energy = -1.857275027031588 @parameterized.expand([ ['COBYLA_M', 'COBYLA', qiskit.BasicAer.get_backend('statevector_simulator'), 'matrix', 1], ['COBYLA_P', 'COBYLA', qiskit.BasicAer.get_backend('statevector_simulator'), 'paulis', 1], # ['SPSA_P', 'SPSA', qiskit.BasicAer.get_backend('qasm_simulator'), 'paulis', 1024], # ['SPSA_GP', 'SPSA', qiskit.BasicAer.get_backend('qasm_simulator'), 'grouped_paulis', 1024] ]) def test_end2end_h2(self, name, optimizer, backend, mode, shots): if optimizer == 'COBYLA': optimizer = COBYLA() optimizer.set_options(maxiter=1000) elif optimizer == 'SPSA': optimizer = SPSA(max_trials=2000) ryrz = RYRZ(self.qubit_op.num_qubits, depth=3, entanglement='full') vqe = VQE(self.qubit_op, ryrz, optimizer, mode, aux_operators=self.aux_ops) quantum_instance = QuantumInstance(backend, shots=shots) results = vqe.run(quantum_instance) self.assertAlmostEqual(results['energy'], self.reference_energy, places=4) if __name__ == '__main__': unittest.main()