repo
stringclasses
885 values
file
stringclasses
741 values
content
stringlengths
4
215k
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.providers.fake_provider import FakeManilaV2 from qiskit import transpile from qiskit.tools.visualization import plot_histogram # Get a fake backend from the fake provider backend = FakeManilaV2() # Create a simple circuit circuit = QuantumCircuit(3) circuit.h(0) circuit.cx(0,1) circuit.cx(0,2) circuit.measure_all() circuit.draw('mpl') # Transpile the ideal circuit to a circuit that can be directly executed by the backend transpiled_circuit = transpile(circuit, backend) transpiled_circuit.draw('mpl') # Run the transpiled circuit using the simulated fake backend job = backend.run(transpiled_circuit) counts = job.result().get_counts() plot_histogram(counts)
https://github.com/ronitd2002/IBM-Quantum-challenge-2024
ronitd2002
# qc-grader should be 0.18.11 (or higher) import qc_grader qc_grader.__version__ # Import all in one cell import numpy as np import matplotlib.pyplot as plt from timeit import default_timer as timer import warnings from qiskit import QuantumCircuit from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit.circuit.random import random_circuit from qiskit.quantum_info import SparsePauliOp from qiskit.circuit.library import TwoLocal, EfficientSU2 from qiskit_ibm_runtime import QiskitRuntimeService, Estimator, Session, Options from qiskit_serverless import QiskitFunction, save_result, get_arguments, save_result, distribute_task, distribute_qiskit_function, IBMServerlessClient, QiskitFunction from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit_transpiler_service.transpiler_service import TranspilerService from qiskit_aer import AerSimulator # Import for grader from qc_grader.challenges.iqc_2024 import grade_lab3_qs_ex1, grade_lab3_qs_ex2 service = QiskitRuntimeService(channel="ibm_quantum") # Specify a system to use for transpilation real_backend = service.backend("ibm_brisbane") # Qiskit Pattern Step 1: Map quantum circuits and operators (Define Ansatz and operators) num_qubits = 3#Add your code here rotation_blocks = ['ry','rz'] #Add your code here entanglement_blocks = 'cz' #Add your code here entanglement = 'full' #Add your code here reps= 1 insert_barriers=True # Define Ansatz ansatz = TwoLocal(num_qubits= num_qubits, rotation_blocks= rotation_blocks, entanglement_blocks= entanglement_blocks, entanglement= entanglement, reps=reps , insert_barriers= insert_barriers) #Add your code here # Define parameters num_params = ansatz.num_parameters # Qiskit Pattern Step 2: Optimize the circuit for quantum execution optimization_level = 2 pm = generate_preset_pass_manager(backend=real_backend, optimization_level=optimization_level) isa_circuit = pm.run(ansatz) # Add your code here # Define Hamiltonian for VQE pauli_op = SparsePauliOp(['ZII', 'IZI', 'IIZ']) hamiltonian_isa = pauli_op.apply_layout(layout=isa_circuit.layout) # Setup Qiskit Serverless Client and Qiskit Runtime client client = IBMServerlessClient("hidden") # Add in your IBM Quantum Token to QiskitServerless Client # For the challenge, we will be using QiskitRuntime Local testing mode. Change to True only if you wish to use real backend. USE_RUNTIME_SERVICE = False if USE_RUNTIME_SERVICE: service = QiskitRuntimeService( channel='ibm_quantum', verify=False ) else: service = None # Define the Qiskit Function if USE_RUNTIME_SERVICE: function = QiskitFunction(title= "vqe", entrypoint="vqe.py", working_dir="./vqe") else: function = QiskitFunction(title= "vqe" , entrypoint="vqe.py", working_dir="./vqe", dependencies=["qiskit_aer"]) # Upload the Qiskit Function using IBMServerlessClient client.upload(function) # Define input_arguments input_arguments = { "ansatz": isa_circuit, # Replace with your transpiled ansatz "operator": hamiltonian_isa, # Replace with the hamiltonian operator "method": "COBYLA", # Using COBYLA method for the optimizer "service": service, # Add your code here } # Qiskit Pattern Step 3: Run the payload on backend job = client.run("vqe", arguments= input_arguments) # Pass the arguments dict here) # Submit your answer using following code grade_lab3_qs_ex1(function, input_arguments, job) # Expected result type: QiskitFunction, dict, Job # Return jobid job # Check job completion status job.status() # Monitor log logs = job.logs() for log in logs.splitlines(): print(log) # Return result from QiskitFunction job job.result() # Qiskit Pattern Step 4: Postprocess and analyze the Estimator V2 results result = job.result() plt.style.use('ggplot') fig, ax = plt.subplots() plt.plot(range(result["iters"]), result["cost_history"], ls='--', c='k') plt.xlabel("Energy") plt.ylabel("Cost") plt.draw() # Setup 3 circuits with Efficient SU2 num_qubits = [41, 51, 61] circuits = [EfficientSU2(nq, su2_gates=["rz","ry"], entanglement="circular", reps=1).decompose() for nq in num_qubits] # Setup Qiskit Runtime Service backend # QiskitRuntimeService.save_account( # channel="ibm_quantum", # token="YOUR_IBM_QUANTUM_TOKEN", # set_as_default=True, # # Use 'overwrite=True' if you're updating your token. # overwrite=True, # ) service = QiskitRuntimeService(channel="ibm_quantum") backend = service.backend("ibm_brisbane") # Define Configs optimization_levels = [1,2,3] # Add your code here pass_managers = [{'pass_manager': generate_preset_pass_manager(optimization_level=level, backend=backend), 'optimization_level': level} for level in optimization_levels] transpiler_services = [ {'service': TranspilerService(backend_name="ibm_brisbane", ai="false", optimization_level=3,), 'ai': False, 'optimization_level': 3}, {'service': TranspilerService(backend_name="ibm_brisbane", ai="true", optimization_level=3,), 'ai': True, 'optimization_level': 3} ] configs = pass_managers + transpiler_services # Local transpilation setup def transpile_parallel_local(circuit: QuantumCircuit, config): """Transpilation for an abstract circuit into an ISA circuit for a given config.""" transpiled_circuit = config.run(circuit) return transpiled_circuit # Run local transpilation warnings.filterwarnings("ignore") start = timer() # Run transpilations locally for baseline results = [] for circuit in circuits: for config in configs: if 'pass_manager' in config: results.append(transpile_parallel_local(circuit, config['pass_manager'])) else: results.append(transpile_parallel_local(circuit, config['service'])) end = timer() # Record local execution time execution_time_local = end - start print("Execution time locally: ", execution_time_local) # Authenticate to the remote cluster and submit the pattern for remote execution if not done in previous exercise serverless = IBMServerlessClient("hidden") transpile_parallel_function = QiskitFunction( title="transpile_parallel", entrypoint="transpile_parallel.py", working_dir="./transpile_parallel", dependencies=["qiskit-transpiler-service"] ) serverless.upload(transpile_parallel_function) # Add your code here # Get list of functions serverless.list() # Fetch the specific function titled "transpile_parallel" transpile_parallel_serverless = serverless.get("transpile_parallel") # Add your code here # Run the "transpile_parallel" function in the serverless environment job = transpile_parallel_serverless.run( circuits= circuits, # Add your code here, backend_name= backend # Add your code here ) # Submit your answer using following code grade_lab3_qs_ex2(optimization_levels, transpiler_services, transpile_parallel_function, transpile_parallel_serverless, job) # Expected result type: list, list, QiskitFunction, QiskitFunction, Job job.status() logs = job.logs() for log in logs.splitlines(): print(log) result = job.result() result_transpiled = result["transpiled_circuits"] # Compare execution times: execution_time_serverless = result["execution_time"] from utils import plot_execution_times plot_execution_times(execution_time_serverless, execution_time_local) from utils import process_transpiled_circuits best_circuits, best_depths, best_methods = process_transpiled_circuits(configs, result_transpiled) # Display the best circuits, depths, and methods for i, (circuit, depth, method) in enumerate(zip(best_circuits, best_depths, best_methods)): print(f"Best result for circuit {i + 1}:") print(f" Depth: {depth}") print(f" Method: {method}") # Display or process the best circuit as needed # e.g., circuit.draw(output="mpl")
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) ### removed cx gate ### return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1, 0) ### removed h gate ### return qc
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.opflow import I, X, Y, Z print(I, X, Y, Z) print(1.5 * I) print(2.5 * X) print(X + 2.0 * Y) print(X^Y^Z) print(X @ Y @ Z) print((X + Y) @ (Y + Z)) print((X + Y) ^ (Y + Z)) (I, X) 2.0 * X^Y^Z print(1.1 * ((1.2 * X)^(Y + (1.3 * Z)))) from qiskit.opflow import (StateFn, Zero, One, Plus, Minus, H, DictStateFn, VectorStateFn, CircuitStateFn, OperatorStateFn) print(Zero, One) print(Plus, Minus) print(Zero.eval('0')) print(Zero.eval('1')) print(One.eval('1')) print(Plus.eval('0')) print(Minus.eval('1')) One.adjoint() ~One (2.0 + 3.0j) * Zero print(Zero + One) import math v_zero_one = (Zero + One) / math.sqrt(2) print(v_zero_one) print(Plus + Minus) print(~One @ One) (~One @ One).eval() (~v_zero_one @ v_zero_one).eval() (~Minus @ One).eval() print((~One).compose(One)) (~One).eval(One) print(Zero^Plus) print((Zero^Plus).to_circuit_op()) print(600 * ((One^5) + (Zero^5))) print((One^Zero)^3) print(((Plus^Minus)^2).to_matrix_op()) print(((Plus^One)^2).to_circuit_op()) print(((Plus^One)^2).to_matrix_op().sample()) print(StateFn({'0':1})) print(StateFn({'0':1}) == Zero) print(StateFn([0,1,1,0])) from qiskit.circuit.library import RealAmplitudes print(StateFn(RealAmplitudes(2))) from qiskit.opflow import X, Y, Z, I, CX, T, H, S, PrimitiveOp X print(X.eval('0')) X.eval('0').eval('1') print(CX) print(CX.to_matrix().real) # The imaginary part vanishes. CX.eval('01') # 01 is the one in decimal. We get the first column. CX.eval('01').eval('11') # This returns element with (zero-based) index (1, 3) print(X @ One) (X @ One).eval() X.eval(One) print(((~One^2) @ (CX.eval('01'))).eval()) print(((H^5) @ ((CX^2)^I) @ (I^(CX^2)))**2) print((((H^5) @ ((CX^2)^I) @ (I^(CX^2)))**2) @ (Minus^5)) print(((H^I^I)@(X^I^I)@Zero)) print(~One @ Minus) from qiskit.opflow import ListOp print((~ListOp([One, Zero]) @ ListOp([One, Zero]))) print((~ListOp([One, Zero]) @ ListOp([One, Zero])).reduce()) print(StateFn(Z).adjoint()) StateFn(Z).adjoint() print(StateFn(Z).adjoint().eval(Zero)) print(StateFn(Z).adjoint().eval(One)) print(StateFn(Z).adjoint().eval(Plus)) import numpy as np from qiskit.opflow import I, X, Y, Z, H, CX, Zero, ListOp, PauliExpectation, PauliTrotterEvolution, CircuitSampler, MatrixEvolution, Suzuki from qiskit.circuit import Parameter from qiskit import Aer two_qubit_H2 = (-1.0523732 * I^I) + \ (0.39793742 * I^Z) + \ (-0.3979374 * Z^I) + \ (-0.0112801 * Z^Z) + \ (0.18093119 * X^X) print(two_qubit_H2) evo_time = Parameter('θ') evolution_op = (evo_time*two_qubit_H2).exp_i() print(evolution_op) # Note, EvolvedOps print as exponentiations print(repr(evolution_op)) h2_measurement = StateFn(two_qubit_H2).adjoint() print(h2_measurement) bell = CX @ (I ^ H) @ Zero print(bell) evo_and_meas = h2_measurement @ evolution_op @ bell print(evo_and_meas) trotterized_op = PauliTrotterEvolution(trotter_mode=Suzuki(order=2, reps=1)).convert(evo_and_meas) # We can also set trotter_mode='suzuki' or leave it empty to default to first order Trotterization. print(trotterized_op) bound = trotterized_op.bind_parameters({evo_time: .5}) bound[1].to_circuit().draw() # Note that XX was the only non-diagonal measurement in our H2 Observable print(PauliExpectation(group_paulis=False).convert(h2_measurement)) print(PauliExpectation().convert(h2_measurement)) diagonalized_meas_op = PauliExpectation().convert(trotterized_op) print(diagonalized_meas_op) evo_time_points = list(range(8)) h2_trotter_expectations = diagonalized_meas_op.bind_parameters({evo_time: evo_time_points}) h2_trotter_expectations.eval() sampler = CircuitSampler(backend=Aer.get_backend('aer_simulator')) # sampler.quantum_instance.run_config.shots = 1000 sampled_trotter_exp_op = sampler.convert(h2_trotter_expectations) sampled_trotter_energies = sampled_trotter_exp_op.eval() print('Sampled Trotterized energies:\n {}'.format(np.real(sampled_trotter_energies))) print('Before:\n') print(h2_trotter_expectations.reduce()[0][0]) print('\nAfter:\n') print(sampled_trotter_exp_op[0][0]) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/strangequarkkk/BB84-Protocol-for-QKD
strangequarkkk
import matplotlib as mpl import numpy as np import matplotlib.pyplot as plt from qiskit import QuantumCircuit, Aer, transpile, assemble from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(1,1) # Alice prepares qubit in state |+> qc.h(0) qc.barrier() # Alice now sends the qubit to Bob # who measures it in the X-basis qc.h(0) qc.measure(0,0) # Draw and simulate circuit display(qc.draw()) aer_sim = Aer.get_backend('aer_simulator') job = aer_sim.run(assemble(qc)) plot_histogram(job.result().get_counts()) qc = QuantumCircuit(1,1) # Alice prepares qubit in state |+> qc.h(0) # Alice now sends the qubit to Bob # but Eve intercepts and tries to read it qc.measure(0, 0) qc.barrier() # Eve then passes this on to Bob # who measures it in the X-basis qc.h(0) qc.measure(0,0) # Draw and simulate circuit display(qc.draw()) aer_sim = Aer.get_backend('aer_simulator') job = aer_sim.run(assemble(qc)) plot_histogram(job.result().get_counts()) n = 100 ## Step 1 # Alice generates bits. alice_bits = np.random.randint(0,2,n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = np.random.randint(0,2,n) # Function to compare the bits & bases generated by alice, and then 'encode' the message. Basically determines the state of the qubit/photon to send. def encode_message(bits, bases): message = [] for i in range(n): qc = QuantumCircuit(1,1) if bases[i] == 0: # Prepare qubit in Z-basis if bits[i] == 0: pass else: qc.x(0) else: # Prepare qubit in X-basis if bits[i] == 0: qc.h(0) else: qc.x(0) qc.h(0) qc.barrier() message.append(qc) return message # Alice computes the encoded message using the function defined above. message = encode_message(alice_bits, alice_bases) ## Step 3 # Decide which basis to measure in: bob_bases = np.random.randint(0,2,n) # Function to decode the message sent by alice by comparing qubit/photon states with Bob's generated bases. def measure_message(message, bases): backend = Aer.get_backend('aer_simulator') measurements = [] for q in range(n): if bases[q] == 0: # measuring in Z-basis message[q].measure(0,0) if bases[q] == 1: # measuring in X-basis message[q].h(0) message[q].measure(0,0) aer_sim = Aer.get_backend('aer_simulator') qobj = assemble(message[q], shots=1, memory=True) result = aer_sim.run(qobj).result() measured_bit = int(result.get_memory()[0]) measurements.append(measured_bit) return measurements # Decode the message according to his bases bob_results = measure_message(message, bob_bases) ## Step 4 # Function to perform sifting i.e. disregard the bits for which Bob's & A;ice's bases didnot match. def remove_garbage(a_bases, b_bases, bits): good_bits = [] for q in range(n): if a_bases[q] == b_bases[q]: # If both used the same basis, add # this to the list of 'good' bits good_bits.append(bits[q]) return good_bits # Performing sifting for Alice's and Bob's bits. alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) bob_key = remove_garbage(alice_bases, bob_bases, bob_results) print("Alice's key after sifting (without interception)", alice_key) print("Bob's key after sifting (without interception) ", bob_key) # # Step 5 # # Function for parameter estimation i.e. determining the error rate by comparing subsets taen from both Alice's key & Bob's key. # def sample_bits(bits, selection): # sample = [] # for i in selection: # # use np.mod to make sure the # # bit we sample is always in # # the list range # i = np.mod(i, len(bits)) # # pop(i) removes the element of the # # list at index 'i' # sample.append(bits.pop(i)) # return sample # # Performing parameter estimation & disregarding the bits used for comparison from Alice's & Bob's key. # sample_size = 15 # bit_selection = np.random.randint(0,n,size=sample_size) # bob_sample = sample_bits(bob_key, bit_selection) # alice_sample = sample_bits(alice_key, bit_selection) num = 0 for i in range(0,len(bob_key)): if alice_key[i] == bob_key[i]: num = num + 1 matching_bits = (num/len(bob_key))*100 print(matching_bits,"% of the bits match.") ## Step 1 alice_bits = np.random.randint(2, size=n) ## Step 2 alice_bases = np.random.randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Interception!! eve_bases = np.random.randint(2, size=n) intercepted_message = measure_message(message, eve_bases) ## Step 3 bob_bases = np.random.randint(2, size=n) bob_results = measure_message(message, bob_bases) ## Step 4 bob_key = remove_garbage(alice_bases, bob_bases, bob_results) alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) print("Alice's key after sifting (with interception)", alice_key) print("Bob's key after sifting (with interception) ", bob_key) # ## Step 5 # sample_size = 15 # bit_selection = np.random.randint(n, size=sample_size) # bob_sample = sample_bits(bob_key, bit_selection) # alice_sample = sample_bits(alice_key, bit_selection) num = 0 for i in range(0,len(bob_key)): if alice_key[i] == bob_key[i]: num = num + 1 matching_bits = (num/len(bob_key))*100 print(matching_bits,"% of the bits match.") plt.rcParams['axes.linewidth'] = 2 mpl.rcParams['font.family'] = ['Georgia'] plt.figure(figsize=(10.5,6)) ax=plt.axes() ax.set_title('') ax.set_xlabel('$n$ (Number of bits drawn from the sifted keys for determining error rate)',fontsize = 18,labelpad=10) ax.set_ylabel(r'$P(Eve\ detected)$',fontsize = 18,labelpad=10) ax.xaxis.set_tick_params(which='major', size=8, width=2, direction='in', top='on') ax.yaxis.set_tick_params(which='major', size=8, width=2, direction='in', top='on') ax.tick_params(axis='x', labelsize=20) ax.tick_params(axis='y', labelsize=20) ax. xaxis. label. set_size(20) ax. yaxis. label. set_size(20) n = 30 x = np.arange(n+1) y = 1 - 0.75**x ax.plot(x,y,color = plt.cm.rainbow(np.linspace(0, 1, 5))[0], marker = "s", markerfacecolor='r')
https://github.com/ughyper3/grover-quantum-algorithm
ughyper3
import numpy as np import networkx as nx import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, assemble from qiskit.quantum_info import Statevector from qiskit.aqua.algorithms import NumPyEigensolver from qiskit.quantum_info import Pauli from qiskit.aqua.operators import op_converter from qiskit.aqua.operators import WeightedPauliOperator from qiskit.visualization import plot_histogram from qiskit.providers.aer.extensions.snapshot_statevector import * from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost from utils import mapeo_grafo from collections import defaultdict from operator import itemgetter from scipy.optimize import minimize import matplotlib.pyplot as plt LAMBDA = 10 SEED = 10 SHOTS = 10000 # returns the bit index for an alpha and j def bit(i_city, l_time, num_cities): return i_city * num_cities + l_time # e^(cZZ) def append_zz_term(qc, q_i, q_j, gamma, constant_term): qc.cx(q_i, q_j) qc.rz(2*gamma*constant_term,q_j) qc.cx(q_i, q_j) # e^(cZ) def append_z_term(qc, q_i, gamma, constant_term): qc.rz(2*gamma*constant_term, q_i) # e^(cX) def append_x_term(qc,qi,beta): qc.rx(-2*beta, qi) def get_not_edge_in(G): N = G.number_of_nodes() not_edge = [] for i in range(N): for j in range(N): if i != j: buffer_tupla = (i,j) in_edges = False for edge_i, edge_j in G.edges(): if ( buffer_tupla == (edge_i, edge_j) or buffer_tupla == (edge_j, edge_i)): in_edges = True if in_edges == False: not_edge.append((i, j)) return not_edge def get_classical_simplified_z_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # z term # z_classic_term = [0] * N**2 # first term for l in range(N): for i in range(N): z_il_index = bit(i, l, N) z_classic_term[z_il_index] += -1 * _lambda # second term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_jl z_jl_index = bit(j, l, N) z_classic_term[z_jl_index] += _lambda / 2 # third term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_ij z_ij_index = bit(i, j, N) z_classic_term[z_ij_index] += _lambda / 2 # fourth term not_edge = get_not_edge_in(G) # include order tuples ej = (1,0), (0,1) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 4 # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) z_classic_term[z_jlplus_index] += _lambda / 4 # fifthy term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) z_classic_term[z_il_index] += weight_ij / 4 # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) z_classic_term[z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) z_classic_term[z_il_index] += weight_ji / 4 # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) z_classic_term[z_jlplus_index] += weight_ji / 4 return z_classic_term def tsp_obj_2(x, G,_lambda): # obtenemos el valor evaluado en f(x_1, x_2,... x_n) not_edge = get_not_edge_in(G) N = G.number_of_nodes() tsp_cost=0 #Distancia weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # x_il x_il_index = bit(edge_i, l, N) # x_jlplus l_plus = (l+1) % N x_jlplus_index = bit(edge_j, l_plus, N) tsp_cost+= int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ij # add order term because G.edges() do not include order tuples # # x_i'l x_il_index = bit(edge_j, l, N) # x_j'lplus x_jlplus_index = bit(edge_i, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ji #Constraint 1 for l in range(N): penal1 = 1 for i in range(N): x_il_index = bit(i, l, N) penal1 -= int(x[x_il_index]) tsp_cost += _lambda * penal1**2 #Contstraint 2 for i in range(N): penal2 = 1 for l in range(N): x_il_index = bit(i, l, N) penal2 -= int(x[x_il_index]) tsp_cost += _lambda*penal2**2 #Constraint 3 for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # x_il x_il_index = bit(i, l, N) # x_j(l+1) l_plus = (l+1) % N x_jlplus_index = bit(j, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * _lambda return tsp_cost def get_classical_simplified_zz_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # zz term # zz_classic_term = [[0] * N**2 for i in range(N**2) ] # first term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) # z_jl z_jl_index = bit(j, l, N) zz_classic_term[z_il_index][z_jl_index] += _lambda / 2 # second term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) # z_ij z_ij_index = bit(i, j, N) zz_classic_term[z_il_index][z_ij_index] += _lambda / 2 # third term not_edge = get_not_edge_in(G) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += _lambda / 4 # fourth term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ji / 4 return zz_classic_term def get_classical_simplified_hamiltonian(G, _lambda): # z term # z_classic_term = get_classical_simplified_z_term(G, _lambda) # zz term # zz_classic_term = get_classical_simplified_zz_term(G, _lambda) return z_classic_term, zz_classic_term def get_cost_circuit(G, gamma, _lambda): N = G.number_of_nodes() N_square = N**2 qc = QuantumCircuit(N_square,N_square) z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _lambda) # z term for i in range(N_square): if z_classic_term[i] != 0: append_z_term(qc, i, gamma, z_classic_term[i]) # zz term for i in range(N_square): for j in range(N_square): if zz_classic_term[i][j] != 0: append_zz_term(qc, i, j, gamma, zz_classic_term[i][j]) return qc def get_mixer_operator(G,beta): N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) for n in range(N**2): append_x_term(qc, n, beta) return qc def get_QAOA_circuit(G, beta, gamma, _lambda): assert(len(beta)==len(gamma)) N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) # init min mix state qc.h(range(N**2)) p = len(beta) for i in range(p): qc = qc.compose(get_cost_circuit(G, gamma[i], _lambda)) qc = qc.compose(get_mixer_operator(G, beta[i])) qc.barrier(range(N**2)) qc.snapshot_statevector("final_state") qc.measure(range(N**2),range(N**2)) return qc def invert_counts(counts): return {k[::-1] :v for k,v in counts.items()} # Sample expectation value def compute_tsp_energy_2(counts, G): energy = 0 get_counts = 0 total_counts = 0 for meas, meas_count in counts.items(): obj_for_meas = tsp_obj_2(meas, G, LAMBDA) energy += obj_for_meas*meas_count total_counts += meas_count mean = energy/total_counts return mean def get_black_box_objective_2(G,p): backend = Aer.get_backend('qasm_simulator') sim = Aer.get_backend('aer_simulator') # function f costo def f(theta): beta = theta[:p] gamma = theta[p:] # Anzats qc = get_QAOA_circuit(G, beta, gamma, LAMBDA) result = execute(qc, backend, seed_simulator=SEED, shots= SHOTS).result() final_state_vector = result.data()["snapshots"]["statevector"]["final_state"][0] state_vector = Statevector(final_state_vector) probabilities = state_vector.probabilities() probabilities_states = invert_counts(state_vector.probabilities_dict()) expected_value = 0 for state,probability in probabilities_states.items(): cost = tsp_obj_2(state, G, LAMBDA) expected_value += cost*probability counts = result.get_counts() mean = compute_tsp_energy_2(invert_counts(counts),G) return mean return f def crear_grafo(cantidad_ciudades): pesos, conexiones = None, None mejor_camino = None while not mejor_camino: pesos, conexiones = rand_graph(cantidad_ciudades) mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False) G = mapeo_grafo(conexiones, pesos) return G, mejor_costo, mejor_camino def run_QAOA(p,ciudades, grafo): if grafo == None: G, mejor_costo, mejor_camino = crear_grafo(ciudades) print("Mejor Costo") print(mejor_costo) print("Mejor Camino") print(mejor_camino) print("Bordes del grafo") print(G.edges()) print("Nodos") print(G.nodes()) print("Pesos") labels = nx.get_edge_attributes(G,'weight') print(labels) else: G = grafo intial_random = [] # beta, mixer Hammiltonian for i in range(p): intial_random.append(np.random.uniform(0,np.pi)) # gamma, cost Hammiltonian for i in range(p): intial_random.append(np.random.uniform(0,2*np.pi)) init_point = np.array(intial_random) obj = get_black_box_objective_2(G,p) res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True}) print(res_sample) if __name__ == '__main__': # Run QAOA parametros: profundidad p, numero d ciudades, run_QAOA(5, 3, None)
https://github.com/0tt3r/QuaC-qiskit
0tt3r
# -*- coding: utf-8 -*- """In this example, two-qubit Bell states are generated using the plugin. Additionally, a Quac noise model is applied. """ import math import numpy as np import matplotlib.pyplot as plt from qiskit import QuantumCircuit, execute from qiskit.visualization import plot_histogram from quac_qiskit import Quac from quac_qiskit.models import QuacNoiseModel def main(): circuit = QuantumCircuit(2, 2) circuit.u2(0, math.pi, 0) circuit.cx(0, 1) circuit.measure_all() circuit2 = QuantumCircuit(2, 2) circuit2.h(0) circuit2.cx(0, 1) circuit2.measure_all() print("Available QuaC backends:") print(Quac.backends()) simulator = Quac.get_backend('generic_counts_simulator', n_qubits=2, max_shots=10000, max_exp=75, basis_gates=['u1', 'u2', 'u3', 'cx']) # generic backends require extra parameters # Noise model with T1, T2, and measurement error terms noise_model = QuacNoiseModel( [1000, 1000], [50000, 50000], [np.eye(2), np.array([[0.95, 0.1], [0.05, 0.9]])], None ) # Execute the circuit on the QuaC simulator job = execute([circuit, circuit2], simulator, shots=1000, quac_noise_model=noise_model) print(job.result()) print(job.result().get_counts()) plot_histogram(job.result().get_counts(), title="Bell States Example") plt.show() if __name__ == '__main__': main()
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (5,3), dpi = 100) p = np.arange(0,1.01,0.01) plt.plot(p, p, label = r'$p$'); plt.plot(p, 3*p**2-2*p**3, label = r'$p_{e}$') plt.xlim(0,1); plt.ylim(-0.01,1.01); plt.legend(); plt.xlabel('p'); plt.show() from qiskit import * def qc_coding_bf(th, ph): qc = QuantumCircuit(3, name = 'Coding BF') qc.u(th, ph, 0, 0) qc.barrier() qc.cx(0,1); qc.cx(1,2) return qc qc_coding_bf_ = qc_coding_bf(math.pi, math.pi/4); qc_coding_bf_.draw(output = 'mpl') qc = QuantumCircuit(3, 1); qc.cx([0], [2]); qc.cx([1], [2]); qc.measure([2], 0); qc.draw(output = 'mpl') qc = QuantumCircuit(5, 2); qc.u(0.1, 0.2, 0.2, [0]); qc.cx([0], [1]); qc.cx([1], [2]); qc.barrier() qc.cx([0], [3]); qc.cx([1], [3]); qc.cx([1], [4]); qc.cx([2], [4]); qc.barrier(); qc.measure([3, 4], [0, 1]) qc.draw(output = 'mpl') def qc_ec_bf(th, ph, lb, j): qc = QuantumCircuit(5, name = 'EC_BF') qc.u(th, ph, lb, [0]) # qubit state preparation qc.barrier() qc.cx([0], [1]); qc.cx([1], [2]) # encoding qc.barrier() if j == 0 or j == 1 or j == 2: # error qc.x([j]) qc.barrier() qc.cx([0], [3]); qc.cx([1], [3]); qc.cx([1], [4]); qc.cx([2], [4]) # syndrome detection qc.barrier() qc.x([3]); qc.ccx([4], [3], [2]); qc.x([3]); qc.ccx([4], [3], [1]) # correction qc.x([4]); qc.ccx([4], [3], [0]); qc.x([4]) # correction qc.barrier() return qc th, ph, lb = math.pi, 0.0, 0.0; j = 2; qc_ec_bf_ = qc_ec_bf(th, ph, lb, j) qc_ec_bf_.draw(output = 'mpl') from qiskit import * nshots = 8192 qiskit.IBMQ.load_account() #provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') #device = provider.get_backend('ibmq_jakarta') provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibmq_bogota') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.tools.monitor import backend_overview, backend_monitor from qiskit.tools.visualization import plot_histogram qc = QuantumCircuit(5, 3); j = 0 # sets the error qc_ec_bf_ = qc_ec_bf(math.pi/2, 0.0, 0.0, j); qc.append(qc_ec_bf_, [0, 1, 2, 3, 4]) qc.measure([0, 1, 2], [0, 1, 2]) qc.decompose().draw(output = 'mpl') job_sim = execute(qc, backend = simulator, shots = nshots).result() plot_histogram(job_sim.get_counts(qc)) job_exp = execute(qc, backend = device, shots = nshots) print(job_exp.job_id()); job_monitor(job_exp) plot_histogram(job_exp.result().get_counts(qc)) qc = QuantumCircuit(2, 1) qc.u(1,2,3, [1]) qc.barrier() qc.h([0]); qc.cz(0, 1); qc.h([0]); qc.measure(0,0); qc.draw(output = 'mpl') qc = QuantumCircuit(2, 1); qc.u(1,2,3, 1); qc.barrier() qc.cx(1,0); qc.measure(0,0); qc.draw(output = 'mpl') qc = QuantumCircuit(2, 1); qc.u(1,2,3, 1) qc.barrier() qc.h(0); qc.cx(0,1); qc.h(0); qc.measure(0,0); qc.draw(output = 'mpl') qc = QuantumCircuit(2, 1); qc.u(1,2,3, [1]); qc.barrier() qc.h(1); qc.cx(1,0); qc.h(1); qc.measure(0,0); qc.draw(output = 'mpl') qc = QuantumCircuit(2, 1); qc.u(0.1, 0.2, 0.3, [1]) qc.barrier() qc.h(0); qc.cu(0.4, 0.5, 0.6, 0.0, [0], [1]); qc.h([0]); qc.measure([0], [0]) qc.draw(output = 'mpl') qc = QuantumCircuit(2, 1) th, ph, lb = math.pi, 0.0, 0.0; qc.u(th, ph, lb, [0]) # state preparation qc.barrier(); qc.cx([0], [1]); qc.barrier() qc.x([0]); qc.barrier() qc.cx([0], [1]); qc.cx([1], [0]) qc.measure([0], [0]) qc.draw(output = 'mpl') job = execute(qc, backend = simulator, shots = nshots) plot_histogram(job.result().get_counts(qc)) job = execute(qc, backend = device, shots = nshots); job_monitor(job) plot_histogram(job.result().get_counts(qc)) # quantum circuit for bit flip error mitigation def qc_em_bf(): qc = QuantumCircuit(2, name = 'EM_BF') qc.cx([0], [1]); qc.cx([0], [1]); qc.cx([1], [0]); qc.reset([1]) return qc qc_em_bf_ = qc_em_bf(); qc_em_bf_.draw(output = 'mpl') N = 5; qc = QuantumCircuit(1, N); qc.x([0]); for j in range(0, N): qc.id([0]); qc.measure([0],[j]) job = execute(qc, backend = simulator, shots = nshots) qc.draw(output = 'mpl') plot_histogram(job.result().get_counts(qc)) job = execute(qc, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc)) N = 5; qc = QuantumCircuit(2, N); qc.x([0]); for j in range(0, N): qc_em_bf_ = qc_em_bf(); qc.append(qc_em_bf_, [0, 1]); qc.measure([0],[j]) job = execute(qc, backend = simulator, shots = nshots) qc.decompose().draw(output = 'mpl') plot_histogram(job.result().get_counts(qc)) job = execute(qc, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc)) import math qc = QuantumCircuit(2, 1) th, ph, lb = math.pi, 0.0, 0.0; qc.u(th, ph, lb, [0]) # state preparation qc.barrier(); qc.cx([0], [1]); qc.barrier() qc.z([0]); qc.x([0]); qc.h([0]); qc.barrier() qc.cx([0], [1]); qc.cx([1], [0]); qc.measure([0], [0]) qc.draw(output = 'mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.72" # Two Hydrogen atoms, 0.72 Angstrom apart ) molecule = driver.run() from qiskit_nature.second_q.mappers import QubitConverter, ParityMapper qubit_converter = QubitConverter(ParityMapper()) hamiltonian = qubit_converter.convert(molecule.second_q_ops()[0]) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver sol = NumPyMinimumEigensolver().compute_minimum_eigenvalue(hamiltonian) real_solution = molecule.interpret(sol) real_solution.groundenergy from qiskit_ibm_runtime import QiskitRuntimeService, Estimator, Session, Options service = QiskitRuntimeService() backend = "ibmq_qasm_simulator" from qiskit.algorithms.minimum_eigensolvers import VQE # Use RealAmplitudes circuit to create trial states from qiskit.circuit.library import RealAmplitudes ansatz = RealAmplitudes(num_qubits=2, reps=2) # Search for better states using SPSA algorithm from qiskit.algorithms.optimizers import SPSA optimizer = SPSA(150) # Set a starting point for reproduceability import numpy as np np.random.seed(6) initial_point = np.random.uniform(-np.pi, np.pi, 12) # Create an object to store intermediate results from dataclasses import dataclass @dataclass class VQELog: values: list parameters: list def update(self, count, parameters, mean, _metadata): self.values.append(mean) self.parameters.append(parameters) print(f"Running circuit {count} of ~350", end="\r", flush=True) log = VQELog([],[]) # Main calculation with Session(service=service, backend=backend) as session: options = Options() options.optimization_level = 3 vqe = VQE(Estimator(session=session, options=options), ansatz, optimizer, callback=log.update, initial_point=initial_point) result = vqe.compute_minimum_eigenvalue(hamiltonian) print("Experiment complete.".ljust(30)) print(f"Raw result: {result.optimal_value}") if 'simulator' not in backend: # Run once with ZNE error mitigation options.resilience_level = 2 vqe = VQE(Estimator(session=session, options=options), ansatz, SPSA(1), initial_point=result.optimal_point) result = vqe.compute_minimum_eigenvalue(hamiltonian) print(f"Mitigated result: {result.optimal_value}") import matplotlib.pyplot as plt plt.rcParams["font.size"] = 14 # Plot energy and reference value plt.figure(figsize=(12, 6)) plt.plot(log.values, label="Estimator VQE") plt.axhline(y=real_solution.groundenergy, color="tab:red", ls="--", label="Target") plt.legend(loc="best") plt.xlabel("Iteration") plt.ylabel("Energy [H]") plt.title("VQE energy") plt.show() import qiskit_ibm_runtime qiskit_ibm_runtime.version.get_version_info() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt import numpy as np from qiskit.circuit import ParameterVector from qiskit.circuit.library import TwoLocal from qiskit.quantum_info import Statevector from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit_aer.primitives import Sampler from qiskit_finance.applications.estimation import EuropeanCallPricing from qiskit_finance.circuit.library import NormalDistribution # Set upper and lower data values bounds = np.array([0.0, 7.0]) # Set number of qubits used in the uncertainty model num_qubits = 3 # Load the trained circuit parameters g_params = [0.29399714, 0.38853322, 0.9557694, 0.07245791, 6.02626428, 0.13537225] # Set an initial state for the generator circuit init_dist = NormalDistribution(num_qubits, mu=1.0, sigma=1.0, bounds=bounds) # construct the variational form var_form = TwoLocal(num_qubits, "ry", "cz", entanglement="circular", reps=1) # keep a list of the parameters so we can associate them to the list of numerical values # (otherwise we need a dictionary) theta = var_form.ordered_parameters # compose the generator circuit, this is the circuit loading the uncertainty model g_circuit = init_dist.compose(var_form) # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 2 # set the approximation scaling for the payoff function c_approx = 0.25 # Evaluate trained probability distribution values = [ bounds[0] + (bounds[1] - bounds[0]) * x / (2**num_qubits - 1) for x in range(2**num_qubits) ] uncertainty_model = g_circuit.assign_parameters(dict(zip(theta, g_params))) amplitudes = Statevector.from_instruction(uncertainty_model).data x = np.array(values) y = np.abs(amplitudes) ** 2 # Sample from target probability distribution N = 100000 log_normal = np.random.lognormal(mean=1, sigma=1, size=N) log_normal = np.round(log_normal) log_normal = log_normal[log_normal <= 7] log_normal_samples = [] for i in range(8): log_normal_samples += [np.sum(log_normal == i)] log_normal_samples = np.array(log_normal_samples / sum(log_normal_samples)) # Plot distributions plt.bar(x, y, width=0.2, label="trained distribution", color="royalblue") plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.plot( log_normal_samples, "-o", color="deepskyblue", label="target distribution", linewidth=4, markersize=12, ) plt.legend(loc="best") plt.show() # Evaluate payoff for different distributions payoff = np.array([0, 0, 0, 1, 2, 3, 4, 5]) ep = np.dot(log_normal_samples, payoff) print("Analytically calculated expected payoff w.r.t. the target distribution: %.4f" % ep) ep_trained = np.dot(y, payoff) print("Analytically calculated expected payoff w.r.t. the trained distribution: %.4f" % ep_trained) # Plot exact payoff function (evaluated on the grid of the trained uncertainty model) x = np.array(values) y_strike = np.maximum(0, x - strike_price) plt.plot(x, y_strike, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # construct circuit for payoff function european_call_pricing = EuropeanCallPricing( num_qubits, strike_price=strike_price, rescaling_factor=c_approx, bounds=bounds, uncertainty_model=uncertainty_model, ) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_pricing.to_estimation_problem() # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % ep_trained) print("Estimated value: \t%.4f" % (result.estimation_processed)) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/DaisukeIto-ynu/KosakaQ
DaisukeIto-ynu
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Exception for errors raised by Qiskit Aer simulators backends. """ from qiskit import QiskitError class AerError(QiskitError): """Base class for errors raised by simulators.""" def __init__(self, *message): """Set the error message.""" super().__init__(*message) self.message = ' '.join(message) def __str__(self): """Return the message.""" return repr(self.message)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit # Create a circuit with a register of three qubits circ = QuantumCircuit(3) # H gate on qubit 0, putting this qubit in a superposition of |0> + |1>. circ.h(0) # A CX (CNOT) gate on control qubit 0 and target qubit 1 generating a Bell state. circ.cx(0, 1) # CX (CNOT) gate on control qubit 0 and target qubit 2 resulting in a GHZ state. circ.cx(0, 2) # Draw the circuit circ.draw('mpl')
https://github.com/unitaryfund/mitiq
unitaryfund
# Copyright (C) Unitary Fund # # This source code is licensed under the GPL license (v3) found in the # LICENSE file in the root directory of this source tree. """Unit tests for zero-noise extrapolation.""" import functools from typing import List import cirq import numpy as np import pytest import qiskit import qiskit.circuit from qiskit_aer import AerSimulator from mitiq import QPROGRAM, SUPPORTED_PROGRAM_TYPES from mitiq.benchmarks.randomized_benchmarking import generate_rb_circuits from mitiq.interface import accept_any_qprogram_as_input, convert_from_mitiq from mitiq.interface.mitiq_cirq import ( compute_density_matrix, sample_bitstrings, ) from mitiq.interface.mitiq_qiskit import ( execute_with_shots_and_noise, initialized_depolarizing_noise, ) from mitiq.observable import Observable, PauliString from mitiq.zne import ( execute_with_zne, inference, mitigate_executor, scaling, zne_decorator, ) from mitiq.zne.inference import ( AdaExpFactory, LinearFactory, PolyFactory, RichardsonFactory, ) from mitiq.zne.scaling import ( fold_gates_at_random, get_layer_folding, insert_id_layers, ) BASE_NOISE = 0.007 TEST_DEPTH = 30 ONE_QUBIT_GS_PROJECTOR = np.array([[1, 0], [0, 0]]) npX = np.array([[0, 1], [1, 0]]) """Defines the sigma_x Pauli matrix in SU(2) algebra as a (2,2) `np.array`.""" npZ = np.array([[1, 0], [0, -1]]) """Defines the sigma_z Pauli matrix in SU(2) algebra as a (2,2) `np.array`.""" # Default qubit register and circuit for unit tests qreg = cirq.GridQubit.rect(2, 1) circ = cirq.Circuit(cirq.ops.H.on_each(*qreg), cirq.measure_each(*qreg)) @accept_any_qprogram_as_input def generic_executor(circuit, noise_level: float = 0.1) -> float: """Executor that simulates a circuit of any type and returns the expectation value of the ground state projector.""" noisy_circuit = circuit.with_noise(cirq.depolarize(p=noise_level)) result = cirq.DensityMatrixSimulator().simulate(noisy_circuit) return result.final_density_matrix[0, 0].real # Default executor for unit tests def executor(circuit) -> float: wavefunction = circuit.final_state_vector( ignore_terminal_measurements=True ) return np.real(wavefunction.conj().T @ np.kron(npX, npZ) @ wavefunction) @pytest.mark.parametrize( "executor", (sample_bitstrings, compute_density_matrix) ) def test_with_observable_batched_factory(executor): observable = Observable(PauliString(spec="Z")) circuit = cirq.Circuit(cirq.H.on(cirq.LineQubit(0))) * 20 noisy_value = observable.expectation(circuit, sample_bitstrings) zne_value = execute_with_zne( circuit, executor=functools.partial( executor, noise_model_function=cirq.depolarize ), observable=observable, factory=PolyFactory(scale_factors=[1, 3, 5], order=2), ) true_value = observable.expectation( circuit, functools.partial(compute_density_matrix, noise_level=(0,)) ) assert abs(zne_value - true_value) <= abs(noisy_value - true_value) @pytest.mark.parametrize( "executor", (sample_bitstrings, compute_density_matrix) ) def test_with_observable_adaptive_factory(executor): observable = Observable(PauliString(spec="Z")) circuit = cirq.Circuit(cirq.H.on(cirq.LineQubit(0))) * 20 noisy_value = observable.expectation(circuit, sample_bitstrings) zne_value = execute_with_zne( circuit, executor=functools.partial( executor, noise_model_function=cirq.amplitude_damp ), observable=observable, factory=AdaExpFactory(steps=4, asymptote=0.5), ) true_value = observable.expectation( circuit, functools.partial(compute_density_matrix, noise_level=(0,)) ) assert abs(zne_value - true_value) <= abs(noisy_value - true_value) def test_with_observable_two_qubits(): observable = Observable( PauliString(spec="XX", coeff=-1.21), PauliString(spec="ZZ", coeff=0.7) ) circuit = cirq.Circuit( cirq.H.on(cirq.LineQubit(0)), cirq.CNOT.on(*cirq.LineQubit.range(2)) ) circuit += [circuit.copy(), cirq.inverse(circuit.copy())] * 20 executor = compute_density_matrix noisy_value = observable.expectation(circuit, executor) zne_value = execute_with_zne( circuit, executor=functools.partial( executor, noise_model_function=cirq.depolarize ), observable=observable, factory=PolyFactory(scale_factors=[1, 3, 5], order=2), ) true_value = observable.expectation( circuit, functools.partial(executor, noise_level=(0,)) ) assert abs(zne_value - true_value) <= 3 * abs(noisy_value - true_value) @pytest.mark.parametrize( "fold_method", [ fold_gates_at_random, insert_id_layers, ], ) @pytest.mark.parametrize("factory", [LinearFactory, RichardsonFactory]) @pytest.mark.parametrize("num_to_average", [1, 2, 5]) def test_execute_with_zne_no_noise(fold_method, factory, num_to_average): """Tests execute_with_zne with noiseless simulation.""" zne_value = execute_with_zne( circ, executor, num_to_average=num_to_average, scale_noise=fold_method, factory=factory([1.0, 2.0, 3.0]), ) assert np.isclose(zne_value, 0.0) @pytest.mark.parametrize("factory", [LinearFactory, RichardsonFactory]) @pytest.mark.parametrize( "fold_method", [ fold_gates_at_random, insert_id_layers, ], ) def test_averaging_improves_zne_value_with_fake_noise(factory, fold_method): """Tests that averaging with Gaussian noise produces a better ZNE value compared to not averaging with several folding methods. For non-deterministic folding, the ZNE value with average should be better. For deterministic folding, the ZNE value should be the same. """ for seed in range(5): rng = np.random.RandomState(seed) def noisy_executor(circuit) -> float: return executor(circuit) + rng.randn() zne_value_no_averaging = execute_with_zne( circ, noisy_executor, num_to_average=1, scale_noise=fold_gates_at_random, factory=factory([1.0, 2.0, 3.0]), ) zne_value_averaging = execute_with_zne( circ, noisy_executor, num_to_average=10, scale_noise=fold_method, factory=factory([1.0, 2.0, 3.0]), ) # True (noiseless) value is zero. Averaging should ==> closer to zero. assert abs(zne_value_averaging) <= abs(zne_value_no_averaging) def test_execute_with_zne_bad_arguments(): """Tests errors are raised when execute_with_zne is called with bad arguments. """ with pytest.raises(TypeError, match="Argument `factory` must be of type"): execute_with_zne(circ, executor, factory=RichardsonFactory) with pytest.raises(TypeError, match="Argument `scale_noise` must be"): execute_with_zne(circ, executor, scale_noise=None) def test_error_zne_decorator(): """Tests that the proper error is raised if the decorator is used without parenthesis. """ with pytest.raises(TypeError, match="Decorator must be used with paren"): @zne_decorator def test_executor(circuit): return 0 def test_doc_is_preserved(): """Tests that the doc of the original executor is preserved.""" def first_executor(circuit): """Doc of the original executor.""" return 0 mit_executor = mitigate_executor(first_executor) assert mit_executor.__doc__ == first_executor.__doc__ @zne_decorator() def second_executor(circuit): """Doc of the original executor.""" return 0 assert second_executor.__doc__ == first_executor.__doc__ def qiskit_measure(circuit, qid) -> qiskit.QuantumCircuit: """Helper function to measure one qubit.""" # Ensure that we have a classical register of enough size available if len(circuit.clbits) == 0: reg = qiskit.ClassicalRegister(qid + 1, "cbits") circuit.add_register(reg) circuit.measure(0, qid) return circuit def qiskit_executor(qp: QPROGRAM, shots: int = 10000) -> float: # initialize a qiskit noise model expectation = execute_with_shots_and_noise( qp, shots=shots, obs=ONE_QUBIT_GS_PROJECTOR, noise_model=initialized_depolarizing_noise(BASE_NOISE), seed=1, ) return expectation def get_counts(circuit: qiskit.QuantumCircuit): return AerSimulator().run(circuit, shots=100).result().get_counts() def test_qiskit_execute_with_zne(): true_zne_value = 1.0 circuit = qiskit_measure( *generate_rb_circuits( n_qubits=1, num_cliffords=TEST_DEPTH, trials=1, return_type="qiskit", ), 0, ) base = qiskit_executor(circuit) zne_value = execute_with_zne(circuit, qiskit_executor) assert abs(true_zne_value - zne_value) < abs(true_zne_value - base) @zne_decorator() def qiskit_decorated_executor(qp: QPROGRAM) -> float: return qiskit_executor(qp) def batched_qiskit_executor(circuits) -> List[float]: return [qiskit_executor(circuit) for circuit in circuits] def test_qiskit_mitigate_executor(): true_zne_value = 1.0 circuit = qiskit_measure( *generate_rb_circuits( n_qubits=1, num_cliffords=TEST_DEPTH, trials=1, return_type="qiskit", ), 0, ) base = qiskit_executor(circuit) mitigated_executor = mitigate_executor(qiskit_executor) zne_value = mitigated_executor(circuit) assert abs(true_zne_value - zne_value) < abs(true_zne_value - base) batched_mitigated_executor = mitigate_executor(batched_qiskit_executor) batched_zne_values = batched_mitigated_executor([circuit] * 3) assert [ abs(true_zne_value - batched_zne_value) < abs(true_zne_value - base) for batched_zne_value in batched_zne_values ] def test_qiskit_zne_decorator(): true_zne_value = 1.0 circuit = qiskit_measure( *generate_rb_circuits( n_qubits=1, num_cliffords=TEST_DEPTH, trials=1, return_type="qiskit", ), 0, ) base = qiskit_executor(circuit) zne_value = qiskit_decorated_executor(circuit) assert abs(true_zne_value - zne_value) < abs(true_zne_value - base) def test_qiskit_run_factory_with_number_of_shots(): true_zne_value = 1.0 scale_factors = [1.0, 3.0] shot_list = [10_000, 30_000] fac = inference.ExpFactory( scale_factors=scale_factors, shot_list=shot_list, asymptote=0.5, ) circuit = qiskit_measure( *generate_rb_circuits( n_qubits=1, num_cliffords=TEST_DEPTH, trials=1, return_type="qiskit", ), 0, ) base = qiskit_executor(circuit) zne_value = fac.run( circuit, qiskit_executor, scale_noise=scaling.fold_gates_at_random, ).reduce() assert abs(true_zne_value - zne_value) < abs(true_zne_value - base) for i in range(len(fac._instack)): assert fac._instack[i] == { "scale_factor": scale_factors[i], "shots": shot_list[i], } def test_qiskit_mitigate_executor_with_shot_list(): true_zne_value = 1.0 scale_factors = [1.0, 3.0] shot_list = [10_000, 30_000] fac = inference.ExpFactory( scale_factors=scale_factors, shot_list=shot_list, asymptote=0.5, ) mitigated_executor = mitigate_executor(qiskit_executor, factory=fac) circuit = qiskit_measure( *generate_rb_circuits( n_qubits=1, num_cliffords=TEST_DEPTH, trials=1, return_type="qiskit", ), 0, ) base = qiskit_executor(circuit) zne_value = mitigated_executor(circuit) assert abs(true_zne_value - zne_value) < abs(true_zne_value - base) for i in range(len(fac._instack)): assert fac._instack[i] == { "scale_factor": scale_factors[i], "shots": shot_list[i], } @pytest.mark.parametrize("order", [(0, 1), (1, 0), (0, 1, 2), (1, 2, 0)]) def test_qiskit_measurement_order_is_preserved_single_register(order): """Tests measurement order is preserved when folding, i.e., the dictionary of counts is the same as the original circuit on a noiseless simulator. """ qreg, creg = ( qiskit.QuantumRegister(len(order)), qiskit.ClassicalRegister(len(order)), ) circuit = qiskit.QuantumCircuit(qreg, creg) circuit.x(qreg[0]) for i in order: circuit.measure(qreg[i], creg[i]) folded = scaling.fold_gates_at_random(circuit, scale_factor=1.0) assert get_counts(folded) == get_counts(circuit) def test_qiskit_measurement_order_is_preserved_two_registers(): """Tests measurement order is preserved when folding, i.e., the dictionary of counts is the same as the original circuit on a noiseless simulator. """ n = 4 qreg = qiskit.QuantumRegister(n) creg1, creg2 = ( qiskit.ClassicalRegister(n // 2), qiskit.ClassicalRegister(n // 2), ) circuit = qiskit.QuantumCircuit(qreg, creg1, creg2) circuit.x(qreg[0]) circuit.x(qreg[2]) # Some order of measurements. circuit.measure(qreg[0], creg2[1]) circuit.measure(qreg[1], creg1[0]) circuit.measure(qreg[2], creg1[1]) circuit.measure(qreg[3], creg2[1]) folded = scaling.fold_gates_at_random(circuit, scale_factor=1.0) assert get_counts(folded) == get_counts(circuit) @pytest.mark.parametrize("circuit_type", SUPPORTED_PROGRAM_TYPES.keys()) def test_execute_with_zne_with_supported_circuits(circuit_type): # Define a circuit equivalent to the identity qreg = cirq.LineQubit.range(2) cirq_circuit = cirq.Circuit( cirq.H.on_each(qreg), cirq.CNOT(*qreg), cirq.CNOT(*qreg), cirq.H.on_each(qreg), ) # Convert to one of the supported program types circuit = convert_from_mitiq(cirq_circuit, circuit_type) expected = generic_executor(circuit, noise_level=0.0) unmitigated = generic_executor(circuit) # Use odd scale factors for deterministic results fac = RichardsonFactory([1.0, 3.0, 5.0]) zne_value = execute_with_zne(circuit, generic_executor, factory=fac) # Test zero noise limit is better than unmitigated expectation value assert abs(unmitigated - expected) > abs(zne_value - expected) @pytest.mark.parametrize("circuit_type", SUPPORTED_PROGRAM_TYPES.keys()) def test_layerwise_execute_with_zne_with_supported_circuits(circuit_type): # Define a circuit equivalent to the identity qreg = cirq.LineQubit.range(2) cirq_circuit = cirq.Circuit( cirq.H.on_each(qreg), cirq.CNOT(*qreg), cirq.CNOT(*qreg), cirq.H.on_each(qreg), ) # Convert to one of the supported program types circuit = convert_from_mitiq(cirq_circuit, circuit_type) expected = generic_executor(circuit, noise_level=0.0) unmitigated = generic_executor(circuit) # Use odd scale factors for deterministic results fac = RichardsonFactory([1, 3, 5]) # Layerwise-fold layer_to_fold = 0 fold_layer_func = get_layer_folding(layer_to_fold) zne_value = execute_with_zne( circuit, generic_executor, factory=fac, scale_noise=fold_layer_func ) # Test zero noise limit is better than unmitigated expectation value assert abs(unmitigated - expected) > abs(zne_value - expected) def test_execute_with_zne_transpiled_qiskit_circuit(): """Tests ZNE when transpiling to a Qiskit device. Note transpiling can introduce idle (unused) qubits to the circuit. """ from qiskit_ibm_runtime.fake_provider import FakeSantiago santiago = FakeSantiago() backend = AerSimulator.from_backend(santiago) def execute(circuit: qiskit.QuantumCircuit, shots: int = 8192) -> float: job = backend.run(circuit, shots=shots) return job.result().get_counts().get("00", 0.0) / shots qreg = qiskit.QuantumRegister(2) creg = qiskit.ClassicalRegister(2) circuit = qiskit.QuantumCircuit(qreg, creg) for _ in range(10): circuit.x(qreg) circuit.measure(qreg, creg) circuit = qiskit.transpile(circuit, backend, optimization_level=0) true_value = 1.0 zne_value = execute_with_zne(circuit, execute) # Note: Unmitigated value is also (usually) within 10% of the true value. # This is more to test usage than effectiveness. assert abs(zne_value - true_value) < 0.1 def test_execute_zne_on_qiskit_circuit_with_QFT(): """Tests ZNE of a Qiskit device with a QFT gate.""" def qs_noisy_simulation( circuit: qiskit.QuantumCircuit, shots: int = 1 ) -> float: noise_model = initialized_depolarizing_noise(noise_level=0.02) backend = AerSimulator(noise_model=noise_model) job = backend.run(circuit.decompose(), shots=shots) return job.result().get_counts().get("0", 0.0) / shots circuit = qiskit.QuantumCircuit(1) circuit &= qiskit.circuit.library.QFT(1) circuit.measure_all() mitigated = execute_with_zne(circuit, qs_noisy_simulation) assert abs(mitigated) < 1000
https://github.com/GabrielPontolillo/QiskitPBT
GabrielPontolillo
from argparse import ArgumentParser, Namespace, BooleanOptionalAction from qiskit import QuantumCircuit as qc from qiskit import QuantumRegister as qr from qiskit import transpile from qiskit_aer import AerSimulator from qiskit.result import Counts from matplotlib.pyplot import show, subplots, xticks, yticks from math import pi, sqrt from heapq import nlargest class GroversAlgorithm: def __init__(self, title: str = "Grover's Algorithm", n_qubits: int = 5, search: set[int] = { 11, 9, 0, 3 }, shots: int = 1000, fontsize: int = 10, print: bool = False, combine_states: bool = False) -> None: """ _summary_ Args: title (str, optional): Window title. Defaults to "Grover's Algorithm". n_qubits (int, optional): Number of qubits. Defaults to 5. search (set[int], optional): Set of nonnegative integers to search for using Grover's algorithm. Defaults to { 11, 9, 0, 3 }. shots (int, optional): Amount of times the algorithm is simulated. Defaults to 10000. fontsize (int, optional): Histogram's font size. Defaults to 10. print (bool, optional): Whether or not to print quantum circuit(s). Defaults to False. combine_states (bool, optional): Whether to combine all non-winning states into 1 bar labeled "Others" or not. Defaults to False. """ # Parsing command line arguments self._parser: ArgumentParser = ArgumentParser(description = "Run grover's algorithm via command line", add_help = False) self._init_parser(title, n_qubits, search, shots, fontsize, print, combine_states) self._args: Namespace = self._parser.parse_args() # Set of nonnegative ints to search for self.search: set[int] = set(self._args.search) # Set of m N-qubit binary strings representing target state(s) (i.e. self.search in base 2) self._targets: set[str] = { f"{s:0{self._args.n_qubits}b}" for s in self.search } # N-qubit quantum register self._qubits: qr = qr(self._args.n_qubits, "qubit") def _print_circuit(self, circuit: qc, name: str) -> None: """Print quantum circuit. Args: circuit (qc): Quantum circuit to print. name (str): Quantum circuit's name. """ print(f"\n{name}:\n{circuit}") def _oracle(self, targets: set[str]) -> qc: """Mark target state(s) with negative phase. Args: targets (set[str]): N-qubit binary string(s) representing target state(s). Returns: qc: Quantum circuit representation of oracle. """ # Create N-qubit quantum circuit for oracle oracle = qc(self._qubits, name = "Oracle") for target in targets: # Reverse target state since Qiskit uses little-endian for qubit ordering target = target[::-1] # Flip zero qubits in target for i in range(self._args.n_qubits): if target[i] == "0": # Pauli-X gate oracle.x(i) # Simulate (N - 1)-control Z gate # 1. Hadamard gate oracle.h(self._args.n_qubits - 1) # 2. (N - 1)-control Toffoli gate oracle.mcx(list(range(self._args.n_qubits - 1)), self._args.n_qubits - 1) # 3. Hadamard gate oracle.h(self._args.n_qubits - 1) # Flip back to original state for i in range(self._args.n_qubits): if target[i] == "0": # Pauli-X gate oracle.x(i) # Display oracle, if applicable if self._args.print: self._print_circuit(oracle, "ORACLE") return oracle def _diffuser(self) -> qc: """Amplify target state(s) amplitude, which decreases the amplitudes of other states and increases the probability of getting the correct solution (i.e. target state(s)). Returns: qc: Quantum circuit representation of diffuser (i.e. Grover's diffusion operator). """ # Create N-qubit quantum circuit for diffuser diffuser = qc(self._qubits, name = "Diffuser") # Hadamard gate diffuser.h(self._qubits) # Oracle with all zero target state diffuser.append(self._oracle({"0" * self._args.n_qubits}), list(range(self._args.n_qubits))) # Hadamard gate diffuser.h(self._qubits) # Display diffuser, if applicable if self._args.print: self._print_circuit(diffuser, "DIFFUSER") return diffuser def _grover(self) -> qc: """Create quantum circuit representation of Grover's algorithm, which consists of 4 parts: (1) state preparation/initialization, (2) oracle, (3) diffuser, and (4) measurement of resulting state. Steps 2-3 are repeated an optimal number of times (i.e. Grover's iterate) in order to maximize probability of success of Grover's algorithm. Returns: qc: Quantum circuit representation of Grover's algorithm. """ # Create N-qubit quantum circuit for Grover's algorithm grover = qc(self._qubits, name = "Grover Circuit") # Intialize qubits with Hadamard gate (i.e. uniform superposition) grover.h(self._qubits) # # Apply barrier to separate steps grover.barrier() # Apply oracle and diffuser (i.e. Grover operator) optimal number of times for _ in range(int((pi / 4) * sqrt((2 ** self._args.n_qubits) / len(self._targets)))): grover.append(self._oracle(self._targets), list(range(self._args.n_qubits))) grover.append(self._diffuser(), list(range(self._args.n_qubits))) # Measure all qubits once finished grover.measure_all() # Display grover circuit, if applicable if self._args.print: self._print_circuit(grover, "GROVER CIRCUIT") return grover def _outcome(self, winners: list[str], counts: Counts) -> None: """Print top measurement(s) (state(s) with highest frequency) and target state(s) in binary and decimal form, determine if top measurement(s) equals target state(s), then print result. Args: winners (list[str]): State(s) (N-qubit binary string(s)) with highest probability of being measured. counts (Counts): Each state and its respective frequency. """ print("WINNER(S):") print(f"Binary = {winners}\nDecimal = {[ int(key, 2) for key in winners ]}\n") print("TARGET(S):") print(f"Binary = {self._targets}\nDecimal = {self.search}\n") if not all(key in self._targets for key in winners): print("Target(s) not found...") else: winners_frequency, total = 0, 0 for value, frequency in counts.items(): if value in winners: winners_frequency += frequency total += frequency print(f"Target(s) found with {winners_frequency / total:.2%} accuracy!") def _show_histogram(self, histogram_data) -> None: """Print outcome and display histogram of simulation results. Args: data: Each state and its respective frequency. """ # State(s) with highest count and their frequencies winners = { winner : histogram_data.get(winner) for winner in nlargest(len(self._targets), histogram_data, key = histogram_data.get) } # Print outcome self._outcome(list(winners.keys()), histogram_data) # X-axis and y-axis value(s) for winners, respectively winners_x_axis = [ str(winner) for winner in [*winners] ] winners_y_axis = [ *winners.values() ] # All other states (i.e. non-winners) and their frequencies others = { state : frequency for state, frequency in histogram_data.items() if state not in winners } # X-axis and y-axis value(s) for all other states, respectively other_states_x_axis = "Others" if self._args.combine else [*others] other_states_y_axis = [ sum([*others.values()]) ] if self._args.combine else [ *others.values() ] # Create histogram for simulation results figure, axes = subplots(num = "Grover's Algorithm — Results", layout = "constrained") axes.bar(winners_x_axis, winners_y_axis, color = "green", label = "Target") axes.bar(other_states_x_axis, other_states_y_axis, color = "red", label = "Non-target") axes.legend(fontsize = self._args.fontsize) axes.grid(axis = "y", ls = "dashed") axes.set_axisbelow(True) # Set histogram title, x-axis title, and y-axis title respectively axes.set_title(f"Outcome of {self._args.shots} Simulations", fontsize = int(self._args.fontsize * 1.45)) axes.set_xlabel("States (Qubits)", fontsize = int(self._args.fontsize * 1.3)) axes.set_ylabel("Frequency", fontsize = int(self._args.fontsize * 1.3)) # Set font properties for x-axis and y-axis labels respectively xticks(fontsize = self._args.fontsize, family = "monospace", rotation = 0 if self._args.combine else 70) yticks(fontsize = self._args.fontsize, family = "monospace") # Set properties for annotations displaying frequency above each bar annotation = axes.annotate("", xy = (0, 0), xytext = (5, 5), xycoords = "data", textcoords = "offset pixels", ha = "center", va = "bottom", family = "monospace", weight = "bold", fontsize = self._args.fontsize, bbox = dict(facecolor = "white", alpha = 0.4, edgecolor = "None", pad = 0) ) def _hover(event) -> None: """Display frequency above each bar upon hovering over it. Args: event: Matplotlib event. """ visibility = annotation.get_visible() if event.inaxes == axes: for bars in axes.containers: for bar in bars: cont, _ = bar.contains(event) if cont: x, y = bar.get_x() + bar.get_width() / 2, bar.get_y() + bar.get_height() annotation.xy = (x, y) annotation.set_text(y) annotation.set_visible(True) figure.canvas.draw_idle() return if visibility: annotation.set_visible(False) figure.canvas.draw_idle() # Display histogram id = figure.canvas.mpl_connect("motion_notify_event", _hover) show() figure.canvas.mpl_disconnect(id) def run(self) -> None: """ Run Grover's algorithm simulation. """ # Simulate Grover's algorithm locally backend = AerSimulator(method = "density_matrix") # Generate optimized grover circuit for simulation transpiled_circuit = transpile(self._grover(), backend, optimization_level = 2) # Run Grover's algorithm simulation job = backend.run(transpiled_circuit, shots = self._args.shots) # Get simulation results results = job.result() # Get each state's histogram data (including frequency) from simulation results data = results.get_counts() # Display simulation results self._show_histogram(data) def _init_parser(self, title: str, n_qubits: int, search: set[int], shots: int, fontsize: int, print: bool, combine_states: bool) -> None: """ Helper method to initialize command line argument parser. Args: title (str): Window title. n_qubits (int): Number of qubits. search (set[int]): Set of nonnegative integers to search for using Grover's algorithm. shots (int): Amount of times the algorithm is simulated. fontsize (int): Histogram's font size. print (bool): Whether or not to print quantum circuit(s). combine_states (bool): Whether to combine all non-winning states into 1 bar labeled "Others" or not. """ self._parser.add_argument("-H, --help", action = "help", help = "show this help message and exit") self._parser.add_argument("-T, --title", type = str, default = title, dest = "title", metavar = "<title>", help = f"window title (default: \"{title}\")") self._parser.add_argument("-n, --n-qubits", type = int, default = n_qubits, dest = "n_qubits", metavar = "<n_qubits>", help = f"number of qubits (default: {n_qubits})") self._parser.add_argument("-s, --search", default = search, type = int, nargs = "+", dest = "search", metavar = "<search>", help = f"nonnegative integers to search for with Grover's algorithm (default: {search})") self._parser.add_argument("-S, --shots", type = int, default = shots, dest = "shots", metavar = "<shots>", help = f"amount of times the algorithm is simulated (default: {shots})") self._parser.add_argument("-f, --font-size", type = int, default = fontsize, dest = "fontsize", metavar = "<font_size>", help = f"histogram's font size (default: {fontsize})") self._parser.add_argument("-p, --print", action = BooleanOptionalAction, type = bool, default = print, dest = "print", help = f"whether or not to print quantum circuit(s) (default: {print})") self._parser.add_argument("-c, --combine", action = BooleanOptionalAction, type = bool, default = combine_states, dest = "combine", help = f"whether to combine all non-winning states into 1 bar labeled \"Others\" or not (default: {combine_states})") if __name__ == "__main__": GroversAlgorithm().run()
https://github.com/theflyingrahul/qiskitsummerschool2020
theflyingrahul
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import json from typing import Any, Callable, Optional, Tuple, Union from urllib.parse import urljoin from qiskit import QuantumCircuit, execute from qiskit.providers import JobStatus from qiskit.providers.ibmq.job import IBMQJob from .api import get_server_endpoint, send_request, get_access_token, get_submission_endpoint from .exercises import get_question_id from .util import compute_cost, get_provider, get_job, circuit_to_json, get_job_urls, uses_multiqubit_gate def _circuit_criteria( circuit: QuantumCircuit, max_qubits: Optional[int] = None, min_cost: Optional[int] = None, check_gates: Optional[bool] = False ) -> Tuple[Optional[int], Optional[int]]: if max_qubits is not None and circuit.num_qubits > max_qubits: print(f'Your circuit has {circuit.num_qubits} qubits, which exceeds the maximum allowed.') print(f'Please reduce the number of qubits in your circuit to below {max_qubits}.') return None, None try: if check_gates and not uses_multiqubit_gate(circuit): print('Your circuit appears to not use any multi-quibit gates.') print('Please review your circuit and try again.') return None, None cost = compute_cost(circuit) if min_cost is not None and cost < min_cost: print(f'Your circuit cost ({cost}) is too low. But if you are convinced that your circuit\n' 'is correct, please let us know in the `#ibm-quantum-challenge-2020` Slack channel.') return None, None return circuit.num_qubits, cost except Exception as err: print(f'Unable to compute cost: {err}') return None, None def _circuit_grading( circuit: QuantumCircuit, lab_id: str, ex_id: str, is_submit: Optional[bool] = False, max_qubits: Optional[int] = None, min_cost: Optional[int] = None, check_gates: Optional[bool] = False ) -> Tuple[Optional[dict], Optional[str]]: payload = None server = None if not isinstance(circuit, QuantumCircuit): print(f'Expected a QuantumCircuit, but was given {type(circuit)}') print(f'Please provide a circuit as your answer.') return None, None if not is_submit: server = get_server_endpoint(lab_id, ex_id) if not server: print('Could not find a valid grading server or ' 'the grading servers are down right now.') return None, None else: server = None _, cost = _circuit_criteria( circuit, max_qubits=max_qubits, min_cost=min_cost, check_gates=check_gates ) if cost is not None: payload = { 'answer': circuit_to_json(circuit) } if is_submit: payload['questionNumber'] = get_question_id(lab_id, ex_id) else: payload['question_id'] = get_question_id(lab_id, ex_id) return payload, server def _job_grading( job_or_id: Union[IBMQJob, str], lab_id: str, ex_id: str, is_submit: Optional[bool] = False ) -> Tuple[Optional[dict], Optional[str]]: if not isinstance(job_or_id, IBMQJob) and not isinstance(job_or_id, str): print(f'Expected an IBMQJob or a job ID, but was given {type(job_or_id)}') print(f'Please submit a job as your answer.') return None, None if not is_submit: server = get_server_endpoint(lab_id, ex_id) if not server: print('Could not find a valid grading server or the grading ' 'servers are down right now.') return None, None else: server = None job = get_job(job_or_id) if isinstance(job_or_id, str) else job_or_id if not job: print('An invalid or non-existent job was specified.') return None, None job_status = job.status() if job_status in [JobStatus.CANCELLED, JobStatus.ERROR]: print(f'Job did not successfully complete: {job_status.value}.') return None, None elif job_status is not JobStatus.DONE: print(f'Job has not yet completed: {job_status.value}.') print(f'Please wait for the job (id: {job.job_id()}) to complete then try again.') return None, None header = job.result().header.to_dict() if 'qc_cost' not in header: if is_submit: print('An unprepared answer was specified. ' 'Please prepare() and grade() answer before submitting.') else: print('An unprepared answer was specified. Please prepare() answer before grading.') return None, None download_url, result_url = get_job_urls(job) if not download_url or not result_url: print('Unable to obtain job URLs') return None, None payload = { 'answer': json.dumps({ 'download_url': download_url, 'result_url': result_url }) } if is_submit: payload['questionNumber'] = get_question_id(lab_id, ex_id) else: payload['question_id'] = get_question_id(lab_id, ex_id) return payload, server def _number_grading( answer: int, lab_id: str, ex_id: str, is_submit: Optional[bool] = False ) -> Tuple[Optional[dict], Optional[str]]: if not isinstance(answer, int): print(f'Expected a integer, but was given {type(answer)}') print(f'Please provide a number as your answer.') return None, None if not is_submit: server = get_server_endpoint(lab_id, ex_id) if not server: print('Could not find a valid grading server ' 'or the grading servers are down right now.') return None, None else: server = None payload = { 'answer': str(answer) } if is_submit: payload['questionNumber'] = get_question_id(lab_id, ex_id) else: payload['question_id'] = get_question_id(lab_id, ex_id) return payload, server def prepare_circuit( circuit: QuantumCircuit, max_qubits: Optional[int] = 28, min_cost: Optional[int] = None, check_gates: Optional[bool] = False, **kwargs ) -> Optional[IBMQJob]: job = None if not isinstance(circuit, QuantumCircuit): print(f'Expected a QuantumCircuit, but was given {type(circuit)}') print(f'Please provide a circuit.') return None _, cost = _circuit_criteria( circuit, max_qubits=max_qubits, min_cost=min_cost, check_gates=check_gates ) if cost is not None: if 'backend' not in kwargs: kwargs['backend'] = get_provider().get_backend('ibmq_qasm_simulator') # execute experiments print('Starting experiment. Please wait...') job = execute( circuit, qobj_header={ 'qc_cost': cost }, **kwargs ) print(f'You may monitor the job (id: {job.job_id()}) status ' 'and proceed to grading when it successfully completes.') return job def prepare_solver( solver_func: Callable, lab_id: str, ex_id: str, problem_set: Optional[Any] = None, max_qubits: Optional[int] = 28, min_cost: Optional[int] = None, check_gates: Optional[bool] = False, **kwargs ) -> Optional[IBMQJob]: job = None if not callable(solver_func): print(f'Expected a function, but was given {type(solver_func)}') print(f'Please provide a function that returns a QuantumCircuit.') return None server = get_server_endpoint(lab_id, ex_id) if not server: print('Could not find a valid grading server or the grading servers are down right now.') return endpoint = server + 'problem-set' index, value = get_problem_set(lab_id, ex_id, endpoint) print(f'Running {solver_func.__name__}...') qc_1 = solver_func(problem_set) _, cost = _circuit_criteria( qc_1, max_qubits=max_qubits, min_cost=min_cost, check_gates=check_gates ) if value and index is not None and index >= 0 and cost is not None: qc_2 = solver_func(value) if 'backend' not in kwargs: kwargs['backend'] = get_provider().get_backend('ibmq_qasm_simulator') # execute experiments print('Starting experiments. Please wait...') job = execute( [qc_1, qc_2], qobj_header={ 'qc_index': [None, index], 'qc_cost': cost }, **kwargs ) print(f'You may monitor the job (id: {job.job_id()}) status ' 'and proceed to grading when it successfully completes.') return job def grade_circuit( circuit: QuantumCircuit, lab_id: str, ex_id: str, max_qubits: Optional[int] = 28, min_cost: Optional[int] = None ) -> bool: payload, server = _circuit_grading( circuit, lab_id, ex_id, is_submit=False, max_qubits=max_qubits, min_cost=min_cost ) if payload: print('Grading your answer. Please wait...') return grade_answer( payload, server + 'validate-answer' ) return False def grade_job( job_or_id: Union[IBMQJob, str], lab_id: str, ex_id: str ) -> bool: payload, server = _job_grading(job_or_id, lab_id, ex_id, is_submit=False) if payload: print('Grading your answer. Please wait...') return grade_answer( payload, server + 'validate-answer' ) return False def grade_number( answer: int, lab_id: str, ex_id: str ) -> bool: payload, server = _number_grading(answer, lab_id, ex_id, is_submit=False) if payload: print('Grading your answer. Please wait...') return grade_answer( payload, server + 'validate-answer' ) return False def submit_circuit( circuit: QuantumCircuit, lab_id: str, ex_id: str, max_qubits: Optional[int] = 28, min_cost: Optional[int] = None ) -> bool: payload, _ = _circuit_grading( circuit, lab_id, ex_id, is_submit=True, max_qubits=max_qubits, min_cost=min_cost ) if payload: print('Submitting your answer. Please wait...') return submit_answer(payload) return False def submit_job( job_or_id: IBMQJob, lab_id: str, ex_id: str, ) -> bool: payload, _ = _job_grading(job_or_id, lab_id, ex_id, is_submit=True) if payload: print('Submitting your answer. Please wait...') return submit_answer(payload) return False def submit_number( answer: int, lab_id: str, ex_id: str ) -> bool: payload, _ = _number_grading(answer, lab_id, ex_id, is_submit=True) if payload: print('Submitting your answer. Please wait...') return submit_answer(payload) return False def get_problem_set( lab_id: str, ex_id: str, endpoint: str ) -> Tuple[Optional[int], Optional[Any]]: problem_set_response = None try: payload = {'question_id': get_question_id(lab_id, ex_id)} problem_set_response = send_request(endpoint, query=payload, method='GET') except Exception as err: print('Unable to obtain the problem set') if problem_set_response: status = problem_set_response.get('status') if status == 'valid': try: index = problem_set_response.get('index') value = json.loads(problem_set_response.get('value')) return index, value except Exception as err: print(f'Problem set could not be processed: {err}') else: cause = problem_set_response.get('cause') print(f'Problem set failed: {cause}') return None, None def grade_answer(payload: dict, endpoint: str, cost: Optional[int] = None) -> bool: try: answer_response = send_request(endpoint, body=payload) status = answer_response.get('status', None) cause = answer_response.get('cause', None) score = cost if cost else answer_response.get('score', None) handle_grade_response(status, score=score, cause=cause) return status == 'valid' or status is True except Exception as err: print(f'Failed: {err}') return False def submit_answer(payload: dict) -> bool: try: access_token = get_access_token() baseurl = get_submission_endpoint() endpoint = urljoin(baseurl, './challenges/answers') submit_response = send_request( endpoint, body=payload, query={'access_token': access_token} ) status = submit_response.get('status', None) if status is None: status = submit_response.get('valid', None) cause = submit_response.get('cause', None) handle_submit_response(status, cause=cause) return status == 'valid' or status is True except Exception as err: print(f'Failed: {err}') return False def handle_grade_response( status: Optional[str], score: Optional[int] = None, cause: Optional[str] = None ) -> None: if status == 'valid': print('\nCongratulations 🎉! Your answer is correct.') if score is not None: print(f'Your score is {score}.') elif status == 'invalid': print(f'\nOops 😕! {cause}') print('Please review your answer and try again.') elif status == 'notFinished': print(f'Job has not finished: {cause}') print(f'Please wait for the job to complete then try again.') else: print(f'Failed: {cause}') print('Unable to grade your answer.') def handle_submit_response( status: Union[str, bool], cause: Optional[str] = None ) -> None: if status == 'valid' or status is True: print('\nSuccess 🎉! Your answer has been submitted.') elif status == 'invalid' or status is False: print(f'\nOops 😕! {"Your answer is incorrect" if cause is None else cause}') print('Make sure your answer is correct and successfully graded before submitting.') elif status == 'notFinished': print(f'Job has not finished: {cause}') print(f'Please wait for the job to complete, grade it, and then try to submit again.') else: print(f'Failed: {cause}') print('Unable to submit your answer at this time.')
https://github.com/Qiskit/feedback
Qiskit
from qiskit import * q = QuantumRegister(3,'q') c = ClassicalRegister(2,'c') q1 = QuantumRegister(4,'q1') c1 = ClassicalRegister(2,'c1') res = ClassicalRegister(1,'r') backend = Aer.get_backend('qasm_simulator') qc = QuantumCircuit(q,c,res) qc.x([0,1]) qc.measure([0,1],[0,1]) qc.h(2).c_if([c[0],c[1]],3) qc.measure(2,res) qjob = execute(qc,backend) counts = qjob.result().get_counts() print(counts) qc.draw('mpl', cregbundle=False) qc1 = QuantumCircuit(q,c,c1,res) qc1.x([0,1]) qc1.measure([0,1],[c[0],c1[0]]) qc1.h(2).c_if([c[0],c1[1]],2) qc1.measure(2,res) qjob1 = execute(qc1,backend) counts = qjob1.result().get_counts() print(counts) qc1.draw('mpl',cregbundle=False)
https://github.com/qiskit-community/qiskit-device-benchmarking
qiskit-community
# This code is part of Qiskit. # # (C) Copyright IBM 2024. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Purity RB analysis class. """ from typing import List, Dict, Union from qiskit.result import sampled_expectation_value from qiskit_experiments.curve_analysis import ScatterTable import qiskit_experiments.curve_analysis as curve from qiskit_experiments.framework import AnalysisResultData from qiskit_experiments.library.randomized_benchmarking import RBAnalysis from qiskit_experiments.library.randomized_benchmarking.rb_analysis import (_calculate_epg, _exclude_1q_error) class PurityRBAnalysis(RBAnalysis): r"""A class to analyze purity randomized benchmarking experiments. # section: overview This analysis takes only single series. This series is fit by the exponential decay function. From the fit :math:`\alpha` value this analysis estimates the error per Clifford (EPC). When analysis option ``gate_error_ratio`` is provided, this analysis also estimates errors of individual gates assembling a Clifford gate. In computation of two-qubit EPC, this analysis can also decompose the contribution from the underlying single qubit depolarizing channels when ``epg_1_qubit`` analysis option is provided [1]. # section: fit_model .. math:: F(x) = a \alpha^x + b # section: fit_parameters defpar a: desc: Height of decay curve. init_guess: Determined by :math:`1 - b`. bounds: [0, 1] defpar b: desc: Base line. init_guess: Determined by :math:`(1/2)^n` where :math:`n` is number of qubit. bounds: [0, 1] defpar \alpha: desc: Depolarizing parameter. init_guess: Determined by :func:`~.guess.rb_decay`. bounds: [0, 1] # section: reference .. ref_arxiv:: 1 1712.06550 """ def __init__(self): super().__init__() def _run_data_processing( self, raw_data: List[Dict], category: str = "raw", ) -> ScatterTable: """Perform data processing from the experiment result payload. For purity this converts the counts into Trace(rho^2) and then runs the rest of the standard RB fitters For now this does it by spoofing a new counts dictionary and then calling the super _run_data_processing Args: raw_data: Payload in the experiment data. category: Category string of the output dataset. Returns: Processed data that will be sent to the formatter method. Raises: DataProcessorError: When key for x values is not found in the metadata. ValueError: When data processor is not provided. """ #figure out the number of qubits... has to be 1 or 2 for now if self.options.outcome=='0': nq=1 elif self.options.outcome=='00': nq=2 else: raise ValueError("Only supporting 1 or 2Q purity") ntrials = int(len(raw_data)/3**nq) raw_data2 = [] nshots = int(sum(raw_data[0]['counts'].values())) for i in range(ntrials): trial_raw = [d for d in raw_data if d["metadata"]["trial"]==i] raw_data2.append(trial_raw[0]) purity = 1/2**nq if nq==1: for ii in range(3): purity += sampled_expectation_value(trial_raw[ii]['counts'],'Z')**2/2**nq else: for ii in range(9): purity += sampled_expectation_value(trial_raw[ii]['counts'],'ZZ')**2/2**nq purity += sampled_expectation_value(trial_raw[ii]['counts'],'IZ')**2/2**nq/3**(nq-1) purity += sampled_expectation_value(trial_raw[ii]['counts'],'ZI')**2/2**nq/3**(nq-1) raw_data2[-1]['counts'] = {'0'*nq: int(purity*nshots*10),'1'*nq: int((1-purity)*nshots*10)} return super()._run_data_processing(raw_data2,category) def _create_analysis_results( self, fit_data: curve.CurveFitResult, quality: str, **metadata, ) -> List[AnalysisResultData]: """Create analysis results for important fit parameters. Args: fit_data: Fit outcome. quality: Quality of fit outcome. Returns: List of analysis result data. """ outcomes = curve.CurveAnalysis._create_analysis_results(self, fit_data, quality, **metadata) num_qubits = len(self._physical_qubits) # Calculate EPC # For purity we need to correct by alpha = fit_data.ufloat_params["alpha"]**0.5 scale = (2**num_qubits - 1) / (2**num_qubits) epc = scale * (1 - alpha) outcomes.append( AnalysisResultData( name="EPC", value=epc, chisq=fit_data.reduced_chisq, quality=quality, extra=metadata, ) ) # Correction for 1Q depolarizing channel if EPGs are provided if self.options.epg_1_qubit and num_qubits == 2: epc = _exclude_1q_error( epc=epc, qubits=self._physical_qubits, gate_counts_per_clifford=self._gate_counts_per_clifford, extra_analyses=self.options.epg_1_qubit, ) outcomes.append( AnalysisResultData( name="EPC_corrected", value=epc, chisq=fit_data.reduced_chisq, quality=quality, extra=metadata, ) ) # Calculate EPG if self._gate_counts_per_clifford is not None and self.options.gate_error_ratio: epg_dict = _calculate_epg( epc=epc, qubits=self._physical_qubits, gate_error_ratio=self.options.gate_error_ratio, gate_counts_per_clifford=self._gate_counts_per_clifford, ) if epg_dict: for gate, epg_val in epg_dict.items(): outcomes.append( AnalysisResultData( name=f"EPG_{gate}", value=epg_val, chisq=fit_data.reduced_chisq, quality=quality, extra=metadata, ) ) return outcomes def _generate_fit_guesses( self, user_opt: curve.FitOptions, curve_data: curve.ScatterTable, ) -> Union[curve.FitOptions, List[curve.FitOptions]]: """Create algorithmic initial fit guess from analysis options and curve data. Args: user_opt: Fit options filled with user provided guess and bounds. curve_data: Formatted data collection to fit. Returns: List of fit options that are passed to the fitter function. """ user_opt.bounds.set_if_empty( a=(0, 1), alpha=(0, 1), b=(0, 1), ) b_guess = 1 / 2 ** len(self._physical_qubits) if len(curve_data.x)>3: alpha_guess = curve.guess.rb_decay(curve_data.x[0:3], curve_data.y[0:3], b=b_guess) else: alpha_guess = curve.guess.rb_decay(curve_data.x, curve_data.y, b=b_guess) alpha_guess = alpha_guess**2 if alpha_guess < 0.6: a_guess = (curve_data.y[0] - b_guess) else: a_guess = (curve_data.y[0] - b_guess) / (alpha_guess ** curve_data.x[0]) user_opt.p0.set_if_empty( b=b_guess, a=a_guess, alpha=alpha_guess, ) return user_opt
https://github.com/Tojarieh97/VQE
Tojarieh97
%load_ext autoreload %autoreload 2 from qiskit.circuit.library.standard_gates import RXGate, RZGate, RYGate, CXGate, CZGate, SGate, HGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister import numpy as np def get_linear_entangelment_ansatz(num_of_qubits, thetas, input_state, circuit_depth=3): quantum_register = QuantumRegister(num_of_qubits, name="qubit") quantum_circuit = QuantumCircuit(quantum_register) quantum_circuit.initialize(input_state) for iteration in range(circuit_depth): for qubit_index in range(num_of_qubits): RY_theta_index = iteration*2*num_of_qubits + qubit_index RZ_theta_index = RY_theta_index + num_of_qubits quantum_circuit.append(RYGate(thetas[RY_theta_index]), [quantum_register[qubit_index]]) quantum_circuit.append(RZGate(thetas[RZ_theta_index]), [quantum_register[qubit_index]]) for qubit_index in range(num_of_qubits - 1): quantum_circuit.append(CXGate(), [quantum_register[qubit_index], quantum_register[qubit_index + 1]]) for qubit_index in range(num_of_qubits): RY_theta_index = 2*num_of_qubits*circuit_depth + qubit_index RZ_theta_index = RY_theta_index + num_of_qubits quantum_circuit.append(RYGate(thetas[RY_theta_index]), [quantum_register[qubit_index]]) quantum_circuit.append(RZGate(thetas[RZ_theta_index]), [quantum_register[qubit_index]]) return quantum_circuit def get_full_entangelment_ansatz(num_of_qubits, thetas, input_state, circuit_depth=3): quantum_register = QuantumRegister(num_of_qubits, name="qubit") quantum_circuit = QuantumCircuit(quantum_register) quantum_circuit.initialize(input_state) for iteration in range(circuit_depth): for qubit_index in range(num_of_qubits): RY_theta_index = iteration*2*num_of_qubits + qubit_index RZ_theta_index = RY_theta_index + num_of_qubits quantum_circuit.append(RYGate(thetas[RY_theta_index]), [quantum_register[qubit_index]]) quantum_circuit.append(RZGate(thetas[RZ_theta_index]), [quantum_register[qubit_index]]) for qubit_index in range(num_of_qubits - 1): for target_qubit_index in range(qubit_index + 1, num_of_qubits): quantum_circuit.append(CXGate(), [quantum_register[qubit_index], quantum_register[target_qubit_index]]) for qubit_index in range(num_of_qubits): RY_theta_index = 2*num_of_qubits*circuit_depth + qubit_index RZ_theta_index = RY_theta_index + num_of_qubits quantum_circuit.append(RYGate(thetas[RY_theta_index]), [quantum_register[qubit_index]]) quantum_circuit.append(RZGate(thetas[RZ_theta_index]), [quantum_register[qubit_index]]) return quantum_circuit initial_thetas = np.random.uniform(low=0, high=360, size=32) initial_eigenvector = np.identity(16)[0] print(get_linear_entangelment_ansatz(4, initial_thetas, 3)) initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=24) initial_eigenvector = np.identity(8)[0] print(get_linear_entangelment_ansatz(3, initial_thetas, 3)) initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=16) initial_eigenvector = np.identity(4)[0] print(get_linear_entangelment_ansatz(2, initial_thetas, 3)) initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=32) initial_eigenvector = np.identity(16)[0] print(get_full_entangelment_ansatz(4, initial_thetas, 3)) initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=24) initial_eigenvector = np.identity(8)[0] print(get_full_entangelment_ansatz(3, initial_thetas, 3)) initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=16) initial_eigenvector = np.identity(4)[0] print(get_full_entangelment_ansatz(2, initial_thetas, 3))
https://github.com/noamsgl/IBMAscolaChallenge
noamsgl
# %load imports.py import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import ipywidgets as widgets widgets.IntSlider() widgets.FloatSlider() widgets.FloatLogSlider() widgets.IntRangeSlider() widgets.FloatRangeSlider() widgets.IntProgress(75) widgets.FloatProgress(98) widgets.BoundedIntText(7) widgets.BoundedFloatText(7, step=0.1) widgets.IntText(7) widgets.FileUpload( accept='', # Accepted file extension e.g. '.txt', '.pdf', 'image/*', 'image/*,.pdf' multiple=False # True to accept multiple files upload else False ) widgets.Controller( index=0, ) out = widgets.Output(layout={'border': '1px solid black'}) from IPython.display import YouTubeVideo with out: display(YouTubeVideo('eWzY2nGfkXk')) out from ipywidgets import Layout, Button, Box items_layout = Layout( width='auto') # override the default width of the button to 'auto' to let the button grow box_layout = Layout(display='flex', flex_flow='column', align_items='stretch', border='solid', width='50%') words = ['correct', 'horse', 'battery', 'staple'] items = [Button(description=word, layout=items_layout, button_style='danger') for word in words] box = Box(children=items, layout=box_layout) box from ipywidgets import Layout, Button, Box, VBox # Items flex proportionally to the weight and the left over space around the text items_auto = [ Button(description='weight=1; auto', layout=Layout(flex='1 1 auto', width='auto'), button_style='danger'), Button(description='weight=3; auto', layout=Layout(flex='3 1 auto', width='auto'), button_style='danger'), Button(description='weight=1; auto', layout=Layout(flex='1 1 auto', width='auto'), button_style='danger'), ] # Items flex proportionally to the weight items_0 = [ Button(description='weight=1; 0%', layout=Layout(flex='1 1 0%', width='auto'), button_style='danger'), Button(description='weight=3; 0%', layout=Layout(flex='3 1 0%', width='auto'), button_style='danger'), Button(description='weight=1; 0%', layout=Layout(flex='1 1 0%', width='auto'), button_style='danger'), ] box_layout = Layout(display='flex', flex_flow='row', align_items='stretch', width='70%') box_auto = Box(children=items_auto, layout=box_layout) box_0 = Box(children=items_0, layout=box_layout) VBox([box_auto, box_0]) from ipywidgets import Layout, Button, Box, FloatText, Textarea, Dropdown, Label, IntSlider form_item_layout = Layout( display='flex', flex_flow='row', justify_content='space-between' ) form_items = [ Box([Label(value='Age of the captain'), IntSlider(min=40, max=60)], layout=form_item_layout), Box([Label(value='Egg style'), Dropdown(options=['Scrambled', 'Sunny side up', 'Over easy'])], layout=form_item_layout), Box([Label(value='Ship size'), FloatText()], layout=form_item_layout), Box([Label(value='Information'), Textarea()], layout=form_item_layout) ] form = Box(form_items, layout=Layout( display='flex', flex_flow='column', border='solid 2px', align_items='stretch', width='50%' )) form from ipywidgets import Layout, Button, VBox, Label, Box item_layout = Layout(height='100px', min_width='40px') items = [Button(layout=item_layout, description=str(i), button_style='warning') for i in range(40)] box_layout = Layout(overflow='scroll hidden', border='3px solid black', width='500px', height='', flex_flow='row', display='flex') carousel = Box(children=items, layout=box_layout) VBox([Label('Scroll horizontally:'), carousel])
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test the decompose pass""" from numpy import pi from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.transpiler.passes import Decompose from qiskit.converters import circuit_to_dag from qiskit.circuit.library import HGate, CCXGate, U2Gate from qiskit.quantum_info.operators import Operator from qiskit.test import QiskitTestCase class TestDecompose(QiskitTestCase): """Tests the decompose pass.""" def setUp(self): super().setUp() # example complex circuit # ┌────────┐ ┌───┐┌─────────────┐ # q2_0: ┤0 ├────────────■──┤ H ├┤0 ├ # │ │ │ └───┘│ circuit-57 │ # q2_1: ┤1 gate1 ├────────────■───────┤1 ├ # │ │┌────────┐ │ └─────────────┘ # q2_2: ┤2 ├┤0 ├──■────────────────────── # └────────┘│ │ │ # q2_3: ──────────┤1 gate2 ├──■────────────────────── # │ │┌─┴─┐ # q2_4: ──────────┤2 ├┤ X ├──────────────────── # └────────┘└───┘ circ1 = QuantumCircuit(3) circ1.h(0) circ1.t(1) circ1.x(2) my_gate = circ1.to_gate(label="gate1") circ2 = QuantumCircuit(3) circ2.h(0) circ2.cx(0, 1) circ2.x(2) my_gate2 = circ2.to_gate(label="gate2") circ3 = QuantumCircuit(2) circ3.x(0) q_bits = QuantumRegister(5) qc = QuantumCircuit(q_bits) qc.append(my_gate, q_bits[:3]) qc.append(my_gate2, q_bits[2:]) qc.mct(q_bits[:4], q_bits[4]) qc.h(0) qc.append(circ3, [0, 1]) self.complex_circuit = qc def test_basic(self): """Test decompose a single H into u2.""" qr = QuantumRegister(1, "qr") circuit = QuantumCircuit(qr) circuit.h(qr[0]) dag = circuit_to_dag(circuit) pass_ = Decompose(HGate) after_dag = pass_.run(dag) op_nodes = after_dag.op_nodes() self.assertEqual(len(op_nodes), 1) self.assertEqual(op_nodes[0].name, "u2") def test_decompose_none(self): """Test decompose a single H into u2.""" qr = QuantumRegister(1, "qr") circuit = QuantumCircuit(qr) circuit.h(qr[0]) dag = circuit_to_dag(circuit) pass_ = Decompose() after_dag = pass_.run(dag) op_nodes = after_dag.op_nodes() self.assertEqual(len(op_nodes), 1) self.assertEqual(op_nodes[0].name, "u2") def test_decompose_only_h(self): """Test to decompose a single H, without the rest""" qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.h(qr[0]) circuit.cx(qr[0], qr[1]) dag = circuit_to_dag(circuit) pass_ = Decompose(HGate) after_dag = pass_.run(dag) op_nodes = after_dag.op_nodes() self.assertEqual(len(op_nodes), 2) for node in op_nodes: self.assertIn(node.name, ["cx", "u2"]) def test_decompose_toffoli(self): """Test decompose CCX.""" qr1 = QuantumRegister(2, "qr1") qr2 = QuantumRegister(1, "qr2") circuit = QuantumCircuit(qr1, qr2) circuit.ccx(qr1[0], qr1[1], qr2[0]) dag = circuit_to_dag(circuit) pass_ = Decompose(CCXGate) after_dag = pass_.run(dag) op_nodes = after_dag.op_nodes() self.assertEqual(len(op_nodes), 15) for node in op_nodes: self.assertIn(node.name, ["h", "t", "tdg", "cx"]) def test_decompose_conditional(self): """Test decompose a 1-qubit gates with a conditional.""" qr = QuantumRegister(1, "qr") cr = ClassicalRegister(1, "cr") circuit = QuantumCircuit(qr, cr) circuit.h(qr).c_if(cr, 1) circuit.x(qr).c_if(cr, 1) dag = circuit_to_dag(circuit) pass_ = Decompose(HGate) after_dag = pass_.run(dag) ref_circuit = QuantumCircuit(qr, cr) ref_circuit.append(U2Gate(0, pi), [qr[0]]).c_if(cr, 1) ref_circuit.x(qr).c_if(cr, 1) ref_dag = circuit_to_dag(ref_circuit) self.assertEqual(after_dag, ref_dag) def test_decompose_oversized_instruction(self): """Test decompose on a single-op gate that doesn't use all qubits.""" # ref: https://github.com/Qiskit/qiskit-terra/issues/3440 qc1 = QuantumCircuit(2) qc1.x(0) gate = qc1.to_gate() qc2 = QuantumCircuit(2) qc2.append(gate, [0, 1]) output = qc2.decompose() self.assertEqual(qc1, output) def test_decomposition_preserves_qregs_order(self): """Test decomposing a gate preserves it's definition registers order""" qr = QuantumRegister(2, "qr1") qc1 = QuantumCircuit(qr) qc1.cx(1, 0) gate = qc1.to_gate() qr2 = QuantumRegister(2, "qr2") qc2 = QuantumCircuit(qr2) qc2.append(gate, qr2) expected = QuantumCircuit(qr2) expected.cx(1, 0) self.assertEqual(qc2.decompose(), expected) def test_decompose_global_phase_1q(self): """Test decomposition of circuit with global phase""" qc1 = QuantumCircuit(1) qc1.rz(0.1, 0) qc1.ry(0.5, 0) qc1.global_phase += pi / 4 qcd = qc1.decompose() self.assertEqual(Operator(qc1), Operator(qcd)) def test_decompose_global_phase_2q(self): """Test decomposition of circuit with global phase""" qc1 = QuantumCircuit(2, global_phase=pi / 4) qc1.rz(0.1, 0) qc1.rxx(0.2, 0, 1) qcd = qc1.decompose() self.assertEqual(Operator(qc1), Operator(qcd)) def test_decompose_global_phase_1q_composite(self): """Test decomposition of circuit with global phase in a composite gate.""" circ = QuantumCircuit(1, global_phase=pi / 2) circ.x(0) circ.h(0) v = circ.to_gate() qc1 = QuantumCircuit(1) qc1.append(v, [0]) qcd = qc1.decompose() self.assertEqual(Operator(qc1), Operator(qcd)) def test_decompose_only_h_gate(self): """Test decomposition parameters so that only a certain gate is decomposed.""" circ = QuantumCircuit(2, 1) circ.h(0) circ.cz(0, 1) decom_circ = circ.decompose(["h"]) dag = circuit_to_dag(decom_circ) self.assertEqual(len(dag.op_nodes()), 2) self.assertEqual(dag.op_nodes()[0].name, "u2") self.assertEqual(dag.op_nodes()[1].name, "cz") def test_decompose_only_given_label(self): """Test decomposition parameters so that only a given label is decomposed.""" decom_circ = self.complex_circuit.decompose(["gate2"]) dag = circuit_to_dag(decom_circ) self.assertEqual(len(dag.op_nodes()), 7) self.assertEqual(dag.op_nodes()[0].op.label, "gate1") self.assertEqual(dag.op_nodes()[1].name, "h") self.assertEqual(dag.op_nodes()[2].name, "cx") self.assertEqual(dag.op_nodes()[3].name, "x") self.assertEqual(dag.op_nodes()[4].name, "mcx") self.assertEqual(dag.op_nodes()[5].name, "h") self.assertRegex(dag.op_nodes()[6].name, "circuit-") def test_decompose_only_given_name(self): """Test decomposition parameters so that only given name is decomposed.""" decom_circ = self.complex_circuit.decompose(["mcx"]) dag = circuit_to_dag(decom_circ) self.assertEqual(len(dag.op_nodes()), 13) self.assertEqual(dag.op_nodes()[0].op.label, "gate1") self.assertEqual(dag.op_nodes()[1].op.label, "gate2") self.assertEqual(dag.op_nodes()[2].name, "h") self.assertEqual(dag.op_nodes()[3].name, "cu1") self.assertEqual(dag.op_nodes()[4].name, "rcccx") self.assertEqual(dag.op_nodes()[5].name, "h") self.assertEqual(dag.op_nodes()[6].name, "h") self.assertEqual(dag.op_nodes()[7].name, "cu1") self.assertEqual(dag.op_nodes()[8].name, "rcccx_dg") self.assertEqual(dag.op_nodes()[9].name, "h") self.assertEqual(dag.op_nodes()[10].name, "c3sx") self.assertEqual(dag.op_nodes()[11].name, "h") self.assertRegex(dag.op_nodes()[12].name, "circuit-") def test_decompose_mixture_of_names_and_labels(self): """Test decomposition parameters so that mixture of names and labels is decomposed""" decom_circ = self.complex_circuit.decompose(["mcx", "gate2"]) dag = circuit_to_dag(decom_circ) self.assertEqual(len(dag.op_nodes()), 15) self.assertEqual(dag.op_nodes()[0].op.label, "gate1") self.assertEqual(dag.op_nodes()[1].name, "h") self.assertEqual(dag.op_nodes()[2].name, "cx") self.assertEqual(dag.op_nodes()[3].name, "x") self.assertEqual(dag.op_nodes()[4].name, "h") self.assertEqual(dag.op_nodes()[5].name, "cu1") self.assertEqual(dag.op_nodes()[6].name, "rcccx") self.assertEqual(dag.op_nodes()[7].name, "h") self.assertEqual(dag.op_nodes()[8].name, "h") self.assertEqual(dag.op_nodes()[9].name, "cu1") self.assertEqual(dag.op_nodes()[10].name, "rcccx_dg") self.assertEqual(dag.op_nodes()[11].name, "h") self.assertEqual(dag.op_nodes()[12].name, "c3sx") self.assertEqual(dag.op_nodes()[13].name, "h") self.assertRegex(dag.op_nodes()[14].name, "circuit-") def test_decompose_name_wildcards(self): """Test decomposition parameters so that name wildcards is decomposed""" decom_circ = self.complex_circuit.decompose(["circuit-*"]) dag = circuit_to_dag(decom_circ) self.assertEqual(len(dag.op_nodes()), 9) self.assertEqual(dag.op_nodes()[0].name, "h") self.assertEqual(dag.op_nodes()[1].name, "t") self.assertEqual(dag.op_nodes()[2].name, "x") self.assertEqual(dag.op_nodes()[3].name, "h") self.assertRegex(dag.op_nodes()[4].name, "cx") self.assertEqual(dag.op_nodes()[5].name, "x") self.assertEqual(dag.op_nodes()[6].name, "mcx") self.assertEqual(dag.op_nodes()[7].name, "h") self.assertEqual(dag.op_nodes()[8].name, "x") def test_decompose_label_wildcards(self): """Test decomposition parameters so that label wildcards is decomposed""" decom_circ = self.complex_circuit.decompose(["gate*"]) dag = circuit_to_dag(decom_circ) self.assertEqual(len(dag.op_nodes()), 9) self.assertEqual(dag.op_nodes()[0].name, "h") self.assertEqual(dag.op_nodes()[1].name, "t") self.assertEqual(dag.op_nodes()[2].name, "x") self.assertEqual(dag.op_nodes()[3].name, "h") self.assertEqual(dag.op_nodes()[4].name, "cx") self.assertEqual(dag.op_nodes()[5].name, "x") self.assertEqual(dag.op_nodes()[6].name, "mcx") self.assertEqual(dag.op_nodes()[7].name, "h") self.assertRegex(dag.op_nodes()[8].name, "circuit-") def test_decompose_empty_gate(self): """Test a gate where the definition is an empty circuit is decomposed.""" empty = QuantumCircuit(1) circuit = QuantumCircuit(1) circuit.append(empty.to_gate(), [0]) decomposed = circuit.decompose() self.assertEqual(len(decomposed.data), 0) def test_decompose_reps(self): """Test decompose reps function is decomposed correctly""" decom_circ = self.complex_circuit.decompose(reps=2) decomposed = self.complex_circuit.decompose().decompose() self.assertEqual(decom_circ, decomposed) def test_decompose_single_qubit_clbit(self): """Test the decomposition of a block with a single qubit and clbit works. Regression test of Qiskit/qiskit-terra#8591. """ block = QuantumCircuit(1, 1) block.h(0) circuit = QuantumCircuit(1, 1) circuit.append(block, [0], [0]) decomposed = circuit.decompose() self.assertEqual(decomposed, block)
https://github.com/IceKhan13/purplecaffeine
IceKhan13
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Core module of the timeline drawer. This module provides the `DrawerCanvas` which is a collection of drawings. The canvas instance is not just a container of drawing objects, as it also performs data processing like binding abstract coordinates. Initialization ~~~~~~~~~~~~~~ The `DataCanvas` is not exposed to users as they are implicitly initialized in the interface function. It is noteworthy that the data canvas is agnostic to plotters. This means once the canvas instance is initialized we can reuse this data among multiple plotters. The canvas is initialized with a stylesheet. ```python canvas = DrawerCanvas(stylesheet=stylesheet) canvas.load_program(sched) canvas.update() ``` Once all properties are set, `.update` method is called to apply changes to drawings. Update ~~~~~~ To update the image, a user can set new values to canvas and then call the `.update` method. ```python canvas.set_time_range(2000, 3000) canvas.update() ``` All stored drawings are updated accordingly. The plotter API can access to drawings with `.collections` property of the canvas instance. This returns an iterator of drawings with the unique data key. If a plotter provides object handler for plotted shapes, the plotter API can manage the lookup table of the handler and the drawings by using this data key. """ from __future__ import annotations import warnings from collections.abc import Iterator from copy import deepcopy from functools import partial from enum import Enum import numpy as np from qiskit import circuit from qiskit.visualization.exceptions import VisualizationError from qiskit.visualization.timeline import drawings, types from qiskit.visualization.timeline.stylesheet import QiskitTimelineStyle class DrawerCanvas: """Data container for drawings.""" def __init__(self, stylesheet: QiskitTimelineStyle): """Create new data container.""" # stylesheet self.formatter = stylesheet.formatter self.generator = stylesheet.generator self.layout = stylesheet.layout # drawings self._collections: dict[str, drawings.ElementaryData] = {} self._output_dataset: dict[str, drawings.ElementaryData] = {} # vertical offset of bits self.bits: list[types.Bits] = [] self.assigned_coordinates: dict[types.Bits, float] = {} # visible controls self.disable_bits: set[types.Bits] = set() self.disable_types: set[str] = set() # time self._time_range = (0, 0) # graph height self.vmax = 0 self.vmin = 0 @property def time_range(self) -> tuple[int, int]: """Return current time range to draw. Calculate net duration and add side margin to edge location. Returns: Time window considering side margin. """ t0, t1 = self._time_range duration = t1 - t0 new_t0 = t0 - duration * self.formatter["margin.left_percent"] new_t1 = t1 + duration * self.formatter["margin.right_percent"] return new_t0, new_t1 @time_range.setter def time_range(self, new_range: tuple[int, int]): """Update time range to draw.""" self._time_range = new_range @property def collections(self) -> Iterator[tuple[str, drawings.ElementaryData]]: """Return currently active entries from drawing data collection. The object is returned with unique name as a key of an object handler. When the horizontal coordinate contains `AbstractCoordinate`, the value is substituted by current time range preference. """ yield from self._output_dataset.items() def add_data(self, data: drawings.ElementaryData): """Add drawing to collections. If the given object already exists in the collections, this interface replaces the old object instead of adding new entry. Args: data: New drawing to add. """ if not self.formatter["control.show_clbits"]: data.bits = [b for b in data.bits if not isinstance(b, circuit.Clbit)] self._collections[data.data_key] = data # pylint: disable=cyclic-import def load_program(self, program: circuit.QuantumCircuit): """Load quantum circuit and create drawing.. Args: program: Scheduled circuit object to draw. Raises: VisualizationError: When circuit is not scheduled. """ not_gate_like = (circuit.Barrier,) if getattr(program, "_op_start_times") is None: # Run scheduling for backward compatibility from qiskit import transpile from qiskit.transpiler import InstructionDurations, TranspilerError warnings.warn( "Visualizing un-scheduled circuit with timeline drawer has been deprecated. " "This circuit should be transpiled with scheduler though it consists of " "instructions with explicit durations.", DeprecationWarning, ) try: program = transpile( program, scheduling_method="alap", instruction_durations=InstructionDurations(), optimization_level=0, ) except TranspilerError as ex: raise VisualizationError( f"Input circuit {program.name} is not scheduled and it contains " "operations with unknown delays. This cannot be visualized." ) from ex for t0, instruction in zip(program.op_start_times, program.data): bits = list(instruction.qubits) + list(instruction.clbits) for bit_pos, bit in enumerate(bits): if not isinstance(instruction.operation, not_gate_like): # Generate draw object for gates gate_source = types.ScheduledGate( t0=t0, operand=instruction.operation, duration=instruction.operation.duration, bits=bits, bit_position=bit_pos, ) for gen in self.generator["gates"]: obj_generator = partial(gen, formatter=self.formatter) for datum in obj_generator(gate_source): self.add_data(datum) if len(bits) > 1 and bit_pos == 0: # Generate draw object for gate-gate link line_pos = t0 + 0.5 * instruction.operation.duration link_source = types.GateLink( t0=line_pos, opname=instruction.operation.name, bits=bits ) for gen in self.generator["gate_links"]: obj_generator = partial(gen, formatter=self.formatter) for datum in obj_generator(link_source): self.add_data(datum) if isinstance(instruction.operation, circuit.Barrier): # Generate draw object for barrier barrier_source = types.Barrier(t0=t0, bits=bits, bit_position=bit_pos) for gen in self.generator["barriers"]: obj_generator = partial(gen, formatter=self.formatter) for datum in obj_generator(barrier_source): self.add_data(datum) self.bits = list(program.qubits) + list(program.clbits) for bit in self.bits: for gen in self.generator["bits"]: # Generate draw objects for bit obj_generator = partial(gen, formatter=self.formatter) for datum in obj_generator(bit): self.add_data(datum) # update time range t_end = max(program.duration, self.formatter["margin.minimum_duration"]) self.set_time_range(t_start=0, t_end=t_end) def set_time_range(self, t_start: int, t_end: int): """Set time range to draw. Args: t_start: Left boundary of drawing in units of cycle time. t_end: Right boundary of drawing in units of cycle time. """ self.time_range = (t_start, t_end) def set_disable_bits(self, bit: types.Bits, remove: bool = True): """Interface method to control visibility of bits. Specified object in the blocked list will not be shown. Args: bit: A qubit or classical bit object to disable. remove: Set `True` to disable, set `False` to enable. """ if remove: self.disable_bits.add(bit) else: self.disable_bits.discard(bit) def set_disable_type(self, data_type: types.DataTypes, remove: bool = True): """Interface method to control visibility of data types. Specified object in the blocked list will not be shown. Args: data_type: A drawing data type to disable. remove: Set `True` to disable, set `False` to enable. """ if isinstance(data_type, Enum): data_type_str = str(data_type.value) else: data_type_str = data_type if remove: self.disable_types.add(data_type_str) else: self.disable_types.discard(data_type_str) def update(self): """Update all collections. This method should be called before the canvas is passed to the plotter. """ self._output_dataset.clear() self.assigned_coordinates.clear() # update coordinate y0 = -self.formatter["margin.top"] for bit in self.layout["bit_arrange"](self.bits): # remove classical bit if isinstance(bit, circuit.Clbit) and not self.formatter["control.show_clbits"]: continue # remove idle bit if not self._check_bit_visible(bit): continue offset = y0 - 0.5 self.assigned_coordinates[bit] = offset y0 = offset - 0.5 self.vmax = 0 self.vmin = y0 - self.formatter["margin.bottom"] # add data temp_gate_links = {} temp_data = {} for data_key, data in self._collections.items(): # deep copy to keep original data hash new_data = deepcopy(data) new_data.xvals = self._bind_coordinate(data.xvals) new_data.yvals = self._bind_coordinate(data.yvals) if data.data_type == str(types.LineType.GATE_LINK.value): temp_gate_links[data_key] = new_data else: temp_data[data_key] = new_data # update horizontal offset of gate links temp_data.update(self._check_link_overlap(temp_gate_links)) # push valid data for data_key, data in temp_data.items(): if self._check_data_visible(data): self._output_dataset[data_key] = data def _check_data_visible(self, data: drawings.ElementaryData) -> bool: """A helper function to check if the data is visible. Args: data: Drawing object to test. Returns: Return `True` if the data is visible. """ _barriers = [str(types.LineType.BARRIER.value)] _delays = [str(types.BoxType.DELAY.value), str(types.LabelType.DELAY.value)] def _time_range_check(_data): """If data is located outside the current time range.""" t0, t1 = self.time_range if np.max(_data.xvals) < t0 or np.min(_data.xvals) > t1: return False return True def _associated_bit_check(_data): """If any associated bit is not shown.""" if all(bit not in self.assigned_coordinates for bit in _data.bits): return False return True def _data_check(_data): """If data is valid.""" if _data.data_type == str(types.LineType.GATE_LINK.value): active_bits = [bit for bit in _data.bits if bit not in self.disable_bits] if len(active_bits) < 2: return False elif _data.data_type in _barriers and not self.formatter["control.show_barriers"]: return False elif _data.data_type in _delays and not self.formatter["control.show_delays"]: return False return True checks = [_time_range_check, _associated_bit_check, _data_check] if all(check(data) for check in checks): return True return False def _check_bit_visible(self, bit: types.Bits) -> bool: """A helper function to check if the bit is visible. Args: bit: Bit object to test. Returns: Return `True` if the bit is visible. """ _gates = [str(types.BoxType.SCHED_GATE.value), str(types.SymbolType.FRAME.value)] if bit in self.disable_bits: return False if self.formatter["control.show_idle"]: return True for data in self._collections.values(): if bit in data.bits and data.data_type in _gates: return True return False def _bind_coordinate(self, vals: Iterator[types.Coordinate]) -> np.ndarray: """A helper function to bind actual coordinates to an `AbstractCoordinate`. Args: vals: Sequence of coordinate objects associated with a drawing. Returns: Numpy data array with substituted values. """ def substitute(val: types.Coordinate): if val == types.AbstractCoordinate.LEFT: return self.time_range[0] if val == types.AbstractCoordinate.RIGHT: return self.time_range[1] if val == types.AbstractCoordinate.TOP: return self.vmax if val == types.AbstractCoordinate.BOTTOM: return self.vmin raise VisualizationError(f"Coordinate {val} is not supported.") try: return np.asarray(vals, dtype=float) except TypeError: return np.asarray(list(map(substitute, vals)), dtype=float) def _check_link_overlap( self, links: dict[str, drawings.GateLinkData] ) -> dict[str, drawings.GateLinkData]: """Helper method to check overlap of bit links. This method dynamically shifts horizontal position of links if they are overlapped. """ duration = self.time_range[1] - self.time_range[0] allowed_overlap = self.formatter["margin.link_interval_percent"] * duration # return y coordinates def y_coords(link: drawings.GateLinkData): return np.array([self.assigned_coordinates.get(bit, np.nan) for bit in link.bits]) # group overlapped links overlapped_group: list[list[str]] = [] data_keys = list(links.keys()) while len(data_keys) > 0: ref_key = data_keys.pop() overlaps = set() overlaps.add(ref_key) for key in data_keys[::-1]: # check horizontal overlap if np.abs(links[ref_key].xvals[0] - links[key].xvals[0]) < allowed_overlap: # check vertical overlap y0s = y_coords(links[ref_key]) y1s = y_coords(links[key]) v1 = np.nanmin(y0s) - np.nanmin(y1s) v2 = np.nanmax(y0s) - np.nanmax(y1s) v3 = np.nanmin(y0s) - np.nanmax(y1s) v4 = np.nanmax(y0s) - np.nanmin(y1s) if not (v1 * v2 > 0 and v3 * v4 > 0): overlaps.add(data_keys.pop(data_keys.index(key))) overlapped_group.append(list(overlaps)) # renew horizontal offset new_links = {} for overlaps in overlapped_group: if len(overlaps) > 1: xpos_mean = np.mean([links[key].xvals[0] for key in overlaps]) # sort link key by y position sorted_keys = sorted(overlaps, key=lambda x: np.nanmax(y_coords(links[x]))) x0 = xpos_mean - 0.5 * allowed_overlap * (len(overlaps) - 1) for ind, key in enumerate(sorted_keys): data = links[key] data.xvals = [x0 + ind * allowed_overlap] new_links[key] = data else: key = overlaps[0] new_links[key] = links[key] return {key: new_links[key] for key in links.keys()}
https://github.com/helenup/Quantum-Euclidean-Distance
helenup
# import the necessary libraries import math as m from qiskit import * from qiskit import BasicAer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # First step is to encode the data into quantum states. #There are some techniques to do it, in this case Amplitude embedding was used. A = [2,9,8,5] B = [7,5,10,3] norm_A = 0 norm_B = 0 Dist = 0 for i in range(len(A)): norm_A += A[i]**2 norm_B += B[i]**2 Dist += (A[i]-B[i])**2 Dist = m.sqrt(Dist) A_norm = m.sqrt(norm_A) B_norm = m.sqrt(norm_B) Z = round( A_norm**2 + B_norm**2 ) # create phi and psi state with the data phi = [A_norm/m.sqrt(Z),-B_norm/m.sqrt(Z)] psi = [] for i in range(len(A)): psi.append(((A[i]/A_norm) /m.sqrt(2))) psi.append(((B[i]/B_norm) /m.sqrt(2))) # Quantum Circuit q1 = QuantumRegister(1,name='q1') q2 = QuantumRegister(4,name='q2') c = ClassicalRegister(1,name='c') qc= QuantumCircuit(q1,q2,c) # states initialization qc.initialize( phi, q2[0] ) qc.initialize( psi, q2[1:4] ) # The swap test operator qc.h( q1[0] ) qc.cswap( q1[0], q2[0], q2[1] ) qc.h( q1[0] ) qc.measure(q1,c) display(qc.draw(output="mpl")) ## Results shots = 10000 job = execute(qc,Aer.get_backend('qasm_simulator'),shots=shots) job_result = job.result() counts = job_result.get_counts(qc) x = abs(((counts['0']/shots - 0.5)/0.5)*2*Z) Q_Dist = round(m.sqrt(x),4) print('Quantum Distance: ', round(Q_Dist,3)) print('Euclidean Distance: ',round(Dist,3))
https://github.com/apozas/qaoa-color
apozas
from functools import reduce from itertools import product from qiskit import BasicAer, QuantumRegister from qiskit_aqua import QuantumInstance from qiskit_aqua import Operator, run_algorithm from qiskit.quantum_info import Pauli from qiskit_aqua.components.optimizers import COBYLA from constrainedqaoa import constrainedQAOA import numpy as np edges = [(0, 0)] vertices = 1 colors = 2 n_qubits = vertices * colors zr = np.zeros(n_qubits) ws = np.eye(n_qubits) cost_operator = reduce( lambda x, y: x + y, [ Operator([[1, (Pauli(ws[colors*v1 + j, :], zr) *Pauli(ws[colors*v2 + j, :], zr))]]) for (v1, v2), j in product(edges, range(colors)) ] ) mixer_operator = reduce( lambda x, y: x + y, [ Operator([[1, (Pauli(zr, ws[colors*i + j, :]) *Pauli(zr, ws[colors*i + (j+1) % colors, :]))]]) + Operator([[1, (Pauli(ws[colors*i + j % colors, :], ws[colors*i + j % colors, :]) *Pauli(ws[colors*i + (j+1) % colors, :], ws[colors*i + (j+1) % colors, :]))]]) for i, j in product(range(vertices), range(colors)) ] ) if colors == 2: mixer_operator.scaling_coeff(1/2) print(mixer_operator.print_operators()) what = 'circuit' circ = mixer_operator.evolve(np.eye(4), np.pi*0.35, what, 1, QuantumRegister(2)) if what == 'matrix': print(np.round(circ, 4)) elif what == 'circuit': print(circ.draw()) cobyla = COBYLA() cobyla.set_options(maxiter=250) constrained = constrainedQAOA(cost_operator, cobyla, mixer_operator, 1) backend = BasicAer.get_backend('statevector_simulator') seed = 50 constrained.random_seed = seed quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed) result = constrained.run(quantum_instance) result['eigvecs']
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from transpile_benchy.metrics.gate_counts import ( DepthMetric, TotalMetric, TotalSwaps, ) from qiskit.circuit.library import iSwapGate from qiskit.transpiler import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from mirror_gates.utilities import SubsMetric from mirror_gates.logging import transpile_benchy_logger # N = 4 # coupling_map = CouplingMap.from_line(N) coupling_map = CouplingMap.from_heavy_hex(5) from transpile_benchy.library import CircuitLibrary library = CircuitLibrary.from_txt("../../../circuits/medium_circuits.txt") # library = CircuitLibrary.from_txt("../../circuits/debug.txt") # XXX set consolidate to False # this is allowed only because my pass manager will preserve consolidation # see post_stage, I call fastconsolidate manually # NOTE: use TotalSwaps to verify baselines have > 0 swaps # otherwise, there is no room for improvement. # we can include these if we want to show our methods will still work # but somewhat trivial since we just append VF2Layout metrics = [ DepthMetric(consolidate=False), TotalMetric(consolidate=False), TotalSwaps(consolidate=False), SubsMetric(), ] transpilers = [ QiskitLevel3(coupling_map, cx_basis=True), Mirage(coupling_map, logger=transpile_benchy_logger, cx_basis=True), ] from transpile_benchy.benchmark import Benchmark benchmark = Benchmark( transpilers=transpilers, circuit_library=library, metrics=metrics, logger=transpile_benchy_logger, num_runs=5, ) benchmark.run() # print(benchmark) print(benchmark) benchmark.summary_statistics(transpilers[0], transpilers[1]) from transpile_benchy.render import plot_benchmark plot_benchmark( benchmark, save=1, legend_show=1, filename="cnot_hex", color_override=[6, 9], )
https://github.com/TheClintest/QuantumMedianFilter
TheClintest
from QMF import * filename = "lena.png" #Trasformazione in array img_array = Converter.to_array(filename) #Processo... #Trasformazione in immagine Converter.to_image(img_array, "nuova_immagine.png") patcher = ImagePatcher() patcher.load_image(img_array) # Caricamento/Processing patches = patcher.get_patches() # Suddivisione result_patches = patches.copy() # Dizionario per i risultati for pos, patch in patches.items(): # Simulazione... result_patches[pos] = Converter.decode_image(answer, patch.copy(), color_size=8) # Risultati img_result = patcher.convert_patches(result_patches) Converter.to_image(img_result, "result.png") max_bond_dimension = 32 simulator = Simulator(max_bond_dimension) qmf = QuantumMedianFilter() lambda_parameter = 100 # Parametro di esecuzione # Generazione dei circuiti qmf.generate(simulator, color_size=8, coordinate_size=2, optimization=3) for pos, patch in patches.items(): #Generazione NEQR neqr = Circuit.neqr(patch, color_num=color_size, verbose=False) neqr_transpiled = sim.transpile(neqr, optimization=0, verbose=False) #Generazione QMF qmf.prepare_old(np.array(patch), lambda_parameter, color_size, neqr_transpiled) circuit = qmf.get() #Simulazione answer = sim.simulate_old(circuit, shots=128, verbose=False) #Recupero dei risultati result_patches[pos] = Converter.decode_image(answer, patch.copy(), color_size=8)
https://github.com/tomtuamnuq/compare-qiskit-ocean
tomtuamnuq
import dimod import neal import numpy as np from dwave.system import DWaveSampler, EmbeddingComposite, DWaveCliqueSampler A_int = np.array([[0,1,2,3,4,1], [2,1,4,1,0,2], [1,5,2,3,1,1]]) m, n = A_int.shape vartype = dimod.Vartype.BINARY c_int = np.array([1,2,1,-3,1,-1]) b = np.array([7,8,5]) print(A_int.dot(np.array([1,0,0,0,1,3]))) def get_binary_form(c,bits): c_bin = [] for c_j in c: c_bin += [c_j * 2**i for i in range(0,bits)] return np.array(c_bin) # represent each x_i as 3 bits to the power of 2 bits = 3 # Set Penalty for Constraints aprox solution P = max(abs(c_int))*3 c = get_binary_form(c_int,bits) print(c) A = np.array([get_binary_form(A_int[i], bits) for i in range(0,m)]) print(A) # Set up linear and quadratic coefficients L = c.T - P * 2 * np.matmul(b.T,A) Q = P * np.matmul(A.T,A) offset = P * b.T.dot(b) bqm = dimod.as_bqm(L, Q, offset, vartype) exactSolver = dimod.ExactSolver() sim = neal.SimulatedAnnealingSampler() num_reads = 2500 exactSet = exactSolver.sample(bqm) simSet = sim.sample(bqm, num_reads = num_reads) def construct_x(sample, bits): x=[] for k in range(0,len(sample.keys()),bits): x += [sum(sample[k+j]* 2**j for j in range(0,bits))] return np.array(x) def testSamples(sampleset, bits): print("Minimum Energy Level found in:",sampleset.first) X = [] for sample, energy, in sampleset.data(fields=['sample', 'energy']): x = construct_x(sample,bits) if all(A_int.dot(x)[i] == b[i] for i in range(0,m)) : X += [(x,energy)] return X solutions_exact = testSamples(exactSet, bits) for x, energy in solutions_exact : print("Found solution {} with Energy Level {}".format(x,energy)) solutions_neal = testSamples(simSet, bits) solutions_unique = { str(x) : energy for x, energy in solutions_neal} solutions_count = {x:0 for x in solutions_unique.keys()} for x,energy in solutions_neal: solutions_count[str(x)]+=1 for x in solutions_unique.keys() : print("Found solution {} {} times with Energy Level {}".format(x,solutions_count[x],solutions_unique[x])) samplerComposite = EmbeddingComposite(DWaveSampler()) sampleset = samplerComposite.sample(bqm,num_reads = num_reads) # a7cb9757-6989-43d2-9e06-914c9e947727 sampleset.to_pandas_dataframe() solutions_real = testSamples(sampleset, bits) solutions_unique = { str(x) : energy for x, energy in solutions_real} for x in solutions_unique.keys() : print("Found solution {} with Energy Level {}".format(x,solutions_unique[x])) samplerClique = DWaveCliqueSampler() sampleset = samplerClique.sample(bqm,num_reads = num_reads) # ecebd686-0b4e-47c2-9087-b5e234d79d89 sampleset.to_pandas_dataframe() solutions_real = testSamples(sampleset, bits) solutions_unique = { str(x) : energy for x, energy in solutions_real} for x in solutions_unique.keys() : print("Found solution {} with Energy Level {}".format(x,solutions_unique[x]))
https://github.com/zeynepCankara/Introduction-Quantum-Programming
zeynepCankara
%run qlatvia.py draw_qubit() sqrttwo=2**0.5 draw_quantum_state(1,0,"") draw_quantum_state(1/sqrttwo,1/sqrttwo,"|+>") # drawing the angle with |0>-axis from matplotlib.pyplot import gca, text from matplotlib.patches import Arc gca().add_patch( Arc((0,0),0.4,0.4,angle=0,theta1=0,theta2=45) ) text(0.08,0.05,'.',fontsize=30) text(0.21,0.09,'\u03C0/4') %run qlatvia.py draw_qubit() [x,y]=[1,0] draw_quantum_state(x,y,"v0") sqrttwo = 2**0.5 oversqrttwo = 1/sqrttwo R = [ [oversqrttwo, -1*oversqrttwo], [oversqrttwo,oversqrttwo] ] # # your code is here # # import numpy as np R = np.array(R) # initial state 0 s0 = np.array([x, y]) for i in range(1, 9): # rotate the matrix s0 = np.matmul(R, s0) # draw the matrix draw_quantum_state(s0[0], s0[1], "after " + str(i)) %run qlatvia.py draw_qubit() from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from math import pi # we define a quantum circuit with one qubit and one bit qreg1 = QuantumRegister(1) # quantum register with a single qubit creg1 = ClassicalRegister(1) # classical register with a single bit mycircuit1 = QuantumCircuit(qreg1,creg1) # quantum circuit with quantum and classical registers rotation_angle = pi/4 for i in range(1,9): mycircuit1.ry(2*rotation_angle,qreg1[0]) # the following code is used to get the quantum state of the quantum register job = execute(mycircuit1,Aer.get_backend('statevector_simulator')) current_quantum_state=job.result().get_statevector(mycircuit1) print("iteration",i,": the quantum state is",current_quantum_state) x_value = current_quantum_state[0].real # get the amplitude of |0> y_value = current_quantum_state[1].real # get the amplitude of |1> draw_quantum_state(x_value,y_value,"|v"+str(i)+">") # # your code is here # import math %run qlatvia.py def rotate_angle_times(angle, times): draw_qubit() qreg1 = QuantumRegister(1) # quantum register with a single qubit creg1 = ClassicalRegister(1) # classical register with a single bit mycircuit1 = QuantumCircuit(qreg1,creg1) # quantum circuit with quantum and classical registers rotation_angle = angle for i in range(1,times): # defined for block sphere mycircuit1.ry(2*rotation_angle,qreg1[0]) # simulator gives the states job = execute(mycircuit1,Aer.get_backend('statevector_simulator')) current_quantum_state = job.result().get_statevector(mycircuit1) print("iteration",i,": the quantum state is",current_quantum_state) x_value = current_quantum_state[0].real # get the amplitude of |0> y_value = current_quantum_state[1].real # get the amplitude of |1> draw_quantum_state(x_value,y_value,"|v"+str(i)+">") rotate_angle_times((math.pi / 6), 12) rotate_angle_times(((3 * math.pi) / 8), 16) rotate_angle_times(((2**(0.5)) * math.pi ), 20) # # your code is here # from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from math import pi from random import randrange # first qubit qreg1 = QuantumRegister(1) creg1 = ClassicalRegister(1) mycircuit1 = QuantumCircuit(qreg1,creg1) # second qubit qreg2 = QuantumRegister(1) creg2 = ClassicalRegister(1) mycircuit2 = QuantumCircuit(qreg2,creg2) # third qubit qreg3 = QuantumRegister(1) creg3 = ClassicalRegister(1) mycircuit3 = QuantumCircuit(qreg3,creg3) # randomly pick the angle of rotation r = randrange(100) theta = 2*pi*(r/100) # radians print("the picked angle is",r*3.6,"degrees and",theta,"radians") # rotate the first qubit mycircuit1.ry(2*theta,qreg1[0]) # the different angles orthogonal to theta theta1 = theta + pi/2 theta2 = theta - pi/2 # rotate the second and third qubits mycircuit2.ry(2*theta1,qreg2[0]) mycircuit3.ry(2*theta2,qreg3[0]) # read the quantum state of the first qubit job = execute(mycircuit1,Aer.get_backend('statevector_simulator')) current_quantum_state=job.result().get_statevector(mycircuit1) [x1,y1]=[current_quantum_state[0].real,current_quantum_state[1].real] print("the first qubit:",x1,y1) # read the quantum state of the second qubit job = execute(mycircuit2,Aer.get_backend('statevector_simulator')) current_quantum_state=job.result().get_statevector(mycircuit2) [x2,y2]=[current_quantum_state[0].real,current_quantum_state[1].real] print("the second qubit:",x2,y2) # read the quantum state of the third qubit job = execute(mycircuit3,Aer.get_backend('statevector_simulator')) current_quantum_state=job.result().get_statevector(mycircuit3) [x3,y3]=[current_quantum_state[0].real,current_quantum_state[1].real] print("the third qubit:",x3,y3) %run qlatvia.py draw_qubit() draw_quantum_state(x1,y1,"v0") draw_quantum_state(x2,y2,"v1") draw_quantum_state(x3,y3,"v2") print("the dot product of |v0> and |v1> is",x1*x2+y1*y2) print("the dot product of |v0> and |v2> is",x1*x3+y1*y3) print("the dot product of |v1> and |v2> is",x2*x3+y2*y3) # make a full rotation by theta + theta_prime theta_prime = 2*pi - theta # rotate all qubits with theta_prime mycircuit1.ry(2*theta_prime,qreg1[0]) mycircuit2.ry(2*theta_prime,qreg2[0]) mycircuit3.ry(2*theta_prime,qreg3[0]) # measure all qubits mycircuit1.measure(qreg1,creg1) mycircuit2.measure(qreg2,creg2) mycircuit3.measure(qreg3,creg3) # draw the first circuit mycircuit1.draw() # draw the first circuit mycircuit2.draw() # draw the first circuit mycircuit3.draw() # execute the first circuit job = execute(mycircuit1,Aer.get_backend('qasm_simulator'),shots=1000) counts = job.result().get_counts(mycircuit1) print(counts) # execute the second circuit job = execute(mycircuit2,Aer.get_backend('qasm_simulator'),shots=1000) counts = job.result().get_counts(mycircuit2) print(counts) # execute the third circuit job = execute(mycircuit3,Aer.get_backend('qasm_simulator'),shots=1000) counts = job.result().get_counts(mycircuit3) print(counts) # # your code is here # from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from math import pi, cos, sin # first qubit qreg = QuantumRegister(1) creg = ClassicalRegister(1) mycircuit = QuantumCircuit(qreg,creg) theta=pi/4 for i in range(1,9): total_theta = i*theta mycircuit.ry(2*theta,qreg[0]) job = execute(mycircuit, Aer.get_backend('unitary_simulator')) current_unitary = job.result().get_unitary(mycircuit, decimals=3) print("after",i,"iteration(s):") print(current_unitary[0][0].real,current_unitary[0][1].real) print(current_unitary[1][0].real,current_unitary[1][1].real) print("calculated by python:") print(round(cos(total_theta),3),round(-sin(total_theta),3)) print(round(sin(total_theta),3),round(cos(total_theta),3)) print()
https://github.com/carstenblank/dc-qiskit-qml
carstenblank
# -*- coding: utf-8 -*- # Copyright 2018 Carsten Blank # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" MöttönenStatePreparation ========================== .. currentmodule:: dc_qiskit_qml.distance_based.hadamard.state.sparsevector._MöttönenStatePreparation .. autosummary:: :nosignatures: MöttönenStatePreparation MöttönenStatePreparation ######################### .. autoclass:: MöttönenStatePreparation :members: """ from dc_qiskit_algorithms.MottonenStatePreparation import state_prep_möttönen from qiskit import QuantumCircuit from scipy import sparse from ._QmlSparseVectorStatePreparation import QmlSparseVectorStatePreparation class MottonenStatePreparation(QmlSparseVectorStatePreparation): def prepare_state(self, qc, state_vector): # type: (QmlSparseVectorStatePreparation, QuantumCircuit, sparse.dok_matrix) -> QuantumCircuit """ Apply the Möttönen state preparation routine on a quantum circuit using the given state vector. The quantum circuit's quantum registers must be able to hold the state vector. Also it is expected that the registers are initialized to the ground state ´´|0>´´ each. :param qc: the quantum circuit to be used :param state_vector: the (complex) state vector of unit length to be prepared :return: the quantum circuit """ qregs = qc.qregs # State Prep register = [reg[i] for reg in qregs for i in range(0, reg.size)] state_prep_möttönen(qc, state_vector, register) return qc def is_classifier_branch(self, branch_value): # type: (QmlSparseVectorStatePreparation, int) -> bool """ The classifier will be directly usable if the branch label is 0. :param branch_value: the branch measurement value :return: True if the branch measurement was 0 """ return branch_value == 0
https://github.com/qiskit-community/community.qiskit.org
qiskit-community
from qiskit import * from qiskit.tools.visualization import plot_histogram import numpy as np def NOT(input): q = QuantumRegister(1) # a qubit in which to encode and manipulate the input c = ClassicalRegister(1) # a bit to store the output qc = QuantumCircuit(q, c) # this is where the quantum program goes # We encode '0' as the qubit state |0⟩, and '1' as |1⟩ # Since the qubit is initially |0⟩, we don't need to do anything for an input of '0' # For an input of '1', we do an x to rotate the |0⟩ to |1⟩ if input=='1': qc.x( q[0] ) # Now we've encoded the input, we can do a NOT on it using x qc.x( q[0] ) # Finally, we extract the |0⟩/|1⟩ output of the qubit and encode it in the bit c[0] qc.measure( q[0], c[0] ) # We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = execute(qc,backend,shots=1) output = next(iter(job.result().get_counts())) return output def XOR(input1,input2): q = QuantumRegister(2) # two qubits in which to encode and manipulate the input c = ClassicalRegister(1) # a bit to store the output qc = QuantumCircuit(q, c) # this is where the quantum program goes # YOUR QUANTUM PROGRAM GOES HERE qc.measure(q[1],c[0]) # YOU CAN CHANGE THIS IF YOU WANT TO # We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = execute(qc,backend,shots=1,memory=True) output = job.result().get_memory()[0] return output def AND(input1,input2): q = QuantumRegister(3) # two qubits in which to encode the input, and one for the output c = ClassicalRegister(1) # a bit to store the output qc = QuantumCircuit(q, c) # this is where the quantum program goes # YOUR QUANTUM PROGRAM GOES HERE qc.measure(q[2],c[0]) # YOU CAN CHANGE THIS IF YOU WANT TO # We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = execute(qc,backend,shots=1,memory=True) output = job.result().get_memory()[0] return output def NAND(input1,input2): q = QuantumRegister(3) # two qubits in which to encode the input, and one for the output c = ClassicalRegister(1) # a bit to store the output qc = QuantumCircuit(q, c) # this is where the quantum program goes # YOUR QUANTUM PROGRAM GOES HERE qc.measure(q[2],c[0]) # YOU CAN CHANGE THIS IF YOU WANT TO # We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = execute(qc,backend,shots=1,memory=True) output = job.result().get_memory()[0] return output def OR(input1,input2): q = QuantumRegister(3) # two qubits in which to encode the input, and one for the output c = ClassicalRegister(1) # a bit to store the output qc = QuantumCircuit(q, c) # this is where the quantum program goes # YOUR QUANTUM PROGRAM GOES HERE qc.measure(q[2],c[0]) # YOU CAN CHANGE THIS IF YOU WANT TO # We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = execute(qc,backend,shots=1,memory=True) output = job.result().get_memory()[0] return output print('\nResults for the NOT gate') for input in ['0','1']: print(' Input',input,'gives output',NOT(input)) print('\nResults for the XOR gate') for input1 in ['0','1']: for input2 in ['0','1']: print(' Inputs',input1,input2,'give output',XOR(input1,input2)) print('\nResults for the AND gate') for input1 in ['0','1']: for input2 in ['0','1']: print(' Inputs',input1,input2,'give output',AND(input1,input2)) print('\nResults for the NAND gate') for input1 in ['0','1']: for input2 in ['0','1']: print(' Inputs',input1,input2,'give output',NAND(input1,input2)) print('\nResults for the OR gate') for input1 in ['0','1']: for input2 in ['0','1']: print(' Inputs',input1,input2,'give output',OR(input1,input2))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) qc.h(range(2)) qc.measure(range(2), range(2)) # apply x gate if the classical register has the value 2 (10 in binary) qc.x(0).c_if(cr, 2) # apply y gate if bit 0 is set to 1 qc.y(1).c_if(0, 1) qc.draw('mpl')
https://github.com/vandnaChaturvedi/Qauntum_algorithms_Qiskit
vandnaChaturvedi
import numpy as np import qiskit from qiskit import QuantumCircuit import matplotlib.pyplot as plt from qiskit.circuit import QuantumCircuit, Parameter import warnings warnings.filterwarnings('ignore') theta = Parameter("θ") phi = Parameter("φ") lamb = Parameter("λ") def sampleCircuitA(layer=1, qubits=4): circuit = QuantumCircuit(qubits) for i in range(layer): for i in range(qubits - 1): circuit.cx(i, i + 1) circuit.cx(qubits - 1, 0) for i in range(qubits - 1): circuit.cx(i, i + 1) circuit.cx(qubits - 1, 0) circuit.barrier() for i in range(qubits): circuit.u3(theta, phi, lamb, i) return circuit circuitA = sampleCircuitA(qubits=4) circuitA.draw(output='mpl') def sampleCircuitB1(layer=1, qubits=4): circuit = QuantumCircuit(qubits) for i in range(qubits): circuit.u1(theta, i) for i in range(layer): for j in range(qubits - 1): circuit.cz(j, j + 1) circuit.cz(qubits - 1, 0) circuit.barrier() for j in range(qubits): circuit.u1(theta, j) return circuit def sampleCircuitB2(layer=1, qubits=4): circuit = QuantumCircuit(qubits) for i in range(qubits): circuit.u2(phi, lamb, i) for i in range(layer): for j in range(qubits - 1): circuit.cz(j, j + 1) circuit.cz(qubits - 1, 0) circuit.barrier() for j in range(qubits): circuit.u2(phi, lamb, j) return circuit def sampleCircuitB3(layer=1, qubits=4): circuit = QuantumCircuit(qubits) for i in range(qubits): circuit.u3(theta, phi, lamb, i) for i in range(layer): for j in range(qubits - 1): circuit.cz(j, j + 1) circuit.cz(qubits - 1, 0) circuit.barrier() for j in range(qubits): circuit.u3(theta, phi, lamb, j) return circuit circuitB1 = sampleCircuitB1(qubits=4) circuitB1.draw(output='mpl') circuitB2 = sampleCircuitB2(qubits=4) circuitB2.draw(output='mpl') circuitB3 = sampleCircuitB3(qubits=4) circuitB3.draw(output='mpl') def sampleCircuitC(layer=1, qubits=4): circuit = QuantumCircuit(qubits) for i in range(layer): for j in range(qubits): circuit.ry(theta, j) circuit.crx(theta, qubits - 1, 0) for j in range(qubits - 1, 0, -1): circuit.crx(theta, j - 1, j) circuit.barrier() for j in range(qubits): circuit.ry(theta, j) circuit.crx(theta, 3, 2) circuit.crx(theta, 0, 3) circuit.crx(theta, 1, 0) circuit.crx(theta, 2, 1) return circuit circuitC = sampleCircuitC(qubits=4) circuitC.draw(output='mpl') def sampleCircuitD(layer=1, qubits=4): circuit = QuantumCircuit(qubits) for i in range(layer): for j in range(qubits): circuit.rx(theta, j) circuit.rz(theta, j) for j in range(qubits - 1, -1, -1): for k in range(qubits - 1, -1, -1): if j != k: circuit.crx(theta, j, k) circuit.barrier() for j in range(qubits): circuit.rx(theta, j) circuit.rz(theta, j) return circuit circuitD = sampleCircuitD(qubits=4) circuitD.draw(output='mpl') def sampleCircuitE(layer=1, qubits=4): circuit = QuantumCircuit(qubits) for i in range(layer): for j in range(qubits): circuit.rx(theta, j) circuit.rz(theta, j) for j in range(1, qubits, 2): circuit.crx(theta, j, j - 1) for j in range(qubits): circuit.rx(theta, j) circuit.rz(theta, j) for j in range(2, qubits, 2): circuit.crx(theta, j, j - 1) return circuit circuitE = sampleCircuitE(qubits=4) circuitE.draw(output='mpl') def sampleCircuitF(layer=1, qubits=4): circuit = QuantumCircuit(qubits) for i in range(layer): for j in range(qubits): circuit.rx(theta, j) circuit.rz(theta, j) circuit.crx(theta, qubits - 1, 0) for j in range(qubits - 1, 0, -1): circuit.crx(theta, j - 1, j) return circuit circuitF = sampleCircuitF(qubits=4) circuitF.draw(output='mpl') def sampleEncoding(qubits): circuit = QuantumCircuit(qubits) for i in range(qubits): circuit.h(i) circuit.ry(theta, i) return circuit circuit = sampleEncoding(4) circuit.draw(output='mpl') # demo: circuit = sampleEncoding(5).compose(sampleCircuitB3(layer=2, qubits=5)) circuit.draw(output='mpl')
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit.transpiler import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from mirror_gates.logging import transpile_benchy_logger from transpile_benchy.library import CircuitLibrary library = CircuitLibrary.from_txt("../../circuits/iters_select.txt") coupling_map = CouplingMap.from_line(64) # coupling_map = CouplingMap.from_heavy_hex(5) # XXX we hardcoded layout to not be parallelized to avoid a pipe error # before collecting data for this result -> change the hardcoded value # maybe requires downgrading to 3.9 to get this to work....???? transpilers = [ QiskitLevel3(coupling_map, python_sabre=True), Mirage( coupling_map, use_fast_settings=True, name="Mirage", parallel=True, swap_trials=6, layout_trials=6, ), ] from transpile_benchy.benchmark import Benchmark # only interested in TimeMetric, is there by default benchmark = Benchmark( transpilers=transpilers, circuit_library=library, num_runs=1, logger=transpile_benchy_logger, ) benchmark.run() benchmark.summary_statistics(transpilers[0], transpilers[1]) from transpile_benchy.render import plot_benchmark plot_benchmark( benchmark, save=1, legend_show=1, filename="speed", plot_type="trendline", color_override=[0, 3], ) print(benchmark)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, execute from qiskit.providers.fake_provider import FakeVigoV2 from qiskit.visualization import plot_gate_map backend = FakeVigoV2() plot_gate_map(backend)
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """The Iterative Quantum Amplitude Estimation Algorithm.""" from __future__ import annotations from typing import cast import warnings import numpy as np from scipy.stats import beta from qiskit import ClassicalRegister, QuantumCircuit from qiskit.providers import Backend from qiskit.primitives import BaseSampler from qiskit.utils import QuantumInstance from qiskit.utils.deprecation import deprecate_arg, deprecate_func from .amplitude_estimator import AmplitudeEstimator, AmplitudeEstimatorResult from .estimation_problem import EstimationProblem from ..exceptions import AlgorithmError class IterativeAmplitudeEstimation(AmplitudeEstimator): r"""The Iterative Amplitude Estimation algorithm. This class implements the Iterative Quantum Amplitude Estimation (IQAE) algorithm, proposed in [1]. The output of the algorithm is an estimate that, with at least probability :math:`1 - \alpha`, differs by epsilon to the target value, where both alpha and epsilon can be specified. It differs from the original QAE algorithm proposed by Brassard [2] in that it does not rely on Quantum Phase Estimation, but is only based on Grover's algorithm. IQAE iteratively applies carefully selected Grover iterations to find an estimate for the target amplitude. References: [1]: Grinko, D., Gacon, J., Zoufal, C., & Woerner, S. (2019). Iterative Quantum Amplitude Estimation. `arXiv:1912.05559 <https://arxiv.org/abs/1912.05559>`_. [2]: Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000). Quantum Amplitude Amplification and Estimation. `arXiv:quant-ph/0005055 <http://arxiv.org/abs/quant-ph/0005055>`_. """ @deprecate_arg( "quantum_instance", additional_msg=( "Instead, use the ``sampler`` argument. See https://qisk.it/algo_migration for a " "migration guide." ), since="0.24.0", ) def __init__( self, epsilon_target: float, alpha: float, confint_method: str = "beta", min_ratio: float = 2, quantum_instance: QuantumInstance | Backend | None = None, sampler: BaseSampler | None = None, ) -> None: r""" The output of the algorithm is an estimate for the amplitude `a`, that with at least probability 1 - alpha has an error of epsilon. The number of A operator calls scales linearly in 1/epsilon (up to a logarithmic factor). Args: epsilon_target: Target precision for estimation target `a`, has values between 0 and 0.5 alpha: Confidence level, the target probability is 1 - alpha, has values between 0 and 1 confint_method: Statistical method used to estimate the confidence intervals in each iteration, can be 'chernoff' for the Chernoff intervals or 'beta' for the Clopper-Pearson intervals (default) min_ratio: Minimal q-ratio (:math:`K_{i+1} / K_i`) for FindNextK quantum_instance: Deprecated: Quantum Instance or Backend sampler: A sampler primitive to evaluate the circuits. Raises: AlgorithmError: if the method to compute the confidence intervals is not supported ValueError: If the target epsilon is not in (0, 0.5] ValueError: If alpha is not in (0, 1) ValueError: If confint_method is not supported """ # validate ranges of input arguments if not 0 < epsilon_target <= 0.5: raise ValueError(f"The target epsilon must be in (0, 0.5], but is {epsilon_target}.") if not 0 < alpha < 1: raise ValueError(f"The confidence level alpha must be in (0, 1), but is {alpha}") if confint_method not in {"chernoff", "beta"}: raise ValueError( f"The confidence interval method must be chernoff or beta, but is {confint_method}." ) super().__init__() # set quantum instance with warnings.catch_warnings(): warnings.simplefilter("ignore") self.quantum_instance = quantum_instance # store parameters self._epsilon = epsilon_target self._alpha = alpha self._min_ratio = min_ratio self._confint_method = confint_method self._sampler = sampler @property def sampler(self) -> BaseSampler | None: """Get the sampler primitive. Returns: The sampler primitive to evaluate the circuits. """ return self._sampler @sampler.setter def sampler(self, sampler: BaseSampler) -> None: """Set sampler primitive. Args: sampler: A sampler primitive to evaluate the circuits. """ self._sampler = sampler @property @deprecate_func( since="0.24.0", is_property=True, additional_msg="See https://qisk.it/algo_migration for a migration guide.", ) def quantum_instance(self) -> QuantumInstance | None: """Deprecated. Get the quantum instance. Returns: The quantum instance used to run this algorithm. """ return self._quantum_instance @quantum_instance.setter @deprecate_func( since="0.24.0", is_property=True, additional_msg="See https://qisk.it/algo_migration for a migration guide.", ) def quantum_instance(self, quantum_instance: QuantumInstance | Backend) -> None: """Deprecated. Set quantum instance. Args: quantum_instance: The quantum instance used to run this algorithm. """ if isinstance(quantum_instance, Backend): quantum_instance = QuantumInstance(quantum_instance) self._quantum_instance = quantum_instance @property def epsilon_target(self) -> float: """Returns the target precision ``epsilon_target`` of the algorithm. Returns: The target precision (which is half the width of the confidence interval). """ return self._epsilon @epsilon_target.setter def epsilon_target(self, epsilon: float) -> None: """Set the target precision of the algorithm. Args: epsilon: Target precision for estimation target `a`. """ self._epsilon = epsilon def _find_next_k( self, k: int, upper_half_circle: bool, theta_interval: tuple[float, float], min_ratio: float = 2.0, ) -> tuple[int, bool]: """Find the largest integer k_next, such that the interval (4 * k_next + 2)*theta_interval lies completely in [0, pi] or [pi, 2pi], for theta_interval = (theta_lower, theta_upper). Args: k: The current power of the Q operator. upper_half_circle: Boolean flag of whether theta_interval lies in the upper half-circle [0, pi] or in the lower one [pi, 2pi]. theta_interval: The current confidence interval for the angle theta, i.e. (theta_lower, theta_upper). min_ratio: Minimal ratio K/K_next allowed in the algorithm. Returns: The next power k, and boolean flag for the extrapolated interval. Raises: AlgorithmError: if min_ratio is smaller or equal to 1 """ if min_ratio <= 1: raise AlgorithmError("min_ratio must be larger than 1 to ensure convergence") # initialize variables theta_l, theta_u = theta_interval old_scaling = 4 * k + 2 # current scaling factor, called K := (4k + 2) # the largest feasible scaling factor K cannot be larger than K_max, # which is bounded by the length of the current confidence interval max_scaling = int(1 / (2 * (theta_u - theta_l))) scaling = max_scaling - (max_scaling - 2) % 4 # bring into the form 4 * k_max + 2 # find the largest feasible scaling factor K_next, and thus k_next while scaling >= min_ratio * old_scaling: theta_min = scaling * theta_l - int(scaling * theta_l) theta_max = scaling * theta_u - int(scaling * theta_u) if theta_min <= theta_max <= 0.5 and theta_min <= 0.5: # the extrapolated theta interval is in the upper half-circle upper_half_circle = True return int((scaling - 2) / 4), upper_half_circle elif theta_max >= 0.5 and theta_max >= theta_min >= 0.5: # the extrapolated theta interval is in the upper half-circle upper_half_circle = False return int((scaling - 2) / 4), upper_half_circle scaling -= 4 # if we do not find a feasible k, return the old one return int(k), upper_half_circle def construct_circuit( self, estimation_problem: EstimationProblem, k: int = 0, measurement: bool = False ) -> QuantumCircuit: r"""Construct the circuit :math:`\mathcal{Q}^k \mathcal{A} |0\rangle`. The A operator is the unitary specifying the QAE problem and Q the associated Grover operator. Args: estimation_problem: The estimation problem for which to construct the QAE circuit. k: The power of the Q operator. measurement: Boolean flag to indicate if measurements should be included in the circuits. Returns: The circuit implementing :math:`\mathcal{Q}^k \mathcal{A} |0\rangle`. """ num_qubits = max( estimation_problem.state_preparation.num_qubits, estimation_problem.grover_operator.num_qubits, ) circuit = QuantumCircuit(num_qubits, name="circuit") # add classical register if needed if measurement: c = ClassicalRegister(len(estimation_problem.objective_qubits)) circuit.add_register(c) # add A operator circuit.compose(estimation_problem.state_preparation, inplace=True) # add Q^k if k != 0: circuit.compose(estimation_problem.grover_operator.power(k), inplace=True) # add optional measurement if measurement: # real hardware can currently not handle operations after measurements, which might # happen if the circuit gets transpiled, hence we're adding a safeguard-barrier circuit.barrier() circuit.measure(estimation_problem.objective_qubits, c[:]) return circuit def _good_state_probability( self, problem: EstimationProblem, counts_or_statevector: dict[str, int] | np.ndarray, num_state_qubits: int, ) -> tuple[int, float] | float: """Get the probability to measure '1' in the last qubit. Args: problem: The estimation problem, used to obtain the number of objective qubits and the ``is_good_state`` function. counts_or_statevector: Either a counts-dictionary (with one measured qubit only!) or the statevector returned from the statevector_simulator. num_state_qubits: The number of state qubits. Returns: If a dict is given, return (#one-counts, #one-counts/#all-counts), otherwise Pr(measure '1' in the last qubit). """ if isinstance(counts_or_statevector, dict): one_counts = 0 for state, counts in counts_or_statevector.items(): if problem.is_good_state(state): one_counts += counts return int(one_counts), one_counts / sum(counts_or_statevector.values()) else: statevector = counts_or_statevector num_qubits = int(np.log2(len(statevector))) # the total number of qubits # sum over all amplitudes where the objective qubit is 1 prob = 0 for i, amplitude in enumerate(statevector): # consider only state qubits and revert bit order bitstr = bin(i)[2:].zfill(num_qubits)[-num_state_qubits:][::-1] objectives = [bitstr[index] for index in problem.objective_qubits] if problem.is_good_state(objectives): prob = prob + np.abs(amplitude) ** 2 return prob def estimate( self, estimation_problem: EstimationProblem ) -> "IterativeAmplitudeEstimationResult": """Run the amplitude estimation algorithm on provided estimation problem. Args: estimation_problem: The estimation problem. Returns: An amplitude estimation results object. Raises: ValueError: A quantum instance or Sampler must be provided. AlgorithmError: Sampler job run error. """ if self._quantum_instance is None and self._sampler is None: raise ValueError("A quantum instance or sampler must be provided.") # initialize memory variables powers = [0] # list of powers k: Q^k, (called 'k' in paper) ratios = [] # list of multiplication factors (called 'q' in paper) theta_intervals = [[0, 1 / 4]] # a priori knowledge of theta / 2 / pi a_intervals = [[0.0, 1.0]] # a priori knowledge of the confidence interval of the estimate num_oracle_queries = 0 num_one_shots = [] # maximum number of rounds max_rounds = ( int(np.log(self._min_ratio * np.pi / 8 / self._epsilon) / np.log(self._min_ratio)) + 1 ) upper_half_circle = True # initially theta is in the upper half-circle if self._quantum_instance is not None and self._quantum_instance.is_statevector: # for statevector we can directly return the probability to measure 1 # note, that no iterations here are necessary # simulate circuit circuit = self.construct_circuit(estimation_problem, k=0, measurement=False) ret = self._quantum_instance.execute(circuit) # get statevector statevector = ret.get_statevector(circuit) # calculate the probability of measuring '1' num_qubits = circuit.num_qubits - circuit.num_ancillas prob = self._good_state_probability(estimation_problem, statevector, num_qubits) prob = cast(float, prob) # tell MyPy it's a float and not Tuple[int, float ] a_confidence_interval = [prob, prob] # type: list[float] a_intervals.append(a_confidence_interval) theta_i_interval = [ np.arccos(1 - 2 * a_i) / 2 / np.pi for a_i in a_confidence_interval # type: ignore ] theta_intervals.append(theta_i_interval) num_oracle_queries = 0 # no Q-oracle call, only a single one to A else: num_iterations = 0 # keep track of the number of iterations # number of shots per iteration shots = 0 # do while loop, keep in mind that we scaled theta mod 2pi such that it lies in [0,1] while theta_intervals[-1][1] - theta_intervals[-1][0] > self._epsilon / np.pi: num_iterations += 1 # get the next k k, upper_half_circle = self._find_next_k( powers[-1], upper_half_circle, theta_intervals[-1], # type: ignore min_ratio=self._min_ratio, ) # store the variables powers.append(k) ratios.append((2 * powers[-1] + 1) / (2 * powers[-2] + 1)) # run measurements for Q^k A|0> circuit circuit = self.construct_circuit(estimation_problem, k, measurement=True) counts = {} if self._quantum_instance is not None: ret = self._quantum_instance.execute(circuit) # get the counts and store them counts = ret.get_counts(circuit) shots = self._quantum_instance._run_config.shots else: try: job = self._sampler.run([circuit]) ret = job.result() except Exception as exc: raise AlgorithmError("The job was not completed successfully. ") from exc shots = ret.metadata[0].get("shots") if shots is None: circuit = self.construct_circuit(estimation_problem, k=0, measurement=True) try: job = self._sampler.run([circuit]) ret = job.result() except Exception as exc: raise AlgorithmError( "The job was not completed successfully. " ) from exc # calculate the probability of measuring '1' prob = 0.0 for bit, probabilities in ret.quasi_dists[0].binary_probabilities().items(): # check if it is a good state if estimation_problem.is_good_state(bit): prob += probabilities a_confidence_interval = [prob, prob] a_intervals.append(a_confidence_interval) theta_i_interval = [ np.arccos(1 - 2 * a_i) / 2 / np.pi for a_i in a_confidence_interval ] theta_intervals.append(theta_i_interval) num_oracle_queries = 0 # no Q-oracle call, only a single one to A break counts = { k: round(v * shots) for k, v in ret.quasi_dists[0].binary_probabilities().items() } # calculate the probability of measuring '1', 'prob' is a_i in the paper num_qubits = circuit.num_qubits - circuit.num_ancillas # type: ignore one_counts, prob = self._good_state_probability( estimation_problem, counts, num_qubits ) num_one_shots.append(one_counts) # track number of Q-oracle calls num_oracle_queries += shots * k # if on the previous iterations we have K_{i-1} == K_i, we sum these samples up j = 1 # number of times we stayed fixed at the same K round_shots = shots round_one_counts = one_counts if num_iterations > 1: while ( powers[num_iterations - j] == powers[num_iterations] and num_iterations >= j + 1 ): j = j + 1 round_shots += shots round_one_counts += num_one_shots[-j] # compute a_min_i, a_max_i if self._confint_method == "chernoff": a_i_min, a_i_max = _chernoff_confint(prob, round_shots, max_rounds, self._alpha) else: # 'beta' a_i_min, a_i_max = _clopper_pearson_confint( round_one_counts, round_shots, self._alpha / max_rounds ) # compute theta_min_i, theta_max_i if upper_half_circle: theta_min_i = np.arccos(1 - 2 * a_i_min) / 2 / np.pi theta_max_i = np.arccos(1 - 2 * a_i_max) / 2 / np.pi else: theta_min_i = 1 - np.arccos(1 - 2 * a_i_max) / 2 / np.pi theta_max_i = 1 - np.arccos(1 - 2 * a_i_min) / 2 / np.pi # compute theta_u, theta_l of this iteration scaling = 4 * k + 2 # current K_i factor theta_u = (int(scaling * theta_intervals[-1][1]) + theta_max_i) / scaling theta_l = (int(scaling * theta_intervals[-1][0]) + theta_min_i) / scaling theta_intervals.append([theta_l, theta_u]) # compute a_u_i, a_l_i a_u = np.sin(2 * np.pi * theta_u) ** 2 a_l = np.sin(2 * np.pi * theta_l) ** 2 a_u = cast(float, a_u) a_l = cast(float, a_l) a_intervals.append([a_l, a_u]) # get the latest confidence interval for the estimate of a confidence_interval = tuple(a_intervals[-1]) # the final estimate is the mean of the confidence interval estimation = np.mean(confidence_interval) result = IterativeAmplitudeEstimationResult() result.alpha = self._alpha result.post_processing = estimation_problem.post_processing result.num_oracle_queries = num_oracle_queries result.estimation = estimation result.epsilon_estimated = (confidence_interval[1] - confidence_interval[0]) / 2 result.confidence_interval = confidence_interval result.estimation_processed = estimation_problem.post_processing(estimation) confidence_interval = tuple( estimation_problem.post_processing(x) for x in confidence_interval ) result.confidence_interval_processed = confidence_interval result.epsilon_estimated_processed = (confidence_interval[1] - confidence_interval[0]) / 2 result.estimate_intervals = a_intervals result.theta_intervals = theta_intervals result.powers = powers result.ratios = ratios return result class IterativeAmplitudeEstimationResult(AmplitudeEstimatorResult): """The ``IterativeAmplitudeEstimation`` result object.""" def __init__(self) -> None: super().__init__() self._alpha: float | None = None self._epsilon_target: float | None = None self._epsilon_estimated: float | None = None self._epsilon_estimated_processed: float | None = None self._estimate_intervals: list[list[float]] | None = None self._theta_intervals: list[list[float]] | None = None self._powers: list[int] | None = None self._ratios: list[float] | None = None self._confidence_interval_processed: tuple[float, float] | None = None @property def alpha(self) -> float: r"""Return the confidence level :math:`\alpha`.""" return self._alpha @alpha.setter def alpha(self, value: float) -> None: r"""Set the confidence level :math:`\alpha`.""" self._alpha = value @property def epsilon_target(self) -> float: """Return the target half-width of the confidence interval.""" return self._epsilon_target @epsilon_target.setter def epsilon_target(self, value: float) -> None: """Set the target half-width of the confidence interval.""" self._epsilon_target = value @property def epsilon_estimated(self) -> float: """Return the estimated half-width of the confidence interval.""" return self._epsilon_estimated @epsilon_estimated.setter def epsilon_estimated(self, value: float) -> None: """Set the estimated half-width of the confidence interval.""" self._epsilon_estimated = value @property def epsilon_estimated_processed(self) -> float: """Return the post-processed estimated half-width of the confidence interval.""" return self._epsilon_estimated_processed @epsilon_estimated_processed.setter def epsilon_estimated_processed(self, value: float) -> None: """Set the post-processed estimated half-width of the confidence interval.""" self._epsilon_estimated_processed = value @property def estimate_intervals(self) -> list[list[float]]: """Return the confidence intervals for the estimate in each iteration.""" return self._estimate_intervals @estimate_intervals.setter def estimate_intervals(self, value: list[list[float]]) -> None: """Set the confidence intervals for the estimate in each iteration.""" self._estimate_intervals = value @property def theta_intervals(self) -> list[list[float]]: """Return the confidence intervals for the angles in each iteration.""" return self._theta_intervals @theta_intervals.setter def theta_intervals(self, value: list[list[float]]) -> None: """Set the confidence intervals for the angles in each iteration.""" self._theta_intervals = value @property def powers(self) -> list[int]: """Return the powers of the Grover operator in each iteration.""" return self._powers @powers.setter def powers(self, value: list[int]) -> None: """Set the powers of the Grover operator in each iteration.""" self._powers = value @property def ratios(self) -> list[float]: r"""Return the ratios :math:`K_{i+1}/K_{i}` for each iteration :math:`i`.""" return self._ratios @ratios.setter def ratios(self, value: list[float]) -> None: r"""Set the ratios :math:`K_{i+1}/K_{i}` for each iteration :math:`i`.""" self._ratios = value @property def confidence_interval_processed(self) -> tuple[float, float]: """Return the post-processed confidence interval.""" return self._confidence_interval_processed @confidence_interval_processed.setter def confidence_interval_processed(self, value: tuple[float, float]) -> None: """Set the post-processed confidence interval.""" self._confidence_interval_processed = value def _chernoff_confint( value: float, shots: int, max_rounds: int, alpha: float ) -> tuple[float, float]: """Compute the Chernoff confidence interval for `shots` i.i.d. Bernoulli trials. The confidence interval is [value - eps, value + eps], where eps = sqrt(3 * log(2 * max_rounds/ alpha) / shots) but at most [0, 1]. Args: value: The current estimate. shots: The number of shots. max_rounds: The maximum number of rounds, used to compute epsilon_a. alpha: The confidence level, used to compute epsilon_a. Returns: The Chernoff confidence interval. """ eps = np.sqrt(3 * np.log(2 * max_rounds / alpha) / shots) lower = np.maximum(0, value - eps) upper = np.minimum(1, value + eps) return lower, upper def _clopper_pearson_confint(counts: int, shots: int, alpha: float) -> tuple[float, float]: """Compute the Clopper-Pearson confidence interval for `shots` i.i.d. Bernoulli trials. Args: counts: The number of positive counts. shots: The number of shots. alpha: The confidence level for the confidence interval. Returns: The Clopper-Pearson confidence interval. """ lower, upper = 0, 1 # if counts == 0, the beta quantile returns nan if counts != 0: lower = beta.ppf(alpha / 2, counts, shots - counts + 1) # if counts == shots, the beta quantile returns nan if counts != shots: upper = beta.ppf(1 - alpha / 2, counts + 1, shots - counts) return lower, upper
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.timeline import draw from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) qc = transpile(qc, FakeBoeblingen(), scheduling_method='alap', layout_method='trivial') draw(qc)
https://github.com/arian-code/nptel_quantum_assignments
arian-code
import numpy as np #Option A p1=np.matrix([[0, 1],[-1, 0]]) print (p1) print (p1.getH()) if (p1==p1.getH()).all(): print ("It is hermitian") else: print ("It is not hermitian") #Option B p1=np.matrix([[0, 0+1j],[0-1j, 0]]) print (p1) print (p1.getH()) if (p1==p1.getH()).all(): print ("It is hermitian") else: print ("It is not hermitian") #Option C p1=np.matrix([[1, 0],[0, 0-1j]]) print (p1) print (p1.getH()) if (p1==p1.getH()).all(): print ("It is hermitian") else: print ("It is not hermitian") #Option D p1=np.matrix([[1, 0+1j],[0-1j, -1]]) print (p1) print (p1.getH()) if (p1==p1.getH()).all(): print ("It is hermitian") else: print ("It is not hermitian")
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, QuantumRegister from qiskit.circuit.library.standard_gates import HGate qr = QuantumRegister(3) qc = QuantumCircuit(qr) c3h_gate = HGate().control(2) qc.append(c3h_gate, qr) qc.draw('mpl')
https://github.com/PaulaGarciaMolina/QNLP_Qiskit_Hackathon
PaulaGarciaMolina
import numpy as np import pickle import qiskit qiskit.__qiskit_version__ from discopy import Ty, Word # Import the classes for the type of word and for the word s, n = Ty('s'), Ty('n') # Define the types s and n # Define the words (notice that we include both meaning and grammar) # nouns man, woman, kid = Word('man', n), Word('woman', n), Word('kid', n) # adjectives morose, irascible = Word('morose', n @ n.l), Word('irascible', n @ n.l) frightened, cheerful = Word('frightened', n @ n.l), Word('cheerful', n @ n.l) gloomy, furious = Word('gloomy', n @ n.l), Word('furious', n @ n.l) terrified, joyful = Word('terrified', n @ n.l), Word('joyful', n @ n.l) downcast, miserable = Word('downcast', n @ n.l), Word('miserable', n @ n.l) old, young = Word('old', n @ n.l), Word('young', n @ n.l) # Intransitive verbs cries, shouts = Word('cries', n.r @ s), Word('shouts', n.r @ s) laughs, snaps = Word('laughs', n.r @ s), Word('snaps', n.r @ s) # Transitive verbs grieves, startles = Word('grieves', n.r @ s @ n.l), Word('startles', n.r @ s @ n.l) entertains, irritates = Word('entertains', n.r @ s @ n.l), Word('irritates', n.r @ s @ n.l) nouns = [man, woman, kid] adjectives = [morose, irascible, frightened, cheerful, gloomy, furious, terrified, joyful, downcast, miserable, old, young] int_verbs = [cries, shouts, laughs, snaps] t_verbs = [grieves, startles, entertains, irritates] vocab = nouns + int_verbs + t_verbs + adjectives from discopy import Cup, Id, pregroup grammar = Id(n) @ Cup(n.l, n) @ Id(n.r @ s) >> Cup(n, n.r) @ Id(s) >> Id(s) sentence = joyful @ woman @ laughs >> grammar pregroup.draw(sentence) grammar = Cup(n, n.r) @ Id(s) @ Cup(n.l, n) sentence = woman @ grieves @ kid >> grammar pregroup.draw(sentence) grammar = Id(n) @ Cup(n.l, n) @ Id(n.r @ s) @ Cup(n.l, n) >> Cup(n, n.r) @ Id(s) >> Id(s) sentence = morose @ woman @ grieves @ kid >> grammar pregroup.draw(sentence) grammar = Cup(n, n.r) @ Id(s) @ Cup(n.l, n) @ Cup(n.l, n) >> Id(s) sentence = man @ grieves @ morose @ man >> grammar pregroup.draw(sentence) from discopy import Diagram from discopy.grammar import draw # Store the grammatical structures of each sentence type in a dictionary grammar_dict = { 'ADJ_N_IV' : Id(n) @ Cup(n.l, n) @ Id(n.r @ s) >> Cup(n, n.r) @ Id(s) >> Id(s), 'N_TV_N': Cup(n, n.r) @ Id(s) @ Cup(n.l, n), 'ADJ_N_TV_N': Id(n) @ Cup(n.l, n) @ Id(n.r @ s) @ Cup(n.l, n) >> Cup(n, n.r) @ Id(s) >> Id(s), 'N_TV_ADJ_N': Cup(n, n.r) @ Id(s) @ Cup(n.l, n) @ Cup(n.l, n) >> Id(s)} # Create parsing (grammatical analysis) dictionary where the grammatical sentences # are the keys and the associated values are the diagrams (words + grammar) data_psr = {} #Creates all possible sentences # Intransitive sentences parsing_int = {"{} {} {}.".format(adj, noun, int_verb): adj @ noun @ int_verb >> grammar_dict['ADJ_N_IV'] for adj in adjectives for noun in nouns for int_verb in int_verbs} sentences_int = list(parsing_int.keys()) for sentence in sentences_int: diagram = parsing_int[sentence] data_psr[sentence] = parsing_int[sentence] # Transitive sentences (without adjective) parsing_tra = {"{} {} {}.".format(subj, t_verb, obj): subj @ t_verb @ obj >> grammar_dict['N_TV_N'] for subj in nouns for t_verb in t_verbs for obj in nouns} # Transitive sentences (with adjective) parsing_tra_ladj = {"{} {} {} {}.".format(adj, subj, t_verb, obj): adj @ subj @ t_verb @ obj >> grammar_dict['ADJ_N_TV_N'] for adj in adjectives for subj in nouns for t_verb in t_verbs for obj in nouns} parsing_tra_radj = {"{} {} {} {}.".format(subj, t_verb, adj, obj): subj @ t_verb @ adj @ obj >> grammar_dict['N_TV_ADJ_N'] for subj in nouns for t_verb in t_verbs for adj in adjectives for obj in nouns} parsing_tra.update(parsing_tra_ladj) #merges transitive adjectives into original dict parsing_tra.update(parsing_tra_radj) sentences_tra = list(parsing_tra.keys()) for sentence in sentences_tra: diagram = parsing_tra[sentence] data_psr[sentence] = parsing_tra[sentence] with open('../sentiment_analysis_dataset.txt') as f: data = f.readlines() labels_dict = {} # Dictionary with the labels for each sentence data_psr_dict = {} # Dictionary with the parsing for each sentence sent_type = {} # Dictionary with the sentence type for each sentence adjective_words = [a.name for a in adjectives] for sentence in data: sentstr = sentence[:-7] #seperates the sentence string from the data at the end if sentence[-6:-3] == 'int': diagram = parsing_int[sentstr] data_psr_dict[sentstr] = diagram labels_dict[sentstr] = sentence[-2] sent_type[sentstr] = 'int' elif sentence[-6:-3] == 'tra': diagram = parsing_tra[sentstr] data_psr_dict[sentstr] = diagram labels_dict[sentstr] = sentence[-2] if len(sentstr.split()) == 4: if sentstr.split()[0] in adjective_words: sent_type[sentstr] = 'tra_' + 'l' #adjective on the left else: sent_type[sentstr] = 'tra_' + 'r' #adjective on the right else: sent_type[sentstr] = 'tra' #the simple transitive verb sentence type c0 = 0 c1 = 0 c2 = 0 c3 = 0 for value in labels_dict.values(): if value == '0': c0 +=1 elif value == '1': c1 += 1 elif value == '2': c2 += 1 elif value == '3': c3 += 1 print('Number of elements for each sentiment') print('Happy: ', c0) print('Sad: ', c1) print('Angry: ', c2) print('Scared: ', c3) print('Total', len(data_psr_dict)) from discopy import Cap, Box # Code of this cell addapted from https://github.com/CQCL/qnlp_lorenz_etal_2021_resources #iterates through all sentences and reshapes them as above according to their type data_new_psr_dict = {} for sentstr in data_psr_dict.keys(): num_words = len(sentstr.split(' ')) words = data_psr_dict[sentstr].boxes[:num_words] if sent_type[sentstr] == 'int': noun = Box(words[1].name, n.l, Ty()) words_new = (Cap(n, n.l)) >> (words[0] @ Id(n) @ noun @ words[2]) sentence = words_new >> grammar_dict['ADJ_N_IV'] data_new_psr_dict[sentstr] = sentence.normal_form() elif 'tra' in sent_type[sentstr]: if sent_type[sentstr] == 'tra': noun1 = Box(words[0].name, n.r, Ty()) noun2 = Box(words[2].name, n.l, Ty()) words_new = (Cap(n.r, n) @ Cap(n, n.l)) >> (noun1 @ Id(n) @ words[1] @ Id(n) @ noun2) sentence = words_new >> grammar_dict['N_TV_N'] data_new_psr_dict[sentstr] = sentence.normal_form() elif sent_type[sentstr] == 'tra_l': #adjective at beginning noun1 = Box(words[1].name, n.l, Ty()) noun2 = Box(words[3].name, n.l, Ty()) words_new = (Cap(n, n.l) @ Cap(n, n.l)) >> (words[0] @ Id(n) @ noun1 @ words[2] @ Id(n) @ noun2) sentence = words_new >> grammar_dict['ADJ_N_TV_N'] data_new_psr_dict[sentstr] = sentence.normal_form() elif sent_type[sentstr] == 'tra_r': #adjective on second noun noun1 = Box(words[0].name, n.r, Ty()) noun2 = Box(words[3].name, n.l, Ty()) words_new = (Cap(n.r, n) @ Cap(n, n.l)) >> (noun1 @ Id(n) @ words[1] @ words[2] @ Id(n) @ noun2) sentence = words_new >> grammar_dict['N_TV_ADJ_N'] data_new_psr_dict[sentstr] = sentence.normal_form() vocab_psr = [] for word in vocab: if word.cod == Ty('n'): vocab_psr.append(Box(word.name, n.r, Ty())) # n.l case is dealt with in definition of quantum functor else: vocab_psr.append(word) # Code of this cell from https://github.com/CQCL/qnlp_lorenz_etal_2021_resources from discopy.quantum import Ket, IQPansatz, Bra, qubit from discopy.quantum.circuit import Functor, Id from discopy.quantum.circuit import Circuit from functools import reduce, partial from discopy.quantum.gates import Rx, Rz import numpy as np q_s = 1 # number of qubits for type s (sentence) q_n = 1 # number of qubits for type n (noun) depth = 1 # depth of the IQPansatz p_n = 3 # number of parameters for the single qubit iqp ansatz # Define the dimensions of the objects of the circuit functor ob = {s: q_s, n: q_n} ob_cqmap = {s: qubit ** q_s, n: qubit ** q_n} # Define the ansätze for states and effects def single_qubit_iqp_ansatz(params): if len(params) == 1: return Rx(params[0]) if len(params) == 2: return Rx(params[0]) >> Rz(params[1]) if len(params) == 3: return IQPansatz(1, params) def ansatz_state(state, params): arity = sum(ob[Ty(factor.name)] for factor in state.cod) if arity == 1: return Ket(0) >> single_qubit_iqp_ansatz(params) return Ket(*tuple([0 for i in range(arity)])) >> IQPansatz(arity, params) def ansatz_effect(effect, params): arity = sum(ob[Ty(factor.name)] for factor in effect.dom) if arity == 1: return single_qubit_iqp_ansatz(params) >> Bra(0) return IQPansatz(arity, params) >> Bra(*tuple([0 for i in range(arity)])) def ansatz(box,params): dom_type = box.dom cod_type = box.cod if len(dom_type) == 0 and len(cod_type) != 0: return ansatz_state(box, params) if len(dom_type) != 0 and len(cod_type) == 0: return ansatz_effect(box, params) # Construct the circuit functor def F(params): ar = dict() for i in range(len(vocab_psr)): pgbox = vocab_psr[i] qbox = ansatz(vocab_psr[i], params[i]) ar.update({pgbox: qbox}) if pgbox.cod == Ty(): ar.update({Box(pgbox.name, n.l, Ty()): qbox}) return Functor(ob_cqmap, ar) # Code of this cell from https://github.com/CQCL/qnlp_lorenz_etal_2021_resources #***************************************************** # Functions to deal with the parametrisation #***************************************************** def paramshapes(vocab_psr): parshapes = [] for box in vocab_psr: dom_type = box.dom cod_type = box.cod dom_arity = sum(ob[Ty(factor.name)] for factor in box.dom) cod_arity = sum(ob[Ty(factor.name)] for factor in box.cod) if dom_arity == 0 or cod_arity == 0: # states and effects arity = max(dom_arity, cod_arity) assert arity != 0 parshapes.append((depth, arity-1)) return parshapes def randparams(par_shapes): params = np.array([]) for i in range(len(par_shapes)): params = np.concatenate((params, np.ravel(np.random.rand(*par_shapes[i])))) # np.ravel flattens an array return params def reshape_params(unshaped_pars, par_shapes): pars_reshaped = [[] for ii in range(len(par_shapes))] shift = 0 for ss, s in enumerate(par_shapes): idx0 = 0 + shift if len(s) == 1: idx1 = s[0] + shift elif len(s) == 2: idx1 = s[0] * s[1] + shift pars_reshaped[ss] = np.reshape(unshaped_pars[idx0:idx1], s) if len(s) == 1: shift += s[0] elif len(s) == 2: shift += s[0] * s[1] return pars_reshaped # Code of this cell from https://github.com/CQCL/qnlp_lorenz_etal_2021_resources #**************************************** # Parameters of the current model #**************************************** par_shapes = paramshapes(vocab_psr) rand_unshaped_pars = randparams(par_shapes) rand_shaped_pars = reshape_params(rand_unshaped_pars, par_shapes) print('Number of parameters: ', len(rand_unshaped_pars)) # Print the quantum circuit for each sentence func = F(rand_shaped_pars) for sentstr in data_new_psr_dict: print(sentstr) print(data_new_psr_dict[sentstr]) #func(data_new_psr_dict[sentstr]).draw(draw_box_labels=True, figsize=(5, 5)) from sklearn.model_selection import train_test_split psr_diagrams = [] psr_diagrams_dict = {} psr_labels = [] sentences = [] #create lists of sentences and corresponding diagram and labels for sentstr in data_new_psr_dict.keys(): sentences.append(sentstr) diagram = data_new_psr_dict[sentstr] psr_diagrams.append(diagram) psr_diagrams_dict[sentstr] = diagram if labels_dict[sentstr] == '0': label = np.array([1,0,0,0]) elif labels_dict[sentstr] == '1': label = np.array([0,1,0,0]) elif labels_dict[sentstr] == '2': label = np.array([0,0,1,0]) elif labels_dict[sentstr] == '3': label = np.array([0,0,0,1]) psr_labels.append(label) #Splits the sentences and corresponding labels into train and test sets train_sent, test_sent, train_labels, test_labels = \ train_test_split(sentences, psr_labels, test_size=0.25, random_state=42) #Finds the discopy diagrams for the sentences in train and test train_data_psr = [psr_diagrams_dict[sent] for sent in train_sent] test_data_psr = [psr_diagrams_dict[sent] for sent in test_sent] from qiskit import BasicAer, execute, ClassicalRegister from pytket.extensions.qiskit import tk_to_qiskit from qiskit.quantum_info import Statevector #intransitive sentence func(psr_diagrams_dict['morose woman cries.']).draw() #basic transitive sentence func(psr_diagrams_dict['man grieves woman.']).draw() #transitive sentence, left adjective func(psr_diagrams_dict['morose man grieves woman.']).draw() #transitive sentence, right adjective func(psr_diagrams_dict['man entertains joyful woman.']).draw() def get_qiskit_results(circ, sent, retries=10, qasm=False): """Function to get the Qiskit's results from a DisCoPy circuit. Args: circ: DisCoPy circuit. sent: English sentence corresponding to circuit retries: number of retries before assigning a random result if the postselection leads to zero values (Default is 10). qasm: if True qasm_simulator is used, if not statevector_simulator (Default is False). Returns: array: results from the postselection measurement. """ #Finds the sentence's type to determine the number of qubits and position of the sentence qubits s_type = sent_type[sent] if s_type == 'int': n_qubits = 8 posts = [4,5] elif s_type == 'tra': n_qubits = 6 posts = [2,3] elif s_type == 'tra_l': n_qubits = 10 posts = [4,5] else: assert s_type == 'tra_r' n_qubits = 10 posts = [2,3] #the diagrams are initially in discopy, so we first convert them to tket and then to qiskit qc = tk_to_qiskit(circ.to_tk()) if qasm == True: backend = Aer.get_backend('qasm_simulator') #qasm_simulator out_reg = ClassicalRegister(2) qc.add_register(out_reg) qc.measure(posts, out_reg) if noise_model is not None: # Include noise model results = execute(qc, backend, shots=max_shots, noise_model=noise_model, coupling_map=coupling_map,basis_gates=basis_gates).result().get_counts() else: results = execute(qc, backend, shots=max_shots).result().get_counts() zeros = '0' * (n_qubits - 1) if '0 ' + zeros not in results and '1 ' + zeros not in results: if retries == 0: return np.random.rand(2) return get_qiskit_results(circ, s_type, transpile, retries=retries-1, qasm = qasm_bool) return parse_results(results, eff=zeros) else: qc.remove_final_measurements() state_dict = Statevector(qc).to_dict() #The only values we care about are the ones when the non-sentence qubits are all zero. This leaves 4 possible values #for the sentence qubits, which we store in a list here selections = ['0' * posts[0] + val + '0' * (n_qubits - posts[1] - 1) for val in ['00', '01', '10', '11']] return [np.abs(state_dict[sel])**2 for sel in selections] #returns the amplitude of each of these four states from qiskit.algorithms.optimizers import SPSA import time global_costs = [] #global variable to keep track of cost during training begin_time = time.time() def cost_ce(unshaped_params): #finds cross entropy cost #creates a functor which turns a sentence diagram into a circuit parameterized by unshaped_params func = F(reshape_params(unshaped_params, par_shapes)) #Applies this functor to every training diagram circs = [func(diag) for diag in train_data_psr] #Finds the post-selected qiskit results for each circuit results = np.array([get_qiskit_results(circs[i], train_sent[i]) for i in range(len(train_sent))]) #Turns each result into a probability distribution results_tweaked = [np.abs(np.array(res) - 1e-9) for res in results] pred_labels_distrs = [res.flatten() / np.sum(res) for res in results_tweaked] #finds the cross entropy cross_entropies = np.array([np.sum(train_labels[s] * np.log2(pred_labels_distrs[s])) for s in range(len(train_labels))]) cost = -1 / len(train_data_psr) * np.sum(cross_entropies) #stores the cost in a global list so we can track progress global_costs.append(cost) if len(global_costs) % 100 == 0: #since SPSA calls the cost function twice per iteration, this prints every 50 iterations print("at iteration", len(global_costs)/2, time.time() - begin_time) return cost ps = {} #Chooses random parameters to begin with rand_unshaped_pars = randparams(par_shapes) num_vars = len(rand_unshaped_pars) #create bounds between 0 and 1 for every variable bounds = [[0.0, 1.0] for _ in range(len(rand_unshaped_pars))] n_iterations = 1250 a = time.time() #creates a qiskit SPSA optimizer opt = SPSA(maxiter=n_iterations) print("\n\ncalibrating") opt.calibrate(cost_ce, initial_point=rand_unshaped_pars) #calibrates it with the cost function and starting parameters print("training") global_costs = [] begin_time = time.time() ps = opt.optimize(num_vars, cost_ce, initial_point=rand_unshaped_pars, variable_bounds=bounds) print("took", time.time() - a) pickle.dump([ps, global_costs], open("sentiment_analysis_qiskit_ce_1250.p", "wb")) func = F(reshape_params(ps[0], par_shapes)) circs = [func(diag) for diag in test_data_psr] results = np.array([get_qiskit_results(circs[i], test_sent[i]) for i in range(len(test_sent))]) results_tweaked = [np.abs(np.array(res) - 1e-9) for res in results] pred_labels_distrs = [res.flatten() / np.sum(res) for res in results_tweaked] from sklearn.metrics import confusion_matrix import pandas as pd import seaborn as sns c_matrix = confusion_matrix([np.argmax(t) for t in test_labels], [np.argmax(r) for r in pred_labels_distrs]) df_cm = pd.DataFrame(c_matrix, ['happy','sad','angry','scared'], ['happy','sad','angry','scared']) df_cm.index.name = 'Actual' df_cm.columns.name = 'Predicted' sns.heatmap(df_cm, annot=True, annot_kws={"size": 16},cmap='viridis', xticklabels=True, yticklabels=True) print("test accuracy =", sum([np.argmax(test_labels[i]) == np.argmax(pred_labels_distrs[i]) for i in range(len(test_labels))])/len(test_labels)) costs = global_costs[51:] n = ps[-1] costs = [(costs[j*2] + costs[j*2 + 1])/2 for j in range(n//2)] import matplotlib.pyplot as plt plt.xlabel('Iterations') plt.ylabel('Cross Entropy') plt.title("2-Qubit Multi-class Classification") plt.plot(costs)
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """A collection of backend information formatted to generate drawing data. This instance will be provided to generator functions. The module provides an abstract class :py:class:``DrawerBackendInfo`` with necessary methods to generate drawing objects. Because the data structure of backend class may depend on providers, this abstract class has an abstract factory method `create_from_backend`. Each subclass should provide the factory method which conforms to the associated provider. By default we provide :py:class:``OpenPulseBackendInfo`` class that has the factory method taking backends satisfying OpenPulse specification [1]. This class can be also initialized without the factory method by manually specifying required information. This may be convenient for visualizing a pulse program for simulator backend that only has a device Hamiltonian information. This requires two mapping objects for channel/qubit and channel/frequency along with the system cycle time. If those information are not provided, this class will be initialized with a set of empty data and the drawer illustrates a pulse program without any specific information. Reference: - [1] Qiskit Backend Specifications for OpenQASM and OpenPulse Experiments, https://arxiv.org/abs/1809.03452 """ from abc import ABC, abstractmethod from collections import defaultdict from typing import Dict, List, Union, Optional from qiskit import pulse from qiskit.providers import BackendConfigurationError from qiskit.providers.backend import Backend class DrawerBackendInfo(ABC): """Backend information to be used for the drawing data generation.""" def __init__( self, name: Optional[str] = None, dt: Optional[float] = None, channel_frequency_map: Optional[Dict[pulse.channels.Channel, float]] = None, qubit_channel_map: Optional[Dict[int, List[pulse.channels.Channel]]] = None, ): """Create new backend information. Args: name: Name of the backend. dt: System cycle time. channel_frequency_map: Mapping of channel and associated frequency. qubit_channel_map: Mapping of qubit and associated channels. """ self.backend_name = name or "no-backend" self._dt = dt self._chan_freq_map = channel_frequency_map or {} self._qubit_channel_map = qubit_channel_map or {} @classmethod @abstractmethod def create_from_backend(cls, backend: Backend): """Initialize a class with backend information provided by provider. Args: backend: Backend object. """ raise NotImplementedError @property def dt(self): """Return cycle time.""" return self._dt def get_qubit_index(self, chan: pulse.channels.Channel) -> Union[int, None]: """Get associated qubit index of given channel object.""" for qind, chans in self._qubit_channel_map.items(): if chan in chans: return qind return chan.index def get_channel_frequency(self, chan: pulse.channels.Channel) -> Union[float, None]: """Get frequency of given channel object.""" return self._chan_freq_map.get(chan, None) class OpenPulseBackendInfo(DrawerBackendInfo): """Drawing information of backend that conforms to OpenPulse specification.""" @classmethod def create_from_backend(cls, backend: Backend): """Initialize a class with backend information provided by provider. Args: backend: Backend object. Returns: OpenPulseBackendInfo: New configured instance. """ configuration = backend.configuration() defaults = backend.defaults() # load name name = backend.name() # load cycle time dt = configuration.dt # load frequencies chan_freqs = {} chan_freqs.update( {pulse.DriveChannel(qind): freq for qind, freq in enumerate(defaults.qubit_freq_est)} ) chan_freqs.update( {pulse.MeasureChannel(qind): freq for qind, freq in enumerate(defaults.meas_freq_est)} ) for qind, u_lo_mappers in enumerate(configuration.u_channel_lo): temp_val = 0.0 + 0.0j for u_lo_mapper in u_lo_mappers: temp_val += defaults.qubit_freq_est[u_lo_mapper.q] * u_lo_mapper.scale chan_freqs[pulse.ControlChannel(qind)] = temp_val.real # load qubit channel mapping qubit_channel_map = defaultdict(list) for qind in range(configuration.n_qubits): qubit_channel_map[qind].append(configuration.drive(qubit=qind)) qubit_channel_map[qind].append(configuration.measure(qubit=qind)) for tind in range(configuration.n_qubits): try: qubit_channel_map[qind].extend(configuration.control(qubits=(qind, tind))) except BackendConfigurationError: pass return OpenPulseBackendInfo( name=name, dt=dt, channel_frequency_map=chan_freqs, qubit_channel_map=qubit_channel_map )
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import qiskit.qasm3 program = """ OPENQASM 3.0; include "stdgates.inc"; input float[64] a; qubit[3] q; bit[2] mid; bit[3] out; let aliased = q[0:1]; gate my_gate(a) c, t { gphase(a / 2); ry(a) c; cx c, t; } gate my_phase(a) c { ctrl @ inv @ gphase(a) c; } my_gate(a * 2) aliased[0], q[{1, 2}][0]; measure q[0] -> mid[0]; measure q[1] -> mid[1]; while (mid == "00") { reset q[0]; reset q[1]; my_gate(a) q[0], q[1]; my_phase(a - pi/2) q[1]; mid[0] = measure q[0]; mid[1] = measure q[1]; } if (mid[0]) { let inner_alias = q[{0, 1}]; reset inner_alias; } out = measure q; """ circuit = qiskit.qasm3.loads(program) circuit.draw("mpl")
https://github.com/mnp-club/Quantum_Computing_Workshop_2020
mnp-club
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * import numpy as np from fractions import Fraction as frac import qiskit.quantum_info as qi # Loading your IBM Q account(s) provider = IBMQ.load_account() qc=QuantumCircuit(4) #In this particular oracle, the last qubit is storing the value of the function qc.cx(0,3) qc.cx(1,3) qc.cx(2,3) #The last qubit is 1 if there are odd no. of 1s in the other 3 qubits #and 0 otherwise #Hence it is a balanced function qc.draw('mpl') qc1=QuantumCircuit(3) qc1.x(2) qc1.h(0) qc1.h(1) qc1.h(2) qc1.barrier(range(3)) qc1.cx(0,2) qc1.cx(1,2) qc1.barrier(range(3)) qc1.h(0) qc1.h(1) meas = QuantumCircuit(3, 2) meas.measure(range(2),range(2)) # The Qiskit circuit object supports composition using # the addition operator. circ = qc1+meas circ.draw('mpl') backend_sim = Aer.get_backend('qasm_simulator') job_sim = execute(circ, backend_sim, shots=1000) result_sim = job_sim.result() counts = result_sim.get_counts(circ) print(counts) plot_histogram(counts) qc2=QuantumCircuit(5) qc2.x(4) qc2.h(0) qc2.h(1) qc2.h(2) qc2.h(3) qc2.h(4) qc2.barrier(range(5)) #Your code for the oracle here #YOU ARE PERMITTED TO USE ONLY SINGLE QUBIT GATES AND CNOT(cx) GATES qc2.cx(0,4) qc2.cx(1,4) qc2.cx(2,4) qc2.cx(3,4) qc2.x(4) qc2.barrier(range(5)) qc2.h(0) qc2.h(1) qc2.h(2) qc2.h(3) meas2 = QuantumCircuit(5, 4) meas2.measure(range(4),range(4)) circ2 = qc2+meas2 circ2.draw('mpl') #verification cell, reinitialising the circuit so that it's easier for you to copy-paste the oracle qc2=QuantumCircuit(5) #Add X gates HERE as required to change the input state qc2.x([0,2]) qc2.barrier(range(5)) qc2.cx(0,4) qc2.cx(1,4) qc2.cx(2,4) qc2.cx(3,4) qc2.x(4) qc2.barrier(range(5)) measv = QuantumCircuit(5, 1) measv.measure(4,0) circv = qc2+measv circv.draw('mpl') #DO NOT RUN THIS CELL WITHOUT EDITING THE ABOVE ONE AS DESIRED #The following code will give you f(x) for the value of x you chose in the above cell backend_sim2 = Aer.get_backend('qasm_simulator') job_sim2 = execute(circv, backend_sim2, shots=1000) result_sim2 = job_sim2.result() counts2 = result_sim2.get_counts(circv) print(counts2) plot_histogram(counts2)
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute # Choose the drawer you like best: from qiskit.tools.visualization import matplotlib_circuit_drawer as draw #from qiskit.tools.visualization import circuit_drawer as draw from qiskit import IBMQ IBMQ.load_accounts() # make sure you have setup your token locally to use this %matplotlib inline import matplotlib.pyplot as plt def show_results(D): # D is a dictionary with classical bits as keys and count as value # example: D = {'000': 497, '001': 527} plt.bar(range(len(D)), list(D.values()), align='center') plt.xticks(range(len(D)), list(D.keys())) plt.show() from qiskit import Aer # See a list of available local simulators print("Aer backends: ", Aer.backends()) # see a list of available remote backends (these are freely given by IBM) print("IBMQ Backends: ", IBMQ.backends()) # execute circuit and either display a histogram of the results def execute_locally(qc, draw_circuit=False): # Compile and run the Quantum circuit on a simulator backend backend_sim = Aer.get_backend('qasm_simulator') job_sim = execute(qc, backend_sim) result_sim = job_sim.result() result_counts = result_sim.get_counts(qc) # Print the results print("simulation: ", result_sim, result_counts) if draw_circuit: # draw the circuit draw(qc) else: # or show the results show_results(result_counts) from qiskit.backends.ibmq import least_busy import time # Compile and run on a real device backend def execute_remotely(qc, draw_circuit=False): if draw_circuit: # draw the circuit draw(qc) try: # select least busy available device and execute. least_busy_device = least_busy(IBMQ.backends(simulator=False)) print("Running on current least busy device: ", least_busy_device) # running the job job_exp = execute(qc, backend=least_busy_device, shots=1024, max_credits=10) lapse, interval = 0, 10 while job_exp.status().name != 'DONE': print('Status @ {} seconds'.format(interval * lapse)) print(job_exp.status()) time.sleep(interval) lapse += 1 print(job_exp.status()) exp_result = job_exp.result() result_counts = exp_result.get_counts(qc) # Show the results print("experiment: ", exp_result, result_counts) if not draw_circuit: # show the results show_results(result_counts) except: print("All devices are currently unavailable.") def new_circuit(size): # Create a Quantum Register with size qubits qr = QuantumRegister(size) # Create a Classical Register with size bits cr = ClassicalRegister(size) # Create a Quantum Circuit acting on the qr and cr register return qr, cr, QuantumCircuit(qr, cr) # H gate on qubit 0 # measure the specific qubit # H gate on qubit 1 # measure the specific qubit # CNOT gate # measure the specific qubit # H gate on 2 qubits # CNOT gate # measure # measure # execute_remotely(circuit)
https://github.com/abhishekchak52/quantum-computing-course
abhishekchak52
import math import numpy as np import matplotlib as mpl from matplotlib import pyplot as plt import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer, execute from qiskit.visualization import plot_bloch_multivector from qiskit.visualization import plot_bloch_vector from qiskit.visualization import plot_histogram qbackend = Aer.get_backend('qasm_simulator') sbackend = Aer.get_backend('statevector_simulator') ubackend = Aer.get_backend('unitary_simulator') qiskit.__version__ import torch torch.__version__ import strawberryfields as sf sf.__version__ help(sf) import cirq cirq.__version__
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Utility functions for debugging and testing. """ from typing import Tuple import numpy as np from scipy.stats import unitary_group import qiskit.transpiler.synthesis.aqc.fast_gradient.fast_grad_utils as fgu def relative_error(a_mat: np.ndarray, b_mat: np.ndarray) -> float: """ Computes relative residual between two matrices in Frobenius norm. """ return float(np.linalg.norm(a_mat - b_mat, "fro")) / float(np.linalg.norm(b_mat, "fro")) def make_unit_vector(pos: int, nbits: int) -> np.ndarray: """ Makes a unit vector ``e = (0 ... 0 1 0 ... 0)`` of size ``2^n`` with unit at the position ``num``. **Note**: result depends on bit ordering. Args: pos: position of unit in vector. nbits: number of meaningful bit in the number "pos". Returns: unit vector of size ``2^n``. """ vec = np.zeros((2**nbits,), dtype=np.int64) vec[fgu.reverse_bits(pos, nbits, enable=True)] = 1 return vec def eye_int(n: int) -> np.ndarray: """ Creates an identity matrix with integer entries. Args: n: number of bits. Returns: unit matrix of size ``2^n`` with integer entries. """ return np.eye(2**n, dtype=np.int64) def kron3(a_mat: np.ndarray, b_mat: np.ndarray, c_mat: np.ndarray) -> np.ndarray: """ Computes Kronecker product of 3 matrices. """ return np.kron(a_mat, np.kron(b_mat, c_mat)) def kron5( a_mat: np.ndarray, b_mat: np.ndarray, c_mat: np.ndarray, d_mat: np.ndarray, e_mat: np.ndarray ) -> np.ndarray: """ Computes Kronecker product of 5 matrices. """ return np.kron(np.kron(np.kron(np.kron(a_mat, b_mat), c_mat), d_mat), e_mat) def rand_matrix(dim: int, kind: str = "complex") -> np.ndarray: """ Generates a random complex or integer value matrix. Args: dim: matrix size dim-x-dim. kind: "complex" or "randint". Returns: a random matrix. """ if kind == "complex": return ( np.random.rand(dim, dim).astype(np.cfloat) + np.random.rand(dim, dim).astype(np.cfloat) * 1j ) else: return np.random.randint(low=1, high=100, size=(dim, dim), dtype=np.int64) def make_test_matrices2x2(n: int, k: int, kind: str = "complex") -> Tuple[np.ndarray, np.ndarray]: """ Creates a ``2^n x 2^n`` random matrix made as a Kronecker product of identity ones and a single 1-qubit gate. This models a layer in quantum circuit with an arbitrary 1-qubit gate somewhere in the middle. Args: n: number of qubits. k: index of qubit a 1-qubit gate is acting on. kind: entries of the output matrix are defined as: "complex", "primes" or "randint". Returns: A tuple of (1) ``2^n x 2^n`` random matrix; (2) ``2 x 2`` matrix of 1-qubit gate used for matrix construction. """ if kind == "primes": a_mat = np.asarray([[2, 3], [5, 7]], dtype=np.int64) else: a_mat = rand_matrix(dim=2, kind=kind) m_mat = kron3(eye_int(k), a_mat, eye_int(n - k - 1)) return m_mat, a_mat def make_test_matrices4x4( n: int, j: int, k: int, kind: str = "complex" ) -> Tuple[np.ndarray, np.ndarray]: """ Creates a ``2^n x 2^n`` random matrix made as a Kronecker product of identity ones and a single 2-qubit gate. This models a layer in quantum circuit with an arbitrary 2-qubit gate somewhere in the middle. Args: n: number of qubits. j: index of the first qubit the 2-qubit gate acting on. k: index of the second qubit the 2-qubit gate acting on. kind: entries of the output matrix are defined as: "complex", "primes" or "randint". Returns: A tuple of (1) ``2^n x 2^n`` random matrix; (2) ``4 x 4`` matrix of 2-qubit gate used for matrix construction. """ if kind == "primes": a_mat = np.asarray([[2, 3], [5, 7]], dtype=np.int64) b_mat = np.asarray([[11, 13], [17, 19]], dtype=np.int64) c_mat = np.asarray([[47, 53], [41, 43]], dtype=np.int64) d_mat = np.asarray([[31, 37], [23, 29]], dtype=np.int64) else: a_mat, b_mat = rand_matrix(dim=2, kind=kind), rand_matrix(dim=2, kind=kind) c_mat, d_mat = rand_matrix(dim=2, kind=kind), rand_matrix(dim=2, kind=kind) if j < k: m_mat = kron5(eye_int(j), a_mat, eye_int(k - j - 1), b_mat, eye_int(n - k - 1)) + kron5( eye_int(j), c_mat, eye_int(k - j - 1), d_mat, eye_int(n - k - 1) ) else: m_mat = kron5(eye_int(k), b_mat, eye_int(j - k - 1), a_mat, eye_int(n - j - 1)) + kron5( eye_int(k), d_mat, eye_int(j - k - 1), c_mat, eye_int(n - j - 1) ) g_mat = np.kron(a_mat, b_mat) + np.kron(c_mat, d_mat) return m_mat, g_mat def rand_circuit(num_qubits: int, depth: int) -> np.ndarray: """ Generates a random circuit of unit blocks for debugging and testing. """ blocks = np.tile(np.arange(num_qubits).reshape(num_qubits, 1), depth) for i in range(depth): np.random.shuffle(blocks[:, i]) return blocks[0:2, :].copy() def rand_su_mat(dim: int) -> np.ndarray: """ Generates a random SU matrix. Args: dim: matrix size ``dim-x-dim``. Returns: random SU matrix. """ u_mat = unitary_group.rvs(dim) u_mat /= np.linalg.det(u_mat) ** (1.0 / float(dim)) return u_mat
https://github.com/JavaFXpert/quantum-circuit-pygame
JavaFXpert
#!/usr/bin/env python # # Copyright 2019 the original author or authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pygame from qiskit import BasicAer, execute from qiskit.tools.visualization import plot_state_qsphere from utils import load_image class QSphere(pygame.sprite.Sprite): """Displays a qsphere""" def __init__(self, circuit): pygame.sprite.Sprite.__init__(self) self.image = None self.rect = None self.set_circuit(circuit) # def update(self): # # Nothing yet # a = 1 def set_circuit(self, circuit): backend_sv_sim = BasicAer.get_backend('statevector_simulator') job_sim = execute(circuit, backend_sv_sim) result_sim = job_sim.result() quantum_state = result_sim.get_statevector(circuit, decimals=3) qsphere = plot_state_qsphere(quantum_state) qsphere.savefig("utils/data/bell_qsphere.png") self.image, self.rect = load_image('bell_qsphere.png', -1) self.rect.inflate_ip(-100, -100) self.image.convert()
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import numpy as np from qiskit import compiler, BasicAer, QuantumRegister from qiskit.converters import circuit_to_dag from qiskit.transpiler import PassManager from qiskit.transpiler.passes import Unroller def convert_to_basis_gates(circuit): # unroll the circuit using the basis u1, u2, u3, cx, and id gates unroller = Unroller(basis=['u1', 'u2', 'u3', 'cx', 'id']) pm = PassManager(passes=[unroller]) qc = compiler.transpile(circuit, BasicAer.get_backend('qasm_simulator'), pass_manager=pm) return qc def is_qubit(qb): # check if the input is a qubit, which is in the form (QuantumRegister, int) return isinstance(qb, tuple) and isinstance(qb[0], QuantumRegister) and isinstance(qb[1], int) def is_qubit_list(qbs): # check if the input is a list of qubits for qb in qbs: if not is_qubit(qb): return False return True def summarize_circuits(circuits): """Summarize circuits based on QuantumCircuit, and four metrics are summarized. Number of qubits and classical bits, and number of operations and depth of circuits. The average statistic is provided if multiple circuits are inputed. Args: circuits (QuantumCircuit or [QuantumCircuit]): the to-be-summarized circuits """ if not isinstance(circuits, list): circuits = [circuits] ret = "" ret += "Submitting {} circuits.\n".format(len(circuits)) ret += "============================================================================\n" stats = np.zeros(4) for i, circuit in enumerate(circuits): dag = circuit_to_dag(circuit) depth = dag.depth() width = dag.width() size = dag.size() classical_bits = dag.num_cbits() op_counts = dag.count_ops() stats[0] += width stats[1] += classical_bits stats[2] += size stats[3] += depth ret = ''.join([ret, "{}-th circuit: {} qubits, {} classical bits and {} operations with depth {}\n op_counts: {}\n".format( i, width, classical_bits, size, depth, op_counts)]) if len(circuits) > 1: stats /= len(circuits) ret = ''.join([ret, "Average: {:.2f} qubits, {:.2f} classical bits and {:.2f} operations with depth {:.2f}\n".format( stats[0], stats[1], stats[2], stats[3])]) ret += "============================================================================\n" return ret
https://github.com/DaisukeIto-ynu/KosakaQ
DaisukeIto-ynu
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/quantum-kittens/quantum-computing-basics
quantum-kittens
# run this cell if you're executing this notebook in your browser !pip install qiskit from IPython.display import clear_output clear_output() from qiskit import * import numpy as np qc = QuantumCircuit(2,2) qc.draw('mpl') qreg = QuantumRegister(2, name = 'qreg') creg = ClassicalRegister(2, name = 'creg') qc = QuantumCircuit(qreg, creg) qc.draw('mpl') qc = QuantumCircuit(1) # set the angles to whatever you want theta = np.pi/2 phi = np.pi/4 lambdaa = np.pi # comment/uncomment the gates to play with them qc.x(0) # x on qubit 0 qc.y(0) # y on qubit 0 qc.z(0) # z on qubit 0 qc.s(0) # s gate on qubit 0, sqrt of z qc.sdg(0) # s† on qubit 0 qc.t(0) # t gate on qubit 0, sqrt of s qc.tdg(0) # t† on qubit 0 ### rotations qc.rx(theta,0) # rx rotation on qubit 0 qc.ry(theta,0) # ry rotation on qubit 0 qc.rz(theta,0) # rz rotation on qubit 0 ### generic qc.u(theta, phi, lambdaa, 0) #u3 gate qc.u2(phi, lambdaa, 0) #u2 = u3(pi/2, phi, lambdaa) qc.p(lambdaa, 0) #p = u1 = u3(0, 0, lambdaa) # display(qc.draw('mpl')) display(qc.draw()) qc = QuantumCircuit(2) # set the angles to whatever you want theta = np.pi/2 phi = np.pi/4 lambdaa = np.pi # comment/uncomment any of the following to your heart's content qc.cx(0,1) # CNOT with qubit 0 as control and qubit 1 as target qc.cy(0,1) # controlled-Y with qubit 0 as control and qubit 1 as target qc.cz(0,1) # controlled-Z with qubit 0 as control and qubit 1 as target qc.ch(0, 1) # controlled-H with qubit 0 as control and qubit 1 as target qc.cu3(theta, phi, lambdaa, 0, 1) # controlled-u3 with qubit 0 as control and qubit 1 as target qc.swap(0,1) # swap qubits 0 and 1 # qc.draw('mpl') from qiskit.circuit.library import CXGate qc = QuantumCircuit(3) # Method 1: qc.ccx(0,1,2) # Method 2: qc.mct([0,1],2) #Method 3 our_ccx = CXGate().control() qc.append(our_ccx, [0,1,2]) qc.draw('mpl') qc_bell = QuantumCircuit(2) qc_bell.h(0) qc_bell.cx(0,1) qc_bell.x(1) qc_bell.z(1) display(qc_bell.draw('mpl')) from qiskit.quantum_info import Statevector state = Statevector(qc_bell) state.draw('latex', prefix = '\\left|\\psi^-\\right\\rangle = ' ) bell_qasm_string = """ OPENQASM 2.0; include "qelib1.inc"; gate bell a, b { u(pi/2, 0, pi) a; cx a, b; } qreg q[2]; creg c[2]; bell q[0], q[1]; x q[1]; z q[1]; barrier q[0],q[1]; measure q[0] -> c[0]; measure q[1] -> c[1]; """ qc_bell_qasm = QuantumCircuit.from_qasm_str(bell_qasm_string) qc_bell_qasm.draw('mpl') qc_bell_string = qc_bell.qasm() print(qc_bell_string) qc_bell_init = QuantumCircuit(2) qc_bell_init.h(0) qc_bell_init.cx(0,1) display(qc_bell_init.draw('mpl')) bell_gate = qc_bell_init.to_gate() bell_gate.name ='Bell Gate' qc_bell_gate = QuantumCircuit(2) qc_bell_gate.append(bell_gate, [0,1]) display(qc_bell_gate.draw('mpl')) from qiskit.quantum_info import Operator from qiskit.visualization import array_to_latex U = Operator(qc_bell) array_to_latex(U.data, prefix = 'U = ') from qiskit.providers.aer import UnitarySimulator backend = UnitarySimulator() # alternative: backend = Aer.get_backend('unitary_simulator') job = execute(qc_bell, backend) U = job.result().get_unitary() display(array_to_latex(U.data, prefix = 'U = ')) from qiskit.providers.aer import QasmSimulator qc_measure = QuantumCircuit(2,2) qc_measure.barrier() qc_measure.measure([0,1], [0,1]) # alternative: qc_measure = QuantumCircuit(2) | qc_measure.measure_all() = .barrier() + measure every qubit + creates a classical register qc_bell_measure = qc_measure.compose(qc_bell, range(2), front = True) # combines two circuits, placing qc_bell in front of qc_measure display(qc_bell_measure.draw('mpl')) backend = QasmSimulator() # alternative: backend = Aer.get_backend('qasm_simulator') job = execute(qc_bell_measure, backend, shots = 1024) # alternative: qc_transpiled = transpile(qc_bell_measure, backend), job = backend.run(qc_transpiled, shots = 1024) counts = job.result().get_counts() print('Counts: ' + str(counts)) from qiskit.visualization import plot_histogram plot_histogram(counts) job = execute(qc_bell_measure, backend, shots = 1024) counts_2 = job.result().get_counts() print('Counts, second experiment: ' + str(counts_2)) legend = ['First Experiment', 'Second Experiment'] plot_histogram([counts, counts_2], legend = legend, color = ['teal', 'black'], figsize = (10, 7), bar_labels = False) qc_ghz = QuantumCircuit(3) qc_ghz.h(0) qc_ghz.cx(0,1) qc_ghz.ccx(0,1,2) qc_ghz.draw('mpl') #original circuit display(qc_ghz.decompose().draw('mpl')) #decompose one level down display(qc_ghz.decompose().decompose().draw('mpl')) #decompose two levels down from qiskit.transpiler import PassManager from qiskit.transpiler.passes import Unroller gates_pass = Unroller(['u1', 'u2', 'u3', 'cx']) #play around with this pm = PassManager(gates_pass) pm.run(qc_ghz).draw('mpl') print('The circuit depth of the Bell circuit without measurements is: ' + str(qc_bell.depth())) #Qiskit counts the measurements in the depth calculation: print('The circuit depth of the Bell circuit with measurements is: ' + str(qc_bell_measure.depth())) from qiskit.circuit.random import random_circuit import random #play around with these parameters: num_qubits = 3 max_depth = 10 add_measurements = True #True/False #random circuit: rand_circ = random_circuit(num_qubits, depth = random.randint(1,max_depth), measure=add_measurements) rand_circ.draw('mpl') # run this cell to see if you are correct print('The circuit depth is: ' + str(rand_circ.depth()))
https://github.com/nahumsa/volta
nahumsa
import sys sys.path.append('../../') # Python imports import numpy as np import matplotlib.pyplot as plt # Qiskit from qiskit import BasicAer from qiskit.aqua.components.optimizers import COBYLA, SPSA from qiskit.circuit.library import TwoLocal # VOLTA from volta.vqd import VQD from volta.utils import classical_solver from volta.hamiltonians import BCS_hamiltonian %load_ext autoreload %autoreload 2 EPSILONS = [3, 3] V = -2 hamiltonian = BCS_hamiltonian(EPSILONS, V) print(hamiltonian) eigenvalues, eigenvectors = classical_solver(hamiltonian) print(f"Eigenvalues: {eigenvalues}") from itertools import product # Get the ideal count ideal_dict = {} bin_combinations = list(product(['0','1'], repeat=hamiltonian.num_qubits)) for i, eigvect in enumerate(np.abs(eigenvectors)**2): dic = {} for ind, val in enumerate(bin_combinations): val = ''.join(val) dic[val] = eigvect[ind] ideal_dict[i] = dic from qiskit.aqua import QuantumInstance # Define Optimizer # optimizer = COBYLA() optimizer = SPSA(maxiter=1000) # Define Backend # backend = BasicAer.get_backend('qasm_simulator') backend = QuantumInstance(backend=BasicAer.get_backend('qasm_simulator'), shots=10000) # Define ansatz ansatz = TwoLocal(hamiltonian.num_qubits, ['ry','rz'], 'cx', reps=2) # Run algorithm Algo = VQD(hamiltonian=hamiltonian, ansatz=ansatz, n_excited_states=3, beta=10., optimizer=optimizer, backend=backend) Algo.run() vqd_energies = Algo.energies vqd_states = Algo.states from copy import copy # Create states and measure them states = [] for ind, state in enumerate(vqd_states): states.append(copy(state)) states[ind].measure_all() from qiskit import execute from qiskit.visualization import plot_histogram backend = BasicAer.get_backend('qasm_simulator') count = execute(states[0], backend=backend, shots=10000).result().get_counts() plot_histogram([ideal_dict[0], count],legend=['Ideal','Result']) count = execute(states[1], backend=backend, shots=10000).result().get_counts() plot_histogram([ideal_dict[1], count],legend=['Ideal','Result']) count = execute(states[2], backend=backend, shots=10000).result().get_counts() plot_histogram([ideal_dict[2], count],legend=['Ideal','Result']) count = execute(states[3], backend=backend, shots=10000).result().get_counts() plot_histogram([ideal_dict[3], count],legend=['Ideal','Result']) eigenvalues vqd_energies n_1_sim, n_2_sim = 1, 2 n_1_vqd, n_2_vqd = 1, 2 print(f"Gap Exact: {(eigenvalues[n_2_sim] - eigenvalues[n_1_sim])/2}") print(f"Gap VQD: {(vqd_energies[n_2_vqd] - vqd_energies[n_1_vqd])/2}") from tqdm import tqdm def hamiltonian_varying_eps(eps, V): energies_VQD = [] energies_Classical = [] for epsilons in tqdm(eps): hamiltonian = BCS_hamiltonian(epsilons, V) optimizer = COBYLA(maxiter=10000) backend = BasicAer.get_backend('qasm_simulator') Algo = VQD(hamiltonian=hamiltonian, n_excited_states=1, beta=3., optimizer=optimizer, backend=backend) Algo.run(0) uantum = Algo.energies energies_VQD.append([quantum[1], quantum[2]]) classical = classical_solver(hamiltonian) energies_Classical.append([classical[1], classical[2]]) return energies_VQD, energies_Classical eps = [[1, 1.5], [1, 2.], [1, 2.5]] V = -1. energy_vqd, energy_classical = hamiltonian_varying_eps(eps, V) plt.plot([str(v) for v in eps], [value[1] - value[0] for value in energy_vqd], 'ro', label="VQD") plt.plot([str(v) for v in eps], [value[1] - value[0] for value in energy_classical], 'go', label="Exact") plt.xlabel('$\epsilon$') plt.ylabel('Gap') plt.legend() plt.show()
https://github.com/Qiskit/qiskit-transpiler-service
Qiskit
# Install the plugin # !pip install -e . from qiskit.transpiler import PassManager from qiskit_transpiler_service.ai.routing import AIRouting from qiskit.circuit.library import EfficientSU2 circuit = EfficientSU2(100, entanglement="circular", reps=1).decompose() print( f"Original circuit -> Depth: {circuit.depth()}, Gates(2q): {circuit.num_nonlocal_gates()}" ) circuit.draw(output="mpl", fold=-1, scale=0.2, style="iqp") qiskit_ai_transpiler = PassManager( [AIRouting(backend_name="ibm_torino", optimization_level=1, layout_mode="optimize")] ) ai_transpiled_circuit = qiskit_ai_transpiler.run(circuit) print( f"Qiskit AI Transpiler -> Depth: {ai_transpiled_circuit.depth()}, Gates(2q): {ai_transpiled_circuit.num_nonlocal_gates()}" ) ai_transpiled_circuit.draw(output="mpl", fold=-1, scale=0.2, style="iqp") from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit_ibm_runtime import QiskitRuntimeService coupling_map = QiskitRuntimeService().backend("ibm_torino").coupling_map qiskit_lvl3_transpiler = generate_preset_pass_manager( optimization_level=3, coupling_map=coupling_map ) lvl3_transpiled_circuit = qiskit_lvl3_transpiler.run(circuit) print( f"Qiskit lvl3 Transpiler -> Depth: {lvl3_transpiled_circuit.depth()}, Gates(2q): {lvl3_transpiled_circuit.num_nonlocal_gates()}" ) lvl3_transpiled_circuit.draw(output="mpl", fold=-1, scale=0.2, style="iqp") from qiskit_transpiler_service.transpiler_service import TranspilerService qiskit_lvl3_transpiler_service = TranspilerService( backend_name="ibm_torino", ai="false", optimization_level=3, ) lvl3_transpiled_circuit_v2 = qiskit_lvl3_transpiler_service.run(circuit) print( f"Qiskit lvl3 Transpiler -> Depth: {lvl3_transpiled_circuit_v2.depth()}, Gates(2q): {lvl3_transpiled_circuit_v2.num_nonlocal_gates()}" ) lvl3_transpiled_circuit_v2.draw(output="mpl", fold=-1, scale=0.2, style="iqp") qiskit_lvl3_ai_transpiler_service = TranspilerService( backend_name="ibm_torino", ai="true", optimization_level=3, ) lvl3_transpiled_ai_circuit_v2 = qiskit_lvl3_ai_transpiler_service.run(circuit) print( f"Qiskit lvl3 AI Transpiler -> Depth: {lvl3_transpiled_ai_circuit_v2.depth()}, Gates(2q): {lvl3_transpiled_ai_circuit_v2.num_nonlocal_gates()}" ) lvl3_transpiled_ai_circuit_v2.draw(output="mpl", fold=-1, scale=0.2, style="iqp")
https://github.com/maximusron/qgss_2021_labs
maximusron
from qiskit.circuit.library import RealAmplitudes ansatz = RealAmplitudes(num_qubits=2, reps=1, entanglement='linear') ansatz.draw('mpl', style='iqx') from qiskit.opflow import Z, I hamiltonian = Z ^ Z from qiskit.opflow import StateFn expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(ansatz) import numpy as np point = np.random.random(ansatz.num_parameters) index = 2 from qiskit import Aer from qiskit.utils import QuantumInstance backend = Aer.get_backend('qasm_simulator') q_instance = QuantumInstance(backend, shots = 8192, seed_simulator = 2718, seed_transpiler = 2718) from qiskit.circuit import QuantumCircuit from qiskit.opflow import Z, X H = X ^ X U = QuantumCircuit(2) U.h(0) U.cx(0, 1) # YOUR CODE HERE expectation = StateFn(H, is_measurement=True) @ StateFn(U) matmult_result = expectation.eval() from qc_grader import grade_lab4_ex1 # Note that the grading function is expecting a complex number grade_lab4_ex1(matmult_result) from qiskit.opflow import CircuitSampler, PauliExpectation sampler = CircuitSampler(q_instance) # YOUR CODE HERE expectation = StateFn(H, is_measurement=True) @ StateFn(U) in_pauli_basis = PauliExpectation().convert(expectation) shots_result = sampler.convert(in_pauli_basis).eval() from qc_grader import grade_lab4_ex2 # Note that the grading function is expecting a complex number grade_lab4_ex2(shots_result) from qiskit.opflow import PauliExpectation, CircuitSampler expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(ansatz) in_pauli_basis = PauliExpectation().convert(expectation) sampler = CircuitSampler(q_instance) def evaluate_expectation(x): value_dict = dict(zip(ansatz.parameters, x)) result = sampler.convert(in_pauli_basis, params=value_dict).eval() return np.real(result) eps = 0.2 e_i = np.identity(point.size)[:, index] # identity vector with a 1 at index ``index``, otherwise 0 plus = point + eps * e_i minus = point - eps * e_i finite_difference = (evaluate_expectation(plus) - evaluate_expectation(minus)) / (2 * eps) print(finite_difference) from qiskit.opflow import Gradient expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(ansatz) shifter = Gradient('fin_diff', analytic=False, epsilon=eps) grad = shifter.convert(expectation, params=ansatz.parameters[index]) print(grad) value_dict = dict(zip(ansatz.parameters, point)) sampler.convert(grad, value_dict).eval().real eps = np.pi / 2 e_i = np.identity(point.size)[:, index] # identity vector with a 1 at index ``index``, otherwise 0 plus = point + eps * e_i minus = point - eps * e_i finite_difference = (evaluate_expectation(plus) - evaluate_expectation(minus)) / 2 print(finite_difference) expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(ansatz) shifter = Gradient() # parameter-shift rule is the default grad = shifter.convert(expectation, params=ansatz.parameters[index]) sampler.convert(grad, value_dict).eval().real expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(ansatz) shifter = Gradient('lin_comb') # parameter-shift rule is the default grad = shifter.convert(expectation, params=ansatz.parameters[index]) sampler.convert(grad, value_dict).eval().real # initial_point = np.random.random(ansatz.num_parameters) initial_point = np.array([0.43253681, 0.09507794, 0.42805949, 0.34210341]) expectation = StateFn(hamiltonian, is_measurement=True).compose(StateFn(ansatz)) gradient = Gradient().convert(expectation) gradient_in_pauli_basis = PauliExpectation().convert(gradient) sampler = CircuitSampler(q_instance) def evaluate_gradient(x): value_dict = dict(zip(ansatz.parameters, x)) result = sampler.convert(gradient_in_pauli_basis, params=value_dict).eval() # add parameters in here! return np.real(result) # Note: The GradientDescent class will be released with Qiskit 0.28.0 and can then be imported as: # from qiskit.algorithms.optimizers import GradientDescent from qc_grader.gradient_descent import GradientDescent gd_loss = [] def gd_callback(nfevs, x, fx, stepsize): gd_loss.append(fx) gd = GradientDescent(maxiter=300, learning_rate=0.01, callback=gd_callback) x_opt, fx_opt, nfevs = gd.optimize(initial_point.size, # number of parameters evaluate_expectation, # function to minimize gradient_function=evaluate_gradient, # function to evaluate the gradient initial_point=initial_point) # initial point import matplotlib import matplotlib.pyplot as plt matplotlib.rcParams['font.size'] = 14 plt.figure(figsize=(12, 6)) plt.plot(gd_loss, label='vanilla gradient descent') plt.axhline(-1, ls='--', c='tab:red', label='target') plt.ylabel('loss') plt.xlabel('iterations') plt.legend(); from qiskit.opflow import NaturalGradient expectation = StateFn(hamiltonian, is_measurement=True).compose(StateFn(ansatz)) natural_gradient = NaturalGradient(regularization='ridge').convert(expectation) natural_gradient_in_pauli_basis = PauliExpectation().convert(natural_gradient) sampler = CircuitSampler(q_instance, caching="all") def evaluate_natural_gradient(x): value_dict = dict(zip(ansatz.parameters, x)) result = sampler.convert(natural_gradient, params=value_dict).eval() return np.real(result) print('Vanilla gradient:', evaluate_gradient(initial_point)) print('Natural gradient:', evaluate_natural_gradient(initial_point)) qng_loss = [] def qng_callback(nfevs, x, fx, stepsize): qng_loss.append(fx) qng = GradientDescent(maxiter=300, learning_rate=0.01, callback=qng_callback) x_opt, fx_opt, nfevs = qng.optimize(initial_point.size, evaluate_expectation, gradient_function=evaluate_natural_gradient, initial_point=initial_point) def plot_loss(): plt.figure(figsize=(12, 6)) plt.plot(gd_loss, 'tab:blue', label='vanilla gradient descent') plt.plot(qng_loss, 'tab:green', label='quantum natural gradient') plt.axhline(-1, c='tab:red', ls='--', label='target') plt.ylabel('loss') plt.xlabel('iterations') plt.legend() plot_loss() from qc_grader.spsa import SPSA spsa_loss = [] def spsa_callback(nfev, x, fx, stepsize, accepted): spsa_loss.append(fx) spsa = SPSA(maxiter=300, learning_rate=0.01, perturbation=0.01, callback=spsa_callback) x_opt, fx_opt, nfevs = spsa.optimize(initial_point.size, evaluate_expectation, initial_point=initial_point) def plot_loss(): plt.figure(figsize=(12, 6)) plt.plot(gd_loss, 'tab:blue', label='vanilla gradient descent') plt.plot(qng_loss, 'tab:green', label='quantum natural gradient') plt.plot(spsa_loss, 'tab:blue', ls='--', label='SPSA') plt.axhline(-1, c='tab:red', ls='--', label='target') plt.ylabel('loss') plt.xlabel('iterations') plt.legend() plot_loss() # Note: The QNSPSA class will be released with Qiskit 0.28.0 and can then be imported as: # from qiskit.algorithms.optimizers import QNSPSA from qc_grader.qnspsa import QNSPSA qnspsa_loss = [] def qnspsa_callback(nfev, x, fx, stepsize, accepted): qnspsa_loss.append(fx) fidelity = QNSPSA.get_fidelity(ansatz, q_instance, expectation=PauliExpectation()) qnspsa = QNSPSA(fidelity, maxiter=300, learning_rate=0.01, perturbation=0.01, callback=qnspsa_callback) x_opt, fx_opt, nfevs = qnspsa.optimize(initial_point.size, evaluate_expectation, initial_point=initial_point) def plot_loss(): plt.figure(figsize=(12, 6)) plt.plot(gd_loss, 'tab:blue', label='vanilla gradient descent') plt.plot(qng_loss, 'tab:green', label='quantum natural gradient') plt.plot(spsa_loss, 'tab:blue', ls='--', label='SPSA') plt.plot(qnspsa_loss, 'tab:green', ls='--', label='QN-SPSA') plt.axhline(-1, c='tab:red', ls='--', label='target') plt.ylabel('loss') plt.xlabel('iterations') plt.legend() plot_loss() autospsa_loss = [] def autospsa_callback(nfev, x, fx, stepsize, accepted): autospsa_loss.append(fx) autospsa = SPSA(maxiter=300, learning_rate=None, perturbation=None, callback=autospsa_callback) x_opt, fx_opt, nfevs = autospsa.optimize(initial_point.size, evaluate_expectation, initial_point=initial_point) def plot_loss(): plt.figure(figsize=(12, 6)) plt.plot(gd_loss, 'tab:blue', label='vanilla gradient descent') plt.plot(qng_loss, 'tab:green', label='quantum natural gradient') plt.plot(spsa_loss, 'tab:blue', ls='--', label='SPSA') plt.plot(qnspsa_loss, 'tab:green', ls='--', label='QN-SPSA') plt.plot(autospsa_loss, 'tab:red', label='Powerlaw SPSA') plt.axhline(-1, c='tab:red', ls='--', label='target') plt.ylabel('loss') plt.xlabel('iterations') plt.legend() plot_loss() H_tfi = -(Z^Z^I)-(I^Z^Z)-(X^I^I)-(I^X^I)-(I^I^X) from qc_grader import grade_lab4_ex3 # Note that the grading function is expecting a Hamiltonian grade_lab4_ex3(H_tfi) from qiskit.circuit.library import EfficientSU2 efficient_su2 = EfficientSU2(3, entanglement="linear", reps=2) tfi_sampler = CircuitSampler(q_instance) def evaluate_tfi(parameters): exp = StateFn(H_tfi, is_measurement=True).compose(StateFn(efficient_su2)) value_dict = dict(zip(efficient_su2.parameters, parameters)) result = tfi_sampler.convert(PauliExpectation().convert(exp), params=value_dict).eval() return np.real(result) # target energy tfi_target = -3.4939592074349326 # initial point for reproducibility tfi_init = np.array([0.95667807, 0.06192812, 0.47615196, 0.83809827, 0.89022282, 0.27140831, 0.9540853 , 0.41374024, 0.92595507, 0.76150126, 0.8701938 , 0.05096063, 0.25476016, 0.71807858, 0.85661325, 0.48311132, 0.43623886, 0.6371297 ]) spsa = SPSA(maxiter = 300, learning_rate = None, perturbation = None, callback = None) tfi_result = spsa.optimize(tfi_init.size, evaluate_tfi, initial_point = tfi_init) tfi_minimum = tfi_result[1] print("Error:", np.abs(tfi_result[1] - tfi_target)) from qc_grader import grade_lab4_ex4 # Note that the grading function is expecting a floating point number grade_lab4_ex4(tfi_minimum) from qiskit_machine_learning.datasets import ad_hoc_data training_features, training_labels, test_features, test_labels = ad_hoc_data( training_size=20, test_size=10, n=2, one_hot=False, gap=0.5 ) # the training labels are in {0, 1} but we'll use {-1, 1} as class labels! training_labels = 2 * training_labels - 1 test_labels = 2 * test_labels - 1 def plot_sampled_data(): from matplotlib.patches import Patch from matplotlib.lines import Line2D import matplotlib.pyplot as plt plt.figure(figsize=(12,6)) for feature, label in zip(training_features, training_labels): marker = 'o' color = 'tab:green' if label == -1 else 'tab:blue' plt.scatter(feature[0], feature[1], marker=marker, s=100, color=color) for feature, label in zip(test_features, test_labels): marker = 's' plt.scatter(feature[0], feature[1], marker=marker, s=100, facecolor='none', edgecolor='k') legend_elements = [ Line2D([0], [0], marker='o', c='w', mfc='tab:green', label='A', ms=15), Line2D([0], [0], marker='o', c='w', mfc='tab:blue', label='B', ms=15), Line2D([0], [0], marker='s', c='w', mfc='none', mec='k', label='test features', ms=10) ] plt.legend(handles=legend_elements, bbox_to_anchor=(1, 0.6)) plt.title('Training & test data') plt.xlabel('$x$') plt.ylabel('$y$') plot_sampled_data() from qiskit.circuit.library import ZZFeatureMap dim = 2 feature_map = ZZFeatureMap(dim, reps=1) # let's keep it simple! feature_map.draw('mpl', style='iqx') ansatz = RealAmplitudes(num_qubits=dim, entanglement='linear', reps=1) # also simple here! ansatz.draw('mpl', style='iqx') circuit = feature_map.compose(ansatz) circuit.draw('mpl', style='iqx') hamiltonian = Z ^ Z # global Z operators gd_qnn_loss = [] def gd_qnn_callback(*args): gd_qnn_loss.append(args[2]) gd = GradientDescent(maxiter=100, learning_rate=0.01, callback=gd_qnn_callback) from qiskit_machine_learning.neural_networks import OpflowQNN qnn_expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(circuit) qnn = OpflowQNN(qnn_expectation, input_params=list(feature_map.parameters), weight_params=list(ansatz.parameters), exp_val=PauliExpectation(), gradient=Gradient(), # <-- Parameter-Shift gradients quantum_instance=q_instance) from qiskit_machine_learning.algorithms import NeuralNetworkClassifier #initial_point = np.array([0.2, 0.1, 0.3, 0.4]) classifier = NeuralNetworkClassifier(qnn, optimizer=gd) classifier.fit(training_features, training_labels); predicted = classifier.predict(test_features) def plot_predicted(): from matplotlib.lines import Line2D plt.figure(figsize=(12, 6)) for feature, label in zip(training_features, training_labels): marker = 'o' color = 'tab:green' if label == -1 else 'tab:blue' plt.scatter(feature[0], feature[1], marker=marker, s=100, color=color) for feature, label, pred in zip(test_features, test_labels, predicted): marker = 's' color = 'tab:green' if pred == -1 else 'tab:blue' if label != pred: # mark wrongly classified plt.scatter(feature[0], feature[1], marker='o', s=500, linewidths=2.5, facecolor='none', edgecolor='tab:red') plt.scatter(feature[0], feature[1], marker=marker, s=100, color=color) legend_elements = [ Line2D([0], [0], marker='o', c='w', mfc='tab:green', label='A', ms=15), Line2D([0], [0], marker='o', c='w', mfc='tab:blue', label='B', ms=15), Line2D([0], [0], marker='s', c='w', mfc='tab:green', label='predict A', ms=10), Line2D([0], [0], marker='s', c='w', mfc='tab:blue', label='predict B', ms=10), Line2D([0], [0], marker='o', c='w', mfc='none', mec='tab:red', label='wrongly classified', mew=2, ms=15) ] plt.legend(handles=legend_elements, bbox_to_anchor=(1, 0.7)) plt.title('Training & test data') plt.xlabel('$x$') plt.ylabel('$y$') plot_predicted() qng_qnn_loss = [] def qng_qnn_callback(*args): qng_qnn_loss.append(args[2]) gd = GradientDescent(maxiter=100, learning_rate=0.01, callback=qng_qnn_callback) qnn = OpflowQNN(qnn_expectation, input_params=list(feature_map.parameters), weight_params=list(ansatz.parameters), gradient=NaturalGradient(regularization='ridge'), # <-- using Natural Gradients! quantum_instance=q_instance) classifier = NeuralNetworkClassifier(qnn, optimizer=gd)#, initial_point=initial_point) classifier.fit(training_features, training_labels); def plot_losses(): plt.figure(figsize=(12, 6)) plt.plot(gd_qnn_loss, 'tab:blue', marker='o', label='vanilla gradients') plt.plot(qng_qnn_loss, 'tab:green', marker='o', label='natural gradients') plt.xlabel('iterations') plt.ylabel('loss') plt.legend(loc='best') plot_losses() from qiskit.opflow import I def sample_gradients(num_qubits, reps, local=False): """Sample the gradient of our model for ``num_qubits`` qubits and ``reps`` repetitions. We sample 100 times for random parameters and compute the gradient of the first RY rotation gate. """ index = num_qubits - 1 # you can also exchange this for a local operator and observe the same! if local: operator = Z ^ Z ^ (I ^ (num_qubits - 2)) else: operator = Z ^ num_qubits # real amplitudes ansatz ansatz = RealAmplitudes(num_qubits, entanglement='linear', reps=reps) # construct Gradient we want to evaluate for different values expectation = StateFn(operator, is_measurement=True).compose(StateFn(ansatz)) grad = Gradient().convert(expectation, params=ansatz.parameters[index]) # evaluate for 100 different, random parameter values num_points = 100 grads = [] for _ in range(num_points): # points are uniformly chosen from [0, pi] point = np.random.uniform(0, np.pi, ansatz.num_parameters) value_dict = dict(zip(ansatz.parameters, point)) grads.append(sampler.convert(grad, value_dict).eval()) return grads num_qubits = list(range(2, 13)) reps = num_qubits # number of layers = numbers of qubits gradients = [sample_gradients(n, r) for n, r in zip(num_qubits, reps)] fit = np.polyfit(num_qubits, np.log(np.var(gradients, axis=1)), deg=1) x = np.linspace(num_qubits[0], num_qubits[-1], 200) plt.figure(figsize=(12, 6)) plt.semilogy(num_qubits, np.var(gradients, axis=1), 'o-', label='measured variance') plt.semilogy(x, np.exp(fit[0] * x + fit[1]), 'r--', label=f'exponential fit w/ {fit[0]:.2f}') plt.xlabel('number of qubits') plt.ylabel(r'$\mathrm{Var}[\partial_{\theta 1} \langle E(\theta) \rangle]$') plt.legend(loc='best'); from qiskit.opflow import NaturalGradient def sample_natural_gradients(num_qubits, reps): index = num_qubits - 1 operator = Z ^ num_qubits ansatz = RealAmplitudes(num_qubits, entanglement='linear', reps=reps) expectation = StateFn(operator, is_measurement=True).compose(StateFn(ansatz)) grad = # TODO: ``grad`` should be the natural gradient for the parameter at index ``index``. # Hint: Check the ``sample_gradients`` function, this one is almost the same. grad = NaturalGradient().convert(expectation, params=ansatz.parameters[index]) num_points = 100 grads = [] for _ in range(num_points): point = np.random.uniform(0, np.pi, ansatz.num_parameters) value_dict = dict(zip(ansatz.parameters, point)) grads.append(sampler.convert(grad, value_dict).eval()) return grads num_qubits = list(range(2, 13)) reps = num_qubits # number of layers = numbers of qubits natural_gradients = [sample_natural_gradients(n, r) for n, r in zip(num_qubits, reps)] fit = np.polyfit(num_qubits, np.log(np.var(natural_gradients, axis=1)), deg=1) x = np.linspace(num_qubits[0], num_qubits[-1], 200) plt.figure(figsize=(12, 6)) plt.semilogy(num_qubits, np.var(gradients, axis=1), 'o-', label='vanilla gradients') plt.semilogy(num_qubits, np.var(natural_gradients, axis=1), 's-', label='natural gradients') plt.semilogy(x, np.exp(fit[0] * x + fit[1]), 'r--', label=f'exponential fit w/ {float(fit[0]):.2f}') plt.xlabel('number of qubits') plt.ylabel(r'$\mathrm{Var}[\partial_{\theta 1} \langle E(\theta) \rangle]$') plt.legend(loc='best'); num_qubits = list(range(2, 13)) fixed_depth_global_gradients = [sample_gradients(n, 1) for n in num_qubits] fit = np.polyfit(num_qubits, np.log(np.var(fixed_depth_global_gradients, axis=1)), deg=1) x = np.linspace(num_qubits[0], num_qubits[-1], 200) plt.figure(figsize=(12, 6)) plt.semilogy(num_qubits, np.var(gradients, axis=1), 'o-', label='global cost, linear depth') plt.semilogy(num_qubits, np.var(fixed_depth_global_gradients, axis=1), 'o-', label='global cost, constant depth') plt.semilogy(x, np.exp(fit[0] * x + fit[1]), 'r--', label=f'exponential fit w/ {fit[0]:.2f}') plt.xlabel('number of qubits') plt.ylabel(r'$\mathrm{Var}[\partial_{\theta 1} \langle E(\theta) \rangle]$') plt.legend(loc='best'); num_qubits = list(range(2, 13)) linear_depth_local_gradients = [sample_gradients(n, n, local=True) for n in num_qubits] fit = np.polyfit(num_qubits, np.log(np.var(linear_depth_local_gradients, axis=1)), deg=1) x = np.linspace(num_qubits[0], num_qubits[-1], 200) plt.figure(figsize=(12, 6)) plt.semilogy(num_qubits, np.var(gradients, axis=1), 'o-', label='global cost, linear depth') plt.semilogy(num_qubits, np.var(fixed_depth_global_gradients, axis=1), 'o-', label='global cost, constant depth') plt.semilogy(num_qubits, np.var(linear_depth_local_gradients, axis=1), 'o-', label='local cost, linear depth') plt.semilogy(x, np.exp(fit[0] * x + fit[1]), 'r--', label=f'exponential fit w/ {fit[0]:.2f}') plt.xlabel('number of qubits') plt.ylabel(r'$\mathrm{Var}[\partial_{\theta 1} \langle E(\theta) \rangle]$') plt.legend(loc='best'); num_qubits = list(range(2, 13)) fixed_depth_local_gradients = [sample_gradients(n, 1, local=True) for n in num_qubits] fit = np.polyfit(num_qubits, np.log(np.var(fixed_depth_local_gradients, axis=1)), deg=1) x = np.linspace(num_qubits[0], num_qubits[-1], 200) plt.figure(figsize=(12, 6)) plt.semilogy(num_qubits, np.var(gradients, axis=1), 'o-', label='global cost, linear depth') plt.semilogy(num_qubits, np.var(fixed_depth_global_gradients, axis=1), 'o-', label='global cost, constant depth') plt.semilogy(num_qubits, np.var(linear_depth_local_gradients, axis=1), 'o-', label='local cost, linear depth') plt.semilogy(num_qubits, np.var(fixed_depth_local_gradients, axis=1), 'o-', label='local cost, constant depth') plt.semilogy(x, np.exp(fit[0] * x + fit[1]), 'r--', label=f'exponential fit w/ {fit[0]:.2f}') plt.xlabel('number of qubits') plt.ylabel(r'$\mathrm{Var}[\partial_{\theta 1} \langle E(\theta) \rangle]$') plt.legend(loc='best'); num_qubits = 6 operator = Z ^ Z ^ (I ^ (num_qubits - 4)) def minimize(circuit, optimizer): initial_point = np.random.random(circuit.num_parameters) exp = StateFn(operator, is_measurement=True) @ StateFn(circuit) grad = Gradient().convert(exp) # pauli basis exp = PauliExpectation().convert(exp) grad = PauliExpectation().convert(grad) sampler = CircuitSampler(q_instance, caching="all") def loss(x): values_dict = dict(zip(circuit.parameters, x)) return np.real(sampler.convert(exp, values_dict).eval()) def gradient(x): values_dict = dict(zip(circuit.parameters, x)) return np.real(sampler.convert(grad, values_dict).eval()) return optimizer.optimize(circuit.num_parameters, loss, gradient, initial_point=initial_point) circuit = RealAmplitudes(4, reps=1, entanglement='linear') circuit.draw('mpl', style='iqx') circuit.reps = 5 circuit.draw('mpl', style='iqx') def layerwise_training(ansatz, max_num_layers, optimizer): optimal_parameters = [] fopt = None for reps in range(1, max_num_layers): ansatz.reps = reps # bind already optimized parameters values_dict = dict(zip(ansatz.parameters, optimal_parameters)) partially_bound = ansatz.bind_parameters(values_dict) xopt, fopt, _ = minimize(partially_bound, optimizer) print('Circuit depth:', ansatz.depth(), 'best value:', fopt) optimal_parameters += list(xopt) return fopt, optimal_parameters ansatz = RealAmplitudes(4, entanglement='linear') optimizer = GradientDescent(maxiter=50) np.random.seed(12) fopt, optimal_parameters = layerwise_training(ansatz, 4, optimizer)
https://github.com/carstenblank/dc-qiskit-qml
carstenblank
# -*- coding: utf-8 -*- # Copyright 2018 Carsten Blank # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" QmlHadamardNeighborClassifier =============================== .. currentmodule:: dc_qiskit_qml.distance_based.hadamard._QmlHadamardNeighborClassifier Implementing the Hadamard distance & majority based classifier (http://stacks.iop.org/0295-5075/119/i=6/a=60002). .. autosummary:: :nosignatures: QmlHadamardNeighborClassifier AsyncPredictJob More details: QmlHadamardNeighborClassifier ############################### .. autoclass:: QmlHadamardNeighborClassifier :members: AsyncPredictJob ################## .. autoclass:: AsyncPredictJob :members: """ import itertools import logging from typing import List, Union, Optional, Iterable, Sized import numpy as np import qiskit from qiskit.circuit import QuantumCircuit from qiskit.providers import BackendV2, JobV1 from qiskit.qobj import QasmQobj from qiskit.transpiler import CouplingMap from sklearn.base import ClassifierMixin, TransformerMixin from dc_qiskit_qml.QiskitOptions import QiskitOptions from ...encoding_maps import EncodingMap log = logging.getLogger(__name__) class CompactHadamardClassifier(ClassifierMixin, TransformerMixin): """ The Hadamard distance & majority based classifier implementing sci-kit learn's mechanism of fit/predict """ def __init__(self, encoding_map, backend, shots=1024, coupling_map=None, basis_gates=None, theta=None, options=None): # type: (EncodingMap, BackendV2, int, CouplingMap, List[str], Optional[float], Optional[QiskitOptions]) -> None """ Create the classifier :param encoding_map: a classical feature map to apply to every training and testing sample before building the circuit :param classifier_circuit_factory: the circuit building factory class :param backend: the qiskit backend to do the compilation & computation on :param shots: *deprecated* use options. the amount of shots for the experiment :param coupling_map: *deprecated* use options. if given overrides the backend's coupling map, useful when using the simulator :param basis_gates: *deprecated* use options. if given overrides the backend's basis gates, useful for the simulator :param theta: an advanced feature that generalizes the "Hadamard" gate as a rotation with this angle :param options: the options for transpilation & executions with qiskit. """ self.encoding_map = encoding_map # type: EncodingMap self.basis_gates = basis_gates # type: List[str] self.shots = shots # type: int self.backend = backend # type: BackendV2 self.coupling_map = coupling_map # type: CouplingMap self._X = np.asarray([]) # type: np.ndarray self._y = np.asarray([]) # type: np.ndarray self.last_predict_X = None self.last_predict_label = None self.last_predict_probability = [] # type: List[float] self._last_predict_circuits = [] # type: List[QuantumCircuit] self.last_predict_p_acc = [] # type: List[float] self.theta = np.pi / 2 if theta is None else theta # type: float if options is not None: self.options = options # type: QiskitOptions else: self.options = QiskitOptions() self.options.basis_gates = basis_gates self.options.coupling_map = coupling_map self.options.shots = shots def transform(self, X, y='deprecated', copy=None): return X def fit(self, X, y): # type: (QmlHadamardNeighborClassifier, Iterable) -> QmlHadamardNeighborClassifier """ Internal fit method just saves the train sample set :param X: array_like, training sample """ self._X = np.asarray(X) self._y = y log.debug("Setting training data:") for x, y in zip(self._X, self._y): log.debug("%s: %s", x, y) return self def _create_circuits(self, unclassified_input): # type: (Iterable) -> None """ Creates the circuits to be executed on the quantum computer :param unclassified_input: array like, the input set """ self._last_predict_circuits = [] for index, x in enumerate(unclassified_input): log.info("Creating state for input %d: %s.", index, x) circuit_name = 'qml_hadamard_index_%d' % index X_input = self.encoding_map.map(x) X_train_0 = [self.encoding_map.map(s) for s, l in zip(self._X, self._y) if l == 0] X_train_1 = [self.encoding_map.map(s) for s, l in zip(self._X, self._y) if l == 1] full_data = list(itertools.zip_longest([X_train_0, X_train_1], fillvalue=None)) # all_batches = max(len(X_train_0), len(X_train_1)) # # index_no = # # ancilla = QuantumRegister(ancilla_qubits_needed, "a") # index = QuantumRegister(index_of_samples_qubits_needed, "i") # data = QuantumRegister(sample_space_dimensions_qubits_needed, "f^S") # clabel = ClassicalRegister(label_qubits_needed, "l^c") qc = QuantumCircuit() self._last_predict_circuits.append(qc) def predict_qasm_only(self, X): # type: (Union[Sized, Iterable]) -> QasmQobj """ Instead of predicting straight away returns the Qobj, the command object for executing the experiment :param X: array like, unclassified input set :return: the compiled Qobj ready for execution! """ self.last_predict_X = X self.last_predict_label = [] self._last_predict_circuits = [] self.last_predict_probability = [] self.last_predict_p_acc = [] log.info("Creating circuits (#%d inputs)..." % len(X)) self._create_circuits(X) log.info("Compiling circuits...") transpiled_qc = qiskit.transpile( self._last_predict_circuits, backend=self.backend, coupling_map=self.options.coupling_map, basis_gates=self.options.basis_gates, backend_properties=self.options.backend_properties, initial_layout=self.options.initial_layout, seed_transpiler=self.options.seed_transpiler, optimization_level=self.options.optimization_level ) # type: List[QuantumCircuit] qobj = qiskit.assemble(transpiled_qc, backend=self.backend, shots=self.options.shots, qobj_id=self.options.qobj_id, qobj_header=self.options.qobj_header, memory=self.options.memory, max_credits=self.options.max_credits, seed_simulator=self.options.seed_simulator, default_qubit_los=self.options.default_qubit_los, default_meas_los=self.options.default_meas_los, schedule_los=self.options.schedule_los, meas_level=self.options.meas_level, meas_return=self.options.meas_return, memory_slots=self.options.memory_slots, memory_slot_size=self.options.memory_slot_size, rep_time=self.options.rep_time, parameter_binds=self.options.parameter_binds, **self.options.run_config ) return qobj def predict(self, X, do_async=False): # type: (QmlHadamardNeighborClassifier, Union[Sized, Iterable], bool) -> Union[Optional[List[int]], 'AsyncPredictJob'] """ Predict the class labels of the unclassified input set! :param X: array like, the unclassified input set :param do_async: if True return a wrapped job, it is handy for reading out the prediction results from a real processor :return: depending on the input either the prediction on class labels or a wrapper object for an async task """ qobj = self.predict_qasm_only(X) log.info("Executing circuits...") job = self.backend.run(qobj) # type: JobV1
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
import qiskit from qiskit import IBMQ from qiskit.tools.monitor import job_monitor IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider(group='open') #check open servers import numpy as np import time import networkx as nx import matplotlib.pyplot as plt import random from qiskit import (QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer) from matplotlib import cm %matplotlib inline def counts_to_prob_2d(counts): states = list(counts.keys()) state_counts = list(counts.values()) nshots = sum(state_counts) n = int(len(states[0])/2) def sep_xy(states): # Separate x and y coordinates in state vector states_x = [s[:n] for s in states] states_y = [s[n:] for s in states] states_x = np.array([int(s[::-1],2) for s in states_x]) states_y = np.array([int(s[::-1],2) for s in states_y]) return states_x, states_y x,y = sep_xy(states) # Create array of probability values probabilities = np.zeros((2**n,2**n)) probabilities[x,y] = state_counts probabilities /= nshots return probabilities def increment_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): circuit.mct(qcoin[:]+qpos[i+1:], qpos[i], None, mode='noancilla') def decrement_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): if i+1 < n: circuit.x(qpos[i+1:]) circuit.mct(qcoin[:]+qpos[i+1:], qpos[i], None, mode='noancilla') if i+1 < n: circuit.x(qpos[i+1:]) def step(circuit, qpos, qcoin, cpos, simulatorType): circuit.h(qcoin) circuit.barrier() # y operations increment_gate(circuit, qpos[len(qpos)//2:], qcoin) circuit.x(qcoin[0]) decrement_gate(circuit, qpos[len(qpos)//2:], qcoin) # x operations circuit.x(qcoin) increment_gate(circuit, qpos[:len(qpos)//2], qcoin) circuit.x(qcoin[0]) decrement_gate(circuit, qpos[:len(qpos)//2:], qcoin) circuit.barrier() if simulatorType == 'classical': circuit.measure(qpos,cpos) def initialize_2D(circuit, n, pos): # convert position to binary formatLabel = '{0:0'+str(n)+'b}' x = formatLabel.format(pos[0]) y = formatLabel.format(pos[1]) for i in range(len(x)): if x[i]=='1': circuit.x((n-i)-1) for j in range(len(y)): if y[j]=='1': circuit.x((2*n-j)-1) return circuit def run(steps,simulatorType): # steps = number of quantum walks steps # simulatorType = 'sim', 'quantum' or 'classical' if simulatorType == 'sim': simulator = Aer.get_backend('qasm_simulator') elif simulatorType == 'quantum': simulator = provider.get_backend('ibmq_16_melbourne') elif simulatorType == 'classical': simulator = Aer.get_backend('qasm_simulator') else: simulator = Aer.get_backend('qasm_simulator') qpos = QuantumRegister(2*n,'qc') qcoin = QuantumRegister(2,'qanc') cpos = ClassicalRegister(2*n,'cr') circuit = QuantumCircuit(qpos, qcoin, cpos) circuit = initialize_2D(circuit, n, [round(n/2),round(n/2)]) for i in range(steps): step(circuit, qpos, qcoin, cpos, simulatorType) # # Map the quantum measurement to the classical bits circuit.measure(qpos,cpos) # # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # monitor job job_monitor(job) # # Grab results from the job result = job.result() # # Returns counts counts = result.get_counts(circuit) return counts n=2 steps = 3 for i in range(steps+1): #run classical random walk countsClassical = run(i,'classical') propClassical = counts_to_prob_2d(countsClassical) #run quantum simulation countsSim = run(i,'sim') propSim = counts_to_prob_2d(countsSim) #run the real thing countsQuantum = run(i,'quantum') propQuantum = counts_to_prob_2d(countsQuantum) #plotting names = [] values = [] formatLabel = '{0:0'+str(n)+'b}' for idx in range(2**n): names.append('|' + formatLabel.format(idx) +'>') values.append(idx) f, axs = plt.subplots(1,3,figsize=(13,8)) margin=0.4 f.subplots_adjust(margin, margin, 1.-margin, 1.-margin) axs[0].set_title('classical random walk') plt.sca(axs[0]) plt.imshow(propClassical,cmap=plt.get_cmap('Reds')) plt.xticks(rotation=45) axs[0].set_xticks(values) axs[0].set_xticklabels(names) plt.xlim(-0.5,values[-1]+0.5) axs[0].set_yticks(values) axs[0].set_yticklabels(names) plt.ylim(-0.5,values[-1]+0.5) axs[1].set_title('simulated quantum walk') plt.sca(axs[1]) plt.imshow(propSim,cmap=plt.get_cmap('Greens')) plt.xticks(rotation=45) axs[1].set_xticks(values) axs[1].set_xticklabels(names) plt.xlim(-0.5,values[-1]+0.5) axs[1].set_yticks(values) axs[1].set_yticklabels(names) plt.ylim(-0.5,values[-1]+0.5) axs[2].set_title('IBM quantum walk') plt.sca(axs[2]) plt.imshow(propQuantum,cmap=plt.get_cmap('Blues')) plt.xticks(rotation=45) axs[2].set_xticks(values) axs[2].set_xticklabels(names) plt.xlim(-0.5,values[-1]+0.5) axs[2].set_yticks(values) axs[2].set_yticklabels(names) plt.ylim(-0.5,values[-1]+0.5) plt.tight_layout() plt.show()
https://github.com/SaashaJoshi/IBM-Qiskit-Summer-School-2020
SaashaJoshi
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for SuperOp quantum channel representation class.""" import copy import unittest import numpy as np from numpy.testing import assert_allclose from qiskit import QiskitError, QuantumCircuit from qiskit.quantum_info.states import DensityMatrix from qiskit.quantum_info.operators import Operator from qiskit.quantum_info.operators.channel import SuperOp from .channel_test_case import ChannelTestCase class TestSuperOp(ChannelTestCase): """Tests for SuperOp channel representation.""" def test_init(self): """Test initialization""" chan = SuperOp(self.sopI) assert_allclose(chan.data, self.sopI) self.assertEqual(chan.dim, (2, 2)) self.assertEqual(chan.num_qubits, 1) mat = np.zeros((4, 16)) chan = SuperOp(mat) assert_allclose(chan.data, mat) self.assertEqual(chan.dim, (4, 2)) self.assertIsNone(chan.num_qubits) chan = SuperOp(mat.T) assert_allclose(chan.data, mat.T) self.assertEqual(chan.dim, (2, 4)) self.assertIsNone(chan.num_qubits) # Wrong input or output dims should raise exception self.assertRaises(QiskitError, SuperOp, mat, input_dims=[4], output_dims=[4]) def test_circuit_init(self): """Test initialization from a circuit.""" # Test tensor product of 1-qubit gates circuit = QuantumCircuit(3) circuit.h(0) circuit.x(1) circuit.ry(np.pi / 2, 2) op = SuperOp(circuit) y90 = (1 / np.sqrt(2)) * np.array([[1, -1], [1, 1]]) target = SuperOp(Operator(np.kron(y90, np.kron(self.UX, self.UH)))) self.assertEqual(target, op) # Test decomposition of Controlled-Phase gate lam = np.pi / 4 circuit = QuantumCircuit(2) circuit.cp(lam, 0, 1) op = SuperOp(circuit) target = SuperOp(Operator(np.diag([1, 1, 1, np.exp(1j * lam)]))) self.assertEqual(target, op) # Test decomposition of controlled-H gate circuit = QuantumCircuit(2) circuit.ch(0, 1) op = SuperOp(circuit) target = SuperOp( Operator(np.kron(self.UI, np.diag([1, 0])) + np.kron(self.UH, np.diag([0, 1]))) ) self.assertEqual(target, op) def test_circuit_init_except(self): """Test initialization from circuit with measure raises exception.""" circuit = self.simple_circuit_with_measure() self.assertRaises(QiskitError, SuperOp, circuit) def test_equal(self): """Test __eq__ method""" mat = self.rand_matrix(4, 4) self.assertEqual(SuperOp(mat), SuperOp(mat)) def test_copy(self): """Test copy method""" mat = np.eye(4) with self.subTest("Deep copy"): orig = SuperOp(mat) cpy = orig.copy() cpy._data[0, 0] = 0.0 self.assertFalse(cpy == orig) with self.subTest("Shallow copy"): orig = SuperOp(mat) clone = copy.copy(orig) clone._data[0, 0] = 0.0 self.assertTrue(clone == orig) def test_clone(self): """Test clone method""" mat = np.eye(4) orig = SuperOp(mat) clone = copy.copy(orig) clone._data[0, 0] = 0.0 self.assertTrue(clone == orig) def test_evolve(self): """Test evolve method.""" input_rho = DensityMatrix([[0, 0], [0, 1]]) # Identity channel chan = SuperOp(self.sopI) target_rho = DensityMatrix([[0, 0], [0, 1]]) self.assertEqual(input_rho.evolve(chan), target_rho) # Hadamard channel mat = np.array([[1, 1], [1, -1]]) / np.sqrt(2) chan = SuperOp(np.kron(mat.conj(), mat)) target_rho = DensityMatrix(np.array([[1, -1], [-1, 1]]) / 2) self.assertEqual(input_rho.evolve(chan), target_rho) # Completely depolarizing channel chan = SuperOp(self.depol_sop(1)) target_rho = DensityMatrix(np.eye(2) / 2) self.assertEqual(input_rho.evolve(chan), target_rho) def test_evolve_subsystem(self): """Test subsystem evolve method.""" # Single-qubit random superoperators op_a = SuperOp(self.rand_matrix(4, 4)) op_b = SuperOp(self.rand_matrix(4, 4)) op_c = SuperOp(self.rand_matrix(4, 4)) id1 = SuperOp(np.eye(4)) id2 = SuperOp(np.eye(16)) rho = DensityMatrix(self.rand_rho(8)) # Test evolving single-qubit of 3-qubit system op = op_a # Evolve on qubit 0 full_op = id2.tensor(op_a) rho_targ = rho.evolve(full_op) rho_test = rho.evolve(op, qargs=[0]) self.assertEqual(rho_test, rho_targ) # Evolve on qubit 1 full_op = id1.tensor(op_a).tensor(id1) rho_targ = rho.evolve(full_op) rho_test = rho.evolve(op, qargs=[1]) self.assertEqual(rho_test, rho_targ) # Evolve on qubit 2 full_op = op_a.tensor(id2) rho_targ = rho.evolve(full_op) rho_test = rho.evolve(op, qargs=[2]) self.assertEqual(rho_test, rho_targ) # Test 2-qubit evolution op = op_b.tensor(op_a) # Evolve on qubits [0, 2] full_op = op_b.tensor(id1).tensor(op_a) rho_targ = rho.evolve(full_op) rho_test = rho.evolve(op, qargs=[0, 2]) self.assertEqual(rho_test, rho_targ) # Evolve on qubits [2, 0] full_op = op_a.tensor(id1).tensor(op_b) rho_targ = rho.evolve(full_op) rho_test = rho.evolve(op, qargs=[2, 0]) self.assertEqual(rho_test, rho_targ) # Test 3-qubit evolution op = op_c.tensor(op_b).tensor(op_a) # Evolve on qubits [0, 1, 2] full_op = op rho_targ = rho.evolve(full_op) rho_test = rho.evolve(op, qargs=[0, 1, 2]) self.assertEqual(rho_test, rho_targ) # Evolve on qubits [2, 1, 0] full_op = op_a.tensor(op_b).tensor(op_c) rho_targ = rho.evolve(full_op) rho_test = rho.evolve(op, qargs=[2, 1, 0]) self.assertEqual(rho_test, rho_targ) def test_is_cptp(self): """Test is_cptp method.""" self.assertTrue(SuperOp(self.depol_sop(0.25)).is_cptp()) # Non-CPTP should return false self.assertFalse(SuperOp(1.25 * self.sopI - 0.25 * self.depol_sop(1)).is_cptp()) def test_conjugate(self): """Test conjugate method.""" mat = self.rand_matrix(4, 4) chan = SuperOp(mat) targ = SuperOp(np.conjugate(mat)) self.assertEqual(chan.conjugate(), targ) def test_transpose(self): """Test transpose method.""" mat = self.rand_matrix(4, 4) chan = SuperOp(mat) targ = SuperOp(np.transpose(mat)) self.assertEqual(chan.transpose(), targ) def test_adjoint(self): """Test adjoint method.""" mat = self.rand_matrix(4, 4) chan = SuperOp(mat) targ = SuperOp(np.transpose(np.conj(mat))) self.assertEqual(chan.adjoint(), targ) def test_compose_except(self): """Test compose different dimension exception""" self.assertRaises(QiskitError, SuperOp(np.eye(4)).compose, SuperOp(np.eye(16))) self.assertRaises(QiskitError, SuperOp(np.eye(4)).compose, 2) def test_compose(self): """Test compose method.""" # UnitaryChannel evolution chan1 = SuperOp(self.sopX) chan2 = SuperOp(self.sopY) chan = chan1.compose(chan2) targ = SuperOp(self.sopZ) self.assertEqual(chan, targ) # 50% depolarizing channel chan1 = SuperOp(self.depol_sop(0.5)) chan = chan1.compose(chan1) targ = SuperOp(self.depol_sop(0.75)) self.assertEqual(chan, targ) # Random superoperator mat1 = self.rand_matrix(4, 4) mat2 = self.rand_matrix(4, 4) chan1 = SuperOp(mat1) chan2 = SuperOp(mat2) targ = SuperOp(np.dot(mat2, mat1)) self.assertEqual(chan1.compose(chan2), targ) self.assertEqual(chan1 & chan2, targ) targ = SuperOp(np.dot(mat1, mat2)) self.assertEqual(chan2.compose(chan1), targ) self.assertEqual(chan2 & chan1, targ) # Compose different dimensions chan1 = SuperOp(self.rand_matrix(16, 4)) chan2 = SuperOp( self.rand_matrix(4, 16), ) chan = chan1.compose(chan2) self.assertEqual(chan.dim, (2, 2)) chan = chan2.compose(chan1) self.assertEqual(chan.dim, (4, 4)) def test_dot(self): """Test dot method.""" # UnitaryChannel evolution chan1 = SuperOp(self.sopX) chan2 = SuperOp(self.sopY) targ = SuperOp(self.sopZ) self.assertEqual(chan1.dot(chan2), targ) self.assertEqual(chan1 @ chan2, targ) # 50% depolarizing channel chan1 = SuperOp(self.depol_sop(0.5)) targ = SuperOp(self.depol_sop(0.75)) self.assertEqual(chan1.dot(chan1), targ) self.assertEqual(chan1 @ chan1, targ) # Random superoperator mat1 = self.rand_matrix(4, 4) mat2 = self.rand_matrix(4, 4) chan1 = SuperOp(mat1) chan2 = SuperOp(mat2) targ = SuperOp(np.dot(mat2, mat1)) self.assertEqual(chan2.dot(chan1), targ) targ = SuperOp(np.dot(mat1, mat2)) # Compose different dimensions chan1 = SuperOp(self.rand_matrix(16, 4)) chan2 = SuperOp(self.rand_matrix(4, 16)) chan = chan1.dot(chan2) self.assertEqual(chan.dim, (4, 4)) chan = chan1 @ chan2 self.assertEqual(chan.dim, (4, 4)) chan = chan2.dot(chan1) self.assertEqual(chan.dim, (2, 2)) chan = chan2 @ chan1 self.assertEqual(chan.dim, (2, 2)) def test_compose_front(self): """Test front compose method.""" # DEPRECATED # UnitaryChannel evolution chan1 = SuperOp(self.sopX) chan2 = SuperOp(self.sopY) chan = chan1.compose(chan2, front=True) targ = SuperOp(self.sopZ) self.assertEqual(chan, targ) # 50% depolarizing channel chan1 = SuperOp(self.depol_sop(0.5)) chan = chan1.compose(chan1, front=True) targ = SuperOp(self.depol_sop(0.75)) self.assertEqual(chan, targ) # Random superoperator mat1 = self.rand_matrix(4, 4) mat2 = self.rand_matrix(4, 4) chan1 = SuperOp(mat1) chan2 = SuperOp(mat2) targ = SuperOp(np.dot(mat2, mat1)) self.assertEqual(chan2.compose(chan1, front=True), targ) targ = SuperOp(np.dot(mat1, mat2)) self.assertEqual(chan1.compose(chan2, front=True), targ) # Compose different dimensions chan1 = SuperOp(self.rand_matrix(16, 4)) chan2 = SuperOp(self.rand_matrix(4, 16)) chan = chan1.compose(chan2, front=True) self.assertEqual(chan.dim, (4, 4)) chan = chan2.compose(chan1, front=True) self.assertEqual(chan.dim, (2, 2)) def test_compose_subsystem(self): """Test subsystem compose method.""" # 3-qubit superoperator mat = self.rand_matrix(64, 64) mat_a = self.rand_matrix(4, 4) mat_b = self.rand_matrix(4, 4) mat_c = self.rand_matrix(4, 4) iden = SuperOp(np.eye(4)) op = SuperOp(mat) op1 = SuperOp(mat_a) op2 = SuperOp(mat_b).tensor(SuperOp(mat_a)) op3 = SuperOp(mat_c).tensor(SuperOp(mat_b)).tensor(SuperOp(mat_a)) # op3 qargs=[0, 1, 2] full_op = SuperOp(mat_c).tensor(SuperOp(mat_b)).tensor(SuperOp(mat_a)) targ = np.dot(full_op.data, mat) self.assertEqual(op.compose(op3, qargs=[0, 1, 2]), SuperOp(targ)) self.assertEqual(op & op3([0, 1, 2]), SuperOp(targ)) # op3 qargs=[2, 1, 0] full_op = SuperOp(mat_a).tensor(SuperOp(mat_b)).tensor(SuperOp(mat_c)) targ = np.dot(full_op.data, mat) self.assertEqual(op.compose(op3, qargs=[2, 1, 0]), SuperOp(targ)) self.assertEqual(op & op3([2, 1, 0]), SuperOp(targ)) # op2 qargs=[0, 1] full_op = iden.tensor(SuperOp(mat_b)).tensor(SuperOp(mat_a)) targ = np.dot(full_op.data, mat) self.assertEqual(op.compose(op2, qargs=[0, 1]), SuperOp(targ)) self.assertEqual(op & op2([0, 1]), SuperOp(targ)) # op2 qargs=[2, 0] full_op = SuperOp(mat_a).tensor(iden).tensor(SuperOp(mat_b)) targ = np.dot(full_op.data, mat) self.assertEqual(op.compose(op2, qargs=[2, 0]), SuperOp(targ)) self.assertEqual(op & op2([2, 0]), SuperOp(targ)) # op1 qargs=[0] full_op = iden.tensor(iden).tensor(SuperOp(mat_a)) targ = np.dot(full_op.data, mat) self.assertEqual(op.compose(op1, qargs=[0]), SuperOp(targ)) self.assertEqual(op & op1([0]), SuperOp(targ)) # op1 qargs=[1] full_op = iden.tensor(SuperOp(mat_a)).tensor(iden) targ = np.dot(full_op.data, mat) self.assertEqual(op.compose(op1, qargs=[1]), SuperOp(targ)) self.assertEqual(op & op1([1]), SuperOp(targ)) # op1 qargs=[2] full_op = SuperOp(mat_a).tensor(iden).tensor(iden) targ = np.dot(full_op.data, mat) self.assertEqual(op.compose(op1, qargs=[2]), SuperOp(targ)) self.assertEqual(op & op1([2]), SuperOp(targ)) def test_dot_subsystem(self): """Test subsystem dot method.""" # 3-qubit operator mat = self.rand_matrix(64, 64) mat_a = self.rand_matrix(4, 4) mat_b = self.rand_matrix(4, 4) mat_c = self.rand_matrix(4, 4) iden = SuperOp(np.eye(4)) op = SuperOp(mat) op1 = SuperOp(mat_a) op2 = SuperOp(mat_b).tensor(SuperOp(mat_a)) op3 = SuperOp(mat_c).tensor(SuperOp(mat_b)).tensor(SuperOp(mat_a)) # op3 qargs=[0, 1, 2] full_op = SuperOp(mat_c).tensor(SuperOp(mat_b)).tensor(SuperOp(mat_a)) targ = np.dot(mat, full_op.data) self.assertEqual(op.dot(op3, qargs=[0, 1, 2]), SuperOp(targ)) # op3 qargs=[2, 1, 0] full_op = SuperOp(mat_a).tensor(SuperOp(mat_b)).tensor(SuperOp(mat_c)) targ = np.dot(mat, full_op.data) self.assertEqual(op.dot(op3, qargs=[2, 1, 0]), SuperOp(targ)) # op2 qargs=[0, 1] full_op = iden.tensor(SuperOp(mat_b)).tensor(SuperOp(mat_a)) targ = np.dot(mat, full_op.data) self.assertEqual(op.dot(op2, qargs=[0, 1]), SuperOp(targ)) # op2 qargs=[2, 0] full_op = SuperOp(mat_a).tensor(iden).tensor(SuperOp(mat_b)) targ = np.dot(mat, full_op.data) self.assertEqual(op.dot(op2, qargs=[2, 0]), SuperOp(targ)) # op1 qargs=[0] full_op = iden.tensor(iden).tensor(SuperOp(mat_a)) targ = np.dot(mat, full_op.data) self.assertEqual(op.dot(op1, qargs=[0]), SuperOp(targ)) # op1 qargs=[1] full_op = iden.tensor(SuperOp(mat_a)).tensor(iden) targ = np.dot(mat, full_op.data) self.assertEqual(op.dot(op1, qargs=[1]), SuperOp(targ)) # op1 qargs=[2] full_op = SuperOp(mat_a).tensor(iden).tensor(iden) targ = np.dot(mat, full_op.data) self.assertEqual(op.dot(op1, qargs=[2]), SuperOp(targ)) def test_compose_front_subsystem(self): """Test subsystem front compose method.""" # 3-qubit operator mat = self.rand_matrix(64, 64) mat_a = self.rand_matrix(4, 4) mat_b = self.rand_matrix(4, 4) mat_c = self.rand_matrix(4, 4) iden = SuperOp(np.eye(4)) op = SuperOp(mat) op1 = SuperOp(mat_a) op2 = SuperOp(mat_b).tensor(SuperOp(mat_a)) op3 = SuperOp(mat_c).tensor(SuperOp(mat_b)).tensor(SuperOp(mat_a)) # op3 qargs=[0, 1, 2] full_op = SuperOp(mat_c).tensor(SuperOp(mat_b)).tensor(SuperOp(mat_a)) targ = np.dot(mat, full_op.data) self.assertEqual(op.compose(op3, qargs=[0, 1, 2], front=True), SuperOp(targ)) # op3 qargs=[2, 1, 0] full_op = SuperOp(mat_a).tensor(SuperOp(mat_b)).tensor(SuperOp(mat_c)) targ = np.dot(mat, full_op.data) self.assertEqual(op.compose(op3, qargs=[2, 1, 0], front=True), SuperOp(targ)) # op2 qargs=[0, 1] full_op = iden.tensor(SuperOp(mat_b)).tensor(SuperOp(mat_a)) targ = np.dot(mat, full_op.data) self.assertEqual(op.compose(op2, qargs=[0, 1], front=True), SuperOp(targ)) # op2 qargs=[2, 0] full_op = SuperOp(mat_a).tensor(iden).tensor(SuperOp(mat_b)) targ = np.dot(mat, full_op.data) self.assertEqual(op.compose(op2, qargs=[2, 0], front=True), SuperOp(targ)) # op1 qargs=[0] full_op = iden.tensor(iden).tensor(SuperOp(mat_a)) targ = np.dot(mat, full_op.data) self.assertEqual(op.compose(op1, qargs=[0], front=True), SuperOp(targ)) # op1 qargs=[1] full_op = iden.tensor(SuperOp(mat_a)).tensor(iden) targ = np.dot(mat, full_op.data) self.assertEqual(op.compose(op1, qargs=[1], front=True), SuperOp(targ)) # op1 qargs=[2] full_op = SuperOp(mat_a).tensor(iden).tensor(iden) targ = np.dot(mat, full_op.data) self.assertEqual(op.compose(op1, qargs=[2], front=True), SuperOp(targ)) def test_expand(self): """Test expand method.""" rho0, rho1 = np.diag([1, 0]), np.diag([0, 1]) rho_init = DensityMatrix(np.kron(rho0, rho0)) chan1 = SuperOp(self.sopI) chan2 = SuperOp(self.sopX) # X \otimes I chan = chan1.expand(chan2) rho_targ = DensityMatrix(np.kron(rho1, rho0)) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init.evolve(chan), rho_targ) # I \otimes X chan = chan2.expand(chan1) rho_targ = DensityMatrix(np.kron(rho0, rho1)) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init.evolve(chan), rho_targ) def test_tensor(self): """Test tensor method.""" rho0, rho1 = np.diag([1, 0]), np.diag([0, 1]) rho_init = DensityMatrix(np.kron(rho0, rho0)) chan1 = SuperOp(self.sopI) chan2 = SuperOp(self.sopX) # X \otimes I chan = chan2.tensor(chan1) rho_targ = DensityMatrix(np.kron(rho1, rho0)) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init.evolve(chan), rho_targ) chan = chan2 ^ chan1 self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init.evolve(chan), rho_targ) # I \otimes X chan = chan1.tensor(chan2) rho_targ = DensityMatrix(np.kron(rho0, rho1)) self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init.evolve(chan), rho_targ) chan = chan1 ^ chan2 self.assertEqual(chan.dim, (4, 4)) self.assertEqual(rho_init.evolve(chan), rho_targ) def test_power(self): """Test power method.""" # 10% depolarizing channel p_id = 0.9 depol = SuperOp(self.depol_sop(1 - p_id)) # Compose 3 times p_id3 = p_id**3 chan3 = depol.power(3) targ3 = SuperOp(self.depol_sop(1 - p_id3)) self.assertEqual(chan3, targ3) def test_add(self): """Test add method.""" mat1 = 0.5 * self.sopI mat2 = 0.5 * self.depol_sop(1) chan1 = SuperOp(mat1) chan2 = SuperOp(mat2) targ = SuperOp(mat1 + mat2) self.assertEqual(chan1._add(chan2), targ) self.assertEqual(chan1 + chan2, targ) targ = SuperOp(mat1 - mat2) self.assertEqual(chan1 - chan2, targ) def test_add_qargs(self): """Test add method with qargs.""" mat = self.rand_matrix(8**2, 8**2) mat0 = self.rand_matrix(4, 4) mat1 = self.rand_matrix(4, 4) op = SuperOp(mat) op0 = SuperOp(mat0) op1 = SuperOp(mat1) op01 = op1.tensor(op0) eye = SuperOp(self.sopI) with self.subTest(msg="qargs=[0]"): value = op + op0([0]) target = op + eye.tensor(eye).tensor(op0) self.assertEqual(value, target) with self.subTest(msg="qargs=[1]"): value = op + op0([1]) target = op + eye.tensor(op0).tensor(eye) self.assertEqual(value, target) with self.subTest(msg="qargs=[2]"): value = op + op0([2]) target = op + op0.tensor(eye).tensor(eye) self.assertEqual(value, target) with self.subTest(msg="qargs=[0, 1]"): value = op + op01([0, 1]) target = op + eye.tensor(op1).tensor(op0) self.assertEqual(value, target) with self.subTest(msg="qargs=[1, 0]"): value = op + op01([1, 0]) target = op + eye.tensor(op0).tensor(op1) self.assertEqual(value, target) with self.subTest(msg="qargs=[0, 2]"): value = op + op01([0, 2]) target = op + op1.tensor(eye).tensor(op0) self.assertEqual(value, target) with self.subTest(msg="qargs=[2, 0]"): value = op + op01([2, 0]) target = op + op0.tensor(eye).tensor(op1) self.assertEqual(value, target) def test_sub_qargs(self): """Test subtract method with qargs.""" mat = self.rand_matrix(8**2, 8**2) mat0 = self.rand_matrix(4, 4) mat1 = self.rand_matrix(4, 4) op = SuperOp(mat) op0 = SuperOp(mat0) op1 = SuperOp(mat1) op01 = op1.tensor(op0) eye = SuperOp(self.sopI) with self.subTest(msg="qargs=[0]"): value = op - op0([0]) target = op - eye.tensor(eye).tensor(op0) self.assertEqual(value, target) with self.subTest(msg="qargs=[1]"): value = op - op0([1]) target = op - eye.tensor(op0).tensor(eye) self.assertEqual(value, target) with self.subTest(msg="qargs=[2]"): value = op - op0([2]) target = op - op0.tensor(eye).tensor(eye) self.assertEqual(value, target) with self.subTest(msg="qargs=[0, 1]"): value = op - op01([0, 1]) target = op - eye.tensor(op1).tensor(op0) self.assertEqual(value, target) with self.subTest(msg="qargs=[1, 0]"): value = op - op01([1, 0]) target = op - eye.tensor(op0).tensor(op1) self.assertEqual(value, target) with self.subTest(msg="qargs=[0, 2]"): value = op - op01([0, 2]) target = op - op1.tensor(eye).tensor(op0) self.assertEqual(value, target) with self.subTest(msg="qargs=[2, 0]"): value = op - op01([2, 0]) target = op - op0.tensor(eye).tensor(op1) self.assertEqual(value, target) def test_add_except(self): """Test add method raises exceptions.""" chan1 = SuperOp(self.sopI) chan2 = SuperOp(np.eye(16)) self.assertRaises(QiskitError, chan1._add, chan2) self.assertRaises(QiskitError, chan1._add, 5) def test_multiply(self): """Test multiply method.""" chan = SuperOp(self.sopI) val = 0.5 targ = SuperOp(val * self.sopI) self.assertEqual(chan._multiply(val), targ) self.assertEqual(val * chan, targ) targ = SuperOp(self.sopI * val) self.assertEqual(chan * val, targ) def test_multiply_except(self): """Test multiply method raises exceptions.""" chan = SuperOp(self.sopI) self.assertRaises(QiskitError, chan._multiply, "s") self.assertRaises(QiskitError, chan.__rmul__, "s") self.assertRaises(QiskitError, chan._multiply, chan) self.assertRaises(QiskitError, chan.__rmul__, chan) def test_negate(self): """Test negate method""" chan = SuperOp(self.sopI) targ = SuperOp(-self.sopI) self.assertEqual(-chan, targ) if __name__ == "__main__": unittest.main()
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
import unittest import hypothesis.strategies as st from hypothesis import given, settings, note import matplotlib.pyplot as plt import numpy as np import math from qiskit import QuantumCircuit, Aer, transpile, assemble, execute from qiskit.visualization import plot_histogram from qiskit.circuit.library import CCXGate, CXGate, CSwapGate, HGate, SwapGate, CPhaseGate from numpy.random import randint import pandas as pd from fractions import Fraction from math import gcd # greatest common divisor """Function to compute the elements of Z_n.""" def multiplicative_group(n): """Returns the multiplicative group modulo n. Args: n: Modulus of the multiplicative group. """ print("multiplicative group") assert n > 1 group = [1] for x in range(2, n): if math.gcd(x, n) == 1: group.append(x) return group def qft_dagger(n): """n-qubit QFTdagger the first n qubits in circ""" qc = QuantumCircuit(n) # Don't forget the Swaps! for qubit in range(n//2): qc.swap(qubit, n-qubit-1) for j in range(n): for m in range(j): qc.cp(-np.pi/float(2**(j-m)), m, j) qc.h(j) qc.name = "QFT†" return qc qft_dagger(8) def general_modular_exp(a, N, power): mult_group = multiplicative_group(N) if a not in mult_group: raise ValueError("'a' must be in " + str(mult_group)) print(mult_group) general_modular_exp(7, 15, 2) def VBE_Adder(qubit_size): #outputs a + b #inverse outputs b - a (but in two's complement) #move to carry qc = QuantumCircuit(3*qubit_size + 1) for i in range(qubit_size-1): qc.ccx(i, i+qubit_size, 2+i+(2*qubit_size)) #toffoli to second register qc.ccx(qubit_size-1, (2*qubit_size)-1, 2*qubit_size) #add a to b for i in range(qubit_size): qc.cx(i, i+qubit_size) #second register carry and last b for i in range(qubit_size-1): qc.ccx(i+qubit_size, 1+i+(2*qubit_size), 2+i+(2*qubit_size)) qc.ccx((2*qubit_size)-1, 3*qubit_size, 2*qubit_size) qc.cx(3*qubit_size, (2*qubit_size)-1) #adder overflow for i in range(qubit_size-1): qc.ccx((2*qubit_size) - 2 - i, (3*qubit_size) - i - 1, (3*qubit_size) - i) qc.cx((qubit_size) - 2 - i, (2*qubit_size) - 2 - i) qc.ccx((qubit_size) - 2 - i, (2*qubit_size) - 2 - i, (3*qubit_size) - i) qc.cx((qubit_size) - 2 - i, (2*qubit_size) - 2 - i) qc.cx((3*qubit_size) - i - 1, (2*qubit_size) - 2 - i) #print(qc.draw(output='text')) qc.name = "VBE ADDER" #qc.to_gate() return qc #print(VBE_Adder(4)) def Modular_adder(qubit_size, N): binN = bin(N)[2:].zfill(qubit_size)[::-1] #move to carry qc = QuantumCircuit(4*qubit_size + 2) qc.append(VBE_Adder(qubit_size), [i for i in range(3*qubit_size+1)]) for i in range(qubit_size): qc.swap(i, i + 1 + 3*qubit_size) qc.append(VBE_Adder(qubit_size).inverse(), [i for i in range(3*qubit_size+1)]) qc.x(2*qubit_size) qc.cx(2*qubit_size, 4*qubit_size+1) qc.x(2*qubit_size) for i in range(qubit_size): if binN[i] == "1": qc.cx(4*qubit_size + 1, i) qc.append(VBE_Adder(qubit_size), [i for i in range(3*qubit_size+1)]) for i in range(qubit_size): if binN[i] == "1": qc.cx(4*qubit_size + 1, i) for i in range(qubit_size): qc.swap(i, i + 1 + 3*qubit_size) qc.append(VBE_Adder(qubit_size).inverse(), [i for i in range(3*qubit_size+1)]) qc.cx(2*qubit_size, 4*qubit_size+1) qc.append(VBE_Adder(qubit_size), [i for i in range(3*qubit_size+1)]) qc.name = "MODULAR ADDER" return qc Modular_adder(4,11) from IPython.core.display import display, HTML display(HTML("<style>.container { width:60% !important; }</style>")) size = 4 N = 7 qc = QuantumCircuit(4*size + 2) # a = 3,2,1,0 #qc.x(3) qc.x(2) qc.x(1) qc.x(0) # b = 8,7,6,5,4 #qc.x(7) qc.x(6) qc.x(5) qc.x(4) # carry = 12,11,10,9 # modulus N = 16,15,14,13 binN = bin(N)[2:].zfill(size)[::-1] for i in range(size): if binN[i] == "1": qc.x(3*size + 1 + i) # temporary carry = 17 print(qc) qc.measure_all() qc.append(Modular_adder(size,N), [i for i in range(4*size+2)]) qc.measure_all() backend = Aer.get_backend('aer_simulator') job = execute(qc, backend, shots=1, memory=True) readings = job.result().get_memory() second_set = readings[0][0:4*size+2] first_set = readings[0][(4*size)+3:(8*size)+6] print(readings) print(first_set) print(second_set) print('a = ' + str(first_set[3*size + 2: 4*size + 2])) print('b = ' + str(first_set[2*size + 1: 3*size + 2])) print('b out = ' + str(second_set[2*size + 1: 3*size + 2])) #print('carry = ' + str(second_set[0:size])) def Modular_multiplier(qubit_size, N, a): qc = QuantumCircuit(5*qubit_size + 3) for i in range(qubit_size): mod = bin(a*(2**i) % N)[2:].zfill(qubit_size)[::-1] for j in range(qubit_size): if mod[j] == "1": qc.ccx(0, i+1, qubit_size + 1 + j) #print([qubit_size + i + 1 for i in range(4*qubit_size+2)]) qc.append(Modular_adder(qubit_size, N), [qubit_size + i + 1 for i in range(4*qubit_size+2)]) #can just repeat the above method, but this looks symmetric #the circuit diagram is more intuitive for j in range(qubit_size): if mod[::-1][j] == "1": qc.ccx(0, i+1, 2*qubit_size - j) #set x if control is false qc.x(0) for i in range(qubit_size): qc.ccx(0,i+1,2*qubit_size + 1 + i) qc.x(0) qc.name = "MODULAR MULTIPLIER " + str(a) + "x mod " + str(N) #print(qc.draw(output='text')) return qc Modular_multiplier(4, 15, 13) size = 2 N = 2 a = 1 qc = QuantumCircuit(5*size + 3) #control qubit qc.x(0) # x = 4,3,2,1 #qc.x(4) #qc.x(3) #qc.x(2) #qc.x(1) # N = 21,20,19,18 binN = bin(N)[2:].zfill(size)[::-1] for i in range(size): if binN[i] == "1": qc.x(4*size + 2 + i) # temporary carry = 17 #print(qc) qc.measure_all() qc.append(Modular_multiplier(size, N, a), [i for i in range(5*size+3)]) #print(qc) qc.measure_all() backend = Aer.get_backend('aer_simulator') job = execute(qc, backend, shots=1, memory=True) readings = job.result().get_memory() second_set = readings[0][0:5*size+3] first_set = readings[0][(5*size)+4:(10*size)+8] print(readings) print(first_set) print(second_set) print('x = ' + str(first_set[4*size + 2: 5*size + 2])) print('b = ' + str(first_set[2*size + 1: 3*size + 2])) print('b out = ' + str(second_set[2*size + 1: 3*size + 2])) #print('carry = ' + str(second_set[0:size])) def Modular_exponentiation(qubit_size, N, a): qc = QuantumCircuit(6*qubit_size + 3) #need to set x to 1 qc.x(qubit_size+1) for i in range(qubit_size): #for i in range(1): qc.cx(i,qubit_size) print([i + qubit_size for i in range(5*qubit_size+3)]) qc.append(Modular_multiplier(qubit_size, N, a**(2**i)%N), [i + qubit_size for i in range(5*qubit_size+3)]) for j in range(qubit_size): qc.swap(qubit_size+1+j, 3*qubit_size+1+j) #we dont use A for this multiplier because we need the modular multiplicative inverse #print(a**(2**i)%N) #print(pow(a**(2**i)%N, -1, N)) qc.append(Modular_multiplier(qubit_size, N, pow(a**(2**i)%N, -1, N)).inverse(), [i + qubit_size for i in range(5*qubit_size+3)]) qc.cx(i,qubit_size) qc.name = "MODULAR EXPONENTIATION" #print(qc.draw(output='text')) return qc Modular_exponentiation(3, 7, 3) qubit_size = 2 N = 3 a = 1 qc = QuantumCircuit(6*qubit_size + 3) # x = 3,2,1,0 #qc.x(3) qc.x(2) #qc.x(1) #qc.x(0) # N = 21,20,19,18 binN = bin(N)[2:].zfill(qubit_size)[::-1] print(binN) for i in range(qubit_size): if binN[i] == "1": qc.x(5*qubit_size + 2 + i) #print(qc) qc.measure_all() qc.append(Modular_exponentiation(qubit_size, N, a), [i for i in range(6*qubit_size+3)]) qc.measure_all() print(qc) backend = Aer.get_backend('aer_simulator') job = execute(qc, backend, shots=1, memory=True) readings = job.result().get_memory()[0].split(' ') second_set = readings[0] first_set = readings[1] print(first_set) print(second_set) first_set_exp = first_set[(5 * qubit_size) + 3 : (6 * qubit_size) + 3] first_set_x = first_set[(4 * qubit_size) + 2 : (5 * qubit_size) + 2] first_set_a = first_set[(3 * qubit_size) + 2 : (4 * qubit_size) + 2] first_set_b = first_set[(2 * qubit_size) + 1 : (3 * qubit_size) + 2] first_set_N = first_set[qubit_size + 1 : (2 * qubit_size) + 1] second_set_exp = second_set[(5 * qubit_size) + 3 : (6 * qubit_size) + 3] second_set_x = second_set[(4 * qubit_size) + 2 : (5 * qubit_size) + 2] second_set_a = second_set[(3 * qubit_size) + 2 : (4 * qubit_size) + 2] second_set_b = second_set[(2 * qubit_size) + 1 : (3 * qubit_size) + 2] second_set_N = second_set[qubit_size + 1 : (2 * qubit_size) + 1] print("A = " + str(a)) print("exps 1 -> 2 = " + str(first_set_exp) + " -> " + str(second_set_exp)) print("xs 1 -> 2 = " + str(first_set_x) + " -> " + str(second_set_x)) print("as 1 -> 2 = " + str(first_set_a) + " -> " + str(second_set_a)) print("bs 1 -> 2 = " + str(first_set_b) + " -> " + str(second_set_b)) print("Ns 1 -> 2 = " + str(first_set_N) + " -> " + str(second_set_N)) #print('carry = ' + str(second_set[0:size])) def run_shors(qubit_size, N, a, run_amt): qc = QuantumCircuit(6*qubit_size + 3, qubit_size) # N = 21,20,19,18 binN = bin(N)[2:].zfill(qubit_size)[::-1] for i in range(qubit_size): qc.h(i) for i in range(qubit_size): if binN[i] == "1": qc.x(5*qubit_size + 2 + i) qc.append(Modular_exponentiation(qubit_size, N, a), [i for i in range(6*qubit_size+3)]) qc.append(qft_dagger(qubit_size), [i for i in range(qubit_size)]) qc.measure([i for i in range(qubit_size)],[i for i in range(qubit_size)]) print(qc) backend = Aer.get_backend('aer_simulator') job = execute(qc, backend, shots=run_amt, memory=True) return(job.result().get_memory()) print(run_shors(8,14,9,20)) %timeit run_shors(10,26,7,20) # for loop at the bootom from qiskit textbook for postpro # https://qiskit.org/textbook/ch-algorithms/shor.html#:~:text=if%20phase%20!%3D%200,guess)%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20factor_found%20%3D%20True def shors_with_postpro(N, a, tries): factors = [] if not a < N: raise ValueError("a(%i) must be less than N(%i)"%(a,N)) common_denom = gcd(a,N) if not common_denom == 1: raise ValueError("a(%i) and N(%i) must be coprime but they have a gcd of (%i)"%(a, N, common_denom)) length_message = len(bin(N)[2:])*2 if length_message > 8: print(f"The length of the number you are trying to factor is large ({length_message}), it may fail or take a long time") res = run_shors(len(bin(N)[2:])*2, N, a, tries) for result in res: phase = (int(result,2)/(2**length_message)) frac = Fraction(phase).limit_denominator(N) r = frac.denominator if phase != 0: guesses = [gcd(a**(r//2)-1, N), gcd(a**(r//2)+1, N)] for guess in guesses: if guess not in [1,N] and (N % guess) == 0: factors += [guess] return factors shors_with_postpro(30, 7, 20) def twos_comp_to_int(binNum): binNum = int(binNum,2) ^ ((2**len(binNum))-1) binNum = bin(binNum + 1) return -int(binNum,2) @st.composite def draw_pair_of_ints(draw): size = draw(st.integers(min_value=1, max_value=6)) a = draw(st.integers(min_value=0, max_value=(2**size)-1)) b = draw(st.integers(min_value=0, max_value=(2**size)-1)) return(a, b, size) @st.composite def draw_shors_variables(draw): size = draw(st.integers(min_value=2, max_value=5)) mod = draw(st.integers(min_value=3, max_value=(2**size)-1)) a = draw(st.integers(min_value=2, max_value=mod-1)) return(a, mod, size) @st.composite def draw_pair_of_ints_and_mod(draw): size = draw(st.integers(min_value=2, max_value=3)) mod = draw(st.integers(min_value=2, max_value=(2**size)-1)) a = draw(st.integers(min_value=0, max_value=mod-1)) b = draw(st.integers(min_value=0, max_value=mod-1)) return(a, b, size, mod) @given(draw_shors_variables()) @settings(deadline=None) def test_shors_with_postpro(vals): a = vals[0] N = vals[1] size = vals[2] for i in range(size): try: pow(a**(2**i)%N, -1, N) except ValueError: assert(not(math.gcd(a,N) == 1)) if math.gcd(a,N) == 1: factors = shors_with_postpro(N, a, 20) for factor in factors: print(f"N {N}, factor {factor}") assert(N % factor == 0) @given(draw_pair_of_ints_and_mod()) @settings(deadline=None) def test_modular_exponentiation(vals): a = vals[0] x = vals[1] size = vals[2] N = vals[3] for i in range(size): try: pow(a**(2**i)%N, -1, N) except ValueError: assert(not(math.gcd(a,N) == 1)) if math.gcd(a,N) == 1: qc = QuantumCircuit(6*size + 3) binX = bin(x)[2:].zfill(size)[::-1] binN = bin(N)[2:].zfill(size)[::-1] print("size " + str(size)) print("a " + str(a)) print("x " + str(x)) print("N " + str(N)) print("\n") # x = 3,2,1,0 for i in range(size): if binX[i] == "1": qc.x(i) for i in range(size): if binN[i] == "1": qc.x(5*size + 2 + i) #print(qc) qc.measure_all() qc.append(Modular_exponentiation(size, N, a), [i for i in range(6*size+3)]) qc.measure_all() backend = Aer.get_backend('aer_simulator') job = execute(qc, backend, shots=1, memory=True) readings = job.result().get_memory()[0].split(' ') second_set = readings[0] first_set = readings[1] print(first_set) print(second_set) first_set_exp = first_set[(5 * size) + 3 : (6 * size) + 3] first_set_x = first_set[(4 * size) + 2 : (5 * size) + 2] first_set_a = first_set[(3 * size) + 2 : (4 * size) + 2] first_set_b = first_set[(2 * size) + 1 : (3 * size) + 2] first_set_N = first_set[size + 1 : (2 * size) + 1] second_set_exp = second_set[(5 * size) + 3 : (6 * size) + 3] second_set_x = second_set[(4 * size) + 2 : (5 * size) + 2] second_set_a = second_set[(3 * size) + 2 : (4 * size) + 2] second_set_b = second_set[(2 * size) + 1 : (3 * size) + 2] second_set_N = second_set[size + 1 : (2 * size) + 1] print("A = " + str(a)) print("exps 1 -> 2 = " + str(first_set_exp) + " -> " + str(second_set_exp)) print("xs 1 -> 2 = " + str(first_set_x) + " -> " + str(second_set_x)) print("as 1 -> 2 = " + str(first_set_a) + " -> " + str(second_set_a)) print("bs 1 -> 2 = " + str(first_set_b) + " -> " + str(second_set_b)) print("Ns 1 -> 2 = " + str(first_set_N) + " -> " + str(second_set_N)) print(a) print(x) print(N) print('\n\n') assert((a ** x) % N == int(second_set_x, 2)) @given(draw_pair_of_ints_and_mod(), st.booleans()) @settings(deadline=None) def test_modular_multiplier_then_inverse_returns_original_values(vals, control): a = vals[0] x = vals[1] size = vals[2] N = vals[3] qc = QuantumCircuit(5*size + 3) binX = bin(x)[2:].zfill(size)[::-1] binN = bin(N)[2:].zfill(size)[::-1] print("size " + str(size)) print("a " + str(a)) print("x " + str(x)) print("N " + str(N)) print("control " + str(control)) print("\n") #control qubit if control == True: qc.x(0) # x = 3,2,1,0 for i in range(size): if binX[i] == "1": qc.x(i+1) for i in range(size): if binN[i] == "1": qc.x(4*size + 2 + i) print(qc) qc.measure_all() qc.append(Modular_multiplier(size, N, a), [i for i in range(5*size+3)]) qc.append(Modular_multiplier(size, N, a).inverse(), [i for i in range(5*size+3)]) qc.measure_all() backend = Aer.get_backend('aer_simulator') job = execute(qc, backend, shots=1, memory=True) readings = job.result().get_memory() second_set = readings[0][0:5*size+3] first_set = readings[0][(5*size)+4:(10*size)+7] print("readings " + str(readings)) print("first set " + str(first_set)) print("second set " + str(second_set)) assert(first_set == second_set) @given(draw_pair_of_ints_and_mod(), st.booleans()) @settings(deadline=None) def test_modular_multiplier(vals, control): a = vals[0] x = vals[1] size = vals[2] N = vals[3] qc = QuantumCircuit(5*size + 3) binX = bin(x)[2:].zfill(size)[::-1] binN = bin(N)[2:].zfill(size)[::-1] #control qubit if control == True: qc.x(0) # x = 3,2,1,0 for i in range(size): if binX[i] == "1": qc.x(i+1) for i in range(size): if binN[i] == "1": qc.x(4*size + 2 + i) qc.measure_all() qc.append(Modular_multiplier(size, N, a), [i for i in range(5*size+3)]) qc.measure_all() backend = Aer.get_backend('aer_simulator') job = execute(qc, backend, shots=1, memory=True) readings = job.result().get_memory() second_set = readings[0][0:5*size+3] first_set = readings[0][(5*size)+3:(10*size)+7] print("readings " + str(readings)) print("first set " + str(first_set)) print("x " + str(first_set[4*size + 3: 5*size + 3])) x = int(first_set[4*size + 3: 5*size + 3], 2) print("b " + str(first_set[2*size + 1: 3*size + 2])) b = int(first_set[2*size + 1: 3*size + 2], 2) print("bout " + str(second_set[2*size + 1: 3*size + 2])) bout = int(second_set[2*size + 1: 3*size + 2], 2) print("control " + str(control)) print("N " + str(N)) print('b = ' + str(b)) print('a = ' + str(a)) print('x = ' + str(x)) print('b out = ' + str(bout)) print('\n\n') if (control == False): assert(bout == x) else: assert((a * x) % N == bout) #assert(carry == 0) @given(draw_pair_of_ints_and_mod()) @settings(deadline=None) def test_modular_adder(vals): a = vals[0] b = vals[1] size = vals[2] N = vals[3] qc = QuantumCircuit(4*size + 2) binA = bin(a)[2:].zfill(size)[::-1] binB = bin(b)[2:].zfill(size)[::-1] binN = bin(N)[2:].zfill(size)[::-1] print("size " + str(size)) print("a " + str(a)) print("b " + str(b)) print("N " + str(N)) print("\n") # a = 3,2,1,0 for i in range(size): if binA[i] == "1": qc.x(i) # b = 8,7,6,5,4 for i in range(size): if binB[i] == "1": qc.x(i+size) # carry = 12,11,10,9 # modulus N = 16,15,14,13 for i in range(size): if binN[i] == "1": qc.x(3*size + 1 + i) # temporary carry = 17 #print(qc) qc.measure_all() qc.append(Modular_adder(size,N), [i for i in range(4*size+2)]) qc.measure_all() backend = Aer.get_backend('aer_simulator') job = execute(qc, backend, shots=1, memory=True) readings = job.result().get_memory() second_set = readings[0][0:4*size+2] first_set = readings[0][(4*size)+3:(8*size)+6] print(readings) a = int(first_set[3*size + 2: 4*size + 2], 2) b = int(first_set[2*size + 1: 3*size + 2], 2) bout = int(second_set[2*size + 1: 3*size + 2], 2) print('a = ' + str(a)) print('b = ' + str(b)) print('b out = ' + str(bout)) print('\n\n') assert((a+b)%N == bout) #assert(carry == 0) @given(draw_pair_of_ints()) @settings(deadline=None) def test_add_using_VBE_Adder(vals): a = vals[0] b = vals[1] size = vals[2] qc = QuantumCircuit(3*size + 1) binA = bin(a)[2:].zfill(size)[::-1] binB = bin(b)[2:].zfill(size)[::-1] print("size " + str(size)) print("a " + str(a)) print(binA) print("b " + str(b)) print(binB) # a = 3,2,1,0 for i in range(size): if binA[i] == "1": qc.x(i) # b = 8,7,6,5,4 for i in range(size): if binB[i] == "1": qc.x(i+size) # carry = 12,11,10,9 qc.measure_all() qc.append(VBE_Adder(size), [i for i in range(3*size+1)]) qc.measure_all() backend = Aer.get_backend('aer_simulator') job = execute(qc, backend, shots=1, memory=True) readings = job.result().get_memory() second_set = readings[0][0:3*size+1] first_set = readings[0][(3*size)+2:(6*size)+4] print(readings) a = int(first_set[2*size + 1: 3*size + 1],2) b = int(first_set[size: 2*size + 1],2) bout = int(second_set[size: 2*size + 1],2) carry = int(second_set[0: size],2) print('a = ' + str(a)) print('b = ' + str(b)) print('b out = ' + str(bout)) print('\n\n') assert(a+b == bout) assert(carry == 0) @given(draw_pair_of_ints()) @settings(deadline=None) def test_subtract_using_VBE_Adder_inverse(vals): a = vals[0] b = vals[1] size = vals[2] qc = QuantumCircuit(3*size + 1) binA = bin(a)[2:].zfill(size)[::-1] binB = bin(b)[2:].zfill(size)[::-1] print("size " + str(size)) print("a " + str(a)) print(binA) print("b " + str(b)) print(binB) # a = 3,2,1,0 for i in range(size): if binA[i] == "1": qc.x(i) # b = 8,7,6,5,4 for i in range(size): if binB[i] == "1": qc.x(i+size) # carry = 12,11,10,9 qc.measure_all() qc.append(VBE_Adder(size).inverse(), [i for i in range(3*size+1)]) qc.measure_all() backend = Aer.get_backend('aer_simulator') job = execute(qc, backend, shots=1, memory=True) readings = job.result().get_memory() second_set = readings[0][0:3*size+1] first_set = readings[0][(3*size)+2:(6*size)+4] print(readings) a = int(first_set[2*size + 1: 3*size + 1],2) b = int(first_set[size: 2*size + 1],2) if (b < a): bout = twos_comp_to_int(second_set[size: 2*size + 1]) else: bout = int(second_set[size: 2*size + 1],2) carry = int(second_set[0: size],2) print('a = ' + str(a)) print('b = ' + str(b)) print('b out = ' + str(bout)) print('\n\n') assert(b-a == bout) assert(carry == 0) if __name__ == '__main__': #test_shors_with_postpro() #test_modular_exponentiation() #test_modular_multiplier_then_inverse_returns_original_values() test_modular_multiplier() #test_modular_adder() #test_add_using_VBE_Adder() #test_subtract_using_VBE_Adder_inverse()
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import matplotlib.pyplot as plt import itertools from pprint import pprint # plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts import pickle import time import datetime # Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z) from qiskit.opflow import Zero, One, I, X, Y, Z from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter from qiskit.transpiler.passes import RemoveBarriers # Import QREM package from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter from qiskit.ignis.mitigation import expectation_value # Import mitiq for zne import mitiq # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits from qiskit.quantum_info import state_fidelity import sys import importlib sys.path.append("./") import circuit_utils, zne_utils, tomography_utils, sgs_algorithm importlib.reload(circuit_utils) importlib.reload(zne_utils) importlib.reload(tomography_utils) importlib.reload(sgs_algorithm) from circuit_utils import * from zne_utils import * from tomography_utils import * from sgs_algorithm import * # Combine subcircuits into a single multiqubit gate representing a single trotter step num_qubits = 3 # The final time of the state evolution target_time = np.pi # Parameterize variable t to be evaluated at t=pi later dt = Parameter('t') # Convert custom quantum circuit into a gate trot_gate = trotter_gate(dt) # initial layout initial_layout = [5,3,1] # Number of trotter steps num_steps = 100 print("trotter step: ", num_steps) # Initialize quantum circuit for 3 qubits qr = QuantumRegister(num_qubits, name="lq") qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>) make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({dt: target_time / num_steps}) print("created qc") # Generate state tomography circuits to evaluate fidelity of simulation st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN === print("created st_qcs (length:", len(st_qcs), ")") # remove barriers st_qcs = [RemoveBarriers()(qc) for qc in st_qcs] print("removed barriers from st_qcs") # optimize circuit t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) print("created t3_st_qcs (length:", len(t3_st_qcs), ")") # zne wrapping zne_qcs = zne_wrapper(t3_st_qcs) print("created zne_qcs (length:", len(zne_qcs), ")") t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout) print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")") t3_zne_qcs[-3].draw("mpl") from qiskit.test.mock import FakeJakarta # backend = FakeJakarta() # backend = Aer.get_backend("qasm_simulator") IBMQ.load_account() # provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst') provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') print("provider:", provider) backend = provider.get_backend("ibmq_jakarta") # QREM shots = 1 << 13 qr = QuantumRegister(num_qubits) meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout) print('Job ID', cal_job.job_id()) shots = 1 << 13 reps = 8 # unused jobs = [] for _ in range(reps): job = execute(t3_zne_qcs, backend, shots=shots) # 毎回チェック: ここちゃんと変えた? print('Job ID', job.job_id()) jobs.append(job) dt_now = datetime.datetime.now() import pickle with open("jobs_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump({"jobs": jobs, "cal_job": cal_job}, f) with open("job_ids_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f) with open("properties_jakarta" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump(backend.properties(), f) cal_results = cal_job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!! fids = [] for job in jobs: mit_results = meas_fitter.filter.apply(job.result()) zne_expvals = zne_decoder(num_qubits, mit_results) rho = expvals_to_valid_rho(num_qubits, zne_expvals) fid = state_fidelity(rho, target_state) fids.append(fid) print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from scipy.interpolate import griddata %matplotlib inline import numpy as np from qiskit import QuantumRegister, QuantumCircuit, AncillaRegister, transpile from qiskit.circuit.library import IntegerComparator, WeightedAdder, LinearAmplitudeFunction from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits per dimension to represent the uncertainty num_uncertainty_qubits = 2 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # map to higher dimensional distribution # for simplicity assuming dimensions are independent and identically distributed) dimension = 2 num_qubits = [num_uncertainty_qubits] * dimension low = low * np.ones(dimension) high = high * np.ones(dimension) mu = mu * np.ones(dimension) cov = sigma**2 * np.eye(dimension) # construct circuit u = LogNormalDistribution(num_qubits=num_qubits, mu=mu, sigma=cov, bounds=(list(zip(low, high)))) # plot PDF of uncertainty model x = [v[0] for v in u.values] y = [v[1] for v in u.values] z = u.probabilities # z = map(float, z) # z = list(map(float, z)) resolution = np.array([2**n for n in num_qubits]) * 1j grid_x, grid_y = np.mgrid[min(x) : max(x) : resolution[0], min(y) : max(y) : resolution[1]] grid_z = griddata((x, y), z, (grid_x, grid_y)) plt.figure(figsize=(10, 8)) ax = plt.axes(projection="3d") ax.plot_surface(grid_x, grid_y, grid_z, cmap=plt.cm.Spectral) ax.set_xlabel("Spot Price $S_1$ (\$)", size=15) ax.set_ylabel("Spot Price $S_2$ (\$)", size=15) ax.set_zlabel("Probability (\%)", size=15) plt.show() # determine number of qubits required to represent total loss weights = [] for n in num_qubits: for i in range(n): weights += [2**i] # create aggregation circuit agg = WeightedAdder(sum(num_qubits), weights) n_s = agg.num_sum_qubits n_aux = agg.num_qubits - n_s - agg.num_state_qubits # number of additional qubits # set the strike price (should be within the low and the high value of the uncertainty) strike_price_1 = 3 strike_price_2 = 4 # set the barrier threshold barrier = 2.5 # map strike prices and barrier threshold from [low, high] to {0, ..., 2^n-1} max_value = 2**n_s - 1 low_ = low[0] high_ = high[0] mapped_strike_price_1 = ( (strike_price_1 - dimension * low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1) ) mapped_strike_price_2 = ( (strike_price_2 - dimension * low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1) ) mapped_barrier = (barrier - low) / (high - low) * (2**num_uncertainty_qubits - 1) # condition and condition result conditions = [] barrier_thresholds = [2] * dimension n_aux_conditions = 0 for i in range(dimension): # target dimension of random distribution and corresponding condition (which is required to be True) comparator = IntegerComparator(num_qubits[i], mapped_barrier[i] + 1, geq=False) n_aux_conditions = max(n_aux_conditions, comparator.num_ancillas) conditions += [comparator] # set the approximation scaling for the payoff function c_approx = 0.25 # setup piecewise linear objective fcuntion breakpoints = [0, mapped_strike_price_1, mapped_strike_price_2] slopes = [0, 1, 0] offsets = [0, 0, mapped_strike_price_2 - mapped_strike_price_1] f_min = 0 f_max = mapped_strike_price_2 - mapped_strike_price_1 objective = LinearAmplitudeFunction( n_s, slopes, offsets, domain=(0, max_value), image=(f_min, f_max), rescaling_factor=c_approx, breakpoints=breakpoints, ) # define overall multivariate problem qr_state = QuantumRegister(u.num_qubits, "state") # to load the probability distribution qr_obj = QuantumRegister(1, "obj") # to encode the function values ar_sum = AncillaRegister(n_s, "sum") # number of qubits used to encode the sum ar_cond = AncillaRegister(len(conditions) + 1, "conditions") ar = AncillaRegister( max(n_aux, n_aux_conditions, objective.num_ancillas), "work" ) # additional qubits objective_index = u.num_qubits # define the circuit asian_barrier_spread = QuantumCircuit(qr_state, qr_obj, ar_cond, ar_sum, ar) # load the probability distribution asian_barrier_spread.append(u, qr_state) # apply the conditions for i, cond in enumerate(conditions): state_qubits = qr_state[(num_uncertainty_qubits * i) : (num_uncertainty_qubits * (i + 1))] asian_barrier_spread.append(cond, state_qubits + [ar_cond[i]] + ar[: cond.num_ancillas]) # aggregate the conditions on a single qubit asian_barrier_spread.mcx(ar_cond[:-1], ar_cond[-1]) # apply the aggregation function controlled on the condition asian_barrier_spread.append(agg.control(), [ar_cond[-1]] + qr_state[:] + ar_sum[:] + ar[:n_aux]) # apply the payoff function asian_barrier_spread.append(objective, ar_sum[:] + qr_obj[:] + ar[: objective.num_ancillas]) # uncompute the aggregation asian_barrier_spread.append( agg.inverse().control(), [ar_cond[-1]] + qr_state[:] + ar_sum[:] + ar[:n_aux] ) # uncompute the conditions asian_barrier_spread.mcx(ar_cond[:-1], ar_cond[-1]) for j, cond in enumerate(reversed(conditions)): i = len(conditions) - j - 1 state_qubits = qr_state[(num_uncertainty_qubits * i) : (num_uncertainty_qubits * (i + 1))] asian_barrier_spread.append( cond.inverse(), state_qubits + [ar_cond[i]] + ar[: cond.num_ancillas] ) print(asian_barrier_spread.draw()) print("objective qubit index", objective_index) # plot exact payoff function plt.figure(figsize=(7, 5)) x = np.linspace(sum(low), sum(high)) y = (x <= 5) * np.minimum(np.maximum(0, x - strike_price_1), strike_price_2 - strike_price_1) plt.plot(x, y, "r-") plt.grid() plt.title("Payoff Function (for $S_1 = S_2$)", size=15) plt.xlabel("Sum of Spot Prices ($S_1 + S_2)$", size=15) plt.ylabel("Payoff", size=15) plt.xticks(size=15, rotation=90) plt.yticks(size=15) plt.show() # plot contour of payoff function with respect to both time steps, including barrier plt.figure(figsize=(7, 5)) z = np.zeros((17, 17)) x = np.linspace(low[0], high[0], 17) y = np.linspace(low[1], high[1], 17) for i, x_ in enumerate(x): for j, y_ in enumerate(y): z[i, j] = np.minimum( np.maximum(0, x_ + y_ - strike_price_1), strike_price_2 - strike_price_1 ) if x_ > barrier or y_ > barrier: z[i, j] = 0 plt.title("Payoff Function", size=15) plt.contourf(x, y, z) plt.colorbar() plt.xlabel("Spot Price $S_1$", size=15) plt.ylabel("Spot Price $S_2$", size=15) plt.xticks(size=15) plt.yticks(size=15) plt.show() # evaluate exact expected value sum_values = np.sum(u.values, axis=1) payoff = np.minimum(np.maximum(sum_values - strike_price_1, 0), strike_price_2 - strike_price_1) leq_barrier = [np.max(v) <= barrier for v in u.values] exact_value = np.dot(u.probabilities[leq_barrier], payoff[leq_barrier]) print("exact expected value:\t%.4f" % exact_value) num_state_qubits = asian_barrier_spread.num_qubits - asian_barrier_spread.num_ancillas print("state qubits: ", num_state_qubits) transpiled = transpile(asian_barrier_spread, basis_gates=["u", "cx"]) print("circuit width:", transpiled.width()) print("circuit depth:", transpiled.depth()) asian_barrier_spread_measure = asian_barrier_spread.measure_all(inplace=False) sampler = Sampler() job = sampler.run(asian_barrier_spread_measure) # evaluate the result value = 0 probabilities = job.result().quasi_dists[0].binary_probabilities() for i, prob in probabilities.items(): if prob > 1e-4 and i[-num_state_qubits:][0] == "1": value += prob # map value to original range mapped_value = objective.post_processing(value) / (2**num_uncertainty_qubits - 1) * (high_ - low_) print("Exact Operator Value: %.4f" % value) print("Mapped Operator value: %.4f" % mapped_value) print("Exact Expected Payoff: %.4f" % exact_value) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=asian_barrier_spread, objective_qubits=[objective_index], post_processing=objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation(epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})) result = ae.estimate(problem) conf_int = ( np.array(result.confidence_interval_processed) / (2**num_uncertainty_qubits - 1) * (high_ - low_) ) print("Exact value: \t%.4f" % exact_value) print( "Estimated value:\t%.4f" % (result.estimation_processed / (2**num_uncertainty_qubits - 1) * (high_ - low_)) ) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/1chooo/Quantum-Oracle
1chooo
# %% [markdown] # # 第4章原始程式碼 # %% #Program 4.1 Apply CX-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.cx(0,1) qc.draw('mpl') # %% #Program 4.2 Show unitary matrix of CX-gate (MSB as target bit) from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex qc = QuantumCircuit(2) qc.cx(0,1) display(qc.draw('mpl')) sim = Aer.get_backend('aer_simulator') qc.save_unitary() unitary = sim.run(qc).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CNOT (MSB as target bit) = }")) # %% #Program 4.3 Show unitary matrix of CX-gate (LSB as target bit) from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex sim = Aer.get_backend('aer_simulator') qc = QuantumCircuit(2) qc.cx(1,0) display(qc.draw('mpl')) qc.save_unitary() unitary = sim.run(qc).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CNOT (LSB as target bit) = }")) # %% #Program 4.4a Appliy CX-gate to qubit from qiskit import QuantumCircuit,execute from qiskit.quantum_info import Statevector qc = QuantumCircuit(8,8) sv = Statevector.from_label('11011000') qc.initialize(sv,range(8)) qc.cx(0,1) qc.cx(2,3) qc.cx(4,5) qc.cx(6,7) qc.measure(range(8),range(8)) qc.draw('mpl') # %% #Program 4.4b Measure state of qubit w/ CX-gate from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) # %% #Program 4.5 Build Bell state via H- and CX-gate from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.h(1) qc.cx(1,0) print("Below is the Bell state (top: q0 for target; bottom: q1 for control):") display(qc.draw('mpl')) print("Below is the Bell state (top: q1 for control; bottom: q0 for traget):") display(qc.draw('mpl',reverse_bits=True)) # %% #Program 4.6a Build Bell state via H- and CX-gate from qiskit import QuantumCircuit qc = QuantumCircuit(2,2) qc.h(0) qc.cx(0,1) qc.measure(range(2),range(2)) qc.draw('mpl') # %% #Program 4.6b Measure state of qubit in Bell state from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) # %% #Program 4.7a Iinitialize qubit and build Bell state via H- and CX-gate from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector qc = QuantumCircuit(2,2) sv = Statevector.from_label('10') qc.initialize(sv,range(2)) qc.h(0) qc.cx(0,1) qc.measure(range(2),range(2)) qc.draw('mpl') # %% #Program 4.7b Measure state of qubit in Bell state from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) # %% #Program 4.8 Show quantum circuit for quantum teleportation from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit qs = QuantumRegister(1,'qs') qa = QuantumRegister(1,'qa') qb = QuantumRegister(1,'qb') cr = ClassicalRegister(2,'c') qc = QuantumCircuit(qs,qa,qb,cr) qc.h(qa) qc.cx(qa,qb) qc.barrier() qc.cx(qs,qa) qc.h(qs) qc.measure(qs,0) qc.measure(qa,1) qc.barrier() qc.x(qb) qc.z(qb) qc.draw('mpl') # %% #Program 4.9 Apply CX-, CY-, CZ-, CH-, and SWAP-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(12) qc.cx(0,1) qc.cy(2,3) qc.cz(4,5) qc.ch(6,7) qc.swap(8,9) qc.cx(10,11) qc.cx(11,10) qc.cx(10,11) qc.draw('mpl') # %% #Program 4.10 Apply CCX-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(3) qc.ccx(0,1,2) qc.draw('mpl') # %% #Program 4.11 Show unitary matrix of CCX-gate from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex sim = Aer.get_backend('aer_simulator') qc1 = QuantumCircuit(3) qc1.ccx(0,1,2) print("="*70,"\nBelow is quantum circuit of CCNOT gate (MSB as target bit):") display(qc1.draw('mpl')) qc1.save_unitary() unitary = sim.run(qc1).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CCNOT (MSB as target bit) = }\n")) qc2 = QuantumCircuit(3) qc2.ccx(2,1,0) print("="*70,"\nBelow is quantum circuit of CCNOT gate (LSB as target bit):") display(qc2.draw('mpl')) qc2.save_unitary() unitary = sim.run(qc2).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CCNOT (LSB as target bit) = }\n")) # %% #Program 4.12 Apply CCCCX-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(7) qc.ccx(0,1,4) qc.ccx(2,3,5) qc.ccx(4,5,6) qc.draw('mpl')
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import numpy as np from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.aqua import Pluggable, get_pluggable_class, PluggableType from .multivariate_distribution import MultivariateDistribution class MultivariateVariationalDistribution(MultivariateDistribution): """ The Multivariate Variational Distribution. """ CONFIGURATION = { 'name': 'MultivariateVariationalDistribution', 'description': 'Multivariate Variational Distribution', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'MultivariateVariationalDistribution_schema', 'type': 'object', 'properties': { 'num_qubits': { 'type': 'array', "items": { "type": "number" } }, 'params': { 'type': 'array', "items": { "type": "number" } }, 'low': { 'type': ['array', 'null'], "items": { "type": "number" }, 'default': None }, 'high': { 'type': ['array', 'null'], "items": { "type": "number" }, 'default': None }, }, 'additionalProperties': False }, 'depends': [ { 'pluggable_type': 'variational_form', 'default': { 'name': 'RY' } } ], } def __init__(self, num_qubits, var_form, params, low=None, high=None): if low is None: low = np.zeros(len(num_qubits)) if high is None: high = np.ones(len(num_qubits)) self._num_qubits = num_qubits self._var_form = var_form self.params = params probabilities = np.zeros(2 ** sum(num_qubits)) super().__init__(num_qubits, probabilities, low, high) self._var_form = var_form self.params = params @classmethod def init_params(cls, params): """ Initialize via parameters dictionary. Args: params: parameters dictionary Returns: An object instance of this class """ multi_var_params_params = params.get(Pluggable.SECTION_KEY_UNIVARIATE_DISTRIBUTION) num_qubits = multi_var_params_params.get('num_qubits') params = multi_var_params_params.get('params') low = multi_var_params_params.get('low') high = multi_var_params_params.get('high') var_form_params = params.get(Pluggable.SECTION_KEY_VAR_FORM) var_form = get_pluggable_class(PluggableType.VARIATIONAL_FORM, var_form_params['name']).init_params(params) return cls(num_qubits, var_form, params, low, high) def build(self, qc, q, q_ancillas=None): circuit_var_form = self._var_form.construct_circuit(self.params, q) qc.extend(circuit_var_form) def set_probabilities(self, quantum_instance): """ Set Probabilities Args: quantum_instance: QuantumInstance Returns: """ q_ = QuantumRegister(self._num_qubits, name='q') qc_ = QuantumCircuit(q_) circuit_var_form = self._var_form.construct_circuit(self.params, q_) qc_ += circuit_var_form if quantum_instance.is_statevector: pass else: c_ = ClassicalRegister(self._num_qubits, name='c') qc_.add_register(c_) qc_.measure(q_, c_) result = quantum_instance.execute(qc_) if quantum_instance.is_statevector: result = result.get_statevector(qc_) values = np.multiply(result, np.conj(result)) values = list(values.real) else: result = result.get_counts(qc_) keys = list(result) values = list(result.values()) values = [float(v) / np.sum(values) for v in values] values = [x for _, x in sorted(zip(keys, values))] probabilities = values self._probabilities = np.array(probabilities) return
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-docstring import os import configparser as cp from uuid import uuid4 from unittest import mock from qiskit import exceptions from qiskit.test import QiskitTestCase from qiskit import user_config class TestUserConfig(QiskitTestCase): def setUp(self): super().setUp() self.file_path = "test_%s.conf" % uuid4() def test_empty_file_read(self): config = user_config.UserConfig(self.file_path) config.read_config_file() self.assertEqual({}, config.settings) def test_invalid_optimization_level(self): test_config = """ [default] transpile_optimization_level = 76 """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) self.assertRaises(exceptions.QiskitUserConfigError, config.read_config_file) def test_invalid_circuit_drawer(self): test_config = """ [default] circuit_drawer = MSPaint """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) self.assertRaises(exceptions.QiskitUserConfigError, config.read_config_file) def test_circuit_drawer_valid(self): test_config = """ [default] circuit_drawer = latex """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) config.read_config_file() self.assertEqual({"circuit_drawer": "latex"}, config.settings) def test_invalid_circuit_reverse_bits(self): test_config = """ [default] circuit_reverse_bits = Neither """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) self.assertRaises(exceptions.QiskitUserConfigError, config.read_config_file) def test_circuit_reverse_bits_valid(self): test_config = """ [default] circuit_reverse_bits = false """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) config.read_config_file() self.assertEqual({"circuit_reverse_bits": False}, config.settings) def test_optimization_level_valid(self): test_config = """ [default] transpile_optimization_level = 1 """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) config.read_config_file() self.assertEqual({"transpile_optimization_level": 1}, config.settings) def test_invalid_num_processes(self): test_config = """ [default] num_processes = -256 """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) self.assertRaises(exceptions.QiskitUserConfigError, config.read_config_file) def test_valid_num_processes(self): test_config = """ [default] num_processes = 31 """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) config.read_config_file() self.assertEqual({"num_processes": 31}, config.settings) def test_valid_parallel(self): test_config = """ [default] parallel = False """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) config.read_config_file() self.assertEqual({"parallel_enabled": False}, config.settings) def test_all_options_valid(self): test_config = """ [default] circuit_drawer = latex circuit_mpl_style = default circuit_mpl_style_path = ~:~/.qiskit circuit_reverse_bits = false transpile_optimization_level = 3 suppress_packaging_warnings = true parallel = false num_processes = 15 """ self.addCleanup(os.remove, self.file_path) with open(self.file_path, "w") as file: file.write(test_config) file.flush() config = user_config.UserConfig(self.file_path) config.read_config_file() self.assertEqual( { "circuit_drawer": "latex", "circuit_mpl_style": "default", "circuit_mpl_style_path": ["~", "~/.qiskit"], "circuit_reverse_bits": False, "transpile_optimization_level": 3, "num_processes": 15, "parallel_enabled": False, }, config.settings, ) def test_set_config_all_options_valid(self): self.addCleanup(os.remove, self.file_path) user_config.set_config("circuit_drawer", "latex", file_path=self.file_path) user_config.set_config("circuit_mpl_style", "default", file_path=self.file_path) user_config.set_config("circuit_mpl_style_path", "~:~/.qiskit", file_path=self.file_path) user_config.set_config("circuit_reverse_bits", "false", file_path=self.file_path) user_config.set_config("transpile_optimization_level", "3", file_path=self.file_path) user_config.set_config("parallel", "false", file_path=self.file_path) user_config.set_config("num_processes", "15", file_path=self.file_path) config_settings = None with mock.patch.dict(os.environ, {"QISKIT_SETTINGS": self.file_path}, clear=True): config_settings = user_config.get_config() self.assertEqual( { "circuit_drawer": "latex", "circuit_mpl_style": "default", "circuit_mpl_style_path": ["~", "~/.qiskit"], "circuit_reverse_bits": False, "transpile_optimization_level": 3, "num_processes": 15, "parallel_enabled": False, }, config_settings, ) def test_set_config_multiple_sections(self): self.addCleanup(os.remove, self.file_path) user_config.set_config("circuit_drawer", "latex", file_path=self.file_path) user_config.set_config("circuit_mpl_style", "default", file_path=self.file_path) user_config.set_config("transpile_optimization_level", "3", file_path=self.file_path) user_config.set_config("circuit_drawer", "latex", section="test", file_path=self.file_path) user_config.set_config("parallel", "false", section="test", file_path=self.file_path) user_config.set_config("num_processes", "15", section="test", file_path=self.file_path) config = cp.ConfigParser() config.read(self.file_path) self.assertEqual(config.sections(), ["default", "test"]) self.assertEqual( { "circuit_drawer": "latex", "circuit_mpl_style": "default", "transpile_optimization_level": "3", }, dict(config.items("default")), )
https://github.com/danieljaffe/quantum-algorithms-qiskit
danieljaffe
"""Python implementation of Grovers algorithm through use of the Qiskit library to find the value 3 (|11>) out of four possible values.""" #import numpy and plot library import matplotlib.pyplot as plt import numpy as np # importing Qiskit from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.quantum_info import Statevector # import basic plot tools from qiskit.visualization import plot_histogram # define variables, 1) initialize qubits to zero n = 2 grover_circuit = QuantumCircuit(n) #define initialization function def initialize_s(qc, qubits): '''Apply a H-gate to 'qubits' in qc''' for q in qubits: qc.h(q) return qc ### begin grovers circuit ### #2) Put qubits in equal state of superposition grover_circuit = initialize_s(grover_circuit, [0,1]) # 3) Apply oracle reflection to marked instance x_0 = 3, (|11>) grover_circuit.cz(0,1) statevec = job_sim.result().get_statevector() from qiskit_textbook.tools import vector2latex vector2latex(statevec, pretext="|\\psi\\rangle =") # 4) apply additional reflection (diffusion operator) grover_circuit.h([0,1]) grover_circuit.z([0,1]) grover_circuit.cz(0,1) grover_circuit.h([0,1]) # 5) measure the qubits grover_circuit.measure_all() # Load IBM Q account and get the least busy backend device provider = IBMQ.load_account() device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("Running on current least busy device: ", device) from qiskit.tools.monitor import job_monitor job = execute(grover_circuit, backend=device, shots=1024, optimization_level=3) job_monitor(job, interval = 2) results = job.result() answer = results.get_counts(grover_circuit) plot_histogram(answer) #highest amplitude should correspond with marked value x_0 (|11>)
https://github.com/yaelbh/qiskit-projectq-provider
yaelbh
# -*- coding: utf-8 -*- # Copyright 2018, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. # pylint: disable=invalid-name,missing-docstring,broad-except,no-member from test._random_circuit_generator import RandomCircuitGenerator from test.common import QiskitProjectQTestCase import random import unittest import numpy from scipy.stats import chi2_contingency from qiskit import (QuantumCircuit, QuantumRegister, ClassicalRegister, execute) from qiskit import BasicAer from qiskit_addon_projectq import ProjectQProvider class TestQasmSimulatorProjectQ(QiskitProjectQTestCase): """ Test projectq simulator. """ @classmethod def setUpClass(cls): super().setUpClass() # Set up random circuits n_circuits = 5 min_depth = 1 max_depth = 10 min_qubits = 1 max_qubits = 4 random_circuits = RandomCircuitGenerator(min_qubits=min_qubits, max_qubits=max_qubits, min_depth=min_depth, max_depth=max_depth, seed=None) for _ in range(n_circuits): basis = list(random.sample(random_circuits.op_signature.keys(), random.randint(2, 7))) if 'reset' in basis: basis.remove('reset') if 'u0' in basis: basis.remove('u0') random_circuits.add_circuits(1, basis=basis) cls.rqg = random_circuits def setUp(self): ProjectQ = ProjectQProvider() self.projectq_sim = ProjectQ.get_backend('projectq_qasm_simulator') self.aer_sim = BasicAer.get_backend('qasm_simulator') def test_gate_x(self): shots = 100 qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr, name='test_gate_x') qc.x(qr[0]) qc.measure(qr, cr) result_pq = execute(qc, backend=self.projectq_sim, shots=shots).result(timeout=30) self.assertEqual(result_pq.get_counts(qc), {'1': shots}) def test_entangle(self): shots = 100 N = 5 qr = QuantumRegister(N) cr = ClassicalRegister(N) qc = QuantumCircuit(qr, cr, name='test_entangle') qc.h(qr[0]) for i in range(1, N): qc.cx(qr[0], qr[i]) qc.measure(qr, cr) result = execute(qc, backend=self.projectq_sim, shots=shots).result(timeout=30) counts = result.get_counts(qc) self.log.info(counts) for key, _ in counts.items(): with self.subTest(key=key): self.assertTrue(key in ['0' * N, '1' * N]) def test_random_circuits(self): for circuit in self.rqg.get_circuits(): self.log.info(circuit.qasm()) shots = 100 result_pq = execute(circuit, backend=self.projectq_sim, shots=shots).result(timeout=30) result_qk = execute(circuit, backend=self.aer_sim, shots=shots).result(timeout=30) counts_pq = result_pq.get_counts(circuit) counts_qk = result_qk.get_counts(circuit) self.log.info('qasm_simulator_projectq: %s', str(counts_pq)) self.log.info('qasm_simulator: %s', str(counts_qk)) states = counts_qk.keys() | counts_pq.keys() # contingency table ctable = numpy.array([[counts_pq.get(key, 0) for key in states], [counts_qk.get(key, 0) for key in states]]) result = chi2_contingency(ctable) self.log.info('chi2_contingency: %s', str(result)) with self.subTest(circuit=circuit): self.assertGreater(result[1], 0.01) def test_all_bits_measured(self): shots = 2 qr = QuantumRegister(2) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr, name='all_bits_measured') qc.h(qr[0]) qc.cx(qr[0], qr[1]) qc.measure(qr[0], cr[0]) qc.h(qr[0]) execute(qc, backend=self.projectq_sim, shots=shots).result(timeout=30) if __name__ == '__main__': unittest.main(verbosity=2)
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for Statevector quantum state class.""" import unittest import logging from itertools import permutations from ddt import ddt, data import numpy as np from numpy.testing import assert_allclose from qiskit.test import QiskitTestCase from qiskit import QiskitError from qiskit import QuantumRegister, QuantumCircuit from qiskit import transpile from qiskit.circuit.library import HGate, QFT, GlobalPhaseGate from qiskit.providers.basicaer import QasmSimulatorPy from qiskit.utils import optionals from qiskit.quantum_info.random import random_unitary, random_statevector, random_pauli from qiskit.quantum_info.states import Statevector from qiskit.quantum_info.operators.operator import Operator from qiskit.quantum_info.operators.symplectic import Pauli, SparsePauliOp from qiskit.quantum_info.operators.predicates import matrix_equal from qiskit.visualization.state_visualization import numbers_to_latex_terms, state_to_latex logger = logging.getLogger(__name__) @ddt class TestStatevector(QiskitTestCase): """Tests for Statevector class.""" @classmethod def rand_vec(cls, n, normalize=False): """Return complex vector or statevector""" seed = np.random.randint(0, np.iinfo(np.int32).max) logger.debug("rand_vec default_rng seeded with seed=%s", seed) rng = np.random.default_rng(seed) vec = rng.random(n) + 1j * rng.random(n) if normalize: vec /= np.sqrt(np.dot(vec, np.conj(vec))) return vec def test_init_array_qubit(self): """Test subsystem initialization from N-qubit array.""" # Test automatic inference of qubit subsystems vec = self.rand_vec(8) for dims in [None, 8]: state = Statevector(vec, dims=dims) assert_allclose(state.data, vec) self.assertEqual(state.dim, 8) self.assertEqual(state.dims(), (2, 2, 2)) self.assertEqual(state.num_qubits, 3) def test_init_array(self): """Test initialization from array.""" vec = self.rand_vec(3) state = Statevector(vec) assert_allclose(state.data, vec) self.assertEqual(state.dim, 3) self.assertEqual(state.dims(), (3,)) self.assertIsNone(state.num_qubits) vec = self.rand_vec(2 * 3 * 4) state = Statevector(vec, dims=[2, 3, 4]) assert_allclose(state.data, vec) self.assertEqual(state.dim, 2 * 3 * 4) self.assertEqual(state.dims(), (2, 3, 4)) self.assertIsNone(state.num_qubits) def test_init_circuit(self): """Test initialization from circuit.""" circuit = QuantumCircuit(3) circuit.x(0) state = Statevector(circuit) self.assertEqual(state.dim, 8) self.assertEqual(state.dims(), (2, 2, 2)) self.assertTrue(all(state.data == np.array([0, 1, 0, 0, 0, 0, 0, 0], dtype=complex))) self.assertEqual(state.num_qubits, 3) def test_init_array_except(self): """Test initialization exception from array.""" vec = self.rand_vec(4) self.assertRaises(QiskitError, Statevector, vec, dims=[4, 2]) self.assertRaises(QiskitError, Statevector, vec, dims=[2, 4]) self.assertRaises(QiskitError, Statevector, vec, dims=5) def test_init_statevector(self): """Test initialization from Statevector.""" vec1 = Statevector(self.rand_vec(4)) vec2 = Statevector(vec1) self.assertEqual(vec1, vec2) def test_from_circuit(self): """Test initialization from a circuit.""" # random unitaries u0 = random_unitary(2).data u1 = random_unitary(2).data # add to circuit qr = QuantumRegister(2) circ = QuantumCircuit(qr) circ.unitary(u0, [qr[0]]) circ.unitary(u1, [qr[1]]) target = Statevector(np.kron(u1, u0).dot([1, 0, 0, 0])) vec = Statevector.from_instruction(circ) self.assertEqual(vec, target) # Test tensor product of 1-qubit gates circuit = QuantumCircuit(3) circuit.h(0) circuit.x(1) circuit.ry(np.pi / 2, 2) target = Statevector.from_label("000").evolve(Operator(circuit)) psi = Statevector.from_instruction(circuit) self.assertEqual(psi, target) # Test decomposition of Controlled-Phase gate lam = np.pi / 4 circuit = QuantumCircuit(2) circuit.h(0) circuit.h(1) circuit.cp(lam, 0, 1) target = Statevector.from_label("00").evolve(Operator(circuit)) psi = Statevector.from_instruction(circuit) self.assertEqual(psi, target) # Test decomposition of controlled-H gate circuit = QuantumCircuit(2) circ.x(0) circuit.ch(0, 1) target = Statevector.from_label("00").evolve(Operator(circuit)) psi = Statevector.from_instruction(circuit) self.assertEqual(psi, target) # Test custom controlled gate qc = QuantumCircuit(2) qc.x(0) qc.h(1) gate = qc.to_gate() gate_ctrl = gate.control() circuit = QuantumCircuit(3) circuit.x(0) circuit.append(gate_ctrl, range(3)) target = Statevector.from_label("000").evolve(Operator(circuit)) psi = Statevector.from_instruction(circuit) self.assertEqual(psi, target) # Test initialize instruction target = Statevector([1, 0, 0, 1j]) / np.sqrt(2) circuit = QuantumCircuit(2) circuit.initialize(target.data, [0, 1]) psi = Statevector.from_instruction(circuit) self.assertEqual(psi, target) target = Statevector([1, 0, 1, 0]) / np.sqrt(2) circuit = QuantumCircuit(2) circuit.initialize("+", [1]) psi = Statevector.from_instruction(circuit) self.assertEqual(psi, target) target = Statevector([1, 0, 0, 0]) circuit = QuantumCircuit(2) circuit.initialize(0, [0, 1]) # initialize from int psi = Statevector.from_instruction(circuit) self.assertEqual(psi, target) # Test reset instruction target = Statevector([1, 0]) circuit = QuantumCircuit(1) circuit.h(0) circuit.reset(0) psi = Statevector.from_instruction(circuit) self.assertEqual(psi, target) # Test 0q instruction target = Statevector([1j, 0]) circuit = QuantumCircuit(1) circuit.append(GlobalPhaseGate(np.pi / 2), [], []) psi = Statevector.from_instruction(circuit) self.assertEqual(psi, target) def test_from_instruction(self): """Test initialization from an instruction.""" target = np.dot(HGate().to_matrix(), [1, 0]) vec = Statevector.from_instruction(HGate()).data global_phase_equivalent = matrix_equal(vec, target, ignore_phase=True) self.assertTrue(global_phase_equivalent) def test_from_label(self): """Test initialization from a label""" x_p = Statevector(np.array([1, 1]) / np.sqrt(2)) x_m = Statevector(np.array([1, -1]) / np.sqrt(2)) y_p = Statevector(np.array([1, 1j]) / np.sqrt(2)) y_m = Statevector(np.array([1, -1j]) / np.sqrt(2)) z_p = Statevector(np.array([1, 0])) z_m = Statevector(np.array([0, 1])) label = "01" target = z_p.tensor(z_m) self.assertEqual(target, Statevector.from_label(label)) label = "+-" target = x_p.tensor(x_m) self.assertEqual(target, Statevector.from_label(label)) label = "rl" target = y_p.tensor(y_m) self.assertEqual(target, Statevector.from_label(label)) def test_equal(self): """Test __eq__ method""" for _ in range(10): vec = self.rand_vec(4) self.assertEqual(Statevector(vec), Statevector(vec.tolist())) def test_getitem(self): """Test __getitem__ method""" for _ in range(10): vec = self.rand_vec(4) state = Statevector(vec) for i in range(4): self.assertEqual(state[i], vec[i]) self.assertEqual(state[format(i, "b")], vec[i]) def test_getitem_except(self): """Test __getitem__ method raises exceptions.""" for i in range(1, 4): state = Statevector(self.rand_vec(2**i)) self.assertRaises(QiskitError, state.__getitem__, 2**i) self.assertRaises(QiskitError, state.__getitem__, -1) def test_copy(self): """Test Statevector copy method""" for _ in range(5): vec = self.rand_vec(4) orig = Statevector(vec) cpy = orig.copy() cpy._data[0] += 1.0 self.assertFalse(cpy == orig) def test_is_valid(self): """Test is_valid method.""" state = Statevector([1, 1]) self.assertFalse(state.is_valid()) for _ in range(10): state = Statevector(self.rand_vec(4, normalize=True)) self.assertTrue(state.is_valid()) def test_to_operator(self): """Test to_operator method for returning projector.""" for _ in range(10): vec = self.rand_vec(4) target = Operator(np.outer(vec, np.conj(vec))) op = Statevector(vec).to_operator() self.assertEqual(op, target) def test_evolve(self): """Test _evolve method.""" for _ in range(10): op = random_unitary(4) vec = self.rand_vec(4) target = Statevector(np.dot(op.data, vec)) evolved = Statevector(vec).evolve(op) self.assertEqual(target, evolved) def test_evolve_subsystem(self): """Test subsystem _evolve method.""" # Test evolving single-qubit of 3-qubit system for _ in range(5): vec = self.rand_vec(8) state = Statevector(vec) op0 = random_unitary(2) op1 = random_unitary(2) op2 = random_unitary(2) # Test evolve on 1-qubit op = op0 op_full = Operator(np.eye(4)).tensor(op) target = Statevector(np.dot(op_full.data, vec)) self.assertEqual(state.evolve(op, qargs=[0]), target) # Evolve on qubit 1 op_full = Operator(np.eye(2)).tensor(op).tensor(np.eye(2)) target = Statevector(np.dot(op_full.data, vec)) self.assertEqual(state.evolve(op, qargs=[1]), target) # Evolve on qubit 2 op_full = op.tensor(np.eye(4)) target = Statevector(np.dot(op_full.data, vec)) self.assertEqual(state.evolve(op, qargs=[2]), target) # Test evolve on 2-qubits op = op1.tensor(op0) # Evolve on qubits [0, 2] op_full = op1.tensor(np.eye(2)).tensor(op0) target = Statevector(np.dot(op_full.data, vec)) self.assertEqual(state.evolve(op, qargs=[0, 2]), target) # Evolve on qubits [2, 0] op_full = op0.tensor(np.eye(2)).tensor(op1) target = Statevector(np.dot(op_full.data, vec)) self.assertEqual(state.evolve(op, qargs=[2, 0]), target) # Test evolve on 3-qubits op = op2.tensor(op1).tensor(op0) # Evolve on qubits [0, 1, 2] op_full = op target = Statevector(np.dot(op_full.data, vec)) self.assertEqual(state.evolve(op, qargs=[0, 1, 2]), target) # Evolve on qubits [2, 1, 0] op_full = op0.tensor(op1).tensor(op2) target = Statevector(np.dot(op_full.data, vec)) self.assertEqual(state.evolve(op, qargs=[2, 1, 0]), target) def test_evolve_qudit_subsystems(self): """Test nested evolve calls on qudit subsystems.""" dims = (3, 4, 5) init = self.rand_vec(np.prod(dims)) ops = [random_unitary((dim,)) for dim in dims] state = Statevector(init, dims) for i, op in enumerate(ops): state = state.evolve(op, [i]) target_op = np.eye(1) for op in ops: target_op = np.kron(op.data, target_op) target = Statevector(np.dot(target_op, init), dims) self.assertEqual(state, target) def test_evolve_global_phase(self): """Test evolve circuit with global phase.""" state_i = Statevector([1, 0]) qr = QuantumRegister(2) phase = np.pi / 4 circ = QuantumCircuit(qr, global_phase=phase) circ.x(0) state_f = state_i.evolve(circ, qargs=[0]) target = Statevector([0, 1]) * np.exp(1j * phase) self.assertEqual(state_f, target) def test_conjugate(self): """Test conjugate method.""" for _ in range(10): vec = self.rand_vec(4) target = Statevector(np.conj(vec)) state = Statevector(vec).conjugate() self.assertEqual(state, target) def test_expand(self): """Test expand method.""" for _ in range(10): vec0 = self.rand_vec(2) vec1 = self.rand_vec(3) target = np.kron(vec1, vec0) state = Statevector(vec0).expand(Statevector(vec1)) self.assertEqual(state.dim, 6) self.assertEqual(state.dims(), (2, 3)) assert_allclose(state.data, target) def test_tensor(self): """Test tensor method.""" for _ in range(10): vec0 = self.rand_vec(2) vec1 = self.rand_vec(3) target = np.kron(vec0, vec1) state = Statevector(vec0).tensor(Statevector(vec1)) self.assertEqual(state.dim, 6) self.assertEqual(state.dims(), (3, 2)) assert_allclose(state.data, target) def test_inner(self): """Test inner method.""" for _ in range(10): vec0 = Statevector(self.rand_vec(4)) vec1 = Statevector(self.rand_vec(4)) target = np.vdot(vec0.data, vec1.data) result = vec0.inner(vec1) self.assertAlmostEqual(result, target) vec0 = Statevector(self.rand_vec(6), dims=(2, 3)) vec1 = Statevector(self.rand_vec(6), dims=(2, 3)) target = np.vdot(vec0.data, vec1.data) result = vec0.inner(vec1) self.assertAlmostEqual(result, target) def test_inner_except(self): """Test inner method raises exceptions.""" vec0 = Statevector(self.rand_vec(4)) vec1 = Statevector(self.rand_vec(3)) self.assertRaises(QiskitError, vec0.inner, vec1) vec0 = Statevector(self.rand_vec(6), dims=(2, 3)) vec1 = Statevector(self.rand_vec(6), dims=(3, 2)) self.assertRaises(QiskitError, vec0.inner, vec1) def test_add(self): """Test add method.""" for _ in range(10): vec0 = self.rand_vec(4) vec1 = self.rand_vec(4) state0 = Statevector(vec0) state1 = Statevector(vec1) self.assertEqual(state0 + state1, Statevector(vec0 + vec1)) def test_add_except(self): """Test add method raises exceptions.""" state1 = Statevector(self.rand_vec(2)) state2 = Statevector(self.rand_vec(3)) self.assertRaises(QiskitError, state1.__add__, state2) def test_subtract(self): """Test subtract method.""" for _ in range(10): vec0 = self.rand_vec(4) vec1 = self.rand_vec(4) state0 = Statevector(vec0) state1 = Statevector(vec1) self.assertEqual(state0 - state1, Statevector(vec0 - vec1)) def test_multiply(self): """Test multiply method.""" for _ in range(10): vec = self.rand_vec(4) state = Statevector(vec) val = np.random.rand() + 1j * np.random.rand() self.assertEqual(val * state, Statevector(val * state)) def test_negate(self): """Test negate method""" for _ in range(10): vec = self.rand_vec(4) state = Statevector(vec) self.assertEqual(-state, Statevector(-1 * vec)) def test_equiv(self): """Test equiv method""" vec = np.array([1, 0, 0, -1j]) / np.sqrt(2) phase = np.exp(-1j * np.pi / 4) statevec = Statevector(vec) self.assertTrue(statevec.equiv(phase * vec)) self.assertTrue(statevec.equiv(Statevector(phase * vec))) self.assertFalse(statevec.equiv(2 * vec)) def test_equiv_on_circuit(self): """Test the equiv method on different types of input.""" statevec = Statevector([1, 0]) qc = QuantumCircuit(1) self.assertTrue(statevec.equiv(qc)) qc.x(0) self.assertFalse(statevec.equiv(qc)) def test_to_dict(self): """Test to_dict method""" with self.subTest(msg="dims = (2, 3)"): vec = Statevector(np.arange(1, 7), dims=(2, 3)) target = {"00": 1, "01": 2, "10": 3, "11": 4, "20": 5, "21": 6} self.assertDictAlmostEqual(target, vec.to_dict()) with self.subTest(msg="dims = (11, )"): vec = Statevector(np.arange(1, 12), dims=(11,)) target = {str(i): i + 1 for i in range(11)} self.assertDictAlmostEqual(target, vec.to_dict()) with self.subTest(msg="dims = (2, 11)"): vec = Statevector(np.arange(1, 23), dims=(2, 11)) target = {} for i in range(11): for j in range(2): key = f"{i},{j}" target[key] = 2 * i + j + 1 self.assertDictAlmostEqual(target, vec.to_dict()) def test_probabilities_product(self): """Test probabilities method for product state""" state = Statevector.from_label("+0") # 2-qubit qargs with self.subTest(msg="P(None)"): probs = state.probabilities() target = np.array([0.5, 0, 0.5, 0]) self.assertTrue(np.allclose(probs, target)) with self.subTest(msg="P([0, 1])"): probs = state.probabilities([0, 1]) target = np.array([0.5, 0, 0.5, 0]) self.assertTrue(np.allclose(probs, target)) with self.subTest(msg="P([1, 0]"): probs = state.probabilities([1, 0]) target = np.array([0.5, 0.5, 0, 0]) self.assertTrue(np.allclose(probs, target)) # 1-qubit qargs with self.subTest(msg="P([0])"): probs = state.probabilities([0]) target = np.array([1, 0]) self.assertTrue(np.allclose(probs, target)) with self.subTest(msg="P([1])"): probs = state.probabilities([1]) target = np.array([0.5, 0.5]) self.assertTrue(np.allclose(probs, target)) def test_probabilities_ghz(self): """Test probabilities method for GHZ state""" state = (Statevector.from_label("000") + Statevector.from_label("111")) / np.sqrt(2) # 3-qubit qargs target = np.array([0.5, 0, 0, 0, 0, 0, 0, 0.5]) for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities(qargs) self.assertTrue(np.allclose(probs, target)) # 2-qubit qargs target = np.array([0.5, 0, 0, 0.5]) for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities(qargs) self.assertTrue(np.allclose(probs, target)) # 1-qubit qargs target = np.array([0.5, 0.5]) for qargs in [[0], [1], [2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities(qargs) self.assertTrue(np.allclose(probs, target)) def test_probabilities_w(self): """Test probabilities method with W state""" state = ( Statevector.from_label("001") + Statevector.from_label("010") + Statevector.from_label("100") ) / np.sqrt(3) # 3-qubit qargs target = np.array([0, 1 / 3, 1 / 3, 0, 1 / 3, 0, 0, 0]) for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities(qargs) self.assertTrue(np.allclose(probs, target)) # 2-qubit qargs target = np.array([1 / 3, 1 / 3, 1 / 3, 0]) for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities(qargs) self.assertTrue(np.allclose(probs, target)) # 1-qubit qargs target = np.array([2 / 3, 1 / 3]) for qargs in [[0], [1], [2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities(qargs) self.assertTrue(np.allclose(probs, target)) def test_probabilities_dict_product(self): """Test probabilities_dict method for product state""" state = Statevector.from_label("+0") # 2-qubit qargs with self.subTest(msg="P(None)"): probs = state.probabilities_dict() target = {"00": 0.5, "10": 0.5} self.assertDictAlmostEqual(probs, target) with self.subTest(msg="P([0, 1])"): probs = state.probabilities_dict([0, 1]) target = {"00": 0.5, "10": 0.5} self.assertDictAlmostEqual(probs, target) with self.subTest(msg="P([1, 0]"): probs = state.probabilities_dict([1, 0]) target = {"00": 0.5, "01": 0.5} self.assertDictAlmostEqual(probs, target) # 1-qubit qargs with self.subTest(msg="P([0])"): probs = state.probabilities_dict([0]) target = {"0": 1} self.assertDictAlmostEqual(probs, target) with self.subTest(msg="P([1])"): probs = state.probabilities_dict([1]) target = {"0": 0.5, "1": 0.5} self.assertDictAlmostEqual(probs, target) def test_probabilities_dict_ghz(self): """Test probabilities_dict method for GHZ state""" state = (Statevector.from_label("000") + Statevector.from_label("111")) / np.sqrt(2) # 3-qubit qargs target = {"000": 0.5, "111": 0.5} for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities_dict(qargs) self.assertDictAlmostEqual(probs, target) # 2-qubit qargs target = {"00": 0.5, "11": 0.5} for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities_dict(qargs) self.assertDictAlmostEqual(probs, target) # 1-qubit qargs target = {"0": 0.5, "1": 0.5} for qargs in [[0], [1], [2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities_dict(qargs) self.assertDictAlmostEqual(probs, target) def test_probabilities_dict_w(self): """Test probabilities_dict method with W state""" state = ( Statevector.from_label("001") + Statevector.from_label("010") + Statevector.from_label("100") ) / np.sqrt(3) # 3-qubit qargs target = np.array([0, 1 / 3, 1 / 3, 0, 1 / 3, 0, 0, 0]) target = {"001": 1 / 3, "010": 1 / 3, "100": 1 / 3} for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities_dict(qargs) self.assertDictAlmostEqual(probs, target) # 2-qubit qargs target = {"00": 1 / 3, "01": 1 / 3, "10": 1 / 3} for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities_dict(qargs) self.assertDictAlmostEqual(probs, target) # 1-qubit qargs target = {"0": 2 / 3, "1": 1 / 3} for qargs in [[0], [1], [2]]: with self.subTest(msg=f"P({qargs})"): probs = state.probabilities_dict(qargs) self.assertDictAlmostEqual(probs, target) def test_sample_counts_ghz(self): """Test sample_counts method for GHZ state""" shots = 2000 threshold = 0.02 * shots state = (Statevector.from_label("000") + Statevector.from_label("111")) / np.sqrt(2) state.seed(100) # 3-qubit qargs target = {"000": shots / 2, "111": shots / 2} for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]: with self.subTest(msg=f"counts (qargs={qargs})"): counts = state.sample_counts(shots, qargs=qargs) self.assertDictAlmostEqual(counts, target, threshold) # 2-qubit qargs target = {"00": shots / 2, "11": shots / 2} for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]: with self.subTest(msg=f"counts (qargs={qargs})"): counts = state.sample_counts(shots, qargs=qargs) self.assertDictAlmostEqual(counts, target, threshold) # 1-qubit qargs target = {"0": shots / 2, "1": shots / 2} for qargs in [[0], [1], [2]]: with self.subTest(msg=f"counts (qargs={qargs})"): counts = state.sample_counts(shots, qargs=qargs) self.assertDictAlmostEqual(counts, target, threshold) def test_sample_counts_w(self): """Test sample_counts method for W state""" shots = 3000 threshold = 0.02 * shots state = ( Statevector.from_label("001") + Statevector.from_label("010") + Statevector.from_label("100") ) / np.sqrt(3) state.seed(100) target = {"001": shots / 3, "010": shots / 3, "100": shots / 3} for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]: with self.subTest(msg=f"P({qargs})"): counts = state.sample_counts(shots, qargs=qargs) self.assertDictAlmostEqual(counts, target, threshold) # 2-qubit qargs target = {"00": shots / 3, "01": shots / 3, "10": shots / 3} for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]: with self.subTest(msg=f"P({qargs})"): counts = state.sample_counts(shots, qargs=qargs) self.assertDictAlmostEqual(counts, target, threshold) # 1-qubit qargs target = {"0": 2 * shots / 3, "1": shots / 3} for qargs in [[0], [1], [2]]: with self.subTest(msg=f"P({qargs})"): counts = state.sample_counts(shots, qargs=qargs) self.assertDictAlmostEqual(counts, target, threshold) def test_probabilities_dict_unequal_dims(self): """Test probabilities_dict for a state with unequal subsystem dimensions.""" vec = np.zeros(60, dtype=float) vec[15:20] = np.ones(5) vec[40:46] = np.ones(6) state = Statevector(vec / np.sqrt(11.0), dims=[3, 4, 5]) p = 1.0 / 11.0 self.assertDictEqual( state.probabilities_dict(), { s: p for s in [ "110", "111", "112", "120", "121", "311", "312", "320", "321", "322", "330", ] }, ) # differences due to rounding self.assertDictAlmostEqual( state.probabilities_dict(qargs=[0]), {"0": 4 * p, "1": 4 * p, "2": 3 * p}, delta=1e-10 ) self.assertDictAlmostEqual( state.probabilities_dict(qargs=[1]), {"1": 5 * p, "2": 5 * p, "3": p}, delta=1e-10 ) self.assertDictAlmostEqual( state.probabilities_dict(qargs=[2]), {"1": 5 * p, "3": 6 * p}, delta=1e-10 ) self.assertDictAlmostEqual( state.probabilities_dict(qargs=[0, 1]), {"10": p, "11": 2 * p, "12": 2 * p, "20": 2 * p, "21": 2 * p, "22": p, "30": p}, delta=1e-10, ) self.assertDictAlmostEqual( state.probabilities_dict(qargs=[1, 0]), {"01": p, "11": 2 * p, "21": 2 * p, "02": 2 * p, "12": 2 * p, "22": p, "03": p}, delta=1e-10, ) self.assertDictAlmostEqual( state.probabilities_dict(qargs=[0, 2]), {"10": 2 * p, "11": 2 * p, "12": p, "31": 2 * p, "32": 2 * p, "30": 2 * p}, delta=1e-10, ) def test_sample_counts_qutrit(self): """Test sample_counts method for qutrit state""" p = 0.3 shots = 1000 threshold = 0.03 * shots state = Statevector([np.sqrt(p), 0, np.sqrt(1 - p)]) state.seed(100) with self.subTest(msg="counts"): target = {"0": shots * p, "2": shots * (1 - p)} counts = state.sample_counts(shots=shots) self.assertDictAlmostEqual(counts, target, threshold) def test_sample_memory_ghz(self): """Test sample_memory method for GHZ state""" shots = 2000 state = (Statevector.from_label("000") + Statevector.from_label("111")) / np.sqrt(2) state.seed(100) # 3-qubit qargs target = {"000": shots / 2, "111": shots / 2} for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]: with self.subTest(msg=f"memory (qargs={qargs})"): memory = state.sample_memory(shots, qargs=qargs) self.assertEqual(len(memory), shots) self.assertEqual(set(memory), set(target)) # 2-qubit qargs target = {"00": shots / 2, "11": shots / 2} for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]: with self.subTest(msg=f"memory (qargs={qargs})"): memory = state.sample_memory(shots, qargs=qargs) self.assertEqual(len(memory), shots) self.assertEqual(set(memory), set(target)) # 1-qubit qargs target = {"0": shots / 2, "1": shots / 2} for qargs in [[0], [1], [2]]: with self.subTest(msg=f"memory (qargs={qargs})"): memory = state.sample_memory(shots, qargs=qargs) self.assertEqual(len(memory), shots) self.assertEqual(set(memory), set(target)) def test_sample_memory_w(self): """Test sample_memory method for W state""" shots = 3000 state = ( Statevector.from_label("001") + Statevector.from_label("010") + Statevector.from_label("100") ) / np.sqrt(3) state.seed(100) target = {"001": shots / 3, "010": shots / 3, "100": shots / 3} for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]: with self.subTest(msg=f"memory (qargs={qargs})"): memory = state.sample_memory(shots, qargs=qargs) self.assertEqual(len(memory), shots) self.assertEqual(set(memory), set(target)) # 2-qubit qargs target = {"00": shots / 3, "01": shots / 3, "10": shots / 3} for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]: with self.subTest(msg=f"memory (qargs={qargs})"): memory = state.sample_memory(shots, qargs=qargs) self.assertEqual(len(memory), shots) self.assertEqual(set(memory), set(target)) # 1-qubit qargs target = {"0": 2 * shots / 3, "1": shots / 3} for qargs in [[0], [1], [2]]: with self.subTest(msg=f"memory (qargs={qargs})"): memory = state.sample_memory(shots, qargs=qargs) self.assertEqual(len(memory), shots) self.assertEqual(set(memory), set(target)) def test_sample_memory_qutrit(self): """Test sample_memory method for qutrit state""" p = 0.3 shots = 1000 state = Statevector([np.sqrt(p), 0, np.sqrt(1 - p)]) state.seed(100) with self.subTest(msg="memory"): memory = state.sample_memory(shots) self.assertEqual(len(memory), shots) self.assertEqual(set(memory), {"0", "2"}) def test_reset_2qubit(self): """Test reset method for 2-qubit state""" state = Statevector(np.array([1, 0, 0, 1]) / np.sqrt(2)) state.seed(100) with self.subTest(msg="reset"): psi = state.copy() value = psi.reset() target = Statevector(np.array([1, 0, 0, 0])) self.assertEqual(value, target) with self.subTest(msg="reset"): psi = state.copy() value = psi.reset([0, 1]) target = Statevector(np.array([1, 0, 0, 0])) self.assertEqual(value, target) with self.subTest(msg="reset [0]"): psi = state.copy() value = psi.reset([0]) targets = [Statevector(np.array([1, 0, 0, 0])), Statevector(np.array([0, 0, 1, 0]))] self.assertIn(value, targets) with self.subTest(msg="reset [0]"): psi = state.copy() value = psi.reset([1]) targets = [Statevector(np.array([1, 0, 0, 0])), Statevector(np.array([0, 1, 0, 0]))] self.assertIn(value, targets) def test_reset_qutrit(self): """Test reset method for qutrit""" state = Statevector(np.array([1, 1, 1]) / np.sqrt(3)) state.seed(200) value = state.reset() target = Statevector(np.array([1, 0, 0])) self.assertEqual(value, target) def test_measure_2qubit(self): """Test measure method for 2-qubit state""" state = Statevector.from_label("+0") seed = 200 shots = 100 with self.subTest(msg="measure"): for i in range(shots): psi = state.copy() psi.seed(seed + i) outcome, value = psi.measure() self.assertIn(outcome, ["00", "10"]) if outcome == "00": target = Statevector.from_label("00") self.assertEqual(value, target) else: target = Statevector.from_label("10") self.assertEqual(value, target) with self.subTest(msg="measure [0, 1]"): for i in range(shots): psi = state.copy() outcome, value = psi.measure([0, 1]) self.assertIn(outcome, ["00", "10"]) if outcome == "00": target = Statevector.from_label("00") self.assertEqual(value, target) else: target = Statevector.from_label("10") self.assertEqual(value, target) with self.subTest(msg="measure [1, 0]"): for i in range(shots): psi = state.copy() outcome, value = psi.measure([1, 0]) self.assertIn(outcome, ["00", "01"]) if outcome == "00": target = Statevector.from_label("00") self.assertEqual(value, target) else: target = Statevector.from_label("10") self.assertEqual(value, target) with self.subTest(msg="measure [0]"): for i in range(shots): psi = state.copy() outcome, value = psi.measure([0]) self.assertEqual(outcome, "0") target = Statevector(np.array([1, 0, 1, 0]) / np.sqrt(2)) self.assertEqual(value, target) with self.subTest(msg="measure [1]"): for i in range(shots): psi = state.copy() outcome, value = psi.measure([1]) self.assertIn(outcome, ["0", "1"]) if outcome == "0": target = Statevector.from_label("00") self.assertEqual(value, target) else: target = Statevector.from_label("10") self.assertEqual(value, target) def test_measure_qutrit(self): """Test measure method for qutrit""" state = Statevector(np.array([1, 1, 1]) / np.sqrt(3)) seed = 200 shots = 100 for i in range(shots): psi = state.copy() psi.seed(seed + i) outcome, value = psi.measure() self.assertIn(outcome, ["0", "1", "2"]) if outcome == "0": target = Statevector([1, 0, 0]) self.assertEqual(value, target) elif outcome == "1": target = Statevector([0, 1, 0]) self.assertEqual(value, target) else: target = Statevector([0, 0, 1]) self.assertEqual(value, target) def test_from_int(self): """Test from_int method""" with self.subTest(msg="from_int(0, 4)"): target = Statevector([1, 0, 0, 0]) value = Statevector.from_int(0, 4) self.assertEqual(target, value) with self.subTest(msg="from_int(3, 4)"): target = Statevector([0, 0, 0, 1]) value = Statevector.from_int(3, 4) self.assertEqual(target, value) with self.subTest(msg="from_int(8, (3, 3))"): target = Statevector([0, 0, 0, 0, 0, 0, 0, 0, 1], dims=(3, 3)) value = Statevector.from_int(8, (3, 3)) self.assertEqual(target, value) def test_expval(self): """Test expectation_value method""" psi = Statevector([1, 0, 0, 1]) / np.sqrt(2) for label, target in [ ("II", 1), ("XX", 1), ("YY", -1), ("ZZ", 1), ("IX", 0), ("YZ", 0), ("ZX", 0), ("YI", 0), ]: with self.subTest(msg=f"<{label}>"): op = Pauli(label) expval = psi.expectation_value(op) self.assertAlmostEqual(expval, target) psi = Statevector([np.sqrt(2), 0, 0, 0, 0, 0, 0, 1 + 1j]) / 2 for label, target in [ ("XXX", np.sqrt(2) / 2), ("YYY", -np.sqrt(2) / 2), ("ZZZ", 0), ("XYZ", 0), ("YIY", 0), ]: with self.subTest(msg=f"<{label}>"): op = Pauli(label) expval = psi.expectation_value(op) self.assertAlmostEqual(expval, target) labels = ["XXX", "IXI", "YYY", "III"] coeffs = [3.0, 5.5, -1j, 23] spp_op = SparsePauliOp.from_list(list(zip(labels, coeffs))) expval = psi.expectation_value(spp_op) target = 25.121320343559642 + 0.7071067811865476j self.assertAlmostEqual(expval, target) @data( "II", "IX", "IY", "IZ", "XI", "XX", "XY", "XZ", "YI", "YX", "YY", "YZ", "ZI", "ZX", "ZY", "ZZ", "-II", "-IX", "-IY", "-IZ", "-XI", "-XX", "-XY", "-XZ", "-YI", "-YX", "-YY", "-YZ", "-ZI", "-ZX", "-ZY", "-ZZ", "iII", "iIX", "iIY", "iIZ", "iXI", "iXX", "iXY", "iXZ", "iYI", "iYX", "iYY", "iYZ", "iZI", "iZX", "iZY", "iZZ", "-iII", "-iIX", "-iIY", "-iIZ", "-iXI", "-iXX", "-iXY", "-iXZ", "-iYI", "-iYX", "-iYY", "-iYZ", "-iZI", "-iZX", "-iZY", "-iZZ", ) def test_expval_pauli(self, pauli): """Test expectation_value method for Pauli op""" seed = 1020 op = Pauli(pauli) state = random_statevector(2**op.num_qubits, seed=seed) target = state.expectation_value(op.to_matrix()) expval = state.expectation_value(op) self.assertAlmostEqual(expval, target) @data([0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1]) def test_expval_pauli_qargs(self, qubits): """Test expectation_value method for Pauli op""" seed = 1020 op = random_pauli(2, seed=seed) state = random_statevector(2**3, seed=seed) target = state.expectation_value(op.to_matrix(), qubits) expval = state.expectation_value(op, qubits) self.assertAlmostEqual(expval, target) @data(*(qargs for i in range(4) for qargs in permutations(range(4), r=i + 1))) def test_probabilities_qargs(self, qargs): """Test probabilities method with qargs""" # Get initial state nq = 4 nc = len(qargs) state_circ = QuantumCircuit(nq, nc) for i in range(nq): state_circ.ry((i + 1) * np.pi / (nq + 1), i) # Get probabilities state = Statevector(state_circ) probs = state.probabilities(qargs) # Estimate target probs from simulator measurement sim = QasmSimulatorPy() shots = 5000 seed = 100 circ = transpile(state_circ, sim) circ.measure(qargs, range(nc)) result = sim.run(circ, shots=shots, seed_simulator=seed).result() target = np.zeros(2**nc, dtype=float) for i, p in result.get_counts(0).int_outcomes().items(): target[i] = p / shots # Compare delta = np.linalg.norm(probs - target) self.assertLess(delta, 0.05) def test_global_phase(self): """Test global phase is handled correctly when evolving statevector.""" qc = QuantumCircuit(1) qc.rz(0.5, 0) qc2 = transpile(qc, basis_gates=["p"]) sv = Statevector.from_instruction(qc2) expected = np.array([0.96891242 - 0.24740396j, 0]) self.assertEqual(float(qc2.global_phase), 2 * np.pi - 0.25) self.assertEqual(sv, Statevector(expected)) def test_reverse_qargs(self): """Test reverse_qargs method""" circ1 = QFT(5) circ2 = circ1.reverse_bits() state1 = Statevector.from_instruction(circ1) state2 = Statevector.from_instruction(circ2) self.assertEqual(state1.reverse_qargs(), state2) @unittest.skipUnless(optionals.HAS_MATPLOTLIB, "requires matplotlib") @unittest.skipUnless(optionals.HAS_PYLATEX, "requires pylatexenc") def test_drawings(self): """Test draw method""" qc1 = QFT(5) sv = Statevector.from_instruction(qc1) with self.subTest(msg="str(statevector)"): str(sv) for drawtype in ["repr", "text", "latex", "latex_source", "qsphere", "hinton", "bloch"]: with self.subTest(msg=f"draw('{drawtype}')"): sv.draw(drawtype) with self.subTest(msg=" draw('latex', convention='vector')"): sv.draw("latex", convention="vector") def test_state_to_latex_for_none(self): """ Test for `\rangleNone` output in latex representation See https://github.com/Qiskit/qiskit-terra/issues/8169 """ sv = Statevector( [ 7.07106781e-01 - 8.65956056e-17j, -5.55111512e-17 - 8.65956056e-17j, 7.85046229e-17 + 8.65956056e-17j, -7.07106781e-01 + 8.65956056e-17j, 0.00000000e00 + 0.00000000e00j, -0.00000000e00 + 0.00000000e00j, -0.00000000e00 + 0.00000000e00j, 0.00000000e00 - 0.00000000e00j, ], dims=(2, 2, 2), ) latex_representation = state_to_latex(sv) self.assertEqual( latex_representation, "\\frac{\\sqrt{2}}{2} |000\\rangle- \\frac{\\sqrt{2}}{2} |011\\rangle", ) def test_state_to_latex_for_large_statevector(self): """Test conversion of large dense state vector""" sv = Statevector(np.ones((2**15, 1))) latex_representation = state_to_latex(sv) self.assertEqual( latex_representation, " |000000000000000\\rangle+ |000000000000001\\rangle+ |000000000000010\\rangle+" " |000000000000011\\rangle+ |000000000000100\\rangle+ |000000000000101\\rangle +" " \\ldots + |111111111111011\\rangle+ |111111111111100\\rangle+" " |111111111111101\\rangle+ |111111111111110\\rangle+ |111111111111111\\rangle", ) def test_state_to_latex_with_prefix(self): """Test adding prefix to state vector latex output""" psi = Statevector(np.array([np.sqrt(1 / 2), 0, 0, np.sqrt(1 / 2)])) prefix = "|\\psi_{AB}\\rangle = " latex_sv = state_to_latex(psi) latex_expected = prefix + latex_sv latex_representation = state_to_latex(psi, prefix=prefix) self.assertEqual(latex_representation, latex_expected) def test_state_to_latex_for_large_sparse_statevector(self): """Test conversion of large sparse state vector""" sv = Statevector(np.eye(2**15, 1)) latex_representation = state_to_latex(sv) self.assertEqual(latex_representation, " |000000000000000\\rangle") def test_state_to_latex_with_max_size_limit(self): """Test limit the maximum number of non-zero terms in the expression""" sv = Statevector( [ 0.35355339 + 0.0j, 0.35355339 + 0.0j, 0.35355339 + 0.0j, 0.35355339 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j, 0.0 - 0.35355339j, 0.0 + 0.35355339j, 0.0 + 0.35355339j, 0.0 - 0.35355339j, ], dims=(2, 2, 2, 2), ) latex_representation = state_to_latex(sv, max_size=5) self.assertEqual( latex_representation, "\\frac{\\sqrt{2}}{4} |0000\\rangle+" "\\frac{\\sqrt{2}}{4} |0001\\rangle + " "\\ldots +" "\\frac{\\sqrt{2} i}{4} |1110\\rangle- " "\\frac{\\sqrt{2} i}{4} |1111\\rangle", ) def test_state_to_latex_with_decimals_round(self): """Test rounding of decimal places in the expression""" sv = Statevector( [ 0.35355339 + 0.0j, 0.35355339 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j, 0.0 - 0.35355339j, 0.0 + 0.35355339j, ], dims=(2, 2, 2), ) latex_representation = state_to_latex(sv, decimals=3) self.assertEqual( latex_representation, "0.354 |000\\rangle+0.354 |001\\rangle- 0.354 i |110\\rangle+0.354 i |111\\rangle", ) def test_number_to_latex_terms(self): """Test conversions of complex numbers to latex terms""" cases = [ ([1 - 8e-17, 0], ["", None]), ([0, -1], [None, "-"]), ([0, 1], [None, ""]), ([0, 1j], [None, "i"]), ([-1, 1], ["-", "+"]), ([0, 1j], [None, "i"]), ([-1, 1j], ["-", "+i"]), ([1e-16 + 1j], ["i"]), ([-1 + 1e-16 * 1j], ["-"]), ([-1, -1 - 1j], ["-", "+(-1 - i)"]), ([np.sqrt(2) / 2, np.sqrt(2) / 2], ["\\frac{\\sqrt{2}}{2}", "+\\frac{\\sqrt{2}}{2}"]), ([1 + np.sqrt(2)], ["(1 + \\sqrt{2})"]), ] with self.assertWarns(DeprecationWarning): for numbers, latex_terms in cases: terms = numbers_to_latex_terms(numbers, 15) self.assertListEqual(terms, latex_terms) def test_statevector_draw_latex_regression(self): """Test numerical rounding errors are not printed""" sv = Statevector(np.array([1 - 8e-17, 8.32667268e-17j])) latex_string = sv.draw(output="latex_source") self.assertTrue(latex_string.startswith(" |0\\rangle")) self.assertNotIn("|1\\rangle", latex_string) def test_statevctor_iter(self): """Test iteration over a state vector""" empty_vector = [] dummy_vector = [1, 2, 3] empty_sv = Statevector([]) sv = Statevector(dummy_vector) # Assert that successive iterations behave as expected, i.e., the # iterator is reset upon each exhaustion of the corresponding # collection of elements. for _ in range(2): self.assertEqual(empty_vector, list(empty_sv)) self.assertEqual(dummy_vector, list(sv)) def test_statevector_len(self): """Test state vector length""" empty_vector = [] dummy_vector = [1, 2, 3] empty_sv = Statevector([]) sv = Statevector(dummy_vector) self.assertEqual(len(empty_vector), len(empty_sv)) self.assertEqual(len(dummy_vector), len(sv)) def test_clip_probabilities(self): """Test probabilities are clipped to [0, 1].""" sv = Statevector([1.1, 0]) self.assertEqual(list(sv.probabilities()), [1.0, 0.0]) # The "1" key should be zero and therefore omitted. self.assertEqual(sv.probabilities_dict(), {"0": 1.0}) def test_round_probabilities(self): """Test probabilities are correctly rounded. This is good to test to ensure clipping, renormalizing and rounding work together. """ p = np.sqrt(1 / 3) sv = Statevector([p, p, p, 0]) expected = [0.33, 0.33, 0.33, 0] self.assertEqual(list(sv.probabilities(decimals=2)), expected) if __name__ == "__main__": unittest.main()
https://github.com/quantumyatra/quantum_computing
quantumyatra
import numpy as np from numpy import pi # importing Qiskit from qiskit import QuantumCircuit, transpile, assemble, Aer from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(3) qc.h(2) qc.cp(pi/2, 1, 2) qc.cp(pi/4, 0, 2) qc.h(1) qc.cp(pi/2, 0, 1) qc.h(0) qc.swap(0, 2) qc.draw() def qft_rotations(circuit, n): if n == 0: return circuit n -= 1 circuit.h(n) for qubit in range(n): circuit.cp(pi/2**(n-qubit), qubit, n) qft_rotations(circuit, n) def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft(circuit, n): qft_rotations(circuit, n) swap_registers(circuit, n) return circuit qc = QuantumCircuit(4) qft(qc,4) qc.draw() # Create the circuit qc = QuantumCircuit(3) # Encode the state 5 (101 in binary) qc.x(0) qc.x(2) qc.draw() sim = Aer.get_backend("aer_simulator") qc_init = qc.copy() qc_init.save_statevector() statevector = sim.run(qc_init).result().get_statevector() plot_bloch_multivector(statevector) qft(qc, 3) qc.draw() qc.save_statevector() statevector = sim.run(qc).result().get_statevector() plot_bloch_multivector(statevector)
https://github.com/arnavdas88/QuGlassyIsing
arnavdas88
!pip install qiskit J = 4.0 B_x = 2.0 B_z = 1.0 import numpy as np from qiskit.providers.aer import AerSimulator, QasmSimulator from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import TwoLocal from qiskit.aqua.operators import * from qiskit.aqua import set_qiskit_aqua_logging, QuantumInstance from qiskit.aqua.algorithms import NumPyMinimumEigensolver, VQE, NumPyEigensolver from qiskit.circuit import QuantumCircuit, ParameterVector from qiskit.visualization import plot_histogram Hamiltonian = J * (Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z) - B_z * (( Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ) ) - B_x * ( ( X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X )) ansatz = TwoLocal(num_qubits=36, rotation_blocks=['ry', 'rz'], entanglement_blocks=None, entanglement='full', reps=1, skip_unentangled_qubits=False, skip_final_rotation_layer=True) print(ansatz) backend = AerSimulator(method='matrix_product_state') quantum_instance = QuantumInstance(backend, shots = 8192, initial_layout = None, optimization_level = 3) optimizer = COBYLA(maxiter=10000, tol=0.000000001) vqe = VQE(Hamiltonian, ansatz, optimizer, include_custom = False) print('We are using:', quantum_instance.backend) vqe_result = vqe.run(quantum_instance) print(vqe['result']) plot_histogram(vqe_result['eigenstate']) import pickle filename = "2D_Ising_Model_CountsDIS2.pkl" a = {'vqe_result': vqe_result} #This saves the data with open(filename, 'wb') as handle: pickle.dump(a, handle, protocol=pickle.HIGHEST_PROTOCOL) # This loads the data with open(filename, 'rb') as handle: b = pickle.load(handle)
https://github.com/Manish-Sudhir/QiskitCheck
Manish-Sudhir
import warnings from qiskit import QuantumRegister, ClassicalRegister from qiskit import QuantumCircuit, execute, Aer, transpile, IBMQ from qiskit.tools.monitor import job_monitor from qiskit.circuit.library import QFT from qiskit.visualization import plot_bloch_multivector, plot_histogram, array_to_latex warnings.filterwarnings("ignore", category=DeprecationWarning) import numpy as np import pandas as pd import math from qiskit.quantum_info import Statevector from scipy.stats import chi2_contingency, ttest_ind import unittest import hypothesis.strategies as st from hypothesis import given, settings pi = np.pi # q = QuantumRegister(2) # c = ClassicalRegister(1) # qc2 = QuantumCircuit(q,c) # qc2.x(1) # qc2.h(0) # qc2.cnot(0,1) qc2 = QuantumCircuit(2) # qc2.x(1) # qc2.h(0) # qc2.measure(q[0],c) # qc2.measure(q[1],c) # THIS DOESNT WORK # qc2.h(0) # qc2.cnot(0,1) # qc2.h(1) # qc2.h(0) # qc2.x(0) # qc2.h(0) # qc2.cnot(0,1) # qc2.h(1) # qc2.h(0) # 4 BELL STATES # qc2.x(1) # qc2.h(0) # qc2.cnot(0,1) # qc2.h(1) qc2.h(1) qc2.cp(pi/2,1,0) qc2.h(0) print(qc2) sv = Statevector.from_label('01') sv.evolve(qc2) print(sv) backend = Aer.get_backend('aer_simulator') qc2.measure_all() # sv = Statevector.from_label('01') # sv.evolve(qc2) # print(sv) qc2.save_statevector() # probs = psi.probabilities() # print(probs) final_state = backend.run(qc2).result().get_statevector() print(final_state) # display(array_to_latex(final_state, prefix="\\text{Statevector} = ")) job = execute(qc2, backend, shots=10000, memory=True)#run the circuit 1000000 times counts = job.result().get_counts()#return the result counts print(counts) qc2 = QuantumCircuit(2) # qc2.p(0.5*2*math.pi/100, 1) qc2.h(0) # qc2.cnot(0,1) # qc2.x(0) # qc2.x(1) # qc2.h(0) # qc2.cnot(0,1) # qc2.h(1) print(qc2) backend = Aer.get_backend('aer_simulator') sv1 = Statevector.from_label('00') print(type(sv1)) wow = sv1.evolve(qc2) probs = wow.probabilities() probsD = wow.probabilities_dict() print(sv1) for values in probsD.values(): round(values,2) d = {key: round(values,2) for key,values in probsD.items()} print("probs dictionary rounded",d) print("probs for qubit1 (not rounded): ",wow.probabilities_dict([0])) print("probs for qubit2 (not rounded): ", wow.probabilities_dict([1])) # print("probs: ", type(probs)) # print("probs Dictionary: ", probsD) # probs_qubit_0 = wow.probabilities([0]) # probs_qubit_1 = wow.probabilities([1]) # print('Qubit-0 probs: {}'.format(probs_qubit_0)) # print('Qubit-1 probs: {}'.format(probs_qubit_1)) # print(wow.probabilities_dict([0])) # print(wow.probabilities_dict([1])) for values in d.values(): # print(values) if (values==0.5): print("true") else: print("false") qc2.measure_all() sv = qc2.save_statevector() print("sv: " ,sv) # probs = psi.probabilities() # print(probs) final_state = backend.run(qc2).result().get_statevector() print("final : " ,final_state) job = execute(qc2, backend, shots=10000, memory=True)#run the circuit 1000000 times counts = job.result().get_counts()#return the result counts print(counts) def assertProbability(qc,qubitChoice: int, qubitState :str, expectedProbability): sv = Statevector.from_label("00") evl = sv.evolve(qc) probs = evl.probabilities_dict([qubitChoice]) probsRound = {key: round(values,2) for key,values in probs.items()} for key,value in probsRound.items(): if(key==qubitState): if(value==expectedProbability): print("Expected Probability present") else: raise(AssertionError("Probability not present")) else: raise(AssertionError("Probability not present")) qc = QuantumCircuit(2) qc.h(0) assertProbability(qc,1,"0",1) psi = Statevector.from_label('10') print(psi) print("statevector measurement: " ,psi.measure()) # rev = psi.reverse_qargs() # Probabilities for measuring both qubits probs = psi.probabilities() print('probs: {}'.format(probs)) probsD = psi.probabilities_dict() print("probs dictionary: ", probsD) # Probabilities for measuring only qubit-0 probs_qubit_0 = psi.probabilities([0]) print('Qubit-0 probs: {}'.format(probs_qubit_0)) print('Qubit-0 probs: {}'.format(psi.probabilities_dict([0]))) # Probabilities for measuring only qubit-1 probs_qubit_1 = psi.probabilities([1]) print('Qubit-1 probs: {}'.format(probs_qubit_1)) print('Qubit-1 probs: {}'.format(psi.probabilities_dict([1]))) def measure_z(circuit, qubit_indexes): cBitIndex = 0 for index in qubit_indexes: circuit.measure(index, cBitIndex) cBitIndex+=1 return circuit def assertEntangled(backend,qc,qubit1,qubit2,measurements_to_make,alpha = 0.05): if (qc.num_clbits == 0): qc.add_register(ClassicalRegister(2)) elif (qc.num_clbits != 2): raise ValueError("QuantumCircuit classical register must be of length 2") zQuantumCircuit = measure_z(qc, [qubit1, qubit2]) zJob = execute(zQuantumCircuit, backend, shots=measurements_to_make, memory=True) zMemory = zJob.result().get_memory() zCounts = zJob.result().get_counts() # zDf = pd.DataFrame(columns=['q0', 'q1']) # for row in zCounts: # zDf = zDf.append({'q0':row[0], 'q1':row[1]}, ignore_index=True) # print(zDf.astype(str)) resDf = pd.DataFrame(columns=['0','1']) classical_qubit_index = 1 for qubit in [qubit1,qubit2]: zero_amount, one_amount = 0,0 for experiment in zCounts: if (experiment[2-classical_qubit_index] == '0'): zero_amount += zCounts[experiment] else: one_amount += zCounts[experiment] df = {'0':zero_amount, '1':one_amount} resDf = resDf.append(df, ignore_index = True) classical_qubit_index+=1 resDf['0'] = resDf['0'].astype(int) resDf['1'] = resDf['1'].astype(int) print(resDf.astype(str)) chiVal, pVal, dOfFreedom, exp = chi2_contingency(resDf) print("chi square value: ",chiVal,"p value: ",pVal,"expected values: ",exp) if(pVal<alpha): raise(AssertionError("states are not entangled")) else: print("states are entangled") backend = Aer.get_backend('aer_simulator') qc3 = QuantumCircuit(2) qc3.h(0) # qc3.cnot(0,1) # qc3.x(0) # qc3.h(0) # qc3.cnot(0,1) # qc3.h(1) # qc3.h(0) assertEntangled(backend,qc3,0,1,100000,0.05) # Completed but more testing required def assertEntangled(backend,qc,qubits_to_assert,measurements_to_make,alpha = 0.05): # makes sure qubits_to_assert is a list if (not isinstance(qubits_to_assert, list)): qubits_to_assert = [qubits_to_assert] ## classical register must be of same length as amount of qubits to assert ## if there is no classical register add them according to length of qubit list if (qc.num_clbits == 0): qc.add_register(ClassicalRegister(len(qubits_to_assert))) elif (len(qubits_to_assert) != 2): raise ValueError("QuantumCircuit classical register must be of length 2") zQuantumCircuit = measure_z(qc, qubits_to_assert) zJob = execute(zQuantumCircuit, backend, shots=measurements_to_make, memory=True) zMemory = zJob.result().get_memory() print(zMemory) q1=[] q2=[] print("lol ",qubits_to_assert[0]) print(qubits_to_assert[1]) newDict = dict.fromkeys(['qubit1','qubit2']) newDict = {'qubit1': qubits_to_assert[0],'qubit2':qubits_to_assert[1]} print("new dict", newDict) # if(qubits_to_assert[0]==0 and qubits_to_assert[1]==0): # qubits_to_assert[1] classicalQubitIndex = 1 for qubit in newDict.keys(): print("this qubit:",qubit) for measurement in zMemory: print("this measurement", measurement) if (measurement[2-classicalQubitIndex] == '0'): print("measure: ",measurement[2-classicalQubitIndex],"also: qubittoassert0",qubits_to_assert[0],"and qubittoassert1: ",qubits_to_assert[1]) if(qubit=='qubit1'): q1.append(measurement[2-classicalQubitIndex]) print("Added to q1 for measure0:", measurement[2-classicalQubitIndex]) else: q2.append(measurement[2-classicalQubitIndex]) print("Added to q2 for measure0:", measurement[2-classicalQubitIndex]) else: print("measureOTHER: ",measurement[2-classicalQubitIndex], "also: qubittoassert0",qubits_to_assert[0],"and qubittoassert1: ",qubits_to_assert[1]) if(qubit=='qubit1'): q1.append(measurement[2-classicalQubitIndex]) print("Added to q1 for measure1:", measurement[2-classicalQubitIndex]) else: q2.append(measurement[2-classicalQubitIndex]) print("Added to q2 for measure1:", measurement[2-classicalQubitIndex]) classicalQubitIndex+=1 print("Q1: ",q1) print("Q2: ",q2) measDict = dict.fromkeys(['qubit1','qubit2']) measDict = {'qubit1': q1,'qubit2':q2} measDf1 = pd.DataFrame.from_dict(measDict,orient='index') # measDf = pd.DataFrame.from_dict(measDict) # print(measDf) measDf12=measDf1.transpose() print(measDf12) # df = pd.DataFrame.from_dict(a, orient='index') # df = df.transpose() ct = pd.crosstab(measDf12.qubit1,measDf12.qubit2) chiVal, pVal, dOfFreedom, exp = chi2_contingency(ct) print("chi square value: ",chiVal,"p value: ",pVal,"expected values: ",exp) if(pVal>alpha): raise(AssertionError("states are not entangled")) else: print("states are entangled") backend = Aer.get_backend('aer_simulator') qr = QuantumRegister(2) cr=ClassicalRegister(2) qc3 = QuantumCircuit(qr,cr) qc3.x(1) # # qc3.x(1) # # qc3.x(0) qc3.h(0) # qc3.cnot(0,1) # qc3.h(0) # qc3.cnot(0,1) # qc3.x(1) # qc3.rx(np.pi/2,qr[0]) # qc3.p(10*2*math.pi/100, 0) # qc3.p(0.5*2*math.pi/100, 1) print(qc3) assertEntangled(backend,qc3,[0,1],20,0.05) # circuit = QuantumCircuit(2) # circuit.initialize([0, 1/np.sqrt(2), -1.j/np.sqrt(2), 0], circuit.qubits) # assertEntangled(backend,circuit,[0,1],10,0.05) def measure_x(circuit, qubitIndexes): cBitIndex = 0 for index in qubitIndexes: circuit.h(index) circuit.measure(index, cBitIndex) cBitIndex+=1 return circuit def measure_y(circuit, qubit_indexes): cBitIndex = 0 for index in qubit_indexes: circuit.sdg(index) circuit.h(index) circuit.measure(index, cBitIndex) cBitIndex+=1 return circuit ## assert that qubits are equal def assertEqual(backend, quantumCircuit, qubits_to_assert, measurements_to_make, alpha): ## needs to make at least 2 measurements, one for x axis, one for y axis ## realistically we need more for any statistical significance if (measurements_to_make < 2): raise ValueError("Must make at least 2 measurements") # makes sure qubits_to_assert is a list if (not isinstance(qubits_to_assert, list)): qubits_to_assert = [qubits_to_assert] ## classical register must be of same length as amount of qubits to assert ## if there is no classical register add them according to length of qubit list if (quantumCircuit.num_clbits == 0): quantumCircuit.add_register(ClassicalRegister(len(qubits_to_assert))) elif (len(qubits_to_assert) != 2): raise ValueError("QuantumCircuit classical register must be of length 2") ## divide measurements to make by 3 as we need to run measurements twice, one for x and one for y measurements_to_make = measurements_to_make // 3 ## copy the circit and set measurement to y axis yQuantumCircuit = measure_y(quantumCircuit.copy(), qubits_to_assert) ## measure the x axis xQuantumCircuit = measure_x(quantumCircuit.copy(), qubits_to_assert) ## measure the z axis zQuantumCircuit = measure_z(quantumCircuit, qubits_to_assert) ## get y axis results yJob = execute(yQuantumCircuit, backend, shots=measurements_to_make, memory=True) yMemory = yJob.result().get_memory() yCounts = yJob.result().get_counts() ## get x axis results xJob = execute(xQuantumCircuit, backend, shots=measurements_to_make, memory=True) xMemory = xJob.result().get_memory() xCounts = xJob.result().get_counts() ## get z axis results zJob = execute(zQuantumCircuit, backend, shots=measurements_to_make, memory=True) zMemory = zJob.result().get_memory() zCounts = zJob.result().get_counts() resDf = pd.DataFrame(columns=['0','1','+','i','-','-i']) classical_qubit_index = 1 for qubit in qubits_to_assert: zero_amount, one_amount, plus_amount, i_amount, minus_amount, minus_i_amount = 0,0,0,0,0,0 for experiment in xCounts: if (experiment[2-classical_qubit_index] == '0'): plus_amount += xCounts[experiment] else: minus_amount += xCounts[experiment] for experiment in yCounts: if (experiment[2-classical_qubit_index] == '0'): i_amount += yCounts[experiment] else: minus_i_amount += yCounts[experiment] for experiment in zCounts: if (experiment[2-classical_qubit_index] == '0'): zero_amount += zCounts[experiment] else: one_amount += zCounts[experiment] df = {'0':zero_amount, '1':one_amount, '+':plus_amount, 'i':i_amount, '-':minus_amount,'-i':minus_i_amount} resDf = resDf.append(df, ignore_index = True) classical_qubit_index+=1 ## convert the columns to a strict numerical type resDf['+'] = resDf['+'].astype(int) resDf['i'] = resDf['i'].astype(int) resDf['-'] = resDf['-'].astype(int) resDf['-i'] = resDf['-i'].astype(int) resDf['0'] = resDf['0'].astype(int) resDf['1'] = resDf['1'].astype(int) print(resDf.astype(str)) # print(z1) arr = resDf.to_numpy() q1Vals = arr[0, 0:] # Stores measurements across all axes for the 1st qubit print("Measurements for qubit1: ", q1Vals) q2Vals = arr[1, 0:] # Stores measurements across all axes for the 2nd qubit print("Measurements for qubit2: ", q2Vals) tTest, pValue = ttest_ind(q1Vals, q2Vals, alternative = 'two-sided') # Apply t test print("stat: ",tTest, "pValue: ", pValue) if pValue > alpha: print("The two qubits are equal (fail to reject null hypothesis) ") else: print("There is a significant difference between the two qubits (reject null hypothesis)") qc = QuantumCircuit(2) # qc.initialize([0, 1/np.sqrt(2), -1.j/np.sqrt(2), 0], qc.qubits) # qc.h(0) # qc.x(1) # qc.p(0.5*2*math.pi/100, 1) # qc.h(0) # qc.h(1) # qc.p(10*2*math.pi/100, 0) # qc.p(20*2*math.pi/100, 1) assertEqual(backend, qc, [0,0], 300000, 0.01) qc = QuantumCircuit(2,2) qc.h(0) qc.h(1) qc.p(0.5*2*math.pi/100, 1) # qc.cnot(0,1) zQuantumCircuit = measure_z(qc, [0,1]) zJob = execute(zQuantumCircuit, backend, shots=100000, memory=True) zMemory = zJob.result().get_memory() zCounts = zJob.result().get_counts() xQuantumCircuit = measure_x(qc, [0,1]) xJob = execute(xQuantumCircuit, backend, shots=100000, memory=True) xMemory = xJob.result().get_memory() xCounts = xJob.result().get_counts() yQuantumCircuit = measure_y(qc, [0,1]) yJob = execute(yQuantumCircuit, backend, shots=100000, memory=True) yMemory = yJob.result().get_memory() yCounts = yJob.result().get_counts() print("z axis : ", zCounts) print("x axis : ", xCounts) print("y axis : ", yCounts) resDf = pd.DataFrame(columns=['0','1','+','i','-','-i']) classical_qubit_index = 1 for qubit in [0,1]: zero_amount, one_amount, plus_amount, i_amount, minus_amount, minus_i_amount = 0,0,0,0,0,0 for experiment in xCounts: if (experiment[2-classical_qubit_index] == '0'): plus_amount += xCounts[experiment] else: minus_amount += xCounts[experiment] for experiment in yCounts: if (experiment[2-classical_qubit_index] == '0'): i_amount += yCounts[experiment] else: minus_i_amount += yCounts[experiment] for experiment in zCounts: if (experiment[2-classical_qubit_index] == '0'): zero_amount += zCounts[experiment] else: one_amount += zCounts[experiment] df = {'0':zero_amount, '1':one_amount, '+':plus_amount, 'i':i_amount, '-':minus_amount,'-i':minus_i_amount} resDf = resDf.append(df, ignore_index = True) classical_qubit_index+=1 print(resDf.astype(str)) lst = [["Ajay", 70], ["Manish", 92], ["Arjun", 42]] df = pd.DataFrame(lst, columns=["Name", "Marks"], index=["Student1","Student2","Student3"]) df def getList(dict): return list(dict.keys()) qubitVal = {0: [1,0], 1: [0,1]} values = getList(counts) if(len(values) == 1): print("They are not entangled") elif(len(values) == 4): firstStr = values[0] secondStr = values[1] thirdStr = values[2] fourthStr = values[3] print(firstStr,secondStr,thirdStr,fourthStr) first1 = int(firstStr[0]) first2 = int(firstStr[1]) second1 = int(secondStr[0]) second2 =int(secondStr[1]) third1 = int(thirdStr[0]) third2 = int(thirdStr[1]) fourth1 = int(fourthStr[0]) fourth2 = int(fourthStr[1]) firstArr = np.array([qubitVal[first1], qubitVal[first2]]) secondArr = np.array([qubitVal[second1], qubitVal[second2]]) thirdArr = np.array([qubitVal[third1], qubitVal[third2]]) fourthArr = np.array([qubitVal[fourth1], qubitVal[fourth2]]) firstTensor = np.tensordot(firstArr[0], firstArr[1], axes=0) secondTensor = np.tensordot(secondArr[0], secondArr[1], axes=0) thirdTensor = np.tensordot(thirdArr[0], thirdArr[1], axes=0) fourthTensor = np.tensordot(fourthArr[0], fourthArr[1], axes=0) print("Tensors: ",firstTensor, " HI ",secondTensor,thirdTensor,fourthTensor) column1 = np.add(firstTensor,secondTensor) column2 = np.add(thirdTensor, fourthTensor) print("AB: ",column1," CD: ",column2) column = np.add(column1,column2) print(column) else: firstStr = values[0] secondStr = values[1] print(firstStr) print(secondStr) first1 = int(firstStr[0]) first2 = int(firstStr[1]) second1 = int(secondStr[0]) second2 = int(secondStr[1]) firstArr = np.array([qubitVal[first1], qubitVal[first2]]) secondArr = np.array([qubitVal[second1], qubitVal[second2]]) firstTensor= np.tensordot(firstArr[0], firstArr[1], axes=0) secondTensor = np.tensordot(secondArr[0], secondArr[1], axes=0) print("first: ",firstTensor) print("second: ",secondTensor) print("final: ") column = np.add(firstTensor,secondTensor) print(column) abVal = column[0] cdVal = column[1] aVal = abVal[0] bVal = abVal[1] cVal = cdVal[0] dVal = cdVal[1] if(aVal*dVal!=bVal*cVal): print("They are entangled") else: print("Not Entangled") def getList(dict): return list(dict.keys()) # NOTE: Checks if a qubit value is 0 then return a matrix with [1,0] similarly for 1 with [0,1] qubitVal = {0: [1,0], 1: [0,1]} # NOTE: Upon analysis the measurement returned by the QC are also present in the bell state of the qc # NOTE: For example if the counts output 00 and 01 values = getList(counts) # NOTE: Returns the measurement counts of the circuit and takes the key values ie 00 and 01 and converts it to a list using a function I created if(len(values) == 1): print("They are not entangled") else: # NOTE: Stores the first and second values as strings returned by counts for example: 00 and 01 firstStr = values[0] secondStr = values[1] # NOTE: Seperates the digits and stores them as integers first1 = int(firstStr[0]) first2 = int(firstStr[1]) second1 = int(secondStr[0]) second2 = int(secondStr[1]) # NOTE: Creates a 2x2 matrix to store ___ firstArr = np.array([qubitVal[first1], qubitVal[first2]]) secondArr = np.array([qubitVal[second1], qubitVal[second2]]) # if(second1==1): # subtract = True # NOTE: Performs the tensor product for the ___ for both the first and second values firstTensor= np.tensordot(firstArr[0], firstArr[1], axes=0) print("first: ", firstArr, "first array first position: ", firstArr[0],"first array second position: ", firstArr[1]) print("second: ",secondArr,"second array first position: ", secondArr[0], "second array second position: ",secondArr[1]) secondTensor = np.tensordot(secondArr[0], secondArr[1], axes=0) # print("first: ",firstTensor) # print("second: ",secondTensor) # NOTE: Condition to check if counts returns 4 measurements in which case we repeat the process for the 3rd and 4th measurements if(len(values) == 4): thirdStr = values[2] fourthStr = values[3] third1 = int(thirdStr[0]) third2 = int(thirdStr[1]) fourth1 = int(fourthStr[0]) fourth2 = int(fourthStr[1]) thirdArr = np.array([qubitVal[third1], qubitVal[third2]]) fourthArr = np.array([qubitVal[fourth1], qubitVal[fourth2]]) thirdTensor = np.tensordot(thirdArr[0], thirdArr[1], axes=0) fourthTensor = np.tensordot(fourthArr[0], fourthArr[1], axes=0) print(f"Tensors: {firstTensor}\n ,{secondTensor}\n,{thirdTensor}\n,{fourthTensor}\n") column1 = np.add(firstTensor,secondTensor) column2 = np.add(thirdTensor, fourthTensor) print("AB: ",column1," CD: ",column2) column = np.add(column1,column2) print(column) else: print("first: ",firstTensor) print("second: ",secondTensor) print("final: ") # NOTE: adds the two tensorproducts to give our column vector # if(subtract==True): # column = np.subtract(firstTensor,secondTensor) # else: column = np.add(firstTensor,secondTensor) print(column) # NOTE: Sets the value for our A,B,C,D values abVal = column[0] cdVal = column[1] aVal = abVal[0] bVal = abVal[1] cVal = cdVal[0] dVal = cdVal[1] # NOTE: Checks our condition if(aVal*dVal!=bVal*cVal): print("They are entangled") else: print("Not Entangled") def getList(dict): return list(dict.keys()) # NOTE: Checks if a qubit value is 0 then return a matrix with [1,0] similarly for 1 with [0,1] qubitVal = {0: [1,0], 1: [0,1]} # NOTE: Upon analysis the measurement returned by the QC are also present in the bell state of the qc # NOTE: For example if the counts output 00 and 01 values = getList(counts) # NOTE: Returns the measurement counts of the circuit and takes the key values ie 00 and 01 and converts it to a list using a function I created if(len(values) == 1): print("They are not entangled") else: # NOTE: Stores the first and second values as strings returned by counts for example: 00 and 01 firstStr = values[0] secondStr = values[1] # NOTE: Seperates the digits and stores them as an integer based on our previous example first1 woul store 0 and first2 would store 0 first1 = int(firstStr[0]) first2 = int(firstStr[1]) second1 = int(secondStr[0]) second2 = int(secondStr[1]) # NOTE: Creates a 2x2 matrix to store qubit values ex: first Arr would be [[1,0],[1,0]] firstArr = np.array([qubitVal[first1], qubitVal[first2]]) secondArr = np.array([qubitVal[second1], qubitVal[second2]]) # NOTE: Performs the tensor product for the ___ for both the first and second values ex: firstTensor is the tensor product of [1,0] and [1,0] firstTensor= np.tensordot(firstArr[0], firstArr[1], axes=0) secondTensor = np.tensordot(secondArr[0], secondArr[1], axes=0) # NOTE: Condition to check if counts returns 4 measurements in which case we repeat the process for the 3rd and 4th measurements if(len(values) == 4): thirdStr = values[2] fourthStr = values[3] third1 = int(thirdStr[0]) third2 = int(thirdStr[1]) fourth1 = int(fourthStr[0]) fourth2 = int(fourthStr[1]) thirdArr = np.array([qubitVal[third1], qubitVal[third2]]) fourthArr = np.array([qubitVal[fourth1], qubitVal[fourth2]]) thirdTensor = np.tensordot(thirdArr[0], thirdArr[1], axes=0) fourthTensor = np.tensordot(fourthArr[0], fourthArr[1], axes=0) column1 = np.add(firstTensor,secondTensor) column2 = np.add(thirdTensor, fourthTensor) column = np.add(column1,column2) print(column) else: # NOTE: adds the two tensorproducts to give our column vector column = np.add(firstTensor,secondTensor) print(column) # NOTE: Sets the value for our A,B,C,D values abVal = column[0] cdVal = column[1] aVal = abVal[0] bVal = abVal[1] cVal = cdVal[0] dVal = cdVal[1] # NOTE: Checks our condition if(aVal*dVal!=bVal*cVal): print("They are entangled") else: print("Not Entangled") # no constructor # usee gate
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import matplotlib.pyplot as plt import itertools from pprint import pprint import pickle # plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts import time import datetime # Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z) from qiskit.opflow import Zero, One, I, X, Y, Z from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter from qiskit.transpiler.passes import RemoveBarriers # Import QREM package from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter # Import mitiq for zne import mitiq # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.quantum_info import state_fidelity import sys import importlib sys.path.append("./") import circuit_utils, zne_utils, tomography_utils, sgs_algorithm importlib.reload(circuit_utils) importlib.reload(zne_utils) importlib.reload(tomography_utils) importlib.reload(sgs_algorithm) from circuit_utils import * from zne_utils import * from tomography_utils import * from sgs_algorithm import * # Combine subcircuits into a single multiqubit gate representing a single trotter step num_qubits = 3 # The final time of the state evolution target_time = np.pi # Parameterize variable t to be evaluated at t=pi later dt = Parameter('t') # Convert custom quantum circuit into a gate trot_gate = trotter_gate(dt) # initial layout initial_layout = [5,3,1] # Number of trotter steps num_steps = 100 print("trotter step: ", num_steps) # Initialize quantum circuit for 3 qubits qr = QuantumRegister(num_qubits, name="lq") qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>) make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({dt: target_time / num_steps}) print("created qc") # Generate state tomography circuits to evaluate fidelity of simulation st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN === print("created st_qcs (length:", len(st_qcs), ")") # remove barriers st_qcs = [RemoveBarriers()(qc) for qc in st_qcs] print("removed barriers from st_qcs") # optimize circuit t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) print("created t3_st_qcs (length:", len(t3_st_qcs), ")") t3_st_qcs = transpile(t3_st_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout) print("created t3_zne_qcs (length:", len(t3_st_qcs), ")") t3_st_qcs[-1].draw("mpl") # only view trotter gates # from qiskit.test.mock import FakeJakarta # backend = FakeJakarta() # backend = Aer.get_backend("qasm_simulator") IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') print("provider:", provider) backend = provider.get_backend("ibmq_jakarta") shots = 8192 reps = 8 jobs = [] for _ in range(reps): # execute job = execute(t3_st_qcs, backend, shots=shots) print('Job ID', job.job_id()) jobs.append(job) # QREM qr = QuantumRegister(num_qubits) meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout=initial_layout) print('Job ID', cal_job.job_id()) dt_now = datetime.datetime.now() print(dt_now) with open("jobs_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump({"jobs": jobs, "cal_job": cal_job}, f) with open("job_ids_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f) with open("properties_jakarta" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump(backend.properties(), f) filename = "job_ids_jakarta_100step_20220412_171248_.pkl" # change here with open(filename, "rb") as f: job_ids_dict = pickle.load(f) job_ids = job_ids_dict["job_ids"] cal_job_id = job_ids_dict["cal_job_id"] retrieved_jobs = [] for job_id in job_ids: retrieved_jobs.append(backend.retrieve_job(job_id)) retrieved_cal_job = backend.retrieve_job(cal_job_id) cal_results = retrieved_cal_job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') # set the target state target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!! fids = [] for job in retrieved_jobs: # mit_results = meas_fitter.filter.apply(job.result()) # apply QREM rho = StateTomographyFitter(job.result(), st_qcs).fit(method='lstsq') fid = state_fidelity(rho, target_state) fids.append(fid) print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids))) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * %matplotlib inline import numpy as np qc = QuantumCircuit(2,2) qc.h(0) qc.cx(0,1) qc.measure([0,1],[0,1]) qc.draw(output='mpl') backend = Aer.get_backend('qasm_simulator') result = execute(qc,backend).result() from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(qc)) counts = result.get_counts(qc) legenda = ['Meu resultado'] plot_histogram(counts,color='red' ,legend=legenda) IBMQ.load_account() provedor = IBMQ.get_provider('ibm-q') backend = provedor.get_backend('ibmq_valencia') job = execute(qc,backend) from qiskit.tools.monitor import job_monitor job_monitor(job) result2 = job.result() counts2 = result2.get_counts(qc) legenda = ['Simulador','CQ Real'] plot_histogram([counts,counts2],color=['red','green'] ,legend=legenda) qc2 = QuantumCircuit(2,2) qc2.h(0) qc2.cx(0,1) backend_st = Aer.get_backend('statevector_simulator') result3 = execute(qc2, backend_st).result() statevector = result3.get_statevector() from qiskit.tools.visualization import plot_state_city plot_state_city(statevector) from qiskit.tools.visualization import plot_state_paulivec plot_state_paulivec(statevector) from qiskit.tools.visualization import plot_state_hinton plot_state_hinton(statevector) from qiskit.tools.visualization import plot_bloch_multivector plot_bloch_multivector(statevector) %matplotlib notebook # Repare que não está escrito inline como geralmente plot_bloch_multivector(statevector) # Para voltar ao normal é necessário apenas rodar o comando original %matplotlib inline from qiskit.tools.visualization import plot_bloch_vector plot_bloch_vector([1,0,0])
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
"""Add custom gates to the session EquivalenceLibrary instance. NOTE: sel is global, so just import this file before calling transpile. """ import numpy as np from qiskit import QuantumCircuit from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel from qiskit.circuit.library.standard_gates import CXGate, SwapGate, XXPlusYYGate # https://arxiv.org/pdf/2110.11537.pdf cx_decomp = QuantumCircuit(2) cx_decomp.u(np.pi / 2, -np.pi / 2, 0, 0) cx_decomp.u(np.pi / 2, np.pi, -np.pi / 2, 1) cx_decomp.append(XXPlusYYGate(-np.pi / 2), [0, 1]) cx_decomp.u(np.pi, -np.pi / 2, np.pi / 2, 0) cx_decomp.u(0, 0, np.pi, 1) cx_decomp.append(XXPlusYYGate(-np.pi / 2), [0, 1]) cx_decomp.u(np.pi / 2, -np.pi / 2, -3 * np.pi / 2, 0) cx_decomp.u(0, -np.pi / 2, -np.pi, 1) sel.add_equivalence(CXGate(), cx_decomp) swap_decomp = QuantumCircuit(2) swap_decomp.append(XXPlusYYGate(-np.pi / 2, 0), [0, 1]) swap_decomp.rx(-np.pi / 2, 0) swap_decomp.rx(-np.pi / 2, 1) swap_decomp.append(XXPlusYYGate(-np.pi / 2), [0, 1]) swap_decomp.rx(np.pi / 2, 0) swap_decomp.rx(np.pi / 2, 1) swap_decomp.ry(-np.pi / 2, 0) swap_decomp.ry(-np.pi / 2, 1) swap_decomp.append(XXPlusYYGate(-np.pi / 2), [0, 1]) swap_decomp.ry(np.pi / 2, 0) swap_decomp.ry(np.pi / 2, 1) sel.add_equivalence(SwapGate(), swap_decomp) # bb = transpile( # circ, basis_gates=["u", "xx_plus_yy"], coupling_map=topo, optimization_level=3 # ) # bb.draw(output="mpl") ####################### # NOTE this is a hack :) # # https://github.com/Qiskit/qiskit-terra/issues/9485 # add I = U(0, 0, 0) to the equivalence library # from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel # from qiskit import QuantumCircuit # from qiskit.circuit.library import IGate # qc = QuantumCircuit(1) # qc.u(0, 0, 0, 0) # sel.add_equivalence(IGate(), qc)
https://github.com/AnikenC/JaxifiedQiskit
AnikenC
# All Imports import numpy as np import jax import jax.numpy as jnp from jax.numpy.linalg import norm import qiskit.pulse as pulse from qiskit_dynamics.array import Array from library.utils import PauliToQuditOperator, TwoQuditHamiltonian from library.new_sims import JaxedSolver Array.set_default_backend('jax') jax.config.update('jax_enable_x64', True) jax.config.update('jax_platform_name', 'cpu') # Testing out the TwoQuditBackend Functionality dt = 1/4.5e9 atol = 1e-2 rtol = 1e-4 batchsize = 400 t_linspace = np.linspace(0.0, 400e-9, 11) t_span = np.array([t_linspace[0], t_linspace[-1]]) qudit_dim = 3 q_end = TwoQuditHamiltonian( qudit_dim=qudit_dim, dt=dt ) solver = q_end.solver ham_ops = q_end.ham_ops ham_chans = q_end.ham_chans chan_freqs = q_end.chan_freqs # Make the Custom Schedule Construction Function amp_vals = jnp.linspace(0.5, 0.99, batchsize, dtype=jnp.float64).reshape(-1, 1) sigma_vals = jnp.linspace(20, 80, batchsize, dtype=jnp.int8).reshape(-1, 1) freq_vals = jnp.linspace(-0.5, 0.5, batchsize, dtype=jnp.float64).reshape(-1, 1) * 1e6 batch_params = jnp.concatenate((amp_vals, sigma_vals, freq_vals), axis=-1) init_y0 = jnp.ones(qudit_dim ** 2, dtype=jnp.complex128) init_y0 /= norm(init_y0) batch_y0 = jnp.tile(init_y0, (batchsize, 1)) batch_str = ["XX", "IX", "YZ", "ZY"] * 100 print(f"initial statevec: {init_y0}") print(f"statevector * hc: {init_y0 @ init_y0.conj().T}") def standard_func(params): amp, sigma, freq = params # Here we use a Drag Pulse as defined in qiskit pulse as its already a Scalable Symbolic Pulse special_pulse = pulse.Drag( duration=320, amp=amp, sigma=sigma, beta=0.1, angle=0.1, limit_amplitude=False ) with pulse.build(default_alignment='sequential') as sched: d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) u0 = pulse.ControlChannel(0) u1 = pulse.ControlChannel(1) pulse.shift_frequency(freq, d0) pulse.play(special_pulse, d0) pulse.shift_frequency(freq, d1) pulse.play(special_pulse, d1) pulse.shift_frequency(freq, u0) pulse.play(special_pulse, u0) pulse.shift_frequency(freq, u1) pulse.play(special_pulse, u1) return sched # Make the JaxedSolver backend j_solver = JaxedSolver( schedule_func=standard_func, solver=solver, dt=dt, carrier_freqs=chan_freqs, ham_chans=ham_chans, ham_ops=ham_ops, t_span=t_span, rtol=rtol, atol=atol ) j_solver.estimate2(batch_y0=batch_y0, batch_params=batch_params, batch_obs_str=batch_str) %timeit j_solver.estimate2(batch_y0=batch_y0, batch_params=batch_params, batch_obs_str=batch_str)
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
from qiskit import QuantumCircuit from qiskit.circuit import Parameter import numpy as np import random class CostHamiltonian: circuit = {} def __init__(self, numQubits, layers=1, costType='maxcut', problem=None): self.numQubits = numQubits self.costType = costType self.layers = layers self.problem = problem def build(self): self.circuit = {} for l in range(0, self.layers): if (self.costType == 'rz_maxcut'): circuitDetails = self.__buildMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == 'ma_rz_maxcut'): circuitDetails = self.__buildMAMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == 'two_local_real_maxcut'): circuitDetails = self.__buildTwoLocalRealMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == "constant_maxcut"): circuitDetails = self.__buildMaxcutConstantLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == "ry_maxcut"): circuitDetails = self.__buildRYMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == "ma_ry_maxcut"): circuitDetails = self.__buildMARYMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == "rx_maxcut"): circuitDetails = self.__buildRXMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == "ma_rx_maxcut"): circuitDetails = self.__buildMARXMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == "cx_ry_maxcut"): circuitDetails = self.__buildCXRYMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == "none"): circuitDetails = self.__buildNoCircuit() self.circuit[l] = circuitDetails elif (self.costType == "3SAT"): circuitDetails = self.__build3SATLayer(None, l) self.circuit[l] = circuitDetails elif (self.costType == "test_rz_maxcut"): circuitDetails = self.__buildTestMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails return True def getCircuitAtLayer(self, l): return self.circuit[l] def getAllCircuits(self): return self.circuit def __buildMaxcutConstantLayer(self, graph, l): # theta = Parameter('cost_maxcut_' + str(l)) qc = QuantumCircuit(self.numQubits) for edge in graph.edges(): qc.rzz(np.pi/len(graph.edges()), edge[0], edge[1]) return (qc, []) def __buildMaxcutLayer(self, graph, l): theta = Parameter('cost_maxcut_' + str(l)) qc = QuantumCircuit(self.numQubits) for edge in graph.edges(): qc.rzz(theta, edge[0], edge[1]) return (qc, [theta]) def __buildMAMaxcutLayer(self, graph, l): theta = [Parameter('cost_maxcut_' + str(l) + "_" + str(i)) for i in range(0, len(graph.edges()))] qc = QuantumCircuit(self.numQubits) i = 0 for edge in graph.edges(): qc.rzz(theta[i], edge[0], edge[1]) i+=1 return (qc, theta) def __buildNoCircuit(self): qc = QuantumCircuit(self.numQubits) return (qc, []) def __buildTwoLocalRealMaxcutLayer(self, graph, l): theta = [Parameter('cost_maxcut_' + str(l) + "_" + str(i)) for i in range(0, 3*len(graph.edges()))] qc = QuantumCircuit(self.numQubits) i = 0 for edge in graph.edges(): qc.ry(theta[i], edge[0]) i+=1 qc.cx(edge[0], edge[1]) qc.ry(theta[i], edge[0]) i+=1 qc.ry(theta[i], edge[1]) i+=1 return (qc, theta) def __buildRYMaxcutLayer(self, graph, l): theta = Parameter('cost_maxcut_' + str(l)) qc = QuantumCircuit(self.numQubits) i = 0 edges = list(graph.edges()) v = len(graph.nodes) orderedEdges = [] rightEdges = [] # j = list(range(1, v)) for e in edges: e1 = e[0] e2 = e[1] if (e1 > e2): rightEdges.append((e2, e1)) else: rightEdges.append(e) for e in rightEdges: e1 = e[0] e2 = e[1] orderedEdges.append((v - 1 - e2, v - 1 - e1)) orderedEdges = rightEdges orderedEdges.sort(key=lambda x:x[0], reverse=False) orderedEdges.sort(key=lambda x:x[1], reverse=False) print(orderedEdges) counts = [0] * v for e in orderedEdges: counts[e[1]] += 1 print(counts) for edge in orderedEdges: qc.cx(edge[0], edge[1]) qc.ry(theta,edge[1]) qc.cx(edge[0], edge[1]) return (qc, [theta]) def __buildMARYMaxcutLayer(self, graph, l): theta = [Parameter('cost_maxcut_' + str(l) + "_" + str(i)) for i in range(0, len(graph.edges()))] qc = QuantumCircuit(self.numQubits) i = 0 edges = list(graph.edges()) v = len(graph.nodes) orderedEdges = [] rightEdges = [] # j = list(range(1, v)) for e in edges: e1 = e[0] e2 = e[1] if (e1 > e2): rightEdges.append((e2, e1)) else: rightEdges.append(e) for e in rightEdges: e1 = e[0] e2 = e[1] orderedEdges.append((v - 1 - e2, v - 1 - e1)) orderedEdges = rightEdges # for e in rightEdges.copy(): # # print(e) # e1 = e[0] # e2 = e[1] # if (e2 in j): # rightEdges.remove(e) # orderedEdges.append(e) # j.remove(e2) # # print(len(orderedEdges)) # orderedEdges.sort(key=lambda x:x[1], reverse=False) # orderedEdges = orderedEdges + rightEdges # # print(orderedEdges) # print(orderedEdges) orderedEdges.sort(key=lambda x:x[0], reverse=False) orderedEdges.sort(key=lambda x:x[1], reverse=False) print(orderedEdges) counts = [0] * v for e in orderedEdges: counts[e[1]] += 1 print(counts) # qc.cx(0, 1) # qc.ry(np.pi/2,1) # qc.cx(0, 1) # qc.cx(0, 2) # qc.ry(-np.pi/2,2) # qc.cx(0, 2) for edge in orderedEdges: qc.cx(edge[0], edge[1]) qc.ry(theta[i],edge[1]) qc.cx(edge[0], edge[1]) i+=1 return (qc, theta) def __buildRXMaxcutLayer(self, graph, l): theta = Parameter('cost_maxcut_' + str(l)) qc = QuantumCircuit(self.numQubits) for edge in graph.edges(): qc.rxx(theta, edge[0], edge[1]) return (qc, [theta]) def __buildMARXMaxcutLayer(self, graph, l): theta = [Parameter('cost_maxcut_' + str(l) + "_" + str(i)) for i in range(0, len(graph.edges()))] qc = QuantumCircuit(self.numQubits) i = 0 for edge in graph.edges(): qc.rxx(theta[i], edge[0], edge[1]) i+=1 return (qc, theta) def __buildCXRYMaxcutLayer(self, graph, l): theta = Parameter('cost_maxcut_' + str(l)) i = 0 qc = QuantumCircuit(self.numQubits) for edge in graph.edges(): qc.cx(edge[0], edge[1]) qc.ry(theta, edge[1]) qc.cx(edge[0], edge[1]) i+=1 return (qc, [theta]) def __buildMACXRYMaxcutLayer(self, graph, l): theta = [Parameter('cost_maxcut_' + str(l) + "_" + str(i)) for i in range(0, len(graph.edges()))] i = 0 qc = QuantumCircuit(self.numQubits) for edge in graph.edges(): qc.cx(edge[0], edge[1]) qc.ry(theta[i], edge[1]) qc.cx(edge[0], edge[1]) i+=1 return (qc, theta) def __build3SATLayer(self, clauses, l): theta = Parameter('cost_maxcut_' + str(l)) qc = QuantumCircuit(self.numQubits) qc.h([0, 1, 2]) # clause 1 qc.x([0, 1, 2]) qc.mct([0, 1, 2], 3) qc.rz(theta, 3) qc.mct([0, 1, 2], 3) qc.x([0, 1, 2]) # clause 2 qc.x([1]) qc.mct([0, 1, 2], 3) qc.rz(theta, 3) qc.mct([0, 1, 2], 3) qc.x([1]) # clause 3 qc.x([2]) qc.mct([0, 1, 2], 3) qc.rz(theta, 3) qc.mct([0, 1, 2], 3) qc.x([2]) # clause 4 qc.x([2, 3]) qc.mct([0, 1, 2], 3) qc.rz(theta, 3) qc.mct([0, 1, 2], 3) qc.x([2, 3]) # clause 5 qc.x([3]) qc.mct([0, 1, 2], 3) qc.rz(theta, 3) qc.mct([0, 1, 2], 3) qc.x([3]) # # clause 6 # qc.x([1, 2]) # qc.mct([0, 1, 2], 3) # qc.rz(theta, 3) # qc.mct([0, 1, 2], 3) # qc.x([1, 2]) # clause 7 qc.mct([0, 1, 2], 3) qc.rz(theta, 3) qc.mct([0, 1, 2], 3) return (qc, [theta]) def __buildTestMaxcutLayer(self, graph, l): theta1 = Parameter('cost_maxcut_1_' + str(l)) theta2 = Parameter('cost_maxcut_2_' + str(l)) qc = QuantumCircuit(self.numQubits) for edge in graph.edges(): qc.rz(theta2, edge[0]) qc.rz(theta2, edge[1]) qc.rzz(theta1, edge[0], edge[1]) return (qc, [theta1, theta2])
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.quantum_info import Clifford, random_clifford qc = QuantumCircuit(3) cliff = random_clifford(2) qc.append(cliff, [0, 1]) qc.ccx(0, 1, 2) qc.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit circ = QuantumCircuit(2, 2) circ.h(0) circ.cx(0, 1) circ.measure(0, 0) circ.measure(1, 1) circ.draw('mpl') from qiskit import pulse from qiskit.pulse.library import Gaussian from qiskit.providers.fake_provider import FakeValencia backend = FakeValencia() with pulse.build(backend, name='hadamard') as h_q0: pulse.play(Gaussian(duration=128, amp=0.1, sigma=16), pulse.drive_channel(0)) h_q0.draw() circ.add_calibration('h', [0], h_q0) from qiskit import transpile from qiskit.providers.fake_provider import FakeHanoi backend = FakeHanoi() circ = transpile(circ, backend) print(backend.configuration().basis_gates) circ.draw('mpl', idle_wires=False) from qiskit import QuantumCircuit from qiskit.circuit import Gate circ = QuantumCircuit(1, 1) custom_gate = Gate('my_custom_gate', 1, [3.14, 1]) # 3.14 is an arbitrary parameter for demonstration circ.append(custom_gate, [0]) circ.measure(0, 0) circ.draw('mpl') with pulse.build(backend, name='custom') as my_schedule: pulse.play(Gaussian(duration=64, amp=0.2, sigma=8), pulse.drive_channel(0)) circ.add_calibration('my_custom_gate', [0], my_schedule, [3.14, 1]) # Alternatively: circ.add_calibration(custom_gate, [0], my_schedule) circ = transpile(circ, backend) circ.draw('mpl', idle_wires=False) circ = QuantumCircuit(2, 2) circ.append(custom_gate, [1]) from qiskit import QiskitError try: circ = transpile(circ, backend) except QiskitError as e: print(e) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile from qiskit.visualization import plot_circuit_layout from qiskit.providers.fake_provider import FakeVigo backend = FakeVigo() ghz = QuantumCircuit(3, 3) ghz.h(0) ghz.cx(0,range(1,3)) ghz.barrier() ghz.measure(range(3), range(3)) new_circ_lv0 = transpile(ghz, backend=backend, optimization_level=0) plot_circuit_layout(new_circ_lv0, backend)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import qiskit.qasm3 program = """ OPENQASM 3.0; include "stdgates.inc"; input float[64] a; qubit[3] q; bit[2] mid; bit[3] out; let aliased = q[0:1]; gate my_gate(a) c, t { gphase(a / 2); ry(a) c; cx c, t; } gate my_phase(a) c { ctrl @ inv @ gphase(a) c; } my_gate(a * 2) aliased[0], q[{1, 2}][0]; measure q[0] -> mid[0]; measure q[1] -> mid[1]; while (mid == "00") { reset q[0]; reset q[1]; my_gate(a) q[0], q[1]; my_phase(a - pi/2) q[1]; mid[0] = measure q[0]; mid[1] = measure q[1]; } if (mid[0]) { let inner_alias = q[{0, 1}]; reset inner_alias; } out = measure q; """ circuit = qiskit.qasm3.loads(program) circuit.draw("mpl")
https://github.com/krishphys/LiH_Variational_quantum_eigensolver
krishphys
from qiskit import BasicAer, Aer, IBMQ from qiskit.aqua import QuantumInstance, aqua_globals from qiskit.aqua.algorithms import VQE, ExactEigensolver from qiskit.aqua.components.initial_states import Zero from qiskit.aqua.components.optimizers import COBYLA, L_BFGS_B, SLSQP, SPSA from qiskit.aqua.components.variational_forms import RY, RYRZ, SwapRZ from qiskit.aqua.operators import WeightedPauliOperator, Z2Symmetries from qiskit.chemistry import FermionicOperator from qiskit.chemistry.drivers import PySCFDriver, UnitsType from qiskit.chemistry.components.variational_forms import UCCSD from qiskit.chemistry.components.initial_states import HartreeFock from qiskit.circuit.library import EfficientSU2 from qiskit.providers.aer import QasmSimulator from qiskit.providers.aer.noise import NoiseModel from qiskit.providers.aer.noise.errors import QuantumError, ReadoutError from qiskit.providers.aer.noise.errors import pauli_error from qiskit.providers.aer.noise.errors import depolarizing_error from qiskit.providers.aer.noise.errors import thermal_relaxation_error from qiskit.ignis.mitigation.measurement import CompleteMeasFitter from qiskit.providers.aer import noise provider = IBMQ.load_account() import numpy as np import matplotlib.pyplot as plt from functools import partial import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) # Classically solve for the lowest eigenvalue # This is used just to compare how well you VQE approximation is performing def exact_solver(qubitOp,shift): ee = ExactEigensolver(qubitOp) result = ee.run() ref = result['energy']+shift print('Reference value: {}'.format(ref)) return ref # Define your function for computing the qubit operations of LiH def compute_LiH_qubitOp(map_type, inter_dist, basis='sto3g'): # Specify details of our molecule driver = PySCFDriver(atom='Li .0 .0 .0; H .0 .0 ' + str(inter_dist), unit=UnitsType.ANGSTROM, charge=0, spin=0, basis=basis) # Compute relevant 1 and 2 body integrals. molecule = driver.run() h1 = molecule.one_body_integrals h2 = molecule.two_body_integrals nuclear_repulsion_energy = molecule.nuclear_repulsion_energy num_particles = molecule.num_alpha + molecule.num_beta num_spin_orbitals = molecule.num_orbitals * 2 print("HF energy: {}".format(molecule.hf_energy - molecule.nuclear_repulsion_energy)) print("# of electrons: {}".format(num_particles)) print("# of spin orbitals: {}".format(num_spin_orbitals)) # Please be aware that the idx here with respective to original idx freeze_list = [0] remove_list = [-3, -2] # negative number denotes the reverse order # Prepare full idx of freeze_list and remove_list # Convert all negative idx to positive remove_list = [x % molecule.num_orbitals for x in remove_list] freeze_list = [x % molecule.num_orbitals for x in freeze_list] # Update the idx in remove_list of the idx after frozen, since the idx of orbitals are changed after freezing remove_list = [x - len(freeze_list) for x in remove_list] remove_list += [x + molecule.num_orbitals - len(freeze_list) for x in remove_list] freeze_list += [x + molecule.num_orbitals for x in freeze_list] # Prepare fermionic hamiltonian with orbital freezing and eliminating, and then map to qubit hamiltonian # and if PARITY mapping is selected, reduction qubits energy_shift = 0.0 qubit_reduction = True if map_type == 'parity' else False ferOp = FermionicOperator(h1=h1, h2=h2) if len(freeze_list) > 0: ferOp, energy_shift = ferOp.fermion_mode_freezing(freeze_list) num_spin_orbitals -= len(freeze_list) num_particles -= len(freeze_list) if len(remove_list) > 0: ferOp = ferOp.fermion_mode_elimination(remove_list) num_spin_orbitals -= len(remove_list) qubitOp = ferOp.mapping(map_type=map_type) qubitOp = Z2Symmetries.two_qubit_reduction(qubitOp, num_particles) if qubit_reduction else qubitOp qubitOp.chop(10**-10) #Overall energy shift: shift = energy_shift + nuclear_repulsion_energy return qubitOp, num_spin_orbitals, num_particles, qubit_reduction, shift def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) params.append(parameters) deviation.append(std) def get_ground_State(map_type,inter_dist,init_state,ansatz,optimizer_select): qubitOp, num_spin_orbitals, num_particles, \ qubit_reduction,shift = compute_LiH_qubitOp(map_type,inter_dist=inter_dist) #Initial State if init_state == "Zero": initState = Zero(qubitOp.num_qubits) elif init_state == "HartreeFock": initState = HartreeFock( num_spin_orbitals, num_particles, qubit_mapping=map_type, two_qubit_reduction=qubit_reduction ) #Ansatz depth = 10 if ansatz == "RY": var_form = EfficientSU2(qubitOp.num_qubits,entanglement='full',su2_gates=['ry'],reps = 1,\ initial_state=initState) elif ansatz == "RYRZ": var_form = EfficientSU2(qubitOp.num_qubits,entanglement='full',su2_gates=['ry','rz'],reps = 1,\ initial_state=initState) elif ansatz == "SwapRZ": var_form = EfficientSU2(qubitOp.num_qubits,entanglement='full',su2_gates=['swap','rz'],reps = 1,\ initial_state=initState) elif ansatz == "UCCSD": var_form = UCCSD( num_orbitals=num_spin_orbitals, num_particles=num_particles, initial_state=initState, qubit_mapping=map_type ) #Optimizer if optimizer_select == "COBYLA": optimizer = COBYLA(maxiter = 1000) elif optimizer_select == "SPSA": optimizer = SPSA(max_trials = 1000) #Noise model backend_ = "qasm_simulator" shots = 1000 provider = IBMQ.get_provider(hub='ibm-q') backend = Aer.get_backend(backend_) device = provider.get_backend("ibmq_vigo") coupling_map = device.configuration().coupling_map noise_model = NoiseModel.from_backend(device.properties()) quantum_instance = QuantumInstance(backend=backend, shots=shots, noise_model=noise_model, coupling_map=coupling_map, measurement_error_mitigation_cls=CompleteMeasFitter, cals_matrix_refresh_period=30) #Running VQE vqe = VQE(qubitOp, var_form, optimizer, callback = store_intermediate_result) vqe_result = np.real(vqe.run(quantum_instance)['eigenvalue'] + shift) callbackDict = {"counts":counts,"values":values,"params":params,"deviation":deviation} return vqe_result,callbackDict,qubitOp,shift map_type = "parity" inter_dist = 1.6 initialStateList = ["Zero","HartreeFock"] ansatzList = ["UCCSD","RY","RYRZ","SwapRZ"] optimizerList = ["COBYLA","SPSA"] import itertools choices = list(itertools.product(initialStateList,ansatzList,optimizerList)) choices[8:] selected_choices = choices[8:] len(selected_choices) selected_choices[0] map_type = "parity" inter_dist = 1.6 for i in selected_choices: counts = [] values =[] params =[] deviation = [] init_state = i[0] ansatz = i[1] optimizer_select = i[2] chosen = str({"Optimizer ":optimizer_select,"Ansatz ":ansatz,"Initial State ":init_state}) vqe_result,callbackDict,qubitOp,shift = get_ground_State(map_type,inter_dist,init_state,ansatz,optimizer_select) ref = exact_solver(qubitOp , shift) energy_error = np.abs(np.real(ref) - vqe_result) print("Energy Error :",energy_error) # Calculating energy error vqe_energies = np.real(callbackDict["values"]) + shift energy_errors = np.abs(np.real(ref) - vqe_energies) plt.plot(callbackDict["counts"] , energy_errors) plt.xlabel('Counts') plt.ylabel('Energy Error/ Hartree') plt.title("Choices : "+chosen) plt.show() print("--------------------------------")
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Basic rescheduling functions which take schedule or instructions and return new schedules.""" import warnings from collections import defaultdict from typing import List, Optional, Iterable, Union, Type import numpy as np from qiskit.pulse import channels as chans, exceptions, instructions from qiskit.pulse.channels import ClassicalIOChannel from qiskit.pulse.exceptions import PulseError from qiskit.pulse.exceptions import UnassignedDurationError from qiskit.pulse.instruction_schedule_map import InstructionScheduleMap from qiskit.pulse.instructions import directives from qiskit.pulse.schedule import Schedule, ScheduleBlock, ScheduleComponent def block_to_schedule(block: ScheduleBlock) -> Schedule: """Convert ``ScheduleBlock`` to ``Schedule``. Args: block: A ``ScheduleBlock`` to convert. Returns: Scheduled pulse program. Raises: UnassignedDurationError: When any instruction duration is not assigned. PulseError: When the alignment context duration is shorter than the schedule duration. .. note:: This transform may insert barriers in between contexts. """ if not block.is_schedulable(): raise UnassignedDurationError( "All instruction durations should be assigned before creating `Schedule`." "Please check `.parameters` to find unassigned parameter objects." ) schedule = Schedule.initialize_from(block) for op_data in block.blocks: if isinstance(op_data, ScheduleBlock): context_schedule = block_to_schedule(op_data) if hasattr(op_data.alignment_context, "duration"): # context may have local scope duration, e.g. EquispacedAlignment for 1000 dt post_buffer = op_data.alignment_context.duration - context_schedule.duration if post_buffer < 0: raise PulseError( f"ScheduleBlock {op_data.name} has longer duration than " "the specified context duration " f"{context_schedule.duration} > {op_data.duration}." ) else: post_buffer = 0 schedule.append(context_schedule, inplace=True) # prevent interruption by following instructions. # padding with delay instructions is no longer necessary, thanks to alignment context. if post_buffer > 0: context_boundary = instructions.RelativeBarrier(*op_data.channels) schedule.append(context_boundary.shift(post_buffer), inplace=True) else: schedule.append(op_data, inplace=True) # transform with defined policy return block.alignment_context.align(schedule) def compress_pulses(schedules: List[Schedule]) -> List[Schedule]: """Optimization pass to replace identical pulses. Args: schedules: Schedules to compress. Returns: Compressed schedules. """ existing_pulses = [] new_schedules = [] for schedule in schedules: new_schedule = Schedule.initialize_from(schedule) for time, inst in schedule.instructions: if isinstance(inst, instructions.Play): if inst.pulse in existing_pulses: idx = existing_pulses.index(inst.pulse) identical_pulse = existing_pulses[idx] new_schedule.insert( time, instructions.Play(identical_pulse, inst.channel, inst.name), inplace=True, ) else: existing_pulses.append(inst.pulse) new_schedule.insert(time, inst, inplace=True) else: new_schedule.insert(time, inst, inplace=True) new_schedules.append(new_schedule) return new_schedules def flatten(program: Schedule) -> Schedule: """Flatten (inline) any called nodes into a Schedule tree with no nested children. Args: program: Pulse program to remove nested structure. Returns: Flatten pulse program. Raises: PulseError: When invalid data format is given. """ if isinstance(program, Schedule): flat_sched = Schedule.initialize_from(program) for time, inst in program.instructions: flat_sched.insert(time, inst, inplace=True) return flat_sched else: raise PulseError(f"Invalid input program {program.__class__.__name__} is specified.") def inline_subroutines(program: Union[Schedule, ScheduleBlock]) -> Union[Schedule, ScheduleBlock]: """Recursively remove call instructions and inline the respective subroutine instructions. Assigned parameter values, which are stored in the parameter table, are also applied. The subroutine is copied before the parameter assignment to avoid mutation problem. Args: program: A program which may contain the subroutine, i.e. ``Call`` instruction. Returns: A schedule without subroutine. Raises: PulseError: When input program is not valid data format. """ if isinstance(program, Schedule): return _inline_schedule(program) elif isinstance(program, ScheduleBlock): return _inline_block(program) else: raise PulseError(f"Invalid program {program.__class__.__name__} is specified.") def _inline_schedule(schedule: Schedule) -> Schedule: """A helper function to inline subroutine of schedule. .. note:: If subroutine is ``ScheduleBlock`` it is converted into Schedule to get ``t0``. """ ret_schedule = Schedule.initialize_from(schedule) for t0, inst in schedule.children: # note that schedule.instructions unintentionally flatten the nested schedule. # this should be performed by another transformer node. if isinstance(inst, instructions.Call): # bind parameter subroutine = inst.assigned_subroutine() # convert into schedule if block is given if isinstance(subroutine, ScheduleBlock): subroutine = block_to_schedule(subroutine) # recursively inline the program inline_schedule = _inline_schedule(subroutine) ret_schedule.insert(t0, inline_schedule, inplace=True) elif isinstance(inst, Schedule): # recursively inline the program inline_schedule = _inline_schedule(inst) ret_schedule.insert(t0, inline_schedule, inplace=True) else: ret_schedule.insert(t0, inst, inplace=True) return ret_schedule def _inline_block(block: ScheduleBlock) -> ScheduleBlock: """A helper function to inline subroutine of schedule block. .. note:: If subroutine is ``Schedule`` the function raises an error. """ ret_block = ScheduleBlock.initialize_from(block) for inst in block.blocks: if isinstance(inst, instructions.Call): # bind parameter subroutine = inst.assigned_subroutine() if isinstance(subroutine, Schedule): raise PulseError( f"A subroutine {subroutine.name} is a pulse Schedule. " "This program cannot be inserted into ScheduleBlock because " "t0 associated with instruction will be lost." ) # recursively inline the program inline_block = _inline_block(subroutine) ret_block.append(inline_block, inplace=True) elif isinstance(inst, ScheduleBlock): # recursively inline the program inline_block = _inline_block(inst) ret_block.append(inline_block, inplace=True) else: ret_block.append(inst, inplace=True) return ret_block def remove_directives(schedule: Schedule) -> Schedule: """Remove directives. Args: schedule: A schedule to remove compiler directives. Returns: A schedule without directives. """ return schedule.exclude(instruction_types=[directives.Directive]) def remove_trivial_barriers(schedule: Schedule) -> Schedule: """Remove trivial barriers with 0 or 1 channels. Args: schedule: A schedule to remove trivial barriers. Returns: schedule: A schedule without trivial barriers """ def filter_func(inst): return isinstance(inst[1], directives.RelativeBarrier) and len(inst[1].channels) < 2 return schedule.exclude(filter_func) def align_measures( schedules: Iterable[ScheduleComponent], inst_map: Optional[InstructionScheduleMap] = None, cal_gate: str = "u3", max_calibration_duration: Optional[int] = None, align_time: Optional[int] = None, align_all: Optional[bool] = True, ) -> List[Schedule]: """Return new schedules where measurements occur at the same physical time. This transformation will align the first :class:`.Acquire` on every channel to occur at the same time. Minimum measurement wait time (to allow for calibration pulses) is enforced and may be set with ``max_calibration_duration``. By default only instructions containing a :class:`.AcquireChannel` or :class:`.MeasureChannel` will be shifted. If you wish to keep the relative timing of all instructions in the schedule set ``align_all=True``. This method assumes that ``MeasureChannel(i)`` and ``AcquireChannel(i)`` correspond to the same qubit and the acquire/play instructions should be shifted together on these channels. .. code-block:: from qiskit import pulse from qiskit.pulse import transforms d0 = pulse.DriveChannel(0) m0 = pulse.MeasureChannel(0) a0 = pulse.AcquireChannel(0) mem0 = pulse.MemorySlot(0) sched = pulse.Schedule() sched.append(pulse.Play(pulse.Constant(10, 0.5), d0), inplace=True) sched.append(pulse.Play(pulse.Constant(10, 1.), m0).shift(sched.duration), inplace=True) sched.append(pulse.Acquire(20, a0, mem0).shift(sched.duration), inplace=True) sched_shifted = sched << 20 aligned_sched, aligned_sched_shifted = transforms.align_measures([sched, sched_shifted]) assert aligned_sched == aligned_sched_shifted If it is desired to only shift acquisition and measurement stimulus instructions set the flag ``align_all=False``: .. code-block:: aligned_sched, aligned_sched_shifted = transforms.align_measures( [sched, sched_shifted], align_all=False, ) assert aligned_sched != aligned_sched_shifted Args: schedules: Collection of schedules to be aligned together inst_map: Mapping of circuit operations to pulse schedules cal_gate: The name of the gate to inspect for the calibration time max_calibration_duration: If provided, inst_map and cal_gate will be ignored align_time: If provided, this will be used as final align time. align_all: Shift all instructions in the schedule such that they maintain their relative alignment with the shifted acquisition instruction. If ``False`` only the acquisition and measurement pulse instructions will be shifted. Returns: The input list of schedules transformed to have their measurements aligned. Raises: PulseError: If the provided alignment time is negative. """ def get_first_acquire_times(schedules): """Return a list of first acquire times for each schedule.""" acquire_times = [] for schedule in schedules: visited_channels = set() qubit_first_acquire_times = defaultdict(lambda: None) for time, inst in schedule.instructions: if isinstance(inst, instructions.Acquire) and inst.channel not in visited_channels: visited_channels.add(inst.channel) qubit_first_acquire_times[inst.channel.index] = time acquire_times.append(qubit_first_acquire_times) return acquire_times def get_max_calibration_duration(inst_map, cal_gate): """Return the time needed to allow for readout discrimination calibration pulses.""" # TODO (qiskit-terra #5472): fix behavior of this. max_calibration_duration = 0 for qubits in inst_map.qubits_with_instruction(cal_gate): cmd = inst_map.get(cal_gate, qubits, np.pi, 0, np.pi) max_calibration_duration = max(cmd.duration, max_calibration_duration) return max_calibration_duration if align_time is not None and align_time < 0: raise exceptions.PulseError("Align time cannot be negative.") first_acquire_times = get_first_acquire_times(schedules) # Extract the maximum acquire in every schedule across all acquires in the schedule. # If there are no acquires in the schedule default to 0. max_acquire_times = [max(0, *times.values()) for times in first_acquire_times] if align_time is None: if max_calibration_duration is None: if inst_map: max_calibration_duration = get_max_calibration_duration(inst_map, cal_gate) else: max_calibration_duration = 0 align_time = max(max_calibration_duration, *max_acquire_times) # Shift acquires according to the new scheduled time new_schedules = [] for sched_idx, schedule in enumerate(schedules): new_schedule = Schedule.initialize_from(schedule) stop_time = schedule.stop_time if align_all: if first_acquire_times[sched_idx]: shift = align_time - max_acquire_times[sched_idx] else: shift = align_time - stop_time else: shift = 0 for time, inst in schedule.instructions: measurement_channels = { chan.index for chan in inst.channels if isinstance(chan, (chans.MeasureChannel, chans.AcquireChannel)) } if measurement_channels: sched_first_acquire_times = first_acquire_times[sched_idx] max_start_time = max( sched_first_acquire_times[chan] for chan in measurement_channels if chan in sched_first_acquire_times ) shift = align_time - max_start_time if shift < 0: warnings.warn( "The provided alignment time is scheduling an acquire instruction " "earlier than it was scheduled for in the original Schedule. " "This may result in an instruction being scheduled before t=0 and " "an error being raised." ) new_schedule.insert(time + shift, inst, inplace=True) new_schedules.append(new_schedule) return new_schedules def add_implicit_acquires(schedule: ScheduleComponent, meas_map: List[List[int]]) -> Schedule: """Return a new schedule with implicit acquires from the measurement mapping replaced by explicit ones. .. warning:: Since new acquires are being added, Memory Slots will be set to match the qubit index. This may overwrite your specification. Args: schedule: Schedule to be aligned. meas_map: List of lists of qubits that are measured together. Returns: A ``Schedule`` with the additional acquisition instructions. """ new_schedule = Schedule.initialize_from(schedule) acquire_map = {} for time, inst in schedule.instructions: if isinstance(inst, instructions.Acquire): if inst.mem_slot and inst.mem_slot.index != inst.channel.index: warnings.warn( "One of your acquires was mapped to a memory slot which didn't match" " the qubit index. I'm relabeling them to match." ) # Get the label of all qubits that are measured with the qubit(s) in this instruction all_qubits = [] for sublist in meas_map: if inst.channel.index in sublist: all_qubits.extend(sublist) # Replace the old acquire instruction by a new one explicitly acquiring all qubits in # the measurement group. for i in all_qubits: explicit_inst = instructions.Acquire( inst.duration, chans.AcquireChannel(i), mem_slot=chans.MemorySlot(i), kernel=inst.kernel, discriminator=inst.discriminator, ) if time not in acquire_map: new_schedule.insert(time, explicit_inst, inplace=True) acquire_map = {time: {i}} elif i not in acquire_map[time]: new_schedule.insert(time, explicit_inst, inplace=True) acquire_map[time].add(i) else: new_schedule.insert(time, inst, inplace=True) return new_schedule def pad( schedule: Schedule, channels: Optional[Iterable[chans.Channel]] = None, until: Optional[int] = None, inplace: bool = False, pad_with: Optional[Type[instructions.Instruction]] = None, ) -> Schedule: """Pad the input Schedule with ``Delay``s on all unoccupied timeslots until ``schedule.duration`` or ``until`` if not ``None``. Args: schedule: Schedule to pad. channels: Channels to pad. Defaults to all channels in ``schedule`` if not provided. If the supplied channel is not a member of ``schedule`` it will be added. until: Time to pad until. Defaults to ``schedule.duration`` if not provided. inplace: Pad this schedule by mutating rather than returning a new schedule. pad_with: Pulse ``Instruction`` subclass to be used for padding. Default to :class:`~qiskit.pulse.instructions.Delay` instruction. Returns: The padded schedule. Raises: PulseError: When non pulse instruction is set to `pad_with`. """ until = until or schedule.duration channels = channels or schedule.channels if pad_with: if issubclass(pad_with, instructions.Instruction): pad_cls = pad_with else: raise PulseError( f"'{pad_with.__class__.__name__}' is not valid pulse instruction to pad with." ) else: pad_cls = instructions.Delay for channel in channels: if isinstance(channel, ClassicalIOChannel): continue if channel not in schedule.channels: schedule = schedule.insert(0, instructions.Delay(until, channel), inplace=inplace) continue prev_time = 0 timeslots = iter(schedule.timeslots[channel]) to_pad = [] while prev_time < until: try: t0, t1 = next(timeslots) except StopIteration: to_pad.append((prev_time, until - prev_time)) break if prev_time < t0: to_pad.append((prev_time, min(t0, until) - prev_time)) prev_time = t1 for t0, duration in to_pad: schedule = schedule.insert(t0, pad_cls(duration, channel), inplace=inplace) return schedule
https://github.com/rmlarose/qcbq
rmlarose
"""Imports for the notebook.""" import matplotlib.pyplot as plt import numpy as np from scipy.optimize import minimize import qiskit """Defining circuits with parameters.""" # Get a circuit and registers qreg = qiskit.QuantumRegister(2) creg = qiskit.ClassicalRegister(2) circ = qiskit.QuantumCircuit(qreg, creg) # Add gates with particular parameters circ.h(qreg) circ.rx(0.2, qreg[0]) circ.cx(qreg[0], qreg[1]) circ.ry(0.1, qreg[1]) # Visualize the circuit print(circ) def circuit(alpha1: float, alpha2: float): """Returns the circuit above with the input parameters.""" ### Your code here! """Estimating a one qubit expectation value.""" qreg = qiskit.QuantumRegister(1) creg = qiskit.ClassicalRegister(1) circ = qiskit.QuantumCircuit(qreg, creg) circ.h(qreg) ### Your code here! """Estimating a one qubit expectation value.""" qreg = qiskit.QuantumRegister(1) creg = qiskit.ClassicalRegister(1) circ = qiskit.QuantumCircuit(qreg, creg) circ.x(qreg) circ.h(qreg) ### Your code here! """Estimating a two qubit expectation value.""" qreg = qiskit.QuantumRegister(2) creg = qiskit.ClassicalRegister(2) circ = qiskit.QuantumCircuit(qreg, creg) circ.h(qreg[1]) ### Your code here! """Helper function to evaluate the expectation of any valid Pauli string.""" def expectation_circuit(circuit: qiskit.QuantumCircuit, pauli_string: str) -> qiskit.QuantumCircuit: """Returns a circuit to compute expectation of the Pauli string in the state prepared by the input circuit. Args: circuit: Prepares the state |\psi> from |0>. pauli_string: String (tensor product) of Paulis to evaluate an expectation of. The length of pauli_string must be equal to the total number of qubits in the circuit. (Use identities for no operator!) """ if len(circuit.qregs) != 1: raise ValueError("Circuit should have only one quantum register.") if len(circuit.cregs) != 1: print("# cregs =", len(circuit.cregs)) raise ValueError("Circuit should have only one classical register.") ### Your code here! """Test your function here.""" circ, qreg, creg = circuit(np.pi / 2, np.pi / 4) print("Bare circuit:") print(circ) ### Your code here! """Function to execute the circuit and do the postprocessing.""" def run_and_process(circuit: qiskit.QuantumCircuit, shots: int = 10000) -> float: """Runs an 'expectation circuit' and returns the expectation value of the measured Pauli string. Args: circuit: Circuit to execute. shots: Number of circuit executions. """ ### Your code here! """Define your function here!""" def expectation(circuit: qiskit.QuantumCircuit, pauli_string: str, shots: int = 10000) -> float: """Returns the expectation value of the pauli string in the state prepared by the circuit.""" ### Your code here! """Test your function here.""" ### Your code here! """Compute the expectation of a Hamiltonian.""" # Provided circuit qreg = qiskit.QuantumRegister(3) creg = qiskit.ClassicalRegister(3) circ = qiskit.QuantumCircuit(qreg, creg) circ.h(qreg) circ.rx(np.pi / 4, qreg[0]) circ.cz(qreg[0], qreg[1]) circ.cz(qreg[1], qreg[2]) print(circ) weights = (0.5, -0.3, 1.2) paulis = ("IZZ", "ZZI", "ZIZ") ### Your code here """Function to compute the cost of any Hamiltonian in the state prepared by the circuit.""" def cost(circuit, weights, paulis): """Returns <psi|H|psi> where |psi> is prepared by the circuit and the weights and paulis define a Hamiltonian H. Args: circuit: Circuit which prepares a state. weights: List of floats which are the coeffs/weights of each Pauli string. paulis: List of strings which specify the Paulis. """ if len(weights) != len(paulis): raise ValueError("Args weights and paulis must have the same length.") ### Your code here! """Evaluate your cost here!""" ### Your code here! """Plot a cost landscape.""" def oneq_circ(param): qreg = qiskit.QuantumRegister(1) creg = qiskit.ClassicalRegister(1) circ = qiskit.QuantumCircuit(qreg, creg) circ.rx(param, qreg) return circ weights = (1.0,) paulis = ("Z",) pvals = np.linspace(-np.pi, np.pi, 100) cvals = [] ### Your code here! """Get a parameterized circuit.""" def circuit(params): qreg = qiskit.QuantumRegister(2) creg = qiskit.ClassicalRegister(2) circ = qiskit.QuantumCircuit(qreg, creg) circ.h(qreg) circ.cx(qreg[0], qreg[1]) circ.rx(params[0], qreg[0]) circ.ry(params[1], qreg[1]) circ.cz(qreg[0], qreg[1]) circ.s(qreg[0]) circ.t(qreg[1]) return circ """Visualize the circuit.""" print(circuit([1, 2])) """Hamiltonian cost to minimize.""" weights = (1.2, -0.2) paulis = ("IZ", "ZX") """Define a cost/objective function.""" def obj(params): """Returns the cost for the given parameters.""" ### Your code here """Test your function on this set of parameters.""" obj([0, 0]) """Run an optimization algorithm to return the lowest cost and best parameters.""" result = minimize(obj, x0=[0, 0], method="COBYLA") """See the optimization results.""" print("Lowest cost function value found:", result.fun) print("Best parameters:", result.x)
https://github.com/Tim-Li/Qiskit-NTU-hackathon-2022_QGEN
Tim-Li
import numpy as np import matplotlib.pyplot as plt # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * # from ibm_quantum_widgetsets import * from qiskit.providers.aer import QasmSimulator from qiskit.algorithms.optimizers import * from qiskit.utils import algorithm_globals from qiskit.circuit.library import TwoLocal from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit.algorithms import VQE, QAOA, NumPyMinimumEigensolver from qiskit.utils import QuantumInstance from qiskit_optimization import QuadraticProgram from qiskit.opflow import Z, I from ibm_quantum_widgets import * from qiskit.visualization import plot_histogram # from qiskit.quantum_info.operators import Operator, Pauli from qiskit.opflow import PauliExpectation, CVaRExpectation from qiskit.circuit.library import RealAmplitudes from qiskit_optimization.converters import LinearEqualityToPenalty from qiskit_optimization.algorithms import GroverOptimizer, MinimumEigenOptimizer # Loading your IBM Quantum account(s) provider = IBMQ.load_account() def output(result, prob_path, fval_path): prob = {} fval = {} for i in range(len(result.samples)): tmp = "" count = 0 for num in range(8): tmp += str(int(result.samples[i].x[num])) count += int(result.samples[i].x[num]) prob[tmp] = result.samples[i].probability fval[tmp] = result.samples[i].fval np.save(prob_path, prob) np.save(fval_path, fval) def unnormalized_h(adj_mtx): qubit_num = len(adj_mtx) iden = I for i in range(1,qubit_num): iden = iden^I op = iden-iden # print(op) for i in range(qubit_num): for j in range(qubit_num): if i > j: # 2ZiZj temp = np.ones(qubit_num)*I temp[i] = Z temp[j] = Z op_0 = temp[0] for k in range(1, qubit_num): op_0 = op_0^temp[k] print(op_0) op = op + 2*op_0 # 0.5*I - 0.5*ZiZj if adj_mtx[i][j] == 1: op = op + (0.5*iden - 0.5 * op_0) op = op + qubit_num * iden return op def normalized_h(adj_mtx,ratio): qubit_num = len(adj_mtx) iden = I for i in range(1,qubit_num): iden = iden^I op = iden-iden #print(op) # for 1/m * 0.5*sum(I-zizj) term first_term = iden-iden m=0 # for zizj term second_term = iden - iden for i in range(qubit_num): for j in range(qubit_num): if i>j: # 2ZiZj temp = np.ones(qubit_num)*I temp[i] = Z temp[j] = Z op_0 = temp[0] for k in range(1,qubit_num): op_0 = op_0^temp[k] #print(op_0) second_term = second_term + 2*op_0 # 0.5*I - 0.5*ZiZj if adj_mtx[i][j] == 1: first_term = first_term + 0.5*iden - 0.5 * op_0 m+=1 #unweighted_h = op + first_term + second_term + qubit_num * iden k = ((ratio/qubit_num**2)) weighted_h = op + first_term/m + float(k)*(second_term + qubit_num * iden) return weighted_h def adjacency_matrix(graph): matrix = [] for i in range(len(graph)): matrix.append([0]*(len(graph))) for j in graph[i]: matrix[i][j] = 1 return matrix lst = [[1,4,6],[0,2],[1,5,7],[4],[0,3,5],[2,4],[0],[2]] adj_mtx = adjacency_matrix(lst) op = unnormalized_h(adj_mtx) # op.to_matrix_op() # See the operator with matrix form qp = QuadraticProgram() qp.from_ising(op) print(qp) # solving Quadratic Program using exact classical eigensolver exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) result = exact.solve(qp) print(result.prettyprint()) lst = [[1,4,6],[0,2],[1,5,7],[4],[0,3,5],[2,4],[0],[2]] adj_mtx = adjacency_matrix(lst) op = unnormalized_h(adj_mtx) # op.to_matrix_op() # See the operator with matrix form qp = QuadraticProgram() qp.from_ising(op) print(qp) optimizer = SLSQP(maxiter=10000) algorithm_globals.random_seed = 1234 seed = 11234 num = 8 backend = Aer.get_backend('statevector_simulator') ry = TwoLocal(num, 'ry', 'cz', reps=4, entanglement='full') quantum_instance = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed) vqe = VQE(ry, optimizer=optimizer, quantum_instance=quantum_instance) vqe_meo = MinimumEigenOptimizer(vqe) result = vqe_meo.solve(qp) print(result.samples) for opt in range(4): for it in range(1, 11): if opt == 0: optimizer = SLSQP(maxiter=1000) elif opt == 1: optimizer = COBYLA(maxiter=1000) elif opt == 2: optimizer = NELDER_MEAD(maxiter=1000) elif opt == 3: optimizer = POWELL(maxiter=1000) algorithm_globals.random_seed = 1234 seed = 12345 backend = Aer.get_backend('statevector_simulator') qNum = 8 ry = TwoLocal(qNum, 'ry', 'cz', reps=it, entanglement='full') quantum_instance = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed) vqe = VQE(ry, optimizer=optimizer, quantum_instance=quantum_instance) vqe_meo = MinimumEigenOptimizer(vqe) result = vqe_meo.solve(qp) print(result) # use dictionary form to output result output(result, f"data/VQE/prob_all_opt{opt}_layer{it}.npy", f"data/VQE/fval_all_opt{opt}_layer{it}.npy") classical_exp = 2 probability = np.zeros([4, 10]) cost = np.zeros([4, 10]) pdepth = np.arange(1, 11) expectation = np.zeros([4, 10]) for opt in range(4): for it in range(1, 11): df = np.load(f"data/VQE/prob_all_opt{opt}_layer{it}.npy",allow_pickle='TRUE').item() df2 = np.load(f"data/VQE/fval_all_opt{opt}_layer{it}.npy",allow_pickle='TRUE').item() probability[opt, it-1] = df.get('10011010', 0) probability[opt, it-1] += df.get('01100101', 0) cost[opt, it-1] = df2.get('10011010', 0) for key in df: expectation[opt, it-1] += df[key] * df2[key] alpha = (expectation - classical_exp) / np.abs(classical_exp) plt.figure(figsize=(10,8)) for opt in range(4): plt.plot(pdepth, probability[opt]) plt.legend(["SLSQP", "COBYLA", "NELDER_MEAD", "POWELL"]) plt.xlim(0.5, 10.5) plt.ylim(0, 1) plt.xticks(np.arange(1, 11), ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"], fontsize=18) plt.title("VQE, Probability of Finding Right Answer\n (10011010 or 01100101)", fontsize=18) plt.xlabel("p-depth", fontsize=18) plt.ylabel("Probability", fontsize=18) plt.grid("--") plt.savefig(f"graph/VQE/prob.png", bbox_inches='tight',pad_inches = 0,dpi=300) plt.close() plt.figure(figsize=(10,8)) for opt in range(4): plt.plot(pdepth, expectation[opt]) plt.legend(["SLSQP", "COBYLA", "NELDER_MEAD", "POWELL"]) plt.xlim(0.5, 10.5) plt.ylim(2, 8) plt.xticks(np.arange(1, 11), ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"], fontsize=18) plt.title("VQE, Expectation of Cost Function\n (Right Answer: 2)", fontsize=18) plt.xlabel("p-depth", fontsize=18) plt.ylabel("Expectation Value", fontsize=18) plt.grid("--") plt.savefig(f"graph/VQE/expect.png", bbox_inches='tight',pad_inches = 0,dpi=300) plt.close() plt.figure(figsize=(15,8)) for opt in range(4): plt.plot(pdepth, alpha[opt]) plt.legend(["SLSQP", "COBYLA", "ADAM", "CG", "Gradient descent"]) plt.xlim(0.5, 10.5) plt.ylim(0, 5) plt.xticks(np.arange(1, 11), ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"], fontsize=18) plt.title(r"VQE, $\frac{expectation - classical\ expectation}{|classical\ expectation|}$", fontsize=18) plt.xlabel("p-depth", fontsize=18) plt.ylabel("Error rate", fontsize=18) plt.grid("--") plt.savefig(f"graph/VQE/alpha.png", bbox_inches='tight',pad_inches = 0,dpi=300) plt.show() plt.close() dd = np.load(f"data/QAOA/prob_all_opt0_layer1.npy",allow_pickle='TRUE').item() new_ans = {} x = [] for key in dd: tmp = 0 for i in range(8): tmp += int(key[i]) if tmp == 4: x.append(key) for it in range(1,11): df = np.load(f"data/VQE/prob_all_opt0_layer{it}.npy",allow_pickle='TRUE').item() df2 = np.load(f"data/VQE/prob_all_opt1_layer{it}.npy",allow_pickle='TRUE').item() df3 = np.load(f"data/VQE/prob_all_opt2_layer{it}.npy",allow_pickle='TRUE').item() df4 = np.load(f"data/VQE/prob_all_opt3_layer{it}.npy",allow_pickle='TRUE').item() y = np.zeros(len(x)) y2 = np.zeros(len(x)) y3 = np.zeros(len(x)) y4 = np.zeros(len(x)) for i in range(len(x)): y[i] = float(df.get(x[i], 0.)) y2[i] = float(df2.get(x[i], 0.)) y3[i] = float(df3.get(x[i], 0.)) y4[i] = float(df4.get(x[i], 0.)) wid = 0.5 X = np.linspace(0, 150, len(x)) plt.figure(figsize=(25, 8)) plt.xlim(-2, 155) # plt.ylim(0, 1) plt.title(f"VQE, Reps={it}", fontsize=16) plt.bar(X, y, width=wid, color='r') plt.bar(X+0.5, y2, width=wid, color='b') plt.bar(X+1, y3, width=wid, color='k') plt.bar(X+1.5, y4, width=wid, color='g') plt.legend(labels=["SLSQP", "COBYLA", "NELDER_MEAD", "POWELL"]) plt.xticks(X, x) plt.ylabel("Probabilities", fontsize=16) plt.xticks(rotation=90, fontsize=16) plt.savefig(f"graph/VQE/few_{it}.png", bbox_inches='tight',pad_inches = 0,dpi=200) plt.show() plt.close() lst = [[1,4,6],[0,2],[1,5,7],[4],[0,3,5],[2,4],[0],[2]] adj_mtx = adjacency_matrix(lst) op_w = normalized_h(adj_mtx, 1) # op.to_matrix_op() # See the operator with matrix form qp_w = QuadraticProgram() qp_w.from_ising(op_w) print(qp_w) optimizer = SLSQP(maxiter=10000) algorithm_globals.random_seed = 1234 seed = 11234 num = 8 backend = Aer.get_backend('statevector_simulator') ry = TwoLocal(num, 'ry', 'cz', reps=4, entanglement='full') quantum_instance = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed) vqe = VQE(ry, optimizer=optimizer, quantum_instance=quantum_instance) vqe_meo = MinimumEigenOptimizer(vqe) result = vqe_meo.solve(qp_w) print(result.samples) # VQE data ratio_arr = np.linspace(0.2,2,5) for opt in range(2): for it in range(1, 11): for ratio_idx in range(len(ratio_arr)): if opt == 0: optimizer = SLSQP(maxiter=1000) elif opt == 1: optimizer = COBYLA(maxiter=1000) #elif opt == 2: #optimizer = NELDER_MEAD(maxiter=1000) #elif opt == 3: # optimizer = POWELL(maxiter=1000) algorithm_globals.random_seed = 1234 seed = 12345 backend = Aer.get_backend('statevector_simulator') qNum = 8 ry = TwoLocal(qNum, 'ry', 'cz', reps=it, entanglement='full') quantum_instance = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed) vqe = VQE(ry, optimizer=optimizer, quantum_instance=quantum_instance) vqe_meo = MinimumEigenOptimizer(vqe) ratio = ratio_arr[ratio_idx] op_w = normalized_h(adj_mtx, ratio) qp = QuadraticProgram() qp.from_ising(op_w) result = vqe_meo.solve(qp) print(result) output(result, f"data_normalized/VQE/prob_all_opt{opt}_layer{it}_ratio{ratio}.npy", f"data_normalized/VQE/fval_all_opt{opt}_layer{it}_ratio{ratio}.npy") classical_exp = np.load("data/normalized/classical_exp_arr.npy") classical_exp_arr = np.zeros([50]) for i in range(5): classical_exp_arr[10*i:10*(i+1)] = classical_exp[i] print(classical_exp_arr) df = np.load(f"data/normalized/VQE/prob_all_opt{0}_layer{1}_ratio{0.2}.npy",allow_pickle='TRUE').item() classical_exp = np.load("data/normalized/classical_exp_arr.npy") probability = np.zeros([4, 10]) cost = np.zeros([4, 10]) pdepth = np.arange(1, 11) expectation = np.zeros([4, 10]) ratMax = [0.2, 0.65, 1.1, 1.55, 2.0] output_prob = np.zeros([50, 3]) output_expectation = np.zeros([50, 3]) output_error_rate = np.zeros([50, 3]) count = 0 for opt in range(0, 2): for it in range(1, 11): for ra in ratMax: df = np.load(f"data/normalized/VQE/prob_all_opt{opt}_layer{it}_ratio{ra}.npy",allow_pickle='TRUE').item() df2 = np.load(f"data/normalized/VQE/fval_all_opt{opt}_layer{it}_ratio{ra}.npy",allow_pickle='TRUE').item() output_prob[count, 0] = output_expectation[count, 0] = output_error_rate[count, 0] = it output_prob[count, 1] = output_expectation[count, 1] = output_error_rate[count, 1] = ra output_prob[count, 2] = df.get('10011010', 0) + df.get('01100101', 0) for key in df: output_expectation[count, 2] += df[key] * df2[key] count += 1 for i in range(50): output_error_rate[i, 2] = (output_expectation[i, 2] - classical_exp_arr[i]) / np.abs(classical_exp_arr[i]) if opt == 0: np.savetxt("data/normalized/VQE_output/probability.csv", output_prob, delimiter=",") np.savetxt("data/normalized/VQE_output/expectation.csv", output_expectation, delimiter=",") np.savetxt("data/normalized/VQE_output/error_rate.csv", output_error_rate, delimiter=",") np.save("data/normalized/VQE_output_reprocessed/probability.npy", output_prob) np.save("data/normalized/VQE_output_reprocessed/expectation.npy", output_expectation) np.save("data/normalized/VQE_output_reprocessed/error_rate.npy", output_error_rate) if opt == 1: np.savetxt("data/normalized/VQE_output/probability_2.csv", output_prob, delimiter=",") np.savetxt("data/normalized/VQE_output/expectation_2.csv", output_expectation, delimiter=",") np.savetxt("data/normalized/VQE_output/error_rate_2.csv", output_error_rate, delimiter=",") np.save("data/normalized/VQE_output_reprocessed/probability_2.npy", output_prob) np.save("data/normalized/VQE_output_reprocessed/expectation_2.npy", output_expectation) np.save("data/normalized/VQE_output_reprocessed/error_rate_2.npy", output_error_rate) lst = [[1,4,6],[0,2],[1,5,7],[4],[0,3,5],[2,4],[0],[2]] adj_mtx = adjacency_matrix(lst) op = unnormalized_h(adj_mtx) # op.to_matrix_op() # See the operator with matrix form qp = QuadraticProgram() qp.from_ising(op) print(qp) optimizer = SLSQP(maxiter=10000) algorithm_globals.random_seed = 1234 seed = 11234 backend = Aer.get_backend('statevector_simulator') quantum_instance = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed) qaoa = QAOA(optimizer=optimizer, reps=3, quantum_instance=quantum_instance) meo = MinimumEigenOptimizer(qaoa) qaoa_meo = MinimumEigenOptimizer(qaoa) result = qaoa_meo.solve(qp) print(result.samples) for opt in range(4): for it in range(1, 11): if opt == 0: optimizer = SLSQP(maxiter=1000) elif opt == 1: optimizer = COBYLA(maxiter=1000) elif opt == 2: optimizer = NELDER_MEAD(maxiter=1000) elif opt == 3: optimizer = POWELL(maxiter=1000) algorithm_globals.random_seed = 1234 seed = 12345 backend = Aer.get_backend('statevector_simulator') qNum = 8 qaoa = QAOA(optimizer=optimizer, reps=3, quantum_instance=quantum_instance) meo = MinimumEigenOptimizer(qaoa) qaoa_meo = MinimumEigenOptimizer(qaoa) result = qaoa_meo.solve(qp) print(result) output(result, f"data/QAOA/prob_all_opt{opt}_layer{it}.npy", f"data/QAOA/fval_all_opt{opt}_layer{it}.npy") classical_exp = 2 probability = np.zeros([4, 10]) cost = np.zeros([4, 10]) pdepth = np.arange(1, 11) expectation = np.zeros([4, 10]) for opt in range(4): for it in range(1, 11): df = np.load(f"data/QAOA/prob_all_opt{opt}_layer{it}.npy",allow_pickle='TRUE').item() df2 = np.load(f"data/QAOA/fval_all_opt{opt}_layer{it}.npy",allow_pickle='TRUE').item() probability[opt, it-1] = df.get('10011010', 0) probability[opt, it-1] += df.get('01100101', 0) cost[opt, it-1] = df2.get('10011010', 0) for key in df: expectation[opt, it-1] += df[key] * df2[key] alpha = (expectation - classical_exp) / np.abs(classical_exp) plt.figure(figsize=(10,8)) for opt in range(4): plt.plot(pdepth, probability[opt]) plt.legend(["SLSQP", "COBYLA", "NELDER_MEAD", "POWELL"]) plt.xlim(0.5, 10.5) plt.ylim(0, 1) plt.xticks(np.arange(1, 11), ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"], fontsize=18) plt.title("QAOA, Probability of Finding Right Answer\n (10011010 or 01100101)", fontsize=18) plt.xlabel("p-depth", fontsize=18) plt.ylabel("Probability", fontsize=18) plt.grid("--") plt.savefig(f"graph/QAOA/prob.png", bbox_inches='tight',pad_inches = 0,dpi=300) plt.close() plt.figure(figsize=(10,8)) for opt in range(4): plt.plot(pdepth, expectation[opt]) plt.legend(["SLSQP", "COBYLA", "NELDER_MEAD", "POWELL"]) plt.xlim(0.5, 10.5) # plt.ylim(2, 8) plt.xticks(np.arange(1, 11), ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"], fontsize=18) plt.title("QAOA, Expectation of Cost Function\n (Right Answer: 2)", fontsize=18) plt.xlabel("p-depth", fontsize=18) plt.ylabel("Expectation Value", fontsize=18) plt.grid("--") plt.savefig(f"graph/QAOA/expect.png", bbox_inches='tight',pad_inches = 0,dpi=300) plt.close() plt.figure(figsize=(15,8)) for opt in range(4): plt.plot(pdepth, alpha[opt]) plt.legend(["SLSQP", "COBYLA", "NELDER_MEAD", "POWELL"]) plt.xlim(0.5, 10.5) plt.ylim(0, 5) plt.xticks(np.arange(1, 11), ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"], fontsize=18) plt.title(r"QAOA, $\frac{expectation - classical\ expectation}{|classical\ expectation|}$", fontsize=18) plt.xlabel("p-depth", fontsize=18) plt.ylabel("Error rate", fontsize=18) plt.grid("--") plt.savefig(f"graph/QAOA/alpha.png", bbox_inches='tight',pad_inches = 0,dpi=300) plt.show() plt.close() lst = [[1,4,6],[0,2],[1,5,7],[4],[0,3,5],[2,4],[0],[2]] adj_mtx = adjacency_matrix(lst) op_w = normalized_h(adj_mtx, 1) # op.to_matrix_op() # See the operator with matrix form qp_w = QuadraticProgram() qp_w.from_ising(op_w) print(qp_w) optimizer = SLSQP(maxiter=10000) algorithm_globals.random_seed = 1234 seed = 11234 backend = Aer.get_backend('statevector_simulator') quantum_instance = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed) qaoa = QAOA(optimizer=optimizer, reps=3, quantum_instance=quantum_instance) meo = MinimumEigenOptimizer(qaoa) qaoa_meo = MinimumEigenOptimizer(qaoa) result = qaoa_meo.solve(qp_w) print(result.samples) x = [] prob = np.zeros([4, 10]) func = np.zeros([4, 10]) ratio_arr = np.linspace(0.2,2,5) for opt in range(2): for it in range(1, 11): for ratio_idx in range(len(ratio_arr)): if opt == 0: optimizer = SLSQP(maxiter=1000) elif opt == 1: optimizer = COBYLA(maxiter=1000) # if opt == 2: # optimizer = NELDER_MEAD(maxiter=1000) # elif opt == 3: # optimizer = POWELL(maxiter=1000) algorithm_globals.random_seed = 1234 seed = 12345 backend = Aer.get_backend('statevector_simulator') qNum = 8 quantum_instance = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed) qaoa = QAOA(optimizer=optimizer, reps=it, quantum_instance=quantum_instance) meo = MinimumEigenOptimizer(qaoa) qaoa_meo = MinimumEigenOptimizer(qaoa) #prepare qp ratio = ratio_arr[ratio_idx] op_w = normalized_h(adj_mtx, ratio) qp = QuadraticProgram() qp.from_ising(op_w) result = qaoa_meo.solve(qp) print(result) output(result, f"data_normalized/QAOA/prob_all_opt{opt}_layer{it}_ratio{ratio}.npy", f"data_normalized/QAOA/fval_all_opt{opt}_layer{it}_ratio{ratio}.npy") df = np.load(f"data/normalized/QAOA/prob_all_opt{0}_layer{1}_ratio{0.2}.npy",allow_pickle='TRUE').item() classical_exp = np.load("data/normalized/classical_exp_arr.npy") probability = np.zeros([4, 10]) cost = np.zeros([4, 10]) pdepth = np.arange(1, 11) expectation = np.zeros([4, 10]) ratMax = [0.2, 0.65, 1.1, 1.55, 2.0] output_prob = np.zeros([50, 3]) output_expectation = np.zeros([50, 3]) output_error_rate = np.zeros([50, 3]) count = 0 for opt in range(0, 1): for it in range(1, 11): for ra in ratMax: df = np.load(f"data/normalized/QAOA/prob_all_opt{opt}_layer{it}_ratio{ra}.npy",allow_pickle='TRUE').item() df2 = np.load(f"data/normalized/QAOA/fval_all_opt{opt}_layer{it}_ratio{ra}.npy",allow_pickle='TRUE').item() output_prob[count, 0] = output_expectation[count, 0] = output_error_rate[count, 0] = it output_prob[count, 1] = output_expectation[count, 1] = output_error_rate[count, 1] = ra output_prob[count, 2] = df.get('10011010', 0) + df.get('01100101', 0) for key in df: output_expectation[count, 2] += df[key] * df2[key] count += 1 for i in range(50): output_error_rate[i, 2] = (output_expectation[i, 2] - classical_exp_arr[i]) / np.abs(classical_exp_arr[i]) if opt == 0: np.savetxt("data/normalized/QAOA_output/probability.csv", output_prob, delimiter=",") np.savetxt("data/normalized/QAOA_output/expectation.csv", output_expectation, delimiter=",") np.savetxt("data/normalized/QAOA_output/error_rate.csv", output_error_rate, delimiter=",") np.save("data/normalized/QAOA_output_reprocessed/probability.npy", output_prob) np.save("data/normalized/QAOA_output_reprocessed/expectation.npy", output_expectation) np.save("data/normalized/QAOA_output_reprocessed/error_rate.npy", output_error_rate) if opt == 1: np.savetxt("data/normalized/QAOA_output/probability_2.csv", output_prob, delimiter=",") np.savetxt("data/normalized/QAOA_output/expectation_2.csv", output_expectation, delimiter=",") np.savetxt("data/normalized/QAOA_output/error_rate_2.csv", output_error_rate, delimiter=",") np.save("data/normalized/QAOA_output_reprocessed/probability_2.npy", output_prob) np.save("data/normalized/QAOA_output_reprocessed/expectation_2.npy", output_expectation) np.save("data/normalized/QAOA_output_reprocessed/error_rate_2.npy", output_error_rate) iter_arr = np.linspace(1,8,8) ratio_arr = np.linspace(0.2,2,5) op = operator_from_adjacency_matrix(adj_mtx) for iter_idx in range(len(iter_arr)): iter_num = iter_arr[iter_idx] qp = QuadraticProgram() qp.from_ising(op) backend = Aer.get_backend('statevector_simulator') grover_optimizer = GroverOptimizer(8, num_iterations=iter_num, quantum_instance=backend) result = grover_optimizer.solve(qp) print(result.prettyprint()) output(result, f"data/GROVER/prob_iter{iter_num}.npy", f"data/GROVER/fval_iter{iter_num}.npy") plt.figure(figsize=(15,8)) legend_arr = [] for i in range(len(ratio_arr)): legend_arr.append("ratio = "+str(ratio_arr[i])) plt.plot(iter_arr, alpha[i]) legend_arr.append("Unnormalized") plt.plot(iter_arr,unnormalized_alpha) xticks_arr = [] for i in range(len(iter_arr)): xticks_arr.append(str(iter_arr[i])) plt.legend(legend_arr) plt.xlim(0.5, 8.5) plt.xticks(iter_arr, xticks_arr, fontsize=18) plt.title(r"GROVER, $\frac{expectation - classical\ expectation}{|classical\ expectation|}$", fontsize=18) plt.xlabel("Number of iteration", fontsize=18) plt.ylabel("Error rate", fontsize=18) plt.grid("--") plt.savefig(f"graph/GROVER/NORMALIZED/error_rate.png", bbox_inches='tight',pad_inches = 0,dpi=300) plt.show() normalized_error_rate = np.load("data/normalized/VQE_output_reprocessed/error_rate.npy") # df = pd.read_csv('data/normalized/VQE_output/probability.csv', sep=',',header=None) x = np.arange(1, 11) y = np.zeros([5, 10]) ratio_arr = np.linspace(0.2,2,5) # print(normalized_error_rate) normalized_error_rate = normalized_error_rate[:, 2:] for i in range(5): y[i] = normalized_error_rate[i::5].T classical_exp = 2 probability = np.zeros([4, 10]) cost = np.zeros([4, 10]) pdepth = np.arange(1, 11) expectation = np.zeros([4, 10]) for opt in range(4): for it in range(1, 11): df = np.load(f"data/VQE/prob_all_opt{opt}_layer{it}.npy",allow_pickle='TRUE').item() df2 = np.load(f"data/VQE/fval_all_opt{opt}_layer{it}.npy",allow_pickle='TRUE').item() probability[opt, it-1] = df.get('10011010', 0) probability[opt, it-1] += df.get('01100101', 0) cost[opt, it-1] = df2.get('10011010', 0) for key in df: expectation[opt, it-1] += df[key] * df2[key] alpha = (expectation - classical_exp) / np.abs(classical_exp) plt.figure(figsize=(15,8)) for i in range(5): plt.plot(x, y[i]) plt.plot(x, alpha[0]) plt.legend(["ratio = 0.2", "ratio = 0.65", "ratio = 1.1", "ratio = 1.55", "ratio = 2", "Unnormalized"]) plt.xlim(0.5, 10.5) # plt.ylim(0, 5) plt.xticks(np.arange(1, 11), ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"], fontsize=18) plt.title(r"VQE with SLSQP, $\frac{expectation - classical\ expectation}{|classical\ expectation|}$", fontsize=18) plt.xlabel("p-depth", fontsize=18) plt.ylabel("Error rate", fontsize=18) plt.grid("--") plt.savefig(f"graph/VQE_compare.png", bbox_inches='tight',pad_inches = 0,dpi=300) plt.show() plt.close() normalized_error_rate = np.load("data/normalized/QAOA_output_reprocessed/error_rate.npy") # df = pd.read_csv('data/normalized/VQE_output/probability.csv', sep=',',header=None) x = np.arange(1, 11) y = np.zeros([5, 10]) ratio_arr = np.linspace(0.2,2,5) # print(normalized_error_rate) normalized_error_rate = normalized_error_rate[:, 2:] for i in range(5): y[i] = normalized_error_rate[i::5].T classical_exp = 2 probability = np.zeros([4, 10]) cost = np.zeros([4, 10]) pdepth = np.arange(1, 11) expectation = np.zeros([4, 10]) for opt in range(4): for it in range(1, 11): df = np.load(f"data/QAOA/prob_all_opt{opt}_layer{it}.npy",allow_pickle='TRUE').item() df2 = np.load(f"data/QAOA/fval_all_opt{opt}_layer{it}.npy",allow_pickle='TRUE').item() probability[opt, it-1] = df.get('10011010', 0) probability[opt, it-1] += df.get('01100101', 0) cost[opt, it-1] = df2.get('10011010', 0) for key in df: expectation[opt, it-1] += df[key] * df2[key] alpha = (expectation - classical_exp) / np.abs(classical_exp) plt.figure(figsize=(15,8)) for i in range(5): plt.plot(x, y[i]) plt.plot(x, alpha[0]) plt.legend(["ratio = 0.2", "ratio = 0.65", "ratio = 1.1", "ratio = 1.55", "ratio = 2", "Unnormalized"]) plt.xlim(0.5, 10.5) # plt.ylim(0, 5) plt.xticks(np.arange(1, 11), ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"], fontsize=18) plt.title(r"QAOA with SLSQP, $\frac{expectation - classical\ expectation}{|classical\ expectation|}$", fontsize=18) plt.xlabel("p-depth", fontsize=18) plt.ylabel("Error rate", fontsize=18) plt.grid("--") plt.savefig(f"graph/QAOA_compare.png", bbox_inches='tight',pad_inches = 0,dpi=300) plt.show() plt.close() n = 8 penalty = 2 * n linear2penalty = LinearEqualityToPenalty(penalty=penalty) qp = linear2penalty.convert(qp) _, offset = qp.to_ising() # set classical optimizer maxiter = 1000 optimizer = COBYLA(maxiter=maxiter) # set variational ansatz ansatz = RealAmplitudes(n, reps=1) m = ansatz.num_parameters # set backend backend_name = "qasm_simulator" # use this for QASM simulator # backend_name = 'aer_simulator_statevector' # use this for statevector simlator backend = Aer.get_backend(backend_name) # run variational optimization for different values of alpha alphas = [1.0, 0.50, 0.25] # confidence levels to be evaluated # dictionaries to store optimization progress and results objectives = {alpha: [] for alpha in alphas} # set of tested objective functions w.r.t. alpha results = {} # results of minimum eigensolver w.r.t alpha # callback to store intermediate results def callback(i, params, obj, stddev, alpha): # we translate the objective from the internal Ising representation # to the original optimization problem objectives[alpha] += [-(obj + offset)] for alpha in alphas: # initialize CVaR_alpha objective cvar_exp = CVaRExpectation(alpha, PauliExpectation()) cvar_exp.compute_variance = lambda x: [0] # to be fixed in PR #1373 # initialize VQE using CVaR vqe = VQE( expectation=cvar_exp, optimizer=optimizer, ansatz=ansatz, quantum_instance=backend, callback=lambda i, params, obj, stddev: callback(i, params, obj, stddev, alpha), ) # initialize optimization algorithm based on CVaR-VQE opt_alg = MinimumEigenOptimizer(vqe) # solve problem results[alpha] = opt_alg.solve(qp) # print results print("alpha = {}:".format(alpha)) print(results[alpha].prettyprint()) print()
https://github.com/Qiskit/feedback
Qiskit
from qiskit import QuantumCircuit, transpile, schedule, IBMQ from qiskit.transpiler import PassManager import numpy as np IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-internal', group='deployed', project='default') backend = provider.get_backend('ibm_lagos') %matplotlib inline %config InlineBackend.figure_format = 'retina' from IPython.display import display from qiskit.circuit.library.standard_gates.equivalence_library import StandardEquivalenceLibrary as std_eqlib # Transpiler passes from qiskit.transpiler.passes import Collect2qBlocks from qiskit.transpiler.passes import ConsolidateBlocks from qiskit.transpiler.passes import Optimize1qGatesDecomposition from qiskit.transpiler.passes.basis import BasisTranslator, UnrollCustomDefinitions from qiskit.transpiler.passes.calibration.builders import RZXCalibrationBuilderNoEcho # New transpiler pass from qiskit.transpiler.passes.optimization.echo_rzx_weyl_decomposition import EchoRZXWeylDecomposition from qiskit.circuit.library.standard_gates import (RZZGate, RXXGate, RYYGate, RZXGate, CPhaseGate, CRZGate, HGate, SwapGate, CXGate, iSwapGate) import qiskit.quantum_info as qi from qiskit.quantum_info.synthesis.two_qubit_decompose import (TwoQubitControlledUDecomposer, TwoQubitWeylDecomposition) theta = 0.8 qc = QuantumCircuit(2) qc.cx(0, 1) qc.rz(theta, 1) qc.cx(0, 1) qc.draw('mpl') qct = transpile(qc, backend) schedule(qct, backend).draw() theta = 0.8 # equivalent decomposition in terms of echoed Cross-Resonance gates. qc = QuantumCircuit(2) qc.rz(np.pi / 2, 1) qc.sx(1) qc.rz(np.pi / 2, 1) qc.rzx(theta / 2, 0, 1) qc.x(0) qc.rzx(-theta / 2, 0, 1) qc.x(0) qc.rz(np.pi / 2, 1) qc.sx(1) qc.rz(np.pi / 2, 1) qc.draw('mpl') # Add the calibrations. pm = PassManager([RZXCalibrationBuilderNoEcho(backend)]) qc_pulse_efficient = pm.run(qc) # qc_pulse_efficient.calibrations schedule(qc_pulse_efficient, backend).draw() # Compare the schedule durations print('Duration of standard CNOT-based circuit:') print(schedule(qct, backend).duration) print('Duration of pulse-efficient circuit:') print(schedule(qc_pulse_efficient, backend).duration) # random two-qubit circuit qc = QuantumCircuit(2) qc.rzx(0.2, 1, 0) qc.cp(1, 0, 1) qc.s(0) qc.rzz(-0.6, 0, 1) qc.swap(0, 1) qc.h(0) qc.ryy(2.3, 0, 1) qc.iswap(0, 1) qc.draw('mpl') unitary = qi.Operator(qc) decomposer_weyl = TwoQubitWeylDecomposition(unitary) decomposer_weyl.circuit().draw('mpl') gate = RZXGate two_qubit_decompose = TwoQubitControlledUDecomposer(gate) new_circuit = two_qubit_decompose(unitary) new_circuit.draw('mpl') # Random circuit delta = 8 * np.pi / 5 epsilon = np.pi / 2 eta = -5.1 theta = 0.02 qc = QuantumCircuit(3) qc.ryy(theta, 0, 1) qc.s(0) qc.rz(eta, 1) qc.rzz(epsilon, 0, 1) qc.swap(0, 1) qc.cx(1, 0) qc.rzz(delta, 1, 2) qc.swap(1, 2) qc.h(2) print('Original circuit:') display(qc.draw('mpl', idle_wires=False)) qct = transpile(qc, backend) print('Standard Qiskit transpilation:') display(qct.draw('mpl', idle_wires=False)) pm = PassManager( [ # Consolidate consecutive two-qubit operations. Collect2qBlocks(), ConsolidateBlocks(basis_gates=['rz', 'sx', 'x', 'rxx']), ] ) qct_consolidated = pm.run(qct) qct_consolidated.draw('mpl', idle_wires=None) pm = PassManager( [ # Rewrite circuit in terms of Weyl-decomposed echoed RZX gates. EchoRZXWeylDecomposition(backend), ] ) qct_rzx_weyl = pm.run(qct_consolidated ) qct_rzx_weyl.draw('mpl', idle_wires=None) # Random circuit delta = 8 * np.pi / 5 epsilon = np.pi / 2 eta = -5.1 theta = 0.02 qc = QuantumCircuit(3) qc.ryy(theta, 0, 1) qc.s(0) qc.rz(eta, 1) qc.rzz(epsilon, 0, 1) qc.swap(0, 1) qc.cx(1, 0) qc.rzz(delta, 1, 2) qc.swap(1, 2) qc.h(2) print('Original circuit:') display(qc.draw('mpl', idle_wires=False)) qct = transpile(qc, backend) print('Standard Qiskit transpilation:') display(qct.draw('mpl', idle_wires=False)) rzx_basis = ['rzx', 'rz', 'x', 'sx'] # Build a pass manager that contains all needed transpiler passes pm = PassManager( [ # Consolidate consecutive two-qubit operations. Collect2qBlocks(), ConsolidateBlocks(basis_gates=['rz', 'sx', 'x', 'rxx']), # Rewrite circuit in terms of Weyl-decomposed echoed RZX gates. EchoRZXWeylDecomposition(backend), # Attach scaled CR pulse schedules to the RZX gates. RZXCalibrationBuilderNoEcho(backend), # Simplify single-qubit gates. UnrollCustomDefinitions(std_eqlib, rzx_basis), BasisTranslator(std_eqlib, rzx_basis), Optimize1qGatesDecomposition(rzx_basis) ] ) # Run the pass manager qc_pulse_efficient = pm.run(qct) print('Pulse-efficient, RZX-based circuit:') display(qc_pulse_efficient.draw('mpl', idle_wires=False)) # Compare the schedule durations print('Duration of standard CNOT-based circuit:') print(schedule(qct, backend).duration) print('Duration of pulse-efficient circuit:') print(schedule(qc_pulse_efficient, backend).duration)
https://github.com/arnaucasau/Quantum-Computing-3SAT
arnaucasau
# imports import math # importing Qiskit from qiskit import QuantumCircuit, Aer, assemble, transpile from qiskit_aer import AerSimulator from qiskit.visualization import plot_histogram f = open("cnf_test2.txt") info = f.readline().split(' ') n_var = int(info[0]) n_clause = int(info[1]) lines = [line.rstrip('\n') for line in f] formula = [] for i in lines: l = i.split(' ') formula.append([int(l[0]),int(l[1]),int(l[2])]) n_qubits = n_var + 3*n_var*(2 + n_clause) + n_clause + 1 n_measures = 7*n_var iters = 3*n_var qc = QuantumCircuit(n_qubits) for i in range(n_var): qc.h(i) ini = n_var+n_clause theta = 2*math.acos(math.sqrt(2/3)) for i in range(iters): qc.u(theta,0,0,ini) qc.x(ini) qc.ch(ini, ini+1) qc.x(ini) ini += 2+n_clause qc.x(n_qubits-1) qc.h(n_qubits-1) initial = qc.to_gate() initial.name = "Initialization" qc.draw() qc = QuantumCircuit(n_qubits) for it in range(iters): first_bit = n_var+(2+n_clause)*it+n_clause first_clause = n_var+(2+n_clause)*it nc = 0 for clause in formula: control = list() for lit in clause: lit_aux = abs(lit)-1 if lit < 0: qc.x(lit_aux) control.append(lit_aux) qc.mct(control,first_clause+nc) for lit in clause: if lit < 0: lit_aux = abs(lit)-1 qc.x(lit_aux) nc += 1 nc = 0 for clause in formula: lit1 = abs(clause[0])-1 lit2 = abs(clause[1])-1 lit3 = abs(clause[2])-1 control = list() control.append(first_bit) control.append(first_bit+1) control.append(first_clause+nc) for n in range(nc): control.append(first_clause+n) qc.x(first_clause+n) qc.x(first_bit) qc.x(first_bit+1) qc.mct(control,lit1) qc.x(first_bit+1) qc.x(first_bit) qc.x(first_bit+1) qc.mct(control,lit2) qc.x(first_bit+1) qc.x(first_bit) qc.mct(control,lit3) qc.x(first_bit) for n in range(nc): qc.x(first_clause+n) nc += 1 nc = 0 for clause in formula: control = list() for lit in clause: lit_aux = abs(lit)-1 if lit < 0: qc.x(lit_aux) control.append(lit_aux) qc.mct(control,n_qubits-1-n_clause+nc) for lit in clause: if lit < 0: lit_aux = abs(lit)-1 qc.x(lit_aux) nc += 1 schoning_step = qc.to_gate() schoning_step.name = "Schoning" qc.draw(fold=10000) qc = QuantumCircuit(n_qubits) qc.append(schoning_step, list(range(n_qubits))) control = list() for nc in range(n_clause): qc.x(n_qubits-1-n_clause+nc) control.append(n_qubits-1-n_clause+nc) qc.mct(control,n_qubits-1) for nc in range(n_clause): qc.x(n_qubits-1-n_clause+nc) qc.append(schoning_step.inverse(), list(range(n_qubits))) oracle = qc.to_gate() oracle.name = "Oracle" qc.draw() qc = QuantumCircuit(n_qubits) l = list() aux = list() ini = n_var for i in range(iters): for j in range(n_clause): aux.append(ini+j) ini += n_clause+2 for j in range(n_clause): aux.append(ini+j) for i in range(n_var): qc.h(i) qc.x(i) l.append(i) ini = n_var+n_clause theta = 2*math.acos(math.sqrt(2/3)) for i in range(iters): qc.x(ini) qc.ch(ini, ini+1) qc.x(ini) qc.u(-theta,0,0,ini) qc.x(ini) qc.x(ini+1) l.append(ini) l.append(ini+1) ini += 2+n_clause #qc.mct(l,n_qubits-1) original = l total = len(l) l2 = list() i = 0 while total != 1: for j in range(math.ceil(total/4)): qc.mct(l[4*j:4*j+4],aux[i]) l2.append(aux[i]) i+=1 l = l2 total = len(l) l2 = list() diff_part1 = qc.to_gate() diff_part1.name = "diff_part1" qc.draw() qc = QuantumCircuit(n_qubits) qc.append(diff_part1, list(range(n_qubits))) qc.mct(l,n_qubits-1) qc.append(diff_part1.inverse(), list(range(n_qubits))) diffuser = qc.to_gate() diffuser.name = "Diffuser" qc.draw() rounds = math.pi/4.0*math.sqrt((4/3)**n_var) print("Result:",rounds) print("Iterations R ≤",math.ceil(rounds)) if math.floor(rounds) == 0: rounds = round(rounds) else: rounds = math.floor(rounds) print("Iterations chosen:", rounds) qc = QuantumCircuit(n_qubits,n_measures) qc.append(initial, list(range(n_qubits))) for i in range(rounds): qc.append(oracle, list(range(n_qubits))) qc.append(diffuser, list(range(n_qubits))) actual = 0 for i in range(n_var): qc.measure([i],[i]) actual += 1 ini = n_var+n_clause for i in range(iters): qc.measure([ini],[actual]) qc.measure([ini+1],[actual+1]) ini += 2+n_clause actual += 2 qc.draw() # Select the AerSimulator from the Aer provider simulator = AerSimulator(method='matrix_product_state') #simulator = AerSimulator(method='statevector') #simulator = AerSimulator(method='extended_stabilizer') # Run and get counts, using the matrix_product_state method tcirc = transpile(qc, simulator) result = simulator.run(tcirc, shots=1).result() print('This succeeded?: {}'.format(result.success)) counts = result.get_counts(0) print(counts) assig = list(next(iter(counts))[::-1][0:n_var]) steps = next(iter(counts))[::-1][n_var:] print(assig) print(steps) def check_formula(formula, assig): c = 0 for clause in formula: lit1_pos = abs(clause[0])-1 lit2_pos = abs(clause[1])-1 lit3_pos = abs(clause[2])-1 total = 0 if (clause[0] < 0 and assig[lit1_pos] == '0') or (clause[0] > 0 and assig[lit1_pos] == '1'): total += 1 if (clause[1] < 0 and assig[lit2_pos] == '0') or (clause[1] > 0 and assig[lit2_pos] == '1'): total += 1 if (clause[2] < 0 and assig[lit3_pos] == '0') or (clause[2] > 0 and assig[lit3_pos] == '1'): total += 1 if total == 0: return (False,c) c += 1 return (True,-1) def schoning(formula,assig,steps,verbose=True): n = len(assig) if verbose: print("initial guess","->",assig) print("") for i in range(3*n): checking = check_formula(formula, assig) if checking[0]: return True lit = int(steps[2*i])+2*int(steps[2*i+1]) var = abs(formula[checking[1]][lit])-1 if assig[var] == '0': assig[var] = '1' else: assig[var] = '0' if verbose: print("iter",i+1,"->",assig) return check_formula(formula, assig)[0] schoning(formula,assig,steps) simulator = AerSimulator(method='matrix_product_state') tcirc = transpile(qc, simulator) result = simulator.run(tcirc, shots=1024).result() print('This succeeded?: {}'.format(result.success)) counts = result.get_counts(0) total = 0 true = 0 for key in counts: assig = list(key[::-1][0:n_var]) steps = key[::-1][n_var:] r = schoning(formula,assig,steps,verbose=False) if r: true += counts[key] total += counts[key] print(true/total*100,"% of success")
https://github.com/anpaschool/quantum-computing
anpaschool
from qiskit import * from math import pi import numpy as np from qiskit.visualization import plot_bloch_multivector,plot_state_qsphere import matplotlib.pyplot as plt q = np.array([1.+0.j, 0.+0.j]) plot_bloch_multivector(q) plot_state_qsphere(q) q = np.array([0.+0.j, 1.+0.j]) plot_bloch_multivector(q) plot_state_qsphere(q) qc = QuantumCircuit(1) qc.barrier() qc1 = qc.copy() qc.x(0) qc.barrier() qc2 =qc.copy() qc.draw('mpl') backend = Aer.get_backend('statevector_simulator') q1 = execute(qc1,backend).result().get_statevector() q2 = execute(qc2,backend).result().get_statevector() print(q1,q2) q = np.array([1/np.sqrt(2)+0.j, 1/np.sqrt(2)+0.j]) plot_bloch_multivector(q) plot_state_qsphere(q) q = np.array([1/np.sqrt(2)+0.j, -(1/np.sqrt(2))+0.j]) plot_bloch_multivector(q) plot_state_qsphere(q) qc = QuantumCircuit(1) qc.barrier() qc1 = qc.copy() qc.h(0) qc.barrier() qc2 =qc.copy() qc.draw('mpl') backend = Aer.get_backend('statevector_simulator') q1 = execute(qc1,backend).result().get_statevector() q2 = execute(qc2,backend).result().get_statevector() print(q1,q2) qc = QuantumCircuit(1) qc.barrier() qc1 = qc.copy() qc.x(0) qc.h(0) qc.barrier() qc2 =qc.copy() qc.draw('mpl') backend = Aer.get_backend('statevector_simulator') q1 = execute(qc1,backend).result().get_statevector() q2 = execute(qc2,backend).result().get_statevector() print(q1,q2)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
%matplotlib inline from qiskit_finance import QiskitFinanceError from qiskit_finance.data_providers import * import datetime import matplotlib.pyplot as plt from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() data = RandomDataProvider( tickers=["TICKER1", "TICKER2"], start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 30), seed=1, ) data.run() means = data.get_mean_vector() print("Means:") print(means) rho = data.get_similarity_matrix() print("A time-series similarity measure:") print(rho) plt.imshow(rho) plt.show() cov = data.get_covariance_matrix() print("A covariance matrix:") print(cov) plt.imshow(cov) plt.show() print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() for (cnt, s) in enumerate(data._tickers): print(s) print(data._data[cnt]) data = RandomDataProvider( tickers=["CompanyA", "CompanyB", "CompanyC"], start=datetime.datetime(2015, 1, 1), end=datetime.datetime(2016, 1, 30), seed=1, ) data.run() for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() stocks = ["GOOG", "AAPL"] token = "REPLACE-ME" if token != "REPLACE-ME": try: wiki = WikipediaDataProvider( token=token, tickers=stocks, start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 30), ) wiki.run() except QiskitFinanceError as ex: print(ex) print("Error retrieving data.") if token != "REPLACE-ME": if wiki._data: if wiki._n <= 1: print( "Not enough wiki data to plot covariance or time-series similarity. Please use at least two tickers." ) else: rho = wiki.get_similarity_matrix() print("A time-series similarity measure:") print(rho) plt.imshow(rho) plt.show() cov = wiki.get_covariance_matrix() print("A covariance matrix:") print(cov) plt.imshow(cov) plt.show() else: print("No wiki data loaded.") if token != "REPLACE-ME": if wiki._data: print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(stocks): plt.plot(wiki._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() for (cnt, s) in enumerate(stocks): print(s) print(wiki._data[cnt]) else: print("No wiki data loaded.") token = "REPLACE-ME" if token != "REPLACE-ME": try: nasdaq = DataOnDemandProvider( token=token, tickers=["GOOG", "AAPL"], start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 2), ) nasdaq.run() for (cnt, s) in enumerate(nasdaq._tickers): plt.plot(nasdaq._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() except QiskitFinanceError as ex: print(ex) print("Error retrieving data.") token = "REPLACE-ME" if token != "REPLACE-ME": try: lse = ExchangeDataProvider( token=token, tickers=["AEO", "ABBY", "ADIG", "ABF", "AEP", "AAL", "AGK", "AFN", "AAS", "AEFS"], stockmarket=StockMarket.LONDON, start=datetime.datetime(2018, 1, 1), end=datetime.datetime(2018, 12, 31), ) lse.run() for (cnt, s) in enumerate(lse._tickers): plt.plot(lse._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() except QiskitFinanceError as ex: print(ex) print("Error retrieving data.") try: data = YahooDataProvider( tickers=["MSFT", "AAPL", "GOOG"], start=datetime.datetime(2021, 1, 1), end=datetime.datetime(2021, 12, 31), ) data.run() for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend(loc="upper center", bbox_to_anchor=(0.5, 1.1), ncol=3) plt.xticks(rotation=90) plt.show() except QiskitFinanceError as ex: data = None print(ex) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
#Assign these values as per your requirements. global min_qubits,max_qubits,skip_qubits,max_circuits,num_shots,Noise_Inclusion min_qubits=1 max_qubits=3 skip_qubits=1 max_circuits=3 num_shots=1000 use_XX_YY_ZZ_gates = True Noise_Inclusion = False saveplots = False Memory_utilization_plot = True Type_of_Simulator = "built_in" #Inputs are "built_in" or "FAKE" or "FAKEV2" backend_name = "FakeGuadalupeV2" #Can refer to the README files for the available backends gate_counts_plots = True #Change your Specification of Simulator in Declaring Backend Section #By Default : built_in -> qasm_simulator and FAKE -> FakeSantiago() and FAKEV2 -> FakeSantiagoV2() import numpy as np import os,json from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, transpile, execute import time import matplotlib.pyplot as plt # Import from Qiskit Aer noise module from qiskit_aer.noise import (NoiseModel, QuantumError, ReadoutError,pauli_error, depolarizing_error, thermal_relaxation_error,reset_error) # Benchmark Name benchmark_name = "Hamiltonian Simulation" # Selection of basis gate set for transpilation # Note: selector 1 is a hardware agnostic gate set basis_selector = 1 basis_gates_array = [ [], ['rx', 'ry', 'rz', 'cx'], # a common basis set, default ['cx', 'rz', 'sx', 'x'], # IBM default basis set ['rx', 'ry', 'rxx'], # IonQ default basis set ['h', 'p', 'cx'], # another common basis set ['u', 'cx'] # general unitaries basis gates ] np.random.seed(0) num_gates = 0 depth = 0 def get_QV(backend): import json # Assuming backend.conf_filename is the filename and backend.dirname is the directory path conf_filename = backend.dirname + "/" + backend.conf_filename # Open the JSON file with open(conf_filename, 'r') as file: # Load the JSON data data = json.load(file) # Extract the quantum_volume parameter QV = data.get('quantum_volume', None) return QV def checkbackend(backend_name,Type_of_Simulator): if Type_of_Simulator == "built_in": available_backends = [] for i in Aer.backends(): available_backends.append(i.name) if backend_name in available_backends: platform = backend_name return platform else: print(f"incorrect backend name or backend not available. Using qasm_simulator by default !!!!") print(f"available backends are : {available_backends}") platform = "qasm_simulator" return platform elif Type_of_Simulator == "FAKE" or Type_of_Simulator == "FAKEV2": import qiskit.providers.fake_provider as fake_backends if hasattr(fake_backends,backend_name) is True: print(f"Backend {backend_name} is available for type {Type_of_Simulator}.") backend_class = getattr(fake_backends,backend_name) backend_instance = backend_class() return backend_instance else: print(f"Backend {backend_name} is not available or incorrect for type {Type_of_Simulator}. Executing with FakeSantiago!!!") if Type_of_Simulator == "FAKEV2": backend_class = getattr(fake_backends,"FakeSantiagoV2") else: backend_class = getattr(fake_backends,"FakeSantiago") backend_instance = backend_class() return backend_instance if Type_of_Simulator == "built_in": platform = checkbackend(backend_name,Type_of_Simulator) #By default using "Qasm Simulator" backend = Aer.get_backend(platform) QV_=None print(f"{platform} device is capable of running {backend.num_qubits}") print(f"backend version is {backend.backend_version}") elif Type_of_Simulator == "FAKE": basis_selector = 0 backend = checkbackend(backend_name,Type_of_Simulator) QV_ = get_QV(backend) platform = backend.properties().backend_name +"-"+ backend.properties().backend_version #Replace this string with the backend Provider's name as this is used for Plotting. max_qubits=backend.configuration().n_qubits print(f"{platform} device is capable of running {backend.configuration().n_qubits}") print(f"{platform} has QV={QV_}") if max_qubits > 30: print(f"Device is capable with max_qubits = {max_qubits}") max_qubit = 30 print(f"Using fake backend {platform} with max_qubits {max_qubits}") elif Type_of_Simulator == "FAKEV2": basis_selector = 0 if "V2" not in backend_name: backend_name = backend_name+"V2" backend = checkbackend(backend_name,Type_of_Simulator) QV_ = get_QV(backend) platform = backend.name +"-" +backend.backend_version max_qubits=backend.num_qubits print(f"{platform} device is capable of running {backend.num_qubits}") print(f"{platform} has QV={QV_}") if max_qubits > 30: print(f"Device is capable with max_qubits = {max_qubits}") max_qubit = 30 print(f"Using fake backend {platform} with max_qubits {max_qubits}") else: print("Enter valid Simulator.....") # saved circuits and subcircuits for display QC_ = None XX_ = None YY_ = None ZZ_ = None XXYYZZ_ = None # import precalculated data to compare against filename = os.path.join("precalculated_data.json") with open(filename, 'r') as file: data = file.read() precalculated_data = json.loads(data) ############### Circuit Definition def HamiltonianSimulation(n_spins, K, t, w, h_x, h_z): ''' Construct a Qiskit circuit for Hamiltonian Simulation :param n_spins:The number of spins to simulate :param K: The Trotterization order :param t: duration of simulation :return: return a Qiskit circuit for this Hamiltonian ''' num_qubits = n_spins secret_int = f"{K}-{t}" # allocate qubits qr = QuantumRegister(n_spins); cr = ClassicalRegister(n_spins); qc = QuantumCircuit(qr, cr, name=f"hamsim-{num_qubits}-{secret_int}") tau = t / K # start with initial state of 1010101... for k in range(0, n_spins, 2): qc.x(qr[k]) qc.barrier() # loop over each trotter step, adding gates to the circuit defining the hamiltonian for k in range(K): # the Pauli spin vector product [qc.rx(2 * tau * w * h_x[i], qr[i]) for i in range(n_spins)] [qc.rz(2 * tau * w * h_z[i], qr[i]) for i in range(n_spins)] qc.barrier() # Basic implementation of exp(i * t * (XX + YY + ZZ)) if _use_XX_YY_ZZ_gates: # XX operator on each pair of qubits in linear chain for j in range(2): for i in range(j%2, n_spins - 1, 2): qc.append(xx_gate(tau).to_instruction(), [qr[i], qr[(i + 1) % n_spins]]) # YY operator on each pair of qubits in linear chain for j in range(2): for i in range(j%2, n_spins - 1, 2): qc.append(yy_gate(tau).to_instruction(), [qr[i], qr[(i + 1) % n_spins]]) # ZZ operation on each pair of qubits in linear chain for j in range(2): for i in range(j%2, n_spins - 1, 2): qc.append(zz_gate(tau).to_instruction(), [qr[i], qr[(i + 1) % n_spins]]) # Use an optimal XXYYZZ combined operator # See equation 1 and Figure 6 in https://arxiv.org/pdf/quant-ph/0308006.pdf else: # optimized XX + YY + ZZ operator on each pair of qubits in linear chain for j in range(2): for i in range(j % 2, n_spins - 1, 2): qc.append(xxyyzz_opt_gate(tau).to_instruction(), [qr[i], qr[(i + 1) % n_spins]]) qc.barrier() # measure all the qubits used in the circuit for i_qubit in range(n_spins): qc.measure(qr[i_qubit], cr[i_qubit]) # save smaller circuit example for display global QC_ if QC_ == None or n_spins <= 6: if n_spins < 9: QC_ = qc return qc ############### XX, YY, ZZ Gate Implementations # Simple XX gate on q0 and q1 with angle 'tau' def xx_gate(tau): qr = QuantumRegister(2); qc = QuantumCircuit(qr, name="xx_gate") qc.h(qr[0]) qc.h(qr[1]) qc.cx(qr[0], qr[1]) qc.rz(3.1416*tau, qr[1]) qc.cx(qr[0], qr[1]) qc.h(qr[0]) qc.h(qr[1]) # save circuit example for display global XX_ XX_ = qc return qc # Simple YY gate on q0 and q1 with angle 'tau' def yy_gate(tau): qr = QuantumRegister(2); qc = QuantumCircuit(qr, name="yy_gate") qc.s(qr[0]) qc.s(qr[1]) qc.h(qr[0]) qc.h(qr[1]) qc.cx(qr[0], qr[1]) qc.rz(3.1416*tau, qr[1]) qc.cx(qr[0], qr[1]) qc.h(qr[0]) qc.h(qr[1]) qc.sdg(qr[0]) qc.sdg(qr[1]) # save circuit example for display global YY_ YY_ = qc return qc # Simple ZZ gate on q0 and q1 with angle 'tau' def zz_gate(tau): qr = QuantumRegister(2); qc = QuantumCircuit(qr, name="zz_gate") qc.cx(qr[0], qr[1]) qc.rz(3.1416*tau, qr[1]) qc.cx(qr[0], qr[1]) # save circuit example for display global ZZ_ ZZ_ = qc return qc # Optimal combined XXYYZZ gate (with double coupling) on q0 and q1 with angle 'tau' def xxyyzz_opt_gate(tau): alpha = tau; beta = tau; gamma = tau qr = QuantumRegister(2); qc = QuantumCircuit(qr, name="xxyyzz_opt") qc.rz(3.1416/2, qr[1]) qc.cx(qr[1], qr[0]) qc.rz(3.1416*gamma - 3.1416/2, qr[0]) qc.ry(3.1416/2 - 3.1416*alpha, qr[1]) qc.cx(qr[0], qr[1]) qc.ry(3.1416*beta - 3.1416/2, qr[1]) qc.cx(qr[1], qr[0]) qc.rz(-3.1416/2, qr[0]) # save circuit example for display global XXYYZZ_ XXYYZZ_ = qc return qc # Create an empty noise model noise_parameters = NoiseModel() if Type_of_Simulator == "built_in": # Add depolarizing error to all single qubit gates with error rate 0.05% and to all two qubit gates with error rate 0.5% depol_one_qb_error = 0.05 depol_two_qb_error = 0.005 noise_parameters.add_all_qubit_quantum_error(depolarizing_error(depol_one_qb_error, 1), ['rx', 'ry', 'rz']) noise_parameters.add_all_qubit_quantum_error(depolarizing_error(depol_two_qb_error, 2), ['cx']) # Add amplitude damping error to all single qubit gates with error rate 0.0% and to all two qubit gates with error rate 0.0% amp_damp_one_qb_error = 0.0 amp_damp_two_qb_error = 0.0 noise_parameters.add_all_qubit_quantum_error(depolarizing_error(amp_damp_one_qb_error, 1), ['rx', 'ry', 'rz']) noise_parameters.add_all_qubit_quantum_error(depolarizing_error(amp_damp_two_qb_error, 2), ['cx']) # Add reset noise to all single qubit resets reset_to_zero_error = 0.005 reset_to_one_error = 0.005 noise_parameters.add_all_qubit_quantum_error(reset_error(reset_to_zero_error, reset_to_one_error),["reset"]) # Add readout error p0given1_error = 0.000 p1given0_error = 0.000 error_meas = ReadoutError([[1 - p1given0_error, p1given0_error], [p0given1_error, 1 - p0given1_error]]) noise_parameters.add_all_qubit_readout_error(error_meas) #print(noise_parameters) elif Type_of_Simulator == "FAKE"or"FAKEV2": noise_parameters = NoiseModel.from_backend(backend) #print(noise_parameters) ### Analysis methods to be expanded and eventually compiled into a separate analysis.py file import math, functools def hellinger_fidelity_with_expected(p, q): """ p: result distribution, may be passed as a counts distribution q: the expected distribution to be compared against References: `Hellinger Distance @ wikipedia <https://en.wikipedia.org/wiki/Hellinger_distance>`_ Qiskit Hellinger Fidelity Function """ p_sum = sum(p.values()) q_sum = sum(q.values()) if q_sum == 0: print("ERROR: polarization_fidelity(), expected distribution is invalid, all counts equal to 0") return 0 p_normed = {} for key, val in p.items(): p_normed[key] = val/p_sum # if p_sum != 0: # p_normed[key] = val/p_sum # else: # p_normed[key] = 0 q_normed = {} for key, val in q.items(): q_normed[key] = val/q_sum total = 0 for key, val in p_normed.items(): if key in q_normed.keys(): total += (np.sqrt(val) - np.sqrt(q_normed[key]))**2 del q_normed[key] else: total += val total += sum(q_normed.values()) # in some situations (error mitigation) this can go negative, use abs value if total < 0: print(f"WARNING: using absolute value in fidelity calculation") total = abs(total) dist = np.sqrt(total)/np.sqrt(2) fidelity = (1-dist**2)**2 return fidelity def polarization_fidelity(counts, correct_dist, thermal_dist=None): """ Combines Hellinger fidelity and polarization rescaling into fidelity calculation used in every benchmark counts: the measurement outcomes after `num_shots` algorithm runs correct_dist: the distribution we expect to get for the algorithm running perfectly thermal_dist: optional distribution to pass in distribution from a uniform superposition over all states. If `None`: generated as `uniform_dist` with the same qubits as in `counts` returns both polarization fidelity and the hellinger fidelity Polarization from: `https://arxiv.org/abs/2008.11294v1` """ num_measured_qubits = len(list(correct_dist.keys())[0]) #print(num_measured_qubits) counts = {k.zfill(num_measured_qubits): v for k, v in counts.items()} # calculate hellinger fidelity between measured expectation values and correct distribution hf_fidelity = hellinger_fidelity_with_expected(counts,correct_dist) # to limit cpu and memory utilization, skip noise correction if more than 16 measured qubits if num_measured_qubits > 16: return { 'fidelity':hf_fidelity, 'hf_fidelity':hf_fidelity } # if not provided, generate thermal dist based on number of qubits if thermal_dist == None: thermal_dist = uniform_dist(num_measured_qubits) # set our fidelity rescaling value as the hellinger fidelity for a depolarized state floor_fidelity = hellinger_fidelity_with_expected(thermal_dist, correct_dist) # rescale fidelity result so uniform superposition (random guessing) returns fidelity # rescaled to 0 to provide a better measure of success of the algorithm (polarization) new_floor_fidelity = 0 fidelity = rescale_fidelity(hf_fidelity, floor_fidelity, new_floor_fidelity) return { 'fidelity':fidelity, 'hf_fidelity':hf_fidelity } ## Uniform distribution function commonly used def rescale_fidelity(fidelity, floor_fidelity, new_floor_fidelity): """ Linearly rescales our fidelities to allow comparisons of fidelities across benchmarks fidelity: raw fidelity to rescale floor_fidelity: threshold fidelity which is equivalent to random guessing new_floor_fidelity: what we rescale the floor_fidelity to Ex, with floor_fidelity = 0.25, new_floor_fidelity = 0.0: 1 -> 1; 0.25 -> 0; 0.5 -> 0.3333; """ rescaled_fidelity = (1-new_floor_fidelity)/(1-floor_fidelity) * (fidelity - 1) + 1 # ensure fidelity is within bounds (0, 1) if rescaled_fidelity < 0: rescaled_fidelity = 0.0 if rescaled_fidelity > 1: rescaled_fidelity = 1.0 return rescaled_fidelity def uniform_dist(num_state_qubits): dist = {} for i in range(2**num_state_qubits): key = bin(i)[2:].zfill(num_state_qubits) dist[key] = 1/(2**num_state_qubits) return dist from matplotlib.patches import Rectangle import matplotlib.cm as cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap, Normalize from matplotlib.patches import Circle ############### Color Map functions # Create a selection of colormaps from which to choose; default to custom_spectral cmap_spectral = plt.get_cmap('Spectral') cmap_greys = plt.get_cmap('Greys') cmap_blues = plt.get_cmap('Blues') cmap_custom_spectral = None # the default colormap is the spectral map cmap = cmap_spectral cmap_orig = cmap_spectral # current cmap normalization function (default None) cmap_norm = None default_fade_low_fidelity_level = 0.16 default_fade_rate = 0.7 # Specify a normalization function here (default None) def set_custom_cmap_norm(vmin, vmax): global cmap_norm if vmin == vmax or (vmin == 0.0 and vmax == 1.0): print("... setting cmap norm to None") cmap_norm = None else: print(f"... setting cmap norm to [{vmin}, {vmax}]") cmap_norm = Normalize(vmin=vmin, vmax=vmax) # Remake the custom spectral colormap with user settings def set_custom_cmap_style( fade_low_fidelity_level=default_fade_low_fidelity_level, fade_rate=default_fade_rate): #print("... set custom map style") global cmap, cmap_custom_spectral, cmap_orig cmap_custom_spectral = create_custom_spectral_cmap( fade_low_fidelity_level=fade_low_fidelity_level, fade_rate=fade_rate) cmap = cmap_custom_spectral cmap_orig = cmap_custom_spectral # Create the custom spectral colormap from the base spectral def create_custom_spectral_cmap( fade_low_fidelity_level=default_fade_low_fidelity_level, fade_rate=default_fade_rate): # determine the breakpoint from the fade level num_colors = 100 breakpoint = round(fade_low_fidelity_level * num_colors) # get color list for spectral map spectral_colors = [cmap_spectral(v/num_colors) for v in range(num_colors)] #print(fade_rate) # create a list of colors to replace those below the breakpoint # and fill with "faded" color entries (in reverse) low_colors = [0] * breakpoint #for i in reversed(range(breakpoint)): for i in range(breakpoint): # x is index of low colors, normalized 0 -> 1 x = i / breakpoint # get color at this index bc = spectral_colors[i] r0 = bc[0] g0 = bc[1] b0 = bc[2] z0 = bc[3] r_delta = 0.92 - r0 #print(f"{x} {bc} {r_delta}") # compute saturation and greyness ratio sat_ratio = 1 - x #grey_ratio = 1 - x ''' attempt at a reflective gradient if i >= breakpoint/2: xf = 2*(x - 0.5) yf = pow(xf, 1/fade_rate)/2 grey_ratio = 1 - (yf + 0.5) else: xf = 2*(0.5 - x) yf = pow(xf, 1/fade_rate)/2 grey_ratio = 1 - (0.5 - yf) ''' grey_ratio = 1 - math.pow(x, 1/fade_rate) #print(f" {xf} {yf} ") #print(f" {sat_ratio} {grey_ratio}") r = r0 + r_delta * sat_ratio g_delta = r - g0 b_delta = r - b0 g = g0 + g_delta * grey_ratio b = b0 + b_delta * grey_ratio #print(f"{r} {g} {b}\n") low_colors[i] = (r,g,b,z0) #print(low_colors) # combine the faded low colors with the regular spectral cmap to make a custom version cmap_custom_spectral = ListedColormap(low_colors + spectral_colors[breakpoint:]) #spectral_colors = [cmap_custom_spectral(v/10) for v in range(10)] #for i in range(10): print(spectral_colors[i]) #print("") return cmap_custom_spectral # Make the custom spectral color map the default on module init set_custom_cmap_style() # Arrange the stored annotations optimally and add to plot def anno_volumetric_data(ax, depth_base=2, label='Depth', labelpos=(0.2, 0.7), labelrot=0, type=1, fill=True): # sort all arrays by the x point of the text (anno_offs) global x_anno_offs, y_anno_offs, anno_labels, x_annos, y_annos all_annos = sorted(zip(x_anno_offs, y_anno_offs, anno_labels, x_annos, y_annos)) x_anno_offs = [a for a,b,c,d,e in all_annos] y_anno_offs = [b for a,b,c,d,e in all_annos] anno_labels = [c for a,b,c,d,e in all_annos] x_annos = [d for a,b,c,d,e in all_annos] y_annos = [e for a,b,c,d,e in all_annos] #print(f"{x_anno_offs}") #print(f"{y_anno_offs}") #print(f"{anno_labels}") for i in range(len(anno_labels)): x_anno = x_annos[i] y_anno = y_annos[i] x_anno_off = x_anno_offs[i] y_anno_off = y_anno_offs[i] label = anno_labels[i] if i > 0: x_delta = abs(x_anno_off - x_anno_offs[i - 1]) y_delta = abs(y_anno_off - y_anno_offs[i - 1]) if y_delta < 0.7 and x_delta < 2: y_anno_off = y_anno_offs[i] = y_anno_offs[i - 1] - 0.6 #x_anno_off = x_anno_offs[i] = x_anno_offs[i - 1] + 0.1 ax.annotate(label, xy=(x_anno+0.0, y_anno+0.1), arrowprops=dict(facecolor='black', shrink=0.0, width=0.5, headwidth=4, headlength=5, edgecolor=(0.8,0.8,0.8)), xytext=(x_anno_off + labelpos[0], y_anno_off + labelpos[1]), rotation=labelrot, horizontalalignment='left', verticalalignment='baseline', color=(0.2,0.2,0.2), clip_on=True) if saveplots == True: plt.savefig("VolumetricPlotSample.jpg") # Plot one group of data for volumetric presentation def plot_volumetric_data(ax, w_data, d_data, f_data, depth_base=2, label='Depth', labelpos=(0.2, 0.7), labelrot=0, type=1, fill=True, w_max=18, do_label=False, do_border=True, x_size=1.0, y_size=1.0, zorder=1, offset_flag=False, max_depth=0, suppress_low_fidelity=False): # since data may come back out of order, save point at max y for annotation i_anno = 0 x_anno = 0 y_anno = 0 # plot data rectangles low_fidelity_count = True last_y = -1 k = 0 # determine y-axis dimension for one pixel to use for offset of bars that start at 0 (_, dy) = get_pixel_dims(ax) # do this loop in reverse to handle the case where earlier cells are overlapped by later cells for i in reversed(range(len(d_data))): x = depth_index(d_data[i], depth_base) y = float(w_data[i]) f = f_data[i] # each time we star a new row, reset the offset counter # DEVNOTE: this is highly specialized for the QA area plots, where there are 8 bars # that represent time starting from 0 secs. We offset by one pixel each and center the group if y != last_y: last_y = y; k = 3 # hardcoded for 8 cells, offset by 3 #print(f"{i = } {x = } {y = }") if max_depth > 0 and d_data[i] > max_depth: #print(f"... excessive depth (2), skipped; w={y} d={d_data[i]}") break; # reject cells with low fidelity if suppress_low_fidelity and f < suppress_low_fidelity_level: if low_fidelity_count: break else: low_fidelity_count = True # the only time this is False is when doing merged gradation plots if do_border == True: # this case is for an array of x_sizes, i.e. each box has different width if isinstance(x_size, list): # draw each of the cells, with no offset if not offset_flag: ax.add_patch(box_at(x, y, f, type=type, fill=fill, x_size=x_size[i], y_size=y_size, zorder=zorder)) # use an offset for y value, AND account for x and width to draw starting at 0 else: ax.add_patch(box_at((x/2 + x_size[i]/4), y + k*dy, f, type=type, fill=fill, x_size=x+ x_size[i]/2, y_size=y_size, zorder=zorder)) # this case is for only a single cell else: ax.add_patch(box_at(x, y, f, type=type, fill=fill, x_size=x_size, y_size=y_size)) # save the annotation point with the largest y value if y >= y_anno: x_anno = x y_anno = y i_anno = i # move the next bar down (if using offset) k -= 1 # if no data rectangles plotted, no need for a label if x_anno == 0 or y_anno == 0: return x_annos.append(x_anno) y_annos.append(y_anno) anno_dist = math.sqrt( (y_anno - 1)**2 + (x_anno - 1)**2 ) # adjust radius of annotation circle based on maximum width of apps anno_max = 10 if w_max > 10: anno_max = 14 if w_max > 14: anno_max = 18 scale = anno_max / anno_dist # offset of text from end of arrow if scale > 1: x_anno_off = scale * x_anno - x_anno - 0.5 y_anno_off = scale * y_anno - y_anno else: x_anno_off = 0.7 y_anno_off = 0.5 x_anno_off += x_anno y_anno_off += y_anno # print(f"... {xx} {yy} {anno_dist}") x_anno_offs.append(x_anno_off) y_anno_offs.append(y_anno_off) anno_labels.append(label) if do_label: ax.annotate(label, xy=(x_anno+labelpos[0], y_anno+labelpos[1]), rotation=labelrot, horizontalalignment='left', verticalalignment='bottom', color=(0.2,0.2,0.2)) x_annos = [] y_annos = [] x_anno_offs = [] y_anno_offs = [] anno_labels = [] # init arrays to hold annotation points for label spreading def vplot_anno_init (): global x_annos, y_annos, x_anno_offs, y_anno_offs, anno_labels x_annos = [] y_annos = [] x_anno_offs = [] y_anno_offs = [] anno_labels = [] # Number of ticks on volumetric depth axis max_depth_log = 22 # average transpile factor between base QV depth and our depth based on results from QV notebook QV_transpile_factor = 12.7 # format a number using K,M,B,T for large numbers, optionally rounding to 'digits' decimal places if num > 1 # (sign handling may be incorrect) def format_number(num, digits=0): if isinstance(num, str): num = float(num) num = float('{:.3g}'.format(abs(num))) sign = '' metric = {'T': 1000000000000, 'B': 1000000000, 'M': 1000000, 'K': 1000, '': 1} for index in metric: num_check = num / metric[index] if num_check >= 1: num = round(num_check, digits) sign = index break numstr = f"{str(num)}" if '.' in numstr: numstr = numstr.rstrip('0').rstrip('.') return f"{numstr}{sign}" # Return the color associated with the spcific value, using color map norm def get_color(value): # if there is a normalize function installed, scale the data if cmap_norm: value = float(cmap_norm(value)) if cmap == cmap_spectral: value = 0.05 + value*0.9 elif cmap == cmap_blues: value = 0.00 + value*1.0 else: value = 0.0 + value*0.95 return cmap(value) # Return the x and y equivalent to a single pixel for the given plot axis def get_pixel_dims(ax): # transform 0 -> 1 to pixel dimensions pixdims = ax.transData.transform([(0,1),(1,0)])-ax.transData.transform((0,0)) xpix = pixdims[1][0] ypix = pixdims[0][1] #determine x- and y-axis dimension for one pixel dx = (1 / xpix) dy = (1 / ypix) return (dx, dy) ############### Helper functions # return the base index for a circuit depth value # take the log in the depth base, and add 1 def depth_index(d, depth_base): if depth_base <= 1: return d if d == 0: return 0 return math.log(d, depth_base) + 1 # draw a box at x,y with various attributes def box_at(x, y, value, type=1, fill=True, x_size=1.0, y_size=1.0, alpha=1.0, zorder=1): value = min(value, 1.0) value = max(value, 0.0) fc = get_color(value) ec = (0.5,0.5,0.5) return Rectangle((x - (x_size/2), y - (y_size/2)), x_size, y_size, alpha=alpha, edgecolor = ec, facecolor = fc, fill=fill, lw=0.5*y_size, zorder=zorder) # draw a circle at x,y with various attributes def circle_at(x, y, value, type=1, fill=True): size = 1.0 value = min(value, 1.0) value = max(value, 0.0) fc = get_color(value) ec = (0.5,0.5,0.5) return Circle((x, y), size/2, alpha = 0.7, # DEVNOTE: changed to 0.7 from 0.5, to handle only one cell edgecolor = ec, facecolor = fc, fill=fill, lw=0.5) def box4_at(x, y, value, type=1, fill=True, alpha=1.0): size = 1.0 value = min(value, 1.0) value = max(value, 0.0) fc = get_color(value) ec = (0.3,0.3,0.3) ec = fc return Rectangle((x - size/8, y - size/2), size/4, size, alpha=alpha, edgecolor = ec, facecolor = fc, fill=fill, lw=0.1) # Draw a Quantum Volume rectangle with specified width and depth, and grey-scale value def qv_box_at(x, y, qv_width, qv_depth, value, depth_base): #print(f"{qv_width} {qv_depth} {depth_index(qv_depth, depth_base)}") return Rectangle((x - 0.5, y - 0.5), depth_index(qv_depth, depth_base), qv_width, edgecolor = (value,value,value), facecolor = (value,value,value), fill=True, lw=1) def bkg_box_at(x, y, value=0.9): size = 0.6 return Rectangle((x - size/2, y - size/2), size, size, edgecolor = (.75,.75,.75), facecolor = (value,value,value), fill=True, lw=0.5) def bkg_empty_box_at(x, y): size = 0.6 return Rectangle((x - size/2, y - size/2), size, size, edgecolor = (.75,.75,.75), facecolor = (1.0,1.0,1.0), fill=True, lw=0.5) # Plot the background for the volumetric analysis def plot_volumetric_background(max_qubits=11, QV=32, depth_base=2, suptitle=None, avail_qubits=0, colorbar_label="Avg Result Fidelity"): if suptitle == None: suptitle = f"Volumetric Positioning\nCircuit Dimensions and Fidelity Overlaid on Quantum Volume = {QV}" QV0 = QV qv_estimate = False est_str = "" if QV == 0: # QV = 0 indicates "do not draw QV background or label" QV = 2048 elif QV < 0: # QV < 0 indicates "add est. to label" QV = -QV qv_estimate = True est_str = " (est.)" if avail_qubits > 0 and max_qubits > avail_qubits: max_qubits = avail_qubits max_width = 13 if max_qubits > 11: max_width = 18 if max_qubits > 14: max_width = 20 if max_qubits > 16: max_width = 24 if max_qubits > 24: max_width = 33 #print(f"... {avail_qubits} {max_qubits} {max_width}") plot_width = 6.8 plot_height = 0.5 + plot_width * (max_width / max_depth_log) #print(f"... {plot_width} {plot_height}") # define matplotlib figure and axis; use constrained layout to fit colorbar to right fig, ax = plt.subplots(figsize=(plot_width, plot_height), constrained_layout=True) plt.suptitle(suptitle) plt.xlim(0, max_depth_log) plt.ylim(0, max_width) # circuit depth axis (x axis) xbasis = [x for x in range(1,max_depth_log)] xround = [depth_base**(x-1) for x in xbasis] xlabels = [format_number(x) for x in xround] ax.set_xlabel('Circuit Depth') ax.set_xticks(xbasis) plt.xticks(xbasis, xlabels, color='black', rotation=45, ha='right', va='top', rotation_mode="anchor") # other label options #plt.xticks(xbasis, xlabels, color='black', rotation=-60, ha='left') #plt.xticks(xbasis, xlabels, color='black', rotation=-45, ha='left', va='center', rotation_mode="anchor") # circuit width axis (y axis) ybasis = [y for y in range(1,max_width)] yround = [1,2,3,4,5,6,7,8,10,12,15] # not used now ylabels = [str(y) for y in yround] # not used now #ax.set_ylabel('Circuit Width (Number of Qubits)') ax.set_ylabel('Circuit Width') ax.set_yticks(ybasis) #create simple line plot (not used right now) #ax.plot([0, 10],[0, 10]) log2QV = math.log2(QV) QV_width = log2QV QV_depth = log2QV * QV_transpile_factor # show a quantum volume rectangle of QV = 64 e.g. (6 x 6) if QV0 != 0: ax.add_patch(qv_box_at(1, 1, QV_width, QV_depth, 0.87, depth_base)) else: ax.add_patch(qv_box_at(1, 1, QV_width, QV_depth, 0.91, depth_base)) # the untranspiled version is commented out - we do not show this by default # also show a quantum volume rectangle un-transpiled # ax.add_patch(qv_box_at(1, 1, QV_width, QV_width, 0.80, depth_base)) # show 2D array of volumetric cells based on this QV_transpiled # DEVNOTE: we use +1 only to make the visuals work; s/b without # Also, the second arg of the min( below seems incorrect, needs correction maxprod = (QV_width + 1) * (QV_depth + 1) for w in range(1, min(max_width, round(QV) + 1)): # don't show VB squares if width greater than known available qubits if avail_qubits != 0 and w > avail_qubits: continue i_success = 0 for d in xround: # polarization factor for low circuit widths maxtest = maxprod / ( 1 - 1 / (2**w) ) # if circuit would fail here, don't draw box if d > maxtest: continue if w * d > maxtest: continue # guess for how to capture how hardware decays with width, not entirely correct # # reduce maxtext by a factor of number of qubits > QV_width # # just an approximation to account for qubit distances # if w > QV_width: # over = w - QV_width # maxtest = maxtest / (1 + (over/QV_width)) # draw a box at this width and depth id = depth_index(d, depth_base) # show vb rectangles; if not showing QV, make all hollow (or less dark) if QV0 == 0: #ax.add_patch(bkg_empty_box_at(id, w)) ax.add_patch(bkg_box_at(id, w, 0.95)) else: ax.add_patch(bkg_box_at(id, w, 0.9)) # save index of last successful depth i_success += 1 # plot empty rectangle after others d = xround[i_success] id = depth_index(d, depth_base) ax.add_patch(bkg_empty_box_at(id, w)) # Add annotation showing quantum volume if QV0 != 0: t = ax.text(max_depth_log - 2.0, 1.5, f"QV{est_str}={QV}", size=12, horizontalalignment='right', verticalalignment='center', color=(0.2,0.2,0.2), bbox=dict(boxstyle="square,pad=0.3", fc=(.9,.9,.9), ec="grey", lw=1)) # add colorbar to right of plot plt.colorbar(cm.ScalarMappable(cmap=cmap), cax=None, ax=ax, shrink=0.6, label=colorbar_label, panchor=(0.0, 0.7)) return ax # Function to calculate circuit depth def calculate_circuit_depth(qc): # Calculate the depth of the circuit depth = qc.depth() return depth def calculate_transpiled_depth(qc,basis_selector): # use either the backend or one of the basis gate sets if basis_selector == 0: qc = transpile(qc, backend) else: basis_gates = basis_gates_array[basis_selector] qc = transpile(qc, basis_gates=basis_gates, seed_transpiler=0) transpiled_depth = qc.depth() return transpiled_depth,qc def plot_fidelity_data(fidelity_data, Hf_fidelity_data, title): avg_fidelity_means = [] avg_Hf_fidelity_means = [] avg_num_qubits_values = list(fidelity_data.keys()) # Calculate the average fidelity and Hamming fidelity for each unique number of qubits for num_qubits in avg_num_qubits_values: avg_fidelity = np.average(fidelity_data[num_qubits]) avg_fidelity_means.append(avg_fidelity) avg_Hf_fidelity = np.mean(Hf_fidelity_data[num_qubits]) avg_Hf_fidelity_means.append(avg_Hf_fidelity) return avg_fidelity_means,avg_Hf_fidelity_means list_of_gates = [] def list_of_standardgates(): import qiskit.circuit.library as lib from qiskit.circuit import Gate import inspect # List all the attributes of the library module gate_list = dir(lib) # Filter out non-gate classes (like functions, variables, etc.) gates = [gate for gate in gate_list if isinstance(getattr(lib, gate), type) and issubclass(getattr(lib, gate), Gate)] # Get method names from QuantumCircuit circuit_methods = inspect.getmembers(QuantumCircuit, inspect.isfunction) method_names = [name for name, _ in circuit_methods] # Map gate class names to method names gate_to_method = {} for gate in gates: gate_class = getattr(lib, gate) class_name = gate_class.__name__.replace('Gate', '').lower() # Normalize class name for method in method_names: if method == class_name or method == class_name.replace('cr', 'c-r'): gate_to_method[gate] = method break # Add common operations that are not strictly gates additional_operations = { 'Measure': 'measure', 'Barrier': 'barrier', } gate_to_method.update(additional_operations) for k,v in gate_to_method.items(): list_of_gates.append(v) def update_counts(gates,custom_gates): operations = {} for key, value in gates.items(): operations[key] = value for key, value in custom_gates.items(): if key in operations: operations[key] += value else: operations[key] = value return operations def get_gate_counts(gates,custom_gate_defs): result = gates.copy() # Iterate over the gate counts in the quantum circuit for gate, count in gates.items(): if gate in custom_gate_defs: custom_gate_ops = custom_gate_defs[gate] # Multiply custom gate operations by the count of the custom gate in the circuit for _ in range(count): result = update_counts(result, custom_gate_ops) # Remove the custom gate entry as we have expanded it del result[gate] return result dict_of_qc = dict() custom_gates_defs = dict() # Function to count operations recursively def count_operations(qc): dict_of_qc.clear() circuit_traverser(qc) operations = dict() operations = dict_of_qc[qc.name] del dict_of_qc[qc.name] # print("operations :",operations) # print("dict_of_qc :",dict_of_qc) for keys in operations.keys(): if keys not in list_of_gates: for k,v in dict_of_qc.items(): if k in operations.keys(): custom_gates_defs[k] = v operations=get_gate_counts(operations,custom_gates_defs) custom_gates_defs.clear() return operations def circuit_traverser(qc): dict_of_qc[qc.name]=dict(qc.count_ops()) for i in qc.data: if str(i.operation.name) not in list_of_gates: qc_1 = i.operation.definition circuit_traverser(qc_1) def get_memory(): import resource usage = resource.getrusage(resource.RUSAGE_SELF) max_mem = usage.ru_maxrss/1024 #in MB return max_mem def analyzer(num_qubits): # we have precalculated the correct distribution that a perfect quantum computer will return # it is stored in the json file we import at the top of the code correct_dist = precalculated_data[f"Qubits - {num_qubits}"] return correct_dist num_state_qubits=1 #(default) not exposed to users def run (min_qubits=min_qubits, max_qubits=max_qubits, skip_qubits=skip_qubits, max_circuits=max_circuits, num_shots=num_shots, use_XX_YY_ZZ_gates = use_XX_YY_ZZ_gates): creation_times = [] elapsed_times = [] quantum_times = [] circuit_depths = [] transpiled_depths = [] fidelity_data = {} Hf_fidelity_data = {} numckts = [] mem_usage = [] algorithmic_1Q_gate_counts = [] algorithmic_2Q_gate_counts = [] transpiled_1Q_gate_counts = [] transpiled_2Q_gate_counts = [] print(f"{benchmark_name} Benchmark Program - {platform}") #defining all the standard gates supported by qiskit in a list if gate_counts_plots == True: list_of_standardgates() # validate parameters (smallest circuit is 2 qubits) max_qubits = max(2, max_qubits) min_qubits = min(max(2, min_qubits), max_qubits) if min_qubits % 2 == 1: min_qubits += 1 # min_qubits must be even skip_qubits = max(1, skip_qubits) #print(f"min, max qubits = {min_qubits} {max_qubits}") global _use_XX_YY_ZZ_gates _use_XX_YY_ZZ_gates = use_XX_YY_ZZ_gates if _use_XX_YY_ZZ_gates: print("... using unoptimized XX YY ZZ gates") global max_ckts max_ckts = max_circuits global min_qbits,max_qbits,skp_qubits min_qbits = min_qubits max_qbits = max_qubits skp_qubits = skip_qubits print(f"min, max qubits = {min_qubits} {max_qubits}") # Execute Benchmark Program N times for multiple circuit sizes for num_qubits in range(min_qubits, max_qubits + 1, skip_qubits): fidelity_data[num_qubits] = [] Hf_fidelity_data[num_qubits] = [] # reset random seed np.random.seed(0) # determine number of circuits to execute for this group num_circuits = max(1, max_circuits) print(f"Executing [{num_circuits}] circuits with num_qubits = {num_qubits}") numckts.append(num_circuits) # parameters of simulation #### CANNOT BE MODIFIED W/O ALSO MODIFYING PRECALCULATED DATA ######### w = precalculated_data['w'] # strength of disorder k = precalculated_data['k'] # Trotter error. # A large Trotter order approximates the Hamiltonian evolution better. # But a large Trotter order also means the circuit is deeper. # For ideal or noise-less quantum circuits, k >> 1 gives perfect hamiltonian simulation. t = precalculated_data['t'] # time of simulation ####################################################################### for circuit_id in range(num_circuits): print("*********************************************") print(f"qc of {num_qubits} qubits for circuit_id: {circuit_id}") #creation of Quantum Circuit. ts = time.time() h_x = precalculated_data['h_x'][:num_qubits] # precalculated random numbers between [-1, 1] h_z = precalculated_data['h_z'][:num_qubits] qc = HamiltonianSimulation(num_qubits, K=k, t=t, w=w, h_x= h_x, h_z=h_z) #creation time creation_time = time.time() - ts creation_times.append(creation_time) print(f"creation time = {creation_time*1000} ms") # Calculate gate count for the algorithmic circuit (excluding barriers and measurements) if gate_counts_plots == True: operations = count_operations(qc) n1q = 0; n2q = 0 if operations != None: for key, value in operations.items(): if key == "measure": continue if key == "barrier": continue if key.startswith("c") or key.startswith("mc"): n2q += value else: n1q += value algorithmic_1Q_gate_counts.append(n1q) algorithmic_2Q_gate_counts.append(n2q) # collapse the sub-circuit levels used in this benchmark (for qiskit) qc=qc.decompose() #print(qc) # Calculate circuit depth depth = calculate_circuit_depth(qc) circuit_depths.append(depth) # Calculate transpiled circuit depth transpiled_depth,qc = calculate_transpiled_depth(qc,basis_selector) transpiled_depths.append(transpiled_depth) #print(qc) print(f"Algorithmic Depth = {depth} and Normalized Depth = {transpiled_depth}") if gate_counts_plots == True: # Calculate gate count for the transpiled circuit (excluding barriers and measurements) tr_ops = qc.count_ops() #print("tr_ops = ",tr_ops) tr_n1q = 0; tr_n2q = 0 if tr_ops != None: for key, value in tr_ops.items(): if key == "measure": continue if key == "barrier": continue if key.startswith("c"): tr_n2q += value else: tr_n1q += value transpiled_1Q_gate_counts.append(tr_n1q) transpiled_2Q_gate_counts.append(tr_n2q) print(f"Algorithmic 1Q gates = {n1q} ,Algorithmic 2Q gates = {n2q}") print(f"Normalized 1Q gates = {tr_n1q} ,Normalized 2Q gates = {tr_n2q}") #execution if Type_of_Simulator == "built_in": #To check if Noise is required if Noise_Inclusion == True: noise_model = noise_parameters else: noise_model = None ts = time.time() job = execute(qc, backend, shots=num_shots, noise_model=noise_model) elif Type_of_Simulator == "FAKE" or Type_of_Simulator == "FAKEV2" : ts = time.time() job = backend.run(qc,shots=num_shots, noise_model=noise_parameters) #retrieving the result result = job.result() #print(result) #calculating elapsed time elapsed_time = time.time() - ts elapsed_times.append(elapsed_time) # Calculate quantum processing time quantum_time = result.time_taken quantum_times.append(quantum_time) print(f"Elapsed time = {elapsed_time*1000} ms and Quantum Time = {quantum_time*1000} ms") #counts in result object counts = result.get_counts() #Correct distribution to compare with counts correct_dist = analyzer(num_qubits) #fidelity calculation comparision of counts and correct_dist fidelity_dict = polarization_fidelity(counts, correct_dist) fidelity_data[num_qubits].append(fidelity_dict['fidelity']) Hf_fidelity_data[num_qubits].append(fidelity_dict['hf_fidelity']) #maximum memory utilization (if required) if Memory_utilization_plot == True: max_mem = get_memory() print(f"Maximum Memory Utilized: {max_mem} MB") mem_usage.append(max_mem) print("*********************************************") ########## # print a sample circuit print("Sample Circuit:"); print(QC_ if QC_ != None else " ... too large!") if _use_XX_YY_ZZ_gates: print("\nXX, YY, ZZ =") print(XX_); print(YY_); print(ZZ_) else: print("\nXXYYZZ_opt =") print(XXYYZZ_) return (creation_times, elapsed_times, quantum_times, circuit_depths, transpiled_depths, fidelity_data, Hf_fidelity_data, numckts , algorithmic_1Q_gate_counts, algorithmic_2Q_gate_counts, transpiled_1Q_gate_counts, transpiled_2Q_gate_counts,mem_usage) # Execute the benchmark program, accumulate metrics, and calculate circuit depths (creation_times, elapsed_times, quantum_times, circuit_depths,transpiled_depths, fidelity_data, Hf_fidelity_data, numckts, algorithmic_1Q_gate_counts, algorithmic_2Q_gate_counts, transpiled_1Q_gate_counts, transpiled_2Q_gate_counts,mem_usage) = run() # Define the range of qubits for the x-axis num_qubits_range = range(min_qbits, max_qbits+1,skp_qubits) print("num_qubits_range =",num_qubits_range) # Calculate average creation time, elapsed time, quantum processing time, and circuit depth for each number of qubits avg_creation_times = [] avg_elapsed_times = [] avg_quantum_times = [] avg_circuit_depths = [] avg_transpiled_depths = [] avg_1Q_algorithmic_gate_counts = [] avg_2Q_algorithmic_gate_counts = [] avg_1Q_Transpiled_gate_counts = [] avg_2Q_Transpiled_gate_counts = [] max_memory = [] start = 0 for num in numckts: avg_creation_times.append(np.mean(creation_times[start:start+num])) avg_elapsed_times.append(np.mean(elapsed_times[start:start+num])) avg_quantum_times.append(np.mean(quantum_times[start:start+num])) avg_circuit_depths.append(np.mean(circuit_depths[start:start+num])) avg_transpiled_depths.append(np.mean(transpiled_depths[start:start+num])) if gate_counts_plots == True: avg_1Q_algorithmic_gate_counts.append(int(np.mean(algorithmic_1Q_gate_counts[start:start+num]))) avg_2Q_algorithmic_gate_counts.append(int(np.mean(algorithmic_2Q_gate_counts[start:start+num]))) avg_1Q_Transpiled_gate_counts.append(int(np.mean(transpiled_1Q_gate_counts[start:start+num]))) avg_2Q_Transpiled_gate_counts.append(int(np.mean(transpiled_2Q_gate_counts[start:start+num]))) if Memory_utilization_plot == True:max_memory.append(np.max(mem_usage[start:start+num])) start += num # Calculate the fidelity data avg_f, avg_Hf = plot_fidelity_data(fidelity_data, Hf_fidelity_data, "Fidelity Comparison") # Plot histograms for average creation time, average elapsed time, average quantum processing time, and average circuit depth versus the number of qubits # Add labels to the bars def autolabel(rects,ax,str='{:.3f}',va='top',text_color="black"): for rect in rects: height = rect.get_height() ax.annotate(str.format(height), # Formatting to two decimal places xy=(rect.get_x() + rect.get_width() / 2, height / 2), xytext=(0, 0), textcoords="offset points", ha='center', va=va,color=text_color,rotation=90) bar_width = 0.3 # Determine the number of subplots and their arrangement if Memory_utilization_plot and gate_counts_plots: fig, (ax1, ax2, ax3, ax4, ax5, ax6, ax7) = plt.subplots(7, 1, figsize=(18, 30)) # Plotting for both memory utilization and gate counts # ax1, ax2, ax3, ax4, ax5, ax6, ax7 are available elif Memory_utilization_plot: fig, (ax1, ax2, ax3, ax6, ax7) = plt.subplots(5, 1, figsize=(18, 30)) # Plotting for memory utilization only # ax1, ax2, ax3, ax6, ax7 are available elif gate_counts_plots: fig, (ax1, ax2, ax3, ax4, ax5, ax6) = plt.subplots(6, 1, figsize=(18, 30)) # Plotting for gate counts only # ax1, ax2, ax3, ax4, ax5, ax6 are available else: fig, (ax1, ax2, ax3, ax6) = plt.subplots(4, 1, figsize=(18, 30)) # Default plotting # ax1, ax2, ax3, ax6 are available fig.suptitle(f"General Benchmarks : {platform} - {benchmark_name}", fontsize=16) for i in range(len(avg_creation_times)): #converting seconds to milli seconds by multiplying 1000 avg_creation_times[i] *= 1000 ax1.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) x = ax1.bar(num_qubits_range, avg_creation_times, color='deepskyblue') autolabel(ax1.patches, ax1) ax1.set_xlabel('Number of Qubits') ax1.set_ylabel('Average Creation Time (ms)') ax1.set_title('Average Creation Time vs Number of Qubits',fontsize=14) ax2.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) for i in range(len(avg_elapsed_times)): #converting seconds to milli seconds by multiplying 1000 avg_elapsed_times[i] *= 1000 for i in range(len(avg_quantum_times)): #converting seconds to milli seconds by multiplying 1000 avg_quantum_times[i] *= 1000 Elapsed= ax2.bar(np.array(num_qubits_range) - bar_width / 2, avg_elapsed_times, width=bar_width, color='cyan', label='Elapsed Time') Quantum= ax2.bar(np.array(num_qubits_range) + bar_width / 2, avg_quantum_times,width=bar_width, color='deepskyblue',label ='Quantum Time') autolabel(Elapsed,ax2,str='{:.1f}') autolabel(Quantum,ax2,str='{:.1f}') ax2.set_xlabel('Number of Qubits') ax2.set_ylabel('Average Time (ms)') ax2.set_title('Average Time vs Number of Qubits') ax2.legend() ax3.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) Normalized = ax3.bar(np.array(num_qubits_range) - bar_width / 2, avg_transpiled_depths, color='cyan', label='Normalized Depth', width=bar_width) # Adjust width here Algorithmic = ax3.bar(np.array(num_qubits_range) + bar_width / 2,avg_circuit_depths, color='deepskyblue', label='Algorithmic Depth', width=bar_width) # Adjust width here autolabel(Normalized,ax3,str='{:.2f}') autolabel(Algorithmic,ax3,str='{:.2f}') ax3.set_xlabel('Number of Qubits') ax3.set_ylabel('Average Circuit Depth') ax3.set_title('Average Circuit Depth vs Number of Qubits') ax3.legend() if gate_counts_plots == True: ax4.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) Normalized_1Q_counts = ax4.bar(np.array(num_qubits_range) - bar_width / 2, avg_1Q_Transpiled_gate_counts, color='cyan', label='Normalized Gate Counts', width=bar_width) # Adjust width here Algorithmic_1Q_counts = ax4.bar(np.array(num_qubits_range) + bar_width / 2, avg_1Q_algorithmic_gate_counts, color='deepskyblue', label='Algorithmic Gate Counts', width=bar_width) # Adjust width here autolabel(Normalized_1Q_counts,ax4,str='{}') autolabel(Algorithmic_1Q_counts,ax4,str='{}') ax4.set_xlabel('Number of Qubits') ax4.set_ylabel('Average 1-Qubit Gate Counts') ax4.set_title('Average 1-Qubit Gate Counts vs Number of Qubits') ax4.legend() ax5.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) Normalized_2Q_counts = ax5.bar(np.array(num_qubits_range) - bar_width / 2, avg_2Q_Transpiled_gate_counts, color='cyan', label='Normalized Gate Counts', width=bar_width) # Adjust width here Algorithmic_2Q_counts = ax5.bar(np.array(num_qubits_range) + bar_width / 2, avg_2Q_algorithmic_gate_counts, color='deepskyblue', label='Algorithmic Gate Counts', width=bar_width) # Adjust width here autolabel(Normalized_2Q_counts,ax5,str='{}') autolabel(Algorithmic_2Q_counts,ax5,str='{}') ax5.set_xlabel('Number of Qubits') ax5.set_ylabel('Average 2-Qubit Gate Counts') ax5.set_title('Average 2-Qubit Gate Counts vs Number of Qubits') ax5.legend() ax6.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) Hellinger = ax6.bar(np.array(num_qubits_range) - bar_width / 2, avg_Hf, width=bar_width, label='Hellinger Fidelity',color='cyan') # Adjust width here Normalized = ax6.bar(np.array(num_qubits_range) + bar_width / 2, avg_f, width=bar_width, label='Normalized Fidelity', color='deepskyblue') # Adjust width here autolabel(Hellinger,ax6,str='{:.2f}') autolabel(Normalized,ax6,str='{:.2f}') ax6.set_xlabel('Number of Qubits') ax6.set_ylabel('Average Value') ax6.set_title("Fidelity Comparison") ax6.legend() if Memory_utilization_plot == True: ax7.set_xticks(range(min(num_qubits_range), max(num_qubits_range)+1, skp_qubits)) x = ax7.bar(num_qubits_range, max_memory, color='turquoise', width=bar_width, label="Memory Utilizations") autolabel(ax7.patches, ax7) ax7.set_xlabel('Number of Qubits') ax7.set_ylabel('Maximum Memory Utilized (MB)') ax7.set_title('Memory Utilized vs Number of Qubits',fontsize=14) plt.tight_layout(rect=[0, 0, 1, 0.96]) if saveplots == True: plt.savefig("ParameterPlotsSample.jpg") plt.show() # Quantum Volume Plot Suptitle = f"Volumetric Positioning - {platform}" appname=benchmark_name if QV_ == None: QV=2048 else: QV=QV_ depth_base =2 ax = plot_volumetric_background(max_qubits=max_qbits, QV=QV,depth_base=depth_base, suptitle=Suptitle, colorbar_label="Avg Result Fidelity") w_data = num_qubits_range # determine width for circuit w_max = 0 for i in range(len(w_data)): y = float(w_data[i]) w_max = max(w_max, y) d_tr_data = avg_transpiled_depths f_data = avg_f plot_volumetric_data(ax, w_data, d_tr_data, f_data, depth_base, fill=True,label=appname, labelpos=(0.4, 0.6), labelrot=15, type=1, w_max=w_max) anno_volumetric_data(ax, depth_base,label=appname, labelpos=(0.4, 0.6), labelrot=15, type=1, fill=False)
https://github.com/Alice-Bob-SW/qiskit-alice-bob-provider
Alice-Bob-SW
############################################################################## # Copyright 2023 Alice & Bob # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## import pytest from qiskit import QuantumCircuit, execute from qiskit_alice_bob_provider import AliceBobRemoteProvider realserver = pytest.mark.skipif( "not config.getoption('api_key') and not config.getoption('base_url')" ) @realserver def test_happy_path(base_url: str, api_key: str) -> None: c = QuantumCircuit(1, 2) c.initialize('+', 0) c.measure_x(0, 0) c.measure(0, 1) provider = AliceBobRemoteProvider( api_key=api_key, url=base_url, ) backend = provider.get_backend( 'EMU:1Q:LESCANNE_2020', average_nb_photons=6.0 ) job = execute(c, backend, shots=100) res = job.result() res.get_counts()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
https://github.com/alexyev/Grover-s_Algorithm
alexyev
import matplotlib.pyplot as plt import numpy as np !pip install qiskit from qiskit import IBMQ, Aer, assemble, transpile, execute from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit.providers.ibmq import least_busy !pip install qiskit.visualization from qiskit.visualization import * from qiskit.tools.jupyter import * !pip install ibm_quantum_widgets from ibm_quantum_widgets import * from qiskit.tools.monitor import job_monitor provider = IBMQ.load_account() num_qubits = 2 grover_circuit = QuantumCircuit(num_qubits, num_qubits) def initialize_circ(qc, qubits): for q in qubits: qc.h(q) return qc grover_circuit = initialize_circ(grover_circuit, [0,1]) grover_circuit.barrier() grover_circuit.draw() grover_circuit.cz(0, 1) grover_circuit.barrier() grover_circuit.draw() grover_circuit.h([0, 1]) grover_circuit.z([0, 1]) grover_circuit.cz(0, 1) grover_circuit.h([0, 1]) grover_circuit.barrier() grover_circuit.measure([0,1], [0, 1]) grover_circuit.draw() backend = Aer.get_backend('qasm_simulator') job = execute(grover_circuit, backend, shots = 1) result = job.result() counts = result.get_counts() print(counts) device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print(device) transpiled_grover_circuit = transpile(grover_circuit, device, optimization_level=3) job = device.run(transpiled_grover_circuit) job_monitor(job, interval=2) results = job.result() answer = results.get_counts(grover_circuit) plot_histogram(answer)
https://github.com/duartefrazao/Quantum-Finance-Algorithms
duartefrazao
from qiskit import Aer from qiskit.circuit.library import TwoLocal from qiskit.aqua import QuantumInstance from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.aqua.algorithms import VQE, QAOA, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import COBYLA from aux_functions import IncompatibleArguments import numpy as np import matplotlib.pyplot as plt # initialization import numpy as np # importing Qiskit from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, assemble, transpile # import basic plot tools from qiskit.visualization import plot_histogram #Quadratic from qiskit.optimization import QuadraticProgram from docplex.mp.advmodel import AdvModel def portfolio_optimization3(assets,assets_to_include,mu,sigma,num_assets_portfolio,risk_aversion,penalty): if len(mu) != sigma.shape[0] or len(mu) != sigma.shape[1] or len(mu) != len(assets): raise IncompatibleArguments("Sigma, mu and assets need to be equal in size") if not 0 <= risk_aversion <= 1: raise IncompatibleArguments("Risk aversion needs to be in [0,1]") if not 0 < num_assets_portfolio <= len(assets): raise IncompatibleArguments("Number of assets to include in the portfolio needs to be smaller or equal to the number of assets passed") if len(assets_to_include) > num_assets_portfolio: raise IncompatibleArguments("Can't include stocks mentioned, they are more than the number of assets to include") for asset in assets_to_include: if not asset in assets: raise IncompatibleArguments("Asset " + asset + " not contained in asset list") #Initialize binary variable array mdl = AdvModel('docplex model') mdl.init_numpy() decision_vars = np.array([]) to_choose_assets = np.zeros(len(assets)) for i in range(len(assets)): curr_asset = assets[i] if curr_asset in assets_to_include: to_choose_assets[i]=1 decision_vars = np.append(decision_vars,[mdl.binary_var(str(curr_asset))]) #Terms vec_ones = np.ones(len(decision_vars)) #helper vector num_assets_chosen = np.matmul(vec_ones.T,decision_vars) num_necessary_assets_chosen = np.matmul(to_choose_assets.T,decision_vars) expected_num_assets_chosen = len(assets_to_include) expected_returns_portfolio = np.matmul(mu.T,decision_vars) variance_portfolio = np.matmul(decision_vars.T,np.dot(sigma,decision_vars)) / 2 #Objective function mdl.minimize( - expected_returns_portfolio + (risk_aversion * variance_portfolio) + penalty * ((expected_num_assets_chosen - num_necessary_assets_chosen)**2) + penalty*(num_assets_chosen - num_assets_portfolio)**2) qubo = QuadraticProgram() qubo.from_docplex(mdl) if DEBUG: print(mdl.export_as_lp_string()) return qubo
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) es_problem = driver.run() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() from qiskit.algorithms.eigensolvers import NumPyEigensolver numpy_solver = NumPyEigensolver(filter_criterion=es_problem.get_default_filter_criterion()) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.algorithms import GroundStateEigensolver, QEOM from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD ansatz = UCCSD( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, initial_state=HartreeFock( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, ), ) estimator = Estimator() # This first part sets the ground state solver # see more about this part in the ground state calculation tutorial solver = VQE(estimator, ansatz, SLSQP()) solver.initial_point = [0.0] * ansatz.num_parameters gse = GroundStateEigensolver(mapper, solver) # The qEOM algorithm is simply instantiated with the chosen ground state solver and Estimator primitive qeom_excited_states_solver = QEOM(gse, estimator, "sd") from qiskit_nature.second_q.algorithms import ExcitedStatesEigensolver numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, numpy_solver) numpy_results = numpy_excited_states_solver.solve(es_problem) qeom_results = qeom_excited_states_solver.solve(es_problem) print(numpy_results) print("\n\n") print(qeom_results) import numpy as np def filter_criterion(eigenstate, eigenvalue, aux_values): return np.isclose(aux_values["ParticleNumber"][0], 2.0) new_numpy_solver = NumPyEigensolver(filter_criterion=filter_criterion) new_numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, new_numpy_solver) new_numpy_results = new_numpy_excited_states_solver.solve(es_problem) print(new_numpy_results) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, execute from qiskit.visualization import plot_error_map from qiskit.providers.fake_provider import FakeVigoV2 backend = FakeVigoV2() plot_error_map(backend)
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2023 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """These tests are the examples given in the arXiv paper describing OpenQASM 2. Specifically, there is a test for each subsection (except the description of 'qelib1.inc') in section 3 of https://arxiv.org/abs/1707.03429v2. The examples are copy/pasted from the source files there.""" # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import math import os import tempfile import ddt from qiskit import qasm2 from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister, Qubit from qiskit.circuit.library import U1Gate, U3Gate, CU1Gate from qiskit.test import QiskitTestCase from . import gate_builder def load(string, *args, **kwargs): # We're deliberately not using the context-manager form here because we need to use it in a # slightly odd pattern. # pylint: disable=consider-using-with temp = tempfile.NamedTemporaryFile(mode="w", delete=False) try: temp.write(string) # NamedTemporaryFile claims not to be openable a second time on Windows, so close it # (without deletion) so Rust can open it again. temp.close() return qasm2.load(temp.name, *args, **kwargs) finally: # Now actually clean up after ourselves. os.unlink(temp.name) @ddt.ddt class TestArxivExamples(QiskitTestCase): @ddt.data(qasm2.loads, load) def test_teleportation(self, parser): example = """\ // quantum teleportation example OPENQASM 2.0; include "qelib1.inc"; qreg q[3]; creg c0[1]; creg c1[1]; creg c2[1]; // optional post-rotation for state tomography gate post q { } u3(0.3,0.2,0.1) q[0]; h q[1]; cx q[1],q[2]; barrier q; cx q[0],q[1]; h q[0]; measure q[0] -> c0[0]; measure q[1] -> c1[0]; if(c0==1) z q[2]; if(c1==1) x q[2]; post q[2]; measure q[2] -> c2[0];""" parsed = parser(example) post = gate_builder("post", [], QuantumCircuit([Qubit()])) q = QuantumRegister(3, "q") c0 = ClassicalRegister(1, "c0") c1 = ClassicalRegister(1, "c1") c2 = ClassicalRegister(1, "c2") qc = QuantumCircuit(q, c0, c1, c2) qc.append(U3Gate(0.3, 0.2, 0.1), [q[0]], []) qc.h(q[1]) qc.cx(q[1], q[2]) qc.barrier(q) qc.cx(q[0], q[1]) qc.h(q[0]) qc.measure(q[0], c0[0]) qc.measure(q[1], c1[0]) qc.z(q[2]).c_if(c0, 1) qc.x(q[2]).c_if(c1, 1) qc.append(post(), [q[2]], []) qc.measure(q[2], c2[0]) self.assertEqual(parsed, qc) @ddt.data(qasm2.loads, load) def test_qft(self, parser): example = """\ // quantum Fourier transform OPENQASM 2.0; include "qelib1.inc"; qreg q[4]; creg c[4]; x q[0]; x q[2]; barrier q; h q[0]; cu1(pi/2) q[1],q[0]; h q[1]; cu1(pi/4) q[2],q[0]; cu1(pi/2) q[2],q[1]; h q[2]; cu1(pi/8) q[3],q[0]; cu1(pi/4) q[3],q[1]; cu1(pi/2) q[3],q[2]; h q[3]; measure q -> c;""" parsed = parser(example) qc = QuantumCircuit(QuantumRegister(4, "q"), ClassicalRegister(4, "c")) qc.x(0) qc.x(2) qc.barrier(range(4)) qc.h(0) qc.append(CU1Gate(math.pi / 2), [1, 0]) qc.h(1) qc.append(CU1Gate(math.pi / 4), [2, 0]) qc.append(CU1Gate(math.pi / 2), [2, 1]) qc.h(2) qc.append(CU1Gate(math.pi / 8), [3, 0]) qc.append(CU1Gate(math.pi / 4), [3, 1]) qc.append(CU1Gate(math.pi / 2), [3, 2]) qc.h(3) qc.measure(range(4), range(4)) self.assertEqual(parsed, qc) @ddt.data(qasm2.loads, load) def test_inverse_qft_1(self, parser): example = """\ // QFT and measure, version 1 OPENQASM 2.0; include "qelib1.inc"; qreg q[4]; creg c[4]; h q; barrier q; h q[0]; measure q[0] -> c[0]; if(c==1) u1(pi/2) q[1]; h q[1]; measure q[1] -> c[1]; if(c==1) u1(pi/4) q[2]; if(c==2) u1(pi/2) q[2]; if(c==3) u1(pi/2+pi/4) q[2]; h q[2]; measure q[2] -> c[2]; if(c==1) u1(pi/8) q[3]; if(c==2) u1(pi/4) q[3]; if(c==3) u1(pi/4+pi/8) q[3]; if(c==4) u1(pi/2) q[3]; if(c==5) u1(pi/2+pi/8) q[3]; if(c==6) u1(pi/2+pi/4) q[3]; if(c==7) u1(pi/2+pi/4+pi/8) q[3]; h q[3]; measure q[3] -> c[3];""" parsed = parser(example) q = QuantumRegister(4, "q") c = ClassicalRegister(4, "c") qc = QuantumCircuit(q, c) qc.h(q) qc.barrier(q) qc.h(q[0]) qc.measure(q[0], c[0]) qc.append(U1Gate(math.pi / 2).c_if(c, 1), [q[1]]) qc.h(q[1]) qc.measure(q[1], c[1]) qc.append(U1Gate(math.pi / 4).c_if(c, 1), [q[2]]) qc.append(U1Gate(math.pi / 2).c_if(c, 2), [q[2]]) qc.append(U1Gate(math.pi / 4 + math.pi / 2).c_if(c, 3), [q[2]]) qc.h(q[2]) qc.measure(q[2], c[2]) qc.append(U1Gate(math.pi / 8).c_if(c, 1), [q[3]]) qc.append(U1Gate(math.pi / 4).c_if(c, 2), [q[3]]) qc.append(U1Gate(math.pi / 8 + math.pi / 4).c_if(c, 3), [q[3]]) qc.append(U1Gate(math.pi / 2).c_if(c, 4), [q[3]]) qc.append(U1Gate(math.pi / 8 + math.pi / 2).c_if(c, 5), [q[3]]) qc.append(U1Gate(math.pi / 4 + math.pi / 2).c_if(c, 6), [q[3]]) qc.append(U1Gate(math.pi / 8 + math.pi / 4 + math.pi / 2).c_if(c, 7), [q[3]]) qc.h(q[3]) qc.measure(q[3], c[3]) self.assertEqual(parsed, qc) @ddt.data(qasm2.loads, load) def test_inverse_qft_2(self, parser): example = """\ // QFT and measure, version 2 OPENQASM 2.0; include "qelib1.inc"; qreg q[4]; creg c0[1]; creg c1[1]; creg c2[1]; creg c3[1]; h q; barrier q; h q[0]; measure q[0] -> c0[0]; if(c0==1) u1(pi/2) q[1]; h q[1]; measure q[1] -> c1[0]; if(c0==1) u1(pi/4) q[2]; if(c1==1) u1(pi/2) q[2]; h q[2]; measure q[2] -> c2[0]; if(c0==1) u1(pi/8) q[3]; if(c1==1) u1(pi/4) q[3]; if(c2==1) u1(pi/2) q[3]; h q[3]; measure q[3] -> c3[0];""" parsed = parser(example) q = QuantumRegister(4, "q") c0 = ClassicalRegister(1, "c0") c1 = ClassicalRegister(1, "c1") c2 = ClassicalRegister(1, "c2") c3 = ClassicalRegister(1, "c3") qc = QuantumCircuit(q, c0, c1, c2, c3) qc.h(q) qc.barrier(q) qc.h(q[0]) qc.measure(q[0], c0[0]) qc.append(U1Gate(math.pi / 2).c_if(c0, 1), [q[1]]) qc.h(q[1]) qc.measure(q[1], c1[0]) qc.append(U1Gate(math.pi / 4).c_if(c0, 1), [q[2]]) qc.append(U1Gate(math.pi / 2).c_if(c1, 1), [q[2]]) qc.h(q[2]) qc.measure(q[2], c2[0]) qc.append(U1Gate(math.pi / 8).c_if(c0, 1), [q[3]]) qc.append(U1Gate(math.pi / 4).c_if(c1, 1), [q[3]]) qc.append(U1Gate(math.pi / 2).c_if(c2, 1), [q[3]]) qc.h(q[3]) qc.measure(q[3], c3[0]) self.assertEqual(parsed, qc) @ddt.data(qasm2.loads, load) def test_ripple_carry_adder(self, parser): example = """\ // quantum ripple-carry adder from Cuccaro et al, quant-ph/0410184 OPENQASM 2.0; include "qelib1.inc"; gate majority a,b,c { cx c,b; cx c,a; ccx a,b,c; } gate unmaj a,b,c { ccx a,b,c; cx c,a; cx a,b; } qreg cin[1]; qreg a[4]; qreg b[4]; qreg cout[1]; creg ans[5]; // set input states x a[0]; // a = 0001 x b; // b = 1111 // add a to b, storing result in b majority cin[0],b[0],a[0]; majority a[0],b[1],a[1]; majority a[1],b[2],a[2]; majority a[2],b[3],a[3]; cx a[3],cout[0]; unmaj a[2],b[3],a[3]; unmaj a[1],b[2],a[2]; unmaj a[0],b[1],a[1]; unmaj cin[0],b[0],a[0]; measure b[0] -> ans[0]; measure b[1] -> ans[1]; measure b[2] -> ans[2]; measure b[3] -> ans[3]; measure cout[0] -> ans[4];""" parsed = parser(example) majority_definition = QuantumCircuit([Qubit(), Qubit(), Qubit()]) majority_definition.cx(2, 1) majority_definition.cx(2, 0) majority_definition.ccx(0, 1, 2) majority = gate_builder("majority", [], majority_definition) unmaj_definition = QuantumCircuit([Qubit(), Qubit(), Qubit()]) unmaj_definition.ccx(0, 1, 2) unmaj_definition.cx(2, 0) unmaj_definition.cx(0, 1) unmaj = gate_builder("unmaj", [], unmaj_definition) cin = QuantumRegister(1, "cin") a = QuantumRegister(4, "a") b = QuantumRegister(4, "b") cout = QuantumRegister(1, "cout") ans = ClassicalRegister(5, "ans") qc = QuantumCircuit(cin, a, b, cout, ans) qc.x(a[0]) qc.x(b) qc.append(majority(), [cin[0], b[0], a[0]]) qc.append(majority(), [a[0], b[1], a[1]]) qc.append(majority(), [a[1], b[2], a[2]]) qc.append(majority(), [a[2], b[3], a[3]]) qc.cx(a[3], cout[0]) qc.append(unmaj(), [a[2], b[3], a[3]]) qc.append(unmaj(), [a[1], b[2], a[2]]) qc.append(unmaj(), [a[0], b[1], a[1]]) qc.append(unmaj(), [cin[0], b[0], a[0]]) qc.measure(b, ans[:4]) qc.measure(cout[0], ans[4]) self.assertEqual(parsed, qc) @ddt.data(qasm2.loads, load) def test_randomised_benchmarking(self, parser): example = """\ // One randomized benchmarking sequence OPENQASM 2.0; include "qelib1.inc"; qreg q[2]; creg c[2]; h q[0]; barrier q; cz q[0],q[1]; barrier q; s q[0]; cz q[0],q[1]; barrier q; s q[0]; z q[0]; h q[0]; barrier q; measure q -> c; """ parsed = parser(example) q = QuantumRegister(2, "q") c = ClassicalRegister(2, "c") qc = QuantumCircuit(q, c) qc.h(q[0]) qc.barrier(q) qc.cz(q[0], q[1]) qc.barrier(q) qc.s(q[0]) qc.cz(q[0], q[1]) qc.barrier(q) qc.s(q[0]) qc.z(q[0]) qc.h(q[0]) qc.barrier(q) qc.measure(q, c) self.assertEqual(parsed, qc) @ddt.data(qasm2.loads, load) def test_process_tomography(self, parser): example = """\ OPENQASM 2.0; include "qelib1.inc"; gate pre q { } // pre-rotation gate post q { } // post-rotation qreg q[1]; creg c[1]; pre q[0]; barrier q; h q[0]; barrier q; post q[0]; measure q[0] -> c[0];""" parsed = parser(example) pre = gate_builder("pre", [], QuantumCircuit([Qubit()])) post = gate_builder("post", [], QuantumCircuit([Qubit()])) qc = QuantumCircuit(QuantumRegister(1, "q"), ClassicalRegister(1, "c")) qc.append(pre(), [0]) qc.barrier(qc.qubits) qc.h(0) qc.barrier(qc.qubits) qc.append(post(), [0]) qc.measure(0, 0) self.assertEqual(parsed, qc) @ddt.data(qasm2.loads, load) def test_error_correction(self, parser): example = """\ // Repetition code syndrome measurement OPENQASM 2.0; include "qelib1.inc"; qreg q[3]; qreg a[2]; creg c[3]; creg syn[2]; gate syndrome d1,d2,d3,a1,a2 { cx d1,a1; cx d2,a1; cx d2,a2; cx d3,a2; } x q[0]; // error barrier q; syndrome q[0],q[1],q[2],a[0],a[1]; measure a -> syn; if(syn==1) x q[0]; if(syn==2) x q[2]; if(syn==3) x q[1]; measure q -> c;""" parsed = parser(example) syndrome_definition = QuantumCircuit([Qubit() for _ in [None] * 5]) syndrome_definition.cx(0, 3) syndrome_definition.cx(1, 3) syndrome_definition.cx(1, 4) syndrome_definition.cx(2, 4) syndrome = gate_builder("syndrome", [], syndrome_definition) q = QuantumRegister(3, "q") a = QuantumRegister(2, "a") c = ClassicalRegister(3, "c") syn = ClassicalRegister(2, "syn") qc = QuantumCircuit(q, a, c, syn) qc.x(q[0]) qc.barrier(q) qc.append(syndrome(), [q[0], q[1], q[2], a[0], a[1]]) qc.measure(a, syn) qc.x(q[0]).c_if(syn, 1) qc.x(q[2]).c_if(syn, 2) qc.x(q[1]).c_if(syn, 3) qc.measure(q, c) self.assertEqual(parsed, qc)
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
import numpy as np N = 10**7; d = np.arange(2,N+1,1); dl = np.zeros(len(d)); nv = np.zeros(len(d)) n = 1 for j in range(2,len(d)): nv[j] = n dl[j] = 2**n if d[j] >= dl[j]: n += 1 from matplotlib import pyplot as plt plt.plot(d,d, label=r'$d$') plt.plot(d,dl, label=r'$dl$') plt.xlabel(r'$d$'); plt.ylabel(r'$dl$'); plt.show() plt.plot(d,nv, label=r'$n$') plt.xlabel(r'$d$'); plt.ylabel(r'$n$'); plt.show()
https://github.com/osamarais/qiskit_iterative_solver
osamarais
import qiskit from qiskit import QuantumCircuit, QuantumRegister from qiskit.extensions import UnitaryGate import numpy as np from scipy.linalg import fractional_matrix_power from scipy.io import loadmat from copy import deepcopy # problem = 'lower triangular' # problem = 'lower triangular identities' # problem = 'diagonal' problem = 'laplacian' if 'lower triangular'==problem: N = 16 A = np.eye(N) for i in range(N-1): A[i+1,i] = -1 A_orig = deepcopy(A) A = A/2 RHS_provided = False if 'lower triangular identities'==problem: N = 4 I = 4 A = np.eye(N*I) for i in range(N-1): A[(i+1)*I:(i+2)*I,(i)*I:(i+1)*I] = -np.eye(I) A_orig = deepcopy(A) A = A/2 RHS_provided = False if 'diagonal'==problem: # # A = np.array([[1, 0, 0],[-1, 1, 0],[0, -1, 1]])/2 # step = 0.025 step = 0.05 x = np.diag(np.concatenate( (np.arange(-1,0,step),np.arange(step,1+step,step)) ) ) # x = np.diag(np.concatenate( (np.arange(1,0,-step),-np.arange(-step,-1-step,-step)) ) ) # # x = np.diag(np.arange(step,1+step,step)) # # x = np.diag([1,0.5]) # # x = np.diag(np.arange(1,0,-step)) A = x A = np.array(A) A_orig = deepcopy(A) RHS_provided = False # A = np.eye(8) # # DON'T FORGET TO NORMALIZE A!!!! if 'laplacian'==problem: problem_number = 2 size = 4 iterations = int(np.floor(128/size -1)) # iterations = 7 K = np.array( loadmat('N_{}_problem_{}.mat'.format(size,problem_number)) ).item()['A'] R = np.array( loadmat('N_{}_problem_{}.mat'.format(size,problem_number)) ).item()['R'] B = np.array( loadmat('N_{}_problem_{}.mat'.format(size,problem_number)) ).item()['B'] f = np.array( loadmat('N_{}_problem_{}.mat'.format(size,problem_number)) ).item()['f'] f = f/np.linalg.norm(f) print('|R|_2 = {}'.format(np.linalg.norm(R,2))) A = np.eye((iterations+1)*size,(iterations+1)*size) for block in range(iterations): A[(block+1)*size:(block+2)*size,(block)*size:(block+1)*size] = -R # A[(block+1)*size:(block+2)*size,(block)*size:(block+1)*size] = -np.eye(size) A_orig = deepcopy(A) # Normalize the matrix using the upper bound A = A/2 np.linalg.norm(A,2) RHS_provided = True # A_identities = deepcopy(A) # spy(A_identities) A_shape = np.shape(A_orig) # Hermitian Dilation # Only if A is not Hermitian if np.any(A != A.conj().T): A = np.block([ [np.zeros(np.shape(A)),A], [A.conj().T,np.zeros(np.shape(A))] ]) HD = True else: HD = False print(HD) from matplotlib.pyplot import spy spy(A) if RHS_provided: b = np.zeros(((iterations+1)*size,1)) for block in range(iterations): b[(block+1)*size:(block+2)*size,:] = f b = b / np.linalg.norm(b,2) b = b.flatten() b_orig = deepcopy(b) if HD: b = np.concatenate([b,np.zeros(b.shape)]) print(b) # Check the norm and condition number of the matrix if np.size(A)>1: print( '||A||_2 = {} \n cond(A) = {} \n ||A^-1||_2 = {}'.format( np.linalg.norm(A,2), np.linalg.cond(A), np.linalg.norm(np.linalg.inv(A),2) ) ) else: print('||A||_2 = {} \n cond(A) = {}'.format(np.linalg.norm(A),1) ) if np.size(A)>1: A_num_qubits = int(np.ceil(np.log2(np.shape(A)[0]))) padding_size = 2**A_num_qubits - np.shape(A)[0] if padding_size > 0: A = np.block([ [A, np.zeros([np.shape(A)[0],padding_size])], [np.zeros([padding_size,np.shape(A)[0]]), np.zeros([padding_size,padding_size])] ]) else: A_num_qubits = 1 padding_size = 1 A = np.array([[A,0],[0,0]]) print(A_num_qubits) print(padding_size) print(A) # If RHS is given, it also needs to be padded if RHS_provided: b = np.pad(b,(0,padding_size)) # Create block encoding of A by creating a Unitary matrix # Question: does A need to be Hermitian to define this sort of block encoding? # Answer: Yes, A is defined as Hermitian for QET and QSP # But the block encoding U_A does not have to be Hermitian # This block encoding needs to be the REFLECTION operator in order to # stay consistent with the conventions of the QET or QSP # QET uses U_A # QSP uses O_A O = np.block([ [A , -fractional_matrix_power(np.eye(np.shape(A)[0]) - np.linalg.matrix_power(A,2),0.5)], [fractional_matrix_power(np.eye(np.shape(A)[0]) - np.linalg.matrix_power(A,2),0.5) , A] ]) print(O) # We also need to get the block-encoding size, i.e. m, used to encode A in U_A m = int(np.log2(np.shape(O)[0]) - A_num_qubits) O_A_num_qubits = int(np.log2(np.shape(O)[0])) print('m = {} \nNumber of Qubits for O_A is {}'.format(m,O_A_num_qubits)) # Check is still Unitary np.linalg.norm(np.matmul(O,O.T)-np.eye(np.shape(O)[0]),2) blockA = UnitaryGate(O,label='O_A') register_1 = QuantumRegister(size = 1, name = '|0>') register_2 = QuantumRegister(size = m, name = '|0^m>') register_3 = QuantumRegister(size = O_A_num_qubits-m, name = '|\phi>') # Create a rotation circuit in the block-encoding basis def CR_phi_d(phi, d, register_1, register_2): circuit = QuantumCircuit(register_1,register_2,name = 'CR_( \phi \tilde {})'.format(d)) circuit.cnot(register_2,register_1,ctrl_state=0) circuit.rz(phi*2, register_1) circuit.cnot(register_2,register_1,ctrl_state=0) return circuit from scipy.io import loadmat phi_angles = np.array( loadmat('phi_k_50_14.mat') ).item()['phi'] phi_tilde_angles = np.zeros(np.shape(phi_angles)) temp = np.zeros(np.shape(phi_angles)) # plot QSP angles for d,phi in enumerate(phi_angles): if d==0 or d==np.size(phi_angles)-1: temp[d] = phi_angles[d] - np.pi/4 else: temp[d] = phi_angles[d] phase_angles = phi_angles.reshape(phi_angles.shape[0]) from matplotlib import pyplot as plt %matplotlib inline plt.plot(phase_angles) # It seems like using the QSP angles might be more stable numerically.... circuit = QuantumCircuit(register_1, register_2, register_3, name = 'QSP') if RHS_provided: circuit.initialize(b,list(reversed(register_3))) # First thing is to Hadamard the ancilla qubit since we want Re(P(A)) circuit.h(register_1) # Note: QSPPACK produces symmetric phase angles, so reversing phase angles is unnecessary # for d, phi in enumerate(reversed(phase_angles)): for d, phi in reversed(list(enumerate(phase_angles))): circuit = circuit.compose(CR_phi_d(phi,d,register_1,register_2)) if d>0: # The endianness of the bits matters. Need to change the order of the bits circuit.append(blockA,list(reversed(register_3[:])) + register_2[:]) # Apply the final Hadamard gate circuit.h(register_1) circuit = circuit.reverse_bits() circuit.size() # print(circuit) # from qiskit import transpile # circuit = transpile(circuit) from qiskit import QuantumRegister, ClassicalRegister from qiskit import QuantumCircuit, execute from qiskit import Aer Aer.backends() # solver = 'unitary' solver = 'statevector' machine = "CPU" # machine = "GPU" # precision = "single" precision = "double" if solver=='unitary': # backend = Aer.get_backend('unitary_simulator',precision = 'double',device="GPU") backend = Aer.get_backend('unitary_simulator',precision = precision,device=machine) job = execute(circuit, backend, shots=0) result = job.result() QSP_unitary = result.get_unitary(circuit,100) QSP_matrix = np.array(QSP_unitary.to_matrix()) print(QSP_matrix) elif solver=='statevector': backend = Aer.get_backend('statevector_simulator',precision = precision,device=machine) # backend = Aer.get_backend('statevector_simulator',precision = 'double',device="GPU") job = execute(circuit, backend, shots=0) result = job.result() QSP_statevector = result.get_statevector() print(QSP_statevector) if solver=='statevector': # We can ignore the padding size and directly use the size of b (considering Hermitian dilation) if HD: P_A_b = np.real(QSP_statevector.data[int(b_orig.shape[0]):(2*b_orig.shape[0])]) else: P_A_b = np.real(QSP_statevector.data[0:b.shape[0]]) P_A_b = P_A_b/np.linalg.norm(P_A_b) b_orig.shape[0] if solver=='statevector': print(P_A_b) if solver=='statevector': expected_P_A_b = np.linalg.solve(A_orig,b_orig) expected_P_A_b = expected_P_A_b/np.linalg.norm(expected_P_A_b) if solver=='statevector': print(expected_P_A_b) if solver=='statevector': for iteration_number in range(iterations): plt.plot(expected_P_A_b[iteration_number*size:(iteration_number+1)*size]) if solver=='statevector': for iteration_number in range(iterations): plt.plot(P_A_b[iteration_number*size:(iteration_number+1)*size]) exact_solution = np.linalg.solve(K,f) plt.plot(exact_solution/np.linalg.norm(exact_solution)) x_exact_normalized = exact_solution x_exact_normalized = x_exact_normalized/np.linalg.norm(x_exact_normalized) error_actual = [] if solver=='statevector': for iteration_number in range(1,iterations): e = x_exact_normalized - (P_A_b[iteration_number*size:(iteration_number+1)*size]/np.linalg.norm(P_A_b[iteration_number*size:(iteration_number+1)*size])).reshape(np.shape(x_exact_normalized)) error_actual.append(np.linalg.norm(e)) plt.plot(np.log10(error_actual)) error_expected = [] if solver=='statevector': for iteration_number in range(1,iterations): e = x_exact_normalized - (expected_P_A_b[iteration_number*size:(iteration_number+1)*size]/np.linalg.norm(expected_P_A_b[iteration_number*size:(iteration_number+1)*size])).reshape(np.shape(x_exact_normalized)) error_expected.append(np.linalg.norm(e)) plt.plot(np.log10(error_expected),'--') plt.legend(['actual','expected']) plt.xlabel('iterations') plt.ylabel('log10 e') plt.title('N = {}, {} iterations'.format(size,iterations)) error_actual error_expected np.linalg.cond(A_orig) plt.plot(np.log10(np.abs(np.array(error_actual)-error_expected))) if solver=='unitary': A_inv = np.linalg.inv(A_orig) if HD: # Extract the appropriate block N1 = 2**int(O_A_num_qubits-2) # Remove the padding N2 = np.shape(A_orig)[0] P_A = np.real(QSP_matrix[N1:(N1+N2),0:N2]) else: # Extract the appropriate block # Remove the padding N2 = np.shape(A_orig)[0] P_A = np.real(QSP_matrix[0:N2,0:N2]) print(P_A/P_A[0,0]) print("Error: {}".format(np.linalg.norm(P_A/abs(P_A[0,0])-A_inv,2))) if 'unitary'==solver and 'diagonal'==problem: plt.plot(np.arange(-1,0,0.05),np.diag(P_A)[0:20]/abs(P_A[0,0]),'r',linewidth=3) plt.plot(np.arange(0.05,1.05,0.05),np.diag(P_A)[20:40]/abs(P_A[0,0]),'r',linewidth=3) plt.plot(np.arange(-1.25,0,0.01),1/np.arange(-1.25,0,0.01),'k--',) plt.plot(np.arange(0.01,1.25,0.01),1/np.arange(0.01,1.25,0.01),'k--') plt.ylim([-25,25]) if 'unitary'==solver and 'diagonal'==problem: error = np.abs(np.diag(A_inv)-np.diag(P_A / abs(P_A[0,0]))) plt.plot(np.diag(A)[0:int(len(error)/2)],error[0:int(len(error)/2)],np.diag(A)[int(len(error)/2):len(error)],error[int(len(error)/2):len(error)]) plt.xlabel('normalized eigenvalues') plt.ylabel('error') # # np.set_printoptions(threshold=np.inf) # for i in range(P_A.shape[0]): # # print(QSP_matrix[i,i]/0.0062) # print(P_A[i,i]/abs(P_A[0,0])) # # print(QSP_matrix/QSP_matrix[0,0])
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2023 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import ddt import qiskit.qasm2 from qiskit.test import QiskitTestCase @ddt.ddt class TestLexer(QiskitTestCase): # Most of the lexer is fully exercised in the parser tests. These tests here are really mopping # up some error messages and whatnot that might otherwise be missed. def test_pathological_formatting(self): # This is deliberately _terribly_ formatted, included multiple blanks lines in quick # succession and comments in places you really wouldn't expect to see comments. program = """ OPENQASM // do we really need a comment here? 2.0//and another comment very squished up ; include // this line introduces a file import "qelib1.inc" // this is the file imported ; // this is a semicolon gate // we're making a gate bell( // void, with loose parenthesis in comment ) ) a,// b{h a;cx a //,,,, ,b;} qreg // a quantum register q [ // a square bracket 2];bell q[0],// q[1];creg c[2];measure q->c;""" parsed = qiskit.qasm2.loads(program) expected_unrolled = qiskit.QuantumCircuit( qiskit.QuantumRegister(2, "q"), qiskit.ClassicalRegister(2, "c") ) expected_unrolled.h(0) expected_unrolled.cx(0, 1) expected_unrolled.measure([0, 1], [0, 1]) self.assertEqual(parsed.decompose(), expected_unrolled) @ddt.data("0.25", "00.25", "2.5e-1", "2.5e-01", "0.025E+1", ".25", ".025e1", "25e-2") def test_float_lexes(self, number): program = f"qreg q[1]; U({number}, 0, 0) q[0];" parsed = qiskit.qasm2.loads(program) self.assertEqual(list(parsed.data[0].operation.params), [0.25, 0, 0]) def test_no_decimal_float_rejected_in_strict_mode(self): with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"\[strict\] all floats must include a decimal point", ): qiskit.qasm2.loads("OPENQASM 2.0; qreg q[1]; U(25e-2, 0, 0) q[0];", strict=True) @ddt.data("", "qre", "cre", ".") def test_non_ascii_bytes_error(self, prefix): token = f"{prefix}\xff" with self.assertRaisesRegex(qiskit.qasm2.QASM2ParseError, "encountered a non-ASCII byte"): qiskit.qasm2.loads(token) def test_integers_cannot_start_with_zero(self): with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, "integers cannot have leading zeroes" ): qiskit.qasm2.loads("0123") @ddt.data("", "+", "-") def test_float_exponents_must_have_a_digit(self, sign): token = f"12.34e{sign}" with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, "needed to see an integer exponent" ): qiskit.qasm2.loads(token) def test_non_builtins_cannot_be_capitalised(self): with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, "identifiers cannot start with capital" ): qiskit.qasm2.loads("Qubit") def test_unterminated_filename_is_invalid(self): with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, "unexpected end-of-file while lexing string literal" ): qiskit.qasm2.loads('include "qelib1.inc') def test_filename_with_linebreak_is_invalid(self): with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, "unexpected line break while lexing string literal" ): qiskit.qasm2.loads('include "qe\nlib1.inc";') def test_strict_single_quoted_path_rejected(self): with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"\[strict\] paths must be in double quotes" ): qiskit.qasm2.loads("OPENQASM 2.0; include 'qelib1.inc';", strict=True) def test_version_must_have_word_boundary_after(self): with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"expected a word boundary after a version" ): qiskit.qasm2.loads("OPENQASM 2a;") with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"expected a word boundary after a version" ): qiskit.qasm2.loads("OPENQASM 2.0a;") def test_no_boundary_float_in_version_position(self): with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"expected a word boundary after a float" ): qiskit.qasm2.loads("OPENQASM .5a;") with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"expected a word boundary after a float" ): qiskit.qasm2.loads("OPENQASM 0.2e1a;") def test_integers_must_have_word_boundaries_after(self): with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"expected a word boundary after an integer" ): qiskit.qasm2.loads("OPENQASM 2.0; qreg q[2a];") def test_floats_must_have_word_boundaries_after(self): with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"expected a word boundary after a float" ): qiskit.qasm2.loads("OPENQASM 2.0; qreg q[1]; U(2.0a, 0, 0) q[0];") def test_single_equals_is_rejected(self): with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"single equals '=' is never valid" ): qiskit.qasm2.loads("if (a = 2) U(0, 0, 0) q[0];") def test_bare_dot_is_not_valid_float(self): with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"expected a numeric fractional part" ): qiskit.qasm2.loads("qreg q[0]; U(2 + ., 0, 0) q[0];") def test_invalid_token(self): with self.assertRaisesRegex( qiskit.qasm2.QASM2ParseError, r"encountered '!', which doesn't match" ): qiskit.qasm2.loads("!")
https://github.com/apcarrik/qiskit-dev
apcarrik
''' helloworld.py This file is intended as a simple template for qiskit files. The code can be found at: https://qiskit.org/documentation/intro_tutorial1.html ''' ### 1. Import Packages import numpy as np from matplotlib import pyplot from qiskit import QuantumCircuit, transpile # instructions of quantum system from qiskit.providers.aer import QasmSimulator # Aer high performance circuit simulator from qiskit.visualization import plot_histogram # creates histograms of circuit output ### 2. Initialize Variables circuit = QuantumCircuit(2,2) # initialize the 2 qubits in zero state, and 2 classical bits set to 0 ### 3. Add gates circuit.h(0) # add Hadamard gate on qubit 0 circuit.cx(0, 1) # add CNOT gate with control qubit 0 and target qubit 1 circuit.measure([0,1], [0,1]) # Measure the two qubits and saves the result to the two classical bits # Note: this circuit implements a simple Bell state, where there is equal chance of measuring |00> and |11> ### 4. Visualize the Circuit circuit.draw(output='mpl') # draw the circuit as matplotlib figure pyplot.show() # show the figure ### 5. Simulate the Experiment simulator = QasmSimulator() # Create instance of Aer's qasm_simulator compiled_circuit = transpile(circuit, simulator) # Compile the circuit down to low-level QASM instructions. # Supported by the backend (not needed for simple circuits) job = simulator.run(compiled_circuit, shots=1000) # Execute circuit on qasm simulator result = job.result() # Fetch results counts = result.get_counts(circuit) # Get the counts of outcomes from results print("\nTotal count for 00 and 11 are:", counts) # Print total count for each outcome ### 6. Visualize the Results plot_histogram(counts) # plots the results as a histogram pyplot.show() # show the figure
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile from qiskit.visualization import plot_circuit_layout from qiskit.providers.fake_provider import FakeVigo backend = FakeVigo() ghz = QuantumCircuit(3, 3) ghz.h(0) ghz.cx(0,range(1,3)) ghz.barrier() ghz.measure(range(3), range(3)) new_circ_lv3 = transpile(ghz, backend=backend, optimization_level=3) plot_circuit_layout(new_circ_lv3, backend)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile ghz = QuantumCircuit(15) ghz.h(0) ghz.cx(0, range(1, 15)) ghz.draw(output='mpl')