repo
stringclasses 885
values | file
stringclasses 741
values | content
stringlengths 4
215k
|
---|---|---|
https://github.com/HQSquantumsimulations/qoqo-qiskit
|
HQSquantumsimulations
|
# Copyright © 2023 HQS Quantum Simulations GmbH.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License
# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
# or implied. See the License for the specific language governing permissions and limitations under
# the License.
"""Test file for interface.py."""
import sys
from typing import Union
import pytest
from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister
from qoqo import Circuit
from qoqo import operations as ops
from qoqo_qiskit.interface import to_qiskit_circuit # type:ignore
def test_basic_circuit() -> None:
"""Test basic circuit conversion."""
circuit = Circuit()
circuit += ops.Hadamard(0)
circuit += ops.PauliX(1)
circuit += ops.Identity(1)
qc = QuantumCircuit(2)
qc.h(0)
qc.x(1)
qc.id(1)
out_circ, sim_dict = to_qiskit_circuit(circuit)
assert out_circ == qc
assert len(sim_dict["MeasurementInfo"]) == 0
def test_qreg_creg_names() -> None:
"""Test qreg and creg qiskit names."""
circuit = Circuit()
circuit += ops.DefinitionBit("cr", 2, is_output=True)
circuit += ops.DefinitionBit("crr", 3, is_output=True)
qr = QuantumRegister(1, "qrg")
cr = ClassicalRegister(2, "cr")
cr2 = ClassicalRegister(3, "crr")
qc = QuantumCircuit(qr, cr, cr2)
out_circ, _ = to_qiskit_circuit(circuit, qubit_register_name="qrg")
assert out_circ == qc
def test_setstatevector() -> None:
"""Test PragmaSetStateVector operation."""
circuit = Circuit()
circuit += ops.PragmaSetStateVector([0, 1])
qc = QuantumCircuit(1)
qc.initialize([0, 1])
out_circ, _ = to_qiskit_circuit(circuit)
assert out_circ == qc
circuit = Circuit()
circuit += ops.PragmaSetStateVector([0, 1])
circuit += ops.RotateX(0, 0.23)
qc = QuantumCircuit(1)
qc.initialize([0, 1])
qc.rx(0.23, 0)
out_circ, _ = to_qiskit_circuit(circuit)
assert out_circ == qc
def test_repeated_measurement() -> None:
"""Test PragmaRepeatedMeasurement operation."""
circuit = Circuit()
circuit += ops.Hadamard(0)
circuit += ops.Hadamard(1)
circuit += ops.DefinitionBit("ri", 2, True)
circuit += ops.PragmaRepeatedMeasurement("ri", 300)
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(2, "ri")
qc = QuantumCircuit(qr, cr)
qc.h(0)
qc.h(1)
qc.measure(qr, cr)
out_circ, sim_dict = to_qiskit_circuit(circuit)
assert out_circ == qc
assert ("ri", 300, None) in sim_dict["MeasurementInfo"]["PragmaRepeatedMeasurement"]
def test_measure_qubit() -> None:
"""Test MeasureQubit operation."""
circuit = Circuit()
circuit += ops.Hadamard(0)
circuit += ops.PauliZ(1)
circuit += ops.DefinitionBit("crg", 1, is_output=True)
circuit += ops.MeasureQubit(0, "crg", 0)
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(1, "crg")
qc = QuantumCircuit(qr, cr)
qc.h(0)
qc.z(1)
qc.measure(0, cr)
out_circ, sim_dict = to_qiskit_circuit(circuit)
assert out_circ == qc
assert (0, "crg", 0) in sim_dict["MeasurementInfo"]["MeasureQubit"]
@pytest.mark.parametrize("repetitions", [0, 2, 4, "test"])
def test_pragma_loop(repetitions: Union[int, str]) -> None:
"""Test PragmaLoop operation."""
inner_circuit = Circuit()
inner_circuit += ops.PauliX(1)
inner_circuit += ops.PauliY(2)
circuit = Circuit()
circuit += ops.Hadamard(0)
circuit += ops.PragmaLoop(repetitions=repetitions, circuit=inner_circuit)
circuit += ops.Hadamard(3)
qc = QuantumCircuit(4)
qc.h(0)
if not isinstance(repetitions, str):
for _ in range(repetitions):
qc.x(1)
qc.y(2)
qc.h(3)
try:
out_circ, _ = to_qiskit_circuit(circuit)
assert out_circ == qc
except ValueError as e:
assert e.args == ("A symbolic PragmaLoop operation is not supported.",)
def test_custom_gates_fix() -> None:
"""Test _custom_gates_fix method."""
qoqo_circuit = Circuit()
qoqo_circuit += ops.PragmaSleep([0, 3], 1.0)
qoqo_circuit += ops.PauliX(2)
qoqo_circuit += ops.PragmaSleep([4], 0.004)
qoqo_circuit += ops.RotateXY(3, 0.1, 0.1)
qr = QuantumRegister(5, "q")
qiskit_circuit = QuantumCircuit(qr)
qiskit_circuit.delay(1.0, qr[0], unit="s")
qiskit_circuit.delay(1.0, qr[3], unit="s")
qiskit_circuit.x(qr[2])
qiskit_circuit.delay(0.004, qr[4], unit="s")
qiskit_circuit.r(0.1, 0.1, qr[3])
out_circ, _ = to_qiskit_circuit(qoqo_circuit)
assert out_circ == qiskit_circuit
def test_simulation_info() -> None:
"""Test SimulationInfo dictionary."""
circuit = Circuit()
circuit += ops.Hadamard(0)
circuit += ops.CNOT(0, 1)
circuit += ops.DefinitionBit("ro", 2, True)
circuit += ops.PragmaGetStateVector("ro", None)
circuit += ops.PragmaGetDensityMatrix("ro", None)
_, sim_dict = to_qiskit_circuit(circuit)
assert sim_dict["SimulationInfo"]["PragmaGetStateVector"]
assert sim_dict["SimulationInfo"]["PragmaGetDensityMatrix"]
# For pytest
if __name__ == "__main__":
pytest.main(sys.argv)
|
https://github.com/Z-928/Bugs4Q
|
Z-928
|
from qiskit import *
qc = QuantumCircuit(2)
qc.h(i)
qc.crz (PI/4, 0, 1)
|
https://github.com/qiskit-community/qiskit-dell-runtime
|
qiskit-community
|
import itertools
import json
import numpy as np
from numpy.random import RandomState
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.compiler import transpile
from cvxopt import matrix, solvers # pylint: disable=import-error
from .qka import QKA
class FeatureMap:
def __init__(self, feature_dimension, entangler_map=None):
if isinstance(feature_dimension, int):
if feature_dimension % 2 == 0:
self._feature_dimension = feature_dimension
else:
raise ValueError("Feature dimension must be an even integer.")
else:
raise ValueError("Feature dimension must be an even integer.")
self._num_qubits = int(feature_dimension / 2)
if entangler_map is None:
self._entangler_map = [
[i, j]
for i in range(self._feature_dimension)
for j in range(i + 1, self._feature_dimension)
]
else:
self._entangler_map = entangler_map
self._num_parameters = self._num_qubits
def construct_circuit(self, x=None, parameters=None, q=None, inverse=False, name=None):
if parameters is not None:
if isinstance(parameters, (int, float)):
raise ValueError("Parameters must be a list.")
if len(parameters) == 1:
parameters = parameters * np.ones(self._num_qubits)
else:
if len(parameters) != self._num_parameters:
raise ValueError(
"The number of feature map parameters must be {}.".format(
self._num_parameters
)
)
if len(x) != self._feature_dimension:
raise ValueError(
"The input vector must be of length {}.".format(self._feature_dimension)
)
if q is None:
q = QuantumRegister(self._num_qubits, name="q")
circuit = QuantumCircuit(q, name=name)
for i in range(self._num_qubits):
circuit.ry(-parameters[i], q[i])
for source, target in self._entangler_map:
circuit.cz(q[source], q[target])
for i in range(self._num_qubits):
circuit.rz(-2 * x[2 * i + 1], q[i])
circuit.rx(-2 * x[2 * i], q[i])
if inverse:
return circuit.inverse()
else:
return circuit
def to_json(self):
return json.dumps(
{"feature_dimension": self._feature_dimension, "entangler_map": self._entangler_map}
)
@classmethod
def from_json(cls, data):
return cls(**json.loads(data))
|
https://github.com/jdanielescanez/quantum-solver
|
jdanielescanez
|
'''
This is a implementation of the quantum teleportation algorithm
'''
from qiskit import *
from qiskit.visualization import plot_histogram
import os, shutil, numpy
from matplotlib.pyplot import plot, draw, show
LaTex_folder_Quantum_Teleportation = str(os.getcwd())+'/Latex_quantum_gates/Quantum_Teleportation/'
if not os.path.exists(LaTex_folder_Quantum_Teleportation):
os.makedirs(LaTex_folder_Quantum_Teleportation)
else:
shutil.rmtree(LaTex_folder_Quantum_Teleportation)
os.makedirs(LaTex_folder_Quantum_Teleportation)
qc = QuantumCircuit(3,3)
## prepare the state to be teleported
phi = 0*numpy.pi
theta= 0.5*numpy.pi
lam = 0*numpy.pi
qc.u(phi=phi, theta=theta,lam=lam,qubit=0)
## teleport the state
qc.barrier()
qc.h(1)
qc.cx(1,2)
qc.cz(0,1)
qc.h(0)
qc.h(1)
qc.barrier()
qc.measure([0,1],[0,1])
qc.barrier()
qc.x(2).c_if(0,1)
qc.z(2).c_if(1,1)
qc.h(2)
qc.measure(2,2)
LaTex_code = qc.draw(output='latex_source', initial_state=True, justify=None) # draw the circuit
f_name = 'quantum_teleportation.tex'
with open(LaTex_folder_Quantum_Teleportation+f_name, 'w') as f:
f.write(LaTex_code)
# simulation
simulator = Aer.get_backend('qasm_simulator')
result = execute(qc, backend=simulator, shots=100000).result()
counts = {'0':0,
'1': 0}
print(result.get_counts().keys())
for key, value in result.get_counts().items():
if(key[0] == '0'):
counts['0'] += value
else:
counts['1'] += value
print(counts)
plt = plot_histogram(counts)
draw()
show(block=True)
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test the HoareOptimizer pass"""
import unittest
from numpy import pi
from qiskit.utils import optionals
from qiskit.transpiler.passes import HoareOptimizer
from qiskit.converters import circuit_to_dag
from qiskit import QuantumCircuit
from qiskit.test import QiskitTestCase
from qiskit.circuit.library import XGate, RZGate, CSwapGate, SwapGate
from qiskit.dagcircuit import DAGOpNode
from qiskit.quantum_info import Statevector
@unittest.skipUnless(optionals.HAS_Z3, "z3-solver needs to be installed to run these tests")
class TestHoareOptimizer(QiskitTestCase):
"""Test the HoareOptimizer pass"""
def test_phasegate_removal(self):
"""Should remove the phase on a classical state,
but not on a superposition state.
"""
# ┌───┐
# q_0: ┤ Z ├──────
# ├───┤┌───┐
# q_1:─┤ H ├┤ Z ├─
# └───┘└───┘
circuit = QuantumCircuit(3)
circuit.z(0)
circuit.h(1)
circuit.z(1)
# q_0: ───────────
# ┌───┐┌───┐
# q_1:─┤ H ├┤ Z ├─
# └───┘└───┘
expected = QuantumCircuit(3)
expected.h(1)
expected.z(1)
stv = Statevector.from_label("0" * circuit.num_qubits)
self.assertEqual(stv & circuit, stv & expected)
pass_ = HoareOptimizer(size=0)
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_cswap_removal(self):
"""Should remove Fredkin gates because the optimizer
can deduce the targets are in the same state
"""
# ┌───┐┌───┐ ┌───┐ ┌───┐ ┌───┐
# q_0: ┤ X ├┤ X ├──■──┤ X ├──■──┤ X ├──■────■──┤ X ├─────────────────────────────────
# └───┘└─┬─┘┌─┴─┐└─┬─┘ │ └─┬─┘┌─┴─┐ │ └─┬─┘
# q_1: ───────┼──┤ X ├──■────┼────┼──┤ X ├──┼────■───■──■──■──■─────■─────■──────────
# │ └─┬─┘ ┌─┴─┐ │ └─┬─┘┌─┴─┐ │ │ │ │ │ │ │
# q_2: ───────┼────┼───────┤ X ├──■────┼──┤ X ├──■───┼──┼──┼──┼──■──┼──■──┼──■──■──■─
# ┌───┐ │ │ └─┬─┘ │ └─┬─┘ │ │ │ │ │ │ │ │ │ │ │
# q_3: ┤ H ├──■────┼─────────┼─────────┼────┼────────┼──┼──X──X──┼──┼──X──┼──┼──X──┼─
# ├───┤ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
# q_4: ┤ H ├───────■─────────┼─────────┼────┼────────┼──┼──┼──X──┼──X──┼──┼──X──┼──X─
# ├───┤ │ │ │ │ │ │ │ │ │ │ │ │ │
# q_5: ┤ H ├─────────────────■─────────┼────┼────────┼──┼──┼─────┼──X──┼──X──┼──X──┼─
# ├───┤ │ │ │ │ │ │ │ │ │ │
# q_6: ┤ H ├───────────────────────────■────■────────┼──┼──┼─────┼─────┼──X──┼─────X─
# └───┘ │ │ │ │ │ │
# q_7: ──────────────────────────────────────────────X──┼──┼─────X─────┼─────┼───────
# │ │ │ │ │ │
# q_8: ──────────────────────────────────────────────X──X──┼─────┼─────X─────┼───────
# │ │ │ │
# q_9: ─────────────────────────────────────────────────X──X─────X───────────X───────
circuit = QuantumCircuit(10)
# prep
circuit.x(0)
circuit.h(3)
circuit.h(4)
circuit.h(5)
circuit.h(6)
# find first non-zero bit of reg(3-6), store position in reg(1-2)
circuit.cx(3, 0)
circuit.ccx(0, 4, 1)
circuit.cx(1, 0)
circuit.ccx(0, 5, 2)
circuit.cx(2, 0)
circuit.ccx(0, 6, 1)
circuit.ccx(0, 6, 2)
circuit.ccx(1, 2, 0)
# shift circuit
circuit.cswap(1, 7, 8)
circuit.cswap(1, 8, 9)
circuit.cswap(1, 9, 3)
circuit.cswap(1, 3, 4)
circuit.cswap(1, 4, 5)
circuit.cswap(1, 5, 6)
circuit.cswap(2, 7, 9)
circuit.cswap(2, 8, 3)
circuit.cswap(2, 9, 4)
circuit.cswap(2, 3, 5)
circuit.cswap(2, 4, 6)
# ┌───┐┌───┐ ┌───┐ ┌───┐ ┌───┐
# q_0: ┤ X ├┤ X ├──■──┤ X ├──■──┤ X ├──■────■──┤ X ├───────────────
# └───┘└─┬─┘┌─┴─┐└─┬─┘ │ └─┬─┘┌─┴─┐ │ └─┬─┘
# q_1: ───────┼──┤ X ├──■────┼────┼──┤ X ├──┼────■───■──■──■───────
# │ └─┬─┘ ┌─┴─┐ │ └─┬─┘┌─┴─┐ │ │ │ │
# q_2: ───────┼────┼───────┤ X ├──■────┼──┤ X ├──■───┼──┼──┼──■──■─
# ┌───┐ │ │ └─┬─┘ │ └─┬─┘ │ │ │ │ │
# q_3: ┤ H ├──■────┼─────────┼─────────┼────┼────────X──┼──┼──X──┼─
# ├───┤ │ │ │ │ │ │ │ │ │
# q_4: ┤ H ├───────■─────────┼─────────┼────┼────────X──X──┼──┼──X─
# ├───┤ │ │ │ │ │ │ │
# q_5: ┤ H ├─────────────────■─────────┼────┼───────────X──X──X──┼─
# ├───┤ │ │ │ │
# q_6: ┤ H ├───────────────────────────■────■──────────────X─────X─
# └───┘
# q_7: ────────────────────────────────────────────────────────────
#
# q_8: ────────────────────────────────────────────────────────────
#
# q_9: ────────────────────────────────────────────────────────────
expected = QuantumCircuit(10)
# prep
expected.x(0)
expected.h(3)
expected.h(4)
expected.h(5)
expected.h(6)
# find first non-zero bit of reg(3-6), store position in reg(1-2)
expected.cx(3, 0)
expected.ccx(0, 4, 1)
expected.cx(1, 0)
expected.ccx(0, 5, 2)
expected.cx(2, 0)
expected.ccx(0, 6, 1)
expected.ccx(0, 6, 2)
expected.ccx(1, 2, 0)
# optimized shift circuit
expected.cswap(1, 3, 4)
expected.cswap(1, 4, 5)
expected.cswap(1, 5, 6)
expected.cswap(2, 3, 5)
expected.cswap(2, 4, 6)
stv = Statevector.from_label("0" * circuit.num_qubits)
self.assertEqual(stv & circuit, stv & expected)
pass_ = HoareOptimizer(size=0)
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_lnn_cnot_removal(self):
"""Should remove some cnots from swaps introduced
because of linear nearest architecture. Only uses
single-gate optimization techniques.
"""
# ┌───┐ ┌───┐ »
# q_0: ┤ H ├──■──┤ X ├──■────────────────────────────────────────────────────»
# └───┘┌─┴─┐└─┬─┘┌─┴─┐ ┌───┐ »
# q_1: ─────┤ X ├──■──┤ X ├──■──┤ X ├──■──────────────────────────────────■──»
# └───┘ └───┘┌─┴─┐└─┬─┘┌─┴─┐ ┌───┐ ┌───┐┌─┴─┐»
# q_2: ────────────────────┤ X ├──■──┤ X ├──■──┤ X ├──■─────────■──┤ X ├┤ X ├»
# └───┘ └───┘┌─┴─┐└─┬─┘┌─┴─┐ ┌─┴─┐└─┬─┘└───┘»
# q_3: ───────────────────────────────────┤ X ├──■──┤ X ├──■──┤ X ├──■───────»
# └───┘ └───┘┌─┴─┐└───┘ »
# q_4: ──────────────────────────────────────────────────┤ X ├───────────────»
# └───┘ »
# « ┌───┐
# «q_0: ───────■──┤ X ├
# « ┌───┐┌─┴─┐└─┬─┘
# «q_1: ┤ X ├┤ X ├──■──
# « └─┬─┘└───┘
# «q_2: ──■────────────
# «
# «q_3: ───────────────
# «
# «q_4: ───────────────
circuit = QuantumCircuit(5)
circuit.h(0)
for i in range(0, 3):
circuit.cx(i, i + 1)
circuit.cx(i + 1, i)
circuit.cx(i, i + 1)
circuit.cx(3, 4)
for i in range(3, 0, -1):
circuit.cx(i - 1, i)
circuit.cx(i, i - 1)
# ┌───┐ ┌───┐ ┌───┐
# q_0: ┤ H ├──■──┤ X ├───────────────────────────────────┤ X ├
# └───┘┌─┴─┐└─┬─┘ ┌───┐ ┌───┐└─┬─┘
# q_1: ─────┤ X ├──■────■──┤ X ├────────────────────┤ X ├──■──
# └───┘ ┌─┴─┐└─┬─┘ ┌───┐ ┌───┐└─┬─┘
# q_2: ───────────────┤ X ├──■────■──┤ X ├─────┤ X ├──■───────
# └───┘ ┌─┴─┐└─┬─┘ └─┬─┘
# q_3: ─────────────────────────┤ X ├──■────■────■────────────
# └───┘ ┌─┴─┐
# q_4: ───────────────────────────────────┤ X ├───────────────
# └───┘
expected = QuantumCircuit(5)
expected.h(0)
for i in range(0, 3):
expected.cx(i, i + 1)
expected.cx(i + 1, i)
expected.cx(3, 4)
for i in range(3, 0, -1):
expected.cx(i, i - 1)
stv = Statevector.from_label("0" * circuit.num_qubits)
self.assertEqual(stv & circuit, stv & expected)
pass_ = HoareOptimizer(size=0)
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_lnncnot_advanced_removal(self):
"""Should remove all cnots from swaps introduced
because of linear nearest architecture. This time
using multi-gate optimization techniques.
"""
# ┌───┐ ┌───┐ »
# q_0: ┤ H ├──■──┤ X ├──■────────────────────────────────────────────────────»
# └───┘┌─┴─┐└─┬─┘┌─┴─┐ ┌───┐ »
# q_1: ─────┤ X ├──■──┤ X ├──■──┤ X ├──■──────────────────────────────────■──»
# └───┘ └───┘┌─┴─┐└─┬─┘┌─┴─┐ ┌───┐ ┌───┐┌─┴─┐»
# q_2: ────────────────────┤ X ├──■──┤ X ├──■──┤ X ├──■─────────■──┤ X ├┤ X ├»
# └───┘ └───┘┌─┴─┐└─┬─┘┌─┴─┐ ┌─┴─┐└─┬─┘└───┘»
# q_3: ───────────────────────────────────┤ X ├──■──┤ X ├──■──┤ X ├──■───────»
# └───┘ └───┘┌─┴─┐└───┘ »
# q_4: ──────────────────────────────────────────────────┤ X ├───────────────»
# └───┘ »
# « ┌───┐
# «q_0: ───────■──┤ X ├
# « ┌───┐┌─┴─┐└─┬─┘
# «q_1: ┤ X ├┤ X ├──■──
# « └─┬─┘└───┘
# «q_2: ──■────────────
# «
# «q_3: ───────────────
# «
# «q_4: ───────────────
circuit = QuantumCircuit(5)
circuit.h(0)
for i in range(0, 3):
circuit.cx(i, i + 1)
circuit.cx(i + 1, i)
circuit.cx(i, i + 1)
circuit.cx(3, 4)
for i in range(3, 0, -1):
circuit.cx(i - 1, i)
circuit.cx(i, i - 1)
# ┌───┐
# q_0: ┤ H ├──■─────────────────
# └───┘┌─┴─┐
# q_1: ─────┤ X ├──■────────────
# └───┘┌─┴─┐
# q_2: ──────────┤ X ├──■───────
# └───┘┌─┴─┐
# q_3: ───────────────┤ X ├──■──
# └───┘┌─┴─┐
# q_4: ────────────────────┤ X ├
# └───┘
expected = QuantumCircuit(5)
expected.h(0)
for i in range(0, 4):
expected.cx(i, i + 1)
stv = Statevector.from_label("0" * circuit.num_qubits)
self.assertEqual(stv & circuit, stv & expected)
pass_ = HoareOptimizer(size=6)
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_successive_identity_removal(self):
"""Should remove a successive pair of H gates applying
on the same qubit.
"""
circuit = QuantumCircuit(1)
circuit.h(0)
circuit.h(0)
circuit.h(0)
expected = QuantumCircuit(1)
expected.h(0)
stv = Statevector.from_label("0" * circuit.num_qubits)
self.assertEqual(stv & circuit, stv & expected)
pass_ = HoareOptimizer(size=4)
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_targetsuccessive_identity_removal(self):
"""Should remove pair of controlled target successive
which are the inverse of each other, if they can be
identified to be executed as a unit (either both or none).
"""
# ┌───┐ ┌───┐┌───┐
# q_0: ┤ H ├──■──┤ X ├┤ X ├──■──
# ├───┤ │ └─┬─┘└───┘ │
# q_1: ┤ H ├──■────■─────────■──
# ├───┤┌─┴─┐ ┌─┴─┐
# q_2: ┤ H ├┤ X ├──────────┤ X ├
# └───┘└───┘ └───┘
circuit = QuantumCircuit(3)
circuit.h(0)
circuit.h(1)
circuit.h(2)
circuit.ccx(0, 1, 2)
circuit.cx(1, 0)
circuit.x(0)
circuit.ccx(0, 1, 2)
# ┌───┐┌───┐┌───┐
# q_0: ┤ H ├┤ X ├┤ X ├
# ├───┤└─┬─┘└───┘
# q_1: ┤ H ├──■───────
# ├───┤
# q_2: ┤ H ├──────────
# └───┘
expected = QuantumCircuit(3)
expected.h(0)
expected.h(1)
expected.h(2)
expected.cx(1, 0)
expected.x(0)
stv = Statevector.from_label("0" * circuit.num_qubits)
self.assertEqual(stv & circuit, stv & expected)
pass_ = HoareOptimizer(size=4)
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_targetsuccessive_identity_advanced_removal(self):
"""Should remove target successive identity gates
with DIFFERENT sets of control qubits.
In this case CCCX(4,5,6,7) & CCX(5,6,7).
"""
# ┌───┐┌───┐ »
# q_0: ┤ H ├┤ X ├───────■─────────────────────────────■───────────────────■──»
# ├───┤└─┬─┘ │ │ │ »
# q_1: ┤ H ├──■─────────■─────────────────────────────■───────────────────■──»
# ├───┤┌───┐ │ ┌───┐ │ │ »
# q_2: ┤ H ├┤ X ├───────┼──┤ X ├──■──────────────■────┼───────────────────┼──»
# ├───┤└─┬─┘ ┌─┴─┐└─┬─┘ │ │ ┌─┴─┐ ┌─┴─┐»
# q_3: ┤ H ├──■────■──┤ X ├──■────■──────────────■──┤ X ├──■─────────■──┤ X ├»
# ├───┤┌───┐ │ └───┘ │ ┌───┐ │ └───┘ │ │ └───┘»
# q_4: ┤ H ├┤ X ├──┼──────────────┼──┤ X ├──■────┼─────────┼─────────┼───────»
# ├───┤└─┬─┘┌─┴─┐ ┌─┴─┐└─┬─┘ │ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ »
# q_5: ┤ H ├──■──┤ X ├──────────┤ X ├──■────■──┤ X ├─────┤ X ├──■──┤ X ├─────»
# └───┘ └───┘ └───┘ ┌─┴─┐└───┘ └───┘┌─┴─┐├───┤ »
# q_6: ───────────────────────────────────┤ X ├───────────────┤ X ├┤ X ├─────»
# └───┘ └───┘└───┘ »
# q_7: ──────────────────────────────────────────────────────────────────────»
# »
# « ┌───┐┌───┐ »
# «q_0: ──────────────────────■──┤ X ├┤ X ├──■─────────────────────────────■──»
# « │ └─┬─┘└─┬─┘ │ │ »
# «q_1: ──────────────────────■────■────■────■─────────────────────────────■──»
# « ┌───┐ │ │ │ ┌───┐ │ »
# «q_2: ──■─────────■──┤ X ├──┼─────────┼────┼──┤ X ├──■──────────────■────┼──»
# « │ │ └─┬─┘┌─┴─┐ │ ┌─┴─┐└─┬─┘ │ │ ┌─┴─┐»
# «q_3: ──■─────────■────■──┤ X ├───────┼──┤ X ├──■────■──────────────■──┤ X ├»
# « │ ┌───┐ │ └───┘ │ └───┘ │ │ ┌───┐ │ └───┘»
# «q_4: ──┼──┤ X ├──┼───────────────────┼─────────┼────┼──┤ X ├──■────┼───────»
# « ┌─┴─┐└─┬─┘┌─┴─┐ │ │ ┌─┴─┐└─┬─┘ │ ┌─┴─┐ »
# «q_5: ┤ X ├──■──┤ X ├─────────────────┼─────────┼──┤ X ├──■────■──┤ X ├─────»
# « └───┘ └───┘ │ │ └───┘ │ │ └───┘ »
# «q_6: ────────────────────────────────■─────────■─────────■────■────────────»
# « ┌─┴─┐ »
# «q_7: ───────────────────────────────────────────────────────┤ X ├──────────»
# « └───┘ »
# «
# «q_0: ───────────────
# «
# «q_1: ───────────────
# « ┌───┐
# «q_2: ─────┤ X ├─────
# « └─┬─┘
# «q_3: ──■────■───────
# « │ ┌───┐
# «q_4: ──┼──┤ X ├─────
# « ┌─┴─┐└─┬─┘
# «q_5: ┤ X ├──■────■──
# « └───┘ │
# «q_6: ────────────■──
# « ┌─┴─┐
# «q_7: ──────────┤ X ├
# « └───┘
circuit = QuantumCircuit(8)
circuit.h(0)
circuit.h(1)
circuit.h(2)
circuit.h(3)
circuit.h(4)
circuit.h(5)
for i in range(3):
circuit.cx(i * 2 + 1, i * 2)
circuit.cx(3, 5)
for i in range(2):
circuit.ccx(i * 2, i * 2 + 1, i * 2 + 3)
circuit.cx(i * 2 + 3, i * 2 + 2)
circuit.ccx(4, 5, 6)
for i in range(1, -1, -1):
circuit.ccx(i * 2, i * 2 + 1, i * 2 + 3)
circuit.cx(3, 5)
circuit.cx(5, 6)
circuit.cx(3, 5)
circuit.x(6)
for i in range(2):
circuit.ccx(i * 2, i * 2 + 1, i * 2 + 3)
for i in range(1, -1, -1):
circuit.cx(i * 2 + 3, i * 2 + 2)
circuit.ccx(i * 2, i * 2 + 1, i * 2 + 3)
circuit.cx(1, 0)
circuit.ccx(6, 1, 0)
circuit.ccx(0, 1, 3)
circuit.ccx(6, 3, 2)
circuit.ccx(2, 3, 5)
circuit.ccx(6, 5, 4)
circuit.append(XGate().control(3), [4, 5, 6, 7], [])
for i in range(1, -1, -1):
circuit.ccx(i * 2, i * 2 + 1, i * 2 + 3)
circuit.cx(3, 5)
for i in range(1, 3):
circuit.cx(i * 2 + 1, i * 2)
circuit.ccx(5, 6, 7)
# ┌───┐┌───┐ »
# q_0: ┤ H ├┤ X ├───────■─────────────────────────────■───────────────────■──»
# ├───┤└─┬─┘ │ │ │ »
# q_1: ┤ H ├──■─────────■─────────────────────────────■───────────────────■──»
# ├───┤┌───┐ │ ┌───┐ │ │ »
# q_2: ┤ H ├┤ X ├───────┼──┤ X ├──■──────────────■────┼───────────────────┼──»
# ├───┤└─┬─┘ ┌─┴─┐└─┬─┘ │ │ ┌─┴─┐ ┌─┴─┐»
# q_3: ┤ H ├──■────■──┤ X ├──■────■──────────────■──┤ X ├──■─────────■──┤ X ├»
# ├───┤┌───┐ │ └───┘ │ ┌───┐ │ └───┘ │ │ └───┘»
# q_4: ┤ H ├┤ X ├──┼──────────────┼──┤ X ├──■────┼─────────┼─────────┼───────»
# ├───┤└─┬─┘┌─┴─┐ ┌─┴─┐└─┬─┘ │ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ »
# q_5: ┤ H ├──■──┤ X ├──────────┤ X ├──■────■──┤ X ├─────┤ X ├──■──┤ X ├─────»
# └───┘ └───┘ └───┘ ┌─┴─┐└───┘ └───┘┌─┴─┐├───┤ »
# q_6: ───────────────────────────────────┤ X ├───────────────┤ X ├┤ X ├─────»
# └───┘ └───┘└───┘ »
# q_7: ──────────────────────────────────────────────────────────────────────»
# »
# « ┌───┐┌───┐ »
# «q_0: ──────────────────────■──┤ X ├┤ X ├──■────────────────────────■───────»
# « │ └─┬─┘└─┬─┘ │ │ »
# «q_1: ──────────────────────■────■────■────■────────────────────────■───────»
# « ┌───┐ │ │ │ ┌───┐ │ »
# «q_2: ──■─────────■──┤ X ├──┼─────────┼────┼──┤ X ├──■─────────■────┼───────»
# « │ │ └─┬─┘┌─┴─┐ │ ┌─┴─┐└─┬─┘ │ │ ┌─┴─┐ »
# «q_3: ──■─────────■────■──┤ X ├───────┼──┤ X ├──■────■─────────■──┤ X ├──■──»
# « │ ┌───┐ │ └───┘ │ └───┘ │ │ ┌───┐ │ └───┘ │ »
# «q_4: ──┼──┤ X ├──┼───────────────────┼─────────┼────┼──┤ X ├──┼─────────┼──»
# « ┌─┴─┐└─┬─┘┌─┴─┐ │ │ ┌─┴─┐└─┬─┘┌─┴─┐ ┌─┴─┐»
# «q_5: ┤ X ├──■──┤ X ├─────────────────┼─────────┼──┤ X ├──■──┤ X ├─────┤ X ├»
# « └───┘ └───┘ │ │ └───┘ │ └───┘ └───┘»
# «q_6: ────────────────────────────────■─────────■─────────■─────────────────»
# « »
# «q_7: ──────────────────────────────────────────────────────────────────────»
# « »
# «
# «q_0: ─────
# «
# «q_1: ─────
# « ┌───┐
# «q_2: ┤ X ├
# « └─┬─┘
# «q_3: ──■──
# « ┌───┐
# «q_4: ┤ X ├
# « └─┬─┘
# «q_5: ──■──
# «
# «q_6: ─────
# «
# «q_7: ─────
# «
expected = QuantumCircuit(8)
expected.h(0)
expected.h(1)
expected.h(2)
expected.h(3)
expected.h(4)
expected.h(5)
for i in range(3):
expected.cx(i * 2 + 1, i * 2)
expected.cx(3, 5)
for i in range(2):
expected.ccx(i * 2, i * 2 + 1, i * 2 + 3)
expected.cx(i * 2 + 3, i * 2 + 2)
expected.ccx(4, 5, 6)
for i in range(1, -1, -1):
expected.ccx(i * 2, i * 2 + 1, i * 2 + 3)
expected.cx(3, 5)
expected.cx(5, 6)
expected.cx(3, 5)
expected.x(6)
for i in range(2):
expected.ccx(i * 2, i * 2 + 1, i * 2 + 3)
for i in range(1, -1, -1):
expected.cx(i * 2 + 3, i * 2 + 2)
expected.ccx(i * 2, i * 2 + 1, i * 2 + 3)
expected.cx(1, 0)
expected.ccx(6, 1, 0)
expected.ccx(0, 1, 3)
expected.ccx(6, 3, 2)
expected.ccx(2, 3, 5)
expected.ccx(6, 5, 4)
for i in range(1, -1, -1):
expected.ccx(i * 2, i * 2 + 1, i * 2 + 3)
expected.cx(3, 5)
for i in range(1, 3):
expected.cx(i * 2 + 1, i * 2)
stv = Statevector.from_label("0" * circuit.num_qubits)
self.assertEqual(stv & circuit, stv & expected)
pass_ = HoareOptimizer(size=5)
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_control_removal(self):
"""Should replace CX by X."""
# ┌───┐
# q_0: ┤ X ├──■──
# └───┘┌─┴─┐
# q_1: ─────┤ X ├
# └───┘
circuit = QuantumCircuit(2)
circuit.x(0)
circuit.cx(0, 1)
# ┌───┐
# q_0: ┤ X ├
# ├───┤
# q_1: ┤ X ├
# └───┘
expected = QuantumCircuit(2)
expected.x(0)
expected.x(1)
stv = Statevector.from_label("0" * circuit.num_qubits)
self.assertEqual(stv & circuit, stv & expected)
pass_ = HoareOptimizer(size=5)
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
# Should replace CZ by Z
#
# ┌───┐ ┌───┐
# q_0: ┤ H ├─■─┤ H ├
# ├───┤ │ └───┘
# q_1: ┤ X ├─■──────
# └───┘
circuit = QuantumCircuit(2)
circuit.h(0)
circuit.x(1)
circuit.cz(0, 1)
circuit.h(0)
# ┌───┐┌───┐┌───┐
# q_0: ┤ H ├┤ Z ├┤ H ├
# ├───┤└───┘└───┘
# q_1: ┤ X ├──────────
# └───┘
expected = QuantumCircuit(2)
expected.h(0)
expected.x(1)
expected.z(0)
expected.h(0)
stv = Statevector.from_label("0" * circuit.num_qubits)
self.assertEqual(stv & circuit, stv & expected)
pass_ = HoareOptimizer(size=5)
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_is_identity(self):
"""The is_identity function determines whether a pair of gates
forms the identity, when ignoring control qubits.
"""
seq = [DAGOpNode(op=XGate().control()), DAGOpNode(op=XGate().control(2))]
self.assertTrue(HoareOptimizer()._is_identity(seq))
seq = [
DAGOpNode(op=RZGate(-pi / 2).control()),
DAGOpNode(op=RZGate(pi / 2).control(2)),
]
self.assertTrue(HoareOptimizer()._is_identity(seq))
seq = [DAGOpNode(op=CSwapGate()), DAGOpNode(op=SwapGate())]
self.assertTrue(HoareOptimizer()._is_identity(seq))
def test_multiple_pass(self):
"""Verify that multiple pass can be run
with the same Hoare instance.
"""
# ┌───┐┌───┐
# q_0:─┤ H ├┤ Z ├─
# ├───┤└───┘
# q_1: ┤ Z ├──────
# └───┘
circuit1 = QuantumCircuit(2)
circuit1.z(0)
circuit1.h(1)
circuit1.z(1)
circuit2 = QuantumCircuit(2)
circuit2.z(1)
circuit2.h(0)
circuit2.z(0)
# ┌───┐┌───┐
# q_0:─┤ H ├┤ Z ├─
# └───┘└───┘
# q_1: ───────────
expected = QuantumCircuit(2)
expected.h(0)
expected.z(0)
pass_ = HoareOptimizer()
pass_.run(circuit_to_dag(circuit1))
result2 = pass_.run(circuit_to_dag(circuit2))
self.assertEqual(result2, circuit_to_dag(expected))
if __name__ == "__main__":
unittest.main()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_state_city
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
# plot using a Statevector
state = Statevector(qc)
plot_state_city(state)
|
https://github.com/Chibikuri/Quantum-Othello
|
Chibikuri
|
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 19 20:45:54 2019
@author: User
"""
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from qiskit.compiler import transpile
import numpy as np
import collections
import random
import matplotlib.pyplot as plt
import os
plt.ioff()
'''
Function to create folder
'''
def createFolder(directory):
try:
if not os.path.exists(directory):
os.makedirs(directory)
except OSError:
print ('Error: Creating directory. ' + directory)
'''
Define class
'''
class QuantumOthello():
def __init__(self, num, turn):
self.num = num
self.turn = turn
self.qc = QuantumCircuit(num)
self.turnA = int(self.turn/2)
self.turnB = self.turn - self.turnA
self.GateA = self.RandomGate(self.turnA)
self.GateB = self.RandomGate(self.turnB)
self.MeasurementBasis = self.RandomBasis()
def StartTheGame(self):
for i in range(self.num):
if i % 2 == 0:
x = str(input('A, instruction >'))
y = int(input('A #qubit >'))
self.initial(x, y)
else:
x = str(input('B, instruction >'))
y = int(input('B #qubit >'))
self.initial(x, y)
self.end_initial()
#q.get_cir()
print('End of initialization')
for i in range(self.turn):
if i % 2 == 0:
x = str(input('A, instruction >'))
if x == 'CX':
y1 = int(input('Control qubit #> '))
y2 = int(input('target qubit #> '))
self.operation(x, [y1, y2])
else:
y = int(input('A #qubit >'))
self.operation(x, y)
else:
x = str(input('B, instruction >'))
if x == 'CX':
y1 = int(input('Control qubit #> '))
y2 = int(input('target qubit #> '))
self.operation(x, [y1, y2])
else:
y = int(input('B #qubit >'))
self.operation(x, y)
result = self.RuntheGaame()
print(result)
def get_cir(self, trans=False):
createFolder('./fig')
style = { 'showindex': True,
'cregbundle' : True, 'dpi' : 300}
if trans == True:
return transpile(self.qc, basis_gates = ['x', 'h', 'u3', 'cx']).draw(output='mpl', style = style, fold=100)
return self.qc.draw(output='mpl', style = style, fold=100)
def initial(self, instruction, num, vector=None):
''' Normal gate version '''
if instruction == '+':
self.qc.h(num)
elif instruction == '-':
self.qc.x(num)
self.qc.h(num)
elif instruction == '1':
self.qc.x(num)
elif instruction == '0':
None
else:
print('invalid initialize instruction')
def SeqInitial(self, instruction):
for i in range(self.num):
self.initial(instruction[i], i)
def end_initial(self):
self.qc.barrier()
def operation(self, oper, num):
if type(num) == list and len(num) == 2:
num_control = num[0]
num_target = num[1]
if type(num) == list and len(num) == 1:
num = num[0]
if oper == 'H':
self.qc.h(num)
if oper == 'CX':
self.qc.cx(num_control, num_target)
if oper == 'X':
self.qc.x(num)
if oper == 'Z':
self.qc.z(num)
if oper == 'HX':
self.qc.h(num)
self.qc.x(num)
if oper == 'CZ':
self.qc.cz(num_control, num_target)
def RuntheGame(self):
self.qc.barrier()
for i in range(self.num):
if self.MeasurementBasis[i] == 'X':
self.qc.h(i)
elif self.MeasurementBasis[i] == 'Y':
self.qc.sdg(i)
self.qc.h(i)
else:
None
self.qc.measure_all()
self.get_cir().savefig('fig/Mreasurment.png')
backend = Aer.get_backend('qasm_simulator') #qasm_simulator
job = execute(self.qc, backend=backend, shots = 8192).result().get_counts()
List = {'0': 0, '1': 0}
for i in job:
if len(collections.Counter(i).most_common()) == 2:
t, t_c = collections.Counter(i).most_common(2)[0]
d, d_c = collections.Counter(i).most_common(2)[1]
if t_c > d_c:
List[t] += job[i]
elif t_c < d_c:
List[d] += job[i]
else:
None
else:
t, _ = collections.Counter(i).most_common(1)[0]
List[t] += job[i]
return List
def ReturnResult(self, result, error = 500):
if abs(result['0'] - result['1']) < error:
return 'tie'
elif result['0'] > result['1']:
return '0'
else:
return '1'
def RandomBasis(self):
Basis = ['X', 'Z']
return random.choices(Basis, k=self.num)
def RandomGate(self, numTurn):
Gate = ['H', 'HX', 'CX', 'CZ']
return random.choices(Gate, k=numTurn)
def RemoveOper(self, player, gate):
if player == 'A':
self.GateA.remove(gate)
else:
self.GateB.remove(gate)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test the BarrierBeforeFinalMeasurements pass"""
import unittest
from qiskit.transpiler.passes import BarrierBeforeFinalMeasurements
from qiskit.converters import circuit_to_dag
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister
from qiskit.test import QiskitTestCase
class TestBarrierBeforeFinalMeasurements(QiskitTestCase):
"""Tests the BarrierBeforeFinalMeasurements pass."""
def test_single_measure(self):
""" A single measurement at the end
|
q:--[m]-- q:--|-[m]---
| -> | |
c:---.--- c:-----.---
"""
qr = QuantumRegister(1, 'q')
cr = ClassicalRegister(1, 'c')
circuit = QuantumCircuit(qr, cr)
circuit.measure(qr, cr)
expected = QuantumCircuit(qr, cr)
expected.barrier(qr)
expected.measure(qr, cr)
pass_ = BarrierBeforeFinalMeasurements()
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_ignore_single_measure(self):
"""Ignore single measurement because it is not at the end
q:--[m]-[H]- q:--[m]-[H]-
| -> |
c:---.------ c:---.------
"""
qr = QuantumRegister(1, 'q')
cr = ClassicalRegister(1, 'c')
circuit = QuantumCircuit(qr, cr)
circuit.measure(qr, cr)
circuit.h(qr[0])
expected = QuantumCircuit(qr, cr)
expected.measure(qr, cr)
expected.h(qr[0])
pass_ = BarrierBeforeFinalMeasurements()
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_single_measure_mix(self):
"""Two measurements, but only one is at the end
|
q0:--[m]--[H]--[m]-- q0:--[m]--[H]--|-[m]---
| | -> | | |
c:---.---------.--- c:---.-----------.---
"""
qr = QuantumRegister(1, 'q')
cr = ClassicalRegister(1, 'c')
circuit = QuantumCircuit(qr, cr)
circuit.measure(qr, cr)
circuit.h(qr)
circuit.measure(qr, cr)
expected = QuantumCircuit(qr, cr)
expected.measure(qr, cr)
expected.h(qr)
expected.barrier(qr)
expected.measure(qr, cr)
pass_ = BarrierBeforeFinalMeasurements()
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_two_qregs(self):
"""Two measurements in different qregs to different cregs
|
q0:--[H]--[m]------ q0:--[H]--|--[m]------
| | |
q1:--------|--[m]-- -> q1:-------|---|--[m]--
| | | | |
c0:--------.---|--- c0:----------.---|---
| |
c1:------------.--- c0:--------------.---
"""
qr0 = QuantumRegister(1, 'q0')
qr1 = QuantumRegister(1, 'q1')
cr0 = ClassicalRegister(1, 'c0')
cr1 = ClassicalRegister(1, 'c1')
circuit = QuantumCircuit(qr0, qr1, cr0, cr1)
circuit.h(qr0)
circuit.measure(qr0, cr0)
circuit.measure(qr1, cr1)
expected = QuantumCircuit(qr0, qr1, cr0, cr1)
expected.h(qr0)
expected.barrier(qr0, qr1)
expected.measure(qr0, cr0)
expected.measure(qr1, cr1)
pass_ = BarrierBeforeFinalMeasurements()
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_two_qregs_to_a_single_creg(self):
"""Two measurements in different qregs to the same creg
|
q0:--[H]--[m]------ q0:--[H]--|--[m]------
| | |
q1:--------|--[m]-- -> q1:-------|---|--[m]--
| | | | |
c0:--------.---|--- c0:-----------.---|---
------------.--- ---------------.---
"""
qr0 = QuantumRegister(1, 'q0')
qr1 = QuantumRegister(1, 'q1')
cr0 = ClassicalRegister(2, 'c0')
circuit = QuantumCircuit(qr0, qr1, cr0)
circuit.h(qr0)
circuit.measure(qr0, cr0[0])
circuit.measure(qr1, cr0[1])
expected = QuantumCircuit(qr0, qr1, cr0)
expected.h(qr0)
expected.barrier(qr0, qr1)
expected.measure(qr0, cr0[0])
expected.measure(qr1, cr0[1])
pass_ = BarrierBeforeFinalMeasurements()
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_preserve_measure_for_conditional(self):
"""Test barrier is inserted after any measurements used for conditionals
q0:--[H]--[m]------------ q0:--[H]--[m]---------------
| |
q1:--------|--[ z]--[m]-- -> q1:--------|--[ z]--|--[m]--
| | | | | |
c0:--------.--[=1]---|--- c0:--------.--[=1]------|---
| |
c1:------------------.--- c1:---------------------.---
"""
qr0 = QuantumRegister(1, 'q0')
qr1 = QuantumRegister(1, 'q1')
cr0 = ClassicalRegister(1, 'c0')
cr1 = ClassicalRegister(1, 'c1')
circuit = QuantumCircuit(qr0, qr1, cr0, cr1)
circuit.h(qr0)
circuit.measure(qr0, cr0)
circuit.z(qr1).c_if(cr0, 1)
circuit.measure(qr1, cr1)
expected = QuantumCircuit(qr0, qr1, cr0, cr1)
expected.h(qr0)
expected.measure(qr0, cr0)
expected.z(qr1).c_if(cr0, 1)
expected.barrier(qr1)
expected.measure(qr1, cr1)
pass_ = BarrierBeforeFinalMeasurements()
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
class TestBarrierBeforeMeasuremetsWhenABarrierIsAlreadyThere(QiskitTestCase):
"""Tests the BarrierBeforeFinalMeasurements pass when there is a barrier already"""
def test_handle_redundancy(self):
"""The pass is idempotent
| |
q:--|-[m]-- q:--|-[m]---
| | -> | |
c:-----.--- c:-----.---
"""
qr = QuantumRegister(1, 'q')
cr = ClassicalRegister(1, 'c')
circuit = QuantumCircuit(qr, cr)
circuit.barrier(qr)
circuit.measure(qr, cr)
expected = QuantumCircuit(qr, cr)
expected.barrier(qr)
expected.measure(qr, cr)
pass_ = BarrierBeforeFinalMeasurements()
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_remove_barrier_in_different_qregs(self):
"""Two measurements in different qregs to the same creg
q0:--|--[m]------ q0:---|--[m]------
| | |
q1:--|---|--[m]-- -> q1:---|---|--[m]--
| | | |
c0:------.---|--- c0:-------.---|---
----------.--- -----------.---
"""
qr0 = QuantumRegister(1, 'q0')
qr1 = QuantumRegister(1, 'q1')
cr0 = ClassicalRegister(2, 'c0')
circuit = QuantumCircuit(qr0, qr1, cr0)
circuit.barrier(qr0)
circuit.barrier(qr1)
circuit.measure(qr0, cr0[0])
circuit.measure(qr1, cr0[1])
expected = QuantumCircuit(qr0, qr1, cr0)
expected.barrier(qr0, qr1)
expected.measure(qr0, cr0[0])
expected.measure(qr1, cr0[1])
pass_ = BarrierBeforeFinalMeasurements()
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_preserve_barriers_for_measurement_ordering(self):
"""If the circuit has a barrier to enforce a measurement order,
preserve it in the output.
q:---[m]--|------- q:---|--[m]--|-------
----|---|--[m]-- -> ---|---|---|--[m]--
| | | |
c:----.-------|--- c:-------.-------|---
------------.--- ---------------.---
"""
qr = QuantumRegister(2, 'q')
cr = ClassicalRegister(2, 'c')
circuit = QuantumCircuit(qr, cr)
circuit.measure(qr[0], cr[0])
circuit.barrier(qr)
circuit.measure(qr[1], cr[1])
expected = QuantumCircuit(qr, cr)
expected.barrier(qr)
expected.measure(qr[0], cr[0])
expected.barrier(qr)
expected.measure(qr[1], cr[1])
pass_ = BarrierBeforeFinalMeasurements()
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_measures_followed_by_barriers_should_be_final(self):
"""If a measurement is followed only by a barrier,
insert the barrier before it.
q:---[H]--|--[m]--|------- q:---[H]--|--[m]-|-------
---[H]--|---|---|--[m]-- -> ---[H]--|---|--|--[m]--
| | | |
c:------------.-------|--- c:------------.------|---
--------------------.--- -------------------.---
"""
qr = QuantumRegister(2, 'q')
cr = ClassicalRegister(2, 'c')
circuit = QuantumCircuit(qr, cr)
circuit.h(qr)
circuit.barrier(qr)
circuit.measure(qr[0], cr[0])
circuit.barrier(qr)
circuit.measure(qr[1], cr[1])
expected = QuantumCircuit(qr, cr)
expected.h(qr)
expected.barrier(qr)
expected.measure(qr[0], cr[0])
expected.barrier(qr)
expected.measure(qr[1], cr[1])
pass_ = BarrierBeforeFinalMeasurements()
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_should_merge_with_smaller_duplicate_barrier(self):
"""If an equivalent barrier exists covering a subset of the qubits
covered by the new barrier, it should be replaced.
q:---|--[m]------------- q:---|--[m]-------------
---|---|---[m]-------- -> ---|---|---[m]--------
-------|----|---[m]--- ---|---|----|---[m]---
| | | | | |
c:-------.----|----|---- c:-------.----|----|----
------------.----|---- ------------.----|----
-----------------.---- -----------------.----
"""
qr = QuantumRegister(3, 'q')
cr = ClassicalRegister(3, 'c')
circuit = QuantumCircuit(qr, cr)
circuit.barrier(qr[0], qr[1])
circuit.measure(qr, cr)
expected = QuantumCircuit(qr, cr)
expected.barrier(qr)
expected.measure(qr, cr)
pass_ = BarrierBeforeFinalMeasurements()
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_should_merge_with_larger_duplicate_barrier(self):
"""If a barrier exists and is stronger than the barrier to be inserted,
preserve the existing barrier and do not insert a new barrier.
q:---|--[m]--|------- q:---|--[m]-|-------
---|---|---|--[m]-- -> ---|---|--|--[m]--
---|---|---|---|--- ---|---|--|---|---
| | | |
c:-------.-------|--- c:-------.------|---
---------------.--- --------------.---
------------------- ------------------
"""
qr = QuantumRegister(3, 'q')
cr = ClassicalRegister(3, 'c')
circuit = QuantumCircuit(qr, cr)
circuit.barrier(qr)
circuit.measure(qr[0], cr[0])
circuit.barrier(qr)
circuit.measure(qr[1], cr[1])
expected = circuit
pass_ = BarrierBeforeFinalMeasurements()
result = pass_.run(circuit_to_dag(circuit))
self.assertEqual(result, circuit_to_dag(expected))
def test_barrier_doesnt_reorder_gates(self):
""" A barrier should not allow the reordering of gates, as pointed out in #2102
q:--[u1(0)]-----------[m]--------- q:--[u1(0)]------------|--[m]---------
--[u1(1)]------------|-[m]------ -> --[u1(1)]------------|---|-[m]------
--[u1(2)]-|----------|--|-[m]---- --[u1(2)]-|----------|---|--|-[m]----
----------|-[u1(03)]-|--|--|-[m]- ----------|-[u1(03)]-|---|--|--|-[m]-
| | | | | | | |
c:---------------------.--|--|--|- c:--------------------------.--|--|--|-
------------------------.--|--|- -----------------------------.--|--|-
---------------------------.--|- --------------------------------.--|-
------------------------------.- -----------------------------------.-
"""
qr = QuantumRegister(4)
cr = ClassicalRegister(4)
circuit = QuantumCircuit(qr, cr)
circuit.u1(0, qr[0])
circuit.u1(1, qr[1])
circuit.u1(2, qr[2])
circuit.barrier(qr[2], qr[3])
circuit.u1(3, qr[3])
test_circuit = circuit.copy()
test_circuit.measure(qr, cr)
# expected circuit is the same, just with a barrier before the measurements
expected = circuit.copy()
expected.barrier(qr)
expected.measure(qr, cr)
pass_ = BarrierBeforeFinalMeasurements()
result = pass_.run(circuit_to_dag(test_circuit))
self.assertEqual(result, circuit_to_dag(expected))
if __name__ == '__main__':
unittest.main()
|
https://github.com/bawejagb/Quantum_Computing
|
bawejagb
|
from qiskit import IBMQ
IBMQ.providers()
#https://quantum-computing.ibm.com/
#Craete account on IBM from above link and Paste 'YOUR-IBM-API-TOKEN'
IBMQ.save_account('YOUR-IBM-API-TOKEN',overwrite=True)
IBMQ.load_account()
from qiskit import(
QuantumCircuit,
execute,
Aer)
from qiskit.visualization import plot_histogram
# Use Aer's qasm_simulator
simulator = Aer.get_backend('qasm_simulator')
# Create a Quantum Circuit acting on the q register
circuit = QuantumCircuit(2, 2)
# Add a H gate on qubit 0
circuit.h(0)
# Add a CX (CNOT) gate on control qubit 0 and target qubit 1
circuit.cx(0, 1)
# Map the quantum measurement to the classical bits
circuit.measure([0,1], [0,1])
# Execute the circuit on the qasm simulator
job = execute(circuit, simulator, shots=1000)
# Grab results from the job
result = job.result()
# Returns counts
counts = result.get_counts(circuit)
print("\nTotal count for 00 and 11 are:",counts)
# Draw the circuit
circuit.draw(output='mpl')
provider = IBMQ.get_provider('ibm-q')
provider.backends()
qcomp = provider.get_backend('ibmq_lima')
job = execute(circuit, backend=qcomp)
from qiskit.tools.monitor import job_monitor
job_monitor(job)
result = job.result()
plot_histogram(result.get_counts(circuit))
|
https://github.com/zapatacomputing/qe-qiskit
|
zapatacomputing
|
################################################################################
# © Copyright 2021-2022 Zapata Computing Inc.
################################################################################
import os
import pytest
import qiskit.providers.aer.noise as AerNoise
from qeqiskit.noise import get_qiskit_noise_model
from qeqiskit.simulator import QiskitSimulator
from zquantum.core.circuits import CNOT, Circuit, X
from zquantum.core.estimation import estimate_expectation_values_by_averaging
from zquantum.core.interfaces.backend_test import (
QuantumSimulatorGatesTest,
QuantumSimulatorTests,
)
from zquantum.core.interfaces.estimation import EstimationTask
from zquantum.core.measurement import ExpectationValues
from zquantum.core.openfermion.ops import QubitOperator
@pytest.fixture(
params=[
{
"device_name": "aer_simulator",
"api_token": os.getenv("ZAPATA_IBMQ_API_TOKEN"),
},
]
)
def backend(request):
return QiskitSimulator(**request.param)
@pytest.fixture(
params=[
{
"device_name": "aer_simulator_statevector",
},
]
)
def wf_simulator(request):
return QiskitSimulator(**request.param)
@pytest.fixture(
params=[
{
"device_name": "aer_simulator",
},
{
"device_name": "aer_simulator_statevector",
},
]
)
def sampling_simulator(request):
return QiskitSimulator(**request.param)
@pytest.fixture(
params=[
{"device_name": "aer_simulator", "optimization_level": 0},
]
)
def noisy_simulator(request):
ibmq_api_token = os.getenv("ZAPATA_IBMQ_API_TOKEN")
noise_model, connectivity = get_qiskit_noise_model(
"ibm_nairobi", api_token=ibmq_api_token
)
return QiskitSimulator(
**request.param, noise_model=noise_model, device_connectivity=connectivity
)
class TestQiskitSimulator(QuantumSimulatorTests):
def test_run_circuitset_and_measure(self, sampling_simulator):
# Given
circuit = Circuit([X(0), CNOT(1, 2)])
# When
measurements_set = sampling_simulator.run_circuitset_and_measure(
[circuit], [100]
)
# Then
assert len(measurements_set) == 1
for measurements in measurements_set:
assert len(measurements.bitstrings) == 100
assert all(bitstring == (1, 0, 0) for bitstring in measurements.bitstrings)
# When
n_circuits = 50
n_samples = 100
measurements_set = sampling_simulator.run_circuitset_and_measure(
[circuit] * n_circuits, [n_samples] * n_circuits
)
# Then
assert len(measurements_set) == n_circuits
for measurements in measurements_set:
assert len(measurements.bitstrings) == n_samples
assert all(bitstring == (1, 0, 0) for bitstring in measurements.bitstrings)
def test_setup_basic_simulators(self):
simulator = QiskitSimulator("aer_simulator")
assert isinstance(simulator, QiskitSimulator)
assert simulator.device_name == "aer_simulator"
assert simulator.noise_model is None
assert simulator.device_connectivity is None
assert simulator.basis_gates is None
simulator = QiskitSimulator("aer_simulator_statevector")
assert isinstance(simulator, QiskitSimulator)
assert simulator.device_name == "aer_simulator_statevector"
assert simulator.noise_model is None
assert simulator.device_connectivity is None
assert simulator.basis_gates is None
def test_simulator_that_does_not_exist(self):
# Given/When/Then
with pytest.raises(RuntimeError):
QiskitSimulator("DEVICE DOES NOT EXIST")
def test_expectation_value_with_noisy_simulator(self, noisy_simulator):
# Given
# Initialize in |1> state
circuit = Circuit([X(0)])
# Flip qubit an even number of times to remain in the |1> state, but allow
# decoherence to take effect
circuit += Circuit([X(0) for i in range(10)])
qubit_operator = QubitOperator("Z0")
n_samples = 8192
# When
estimation_tasks = [EstimationTask(qubit_operator, circuit, n_samples)]
expectation_values_10_gates = estimate_expectation_values_by_averaging(
noisy_simulator, estimation_tasks
)[0]
# Then
assert isinstance(expectation_values_10_gates, ExpectationValues)
assert len(expectation_values_10_gates.values) == 1
assert expectation_values_10_gates.values[0] > -1
assert expectation_values_10_gates.values[0] < 0.0
assert isinstance(noisy_simulator, QiskitSimulator)
assert noisy_simulator.device_name == "aer_simulator"
assert isinstance(noisy_simulator.noise_model, AerNoise.NoiseModel)
assert noisy_simulator.device_connectivity is not None
assert noisy_simulator.basis_gates is not None
# Given
# Initialize in |1> state
circuit = Circuit([X(0)])
# Flip qubit an even number of times to remain in the |1> state, but allow
# decoherence to take effect
circuit += Circuit([X(0) for i in range(50)])
qubit_operator = QubitOperator("Z0")
# When
estimation_tasks = [EstimationTask(qubit_operator, circuit, n_samples)]
expectation_values_50_gates = estimate_expectation_values_by_averaging(
noisy_simulator, estimation_tasks
)[0]
# Then
assert isinstance(expectation_values_50_gates, ExpectationValues)
assert len(expectation_values_50_gates.values) == 1
assert expectation_values_50_gates.values[0] > -1
assert expectation_values_50_gates.values[0] < 0.0
assert (
expectation_values_50_gates.values[0]
> expectation_values_10_gates.values[0]
)
assert isinstance(noisy_simulator, QiskitSimulator)
assert noisy_simulator.device_name == "aer_simulator"
assert isinstance(noisy_simulator.noise_model, AerNoise.NoiseModel)
assert noisy_simulator.device_connectivity is not None
assert noisy_simulator.basis_gates is not None
def test_optimization_level_of_transpiler(self):
# Given
noise_model, connectivity = get_qiskit_noise_model(
"ibm_nairobi", api_token=os.getenv("ZAPATA_IBMQ_API_TOKEN")
)
n_samples = 8192
simulator = QiskitSimulator(
"aer_simulator",
noise_model=noise_model,
device_connectivity=connectivity,
optimization_level=0,
)
qubit_operator = QubitOperator("Z0")
# Initialize in |1> state
circuit = Circuit([X(0)])
# Flip qubit an even number of times to remain in the |1> state, but allow
# decoherence to take effect
circuit += Circuit([X(0) for i in range(50)])
# When
estimation_tasks = [EstimationTask(qubit_operator, circuit, n_samples)]
expectation_values_no_compilation = estimate_expectation_values_by_averaging(
simulator, estimation_tasks
)
simulator.optimization_level = 3
expectation_values_full_compilation = estimate_expectation_values_by_averaging(
simulator, estimation_tasks
)
# Then
assert (
expectation_values_full_compilation[0].values[0]
< expectation_values_no_compilation[0].values[0]
)
def test_run_circuit_and_measure_seed(self):
# Given
circuit = Circuit([X(0), CNOT(1, 2)])
n_samples = 100
simulator1 = QiskitSimulator("aer_simulator", seed=643)
simulator2 = QiskitSimulator("aer_simulator", seed=643)
# When
measurements1 = simulator1.run_circuit_and_measure(circuit, n_samples)
measurements2 = simulator2.run_circuit_and_measure(circuit, n_samples)
# Then
for (meas1, meas2) in zip(measurements1.bitstrings, measurements2.bitstrings):
assert meas1 == meas2
def test_get_wavefunction_seed(self):
# Given
circuit = Circuit([X(0), CNOT(1, 2)])
simulator1 = QiskitSimulator("aer_simulator_statevector", seed=643)
simulator2 = QiskitSimulator("aer_simulator_statevector", seed=643)
# When
wavefunction1 = simulator1.get_wavefunction(circuit)
wavefunction2 = simulator2.get_wavefunction(circuit)
# Then
for (ampl1, ampl2) in zip(wavefunction1.amplitudes, wavefunction2.amplitudes):
assert ampl1 == ampl2
class TestQiskitSimulatorGates(QuantumSimulatorGatesTest):
gates_to_exclude = ["RH", "XY"]
pass
|
https://github.com/jonasmaziero/computacao_quantica_qiskit
|
jonasmaziero
| |
https://github.com/MetalKyubit/Quantum-Algorithms-in-Qiskit
|
MetalKyubit
|
# initialization
import numpy as np
# importing Qiskit
from qiskit import *
# import basic plot tools
from qiskit.visualization import plot_histogram
from qiskit.providers.fake_provider import FakeJakarta
from qiskit.providers.fake_provider import FakeNairobi
#defining a function to create the BV Algorithm circuit. Function takes in the oracle and number of qubits and
# ouputs the quantum circuit
def BV_algo(oracle,n):
# n input qubits and 1 helper qubit
qc = QuantumCircuit(n+1,n)
# helper qubit initialised to state ket_1
qc.x(n)
# creating superposition of all the inputs. and making the state of the helper qubit as ket_minus.
for i in range(n+1):
qc.h(i)
qc.barrier()
# applying the oracle that has the funciton encoded in it to the circuit
qc.append(oracle, range(n+1))
qc.barrier()
#applying the hadamard gates again to collapse the superposition to one state that has the final result
#encoded in it.
for i in range(n):
qc.h(i)
# measuring the input qubits to find the final result.
qc.measure(range(n),range(n))
return (qc)
def bv_oracle(n:int, s:str):
_circuit_oracle = QuantumCircuit(n+1)
#reverse the bit string because qiskit uses inverse endianness
s = s[::-1]
for _bit_position in range(n):
if(s[_bit_position] == '1'):
# phase flippping the helper qubit (as it is in ket_minus state x will phase flip it)
# flipping phase
_circuit_oracle.cx(_bit_position, n)
else:
_circuit_oracle.i(_bit_position)
_gate_oracle = _circuit_oracle.to_gate()
s = s[::-1]
_gate_oracle.name = "Oracle\n s: "+str(s)
return _gate_oracle
# Testing the algorithm for n=3 and a='101')
n = 3
oracle = bv_oracle(n, '101')
q1 = BV_algo(oracle, n)
q1.draw('mpl')
# Running on non-noisy simulator
backend = Aer.get_backend('aer_simulator')
job = execute(q1,backend)
results = job.result()
counts = results.get_counts()
plot_histogram(counts)
# Running on noisy simulator
backend = FakeJakarta()
job = execute(q1,backend)
results = job.result()
counts = results.get_counts()
plot_histogram(counts)
# Running on noisy simulator
backend = FakeNairobi()
job = execute(q1,backend)
results = job.result()
counts = results.get_counts()
plot_histogram(counts)
# Testing the algorithm for n=3 and a='101')
n = 5
oracle = bv_oracle(n, '10101')
q1 = BV_algo(oracle, n)
q1.draw('mpl')
# Running on non-noisy simulator
backend = Aer.get_backend('aer_simulator')
job = execute(q1,backend)
results = job.result()
counts = results.get_counts()
plot_histogram(counts)
# Running on noisy simulator
backend = FakeJakarta()
job = execute(q1,backend)
results = job.result()
counts = results.get_counts()
plot_histogram(counts)
# Running on noisy simulator
backend = FakeNairobi()
job = execute(q1,backend)
results = job.result()
counts = results.get_counts()
plot_histogram(counts)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem
from qiskit.circuit.library import LinearAmplitudeFunction
from qiskit_aer.primitives import Sampler
from qiskit_finance.circuit.library import LogNormalDistribution
# number of qubits to represent the uncertainty
num_uncertainty_qubits = 3
# parameters for considered random distribution
S = 2.0 # initial spot price
vol = 0.4 # volatility of 40%
r = 0.05 # annual interest rate of 4%
T = 40 / 365 # 40 days to maturity
# resulting parameters for log-normal distribution
mu = (r - 0.5 * vol**2) * T + np.log(S)
sigma = vol * np.sqrt(T)
mean = np.exp(mu + sigma**2 / 2)
variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2)
stddev = np.sqrt(variance)
# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.
low = np.maximum(0, mean - 3 * stddev)
high = mean + 3 * stddev
# construct circuit for uncertainty model
uncertainty_model = LogNormalDistribution(
num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high)
)
# plot probability distribution
x = uncertainty_model.values
y = uncertainty_model.probabilities
plt.bar(x, y, width=0.2)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.grid()
plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15)
plt.ylabel("Probability ($\%$)", size=15)
plt.show()
# set the strike price (should be within the low and the high value of the uncertainty)
strike_price_1 = 1.438
strike_price_2 = 2.584
# set the approximation scaling for the payoff function
rescaling_factor = 0.25
# setup piecewise linear objective fcuntion
breakpoints = [low, strike_price_1, strike_price_2]
slopes = [0, 1, 0]
offsets = [0, 0, strike_price_2 - strike_price_1]
f_min = 0
f_max = strike_price_2 - strike_price_1
bull_spread_objective = LinearAmplitudeFunction(
num_uncertainty_qubits,
slopes,
offsets,
domain=(low, high),
image=(f_min, f_max),
breakpoints=breakpoints,
rescaling_factor=rescaling_factor,
)
# construct A operator for QAE for the payoff function by
# composing the uncertainty model and the objective
bull_spread = bull_spread_objective.compose(uncertainty_model, front=True)
# plot exact payoff function (evaluated on the grid of the uncertainty model)
x = uncertainty_model.values
y = np.minimum(np.maximum(0, x - strike_price_1), strike_price_2 - strike_price_1)
plt.plot(x, y, "ro-")
plt.grid()
plt.title("Payoff Function", size=15)
plt.xlabel("Spot Price", size=15)
plt.ylabel("Payoff", size=15)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.show()
# evaluate exact expected value (normalized to the [0, 1] interval)
exact_value = np.dot(uncertainty_model.probabilities, y)
exact_delta = sum(
uncertainty_model.probabilities[np.logical_and(x >= strike_price_1, x <= strike_price_2)]
)
print("exact expected value:\t%.4f" % exact_value)
print("exact delta value: \t%.4f" % exact_delta)
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = EstimationProblem(
state_preparation=bull_spread,
objective_qubits=[num_uncertainty_qubits],
post_processing=bull_spread_objective.post_processing,
)
# construct amplitude estimation
ae = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result = ae.estimate(problem)
conf_int = np.array(result.confidence_interval_processed)
print("Exact value: \t%.4f" % exact_value)
print("Estimated value:\t%.4f" % result.estimation_processed)
print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int))
# setup piecewise linear objective fcuntion
breakpoints = [low, strike_price_1, strike_price_2]
slopes = [0, 0, 0]
offsets = [0, 1, 0]
f_min = 0
f_max = 1
bull_spread_delta_objective = LinearAmplitudeFunction(
num_uncertainty_qubits,
slopes,
offsets,
domain=(low, high),
image=(f_min, f_max),
breakpoints=breakpoints,
) # no approximation necessary, hence no rescaling factor
# construct the A operator by stacking the uncertainty model and payoff function together
bull_spread_delta = bull_spread_delta_objective.compose(uncertainty_model, front=True)
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = EstimationProblem(
state_preparation=bull_spread_delta, objective_qubits=[num_uncertainty_qubits]
)
# construct amplitude estimation
ae_delta = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result_delta = ae_delta.estimate(problem)
conf_int = np.array(result_delta.confidence_interval)
print("Exact delta: \t%.4f" % exact_delta)
print("Estimated value:\t%.4f" % result_delta.estimation)
print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int))
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
ghz = QuantumCircuit(5)
ghz.h(0)
ghz.cx(0,range(1,5))
ghz.draw(output='mpl')
|
https://github.com/JayRGopal/Quantum-Error-Correction
|
JayRGopal
|
from qiskit import *
import random
def generate_oracle(oracle_length, random_cnot, cnot_count, fixed_string=""):
if random_cnot == True:
cnot_count = random.randint(0, oracle_length)
random_cnots = random.sample(range(0, oracle_length), cnot_count)
oracle = ""
for i in range(oracle_length):
if random_cnots.count(i) == 1:
oracle = oracle + "1"
else:
oracle = oracle + "0"
if fixed_string != "" and len(fixed_string) == oracle_length - 1:
oracle = fixed_string
circuit = QuantumCircuit(len(oracle)+1, len(oracle))
circuit.h(range(len(oracle)))
circuit.x(len(oracle))
circuit.h(len(oracle))
circuit.barrier()
for ii, yesno in enumerate(reversed(oracle)):
if yesno == '1':
circuit.cx(ii, len(oracle))
circuit.barrier()
circuit.h(range(len(oracle)))
circuit.barrier()
circuit.measure(range(len(oracle)), range(len(oracle)))
return [circuit, oracle]
def validate_oracle(results,expected,cnt):
print("ORACLE PASSES :)" if results.get_counts().most_frequent() == expected else "oracle failed... :(")
acc = (results.get_counts()[expected] / cnt) * 100
print("Correct with %d%% accurary"%(acc))
|
https://github.com/quantumgenetics/quantumgenetics
|
quantumgenetics
|
#!/usr/bin/env python3
import logging
from datetime import datetime
from qiskit import QuantumCircuit
logger = logging.getLogger(__name__)
def initialized_empty_circuit(qubit_count, state):
logger.info('Produce circuit')
return initialized_circuit(QuantumCircuit(qubit_count, qubit_count), state)
def initialized_circuit(circuit, state):
qubit_count = len(circuit.qubits)
assert len(state) == 2**qubit_count
pre_circuit = QuantumCircuit(circuit.qregs[0], circuit.cregs[0])
logger.info('Initializing circuit...')
before = datetime.now()
pre_circuit.initialize(state, range(qubit_count))
delta = datetime.now() - before
logger.info('Circuit initialized ({} s)'.format(delta.total_seconds()))
post_circuit = circuit.copy()
post_circuit.barrier(post_circuit.qregs[0])
post_circuit.measure(range(qubit_count), range(qubit_count))
return pre_circuit + post_circuit
|
https://github.com/qclib/qclib
|
qclib
|
# Copyright 2021 qclib project.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Linear-depth Multicontrolled Special Unitary
"""
from typing import Union, List
import numpy as np
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.circuit.library import UnitaryGate
from qiskit.circuit import Gate, Qubit
from qclib.gates.ldmcsu import Ldmcsu
from qclib.gates.mcx import McxVchainDirty
from qclib.gates.util import check_su2, isclose
# pylint: disable=protected-access
class MultiTargetMCSU2(Gate):
"""
Multi-target Multi-Controlled Gate for Special Unitary
------------------------------------------------
Linear decomposition of approximate multi-controlled single qubit gates
https://arxiv.org/abs/2310.14974 Lemma 7
"""
def __init__(self, unitaries, num_controls, num_target=1, ctrl_state: str = None):
"""
Parameters
----------
unitaries (list): List of SU(2) matrices
num_controls (int): Number of control gastes
num_target (int): Number of target gates
ctrl_state (str): Control state in decimal or as a bitstring
"""
if isinstance(unitaries, list):
for unitary in unitaries:
check_su2(unitary)
else:
check_su2(unitaries)
self.unitaries = unitaries
self.controls = QuantumRegister(num_controls)
self.target = QuantumRegister(num_target)
self.num_controls = num_controls + 1
self.ctrl_state = ctrl_state
super().__init__("ldmcsu", self.num_controls, [], "ldmcsu")
def _define(self):
if isinstance(self.unitaries, list):
self.definition = QuantumCircuit(self.controls, self.target)
is_main_diags_real = []
is_secondary_diags_real = []
for unitary in self.unitaries:
is_main_diags_real.append(
isclose(unitary[0, 0].imag, 0.0)
and isclose(unitary[1, 1].imag, 0.0)
)
is_secondary_diags_real.append(
isclose(unitary[0, 1].imag, 0.0)
and isclose(unitary[1, 0].imag, 0.0)
)
for idx, unitary in enumerate(self.unitaries):
if not is_secondary_diags_real[idx] and is_main_diags_real[idx]:
self.definition.h(self.target[idx])
self.clinear_depth_mcv()
for idx, unitary in enumerate(self.unitaries):
if not is_secondary_diags_real[idx] and is_main_diags_real[idx]:
self.definition.h(self.target[idx])
else:
self.definition = Ldmcsu(self.unitaries, self.num_controls)
def clinear_depth_mcv(self, general_su2_optimization=False):
"""
Multi-target version of Theorem 1 - https://arxiv.org/pdf/2302.06377.pdf
"""
# S gate definition
gates_a = self._s_gate_definition(self.unitaries)
num_ctrl = len(self.controls)
target_size = len(self.target)
k_1 = int(np.ceil(num_ctrl / 2.0))
k_2 = int(np.floor(num_ctrl / 2.0))
ctrl_state_k_1 = None
ctrl_state_k_2 = None
if self.ctrl_state is not None:
ctrl_state_k_1 = self.ctrl_state[::-1][:k_1][::-1]
ctrl_state_k_2 = self.ctrl_state[::-1][k_1:][::-1]
if not general_su2_optimization:
mcx_1 = McxVchainDirty(
k_1, num_target_qubit=target_size, ctrl_state=ctrl_state_k_1
).definition
self.definition.append(
mcx_1,
self.controls[:k_1] + self.controls[k_1: 2 * k_1 - 2] + [*self.target],
)
for idx, gate_a in enumerate(gates_a):
self.definition.append(gate_a, [num_ctrl + idx])
mcx_2 = McxVchainDirty(
k_2,
num_target_qubit=target_size,
ctrl_state=ctrl_state_k_2,
action_only=general_su2_optimization,
).definition
self.definition.append(
mcx_2.inverse(),
self.controls[k_1:] + self.controls[k_1 - k_2 + 2: k_1] + [*self.target],
)
for idx, gate_a in enumerate(gates_a):
self.definition.append(gate_a.inverse(), [num_ctrl + idx])
mcx_3 = McxVchainDirty(
k_1, num_target_qubit=target_size, ctrl_state=ctrl_state_k_1
).definition
self.definition.append(
mcx_3,
self.controls[:k_1] + self.controls[k_1: 2 * k_1 - 2] + [*self.target],
)
for idx, gate_a in enumerate(gates_a):
self.definition.append(gate_a, [num_ctrl + idx])
mcx_4 = McxVchainDirty(
k_2, num_target_qubit=target_size, ctrl_state=ctrl_state_k_2
).definition
self.definition.append(
mcx_4,
self.controls[k_1:] + self.controls[k_1 - k_2 + 2: k_1] + [*self.target],
)
for idx, gate_a in enumerate(gates_a):
self.definition.append(gate_a.inverse(), [num_ctrl + idx])
def _s_gate_definition(self, su2_unitaries):
gates_a = []
for su2_unitary in su2_unitaries:
x_value, z_value = Ldmcsu._get_x_z(su2_unitary)
op_a = Ldmcsu._compute_gate_a(x_value, z_value)
gates_a.append(UnitaryGate(op_a))
return gates_a
@staticmethod
def multi_target_mcsu2(
circuit,
unitary,
controls: Union[QuantumRegister, List[Qubit]],
target: Qubit,
ctrl_state: str = None,
):
"""
Multi-target version of multi-controlled SU(2)
https://arxiv.org/abs/2302.06377
"""
if isinstance(unitary, list):
num_target = len(unitary)
circuit.append(
MultiTargetMCSU2(unitary, len(controls), num_target=num_target).definition,
[*controls, *target],
)
else:
circuit.append(
Ldmcsu(unitary, len(controls), ctrl_state=ctrl_state),
[*controls, target],
)
|
https://github.com/MonitSharma/Learn-Quantum-Computing-with-Qiskit
|
MonitSharma
|
# Run this cell using Shift+Enter (⌘+Enter on Mac).
from typing import Tuple
import math
Complex = Tuple[float, float]
Polar = Tuple[float, float]
def imaginary_power(n : int) -> int:
# If n is divisible by 4
if n % 4 == 0:
return 1
else:
return 1j ** (n % 4)
imaginary_power(4)
def complex_add(x : Complex, y : Complex) -> Complex:
# You can extract elements from a tuple like this
a = x[0]
b = x[1]
c = y[0]
d = y[1]
# This creates a new variable and stores the real component into it
real = a + c
# Replace the ... with code to calculate the imaginary component
imaginary = b+d
# You can create a tuple like this
ans = (real, imaginary)
return ans
complex_add((1,2),(3,4))
def complex_mult(x, y):
# Extract the real and imaginary components of x and y
a = x[0]
b = x[1]
c = y[0]
d = y[1]
# Calculate the real component of the result
real = a * c - b * d
# Calculate the imaginary component of the result
imaginary = a * d + b * c
# Create a new tuple with the calculated real and imaginary components
ans = (real, imaginary)
return ans
result = complex_mult((1, 2), (3, 4))
print(result) # Output: (-5, 10)
def conjugate(x):
# Extract the real and imaginary components of x
real, imaginary = x
# Calculate the conjugate by negating the imaginary component
conjugate_imaginary = -imaginary
# Create a new tuple with the original real component and the conjugate imaginary component
conjugate = (real, conjugate_imaginary)
return conjugate
result = conjugate((3, 4))
print(result) # Output: (3, -4)
def complex_div(x, y):
# Extract the real and imaginary components of x and y
a, b = x
c, d = y
# Calculate the denominator of the division
denominator = c**2 + d**2
# Calculate the real and imaginary components of the result
real = (a * c + b * d) / denominator
imaginary = (b * c - a * d) / denominator
# Create a new tuple with the calculated real and imaginary components
result = (real, imaginary)
return result
result = complex_div((5, 2), (3, 1))
print(result) # Output: (1.6, 0.2)
def modulus(x):
# Extract the real and imaginary components of x
a = x[0]
b = x[1]
# Calculate the modulus using the Pythagorean theorem
modulus_value = (a**2 + b**2)**0.5
return modulus_value
result = modulus((3, 4))
print(result) # Output: 5.0
import cmath
def complex_exp(x):
# Extract the real and imaginary components of x
a = x[0]
b = x[1]
# Calculate the complex exponential using the cmath library
result = cmath.exp(complex(a, b))
# Extract the real and imaginary components of the result
g = result.real
h = result.imag
return (g, h)
result = complex_exp((1, 1))
print(result) # Output: (1.4686939399158851+2.2873552871788423j)
import cmath
def complex_exp_real(r, x):
# Extract the real and imaginary components of x
a = x[0]
b = x[1]
# Calculate the complex power using the cmath library
result = cmath.exp(complex(a, b) * cmath.log(r))
# Extract the real and imaginary components of the result
g = result.real
h = result.imag
return (g, h)
result = complex_exp_real(2, (1, 1))
print(result) # Output: (-1.1312043837568135+2.4717266720048188j)
import cmath
def polar_convert(x):
# Extract the real and imaginary components of x
a = x[0]
b = x[1]
# Calculate the modulus and phase using the cmath library
modulus = abs(complex(a, b))
phase = cmath.phase(complex(a, b))
return (modulus, phase)
result = polar_convert((3, 4))
print(result) # Output: (5.0, 0.9272952180016122)
import cmath
def cartesian_convert(x):
# Extract the modulus and phase from x
modulus = x[0]
phase = x[1]
# Calculate the real and imaginary components using cmath library
real = modulus * cmath.cos(phase)
imaginary = modulus * cmath.sin(phase)
return (real, imaginary)
result = cartesian_convert((5.0, 0.9272952180016122))
print(result) # Output: (3.0000000000000004, 3.9999999999999996)
import math
def polar_mult(x, y):
# Extract the modulus and phase from x and y
r1, theta1 = x
r2, theta2 = y
# Calculate the modulus of the product
r3 = r1 * r2
# Calculate the phase of the product
theta3 = theta1 + theta2
# Normalize theta3 to be between -pi and pi
theta3 = math.atan2(math.sin(theta3), math.cos(theta3))
return (r3, theta3)
result = polar_mult((2.0, 1.0471975511965979), (3.0, -0.5235987755982988))
print(result) # Output: (6.0, 0.5235987755982988)
import cmath
def complex_power(x, y):
# Extract the real and imaginary components from x and y
a, b = x
c, d = y
# Convert x and y to complex numbers
x_complex = complex(a, b)
y_complex = complex(c, d)
# Calculate the result using the cmath library
result = cmath.exp(y_complex * cmath.log(x_complex))
# Extract the real and imaginary components of the result
g = result.real
h = result.imag
return (g, h)
result = complex_power((2, 1), (1, 1))
print(result) # Output: (0.6466465358226179, 1.5353981633974483)
|
https://github.com/jdanielescanez/quantum-solver
|
jdanielescanez
|
#!/usr/bin/env python3
# Author: Daniel Escanez-Exposito
from abc import ABC, abstractmethod
from qiskit import QuantumCircuit
from qiskit.circuit.library import YGate, ZGate
from qiskit.circuit.gate import Gate
import qiskit.quantum_info as qi
from numpy.random import randint
import numpy as np
from math import ceil
## An abstract class of a participant entity in the Six-State implementation
## @see https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html
class Participant(ABC):
## Constructor
@abstractmethod
def __init__(self, name='', original_bits_size=0):
## The name of the participant
self.name = name
## The original size of the message
self.original_bits_size = original_bits_size
## The values of the participant
self.values = None
## The axes of the participant
self.axes = None
## The key of the participant
self.key = None
## If the key is determined safe
self.is_safe_key = False
## The otp of the participant
self.otp = None
## The gate measuring z and y axes
self.set_hy()
## Values setter
def set_values(self, values=None):
if values == None:
self.values = list(randint(2, size=self.original_bits_size))
else:
self.values = values
## Axes setter
def set_axes(self, axes=None):
if axes == None:
self.axes = list(randint(3, size=self.original_bits_size))
else:
self.axes = axes
## Print values
def show_values(self):
print('\n' + self.name, 'Values:')
print(self.values)
## Print axes
def show_axes(self):
print('\n' + self.name, 'Axes:')
print(self.axes)
## Print key
def show_key(self):
print('\n' + self.name, 'Key:')
print(self.key)
## Print otp
def show_otp(self):
print('\n' + self.name, 'OTP:')
print(self.otp)
## Remove the values of the qubits that were measured on the wrong axis
def remove_garbage(self, another_axes):
self.key = []
for i in range(self.original_bits_size):
if self.axes[i] == another_axes[i]:
self.key.append(self.values[i])
## Check if the shared key is equal to the current key
def check_key(self, shared_key):
return shared_key == self.key[:len(shared_key)]
## Use the rest of the key and validate it
def confirm_key(self, shared_size):
self.key = self.key[shared_size:]
self.is_safe_key = True
## Generate an One-Time Pad
def generate_otp(self, n_bits):
self.otp = []
for i in range(ceil(len(self.key) / n_bits)):
bits_string = ''.join(map(str, self.key[i * n_bits: (i + 1) * n_bits]))
self.otp.append(int(bits_string, 2))
## Performs an XOR operation between the message and the One-Time Pad
def xor_otp_message(self, message):
final_message = ''
CHR_LIMIT = 1114112
if len(self.otp) > 0:
for i, char in enumerate(message):
final_message += chr((ord(char) ^ self.otp[i % len(self.otp)]) % CHR_LIMIT)
return final_message
## New gate setter
def set_hy(self):
hy_op = qi.Operator(1/np.sqrt(2)*(YGate().to_matrix() + ZGate().to_matrix()))
hy_gate = QuantumCircuit(1)
hy_gate.unitary(hy_op, [0], label='h_y')
self.hy = hy_gate.to_gate()
|
https://github.com/Interlin-q/diskit
|
Interlin-q
|
import sys
sys.path.append("..")
from diskit import *
import warnings
warnings.filterwarnings("ignore")
circuit_topo = Topology()
circuit_topo.create_qmap(3, [2, 3, 3], "sys")
circuit_topo.qmap, circuit_topo.emap
print("Total Number of Qubits in Topology : ", circuit_topo.num_qubits())
print("Total Number of QPUs in Topology: ", circuit_topo.num_hosts())
Qubit1 = circuit_topo.qmap["sys1"][2]
Qubit2 = circuit_topo.qmap["sys2"][1]
print("{} and {} are adjacent".format(Qubit1, Qubit2)
if circuit_topo.are_adjacent(Qubit1, Qubit2) else
"{} and {} are not adjacent".format(Qubit1, Qubit2))
for qubit in circuit_topo.qubits:
print("Qubit: {} --------- Host: {}".format(qubit, circuit_topo.get_host(qubit)))
import qiskit.tools.jupyter
%qiskit_version_table
|
https://github.com/minnukota381/Quantum-Computing-Qiskit
|
minnukota381
|
from qiskit import *
from qiskit.visualization import plot_bloch_multivector, visualize_transition, plot_histogram
# Create a quantum circuit with 2 qubits
# The default initial state of qubits will be |0> or [1,0]
qc = QuantumCircuit(2)
#Applying the x gate to second qubit
qc.x(1)
#Draw the circuit
# qc.draw()
qc.draw('mpl')
#Get the backend for the circuit to display unitary matrix
backend = Aer.get_backend('unitary_simulator')
#Get the backend for the circuit (simulator or realtime system)
#backend = Aer.get_backend('statevector_simulator')
#execute the circuit using the backend
out = execute(qc,backend).result().get_unitary()
#execute the circuit using the backend
#out = execute(qc,backend).result().get_statevector()
#import qiskit_textbook and display the statevector
from qiskit_textbook.tools import array_to_latex
array_to_latex(out, pretext = "\\text{UnitaryMatrix} = ")
#import qiskit_textbook and display the statevector
#from qiskit_textbook.tools import array_to_latex
#array_to_latex(out, pretext = "\\text{Statevector} = ")
#plot the result as a bloch sphere visualization
plot_bloch_multivector(out)
|
https://github.com/Pitt-JonesLab/mirror-gates
|
Pitt-JonesLab
|
# make a graph that shows convergence as a function of layout trials and swap trials
# very important point to not forget
# NOTE, these layout trials are after multiple SWAP trials and through forward-backwards pass
# this means it has already gone through 2 stages of optimization and we still have large variance
# ultimate question is how much time do we need to spend on swap restarts, forward-backward passes, and layout restarts
# maybe we work from bottom up, collect data to get a fair estimate of how much time we need to spend on each?
from qiskit.transpiler import CouplingMap
from mirror_gates.pass_managers import Mirage, QiskitLevel3
from transpile_benchy.metrics.abc_metrics import MetricInterface
from transpile_benchy.metrics.gate_counts import DepthMetric
from mirror_gates.utilities import (
DoNothing,
LayoutTrialsStdMetric,
LayoutTrialsMetric,
)
from mirror_gates.logging import transpile_benchy_logger
from transpile_benchy.library import CircuitLibrary
library = CircuitLibrary.from_txt("../../circuits/iters_select.txt")
coupling_map = CouplingMap.from_heavy_hex(5)
total_work = 80
transpilers = [
# QiskitLevel3(coupling_map),
Mirage(coupling_map, name="Qiskit", fixed_aggression=0),
Mirage(coupling_map, name="Mirage"),
# Mirage(
# coupling_map,
# name="Mirage-b3",
# layout_trials=20,
# fb_iters=total_work // 20,
# anneal_routing=True,
# parallel=False, # something is broken
# ),
]
metrics = [LayoutTrialsMetric()] # , DepthMetric(consolidate=False)]
# coupling_map = CouplingMap.from_heavy_hex(5)
# transpilers = [
# # QiskitLevel3(coupling_map),
# Mirage(coupling_map, name="Mirage-MinSwaps", cost_function="basic"),
# Mirage(coupling_map, name="Mirage-MinDepth"),
# ]
# metrics = [DepthMetric(consolidate=False)] # , TotalMetric(consolidate=False)]
from transpile_benchy.benchmark import Benchmark
# only interested in TimeMetric, is there by default
benchmark = Benchmark(
transpilers=transpilers,
circuit_library=library,
metrics=metrics,
num_runs=10,
logger=transpile_benchy_logger,
)
benchmark.run()
print(benchmark)
benchmark.metrics[0].saved_results
import matplotlib.pyplot as plt
import numpy as np
# Assuming benchmark.metrics[0].saved_results.items() is a dictionary
# where keys are circuit names and values are lists of costs for each trial
for k, v in benchmark.metrics[0].saved_results.items():
print(k)
for circuit, result in v.items():
# print(circuit)
# print(result.data)
# find cumulative min trial-wise
min_trials = np.minimum.accumulate(result.data, axis=1)
print(min_trials.shape)
# print(min_trials)
# average element-wise across all trials
avg = np.mean(min_trials, axis=0)
# print(avg)
# plot cumulative min vs trial
# also plot average cumulative min vs trial
# at each trial we also want to scatter plot each individual trial,
# plot with latex
with plt.style.context(["ipynb", "colorsblind10"]):
plt.rcParams["text.usetex"] = True
for j, trials in enumerate(min_trials):
plt.plot(
trials,
color="blue",
alpha=0.1,
label="Individual Trials" if j == 0 else None,
)
plt.plot(avg, color="red", label="Average")
plt.xlabel("Layout Trials")
plt.ylabel("Cumulative Min Cost")
plt.title(f"{k} {circuit}")
plt.ticklabel_format(style="plain") # Turn off scientific notation
plt.legend()
plt.show()
# # explictly print results
# for k, v in benchmark.metrics[0].saved_results.items():
# for circuit, result in v.items():
# print(result.data)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import pulse
dc = pulse.DriveChannel
d0, d1, d2, d3, d4 = dc(0), dc(1), dc(2), dc(3), dc(4)
with pulse.build(name='pulse_programming_in') as pulse_prog:
pulse.play([1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1], d0)
pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], d1)
pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0], d2)
pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], d3)
pulse.play([1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0], d4)
pulse_prog.draw()
|
https://github.com/iqm-finland/qiskit-on-iqm
|
iqm-finland
|
# Copyright 2023 Qiskit on IQM developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file is an example of using Qiskit on IQM to execute a simple but non-trivial quantum circuit on an IQM quantum
computer. See the Qiskit on IQM user guide for instructions:
https://iqm-finland.github.io/qiskit-on-iqm/user_guide.html
"""
import argparse
from qiskit import QuantumCircuit, execute
from iqm.qiskit_iqm import transpile_to_IQM
from iqm.qiskit_iqm.iqm_provider import IQMProvider
def transpile_example(server_url: str) -> tuple[QuantumCircuit, dict[str, int]]:
"""Execute a circuit transpiled using transpile_to_IQM function.
Args:
server_url: URL of the IQM Cortex server used for execution
Returns:
transpiled circuit, a mapping of bitstrings representing qubit measurement results to counts for each result
"""
backend = IQMProvider(server_url).get_backend()
num_qubits = min(backend.num_qubits, 5) # use 5 qubits if available, otherwise maximum number of available qubits
circuit = QuantumCircuit(num_qubits)
circuit.h(0)
for i in range(1, num_qubits):
circuit.cx(0, i)
circuit.measure_all()
transpiled_circuit = transpile_to_IQM(circuit, backend)
counts = execute(transpiled_circuit, backend, shots=1000).result().get_counts()
return transpiled_circuit, counts
if __name__ == '__main__':
argparser = argparse.ArgumentParser()
argparser.add_argument(
'--url',
help='URL of the IQM service',
default='https://cocos.resonance.meetiqm.com/deneb',
)
circuit_transpiled, results = transpile_example(argparser.parse_args().url)
print(circuit_transpiled)
print(results)
|
https://github.com/2lambda123/Qiskit-qiskit
|
2lambda123
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Tests for Chi quantum channel representation class."""
import copy
import unittest
import numpy as np
from numpy.testing import assert_allclose
from qiskit import QiskitError
from qiskit.quantum_info.states import DensityMatrix
from qiskit.quantum_info.operators.channel import Chi
from .channel_test_case import ChannelTestCase
class TestChi(ChannelTestCase):
"""Tests for Chi channel representation."""
def test_init(self):
"""Test initialization"""
mat4 = np.eye(4) / 2.0
chan = Chi(mat4)
assert_allclose(chan.data, mat4)
self.assertEqual(chan.dim, (2, 2))
self.assertEqual(chan.num_qubits, 1)
mat16 = np.eye(16) / 4
chan = Chi(mat16)
assert_allclose(chan.data, mat16)
self.assertEqual(chan.dim, (4, 4))
self.assertEqual(chan.num_qubits, 2)
# Wrong input or output dims should raise exception
self.assertRaises(QiskitError, Chi, mat16, input_dims=2, output_dims=4)
# Non multi-qubit dimensions should raise exception
self.assertRaises(QiskitError, Chi, np.eye(6) / 2, input_dims=3, output_dims=2)
def test_circuit_init(self):
"""Test initialization from a circuit."""
circuit, target = self.simple_circuit_no_measure()
op = Chi(circuit)
target = Chi(target)
self.assertEqual(op, target)
def test_circuit_init_except(self):
"""Test initialization from circuit with measure raises exception."""
circuit = self.simple_circuit_with_measure()
self.assertRaises(QiskitError, Chi, circuit)
def test_equal(self):
"""Test __eq__ method"""
mat = self.rand_matrix(4, 4, real=True)
self.assertEqual(Chi(mat), Chi(mat))
def test_copy(self):
"""Test copy method"""
mat = np.eye(4)
with self.subTest("Deep copy"):
orig = Chi(mat)
cpy = orig.copy()
cpy._data[0, 0] = 0.0
self.assertFalse(cpy == orig)
with self.subTest("Shallow copy"):
orig = Chi(mat)
clone = copy.copy(orig)
clone._data[0, 0] = 0.0
self.assertTrue(clone == orig)
def test_is_cptp(self):
"""Test is_cptp method."""
self.assertTrue(Chi(self.depol_chi(0.25)).is_cptp())
# Non-CPTP should return false
self.assertFalse(Chi(1.25 * self.chiI - 0.25 * self.depol_chi(1)).is_cptp())
def test_compose_except(self):
"""Test compose different dimension exception"""
self.assertRaises(QiskitError, Chi(np.eye(4)).compose, Chi(np.eye(16)))
self.assertRaises(QiskitError, Chi(np.eye(4)).compose, 2)
def test_compose(self):
"""Test compose method."""
# Random input test state
rho = DensityMatrix(self.rand_rho(2))
# UnitaryChannel evolution
chan1 = Chi(self.chiX)
chan2 = Chi(self.chiY)
chan = chan1.compose(chan2)
target = rho.evolve(Chi(self.chiZ))
output = rho.evolve(chan)
self.assertEqual(output, target)
# 50% depolarizing channel
chan1 = Chi(self.depol_chi(0.5))
chan = chan1.compose(chan1)
target = rho.evolve(Chi(self.depol_chi(0.75)))
output = rho.evolve(chan)
self.assertEqual(output, target)
# Compose random
chi1 = self.rand_matrix(4, 4, real=True)
chi2 = self.rand_matrix(4, 4, real=True)
chan1 = Chi(chi1, input_dims=2, output_dims=2)
chan2 = Chi(chi2, input_dims=2, output_dims=2)
target = rho.evolve(chan1).evolve(chan2)
chan = chan1.compose(chan2)
output = rho.evolve(chan)
self.assertEqual(chan.dim, (2, 2))
self.assertEqual(output, target)
chan = chan1 & chan2
output = rho.evolve(chan)
self.assertEqual(chan.dim, (2, 2))
self.assertEqual(output, target)
def test_dot(self):
"""Test dot method."""
# Random input test state
rho = DensityMatrix(self.rand_rho(2))
# UnitaryChannel evolution
chan1 = Chi(self.chiX)
chan2 = Chi(self.chiY)
target = rho.evolve(Chi(self.chiZ))
output = rho.evolve(chan2.dot(chan1))
self.assertEqual(output, target)
# Compose random
chi1 = self.rand_matrix(4, 4, real=True)
chi2 = self.rand_matrix(4, 4, real=True)
chan1 = Chi(chi1, input_dims=2, output_dims=2)
chan2 = Chi(chi2, input_dims=2, output_dims=2)
target = rho.evolve(chan1).evolve(chan2)
chan = chan2.dot(chan1)
output = rho.evolve(chan)
self.assertEqual(output, target)
chan = chan2 @ chan1
output = rho.evolve(chan)
self.assertEqual(output, target)
def test_compose_front(self):
"""Test front compose method."""
# Random input test state
rho = DensityMatrix(self.rand_rho(2))
# UnitaryChannel evolution
chan1 = Chi(self.chiX)
chan2 = Chi(self.chiY)
chan = chan2.compose(chan1, front=True)
target = rho.evolve(Chi(self.chiZ))
output = rho.evolve(chan)
self.assertEqual(output, target)
# Compose random
chi1 = self.rand_matrix(4, 4, real=True)
chi2 = self.rand_matrix(4, 4, real=True)
chan1 = Chi(chi1, input_dims=2, output_dims=2)
chan2 = Chi(chi2, input_dims=2, output_dims=2)
target = rho.evolve(chan1).evolve(chan2)
chan = chan2.compose(chan1, front=True)
output = rho.evolve(chan)
self.assertEqual(chan.dim, (2, 2))
self.assertEqual(output, target)
def test_expand(self):
"""Test expand method."""
# Pauli channels
paulis = [self.chiI, self.chiX, self.chiY, self.chiZ]
targs = 4 * np.eye(16) # diagonals of Pauli channel Chi mats
for i, chi1 in enumerate(paulis):
for j, chi2 in enumerate(paulis):
chan1 = Chi(chi1)
chan2 = Chi(chi2)
chan = chan1.expand(chan2)
# Target for diagonal Pauli channel
targ = Chi(np.diag(targs[i + 4 * j]))
self.assertEqual(chan.dim, (4, 4))
self.assertEqual(chan, targ)
# Completely depolarizing
rho = DensityMatrix(np.diag([1, 0, 0, 0]))
chan_dep = Chi(self.depol_chi(1))
chan = chan_dep.expand(chan_dep)
target = DensityMatrix(np.diag([1, 1, 1, 1]) / 4)
output = rho.evolve(chan)
self.assertEqual(chan.dim, (4, 4))
self.assertEqual(output, target)
def test_tensor(self):
"""Test tensor method."""
# Pauli channels
paulis = [self.chiI, self.chiX, self.chiY, self.chiZ]
targs = 4 * np.eye(16) # diagonals of Pauli channel Chi mats
for i, chi1 in enumerate(paulis):
for j, chi2 in enumerate(paulis):
chan1 = Chi(chi1)
chan2 = Chi(chi2)
chan = chan2.tensor(chan1)
# Target for diagonal Pauli channel
targ = Chi(np.diag(targs[i + 4 * j]))
self.assertEqual(chan.dim, (4, 4))
self.assertEqual(chan, targ)
# Test overload
chan = chan2 ^ chan1
self.assertEqual(chan.dim, (4, 4))
self.assertEqual(chan, targ)
# Completely depolarizing
rho = DensityMatrix(np.diag([1, 0, 0, 0]))
chan_dep = Chi(self.depol_chi(1))
chan = chan_dep.tensor(chan_dep)
target = DensityMatrix(np.diag([1, 1, 1, 1]) / 4)
output = rho.evolve(chan)
self.assertEqual(chan.dim, (4, 4))
self.assertEqual(output, target)
# Test operator overload
chan = chan_dep ^ chan_dep
output = rho.evolve(chan)
self.assertEqual(chan.dim, (4, 4))
self.assertEqual(output, target)
def test_power(self):
"""Test power method."""
# 10% depolarizing channel
p_id = 0.9
depol = Chi(self.depol_chi(1 - p_id))
# Compose 3 times
p_id3 = p_id**3
chan3 = depol.power(3)
targ3 = Chi(self.depol_chi(1 - p_id3))
self.assertEqual(chan3, targ3)
def test_add(self):
"""Test add method."""
mat1 = 0.5 * self.chiI
mat2 = 0.5 * self.depol_chi(1)
chan1 = Chi(mat1)
chan2 = Chi(mat2)
targ = Chi(mat1 + mat2)
self.assertEqual(chan1._add(chan2), targ)
self.assertEqual(chan1 + chan2, targ)
targ = Chi(mat1 - mat2)
self.assertEqual(chan1 - chan2, targ)
def test_add_qargs(self):
"""Test add method with qargs."""
mat = self.rand_matrix(8**2, 8**2)
mat0 = self.rand_matrix(4, 4)
mat1 = self.rand_matrix(4, 4)
op = Chi(mat)
op0 = Chi(mat0)
op1 = Chi(mat1)
op01 = op1.tensor(op0)
eye = Chi(self.chiI)
with self.subTest(msg="qargs=[0]"):
value = op + op0([0])
target = op + eye.tensor(eye).tensor(op0)
self.assertEqual(value, target)
with self.subTest(msg="qargs=[1]"):
value = op + op0([1])
target = op + eye.tensor(op0).tensor(eye)
self.assertEqual(value, target)
with self.subTest(msg="qargs=[2]"):
value = op + op0([2])
target = op + op0.tensor(eye).tensor(eye)
self.assertEqual(value, target)
with self.subTest(msg="qargs=[0, 1]"):
value = op + op01([0, 1])
target = op + eye.tensor(op1).tensor(op0)
self.assertEqual(value, target)
with self.subTest(msg="qargs=[1, 0]"):
value = op + op01([1, 0])
target = op + eye.tensor(op0).tensor(op1)
self.assertEqual(value, target)
with self.subTest(msg="qargs=[0, 2]"):
value = op + op01([0, 2])
target = op + op1.tensor(eye).tensor(op0)
self.assertEqual(value, target)
with self.subTest(msg="qargs=[2, 0]"):
value = op + op01([2, 0])
target = op + op0.tensor(eye).tensor(op1)
self.assertEqual(value, target)
def test_sub_qargs(self):
"""Test subtract method with qargs."""
mat = self.rand_matrix(8**2, 8**2)
mat0 = self.rand_matrix(4, 4)
mat1 = self.rand_matrix(4, 4)
op = Chi(mat)
op0 = Chi(mat0)
op1 = Chi(mat1)
op01 = op1.tensor(op0)
eye = Chi(self.chiI)
with self.subTest(msg="qargs=[0]"):
value = op - op0([0])
target = op - eye.tensor(eye).tensor(op0)
self.assertEqual(value, target)
with self.subTest(msg="qargs=[1]"):
value = op - op0([1])
target = op - eye.tensor(op0).tensor(eye)
self.assertEqual(value, target)
with self.subTest(msg="qargs=[2]"):
value = op - op0([2])
target = op - op0.tensor(eye).tensor(eye)
self.assertEqual(value, target)
with self.subTest(msg="qargs=[0, 1]"):
value = op - op01([0, 1])
target = op - eye.tensor(op1).tensor(op0)
self.assertEqual(value, target)
with self.subTest(msg="qargs=[1, 0]"):
value = op - op01([1, 0])
target = op - eye.tensor(op0).tensor(op1)
self.assertEqual(value, target)
with self.subTest(msg="qargs=[0, 2]"):
value = op - op01([0, 2])
target = op - op1.tensor(eye).tensor(op0)
self.assertEqual(value, target)
with self.subTest(msg="qargs=[2, 0]"):
value = op - op01([2, 0])
target = op - op0.tensor(eye).tensor(op1)
self.assertEqual(value, target)
def test_add_except(self):
"""Test add method raises exceptions."""
chan1 = Chi(self.chiI)
chan2 = Chi(np.eye(16))
self.assertRaises(QiskitError, chan1._add, chan2)
self.assertRaises(QiskitError, chan1._add, 5)
def test_multiply(self):
"""Test multiply method."""
chan = Chi(self.chiI)
val = 0.5
targ = Chi(val * self.chiI)
self.assertEqual(chan._multiply(val), targ)
self.assertEqual(val * chan, targ)
targ = Chi(self.chiI * val)
self.assertEqual(chan * val, targ)
def test_multiply_except(self):
"""Test multiply method raises exceptions."""
chan = Chi(self.chiI)
self.assertRaises(QiskitError, chan._multiply, "s")
self.assertRaises(QiskitError, chan.__rmul__, "s")
self.assertRaises(QiskitError, chan._multiply, chan)
self.assertRaises(QiskitError, chan.__rmul__, chan)
def test_negate(self):
"""Test negate method"""
chan = Chi(self.chiI)
targ = Chi(-self.chiI)
self.assertEqual(-chan, targ)
if __name__ == "__main__":
unittest.main()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
input_3sat_instance = '''
c example DIMACS-CNF 3-SAT
p cnf 3 5
-1 -2 -3 0
1 -2 3 0
1 2 -3 0
1 -2 -3 0
-1 2 3 0
'''
import os
import tempfile
from qiskit.exceptions import MissingOptionalLibraryError
from qiskit.circuit.library.phase_oracle import PhaseOracle
fp = tempfile.NamedTemporaryFile(mode='w+t', delete=False)
fp.write(input_3sat_instance)
file_name = fp.name
fp.close()
oracle = None
try:
oracle = PhaseOracle.from_dimacs_file(file_name)
except MissingOptionalLibraryError as ex:
print(ex)
finally:
os.remove(file_name)
from qiskit.algorithms import AmplificationProblem
problem = None
if oracle is not None:
problem = AmplificationProblem(oracle, is_good_state=oracle.evaluate_bitstring)
from qiskit.algorithms import Grover
from qiskit.primitives import Sampler
grover = Grover(sampler=Sampler())
result = None
if problem is not None:
result = grover.amplify(problem)
print(result.assignment)
from qiskit.tools.visualization import plot_histogram
if result is not None:
display(plot_histogram(result.circuit_results[0]))
expression = '(w ^ x) & ~(y ^ z) & (x & y & z)'
try:
oracle = PhaseOracle(expression)
problem = AmplificationProblem(oracle, is_good_state=oracle.evaluate_bitstring)
grover = Grover(sampler=Sampler())
result = grover.amplify(problem)
display(plot_histogram(result.circuit_results[0]))
except MissingOptionalLibraryError as ex:
print(ex)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_bloch_multivector
qc = QuantumCircuit(2)
qc.h(0)
qc.x(1)
# You can reverse the order of the qubits.
from qiskit.quantum_info import DensityMatrix
qc = QuantumCircuit(2)
qc.h([0, 1])
qc.t(1)
qc.s(0)
qc.cx(0,1)
matrix = DensityMatrix(qc)
plot_bloch_multivector(matrix, title='My Bloch Spheres', reverse_bits=True)
|
https://github.com/TheGupta2012/QPE-Algorithms
|
TheGupta2012
|
from qiskit import QuantumCircuit, Aer
from qiskit.extensions import UnitaryGate,Initialize
from qiskit.quantum_info import Statevector
from qiskit.tools.visualization import plot_bloch_multivector
import numpy as np
import sys
from scipy.stats import unitary_group
import matplotlib.pyplot as plt
from qiskit import IBMQ
%matplotlib inline
sys.path.append("..")
from Modules.changed_SPEA import global_max_SPEA
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='??replace_with_your_hub_name??')
sim = Aer.get_backend('qasm_simulator')
U1 = UnitaryGate(data=np.array([[0,1],
[1,0]]))
spe = global_max_SPEA(U1,resolution= 30,error = 4,max_iters=12)
result = spe.get_eigen_pair(progress = False,backend=sim)
result
t = []
for resolution in range(10,50,5):
spe = global_max_SPEA(U1,resolution= resolution,error = 4,max_iters=10)
res = spe.get_eigen_pair(backend = sim)
theta = res['theta']
t.append(theta)
plt.figure(figsize = (8,9))
plt.title("Eigenphase estimation for X gate, modified algo",fontsize = 15)
plt.grid()
plt.plot(list(range(10,50,5)),t,marker = 'o',color='g',label = 'Estimates',alpha=0.7)
plt.plot([10,50],[0.5,0.5],color='black',label = "True")
plt.plot([10,50],[0,0],color='black')
plt.plot([10,50],[1,1],color='black')
plt.legend()
plt.xlabel("Resolution of theta ")
plt.ylabel("Estimates")
plt.savefig("Plots/SPE_PLOT1_global_max.jpg",dpi = 200)
u2 = UnitaryGate(data=np.array([[1,0],
[0, np.exp(2*np.pi*1j*(1/5))]]))
t = []
for resolution in range(10,50,5):
spe = global_max_SPEA(u2,resolution= resolution,error = 4,max_iters=10)
res = spe.get_eigen_pair(backend = sim)
theta = res['theta']
t.append(theta)
plt.figure(figsize = (9,9))
plt.title("Eigenphase estimation for theta = 1/5, 0, 1, modified algo",fontsize = 15)
plt.grid()
plt.plot(list(range(10,50,5)),t,marker = 'o',color='g',label = 'Estimates',alpha=0.7)
plt.plot([10,50],[0.2,0.2],color='black',label = "True")
plt.plot([10,50],[0,0],color='black')
plt.plot([10,50],[1,1],color='black')
plt.legend()
plt.xlabel("Resolution of theta ")
plt.ylabel("Estimates")
plt.savefig("Plots/SPE_PLOT2_global_max.jpg",dpi = 200)
unitary_group.rvs()
u_rand = unitary_group.rvs(2)
print("Random Unitary :",u_rand)
eigen_phases, eigen_vectors = np.linalg.eig(u_rand)
print("Eigen states of Unitary :",eigen_vectors)
eigen_phases = np.angle(eigen_phases)
ep = []
for k in eigen_phases:
if k < 0:
ep.append(k + 2*np.pi)
else:
ep.append(k)
eigen_phases = ep
print("Eigen phases of unitary :",eigen_phases)
ev1 , ev2 = eigen_vectors[0] , eigen_vectors[1]
ev1 = ev1 / np.linalg.norm(ev1)
ev2 = ev2 / np.linalg.norm(ev2)
qc1 = QuantumCircuit(1)
qc2 = QuantumCircuit(1)
sv1 = Initialize(ev1)
sv2 = Initialize(ev2)
qc1 = qc1.compose(sv1,qubits = [0])
qc2 = qc2.compose(sv2,qubits = [0])
qc1.draw('mpl')
sv = Statevector.from_instruction(qc1)
plot_bloch_multivector(sv)
sv = Statevector.from_instruction(qc2)
plot_bloch_multivector(sv)
spea = global_max_SPEA(resolution = 50, max_iters = 10, unitary = u_rand,error = 4)
result = spea.get_eigen_pair(progress = False, randomize = True)
print("Result of our estimation :",result)
res_state = result['state']
res_state = res_state/ np.linalg.norm(res_state)
qc_res = QuantumCircuit(1)
sv_init = Initialize(res_state)
qc_res = qc_res.compose(sv_init, qubits = [0])
qc_res.draw('mpl')
statevector_res = Statevector.from_instruction(qc_res)
plot_bloch_multivector(statevector_res)
def generate_random_estimation(experiments=5,resolution = 40):
sim = Aer.get_backend('qasm_simulator')
best_costs, errors_in_phases = [] , []
for exp in range(experiments):
u_rand = unitary_group.rvs(2)
# generate the phases and vectors
eigen_phases, eigen_vectors = np.linalg.eig(u_rand)
eigen_phases = np.angle(eigen_phases)
ep = []
# doing this as phase maybe be negative
for k in eigen_phases:
if k < 0:
ep.append((k + 2*np.pi)/(2*np.pi))
else:
ep.append(k/(2*np.pi))
eigen_phases = ep
ev1 , ev2 = eigen_vectors[0] , eigen_vectors[1]
ev1 = ev1 / np.linalg.norm(ev1)
ev2 = ev2 / np.linalg.norm(ev2)
# generate their corresponding init statevectors
sv1 = Initialize(ev1)
sv2 = Initialize(ev2)
print("Eigenvectors",ev1,ev2)
print("Eigenphases",eigen_phases)
# run the algorithm
spea = global_max_SPEA(resolution = resolution, max_iters = 10, unitary = u_rand,error = 4)
result = spea.get_eigen_pair(backend = sim, progress = False, randomize = True)
# get the results
res_state = result['state']
res_theta = result['theta']
sv_res = Initialize(res_state)
print("Result",result)
print("Phase returned(0-> 2*pi) :",res_theta)
# get the dot products
d1 = np.linalg.norm(np.dot(ev1, res_state.conjugate().T))**2
d2 = np.linalg.norm(np.dot(ev2, res_state.conjugate().T))**2
# make a bloch sphere
qc = QuantumCircuit(2)
qc = qc.compose(sv_res,qubits = [0])
if d1 > d2:
print(" Best overlap :",d1)
# it is closer to the first
qc = qc.compose(sv1,qubits = [1])
best_costs.append(result['cost'])
errors_in_phases.append(abs(res_theta - eigen_phases[0]))
else:
# it is closer to the second
print(" Best overlap :",d2)
qc = qc.compose(sv2,qubits = [1])
best_costs.append(result['cost'])
errors_in_phases.append(abs(res_theta - eigen_phases[1]))
print("Bloch Sphere for the states...")
s = Statevector.from_instruction(qc)
display(plot_bloch_multivector(s))
plt.title("Experiments for Random Matrices",fontsize= 16)
plt.xlabel("Experiment Number")
plt.ylabel("Metric value")
plt.plot([i for i in range(experiments)], best_costs, label = 'Best Costs', alpha = 0.5, color = 'g',marker='o')
plt.plot([i for i in range(experiments)], errors_in_phases, label = 'Corresponding Error in Phase', alpha = 0.5, color = 'b',marker='s')
plt.legend()
plt.grid()
return
generate_random_estimation()
|
https://github.com/Spintronic6889/Introduction-of-Quantum-walk-its-application-on-search-and-decision-making
|
Spintronic6889
|
%matplotlib inline
import matplotlib as mpl
from random import randrange
import numpy as np
import matplotlib.pyplot as plt
from random import randrange
pose=[]
for i in range(400):
pose.append([])
#print(pose)
#pose[-1]=1
#print(pose[-1])
pose[0]=200
for k in range(200):
rand = randrange(0,2)
if rand==0:
#print(rand)
pose[k+1]=pose[k]+1
if rand==1:
pose[k+1]=pose[k]-1
#print(pose)
yc=[]
for e in range(400):
yc.append([])
for q in range(400):
yc[q]=0
for h in range(400):
if pose[h]==q:
yc[q]=yc[q]+1
#print((yc))
#print(len(yc))
xc = np.arange(0, 400, 1)
plt.plot(yc)
plt.xlim(150, 250)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import json
import matplotlib.pyplot as plt
import numpy as np
from IPython.display import clear_output
from qiskit import QuantumCircuit
from qiskit.algorithms.optimizers import COBYLA
from qiskit.circuit import ParameterVector
from qiskit.circuit.library import ZFeatureMap
from qiskit.quantum_info import SparsePauliOp
from qiskit.utils import algorithm_globals
from qiskit_machine_learning.algorithms.classifiers import NeuralNetworkClassifier
from qiskit_machine_learning.neural_networks import EstimatorQNN
from sklearn.model_selection import train_test_split
algorithm_globals.random_seed = 12345
# We now define a two qubit unitary as defined in [3]
def conv_circuit(params):
target = QuantumCircuit(2)
target.rz(-np.pi / 2, 1)
target.cx(1, 0)
target.rz(params[0], 0)
target.ry(params[1], 1)
target.cx(0, 1)
target.ry(params[2], 1)
target.cx(1, 0)
target.rz(np.pi / 2, 0)
return target
# Let's draw this circuit and see what it looks like
params = ParameterVector("θ", length=3)
circuit = conv_circuit(params)
circuit.draw("mpl")
def conv_layer(num_qubits, param_prefix):
qc = QuantumCircuit(num_qubits, name="Convolutional Layer")
qubits = list(range(num_qubits))
param_index = 0
params = ParameterVector(param_prefix, length=num_qubits * 3)
for q1, q2 in zip(qubits[0::2], qubits[1::2]):
qc = qc.compose(conv_circuit(params[param_index : (param_index + 3)]), [q1, q2])
qc.barrier()
param_index += 3
for q1, q2 in zip(qubits[1::2], qubits[2::2] + [0]):
qc = qc.compose(conv_circuit(params[param_index : (param_index + 3)]), [q1, q2])
qc.barrier()
param_index += 3
qc_inst = qc.to_instruction()
qc = QuantumCircuit(num_qubits)
qc.append(qc_inst, qubits)
return qc
circuit = conv_layer(4, "θ")
circuit.decompose().draw("mpl")
def pool_circuit(params):
target = QuantumCircuit(2)
target.rz(-np.pi / 2, 1)
target.cx(1, 0)
target.rz(params[0], 0)
target.ry(params[1], 1)
target.cx(0, 1)
target.ry(params[2], 1)
return target
params = ParameterVector("θ", length=3)
circuit = pool_circuit(params)
circuit.draw("mpl")
def pool_layer(sources, sinks, param_prefix):
num_qubits = len(sources) + len(sinks)
qc = QuantumCircuit(num_qubits, name="Pooling Layer")
param_index = 0
params = ParameterVector(param_prefix, length=num_qubits // 2 * 3)
for source, sink in zip(sources, sinks):
qc = qc.compose(pool_circuit(params[param_index : (param_index + 3)]), [source, sink])
qc.barrier()
param_index += 3
qc_inst = qc.to_instruction()
qc = QuantumCircuit(num_qubits)
qc.append(qc_inst, range(num_qubits))
return qc
sources = [0, 1]
sinks = [2, 3]
circuit = pool_layer(sources, sinks, "θ")
circuit.decompose().draw("mpl")
def generate_dataset(num_images):
images = []
labels = []
hor_array = np.zeros((6, 8))
ver_array = np.zeros((4, 8))
j = 0
for i in range(0, 7):
if i != 3:
hor_array[j][i] = np.pi / 2
hor_array[j][i + 1] = np.pi / 2
j += 1
j = 0
for i in range(0, 4):
ver_array[j][i] = np.pi / 2
ver_array[j][i + 4] = np.pi / 2
j += 1
for n in range(num_images):
rng = algorithm_globals.random.integers(0, 2)
if rng == 0:
labels.append(-1)
random_image = algorithm_globals.random.integers(0, 6)
images.append(np.array(hor_array[random_image]))
elif rng == 1:
labels.append(1)
random_image = algorithm_globals.random.integers(0, 4)
images.append(np.array(ver_array[random_image]))
# Create noise
for i in range(8):
if images[-1][i] == 0:
images[-1][i] = algorithm_globals.random.uniform(0, np.pi / 4)
return images, labels
images, labels = generate_dataset(50)
train_images, test_images, train_labels, test_labels = train_test_split(
images, labels, test_size=0.3
)
fig, ax = plt.subplots(2, 2, figsize=(10, 6), subplot_kw={"xticks": [], "yticks": []})
for i in range(4):
ax[i // 2, i % 2].imshow(
train_images[i].reshape(2, 4), # Change back to 2 by 4
aspect="equal",
)
plt.subplots_adjust(wspace=0.1, hspace=0.025)
feature_map = ZFeatureMap(8)
feature_map.decompose().draw("mpl")
feature_map = ZFeatureMap(8)
ansatz = QuantumCircuit(8, name="Ansatz")
# First Convolutional Layer
ansatz.compose(conv_layer(8, "с1"), list(range(8)), inplace=True)
# First Pooling Layer
ansatz.compose(pool_layer([0, 1, 2, 3], [4, 5, 6, 7], "p1"), list(range(8)), inplace=True)
# Second Convolutional Layer
ansatz.compose(conv_layer(4, "c2"), list(range(4, 8)), inplace=True)
# Second Pooling Layer
ansatz.compose(pool_layer([0, 1], [2, 3], "p2"), list(range(4, 8)), inplace=True)
# Third Convolutional Layer
ansatz.compose(conv_layer(2, "c3"), list(range(6, 8)), inplace=True)
# Third Pooling Layer
ansatz.compose(pool_layer([0], [1], "p3"), list(range(6, 8)), inplace=True)
# Combining the feature map and ansatz
circuit = QuantumCircuit(8)
circuit.compose(feature_map, range(8), inplace=True)
circuit.compose(ansatz, range(8), inplace=True)
observable = SparsePauliOp.from_list([("Z" + "I" * 7, 1)])
# we decompose the circuit for the QNN to avoid additional data copying
qnn = EstimatorQNN(
circuit=circuit.decompose(),
observables=observable,
input_params=feature_map.parameters,
weight_params=ansatz.parameters,
)
circuit.draw("mpl")
def callback_graph(weights, obj_func_eval):
clear_output(wait=True)
objective_func_vals.append(obj_func_eval)
plt.title("Objective function value against iteration")
plt.xlabel("Iteration")
plt.ylabel("Objective function value")
plt.plot(range(len(objective_func_vals)), objective_func_vals)
plt.show()
with open("11_qcnn_initial_point.json", "r") as f:
initial_point = json.load(f)
classifier = NeuralNetworkClassifier(
qnn,
optimizer=COBYLA(maxiter=200), # Set max iterations here
callback=callback_graph,
initial_point=initial_point,
)
x = np.asarray(train_images)
y = np.asarray(train_labels)
objective_func_vals = []
plt.rcParams["figure.figsize"] = (12, 6)
classifier.fit(x, y)
# score classifier
print(f"Accuracy from the train data : {np.round(100 * classifier.score(x, y), 2)}%")
y_predict = classifier.predict(test_images)
x = np.asarray(test_images)
y = np.asarray(test_labels)
print(f"Accuracy from the test data : {np.round(100 * classifier.score(x, y), 2)}%")
# Let's see some examples in our dataset
fig, ax = plt.subplots(2, 2, figsize=(10, 6), subplot_kw={"xticks": [], "yticks": []})
for i in range(0, 4):
ax[i // 2, i % 2].imshow(test_images[i].reshape(2, 4), aspect="equal")
if y_predict[i] == -1:
ax[i // 2, i % 2].set_title("The QCNN predicts this is a Horizontal Line")
if y_predict[i] == +1:
ax[i // 2, i % 2].set_title("The QCNN predicts this is a Vertical Line")
plt.subplots_adjust(wspace=0.1, hspace=0.5)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
q = QuantumRegister(1)
c = ClassicalRegister(1)
qc = QuantumCircuit(q, c)
qc.h(q)
qc.measure(q, c)
qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../utils/")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0]
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = True) # Pauli Twirling
print("created zne_qcs (length:", len(zne_qcs), ")")
# optimization_level must be 0
# feed initial_layout here to see the picture of the circuits before casting the job
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
print(str(backend))
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
#! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout
job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
# QREM
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
# we have to feed initial_layout to calibration matrix
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
meas_calibs[0].draw("mpl")
dt_now = datetime.datetime.now()
print(dt_now)
filename = "job_ids_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl"
print(filename)
# with open("jobs_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
# pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
# with open(filename, "wb") as f:
# pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
# with open("properties_" + str(backend) + "_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
# pickle.dump(backend.properties(), f)
retrieved_jobs = jobs
retrieved_cal_job = cal_job
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
fids = []
for job in retrieved_jobs:
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors)
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fid = state_fidelity(rho, target_state)
fids.append(fid)
print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
|
https://github.com/bagmk/Quantum_Machine_Learning_Express
|
bagmk
|
import sys
sys.path.append('../../Pyfiles')
import numpy as np
from sklearn.utils import shuffle
import matplotlib.pyplot as plt
data1Path = r'../../dataset/data0test.txt'
data1Label = r'../../dataset/data0testlabel.txt'
dataCoords = np.loadtxt(data1Path)
dataLabels = np.loadtxt(data1Label)
# Make a data structure which is easier to work with
# for shuffling.
# Also, notice we change the data labels from {0, 1} to {-1, +1}
data = list(zip(dataCoords, 2*dataLabels-1))
shuffled_data = shuffle(data)
fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
ax.plot(np.ravel(dataCoords[np.where(dataLabels == 0)])[::2],
np.ravel(dataCoords[np.where(dataLabels == 0)])[1::2], ls='', marker='o')
ax.plot(np.ravel(dataCoords[np.where(dataLabels == 1)])[::2],
np.ravel(dataCoords[np.where(dataLabels == 1)])[1::2], ls='', marker='o')
from IPython.display import Image
from circuits import *
from qiskit.circuit import Parameter
#circuit 1
qr = QuantumRegister(4)
qc = QuantumCircuit(qr)
theta=[]
for i in range(62):
theta.append((Parameter('θ'+str(i))))
qc=circuit1(qc,qr,theta,1,0)
qc.draw('mpl')
#load the simulation functcions from the quantumcircuit.py file
from quantumcircuit import *
#location,label,param,[circuit#,layer]
loss_qubitF([0.5,0.5],-1,[0,0,0,-5,0,0,0,0],[0,1])
#load the SPSA optimizer from the optimizer.py file
from optimizer import *
c = 0.5
a = 0.5
# Do the updates
lossList = []
coeffsList = []
paramsList = []
accuracyList = []
np.random.seed(2)
currentParams = pi*np.random.uniform(size=8)
for j in range(10):
cj = c/(j+1)**(1/2)
aj = a/(j+1)
# Grab a subset of the data for minibatching
#np.random.seed(j)
np.random.seed(2)
#data_ixs = np.random.choice(len(shuffled_data), size=len(shuffled_data))
data_ixs = np.random.choice(len(data), size=100)
# Evaluate the loss over that subset
# We include a regularization term at the end
L = lambda x: np.sum([loss_qubitF(data[j][0],data[j][1],x,[0,1]) for j in data_ixs])/len(data_ixs)
lossList.append(L(currentParams))
coeffsList.append((cj, aj))
paramsList.append(currentParams)
accuracyList.append(np.sum([predict_qubitF(data[j][0],currentParams,[0,1]) ==data[j][1] for j in data_ixs])/len(data_ixs))
print(j,"th iteration L=",lossList[-1],"Accuracy =",accuracyList[-1])
currentParams = SPSA_update(L, currentParams, aj, cj)
fig = plt.figure(figsize=(15, 10))
ax = fig.add_subplot(2, 2, 1)
ax.plot(lossList)
ax.set_title('Loss function\nStart {0} Finish {1}'.format(np.round(lossList[0], 3), np.round(lossList[-1], 3)))
ax.set_yscale('log')
ax = fig.add_subplot(2, 2, 2)
ax.plot(accuracyList)
ax.set_title('Classification accuracy \nStart {0} Finish {1}'.format(np.round(accuracyList[0], 3), np.round(accuracyList[-1], 3)))
ax.set_yscale('log')
ax = fig.add_subplot(2, 2, 3)
ax.plot([c[0] for c in coeffsList], label='a')
ax.plot([c[1] for c in coeffsList], label='c')
ax.legend(loc=0)
ax.set_title('Update coefficients')
ax = fig.add_subplot(2, 2, 4)
for j in range(4):
ax.plot([X[j] for X in paramsList], label='x{0}'.format(j))
ax.legend(loc=0)
ax.set_title('Parameter values')
ax.legend(loc=0)
fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
ax.plot(np.ravel(dataCoords[np.where(dataLabels == 0)])[::2],
np.ravel(dataCoords[np.where(dataLabels == 0)])[1::2], ls='', marker='o')
ax.plot(np.ravel(dataCoords[np.where(dataLabels == 1)])[::2],
np.ravel(dataCoords[np.where(dataLabels == 1)])[1::2], ls='', marker='o')
X = np.linspace(0, 1, num=10)
Z = np.zeros((len(X), len(X)))
# Contour map
for j in range(len(X)):
for k in range(len(X)):
# Fill Z with the labels (numerical values)
# the inner loop goes over the columns of Z,
# which corresponds to sweeping x-values
# Therefore, the role of j,k is flipped in the signature
Z[j, k] = predict_qubitF( np.array([X[k], X[j]]),currentParams,[0,1])
ax.contourf(X, X, Z, cmap='bwr', levels=30)
#circuit 2
qr = QuantumRegister(4)
qc = QuantumCircuit(qr)
theta=[]
for i in range(62):
theta.append((Parameter('θ'+str(i))))
qc=circuit3(qc,qr,theta,1,0)
qc.draw('mpl')
data1Path = r'../../dataset/data1a.txt'
data1Label = r'../../dataset/data1alabel.txt'
dataCoords = np.loadtxt(data1Path)
dataLabels = np.loadtxt(data1Label)
# Make a data structure which is easier to work with
# for shuffling.
# Also, notice we change the data labels from {0, 1} to {-1, +1}
data = list(zip(dataCoords, 2*dataLabels-1))
shuffled_data = shuffle(data)
fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
ax.plot(np.ravel(dataCoords[np.where(dataLabels == 0)])[::2],
np.ravel(dataCoords[np.where(dataLabels == 0)])[1::2], ls='', marker='o')
ax.plot(np.ravel(dataCoords[np.where(dataLabels == 1)])[::2],
np.ravel(dataCoords[np.where(dataLabels == 1)])[1::2], ls='', marker='o')
c = 1
a = 1
# Do the updates
lossList = []
coeffsList = []
paramsList = []
accuracyList = []
np.random.seed(2)
currentParams = pi*np.random.uniform(size=12)
for j in range(10):
cj = c/(j+1)**(1/2)
aj = a/(j+1)
# Grab a subset of the data for minibatching
#np.random.seed(j)
np.random.seed(3)
#data_ixs = np.random.choice(len(shuffled_data), size=len(shuffled_data))
data_ixs = np.random.choice(len(data), size=100)
# Evaluate the loss over that subset
# We include a regularization term at the end
L = lambda x: np.sum([loss_qubitF(data[j][0],data[j][1],x,[2,1]) for j in data_ixs])/len(data_ixs)
lossList.append(L(currentParams))
coeffsList.append((cj, aj))
paramsList.append(currentParams)
accuracyList.append(np.sum([predict_qubitF(data[j][0],currentParams,[2,1]) ==data[j][1] for j in data_ixs])/len(data_ixs))
print(j,"th iteration L=",lossList[-1],"Accuracy =",accuracyList[-1])
currentParams = SPSA_update(L, currentParams, aj, cj)
fig = plt.figure(figsize=(15, 10))
ax = fig.add_subplot(2, 2, 1)
ax.plot(lossList)
ax.set_title('Loss function\nStart {0} Finish {1}'.format(np.round(lossList[0], 3), np.round(lossList[-1], 3)))
ax.set_yscale('log')
ax = fig.add_subplot(2, 2, 2)
ax.plot(accuracyList)
ax.set_title('Classification accuracy \nStart {0} Finish {1}'.format(np.round(accuracyList[0], 3), np.round(accuracyList[-1], 3)))
ax.set_yscale('log')
ax = fig.add_subplot(2, 2, 3)
ax.plot([c[0] for c in coeffsList], label='a')
ax.plot([c[1] for c in coeffsList], label='c')
ax.legend(loc=0)
ax.set_title('Update coefficients')
ax = fig.add_subplot(2, 2, 4)
for j in range(4):
ax.plot([X[j] for X in paramsList], label='x{0}'.format(j))
ax.legend(loc=0)
ax.set_title('Parameter values')
ax.legend(loc=0)
currentParams
fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
ax.plot(np.ravel(dataCoords[np.where(dataLabels == 0)])[::2],
np.ravel(dataCoords[np.where(dataLabels == 0)])[1::2], ls='', marker='o')
ax.plot(np.ravel(dataCoords[np.where(dataLabels == 1)])[::2],
np.ravel(dataCoords[np.where(dataLabels == 1)])[1::2], ls='', marker='o')
X = np.linspace(0, 1, num=10)
Z = np.zeros((len(X), len(X)))
# Contour map
for j in range(len(X)):
for k in range(len(X)):
# Fill Z with the labels (numerical values)
# the inner loop goes over the columns of Z,
# which corresponds to sweeping x-values
# Therefore, the role of j,k is flipped in the signature
Z[j, k] = predict_qubitF( np.array([X[k], X[j]]),currentParams,[1,1])
ax.contourf(X, X, Z, cmap='bwr', levels=30)
#circuit 1
qr = QuantumRegister(4)
qc = QuantumCircuit(qr)
theta=[]
for i in range(62):
theta.append((Parameter('θ'+str(i))))
qc=circuit19(qc,qr,theta,2,0)
qc.draw('mpl')
data1Path = r'../../dataset/data2c.txt'
data1Label = r'../../dataset/data2clabel.txt'
dataCoords = np.loadtxt(data1Path)
dataLabels = np.loadtxt(data1Label)
# Make a data structure which is easier to work with
# for shuffling.
# Also, notice we change the data labels from {0, 1} to {-1, +1}
data = list(zip(dataCoords, 2*dataLabels-1))
shuffled_data = shuffle(data)
fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
ax.plot(np.ravel(dataCoords[np.where(dataLabels == 0)])[::2],
np.ravel(dataCoords[np.where(dataLabels == 0)])[1::2], ls='', marker='o')
ax.plot(np.ravel(dataCoords[np.where(dataLabels == 1)])[::2],
np.ravel(dataCoords[np.where(dataLabels == 1)])[1::2], ls='', marker='o')
c = 1
a = 1
# Do the updates
lossList = []
coeffsList = []
paramsList = []
accuracyList = []
np.random.seed(2)
currentParams = 2*np.random.uniform(size=40)
for j in range(30):
cj = c/(j+1)**(1/4)
aj = a/(j+1)
# Grab a subset of the data for minibatching
#np.random.seed(j)
np.random.seed(3)
#data_ixs = np.random.choice(len(shuffled_data), size=len(shuffled_data))
data_ixs = np.random.choice(len(data), size=100)
# Evaluate the loss over that subset
# We include a regularization term at the end
L = lambda x: np.sum([loss_qubitF(data[j][0],data[j][1],x,[18,2]) for j in data_ixs])/len(data_ixs)
lossList.append(L(currentParams))
coeffsList.append((cj, aj))
paramsList.append(currentParams)
accuracyList.append(np.sum([predict_qubitF(data[j][0],currentParams,[18,2]) ==data[j][1] for j in data_ixs])/len(data_ixs))
print(j,"th iteration L=",lossList[-1],"Accuracy =",accuracyList[-1])
currentParams = SPSA_update(L, currentParams, aj, cj)
fig = plt.figure(figsize=(15, 10))
ax = fig.add_subplot(2, 2, 1)
ax.plot(lossList)
ax.set_title('Loss function\nStart {0} Finish {1}'.format(np.round(lossList[0], 3), np.round(lossList[-1], 3)))
ax.set_yscale('log')
ax = fig.add_subplot(2, 2, 2)
ax.plot(accuracyList)
ax.set_title('Classification accuracy \nStart {0} Finish {1}'.format(np.round(accuracyList[0], 3), np.round(accuracyList[-1], 3)))
ax.set_yscale('log')
ax = fig.add_subplot(2, 2, 3)
ax.plot([c[0] for c in coeffsList], label='a')
ax.plot([c[1] for c in coeffsList], label='c')
ax.legend(loc=0)
ax.set_title('Update coefficients')
ax = fig.add_subplot(2, 2, 4)
for j in range(4):
ax.plot([X[j] for X in paramsList], label='x{0}'.format(j))
ax.legend(loc=0)
ax.set_title('Parameter values')
ax.legend(loc=0)
fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
ax.plot(np.ravel(dataCoords[np.where(dataLabels == 0)])[::2],
np.ravel(dataCoords[np.where(dataLabels == 0)])[1::2], ls='', marker='o')
ax.plot(np.ravel(dataCoords[np.where(dataLabels == 1)])[::2],
np.ravel(dataCoords[np.where(dataLabels == 1)])[1::2], ls='', marker='o')
X = np.linspace(0, 1, num=10)
Z = np.zeros((len(X), len(X)))
# Contour map
for j in range(len(X)):
for k in range(len(X)):
# Fill Z with the labels (numerical values)
# the inner loop goes over the columns of Z,
# which corresponds to sweeping x-values
# Therefore, the role of j,k is flipped in the signature
Z[j, k] = predict_qubitF( np.array([X[k], X[j]]),currentParams,[18,2])
ax.contourf(X, X, Z, cmap='bwr', levels=30)
currentParams
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit, transpile
from qiskit.visualization import plot_circuit_layout
from qiskit.providers.fake_provider import FakeVigo
backend = FakeVigo()
ghz = QuantumCircuit(3, 3)
ghz.h(0)
ghz.cx(0,range(1,3))
ghz.barrier()
ghz.measure(range(3), range(3))
# Virtual -> physical
# 0 -> 3
# 1 -> 4
# 2 -> 2
my_ghz = transpile(ghz, backend, initial_layout=[3, 4, 2])
plot_circuit_layout(my_ghz, backend)
|
https://github.com/spencerking/QiskitSummerJam-LocalSequenceAlignment
|
spencerking
|
pip install qiskit --upgrade
pip install numpy --upgrade
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
a = "AACCAGTCG"
b = "CACCGTAA"
import itertools
import numpy as np
# Initialize an (n+1)*(m+1) matrix
# Where n and m are len(a) and len(b) respectively
H = np.zeros((len(a) + 1, len(b) + 1), np.int)
# Compare every character in a against every character in b
# Matches (white cells) are denoted with 1
for i, j in itertools.product(range(1, H.shape[0]), range(1, H.shape[1])):
if a[i - 1] == b[j - 1]:
H[i, j] = 1
# print("Before removing extra rows:")
# print(H)
# TODO
# Verify this doesn't break if we swap a and b
for x in range(0, abs(H.shape[0] - H.shape[1])):
H = np.delete(H, 0, 0)
H = np.delete(H, 0, 1)
# print("After removing extra rows:")
print(H)
# print(H.shape[0])
# print(H.shape[1])
# I'm really unsure if this is the right approach
diag_H = np.array([])
diagonal = np.diag(H, k=0)
# print(diagonal)
diag_len = len(diagonal)
diag_H = diagonal
for i in range(1, H.shape[1]):
diagonal = np.diag(H, k=i)
# print(diagonal)
# If the diagonal is shorter than the rows, append zeros
if diag_len > len(diagonal):
zeros = np.zeros((1, (diag_len-len(diagonal))), dtype=int)
diagonal = np.append(diagonal, zeros)
diag_H = np.vstack((diag_H, diagonal))
# Otherwise append the diagonal as a row
else:
diag_H = np.vstack((diag_H, diagonal))
print(diag_H)
# TODO
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.circuit.library import QFT
# Create a 3 qubit quantum register
# qr[0] is x, qr[1] is y, qr[2] is f(x,y)
qr = QuantumRegister(3)
cr = ClassicalRegister(3)
circuit = QuantumCircuit(qr, cr)
%matplotlib inline
circuit.h(qr[0])
circuit.h(qr[1])
# Feed the circuit into the BB
# TODO
sub_q = QuantumRegister(3)
sub_circ = QuantumCircuit(sub_q, name='BB')
sub_inst = sub_circ.to_instruction()
circuit.append(sub_inst, [qr[0], qr[1], qr[2]])
# QFT on qr[0] and qr[1]
qft = QFT(num_qubits=2)
circuit.compose(qft, inplace=True)
# Measure all 3
circuit.measure(qr, cr)
circuit.draw(output='mpl')
|
https://github.com/qiskit-community/archiver4qiskit
|
qiskit-community
|
import os
import qiskit
from qiskit import IBMQ, Aer
import uuid
import pickle
try:
IBMQ.load_account()
except:
print('Unable to load IBMQ account')
def _prep():
if 'archive' not in os.listdir():
os.mkdir('archive')
_prep()
class Archive():
'''
A serializable equivalent to the Qiskit job object.
'''
def __init__(self, job, path='', note='', circuits=None):
if 'job_id' in dir(job):
self.archive_id = job.job_id() + '@' + job.backend().name()
else:
self.archive_id = uuid.uuid4().hex + '@' + job.backend().name()
self.path = path
self.note = note
self._job_id = job.job_id()
self._backend = job.backend()
self._backend.properties() # just needs to be called to load
self._metadata = job.metadata
self.version = job.version
if 'circuits' in dir(job):
self._circuits = job.circuits()
else:
self._circuits = circuits
if 'qobj' in dir(job):
self._qobj = job.qobj()
if 'aer' in self.backend().name():
self._result = job.result()
else:
self._result = None
self.save()
def save(self):
with open(self.path + 'archive/'+self.archive_id, 'wb') as file:
pickle.dump(self, file)
def job_id(self):
return self._job_id
def backend(self):
return self._backend
def metadata(self):
return self._job_id
def circuits(self):
return self._circuits
def qobj(self):
return self._qobj
def result(self):
if self._result==None:
backend = get_backend(self.backend().name())
job = backend.retrieve_job(self.job_id())
self._result = job.result()
self.save()
return self._result
def get_backend(backend_name):
'''
Given a string that specifies a backend, returns the backend object
'''
if type(backend_name) is str:
if 'aer' in backend_name:
backend = Aer.get_backend(backend_name)
else:
providers = IBMQ.providers()
p = 0
no_backend = True
for provider in providers:
if no_backend:
backends = provider.backends()
for potential_backend in backends:
if potential_backend.name()==backend_name:
backend = potential_backend
no_backend = False
if no_backend:
print('No backend was found matching '+backend_name+' with your providers.')
else:
backend = backend_name
return backend
def submit_job(circuits, backend_name, path='', note='',
job_name=None, job_share_level=None, job_tags=None, experiment_id=None, header=None,
shots=None, memory=None, qubit_lo_freq=None, meas_lo_freq=None, schedule_los=None,
meas_level=None, meas_return=None, memory_slots=None, memory_slot_size=None,
rep_time=None, rep_delay=None, init_qubits=None, parameter_binds=None, use_measure_esp=None,
**run_config):
'''
Given a backend name and the arguments for the `run` method of the backend object, submits the job
and returns the archive id.
'''
# get backend
backend = get_backend(backend_name)
backend_name = backend.name()
# submit job
job = backend.run(circuits, job_name=job_name, job_share_level=job_share_level, job_tags=job_tags,
experiment_id=experiment_id, header=header, shots=shots, memory=memory,
qubit_lo_freq=qubit_lo_freq, meas_lo_freq=meas_lo_freq, schedule_los=schedule_los,
meas_level=meas_level, meas_return=meas_return, memory_slots=memory_slots,
memory_slot_size=memory_slot_size, rep_time=rep_time, rep_delay=rep_delay, init_qubits=init_qubits,
parameter_binds=parameter_binds, use_measure_esp=use_measure_esp,
**run_config)
# create archive
archive = Archive(job, note=note, circuits=circuits)
# if an Aer job, get the results
if 'aer' in job.backend().name():
archive.result()
# return the id
return archive.archive_id
def get_job(archive_id):
'''
Returns the Qiskit job object corresponding to a given archive_id
'''
job_id, backend_name = archive_id.split('@')
backend = get_backend(backend_name)
job = backend.retrieve_job(job_id)
return job
def get_archive(archive_id, path=''):
'''
Returns the saved archive object corresponding to a given archive_id
'''
with open(path + 'archive/'+archive_id, 'rb') as file:
archive = pickle.load(file)
return archive
def jobid2archive(job_id, backend_name):
backend = get_backend(backend_name)
job = backend.retrieve_job(job_id)
archive = Archive(job)
archive.result()
return archive.archive_id
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
qc = QuantumCircuit(qr, cr)
qc.h(range(2))
qc.measure(range(2), range(2))
# apply x gate if the classical register has the value 2 (10 in binary)
qc.x(0).c_if(cr, 2)
# apply y gate if bit 0 is set to 1
qc.y(1).c_if(0, 1)
qc.draw('mpl')
|
https://github.com/acfilok96/Quantum-Computation
|
acfilok96
|
# Quantum Computation
import qiskit
print(qiskit.__version__)
import qiskit.quantum_info as qi
from qiskit.circuit.library import FourierChecking
from qiskit.visualization import plot_histogram
f = [1, -1, -1, -1]
g = [1, 1, -1, -1]
# How co-related fourier transform of function g to function f.
# we will check for probability '00', if p(f,g) >= 0.05, then,
# fourier transform of function g co-related to function f.
circ = FourierChecking(f=f,g=g)
circ.draw()
zero = qi.Statevector.from_label('00') # '00' or '01' or '10' or '11'
sv = zero.evolve(circ)
probs = sv.probabilities_dict()
plot_histogram(probs)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_nature.mappers.second_quantization import LogarithmicMapper
mapper = LogarithmicMapper(2)
from qiskit_nature.second_q.mappers import LogarithmicMapper
mapper = LogarithmicMapper(2)
from qiskit_nature.second_q.mappers import LogarithmicMapper
mapper = LogarithmicMapper(padding=2)
from qiskit_nature.circuit.library import HartreeFock
from qiskit_nature.converters.second_quantization import QubitConverter
from qiskit_nature.mappers.second_quantization import JordanWignerMapper
converter = QubitConverter(JordanWignerMapper())
init_state = HartreeFock(num_spin_orbitals=6, num_particles=(2, 1), qubit_converter=converter)
print(init_state.draw())
from qiskit_nature.second_q.circuit.library import HartreeFock
from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter
converter = QubitConverter(JordanWignerMapper())
init_state = HartreeFock(num_spatial_orbitals=3, num_particles=(2, 1), qubit_converter=converter)
print(init_state.draw())
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
%matplotlib inline
import numpy as np
from qiskit import QuantumRegister, QuantumCircuit, AncillaRegister, transpile
from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem
from qiskit.circuit.library import WeightedAdder, LinearAmplitudeFunction
from qiskit_aer.primitives import Sampler
from qiskit_finance.circuit.library import LogNormalDistribution
# number of qubits per dimension to represent the uncertainty
num_uncertainty_qubits = 2
# parameters for considered random distribution
S = 2.0 # initial spot price
vol = 0.4 # volatility of 40%
r = 0.05 # annual interest rate of 4%
T = 40 / 365 # 40 days to maturity
# resulting parameters for log-normal distribution
mu = (r - 0.5 * vol**2) * T + np.log(S)
sigma = vol * np.sqrt(T)
mean = np.exp(mu + sigma**2 / 2)
variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2)
stddev = np.sqrt(variance)
# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.
low = np.maximum(0, mean - 3 * stddev)
high = mean + 3 * stddev
# map to higher dimensional distribution
# for simplicity assuming dimensions are independent and identically distributed)
dimension = 2
num_qubits = [num_uncertainty_qubits] * dimension
low = low * np.ones(dimension)
high = high * np.ones(dimension)
mu = mu * np.ones(dimension)
cov = sigma**2 * np.eye(dimension)
# construct circuit
u = LogNormalDistribution(num_qubits=num_qubits, mu=mu, sigma=cov, bounds=list(zip(low, high)))
# plot PDF of uncertainty model
x = [v[0] for v in u.values]
y = [v[1] for v in u.values]
z = u.probabilities
# z = map(float, z)
# z = list(map(float, z))
resolution = np.array([2**n for n in num_qubits]) * 1j
grid_x, grid_y = np.mgrid[min(x) : max(x) : resolution[0], min(y) : max(y) : resolution[1]]
grid_z = griddata((x, y), z, (grid_x, grid_y))
plt.figure(figsize=(10, 8))
ax = plt.axes(projection="3d")
ax.plot_surface(grid_x, grid_y, grid_z, cmap=plt.cm.Spectral)
ax.set_xlabel("Spot Price $S_T^1$ (\$)", size=15)
ax.set_ylabel("Spot Price $S_T^2$ (\$)", size=15)
ax.set_zlabel("Probability (\%)", size=15)
plt.show()
# determine number of qubits required to represent total loss
weights = []
for n in num_qubits:
for i in range(n):
weights += [2**i]
# create aggregation circuit
agg = WeightedAdder(sum(num_qubits), weights)
n_s = agg.num_sum_qubits
n_aux = agg.num_qubits - n_s - agg.num_state_qubits # number of additional qubits
# set the strike price (should be within the low and the high value of the uncertainty)
strike_price = 3.5
# map strike price from [low, high] to {0, ..., 2^n-1}
max_value = 2**n_s - 1
low_ = low[0]
high_ = high[0]
mapped_strike_price = (
(strike_price - dimension * low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1)
)
# set the approximation scaling for the payoff function
c_approx = 0.25
# setup piecewise linear objective fcuntion
breakpoints = [0, mapped_strike_price]
slopes = [0, 1]
offsets = [0, 0]
f_min = 0
f_max = 2 * (2**num_uncertainty_qubits - 1) - mapped_strike_price
basket_objective = LinearAmplitudeFunction(
n_s,
slopes,
offsets,
domain=(0, max_value),
image=(f_min, f_max),
rescaling_factor=c_approx,
breakpoints=breakpoints,
)
# define overall multivariate problem
qr_state = QuantumRegister(u.num_qubits, "state") # to load the probability distribution
qr_obj = QuantumRegister(1, "obj") # to encode the function values
ar_sum = AncillaRegister(n_s, "sum") # number of qubits used to encode the sum
ar = AncillaRegister(max(n_aux, basket_objective.num_ancillas), "work") # additional qubits
objective_index = u.num_qubits
basket_option = QuantumCircuit(qr_state, qr_obj, ar_sum, ar)
basket_option.append(u, qr_state)
basket_option.append(agg, qr_state[:] + ar_sum[:] + ar[:n_aux])
basket_option.append(basket_objective, ar_sum[:] + qr_obj[:] + ar[: basket_objective.num_ancillas])
print(basket_option.draw())
print("objective qubit index", objective_index)
# plot exact payoff function (evaluated on the grid of the uncertainty model)
x = np.linspace(sum(low), sum(high))
y = np.maximum(0, x - strike_price)
plt.plot(x, y, "r-")
plt.grid()
plt.title("Payoff Function", size=15)
plt.xlabel("Sum of Spot Prices ($S_T^1 + S_T^2)$", size=15)
plt.ylabel("Payoff", size=15)
plt.xticks(size=15, rotation=90)
plt.yticks(size=15)
plt.show()
# evaluate exact expected value
sum_values = np.sum(u.values, axis=1)
exact_value = np.dot(
u.probabilities[sum_values >= strike_price],
sum_values[sum_values >= strike_price] - strike_price,
)
print("exact expected value:\t%.4f" % exact_value)
num_state_qubits = basket_option.num_qubits - basket_option.num_ancillas
print("state qubits: ", num_state_qubits)
transpiled = transpile(basket_option, basis_gates=["u", "cx"])
print("circuit width:", transpiled.width())
print("circuit depth:", transpiled.depth())
basket_option_measure = basket_option.measure_all(inplace=False)
sampler = Sampler()
job = sampler.run(basket_option_measure)
# evaluate the result
value = 0
probabilities = job.result().quasi_dists[0].binary_probabilities()
for i, prob in probabilities.items():
if prob > 1e-4 and i[-num_state_qubits:][0] == "1":
value += prob
# map value to original range
mapped_value = (
basket_objective.post_processing(value) / (2**num_uncertainty_qubits - 1) * (high_ - low_)
)
print("Exact Operator Value: %.4f" % value)
print("Mapped Operator value: %.4f" % mapped_value)
print("Exact Expected Payoff: %.4f" % exact_value)
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = EstimationProblem(
state_preparation=basket_option,
objective_qubits=[objective_index],
post_processing=basket_objective.post_processing,
)
# construct amplitude estimation
ae = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result = ae.estimate(problem)
conf_int = (
np.array(result.confidence_interval_processed)
/ (2**num_uncertainty_qubits - 1)
* (high_ - low_)
)
print("Exact value: \t%.4f" % exact_value)
print(
"Estimated value: \t%.4f"
% (result.estimation_processed / (2**num_uncertainty_qubits - 1) * (high_ - low_))
)
print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int))
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem
from qiskit.circuit.library import LinearAmplitudeFunction
from qiskit_aer.primitives import Sampler
from qiskit_finance.circuit.library import LogNormalDistribution
# number of qubits to represent the uncertainty
num_uncertainty_qubits = 3
# parameters for considered random distribution
S = 2.0 # initial spot price
vol = 0.4 # volatility of 40%
r = 0.05 # annual interest rate of 4%
T = 40 / 365 # 40 days to maturity
# resulting parameters for log-normal distribution
mu = (r - 0.5 * vol**2) * T + np.log(S)
sigma = vol * np.sqrt(T)
mean = np.exp(mu + sigma**2 / 2)
variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2)
stddev = np.sqrt(variance)
# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.
low = np.maximum(0, mean - 3 * stddev)
high = mean + 3 * stddev
# construct A operator for QAE for the payoff function by
# composing the uncertainty model and the objective
uncertainty_model = LogNormalDistribution(
num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high)
)
# plot probability distribution
x = uncertainty_model.values
y = uncertainty_model.probabilities
plt.bar(x, y, width=0.2)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.grid()
plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15)
plt.ylabel("Probability ($\%$)", size=15)
plt.show()
# set the strike price (should be within the low and the high value of the uncertainty)
strike_price = 2.126
# set the approximation scaling for the payoff function
rescaling_factor = 0.25
# setup piecewise linear objective fcuntion
breakpoints = [low, strike_price]
slopes = [-1, 0]
offsets = [strike_price - low, 0]
f_min = 0
f_max = strike_price - low
european_put_objective = LinearAmplitudeFunction(
num_uncertainty_qubits,
slopes,
offsets,
domain=(low, high),
image=(f_min, f_max),
breakpoints=breakpoints,
rescaling_factor=rescaling_factor,
)
# construct A operator for QAE for the payoff function by
# composing the uncertainty model and the objective
european_put = european_put_objective.compose(uncertainty_model, front=True)
# plot exact payoff function (evaluated on the grid of the uncertainty model)
x = uncertainty_model.values
y = np.maximum(0, strike_price - x)
plt.plot(x, y, "ro-")
plt.grid()
plt.title("Payoff Function", size=15)
plt.xlabel("Spot Price", size=15)
plt.ylabel("Payoff", size=15)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.show()
# evaluate exact expected value (normalized to the [0, 1] interval)
exact_value = np.dot(uncertainty_model.probabilities, y)
exact_delta = -sum(uncertainty_model.probabilities[x <= strike_price])
print("exact expected value:\t%.4f" % exact_value)
print("exact delta value: \t%.4f" % exact_delta)
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = EstimationProblem(
state_preparation=european_put,
objective_qubits=[num_uncertainty_qubits],
post_processing=european_put_objective.post_processing,
)
# construct amplitude estimation
ae = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result = ae.estimate(problem)
conf_int = np.array(result.confidence_interval_processed)
print("Exact value: \t%.4f" % exact_value)
print("Estimated value: \t%.4f" % (result.estimation_processed))
print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int))
# setup piecewise linear objective fcuntion
breakpoints = [low, strike_price]
slopes = [0, 0]
offsets = [1, 0]
f_min = 0
f_max = 1
european_put_delta_objective = LinearAmplitudeFunction(
num_uncertainty_qubits,
slopes,
offsets,
domain=(low, high),
image=(f_min, f_max),
breakpoints=breakpoints,
)
# construct circuit for payoff function
european_put_delta = european_put_delta_objective.compose(uncertainty_model, front=True)
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = EstimationProblem(
state_preparation=european_put_delta, objective_qubits=[num_uncertainty_qubits]
)
# construct amplitude estimation
ae_delta = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result_delta = ae_delta.estimate(problem)
conf_int = -np.array(result_delta.confidence_interval)[::-1]
print("Exact delta: \t%.4f" % exact_delta)
print("Esimated value: \t%.4f" % -result_delta.estimation)
print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int))
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
|
rubenandrebarreiro
|
#initialization
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import math
# importing Qiskit
from qiskit import IBMQ, BasicAer
from qiskit.providers.ibmq import least_busy
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute
# import basic plot tools
from qiskit.tools.visualization import plot_histogram
from qiskit.visualization import plot_state_qsphere
# Loading your IBM Q account(s)
provider = IBMQ.load_account()
##############################EXERCISE 1#############################################
#Define multi-qubit controlled Z-gate for n=2,3 or 4.
#n=2
def cz(circuit,qr):
circuit.h(qr[1])
circuit.cx(qr[0],qr[1])
circuit.h(qr[1])
#n=3
def ccz(circuit,qr):
circuit.h(qr[2])
# ccx is the Toffoli gate
circuit.ccx(qr[0], qr[1], qr[2])
circuit.h(qr[2])
#n=4
def cccz(circuit,qr):
pi = math.pi
circuit.cu1(pi/4,qr[0],qr[3])
circuit.cx(qr[0], qr[1])
circuit.cu1(-pi/4, qr[1],qr[3])
circuit.cx(qr[0], qr[1])
circuit.cu1(pi/4, qr[1],qr[3])
circuit.cx(qr[1], qr[2])
circuit.cu1(-pi/4, qr[2],qr[3])
circuit.cx(qr[0], qr[2])
circuit.cu1(pi/4, qr[2],qr[3])
circuit.cx(qr[1], qr[2])
circuit.cu1(-pi/4, qr[2],qr[3])
circuit.cx(qr[0], qr[2])
circuit.cu1(pi/4, qr[2],qr[3])
#Definition
def n_controlled_Z(circuit, qr):
"""Implement a Z gate with multiple controls"""
if (len(qr) > 4):
raise ValueError('The controlled Z with more than 3 controls is not implemented')
# This is the case n = 2 (1 control + 1 target qubit)
elif (len(qr) == 2):
cz(circuit,qr)
# This is the case n = 3 (2 control + 1 target qubit)
elif (len(qr) == 3):
ccz(circuit,qr)
# This is the case n = 4 (3 control + 1 target qubit)
elif (len(qr) == 4):
cccz(circuit,qr)
#Now we check if this fuction ihas the same function as a multi-qubit controlled Z-gate. (ex.|11>->-|11>).
#####n=2####
##Circuitn2, input=all posible states.
#Create the circuit
qrn2=QuantumRegister(2)
crn2=ClassicalRegister(2)
circuitn2=QuantumCircuit(qrn2,crn2)
#Built all the posible input states using H-gates.
circuitn2.h(0)
circuitn2.h(1)
#Apply our function.
n_controlled_Z(circuitn2, qrn2)
#Draw the circuit.
circuitn2.draw()
#Execute the quantum circuit using qasm simulator.
backend = BasicAer.get_backend('statevector_simulator')
result = execute(circuitn2, backend).result()
psin2 = result.get_statevector(circuitn2)
#Print and plot the results.
plot_state_qsphere(psin2)
#Measure.
circuitn2.measure([0,1],[0,1])
#Execute the quantum circuit using qasm simulator.
backend = BasicAer.get_backend('qasm_simulator')
result = execute(circuitn2, backend, shots=10000).result()
countsn2 = result.get_counts(circuitn2)
#Print and plot the results.
print(countsn2)
plot_histogram(countsn2)
##Circuitn2Z, input=all posible states.
#Create the circuit
qrn2Z=QuantumRegister(2)
crn2Z=ClassicalRegister(2)
circuitn2Z=QuantumCircuit(qrn2Z,crn2Z)
#Built all the posible input states using H-gates.
circuitn2Z.h(0)
circuitn2Z.h(1)
#Apply our function.
circuitn2Z.cz(qrn2Z[0],qrn2Z[1])
#Draw the circuit.
circuitn2Z.draw()
#Execute the quantum circuit using state vector simulator.
backend = BasicAer.get_backend('statevector_simulator')
result = execute(circuitn2Z, backend).result()
psin2Z = result.get_statevector(circuitn2Z)
#Print and plot the results.
plot_state_qsphere(psin2Z)
#####n=3####
##Circuitn3, input=all posible states.
#Create the circuit
qrn3=QuantumRegister(3)
crn3=ClassicalRegister(3)
circuitn3=QuantumCircuit(qrn3,crn3)
#Built all the posible input states using H-gates.
circuitn3.h(0)
circuitn3.h(1)
circuitn3.h(2)
#Apply our function.
n_controlled_Z(circuitn3, qrn3)
#Draw the circuit.
circuitn3.draw()
#Execute the quantum circuit using statevector simulator.
backend = BasicAer.get_backend('statevector_simulator')
result = execute(circuitn3, backend).result()
psin3 = result.get_statevector(circuitn3)
#Print and plot the results.
plot_state_qsphere(psin3)
#Measure.
circuitn3.measure([0,1,2],[0,1,2])
#Execute the quantum circuit using qasm simulator.
backend = BasicAer.get_backend('qasm_simulator')
result = execute(circuitn3, backend, shots=10000).result()
countsn3 = result.get_counts(circuitn3)
#Print and plot the results.
print(countsn3)
plot_histogram(countsn3)
#####n=4####
##Circuitn4, input=all posible states.
#Create the circuit
qrn4=QuantumRegister(4)
crn4=ClassicalRegister(4)
circuitn4=QuantumCircuit(qrn4,crn4)
#Built all the posible input states using H-gates.
circuitn4.h(0)
circuitn4.h(1)
circuitn4.h(2)
circuitn4.h(3)
#Apply our function.
n_controlled_Z(circuitn4, qrn4)
#Draw the circuit.
circuitn4.draw()
#Execute the quantum circuit using statevector simulator.
backend = BasicAer.get_backend('statevector_simulator')
result = execute(circuitn4, backend).result()
psin4 = result.get_statevector(circuitn4)
#Print and plot the results.
plot_state_qsphere(psin4)
#Measure.
circuitn4.measure([0,1,2,3],[0,1,2,3])
#Execute the quantum circuit using qasm simulator.
backend = BasicAer.get_backend('qasm_simulator')
result = execute(circuitn4, backend, shots=10000).result()
countsn4 = result.get_counts(circuitn4)
#Print and plot the results.
print(countsn4)
plot_histogram(countsn4)
##Circuit0n4, input=|0000>.
#Create the circuit
qr0n4=QuantumRegister(4)
cr0n4=ClassicalRegister(4)
circuit0n4=QuantumCircuit(qr0n4,crn4)
#The states are already 0.
#Apply our function.
n_controlled_Z(circuit0n4, qr0n4)
#Draw the circuit.
circuit0n4.draw()
#Execute the quantum circuit using statevector simulator.
backend = BasicAer.get_backend('statevector_simulator')
result = execute(circuit0n4, backend).result()
psi0n4 = result.get_statevector(circuit0n4)
#Print and plot the results.
plot_state_qsphere(psi0n4)
##############################EXERCISE 2#############################################
#Check whether Oracle acts as expected.
#Define Oracle
def phase_oracle(circuit,qr,element):
# element is an array that defines the searched element, for example, element = [0,1,0,1]
n = len(element)
for j,x in enumerate(element):
if (x == 0):
circuit.x(qr[j])
n_controlled_Z(circuit,qr)
for j,x in enumerate(element):
if (x == 0):
circuit.x(qr[j])
# Create Circuite2, input=all posible states.
#Create the circuit
qre2=QuantumRegister(4)
cre2=ClassicalRegister(4)
circuite2=QuantumCircuit(qre2,cre2)
#Built all the posible input states using H-gates.
circuite2.h(0)
circuite2.h(1)
circuite2.h(2)
circuite2.h(3)
#Chose element to search.
elemente2=[0,1,1,0]
#Apply Oracle.
phase_oracle(circuite2,qre2,elemente2)
#Draw the circuit.
circuite2.draw()
#Execute the quantum circuit using statevector simulator.
backend = BasicAer.get_backend('statevector_simulator')
result = execute(circuite2, backend).result()
psie2 = result.get_statevector(circuite2)
#Print and plot the results.
plot_state_qsphere(psie2)
#Measure.
circuite2.measure([0,1,2,3],[0,1,2,3])
#Execute the quantum circuit using qasm simulator.
backend = BasicAer.get_backend('qasm_simulator')
result = execute(circuite2, backend, shots=10000).result()
countse2 = result.get_counts(circuite2)
#Print and plot the results.
print(countse2)
plot_histogram(countse2)
##############################EXERCISE 3#############################################
#Define Inversion
def inversion_about_average(circuit, register):
"""Apply inversion about the average step of Grover's algorithm."""
circuit.h(register)
circuit.x(register)
n_controlled_Z(circuit, qr)
circuit.x(register)
circuit.h(register)
#Circuit that implements the Grover's Algorithm (we define a function in which we introduce our parameters).
def grovers_algorithm(element,R,circuit,qr):
#circuit=defined input of the circuit.
#element=[a,b,c,d] with a,b=0,1, array representing the searched element.
#R=number of repetitions.
#Apply the algorithm R times.
for i in range(1,R):
#Apply Oracle.
phase_oracle(circuit,qr,element)
#Apply Inversion.
inversion_about_average(circuit,qr)
#Ex. searching |1010>
#Create the circuit and set it with input=all posible states (2^4).
qr=QuantumRegister(4)
cr=ClassicalRegister(4)
circuit=QuantumCircuit(qr,cr)
circuit.h(0)
circuit.h(1)
circuit.h(2)
circuit.h(3)
#Apply the algorithm.
grovers_algorithm([0,1,0,1],2,circuit,qr)
#Plot the circuit.
circuit.draw()
#Measure.
circuit.measure([0,1,2,3],[0,1,2,3])
#Execute the quantum circuit using qasm simulator.
backend = BasicAer.get_backend('qasm_simulator')
result = execute(circuit, backend, shots=1000).result()
counts = result.get_counts(circuit)
#Print and plot the results.
print(counts)
plot_histogram(counts)
#Ex. searching |111>
#Create the circuit and set it with input=all posible states (2^4).
qr=QuantumRegister(3)
cr=ClassicalRegister(3)
circuit=QuantumCircuit(qr,cr)
circuit.h(0)
circuit.h(1)
circuit.h(2)
#Apply the algorithm.
grovers_algorithm([1,1,1],3,circuit,qr)
#Plot the circuit.
circuit.draw()
#Measure.
circuit.measure([0,1,2],[0,1,2])
#Execute the quantum circuit using qasm simulator.
backend = BasicAer.get_backend('qasm_simulator')
result = execute(circuit, backend, shots=1000).result()
counts = result.get_counts(circuit)
#Print and plot the results.
print(counts)
plot_histogram(counts)
#Ex. searching |00>
#Create the circuit and set it with input=all posible states (2^4).
qr=QuantumRegister(2)
cr=ClassicalRegister(2)
circuit=QuantumCircuit(qr,cr)
circuit.h(0)
circuit.h(1)
#Apply the algorithm.
grovers_algorithm([0,1],2,circuit,qr)
#Plot the circuit.
circuit.draw()
#Measure.
circuit.measure([0,1],[0,1])
#Execute the quantum circuit using qasm simulator.
backend = BasicAer.get_backend('qasm_simulator')
result = execute(circuit, backend, shots=1000).result()
counts = result.get_counts(circuit)
#Print and plot the results.
print(counts)
plot_histogram(counts)
##############################EXERCISE 4#############################################
#number of measurements: it's easy to see by changing the parameter shoots that it doesn't really affect the results.
#number of iterations: it must be chosen carefully because it follows a repetitive structure, being R~sqrt(n) a good election.
|
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
|
Ilan-Bondarevsky
|
import numpy as np
import math
from qiskit import BasicAer, execute
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, Aer, transpile
from qiskit.tools.visualization import plot_histogram, plot_bloch_multivector
from shor_algo_adder_method import *
from qiskit.circuit.library import DraperQFTAdder, QFT
n = 8
q = QuantumRegister(n, 'q')
c = ClassicalRegister(math.ceil(n/2), 'c')
thiers = QuantumCircuit(q, c)
main = QuantumCircuit(q, c)
a = 15
b = 12
set_start_state(thiers, a, 0)
set_start_state(thiers, b, n//2)
set_start_state(main, a, 0)
set_start_state(main, b, n//2)
main.append(qft(math.ceil(n/2), False), range(n//2, n))
main = main.compose(adder(n//2, kind="fixed"), qubits=range(n))
# main.append(adder(n//2, kind="fixed"), range(n))
main.append(qft_dagger(math.ceil(n/2), False), range(n//2, n))
thiers = thiers.compose(DraperQFTAdder(n//2, kind="fixed").decompose(), range(n))
# thiers.append(DraperQFTAdder(n//2, kind="fixed"), range(n))
thiers.measure(range(n//2, n), range(math.ceil(n/2)))
main.measure(range(n//2, n), range(math.ceil(n/2)))
thiers.draw("mpl")
b = 12
a = 15
n = 4
q = QuantumRegister(n, 'q')
c = ClassicalRegister(n, 'c')
classic_a = QuantumCircuit(q, c)
set_start_state(classic_a, b, 0)
classic_a.append(qft(n, False), range(n))
classic_a = classic_a.compose(adder_classic_a(n, a, kind="fixed"), range(n))
classic_a.append(qft_dagger(n, False), range(n))
classic_a.measure(range(n), range(n))
classic_a.draw('mpl')
main.draw('mpl')
sim = Aer.get_backend("aer_simulator")
qc_init = ft.copy()
qc_init.save_statevector()
statevector = sim.run(qc_init).result().get_statevector()
plot_bloch_multivector(statevector)
aer_sim = Aer.get_backend('aer_simulator')
t_thiers = transpile(thiers, aer_sim)
t_main = transpile(main, aer_sim)
t_classic = transpile(classic_a, aer_sim)
counts_thiers = aer_sim.run(t_thiers).result().get_counts()
count_main = aer_sim.run(t_main).result().get_counts()
count_cls = aer_sim.run(t_classic).result().get_counts()
plot_histogram([count_main, counts_thiers, count_cls], legend=["main", "thiers", "cls"])
n = 5
q = QuantumRegister(n, 'q')
c = ClassicalRegister(math.ceil(n/2), 'c')
subtract = QuantumCircuit(q, c)
q = QuantumRegister(math.ceil(n/2), 'q')
c = ClassicalRegister(math.ceil(n/2), 'c')
subtract2 = QuantumCircuit(q, c)
a = 1
b = 3
set_start_state(subtract, a, 0)
set_start_state(subtract, b, n//2)
set_start_state(subtract2, b, 0)
subtract.append(qft(math.ceil(n/2), False), range(n//2, n))
# main = main.compose(adder(n//2, kind="half"), qubits=range(n))
# subtract = subtract.compose(adder(n//2, kind="half").inverse(), range(n))
subtract.append(subtracter(n//2), range(n))
subtract.append(qft_dagger(math.ceil(n/2), False), range(n//2, n))
subtract2.append(qft(math.ceil(n/2), False), range(math.ceil(n/2)))
# main = main.compose(adder(n//2, kind="half"), qubits=range(n))
# subtract = subtract.compose(adder(n//2, kind="half").inverse(), range(n))
subtract2.append(subtracter_classic_a(n//2, a), range(math.ceil(n/2)))
subtract2.append(qft_dagger(math.ceil(n/2), False), range(math.ceil(n/2)))
# thiers = thiers.compose(DraperQFTAdder(n//2, kind="half").decompose(), range(n))
subtract.measure(range(n//2, n), range(math.ceil(n/2)))
subtract2.measure(range(math.ceil(n/2)), range(math.ceil(n/2)))
subtract.draw("mpl")
subtract2.draw("mpl")
aer_sim = Aer.get_backend('aer_simulator')
t_subtract = transpile(subtract, aer_sim)
t_subtract2 = transpile(subtract2, aer_sim)
counts_subtract = aer_sim.run(t_subtract).result().get_counts()
counts_subtract2 = aer_sim.run(t_subtract2).result().get_counts()
plot_histogram([counts_subtract, counts_subtract2], legend=["draper", "a inside"])
n = 4
N = 11
a = 2
b = 0
x = 6
a_mod_n = QuantumCircuit(2*n + 4, n+1)
a_mod_n.x(0)
set_start_state(a_mod_n, x, 1)
set_start_state(a_mod_n, b, n+2)
# a_mod_n = a_mod_n.compose(add_mod_n(a, N), range(n+3))
a_mod_n = a_mod_n.compose(U(a, N).decompose(), range(2*n + 4))
a_mod_n.measure(range(1, n+2), range(n+1))
a_mod_n.draw('mpl', fold=-1)
aer_sim = Aer.get_backend('aer_simulator')
t_subtract = transpile(a_mod_n, aer_sim)
counts_subtract = aer_sim.run(t_subtract).result().get_counts()
plot_histogram(counts_subtract)
|
https://github.com/Chibikuri/qwopt
|
Chibikuri
|
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import copy
import itertools
from qiskit import transpile
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister
from qiskit import Aer, execute
from qiskit.tools.visualization import plot_histogram
from torch import optim
# qiskit AQUA
from qiskit.aqua.components.optimizers import ADAM
from qiskit.aqua.components.uncertainty_models import UniformDistribution, UnivariateVariationalDistribution
from qiskit.aqua.components.variational_forms import RY
from qiskit.aqua.algorithms.adaptive import QGAN
from qiskit.aqua.components.neural_networks.quantum_generator import QuantumGenerator
from qiskit.aqua.components.neural_networks.numpy_discriminator import NumpyDiscriminator
from qiskit.aqua import aqua_globals, QuantumInstance
from qiskit.aqua.components.initial_states import Custom
alpha = 0.85
target_graph = np.array([[0, 1, 0, 1],
[0, 0, 1, 0],
[0, 1, 0, 1],
[0, 0, 1, 0]])
E = np.array([[1/4, 1/2, 0, 1/2],
[1/4, 0, 1/2, 0],
[1/4, 1/2, 0, 1/2],
[1/4, 0, 1/2, 0]])
# use google matrix
prob_dist = alpha*E + ((1-alpha)/4)*np.ones((4, 4))
init_state = 1/2*np.array([np.sqrt(prob_dist[j][i]) for i in range(4) for j in range(4)])
# Number training data samples
N = 1000
# Load data samples from log-normal distribution with mean=1 and standard deviation=1
mu = 1
sigma = 1
real_data = np.random.lognormal(mean = mu, sigma=sigma, size=N)
# Set the data resolution
# Set upper and lower data values as list of k min/max data values [[min_0,max_0],...,[min_k-1,max_k-1]]
bounds = np.array([0.,3.])
# Set number of qubits per data dimension as list of k qubit values[#q_0,...,#q_k-1]
num_qubits = [2]
k = len(num_qubits)
print(real_data)
plt.hist(real_data)
# QGAN
# Set number of training epochs
# Note: The algorithm's runtime can be shortened by reducing the number of training epochs.
num_epochs = 3000
# Batch size
batch_size = 100
# Initialize qGAN
qgan = QGAN(real_data, bounds, num_qubits, batch_size, num_epochs, snapshot_dir=None)
qgan.seed = 1
# Set quantum instance to run the quantum generator
quantum_instance = QuantumInstance(backend=Aer.get_backend('statevector_simulator'))
# Set entangler map
entangler_map = [[0, 1]]
# Set an initial state for the generator circuit
init_dist = UniformDistribution(sum(num_qubits), low=bounds[0], high=bounds[1])
print(init_dist.probabilities)
q = QuantumRegister(sum(num_qubits), name='q')
qc = QuantumCircuit(q)
init_dist.build(qc, q)
init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc)
var_form = RY(int(np.sum(num_qubits)), depth=1, initial_state = init_distribution,
entangler_map=entangler_map, entanglement_gate='cz')
# Set generator's initial parameters
init_params = aqua_globals.random.rand(var_form._num_parameters) * 2 * np.pi
# Set generator circuit
g_circuit = UnivariateVariationalDistribution(int(sum(num_qubits)), var_form, init_params,
low=bounds[0], high=bounds[1])
# Set quantum generator
qgan.set_generator(generator_circuit=g_circuit)
# Set classical discriminator neural network
discriminator = NumpyDiscriminator(len(num_qubits))
qgan.set_discriminator(discriminator)
# Run qGAN
qgan.run(quantum_instance)
# Plot progress w.r.t the generator's and the discriminator's loss function
t_steps = np.arange(num_epochs)
plt.figure(figsize=(6,5))
plt.title("Progress in the loss function")
plt.plot(t_steps, qgan.g_loss, label = "Generator loss function", color = 'mediumvioletred', linewidth = 2)
plt.plot(t_steps, qgan.d_loss, label = "Discriminator loss function", color = 'rebeccapurple', linewidth = 2)
plt.grid()
plt.legend(loc = 'best')
plt.xlabel('time steps')
plt.ylabel('loss')
plt.show()
# Plot progress w.r.t relative entropy
plt.figure(figsize=(6,5))
plt.title("Relative Entropy ")
plt.plot(np.linspace(0, num_epochs, len(qgan.rel_entr)), qgan.rel_entr, color ='mediumblue', lw=4, ls=':')
plt.grid()
plt.xlabel('time steps')
plt.ylabel('relative entropy')
plt.show()
#Plot the PDF of the resulting distribution against the target distribution, i.e. log-normal
log_normal = np.random.lognormal(mean=1, sigma=1, size=100000)
log_normal = np.round(log_normal)
log_normal = log_normal[log_normal <= bounds[1]]
temp = []
for i in range(int(bounds[1]+1)):
temp += [np.sum(log_normal==i)]
log_normal = np.array(temp / sum(temp))
plt.figure(figsize=(6,5))
plt.title("CDF")
samples_g, prob_g = qgan.generator.get_output(qgan.quantum_instance, shots=10000)
samples_g = np.array(samples_g)
samples_g = samples_g.flatten()
num_bins = len(prob_g)
print(prob_g)
print(samples_g)
plt.bar(samples_g, np.cumsum(prob_g), color='royalblue', width= 0.8, label='simulation')
plt.plot( np.cumsum(log_normal),'-o', label='log-normal', color='deepskyblue', linewidth=4, markersize=12)
plt.xticks(np.arange(min(samples_g), max(samples_g)+1, 1.0))
plt.grid()
plt.xlabel('x')
plt.ylabel('p(x)')
plt.legend(loc='best')
plt.show()
print(len(qgan._ret['params_g']))
for i in qgan._ret['params_g']:
print(i)
gp = qgan._ret['params_g']
q = QuantumRegister(2)
c = ClassicalRegister(2)
qc = QuantumCircuit(q, c)
qc.h(q)
qc.ry(gp[0], q[0])
qc.ry(gp[1], q[1])
qc.cz(q[0], q[1])
qc.ry(gp[2], q[0])
qc.ry(gp[3], q[1])
job = execute(qc, backend=Aer.get_backend('statevector_simulator'))
vec = job.result().get_statevector(qc)
print(vec)
qc.measure(q[0], c[1])
qc.measure(q[1], c[0])
shots = 10000
job = execute(qc, backend=Aer.get_backend('qasm_simulator'), shots=shots)
count = job.result().get_counts(qc)
bins = [format(i, "0%db"%num_qubits[0]) for i in range(2**num_qubits[0])]
pros = itertools.accumulate([count.get(i, 0)/shots for i in bins])
print(list(pros))
# plot_histogram(pros)
# Circuit
# Hardcoded now!
num_qubits = [2]
bins = [format(i, "0%db"%num_qubits[0]) for i in range(2**num_qubits[0])]
def four_node(step):
rotation = np.radians(31.788)
cq = QuantumRegister(2, 'control')
tq = QuantumRegister(2, 'target')
c = ClassicalRegister(2, 'classical')
anc = QuantumRegister(2, 'ancilla')
qc = QuantumCircuit(cq, tq, anc, c)
# initialize with probability distribution matrix
initial = 1/2*np.array([np.sqrt(prob_dist[j][i]) for i in range(4) for j in range(4)])
qc.initialize(initial, [*cq, *tq])
for t in range(step):
# Ti operation
qc.x(cq[1])
qc.ccx(cq[0], cq[1], tq[1])
qc.x(cq[1])
qc.barrier()
# Kdg operation
qc.x(cq)
qc.rccx(cq[0], cq[1], anc[0])
qc.barrier()
qc.ch(anc[0], tq[0])
qc.ch(anc[0], tq[1])
qc.x(anc[0])
qc.cry(-rotation, anc[0], tq[1])
qc.ch(anc[0], tq[0])
qc.barrier()
# D operation
qc.x(tq)
qc.cz(tq[0], tq[1])
qc.x(tq)
qc.barrier()
# K operation
qc.ch(anc[0], tq[0])
qc.cry(rotation, anc[0], tq[1])
qc.x(anc[0])
qc.ch(anc[0], tq[1])
qc.ch(anc[0], tq[0])
qc.rccx(cq[0], cq[1], anc[0])
qc.x(cq)
qc.barrier()
# Tidg operation
qc.x(cq[1])
qc.ccx(cq[0], cq[1], tq[1])
qc.x(cq[1])
qc.barrier()
# swap
qc.swap(tq[0], cq[0])
qc.swap(tq[1], cq[1])
qc.measure(tq, c)
return qc
step = 1
qwqc = four_node(step)
shots = 10000
job = execute(qwqc, backend=Aer.get_backend("qasm_simulator"), shots=shots)
counts = job.result().get_counts(qwqc)
probs = np.array(([0] * counts.get('00'), [1]* counts.get('01'), [2] * counts.get('10'), [3] * counts.get('11')))
real_data = []
for i in probs:
for j in i:
real_data.append(j)
bounds = np.array([0.,3.])
# Set number of qubits per data dimension as list of k qubit values[#q_0,...,#q_k-1]
num_qubits = [2]
k = len(num_qubits)
# QGAN
# Set number of training epochs
# Note: The algorithm's runtime can be shortened by reducing the number of training epochs.
num_epochs = 3000
# Batch size
batch_size = 100
# Initialize qGAN
qgan = QGAN(real_data, bounds, num_qubits, batch_size, num_epochs, snapshot_dir=None)
qgan.seed = 1
# Set quantum instance to run the quantum generator
quantum_instance = QuantumInstance(backend=Aer.get_backend('statevector_simulator'))
# Set entangler map
entangler_map = [[0, 1]]
# Set an initial state for the generator circuit
init_dist = UniformDistribution(sum(num_qubits), low=bounds[0], high=bounds[1])
print(init_dist.probabilities)
q = QuantumRegister(sum(num_qubits), name='q')
qc = QuantumCircuit(q)
init_dist.build(qc, q)
init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc)
var_form = RY(int(np.sum(num_qubits)), depth=1, initial_state = init_distribution,
entangler_map=entangler_map, entanglement_gate='cz')
# Set generator's initial parameters
init_params = aqua_globals.random.rand(var_form._num_parameters) * 2 * np.pi
# Set generator circuit
g_circuit = UnivariateVariationalDistribution(int(sum(num_qubits)), var_form, init_params,
low=bounds[0], high=bounds[1])
# Set quantum generator
qgan.set_generator(generator_circuit=g_circuit)
# Set classical discriminator neural network
discriminator = NumpyDiscriminator(len(num_qubits))
qgan.set_discriminator(discriminator)
# Run qGAN
qgan.run(quantum_instance)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
from qiskit import QuantumCircuit
from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem
from qiskit_aer.primitives import Sampler
from qiskit_finance.circuit.library import NormalDistribution
# can be used in case a principal component analysis has been done to derive the uncertainty model, ignored in this example.
A = np.eye(2)
b = np.zeros(2)
# specify the number of qubits that are used to represent the different dimenions of the uncertainty model
num_qubits = [2, 2]
# specify the lower and upper bounds for the different dimension
low = [0, 0]
high = [0.12, 0.24]
mu = [0.12, 0.24]
sigma = 0.01 * np.eye(2)
# construct corresponding distribution
bounds = list(zip(low, high))
u = NormalDistribution(num_qubits, mu, sigma, bounds)
# plot contour of probability density function
x = np.linspace(low[0], high[0], 2 ** num_qubits[0])
y = np.linspace(low[1], high[1], 2 ** num_qubits[1])
z = u.probabilities.reshape(2 ** num_qubits[0], 2 ** num_qubits[1])
plt.contourf(x, y, z)
plt.xticks(x, size=15)
plt.yticks(y, size=15)
plt.grid()
plt.xlabel("$r_1$ (%)", size=15)
plt.ylabel("$r_2$ (%)", size=15)
plt.colorbar()
plt.show()
# specify cash flow
cf = [1.0, 2.0]
periods = range(1, len(cf) + 1)
# plot cash flow
plt.bar(periods, cf)
plt.xticks(periods, size=15)
plt.yticks(size=15)
plt.grid()
plt.xlabel("periods", size=15)
plt.ylabel("cashflow ($)", size=15)
plt.show()
# estimate real value
cnt = 0
exact_value = 0.0
for x1 in np.linspace(low[0], high[0], pow(2, num_qubits[0])):
for x2 in np.linspace(low[1], high[1], pow(2, num_qubits[1])):
prob = u.probabilities[cnt]
for t in range(len(cf)):
# evaluate linear approximation of real value w.r.t. interest rates
exact_value += prob * (
cf[t] / pow(1 + b[t], t + 1)
- (t + 1) * cf[t] * np.dot(A[:, t], np.asarray([x1, x2])) / pow(1 + b[t], t + 2)
)
cnt += 1
print("Exact value: \t%.4f" % exact_value)
# specify approximation factor
c_approx = 0.125
# create fixed income pricing application
from qiskit_finance.applications.estimation import FixedIncomePricing
fixed_income = FixedIncomePricing(
num_qubits=num_qubits,
pca_matrix=A,
initial_interests=b,
cash_flow=cf,
rescaling_factor=c_approx,
bounds=bounds,
uncertainty_model=u,
)
fixed_income._objective.draw()
fixed_income_circ = QuantumCircuit(fixed_income._objective.num_qubits)
# load probability distribution
fixed_income_circ.append(u, range(u.num_qubits))
# apply function
fixed_income_circ.append(fixed_income._objective, range(fixed_income._objective.num_qubits))
fixed_income_circ.draw()
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
# construct amplitude estimation
problem = fixed_income.to_estimation_problem()
ae = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result = ae.estimate(problem)
conf_int = np.array(result.confidence_interval_processed)
print("Exact value: \t%.4f" % exact_value)
print("Estimated value: \t%.4f" % (fixed_income.interpret(result)))
print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int))
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import random
from qiskit.quantum_info import Statevector
secret = random.randint(0,7) # the owner is randomly picked
secret_string = format(secret, '03b') # format the owner in 3-bit string
oracle = Statevector.from_label(secret_string) # let the oracle know the owner
from qiskit.algorithms import AmplificationProblem
problem = AmplificationProblem(oracle, is_good_state=secret_string)
from qiskit.algorithms import Grover
grover_circuits = []
for iteration in range(1,3):
grover = Grover(iterations=iteration)
circuit = grover.construct_circuit(problem)
circuit.measure_all()
grover_circuits.append(circuit)
# Grover's circuit with 1 iteration
grover_circuits[0].draw()
# Grover's circuit with 2 iterations
grover_circuits[1].draw()
from qiskit_ibm_runtime import QiskitRuntimeService
service = QiskitRuntimeService()
backend = "ibmq_qasm_simulator" # use the simulator
from qiskit_ibm_runtime import Sampler, Session
with Session(service=service, backend=backend):
sampler = Sampler()
job = sampler.run(circuits=grover_circuits, shots=1000)
result = job.result()
print(result)
from qiskit.tools.visualization import plot_histogram
# Extract bit string with highest probability from results as the answer
result_dict = result.quasi_dists[1].binary_probabilities()
answer = max(result_dict, key=result_dict.get)
print(f"As you can see, the quantum computer returned '{answer}' as the answer with highest probability.\n"
"And the results with 2 iterations have higher probability than the results with 1 iteration."
)
# Plot the results
plot_histogram(result.quasi_dists, legend=['1 iteration', '2 iterations'])
# Print the results and the correct answer.
print(f"Quantum answer: {answer}")
print(f"Correct answer: {secret_string}")
print('Success!' if answer == secret_string else 'Failure!')
import qiskit_ibm_runtime
qiskit_ibm_runtime.version.get_version_info()
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/2lambda123/Qiskit-qiskit
|
2lambda123
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=wrong-import-order
"""Main Qiskit public functionality."""
import pkgutil
# First, check for required Python and API version
from . import util
# qiskit errors operator
from .exceptions import QiskitError
# The main qiskit operators
from qiskit.circuit import ClassicalRegister
from qiskit.circuit import QuantumRegister
from qiskit.circuit import QuantumCircuit
# pylint: disable=redefined-builtin
from qiskit.tools.compiler import compile # TODO remove after 0.8
from qiskit.execute import execute
# The qiskit.extensions.x imports needs to be placed here due to the
# mechanism for adding gates dynamically.
import qiskit.extensions
import qiskit.circuit.measure
import qiskit.circuit.reset
# Allow extending this namespace. Please note that currently this line needs
# to be placed *before* the wrapper imports or any non-import code AND *before*
# importing the package you want to allow extensions for (in this case `backends`).
__path__ = pkgutil.extend_path(__path__, __name__)
# Please note these are global instances, not modules.
from qiskit.providers.basicaer import BasicAer
# Try to import the Aer provider if installed.
try:
from qiskit.providers.aer import Aer
except ImportError:
pass
# Try to import the IBMQ provider if installed.
try:
from qiskit.providers.ibmq import IBMQ
except ImportError:
pass
from .version import __version__
from .version import __qiskit_version__
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
from qiskit import QuantumCircuit, transpile
from qiskit.providers.fake_provider import FakeAuckland
backend = FakeAuckland()
ghz = QuantumCircuit(15)
ghz.h(0)
ghz.cx(0, range(1, 15))
depths = []
for _ in range(100):
depths.append(
transpile(
ghz,
backend,
layout_method='trivial' # Fixed layout mapped in circuit order
).depth()
)
plt.figure(figsize=(8, 6))
plt.hist(depths, align='left', color='#AC557C')
plt.xlabel('Depth', fontsize=14)
plt.ylabel('Counts', fontsize=14);
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_aer.utils import approximate_quantum_error, approximate_noise_model
import numpy as np
# Import Aer QuantumError functions that will be used
from qiskit_aer.noise import amplitude_damping_error, reset_error, pauli_error
from qiskit.quantum_info import Kraus
gamma = 0.23
error = amplitude_damping_error(gamma)
results = approximate_quantum_error(error, operator_string="reset")
print(results)
p = (1 + gamma - np.sqrt(1 - gamma)) / 2
q = 0
print("")
print("Expected results:")
print("P(0) = {}".format(1-(p+q)))
print("P(1) = {}".format(p))
print("P(2) = {}".format(q))
gamma = 0.23
K0 = np.array([[1,0],[0,np.sqrt(1-gamma)]])
K1 = np.array([[0,np.sqrt(gamma)],[0,0]])
results = approximate_quantum_error(Kraus([K0, K1]), operator_string="reset")
print(results)
reset_to_0 = Kraus([np.array([[1,0],[0,0]]), np.array([[0,1],[0,0]])])
reset_to_1 = Kraus([np.array([[0,0],[1,0]]), np.array([[0,0],[0,1]])])
reset_kraus = [reset_to_0, reset_to_1]
gamma = 0.23
error = amplitude_damping_error(gamma)
results = approximate_quantum_error(error, operator_list=reset_kraus)
print(results)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/tanvipenumudy/Quantum-Computing-Mini-Projects
|
tanvipenumudy
|
pip install qiskit
from qiskit.aqua.algorithms import Shor
from qiskit.aqua import QuantumInstance
from qiskit import Aer
key = 21
base = 2
backend = Aer.get_backend('qasm_simulator')
qi = QuantumInstance(backend=backend, shots=18240)
shors = Shor(N=key, a=base, quantum_instance = qi)
results = shors.run()
print(results['factors'])
|
https://github.com/drobiu/quantum-project
|
drobiu
|
from qiskit import BasicAer, execute
from qiskit.circuit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit.circuit.library.standard_gates import PhaseGate
from qiskit.circuit.library.basis_change import QFT
import math
from src.util.util import run_qc
q = QuantumRegister(3)
b = QuantumRegister(1)
c = ClassicalRegister(3)
qc = QuantumCircuit(q, b, c)
qc.x(q[0])
qc.draw(output='mpl')
def increment(circuit, register, apply_QFT=True):
q = register
num = len(q)
qc = circuit
if apply_QFT == True:
qc.barrier()
qc = qc.compose(QFT(num_qubits=num, approximation_degree=0, do_swaps=True, \
inverse=False, insert_barriers=True, name='qft'))
qc.barrier()
for i, qubit in enumerate(q):
qc.rz(math.pi/2**(num-1-i), qubit)
if apply_QFT == True:
qc.barrier()
qc = qc.compose(QFT(num_qubits=num, approximation_degree=0, do_swaps=True, \
inverse=True, insert_barriers=True, name='iqft'))
qc.barrier()
return qc
test = increment(qc, q)
test.draw(output='mpl')
def control_increment(circuit, qregister, cregister, apply_QFT=True):
q = qregister
c = cregister
numq = len(q)
numc = len(c)
qc = circuit
if apply_QFT == True:
qc.barrier()
qc = qc.compose(QFT(num_qubits=numq, approximation_degree=0, do_swaps=True, \
inverse=False, insert_barriers=True, name='qft'))
qc.barrier()
for i, qubit in enumerate(q):
ncp = PhaseGate(math.pi/2**(numq-i-1)).control(numc)
qc.append(ncp, [*c, qubit])
if apply_QFT == True:
qc.barrier()
qc = qc.compose(QFT(num_qubits=numq, approximation_degree=0, do_swaps=True, \
inverse=True, insert_barriers=True, name='iqft'))
qc.barrier()
return qc
test2 = control_increment(qc, q, b)
test2.draw(output='mpl')
## Test increment without control
test = increment(qc, q)
test.measure(q[:], c[:])
run_qc(qc)
test.draw(output='mpl')
# Test control increment
q = QuantumRegister(3)
b = QuantumRegister(1)
c = ClassicalRegister(3)
qc = QuantumCircuit(q, b, c)
qc.x(q[0])
qc = control_increment(qc, q, b)
# Flipping control qubit to 1
qc.x(b[0])
qc = control_increment(qc, q, b)
# Flipping control qubit to 1
qc.x(b[0])
qc = control_increment(qc, q, b)
# Should equal 010
qc.measure(q[:], c[:])
run_qc(qc)
qc.draw(output="mpl")
|
https://github.com/WhenTheyCry96/qiskitHackathon2022
|
WhenTheyCry96
|
%load_ext autoreload
%autoreload 2
import os
import warnings
import qiskit_metal as metal
from numpy import pi
from scipy.constants import c, h, pi, hbar, e, mu_0, epsilon_0
from qiskit_metal import Dict
from qiskit_metal.analyses.quantization.lumped_capacitive import load_q3d_capacitance_matrix
from qiskit_metal.analyses.quantization.lom_core_analysis import CompositeSystem, Cell, Subsystem, QuantumSystemRegistry
ws_path = os.getcwd()
warnings.filterwarnings("ignore")
#constants:
phi0 = h/(2*e)
varphi0 = phi0/(2*pi)
#project parameters:
L_JJ = 10 # nH
C_JJ = 2 # fF
f_r = 8 # GHz
Z_r = 50 # Ohm
v_r = 0.404314 # relative velocity to c
#parameter extraction:
eps_eff = (1/v_r)**2 # effective eps_r
eps_r = 2*eps_eff-1 # approximation
I_JJ = varphi0/(L_JJ*1e-9)/1e-9 # nA
E_JJ = (varphi0)**2/(L_JJ*1e-9)/h/1e9 # GHz
#print
print(eps_r, I_JJ, E_JJ)
QuantumSystemRegistry.registry()
capfile = ws_path+"/Transmon_Readout_CapMatrix.txt"
t1_mat, _, _, _ = load_q3d_capacitance_matrix(capfile)
t1_mat
opt1 = dict(
cap_mat = t1_mat,
ind_dict = {('pad_top_Q1', 'pad_bot_Q1'): L_JJ}, # junction inductance in nH
jj_dict = {('pad_top_Q1', 'pad_bot_Q1'): 'j1'},
cj_dict = {('pad_top_Q1', 'pad_bot_Q1'): C_JJ}, # junction capacitance in fF
)
cell_1 = Cell(opt1)
transmon1 = Subsystem(name='transmon1', sys_type='TRANSMON', nodes=['j1'])
trans_read = Subsystem(name='readout1', sys_type='TL_RESONATOR', nodes=['readout_connector_pad_Q1'], q_opts=dict(f_res = f_r, Z0=Z_r, vp=v_r*c))
composite_sys = CompositeSystem(
subsystems=[transmon1, trans_read],
cells=[cell_1],
grd_node='ground_main_plane',
nodes_force_keep=['readout_connector_pad_Q1']
)
cg = composite_sys.circuitGraph()
print(cg)
hilbertspace = composite_sys.create_hilbertspace()
print(hilbertspace)
hilbertspace = composite_sys.add_interaction()
hilbertspace.hamiltonian()
hamiltonian_results = composite_sys.hamiltonian_results(hilbertspace, evals_count=30)
composite_sys.compute_gs()
|
https://github.com/2lambda123/Qiskit-qiskit
|
2lambda123
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2023
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""FilterOpNodes pass testing"""
from qiskit import QuantumCircuit
from qiskit.transpiler.passes import FilterOpNodes
from test import QiskitTestCase # pylint: disable=wrong-import-order
class TestFilterOpNodes(QiskitTestCase):
"""Tests for FilterOpNodes transformation pass."""
def test_empty_circuit(self):
"""Empty DAG has does nothing."""
circuit = QuantumCircuit()
self.assertEqual(FilterOpNodes(lambda x: False)(circuit), circuit)
def test_remove_x_gate(self):
"""Test filter removes matching gates."""
circuit = QuantumCircuit(2)
circuit.x(0)
circuit.x(1)
circuit.cx(0, 1)
circuit.cx(1, 0)
circuit.cx(0, 1)
circuit.measure_all()
filter_pass = FilterOpNodes(lambda node: node.op.name != "x")
expected = QuantumCircuit(2)
expected.cx(0, 1)
expected.cx(1, 0)
expected.cx(0, 1)
expected.measure_all()
self.assertEqual(filter_pass(circuit), expected)
def test_filter_exception(self):
"""Test a filter function exception passes through."""
circuit = QuantumCircuit(2)
circuit.x(0)
circuit.x(1)
circuit.cx(0, 1)
circuit.cx(1, 0)
circuit.cx(0, 1)
circuit.measure_all()
def filter_fn(node):
raise TypeError("Failure")
filter_pass = FilterOpNodes(filter_fn)
with self.assertRaises(TypeError):
filter_pass(circuit)
def test_no_matches(self):
"""Test the pass does nothing if there are no filter matches."""
circuit = QuantumCircuit(2)
circuit.x(0)
circuit.x(1)
circuit.cx(0, 1)
circuit.cx(1, 0)
circuit.cx(0, 1)
circuit.measure_all()
filter_pass = FilterOpNodes(lambda node: node.op.name != "cz")
self.assertEqual(filter_pass(circuit), circuit)
|
https://github.com/adiazcarral/QHarmony
|
adiazcarral
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 27 11:07:17 2022
@author: angel
"""
# http://lampx.tugraz.at/~hadley/ss1/bzones/fcc.php
# https://aiida-tutorials.readthedocs.io/en/tutorial-2020-intro-week/source/sections/bands.html
from jarvis.db.figshare import get_wann_electron, get_wann_phonon, get_hk_tb
from jarvis.io.qiskit.inputs import HermitianSolver, get_bandstruct, get_dos
from jarvis.core.kpoints import generate_kgrid
import numpy as np
import qiskit
from qiskit import Aer
from jarvis.core.circuits import QuantumCircuitLibrary
import matplotlib.pyplot as plt
# JVASP-816 Al
# JVASP-1002 Si
# JVASP-35680 PbS
#########################
##### Download WTBH #####
wtbh, Ef, atoms = get_wann_electron(jid="JVASP-1002")
# wtbh, atoms = get_wann_phonon(jid="JVASP-1002", factor=34.3)
#########################
kpt = [0.5, 0., 0.5] #X-point jarvis
# kpt = [0., 0., 0.] #gamma-point
################################################
##### Transform WTBH into Hermitian matrix #####
# kpt = [0.5, 0., 0.5] #X-point jarvis
kpt = [0., 0., 0.] #gamma-point
##########
hk = get_hk_tb(w=wtbh, k=kpt)
HS = HermitianSolver(hk)
n_qubits = HS.n_qubits()
reps = 1
circ = QuantumCircuitLibrary(n_qubits=n_qubits, reps=reps).circuit6()
backend = Aer.get_backend("statevector_simulator")
###########
### VQE ###
en, vqe_result, vqe = HS.run_vqe(mode='min_val',var_form=circ,backend=backend)
vals, vecs = HS.run_numpy()
params = vqe.optimal_params
circuit = vqe.construct_circuit(params)
print('Classical, VQE (eV)', (vals[0] - Ef),(en - Ef))
print('Classical, VQE (eV)', (vals[0]),(en))
print(Ef)
###########
##### PbS X Plot Example #######
y = [-5.527449487783215, -8.057364907488996, -8.262343159928434, -8.247681114397821, -8.30798759954503, -8.310212504542353 ]
x = [1, 2, 3, 4, 5, 6]
plt.plot(x,y, color='black', marker = 'o')
plt.axhline(y=-8.310902072462328, color='b', linestyle='-.', linewidth=1)
plt.xlabel('Repetitions')
plt.ylabel('Energy (eV)')
plt.title('PbS X-point (Circuit 6)')
plt.xlim(0.5, 6.5)
plt.ylim(-10, -5)
plt.savefig('PbSX6.png', dpi=150, format=None, metadata=None,
bbox_inches='tight')
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
%matplotlib inline
import numpy as np
from qiskit import QuantumRegister, QuantumCircuit, AncillaRegister, transpile
from qiskit.circuit.library import IntegerComparator, WeightedAdder, LinearAmplitudeFunction
from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem
from qiskit_aer.primitives import Sampler
from qiskit_finance.circuit.library import LogNormalDistribution
# number of qubits per dimension to represent the uncertainty
num_uncertainty_qubits = 2
# parameters for considered random distribution
S = 2.0 # initial spot price
vol = 0.4 # volatility of 40%
r = 0.05 # annual interest rate of 4%
T = 40 / 365 # 40 days to maturity
# resulting parameters for log-normal distribution
mu = (r - 0.5 * vol**2) * T + np.log(S)
sigma = vol * np.sqrt(T)
mean = np.exp(mu + sigma**2 / 2)
variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2)
stddev = np.sqrt(variance)
# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.
low = np.maximum(0, mean - 3 * stddev)
high = mean + 3 * stddev
# map to higher dimensional distribution
# for simplicity assuming dimensions are independent and identically distributed)
dimension = 2
num_qubits = [num_uncertainty_qubits] * dimension
low = low * np.ones(dimension)
high = high * np.ones(dimension)
mu = mu * np.ones(dimension)
cov = sigma**2 * np.eye(dimension)
# construct circuit
u = LogNormalDistribution(num_qubits=num_qubits, mu=mu, sigma=cov, bounds=(list(zip(low, high))))
# plot PDF of uncertainty model
x = [v[0] for v in u.values]
y = [v[1] for v in u.values]
z = u.probabilities
# z = map(float, z)
# z = list(map(float, z))
resolution = np.array([2**n for n in num_qubits]) * 1j
grid_x, grid_y = np.mgrid[min(x) : max(x) : resolution[0], min(y) : max(y) : resolution[1]]
grid_z = griddata((x, y), z, (grid_x, grid_y))
plt.figure(figsize=(10, 8))
ax = plt.axes(projection="3d")
ax.plot_surface(grid_x, grid_y, grid_z, cmap=plt.cm.Spectral)
ax.set_xlabel("Spot Price $S_1$ (\$)", size=15)
ax.set_ylabel("Spot Price $S_2$ (\$)", size=15)
ax.set_zlabel("Probability (\%)", size=15)
plt.show()
# determine number of qubits required to represent total loss
weights = []
for n in num_qubits:
for i in range(n):
weights += [2**i]
# create aggregation circuit
agg = WeightedAdder(sum(num_qubits), weights)
n_s = agg.num_sum_qubits
n_aux = agg.num_qubits - n_s - agg.num_state_qubits # number of additional qubits
# set the strike price (should be within the low and the high value of the uncertainty)
strike_price_1 = 3
strike_price_2 = 4
# set the barrier threshold
barrier = 2.5
# map strike prices and barrier threshold from [low, high] to {0, ..., 2^n-1}
max_value = 2**n_s - 1
low_ = low[0]
high_ = high[0]
mapped_strike_price_1 = (
(strike_price_1 - dimension * low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1)
)
mapped_strike_price_2 = (
(strike_price_2 - dimension * low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1)
)
mapped_barrier = (barrier - low) / (high - low) * (2**num_uncertainty_qubits - 1)
# condition and condition result
conditions = []
barrier_thresholds = [2] * dimension
n_aux_conditions = 0
for i in range(dimension):
# target dimension of random distribution and corresponding condition (which is required to be True)
comparator = IntegerComparator(num_qubits[i], mapped_barrier[i] + 1, geq=False)
n_aux_conditions = max(n_aux_conditions, comparator.num_ancillas)
conditions += [comparator]
# set the approximation scaling for the payoff function
c_approx = 0.25
# setup piecewise linear objective fcuntion
breakpoints = [0, mapped_strike_price_1, mapped_strike_price_2]
slopes = [0, 1, 0]
offsets = [0, 0, mapped_strike_price_2 - mapped_strike_price_1]
f_min = 0
f_max = mapped_strike_price_2 - mapped_strike_price_1
objective = LinearAmplitudeFunction(
n_s,
slopes,
offsets,
domain=(0, max_value),
image=(f_min, f_max),
rescaling_factor=c_approx,
breakpoints=breakpoints,
)
# define overall multivariate problem
qr_state = QuantumRegister(u.num_qubits, "state") # to load the probability distribution
qr_obj = QuantumRegister(1, "obj") # to encode the function values
ar_sum = AncillaRegister(n_s, "sum") # number of qubits used to encode the sum
ar_cond = AncillaRegister(len(conditions) + 1, "conditions")
ar = AncillaRegister(
max(n_aux, n_aux_conditions, objective.num_ancillas), "work"
) # additional qubits
objective_index = u.num_qubits
# define the circuit
asian_barrier_spread = QuantumCircuit(qr_state, qr_obj, ar_cond, ar_sum, ar)
# load the probability distribution
asian_barrier_spread.append(u, qr_state)
# apply the conditions
for i, cond in enumerate(conditions):
state_qubits = qr_state[(num_uncertainty_qubits * i) : (num_uncertainty_qubits * (i + 1))]
asian_barrier_spread.append(cond, state_qubits + [ar_cond[i]] + ar[: cond.num_ancillas])
# aggregate the conditions on a single qubit
asian_barrier_spread.mcx(ar_cond[:-1], ar_cond[-1])
# apply the aggregation function controlled on the condition
asian_barrier_spread.append(agg.control(), [ar_cond[-1]] + qr_state[:] + ar_sum[:] + ar[:n_aux])
# apply the payoff function
asian_barrier_spread.append(objective, ar_sum[:] + qr_obj[:] + ar[: objective.num_ancillas])
# uncompute the aggregation
asian_barrier_spread.append(
agg.inverse().control(), [ar_cond[-1]] + qr_state[:] + ar_sum[:] + ar[:n_aux]
)
# uncompute the conditions
asian_barrier_spread.mcx(ar_cond[:-1], ar_cond[-1])
for j, cond in enumerate(reversed(conditions)):
i = len(conditions) - j - 1
state_qubits = qr_state[(num_uncertainty_qubits * i) : (num_uncertainty_qubits * (i + 1))]
asian_barrier_spread.append(
cond.inverse(), state_qubits + [ar_cond[i]] + ar[: cond.num_ancillas]
)
print(asian_barrier_spread.draw())
print("objective qubit index", objective_index)
# plot exact payoff function
plt.figure(figsize=(7, 5))
x = np.linspace(sum(low), sum(high))
y = (x <= 5) * np.minimum(np.maximum(0, x - strike_price_1), strike_price_2 - strike_price_1)
plt.plot(x, y, "r-")
plt.grid()
plt.title("Payoff Function (for $S_1 = S_2$)", size=15)
plt.xlabel("Sum of Spot Prices ($S_1 + S_2)$", size=15)
plt.ylabel("Payoff", size=15)
plt.xticks(size=15, rotation=90)
plt.yticks(size=15)
plt.show()
# plot contour of payoff function with respect to both time steps, including barrier
plt.figure(figsize=(7, 5))
z = np.zeros((17, 17))
x = np.linspace(low[0], high[0], 17)
y = np.linspace(low[1], high[1], 17)
for i, x_ in enumerate(x):
for j, y_ in enumerate(y):
z[i, j] = np.minimum(
np.maximum(0, x_ + y_ - strike_price_1), strike_price_2 - strike_price_1
)
if x_ > barrier or y_ > barrier:
z[i, j] = 0
plt.title("Payoff Function", size=15)
plt.contourf(x, y, z)
plt.colorbar()
plt.xlabel("Spot Price $S_1$", size=15)
plt.ylabel("Spot Price $S_2$", size=15)
plt.xticks(size=15)
plt.yticks(size=15)
plt.show()
# evaluate exact expected value
sum_values = np.sum(u.values, axis=1)
payoff = np.minimum(np.maximum(sum_values - strike_price_1, 0), strike_price_2 - strike_price_1)
leq_barrier = [np.max(v) <= barrier for v in u.values]
exact_value = np.dot(u.probabilities[leq_barrier], payoff[leq_barrier])
print("exact expected value:\t%.4f" % exact_value)
num_state_qubits = asian_barrier_spread.num_qubits - asian_barrier_spread.num_ancillas
print("state qubits: ", num_state_qubits)
transpiled = transpile(asian_barrier_spread, basis_gates=["u", "cx"])
print("circuit width:", transpiled.width())
print("circuit depth:", transpiled.depth())
asian_barrier_spread_measure = asian_barrier_spread.measure_all(inplace=False)
sampler = Sampler()
job = sampler.run(asian_barrier_spread_measure)
# evaluate the result
value = 0
probabilities = job.result().quasi_dists[0].binary_probabilities()
for i, prob in probabilities.items():
if prob > 1e-4 and i[-num_state_qubits:][0] == "1":
value += prob
# map value to original range
mapped_value = objective.post_processing(value) / (2**num_uncertainty_qubits - 1) * (high_ - low_)
print("Exact Operator Value: %.4f" % value)
print("Mapped Operator value: %.4f" % mapped_value)
print("Exact Expected Payoff: %.4f" % exact_value)
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = EstimationProblem(
state_preparation=asian_barrier_spread,
objective_qubits=[objective_index],
post_processing=objective.post_processing,
)
# construct amplitude estimation
ae = IterativeAmplitudeEstimation(epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}))
result = ae.estimate(problem)
conf_int = (
np.array(result.confidence_interval_processed)
/ (2**num_uncertainty_qubits - 1)
* (high_ - low_)
)
print("Exact value: \t%.4f" % exact_value)
print(
"Estimated value:\t%.4f"
% (result.estimation_processed / (2**num_uncertainty_qubits - 1) * (high_ - low_))
)
print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int))
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/tomtuamnuq/compare-qiskit-ocean
|
tomtuamnuq
|
from pyqubo import Binary
x_0, x_1, x_2 = (Binary('x_'+str(i)) for i in range(3))
linear_obj = - x_0 - x_2
quadratic_obj = - x_0 + x_0*x_2 + x_1 - 2*x_1*x_2
linear_cstr = 8*(x_1 - x_2)**2
qubo_bqm = (linear_obj + quadratic_obj + linear_cstr).compile().to_bqm()
print(qubo)
|
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
|
shesha-raghunathan
|
from qiskit.tools.visualization import plot_histogram
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit import execute, BasicAer
q = QuantumRegister(2)
c = ClassicalRegister(2)
# quantum circuit to make a Bell state
bell = QuantumCircuit(q,c)
bell.h(q[0])
bell.cx(q[0],q[1])
meas = QuantumCircuit(q,c)
meas.measure(q, c)
# execute the quantum circuit
backend = BasicAer.get_backend('qasm_simulator') # the device to run on
circ = bell+meas
result = execute(circ, backend, shots=1000).result()
counts = result.get_counts(circ)
print(counts)
plot_histogram(counts)
# Execute 2 qubit Bell state again
second_result = execute(circ, backend, shots=1000).result()
second_counts = second_result.get_counts(circ)
# Plot results with legend
legend = ['First execution', 'Second execution']
plot_histogram([counts, second_counts], legend=legend)
plot_histogram([counts, second_counts], legend=legend, sort='desc', figsize=(15,12), color=['orange', 'black'], bar_labels=False)
from qiskit.tools.visualization import iplot_histogram
# Run in interactive mode
iplot_histogram(counts)
from qiskit.tools.visualization import plot_state_city, plot_bloch_multivector, plot_state_paulivec, plot_state_hinton, plot_state_qsphere
# execute the quantum circuit
backend = BasicAer.get_backend('statevector_simulator') # the device to run on
result = execute(bell, backend).result()
psi = result.get_statevector(bell)
plot_state_city(psi)
plot_state_hinton(psi)
plot_state_qsphere(psi)
plot_state_paulivec(psi)
plot_bloch_multivector(psi)
plot_state_city(psi, title="My City", color=['black', 'orange'])
plot_state_hinton(psi, title="My Hinton")
plot_state_paulivec(psi, title="My Paulivec", color=['purple', 'orange', 'green'])
plot_bloch_multivector(psi, title="My Bloch Spheres")
from qiskit.tools.visualization import iplot_state_paulivec
# Generate an interactive pauli vector plot
iplot_state_paulivec(psi)
from qiskit.tools.visualization import plot_bloch_vector
plot_bloch_vector([0,1,0])
plot_bloch_vector([0,1,0], title='My Bloch Sphere')
|
https://github.com/jfraxanet/BasQ_industry_workshop_Qiskit
|
jfraxanet
|
import rustworkx as rx
from rustworkx.visualization import mpl_draw
num_nodes = 5
edges = [(0, 1, 1), (0, 2, 1), (0, 3, 1), (0, 4, 1)]# The edge syntax is (start, end, weight)
G = rx.PyGraph()
G.add_nodes_from(range(num_nodes))
G.add_edges_from(edges)
mpl_draw(
G, pos=rx.bipartite_layout(G, {0}), with_labels=True, node_color='tab:purple', font_color='white'
)
import numpy as np
from qiskit.quantum_info import SparsePauliOp
# Problem to Hamiltonian operator
hamiltonian = SparsePauliOp.from_list([("IIIZZ", 1), ("IIZIZ", 1), ("IZIIZ", 1), ("ZIIIZ", 1)])
print(hamiltonian)
from qiskit.circuit.library import QAOAAnsatz
# QAOA ansatz circuit
ansatz = QAOAAnsatz(hamiltonian, reps=2)
ansatz.decompose(reps=3).draw(output="mpl", style="clifford")
ansatz.decompose(reps=1).draw(output="mpl", style="clifford")
from qiskit.primitives import Estimator
estimator = Estimator()
# If we want to run it on the real device, use these lines instead:
#from qiskit_ibm_runtime import QiskitRuntimeService
#from qiskit_ibm_runtime import Estimator, Sampler, Session, Options
#service = QiskitRuntimeService(channel="ibm_quantum", token=<YOUR TOKEN>)
#backend = service.least_busy(operational=True, simulator=False)
#print(backend.name)
#options = Options()
#options.resilience_level = 1
#options.optimization_level = 3
#estimator = Estimator(backend, options=options)
def cost_func(params, ansatz, hamiltonian, estimator):
"""Return estimate of energy from estimator
Parameters:
params (ndarray): Array of ansatz parameters
ansatz (QuantumCircuit): Parameterized ansatz circuit
hamiltonian (SparsePauliOp): Operator representation of Hamiltonian
estimator (Estimator): Estimator primitive instance
Returns:
float: Energy estimate
"""
cost = estimator.run(ansatz, hamiltonian, parameter_values=params).result().values[0]
return cost
from scipy.optimize import minimize
# Randomly initialize the parameters of the ansatz
x0 = 2 * np.pi * np.random.rand(ansatz.num_parameters)
# Run the variational algorithm
res = minimize(cost_func, x0, args=(ansatz, hamiltonian, estimator),
method="COBYLA")
print(res)
from qiskit.primitives import Sampler
sampler = Sampler()
# If instead we want to run it on the device
# we need the sampler from runtime
# sampler = Sampler(backend, options=options)
# Assign solution parameters to ansatz
qc = ansatz.assign_parameters(res.x)
qc.measure_all()
# Draw circuit with optimal parameters
#qc_ibm.draw(output="mpl", idle_wires=False, style="iqp")
from qiskit.visualization import plot_distribution
# Sample ansatz at optimal parameters
samp_dist = sampler.run(qc).result().quasi_dists[0]
plot_distribution(samp_dist.binary_probabilities(), figsize=(15, 5))
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_nature.second_q.drivers import PySCFDriver
from qiskit_nature.second_q.problems import ElectronicBasis
driver = PySCFDriver()
driver.run_pyscf()
ao_problem = driver.to_problem(basis=ElectronicBasis.AO)
print(ao_problem.basis)
ao_hamil = ao_problem.hamiltonian
print(ao_hamil.electronic_integrals.alpha)
from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema
qcschema = driver.to_qcschema()
basis_transformer = get_ao_to_mo_from_qcschema(qcschema)
print(basis_transformer.initial_basis)
print(basis_transformer.final_basis)
mo_problem = basis_transformer.transform(ao_problem)
print(mo_problem.basis)
mo_hamil = mo_problem.hamiltonian
print(mo_hamil.electronic_integrals.alpha)
import numpy as np
from qiskit_nature.second_q.operators import ElectronicIntegrals
from qiskit_nature.second_q.problems import ElectronicBasis
from qiskit_nature.second_q.transformers import BasisTransformer
ao2mo_alpha = np.random.random((2, 2))
ao2mo_beta = np.random.random((2, 2))
basis_transformer = BasisTransformer(
ElectronicBasis.AO,
ElectronicBasis.MO,
ElectronicIntegrals.from_raw_integrals(ao2mo_alpha, h1_b=ao2mo_beta),
)
from qiskit_nature.second_q.drivers import PySCFDriver
driver = PySCFDriver(atom="Li 0 0 0; H 0 0 1.5")
full_problem = driver.run()
print(full_problem.molecule)
print(full_problem.num_particles)
print(full_problem.num_spatial_orbitals)
from qiskit_nature.second_q.transformers import FreezeCoreTransformer
fc_transformer = FreezeCoreTransformer()
fc_problem = fc_transformer.transform(full_problem)
print(fc_problem.num_particles)
print(fc_problem.num_spatial_orbitals)
print(fc_problem.hamiltonian.constants)
fc_transformer = FreezeCoreTransformer(remove_orbitals=[4, 5])
fc_problem = fc_transformer.transform(full_problem)
print(fc_problem.num_particles)
print(fc_problem.num_spatial_orbitals)
from qiskit_nature.second_q.drivers import PySCFDriver
driver = PySCFDriver(atom="Li 0 0 0; H 0 0 1.5")
full_problem = driver.run()
print(full_problem.num_particles)
print(full_problem.num_spatial_orbitals)
from qiskit_nature.second_q.transformers import ActiveSpaceTransformer
as_transformer = ActiveSpaceTransformer(2, 2)
as_problem = as_transformer.transform(full_problem)
print(as_problem.num_particles)
print(as_problem.num_spatial_orbitals)
print(as_problem.hamiltonian.electronic_integrals.alpha)
as_transformer = ActiveSpaceTransformer(2, 2, active_orbitals=[0, 4])
as_problem = as_transformer.transform(full_problem)
print(as_problem.num_particles)
print(as_problem.num_spatial_orbitals)
print(as_problem.hamiltonian.electronic_integrals.alpha)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2022, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test the QAOA algorithm."""
import unittest
from functools import partial
from test.python.algorithms import QiskitAlgorithmsTestCase
import numpy as np
import rustworkx as rx
from ddt import ddt, idata, unpack
from scipy.optimize import minimize as scipy_minimize
from qiskit import QuantumCircuit
from qiskit_algorithms.minimum_eigensolvers import QAOA
from qiskit_algorithms.optimizers import COBYLA, NELDER_MEAD
from qiskit.circuit import Parameter
from qiskit.primitives import Sampler
from qiskit.quantum_info import Pauli, SparsePauliOp
from qiskit.result import QuasiDistribution
from qiskit.utils import algorithm_globals
W1 = np.array([[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 0]])
P1 = 1
M1 = SparsePauliOp.from_list(
[
("IIIX", 1),
("IIXI", 1),
("IXII", 1),
("XIII", 1),
]
)
S1 = {"0101", "1010"}
W2 = np.array(
[
[0.0, 8.0, -9.0, 0.0],
[8.0, 0.0, 7.0, 9.0],
[-9.0, 7.0, 0.0, -8.0],
[0.0, 9.0, -8.0, 0.0],
]
)
P2 = 1
M2 = None
S2 = {"1011", "0100"}
CUSTOM_SUPERPOSITION = [1 / np.sqrt(15)] * 15 + [0]
@ddt
class TestQAOA(QiskitAlgorithmsTestCase):
"""Test QAOA with MaxCut."""
def setUp(self):
super().setUp()
self.seed = 10598
algorithm_globals.random_seed = self.seed
self.sampler = Sampler()
@idata(
[
[W1, P1, M1, S1],
[W2, P2, M2, S2],
]
)
@unpack
def test_qaoa(self, w, reps, mixer, solutions):
"""QAOA test"""
self.log.debug("Testing %s-step QAOA with MaxCut on graph\n%s", reps, w)
qubit_op, _ = self._get_operator(w)
qaoa = QAOA(self.sampler, COBYLA(), reps=reps, mixer=mixer)
result = qaoa.compute_minimum_eigenvalue(operator=qubit_op)
x = self._sample_most_likely(result.eigenstate)
graph_solution = self._get_graph_solution(x)
self.assertIn(graph_solution, solutions)
@idata(
[
[W1, P1, S1],
[W2, P2, S2],
]
)
@unpack
def test_qaoa_qc_mixer(self, w, prob, solutions):
"""QAOA test with a mixer as a parameterized circuit"""
self.log.debug(
"Testing %s-step QAOA with MaxCut on graph with a mixer as a parameterized circuit\n%s",
prob,
w,
)
optimizer = COBYLA()
qubit_op, _ = self._get_operator(w)
num_qubits = qubit_op.num_qubits
mixer = QuantumCircuit(num_qubits)
theta = Parameter("θ")
mixer.rx(theta, range(num_qubits))
qaoa = QAOA(self.sampler, optimizer, reps=prob, mixer=mixer)
result = qaoa.compute_minimum_eigenvalue(operator=qubit_op)
x = self._sample_most_likely(result.eigenstate)
graph_solution = self._get_graph_solution(x)
self.assertIn(graph_solution, solutions)
def test_qaoa_qc_mixer_many_parameters(self):
"""QAOA test with a mixer as a parameterized circuit with the num of parameters > 1."""
optimizer = COBYLA()
qubit_op, _ = self._get_operator(W1)
num_qubits = qubit_op.num_qubits
mixer = QuantumCircuit(num_qubits)
for i in range(num_qubits):
theta = Parameter("θ" + str(i))
mixer.rx(theta, range(num_qubits))
qaoa = QAOA(self.sampler, optimizer, reps=2, mixer=mixer)
result = qaoa.compute_minimum_eigenvalue(operator=qubit_op)
x = self._sample_most_likely(result.eigenstate)
self.log.debug(x)
graph_solution = self._get_graph_solution(x)
self.assertIn(graph_solution, S1)
def test_qaoa_qc_mixer_no_parameters(self):
"""QAOA test with a mixer as a parameterized circuit with zero parameters."""
qubit_op, _ = self._get_operator(W1)
num_qubits = qubit_op.num_qubits
mixer = QuantumCircuit(num_qubits)
# just arbitrary circuit
mixer.rx(np.pi / 2, range(num_qubits))
qaoa = QAOA(self.sampler, COBYLA(), reps=1, mixer=mixer)
result = qaoa.compute_minimum_eigenvalue(operator=qubit_op)
# we just assert that we get a result, it is not meaningful.
self.assertIsNotNone(result.eigenstate)
def test_change_operator_size(self):
"""QAOA change operator size test"""
qubit_op, _ = self._get_operator(
np.array([[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 0]])
)
qaoa = QAOA(self.sampler, COBYLA(), reps=1)
result = qaoa.compute_minimum_eigenvalue(operator=qubit_op)
x = self._sample_most_likely(result.eigenstate)
graph_solution = self._get_graph_solution(x)
with self.subTest(msg="QAOA 4x4"):
self.assertIn(graph_solution, {"0101", "1010"})
qubit_op, _ = self._get_operator(
np.array(
[
[0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0],
]
)
)
result = qaoa.compute_minimum_eigenvalue(operator=qubit_op)
x = self._sample_most_likely(result.eigenstate)
graph_solution = self._get_graph_solution(x)
with self.subTest(msg="QAOA 6x6"):
self.assertIn(graph_solution, {"010101", "101010"})
@idata([[W2, S2, None], [W2, S2, [0.0, 0.0]], [W2, S2, [1.0, 0.8]]])
@unpack
def test_qaoa_initial_point(self, w, solutions, init_pt):
"""Check first parameter value used is initial point as expected"""
qubit_op, _ = self._get_operator(w)
first_pt = []
def cb_callback(eval_count, parameters, mean, metadata):
nonlocal first_pt
if eval_count == 1:
first_pt = list(parameters)
qaoa = QAOA(
self.sampler,
COBYLA(),
initial_point=init_pt,
callback=cb_callback,
)
result = qaoa.compute_minimum_eigenvalue(operator=qubit_op)
x = self._sample_most_likely(result.eigenstate)
graph_solution = self._get_graph_solution(x)
with self.subTest("Initial Point"):
# If None the preferred random initial point of QAOA variational form
if init_pt is None:
self.assertLess(result.eigenvalue, -0.97)
else:
self.assertListEqual(init_pt, first_pt)
with self.subTest("Solution"):
self.assertIn(graph_solution, solutions)
def test_qaoa_random_initial_point(self):
"""QAOA random initial point"""
w = rx.adjacency_matrix(
rx.undirected_gnp_random_graph(5, 0.5, seed=algorithm_globals.random_seed)
)
qubit_op, _ = self._get_operator(w)
qaoa = QAOA(self.sampler, NELDER_MEAD(disp=True), reps=2)
result = qaoa.compute_minimum_eigenvalue(operator=qubit_op)
self.assertLess(result.eigenvalue, -0.97)
def test_optimizer_scipy_callable(self):
"""Test passing a SciPy optimizer directly as callable."""
w = rx.adjacency_matrix(
rx.undirected_gnp_random_graph(5, 0.5, seed=algorithm_globals.random_seed)
)
qubit_op, _ = self._get_operator(w)
qaoa = QAOA(
self.sampler,
partial(scipy_minimize, method="Nelder-Mead", options={"maxiter": 2}),
)
result = qaoa.compute_minimum_eigenvalue(qubit_op)
self.assertEqual(result.cost_function_evals, 5)
def _get_operator(self, weight_matrix):
"""Generate Hamiltonian for the max-cut problem of a graph.
Args:
weight_matrix (numpy.ndarray) : adjacency matrix.
Returns:
PauliSumOp: operator for the Hamiltonian
float: a constant shift for the obj function.
"""
num_nodes = weight_matrix.shape[0]
pauli_list = []
shift = 0
for i in range(num_nodes):
for j in range(i):
if weight_matrix[i, j] != 0:
x_p = np.zeros(num_nodes, dtype=bool)
z_p = np.zeros(num_nodes, dtype=bool)
z_p[i] = True
z_p[j] = True
pauli_list.append([0.5 * weight_matrix[i, j], Pauli((z_p, x_p))])
shift -= 0.5 * weight_matrix[i, j]
lst = [(pauli[1].to_label(), pauli[0]) for pauli in pauli_list]
return SparsePauliOp.from_list(lst), shift
def _get_graph_solution(self, x: np.ndarray) -> str:
"""Get graph solution from binary string.
Args:
x : binary string as numpy array.
Returns:
a graph solution as string.
"""
return "".join([str(int(i)) for i in 1 - x])
def _sample_most_likely(self, state_vector: QuasiDistribution) -> np.ndarray:
"""Compute the most likely binary string from state vector.
Args:
state_vector: Quasi-distribution.
Returns:
Binary string as numpy.ndarray of ints.
"""
values = list(state_vector.values())
n = int(np.log2(len(values)))
k = np.argmax(np.abs(values))
x = np.zeros(n)
for i in range(n):
x[i] = k % 2
k >>= 1
return x
if __name__ == "__main__":
unittest.main()
|
https://github.com/qiskit-community/community.qiskit.org
|
qiskit-community
|
from qiskit import QuantumCircuit, execute, Aer
from qiskit.visualization import plot_histogram
n = 8
n_q = 8
n_b = 8
qc_output = QuantumCircuit(n_q,n_b)
for j in range(n):
qc_output.measure(j,j)
qc_output.draw(output='mpl')
counts = execute(qc_output,Aer.get_backend('qasm_simulator')).result().get_counts()
plot_histogram(counts)
qc_encode = QuantumCircuit(n)
qc_encode.x(7)
qc_encode.draw(output='mpl')
qc = qc_encode + qc_output
qc.draw(output='mpl',justify='none')
counts = execute(qc,Aer.get_backend('qasm_simulator')).result().get_counts()
plot_histogram(counts)
qc_encode = QuantumCircuit(n)
qc_encode.x(1)
qc_encode.x(5)
qc_encode.draw(output='mpl')
qc_cnot = QuantumCircuit(2)
qc_cnot.cx(0,1)
qc_cnot.draw(output='mpl')
qc = QuantumCircuit(2,2)
qc.x(0)
qc.cx(0,1)
qc.measure(0,0)
qc.measure(1,1)
qc.draw(output='mpl')
qc_ha = QuantumCircuit(4,2)
# encode inputs in qubits 0 and 1
qc_ha.x(0) # For a=0, remove this line. For a=1, leave it.
qc_ha.x(1) # For b=0, remove this line. For b=1, leave it.
qc_ha.barrier()
# use cnots to write the XOR of the inputs on qubit 2
qc_ha.cx(0,2)
qc_ha.cx(1,2)
qc_ha.barrier()
# extract outputs
qc_ha.measure(2,0) # extract XOR value
qc_ha.measure(3,0)
qc_ha.draw(output='mpl')
qc_ha = QuantumCircuit(4,2)
# encode inputs in qubits 0 and 1
qc_ha.x(0) # For a=0, remove the this line. For a=1, leave it.
qc_ha.x(1) # For b=0, remove the this line. For b=1, leave it.
qc_ha.barrier()
# use cnots to write the XOR of the inputs on qubit 2
qc_ha.cx(0,2)
qc_ha.cx(1,2)
# use ccx to write the AND of the inputs on qubit 3
qc_ha.ccx(0,1,3)
qc_ha.barrier()
# extract outputs
qc_ha.measure(2,0) # extract XOR value
qc_ha.measure(3,1) # extract AND value
qc_ha.draw(output='mpl')
counts = execute(qc_ha,Aer.get_backend('qasm_simulator')).result().get_counts()
plot_histogram(counts)
|
https://github.com/usamisaori/quantum-expressibility-entangling-capability
|
usamisaori
|
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
from mpl_toolkits.mplot3d import Axes3D
plt.rc('font',family='Microsoft YaHei')
plt.rcParams['axes.unicode_minus'] = False
palettes = [
"#999999",
"#FFEE00",
"#FF9900",
"#FF3636",
"#99CC33",
"#66CCCC",
"#3399CC",
"#9966CC"
]
plt.scatter(0.1, 0.1, color=palettes[0])
plt.scatter(0.2, 0.2, color=palettes[1])
plt.scatter(0.3, 0.3, color=palettes[2])
plt.scatter(0.4, 0.4, color=palettes[3])
plt.scatter(0.5, 0.5, color=palettes[4])
plt.scatter(0.6, 0.6, color=palettes[5])
plt.scatter(0.7, 0.7, color=palettes[6])
plt.scatter(0.8, 0.8, color=palettes[7])
# Expressibility Entanglement
plt.figure(figsize=(8, 5))
c1 = "#FF6666"
c2 = "#FF9900"
c3 = "#66CCFF"
# layer 1
# layer 1 qubit 3
plt.grid()
plt.xticks([1, 2, 3, 4, 5, 6])
plt.ylim(0.13, 0.7)
plt.title("角度编码方案与表达能力", fontsize=14)
plt.xlabel("Qubit数", fontsize=13)
plt.ylabel("Expr", fontsize=13)
plt.scatter(3, 0.1974, color=c1, label="Rx(θ)(·)")
plt.scatter(3, 0.1997, color=c2, label="Ry(θ)H(·)")
plt.scatter(3, 0.1918, color=c3, label="Rz(θ)H(·)")
plt.scatter(4, 0.1462, color=c1)
plt.scatter(4, 0.1442, color=c2)
plt.scatter(4, 0.1331, color=c3)
plt.scatter(5, 0.1711, color=c1)
plt.scatter(5, 0.1824, color=c2)
plt.scatter(5, 0.1741, color=c3)
plt.scatter(1, 0.6515, color=c1)
plt.scatter(1, 0.6613, color=c2)
plt.scatter(1, 0.6260, color=c3)
plt.scatter(2, 0.3435, color=c1)
plt.scatter(2, 0.3355, color=c2)
plt.scatter(2, 0.3304, color=c3)
plt.scatter(6, 0.2582, color=c1)
plt.scatter(6, 0.2748, color=c2)
plt.scatter(6, 0.2644, color=c3)
plt.legend(loc='upper center')
plt.figure(figsize=(15, 3.8))
# layer 1
# layer 1 qubit 3
ax = plt.subplot(1,3,1)
plt.grid()
plt.ylim(0.3, 0.8)
plt.xlim(0.4, 2.4)
plt.title("Quibts: 3, Layers: 1")
plt.xlabel("Expr", fontsize=13)
plt.ylabel("Ent", fontsize=13)
plt.scatter(1.189, 0.625, color=palettes[0], label="C1")
plt.scatter(0.704, 0.377, color=palettes[1], label="C2")
plt.scatter(2.175, 0.702, color=palettes[2], label="C3")
plt.scatter(2.352, 0.540, color=palettes[3], label="C4")
plt.scatter(1.799, 0.542, color=palettes[4], label="C5")
plt.scatter(2.287, 0.720, color=palettes[5], label="C6")
plt.scatter(1.546, 0.338, color=palettes[6], label="C7")
plt.scatter(1.905, 0.456, color=palettes[7], label="C8")
ax.legend(loc='upper left', ncol=3, bbox_to_anchor=(0, 1.01))
plt.axvline(2.352, linestyle="--", color="#FF363666")
plt.axvline(2.175, linestyle="--", color="#FF990066")
plt.axhline(0.540, linestyle="--", color="#FF363666")
plt.axhline(0.702, linestyle="--", color="#FF990066")
# # layer 1 qubit 4
plt.subplot(1,3,2)
plt.grid()
plt.ylim(0.3, 0.8)
plt.xlim(0.4, 2.4)
plt.title("Quibts: 4, Layers: 1")
plt.xlabel("Expr", fontsize=13)
plt.scatter(1.724, 0.625, color=palettes[0])
plt.scatter(0.503, 0.375, color=palettes[1])
plt.scatter(1.881, 0.704, color=palettes[2])
plt.scatter(1.982, 0.537, color=palettes[3])
plt.scatter(1.837, 0.545, color=palettes[4])
plt.scatter(2.115, 0.721, color=palettes[5])
plt.scatter(1.219, 0.337, color=palettes[6])
plt.scatter(1.390, 0.457, color=palettes[7])
plt.axvline(1.982, linestyle="--", color="#FF363666")
plt.axvline(1.881, linestyle="--", color="#FF990066")
plt.axhline(0.537, linestyle="--", color="#FF363666")
plt.axhline(0.704, linestyle="--", color="#FF990066")
# # layer 1 qubit 5
plt.subplot(1,3,3)
plt.grid()
plt.ylim(0.3, 0.8)
plt.xlim(0.4, 2.4)
plt.title("Quibts: 5, Layers: 1")
plt.xlabel("Expr", fontsize=13)
plt.scatter(1.376, 0.625, color=palettes[0])
plt.scatter(0.456, 0.377, color=palettes[1])
plt.scatter(1.465, 0.703, color=palettes[2])
plt.scatter(1.557, 0.536, color=palettes[3])
plt.scatter(1.424, 0.547, color=palettes[4])
plt.scatter(2.113, 0.722, color=palettes[5])
plt.scatter(0.942, 0.339, color=palettes[6])
plt.scatter(1.152, 0.456, color=palettes[7])
plt.axvline(1.557, linestyle="--", color="#FF363666")
plt.axvline(1.465, linestyle="--", color="#FF990066")
plt.axhline(0.536, linestyle="--", color="#FF363666")
plt.axhline(0.703, linestyle="--", color="#FF990066")
def depth(circuit_type, n, L):
if circuit_type == 1:
return (2 * n + 1) * L
elif circuit_type >= 2 and circuit_type <= 4:
return (n + 1) * L + 1
elif circuit_type == 5:
return (2 + n + n // np.gcd(n, 3)) * L
elif circuit_type == 6:
return (n ** 2 - n + 4) * L
elif circuit_type == 7:
return 6 * L
elif circuit_type == 8:
return (n + 2) * L
colors2 = ['#FFCC33', '#FF9900', '#FF9966', '#FF6666', '#CC3333']
colors = ['#99CCFF', '#66CCFF', '#0088CC', '#6666FF', '#0000FF']
types = ['o', '^', ',', 'p', 'X']
plt.grid()
plt.title("线路深度同量子比特数量关系")
plt.xlabel("线路类型", fontsize=13)
plt.ylabel("线路深度", fontsize=13)
for n in range(2, 7):
for ct in range(1, 9):
if ct == 1:
plt.scatter(ct, depth(ct, n, 1), color=colors[n - 2], marker=types[n - 2], label=f"n={n}, L=1")
else:
plt.scatter(ct, depth(ct, n, 1), color=colors[n - 2], marker=types[n - 2])
for n in range(2, 7):
for ct in range(1, 9):
if ct == 1:
plt.scatter(ct, depth(ct, n, 3), color=colors2[n - 2], marker=types[n - 2], label=f"n={n}, L=3")
else:
plt.scatter(ct, depth(ct, n, 3), color=colors2[n - 2], marker=types[n - 2])
plt.axhline(22, 0, 8, linestyle="--", color="#CC6666")
plt.legend()
plt.figure(figsize=(7, 5))
# layer 1
# layer 1 qubit 3
plt.grid()
plt.ylim(0.4, 0.6)
plt.xlim(1, 1.7)
plt.title("原始线路与丢弃处理后线路的可表达性与纠缠能力", fontsize=13)
plt.xlabel("Expr", fontsize=13)
plt.ylabel("Ent", fontsize=13)
plt.scatter(1.6105, 0.5622, color="#FF9966", label="原始线路")
plt.scatter(1.4415, 0.5158, color="#FF6666", label="纠缠丢弃")
plt.scatter(1.1185, 0.4283, color="#3399CC", label="旋转丢弃")
plt.legend(loc='upper left')
|
https://github.com/rochisha0/stock-picking
|
rochisha0
|
from qiskit.finance.data_providers import RandomDataProvider
import numpy as np
import matplotlib.pyplot as plt
import datetime
import pandas as pd
from nsepy import get_history
from docplex.mp.model import Model
from qiskit.optimization import QuadraticProgram
from qiskit.optimization.converters import LinearEqualityToPenalty
from qiskit.aqua.algorithms import NumPyMinimumEigensolver
import pennylane as qml
num_assets = 3
# Generate expected return and covariance matrix from (random) time-series
stocks = [("TICKER%s" % i) for i in range(num_assets)]
data = RandomDataProvider(tickers=stocks,
start=datetime.datetime(2016,1,1),
end=datetime.datetime(2016,1,30))
data.run()
mu = data.get_period_return_mean_vector()
sigma = data.get_period_return_covariance_matrix()
q = 0.5 # set risk factor
budget = 2 # set budget
penalty = num_assets # set parameter to scale the budget penalty term
mdl = Model('docplex model')
x = mdl.binary_var_list(num_assets)
# set objective function:
#
# maximize { mu^T * x - q * x^T * sigma * x }
#
objective = mdl.sum([mu[i] * x[i] for i in range(num_assets)]) # mu^T * x
objective -= q * mdl.sum([sigma[i][j]*x[i]*x[j] for i in range(num_assets) for j in range(num_assets)])
mdl.maximize(objective)
# add budget constraint:
#
# 1^T * x == budget
#
cost = mdl.sum([x[i] for i in range(num_assets)])
mdl.add_constraint(cost == budget, ctname='budget')
# converting to Quadratic Program
mod = QuadraticProgram()
mod.from_docplex(mdl)
#removing the constraint to create the QUBO
lineq2penalty = LinearEqualityToPenalty(penalty)
qubo = lineq2penalty.convert(mod)
#converting QUBO to an Ising Hamiltonian
H, offset = qubo.to_ising()
H.num_qubits
H = H.to_legacy_op()
H.print_details()
def ansatz(theta):
qml.RX(theta[0], wires=0)
qml.RX(theta[1], wires=1)
qml.RX(theta[2], wires=2)
qml.CNOT(wires=[0,1])
qml.CNOT(wires=[0,2])
qml.CNOT(wires=[1,2])
qml.RX(theta[3], wires=0)
qml.RX(theta[4], wires=1)
qml.RX(theta[5], wires=2)
qml.CNOT(wires=[0,1])
qml.CNOT(wires=[0,2])
qml.CNOT(wires=[1,2])
qml.RX(theta[6], wires=0)
qml.RX(theta[7], wires=1)
qml.RX(theta[8], wires=2)
return ansatz
dev1 = qml.device("default.qubit", wires=3)
@qml.qnode(dev1)
def circuit_IIZ(params):
ansatz(params)
return qml.expval(qml.Identity(0)@qml.Identity(1)@qml.PauliZ(2))
@qml.qnode(dev1)
def circuit_IZI(params):
ansatz(params)
return qml.expval(qml.Identity(0)@qml.PauliZ(1)@qml.Identity(2))
@qml.qnode(dev1)
def circuit_ZII(params):
ansatz(params)
return qml.expval(qml.PauliZ(0)@qml.Identity(1)@qml.Identity(2))
@qml.qnode(dev1)
def circuit_IZZ(params):
ansatz(params)
return qml.expval(qml.Identity(0)@qml.PauliZ(1)@qml.PauliZ(2))
@qml.qnode(dev1)
def circuit_ZIZ(params):
ansatz(params)
return qml.expval(qml.PauliZ(0)@qml.Identity(1)@qml.PauliZ(2))
@qml.qnode(dev1)
def circuit_ZZI(params):
ansatz(params)
return qml.expval(qml.PauliZ(0)@qml.PauliZ(1)@qml.Identity(2))
def pauli_operator_to_dict(pauli_operator):
d = pauli_operator.to_dict()
paulis = d['paulis']
paulis_dict = {}
for x in paulis:
label = x['label']
coeff = x['coeff']['real']
paulis_dict[label] = coeff
return paulis_dict
pauli_dict = pauli_operator_to_dict(H)
def vqe(parameters):
expval_ZII = pauli_dict['ZII'] * circuit_ZII(parameters)
expval_IIZ = pauli_dict['IIZ'] * circuit_IIZ(parameters)
expval_IZI = pauli_dict['IZI'] * circuit_IZI(parameters)
expval_ZZI = pauli_dict['ZZI'] * circuit_ZZI(parameters)
expval_ZIZ = pauli_dict['ZIZ'] * circuit_ZIZ(parameters)
expval_IZZ = pauli_dict['IZZ'] * circuit_IZZ(parameters)
# summing the measurement results
classical_adder = expval_ZII + expval_IIZ + expval_ZIZ + expval_ZZI + expval_ZIZ + expval_IZZ
return classical_adder
opt = qml.GradientDescentOptimizer(stepsize=0.5)
value = []
# optimize parameters in objective
params = np.random.rand(9)
steps = 200
for i in range(steps):
params = opt.step(vqe, params)
value.append(vqe(params))
plt.plot(value)
@qml.qnode(dev1)
def final_circ(params):
ansatz(params)
return qml.probs(wires=[0,1,2])
params
plt.bar(['000', '001', '010', '011', '100', '101', '110', '111'], final_circ(params))
from qiskit.optimization.applications.ising.common import sample_most_likely
exact_eigensolver = NumPyMinimumEigensolver(H)
result = exact_eigensolver.run()
sample_most_likely(result.eigenstate)
pauli_dict
H.print_details()
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""ResourceEstimation pass testing"""
import unittest
from qiskit import QuantumRegister, QuantumCircuit
from qiskit.transpiler import PassManager
from qiskit.transpiler.passes import ResourceEstimation
from qiskit.test import QiskitTestCase
class TestResourceEstimationPass(QiskitTestCase):
"""Tests for PropertySet methods."""
def test_empty_dag(self):
"""Empty DAG."""
circuit = QuantumCircuit()
passmanager = PassManager()
passmanager.append(ResourceEstimation())
passmanager.run(circuit)
self.assertEqual(passmanager.property_set["size"], 0)
self.assertEqual(passmanager.property_set["depth"], 0)
self.assertEqual(passmanager.property_set["width"], 0)
self.assertDictEqual(passmanager.property_set["count_ops"], {})
def test_just_qubits(self):
"""A dag with 8 operations and no classic bits"""
qr = QuantumRegister(2)
circuit = QuantumCircuit(qr)
circuit.h(qr[0])
circuit.h(qr[1])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[1], qr[0])
circuit.cx(qr[1], qr[0])
passmanager = PassManager()
passmanager.append(ResourceEstimation())
passmanager.run(circuit)
self.assertEqual(passmanager.property_set["size"], 8)
self.assertEqual(passmanager.property_set["depth"], 7)
self.assertEqual(passmanager.property_set["width"], 2)
self.assertDictEqual(passmanager.property_set["count_ops"], {"cx": 6, "h": 2})
if __name__ == "__main__":
unittest.main()
|
https://github.com/IBMSystemsCenterMontpellier/Qiskit-Tips-and-Tricks
|
IBMSystemsCenterMontpellier
|
# Set up imports, IBMQ account, and backend
from qiskit import QuantumCircuit, execute, IBMQ
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q')
backend = provider.get_backend('ibmq_qasm_simulator')
# Create 2 circuits
circuit_1 = QuantumCircuit(2, 2)
circuit_1.h(0)
circuit_1.cx(0, 1)
circuit_1.measure([0, 1], [0, 1])
circuit_2 = QuantumCircuit(2, 2)
circuit_2.h(1)
circuit_2.cx(1, 0)
circuit_2.measure([0, 1], [0, 1])
# Submit a job for each circuit
job_1 = execute(circuit_1, backend)
job_2 = execute(circuit_2, backend)
print("Job 1: {}".format(job_1.result().get_counts(circuit_1)))
print("Job 2: {}".format(job_2.result().get_counts(circuit_2)))
# Set up imports, IBMQ account, and backend
from qiskit import QuantumCircuit, execute, IBMQ
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q')
backend = provider.get_backend('ibmq_qasm_simulator')
circuit_list = [] # This will be what we send with our job
# Create 2 circuits
circuit_1 = QuantumCircuit(2, 2)
circuit_1.h(0)
circuit_1.cx(0, 1)
circuit_1.measure([0, 1], [0, 1])
circuit_2 = QuantumCircuit(2, 2)
circuit_2.h(1)
circuit_2.cx(1, 0)
circuit_2.measure([0, 1], [0, 1])
# Add both circuits to the list
circuit_list.append(circuit_1)
circuit_list.append(circuit_2)
# Submit a single job that contains both circuits
job = execute(circuit_list, backend)
results = job.result()
# Option 1: Use the circuit name
circuit_1_counts = results.get_counts(circuit_1)
circuit_2_counts = results.get_counts(circuit_2)
print("Circuit 1 using circuit name: {}".format(circuit_1_counts))
print("Circuit 2 using circuit name: {}".format(circuit_2_counts))
# Option 2: Use the list index
circuit_1_counts = results.get_counts(circuit_list[0])
circuit_2_counts = results.get_counts(circuit_list[1])
print("Circuit 1 using list index: {}".format(circuit_1_counts))
print("Circuit 2 using list index: {}".format(circuit_2_counts))
import time
circuit_list = []
total_time_taken_individual = 0 # This will be the total runtime for the individual job method
total_execution_time_individual = 0 # This will be the total execution time for the individual job method
for __ in range(5):
# Create a new circuit
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])
# Add the circuit to circuit_list
circuit_list.append(qc)
# Execute the circuit in its own individual job and get total time taken
start_time = time.time()
job_individual = execute(qc, backend)
if job_individual.result(): # Once job has finished executing get end time
end_time = time.time()
total_time_taken_individual += (end_time - start_time)
# Retrieve time_taken executing and add to total time taken
total_execution_time_individual += job_individual.result().time_taken
# Create single job and execute, and get total time taken
start_time = time.time()
job_bundled = execute(circuit_list, backend)
if job_bundled.result(): # Once job has finished executing get end time
end_time = time.time()
total_time_taken_bundled = (end_time - start_time)
total_execution_time_bundled = job_bundled.result().time_taken
# Compare execution time and total time taken between the two methods. Round to 5 decimal places.
print("Total execution time with individual jobs: {} seconds".format(round(total_execution_time_individual, 5)))
print("Total execution time with a single job: {} seconds".format(round(total_execution_time_bundled, 5)))
print("Total time taken with individual jobs: {} seconds".format(round(total_time_taken_individual, 5)))
print("Total time taken with a single job: {} seconds".format(round(total_time_taken_bundled, 5)))
|
https://github.com/JamesTheZhang/Qiskit2023
|
JamesTheZhang
|
########################################
# ENTER YOUR NAME AND WISC EMAIL HERE: #
########################################
# Name: Rochelle Li
# Email: rli484@wisc.edu
## Run this cell to make sure your grader is setup correctly
%set_env QC_GRADE_ONLY=true
%set_env QC_GRADING_ENDPOINT=https://qac-grading.quantum-computing.ibm.com
from qiskit import QuantumCircuit
from qiskit.circuit import QuantumRegister, ClassicalRegister
qr = QuantumRegister(1)
cr = ClassicalRegister(2)
qc = QuantumCircuit(qr, cr)
# unpack the qubit and classical bits from the registers
(q0,) = qr
b0, b1 = cr
# apply Hadamard
qc.h(q0)
# measure
qc.measure(q0, b0)
# begin if test block. the contents of the block are executed if b0 == 1
with qc.if_test((b0, 1)):
# if the condition is satisfied (b0 == 1), then flip the bit back to 0
qc.x(q0)
# finally, measure q0 again
qc.measure(q0, b1)
qc.draw(output="mpl", idle_wires=False)
from qiskit_aer import AerSimulator
# initialize the simulator
backend_sim = AerSimulator()
# run the circuit
reset_sim_job = backend_sim.run(qc)
# get the results
reset_sim_result = reset_sim_job.result()
# retrieve the bitstring counts
reset_sim_counts = reset_sim_result.get_counts()
print(f"Counts: {reset_sim_counts}")
from qiskit.visualization import *
# plot histogram
plot_histogram(reset_sim_counts)
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
qc = QuantumCircuit(qr, cr)
q0, q1 = qr
b0, b1 = cr
qc.h(q0)
qc.measure(q0, b0)
## Write your code below this line ##
with qc.if_test((b0, 0)) as else_:
qc.x(1)
with else_:
qc.h(1)
## Do not change the code below this line ##
qc.measure(q1, b1)
qc.draw(output="mpl", idle_wires=False)
backend_sim = AerSimulator()
job_1 = backend_sim.run(qc)
result_1 = job_1.result()
counts_1 = result_1.get_counts()
print(f"Counts: {counts_1}")
# Grader Cell: Run this to submit your answer
from qc_grader.challenges.fall_fest23 import grade_ex3b
grade_ex3b(qc)
controls = QuantumRegister(2, name="control")
target = QuantumRegister(1, name="target")
mid_measure = ClassicalRegister(2, name="mid")
final_measure = ClassicalRegister(1, name="final")
base = QuantumCircuit(controls, target, mid_measure, final_measure)
def trial(
circuit: QuantumCircuit,
target: QuantumRegister,
controls: QuantumRegister,
measures: ClassicalRegister,
):
"""Probabilistically perform Rx(theta) on the target, where cos(theta) = 3/5."""
## Write your code below this line, making sure it's indented to where this comment begins from ##
c0,c1 = controls
(t0,) = target
b0, b1 = mid_measure
circuit.h(c0)
circuit.h(c1)
circuit.h(t0)
circuit.ccx(c0, c1, t0)
circuit.s(t0)
circuit.ccx(c0, c1, t0)
circuit.h(c0)
circuit.h(c1)
circuit.h(t0)
circuit.measure(c0, b0)
circuit.measure(c1, b1)
## Do not change the code below this line ##
qc = base.copy_empty_like()
trial(qc, target, controls, mid_measure)
qc.draw("mpl", cregbundle=False)
# Grader Cell: Run this to submit your answer
from qc_grader.challenges.fall_fest23 import grade_ex3c
grade_ex3c(qc)
def reset_controls(
circuit: QuantumCircuit, controls: QuantumRegister, measures: ClassicalRegister
):
"""Reset the control qubits if they are in |1>."""
## Write your code below this line, making sure it's indented to where this comment begins from ##
c0, c1 = controls
r0, r1 = measures
# circuit.h(c0)
# circuit.h(c1)
# circuit.measure(c0, r0)
# circuit.measure(c1, r1)
with circuit.if_test((r0, 1)):
circuit.x(c0)
with circuit.if_test((r1, 1)):
circuit.x(c1)
## Do not change the code below this line ##
qc = base.copy_empty_like()
trial(qc, target, controls, mid_measure)
reset_controls(qc, controls, mid_measure)
qc.measure(controls, mid_measure)
qc.draw("mpl", cregbundle=False)
# Grader Cell: Run this to submit your answer
from qc_grader.challenges.fall_fest23 import grade_ex3d
grade_ex3d(qc)
# Set the maximum number of trials
max_trials = 2
# Create a clean circuit with the same structure (bits, registers, etc) as the initial base we set up.
circuit = base.copy_empty_like()
# The first trial does not need to reset its inputs, since the controls are guaranteed to start in the |0> state.
trial(circuit, target, controls, mid_measure)
# Manually add the rest of the trials. In the future, we will be able to use a dynamic `while` loop to do this, but for now,
# we statically add each loop iteration with a manual condition check on each one.
# This involves more classical synchronizations than the while loop, but will suffice for now.
for _ in range(max_trials - 1):
reset_controls(circuit, controls, mid_measure)
with circuit.if_test((mid_measure, 0b00)) as else_:
# This is the success path, but Qiskit can't directly
# represent a negative condition yet, so we have an
# empty `true` block in order to use the `else` branch.
pass
with else_:
## Write your code below this line, making sure it's indented to where this comment begins from ##
# (t0,) = target
circuit.x(2)
trial(circuit, target, controls, mid_measure)
## Do not change the code below this line ##
# We need to measure the control qubits again to ensure we get their final results; this is a hardware limitation.
circuit.measure(controls, mid_measure)
# Finally, let's measure our target, to check that we're getting the rotation we desired.
circuit.measure(target, final_measure)
circuit.draw("mpl", cregbundle=False)
# Grader Cell: Run this to submit your answer
from qc_grader.challenges.fall_fest23 import grade_ex3e
grade_ex3e(circuit)
sim = AerSimulator()
job = sim.run(circuit, shots=1000)
result = job.result()
counts = result.get_counts()
plot_histogram(counts)
|
https://github.com/ronitd2002/IBM-Quantum-challenge-2024
|
ronitd2002
|
# transpile_parallel.py
from qiskit import QuantumCircuit
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_transpiler_service.transpiler_service import TranspilerService
from qiskit_serverless import get_arguments, save_result, distribute_task, get
from qiskit_ibm_runtime import QiskitRuntimeService
from timeit import default_timer as timer
@distribute_task(target={"cpu": 2})
def transpile_parallel(circuit: QuantumCircuit, config):
"""Distributed transpilation for an abstract circuit into an ISA circuit for a given backend."""
transpiled_circuit = config.run(circuit)
return transpiled_circuit
# Get program arguments
arguments = get_arguments()
circuits = arguments.get("circuits")
backend_name = arguments.get("backend_name")
# Get backend
service = QiskitRuntimeService(channel="ibm_quantum")
backend = service.get_backend(backend_name)
# Define Configs
optimization_levels = [1,2,3]
pass_managers = [generate_preset_pass_manager(optimization_level=level, backend=backend) for level in optimization_levels]
transpiler_services = [
{'service': TranspilerService(backend_name="ibm_brisbane", ai="false", optimization_level=3,), 'ai': False, 'optimization_level': 3},
{'service': TranspilerService(backend_name="ibm_brisbane", ai="false", optimization_level=3,), 'ai': True, 'optimization_level': 3}
]
configs = pass_managers + transpiler_services
# Start process
print("Starting timer")
start = timer()
# run distributed tasks as async function
# we get task references as a return type
sample_task_references = []
for circuit in circuits:
sample_task_references.append([transpile_parallel(circuit, config) for config in configs])
# now we need to collect results from task references
results = get([task for subtasks in sample_task_references for task in subtasks])
end = timer()
# Record execution time
execution_time_serverless = end-start
print("Execution time: ", execution_time_serverless)
save_result({
"transpiled_circuits": results,
"execution_time" : execution_time_serverless
})
|
https://github.com/swe-train/qiskit__qiskit
|
swe-train
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""The n-local circuit class."""
from __future__ import annotations
import typing
from collections.abc import Callable, Mapping, Sequence
from itertools import combinations
import numpy
from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.circuit.quantumregister import QuantumRegister
from qiskit.circuit import Instruction, Parameter, ParameterVector, ParameterExpression
from qiskit.exceptions import QiskitError
from ..blueprintcircuit import BlueprintCircuit
if typing.TYPE_CHECKING:
import qiskit # pylint: disable=cyclic-import
class NLocal(BlueprintCircuit):
"""The n-local circuit class.
The structure of the n-local circuit are alternating rotation and entanglement layers.
In both layers, parameterized circuit-blocks act on the circuit in a defined way.
In the rotation layer, the blocks are applied stacked on top of each other, while in the
entanglement layer according to the ``entanglement`` strategy.
The circuit blocks can have arbitrary sizes (smaller equal to the number of qubits in the
circuit). Each layer is repeated ``reps`` times, and by default a final rotation layer is
appended.
For instance, a rotation block on 2 qubits and an entanglement block on 4 qubits using
``'linear'`` entanglement yields the following circuit.
.. parsed-literal::
┌──────┐ ░ ┌──────┐ ░ ┌──────┐
┤0 ├─░─┤0 ├──────────────── ... ─░─┤0 ├
│ Rot │ ░ │ │┌──────┐ ░ │ Rot │
┤1 ├─░─┤1 ├┤0 ├──────── ... ─░─┤1 ├
├──────┤ ░ │ Ent ││ │┌──────┐ ░ ├──────┤
┤0 ├─░─┤2 ├┤1 ├┤0 ├ ... ─░─┤0 ├
│ Rot │ ░ │ ││ Ent ││ │ ░ │ Rot │
┤1 ├─░─┤3 ├┤2 ├┤1 ├ ... ─░─┤1 ├
├──────┤ ░ └──────┘│ ││ Ent │ ░ ├──────┤
┤0 ├─░─────────┤3 ├┤2 ├ ... ─░─┤0 ├
│ Rot │ ░ └──────┘│ │ ░ │ Rot │
┤1 ├─░─────────────────┤3 ├ ... ─░─┤1 ├
└──────┘ ░ └──────┘ ░ └──────┘
| |
+---------------------------------+
repeated reps times
If specified, barriers can be inserted in between every block.
If an initial state object is provided, it is added in front of the NLocal.
"""
def __init__(
self,
num_qubits: int | None = None,
rotation_blocks: QuantumCircuit
| list[QuantumCircuit]
| qiskit.circuit.Instruction
| list[qiskit.circuit.Instruction]
| None = None,
entanglement_blocks: QuantumCircuit
| list[QuantumCircuit]
| qiskit.circuit.Instruction
| list[qiskit.circuit.Instruction]
| None = None,
entanglement: list[int] | list[list[int]] | None = None,
reps: int = 1,
insert_barriers: bool = False,
parameter_prefix: str = "θ",
overwrite_block_parameters: bool | list[list[Parameter]] = True,
skip_final_rotation_layer: bool = False,
skip_unentangled_qubits: bool = False,
initial_state: QuantumCircuit | None = None,
name: str | None = "nlocal",
flatten: bool | None = None,
) -> None:
"""
Args:
num_qubits: The number of qubits of the circuit.
rotation_blocks: The blocks used in the rotation layers. If multiple are passed,
these will be applied one after another (like new sub-layers).
entanglement_blocks: The blocks used in the entanglement layers. If multiple are passed,
these will be applied one after another. To use different entanglements for
the sub-layers, see :meth:`get_entangler_map`.
entanglement: The indices specifying on which qubits the input blocks act. If ``None``, the
entanglement blocks are applied at the top of the circuit.
reps: Specifies how often the rotation blocks and entanglement blocks are repeated.
insert_barriers: If ``True``, barriers are inserted in between each layer. If ``False``,
no barriers are inserted.
parameter_prefix: The prefix used if default parameters are generated.
overwrite_block_parameters: If the parameters in the added blocks should be overwritten.
If ``False``, the parameters in the blocks are not changed.
skip_final_rotation_layer: Whether a final rotation layer is added to the circuit.
skip_unentangled_qubits: If ``True``, the rotation gates act only on qubits that
are entangled. If ``False``, the rotation gates act on all qubits.
initial_state: A :class:`.QuantumCircuit` object which can be used to describe an initial
state prepended to the NLocal circuit.
name: The name of the circuit.
flatten: Set this to ``True`` to output a flat circuit instead of nesting it inside multiple
layers of gate objects. By default currently the contents of
the output circuit will be wrapped in nested objects for
cleaner visualization. However, if you're using this circuit
for anything besides visualization its **strongly** recommended
to set this flag to ``True`` to avoid a large performance
overhead for parameter binding.
Raises:
ValueError: If ``reps`` parameter is less than or equal to 0.
TypeError: If ``reps`` parameter is not an int value.
"""
super().__init__(name=name)
self._num_qubits: int | None = None
self._insert_barriers = insert_barriers
self._reps = reps
self._entanglement_blocks: list[QuantumCircuit] = []
self._rotation_blocks: list[QuantumCircuit] = []
self._prepended_blocks: list[QuantumCircuit] = []
self._prepended_entanglement: list[list[list[int]] | str] = []
self._appended_blocks: list[QuantumCircuit] = []
self._appended_entanglement: list[list[list[int]] | str] = []
self._entanglement = None
self._entangler_maps = None
self._ordered_parameters: ParameterVector | list[Parameter] = ParameterVector(
name=parameter_prefix
)
self._overwrite_block_parameters = overwrite_block_parameters
self._skip_final_rotation_layer = skip_final_rotation_layer
self._skip_unentangled_qubits = skip_unentangled_qubits
self._initial_state: QuantumCircuit | None = None
self._initial_state_circuit: QuantumCircuit | None = None
self._bounds: list[tuple[float | None, float | None]] | None = None
self._flatten = flatten
if int(reps) != reps:
raise TypeError("The value of reps should be int")
if reps < 0:
raise ValueError("The value of reps should be larger than or equal to 0")
if num_qubits is not None:
self.num_qubits = num_qubits
if entanglement_blocks is not None:
self.entanglement_blocks = entanglement_blocks
if rotation_blocks is not None:
self.rotation_blocks = rotation_blocks
if entanglement is not None:
self.entanglement = entanglement
if initial_state is not None:
self.initial_state = initial_state
@property
def num_qubits(self) -> int:
"""Returns the number of qubits in this circuit.
Returns:
The number of qubits.
"""
return self._num_qubits if self._num_qubits is not None else 0
@num_qubits.setter
def num_qubits(self, num_qubits: int) -> None:
"""Set the number of qubits for the n-local circuit.
Args:
The new number of qubits.
"""
if self._num_qubits != num_qubits:
# invalidate the circuit
self._invalidate()
self._num_qubits = num_qubits
self.qregs = [QuantumRegister(num_qubits, name="q")]
@property
def flatten(self) -> bool:
"""Returns whether the circuit is wrapped in nested gates/instructions or flattened."""
return bool(self._flatten)
@flatten.setter
def flatten(self, flatten: bool) -> None:
self._invalidate()
self._flatten = flatten
def _convert_to_block(self, layer: typing.Any) -> QuantumCircuit:
"""Try to convert ``layer`` to a QuantumCircuit.
Args:
layer: The object to be converted to an NLocal block / Instruction.
Returns:
The layer converted to a circuit.
Raises:
TypeError: If the input cannot be converted to a circuit.
"""
if isinstance(layer, QuantumCircuit):
return layer
if isinstance(layer, Instruction):
circuit = QuantumCircuit(layer.num_qubits)
circuit.append(layer, list(range(layer.num_qubits)))
return circuit
try:
circuit = QuantumCircuit(layer.num_qubits)
circuit.append(layer.to_instruction(), list(range(layer.num_qubits)))
return circuit
except AttributeError:
pass
raise TypeError(f"Adding a {type(layer)} to an NLocal is not supported.")
@property
def rotation_blocks(self) -> list[QuantumCircuit]:
"""The blocks in the rotation layers.
Returns:
The blocks in the rotation layers.
"""
return self._rotation_blocks
@rotation_blocks.setter
def rotation_blocks(
self, blocks: QuantumCircuit | list[QuantumCircuit] | Instruction | list[Instruction]
) -> None:
"""Set the blocks in the rotation layers.
Args:
blocks: The new blocks for the rotation layers.
"""
# cannot check for the attribute ``'__len__'`` because a circuit also has this attribute
if not isinstance(blocks, (list, numpy.ndarray)):
blocks = [blocks]
self._invalidate()
self._rotation_blocks = [self._convert_to_block(block) for block in blocks]
@property
def entanglement_blocks(self) -> list[QuantumCircuit]:
"""The blocks in the entanglement layers.
Returns:
The blocks in the entanglement layers.
"""
return self._entanglement_blocks
@entanglement_blocks.setter
def entanglement_blocks(
self, blocks: QuantumCircuit | list[QuantumCircuit] | Instruction | list[Instruction]
) -> None:
"""Set the blocks in the entanglement layers.
Args:
blocks: The new blocks for the entanglement layers.
"""
# cannot check for the attribute ``'__len__'`` because a circuit also has this attribute
if not isinstance(blocks, (list, numpy.ndarray)):
blocks = [blocks]
self._invalidate()
self._entanglement_blocks = [self._convert_to_block(block) for block in blocks]
@property
def entanglement(
self,
) -> str | list[str] | list[list[str]] | list[int] | list[list[int]] | list[
list[list[int]]
] | list[list[list[list[int]]]] | Callable[[int], str] | Callable[[int], list[list[int]]]:
"""Get the entanglement strategy.
Returns:
The entanglement strategy, see :meth:`get_entangler_map` for more detail on how the
format is interpreted.
"""
return self._entanglement
@entanglement.setter
def entanglement(
self,
entanglement: str
| list[str]
| list[list[str]]
| list[int]
| list[list[int]]
| list[list[list[int]]]
| list[list[list[list[int]]]]
| Callable[[int], str]
| Callable[[int], list[list[int]]]
| None,
) -> None:
"""Set the entanglement strategy.
Args:
entanglement: The entanglement strategy. See :meth:`get_entangler_map` for more detail
on the supported formats.
"""
self._invalidate()
self._entanglement = entanglement
@property
def num_layers(self) -> int:
"""Return the number of layers in the n-local circuit.
Returns:
The number of layers in the circuit.
"""
return 2 * self._reps + int(not self._skip_final_rotation_layer)
def _check_configuration(self, raise_on_failure: bool = True) -> bool:
"""Check if the configuration of the NLocal class is valid.
Args:
raise_on_failure: Whether to raise on failure.
Returns:
True, if the configuration is valid and the circuit can be constructed. Otherwise
an ValueError is raised.
Raises:
ValueError: If the blocks are not set.
ValueError: If the number of repetitions is not set.
ValueError: If the qubit indices are not set.
ValueError: If the number of qubit indices does not match the number of blocks.
ValueError: If an index in the repetitions list exceeds the number of blocks.
ValueError: If the number of repetitions does not match the number of block-wise
parameters.
ValueError: If a specified qubit index is larger than the (manually set) number of
qubits.
"""
valid = True
if self.num_qubits is None:
valid = False
if raise_on_failure:
raise ValueError("No number of qubits specified.")
# check no needed parameters are None
if self.entanglement_blocks is None and self.rotation_blocks is None:
valid = False
if raise_on_failure:
raise ValueError("The blocks are not set.")
return valid
@property
def ordered_parameters(self) -> list[Parameter]:
"""The parameters used in the underlying circuit.
This includes float values and duplicates.
Examples:
>>> # prepare circuit ...
>>> print(nlocal)
┌───────┐┌──────────┐┌──────────┐┌──────────┐
q_0: ┤ Ry(1) ├┤ Ry(θ[1]) ├┤ Ry(θ[1]) ├┤ Ry(θ[3]) ├
└───────┘└──────────┘└──────────┘└──────────┘
>>> nlocal.parameters
{Parameter(θ[1]), Parameter(θ[3])}
>>> nlocal.ordered_parameters
[1, Parameter(θ[1]), Parameter(θ[1]), Parameter(θ[3])]
Returns:
The parameters objects used in the circuit.
"""
if isinstance(self._ordered_parameters, ParameterVector):
self._ordered_parameters.resize(self.num_parameters_settable)
return list(self._ordered_parameters)
return self._ordered_parameters
@ordered_parameters.setter
def ordered_parameters(self, parameters: ParameterVector | list[Parameter]) -> None:
"""Set the parameters used in the underlying circuit.
Args:
The parameters to be used in the underlying circuit.
Raises:
ValueError: If the length of ordered parameters does not match the number of
parameters in the circuit and they are not a ``ParameterVector`` (which could
be resized to fit the number of parameters).
"""
if (
not isinstance(parameters, ParameterVector)
and len(parameters) != self.num_parameters_settable
):
raise ValueError(
"The length of ordered parameters must be equal to the number of "
"settable parameters in the circuit ({}), but is {}".format(
self.num_parameters_settable, len(parameters)
)
)
self._ordered_parameters = parameters
self._invalidate()
@property
def insert_barriers(self) -> bool:
"""If barriers are inserted in between the layers or not.
Returns:
``True``, if barriers are inserted in between the layers, ``False`` if not.
"""
return self._insert_barriers
@insert_barriers.setter
def insert_barriers(self, insert_barriers: bool) -> None:
"""Specify whether barriers should be inserted in between the layers or not.
Args:
insert_barriers: If True, barriers are inserted, if False not.
"""
# if insert_barriers changes, we have to invalidate the circuit definition,
# if it is the same as before we can leave the NLocal instance as it is
if insert_barriers is not self._insert_barriers:
self._invalidate()
self._insert_barriers = insert_barriers
def get_unentangled_qubits(self) -> set[int]:
"""Get the indices of unentangled qubits in a set.
Returns:
The unentangled qubits.
"""
entangled_qubits = set()
for i in range(self._reps):
for j, block in enumerate(self.entanglement_blocks):
entangler_map = self.get_entangler_map(i, j, block.num_qubits)
entangled_qubits.update([idx for indices in entangler_map for idx in indices])
unentangled_qubits = set(range(self.num_qubits)) - entangled_qubits
return unentangled_qubits
@property
def num_parameters_settable(self) -> int:
"""The number of total parameters that can be set to distinct values.
This does not change when the parameters are bound or exchanged for same parameters,
and therefore is different from ``num_parameters`` which counts the number of unique
:class:`~qiskit.circuit.Parameter` objects currently in the circuit.
Returns:
The number of parameters originally available in the circuit.
Note:
This quantity does not require the circuit to be built yet.
"""
num = 0
for i in range(self._reps):
for j, block in enumerate(self.entanglement_blocks):
entangler_map = self.get_entangler_map(i, j, block.num_qubits)
num += len(entangler_map) * len(get_parameters(block))
if self._skip_unentangled_qubits:
unentangled_qubits = self.get_unentangled_qubits()
num_rot = 0
for block in self.rotation_blocks:
block_indices = [
list(range(j * block.num_qubits, (j + 1) * block.num_qubits))
for j in range(self.num_qubits // block.num_qubits)
]
if self._skip_unentangled_qubits:
block_indices = [
indices
for indices in block_indices
if set(indices).isdisjoint(unentangled_qubits)
]
num_rot += len(block_indices) * len(get_parameters(block))
num += num_rot * (self._reps + int(not self._skip_final_rotation_layer))
return num
@property
def reps(self) -> int:
"""The number of times rotation and entanglement block are repeated.
Returns:
The number of repetitions.
"""
return self._reps
@reps.setter
def reps(self, repetitions: int) -> None:
"""Set the repetitions.
If the repetitions are `0`, only one rotation layer with no entanglement
layers is applied (unless ``self.skip_final_rotation_layer`` is set to ``True``).
Args:
repetitions: The new repetitions.
Raises:
ValueError: If reps setter has parameter repetitions < 0.
"""
if repetitions < 0:
raise ValueError("The repetitions should be larger than or equal to 0")
if repetitions != self._reps:
self._invalidate()
self._reps = repetitions
def print_settings(self) -> str:
"""Returns information about the setting.
Returns:
The class name and the attributes/parameters of the instance as ``str``.
"""
ret = f"NLocal: {self.__class__.__name__}\n"
params = ""
for key, value in self.__dict__.items():
if key[0] == "_":
params += f"-- {key[1:]}: {value}\n"
ret += f"{params}"
return ret
@property
def preferred_init_points(self) -> list[float] | None:
"""The initial points for the parameters. Can be stored as initial guess in optimization.
Returns:
The initial values for the parameters, or None, if none have been set.
"""
return None
# pylint: disable=too-many-return-statements
def get_entangler_map(
self, rep_num: int, block_num: int, num_block_qubits: int
) -> Sequence[Sequence[int]]:
"""Get the entangler map for in the repetition ``rep_num`` and the block ``block_num``.
The entangler map for the current block is derived from the value of ``self.entanglement``.
Below the different cases are listed, where ``i`` and ``j`` denote the repetition number
and the block number, respectively, and ``n`` the number of qubits in the block.
=================================== ========================================================
entanglement type entangler map
=================================== ========================================================
``None`` ``[[0, ..., n - 1]]``
``str`` (e.g ``'full'``) the specified connectivity on ``n`` qubits
``List[int]`` [``entanglement``]
``List[List[int]]`` ``entanglement``
``List[List[List[int]]]`` ``entanglement[i]``
``List[List[List[List[int]]]]`` ``entanglement[i][j]``
``List[str]`` the connectivity specified in ``entanglement[i]``
``List[List[str]]`` the connectivity specified in ``entanglement[i][j]``
``Callable[int, str]`` same as ``List[str]``
``Callable[int, List[List[int]]]`` same as ``List[List[List[int]]]``
=================================== ========================================================
Note that all indices are to be taken modulo the length of the array they act on, i.e.
no out-of-bounds index error will be raised but we re-iterate from the beginning of the
list.
Args:
rep_num: The current repetition we are in.
block_num: The block number within the entanglement layers.
num_block_qubits: The number of qubits in the block.
Returns:
The entangler map for the current block in the current repetition.
Raises:
ValueError: If the value of ``entanglement`` could not be cast to a corresponding
entangler map.
"""
i, j, n = rep_num, block_num, num_block_qubits
entanglement = self._entanglement
# entanglement is None
if entanglement is None:
return [list(range(n))]
# entanglement is callable
if callable(entanglement):
entanglement = entanglement(i)
# entanglement is str
if isinstance(entanglement, str):
return get_entangler_map(n, self.num_qubits, entanglement, offset=i)
# check if entanglement is list of something
if not isinstance(entanglement, (tuple, list)):
raise ValueError(f"Invalid value of entanglement: {entanglement}")
num_i = len(entanglement)
# entanglement is List[str]
if all(isinstance(en, str) for en in entanglement):
return get_entangler_map(n, self.num_qubits, entanglement[i % num_i], offset=i)
# entanglement is List[int]
if all(isinstance(en, (int, numpy.integer)) for en in entanglement):
return [[int(en) for en in entanglement]]
# check if entanglement is List[List]
if not all(isinstance(en, (tuple, list)) for en in entanglement):
raise ValueError(f"Invalid value of entanglement: {entanglement}")
num_j = len(entanglement[i % num_i])
# entanglement is List[List[str]]
if all(isinstance(e2, str) for en in entanglement for e2 in en):
return get_entangler_map(
n, self.num_qubits, entanglement[i % num_i][j % num_j], offset=i
)
# entanglement is List[List[int]]
if all(isinstance(e2, (int, numpy.int32, numpy.int64)) for en in entanglement for e2 in en):
for ind, en in enumerate(entanglement):
entanglement[ind] = tuple(map(int, en))
return entanglement
# check if entanglement is List[List[List]]
if not all(isinstance(e2, (tuple, list)) for en in entanglement for e2 in en):
raise ValueError(f"Invalid value of entanglement: {entanglement}")
# entanglement is List[List[List[int]]]
if all(
isinstance(e3, (int, numpy.int32, numpy.int64))
for en in entanglement
for e2 in en
for e3 in e2
):
for en in entanglement:
for ind, e2 in enumerate(en):
en[ind] = tuple(map(int, e2))
return entanglement[i % num_i]
# check if entanglement is List[List[List[List]]]
if not all(isinstance(e3, (tuple, list)) for en in entanglement for e2 in en for e3 in e2):
raise ValueError(f"Invalid value of entanglement: {entanglement}")
# entanglement is List[List[List[List[int]]]]
if all(
isinstance(e4, (int, numpy.int32, numpy.int64))
for en in entanglement
for e2 in en
for e3 in e2
for e4 in e3
):
for en in entanglement:
for e2 in en:
for ind, e3 in enumerate(e2):
e2[ind] = tuple(map(int, e3))
return entanglement[i % num_i][j % num_j]
raise ValueError(f"Invalid value of entanglement: {entanglement}")
@property
def initial_state(self) -> QuantumCircuit:
"""Return the initial state that is added in front of the n-local circuit.
Returns:
The initial state.
"""
return self._initial_state
@initial_state.setter
def initial_state(self, initial_state: QuantumCircuit) -> None:
"""Set the initial state.
Args:
initial_state: The new initial state.
Raises:
ValueError: If the number of qubits has been set before and the initial state
does not match the number of qubits.
"""
self._initial_state = initial_state
self._invalidate()
@property
def parameter_bounds(self) -> list[tuple[float, float]] | None:
"""The parameter bounds for the unbound parameters in the circuit.
Returns:
A list of pairs indicating the bounds, as (lower, upper). None indicates an unbounded
parameter in the corresponding direction. If ``None`` is returned, problem is fully
unbounded.
"""
if not self._is_built:
self._build()
return self._bounds
@parameter_bounds.setter
def parameter_bounds(self, bounds: list[tuple[float, float]]) -> None:
"""Set the parameter bounds.
Args:
bounds: The new parameter bounds.
"""
self._bounds = bounds
def add_layer(
self,
other: QuantumCircuit | qiskit.circuit.Instruction,
entanglement: list[int] | str | list[list[int]] | None = None,
front: bool = False,
) -> "NLocal":
"""Append another layer to the NLocal.
Args:
other: The layer to compose, can be another NLocal, an Instruction or Gate,
or a QuantumCircuit.
entanglement: The entanglement or qubit indices.
front: If True, ``other`` is appended to the front, else to the back.
Returns:
self, such that chained composes are possible.
Raises:
TypeError: If `other` is not compatible, i.e. is no Instruction and does not have a
`to_instruction` method.
"""
block = self._convert_to_block(other)
if entanglement is None:
entanglement = [list(range(block.num_qubits))]
elif isinstance(entanglement, list) and not isinstance(entanglement[0], list):
entanglement = [entanglement]
if front:
self._prepended_blocks += [block]
self._prepended_entanglement += [entanglement]
else:
self._appended_blocks += [block]
self._appended_entanglement += [entanglement]
if isinstance(entanglement, list):
num_qubits = 1 + max(max(indices) for indices in entanglement)
if num_qubits > self.num_qubits:
self._invalidate() # rebuild circuit
self.num_qubits = num_qubits
# modify the circuit accordingly
if front is False and self._is_built:
if self._insert_barriers and len(self.data) > 0:
self.barrier()
if isinstance(entanglement, str):
entangler_map: Sequence[Sequence[int]] = get_entangler_map(
block.num_qubits, self.num_qubits, entanglement
)
else:
entangler_map = entanglement
layer = QuantumCircuit(self.num_qubits)
for i in entangler_map:
params = self.ordered_parameters[-len(get_parameters(block)) :]
parameterized_block = self._parameterize_block(block, params=params)
layer.compose(parameterized_block, i, inplace=True)
self.compose(layer, inplace=True)
else:
# cannot prepend a block currently, just rebuild
self._invalidate()
return self
def assign_parameters(
self,
parameters: Mapping[Parameter, ParameterExpression | float]
| Sequence[ParameterExpression | float],
inplace: bool = False,
**kwargs,
) -> QuantumCircuit | None:
"""Assign parameters to the n-local circuit.
This method also supports passing a list instead of a dictionary. If a list
is passed, the list must have the same length as the number of unbound parameters in
the circuit. The parameters are assigned in the order of the parameters in
:meth:`ordered_parameters`.
Returns:
A copy of the NLocal circuit with the specified parameters.
Raises:
AttributeError: If the parameters are given as list and do not match the number
of parameters.
"""
if parameters is None or len(parameters) == 0:
return self
if not self._is_built:
self._build()
return super().assign_parameters(parameters, inplace=inplace, **kwargs)
def _parameterize_block(
self, block, param_iter=None, rep_num=None, block_num=None, indices=None, params=None
):
"""Convert ``block`` to a circuit of correct width and parameterized using the iterator."""
if self._overwrite_block_parameters:
# check if special parameters should be used
# pylint: disable=assignment-from-none
if params is None:
params = self._parameter_generator(rep_num, block_num, indices)
if params is None:
params = [next(param_iter) for _ in range(len(get_parameters(block)))]
update = dict(zip(block.parameters, params))
return block.assign_parameters(update)
return block.copy()
def _build_rotation_layer(self, circuit, param_iter, i):
"""Build a rotation layer."""
# if the unentangled qubits are skipped, compute the set of qubits that are not entangled
if self._skip_unentangled_qubits:
unentangled_qubits = self.get_unentangled_qubits()
# iterate over all rotation blocks
for j, block in enumerate(self.rotation_blocks):
# create a new layer
layer = QuantumCircuit(*self.qregs)
# we apply the rotation gates stacked on top of each other, i.e.
# if we have 4 qubits and a rotation block of width 2, we apply two instances
block_indices = [
list(range(k * block.num_qubits, (k + 1) * block.num_qubits))
for k in range(self.num_qubits // block.num_qubits)
]
# if unentangled qubits should not be acted on, remove all operations that
# touch an unentangled qubit
if self._skip_unentangled_qubits:
block_indices = [
indices
for indices in block_indices
if set(indices).isdisjoint(unentangled_qubits)
]
# apply the operations in the layer
for indices in block_indices:
parameterized_block = self._parameterize_block(block, param_iter, i, j, indices)
layer.compose(parameterized_block, indices, inplace=True)
# add the layer to the circuit
circuit.compose(layer, inplace=True)
def _build_entanglement_layer(self, circuit, param_iter, i):
"""Build an entanglement layer."""
# iterate over all entanglement blocks
for j, block in enumerate(self.entanglement_blocks):
# create a new layer and get the entangler map for this block
layer = QuantumCircuit(*self.qregs)
entangler_map = self.get_entangler_map(i, j, block.num_qubits)
# apply the operations in the layer
for indices in entangler_map:
parameterized_block = self._parameterize_block(block, param_iter, i, j, indices)
layer.compose(parameterized_block, indices, inplace=True)
# add the layer to the circuit
circuit.compose(layer, inplace=True)
def _build_additional_layers(self, circuit, which):
if which == "appended":
blocks = self._appended_blocks
entanglements = self._appended_entanglement
elif which == "prepended":
blocks = reversed(self._prepended_blocks)
entanglements = reversed(self._prepended_entanglement)
else:
raise ValueError("`which` must be either `appended` or `prepended`.")
for block, ent in zip(blocks, entanglements):
layer = QuantumCircuit(*self.qregs)
if isinstance(ent, str):
ent = get_entangler_map(block.num_qubits, self.num_qubits, ent)
for indices in ent:
layer.compose(block, indices, inplace=True)
circuit.compose(layer, inplace=True)
def _build(self) -> None:
"""If not already built, build the circuit."""
if self._is_built:
return
super()._build()
if self.num_qubits == 0:
return
if not self._flatten:
circuit = QuantumCircuit(*self.qregs, name=self.name)
else:
circuit = self
# use the initial state as starting circuit, if it is set
if self.initial_state:
circuit.compose(self.initial_state.copy(), inplace=True)
param_iter = iter(self.ordered_parameters)
# build the prepended layers
self._build_additional_layers(circuit, "prepended")
# main loop to build the entanglement and rotation layers
for i in range(self.reps):
# insert barrier if specified and there is a preceding layer
if self._insert_barriers and (i > 0 or len(self._prepended_blocks) > 0):
circuit.barrier()
# build the rotation layer
self._build_rotation_layer(circuit, param_iter, i)
# barrier in between rotation and entanglement layer
if self._insert_barriers and len(self._rotation_blocks) > 0:
circuit.barrier()
# build the entanglement layer
self._build_entanglement_layer(circuit, param_iter, i)
# add the final rotation layer
if not self._skip_final_rotation_layer:
if self.insert_barriers and self.reps > 0:
circuit.barrier()
self._build_rotation_layer(circuit, param_iter, self.reps)
# add the appended layers
self._build_additional_layers(circuit, "appended")
# cast global phase to float if it has no free parameters
if isinstance(circuit.global_phase, ParameterExpression):
try:
circuit.global_phase = float(circuit.global_phase)
except TypeError:
# expression contains free parameters
pass
if not self._flatten:
try:
block = circuit.to_gate()
except QiskitError:
block = circuit.to_instruction()
self.append(block, self.qubits)
# pylint: disable=unused-argument
def _parameter_generator(self, rep: int, block: int, indices: list[int]) -> Parameter | None:
"""If certain blocks should use certain parameters this method can be overridden."""
return None
def get_parameters(block: QuantumCircuit | Instruction) -> list[Parameter]:
"""Return the list of Parameters objects inside a circuit or instruction.
This is required since, in a standard gate the parameters are not necessarily Parameter
objects (e.g. U3Gate(0.1, 0.2, 0.3).params == [0.1, 0.2, 0.3]) and instructions and
circuits do not have the same interface for parameters.
"""
if isinstance(block, QuantumCircuit):
return list(block.parameters)
else:
return [p for p in block.params if isinstance(p, ParameterExpression)]
def get_entangler_map(
num_block_qubits: int, num_circuit_qubits: int, entanglement: str, offset: int = 0
) -> Sequence[tuple[int, ...]]:
"""Get an entangler map for an arbitrary number of qubits.
Args:
num_block_qubits: The number of qubits of the entangling block.
num_circuit_qubits: The number of qubits of the circuit.
entanglement: The entanglement strategy.
offset: The block offset, can be used if the entanglements differ per block.
See mode ``sca`` for instance.
Returns:
The entangler map using mode ``entanglement`` to scatter a block of ``num_block_qubits``
qubits on ``num_circuit_qubits`` qubits.
Raises:
ValueError: If the entanglement mode ist not supported.
"""
n, m = num_circuit_qubits, num_block_qubits
if m > n:
raise ValueError(
"The number of block qubits must be smaller or equal to the number of "
"qubits in the circuit."
)
if entanglement == "pairwise" and num_block_qubits > 2:
raise ValueError("Pairwise entanglement is not defined for blocks with more than 2 qubits.")
if entanglement == "full":
return list(combinations(list(range(n)), m))
elif entanglement == "reverse_linear":
# reverse linear connectivity. In the case of m=2 and the entanglement_block='cx'
# then it's equivalent to 'full' entanglement
reverse = [tuple(range(n - i - m, n - i)) for i in range(n - m + 1)]
return reverse
elif entanglement in ["linear", "circular", "sca", "pairwise"]:
linear = [tuple(range(i, i + m)) for i in range(n - m + 1)]
# if the number of block qubits is 1, we don't have to add the 'circular' part
if entanglement == "linear" or m == 1:
return linear
if entanglement == "pairwise":
return linear[::2] + linear[1::2]
# circular equals linear plus top-bottom entanglement (if there's space for it)
if n > m:
circular = [tuple(range(n - m + 1, n)) + (0,)] + linear
else:
circular = linear
if entanglement == "circular":
return circular
# sca is circular plus shift and reverse
shifted = circular[-offset:] + circular[:-offset]
if offset % 2 == 1: # if odd, reverse the qubit indices
sca = [ind[::-1] for ind in shifted]
else:
sca = shifted
return sca
else:
raise ValueError(f"Unsupported entanglement type: {entanglement}")
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_optimization.algorithms import MinimumEigenOptimizer
from qiskit.utils import algorithm_globals
from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver
from qiskit.algorithms.optimizers import COBYLA
from qiskit.primitives import Sampler
from qiskit_optimization.applications.vertex_cover import VertexCover
import networkx as nx
seed = 123
algorithm_globals.random_seed = seed
graph = nx.random_regular_graph(d=3, n=6, seed=seed)
pos = nx.spring_layout(graph, seed=seed)
prob = VertexCover(graph)
prob.draw(pos=pos)
qp = prob.to_quadratic_program()
print(qp.prettyprint())
# Numpy Eigensolver
meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver())
result = meo.solve(qp)
print(result.prettyprint())
print("\nsolution:", prob.interpret(result))
prob.draw(result, pos=pos)
# QAOA
meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA()))
result = meo.solve(qp)
print(result.prettyprint())
print("\nsolution:", prob.interpret(result))
print("\ntime:", result.min_eigen_solver_result.optimizer_time)
prob.draw(result, pos=pos)
from qiskit_optimization.applications import Knapsack
prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10)
qp = prob.to_quadratic_program()
print(qp.prettyprint())
# Numpy Eigensolver
meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver())
result = meo.solve(qp)
print(result.prettyprint())
print("\nsolution:", prob.interpret(result))
# QAOA
meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA()))
result = meo.solve(qp)
print(result.prettyprint())
print("\nsolution:", prob.interpret(result))
print("\ntime:", result.min_eigen_solver_result.optimizer_time)
from qiskit_optimization.converters import QuadraticProgramToQubo
# the same knapsack problem instance as in the previous section
prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10)
qp = prob.to_quadratic_program()
print(qp.prettyprint())
# intermediate QUBO form of the optimization problem
conv = QuadraticProgramToQubo()
qubo = conv.convert(qp)
print(qubo.prettyprint())
# qubit Hamiltonian and offset
op, offset = qubo.to_ising()
print(f"num qubits: {op.num_qubits}, offset: {offset}\n")
print(op)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_nature.units import DistanceUnit
from qiskit_nature.second_q.drivers import PySCFDriver
driver = PySCFDriver(
atom="H 0 0 0; H 0 0 0.735",
basis="sto3g",
charge=0,
spin=0,
unit=DistanceUnit.ANGSTROM,
)
problem = driver.run()
print(problem)
hamiltonian = problem.hamiltonian
coefficients = hamiltonian.electronic_integrals
print(coefficients.alpha)
second_q_op = hamiltonian.second_q_op()
print(second_q_op)
hamiltonian.nuclear_repulsion_energy # NOT included in the second_q_op above
problem.molecule
problem.reference_energy
problem.num_particles
problem.num_spatial_orbitals
problem.basis
problem.properties
problem.properties.particle_number
problem.properties.angular_momentum
problem.properties.magnetization
problem.properties.electronic_dipole_moment
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver
from qiskit_nature.second_q.algorithms import GroundStateEigensolver
from qiskit_nature.second_q.mappers import JordanWignerMapper
solver = GroundStateEigensolver(
JordanWignerMapper(),
NumPyMinimumEigensolver(),
)
result = solver.solve(problem)
print(result)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-alt
|
qiskit-community
|
import pytest
import qiskit_alt
project = qiskit_alt.project
project.ensure_init() # calljulia="pyjulia"
import qiskit_alt.electronic_structure
Main = project.julia.Main
def test_always_passes():
assert True
def test_interface_lib():
assert qiskit_alt.project.julia.__name__ == 'julia'
def test_import_QuantumOps():
project.simple_import("QuantumOps")
assert True
def test_import_ElectronicStructure():
project.simple_import("ElectronicStructure")
assert True
def test_import_QiskitQuantumInfo():
project.simple_import("QiskitQuantumInfo")
assert True
@pytest.fixture
def conv_geometry():
geometry = [['H', [0., 0., 0.]], ['H', [0., 0., 0.7414]]]
# geometry = [['O', [0., 0., 0.]],
# ['H', [0.757, 0.586, 0.]],
# ['H', [-0.757, 0.586, 0.]]]
return qiskit_alt.electronic_structure.Geometry(geometry)
def test_Geometry_length(conv_geometry):
assert Main.length(conv_geometry) == 2
def test_Geometry_atom(conv_geometry):
atom = Main.getindex(conv_geometry, 1)
assert atom.coords == (0.0, 0.0, 0.0)
def test_fermionic_hamiltonian(conv_geometry):
fermi_op = Main.fermionic_hamiltonian(conv_geometry, "sto3g")
assert Main.length(fermi_op) == 25
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.providers.fake_provider import FakeManilaV2
from qiskit import transpile
from qiskit.tools.visualization import plot_histogram
# Get a fake backend from the fake provider
backend = FakeManilaV2()
# Create a simple circuit
circuit = QuantumCircuit(3)
circuit.h(0)
circuit.cx(0,1)
circuit.cx(0,2)
circuit.measure_all()
circuit.draw('mpl')
# Transpile the ideal circuit to a circuit that can be directly executed by the backend
transpiled_circuit = transpile(circuit, backend)
transpiled_circuit.draw('mpl')
# Run the transpiled circuit using the simulated fake backend
job = backend.run(transpiled_circuit)
counts = job.result().get_counts()
plot_histogram(counts)
|
https://github.com/Manish-Sudhir/QiskitCheck
|
Manish-Sudhir
|
import warnings
from qiskit import QuantumRegister, ClassicalRegister
from qiskit import QuantumCircuit, execute, Aer, transpile, IBMQ
from qiskit.tools.monitor import job_monitor
from qiskit.circuit.library import QFT
from qiskit.visualization import plot_histogram, plot_bloch_multivector
warnings.filterwarnings("ignore", category=DeprecationWarning)
import numpy as np
import math
pi = np.pi
qc2 = QuantumCircuit(2)
# qc2.x(1)
# qc2.h(0)
# qc2.cnot(0,1)
# THIS DOESNT WORK
# qc2.h(0)
# qc2.cnot(0,1)
# qc2.h(1)
# qc2.h(0)
# qc2.x(0)
# qc2.h(0)
# qc2.cnot(0,1)
# qc2.h(1)
# qc2.h(0)
qc2.x(0)
print(qc2)
backend = Aer.get_backend('aer_simulator')
qc2.measure_all()
job = execute(qc2, backend, shots=10000)#run the circuit 1000000 times
counts = job.result().get_counts()#return the result counts
print(counts)
def getList(dict):
return list(dict.keys())
umar = {0: [1,0], 1: [0,1]}
values = getList(counts)
if(len(values) == 1):
print("They are not entangled")
else:
abStr = values[0]
cdStr = values[1]
print(abStr)
print(cdStr)
aStr = abStr[0]
bStr = abStr[1]
cStr = cdStr[0]
dStr = cdStr[1]
a = int(aStr)
b = int(bStr)
c = int(cStr)
d = int(dStr)
haha = [a,b,c,d]
abArr = np.array([umar[a], umar[b]])
cdArr = np.array([umar[c], umar[d]])
print("lol")
print(abArr)
print(cdArr)
print("jahja")
tensorprod_ab= np.tensordot(abArr[0], abArr[1], axes=0)
tensorprod_cd = np.tensordot(cdArr[0], cdArr[1], axes=0)
print(type(tensorprod_ab))
print(tensorprod_cd)
print("final")
column = np.add(tensorprod_ab,tensorprod_cd)
print(column)
abVal = column[0]
cdVal = column[1]
aVal = abVal[0]
bVal = abVal[1]
cVal = cdVal[0]
dVal = cdVal[1]
if(aVal*dVal!=bVal*cVal):
print("They are entangled")
else:
print("Not Entangled")
print("first " + values[0])
print("second " + values[1])
def set_measure_x(circuit, n):
for num in range(n):
circuit.h(num)
def measure_x(circuit, qubitIndexes):
cBitIndex = 0
for index in qubitIndexes:
circuit.h(index)
circuit.measure(index, cBitIndex)
cBitIndex+=1
return circuit
def set_measure_y(circuit, n):
for num in range(n):
circuit.sdg(num)
circuit.h(num)
def qft_rotations(circuit, n):
#if qubit amount is 0, then do nothing and return
if n == 0:
#set it to measure the x axis
# set_measure_x(qc, 4)
# qc.measure_all()
return circuit
n -= 1
circuit.h(n)
for qubit in range(n):
circuit.cp(pi/2**(n-qubit), qubit, n)
return qft_rotations(circuit, n)
backend = Aer.get_backend('aer_simulator')
qc = QuantumCircuit(2)
qc.x(0)
qc.x(1)
print(qc)
after = qft_rotations(qc,2)#call the recursive qft method
print(after)
#set it to measure the x axis
after.measure_all()
job = execute(after, backend, shots=1000)#run the circuit 1000000 times
counts = job.result().get_counts()#return the result counts
print(counts)
print(max(counts, key=counts.get))
def qft_dagger(qc, n):
for j in range(n):
for m in range(j):
qc.cp(math.pi/float(2**(j-m)), m, j)
qc.h(j)
qc = QuantumCircuit(2)
# qc.x(0)
qc.x(0)
qc.x(1)
qc.measure_all()
print(qc)
qft_dagger(qc,2)#call the recursive qft method
backend = Aer.get_backend('aer_simulator')
job = execute(qc, backend, shots=1000000)#run the circuit 1000000 times
counts = job.result().get_counts()
print(counts)#return the result counts
highest = max(counts, key=counts.get)
reverse = highest[::-1]
print(reverse)
print(type(highest))
print(str(highest))
lol3 = [0,1]
yes1 = [0,0,0,0]
for i in lol3:
qc.x(i)
yes1[i] = 1
answer = ''.join(map(str,yes1))
print(answer)
if (reverse == answer):
print("True")
else:
print("False")
#OTHER QFT
def qft_rotations(circuit, n):
"""Performs qft on the first n qubits in circuit (without swaps)"""
if n == 0:
# set_measure_x(qc, 3)
# set_measure_y(qc,3)
# qc.measure_all()
return circuit
n -= 1
circuit.h(n)
for qubit in range(n):
circuit.cp(pi/2**(n-qubit), qubit, n)
# At the end of our function, we call the same function again on
# the next qubits (we reduced n by one earlier in the function)
qft_rotations(circuit, n)
# Let's see how it looks:
qc = QuantumCircuit(3)
qc.x(0)
qc.x(2)
lol= [0,0,0]
print(lol)
qft_rotations(qc,3)
qc.measure_all()
qc.draw()
# set_measure_x(qc, 3)
backend = Aer.get_backend('aer_simulator')
job = execute(qc, backend, shots=2048)
counts = job.result().get_counts()
print(counts)
def swap_registers(circuit, n):
for qubit in range(n//2):
circuit.swap(qubit, n-qubit-1)
return circuit
def qft(circuit, n):
"""QFT on the first n qubits in circuit"""
qft_rotations(circuit, n)
swap_registers(circuit, n)
return circuit
# Let's see how it looks:
qc = QuantumCircuit(2)
qc.x(0)
qc.x(1)
qft(qc,2)
qc.draw()
def inverse_qft(circuit, n):
"""Does the inverse QFT on the first n qubits in circuit"""
# First we create a QFT circuit of the correct size:
qft_circ = qft(QuantumCircuit(n), n)
# Then we take the inverse of this circuit
invqft_circ = qft_circ.inverse()
# And add it to the first n qubits in our existing circuit
circuit.append(invqft_circ, circuit.qubits[:n])
return circuit.decompose() # .decompose() allows us to see the individual gates
nqubits = 3
number = 5
qc = QuantumCircuit(nqubits)
for qubit in range(nqubits):
qc.h(qubit)
qc.p(number*pi/4,0)
qc.p(number*pi/2,1)
qc.p(number*pi,2)
qc.draw()
qc = inverse_qft(qc, nqubits)
qc.measure_all()
qc.draw()
backend = Aer.get_backend('aer_simulator')
shots = 2048
transpiled_qc = transpile(qc, backend, optimization_level=3)
# transpiled_qc = transpile(qc, backend)
job = backend.run(transpiled_qc, shots=shots)
job_monitor(job)
counts = job.result().get_counts()
print(counts)
pip install hypothesis
import unittest
import hypothesis.strategies as st
from hypothesis import given, settings
# @st.composite
# def qubit_combos(draw):
# qubit_string = draw(st.sampled_from(['000','001','010','011','100','101','110','111']))
# return int(qubit_string)
# qubit_combos().example()
@st.composite
def circuit(draw):
nQubits = [0,1,2,3]
nQubitsLength = len(nQubits)
n= draw(st.sampled_from(nQubits))
x1 = []
x1.append(n)
nQubits.remove(n)
m = draw(st.sampled_from(nQubits))
x1.append(m)
nQubits.remove(m)
# l = draw(st.sampled_from(nQubits))
# x1.append(l)
# nQubits.remove(l)
noOfRegisters = nQubitsLength
return [x1,noOfRegisters]
print(circuit().example())
# ex = circuit().example()
# print(type(ex[0]))
# print(type(ex[1]))
# print(type(ex))
# lol = [1,2,0,4,6,0]
# for i in lol:
# if i == 0:
# lol.remove(0)
# print(lol)
lol2 = [0,1]
yes = [0,0,0,0]
qc = QuantumCircuit(4)
for i in lol2:
qc.x(i)
yes[i] = 1
answer = ''.join(map(str,yes))
# strings = [str(integer) for integer in yes]
# a_string = "".join(strings)
# an_integer = int(a_string)
print (qc)
# print(an_integer)
print(answer)
qc.measure_all()
qft_dagger(qc,4)
backend = Aer.get_backend('aer_simulator')
job = execute(qc, backend, shots=2048)
counts = job.result().get_counts()
inverseOutput = max(counts, key=counts.get)
print(inverseOutput)
reverse = inverseOutput[::-1]
print(reverse)
if(reverse == answer):
print("They are equal")
@given(circuit())
@settings(deadline=None)
def test_inverse_holds_true(xList):
x1 = xList[0]
noOfRegisters = xList[1]
baseQubit = [0,0,0,0]
qc= QuantumCircuit(noOfRegisters)
for i in x1:
qc.x(i)
baseQubit[i] = 1
iQFT = ''.join(map(str,baseQubit))
qc.measure_all()
qft_dagger(qc,noOfRegisters)
backend = Aer.get_backend('aer_simulator')
job = execute(qc, backend, shots=2048)
counts = job.result().get_counts()
inverseOutput = max(counts, key=counts.get)
reverse = inverseOutput[::-1]
assert(reverse == iQFT)
if __name__ == "__main__":
test_inverse_holds_true()
_bits_types = dict()
bits_template = """"""
def mk_bits( nbits ):
assert nbits > 0, "We don't allow Bits0"
# assert nbits < 512, "We don't allow bitwidth to exceed 512."
if nbits not in _bits_types:
custom_exec(compile( bits_template.format(nbits), filename=f"Bits{nbits}", mode="exec" ),
globals(), locals() )
return _bits_types[nbits]
def custom_exec( prog, _globals, _locals ):
assert _globals is not None
assert _locals is not None
norm_globals = _globals
norm_locals = _locals
if _globals is not None:
norm_globals = _normalize_dict( _globals )
if _locals is not None:
norm_locals = _normalize_dict( _locals )
exec( prog, norm_globals, norm_locals )
# Local may have more stuff generated by the code.
# We need to put this back to the original _locals
if _locals is not None:
_locals.update( norm_locals )
def bits( nbits, signed=False, min_value=None, max_value=None ):
BitsN = mk_bits( nbits )
if (min_value is not None or max_value is not None) and signed:
raise ValueError("bits strategy currently doesn't support setting "
"signedness and min/max value at the same time")
if min_value is None:
min_value = (-(2**(nbits-1))) if signed else 0
if max_value is None:
max_value = (2**(nbits-1)-1) if signed else (2**nbits - 1)
strat = st.booleans() if nbits == 1 else st.integers( min_value, max_value )
@st.composite
def strategy_bits( draw ):
return BitsN( draw( strat ) )
strategy_bits().example()
return strategy_bits().example()
bits(3).example()
@st.composite
def list_and_index(draw, elements=st.integers()):
xs = draw(st.lists(elements, min_size=1))
i = draw(st.integers(min_value=0, max_value=len(xs) - 1))
return (xs, i)
list_and_index().example()
|
https://github.com/quantastica/qiskit-toaster
|
quantastica
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2022, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test the QAOA algorithm."""
import unittest
from functools import partial
from test.python.algorithms import QiskitAlgorithmsTestCase
import numpy as np
import rustworkx as rx
from ddt import ddt, idata, unpack
from scipy.optimize import minimize as scipy_minimize
from qiskit import QuantumCircuit
from qiskit_algorithms.minimum_eigensolvers import QAOA
from qiskit_algorithms.optimizers import COBYLA, NELDER_MEAD
from qiskit.circuit import Parameter
from qiskit.primitives import Sampler
from qiskit.quantum_info import Pauli, SparsePauliOp
from qiskit.result import QuasiDistribution
from qiskit.utils import algorithm_globals
W1 = np.array([[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 0]])
P1 = 1
M1 = SparsePauliOp.from_list(
[
("IIIX", 1),
("IIXI", 1),
("IXII", 1),
("XIII", 1),
]
)
S1 = {"0101", "1010"}
W2 = np.array(
[
[0.0, 8.0, -9.0, 0.0],
[8.0, 0.0, 7.0, 9.0],
[-9.0, 7.0, 0.0, -8.0],
[0.0, 9.0, -8.0, 0.0],
]
)
P2 = 1
M2 = None
S2 = {"1011", "0100"}
CUSTOM_SUPERPOSITION = [1 / np.sqrt(15)] * 15 + [0]
@ddt
class TestQAOA(QiskitAlgorithmsTestCase):
"""Test QAOA with MaxCut."""
def setUp(self):
super().setUp()
self.seed = 10598
algorithm_globals.random_seed = self.seed
self.sampler = Sampler()
@idata(
[
[W1, P1, M1, S1],
[W2, P2, M2, S2],
]
)
@unpack
def test_qaoa(self, w, reps, mixer, solutions):
"""QAOA test"""
self.log.debug("Testing %s-step QAOA with MaxCut on graph\n%s", reps, w)
qubit_op, _ = self._get_operator(w)
qaoa = QAOA(self.sampler, COBYLA(), reps=reps, mixer=mixer)
result = qaoa.compute_minimum_eigenvalue(operator=qubit_op)
x = self._sample_most_likely(result.eigenstate)
graph_solution = self._get_graph_solution(x)
self.assertIn(graph_solution, solutions)
@idata(
[
[W1, P1, S1],
[W2, P2, S2],
]
)
@unpack
def test_qaoa_qc_mixer(self, w, prob, solutions):
"""QAOA test with a mixer as a parameterized circuit"""
self.log.debug(
"Testing %s-step QAOA with MaxCut on graph with a mixer as a parameterized circuit\n%s",
prob,
w,
)
optimizer = COBYLA()
qubit_op, _ = self._get_operator(w)
num_qubits = qubit_op.num_qubits
mixer = QuantumCircuit(num_qubits)
theta = Parameter("θ")
mixer.rx(theta, range(num_qubits))
qaoa = QAOA(self.sampler, optimizer, reps=prob, mixer=mixer)
result = qaoa.compute_minimum_eigenvalue(operator=qubit_op)
x = self._sample_most_likely(result.eigenstate)
graph_solution = self._get_graph_solution(x)
self.assertIn(graph_solution, solutions)
def test_qaoa_qc_mixer_many_parameters(self):
"""QAOA test with a mixer as a parameterized circuit with the num of parameters > 1."""
optimizer = COBYLA()
qubit_op, _ = self._get_operator(W1)
num_qubits = qubit_op.num_qubits
mixer = QuantumCircuit(num_qubits)
for i in range(num_qubits):
theta = Parameter("θ" + str(i))
mixer.rx(theta, range(num_qubits))
qaoa = QAOA(self.sampler, optimizer, reps=2, mixer=mixer)
result = qaoa.compute_minimum_eigenvalue(operator=qubit_op)
x = self._sample_most_likely(result.eigenstate)
self.log.debug(x)
graph_solution = self._get_graph_solution(x)
self.assertIn(graph_solution, S1)
def test_qaoa_qc_mixer_no_parameters(self):
"""QAOA test with a mixer as a parameterized circuit with zero parameters."""
qubit_op, _ = self._get_operator(W1)
num_qubits = qubit_op.num_qubits
mixer = QuantumCircuit(num_qubits)
# just arbitrary circuit
mixer.rx(np.pi / 2, range(num_qubits))
qaoa = QAOA(self.sampler, COBYLA(), reps=1, mixer=mixer)
result = qaoa.compute_minimum_eigenvalue(operator=qubit_op)
# we just assert that we get a result, it is not meaningful.
self.assertIsNotNone(result.eigenstate)
def test_change_operator_size(self):
"""QAOA change operator size test"""
qubit_op, _ = self._get_operator(
np.array([[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 0]])
)
qaoa = QAOA(self.sampler, COBYLA(), reps=1)
result = qaoa.compute_minimum_eigenvalue(operator=qubit_op)
x = self._sample_most_likely(result.eigenstate)
graph_solution = self._get_graph_solution(x)
with self.subTest(msg="QAOA 4x4"):
self.assertIn(graph_solution, {"0101", "1010"})
qubit_op, _ = self._get_operator(
np.array(
[
[0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0],
]
)
)
result = qaoa.compute_minimum_eigenvalue(operator=qubit_op)
x = self._sample_most_likely(result.eigenstate)
graph_solution = self._get_graph_solution(x)
with self.subTest(msg="QAOA 6x6"):
self.assertIn(graph_solution, {"010101", "101010"})
@idata([[W2, S2, None], [W2, S2, [0.0, 0.0]], [W2, S2, [1.0, 0.8]]])
@unpack
def test_qaoa_initial_point(self, w, solutions, init_pt):
"""Check first parameter value used is initial point as expected"""
qubit_op, _ = self._get_operator(w)
first_pt = []
def cb_callback(eval_count, parameters, mean, metadata):
nonlocal first_pt
if eval_count == 1:
first_pt = list(parameters)
qaoa = QAOA(
self.sampler,
COBYLA(),
initial_point=init_pt,
callback=cb_callback,
)
result = qaoa.compute_minimum_eigenvalue(operator=qubit_op)
x = self._sample_most_likely(result.eigenstate)
graph_solution = self._get_graph_solution(x)
with self.subTest("Initial Point"):
# If None the preferred random initial point of QAOA variational form
if init_pt is None:
self.assertLess(result.eigenvalue, -0.97)
else:
self.assertListEqual(init_pt, first_pt)
with self.subTest("Solution"):
self.assertIn(graph_solution, solutions)
def test_qaoa_random_initial_point(self):
"""QAOA random initial point"""
w = rx.adjacency_matrix(
rx.undirected_gnp_random_graph(5, 0.5, seed=algorithm_globals.random_seed)
)
qubit_op, _ = self._get_operator(w)
qaoa = QAOA(self.sampler, NELDER_MEAD(disp=True), reps=2)
result = qaoa.compute_minimum_eigenvalue(operator=qubit_op)
self.assertLess(result.eigenvalue, -0.97)
def test_optimizer_scipy_callable(self):
"""Test passing a SciPy optimizer directly as callable."""
w = rx.adjacency_matrix(
rx.undirected_gnp_random_graph(5, 0.5, seed=algorithm_globals.random_seed)
)
qubit_op, _ = self._get_operator(w)
qaoa = QAOA(
self.sampler,
partial(scipy_minimize, method="Nelder-Mead", options={"maxiter": 2}),
)
result = qaoa.compute_minimum_eigenvalue(qubit_op)
self.assertEqual(result.cost_function_evals, 5)
def _get_operator(self, weight_matrix):
"""Generate Hamiltonian for the max-cut problem of a graph.
Args:
weight_matrix (numpy.ndarray) : adjacency matrix.
Returns:
PauliSumOp: operator for the Hamiltonian
float: a constant shift for the obj function.
"""
num_nodes = weight_matrix.shape[0]
pauli_list = []
shift = 0
for i in range(num_nodes):
for j in range(i):
if weight_matrix[i, j] != 0:
x_p = np.zeros(num_nodes, dtype=bool)
z_p = np.zeros(num_nodes, dtype=bool)
z_p[i] = True
z_p[j] = True
pauli_list.append([0.5 * weight_matrix[i, j], Pauli((z_p, x_p))])
shift -= 0.5 * weight_matrix[i, j]
lst = [(pauli[1].to_label(), pauli[0]) for pauli in pauli_list]
return SparsePauliOp.from_list(lst), shift
def _get_graph_solution(self, x: np.ndarray) -> str:
"""Get graph solution from binary string.
Args:
x : binary string as numpy array.
Returns:
a graph solution as string.
"""
return "".join([str(int(i)) for i in 1 - x])
def _sample_most_likely(self, state_vector: QuasiDistribution) -> np.ndarray:
"""Compute the most likely binary string from state vector.
Args:
state_vector: Quasi-distribution.
Returns:
Binary string as numpy.ndarray of ints.
"""
values = list(state_vector.values())
n = int(np.log2(len(values)))
k = np.argmax(np.abs(values))
x = np.zeros(n)
for i in range(n):
x[i] = k % 2
k >>= 1
return x
if __name__ == "__main__":
unittest.main()
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
r"""
.. _pulse_builder:
=============
Pulse Builder
=============
..
We actually want people to think of these functions as being defined within the ``qiskit.pulse``
namespace, not the submodule ``qiskit.pulse.builder``.
.. currentmodule: qiskit.pulse
Use the pulse builder DSL to write pulse programs with an imperative syntax.
.. warning::
The pulse builder interface is still in active development. It may have
breaking API changes without deprecation warnings in future releases until
otherwise indicated.
The pulse builder provides an imperative API for writing pulse programs
with less difficulty than the :class:`~qiskit.pulse.Schedule` API.
It contextually constructs a pulse schedule and then emits the schedule for
execution. For example, to play a series of pulses on channels is as simple as:
.. plot::
:include-source:
from qiskit import pulse
dc = pulse.DriveChannel
d0, d1, d2, d3, d4 = dc(0), dc(1), dc(2), dc(3), dc(4)
with pulse.build(name='pulse_programming_in') as pulse_prog:
pulse.play([1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1], d0)
pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], d1)
pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0], d2)
pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], d3)
pulse.play([1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0], d4)
pulse_prog.draw()
To begin pulse programming we must first initialize our program builder
context with :func:`build`, after which we can begin adding program
statements. For example, below we write a simple program that :func:`play`\s
a pulse:
.. plot::
:include-source:
from qiskit import execute, pulse
d0 = pulse.DriveChannel(0)
with pulse.build() as pulse_prog:
pulse.play(pulse.Constant(100, 1.0), d0)
pulse_prog.draw()
The builder initializes a :class:`.pulse.Schedule`, ``pulse_prog``
and then begins to construct the program within the context. The output pulse
schedule will survive after the context is exited and can be executed like a
normal Qiskit schedule using ``qiskit.execute(pulse_prog, backend)``.
Pulse programming has a simple imperative style. This leaves the programmer
to worry about the raw experimental physics of pulse programming and not
constructing cumbersome data structures.
We can optionally pass a :class:`~qiskit.providers.Backend` to
:func:`build` to enable enhanced functionality. Below, we prepare a Bell state
by automatically compiling the required pulses from their gate-level
representations, while simultaneously applying a long decoupling pulse to a
neighboring qubit. We terminate the experiment with a measurement to observe the
state we prepared. This program which mixes circuits and pulses will be
automatically lowered to be run as a pulse program:
.. plot::
:include-source:
import math
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse3Q
# TODO: This example should use a real mock backend.
backend = FakeOpenPulse3Q()
d2 = pulse.DriveChannel(2)
with pulse.build(backend) as bell_prep:
pulse.u2(0, math.pi, 0)
pulse.cx(0, 1)
with pulse.build(backend) as decoupled_bell_prep_and_measure:
# We call our bell state preparation schedule constructed above.
with pulse.align_right():
pulse.call(bell_prep)
pulse.play(pulse.Constant(bell_prep.duration, 0.02), d2)
pulse.barrier(0, 1, 2)
registers = pulse.measure_all()
decoupled_bell_prep_and_measure.draw()
With the pulse builder we are able to blend programming on qubits and channels.
While the pulse schedule is based on instructions that operate on
channels, the pulse builder automatically handles the mapping from qubits to
channels for you.
In the example below we demonstrate some more features of the pulse builder:
.. code-block::
import math
from qiskit import pulse, QuantumCircuit
from qiskit.pulse import library
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
with pulse.build(backend) as pulse_prog:
# Create a pulse.
gaussian_pulse = library.gaussian(10, 1.0, 2)
# Get the qubit's corresponding drive channel from the backend.
d0 = pulse.drive_channel(0)
d1 = pulse.drive_channel(1)
# Play a pulse at t=0.
pulse.play(gaussian_pulse, d0)
# Play another pulse directly after the previous pulse at t=10.
pulse.play(gaussian_pulse, d0)
# The default scheduling behavior is to schedule pulses in parallel
# across channels. For example, the statement below
# plays the same pulse on a different channel at t=0.
pulse.play(gaussian_pulse, d1)
# We also provide pulse scheduling alignment contexts.
# The default alignment context is align_left.
# The sequential context schedules pulse instructions sequentially in time.
# This context starts at t=10 due to earlier pulses above.
with pulse.align_sequential():
pulse.play(gaussian_pulse, d0)
# Play another pulse after at t=20.
pulse.play(gaussian_pulse, d1)
# We can also nest contexts as each instruction is
# contained in its local scheduling context.
# The output of a child context is a context-schedule
# with the internal instructions timing fixed relative to
# one another. This is schedule is then called in the parent context.
# Context starts at t=30.
with pulse.align_left():
# Start at t=30.
pulse.play(gaussian_pulse, d0)
# Start at t=30.
pulse.play(gaussian_pulse, d1)
# Context ends at t=40.
# Alignment context where all pulse instructions are
# aligned to the right, ie., as late as possible.
with pulse.align_right():
# Shift the phase of a pulse channel.
pulse.shift_phase(math.pi, d1)
# Starts at t=40.
pulse.delay(100, d0)
# Ends at t=140.
# Starts at t=130.
pulse.play(gaussian_pulse, d1)
# Ends at t=140.
# Acquire data for a qubit and store in a memory slot.
pulse.acquire(100, 0, pulse.MemorySlot(0))
# We also support a variety of macros for common operations.
# Measure all qubits.
pulse.measure_all()
# Delay on some qubits.
# This requires knowledge of which channels belong to which qubits.
# delay for 100 cycles on qubits 0 and 1.
pulse.delay_qubits(100, 0, 1)
# Call a quantum circuit. The pulse builder lazily constructs a quantum
# circuit which is then transpiled and scheduled before inserting into
# a pulse schedule.
# NOTE: Quantum register indices correspond to physical qubit indices.
qc = QuantumCircuit(2, 2)
qc.cx(0, 1)
pulse.call(qc)
# Calling a small set of standard gates and decomposing to pulses is
# also supported with more natural syntax.
pulse.u3(0, math.pi, 0, 0)
pulse.cx(0, 1)
# It is also be possible to call a preexisting schedule
tmp_sched = pulse.Schedule()
tmp_sched += pulse.Play(gaussian_pulse, d0)
pulse.call(tmp_sched)
# We also support:
# frequency instructions
pulse.set_frequency(5.0e9, d0)
# phase instructions
pulse.shift_phase(0.1, d0)
# offset contexts
with pulse.phase_offset(math.pi, d0):
pulse.play(gaussian_pulse, d0)
The above is just a small taste of what is possible with the builder. See the rest of the module
documentation for more information on its capabilities.
.. autofunction:: build
Channels
========
Methods to return the correct channels for the respective qubit indices.
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeArmonk
backend = FakeArmonk()
with pulse.build(backend) as drive_sched:
d0 = pulse.drive_channel(0)
print(d0)
.. parsed-literal::
DriveChannel(0)
.. autofunction:: acquire_channel
.. autofunction:: control_channels
.. autofunction:: drive_channel
.. autofunction:: measure_channel
Instructions
============
Pulse instructions are available within the builder interface. Here's an example:
.. plot::
:include-source:
from qiskit import pulse
from qiskit.providers.fake_provider import FakeArmonk
backend = FakeArmonk()
with pulse.build(backend) as drive_sched:
d0 = pulse.drive_channel(0)
a0 = pulse.acquire_channel(0)
pulse.play(pulse.library.Constant(10, 1.0), d0)
pulse.delay(20, d0)
pulse.shift_phase(3.14/2, d0)
pulse.set_phase(3.14, d0)
pulse.shift_frequency(1e7, d0)
pulse.set_frequency(5e9, d0)
with pulse.build() as temp_sched:
pulse.play(pulse.library.Gaussian(20, 1.0, 3.0), d0)
pulse.play(pulse.library.Gaussian(20, -1.0, 3.0), d0)
pulse.call(temp_sched)
pulse.acquire(30, a0, pulse.MemorySlot(0))
drive_sched.draw()
.. autofunction:: acquire
.. autofunction:: barrier
.. autofunction:: call
.. autofunction:: delay
.. autofunction:: play
.. autofunction:: reference
.. autofunction:: set_frequency
.. autofunction:: set_phase
.. autofunction:: shift_frequency
.. autofunction:: shift_phase
.. autofunction:: snapshot
Contexts
========
Builder aware contexts that modify the construction of a pulse program. For
example an alignment context like :func:`align_right` may
be used to align all pulses as late as possible in a pulse program.
.. plot::
:include-source:
from qiskit import pulse
d0 = pulse.DriveChannel(0)
d1 = pulse.DriveChannel(1)
with pulse.build() as pulse_prog:
with pulse.align_right():
# this pulse will start at t=0
pulse.play(pulse.Constant(100, 1.0), d0)
# this pulse will start at t=80
pulse.play(pulse.Constant(20, 1.0), d1)
pulse_prog.draw()
.. autofunction:: align_equispaced
.. autofunction:: align_func
.. autofunction:: align_left
.. autofunction:: align_right
.. autofunction:: align_sequential
.. autofunction:: circuit_scheduler_settings
.. autofunction:: frequency_offset
.. autofunction:: phase_offset
.. autofunction:: transpiler_settings
Macros
======
Macros help you add more complex functionality to your pulse program.
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeArmonk
backend = FakeArmonk()
with pulse.build(backend) as measure_sched:
mem_slot = pulse.measure(0)
print(mem_slot)
.. parsed-literal::
MemorySlot(0)
.. autofunction:: measure
.. autofunction:: measure_all
.. autofunction:: delay_qubits
Circuit Gates
=============
To use circuit level gates within your pulse program call a circuit
with :func:`call`.
.. warning::
These will be removed in future versions with the release of a circuit
builder interface in which it will be possible to calibrate a gate in
terms of pulses and use that gate in a circuit.
.. code-block::
import math
from qiskit import pulse
from qiskit.providers.fake_provider import FakeArmonk
backend = FakeArmonk()
with pulse.build(backend) as u3_sched:
pulse.u3(math.pi, 0, math.pi, 0)
.. autofunction:: cx
.. autofunction:: u1
.. autofunction:: u2
.. autofunction:: u3
.. autofunction:: x
Utilities
=========
The utility functions can be used to gather attributes about the backend and modify
how the program is built.
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeArmonk
backend = FakeArmonk()
with pulse.build(backend) as u3_sched:
print('Number of qubits in backend: {}'.format(pulse.num_qubits()))
samples = 160
print('There are {} samples in {} seconds'.format(
samples, pulse.samples_to_seconds(160)))
seconds = 1e-6
print('There are {} seconds in {} samples.'.format(
seconds, pulse.seconds_to_samples(1e-6)))
.. parsed-literal::
Number of qubits in backend: 1
There are 160 samples in 3.5555555555555554e-08 seconds
There are 1e-06 seconds in 4500 samples.
.. autofunction:: active_backend
.. autofunction:: active_transpiler_settings
.. autofunction:: active_circuit_scheduler_settings
.. autofunction:: num_qubits
.. autofunction:: qubit_channels
.. autofunction:: samples_to_seconds
.. autofunction:: seconds_to_samples
"""
import collections
import contextvars
import functools
import itertools
import uuid
import warnings
from contextlib import contextmanager
from functools import singledispatchmethod
from typing import (
Any,
Callable,
ContextManager,
Dict,
Iterable,
List,
Mapping,
Optional,
Set,
Tuple,
TypeVar,
Union,
NewType,
)
import numpy as np
from qiskit import circuit
from qiskit.circuit.library import standard_gates as gates
from qiskit.circuit.parameterexpression import ParameterExpression, ParameterValueType
from qiskit.pulse import (
channels as chans,
configuration,
exceptions,
instructions,
macros,
library,
transforms,
)
from qiskit.providers.backend import BackendV2
from qiskit.pulse.instructions import directives
from qiskit.pulse.schedule import Schedule, ScheduleBlock
from qiskit.pulse.transforms.alignments import AlignmentKind
#: contextvars.ContextVar[BuilderContext]: active builder
BUILDER_CONTEXTVAR = contextvars.ContextVar("backend")
T = TypeVar("T")
StorageLocation = NewType("StorageLocation", Union[chans.MemorySlot, chans.RegisterSlot])
def _compile_lazy_circuit_before(function: Callable[..., T]) -> Callable[..., T]:
"""Decorator thats schedules and calls the lazily compiled circuit before
executing the decorated builder method."""
@functools.wraps(function)
def wrapper(self, *args, **kwargs):
self._compile_lazy_circuit()
return function(self, *args, **kwargs)
return wrapper
def _requires_backend(function: Callable[..., T]) -> Callable[..., T]:
"""Decorator a function to raise if it is called without a builder with a
set backend.
"""
@functools.wraps(function)
def wrapper(self, *args, **kwargs):
if self.backend is None:
raise exceptions.BackendNotSet(
'This function requires the builder to have a "backend" set.'
)
return function(self, *args, **kwargs)
return wrapper
class _PulseBuilder:
"""Builder context class."""
__alignment_kinds__ = {
"left": transforms.AlignLeft(),
"right": transforms.AlignRight(),
"sequential": transforms.AlignSequential(),
}
def __init__(
self,
backend=None,
block: Optional[ScheduleBlock] = None,
name: Optional[str] = None,
default_alignment: Union[str, AlignmentKind] = "left",
default_transpiler_settings: Mapping = None,
default_circuit_scheduler_settings: Mapping = None,
):
"""Initialize the builder context.
.. note::
At some point we may consider incorporating the builder into
the :class:`~qiskit.pulse.Schedule` class. However, the risk of
this is tying the user interface to the intermediate
representation. For now we avoid this at the cost of some code
duplication.
Args:
backend (Backend): Input backend to use in
builder. If not set certain functionality will be unavailable.
block: Initital ``ScheduleBlock`` to build on.
name: Name of pulse program to be built.
default_alignment: Default scheduling alignment for builder.
One of ``left``, ``right``, ``sequential`` or an instance of
:class:`~qiskit.pulse.transforms.alignments.AlignmentKind` subclass.
default_transpiler_settings: Default settings for the transpiler.
default_circuit_scheduler_settings: Default settings for the
circuit to pulse scheduler.
Raises:
PulseError: When invalid ``default_alignment`` or `block` is specified.
"""
#: Backend: Backend instance for context builder.
self._backend = backend
#: Union[None, ContextVar]: Token for this ``_PulseBuilder``'s ``ContextVar``.
self._backend_ctx_token = None
#: QuantumCircuit: Lazily constructed quantum circuit
self._lazy_circuit = None
#: Dict[str, Any]: Transpiler setting dictionary.
self._transpiler_settings = default_transpiler_settings or {}
#: Dict[str, Any]: Scheduler setting dictionary.
self._circuit_scheduler_settings = default_circuit_scheduler_settings or {}
#: List[ScheduleBlock]: Stack of context.
self._context_stack = []
#: str: Name of the output program
self._name = name
# Add root block if provided. Schedule will be built on top of this.
if block is not None:
if isinstance(block, ScheduleBlock):
root_block = block
elif isinstance(block, Schedule):
root_block = self._naive_typecast_schedule(block)
else:
raise exceptions.PulseError(
f"Input `block` type {block.__class__.__name__} is "
"not a valid format. Specify a pulse program."
)
self._context_stack.append(root_block)
# Set default alignment context
alignment = _PulseBuilder.__alignment_kinds__.get(default_alignment, default_alignment)
if not isinstance(alignment, AlignmentKind):
raise exceptions.PulseError(
f"Given `default_alignment` {repr(default_alignment)} is "
"not a valid transformation. Set one of "
f'{", ".join(_PulseBuilder.__alignment_kinds__.keys())}, '
"or set an instance of `AlignmentKind` subclass."
)
self.push_context(alignment)
def __enter__(self) -> ScheduleBlock:
"""Enter this builder context and yield either the supplied schedule
or the schedule created for the user.
Returns:
The schedule that the builder will build on.
"""
self._backend_ctx_token = BUILDER_CONTEXTVAR.set(self)
output = self._context_stack[0]
output._name = self._name or output.name
return output
@_compile_lazy_circuit_before
def __exit__(self, exc_type, exc_val, exc_tb):
"""Exit the builder context and compile the built pulse program."""
self.compile()
BUILDER_CONTEXTVAR.reset(self._backend_ctx_token)
@property
def backend(self):
"""Returns the builder backend if set.
Returns:
Optional[Backend]: The builder's backend.
"""
return self._backend
@_compile_lazy_circuit_before
def push_context(self, alignment: AlignmentKind):
"""Push new context to the stack."""
self._context_stack.append(ScheduleBlock(alignment_context=alignment))
@_compile_lazy_circuit_before
def pop_context(self) -> ScheduleBlock:
"""Pop the last context from the stack."""
if len(self._context_stack) == 1:
raise exceptions.PulseError("The root context cannot be popped out.")
return self._context_stack.pop()
def get_context(self) -> ScheduleBlock:
"""Get current context.
Notes:
New instruction can be added by `.append_subroutine` or `.append_instruction` method.
Use above methods rather than directly accessing to the current context.
"""
return self._context_stack[-1]
@property
@_requires_backend
def num_qubits(self):
"""Get the number of qubits in the backend."""
# backendV2
if isinstance(self.backend, BackendV2):
return self.backend.num_qubits
return self.backend.configuration().n_qubits
@property
def transpiler_settings(self) -> Mapping:
"""The builder's transpiler settings."""
return self._transpiler_settings
@transpiler_settings.setter
@_compile_lazy_circuit_before
def transpiler_settings(self, settings: Mapping):
self._compile_lazy_circuit()
self._transpiler_settings = settings
@property
def circuit_scheduler_settings(self) -> Mapping:
"""The builder's circuit to pulse scheduler settings."""
return self._circuit_scheduler_settings
@circuit_scheduler_settings.setter
@_compile_lazy_circuit_before
def circuit_scheduler_settings(self, settings: Mapping):
self._compile_lazy_circuit()
self._circuit_scheduler_settings = settings
@_compile_lazy_circuit_before
def compile(self) -> ScheduleBlock:
"""Compile and output the built pulse program."""
# Not much happens because we currently compile as we build.
# This should be offloaded to a true compilation module
# once we define a more sophisticated IR.
while len(self._context_stack) > 1:
current = self.pop_context()
self.append_subroutine(current)
return self._context_stack[0]
def _compile_lazy_circuit(self):
"""Call a context QuantumCircuit (lazy circuit) and append the output pulse schedule
to the builder's context schedule.
Note that the lazy circuit is not stored as a call instruction.
"""
if self._lazy_circuit:
lazy_circuit = self._lazy_circuit
# reset lazy circuit
self._lazy_circuit = self._new_circuit()
self.call_subroutine(self._compile_circuit(lazy_circuit))
def _compile_circuit(self, circ) -> Schedule:
"""Take a QuantumCircuit and output the pulse schedule associated with the circuit."""
from qiskit import compiler # pylint: disable=cyclic-import
transpiled_circuit = compiler.transpile(circ, self.backend, **self.transpiler_settings)
sched = compiler.schedule(
transpiled_circuit, self.backend, **self.circuit_scheduler_settings
)
return sched
def _new_circuit(self):
"""Create a new circuit for lazy circuit scheduling."""
return circuit.QuantumCircuit(self.num_qubits)
@_compile_lazy_circuit_before
def append_instruction(self, instruction: instructions.Instruction):
"""Add an instruction to the builder's context schedule.
Args:
instruction: Instruction to append.
"""
self._context_stack[-1].append(instruction)
def append_reference(self, name: str, *extra_keys: str):
"""Add external program as a :class:`~qiskit.pulse.instructions.Reference` instruction.
Args:
name: Name of subroutine.
extra_keys: Assistance keys to uniquely specify the subroutine.
"""
inst = instructions.Reference(name, *extra_keys)
self.append_instruction(inst)
@_compile_lazy_circuit_before
def append_subroutine(self, subroutine: Union[Schedule, ScheduleBlock]):
"""Append a :class:`ScheduleBlock` to the builder's context schedule.
This operation doesn't create a reference. Subroutine is directly
appended to current context schedule.
Args:
subroutine: ScheduleBlock to append to the current context block.
Raises:
PulseError: When subroutine is not Schedule nor ScheduleBlock.
"""
if not isinstance(subroutine, (ScheduleBlock, Schedule)):
raise exceptions.PulseError(
f"'{subroutine.__class__.__name__}' is not valid data format in the builder. "
"'Schedule' and 'ScheduleBlock' can be appended to the builder context."
)
if len(subroutine) == 0:
return
if isinstance(subroutine, Schedule):
subroutine = self._naive_typecast_schedule(subroutine)
self._context_stack[-1].append(subroutine)
@singledispatchmethod
def call_subroutine(
self,
subroutine: Union[circuit.QuantumCircuit, Schedule, ScheduleBlock],
name: Optional[str] = None,
value_dict: Optional[Dict[ParameterExpression, ParameterValueType]] = None,
**kw_params: ParameterValueType,
):
"""Call a schedule or circuit defined outside of the current scope.
The ``subroutine`` is appended to the context schedule as a call instruction.
This logic just generates a convenient program representation in the compiler.
Thus, this doesn't affect execution of inline subroutines.
See :class:`~pulse.instructions.Call` for more details.
Args:
subroutine: Target schedule or circuit to append to the current context.
name: Name of subroutine if defined.
value_dict: Parameter object and assigned value mapping. This is more precise way to
identify a parameter since mapping is managed with unique object id rather than
name. Especially there is any name collision in a parameter table.
kw_params: Parameter values to bind to the target subroutine
with string parameter names. If there are parameter name overlapping,
these parameters are updated with the same assigned value.
Raises:
PulseError:
- When input subroutine is not valid data format.
"""
raise exceptions.PulseError(
f"Subroutine type {subroutine.__class__.__name__} is "
"not valid data format. Call QuantumCircuit, "
"Schedule, or ScheduleBlock."
)
@call_subroutine.register
def _(
self,
target_block: ScheduleBlock,
name: Optional[str] = None,
value_dict: Optional[Dict[ParameterExpression, ParameterValueType]] = None,
**kw_params: ParameterValueType,
):
if len(target_block) == 0:
return
# Create local parameter assignment
local_assignment = {}
for param_name, value in kw_params.items():
params = target_block.get_parameters(param_name)
if not params:
raise exceptions.PulseError(
f"Parameter {param_name} is not defined in the target subroutine. "
f'{", ".join(map(str, target_block.parameters))} can be specified.'
)
for param in params:
local_assignment[param] = value
if value_dict:
if local_assignment.keys() & value_dict.keys():
warnings.warn(
"Some parameters provided by 'value_dict' conflict with one through "
"keyword arguments. Parameter values in the keyword arguments "
"are overridden by the dictionary values.",
UserWarning,
)
local_assignment.update(value_dict)
if local_assignment:
target_block = target_block.assign_parameters(local_assignment, inplace=False)
if name is None:
# Add unique string, not to accidentally override existing reference entry.
keys = (target_block.name, uuid.uuid4().hex)
else:
keys = (name,)
self.append_reference(*keys)
self.get_context().assign_references({keys: target_block}, inplace=True)
@call_subroutine.register
def _(
self,
target_schedule: Schedule,
name: Optional[str] = None,
value_dict: Optional[Dict[ParameterExpression, ParameterValueType]] = None,
**kw_params: ParameterValueType,
):
if len(target_schedule) == 0:
return
self.call_subroutine(
self._naive_typecast_schedule(target_schedule),
name=name,
value_dict=value_dict,
**kw_params,
)
@call_subroutine.register
def _(
self,
target_circuit: circuit.QuantumCircuit,
name: Optional[str] = None,
value_dict: Optional[Dict[ParameterExpression, ParameterValueType]] = None,
**kw_params: ParameterValueType,
):
if len(target_circuit) == 0:
return
self._compile_lazy_circuit()
self.call_subroutine(
self._compile_circuit(target_circuit),
name=name,
value_dict=value_dict,
**kw_params,
)
@_requires_backend
def call_gate(self, gate: circuit.Gate, qubits: Tuple[int, ...], lazy: bool = True):
"""Call the circuit ``gate`` in the pulse program.
The qubits are assumed to be defined on physical qubits.
If ``lazy == True`` this circuit will extend a lazily constructed
quantum circuit. When an operation occurs that breaks the underlying
circuit scheduling assumptions such as adding a pulse instruction or
changing the alignment context the circuit will be
transpiled and scheduled into pulses with the current active settings.
Args:
gate: Gate to call.
qubits: Qubits to call gate on.
lazy: If false the circuit will be transpiled and pulse scheduled
immediately. Otherwise, it will extend the active lazy circuit
as defined above.
"""
try:
iter(qubits)
except TypeError:
qubits = (qubits,)
if lazy:
self._call_gate(gate, qubits)
else:
self._compile_lazy_circuit()
self._call_gate(gate, qubits)
self._compile_lazy_circuit()
def _call_gate(self, gate, qargs):
if self._lazy_circuit is None:
self._lazy_circuit = self._new_circuit()
self._lazy_circuit.append(gate, qargs=qargs)
@staticmethod
def _naive_typecast_schedule(schedule: Schedule):
# Naively convert into ScheduleBlock
from qiskit.pulse.transforms import inline_subroutines, flatten, pad
preprocessed_schedule = inline_subroutines(flatten(schedule))
pad(preprocessed_schedule, inplace=True, pad_with=instructions.TimeBlockade)
# default to left alignment, namely ASAP scheduling
target_block = ScheduleBlock(name=schedule.name)
for _, inst in preprocessed_schedule.instructions:
target_block.append(inst, inplace=True)
return target_block
def get_dt(self):
"""Retrieve dt differently based on the type of Backend"""
if isinstance(self.backend, BackendV2):
return self.backend.dt
return self.backend.configuration().dt
def build(
backend=None,
schedule: Optional[ScheduleBlock] = None,
name: Optional[str] = None,
default_alignment: Optional[Union[str, AlignmentKind]] = "left",
default_transpiler_settings: Optional[Dict[str, Any]] = None,
default_circuit_scheduler_settings: Optional[Dict[str, Any]] = None,
) -> ContextManager[ScheduleBlock]:
"""Create a context manager for launching the imperative pulse builder DSL.
To enter a building context and starting building a pulse program:
.. code-block::
from qiskit import execute, pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
d0 = pulse.DriveChannel(0)
with pulse.build() as pulse_prog:
pulse.play(pulse.Constant(100, 0.5), d0)
While the output program ``pulse_prog`` cannot be executed as we are using
a mock backend. If a real backend is being used, executing the program is
done with:
.. code-block:: python
qiskit.execute(pulse_prog, backend)
Args:
backend (Backend): A Qiskit backend. If not supplied certain
builder functionality will be unavailable.
schedule: A pulse ``ScheduleBlock`` in which your pulse program will be built.
name: Name of pulse program to be built.
default_alignment: Default scheduling alignment for builder.
One of ``left``, ``right``, ``sequential`` or an alignment context.
default_transpiler_settings: Default settings for the transpiler.
default_circuit_scheduler_settings: Default settings for the
circuit to pulse scheduler.
Returns:
A new builder context which has the active builder initialized.
"""
return _PulseBuilder(
backend=backend,
block=schedule,
name=name,
default_alignment=default_alignment,
default_transpiler_settings=default_transpiler_settings,
default_circuit_scheduler_settings=default_circuit_scheduler_settings,
)
# Builder Utilities
def _active_builder() -> _PulseBuilder:
"""Get the active builder in the active context.
Returns:
The active active builder in this context.
Raises:
exceptions.NoActiveBuilder: If a pulse builder function is called
outside of a builder context.
"""
try:
return BUILDER_CONTEXTVAR.get()
except LookupError as ex:
raise exceptions.NoActiveBuilder(
"A Pulse builder function was called outside of "
"a builder context. Try calling within a builder "
'context, eg., "with pulse.build() as schedule: ...".'
) from ex
def active_backend():
"""Get the backend of the currently active builder context.
Returns:
Backend: The active backend in the currently active
builder context.
Raises:
exceptions.BackendNotSet: If the builder does not have a backend set.
"""
builder = _active_builder().backend
if builder is None:
raise exceptions.BackendNotSet(
'This function requires the active builder to have a "backend" set.'
)
return builder
def append_schedule(schedule: Union[Schedule, ScheduleBlock]):
"""Call a schedule by appending to the active builder's context block.
Args:
schedule: Schedule or ScheduleBlock to append.
"""
_active_builder().append_subroutine(schedule)
def append_instruction(instruction: instructions.Instruction):
"""Append an instruction to the active builder's context schedule.
Examples:
.. code-block::
from qiskit import pulse
d0 = pulse.DriveChannel(0)
with pulse.build() as pulse_prog:
pulse.builder.append_instruction(pulse.Delay(10, d0))
print(pulse_prog.instructions)
.. parsed-literal::
((0, Delay(10, DriveChannel(0))),)
"""
_active_builder().append_instruction(instruction)
def num_qubits() -> int:
"""Return number of qubits in the currently active backend.
Examples:
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
with pulse.build(backend):
print(pulse.num_qubits())
.. parsed-literal::
2
.. note:: Requires the active builder context to have a backend set.
"""
if isinstance(active_backend(), BackendV2):
return active_backend().num_qubits
return active_backend().configuration().n_qubits
def seconds_to_samples(seconds: Union[float, np.ndarray]) -> Union[int, np.ndarray]:
"""Obtain the number of samples that will elapse in ``seconds`` on the
active backend.
Rounds down.
Args:
seconds: Time in seconds to convert to samples.
Returns:
The number of samples for the time to elapse
"""
dt = _active_builder().get_dt()
if isinstance(seconds, np.ndarray):
return (seconds / dt).astype(int)
return int(seconds / dt)
def samples_to_seconds(samples: Union[int, np.ndarray]) -> Union[float, np.ndarray]:
"""Obtain the time in seconds that will elapse for the input number of
samples on the active backend.
Args:
samples: Number of samples to convert to time in seconds.
Returns:
The time that elapses in ``samples``.
"""
return samples * _active_builder().get_dt()
def qubit_channels(qubit: int) -> Set[chans.Channel]:
"""Returns the set of channels associated with a qubit.
Examples:
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
with pulse.build(backend):
print(pulse.qubit_channels(0))
.. parsed-literal::
{MeasureChannel(0), ControlChannel(0), DriveChannel(0), AcquireChannel(0), ControlChannel(1)}
.. note:: Requires the active builder context to have a backend set.
.. note:: A channel may still be associated with another qubit in this list
such as in the case where significant crosstalk exists.
"""
# implement as the inner function to avoid API change for a patch release in 0.24.2.
def get_qubit_channels_v2(backend: BackendV2, qubit: int):
r"""Return a list of channels which operate on the given ``qubit``.
Returns:
List of ``Channel``\s operated on my the given ``qubit``.
"""
channels = []
# add multi-qubit channels
for node_qubits in backend.coupling_map:
if qubit in node_qubits:
control_channel = backend.control_channel(node_qubits)
if control_channel:
channels.extend(control_channel)
# add single qubit channels
channels.append(backend.drive_channel(qubit))
channels.append(backend.measure_channel(qubit))
channels.append(backend.acquire_channel(qubit))
return channels
# backendV2
if isinstance(active_backend(), BackendV2):
return set(get_qubit_channels_v2(active_backend(), qubit))
return set(active_backend().configuration().get_qubit_channels(qubit))
def _qubits_to_channels(*channels_or_qubits: Union[int, chans.Channel]) -> Set[chans.Channel]:
"""Returns the unique channels of the input qubits."""
channels = set()
for channel_or_qubit in channels_or_qubits:
if isinstance(channel_or_qubit, int):
channels |= qubit_channels(channel_or_qubit)
elif isinstance(channel_or_qubit, chans.Channel):
channels.add(channel_or_qubit)
else:
raise exceptions.PulseError(
f'{channel_or_qubit} is not a "Channel" or qubit (integer).'
)
return channels
def active_transpiler_settings() -> Dict[str, Any]:
"""Return the current active builder context's transpiler settings.
Examples:
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
transpiler_settings = {'optimization_level': 3}
with pulse.build(backend,
default_transpiler_settings=transpiler_settings):
print(pulse.active_transpiler_settings())
.. parsed-literal::
{'optimization_level': 3}
"""
return dict(_active_builder().transpiler_settings)
def active_circuit_scheduler_settings() -> Dict[str, Any]:
"""Return the current active builder context's circuit scheduler settings.
Examples:
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
circuit_scheduler_settings = {'method': 'alap'}
with pulse.build(
backend,
default_circuit_scheduler_settings=circuit_scheduler_settings):
print(pulse.active_circuit_scheduler_settings())
.. parsed-literal::
{'method': 'alap'}
"""
return dict(_active_builder().circuit_scheduler_settings)
# Contexts
@contextmanager
def align_left() -> ContextManager[None]:
"""Left alignment pulse scheduling context.
Pulse instructions within this context are scheduled as early as possible
by shifting them left to the earliest available time.
Examples:
.. code-block::
from qiskit import pulse
d0 = pulse.DriveChannel(0)
d1 = pulse.DriveChannel(1)
with pulse.build() as pulse_prog:
with pulse.align_left():
# this pulse will start at t=0
pulse.play(pulse.Constant(100, 1.0), d0)
# this pulse will start at t=0
pulse.play(pulse.Constant(20, 1.0), d1)
pulse_prog = pulse.transforms.block_to_schedule(pulse_prog)
assert pulse_prog.ch_start_time(d0) == pulse_prog.ch_start_time(d1)
Yields:
None
"""
builder = _active_builder()
builder.push_context(transforms.AlignLeft())
try:
yield
finally:
current = builder.pop_context()
builder.append_subroutine(current)
@contextmanager
def align_right() -> AlignmentKind:
"""Right alignment pulse scheduling context.
Pulse instructions within this context are scheduled as late as possible
by shifting them right to the latest available time.
Examples:
.. code-block::
from qiskit import pulse
d0 = pulse.DriveChannel(0)
d1 = pulse.DriveChannel(1)
with pulse.build() as pulse_prog:
with pulse.align_right():
# this pulse will start at t=0
pulse.play(pulse.Constant(100, 1.0), d0)
# this pulse will start at t=80
pulse.play(pulse.Constant(20, 1.0), d1)
pulse_prog = pulse.transforms.block_to_schedule(pulse_prog)
assert pulse_prog.ch_stop_time(d0) == pulse_prog.ch_stop_time(d1)
Yields:
None
"""
builder = _active_builder()
builder.push_context(transforms.AlignRight())
try:
yield
finally:
current = builder.pop_context()
builder.append_subroutine(current)
@contextmanager
def align_sequential() -> AlignmentKind:
"""Sequential alignment pulse scheduling context.
Pulse instructions within this context are scheduled sequentially in time
such that no two instructions will be played at the same time.
Examples:
.. code-block::
from qiskit import pulse
d0 = pulse.DriveChannel(0)
d1 = pulse.DriveChannel(1)
with pulse.build() as pulse_prog:
with pulse.align_sequential():
# this pulse will start at t=0
pulse.play(pulse.Constant(100, 1.0), d0)
# this pulse will also start at t=100
pulse.play(pulse.Constant(20, 1.0), d1)
pulse_prog = pulse.transforms.block_to_schedule(pulse_prog)
assert pulse_prog.ch_stop_time(d0) == pulse_prog.ch_start_time(d1)
Yields:
None
"""
builder = _active_builder()
builder.push_context(transforms.AlignSequential())
try:
yield
finally:
current = builder.pop_context()
builder.append_subroutine(current)
@contextmanager
def align_equispaced(duration: Union[int, ParameterExpression]) -> AlignmentKind:
"""Equispaced alignment pulse scheduling context.
Pulse instructions within this context are scheduled with the same interval spacing such that
the total length of the context block is ``duration``.
If the total free ``duration`` cannot be evenly divided by the number of instructions
within the context, the modulo is split and then prepended and appended to
the returned schedule. Delay instructions are automatically inserted in between pulses.
This context is convenient to write a schedule for periodical dynamic decoupling or
the Hahn echo sequence.
Examples:
.. plot::
:include-source:
from qiskit import pulse
d0 = pulse.DriveChannel(0)
x90 = pulse.Gaussian(10, 0.1, 3)
x180 = pulse.Gaussian(10, 0.2, 3)
with pulse.build() as hahn_echo:
with pulse.align_equispaced(duration=100):
pulse.play(x90, d0)
pulse.play(x180, d0)
pulse.play(x90, d0)
hahn_echo.draw()
Args:
duration: Duration of this context. This should be larger than the schedule duration.
Yields:
None
Notes:
The scheduling is performed for sub-schedules within the context rather than
channel-wise. If you want to apply the equispaced context for each channel,
you should use the context independently for channels.
"""
builder = _active_builder()
builder.push_context(transforms.AlignEquispaced(duration=duration))
try:
yield
finally:
current = builder.pop_context()
builder.append_subroutine(current)
@contextmanager
def align_func(
duration: Union[int, ParameterExpression], func: Callable[[int], float]
) -> AlignmentKind:
"""Callback defined alignment pulse scheduling context.
Pulse instructions within this context are scheduled at the location specified by
arbitrary callback function `position` that takes integer index and returns
the associated fractional location within [0, 1].
Delay instruction is automatically inserted in between pulses.
This context may be convenient to write a schedule of arbitrary dynamical decoupling
sequences such as Uhrig dynamical decoupling.
Examples:
.. plot::
:include-source:
import numpy as np
from qiskit import pulse
d0 = pulse.DriveChannel(0)
x90 = pulse.Gaussian(10, 0.1, 3)
x180 = pulse.Gaussian(10, 0.2, 3)
def udd10_pos(j):
return np.sin(np.pi*j/(2*10 + 2))**2
with pulse.build() as udd_sched:
pulse.play(x90, d0)
with pulse.align_func(duration=300, func=udd10_pos):
for _ in range(10):
pulse.play(x180, d0)
pulse.play(x90, d0)
udd_sched.draw()
Args:
duration: Duration of context. This should be larger than the schedule duration.
func: A function that takes an index of sub-schedule and returns the
fractional coordinate of of that sub-schedule.
The returned value should be defined within [0, 1].
The pulse index starts from 1.
Yields:
None
Notes:
The scheduling is performed for sub-schedules within the context rather than
channel-wise. If you want to apply the numerical context for each channel,
you need to apply the context independently to channels.
"""
builder = _active_builder()
builder.push_context(transforms.AlignFunc(duration=duration, func=func))
try:
yield
finally:
current = builder.pop_context()
builder.append_subroutine(current)
@contextmanager
def general_transforms(alignment_context: AlignmentKind) -> ContextManager[None]:
"""Arbitrary alignment transformation defined by a subclass instance of
:class:`~qiskit.pulse.transforms.alignments.AlignmentKind`.
Args:
alignment_context: Alignment context instance that defines schedule transformation.
Yields:
None
Raises:
PulseError: When input ``alignment_context`` is not ``AlignmentKind`` subclasses.
"""
if not isinstance(alignment_context, AlignmentKind):
raise exceptions.PulseError("Input alignment context is not `AlignmentKind` subclass.")
builder = _active_builder()
builder.push_context(alignment_context)
try:
yield
finally:
current = builder.pop_context()
builder.append_subroutine(current)
@contextmanager
def transpiler_settings(**settings) -> ContextManager[None]:
"""Set the currently active transpiler settings for this context.
Examples:
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
with pulse.build(backend):
print(pulse.active_transpiler_settings())
with pulse.transpiler_settings(optimization_level=3):
print(pulse.active_transpiler_settings())
.. parsed-literal::
{}
{'optimization_level': 3}
"""
builder = _active_builder()
curr_transpiler_settings = builder.transpiler_settings
builder.transpiler_settings = collections.ChainMap(settings, curr_transpiler_settings)
try:
yield
finally:
builder.transpiler_settings = curr_transpiler_settings
@contextmanager
def circuit_scheduler_settings(**settings) -> ContextManager[None]:
"""Set the currently active circuit scheduler settings for this context.
Examples:
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
with pulse.build(backend):
print(pulse.active_circuit_scheduler_settings())
with pulse.circuit_scheduler_settings(method='alap'):
print(pulse.active_circuit_scheduler_settings())
.. parsed-literal::
{}
{'method': 'alap'}
"""
builder = _active_builder()
curr_circuit_scheduler_settings = builder.circuit_scheduler_settings
builder.circuit_scheduler_settings = collections.ChainMap(
settings, curr_circuit_scheduler_settings
)
try:
yield
finally:
builder.circuit_scheduler_settings = curr_circuit_scheduler_settings
@contextmanager
def phase_offset(phase: float, *channels: chans.PulseChannel) -> ContextManager[None]:
"""Shift the phase of input channels on entry into context and undo on exit.
Examples:
.. code-block::
import math
from qiskit import pulse
d0 = pulse.DriveChannel(0)
with pulse.build() as pulse_prog:
with pulse.phase_offset(math.pi, d0):
pulse.play(pulse.Constant(10, 1.0), d0)
assert len(pulse_prog.instructions) == 3
Args:
phase: Amount of phase offset in radians.
channels: Channels to offset phase of.
Yields:
None
"""
for channel in channels:
shift_phase(phase, channel)
try:
yield
finally:
for channel in channels:
shift_phase(-phase, channel)
@contextmanager
def frequency_offset(
frequency: float, *channels: chans.PulseChannel, compensate_phase: bool = False
) -> ContextManager[None]:
"""Shift the frequency of inputs channels on entry into context and undo on exit.
Examples:
.. code-block:: python
:emphasize-lines: 7, 16
from qiskit import pulse
d0 = pulse.DriveChannel(0)
with pulse.build(backend) as pulse_prog:
# shift frequency by 1GHz
with pulse.frequency_offset(1e9, d0):
pulse.play(pulse.Constant(10, 1.0), d0)
assert len(pulse_prog.instructions) == 3
with pulse.build(backend) as pulse_prog:
# Shift frequency by 1GHz.
# Undo accumulated phase in the shifted frequency frame
# when exiting the context.
with pulse.frequency_offset(1e9, d0, compensate_phase=True):
pulse.play(pulse.Constant(10, 1.0), d0)
assert len(pulse_prog.instructions) == 4
Args:
frequency: Amount of frequency offset in Hz.
channels: Channels to offset frequency of.
compensate_phase: Compensate for accumulated phase accumulated with
respect to the channels' frame at its initial frequency.
Yields:
None
"""
builder = _active_builder()
# TODO: Need proper implementation of compensation. t0 may depend on the parent context.
# For example, the instruction position within the equispaced context depends on
# the current total number of instructions, thus adding more instruction after
# offset context may change the t0 when the parent context is transformed.
t0 = builder.get_context().duration
for channel in channels:
shift_frequency(frequency, channel)
try:
yield
finally:
if compensate_phase:
duration = builder.get_context().duration - t0
accumulated_phase = 2 * np.pi * ((duration * builder.get_dt() * frequency) % 1)
for channel in channels:
shift_phase(-accumulated_phase, channel)
for channel in channels:
shift_frequency(-frequency, channel)
# Channels
def drive_channel(qubit: int) -> chans.DriveChannel:
"""Return ``DriveChannel`` for ``qubit`` on the active builder backend.
Examples:
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
with pulse.build(backend):
assert pulse.drive_channel(0) == pulse.DriveChannel(0)
.. note:: Requires the active builder context to have a backend set.
"""
# backendV2
if isinstance(active_backend(), BackendV2):
return active_backend().drive_channel(qubit)
return active_backend().configuration().drive(qubit)
def measure_channel(qubit: int) -> chans.MeasureChannel:
"""Return ``MeasureChannel`` for ``qubit`` on the active builder backend.
Examples:
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
with pulse.build(backend):
assert pulse.measure_channel(0) == pulse.MeasureChannel(0)
.. note:: Requires the active builder context to have a backend set.
"""
# backendV2
if isinstance(active_backend(), BackendV2):
return active_backend().measure_channel(qubit)
return active_backend().configuration().measure(qubit)
def acquire_channel(qubit: int) -> chans.AcquireChannel:
"""Return ``AcquireChannel`` for ``qubit`` on the active builder backend.
Examples:
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
with pulse.build(backend):
assert pulse.acquire_channel(0) == pulse.AcquireChannel(0)
.. note:: Requires the active builder context to have a backend set.
"""
# backendV2
if isinstance(active_backend(), BackendV2):
return active_backend().acquire_channel(qubit)
return active_backend().configuration().acquire(qubit)
def control_channels(*qubits: Iterable[int]) -> List[chans.ControlChannel]:
"""Return ``ControlChannel`` for ``qubit`` on the active builder backend.
Return the secondary drive channel for the given qubit -- typically
utilized for controlling multi-qubit interactions.
Examples:
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
with pulse.build(backend):
assert pulse.control_channels(0, 1) == [pulse.ControlChannel(0)]
.. note:: Requires the active builder context to have a backend set.
Args:
qubits: Tuple or list of ordered qubits of the form
`(control_qubit, target_qubit)`.
Returns:
List of control channels associated with the supplied ordered list
of qubits.
"""
# backendV2
if isinstance(active_backend(), BackendV2):
return active_backend().control_channel(qubits)
return active_backend().configuration().control(qubits=qubits)
# Base Instructions
def delay(duration: int, channel: chans.Channel, name: Optional[str] = None):
"""Delay on a ``channel`` for a ``duration``.
Examples:
.. code-block::
from qiskit import pulse
d0 = pulse.DriveChannel(0)
with pulse.build() as pulse_prog:
pulse.delay(10, d0)
Args:
duration: Number of cycles to delay for on ``channel``.
channel: Channel to delay on.
name: Name of the instruction.
"""
append_instruction(instructions.Delay(duration, channel, name=name))
def play(
pulse: Union[library.Pulse, np.ndarray], channel: chans.PulseChannel, name: Optional[str] = None
):
"""Play a ``pulse`` on a ``channel``.
Examples:
.. code-block::
from qiskit import pulse
d0 = pulse.DriveChannel(0)
with pulse.build() as pulse_prog:
pulse.play(pulse.Constant(10, 1.0), d0)
Args:
pulse: Pulse to play.
channel: Channel to play pulse on.
name: Name of the pulse.
"""
if not isinstance(pulse, library.Pulse):
pulse = library.Waveform(pulse)
append_instruction(instructions.Play(pulse, channel, name=name))
def acquire(
duration: int,
qubit_or_channel: Union[int, chans.AcquireChannel],
register: StorageLocation,
**metadata: Union[configuration.Kernel, configuration.Discriminator],
):
"""Acquire for a ``duration`` on a ``channel`` and store the result
in a ``register``.
Examples:
.. code-block::
from qiskit import pulse
acq0 = pulse.AcquireChannel(0)
mem0 = pulse.MemorySlot(0)
with pulse.build() as pulse_prog:
pulse.acquire(100, acq0, mem0)
# measurement metadata
kernel = pulse.configuration.Kernel('linear_discriminator')
pulse.acquire(100, acq0, mem0, kernel=kernel)
.. note:: The type of data acquire will depend on the execution ``meas_level``.
Args:
duration: Duration to acquire data for
qubit_or_channel: Either the qubit to acquire data for or the specific
:class:`~qiskit.pulse.channels.AcquireChannel` to acquire on.
register: Location to store measured result.
metadata: Additional metadata for measurement. See
:class:`~qiskit.pulse.instructions.Acquire` for more information.
Raises:
exceptions.PulseError: If the register type is not supported.
"""
if isinstance(qubit_or_channel, int):
qubit_or_channel = chans.AcquireChannel(qubit_or_channel)
if isinstance(register, chans.MemorySlot):
append_instruction(
instructions.Acquire(duration, qubit_or_channel, mem_slot=register, **metadata)
)
elif isinstance(register, chans.RegisterSlot):
append_instruction(
instructions.Acquire(duration, qubit_or_channel, reg_slot=register, **metadata)
)
else:
raise exceptions.PulseError(f'Register of type: "{type(register)}" is not supported')
def set_frequency(frequency: float, channel: chans.PulseChannel, name: Optional[str] = None):
"""Set the ``frequency`` of a pulse ``channel``.
Examples:
.. code-block::
from qiskit import pulse
d0 = pulse.DriveChannel(0)
with pulse.build() as pulse_prog:
pulse.set_frequency(1e9, d0)
Args:
frequency: Frequency in Hz to set channel to.
channel: Channel to set frequency of.
name: Name of the instruction.
"""
append_instruction(instructions.SetFrequency(frequency, channel, name=name))
def shift_frequency(frequency: float, channel: chans.PulseChannel, name: Optional[str] = None):
"""Shift the ``frequency`` of a pulse ``channel``.
Examples:
.. code-block:: python
:emphasize-lines: 6
from qiskit import pulse
d0 = pulse.DriveChannel(0)
with pulse.build() as pulse_prog:
pulse.shift_frequency(1e9, d0)
Args:
frequency: Frequency in Hz to shift channel frequency by.
channel: Channel to shift frequency of.
name: Name of the instruction.
"""
append_instruction(instructions.ShiftFrequency(frequency, channel, name=name))
def set_phase(phase: float, channel: chans.PulseChannel, name: Optional[str] = None):
"""Set the ``phase`` of a pulse ``channel``.
Examples:
.. code-block:: python
:emphasize-lines: 8
import math
from qiskit import pulse
d0 = pulse.DriveChannel(0)
with pulse.build() as pulse_prog:
pulse.set_phase(math.pi, d0)
Args:
phase: Phase in radians to set channel carrier signal to.
channel: Channel to set phase of.
name: Name of the instruction.
"""
append_instruction(instructions.SetPhase(phase, channel, name=name))
def shift_phase(phase: float, channel: chans.PulseChannel, name: Optional[str] = None):
"""Shift the ``phase`` of a pulse ``channel``.
Examples:
.. code-block::
import math
from qiskit import pulse
d0 = pulse.DriveChannel(0)
with pulse.build() as pulse_prog:
pulse.shift_phase(math.pi, d0)
Args:
phase: Phase in radians to shift channel carrier signal by.
channel: Channel to shift phase of.
name: Name of the instruction.
"""
append_instruction(instructions.ShiftPhase(phase, channel, name))
def snapshot(label: str, snapshot_type: str = "statevector"):
"""Simulator snapshot.
Examples:
.. code-block::
from qiskit import pulse
with pulse.build() as pulse_prog:
pulse.snapshot('first', 'statevector')
Args:
label: Label for snapshot.
snapshot_type: Type of snapshot.
"""
append_instruction(instructions.Snapshot(label, snapshot_type=snapshot_type))
def call(
target: Optional[Union[circuit.QuantumCircuit, Schedule, ScheduleBlock]],
name: Optional[str] = None,
value_dict: Optional[Dict[ParameterValueType, ParameterValueType]] = None,
**kw_params: ParameterValueType,
):
"""Call the subroutine within the currently active builder context with arbitrary
parameters which will be assigned to the target program.
.. note::
If the ``target`` program is a :class:`.ScheduleBlock`, then a :class:`.Reference`
instruction will be created and appended to the current context.
The ``target`` program will be immediately assigned to the current scope as a subroutine.
If the ``target`` program is :class:`.Schedule`, it will be wrapped by the
:class:`.Call` instruction and appended to the current context to avoid
a mixed representation of :class:`.ScheduleBlock` and :class:`.Schedule`.
If the ``target`` program is a :class:`.QuantumCircuit` it will be scheduled
and the new :class:`.Schedule` will be added as a :class:`.Call` instruction.
Examples:
1. Calling a schedule block (recommended)
.. code-block::
from qiskit import circuit, pulse
from qiskit.providers.fake_provider import FakeBogotaV2
backend = FakeBogotaV2()
with pulse.build() as x_sched:
pulse.play(pulse.Gaussian(160, 0.1, 40), pulse.DriveChannel(0))
with pulse.build() as pulse_prog:
pulse.call(x_sched)
print(pulse_prog)
.. parsed-literal::
ScheduleBlock(
ScheduleBlock(
Play(
Gaussian(duration=160, amp=(0.1+0j), sigma=40),
DriveChannel(0)
),
name="block0",
transform=AlignLeft()
),
name="block1",
transform=AlignLeft()
)
The actual program is stored in the reference table attached to the schedule.
.. code-block::
print(pulse_prog.references)
.. parsed-literal::
ReferenceManager:
- ('block0', '634b3b50bd684e26a673af1fbd2d6c81'): ScheduleBlock(Play(Gaussian(...
In addition, you can call a parameterized target program with parameter assignment.
.. code-block::
amp = circuit.Parameter("amp")
with pulse.build() as subroutine:
pulse.play(pulse.Gaussian(160, amp, 40), pulse.DriveChannel(0))
with pulse.build() as pulse_prog:
pulse.call(subroutine, amp=0.1)
pulse.call(subroutine, amp=0.3)
print(pulse_prog)
.. parsed-literal::
ScheduleBlock(
ScheduleBlock(
Play(
Gaussian(duration=160, amp=(0.1+0j), sigma=40),
DriveChannel(0)
),
name="block2",
transform=AlignLeft()
),
ScheduleBlock(
Play(
Gaussian(duration=160, amp=(0.3+0j), sigma=40),
DriveChannel(0)
),
name="block2",
transform=AlignLeft()
),
name="block3",
transform=AlignLeft()
)
If there is a name collision between parameters, you can distinguish them by specifying
each parameter object in a python dictionary. For example,
.. code-block::
amp1 = circuit.Parameter('amp')
amp2 = circuit.Parameter('amp')
with pulse.build() as subroutine:
pulse.play(pulse.Gaussian(160, amp1, 40), pulse.DriveChannel(0))
pulse.play(pulse.Gaussian(160, amp2, 40), pulse.DriveChannel(1))
with pulse.build() as pulse_prog:
pulse.call(subroutine, value_dict={amp1: 0.1, amp2: 0.3})
print(pulse_prog)
.. parsed-literal::
ScheduleBlock(
ScheduleBlock(
Play(Gaussian(duration=160, amp=(0.1+0j), sigma=40), DriveChannel(0)),
Play(Gaussian(duration=160, amp=(0.3+0j), sigma=40), DriveChannel(1)),
name="block4",
transform=AlignLeft()
),
name="block5",
transform=AlignLeft()
)
2. Calling a schedule
.. code-block::
x_sched = backend.instruction_schedule_map.get("x", (0,))
with pulse.build(backend) as pulse_prog:
pulse.call(x_sched)
print(pulse_prog)
.. parsed-literal::
ScheduleBlock(
Call(
Schedule(
(
0,
Play(
Drag(
duration=160,
amp=(0.18989731546729305+0j),
sigma=40,
beta=-1.201258305015517,
name='drag_86a8'
),
DriveChannel(0),
name='drag_86a8'
)
),
name="x"
),
name='x'
),
name="block6",
transform=AlignLeft()
)
Currently, the backend calibrated gates are provided in the form of :class:`~.Schedule`.
The parameter assignment mechanism is available also for schedules.
However, the called schedule is not treated as a reference.
3. Calling a quantum circuit
.. code-block::
backend = FakeBogotaV2()
qc = circuit.QuantumCircuit(1)
qc.x(0)
with pulse.build(backend) as pulse_prog:
pulse.call(qc)
print(pulse_prog)
.. parsed-literal::
ScheduleBlock(
Call(
Schedule(
(
0,
Play(
Drag(
duration=160,
amp=(0.18989731546729305+0j),
sigma=40,
beta=-1.201258305015517,
name='drag_86a8'
),
DriveChannel(0),
name='drag_86a8'
)
),
name="circuit-87"
),
name='circuit-87'
),
name="block7",
transform=AlignLeft()
)
.. warning::
Calling a circuit from a schedule is not encouraged. Currently, the Qiskit execution model
is migrating toward the pulse gate model, where schedules are attached to
circuits through the :meth:`.QuantumCircuit.add_calibration` method.
Args:
target: Target circuit or pulse schedule to call.
name: Optional. A unique name of subroutine if defined. When the name is explicitly
provided, one cannot call different schedule blocks with the same name.
value_dict: Optional. Parameters assigned to the ``target`` program.
If this dictionary is provided, the ``target`` program is copied and
then stored in the main built schedule and its parameters are assigned to the given values.
This dictionary is keyed on :class:`~.Parameter` objects,
allowing parameter name collision to be avoided.
kw_params: Alternative way to provide parameters.
Since this is keyed on the string parameter name,
the parameters having the same name are all updated together.
If you want to avoid name collision, use ``value_dict`` with :class:`~.Parameter`
objects instead.
"""
_active_builder().call_subroutine(target, name, value_dict, **kw_params)
def reference(name: str, *extra_keys: str):
"""Refer to undefined subroutine by string keys.
A :class:`~qiskit.pulse.instructions.Reference` instruction is implicitly created
and a schedule can be separately registered to the reference at a later stage.
.. code-block:: python
from qiskit import pulse
with pulse.build() as main_prog:
pulse.reference("x_gate", "q0")
with pulse.build() as subroutine:
pulse.play(pulse.Gaussian(160, 0.1, 40), pulse.DriveChannel(0))
main_prog.assign_references(subroutine_dict={("x_gate", "q0"): subroutine})
Args:
name: Name of subroutine.
extra_keys: Helper keys to uniquely specify the subroutine.
"""
_active_builder().append_reference(name, *extra_keys)
# Directives
def barrier(*channels_or_qubits: Union[chans.Channel, int], name: Optional[str] = None):
"""Barrier directive for a set of channels and qubits.
This directive prevents the compiler from moving instructions across
the barrier. Consider the case where we want to enforce that one pulse
happens after another on separate channels, this can be done with:
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
d0 = pulse.DriveChannel(0)
d1 = pulse.DriveChannel(1)
with pulse.build(backend) as barrier_pulse_prog:
pulse.play(pulse.Constant(10, 1.0), d0)
pulse.barrier(d0, d1)
pulse.play(pulse.Constant(10, 1.0), d1)
Of course this could have been accomplished with:
.. code-block::
from qiskit.pulse import transforms
with pulse.build(backend) as aligned_pulse_prog:
with pulse.align_sequential():
pulse.play(pulse.Constant(10, 1.0), d0)
pulse.play(pulse.Constant(10, 1.0), d1)
barrier_pulse_prog = transforms.target_qobj_transform(barrier_pulse_prog)
aligned_pulse_prog = transforms.target_qobj_transform(aligned_pulse_prog)
assert barrier_pulse_prog == aligned_pulse_prog
The barrier allows the pulse compiler to take care of more advanced
scheduling alignment operations across channels. For example
in the case where we are calling an outside circuit or schedule and
want to align a pulse at the end of one call:
.. code-block::
import math
d0 = pulse.DriveChannel(0)
with pulse.build(backend) as pulse_prog:
with pulse.align_right():
pulse.x(1)
# Barrier qubit 1 and d0.
pulse.barrier(1, d0)
# Due to barrier this will play before the gate on qubit 1.
pulse.play(pulse.Constant(10, 1.0), d0)
# This will end at the same time as the pulse above due to
# the barrier.
pulse.x(1)
.. note:: Requires the active builder context to have a backend set if
qubits are barriered on.
Args:
channels_or_qubits: Channels or qubits to barrier.
name: Name for the barrier
"""
channels = _qubits_to_channels(*channels_or_qubits)
if len(channels) > 1:
append_instruction(directives.RelativeBarrier(*channels, name=name))
# Macros
def macro(func: Callable):
"""Wrap a Python function and activate the parent builder context at calling time.
This enables embedding Python functions as builder macros. This generates a new
:class:`pulse.Schedule` that is embedded in the parent builder context with
every call of the decorated macro function. The decorated macro function will
behave as if the function code was embedded inline in the parent builder context
after parameter substitution.
Examples:
.. plot::
:include-source:
from qiskit import pulse
@pulse.macro
def measure(qubit: int):
pulse.play(pulse.GaussianSquare(16384, 256, 15872), pulse.measure_channel(qubit))
mem_slot = pulse.MemorySlot(qubit)
pulse.acquire(16384, pulse.acquire_channel(qubit), mem_slot)
return mem_slot
with pulse.build(backend=backend) as sched:
mem_slot = measure(0)
print(f"Qubit measured into {mem_slot}")
sched.draw()
Args:
func: The Python function to enable as a builder macro. There are no
requirements on the signature of the function, any calls to pulse
builder methods will be added to builder context the wrapped function
is called from.
Returns:
Callable: The wrapped ``func``.
"""
func_name = getattr(func, "__name__", repr(func))
@functools.wraps(func)
def wrapper(*args, **kwargs):
_builder = _active_builder()
# activate the pulse builder before calling the function
with build(backend=_builder.backend, name=func_name) as built:
output = func(*args, **kwargs)
_builder.call_subroutine(built)
return output
return wrapper
def measure(
qubits: Union[List[int], int],
registers: Union[List[StorageLocation], StorageLocation] = None,
) -> Union[List[StorageLocation], StorageLocation]:
"""Measure a qubit within the currently active builder context.
At the pulse level a measurement is composed of both a stimulus pulse and
an acquisition instruction which tells the systems measurement unit to
acquire data and process it. We provide this measurement macro to automate
the process for you, but if desired full control is still available with
:func:`acquire` and :func:`play`.
To use the measurement it is as simple as specifying the qubit you wish to
measure:
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
qubit = 0
with pulse.build(backend) as pulse_prog:
# Do something to the qubit.
qubit_drive_chan = pulse.drive_channel(0)
pulse.play(pulse.Constant(100, 1.0), qubit_drive_chan)
# Measure the qubit.
reg = pulse.measure(qubit)
For now it is not possible to do much with the handle to ``reg`` but in the
future we will support using this handle to a result register to build
up ones program. It is also possible to supply this register:
.. code-block::
with pulse.build(backend) as pulse_prog:
pulse.play(pulse.Constant(100, 1.0), qubit_drive_chan)
# Measure the qubit.
mem0 = pulse.MemorySlot(0)
reg = pulse.measure(qubit, mem0)
assert reg == mem0
.. note:: Requires the active builder context to have a backend set.
Args:
qubits: Physical qubit to measure.
registers: Register to store result in. If not selected the current
behavior is to return the :class:`MemorySlot` with the same
index as ``qubit``. This register will be returned.
Returns:
The ``register`` the qubit measurement result will be stored in.
"""
backend = active_backend()
try:
qubits = list(qubits)
except TypeError:
qubits = [qubits]
if registers is None:
registers = [chans.MemorySlot(qubit) for qubit in qubits]
else:
try:
registers = list(registers)
except TypeError:
registers = [registers]
measure_sched = macros.measure(
qubits=qubits,
backend=backend,
qubit_mem_slots={qubit: register.index for qubit, register in zip(qubits, registers)},
)
# note this is not a subroutine.
# just a macro to automate combination of stimulus and acquisition.
# prepare unique reference name based on qubit and memory slot index.
qubits_repr = "&".join(map(str, qubits))
mslots_repr = "&".join((str(r.index) for r in registers))
_active_builder().call_subroutine(measure_sched, name=f"measure_{qubits_repr}..{mslots_repr}")
if len(qubits) == 1:
return registers[0]
else:
return registers
def measure_all() -> List[chans.MemorySlot]:
r"""Measure all qubits within the currently active builder context.
A simple macro function to measure all of the qubits in the device at the
same time. This is useful for handling device ``meas_map`` and single
measurement constraints.
Examples:
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
with pulse.build(backend) as pulse_prog:
# Measure all qubits and return associated registers.
regs = pulse.measure_all()
.. note::
Requires the active builder context to have a backend set.
Returns:
The ``register``\s the qubit measurement results will be stored in.
"""
backend = active_backend()
qubits = range(num_qubits())
registers = [chans.MemorySlot(qubit) for qubit in qubits]
measure_sched = macros.measure(
qubits=qubits,
backend=backend,
qubit_mem_slots={qubit: qubit for qubit in qubits},
)
# note this is not a subroutine.
# just a macro to automate combination of stimulus and acquisition.
_active_builder().call_subroutine(measure_sched, name="measure_all")
return registers
def delay_qubits(duration: int, *qubits: Union[int, Iterable[int]]):
r"""Insert delays on all of the :class:`channels.Channel`\s that correspond
to the input ``qubits`` at the same time.
Examples:
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse3Q
backend = FakeOpenPulse3Q()
with pulse.build(backend) as pulse_prog:
# Delay for 100 cycles on qubits 0, 1 and 2.
regs = pulse.delay_qubits(100, 0, 1, 2)
.. note:: Requires the active builder context to have a backend set.
Args:
duration: Duration to delay for.
qubits: Physical qubits to delay on. Delays will be inserted based on
the channels returned by :func:`pulse.qubit_channels`.
"""
qubit_chans = set(itertools.chain.from_iterable(qubit_channels(qubit) for qubit in qubits))
with align_left():
for chan in qubit_chans:
delay(duration, chan)
# Gate instructions
def call_gate(gate: circuit.Gate, qubits: Tuple[int, ...], lazy: bool = True):
"""Call a gate and lazily schedule it to its corresponding
pulse instruction.
.. note::
Calling gates directly within the pulse builder namespace will be
deprecated in the future in favor of tight integration with a circuit
builder interface which is under development.
Examples:
.. code-block::
from qiskit import pulse
from qiskit.pulse import builder
from qiskit.circuit.library import standard_gates as gates
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
with pulse.build(backend) as pulse_prog:
builder.call_gate(gates.CXGate(), (0, 1))
We can see the role of the transpiler in scheduling gates by optimizing
away two consecutive CNOT gates:
.. code-block::
with pulse.build(backend) as pulse_prog:
with pulse.transpiler_settings(optimization_level=3):
builder.call_gate(gates.CXGate(), (0, 1))
builder.call_gate(gates.CXGate(), (0, 1))
assert pulse_prog == pulse.Schedule()
.. note:: If multiple gates are called in a row they may be optimized by
the transpiler, depending on the
:func:`pulse.active_transpiler_settings``.
.. note:: Requires the active builder context to have a backend set.
Args:
gate: Circuit gate instance to call.
qubits: Qubits to call gate on.
lazy: If ``false`` the gate will be compiled immediately, otherwise
it will be added onto a lazily evaluated quantum circuit to be
compiled when the builder is forced to by a circuit assumption
being broken, such as the inclusion of a pulse instruction or
new alignment context.
"""
_active_builder().call_gate(gate, qubits, lazy=lazy)
def cx(control: int, target: int): # pylint: disable=invalid-name
"""Call a :class:`~qiskit.circuit.library.standard_gates.CXGate` on the
input physical qubits.
.. note::
Calling gates directly within the pulse builder namespace will be
deprecated in the future in favor of tight integration with a circuit
builder interface which is under development.
Examples:
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
with pulse.build(backend) as pulse_prog:
pulse.cx(0, 1)
"""
call_gate(gates.CXGate(), (control, target))
def u1(theta: float, qubit: int): # pylint: disable=invalid-name
"""Call a :class:`~qiskit.circuit.library.standard_gates.U1Gate` on the
input physical qubit.
.. note::
Calling gates directly within the pulse builder namespace will be
deprecated in the future in favor of tight integration with a circuit
builder interface which is under development.
Examples:
.. code-block::
import math
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
with pulse.build(backend) as pulse_prog:
pulse.u1(math.pi, 1)
"""
call_gate(gates.U1Gate(theta), qubit)
def u2(phi: float, lam: float, qubit: int): # pylint: disable=invalid-name
"""Call a :class:`~qiskit.circuit.library.standard_gates.U2Gate` on the
input physical qubit.
.. note::
Calling gates directly within the pulse builder namespace will be
deprecated in the future in favor of tight integration with a circuit
builder interface which is under development.
Examples:
.. code-block::
import math
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
with pulse.build(backend) as pulse_prog:
pulse.u2(0, math.pi, 1)
"""
call_gate(gates.U2Gate(phi, lam), qubit)
def u3(theta: float, phi: float, lam: float, qubit: int): # pylint: disable=invalid-name
"""Call a :class:`~qiskit.circuit.library.standard_gates.U3Gate` on the
input physical qubit.
.. note::
Calling gates directly within the pulse builder namespace will be
deprecated in the future in favor of tight integration with a circuit
builder interface which is under development.
Examples:
.. code-block::
import math
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
with pulse.build(backend) as pulse_prog:
pulse.u3(math.pi, 0, math.pi, 1)
"""
call_gate(gates.U3Gate(theta, phi, lam), qubit)
def x(qubit: int):
"""Call a :class:`~qiskit.circuit.library.standard_gates.XGate` on the
input physical qubit.
.. note::
Calling gates directly within the pulse builder namespace will be
deprecated in the future in favor of tight integration with a circuit
builder interface which is under development.
Examples:
.. code-block::
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse2Q
backend = FakeOpenPulse2Q()
with pulse.build(backend) as pulse_prog:
pulse.x(0)
"""
call_gate(gates.XGate(), qubit)
|
https://github.com/gustavomirapalheta/Quantum-Computing-with-Qiskit
|
gustavomirapalheta
|
# Setup básico
!pip install qiskit -q
!pip install qiskit[visualization] -q
import qiskit as qk
!pip install qiskit-aer -q
import qiskit_aer as qk_aer
import numpy as np
np.set_printoptions(precision=3, suppress=True)
from matplotlib import pyplot as plt
%matplotlib inline
import pandas as pd
import sklearn as sk
import qiskit as qk
qrx = qk.QuantumRegister(2,'x')
qry = qk.QuantumRegister(2,'y')
qc = qk.QuantumCircuit(qrx,qry)
qc.barrier()
qc.cx(0,2)
qc.cx(0,3)
qc.cx(1,2)
qc.cx(1,3)
qc.barrier()
qc.draw('mpl')
def histograma(qc):
simulador = qk_aer.Aer.get_backend('aer_simulator')
resultado = simulator.run(qk.transpile(qc,simulator),shots=10000).result()
contagens = resultado.get_counts()
grafico = qk.visualization.plot_histogram(contagens)
return(grafico)
def simon(initial_y, initial_x):
import qiskit as qk
qrx = qk.QuantumRegister(2,'x')
crx = qk.ClassicalRegister(4,'c')
qry = qk.QuantumRegister(2,'y')
qc = qk.QuantumCircuit(qrx,qry,crx)
qc.initialize(initial_x,qrx)
qc.initialize(initial_y,qry)
qc.barrier()
qc.cx(0,2)
qc.cx(0,3)
qc.cx(1,2)
qc.cx(1,3)
qc.barrier()
qc.measure([0,1,2,3],[0,1,2,3])
display(qc.draw('mpl'))
grafico = histograma(qc)
return(grafico)
simon([1,0,0,0],[1,0,0,0])
simon([1,0,0,0],[0,0,0,1])
simon([1,0,0,0],[0,1,0,0])
simon([1,0,0,0],[0,0,1,0])
import qiskit as qk
qrx = qk.QuantumRegister(2,'x')
crx = qk.ClassicalRegister(2,'c')
qry = qk.QuantumRegister(2,'y')
qc = qk.QuantumCircuit(qrx,qry,crx)
qc.initialize([1,0,0,0],qrx)
qc.initialize([1,0,0,0],qry)
qc.h([0,1])
qc.barrier()
qc.cx(0,2)
qc.cx(0,3)
qc.cx(1,2)
qc.cx(1,3)
qc.barrier()
qc.h([0,1])
qc.measure([0,1],[0,1])
display(qc.draw('mpl'))
histograma(qc)
import numpy as np
x0 = np.array([[1,0]]).T
x1 = np.array([[1,0]]).T
x1x0 = np.kron(x1,x0)
y0 = np.array([[1,0]]).T
y1 = np.array([[1,0]]).T
y1y0 = np.kron(y1,y0)
psi0 = np.kron(y1y0,x1x0)
psi0.T
H = np.array([[1,1],[1,-1]],dtype='int')
H2 = np.kron(H,H)
I2 = np.eye(4)
I2H2 = np.kron(I2,H2)
psi1 = I2H2.dot(psi0)/(np.sqrt(2)*np.sqrt(2))
I2H2.dot(psi0).T
Tf1_2 = np.eye(16)
Tf1_2 = Tf1_2[:,[0,5,2,7,4,1,6,3,8,9,10,11,12,13,14,15]]
psi2 = Tf1_2.dot(psi1); psi2.T*2
Tf2_3 = np.eye(16)
Tf2_3 = Tf2_3[:,[0,1,2,3,4,13,6,15,8,9,10,11,12,5,14,7]]
psi3 = Tf2_3.dot(psi2); psi3.T*2
Tf3_4 = np.eye(16)
Tf3_4 = Tf3_4[:,[0,1,6,3,4,5,2,7,8,9,10,15,12,13,14,11]]
psi4 = Tf3_4.dot(psi3); psi4.T*2
Tf4_5 = np.eye(16)
Tf4_5 = Tf4_5[:,[0,1,2,11,4,5,14,7,8,9,10,3,12,13,6,15]]
psi5 = Tf4_5.dot(psi4); psi5.T*2
I2 = np.eye(4)
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H)
I2H2 = np.kron(I2,H2)
psi6 = I2H2.dot(psi5)
print(psi6.T*2)
import numpy as np
I2 = np.eye(4, dtype='int');
H2 = np.array([[1, 1, 1, 1],
[1,-1, 1,-1],
[1, 1,-1,-1],
[1,-1,-1, 1]])/2;
I2H2 = np.kron(I2,H2);
print(I2H2*2)
import numpy as np
x0 = np.array([[1,0]]).T
x1 = np.array([[1,0]]).T
x2 = np.array([[1,0]]).T
x2x1x0 = np.kron(x2,np.kron(x1,x0))
x2x1x0.T
y0 = np.array([[1,0]]).T
y1 = np.array([[1,0]]).T
y2 = np.array([[1,0]]).T
y2y1y0 = np.kron(y2,np.kron(y1,y0))
y2y1y0.T
psi0 = np.kron(y2y1y0,x2x1x0)
psi0.T
I3 = np.eye(2**3)
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H)
H3 = np.kron(H,H2)
I3H3 = np.kron(I3,H3)
psi1 = I3H3.dot(psi0)
psi1.T.round(2)
n = 2*3 # 2 números de 3 digitos cada
Uf = np.eye(2**n) # 2^6 = 64 posições
Uf = Uf[:,[ 0, 9,18,27,12, 5,30,23,
8, 1,10,11, 4,13,14,15,
16,17, 2,19,20,21,22, 7,
24,25,26, 3,28,29, 6,31,
32,33,34,35,36,37,38,39,
40,41,42,43,44,45,46,47,
48,49,50,51,52,53,54,55,
56,57,58,59,60,61,62,63]]
psi5 = Uf.dot(psi1)
psi5.T.round(2)
psi6 = I3H3.dot(psi5)
psi6.T
np.where(psi6 > 0)[0]
[format(i,'#08b')[2:] for i in np.where(psi6 > 0)[0]]
import numpy as np
CCNOT = np.eye(8)
CCNOT = CCNOT[:,[0,1,2,7,4,5,6,3]]
CCNOT.dot(CCNOT)
import qiskit as qk
def qNAND(y0,x0):
x = qk.QuantumRegister(1,"x")
y = qk.QuantumRegister(1,"y")
z = qk.QuantumRegister(1,"z")
u = qk.QuantumRegister(1,"u")
c = qk.ClassicalRegister(3,'c')
qc = qk.QuantumCircuit(x,y,z,u,c)
# Put qubits u and z in state |0>
qc.initialize([1,0],z)
qc.initialize([1,0],u)
qc.initialize(y0,y)
qc.initialize(x0,x)
# Perform computation
qc.barrier()
qc.ccx(x,y,z)
qc.x(z)
# Copy CLASSICALY state of z to u
qc.cx(z,u)
qc.barrier()
# Reverse computation
qc.x(z)
qc.ccx(x,y,z)
qc.barrier()
# Measure results
qc.measure(x,c[0])
qc.measure(y,c[1])
qc.measure(u,c[2])
display(qc.draw('mpl'))
simulator = qk_aer.Aer.get_backend("aer_simulator")
results = simulator.run(qk.transpile(qc,simulator), shots=10000).result().get_counts()
grafico = qk.visualization.plot_histogram(results)
return(grafico)
print("0 NAND 0 = 1")
qNAND([1,0],[1,0])
print("0 NAND 1 = 1")
qNAND([1,0],[0,1])
print("1 NAND 0 = 1")
qNAND([0,1],[1,0])
print("1 NAND 1 = 0")
qNAND([0,1],[0,1])
import qiskit as qk
def qOR(y0,x0):
x = qk.QuantumRegister(1,"x")
y = qk.QuantumRegister(1,"y")
z = qk.QuantumRegister(1,"z")
u = qk.QuantumRegister(1,"u")
c = qk.ClassicalRegister(3,'c')
# Initialize qubits
qc = qk.QuantumCircuit(x,y,z,u,c)
qc.initialize(x0,x)
qc.initialize(y0,y)
qc.initialize([1,0],z)
qc.initialize([1,0],u)
# Compute function
qc.barrier()
qc.x(x)
qc.x(y)
qc.ccx(x,y,z)
qc.x(z)
qc.cx(z,u)
qc.barrier()
# Reverse computation
qc.x(z)
qc.ccx(x,y,z)
qc.x(y)
qc.x(x)
qc.barrier()
# Measure results
qc.measure(x,c[0])
qc.measure(y,c[1])
qc.measure(u,c[2])
display(qc.draw('mpl'))
# Simulate circuit
simulator = qk_aer.Aer.get_backend('aer_simulator')
results = simulator.run(qk.transpile(qc,simulator),shots=10000).result().get_counts()
grafico = qk.visualization.plot_histogram(results)
return(grafico)
qOR([1,0],[1,0])
qOR([1,0],[0,1])
qOR([0,1],[1,0])
qOR([0,1],[0,1])
import qiskit as qk
def qNXOR(y0,x0,calc=True,show=False):
##################################################
# Create registers #
##################################################
# Base registers
x = qk.QuantumRegister(1,"x")
y = qk.QuantumRegister(1,"y")
# Auxiliary register (for x and y)
z = qk.QuantumRegister(1,"z")
# Auxiliary register (to store x AND y)
a1 = qk.QuantumRegister(1,"a1")
# Auxiliary register (to store NOT(x) AND NOT(y))
a2 = qk.QuantumRegister(1,"a2")
# Auxiliary register (for a1 and a2)
b1 = qk.QuantumRegister(1,"b1")
# Auxiliary register (to store a1 OR a2)
b2 = qk.QuantumRegister(1,"b2")
# Classical Registers to store x,y and final measurement
c = qk.ClassicalRegister(3,"c")
##################################################
# Create Circuit #
##################################################
qc = qk.QuantumCircuit(x,y,z,a1,a2,b1,b2,c)
##################################################
# Initialize registers #
##################################################
qc.initialize(x0,x)
qc.initialize(y0,y)
qc.initialize([1,0],z)
qc.initialize([1,0],a1)
qc.initialize([1,0],a2)
qc.initialize([1,0],b1)
qc.initialize([1,0],b2)
###################################################
# Calculate x AND y. Copy result to a1. Reverse z #
###################################################
qc.barrier()
qc.ccx(x,y,z)
qc.cx(z,a1)
qc.ccx(x,y,z)
qc.barrier()
#########################################################
# Calc. NOT(x) AND NOT(y). Copy result to a2. Reverse z #
#########################################################
qc.barrier()
qc.x(x)
qc.x(y)
qc.ccx(x,y,z)
qc.cx(z,a2)
qc.ccx(x,y,z)
qc.x(y)
qc.x(x)
qc.barrier()
#################################################
# Calc. a1 OR a2. Copy result to b2. Reverse b1 #
#################################################
qc.barrier()
qc.x(a1)
qc.x(a2)
qc.ccx(a1,a2,b1)
qc.x(b1)
qc.cx(b1,b2)
qc.x(b1)
qc.ccx(a1,a2,b1)
qc.barrier()
#################################################
# Measure b2 #
#################################################
qc.measure(x,c[0])
qc.measure(y,c[1])
qc.measure(b2,c[2])
#################################################
# Draw circuit #
#################################################
if show:
display(qc.draw("mpl"))
#################################################
# Run circuit. Collect results #
#################################################
if calc:
simulator = qk_aer.Aer.get_backend("aer_simulator")
results = simulator.run(qk.transpile(qc,simulator),shots=10000).result().get_counts()
grafico = qk.visualization.plot_histogram(results)
return(grafico)
else:
return()
qNXOR([1,0],[1,0],False,True)
qNXOR([1,0],[1,0])
qNXOR([1,0],[0,1])
qNXOR([0,1],[1,0])
qNXOR([0,1],[0,1])
x0 = np.array([1,1])/np.sqrt(2)
y0 = np.array([1,1])/np.sqrt(2)
qNXOR(y0,x0)
import qiskit as qk
from qiskit.quantum_info.operators import Operator
qr = qk.QuantumRegister(6,"q")
cr = qk.ClassicalRegister(6,"c")
qc = qk.QuantumCircuit(qr,cr)
for i in range(6):
qc.initialize([1,0],i)
for i in range(3):
qc.h(i)
oracle = np.eye(2**6)
oracle[:,[ 0, 0]] = oracle[:,[ 0, 0]]
oracle[:,[ 1, 9]] = oracle[:,[ 9, 1]]
oracle[:,[ 2, 18]] = oracle[:,[ 18, 2]]
oracle[:,[ 3, 27]] = oracle[:,[ 27, 3]]
oracle[:,[ 4, 12]] = oracle[:,[ 12, 4]]
oracle[:,[ 5, 5]] = oracle[:,[ 5, 5]]
oracle[:,[ 6, 30]] = oracle[:,[ 30, 6]]
oracle[:,[ 7, 23]] = oracle[:,[ 23, 7]]
oracle = Operator(oracle)
qc.append(oracle,qr)
for i in range(3):
qc.h(i)
qc.barrier()
for i in range(3):
qc.measure(i,i)
display(qc.draw("mpl"))
simulator = qk_aer.Aer.get_backend("aer_simulator")
results = simulator.run(qk.transpile(qc,simulator),shots=10000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
oracle = np.eye(8)
oracle[:,[2,6]] = oracle[:,[6,2]]
oracle
import numpy as np
x0 = np.array([[1,0]]).T
x1 = np.array([[1,0]]).T
psi0 = np.kron(x1,x0)
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H)
psi1 = H2.dot(psi0)
psi1.T
# Initialize a qubit y in state |1>
y = np.array([[0,1]]).T
# Pass it through a Hadamard gate and obtain state psi2a
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
psi2a = H.dot(y)
psi2a.T
psi2 = np.kron(psi2a,psi1)
psi2.T
oracle = np.eye(8)
oracle[:,[2,6]] = oracle[:,[6,2]]
oracle
psi3 = oracle.dot(psi2)
psi3.T
v0 = np.array([[10,20,-30,40,50]]).T
mu = np.mean(v0)
v0.T, mu
D = v0 - mu
D.T
v1 = 2*np.mean(v0)-v0
v1.T
import numpy as np
A = np.ones(5**2).reshape(5,5)
A = A/5
I = np.eye(5)
R = 2*A-I
R
R.dot(R)
n = 4
I = np.eye(n)
A = np.ones(n**2).reshape(n,n)/n
R = 2*A-I
R
I2 = np.eye(2)
I2R = np.kron(I2,R)
I2R
psi4 = I2R.dot(psi3)
psi4.T
import qiskit as qk
import numpy as np
from qiskit.quantum_info.operators import Operator
q = qk.QuantumRegister(3,'q')
c = qk.ClassicalRegister(3,'c')
qc = qk.QuantumCircuit(q,c)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.h(0)
qc.h(1)
qc.initialize([0,1],2)
qc.h(2)
qc.barrier()
oracle = np.eye(8)
oracle[:,[2,6]] = oracle[:,[6,2]]
oracle = Operator(oracle)
qc.append(oracle,q)
# n = 2 (two digits number to look for)
A = np.ones(4*4).reshape(4,4)/4
I4 = np.eye(4)
R = 2*A - I4
I2 = np.eye(2)
boost = np.kron(I2,R)
boost = Operator(boost)
qc.append(boost,q)
qc.barrier()
qc.measure(q[:2],c[:2])
display(qc.draw('mpl'))
simulator = qk_aer.Aer.get_backend('aer_simulator')
results = simulator.run(qk.transpile(qc,simulator),shots=1000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
x0 = np.array([[1,0]]).T
x1 = np.array([[1,0]]).T
x2 = np.array([[1,0]]).T
x2x1x0 = np.kron(x2,np.kron(x1,x0))
x2x1x0.T
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
H2 = np.kron(H,H)
H3 = np.kron(H,H2)
x = H3.dot(x2x1x0)
x.T
y0 = np.array([[0,1]]).T
y0.T
H = np.array([[1,1],[1,-1]])/np.sqrt(2)
y = H.dot(y0)
y.T
psi0 = np.kron(y,x)
psi0.T
oracle = np.eye(16)
oracle[:,[5,13]] = oracle[:,[13,5]]
psi1 = oracle.dot(psi0)
psi1.T
# n = 8
A = np.ones(8*8).reshape(8,8)/8
I8 = np.eye(8)
R = 2*A-I8
R
I2 = np.eye(2)
I2R = np.kron(I2,R)
psi2 = I2R.dot(psi1)
psi2.T
0.625**2 + 0.625**2
psi3 = I2R.dot(oracle).dot(psi2)
psi3.T
0.687**2 + 0.687**2
I2R.dot(oracle).dot(psi3).T
T = I2R.dot(oracle)
psi = psi1
prob = []
for i in range(25):
prob.append(psi[5,0]**2 + psi[13,0]**2)
psi = T.dot(psi)
from matplotlib import pyplot as plt
plt.plot(list(range(25)), prob);
import qiskit as qk
import numpy as np
from qiskit.quantum_info.operators import Operator
q = qk.QuantumRegister(4,'q')
c = qk.ClassicalRegister(4,'c')
qc = qk.QuantumCircuit(q,c)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.initialize([1,0],2)
qc.h(0)
qc.h(1)
qc.h(2)
qc.initialize([0,1],3)
qc.h(3)
qc.barrier()
# Create oracle matrix
oracle = np.eye(16)
oracle[:,[5,13]] = oracle[:,[13,5]]
# Create rotation about the mean matrix
# n = 3 (three digits number to look for)
A = np.ones(8*8).reshape(8,8)/8
I8 = np.eye(8)
R = 2*A - I8
# Identity matrix to leave fourth qubit undisturbed
I2 = np.eye(2)
# Create second transformation matrix
boost = np.kron(I2,R)
# Combine oracle with second transformation matrix in
# an unique operator
T = boost.dot(oracle)
T = Operator(T)
# Apply operator twice (2 phase inversions and
# rotations about the mean)
qc.append(T,q)
qc.append(T,q)
qc.barrier()
qc.measure(q[:3],c[:3])
display(qc.draw('mpl'))
simulator = qk_aer.Aer.get_backend('aer_simulator')
results = simulator.run(qk.transpile(qc,simulator),shots=1000).result().get_counts()
qk.visualization.plot_histogram(results)
import qiskit as qk
import numpy as np
from qiskit.quantum_info.operators import Operator
q = qk.QuantumRegister(5,'q')
c = qk.ClassicalRegister(5,'c')
qc = qk.QuantumCircuit(q,c)
qc.initialize([1,0],0)
qc.initialize([1,0],1)
qc.initialize([1,0],2)
qc.initialize([1,0],3)
qc.h(0)
qc.h(1)
qc.h(2)
qc.h(3)
qc.initialize([0,1],4)
qc.h(4)
qc.barrier()
# Create oracle matrix
oracle = np.eye(32)
oracle[:,[13,29]] = oracle[:,[29,13]]
# Create rotation about the mean matrix
# n = 4 (four digits number to look for)
A = np.ones(16*16).reshape(16,16)/16
I16 = np.eye(16)
R = 2*A - I16
# Identity matrix to leave fifth qubit undisturbed
I2 = np.eye(2)
# Create second transformation matrix
boost = np.kron(I2,R)
# Combine oracle with second transformation matrix in
# an unique operator
T = boost.dot(oracle)
# n = 4. Therefore it will be necessary 4 T operations
# to get maximum probability.
Tn = T.dot(T).dot(T)
Tn = Operator(Tn)
# Apply operator Tn once (n phase inversions and
# rotations about the mean)
qc.append(Tn,q)
qc.barrier()
qc.measure(q[:4],c[:4])
display(qc.draw('mpl'))
simulator = qk_aer.Aer.get_backend('aer_simulator')
results = simulator.run(qk.transpile(qc,simulator),shots=1000).result().get_counts()
qk.visualization.plot_histogram(results)
import numpy as np
import pandas as pd
N = 35; a = 6
GCD = pd.DataFrame({'N':[N], 'a':[a], 'N-a':[N-a]})
while GCD.iloc[-1,2] != 0:
temp = GCD.iloc[-1].values
temp = np.sort(temp); temp[-1] = temp[-2] - temp[-3]
temp = pd.DataFrame(data = temp.reshape(-1,3), columns = ['N','a','N-a'])
GCD = pd.concat([GCD,temp], ignore_index=True)
GCD
import numpy as np
import pandas as pd
N = 15; a = 9
GCD = pd.DataFrame({'N':[N], 'a':[a], 'N-a':[N-a]})
while GCD.iloc[-1,2] != 0:
temp = GCD.iloc[-1].values
temp = np.sort(temp); temp[-1] = temp[-2] - temp[-3]
temp = pd.DataFrame(data = temp.reshape(-1,3), columns = ['N','a','N-a'])
GCD = pd.concat([GCD,temp], ignore_index=True)
GCD
import numpy as np
np.gcd(6,35), np.gcd(9,15)
import numpy as np
np.gcd(215,35), np.gcd(217,35)
20 % 7
import numpy as np
f = lambda x,a,N: a**x % N
[f(x,2,15) for x in range(10)]
import numpy as np
(13*35)%11, ((2%11)*(24%11))%11
import numpy as np
def f(x,a,N):
a0 = 1
for i in range(x):
a0 = ((a%N)*(a0))%N
return(a0)
[f(x,2,371) for x in range(8)]
[f(x,2,371) for x in range(154,159)]
[f(x,24,371) for x in range(77,81)]
import numpy as np
def fr(a,N):
ax = ((a%N)*(1))%N
x = 1
while ax != 1:
ax = ((a%N)*(ax))%N
x = x+1
return(x)
fr(2,371), fr(6,371), fr(24,371)
import numpy as np
def fr(a,N):
a0 = 1
a0 = ((a%N)*a0)%N
x = 2
find = False
while find==False:
a0 = ((a%N)*(a0))%N
if a0 == 1:
find = True
x = x+1
return(x-1)
N = 35
a = 2
fr(a,N)
2**(12/2)-1, 2**(12/2)+1
np.gcd(63,35), np.gcd(65,35)
import numpy as np
# Function to calculate the period of f(x) = a^x MOD N
def fr(a,N):
a1 = ((a%N)*(1))%N
x = 1
while a1 != 1:
a1 = ((a%N)*a1)%N
x = x+1
return(x)
# Function to factor N based on a
def factor(N, a=2):
r = fr(a,N)
g1 = a**(int(r/2)) - 1
g2 = a**(int(r/2)) + 1
f1 = np.gcd(g1,N)
f2 = np.gcd(g2,N)
return(f1,f2, f1*f2)
factor(247)
factor(1045)
|
https://github.com/ncitron/qiskit-hack
|
ncitron
|
from qiskit import *
from qiskit.tools.visualization import plot_histogram as ph
%matplotlib inline
import math
#0 1 2
#3 4 5
#6 7 8
mat = [0,1,0,0,0,0,1,0,0]
circuit = QuantumCircuit(len(mat))
circuit.h(range(len(mat)))
circuit.barrier()
for i in range(len(mat)):
if mat[i] == 1:
circuit.y(i)
circuit.barrier()
circuit.h(range(len(mat)))
circuit.measure_all()
circuit.draw('mpl')
simulator = Aer.get_backend('qasm_simulator')
result = execute(circuit, backend = simulator, shots = 100).result()
counts = result.get_counts()
print(counts)
def oracle(circuit):
circuit.cz(0,2)
circuit.cz(1,2)
def diffuser(circuit):
"""Apply inversion about the average step of Grover's algorithm."""
qbits = circuit.qubits
nqbits = len(qbits)
for q in range(nqbits):
circuit.h(q)
circuit.x(q)
#Do controlled-Z
circuit.h(2)
circuit.ccx(0,1,2)
circuit.h(2)
for q in range(nqbits):
circuit.x(q)
circuit.h(q)
n=3
barriers = True
grover = QuantumCircuit(n)
for qb in range(n):
grover.h(qb)
if barriers:
grover.barrier()
oracle(grover)
if barriers:
grover.barrier()
diffuser(grover)
grover.measure_all()
grover.draw('mpl')
be = Aer.get_backend('qasm_simulator')
sh = 1024
ph(execute(grover,backend=be,shots=sh).result().get_counts())
from qiskit.quantum_info.operators import Operator
controls = QuantumRegister(2)
circuit = QuantumCircuit(controls)
dd = Operator([
[0, 0, 1, 0],
[0, 0, 0, 1],
[0, 1, 0, 0],
[1, 0, 0, 0]
])
circuit.unitary(dd, [0, 1], label='dd')
circuit.h(0)
circuit.draw('mpl')
# 4-qubit grover's algorithm
pi = math.pi
qc = QuantumCircuit(4)
shots = 2048
qc.h([0,1,2,3])
## Oracle for 0010 AND 1100 ##
qc.barrier()
qc.x([0,2,3])
qc.cu1(pi/4, 0, 3)
qc.cx(0, 1)
qc.cu1(-pi/4, 1, 3)
qc.cx(0, 1)
qc.cu1(pi/4, 1, 3)
qc.cx(1, 2)
qc.cu1(-pi/4, 2, 3)
qc.cx(0, 2)
qc.cu1(pi/4, 2, 3)
qc.cx(1, 2)
qc.cu1(-pi/4, 2, 3)
qc.cx(0, 2)
qc.cu1(pi/4, 2, 3)
qc.x([0,2,3])
qc.x([0,1])
qc.cu1(pi/4, 0, 3)
qc.cx(0, 1)
qc.cu1(-pi/4, 1, 3)
qc.cx(0, 1)
qc.cu1(pi/4, 1, 3)
qc.cx(1, 2)
qc.cu1(-pi/4, 2, 3)
qc.cx(0, 2)
qc.cu1(pi/4, 2, 3)
qc.cx(1, 2)
qc.cu1(-pi/4, 2, 3)
qc.cx(0, 2)
qc.cu1(pi/4, 2, 3)
qc.x([0,1])
qc.barrier()
## Amplification ##
qc.h([0,1,2,3])
qc.x([0,1,2,3])
#Start cccz
qc.cu1(pi/4, 0, 3)
qc.cx(0, 1)
qc.cu1(-pi/4, 1, 3)
qc.cx(0, 1)
qc.cu1(pi/4, 1, 3)
qc.cx(1, 2)
qc.cu1(-pi/4, 2, 3)
qc.cx(0, 2)
qc.cu1(pi/4, 2, 3)
qc.cx(1, 2)
qc.cu1(-pi/4, 2, 3)
qc.cx(0, 2)
qc.cu1(pi/4, 2, 3)
#end cccz
qc.x([0,1,2,3])
qc.h([0,1,2,3])
qc.barrier()
#### Repeat 1
## Oracle for 0010 AND 1100 ##
qc.x([0,2,3])
qc.cu1(pi/4, 0, 3)
qc.cx(0, 1)
qc.cu1(-pi/4, 1, 3)
qc.cx(0, 1)
qc.cu1(pi/4, 1, 3)
qc.cx(1, 2)
qc.cu1(-pi/4, 2, 3)
qc.cx(0, 2)
qc.cu1(pi/4, 2, 3)
qc.cx(1, 2)
qc.cu1(-pi/4, 2, 3)
qc.cx(0, 2)
qc.cu1(pi/4, 2, 3)
qc.x([0,2,3])
qc.x([0,1])
qc.cu1(pi/4, 0, 3)
qc.cx(0, 1)
qc.cu1(-pi/4, 1, 3)
qc.cx(0, 1)
qc.cu1(pi/4, 1, 3)
qc.cx(1, 2)
qc.cu1(-pi/4, 2, 3)
qc.cx(0, 2)
qc.cu1(pi/4, 2, 3)
qc.cx(1, 2)
qc.cu1(-pi/4, 2, 3)
qc.cx(0, 2)
qc.cu1(pi/4, 2, 3)
qc.x([0,1])
qc.barrier()
## Amplification ##
qc.h([0,1,2,3])
qc.x([0,1,2,3])
#Start cccz
qc.cu1(pi/4, 0, 3)
qc.cx(0, 1)
qc.cu1(-pi/4, 1, 3)
qc.cx(0, 1)
qc.cu1(pi/4, 1, 3)
qc.cx(1, 2)
qc.cu1(-pi/4, 2, 3)
qc.cx(0, 2)
qc.cu1(pi/4, 2, 3)
qc.cx(1, 2)
qc.cu1(-pi/4, 2, 3)
qc.cx(0, 2)
qc.cu1(pi/4, 2, 3)
#end cccz
qc.x([0,1,2,3])
qc.h([0,1,2,3])
qc.measure_all()
qc.draw('mpl')
bcn = Aer.get_backend('qasm_simulator')
ph(execute(qc,backend=bcn,shots=shots).result().get_counts())
# one acceptable answer (0010)
circ = QuantumCircuit(4)
circ.h([0,1,2,3])
circ.barrier()
circ.x([0,2,3])
circ.h(3)
circ.mct([0,1,2], 3)
circ.h(3)
circ.x([0,2,3])
circ.barrier()
circ.h([0,1,2,3])
circ.x([0,1,2,3])
circ.h(3)
circ.mct([0,1,2], 3)
circ.h(3)
circ.x([0,1,2,3])
circ.h([0,1,2,3])
circ.barrier()
circ.x([0,2,3])
circ.h(3)
circ.mct([0,1,2], 3)
circ.h(3)
circ.x([0,2,3])
circ.barrier()
circ.h([0,1,2,3])
circ.x([0,1,2,3])
circ.h(3)
circ.mct([0,1,2], 3)
circ.h(3)
circ.x([0,1,2,3])
circ.h([0,1,2,3])
circ.barrier()
circ.x([0,2,3])
circ.h(3)
circ.mct([0,1,2], 3)
circ.h(3)
circ.x([0,2,3])
circ.barrier()
circ.h([0,1,2,3])
circ.x([0,1,2,3])
circ.h(3)
circ.mct([0,1,2], 3)
circ.h(3)
circ.x([0,1,2,3])
circ.h([0,1,2,3])
circ.measure_all()
circ.draw('mpl')
bcnd = Aer.get_backend('qasm_simulator')
ph(execute(circ,backend=bcnd,shots=1024).result().get_counts())
# three acceptable answers (0101, 1111, 1000)
n = 7
s = []
for i in range(n-1):
s.append(i)
qcqc = QuantumCircuit(n)
qcqc.h(range(n))
qcqc.barrier()
qcqc.x([1,3])
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x([1,3])
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x([0,1,2])
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x([0,1,2])
qcqc.barrier()
qcqc.h(range(n))
qcqc.x(range(n))
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x(range(n))
qcqc.h(range(n))
qcqc.barrier()
qcqc.x([1,3])
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x([1,3])
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x([0,1,2])
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x([0,1,2])
qcqc.barrier()
qcqc.h(range(n))
qcqc.x(range(n))
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x(range(n))
qcqc.h(range(n))
qcqc.barrier()
qcqc.x([1,3])
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x([1,3])
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x([0,1,2])
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x([0,1,2])
qcqc.barrier()
qcqc.h(range(n))
qcqc.x(range(n))
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x(range(n))
qcqc.h(range(n))
qcqc.barrier()
qcqc.x([1,3])
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x([1,3])
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x([0,1,2])
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x([0,1,2])
qcqc.barrier()
qcqc.h(range(n))
qcqc.x(range(n))
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x(range(n))
qcqc.h(range(n))
qcqc.barrier()
qcqc.x([1,3])
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x([1,3])
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x([0,1,2])
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x([0,1,2])
qcqc.barrier()
qcqc.h(range(n))
qcqc.x(range(n))
qcqc.h(n-1)
qcqc.mct(s, n-1)
qcqc.h(n-1)
qcqc.x(range(n))
qcqc.h(range(n))
qcqc.measure_all()
qcqc.draw('mpl')
bknd = Aer.get_backend('qasm_simulator')
ph(execute(qcqc,backend=bknd,shots=1024).result().get_counts())
|
https://github.com/UST-QuAntiL/nisq-analyzer-content
|
UST-QuAntiL
|
from qiskit import QuantumRegister, ClassicalRegister
from qiskit import QuantumCircuit, execute, Aer
# https://quantum-circuit.com/app_details/about/66bpe6Jf5mgQMahgd
# oracle = '(A | B) & (A | ~B) & (~A | B)'
qc = QuantumCircuit()
q = QuantumRegister(8, 'q')
c = ClassicalRegister(2, 'c')
qc.add_register(q)
qc.add_register(c)
qc.h(q[0])
qc.h(q[1])
qc.x(q[2])
qc.x(q[3])
qc.x(q[4])
qc.x(q[7])
qc.x(q[0])
qc.x(q[1])
qc.h(q[7])
qc.ccx(q[0], q[1], q[2])
qc.x(q[0])
qc.x(q[1])
qc.x(q[1])
qc.ccx(q[0], q[1], q[3])
qc.x(q[0])
qc.x(q[1])
qc.ccx(q[1], q[0], q[4])
qc.x(q[0])
qc.ccx(q[3], q[2], q[5])
qc.x(q[0])
qc.ccx(q[5], q[4], q[6])
qc.cx(q[6], q[7])
qc.ccx(q[4], q[5], q[6])
qc.ccx(q[2], q[3], q[5])
qc.x(q[4])
qc.ccx(q[0], q[1], q[4])
qc.x(q[0])
qc.x(q[1])
qc.x(q[3])
qc.ccx(q[0], q[1], q[3])
qc.x(q[0])
qc.x(q[1])
qc.x(q[2])
qc.x(q[1])
qc.ccx(q[0], q[1], q[2])
qc.x(q[0])
qc.x(q[1])
qc.h(q[0])
qc.h(q[1])
qc.x(q[0])
qc.x(q[1])
qc.cz(q[0], q[1])
qc.x(q[0])
qc.x(q[1])
qc.h(q[0])
qc.h(q[1])
qc.measure(q[0], c[0])
qc.measure(q[1], c[1])
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
# Necessary imports
import numpy as np
import matplotlib.pyplot as plt
from torch import Tensor
from torch.nn import Linear, CrossEntropyLoss, MSELoss
from torch.optim import LBFGS
from qiskit import QuantumCircuit
from qiskit.utils import algorithm_globals
from qiskit.circuit import Parameter
from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap
from qiskit_machine_learning.neural_networks import SamplerQNN, EstimatorQNN
from qiskit_machine_learning.connectors import TorchConnector
# Set seed for random generators
algorithm_globals.random_seed = 42
# Generate random dataset
# Select dataset dimension (num_inputs) and size (num_samples)
num_inputs = 2
num_samples = 20
# Generate random input coordinates (X) and binary labels (y)
X = 2 * algorithm_globals.random.random([num_samples, num_inputs]) - 1
y01 = 1 * (np.sum(X, axis=1) >= 0) # in { 0, 1}, y01 will be used for SamplerQNN example
y = 2 * y01 - 1 # in {-1, +1}, y will be used for EstimatorQNN example
# Convert to torch Tensors
X_ = Tensor(X)
y01_ = Tensor(y01).reshape(len(y)).long()
y_ = Tensor(y).reshape(len(y), 1)
# Plot dataset
for x, y_target in zip(X, y):
if y_target == 1:
plt.plot(x[0], x[1], "bo")
else:
plt.plot(x[0], x[1], "go")
plt.plot([-1, 1], [1, -1], "--", color="black")
plt.show()
# Set up a circuit
feature_map = ZZFeatureMap(num_inputs)
ansatz = RealAmplitudes(num_inputs)
qc = QuantumCircuit(num_inputs)
qc.compose(feature_map, inplace=True)
qc.compose(ansatz, inplace=True)
qc.draw("mpl")
# Setup QNN
qnn1 = EstimatorQNN(
circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters
)
# Set up PyTorch module
# Note: If we don't explicitly declare the initial weights
# they are chosen uniformly at random from [-1, 1].
initial_weights = 0.1 * (2 * algorithm_globals.random.random(qnn1.num_weights) - 1)
model1 = TorchConnector(qnn1, initial_weights=initial_weights)
print("Initial weights: ", initial_weights)
# Test with a single input
model1(X_[0, :])
# Define optimizer and loss
optimizer = LBFGS(model1.parameters())
f_loss = MSELoss(reduction="sum")
# Start training
model1.train() # set model to training mode
# Note from (https://pytorch.org/docs/stable/optim.html):
# Some optimization algorithms such as LBFGS need to
# reevaluate the function multiple times, so you have to
# pass in a closure that allows them to recompute your model.
# The closure should clear the gradients, compute the loss,
# and return it.
def closure():
optimizer.zero_grad() # Initialize/clear gradients
loss = f_loss(model1(X_), y_) # Evaluate loss function
loss.backward() # Backward pass
print(loss.item()) # Print loss
return loss
# Run optimizer step4
optimizer.step(closure)
# Evaluate model and compute accuracy
y_predict = []
for x, y_target in zip(X, y):
output = model1(Tensor(x))
y_predict += [np.sign(output.detach().numpy())[0]]
print("Accuracy:", sum(y_predict == y) / len(y))
# Plot results
# red == wrongly classified
for x, y_target, y_p in zip(X, y, y_predict):
if y_target == 1:
plt.plot(x[0], x[1], "bo")
else:
plt.plot(x[0], x[1], "go")
if y_target != y_p:
plt.scatter(x[0], x[1], s=200, facecolors="none", edgecolors="r", linewidths=2)
plt.plot([-1, 1], [1, -1], "--", color="black")
plt.show()
# Define feature map and ansatz
feature_map = ZZFeatureMap(num_inputs)
ansatz = RealAmplitudes(num_inputs, entanglement="linear", reps=1)
# Define quantum circuit of num_qubits = input dim
# Append feature map and ansatz
qc = QuantumCircuit(num_inputs)
qc.compose(feature_map, inplace=True)
qc.compose(ansatz, inplace=True)
# Define SamplerQNN and initial setup
parity = lambda x: "{:b}".format(x).count("1") % 2 # optional interpret function
output_shape = 2 # parity = 0, 1
qnn2 = SamplerQNN(
circuit=qc,
input_params=feature_map.parameters,
weight_params=ansatz.parameters,
interpret=parity,
output_shape=output_shape,
)
# Set up PyTorch module
# Reminder: If we don't explicitly declare the initial weights
# they are chosen uniformly at random from [-1, 1].
initial_weights = 0.1 * (2 * algorithm_globals.random.random(qnn2.num_weights) - 1)
print("Initial weights: ", initial_weights)
model2 = TorchConnector(qnn2, initial_weights)
# Define model, optimizer, and loss
optimizer = LBFGS(model2.parameters())
f_loss = CrossEntropyLoss() # Our output will be in the [0,1] range
# Start training
model2.train()
# Define LBFGS closure method (explained in previous section)
def closure():
optimizer.zero_grad(set_to_none=True) # Initialize gradient
loss = f_loss(model2(X_), y01_) # Calculate loss
loss.backward() # Backward pass
print(loss.item()) # Print loss
return loss
# Run optimizer (LBFGS requires closure)
optimizer.step(closure);
# Evaluate model and compute accuracy
y_predict = []
for x in X:
output = model2(Tensor(x))
y_predict += [np.argmax(output.detach().numpy())]
print("Accuracy:", sum(y_predict == y01) / len(y01))
# plot results
# red == wrongly classified
for x, y_target, y_ in zip(X, y01, y_predict):
if y_target == 1:
plt.plot(x[0], x[1], "bo")
else:
plt.plot(x[0], x[1], "go")
if y_target != y_:
plt.scatter(x[0], x[1], s=200, facecolors="none", edgecolors="r", linewidths=2)
plt.plot([-1, 1], [1, -1], "--", color="black")
plt.show()
# Generate random dataset
num_samples = 20
eps = 0.2
lb, ub = -np.pi, np.pi
f = lambda x: np.sin(x)
X = (ub - lb) * algorithm_globals.random.random([num_samples, 1]) + lb
y = f(X) + eps * (2 * algorithm_globals.random.random([num_samples, 1]) - 1)
plt.plot(np.linspace(lb, ub), f(np.linspace(lb, ub)), "r--")
plt.plot(X, y, "bo")
plt.show()
# Construct simple feature map
param_x = Parameter("x")
feature_map = QuantumCircuit(1, name="fm")
feature_map.ry(param_x, 0)
# Construct simple feature map
param_y = Parameter("y")
ansatz = QuantumCircuit(1, name="vf")
ansatz.ry(param_y, 0)
qc = QuantumCircuit(1)
qc.compose(feature_map, inplace=True)
qc.compose(ansatz, inplace=True)
# Construct QNN
qnn3 = EstimatorQNN(circuit=qc, input_params=[param_x], weight_params=[param_y])
# Set up PyTorch module
# Reminder: If we don't explicitly declare the initial weights
# they are chosen uniformly at random from [-1, 1].
initial_weights = 0.1 * (2 * algorithm_globals.random.random(qnn3.num_weights) - 1)
model3 = TorchConnector(qnn3, initial_weights)
# Define optimizer and loss function
optimizer = LBFGS(model3.parameters())
f_loss = MSELoss(reduction="sum")
# Start training
model3.train() # set model to training mode
# Define objective function
def closure():
optimizer.zero_grad(set_to_none=True) # Initialize gradient
loss = f_loss(model3(Tensor(X)), Tensor(y)) # Compute batch loss
loss.backward() # Backward pass
print(loss.item()) # Print loss
return loss
# Run optimizer
optimizer.step(closure)
# Plot target function
plt.plot(np.linspace(lb, ub), f(np.linspace(lb, ub)), "r--")
# Plot data
plt.plot(X, y, "bo")
# Plot fitted line
y_ = []
for x in np.linspace(lb, ub):
output = model3(Tensor([x]))
y_ += [output.detach().numpy()[0]]
plt.plot(np.linspace(lb, ub), y_, "g-")
plt.show()
# Additional torch-related imports
import torch
from torch import cat, no_grad, manual_seed
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import torch.optim as optim
from torch.nn import (
Module,
Conv2d,
Linear,
Dropout2d,
NLLLoss,
MaxPool2d,
Flatten,
Sequential,
ReLU,
)
import torch.nn.functional as F
# Train Dataset
# -------------
# Set train shuffle seed (for reproducibility)
manual_seed(42)
batch_size = 1
n_samples = 100 # We will concentrate on the first 100 samples
# Use pre-defined torchvision function to load MNIST train data
X_train = datasets.MNIST(
root="./data", train=True, download=True, transform=transforms.Compose([transforms.ToTensor()])
)
# Filter out labels (originally 0-9), leaving only labels 0 and 1
idx = np.append(
np.where(X_train.targets == 0)[0][:n_samples], np.where(X_train.targets == 1)[0][:n_samples]
)
X_train.data = X_train.data[idx]
X_train.targets = X_train.targets[idx]
# Define torch dataloader with filtered data
train_loader = DataLoader(X_train, batch_size=batch_size, shuffle=True)
n_samples_show = 6
data_iter = iter(train_loader)
fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3))
while n_samples_show > 0:
images, targets = data_iter.__next__()
axes[n_samples_show - 1].imshow(images[0, 0].numpy().squeeze(), cmap="gray")
axes[n_samples_show - 1].set_xticks([])
axes[n_samples_show - 1].set_yticks([])
axes[n_samples_show - 1].set_title("Labeled: {}".format(targets[0].item()))
n_samples_show -= 1
# Test Dataset
# -------------
# Set test shuffle seed (for reproducibility)
# manual_seed(5)
n_samples = 50
# Use pre-defined torchvision function to load MNIST test data
X_test = datasets.MNIST(
root="./data", train=False, download=True, transform=transforms.Compose([transforms.ToTensor()])
)
# Filter out labels (originally 0-9), leaving only labels 0 and 1
idx = np.append(
np.where(X_test.targets == 0)[0][:n_samples], np.where(X_test.targets == 1)[0][:n_samples]
)
X_test.data = X_test.data[idx]
X_test.targets = X_test.targets[idx]
# Define torch dataloader with filtered data
test_loader = DataLoader(X_test, batch_size=batch_size, shuffle=True)
# Define and create QNN
def create_qnn():
feature_map = ZZFeatureMap(2)
ansatz = RealAmplitudes(2, reps=1)
qc = QuantumCircuit(2)
qc.compose(feature_map, inplace=True)
qc.compose(ansatz, inplace=True)
# REMEMBER TO SET input_gradients=True FOR ENABLING HYBRID GRADIENT BACKPROP
qnn = EstimatorQNN(
circuit=qc,
input_params=feature_map.parameters,
weight_params=ansatz.parameters,
input_gradients=True,
)
return qnn
qnn4 = create_qnn()
# Define torch NN module
class Net(Module):
def __init__(self, qnn):
super().__init__()
self.conv1 = Conv2d(1, 2, kernel_size=5)
self.conv2 = Conv2d(2, 16, kernel_size=5)
self.dropout = Dropout2d()
self.fc1 = Linear(256, 64)
self.fc2 = Linear(64, 2) # 2-dimensional input to QNN
self.qnn = TorchConnector(qnn) # Apply torch connector, weights chosen
# uniformly at random from interval [-1,1].
self.fc3 = Linear(1, 1) # 1-dimensional output from QNN
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = self.dropout(x)
x = x.view(x.shape[0], -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
x = self.qnn(x) # apply QNN
x = self.fc3(x)
return cat((x, 1 - x), -1)
model4 = Net(qnn4)
# Define model, optimizer, and loss function
optimizer = optim.Adam(model4.parameters(), lr=0.001)
loss_func = NLLLoss()
# Start training
epochs = 10 # Set number of epochs
loss_list = [] # Store loss history
model4.train() # Set model to training mode
for epoch in range(epochs):
total_loss = []
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad(set_to_none=True) # Initialize gradient
output = model4(data) # Forward pass
loss = loss_func(output, target) # Calculate loss
loss.backward() # Backward pass
optimizer.step() # Optimize weights
total_loss.append(loss.item()) # Store loss
loss_list.append(sum(total_loss) / len(total_loss))
print("Training [{:.0f}%]\tLoss: {:.4f}".format(100.0 * (epoch + 1) / epochs, loss_list[-1]))
# Plot loss convergence
plt.plot(loss_list)
plt.title("Hybrid NN Training Convergence")
plt.xlabel("Training Iterations")
plt.ylabel("Neg. Log Likelihood Loss")
plt.show()
torch.save(model4.state_dict(), "model4.pt")
qnn5 = create_qnn()
model5 = Net(qnn5)
model5.load_state_dict(torch.load("model4.pt"))
model5.eval() # set model to evaluation mode
with no_grad():
correct = 0
for batch_idx, (data, target) in enumerate(test_loader):
output = model5(data)
if len(output.shape) == 1:
output = output.reshape(1, *output.shape)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
loss = loss_func(output, target)
total_loss.append(loss.item())
print(
"Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%".format(
sum(total_loss) / len(total_loss), correct / len(test_loader) / batch_size * 100
)
)
# Plot predicted labels
n_samples_show = 6
count = 0
fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3))
model5.eval()
with no_grad():
for batch_idx, (data, target) in enumerate(test_loader):
if count == n_samples_show:
break
output = model5(data[0:1])
if len(output.shape) == 1:
output = output.reshape(1, *output.shape)
pred = output.argmax(dim=1, keepdim=True)
axes[count].imshow(data[0].numpy().squeeze(), cmap="gray")
axes[count].set_xticks([])
axes[count].set_yticks([])
axes[count].set_title("Predicted {}".format(pred.item()))
count += 1
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/jdanielescanez/quantum-solver
|
jdanielescanez
|
#!/usr/bin/env python3
# Author: Daniel Escanez-Exposito
from crypto.six_state.participant import Participant
from qiskit import QuantumCircuit
## The Sender entity in the Six-State implementation
## @see https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html
class Sender(Participant):
## Constructor
def __init__(self, name='', original_bits_size=0):
super().__init__(name, original_bits_size)
## Encode the message (values) using a quantum circuit
def encode_quantum_message(self):
encoded_message = []
for i in range(len(self.axes)):
qc = QuantumCircuit(1, 1)
if self.values[i] == 1:
qc.x(0)
if self.axes[i] == 1:
qc.h(0)
elif self.axes[i] == 2:
qc.append(self.hy, [0])
encoded_message.append(qc)
return encoded_message
|
https://github.com/GIRISHBELANI/QC_Benchmarks_using_dm-simulator
|
GIRISHBELANI
|
"""
Amplitude Estimation Benchmark Program via Phase Estimation - QSim
"""
import copy
import sys
import time
import numpy as np
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
sys.path[1:1] = ["_common", "_common/qsim", "quantum-fourier-transform/qsim"]
sys.path[1:1] = ["../../_common", "../../_common/qsim", "../../quantum-fourier-transform/qsim"]
import execute as ex
import metrics as metrics
from execute import BenchmarkResult
from qft_benchmark import inv_qft_gate
# Benchmark Name
benchmark_name = "Amplitude Estimation"
np.random.seed(0)
verbose = False
# saved subcircuits circuits for printing
A_ = None
Q_ = None
cQ_ = None
QC_ = None
QFTI_ = None
############### Circuit Definition
def AmplitudeEstimation(num_state_qubits, num_counting_qubits, a, psi_zero=None, psi_one=None):
num_qubits = num_state_qubits + 1 + num_counting_qubits
qr_state = QuantumRegister(num_state_qubits+1)
qr_counting = QuantumRegister(num_counting_qubits)
cr = ClassicalRegister(num_counting_qubits)
qc = QuantumCircuit(qr_counting, qr_state, cr, name=f"qae-{num_qubits}-{a}")
# create the Amplitude Generator circuit
A = A_gen(num_state_qubits, a, psi_zero, psi_one)
# create the Quantum Operator circuit and a controlled version of it
cQ, Q = Ctrl_Q(num_state_qubits, A)
# save small example subcircuits for visualization
global A_, Q_, cQ_, QFTI_
if (cQ_ and Q_) == None or num_state_qubits <= 6:
if num_state_qubits < 9: cQ_ = cQ; Q_ = Q; A_ = A
if QFTI_ == None or num_qubits <= 5:
if num_qubits < 9: QFTI_ = inv_qft_gate(num_counting_qubits)
# Prepare state from A, and counting qubits with H transform
qc.append(A, [qr_state[i] for i in range(num_state_qubits+1)])
for i in range(num_counting_qubits):
qc.h(qr_counting[i])
repeat = 1
for j in reversed(range(num_counting_qubits)):
for _ in range(repeat):
qc.append(cQ, [qr_counting[j]] + [qr_state[l] for l in range(num_state_qubits+1)])
repeat *= 2
qc.barrier()
# inverse quantum Fourier transform only on counting qubits
qc.append(inv_qft_gate(num_counting_qubits), qr_counting)
qc.barrier()
# measure counting qubits
qc.measure([qr_counting[m] for m in range(num_counting_qubits)], list(range(num_counting_qubits)))
# save smaller circuit example for display
global QC_
if QC_ == None or num_qubits <= 5:
if num_qubits < 9: QC_ = qc
return qc
# Construct A operator that takes |0>_{n+1} to sqrt(1-a) |psi_0>|0> + sqrt(a) |psi_1>|1>
def A_gen(num_state_qubits, a, psi_zero=None, psi_one=None):
if psi_zero==None:
psi_zero = '0'*num_state_qubits
if psi_one==None:
psi_one = '1'*num_state_qubits
theta = 2 * np.arcsin(np.sqrt(a))
# Let the objective be qubit index n; state is on qubits 0 through n-1
qc_A = QuantumCircuit(num_state_qubits+1, name=f"A")
# takes state to |0>_{n} (sqrt(1-a) |0> + sqrt(a) |1>)
qc_A.ry(theta, num_state_qubits)
# takes state to sqrt(1-a) |psi_0>|0> + sqrt(a) |0>_{n}|1>
qc_A.x(num_state_qubits)
for i in range(num_state_qubits):
if psi_zero[i]=='1':
qc_A.cnot(num_state_qubits,i)
qc_A.x(num_state_qubits)
# takes state to sqrt(1-a) |psi_0>|0> + sqrt(a) |psi_1>|1>
for i in range(num_state_qubits):
if psi_one[i]=='1':
qc_A.cnot(num_state_qubits,i)
return qc_A
# Construct the grover-like operator and a controlled version of it
def Ctrl_Q(num_state_qubits, A_circ):
# index n is the objective qubit, and indexes 0 through n-1 are state qubits
qc = QuantumCircuit(num_state_qubits+1, name=f"Q")
temp_A = copy.copy(A_circ)
A_gate = temp_A.to_gate()
A_gate_inv = temp_A.inverse().to_gate()
### Each cycle in Q applies in order: -S_chi, A_circ_inverse, S_0, A_circ
# -S_chi
qc.x(num_state_qubits)
qc.z(num_state_qubits)
qc.x(num_state_qubits)
# A_circ_inverse
qc.append(A_gate_inv, [i for i in range(num_state_qubits+1)])
# S_0
for i in range(num_state_qubits+1):
qc.x(i)
qc.h(num_state_qubits)
qc.mcx([x for x in range(num_state_qubits)], num_state_qubits)
qc.h(num_state_qubits)
for i in range(num_state_qubits+1):
qc.x(i)
# A_circ
qc.append(A_gate, [i for i in range(num_state_qubits+1)])
# Create a gate out of the Q operator
qc.to_gate(label='Q')
# and also a controlled version of it
Ctrl_Q_ = qc.control(1)
# and return both
return Ctrl_Q_, qc
# Analyze and print measured results
# Expected result is always the secret_int (which encodes alpha), so fidelity calc is simple
def analyze_and_print_result(qc, result, num_counting_qubits, s_int, num_shots):
if result.backend_name == 'dm_simulator':
benchmark_result = BenchmarkResult(result, num_shots)
probs = benchmark_result.get_probs(num_shots) # get results as measured probability
else:
probs = result.get_counts(qc) # get results as measured counts
# calculate expected output histogram
a = a_from_s_int(s_int, num_counting_qubits)
correct_dist = a_to_bitstring(a, num_counting_qubits)
# print("correct_dist ====== ", correct_dist)
# generate thermal_dist for polarization calculation
thermal_dist = metrics.uniform_dist(num_counting_qubits)
# print("thermal_dist ====== ", thermal_dist)
# convert probs, expectation, and thermal_dist to app form for visibility
# app form of correct distribution is measuring amplitude a 100% of the time
app_counts = bitstring_to_a(probs, num_counting_qubits)
app_correct_dist = {a: 1.0}
app_thermal_dist = bitstring_to_a(thermal_dist, num_counting_qubits)
# print("app_counts ====== ", app_counts)
# print("app_correct_dist ====== ", app_correct_dist)
# print("app_thermal_dist ====== ", app_thermal_dist)
if verbose:
print(f"For amplitude {a}, expected: {correct_dist} measured: {probs}")
print(f" ... For amplitude {a} thermal_dist: {thermal_dist}")
print(f"For amplitude {a}, app expected: {app_correct_dist} measured: {app_counts}")
print(f" ... For amplitude {a} app_thermal_dist: {app_thermal_dist}")
# use polarization fidelity with rescaling
fidelity = metrics.polarization_fidelity(probs, correct_dist, thermal_dist)
#fidelity = metrics.polarization_fidelity(app_counts, app_correct_dist, app_thermal_dist)
# print("fidelity ====== ", fidelity)
hf_fidelity = metrics.hellinger_fidelity_with_expected(probs, correct_dist)
if verbose: print(f" ... fidelity: {fidelity} hf_fidelity: {hf_fidelity}")
return probs, fidelity
def a_to_bitstring(a, num_counting_qubits):
m = num_counting_qubits
# solution 1
num1 = round(np.arcsin(np.sqrt(a)) / np.pi * 2**m)
num2 = round( (np.pi - np.arcsin(np.sqrt(a))) / np.pi * 2**m)
if num1 != num2 and num2 < 2**m and num1 < 2**m:
counts = {format(num1, "0"+str(m)+"b"): 0.5, format(num2, "0"+str(m)+"b"): 0.5}
else:
counts = {format(num1, "0"+str(m)+"b"): 1}
return counts
def bitstring_to_a(counts, num_counting_qubits):
est_counts = {}
m = num_counting_qubits
precision = int(num_counting_qubits / (np.log2(10))) + 2
for key in counts.keys():
r = counts[key]
num = int(key,2) / (2**m)
a_est = round((np.sin(np.pi * num) )** 2, precision)
if a_est not in est_counts.keys():
est_counts[a_est] = 0
est_counts[a_est] += r
return est_counts
def a_from_s_int(s_int, num_counting_qubits):
theta = s_int * np.pi / (2**num_counting_qubits)
precision = int(num_counting_qubits / (np.log2(10))) + 2
a = round(np.sin(theta)**2, precision)
return a
################ Benchmark Loop
# Because circuit size grows significantly with num_qubits
# limit the max_qubits here ...
MAX_QUBITS=8
# Execute program with default parameters
def run(min_qubits=4, max_qubits=8, skip_qubits=1, max_circuits=3, num_shots=100, #for dm-simulator min_qubits=4 because it requires to measure atleast 2 qubits
num_state_qubits=1, # default, not exposed to users
backend_id='dm_simulator', provider_backend=None,
# hub="ibm-q", group="open", project="main",
exec_options=None,
context=None):
print(f"{benchmark_name} Benchmark Program - QSim")
# Clamp the maximum number of qubits
if max_qubits > MAX_QUBITS:
print(f"INFO: {benchmark_name} benchmark is limited to a maximum of {MAX_QUBITS} qubits.")
max_qubits = MAX_QUBITS
# validate parameters (smallest circuit is 3 qubits)
num_state_qubits = max(1, num_state_qubits)
if max_qubits < num_state_qubits + 2:
print(f"ERROR: AE Benchmark needs at least {num_state_qubits + 2} qubits to run")
return
min_qubits = max(max(4, min_qubits), num_state_qubits + 2) # min_qubit=4 for AE using dm-simulator
skip_qubits = max(1, skip_qubits)
#print(f"min, max, state = {min_qubits} {max_qubits} {num_state_qubits}")
# create context identifier
if context is None: context = f"{benchmark_name} Benchmark"
##########
# Initialize metrics module
metrics.init_metrics()
# Define custom result handler
def execution_handler(qc, result, num_qubits, s_int, num_shots):
# determine fidelity of result set
num_counting_qubits = int(num_qubits) - num_state_qubits - 1
counts, fidelity = analyze_and_print_result(qc, result, num_counting_qubits, int(s_int), num_shots)
metrics.store_metric(num_qubits, s_int, 'fidelity', fidelity)
# Initialize execution module using the execution result handler above and specified backend_id
ex.init_execution(execution_handler)
ex.set_execution_target(backend_id, provider_backend=provider_backend,
#hub=hub, group=group, project=project,
exec_options=exec_options,
context=context)
##########
# Execute Benchmark Program N times for multiple circuit sizes
# Accumulate metrics asynchronously as circuits complete
for num_qubits in range(min_qubits, max_qubits + 1, skip_qubits):
# reset random seed
np.random.seed(0)
# as circuit width grows, the number of counting qubits is increased
num_counting_qubits = num_qubits - num_state_qubits - 1
# determine number of circuits to execute for this group
num_circuits = min(2 ** (num_counting_qubits), max_circuits)
print(f"************\nExecuting [{num_circuits}] circuits with num_qubits = {num_qubits}")
if verbose:
print(f" with num_state_qubits = {num_state_qubits} num_counting_qubits = {num_counting_qubits}")
# determine range of secret strings to loop over
if 2**(num_counting_qubits) <= max_circuits:
s_range = list(range(num_circuits))
else:
s_range = np.random.choice(2**(num_counting_qubits), num_circuits, False)
# loop over limited # of secret strings for this
for s_int in s_range:
# create the circuit for given qubit size and secret string, store time metric
ts = time.time()
a_ = a_from_s_int(s_int, num_counting_qubits)
qc = AmplitudeEstimation(num_state_qubits, num_counting_qubits, a_).reverse_bits() #applying reverse_bits() due to change in endianness
metrics.store_metric(num_qubits, s_int, 'create_time', time.time() - ts)
# collapse the 3 sub-circuit levels used in this benchmark (for qiskit)
qc2 = qc.decompose().decompose().decompose()
# submit circuit for execution on target (simulator, cloud simulator, or hardware)
ex.submit_circuit(qc2, num_qubits, s_int, num_shots)
# Wait for some active circuits to complete; report metrics when groups complete
ex.throttle_execution(metrics.finalize_group)
# Wait for all active circuits to complete; report metrics when groups complete
ex.finalize_execution(metrics.finalize_group)
##########
# print a sample circuit
print("Sample Circuit:"); print(QC_ if QC_ != None else " ... too large!")
print("\nControlled Quantum Operator 'cQ' ="); print(cQ_ if cQ_ != None else " ... too large!")
print("\nQuantum Operator 'Q' ="); print(Q_ if Q_ != None else " ... too large!")
print("\nAmplitude Generator 'A' ="); print(A_ if A_ != None else " ... too large!")
print("\nInverse QFT Circuit ="); print(QFTI_ if QC_ != None else " ... too large!")
# Plot metrics for all circuit sizes
metrics.plot_metrics(f"Benchmark Results - {benchmark_name} - QSim")
# if main, execute method
if __name__ == '__main__':
ex.local_args() # calling local_args() needed while taking noise parameters through command line arguments (for individual benchmarks)
run()
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test the optimize-1q-gate pass"""
import unittest
import numpy as np
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister
from qiskit.transpiler import PassManager
from qiskit.transpiler.passes import Optimize1qGates, Unroller
from qiskit.converters import circuit_to_dag
from qiskit.test import QiskitTestCase
from qiskit.circuit import Parameter
from qiskit.circuit.library import U1Gate, U2Gate, U3Gate, UGate, PhaseGate
from qiskit.transpiler.exceptions import TranspilerError
from qiskit.transpiler.target import Target
class TestOptimize1qGates(QiskitTestCase):
"""Test for 1q gate optimizations."""
def test_dont_optimize_id(self):
"""Identity gates are like 'wait' commands.
They should never be optimized (even without barriers).
See: https://github.com/Qiskit/qiskit-terra/issues/2373
"""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.i(qr)
circuit.i(qr)
dag = circuit_to_dag(circuit)
pass_ = Optimize1qGates()
after = pass_.run(dag)
self.assertEqual(dag, after)
def test_optimize_h_gates_pass_manager(self):
"""Transpile: qr:--[H]-[H]-[H]-- == qr:--[u2]--"""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.h(qr[0])
circuit.h(qr[0])
circuit.h(qr[0])
expected = QuantumCircuit(qr)
expected.append(U2Gate(0, np.pi), [qr[0]])
passmanager = PassManager()
passmanager.append(Unroller(["u2"]))
passmanager.append(Optimize1qGates())
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_1q_gates_collapse_identity_equivalent(self):
"""test optimize_1q_gates removes u1(2*pi) rotations.
See: https://github.com/Qiskit/qiskit-terra/issues/159
"""
# ┌───┐┌───┐┌────────┐┌───┐┌─────────┐┌───────┐┌─────────┐┌───┐ ┌─┐»
# qr_0: ┤ H ├┤ X ├┤ U1(2π) ├┤ X ├┤ U1(π/2) ├┤ U1(π) ├┤ U1(π/2) ├┤ X ├─────────┤M├»
# └───┘└─┬─┘└────────┘└─┬─┘└─────────┘└───────┘└─────────┘└─┬─┘┌───────┐└╥┘»
# qr_1: ───────■──────────────■───────────────────────────────────■──┤ U1(π) ├─╫─»
# └───────┘ ║ »
# cr: 2/═══════════════════════════════════════════════════════════════════════╩═»
# 0 »
# «
# «qr_0: ────────────
# « ┌───────┐┌─┐
# «qr_1: ┤ U1(π) ├┤M├
# « └───────┘└╥┘
# «cr: 2/══════════╩═
# « 1
qr = QuantumRegister(2, "qr")
cr = ClassicalRegister(2, "cr")
qc = QuantumCircuit(qr, cr)
qc.h(qr[0])
qc.cx(qr[1], qr[0])
qc.append(U1Gate(2 * np.pi), [qr[0]])
qc.cx(qr[1], qr[0])
qc.append(U1Gate(np.pi / 2), [qr[0]]) # these three should combine
qc.append(U1Gate(np.pi), [qr[0]]) # to identity then
qc.append(U1Gate(np.pi / 2), [qr[0]]) # optimized away.
qc.cx(qr[1], qr[0])
qc.append(U1Gate(np.pi), [qr[1]])
qc.append(U1Gate(np.pi), [qr[1]])
qc.measure(qr[0], cr[0])
qc.measure(qr[1], cr[1])
dag = circuit_to_dag(qc)
simplified_dag = Optimize1qGates().run(dag)
num_u1_gates_remaining = len(simplified_dag.named_nodes("u1"))
self.assertEqual(num_u1_gates_remaining, 0)
def test_optimize_1q_gates_collapse_identity_equivalent_phase_gate(self):
"""test optimize_1q_gates removes u1(2*pi) rotations.
See: https://github.com/Qiskit/qiskit-terra/issues/159
"""
# ┌───┐┌───┐┌───────┐┌───┐┌────────┐┌──────┐┌────────┐┌───┐ ┌─┐»
# qr_0: ┤ H ├┤ X ├┤ P(2π) ├┤ X ├┤ P(π/2) ├┤ P(π) ├┤ P(π/2) ├┤ X ├────────┤M├»
# └───┘└─┬─┘└───────┘└─┬─┘└────────┘└──────┘└────────┘└─┬─┘┌──────┐└╥┘»
# qr_1: ───────■─────────────■────────────────────────────────■──┤ P(π) ├─╫─»
# └──────┘ ║ »
# cr: 2/══════════════════════════════════════════════════════════════════╩═»
# 0 »
# «
# «qr_0: ───────────
# « ┌──────┐┌─┐
# «qr_1: ┤ P(π) ├┤M├
# « └──────┘└╥┘
# «cr: 2/═════════╩═
# « 1
qr = QuantumRegister(2, "qr")
cr = ClassicalRegister(2, "cr")
qc = QuantumCircuit(qr, cr)
qc.h(qr[0])
qc.cx(qr[1], qr[0])
qc.append(PhaseGate(2 * np.pi), [qr[0]])
qc.cx(qr[1], qr[0])
qc.append(PhaseGate(np.pi / 2), [qr[0]]) # these three should combine
qc.append(PhaseGate(np.pi), [qr[0]]) # to identity then
qc.append(PhaseGate(np.pi / 2), [qr[0]]) # optimized away.
qc.cx(qr[1], qr[0])
qc.append(PhaseGate(np.pi), [qr[1]])
qc.append(PhaseGate(np.pi), [qr[1]])
qc.measure(qr[0], cr[0])
qc.measure(qr[1], cr[1])
dag = circuit_to_dag(qc)
simplified_dag = Optimize1qGates(["p", "u2", "u", "cx", "id"]).run(dag)
num_u1_gates_remaining = len(simplified_dag.named_nodes("p"))
self.assertEqual(num_u1_gates_remaining, 0)
def test_ignores_conditional_rotations(self):
"""Conditional rotations should not be considered in the chain.
qr0:--[U1]-[U1]-[U1]-[U1]- qr0:--[U1]-[U1]-
|| || || ||
cr0:===.================== == cr0:===.====.===
|| ||
cr1:========.============= cr1:========.===
"""
qr = QuantumRegister(1, "qr")
cr = ClassicalRegister(2, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.append(U1Gate(0.1), [qr]).c_if(cr, 1)
circuit.append(U1Gate(0.2), [qr]).c_if(cr, 3)
circuit.append(U1Gate(0.3), [qr])
circuit.append(U1Gate(0.4), [qr])
dag = circuit_to_dag(circuit)
expected = QuantumCircuit(qr, cr)
expected.append(U1Gate(0.1), [qr]).c_if(cr, 1)
expected.append(U1Gate(0.2), [qr]).c_if(cr, 3)
expected.append(U1Gate(0.7), [qr])
pass_ = Optimize1qGates()
after = pass_.run(dag)
self.assertEqual(circuit_to_dag(expected), after)
def test_ignores_conditional_rotations_phase_gates(self):
"""Conditional rotations should not be considered in the chain.
qr0:--[U1]-[U1]-[U1]-[U1]- qr0:--[U1]-[U1]-
|| || || ||
cr0:===.================== == cr0:===.====.===
|| ||
cr1:========.============= cr1:========.===
"""
qr = QuantumRegister(1, "qr")
cr = ClassicalRegister(2, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.append(PhaseGate(0.1), [qr]).c_if(cr, 1)
circuit.append(PhaseGate(0.2), [qr]).c_if(cr, 3)
circuit.append(PhaseGate(0.3), [qr])
circuit.append(PhaseGate(0.4), [qr])
dag = circuit_to_dag(circuit)
expected = QuantumCircuit(qr, cr)
expected.append(PhaseGate(0.1), [qr]).c_if(cr, 1)
expected.append(PhaseGate(0.2), [qr]).c_if(cr, 3)
expected.append(PhaseGate(0.7), [qr])
pass_ = Optimize1qGates(["p", "u2", "u", "cx", "id"])
after = pass_.run(dag)
self.assertEqual(circuit_to_dag(expected), after)
def test_in_the_back(self):
"""Optimizations can be in the back of the circuit.
See https://github.com/Qiskit/qiskit-terra/issues/2004.
qr0:--[U1]-[U1]-[H]-- qr0:--[U1]-[H]--
"""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U1Gate(0.3), [qr])
circuit.append(U1Gate(0.4), [qr])
circuit.h(qr)
dag = circuit_to_dag(circuit)
expected = QuantumCircuit(qr)
expected.append(U1Gate(0.7), [qr])
expected.h(qr)
pass_ = Optimize1qGates()
after = pass_.run(dag)
self.assertEqual(circuit_to_dag(expected), after)
def test_in_the_back_phase_gate(self):
"""Optimizations can be in the back of the circuit.
See https://github.com/Qiskit/qiskit-terra/issues/2004.
qr0:--[U1]-[U1]-[H]-- qr0:--[U1]-[H]--
"""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(PhaseGate(0.3), [qr])
circuit.append(PhaseGate(0.4), [qr])
circuit.h(qr)
dag = circuit_to_dag(circuit)
expected = QuantumCircuit(qr)
expected.append(PhaseGate(0.7), [qr])
expected.h(qr)
pass_ = Optimize1qGates(["p", "u2", "u", "cx", "id"])
after = pass_.run(dag)
self.assertEqual(circuit_to_dag(expected), after)
def test_single_parameterized_circuit(self):
"""Parameters should be treated as opaque gates."""
qr = QuantumRegister(1)
qc = QuantumCircuit(qr)
theta = Parameter("theta")
qc.append(U1Gate(0.3), [qr])
qc.append(U1Gate(0.4), [qr])
qc.append(U1Gate(theta), [qr])
qc.append(U1Gate(0.1), [qr])
qc.append(U1Gate(0.2), [qr])
dag = circuit_to_dag(qc)
expected = QuantumCircuit(qr)
expected.append(U1Gate(theta + 1.0), [qr])
after = Optimize1qGates().run(dag)
self.assertEqual(circuit_to_dag(expected), after)
def test_parameterized_circuits(self):
"""Parameters should be treated as opaque gates."""
qr = QuantumRegister(1)
qc = QuantumCircuit(qr)
theta = Parameter("theta")
qc.append(U1Gate(0.3), [qr])
qc.append(U1Gate(0.4), [qr])
qc.append(U1Gate(theta), [qr])
qc.append(U1Gate(0.1), [qr])
qc.append(U1Gate(0.2), [qr])
qc.append(U1Gate(theta), [qr])
qc.append(U1Gate(0.3), [qr])
qc.append(U1Gate(0.2), [qr])
dag = circuit_to_dag(qc)
expected = QuantumCircuit(qr)
expected.append(U1Gate(2 * theta + 1.5), [qr])
after = Optimize1qGates().run(dag)
self.assertEqual(circuit_to_dag(expected), after)
def test_parameterized_expressions_in_circuits(self):
"""Expressions of Parameters should be treated as opaque gates."""
qr = QuantumRegister(1)
qc = QuantumCircuit(qr)
theta = Parameter("theta")
phi = Parameter("phi")
sum_ = theta + phi
product_ = theta * phi
qc.append(U1Gate(0.3), [qr])
qc.append(U1Gate(0.4), [qr])
qc.append(U1Gate(theta), [qr])
qc.append(U1Gate(phi), [qr])
qc.append(U1Gate(sum_), [qr])
qc.append(U1Gate(product_), [qr])
qc.append(U1Gate(0.3), [qr])
qc.append(U1Gate(0.2), [qr])
dag = circuit_to_dag(qc)
expected = QuantumCircuit(qr)
expected.append(U1Gate(2 * theta + 2 * phi + product_ + 1.2), [qr])
after = Optimize1qGates().run(dag)
self.assertEqual(circuit_to_dag(expected), after)
def test_global_phase_u3_on_left(self):
"""Check proper phase accumulation with instruction with no definition."""
qr = QuantumRegister(1)
qc = QuantumCircuit(qr)
u1 = U1Gate(0.1)
u1.definition.global_phase = np.pi / 2
qc.append(u1, [0])
qc.global_phase = np.pi / 3
qc.append(U3Gate(0.1, 0.2, 0.3), [0])
dag = circuit_to_dag(qc)
after = Optimize1qGates().run(dag)
self.assertAlmostEqual(after.global_phase, 5 * np.pi / 6, 8)
def test_global_phase_u_on_left(self):
"""Check proper phase accumulation with instruction with no definition."""
qr = QuantumRegister(1)
qc = QuantumCircuit(qr)
u1 = U1Gate(0.1)
u1.definition.global_phase = np.pi / 2
qc.append(u1, [0])
qc.global_phase = np.pi / 3
qc.append(UGate(0.1, 0.2, 0.3), [0])
dag = circuit_to_dag(qc)
after = Optimize1qGates(["u1", "u2", "u", "cx"]).run(dag)
self.assertAlmostEqual(after.global_phase, 5 * np.pi / 6, 8)
class TestOptimize1qGatesParamReduction(QiskitTestCase):
"""Test for 1q gate optimizations parameter reduction, reduce n in Un"""
def test_optimize_u3_to_u2(self):
"""U3(pi/2, pi/3, pi/4) -> U2(pi/3, pi/4)"""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U3Gate(np.pi / 2, np.pi / 3, np.pi / 4), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(U2Gate(np.pi / 3, np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates())
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u3_to_u2_round(self):
"""U3(1.5707963267948961, 1.0471975511965971, 0.7853981633974489) -> U2(pi/3, pi/4)"""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U3Gate(1.5707963267948961, 1.0471975511965971, 0.7853981633974489), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(U2Gate(np.pi / 3, np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates())
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u3_to_u1(self):
"""U3(0, 0, pi/4) -> U1(pi/4)"""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U3Gate(0, 0, np.pi / 4), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(U1Gate(np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates())
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u3_to_phase_gate(self):
"""U3(0, 0, pi/4) -> U1(pi/4)"""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U3Gate(0, 0, np.pi / 4), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(PhaseGate(np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["p", "u2", "u", "cx", "id"]))
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u3_to_u1_round(self):
"""U3(1e-16, 1e-16, pi/4) -> U1(pi/4)"""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U3Gate(1e-16, 1e-16, np.pi / 4), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(U1Gate(np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates())
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u3_to_phase_round(self):
"""U3(1e-16, 1e-16, pi/4) -> U1(pi/4)"""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U3Gate(1e-16, 1e-16, np.pi / 4), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(PhaseGate(np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["p", "u2", "u", "cx", "id"]))
result = passmanager.run(circuit)
self.assertEqual(expected, result)
class TestOptimize1qGatesBasis(QiskitTestCase):
"""Test for 1q gate optimizations parameter reduction with basis"""
def test_optimize_u3_basis_u3(self):
"""U3(pi/2, pi/3, pi/4) (basis[u3]) -> U3(pi/2, pi/3, pi/4)"""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U3Gate(np.pi / 2, np.pi / 3, np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["u3"]))
result = passmanager.run(circuit)
self.assertEqual(circuit, result)
def test_optimize_u3_basis_u(self):
"""U3(pi/2, pi/3, pi/4) (basis[u3]) -> U(pi/2, pi/3, pi/4)"""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U3Gate(np.pi / 2, np.pi / 3, np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["u"]))
result = passmanager.run(circuit)
expected = QuantumCircuit(qr)
expected.append(UGate(np.pi / 2, np.pi / 3, np.pi / 4), [qr[0]])
self.assertEqual(expected, result)
def test_optimize_u3_basis_u2(self):
"""U3(pi/2, 0, pi/4) -> U2(0, pi/4)"""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U3Gate(np.pi / 2, 0, np.pi / 4), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(U2Gate(0, np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["u2"]))
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u3_basis_u2_with_target(self):
"""U3(pi/2, 0, pi/4) -> U2(0, pi/4)"""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U3Gate(np.pi / 2, 0, np.pi / 4), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(U2Gate(0, np.pi / 4), [qr[0]])
target = Target(num_qubits=1)
target.add_instruction(U2Gate(Parameter("theta"), Parameter("phi")))
passmanager = PassManager()
passmanager.append(Optimize1qGates(target=target))
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u_basis_u(self):
"""U(pi/2, pi/3, pi/4) (basis[u3]) -> U(pi/2, pi/3, pi/4)"""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(UGate(np.pi / 2, np.pi / 3, np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["u"]))
result = passmanager.run(circuit)
self.assertEqual(circuit, result)
def test_optimize_u3_basis_u2_cx(self):
"""U3(pi/2, 0, pi/4) -> U2(0, pi/4). Basis [u2, cx]."""
qr = QuantumRegister(2, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U3Gate(np.pi / 2, 0, np.pi / 4), [qr[0]])
circuit.cx(qr[0], qr[1])
expected = QuantumCircuit(qr)
expected.append(U2Gate(0, np.pi / 4), [qr[0]])
expected.cx(qr[0], qr[1])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["u2", "cx"]))
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u_basis_u2_cx(self):
"""U(pi/2, 0, pi/4) -> U2(0, pi/4). Basis [u2, cx]."""
qr = QuantumRegister(2, "qr")
circuit = QuantumCircuit(qr)
circuit.append(UGate(np.pi / 2, 0, np.pi / 4), [qr[0]])
circuit.cx(qr[0], qr[1])
expected = QuantumCircuit(qr)
expected.append(U2Gate(0, np.pi / 4), [qr[0]])
expected.cx(qr[0], qr[1])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["u2", "cx"]))
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u1_basis_u2_u3(self):
"""U1(pi/4) -> U3(0, 0, pi/4). Basis [u2, u3]."""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U1Gate(np.pi / 4), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(U3Gate(0, 0, np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["u2", "u3"]))
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u1_basis_u2_u(self):
"""U1(pi/4) -> U3(0, 0, pi/4). Basis [u2, u3]."""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U1Gate(np.pi / 4), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(UGate(0, 0, np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["u2", "u"]))
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u1_basis_u2(self):
"""U1(pi/4) -> Raises. Basis [u2]"""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U1Gate(np.pi / 4), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(U3Gate(0, 0, np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["u2"]))
with self.assertRaises(TranspilerError):
_ = passmanager.run(circuit)
def test_optimize_u3_basis_u2_u1(self):
"""U3(pi/2, 0, pi/4) -> U2(0, pi/4). Basis [u2, u1]."""
qr = QuantumRegister(2, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U3Gate(np.pi / 2, 0, np.pi / 4), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(U2Gate(0, np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["u2", "u1"]))
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u3_basis_u2_phase_gate(self):
"""U3(pi/2, 0, pi/4) -> U2(0, pi/4). Basis [u2, p]."""
qr = QuantumRegister(2, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U3Gate(np.pi / 2, 0, np.pi / 4), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(U2Gate(0, np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["u2", "p"]))
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u3_basis_u1(self):
"""U3(0, 0, pi/4) -> U1(pi/4). Basis [u1]."""
qr = QuantumRegister(2, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U3Gate(0, 0, np.pi / 4), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(U1Gate(np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["u1"]))
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u3_basis_phase_gate(self):
"""U3(0, 0, pi/4) -> p(pi/4). Basis [p]."""
qr = QuantumRegister(2, "qr")
circuit = QuantumCircuit(qr)
circuit.append(U3Gate(0, 0, np.pi / 4), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(PhaseGate(np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["p"]))
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u_basis_u1(self):
"""U(0, 0, pi/4) -> U1(pi/4). Basis [u1]."""
qr = QuantumRegister(2, "qr")
circuit = QuantumCircuit(qr)
circuit.append(UGate(0, 0, np.pi / 4), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(U1Gate(np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["u1"]))
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u_basis_phase_gate(self):
"""U(0, 0, pi/4) -> p(pi/4). Basis [p]."""
qr = QuantumRegister(2, "qr")
circuit = QuantumCircuit(qr)
circuit.append(UGate(0, 0, np.pi / 4), [qr[0]])
expected = QuantumCircuit(qr)
expected.append(PhaseGate(np.pi / 4), [qr[0]])
passmanager = PassManager()
passmanager.append(Optimize1qGates(["p"]))
result = passmanager.run(circuit)
self.assertEqual(expected, result)
def test_optimize_u3_with_parameters(self):
"""Test correct behavior for u3 gates."""
phi = Parameter("φ")
alpha = Parameter("α")
qr = QuantumRegister(1, "qr")
qc = QuantumCircuit(qr)
qc.ry(2 * phi, qr[0])
qc.ry(alpha, qr[0])
qc.ry(0.1, qr[0])
qc.ry(0.2, qr[0])
passmanager = PassManager([Unroller(["u3"]), Optimize1qGates()])
result = passmanager.run(qc)
expected = QuantumCircuit(qr)
expected.append(U3Gate(2 * phi, 0, 0), [qr[0]])
expected.append(U3Gate(alpha, 0, 0), [qr[0]])
expected.append(U3Gate(0.3, 0, 0), [qr[0]])
self.assertEqual(expected, result)
if __name__ == "__main__":
unittest.main()
|
https://github.com/qiskit-community/qiskit-jku-provider
|
qiskit-community
|
# -*- coding: utf-8 -*-
# Copyright 2019, IBM.
#
# This source code is licensed under the Apache License, Version 2.0 found in
# the LICENSE.txt file in the root directory of this source tree.
"""Usage examples for the JKU Provider"""
from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit, execute
from qiskit_jku_provider import JKUProvider
JKU = JKUProvider()
jku_backend = JKU.get_backend('qasm_simulator')
print(jku_backend)
# gets the name of the backend.
print(jku_backend.name())
# gets the status of the backend.
print(jku_backend.status())
# returns the provider of the backend
print(jku_backend.provider())
# gets the configuration of the backend.
print(jku_backend.configuration())
# gets the properties of the backend.
print(jku_backend.properties())
# Demonstration of Job
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
qc = QuantumCircuit(qr, cr)
qc.h(qr[0])
qc.cx(qr[0], qr[1])
qc.measure(qr, cr)
job = execute(qc, backend=jku_backend)
# gets the backend the job was run on
backend = job.backend()
print(backend)
# returns the status of the job. Should be running
print(job.status())
# returns the obj that was run
qobj = job.qobj()
print(qobj)
# prints the job id
print(job.job_id())
# cancels the job
print(job.cancel())
# returns the status of the job. Should be canceled
print(job.status())
# runs the qjob on the backend
job2 = backend.run(qobj)
# gets the result of the job. This is a blocker
print(job2.result())
|
https://github.com/kerenavnery/qmail
|
kerenavnery
|
import Protocols
ALICE_ADDR = 'localhost'
OSCAR_ADDR = 'localhost'
ALICE_PORT = 5008
OSCAR_PORT = 5009
def main():
# prepare message
Protocols.multiparty_2grover_local( ALICE_PORT, OSCAR_PORT )
pass
if __name__ == "__main__":
main()
|
https://github.com/duartefrazao/Quantum-Finance-Algorithms
|
duartefrazao
|
from qiskit import QuantumCircuit
from qiskit import transpiler
from qiskit import Aer,BasicAer,execute,execute_function
import time
import math
#circ.measure(1,1)
backend = Aer.get_backend('aer_simulator')
means = {
"h":0,
"cx":0,
"x":0,
"rx":0,
"rz":0,
"sdg":0
}
iterations = 3
sleep_time = 0.2
#Hadamard
times = 0
for i in range(iterations):
circ = QuantumCircuit(1,1)
circ.h(0)
circ.measure(0,0)
job = execute(circ, backend)
times = times + job.result().time_taken
time.sleep(sleep_time)
means['h'] = 100*times/iterations
#X
times = 0
for i in range(iterations):
circ = QuantumCircuit(1,1)
circ.x(0)
circ.measure(0,0)
job = execute(circ, backend)
times = times + job.result().time_taken
time.sleep(sleep_time)
means['x'] = 100*times/iterations
#RZ
times = 0
for i in range(iterations):
circ = QuantumCircuit(1,1)
circ.rz(math.pi/2,0)
circ.measure(0,0)
job = execute(circ, backend)
times = times + job.result().time_taken
time.sleep(sleep_time)
means['rz'] = 100*times/iterations
#RX
times = 0
for i in range(iterations):
circ = QuantumCircuit(1,1)
circ.rx(math.pi/2,0)
circ.measure(0,0)
job = execute(circ, backend)
times = times + job.result().time_taken
time.sleep(sleep_time)
means['rx'] = 100*times/iterations
#CX
times = 0
for i in range(iterations):
circ = QuantumCircuit(2,2)
circ.cx(0,1)
circ.measure(0,0)
circ.measure(1,1)
job = execute(circ, backend)
times = times + job.result().time_taken
time.sleep(sleep_time)
means['cx'] = 100*times/iterations
#SDG
times = 0
for i in range(iterations):
circ = QuantumCircuit(1,1)
circ.sdg(0)
circ.measure(0,0)
job = execute(circ, backend)
times = times + job.result().time_taken
time.sleep(sleep_time)
means['sdg'] = 100*times/iterations
f = open('gate_costs.txt', 'w')
for gate in means:
f.write(gate + ((4-len(gate))*" ") + "- " +str(means[gate]) + "\n")
f.close()
backend = BasicAer.get_backend('qasm_simulator')
from time import time
circ = QuantumCircuit(1,1)
circ.h(0)
job = execute(circ, backend)
times = job.result().time_taken
print(times)
|
https://github.com/devilkiller-ag/UnravelQuantum
|
devilkiller-ag
|
# ########## Import Initialization ############
from qiskit import QuantumCircuit, transpile
from qiskit_aer import AerSimulator
from qiskit.providers.basic_provider import BasicProvider
from qiskit.visualization import plot_histogram, circuit_drawer
from qiskit_ibm_provider.job import job_monitor
from qiskit_ibm_provider import IBMProvider
import streamlit as st
import matplotlib.pyplot as plt
from random import choice
# #############################################
# ########## Deustch Josza Algorithm ##########
def generate_bitstring(n):
return "".join(choice("01") for _ in range(n))
def ConstantFunctionOracle(n, output):
oracle = QuantumCircuit(n + 1) # n input qubits, 1 ancillia qubit for |->
if output == 0:
return oracle
elif output == 1:
# Performing X on all qubits except one qubit(k) is computationally same as performing X only on one qubit(k)
oracle.x(n)
return oracle
else:
return "Error: Invalid function output"
def BalancedFunctionOracle(n):
xGatesString = cxGatesString = generate_bitstring(n)
if len(xGatesString) != n:
return "Error: Invalid length of X Gate String"
if len(cxGatesString) != n:
return "Error: Invalid length of CX Gate String"
oracle = QuantumCircuit(n + 1) # n input qubits, 1 ancillia qubit for |->
# Place X-gates before implementing CX gates in the next loop
for i in range(n):
if xGatesString[i] == "1":
oracle.x(i)
# Place CX-gates to give phase at desired combinations
for m in range(n):
if cxGatesString[m] == "1":
oracle.cx(m, n)
# Place X-gates again to revert to original inputs on 0 to n-1 qubits
for k in range(n):
if xGatesString[k] == "1":
oracle.x(k)
return oracle
def DeustchJoszaAlgo(n, FunctionOracle):
dj_circuit = QuantumCircuit(n + 1, n)
# Apply H-gates
for qubit in range(n):
dj_circuit.h(qubit)
# Put ancillia qubit in state |->
dj_circuit.x(n)
dj_circuit.h(n)
dj_circuit.barrier()
# Add Oracle
dj_circuit = dj_circuit.compose(FunctionOracle)
dj_circuit.barrier()
# Repeat H-Gates
for qubit in range(n):
dj_circuit.h(qubit)
dj_circuit.barrier()
# Measure
for i in range(n):
dj_circuit.measure(i, i)
return dj_circuit
def RunCircuit(circuit, provider, backend_name, shots=1024):
backend = provider.get_backend(backend_name)
job = transpile(circuit, backend=backend, shots=shots)
results = job.result()
counts = results.get_counts()
job_monitor(job)
job.status()
return counts
def run_on_simulator(circuit, provider, backend):
answer = RunCircuit(circuit, provider, backend, shots=1024)
st.subheader("Result Counts:")
st.write(answer) # Display result counts as text
st.subheader("Histogram:")
fig, ax = plt.subplots() # Create a Matplotlib figure and axes
plot_histogram(answer, ax=ax) # Pass the axes to the plot_histogram function
st.pyplot(fig) # Display the Matplotlib figure using st.pyplot
def run_on_real_backend(circuit, provider_api_key, backend):
IBMProvider.save_account(provider_api_key, overwrite=True)
provider = IBMProvider()
# backend = 'ibm_perth'
answer = RunCircuit(circuit, provider, backend, shots=1024)
st.subheader("Result Counts:")
st.write(answer) # Display result counts as text
st.subheader("Histogram:")
fig, ax = plt.subplots() # Create a Matplotlib figure and axes
plot_histogram(answer, ax=ax) # Pass the axes to the plot_histogram function
st.pyplot(fig) # Display the Matplotlib figure using st.pyplot
# ########## Use the DJ Algorithm ##########
# Page Config
st.set_page_config(page_title='Deustch Josza Algorithm - Unravel Quantum', page_icon="⚔️", layout='wide')
st.title("Deustch Josza Algorithm")
n = st.slider("Select the number of qubits (n)", 1, 10, 3)
st.write(f"Selected number of qubits: {n}")
f0allx = ConstantFunctionOracle(n, 0)
f1allx = ConstantFunctionOracle(n, 1)
f01half = BalancedFunctionOracle(n)
functions = {"Constant Function (f(x) = 0)": f0allx, "Constant Function (f(x) = 1)": f1allx, "Balanced Function": f01half}
selected_function = st.selectbox("Select the type of function", list(functions.keys()))
dj_circuit = DeustchJoszaAlgo(n, functions[selected_function])
st.write("**Circuit**")
fig, ax = plt.subplots()
circuit_drawer(dj_circuit, output='mpl', ax=ax) # Display the circuit using Matplotlib
st.pyplot(fig) # Show the Matplotlib figure in Streamlit
# providers = {"BasicAer": BasicProvider, "AerSimulator": AerSimulator}
providers = {"BasicAer": BasicProvider}
selected_provider = st.selectbox("Select Provider", list(providers.keys()))
backends = providers[selected_provider]().backends()
selected_backend = st.selectbox("Select Backend", list(backends))
if st.button("Run on Simulator") and selected_provider in providers:
run_on_simulator(dj_circuit, providers[selected_provider], str(selected_backend))
# provider_api_key = st.text_input("Enter your IBM Quantum Experience API Key (for real backend)")
# if st.button("Run on Real Backend") and provider_api_key:
# backends = IBMProvider.backends()
# selected_backend = st.selectbox("Select Backend", list(backends))
# run_on_real_backend(dj_circuit, provider_api_key, selected_backend)
# ################################### Show the Implementation #########################################
dj_algo_code = '''
# Importing libraries
from qiskit import QuantumCircuit, transpile
from qiskit.providers.basic_provider import BasicProvider
from qiskit_aer import AerSimulator
from qiskit.visualization import plot_histogram, circuit_drawer
from qiskit_ibm_provider.job import job_monitor
from qiskit_ibm_provider import IBMProvider
from random import choice
def ConstantFunctionOracle(n, output):
oracle = QuantumCircuit(n + 1) # n input qubits, 1 ancillia qubit for |->
if output == 0:
return oracle
elif output == 1:
# Performing X on all qubits except one qubit(k) is computationally same as performing X only on one qubit(k)
oracle.x(n)
return oracle
else:
return "Error: Invalid function output"
def BalancedFunctionOracle(n, xGatesString, cxGatesString):
if len(xGatesString) != n:
return "Error: Invalid length of X Gate String"
if len(cxGatesString) != n:
return "Error: Invalid length of CX Gate String"
oracle = QuantumCircuit(n + 1) # n input qubits, 1 ancillia qubit for |->
# Place X-gates before implementing CX gates in the next loop
for i in range(n):
if xGatesString[i] == "1":
oracle.x(i)
# Place CX-gates to give phase at desired combinations
for m in range(n):
if cxGatesString[m] == "1":
oracle.cx(m, n)
# Place X-gates again to revert to original inputs on 0 to n-1 qubits
for k in range(n):
if xGatesString[k] == "1":
oracle.x(k)
return oracle
def DeustchJoszaAlgo(n, FunctionOracle):
dj_circuit = QuantumCircuit(n + 1, n)
# Apply H-gates
for qubit in range(n):
dj_circuit.h(qubit)
# Put ancillia qubit in state |->
dj_circuit.x(n)
dj_circuit.h(n)
dj_circuit.barrier()
# Add Oracle
dj_circuit = dj_circuit.compose(FunctionOracle)
dj_circuit.barrier()
# Repeat H-Gates
for qubit in range(n):
dj_circuit.h(qubit)
dj_circuit.barrier()
# Measure
for i in range(n):
dj_circuit.measure(i, i)
return dj_circuit
def RunCircuit(circuit, provider, backend_name, shots=1024):
backend = provider.get_backend(backend_name)
transpiled_circuit = transpile(circuit, backend=backend)
job = backend.run(transpiled_circuit, shots=shots)
results = job.result()
counts = results.get_counts()
job_monitor(job)
job.status()
return counts
def run_on_simulator(circuit, provider, backend, shots=1024):
answer = RunCircuit(circuit, provider, backend, shots)
plot_histogram(answer)
return answer
def run_on_real_backend(circuit, provider_api_key, backend, shots=1024):
IBMProvider.save_account(provider_api_key, overwrite=True)
provider = IBMProvider()
answer = RunCircuit(circuit, provider, backend, shots)
plot_histogram(answer)
return answer
# Create DJ Circuit
f0allx = ConstantFunctionOracle(n, 0)
f1allx = ConstantFunctionOracle(n, 1)
f01half = BalancedFunctionOracle(n, "101", "101")
dj_circuit = DeustchJoszaAlgo(n, f01half)
dj_circuit.draw('mpl')
# Run on the simulator
provider = BasicProvider
backend = 'qasm_simulator'
run_on_simulator(dj_circuit, provider, backend, shots=1024)
# Run on the real backend
# provider_api_key = # your provider api key
backend = 'ibm_perth'
# run_on_real_backend(dj_circuit, provider_api_key, backend, shots=1024)
'''
st.subheader("Implementation of Deustch Josza Algorithm")
st.write("""
Reference:
- [Deustch Josza Algorithm - Qiskit Textbook](https://learn.qiskit.org/course/ch-algorithms/deutsch-jozsa-algorithm)
- [Deustch Josza Algorithm - Classiq](https://www.classiq.io/insights/the-deutsch-jozsa-algorithm-explained)
""")
st.code(dj_algo_code, language='python')
# ################################### About the author #########################################
st.subheader("About the author: [Ashmit JaiSarita Gupta](https://jaisarita.vercel.app/)")
st.write("""
[Ashmit JaiSarita Gupta](https://jaisarita.vercel.app/) is an engineering physics undergraduate passionate about Quantum Computing, Machine Learning, UI/UX, and Web Development. I am a student driven by the community and who shares what he has learned. I love to work on real world projects about the topics I learn which can be used by others. To accomplish this I frequently attend hackathons and collaborate with companies to work on real-world projects related to my domains. Feel free to contact me if your company is interested in working on awesome projects in these fields with me. I’m currently building most frequently with: JavaScript/Typescript, C++, and Python.Some of the main frameworks and libraries I frequently use are: React.js,Express.js, Tailwind CSS, ShadCN UI, Qiskit,and Pytorch. Explore the below links to explore more about him, his previous projects, blogs, and experience at various organizations.
""")
# ############ Socials ############
c1, c2, c3 = st.columns(3)
with c1:
st.info('**Portfolio: [Ashmit JaiSarita Gupta](https://jaisarita.vercel.app/)**', icon="🔥")
with c2:
st.info('**GitHub: [@devilkiller-ag](https://github.com/devilkiller-ag)**', icon="😸")
with c3:
st.info('**GitLab: [@devilkiller-ag](https://gitlab.com/devilkiller-ag)**', icon="🚀")
c4, c5, c6 = st.columns(3)
with c4:
st.info('**LinkedIn: [jaisarita](https://www.linkedin.com/in/jaisarita/)**', icon="🌐")
with c5:
st.info('**Twitter: [@jaisarita](https://github.com/devilkiller-ag)**', icon="🐤")
with c6:
st.info('**Hashnode: [jaisarita](https://jaisarita.hashnode.dev/)**', icon="✍🏻")
|
https://github.com/Qottmann/Quantum-anomaly-detection
|
Qottmann
|
import time
import numpy as np
import qiskit
from qiskit.opflow import X,Z,I
from qiskit.opflow.state_fns import StateFn, CircuitStateFn
from modules.utils import *
import matplotlib.pyplot as plt
from scipy import sparse
import scipy.sparse.linalg.eigen.arpack as arp
%matplotlib inline
# first need a gate that is the exponential of ZZ, which shouldnt be too difficult since it can be done analytically
L = 2
qreg = qiskit.QuantumRegister(L, 'q')
creg = qiskit.ClassicalRegister(2, 'c')
circ = qiskit.QuantumCircuit(qreg, creg)
circ.rz()
tau = qiskit.circuit.Parameter("tau")
diaglist = [tau, -tau, -tau, tau]
diaglist
dt = 0.05
diaglist = [np.exp(dt), np.exp(-dt), np.exp(-dt), np.exp(dt)]
qiskit.circuit.library.Diagonal(diaglist)
import numpy as np
from qiskit.opflow import I, X, Y, Z, H, CX, Zero, ListOp, PauliExpectation, PauliTrotterEvolution, CircuitSampler, MatrixEvolution, Suzuki
from qiskit.circuit import Parameter
from qiskit import BasicAer
L=5
anti = -1
gx = 1e-2
gz = 1e-2
two_qubit_H2 = QHIsing(L,anti,np.float32(gx),np.float32(gz))
two_qubit_H2 = 1 * (X^X^X^Z^X + Z^Z^Z^Z^X)
two_qubit_H2
evo_time = Parameter('θ')
evolution_op = (evo_time * two_qubit_H2).exp_i()
h2_measurement = StateFn(two_qubit_H2).adjoint()
#print(h2_measurement)
evo_and_meas = h2_measurement @ evolution_op @ Zero
#print(evo_and_meas)
trotterized_op = PauliTrotterEvolution(trotter_mode=Suzuki(order=2, reps=1)).convert(evo_and_meas)
bound = trotterized_op.bind_parameters({evo_time: .5})
diagonalized_meas_op = PauliExpectation().convert(trotterized_op)
evo_time_points = [1,2,3,4]
h2_trotter_expectations = diagonalized_meas_op.bind_parameters({evo_time: evo_time_points})
h2_trotter_expectations.eval()
# Ops
H = QHIsing(L,anti,np.float32(gx),np.float32(gz))
H_meas = StateFn(H).adjoint()
mag = QMag(L,anti)
qiskit.opflow.One^5
qiskit.opflow.VectorStateFn(qiskit.opflow.One^5)
asd = H_meas @ qiskit.opflow.One^5
asd.eval()
evo_time = qiskit.circuit.Parameter('θ') # note that we will have to bind it laterevo_time = Parameter('θ')
evolution_op = (evo_time * H).exp_i() #* 1j
# expH = suzi.convert(H)
evo_and_meas = H_meas @ evolution_op
trotterized_op = qiskit.opflow.evolutions.PauliTrotterEvolution(trotter_mode=qiskit.opflow.evolutions.Suzuki(order=2, reps=1)).convert(evo_and_meas)
bound = trotterized_op.bind_parameters({evo_time: .5})
bound.eval()
diagonalized_meas_op = qiskit.opflow.PauliExpectation().convert(trotterized_op)
h2_trotter_expectations = diagonalized_meas_op.bind_parameters({evo_time: 1})
h2_trotter_expectations.eval()
H.__class__, evolution_op.__class__
def imaginary_time_evolution(tau, L, gx, gz, anti=-1):
H = QHIsing(L,anti,np.float32(gx),np.float32(gz))
evo_time = qiskit.circuit.Parameter('tau') # note that we will have to bind it later
evolution_op = (tau * 1j * H).exp_i()
trotterized_op = qiskit.opflow.evolutions.PauliTrotterEvolution(trotter_mode=qiskit.opflow.evolutions.Suzuki(order=2, reps=1)).convert(H_meas @ evolution_op)
return trotterized_op
trott_op = imaginary_time_evolution(tau=1, L=5, gx=1e-2, gz=1e-2, anti=-1)
trott_op.bind_param({evo_})
bound = trott_op.bind_parameters({evo_time: 1})
bound.to_circuit().draw()
mag_res = ~StateFn(mag) @ StateFn(trott_op)
mag_res.eval()
bound.eval()
bound = trotterized_op.bind_parameters({evo_time: tau})
# this is a dummy circuit for the sake of checking how I can combine the evolved state with a circuit later
circ = qiskit.circuit.library.TwoLocal(5,"rx","cz", reps=1,entanglement="linear")
circ.draw()
circ_fn = CircuitStateFn(circ)
print(circ_fn)
evolved_processed = evolution_op @ circ_fn # first the imaginary time evolution, then the dummy processing
print(evolved_processed )
trotterized_op = qiskit.opflow.evolutions.PauliTrotterEvolution(trotter_mode=qiskit.opflow.evolutions.Suzuki(order=2, reps=1)).convert(evolved_processed)
print(trotterized_op)
bound = trotterized_op.bind_parameters({evo_time: .5j})
bound.to_circuit().draw()
# ED result
Smag = Mag(L,anti)
init_state, E, ham = ising_groundstate(L, anti, np.float(gx), np.float(gz))
Sen = E
Smags = init_state.T.conj()@Smag@init_state #Magnetization with Numpy results
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit.quantum_info import SparsePauliOp
H2_op = SparsePauliOp.from_list(
[
("II", -1.052373245772859),
("IZ", 0.39793742484318045),
("ZI", -0.39793742484318045),
("ZZ", -0.01128010425623538),
("XX", 0.18093119978423156),
]
)
from qiskit.primitives import Estimator
estimator = Estimator()
import numpy as np
from qiskit.algorithms.minimum_eigensolvers import VQE
from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B, SLSQP
from qiskit.circuit.library import TwoLocal
from qiskit.utils import algorithm_globals
# we will iterate over these different optimizers
optimizers = [COBYLA(maxiter=80), L_BFGS_B(maxiter=60), SLSQP(maxiter=60)]
converge_counts = np.empty([len(optimizers)], dtype=object)
converge_vals = np.empty([len(optimizers)], dtype=object)
for i, optimizer in enumerate(optimizers):
print("\rOptimizer: {} ".format(type(optimizer).__name__), end="")
algorithm_globals.random_seed = 50
ansatz = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz")
counts = []
values = []
def store_intermediate_result(eval_count, parameters, mean, std):
counts.append(eval_count)
values.append(mean)
vqe = VQE(estimator, ansatz, optimizer, callback=store_intermediate_result)
result = vqe.compute_minimum_eigenvalue(operator=H2_op)
converge_counts[i] = np.asarray(counts)
converge_vals[i] = np.asarray(values)
print("\rOptimization complete ");
import pylab
pylab.rcParams["figure.figsize"] = (12, 8)
for i, optimizer in enumerate(optimizers):
pylab.plot(converge_counts[i], converge_vals[i], label=type(optimizer).__name__)
pylab.xlabel("Eval count")
pylab.ylabel("Energy")
pylab.title("Energy convergence for various optimizers")
pylab.legend(loc="upper right");
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver
from qiskit.opflow import PauliSumOp
numpy_solver = NumPyMinimumEigensolver()
result = numpy_solver.compute_minimum_eigenvalue(operator=PauliSumOp(H2_op))
ref_value = result.eigenvalue.real
print(f"Reference value: {ref_value:.5f}")
pylab.rcParams["figure.figsize"] = (12, 8)
for i, optimizer in enumerate(optimizers):
pylab.plot(
converge_counts[i],
abs(ref_value - converge_vals[i]),
label=type(optimizer).__name__,
)
pylab.xlabel("Eval count")
pylab.ylabel("Energy difference from solution reference value")
pylab.title("Energy convergence for various optimizers")
pylab.yscale("log")
pylab.legend(loc="upper right");
from qiskit.algorithms.gradients import FiniteDiffEstimatorGradient
estimator = Estimator()
gradient = FiniteDiffEstimatorGradient(estimator, epsilon=0.01)
algorithm_globals.random_seed = 50
ansatz = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz")
optimizer = SLSQP(maxiter=100)
counts = []
values = []
def store_intermediate_result(eval_count, parameters, mean, std):
counts.append(eval_count)
values.append(mean)
vqe = VQE(
estimator, ansatz, optimizer, callback=store_intermediate_result, gradient=gradient
)
result = vqe.compute_minimum_eigenvalue(operator=H2_op)
print(f"Value using Gradient: {result.eigenvalue.real:.5f}")
pylab.rcParams["figure.figsize"] = (12, 8)
pylab.plot(counts, values, label=type(optimizer).__name__)
pylab.xlabel("Eval count")
pylab.ylabel("Energy")
pylab.title("Energy convergence using Gradient")
pylab.legend(loc="upper right");
print(result)
cost_function_evals = result.cost_function_evals
initial_pt = result.optimal_point
estimator1 = Estimator()
gradient1 = FiniteDiffEstimatorGradient(estimator, epsilon=0.01)
ansatz1 = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz")
optimizer1 = SLSQP(maxiter=1000)
vqe1 = VQE(
estimator1, ansatz1, optimizer1, gradient=gradient1, initial_point=initial_pt
)
result1 = vqe1.compute_minimum_eigenvalue(operator=H2_op)
print(result1)
cost_function_evals1 = result1.cost_function_evals
print()
print(
f"cost_function_evals is {cost_function_evals1} with initial point versus {cost_function_evals} without it."
)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/Z-928/Bugs4Q
|
Z-928
|
# https://github.com/Z-726/Bugs-from-Users/edit/main/Program/1999.py
import numpy as np
from qiskit import *
from qiskit.transpiler import transpile
from qiskit.tools.qi.qi import random_unitary_matrix
from qiskit.mapper import two_qubit_kak
from qiskit.mapper import CouplingMap
from qiskit.extensions.standard import SwapGate
from qiskit.converters import circuit_to_dag
def build_qv_circuit(seed, n, depth):
"""Create a quantum program containing model circuits.
The model circuits consist of layers of Haar random
elements of SU(4) applied between corresponding pairs
of qubits in a random bipartition.
name = leading name of circuits
n = number of qubits
depth = ideal depth of each model circuit (over SU(4))
"""
np.random.seed(seed)
q = QuantumRegister(n, "q")
c = ClassicalRegister(n, "c")
# Create measurement subcircuit
qc = QuantumCircuit(q,c)
# For each layer
for j in range(depth):
# Generate uniformly random permutation Pj of [0...n-1]
perm = np.random.permutation(n)
# For each pair p in Pj, generate Haar random SU(4)
# Decompose each SU(4) into CNOT + SU(2) and add to Ci
for k in range(int(np.floor(n/2))):
qubits = [int(perm[2*k]), int(perm[2*k+1])]
U = random_unitary_matrix(4)
for gate in two_qubit_kak(U):
i0 = qubits[gate["args"][0]]
if gate["name"] == "cx":
i1 = qubits[gate["args"][1]]
qc.cx(q[i0], q[i1])
elif gate["name"] == "u1":
qc.u1(gate["params"][2], q[i0])
elif gate["name"] == "u2":
qc.u2(gate["params"][1], gate["params"][2],
q[i0])
elif gate["name"] == "u3":
qc.u3(gate["params"][0], gate["params"][1],
gate["params"][2], q[i0])
elif gate["name"] == "id":
pass # do nothing
#qc.measure(q,c)
return qc
circuit = build_qv_circuit(1234, 20, 100)
dag = circuit_to_dag(circuit)
print(dag.num_tensor_factors())
|
https://github.com/2lambda123/Qiskit-qiskit
|
2lambda123
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=too-many-function-args, unexpected-keyword-arg
"""THIS FILE IS DEPRECATED AND WILL BE REMOVED IN RELEASE 0.9.
"""
import warnings
from qiskit.converters import dag_to_circuit, circuit_to_dag
from qiskit.transpiler import CouplingMap
from qiskit import compiler
from qiskit.transpiler.preset_passmanagers import (default_pass_manager_simulator,
default_pass_manager)
def transpile(circuits, backend=None, basis_gates=None, coupling_map=None,
initial_layout=None, seed_mapper=None, pass_manager=None):
"""transpile one or more circuits.
Args:
circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile
backend (BaseBackend): a backend to compile for
basis_gates (list[str]): list of basis gate names supported by the
target. Default: ['u1','u2','u3','cx','id']
coupling_map (list): coupling map (perhaps custom) to target in mapping
initial_layout (Layout or dict or list):
Initial position of virtual qubits on physical qubits. The final
layout is not guaranteed to be the same, as the transpiler may permute
qubits through swaps or other means.
seed_mapper (int): random seed for the swap_mapper
pass_manager (PassManager): a pass_manager for the transpiler stages
Returns:
QuantumCircuit or list[QuantumCircuit]: transpiled circuit(s).
Raises:
TranspilerError: in case of bad inputs to transpiler or errors in passes
"""
warnings.warn("qiskit.transpiler.transpile() has been deprecated and will be "
"removed in the 0.9 release. Use qiskit.compiler.transpile() instead.",
DeprecationWarning)
return compiler.transpile(circuits=circuits, backend=backend,
basis_gates=basis_gates, coupling_map=coupling_map,
initial_layout=initial_layout, seed_transpiler=seed_mapper,
pass_manager=pass_manager)
def transpile_dag(dag, basis_gates=None, coupling_map=None,
initial_layout=None, seed_mapper=None, pass_manager=None):
"""Deprecated - Use qiskit.compiler.transpile for transpiling from
circuits to circuits.
Transform a dag circuit into another dag circuit
(transpile), through consecutive passes on the dag.
Args:
dag (DAGCircuit): dag circuit to transform via transpilation
basis_gates (list[str]): list of basis gate names supported by the
target. Default: ['u1','u2','u3','cx','id']
coupling_map (list): A graph of coupling::
[
[control0(int), target0(int)],
[control1(int), target1(int)],
]
eg. [[0, 2], [1, 2], [1, 3], [3, 4]}
initial_layout (Layout or None): A layout object
seed_mapper (int): random seed_mapper for the swap mapper
pass_manager (PassManager): pass manager instance for the transpilation process
If None, a default set of passes are run.
Otherwise, the passes defined in it will run.
If contains no passes in it, no dag transformations occur.
Returns:
DAGCircuit: transformed dag
"""
warnings.warn("transpile_dag has been deprecated and will be removed in the "
"0.9 release. Circuits can be transpiled directly to other "
"circuits with the transpile function.", DeprecationWarning)
if basis_gates is None:
basis_gates = ['u1', 'u2', 'u3', 'cx', 'id']
if pass_manager is None:
# default set of passes
# if a coupling map is given compile to the map
if coupling_map:
pass_manager = default_pass_manager(basis_gates,
CouplingMap(coupling_map),
initial_layout,
seed_transpiler=seed_mapper)
else:
pass_manager = default_pass_manager_simulator(basis_gates)
# run the passes specified by the pass manager
# TODO return the property set too. See #1086
name = dag.name
circuit = dag_to_circuit(dag)
circuit = pass_manager.run(circuit)
dag = circuit_to_dag(circuit)
dag.name = name
return dag
|
https://github.com/jonasmaziero/computacao_quantica_qiskit
|
jonasmaziero
| |
https://github.com/emad-boosari/QuEST_Group
|
emad-boosari
|
# Packeges you must load
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit import transpile
from qiskit.providers.aer import QasmSimulator
# The packeges you should load )()
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_state_qsphere
from qiskit.quantum_info import DensityMatrix # For using Density matrix
from qiskit.visualization import plot_state_city
from qiskit.visualization import plot_state_hinton
from qiskit.visualization import plot_state_paulivec
from qiskit.visualization import plot_bloch_multivector
from qiskit.visualization import plot_histogram
q = QuantumRegister(1)
c = ClassicalRegister(1)
qc = QuantumCircuit(q,c)
qc.draw('mpl')
ψ1 = Statevector(qc)
ψ1.draw('latex')
plot_state_qsphere(qc)
Statevector(qc).draw('latex')
ρ1 = DensityMatrix(qc)
ρ1.draw('latex',prefix = '\\rho_1 = ')
plot_state_city(qc)
plot_state_hinton(qc)
plot_state_paulivec(qc)
plot_bloch_multivector(qc)
qc.measure(q[0],c[0])
qc.draw('mpl')
backend = QasmSimulator()
result = backend.run(transpile(qc,backend),shots=1024).result()
counts = result.get_counts()
plot_histogram(counts)
# It can be nice if you try the effect of different gates on a circuit with one qubit gate
|
https://github.com/vm6502q/qiskit-qrack-provider
|
vm6502q
|
from datetime import datetime
import matplotlib.pyplot as plt
from qiskit import QuantumCircuit, BasicAer, execute, IBMQ, transpile
from qiskit.providers import BaseJob
from qiskit.providers.ibmq import least_busy, IBMQJobManager
from qiskit.providers.ibmq.managed import ManagedJobSet
from qiskit.visualization import plot_histogram
import constants
from QCLG_lvl3.classical.bernstein_vazirani_classical import BersteinVaziraniClassical
from QCLG_lvl3.classical.classical_xor import ClassicalXor
from QCLG_lvl3.classical.random_binary import RandomBinary
from QCLG_lvl3.quantum_algorithms.bernstein_vazirani import BernsteinVazirani
from QCLG_lvl3.quantum_algorithms.deutsch_josza import DeutschJosza
from credentials import account_details
class Tools:
@classmethod
def calculate_elapsed_time(cls, first_step: datetime, last_step: datetime):
difference = last_step - first_step
return difference.total_seconds()
@classmethod
def run_on_simulator(cls, circuit: QuantumCircuit):
# use local simulator
backend = BasicAer.get_backend('qasm_simulator')
shots = 1024
results = execute(circuit, backend=backend, shots=shots).result()
answer = results.get_counts()
max_value = 0
max_key = ""
for key, value in answer.items():
if value > max_value:
max_value = value
max_key = key
return max_key[::-1]
@classmethod
def run_on_real_device(cls, circuit: QuantumCircuit, least_busy_backend):
from qiskit.tools.monitor import job_monitor
shots = int(input("Number of shots (distinct executions to run this experiment: )"))
job = execute(circuit, backend=least_busy_backend, shots=shots, optimization_level=3)
job_monitor(job, interval=2)
return job
@classmethod
def find_least_busy_backend_from_open(cls, n):
if account_details.account_token_open is None:
account_token = input("Insert your account token: ")
else:
account_token = account_details.account_token_open
if IBMQ.active_account() is None:
IBMQ.enable_account(account_token)
provider = IBMQ.get_provider(hub='ibm-q')
return least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n + 1) and
not x.configuration().simulator and x.status().operational == True))
@classmethod
def find_least_busy_backend_from_research(cls, n):
if account_details.account_token_research is None \
or account_details.hub is None \
or account_details.group is None \
or account_details.project is None:
account_token = input("Insert your account token: ")
hub = input("Insert your hub: ")
group = input("Insert your group: ")
project = input("Insert your project: ")
else:
account_token = account_details.account_token_research
hub = account_details.hub
group = account_details.group
project = account_details.project
IBMQ.enable_account(account_token)
provider = IBMQ.get_provider(hub=hub, group=group, project=project)
print(provider)
return least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n + 1) and
not x.configuration().simulator and x.status().operational == True))
@classmethod
def print_simul(cls, answer_of_simul, algorithm: str):
print(constants.algorithms[int(algorithm)])
print("\nMeasurements: ", answer_of_simul)
return
@classmethod
def print_real(cls, job: BaseJob, least_busy_backend, algorithm: str):
results = job.result()
answer = results.get_counts()
print("\nTotal counts are:", answer)
elapsed = results.time_taken
print(f"The time it took for the experiment to complete after validation was {elapsed} seconds")
plot_histogram(data=answer, title=f"{constants.algorithms[int(algorithm)]} on {least_busy_backend}")
plt.show()
return
@classmethod
def execute_classically(cls, algorithm):
if algorithm == "0":
return cls.execute_deutsch_josza_classically()
elif algorithm == "1":
return cls.execute_bernstein_vazirani_classically()
@classmethod
def execute_in_simulator(cls, algorithm):
dj_circuit = None
if algorithm == "0":
bits = str(input("Enter a bit sequence for the quantum circuit:"))
dj_circuit = DeutschJosza.deutsch_josza(bits, eval_mode=False)
elif algorithm == "1":
decimals = int(input("Give the upper limit of the random number: "))
random_binary = RandomBinary.generate_random_binary(decimals)
dj_circuit = BernsteinVazirani.bernstein_vazirani(random_binary, eval_mode=False)
return cls.run_on_simulator(dj_circuit)
@classmethod
def execute_in_real_device(cls, algorithm):
if algorithm == "0":
answer = cls.execute_dj_in_real_device()
return answer
elif algorithm == "1":
decimals = int(input("Give the upper limit of the random number: "))
random_binary = RandomBinary.generate_random_binary(decimals)
answer = cls.execute_bv_in_real_device(random_binary)
return answer
@classmethod
def execute_dj_in_real_device(cls):
bits = str(input("Enter a bit sequence for the quantum circuit:"))
least_busy_backend = Tools.choose_from_provider(len(bits) + 1)
dj_circuit = DeutschJosza.deutsch_josza(bits, eval_mode=False)
answer_of_real = Tools.run_on_real_device(dj_circuit, least_busy_backend)
print(f"least busy is {least_busy_backend}")
return answer_of_real
@classmethod
def execute_bv_in_real_device(cls, random_binary: str):
dj_circuit = BernsteinVazirani.bernstein_vazirani(random_binary, eval_mode=False)
least_busy_backend = Tools.choose_from_provider(dj_circuit.qubits)
answer_of_real = Tools.run_on_real_device(dj_circuit, least_busy_backend)
print(f"least busy is {least_busy_backend}")
return answer_of_real
@classmethod
def choose_from_provider(cls, size: int):
least_busy_backend = None
research = input("Do you want to run this experiment on the research backends? (Y/N)")
while research != "Y" and research != "N":
research = input("Do you want to run this experiment on the research backends? (Y/N)")
if research == "N":
least_busy_backend = Tools.find_least_busy_backend_from_open(size)
elif research == "Y":
least_busy_backend = Tools.find_least_busy_backend_from_research(size)
return least_busy_backend
@classmethod
def execute_deutsch_josza_classically(cls):
number_of_bits = int(input("Enter number of bits for a the classical solution:"))
return ClassicalXor.execute_classical_xor(bits=number_of_bits)
@classmethod
def execute_bernstein_vazirani_classically(cls):
decimals = int(input("Give the upper limit of the random number: "))
random_binary = RandomBinary.generate_random_binary(decimals)
return BersteinVaziraniClassical.guess_number(random_binary)
@classmethod
def print_classical_answer(cls, classical_answer, algorithm):
time_to_generate_worst_input = classical_answer[0]
execution_time = classical_answer[1]
bits = classical_answer[2]
function_nature = classical_answer[3]
print(f"Results of classical implementation for the {constants.algorithms[int(algorithm)]} Algorithm:")
print(f"Function is {function_nature}")
print(f"Time to generate worse input for {bits} bits took {time_to_generate_worst_input} seconds.")
print(f"Determining if xor is balanced for {bits} bits took {execution_time} seconds.")
print(classical_answer)
@classmethod
def execute_both(cls, algorithm):
answer = []
if algorithm == "0":
classical = cls.execute_deutsch_josza_classically()
real = cls.execute_dj_in_real_device()
answer.append(classical)
answer.append(real)
elif algorithm == " 1":
classical = cls.execute_bernstein_vazirani_classically()
real = cls.execute_bv_in_real_device(classical)
answer.append(classical)
answer.append(real)
return answer
# #################################################################################################################
# Evaluation methods
@classmethod
def prepare_dj(cls, bits: int):
bit_sequence = "0" * bits
dj_circuit = DeutschJosza.deutsch_josza(bit_sequence, eval_mode=True)
return dj_circuit
@classmethod
def prepare_bv(cls, random_binary: str):
bj_circuit = BernsteinVazirani.bernstein_vazirani(random_binary, eval_mode=True)
return bj_circuit
@classmethod
def deutsch_josza_classical(cls, bits: int):
return ClassicalXor.execute_classical_xor(bits=bits)
@classmethod
def bernstein_vazirani_classical(cls, bits: int):
random_binary = RandomBinary.generate_random_binary_v2(bits)
return BersteinVaziraniClassical.guess_number(random_binary)
@classmethod
def run_batch_job(cls, circuits: list, least_busy_backend) -> ManagedJobSet:
transpiled_circuits = transpile(circuits, backend=least_busy_backend)
# Use Job Manager to break the circuits into multiple jobs.
job_manager = IBMQJobManager()
job_set_eval = job_manager.run(transpiled_circuits, backend=least_busy_backend, name='eval',
max_experiments_per_job=1) # max_experiments_per_job =1 very important to get
# individual execution times
return job_set_eval
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.circuit.library.standard_gates import HGate
qc1 = QuantumCircuit(2)
qc1.x(0)
qc1.h(1)
custom = qc1.to_gate().control(2)
qc2 = QuantumCircuit(4)
qc2.append(custom, [0, 3, 1, 2])
qc2.draw('mpl')
|
https://github.com/swe-train/qiskit__qiskit
|
swe-train
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Unit tests for pulse instructions."""
import numpy as np
from qiskit import pulse, circuit
from qiskit.pulse import channels, configuration, instructions, library, exceptions
from qiskit.pulse.transforms import inline_subroutines, target_qobj_transform
from qiskit.test import QiskitTestCase
class TestAcquire(QiskitTestCase):
"""Acquisition tests."""
def test_can_construct_valid_acquire_command(self):
"""Test if valid acquire command can be constructed."""
kernel_opts = {"start_window": 0, "stop_window": 10}
kernel = configuration.Kernel(name="boxcar", **kernel_opts)
discriminator_opts = {
"neighborhoods": [{"qubits": 1, "channels": 1}],
"cal": "coloring",
"resample": False,
}
discriminator = configuration.Discriminator(
name="linear_discriminator", **discriminator_opts
)
acq = instructions.Acquire(
10,
channels.AcquireChannel(0),
channels.MemorySlot(0),
kernel=kernel,
discriminator=discriminator,
name="acquire",
)
self.assertEqual(acq.duration, 10)
self.assertEqual(acq.discriminator.name, "linear_discriminator")
self.assertEqual(acq.discriminator.params, discriminator_opts)
self.assertEqual(acq.kernel.name, "boxcar")
self.assertEqual(acq.kernel.params, kernel_opts)
self.assertIsInstance(acq.id, int)
self.assertEqual(acq.name, "acquire")
self.assertEqual(
acq.operands,
(
10,
channels.AcquireChannel(0),
channels.MemorySlot(0),
None,
kernel,
discriminator,
),
)
def test_instructions_hash(self):
"""Test hashing for acquire instruction."""
acq_1 = instructions.Acquire(
10,
channels.AcquireChannel(0),
channels.MemorySlot(0),
name="acquire",
)
acq_2 = instructions.Acquire(
10,
channels.AcquireChannel(0),
channels.MemorySlot(0),
name="acquire",
)
hash_1 = hash(acq_1)
hash_2 = hash(acq_2)
self.assertEqual(hash_1, hash_2)
class TestDelay(QiskitTestCase):
"""Delay tests."""
def test_delay(self):
"""Test delay."""
delay = instructions.Delay(10, channels.DriveChannel(0), name="test_name")
self.assertIsInstance(delay.id, int)
self.assertEqual(delay.name, "test_name")
self.assertEqual(delay.duration, 10)
self.assertIsInstance(delay.duration, int)
self.assertEqual(delay.operands, (10, channels.DriveChannel(0)))
self.assertEqual(delay, instructions.Delay(10, channels.DriveChannel(0)))
self.assertNotEqual(delay, instructions.Delay(11, channels.DriveChannel(1)))
self.assertEqual(repr(delay), "Delay(10, DriveChannel(0), name='test_name')")
# Test numpy int for duration
delay = instructions.Delay(np.int32(10), channels.DriveChannel(0), name="test_name2")
self.assertEqual(delay.duration, 10)
self.assertIsInstance(delay.duration, np.integer)
def test_operator_delay(self):
"""Test Operator(delay)."""
from qiskit.circuit import QuantumCircuit
from qiskit.quantum_info import Operator
circ = QuantumCircuit(1)
circ.delay(10)
op_delay = Operator(circ)
expected = QuantumCircuit(1)
expected.i(0)
op_identity = Operator(expected)
self.assertEqual(op_delay, op_identity)
class TestSetFrequency(QiskitTestCase):
"""Set frequency tests."""
def test_freq(self):
"""Test set frequency basic functionality."""
set_freq = instructions.SetFrequency(4.5e9, channels.DriveChannel(1), name="test")
self.assertIsInstance(set_freq.id, int)
self.assertEqual(set_freq.duration, 0)
self.assertEqual(set_freq.frequency, 4.5e9)
self.assertEqual(set_freq.operands, (4.5e9, channels.DriveChannel(1)))
self.assertEqual(
set_freq, instructions.SetFrequency(4.5e9, channels.DriveChannel(1), name="test")
)
self.assertNotEqual(
set_freq, instructions.SetFrequency(4.5e8, channels.DriveChannel(1), name="test")
)
self.assertEqual(repr(set_freq), "SetFrequency(4500000000.0, DriveChannel(1), name='test')")
def test_freq_non_pulse_channel(self):
"""Test set frequency constructor with illegal channel"""
with self.assertRaises(exceptions.PulseError):
instructions.SetFrequency(4.5e9, channels.RegisterSlot(1), name="test")
def test_parameter_expression(self):
"""Test getting all parameters assigned by expression."""
p1 = circuit.Parameter("P1")
p2 = circuit.Parameter("P2")
expr = p1 + p2
instr = instructions.SetFrequency(expr, channel=channels.DriveChannel(0))
self.assertSetEqual(instr.parameters, {p1, p2})
class TestShiftFrequency(QiskitTestCase):
"""Shift frequency tests."""
def test_shift_freq(self):
"""Test shift frequency basic functionality."""
shift_freq = instructions.ShiftFrequency(4.5e9, channels.DriveChannel(1), name="test")
self.assertIsInstance(shift_freq.id, int)
self.assertEqual(shift_freq.duration, 0)
self.assertEqual(shift_freq.frequency, 4.5e9)
self.assertEqual(shift_freq.operands, (4.5e9, channels.DriveChannel(1)))
self.assertEqual(
shift_freq, instructions.ShiftFrequency(4.5e9, channels.DriveChannel(1), name="test")
)
self.assertNotEqual(
shift_freq, instructions.ShiftFrequency(4.5e8, channels.DriveChannel(1), name="test")
)
self.assertEqual(
repr(shift_freq), "ShiftFrequency(4500000000.0, DriveChannel(1), name='test')"
)
def test_freq_non_pulse_channel(self):
"""Test shift frequency constructor with illegal channel"""
with self.assertRaises(exceptions.PulseError):
instructions.ShiftFrequency(4.5e9, channels.RegisterSlot(1), name="test")
def test_parameter_expression(self):
"""Test getting all parameters assigned by expression."""
p1 = circuit.Parameter("P1")
p2 = circuit.Parameter("P2")
expr = p1 + p2
instr = instructions.ShiftFrequency(expr, channel=channels.DriveChannel(0))
self.assertSetEqual(instr.parameters, {p1, p2})
class TestSetPhase(QiskitTestCase):
"""Test the instruction construction."""
def test_default(self):
"""Test basic SetPhase."""
set_phase = instructions.SetPhase(1.57, channels.DriveChannel(0))
self.assertIsInstance(set_phase.id, int)
self.assertEqual(set_phase.name, None)
self.assertEqual(set_phase.duration, 0)
self.assertEqual(set_phase.phase, 1.57)
self.assertEqual(set_phase.operands, (1.57, channels.DriveChannel(0)))
self.assertEqual(
set_phase, instructions.SetPhase(1.57, channels.DriveChannel(0), name="test")
)
self.assertNotEqual(
set_phase, instructions.SetPhase(1.57j, channels.DriveChannel(0), name="test")
)
self.assertEqual(repr(set_phase), "SetPhase(1.57, DriveChannel(0))")
def test_set_phase_non_pulse_channel(self):
"""Test shift phase constructor with illegal channel"""
with self.assertRaises(exceptions.PulseError):
instructions.SetPhase(1.57, channels.RegisterSlot(1), name="test")
def test_parameter_expression(self):
"""Test getting all parameters assigned by expression."""
p1 = circuit.Parameter("P1")
p2 = circuit.Parameter("P2")
expr = p1 + p2
instr = instructions.SetPhase(expr, channel=channels.DriveChannel(0))
self.assertSetEqual(instr.parameters, {p1, p2})
class TestShiftPhase(QiskitTestCase):
"""Test the instruction construction."""
def test_default(self):
"""Test basic ShiftPhase."""
shift_phase = instructions.ShiftPhase(1.57, channels.DriveChannel(0))
self.assertIsInstance(shift_phase.id, int)
self.assertEqual(shift_phase.name, None)
self.assertEqual(shift_phase.duration, 0)
self.assertEqual(shift_phase.phase, 1.57)
self.assertEqual(shift_phase.operands, (1.57, channels.DriveChannel(0)))
self.assertEqual(
shift_phase, instructions.ShiftPhase(1.57, channels.DriveChannel(0), name="test")
)
self.assertNotEqual(
shift_phase, instructions.ShiftPhase(1.57j, channels.DriveChannel(0), name="test")
)
self.assertEqual(repr(shift_phase), "ShiftPhase(1.57, DriveChannel(0))")
def test_shift_phase_non_pulse_channel(self):
"""Test shift phase constructor with illegal channel"""
with self.assertRaises(exceptions.PulseError):
instructions.ShiftPhase(1.57, channels.RegisterSlot(1), name="test")
def test_parameter_expression(self):
"""Test getting all parameters assigned by expression."""
p1 = circuit.Parameter("P1")
p2 = circuit.Parameter("P2")
expr = p1 + p2
instr = instructions.ShiftPhase(expr, channel=channels.DriveChannel(0))
self.assertSetEqual(instr.parameters, {p1, p2})
class TestSnapshot(QiskitTestCase):
"""Snapshot tests."""
def test_default(self):
"""Test default snapshot."""
snapshot = instructions.Snapshot(label="test_name", snapshot_type="state")
self.assertIsInstance(snapshot.id, int)
self.assertEqual(snapshot.name, "test_name")
self.assertEqual(snapshot.type, "state")
self.assertEqual(snapshot.duration, 0)
self.assertNotEqual(snapshot, instructions.Delay(10, channels.DriveChannel(0)))
self.assertEqual(repr(snapshot), "Snapshot(test_name, state, name='test_name')")
class TestPlay(QiskitTestCase):
"""Play tests."""
def setUp(self):
"""Setup play tests."""
super().setUp()
self.duration = 4
self.pulse_op = library.Waveform([1.0] * self.duration, name="test")
def test_play(self):
"""Test basic play instruction."""
play = instructions.Play(self.pulse_op, channels.DriveChannel(1))
self.assertIsInstance(play.id, int)
self.assertEqual(play.name, self.pulse_op.name)
self.assertEqual(play.duration, self.duration)
self.assertEqual(
repr(play),
"Play(Waveform(array([1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]), name='test'),"
" DriveChannel(1), name='test')",
)
def test_play_non_pulse_ch_raises(self):
"""Test that play instruction on non-pulse channel raises a pulse error."""
with self.assertRaises(exceptions.PulseError):
instructions.Play(self.pulse_op, channels.AcquireChannel(0))
class TestDirectives(QiskitTestCase):
"""Test pulse directives."""
def test_relative_barrier(self):
"""Test the relative barrier directive."""
a0 = channels.AcquireChannel(0)
d0 = channels.DriveChannel(0)
m0 = channels.MeasureChannel(0)
u0 = channels.ControlChannel(0)
mem0 = channels.MemorySlot(0)
reg0 = channels.RegisterSlot(0)
chans = (a0, d0, m0, u0, mem0, reg0)
name = "barrier"
barrier = instructions.RelativeBarrier(*chans, name=name)
self.assertEqual(barrier.name, name)
self.assertEqual(barrier.duration, 0)
self.assertEqual(barrier.channels, chans)
self.assertEqual(barrier.operands, chans)
class TestCall(QiskitTestCase):
"""Test call instruction."""
def setUp(self):
super().setUp()
with pulse.build() as _subroutine:
pulse.delay(10, pulse.DriveChannel(0))
self.subroutine = _subroutine
self.param1 = circuit.Parameter("amp1")
self.param2 = circuit.Parameter("amp2")
with pulse.build() as _function:
pulse.play(pulse.Gaussian(160, self.param1, 40), pulse.DriveChannel(0))
pulse.play(pulse.Gaussian(160, self.param2, 40), pulse.DriveChannel(0))
pulse.play(pulse.Gaussian(160, self.param1, 40), pulse.DriveChannel(0))
self.function = _function
def test_call(self):
"""Test basic call instruction."""
with self.assertWarns(DeprecationWarning):
call = instructions.Call(subroutine=self.subroutine)
self.assertEqual(call.duration, 10)
self.assertEqual(call.subroutine, self.subroutine)
def test_parameterized_call(self):
"""Test call instruction with parameterized subroutine."""
with self.assertWarns(DeprecationWarning):
call = instructions.Call(subroutine=self.function)
self.assertTrue(call.is_parameterized())
self.assertEqual(len(call.parameters), 2)
def test_assign_parameters_to_call(self):
"""Test create schedule by calling subroutine and assign parameters to it."""
init_dict = {self.param1: 0.1, self.param2: 0.5}
with pulse.build() as test_sched:
pulse.call(self.function)
test_sched = test_sched.assign_parameters(value_dict=init_dict)
test_sched = inline_subroutines(test_sched)
with pulse.build() as ref_sched:
pulse.play(pulse.Gaussian(160, 0.1, 40), pulse.DriveChannel(0))
pulse.play(pulse.Gaussian(160, 0.5, 40), pulse.DriveChannel(0))
pulse.play(pulse.Gaussian(160, 0.1, 40), pulse.DriveChannel(0))
self.assertEqual(target_qobj_transform(test_sched), target_qobj_transform(ref_sched))
def test_call_initialize_with_parameter(self):
"""Test call instruction with parameterized subroutine with initial dict."""
init_dict = {self.param1: 0.1, self.param2: 0.5}
with self.assertWarns(DeprecationWarning):
call = instructions.Call(subroutine=self.function, value_dict=init_dict)
with pulse.build() as ref_sched:
pulse.play(pulse.Gaussian(160, 0.1, 40), pulse.DriveChannel(0))
pulse.play(pulse.Gaussian(160, 0.5, 40), pulse.DriveChannel(0))
pulse.play(pulse.Gaussian(160, 0.1, 40), pulse.DriveChannel(0))
self.assertEqual(
target_qobj_transform(call.assigned_subroutine()), target_qobj_transform(ref_sched)
)
def test_call_subroutine_with_different_parameters(self):
"""Test call subroutines with different parameters in the same schedule."""
init_dict1 = {self.param1: 0.1, self.param2: 0.5}
init_dict2 = {self.param1: 0.3, self.param2: 0.7}
with pulse.build() as test_sched:
pulse.call(self.function, value_dict=init_dict1)
pulse.call(self.function, value_dict=init_dict2)
with pulse.build() as ref_sched:
pulse.play(pulse.Gaussian(160, 0.1, 40), pulse.DriveChannel(0))
pulse.play(pulse.Gaussian(160, 0.5, 40), pulse.DriveChannel(0))
pulse.play(pulse.Gaussian(160, 0.1, 40), pulse.DriveChannel(0))
pulse.play(pulse.Gaussian(160, 0.3, 40), pulse.DriveChannel(0))
pulse.play(pulse.Gaussian(160, 0.7, 40), pulse.DriveChannel(0))
pulse.play(pulse.Gaussian(160, 0.3, 40), pulse.DriveChannel(0))
self.assertEqual(target_qobj_transform(test_sched), target_qobj_transform(ref_sched))
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
qr = QuantumRegister(3, 'q')
anc = QuantumRegister(1, 'ancilla')
cr = ClassicalRegister(3, 'c')
qc = QuantumCircuit(qr, anc, cr)
qc.x(anc[0])
qc.h(anc[0])
qc.h(qr[0:3])
qc.cx(qr[0:3], anc[0])
qc.h(qr[0:3])
qc.barrier(qr)
qc.measure(qr, cr)
qc.draw('mpl')
|
https://github.com/zapata-engineering/orquestra-qiskit
|
zapata-engineering
|
from typing import List, Optional, Sequence, Union
from orquestra.quantum.api import BaseCircuitRunner
from orquestra.quantum.circuits import (
Circuit,
combine_bitstrings,
expand_sample_sizes,
split_into_batches,
)
from orquestra.quantum.measurements import Measurements
from qiskit import ClassicalRegister, QuantumCircuit, execute
from qiskit.providers import BackendV1, BackendV2
from qiskit.transpiler import CouplingMap
from qiskit_aer.noise import NoiseModel
from orquestra.integrations.qiskit.conversions import export_to_qiskit
AnyQiskitBackend = Union[BackendV1, BackendV2]
def prepare_for_running_on_backend(circuit: Circuit) -> QuantumCircuit:
qiskit_circuit = export_to_qiskit(circuit)
qiskit_circuit.add_register(ClassicalRegister(size=qiskit_circuit.num_qubits))
qiskit_circuit.measure(qiskit_circuit.qubits, qiskit_circuit.clbits)
return qiskit_circuit
def _listify(counts):
return counts if isinstance(counts, list) else [counts]
class QiskitRunner(BaseCircuitRunner):
def __init__(
self,
qiskit_backend: AnyQiskitBackend,
noise_model: Optional[NoiseModel] = None,
coupling_map: Optional[CouplingMap] = None,
basis_gates: Optional[List[str]] = None,
optimization_level: int = 0,
seed: Optional[int] = None,
discard_extra_measurements: bool = False,
execute_function=execute,
):
super().__init__()
self.backend = qiskit_backend
self.seed = seed
self.backend = qiskit_backend
self.noise_model = noise_model
self.optimization_level = optimization_level
self.basis_gates = (
noise_model.basis_gates
if basis_gates is None and noise_model is not None
else basis_gates
)
self.coupling_map = coupling_map
self._execute = execute_function
self.discard_extra_measurements = discard_extra_measurements
def _run_and_measure(self, circuit: Circuit, n_samples: int) -> Measurements:
return self._run_batch_and_measure([circuit], [n_samples])[0]
def _run_batch_and_measure(
self, batch: Sequence[Circuit], samples_per_circuit: Sequence[int]
):
circuits_to_execute = [
prepare_for_running_on_backend(circuit) for circuit in batch
]
new_circuits, new_n_samples, multiplicities = expand_sample_sizes(
circuits_to_execute,
samples_per_circuit,
self.backend.configuration().max_shots,
)
batch_size = getattr(
self.backend.configuration(), "max_experiments", len(circuits_to_execute)
)
batches = split_into_batches(new_circuits, new_n_samples, batch_size)
jobs = [
self._execute(
list(circuits),
backend=self.backend,
shots=n_samples,
noise_model=self.noise_model,
coupling_map=self.coupling_map,
basis_gates=self.basis_gates,
optimization_level=self.optimization_level,
seed_simulator=self.seed,
seed_transpiler=self.seed,
memory=True,
)
for circuits, n_samples in batches
]
# Qiskit runners return single dictionary with counts when there was
# only one experiment. To simplify logic, we make sure to always have a
# list of counts from a job.
# One can use job.result().get_counts() to get all counts, but
# job.result().get_memory() does require index of the experiment
# This is why the below list comprehension looks so clumsy.
all_bitstrings = [
job.result().get_memory(i)
for job in jobs
for i in range(len(job.result().results))
]
combined_bitstrings = combine_bitstrings(all_bitstrings, multiplicities)
if self.discard_extra_measurements:
combined_bitstrings = [
bitstrings[:n_samples]
for bitstrings, n_samples in zip(
combined_bitstrings, samples_per_circuit
)
]
return [
Measurements([tuple(map(int, b[::-1])) for b in bitstrings])
for bitstrings in combined_bitstrings
]
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit.circuit.random import random_circuit
circuit = random_circuit(2, 2, seed=0).decompose(reps=1)
display(circuit.draw("mpl"))
from qiskit.quantum_info import SparsePauliOp
observable = SparsePauliOp("XZ")
print(f">>> Observable: {observable.paulis}")
from qiskit.primitives import Estimator
estimator = Estimator()
job = estimator.run(circuit, observable)
print(f">>> Job ID: {job.job_id()}")
print(f">>> Job Status: {job.status()}")
result = job.result()
print(f">>> {result}")
print(f" > Expectation value: {result.values[0]}")
circuit = random_circuit(2, 2, seed=1).decompose(reps=1)
observable = SparsePauliOp("IY")
job = estimator.run(circuit, observable)
result = job.result()
display(circuit.draw("mpl"))
print(f">>> Observable: {observable.paulis}")
print(f">>> Expectation value: {result.values[0]}")
circuits = (
random_circuit(2, 2, seed=0).decompose(reps=1),
random_circuit(2, 2, seed=1).decompose(reps=1),
)
observables = (
SparsePauliOp("XZ"),
SparsePauliOp("IY"),
)
job = estimator.run(circuits, observables)
result = job.result()
[display(cir.draw("mpl")) for cir in circuits]
print(f">>> Observables: {[obs.paulis for obs in observables]}")
print(f">>> Expectation values: {result.values.tolist()}")
from qiskit.circuit.library import RealAmplitudes
circuit = RealAmplitudes(num_qubits=2, reps=2).decompose(reps=1)
observable = SparsePauliOp("ZI")
parameter_values = [0, 1, 2, 3, 4, 5]
job = estimator.run(circuit, observable, parameter_values)
result = job.result()
display(circuit.draw("mpl"))
print(f">>> Observable: {observable.paulis}")
print(f">>> Parameter values: {parameter_values}")
print(f">>> Expectation value: {result.values[0]}")
from qiskit_ibm_runtime import QiskitRuntimeService
service = QiskitRuntimeService(channel="ibm_quantum")
backend = service.backend("ibmq_qasm_simulator")
from qiskit.circuit.random import random_circuit
from qiskit.quantum_info import SparsePauliOp
circuit = random_circuit(2, 2, seed=0).decompose(reps=1)
display(circuit.draw("mpl"))
observable = SparsePauliOp("XZ")
print(f">>> Observable: {observable.paulis}")
from qiskit_ibm_runtime import Estimator
estimator = Estimator(session=backend)
job = estimator.run(circuit, observable)
print(f">>> Job ID: {job.job_id()}")
print(f">>> Job Status: {job.status()}")
result = job.result()
print(f">>> {result}")
print(f" > Expectation value: {result.values[0]}")
print(f" > Metadata: {result.metadata[0]}")
from qiskit_ibm_runtime import Options
options = Options(optimization_level=3, environment={"log_level": "INFO"})
from qiskit_ibm_runtime import Options
options = Options()
options.resilience_level = 1
options.execution.shots = 2048
estimator = Estimator(session=backend, options=options)
result = estimator.run(circuit, observable).result()
print(f">>> Metadata: {result.metadata[0]}")
estimator = Estimator(session=backend, options=options)
result = estimator.run(circuit, observable, shots=1024).result()
print(f">>> Metadata: {result.metadata[0]}")
from qiskit_ibm_runtime import Options
# optimization_level=3 adds dynamical decoupling
# resilience_level=1 adds readout error mitigation
options = Options(optimization_level=3, resilience_level=1)
estimator = Estimator(session=backend, options=options)
result = estimator.run(circuit, observable).result()
print(f">>> Expectation value: {result.values[0]}")
print(f">>> Metadata: {result.metadata[0]}")
from qiskit_ibm_runtime import Session, Estimator
with Session(backend=backend, max_time="1h"):
estimator = Estimator()
result = estimator.run(circuit, observable).result()
print(f">>> Expectation value from the first run: {result.values[0]}")
result = estimator.run(circuit, observable).result()
print(f">>> Expectation value from the second run: {result.values[0]}")
from qiskit.circuit.random import random_circuit
sampler_circuit = random_circuit(2, 2, seed=0).decompose(reps=1)
sampler_circuit.measure_all()
display(circuit.draw("mpl"))
from qiskit_ibm_runtime import Session, Sampler, Estimator
with Session(backend=backend):
sampler = Sampler()
estimator = Estimator()
result = sampler.run(sampler_circuit).result()
print(f">>> Quasi Distribution from the sampler job: {result.quasi_dists[0]}")
result = estimator.run(circuit, observable).result()
print(f">>> Expectation value from the estimator job: {result.values[0]}")
from qiskit_ibm_runtime import Session, Sampler, Estimator
with Session(backend=backend):
sampler = Sampler()
estimator = Estimator()
sampler_job = sampler.run(sampler_circuit)
estimator_job = estimator.run(circuit, observable)
print(f">>> Quasi Distribution from the sampler job: {sampler_job.result().quasi_dists[0]}")
print(f">>> Expectation value from the estimator job: {estimator_job.result().values[0]}")
from qiskit_ibm_runtime import QiskitRuntimeService, Session, Sampler, Estimator, Options
# 1. Initialize account
service = QiskitRuntimeService(channel="ibm_quantum")
# 2. Specify options, such as enabling error mitigation
options = Options(resilience_level=1)
# 3. Select a backend.
backend = service.backend("ibmq_qasm_simulator")
# 4. Create a session
with Session(backend=backend):
# 5. Create primitive instances
sampler = Sampler(options=options)
estimator = Estimator(options=options)
# 6. Submit jobs
sampler_job = sampler.run(sampler_circuit)
estimator_job = estimator.run(circuit, observable)
# 7. Get results
print(f">>> Quasi Distribution from the sampler job: {sampler_job.result().quasi_dists[0]}")
print(f">>> Expectation value from the estimator job: {estimator_job.result().values[0]}")
import qiskit_ibm_runtime
qiskit_ibm_runtime.version.get_version_info()
from qiskit.tools.jupyter import *
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit.dagcircuit import DAGCircuit
from qiskit.converters import circuit_to_dag
from qiskit.circuit.library.standard_gates import CHGate, U2Gate, CXGate
from qiskit.converters import dag_to_circuit
q = QuantumRegister(3, 'q')
c = ClassicalRegister(3, 'c')
circ = QuantumCircuit(q, c)
circ.h(q[0])
circ.cx(q[0], q[1])
circ.measure(q[0], c[0])
circ.rz(0.5, q[1]).c_if(c, 2)
dag = circuit_to_dag(circ)
circuit = dag_to_circuit(dag)
circuit.draw('mpl')
|
https://github.com/swe-train/qiskit__qiskit
|
swe-train
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test for the converter dag dependency to dag circuit and
dag circuit to dag dependency."""
import unittest
from qiskit.converters.circuit_to_dag import circuit_to_dag
from qiskit.converters.dag_to_dagdependency import dag_to_dagdependency
from qiskit.converters.dagdependency_to_dag import dagdependency_to_dag
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit.test import QiskitTestCase
class TestCircuitToDagDependency(QiskitTestCase):
"""Test DAGCircuit to DAGDependency."""
def test_circuit_and_dag_dependency(self):
"""Check convert to dag dependency and back"""
qr = QuantumRegister(3)
cr = ClassicalRegister(3)
circuit_in = QuantumCircuit(qr, cr)
circuit_in.h(qr[0])
circuit_in.h(qr[1])
circuit_in.measure(qr[0], cr[0])
circuit_in.measure(qr[1], cr[1])
circuit_in.x(qr[0]).c_if(cr, 0x3)
circuit_in.measure(qr[0], cr[0])
circuit_in.measure(qr[1], cr[1])
circuit_in.measure(qr[2], cr[2])
dag_in = circuit_to_dag(circuit_in)
dag_dependency = dag_to_dagdependency(dag_in)
dag_out = dagdependency_to_dag(dag_dependency)
self.assertEqual(dag_out, dag_in)
def test_circuit_and_dag_dependency2(self):
"""Check convert to dag dependency and back
also when the option ``create_preds_and_succs`` is False."""
qr = QuantumRegister(3)
cr = ClassicalRegister(3)
circuit_in = QuantumCircuit(qr, cr)
circuit_in.h(qr[0])
circuit_in.h(qr[1])
circuit_in.measure(qr[0], cr[0])
circuit_in.measure(qr[1], cr[1])
circuit_in.x(qr[0]).c_if(cr, 0x3)
circuit_in.measure(qr[0], cr[0])
circuit_in.measure(qr[1], cr[1])
circuit_in.measure(qr[2], cr[2])
dag_in = circuit_to_dag(circuit_in)
dag_dependency = dag_to_dagdependency(dag_in, create_preds_and_succs=False)
dag_out = dagdependency_to_dag(dag_dependency)
self.assertEqual(dag_out, dag_in)
def test_metadata(self):
"""Test circuit metadata is preservered through conversion."""
meta_dict = {"experiment_id": "1234", "execution_number": 4}
qr = QuantumRegister(2)
circuit_in = QuantumCircuit(qr, metadata=meta_dict)
circuit_in.h(qr[0])
circuit_in.cx(qr[0], qr[1])
circuit_in.measure_all()
dag = circuit_to_dag(circuit_in)
self.assertEqual(dag.metadata, meta_dict)
dag_dependency = dag_to_dagdependency(dag)
self.assertEqual(dag_dependency.metadata, meta_dict)
dag_out = dagdependency_to_dag(dag_dependency)
self.assertEqual(dag_out.metadata, meta_dict)
if __name__ == "__main__":
unittest.main(verbosity=2)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.