repo
stringclasses
885 values
file
stringclasses
741 values
content
stringlengths
4
215k
https://github.com/intrinsicvardhan/QuantumComputingAlgos
intrinsicvardhan
from qiskit import QuantumCircuit, transpile from qiskit.visualization import plot_histogram, plot_bloch_multivector from numpy.random import randint import numpy as np from qiskit_aer import AerSimulator qc = QuantumCircuit(1,1) # Alice prepares qubit in state |+> qc.h(0) qc.barrier() # Alice now sends the qubit to Bob # who measures it in the X-basis qc.h(0) qc.measure(0,0) # Draw and simulate circuit display(qc.draw()) aer_sim = AerSimulator() job = aer_sim.run(qc) plot_histogram(job.result().get_counts()) qc = QuantumCircuit(1,1) # Alice prepares qubit in state |+> qc.h(0) # Alice now sends the qubit to Bob # but Eve intercepts and tries to read it qc.measure(0, 0) qc.barrier() # Eve then passes this on to Bob # who measures it in the X-basis qc.h(0) qc.measure(0,0) # Draw and simulate circuit display(qc.draw()) aer_sim = AerSimulator() job = aer_sim.run(qc) plot_histogram(job.result().get_counts()) np.random.seed(seed=0) n = 100 np.random.seed(seed=0) n = 100 ## Step 1 # Alice generates bits alice_bits = randint(2, size=n) print(alice_bits) np.random.seed(seed=0) n = 100 ## Step 1 #Alice generates bits alice_bits = randint(2, size=n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = randint(2, size=n) print(alice_bases) def encode_message(bits, bases): message = [] for i in range(n): qc = QuantumCircuit(1,1) if bases[i] == 0: # Prepare qubit in Z-basis if bits[i] == 0: pass else: qc.x(0) else: # Prepare qubit in X-basis if bits[i] == 0: qc.h(0) else: qc.x(0) qc.h(0) qc.barrier() message.append(qc) return message np.random.seed(seed=0) n = 100 ## Step 1 # Alice generates bits alice_bits = randint(2, size=n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) print('bit = %i' % alice_bits[0]) print('basis = %i' % alice_bases[0]) message[0].draw() print('bit = %i' % alice_bits[4]) print('basis = %i' % alice_bases[4]) message[4].draw() np.random.seed(seed=0) n = 100 ## Step 1 # Alice generates bits alice_bits = randint(2, size=n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Step 3 # Decide which basis to measure in: bob_bases = randint(2, size=n) print(bob_bases) def measure_message(message, bases): backend = AerSimulator() measurements = [] for q in range(n): if bases[q] == 0: # measuring in Z-basis message[q].measure(0,0) if bases[q] == 1: # measuring in X-basis message[q].h(0) message[q].measure(0,0) aer_sim = AerSimulator() result = aer_sim.run(message[q], shots=1, memory=True).result() measured_bit = int(result.get_memory()[0]) measurements.append(measured_bit) return measurements np.random.seed(seed=0) n = 100 ## Step 1 # Alice generates bits alice_bits = randint(2, size=n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Step 3 # Decide which basis to measure in: bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) message[0].draw() message[6].draw() print(bob_results) def remove_garbage(a_bases, b_bases, bits): good_bits = [] for q in range(n): if a_bases[q] == b_bases[q]: # If both used the same basis, add # this to the list of 'good' bits good_bits.append(bits[q]) return good_bits np.random.seed(seed=0) n = 100 ## Step 1 # Alice generates bits alice_bits = randint(2, size=n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Step 3 # Decide which basis to measure in: bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) ## Step 4 alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) print(alice_key) np.random.seed(seed=0) n = 100 ## Step 1 # Alice generates bits alice_bits = randint(2, size=n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Step 3 # Decide which basis to measure in: bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) ## Step 4 alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) bob_key = remove_garbage(alice_bases, bob_bases, bob_results) print(bob_key) def sample_bits(bits, selection): sample = [] for i in selection: # use np.mod to make sure the # bit we sample is always in # the list range i = np.mod(i, len(bits)) # pop(i) removes the element of the # list at index 'i' sample.append(bits.pop(i)) return sample np.random.seed(seed=0) n = 100 ## Step 1 # Alice generates bits alice_bits = randint(2, size=n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Step 3 # Decide which basis to measure in: bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) ## Step 4 alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) bob_key = remove_garbage(alice_bases, bob_bases, bob_results) ## Step 5 sample_size = 15 bit_selection = randint(n, size=sample_size) bob_sample = sample_bits(bob_key, bit_selection) print(" bob_sample = " + str(bob_sample)) alice_sample = sample_bits(alice_key, bit_selection) print("alice_sample = "+ str(alice_sample)) bob_sample == alice_sample print(bob_key) print(alice_key) print("key length = %i" % len(alice_key)) np.random.seed(seed=3) np.random.seed(seed=3) ## Step 1 alice_bits = randint(2, size=n) print(alice_bits) np.random.seed(seed=3) ## Step 1 alice_bits = randint(2, size=n) ## Step 2 alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) print(alice_bases) message[0].draw() np.random.seed(seed=3) ## Step 1 alice_bits = randint(2, size=n) ## Step 2 alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Interception!! eve_bases = randint(2, size=n) intercepted_message = measure_message(message, eve_bases) print(intercepted_message) message[0].draw() np.random.seed(seed=3) ## Step 1 alice_bits = randint(2, size=n) ## Step 2 alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Interception!! eve_bases = randint(2, size=n) intercepted_message = measure_message(message, eve_bases) ## Step 3 bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) message[0].draw() np.random.seed(seed=3) ## Step 1 alice_bits = randint(2, size=n) ## Step 2 alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Interception!! eve_bases = randint(2, size=n) intercepted_message = measure_message(message, eve_bases) ## Step 3 bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) ## Step 4 bob_key = remove_garbage(alice_bases, bob_bases, bob_results) alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) np.random.seed(seed=3) ## Step 1 alice_bits = randint(2, size=n) ## Step 2 alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Interception!! eve_bases = randint(2, size=n) intercepted_message = measure_message(message, eve_bases) ## Step 3 bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) ## Step 4 bob_key = remove_garbage(alice_bases, bob_bases, bob_results) alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) ## Step 5 sample_size = 15 bit_selection = randint(n, size=sample_size) bob_sample = sample_bits(bob_key, bit_selection) print(" bob_sample = " + str(bob_sample)) alice_sample = sample_bits(alice_key, bit_selection) print("alice_sample = "+ str(alice_sample)) bob_sample == alice_sample n = 100 # Step 1 alice_bits = randint(2, size=n) alice_bases = randint(2, size=n) # Step 2 message = encode_message(alice_bits, alice_bases) # Interception! eve_bases = randint(2, size=n) intercepted_message = measure_message(message, eve_bases) # Step 3 bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) # Step 4 bob_key = remove_garbage(alice_bases, bob_bases, bob_results) alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) # Step 5 sample_size = 15 # Change this to something lower and see if # Eve can intercept the message without Alice # and Bob finding out bit_selection = randint(n, size=sample_size) bob_sample = sample_bits(bob_key, bit_selection) alice_sample = sample_bits(alice_key, bit_selection) if bob_sample != alice_sample: print("Eve's interference was detected.") else: print("Eve went undetected!") # import qiskit.tools.jupyter # %qiskit_version_table
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit ghz = QuantumCircuit(5) ghz.h(0) ghz.cx(0,range(1,5)) ghz.draw(output='mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit # Create a circuit with a register of three qubits circ = QuantumCircuit(3) # H gate on qubit 0, putting this qubit in a superposition of |0> + |1>. circ.h(0) # A CX (CNOT) gate on control qubit 0 and target qubit 1 generating a Bell state. circ.cx(0, 1) # CX (CNOT) gate on control qubit 0 and target qubit 2 resulting in a GHZ state. circ.cx(0, 2) # Draw the circuit circ.draw('mpl')
https://github.com/arthurfaria/Qiskit_certificate_prep
arthurfaria
# General tools import numpy as np import matplotlib.pyplot as plt import math # Importing standard Qiskit libraries from qiskit import execute,QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, transpile, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * # Loading your IBM Quantum account(s) provider = IBMQ.load_account() QuantumCircuit(4, 4) qc = QuantumCircuit(1) qc.ry(3 * math.pi/4, 0) # draw the circuit qc.draw() # et's plot the histogram and see the probability :) qc.measure_all() qasm_sim = Aer.get_backend('qasm_simulator') #this time we call the qasm simulator result = execute(qc, qasm_sim).result() # NOTICE: we can skip some steps by doing .result() directly, we could go further! counts = result.get_counts() #this time, we are not getting the state, but the counts! plot_histogram(counts) #a new plotting method! this works for counts obviously! inp_reg = QuantumRegister(2, name='inp') ancilla = QuantumRegister(1, name='anc') qc = QuantumCircuit(inp_reg, ancilla) # Insert code here qc.h(inp_reg[0:2]) qc.x(ancilla[0]) qc.draw() bell = QuantumCircuit(2) bell.h(0) bell.x(1) bell.cx(0, 1) bell.draw() qc = QuantumCircuit(1,1) # Insert code fragment here qc.ry(math.pi / 2,0) simulator = Aer.get_backend('statevector_simulator') job = execute(qc, simulator) result = job.result() outputstate = result.get_statevector(qc) plot_bloch_multivector(outputstate) from qiskit import QuantumCircuit, Aer, execute from math import sqrt qc = QuantumCircuit(2) # Insert fragment here v = [1/sqrt(2), 0, 0, 1/sqrt(2)] qc.initialize(v,[0,1]) simulator = Aer.get_backend('statevector_simulator') result = execute(qc, simulator).result() statevector = result.get_statevector() print(statevector) qc = QuantumCircuit(3,3) qc.barrier() # B. qc.barrier([0,1,2]) qc.draw() qc = QuantumCircuit(1,1) qc.h(0) qc.s(0) qc.h(0) qc.measure(0,0) qc.draw() qc = QuantumCircuit(2, 2) qc.h(0) qc.barrier(0) qc.cx(0,1) qc.barrier([0,1]) qc.draw() qc.depth() # Use Aer's qasm_simulator qasm_sim = Aer.get_backend('qasm_simulator') #use a coupling map that connects three qubits linearly couple_map = [[0, 1], [1, 2]] # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is the default. job = execute(qc, backend=qasm_sim, shots=1024, coupling_map=couple_map) from qiskit import QuantumCircuit, execute, BasicAer backend = BasicAer.get_backend('qasm_simulator') qc = QuantumCircuit(3) # insert code here execute(qc, backend, shots=1024, coupling_map=[[0,1], [1,2]]) qc = QuantumCircuit(2, 2) qc.x(0) qc.measure([0,1], [0,1]) simulator = Aer.get_backend('qasm_simulator') result = execute(qc, simulator, shots=1000).result() counts = result.get_counts(qc) print(counts)
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Example showing how to draw a quantum circuit using Qiskit. """ from qiskit import QuantumCircuit def build_bell_circuit(): """Returns a circuit putting 2 qubits in the Bell state.""" qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0, 1) qc.measure([0, 1], [0, 1]) return qc # Create the circuit bell_circuit = build_bell_circuit() # Use the internal .draw() to print the circuit print(bell_circuit)
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=unused-import """ A convenient way to track reusable subschedules by name and qubit. This can be used for scheduling circuits with custom definitions, for instance:: inst_map = InstructionScheduleMap() inst_map.add('new_inst', 0, qubit_0_new_inst_schedule) sched = schedule(quantum_circuit, backend, inst_map) An instance of this class is instantiated by Pulse-enabled backends and populated with defaults (if available):: inst_map = backend.defaults().instruction_schedule_map """ from __future__ import annotations import functools import warnings from collections import defaultdict from collections.abc import Iterable, Callable from qiskit import circuit from qiskit.circuit.parameterexpression import ParameterExpression from qiskit.pulse.calibration_entries import ( CalibrationEntry, ScheduleDef, CallableDef, # for backward compatibility PulseQobjDef, CalibrationPublisher, ) from qiskit.pulse.exceptions import PulseError from qiskit.pulse.schedule import Schedule, ScheduleBlock class InstructionScheduleMap: """Mapping from :py:class:`~qiskit.circuit.QuantumCircuit` :py:class:`qiskit.circuit.Instruction` names and qubits to :py:class:`~qiskit.pulse.Schedule` s. In particular, the mapping is formatted as type:: Dict[str, Dict[Tuple[int], Schedule]] where the first key is the name of a circuit instruction (e.g. ``'u1'``, ``'measure'``), the second key is a tuple of qubit indices, and the final value is a Schedule implementing the requested instruction. These can usually be seen as gate calibrations. """ def __init__(self): """Initialize a circuit instruction to schedule mapper instance.""" # The processed and reformatted circuit instruction definitions # Do not use lambda function for nested defaultdict, i.e. lambda: defaultdict(CalibrationEntry). # This crashes qiskit parallel. Note that parallel framework passes args as # pickled object, however lambda function cannot be pickled. self._map: dict[str | circuit.instruction.Instruction, dict[tuple, CalibrationEntry]] = ( defaultdict(functools.partial(defaultdict, CalibrationEntry)) ) # A backwards mapping from qubit to supported instructions self._qubit_instructions: dict[tuple[int, ...], set] = defaultdict(set) def has_custom_gate(self) -> bool: """Return ``True`` if the map has user provided instruction.""" for qubit_inst in self._map.values(): for entry in qubit_inst.values(): if entry.user_provided: return True return False @property def instructions(self) -> list[str]: """Return all instructions which have definitions. By default, these are typically the basis gates along with other instructions such as measure and reset. Returns: The names of all the circuit instructions which have Schedule definitions in this. """ return list(self._map.keys()) def qubits_with_instruction( self, instruction: str | circuit.instruction.Instruction ) -> list[int | tuple[int, ...]]: """Return a list of the qubits for which the given instruction is defined. Single qubit instructions return a flat list, and multiqubit instructions return a list of ordered tuples. Args: instruction: The name of the circuit instruction. Returns: Qubit indices which have the given instruction defined. This is a list of tuples if the instruction has an arity greater than 1, or a flat list of ints otherwise. Raises: PulseError: If the instruction is not found. """ instruction = _get_instruction_string(instruction) if instruction not in self._map: return [] return [ qubits[0] if len(qubits) == 1 else qubits for qubits in sorted(self._map[instruction].keys()) ] def qubit_instructions(self, qubits: int | Iterable[int]) -> list[str]: """Return a list of the instruction names that are defined by the backend for the given qubit or qubits. Args: qubits: A qubit index, or a list or tuple of indices. Returns: All the instructions which are defined on the qubits. For 1 qubit, all the 1Q instructions defined. For multiple qubits, all the instructions which apply to that whole set of qubits (e.g. ``qubits=[0, 1]`` may return ``['cx']``). """ if _to_tuple(qubits) in self._qubit_instructions: return list(self._qubit_instructions[_to_tuple(qubits)]) return [] def has( self, instruction: str | circuit.instruction.Instruction, qubits: int | Iterable[int] ) -> bool: """Is the instruction defined for the given qubits? Args: instruction: The instruction for which to look. qubits: The specific qubits for the instruction. Returns: True iff the instruction is defined. """ instruction = _get_instruction_string(instruction) return instruction in self._map and _to_tuple(qubits) in self._map[instruction] def assert_has( self, instruction: str | circuit.instruction.Instruction, qubits: int | Iterable[int] ) -> None: """Error if the given instruction is not defined. Args: instruction: The instruction for which to look. qubits: The specific qubits for the instruction. Raises: PulseError: If the instruction is not defined on the qubits. """ instruction = _get_instruction_string(instruction) if not self.has(instruction, _to_tuple(qubits)): if instruction in self._map: raise PulseError( "Operation '{inst}' exists, but is only defined for qubits " "{qubits}.".format( inst=instruction, qubits=self.qubits_with_instruction(instruction) ) ) raise PulseError(f"Operation '{instruction}' is not defined for this system.") def get( self, instruction: str | circuit.instruction.Instruction, qubits: int | Iterable[int], *params: complex | ParameterExpression, **kwparams: complex | ParameterExpression, ) -> Schedule | ScheduleBlock: """Return the defined :py:class:`~qiskit.pulse.Schedule` or :py:class:`~qiskit.pulse.ScheduleBlock` for the given instruction on the given qubits. If all keys are not specified this method returns schedule with unbound parameters. Args: instruction: Name of the instruction or the instruction itself. qubits: The qubits for the instruction. *params: Command parameters for generating the output schedule. **kwparams: Keyworded command parameters for generating the schedule. Returns: The Schedule defined for the input. """ return self._get_calibration_entry(instruction, qubits).get_schedule(*params, **kwparams) def _get_calibration_entry( self, instruction: str | circuit.instruction.Instruction, qubits: int | Iterable[int], ) -> CalibrationEntry: """Return the :class:`.CalibrationEntry` without generating schedule. When calibration entry is un-parsed Pulse Qobj, this returns calibration without parsing it. :meth:`CalibrationEntry.get_schedule` method must be manually called with assigned parameters to get corresponding pulse schedule. This method is expected be directly used internally by the V2 backend converter for faster loading of the backend calibrations. Args: instruction: Name of the instruction or the instruction itself. qubits: The qubits for the instruction. Returns: The calibration entry. """ instruction = _get_instruction_string(instruction) self.assert_has(instruction, qubits) return self._map[instruction][_to_tuple(qubits)] def add( self, instruction: str | circuit.instruction.Instruction, qubits: int | Iterable[int], schedule: Schedule | ScheduleBlock | Callable[..., Schedule | ScheduleBlock], arguments: list[str] | None = None, ) -> None: """Add a new known instruction for the given qubits and its mapping to a pulse schedule. Args: instruction: The name of the instruction to add. qubits: The qubits which the instruction applies to. schedule: The Schedule that implements the given instruction. arguments: List of parameter names to create a parameter-bound schedule from the associated gate instruction. If :py:meth:`get` is called with arguments rather than keyword arguments, this parameter list is used to map the input arguments to parameter objects stored in the target schedule. Raises: PulseError: If the qubits are provided as an empty iterable. """ instruction = _get_instruction_string(instruction) # validation of target qubit qubits = _to_tuple(qubits) if not qubits: raise PulseError(f"Cannot add definition {instruction} with no target qubits.") # generate signature if isinstance(schedule, (Schedule, ScheduleBlock)): entry: CalibrationEntry = ScheduleDef(arguments) elif callable(schedule): if arguments: warnings.warn( "Arguments are overruled by the callback function signature. " "Input `arguments` are ignored.", UserWarning, ) entry = CallableDef() else: raise PulseError( "Supplied schedule must be one of the Schedule, ScheduleBlock or a " "callable that outputs a schedule." ) entry.define(schedule, user_provided=True) self._add(instruction, qubits, entry) def _add( self, instruction_name: str, qubits: tuple[int, ...], entry: CalibrationEntry, ): """A method to resister calibration entry. .. note:: This is internal fast-path function, and caller must ensure the entry is properly formatted. This function may be used by other programs that load backend calibrations to create Qiskit representation of it. Args: instruction_name: Name of instruction. qubits: List of qubits that this calibration is applied. entry: Calibration entry to register. :meta public: """ self._map[instruction_name][qubits] = entry self._qubit_instructions[qubits].add(instruction_name) def remove( self, instruction: str | circuit.instruction.Instruction, qubits: int | Iterable[int] ) -> None: """Remove the given instruction from the listing of instructions defined in self. Args: instruction: The name of the instruction to add. qubits: The qubits which the instruction applies to. """ instruction = _get_instruction_string(instruction) qubits = _to_tuple(qubits) self.assert_has(instruction, qubits) del self._map[instruction][qubits] if not self._map[instruction]: del self._map[instruction] self._qubit_instructions[qubits].remove(instruction) if not self._qubit_instructions[qubits]: del self._qubit_instructions[qubits] def pop( self, instruction: str | circuit.instruction.Instruction, qubits: int | Iterable[int], *params: complex | ParameterExpression, **kwparams: complex | ParameterExpression, ) -> Schedule | ScheduleBlock: """Remove and return the defined schedule for the given instruction on the given qubits. Args: instruction: Name of the instruction. qubits: The qubits for the instruction. *params: Command parameters for generating the output schedule. **kwparams: Keyworded command parameters for generating the schedule. Returns: The Schedule defined for the input. """ instruction = _get_instruction_string(instruction) schedule = self.get(instruction, qubits, *params, **kwparams) self.remove(instruction, qubits) return schedule def get_parameters( self, instruction: str | circuit.instruction.Instruction, qubits: int | Iterable[int] ) -> tuple[str, ...]: """Return the list of parameters taken by the given instruction on the given qubits. Args: instruction: Name of the instruction. qubits: The qubits for the instruction. Returns: The names of the parameters required by the instruction. """ instruction = _get_instruction_string(instruction) self.assert_has(instruction, qubits) signature = self._map[instruction][_to_tuple(qubits)].get_signature() return tuple(signature.parameters.keys()) def __str__(self): single_q_insts = "1Q instructions:\n" multi_q_insts = "Multi qubit instructions:\n" for qubits, insts in self._qubit_instructions.items(): if len(qubits) == 1: single_q_insts += f" q{qubits[0]}: {insts}\n" else: multi_q_insts += f" {qubits}: {insts}\n" instructions = single_q_insts + multi_q_insts return f"<{self.__class__.__name__}({instructions})>" def __eq__(self, other): if not isinstance(other, InstructionScheduleMap): return False for inst in self.instructions: for qinds in self.qubits_with_instruction(inst): try: if self._map[inst][_to_tuple(qinds)] != other._map[inst][_to_tuple(qinds)]: return False except KeyError: return False return True def _to_tuple(values: int | Iterable[int]) -> tuple[int, ...]: """Return the input as a tuple. Args: values: An integer, or iterable of integers. Returns: The input values as a sorted tuple. """ try: return tuple(values) except TypeError: return (values,) def _get_instruction_string(inst: str | circuit.instruction.Instruction) -> str: if isinstance(inst, str): return inst else: try: return inst.name except AttributeError as ex: raise PulseError( 'Input "inst" has no attribute "name". This should be a circuit "Instruction".' ) from ex
https://github.com/lockwo/Paper-Review
lockwo
import numpy as np from qiskit import Aer, IBMQ from qiskit.utils import QuantumInstance from qiskit.circuit import QuantumCircuit, ParameterVector from qiskit.opflow import StateFn, Z, I, CircuitSampler, Gradient, Hessian from qiskit.algorithms.optimizers import GradientDescent import matplotlib.pyplot as plt # Code to generate a circuit as present in the paper def paper_circuit(): circuit = QuantumCircuit(5) params = ParameterVector("theta", length=5) for i in range(5): circuit.rx(params[i], i) circuit.cx(0, 1) circuit.cx(2, 1) circuit.cx(3, 1) circuit.cx(4, 3) hamiltonian = I for i in range(1, 5): if i == 3: hamiltonian = hamiltonian ^ Z else: hamiltonian = hamiltonian ^ I readout_operator = StateFn(hamiltonian, is_measurement=True) @ StateFn(circuit) return circuit, readout_operator print(paper_circuit()[0]) def evaluate_expectation(x): value_dict = dict(zip(circuit.parameters, x)) result = sampler.convert(op, params=value_dict).eval() return np.real(result) def evaluate_gradient(x): value_dict = dict(zip(circuit.parameters, x)) result = sampler.convert(gradient, params=value_dict).eval() return np.real(result) def gd_callback(nfevs, x, fx, stepsize): #if nfevs % 10 == 0: # print(nfevs, fx) #print(nfevs, fx) gd_loss.append(fx) x_values.append([x[0], x[1]]) simulate = True provider = IBMQ.load_account() if simulate: backend = Aer.get_backend('aer_simulator') else: backend = provider.backends(name='ibmq_belem')[0] initial_point = np.random.uniform(0, 2 * np.pi, 5) shots = [10, 100, 1000] fig, (ax1, ax2) = plt.subplots(1, 2) fig.tight_layout() for s in shots: # Create circuit circuit, op = paper_circuit() # Specify backend information q_instance = QuantumInstance(backend, shots=s) sampler = CircuitSampler(q_instance) gradient = Gradient(grad_method='param_shift').convert(op) gd_loss, x_values = [], [] # Create optimizer gd = GradientDescent(maxiter=100, learning_rate=0.1, tol=1e-4, callback=gd_callback) # Minimize function gd.optimize(initial_point.size, evaluate_expectation, gradient_function=evaluate_gradient, initial_point=initial_point) # Plotting information cir_evals = np.array([i for i in range(len(gd_loss))]) cir_evals *= (2 * circuit.num_parameters * s) ax1.plot(cir_evals, gd_loss, label='Shots %d'%s) x_values.clear() # Keeping track of just theta_0 and theta_1 gd.optimize(initial_point.size, evaluate_expectation, gradient_function=evaluate_gradient, \ initial_point=[0.1, 0.15, 0, 0, 0]) x_values = np.array(x_values) ax2.plot(x_values[:,0], x_values[:,1], label='Shots %d'%s) # Make the graph look nice ax1.axhline(-1, ls='--', c='tab:red', label='Target') ax1.set_ylabel('Cost') ax1.set_xlabel('Circuit Evaluations') ax1.set_xscale('log') ax1.legend() ax2.set_ylim(0, np.pi + 0.2) ax2.set_xlim(-np.pi/2, np.pi/2) ax2.set_ylabel('Theta 2') ax2.set_xlabel('Theta 1') #ax2.legend() plt.show() class NewtonOpt(object): def __init__(self, hess, grad, num_param, circuit, sampler, op, init, lr=0.1, s=1000, maxiter=100): self.lr = lr self.shots = s self.hess = hess self.grad = grad self.max_iter = maxiter self.num_params = num_param self.circuit = circuit self.sampler = sampler self.op = op self.values = [] self.circuit_evals = [] self.init = init def optimize(self): x = self.init for i in range(self.max_iter): value_dict = dict(zip(self.circuit.parameters, x)) result = np.real(self.sampler.convert(self.op, params=value_dict).eval()) self.values.append(result) value_dict = dict(zip(self.circuit.parameters, x)) hessian = np.real(self.sampler.convert(self.hess, params=value_dict).eval()) gradient = np.real(self.sampler.convert(self.grad, params=value_dict).eval()) x = x - self.lr * np.linalg.inv(hessian + np.eye(self.num_params)) @ gradient #if i % 10 == 0: # print(i, result) return self.values, np.array([i for i in range(len(self.values))]) * \ ((4 * self.num_params**2 - 3 * self.num_params) * self.shots) # Generate circuit with only two parameters def paper_circuit_two_param(): circuit = QuantumCircuit(5) # 5 qubit circuit params = ParameterVector("theta", length=2) for i in range(2): circuit.rx(params[i], i) circuit.cx(0, 1) circuit.cx(2, 1) circuit.cx(3, 1) circuit.cx(4, 3) hamiltonian = I for i in range(1, 5): if i == 3: hamiltonian = hamiltonian ^ Z else: hamiltonian = hamiltonian ^ I readout_operator = StateFn(hamiltonian, is_measurement=True) @ StateFn(circuit) return circuit, readout_operator initial_point = np.array([0.1, 0.15]) s = 1000 circuit, op = paper_circuit_two_param() q_instance = QuantumInstance(backend, shots=s) sampler = CircuitSampler(q_instance) gradient = Gradient(grad_method='param_shift').convert(op) hessian = Hessian(hess_method='param_shift').convert(op) gd_loss = [] x_values = [] # GD minimization gd = GradientDescent(maxiter=80, learning_rate=0.1, tol=1e-4, callback=gd_callback) x_opt, fx_opt, nfevs = gd.optimize(initial_point.size, evaluate_expectation, gradient_function=evaluate_gradient, \ initial_point=initial_point) cir_evals = np.array([i for i in range(len(gd_loss))]) cir_evals *= (2 * circuit.num_parameters * s) # 2nd order mimization newton = NewtonOpt(hessian, gradient, circuit.num_parameters, circuit, sampler, op, initial_point, maxiter=80) loss, evals = newton.optimize() plt.plot(evals, loss, label='Newton') plt.plot(cir_evals, gd_loss, label='GD') plt.axhline(-1, ls='--', c='tab:red', label='Target') plt.ylabel('Cost') plt.xlabel('Circuit Evaluations') plt.legend() plt.show() #initial_point = np.random.uniform(0, 2 * np.pi, 5) initial_point = np.array([0.1, 0.15, 0, 0, 0]) s = 1000 circuit, op = paper_circuit() q_instance = QuantumInstance(backend, shots=s) sampler = CircuitSampler(q_instance) gradient = Gradient().convert(op) hessian = Hessian(hess_method='param_shift').convert(op) gd_loss = [] x_values = [] # GD minimization gd = GradientDescent(maxiter=100, learning_rate=0.1, tol=1e-4, callback=gd_callback) x_opt, fx_opt, nfevs = gd.optimize(initial_point.size, evaluate_expectation, gradient_function=evaluate_gradient, \ initial_point=initial_point) cir_evals = np.array([i for i in range(len(gd_loss))]) cir_evals *= (2 * circuit.num_parameters * s) # 2nd order mimization newton = NewtonOpt(hessian, gradient, circuit.num_parameters, circuit, sampler, op, initial_point) loss, evals = newton.optimize() plt.plot(evals, loss, label='Newton') plt.plot(cir_evals, gd_loss, label='GD') plt.axhline(-1, ls='--', c='tab:red', label='Target') plt.ylabel('Cost') plt.xlabel('Circuit Evaluations') plt.xscale('log') plt.legend() plt.show()
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ A utility for caching and reparameterizing circuits, rather than compiling from scratch with each iteration. Note that if the circuit is transpiled aggressively such that rotation parameters cannot be easily mapped from the uncompiled to compiled circuit, caching will fail gracefully to standard compilation. This will be noted by multiple cache misses in the DEBUG log. It is generally safer to skip the transpiler (aqua_dict['backend']['skip_transpiler'] = True) when using caching. Caching is controlled via the aqua_dict['problem']['circuit_caching'] parameter. Setting skip_qobj_deepcopy = True reuses the same qobj object over and over to avoid deepcopying. It is controlled via the aqua_dict['problem'][ 'skip_qobj_deepcopy'] parameter. You may also specify a filename into which to store the cache as a pickle file, for circuits which are expensive to compile even the first time. The filename is set in aqua_dict['problem']['circuit_cache_file']. If a filename is present, the system will attempt to load from the file. In the event of an error, the system will fail gracefully, compile from scratch, and cache the new compiled qobj and mapping in the file location in pickled form. It will fail over 5 times before deciding that caching should be disabled.""" import numpy as np import copy import pickle import logging from qiskit import QuantumRegister from qiskit.circuit import CompositeGate from qiskit.assembler.run_config import RunConfig from qiskit.qobj import Qobj, QasmQobjConfig from qiskit.aqua.aqua_error import AquaError logger = logging.getLogger(__name__) class CircuitCache: def __init__(self, skip_qobj_deepcopy=False, cache_file=None, allowed_misses=3): self.skip_qobj_deepcopy = skip_qobj_deepcopy self.cache_file = cache_file self.misses = 0 self.qobjs = [] self.mappings = [] self.cache_transpiled_circuits = False self.try_reusing_qobjs = True self.allowed_misses = allowed_misses try: self.try_loading_cache_from_file() except(EOFError, FileNotFoundError) as e: logger.warning("Error loading cache from file {0}: {1}".format(self.cache_file, repr(e))) def cache_circuit(self, qobj, circuits, chunk): """ A method for caching compiled qobjs by storing the compiled qobj and constructing a mapping array from the uncompiled operations in the circuit to the instructions in the qobj. Note that the "qobjs" list in the cache dict is a list of the cached chunks, each element of which contains a single qobj with as many experiments as is allowed by the execution backend. E.g. if the backend allows 300 experiments per job and the user wants to run 500 circuits, len(circuit_cache['qobjs']) == 2, len(circuit_cache['qobjs'][0].experiments) == 300, and len(circuit_cache['qobjs'][1].experiments) == 200. This feature is only applied if 'circuit_caching' is True in the 'problem' Aqua dictionary section. Args: qobj (Qobj): A compiled qobj to be saved circuits (list): The original uncompiled QuantumCircuits chunk (int): If a larger list of circuits was broken into chunks by run_algorithm for separate runs, which chunk number `circuits` represents """ self.qobjs.insert(chunk, copy.deepcopy(qobj)) self.mappings.insert(chunk, [{} for i in range(len(circuits))]) for circ_num, input_circuit in enumerate(circuits): qreg_sizes = [reg.size for reg in input_circuit.qregs if isinstance(reg, QuantumRegister)] qreg_indeces = {reg.name: sum(qreg_sizes[0:i]) for i, reg in enumerate(input_circuit.qregs)} op_graph = {} # Unroll circuit in case of composite gates raw_gates = [] for gate in input_circuit.data: if isinstance(gate, CompositeGate): raw_gates += gate.instruction_list() else: raw_gates += [gate] for i, (uncompiled_gate, regs, _) in enumerate(raw_gates): if not hasattr(uncompiled_gate, 'params') or len(uncompiled_gate.params) < 1: continue if uncompiled_gate.name == 'snapshot': continue qubits = [qubit+qreg_indeces[reg.name] for reg, qubit in regs if isinstance(reg, QuantumRegister)] gate_type = uncompiled_gate.name type_and_qubits = gate_type + qubits.__str__() op_graph[type_and_qubits] = \ op_graph.get(type_and_qubits, []) + [i] mapping = {} for compiled_gate_index, compiled_gate in enumerate(qobj.experiments[circ_num].instructions): if not hasattr(compiled_gate, 'params') or len(compiled_gate.params) < 1: continue if compiled_gate.name == 'snapshot': continue type_and_qubits = compiled_gate.name + compiled_gate.qubits.__str__() if len(op_graph[type_and_qubits]) > 0: uncompiled_gate_index = op_graph[type_and_qubits].pop(0) (uncompiled_gate, regs, _) = raw_gates[uncompiled_gate_index] qubits = [qubit + qreg_indeces[reg.name] for reg, qubit in regs if isinstance(reg, QuantumRegister)] if (compiled_gate.name == uncompiled_gate.name) and (compiled_gate.qubits.__str__() == qubits.__str__()): mapping[compiled_gate_index] = uncompiled_gate_index else: raise AquaError("Circuit shape does not match qobj, found extra {} instruction in qobj".format( type_and_qubits)) self.mappings[chunk][circ_num] = mapping for type_and_qubits, ops in op_graph.items(): if len(ops) > 0: raise AquaError("Circuit shape does not match qobj, found extra {} in circuit".format(type_and_qubits)) if self.cache_file is not None and len(self.cache_file) > 0: with open(self.cache_file, 'wb') as cache_handler: qobj_dicts = [qob.to_dict() for qob in self.qobjs] pickle.dump({'qobjs': qobj_dicts, 'mappings': self.mappings, 'transpile': self.cache_transpiled_circuits}, cache_handler, protocol=pickle.HIGHEST_PROTOCOL) logger.debug("Circuit cache saved to file: {}".format(self.cache_file)) def try_loading_cache_from_file(self): if len(self.qobjs) == 0 and self.cache_file is not None and len(self.cache_file) > 0: with open(self.cache_file, "rb") as cache_handler: try: cache = pickle.load(cache_handler, encoding="ASCII") except (EOFError) as e: logger.debug("No cache found in file: {}".format(self.cache_file)) return self.qobjs = [Qobj.from_dict(qob) for qob in cache['qobjs']] self.mappings = cache['mappings'] self.cache_transpiled_circuits = cache['transpile'] logger.debug("Circuit cache loaded from file: {}".format(self.cache_file)) # Note that this function overwrites the previous cached qobj for speed def load_qobj_from_cache(self, circuits, chunk, run_config=None): self.try_loading_cache_from_file() if self.try_reusing_qobjs and self.qobjs is not None and len(self.qobjs) > 0 and len(self.qobjs) <= chunk: self.mappings.insert(chunk, self.mappings[0]) self.qobjs.insert(chunk, copy.deepcopy(self.qobjs[0])) for circ_num, input_circuit in enumerate(circuits): # If there are too few experiments in the cache, try reusing the first experiment. # Only do this for the first chunk. Subsequent chunks should rely on these copies # through the deepcopy above. if self.try_reusing_qobjs and chunk == 0 and circ_num > 0 and len(self.qobjs[chunk].experiments) <= \ circ_num: self.qobjs[0].experiments.insert(circ_num, copy.deepcopy(self.qobjs[0].experiments[0])) self.mappings[0].insert(circ_num, self.mappings[0][0]) # Unroll circuit in case of composite gates raw_gates = [] for gate in input_circuit.data: if isinstance(gate, CompositeGate): raw_gates += gate.instruction_list() else: raw_gates += [gate] self.qobjs[chunk].experiments[circ_num].header.name = input_circuit.name for gate_num, compiled_gate in enumerate(self.qobjs[chunk].experiments[circ_num].instructions): if not hasattr(compiled_gate, 'params') or len(compiled_gate.params) < 1: continue if compiled_gate.name == 'snapshot': continue cache_index = self.mappings[chunk][circ_num][gate_num] (uncompiled_gate, regs, _) = raw_gates[cache_index] # Need the 'getattr' wrapper because measure has no 'params' field and breaks this. if not len(getattr(compiled_gate, 'params', [])) == len(getattr(uncompiled_gate, 'params', [])) or \ not compiled_gate.name == uncompiled_gate.name: raise AquaError('Gate mismatch at gate {0} ({1}, {2} params) of circuit against gate {3} ({4}, ' '{5} params) of cached qobj'.format(cache_index, uncompiled_gate.name, len(uncompiled_gate.params), gate_num, compiled_gate.name, len(compiled_gate.params))) compiled_gate.params = np.array(uncompiled_gate.params, dtype=float).tolist() exec_qobj = copy.copy(self.qobjs[chunk]) if self.skip_qobj_deepcopy: exec_qobj.experiments = self.qobjs[chunk].experiments[0:len(circuits)] else: exec_qobj.experiments = copy.deepcopy(self.qobjs[chunk].experiments[0:len(circuits)]) if run_config is None: run_config = RunConfig(shots=1024, max_credits=10, memory=False) exec_qobj.config = QasmQobjConfig(**run_config.to_dict()) exec_qobj.config.memory_slots = max(experiment.config.memory_slots for experiment in exec_qobj.experiments) exec_qobj.config.n_qubits = max(experiment.config.n_qubits for experiment in exec_qobj.experiments) return exec_qobj def clear_cache(self): self.qobjs = [] self.mappings = [] self.try_reusing_qobjs = True
https://github.com/PabloAMC/Qiskit_meetup_2021
PabloAMC
%matplotlib inline # Importing standard Qiskit libraries from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * #from iqx import * from qiskit.aqua.circuits import PhaseEstimationCircuit from qiskit.chemistry.components.initial_states import HartreeFock from qiskit.chemistry.core import Hamiltonian from qiskit.circuit.library import PhaseEstimation from qiskit import QuantumCircuit, execute, Aer from qiskit.circuit import QuantumRegister, Qubit, Gate, ClassicalRegister from qiskit.quantum_info import Statevector # Loading your IBM Q account(s) provider = IBMQ.load_account() from qiskit.chemistry.drivers import PySCFDriver, UnitsType, Molecule, PSI4Driver molecule = Molecule(geometry=[['H', [0., 0., 0.]], ['H', [0., 0., 0.735]]], charge=0, multiplicity=1) driver = PySCFDriver(molecule = molecule, unit=UnitsType.ANGSTROM, basis='sto3g') qmol = driver.run() print(qmol.one_body_integrals) print(qmol.two_body_integrals) from qiskit.chemistry.transformations import (FermionicTransformation, FermionicTransformationType, FermionicQubitMappingType) fermionic_transformation = FermionicTransformation( transformation=FermionicTransformationType.FULL, qubit_mapping=FermionicQubitMappingType.JORDAN_WIGNER, two_qubit_reduction=False, freeze_core=False) qubit_op, _ = fermionic_transformation.transform(driver) print('Qubit operator is', qubit_op) num_orbitals = fermionic_transformation.molecule_info['num_orbitals'] num_particles = fermionic_transformation.molecule_info['num_particles'] qubit_mapping = fermionic_transformation.qubit_mapping two_qubit_reduction = fermionic_transformation.molecule_info['two_qubit_reduction'] z2_symmetries = fermionic_transformation.molecule_info['z2_symmetries'] initial_state = HartreeFock(num_orbitals, num_particles, qubit_mapping, two_qubit_reduction, z2_symmetries.sq_list) initial_circ = initial_state.construct_circuit() print(initial_state.bitstr) initial_circ.draw() qubit_op, _ = fermionic_transformation.transform(driver) print(qubit_op) num_evaluation_qubits = 5 normalization_factor = 1/2 # Since the min energy will be -1.8... we need to normalize it so that it is smaller than 1 unitary = (normalization_factor*qubit_op).exp_i().to_circuit() phase_estimation = PhaseEstimation(num_evaluation_qubits = num_evaluation_qubits, unitary = unitary) type(qubit_op.exp_i().to_circuit()) print(phase_estimation.qubits) dir(phase_estimation) phase_estimation.draw() circ = initial_circ.combine(phase_estimation) classical_eval = ClassicalRegister(num_evaluation_qubits, name = 'class_eval') circ = circ + QuantumCircuit(classical_eval) #circ.measure_all() print(circ.qregs) circ.measure(circ.qregs[1], classical_eval) circ.draw() # Use Aer's qasm_simulator backend_sim = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is the default. job_sim = execute(circ, backend_sim, shots=1024) # Grab the results from the job. result_sim = job_sim.result() counts = result_sim.get_counts(circ) print(counts) maxkey = '0'*num_evaluation_qubits maxvalue = 0 for key, value in counts.items(): if value > maxvalue: maxvalue = value maxkey = key energy = 0 for i,s in zip(range(num_evaluation_qubits), maxkey[::-1]): energy -= (int(s)/2**(i))/normalization_factor print('The energy is', energy, 'Hartrees') 36/32 26/16
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.quantum_info import Operator from qiskit.transpiler.passes import UnitarySynthesis circuit = QuantumCircuit(1) circuit.rx(0.8, 0) unitary = Operator(circuit).data unitary_circ = QuantumCircuit(1) unitary_circ.unitary(unitary, [0]) synth = UnitarySynthesis(basis_gates=["h", "s"], method="sk") out = synth(unitary_circ) out.draw('mpl')
https://github.com/Marduk-42/Quantum-Algorithm-Tutorials
Marduk-42
from qiskit import Aer, execute, QuantumCircuit, visualization import matplotlib.pyplot as plt qc = QuantumCircuit.from_qasm_file('Bell test.qasm') backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=2048) result = job.result() ax1 = qc.draw("mpl") ax1.suptitle("Bell test circuit") ax2 = visualization.plot_histogram(result.get_counts(qc)) ax2.suptitle("Results") plt.show()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import execute, pulse d0 = pulse.DriveChannel(0) with pulse.build() as pulse_prog: pulse.play(pulse.Constant(100, 1.0), d0) pulse_prog.draw()
https://github.com/qiskit-community/community.qiskit.org
qiskit-community
#initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram s = '11' # Creating registers # qubits for querying the oracle and finding the hidden period s qr = QuantumRegister(2*len(str(s))) # classical registers for recording the measurement from qr cr = ClassicalRegister(2*len(str(s))) simonCircuit = QuantumCircuit(qr, cr) barriers = True # Apply Hadamard gates before querying the oracle for i in range(len(str(s))): simonCircuit.h(qr[i]) # Apply barrier if barriers: simonCircuit.barrier() # Apply the query function ## 2-qubit oracle for s = 11 simonCircuit.cx(qr[0], qr[len(str(s)) + 0]) simonCircuit.cx(qr[0], qr[len(str(s)) + 1]) simonCircuit.cx(qr[1], qr[len(str(s)) + 0]) simonCircuit.cx(qr[1], qr[len(str(s)) + 1]) # Apply barrier if barriers: simonCircuit.barrier() # Measure ancilla qubits for i in range(len(str(s)), 2*len(str(s))): simonCircuit.measure(qr[i], cr[i]) # Apply barrier if barriers: simonCircuit.barrier() # Apply Hadamard gates to the input register for i in range(len(str(s))): simonCircuit.h(qr[i]) # Apply barrier if barriers: simonCircuit.barrier() # Measure input register for i in range(len(str(s))): simonCircuit.measure(qr[i], cr[i]) simonCircuit.draw(output='mpl') # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(simonCircuit, backend=backend, shots=shots).result() answer = results.get_counts() # Categorize measurements by input register values answer_plot = {} for measresult in answer.keys(): measresult_input = measresult[len(str(s)):] if measresult_input in answer_plot: answer_plot[measresult_input] += answer[measresult] else: answer_plot[measresult_input] = answer[measresult] # Plot the categorized results print( answer_plot ) plot_histogram(answer_plot) # Calculate the dot product of the results def sdotz(a, b): accum = 0 for i in range(len(a)): accum += int(a[i]) * int(b[i]) return (accum % 2) print('s, z, s.z (mod 2)') for z_rev in answer_plot: z = z_rev[::-1] print( '{}, {}, {}.{}={}'.format(s, z, s,z,sdotz(s,z)) ) # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to 5 qubits IBMQ.load_account() IBMQ.get_provider(hub='ibm-q') provider.backends() backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(simonCircuit, backend=backend, shots=shots) job_monitor(job, interval = 2) # Categorize measurements by input register values answer_plot = {} for measresult in answer.keys(): measresult_input = measresult[len(str(s)):] if measresult_input in answer_plot: answer_plot[measresult_input] += answer[measresult] else: answer_plot[measresult_input] = answer[measresult] # Plot the categorized results print( answer_plot ) plot_histogram(answer_plot) # Calculate the dot product of the most significant results print('s, z, s.z (mod 2)') for z_rev in answer_plot: if answer_plot[z_rev] >= 0.1*shots: z = z_rev[::-1] print( '{}, {}, {}.{}={}'.format(s, z, s,z,sdotz(s,z)) ) import qiskit qiskit.__qiskit_version__
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit # Create a circuit with a register of three qubits circ = QuantumCircuit(3) # H gate on qubit 0, putting this qubit in a superposition of |0> + |1>. circ.h(0) # A CX (CNOT) gate on control qubit 0 and target qubit 1 generating a Bell state. circ.cx(0, 1) # CX (CNOT) gate on control qubit 0 and target qubit 2 resulting in a GHZ state. circ.cx(0, 2) # Draw the circuit circ.draw('mpl')
https://github.com/ka-us-tubh/quantum-computing-qiskit-
ka-us-tubh
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() from qiskit import assemble import numpy as np import matplotlib.pyplot as plt n=4 grover_ckt=QuantumCircuit(n+1,n) marked=[1,0,1,1]#1101 marked =13 def apply_oracle(n,marked,ckt): controlO=[i for i in range(n) if not marked[i]] ckt.x(controlO) ckt.mct(list(range(n)),n) ckt.x(controlO) ckt.draw() def reflect_uniform(ckt,n): ckt.h(list(range(n))) ckt.x(list(range(n))) ckt.mct(list(range(n)),n) ckt.x(list(range(n+1))) ckt.h(list(range(n))) grover_ckt.x(n) grover_ckt.barrier() grover_ckt.h(list(range(n+1))) grover_ckt.draw() svsim= Aer.get_backend('statevector_simulator') qobj=assemble(grover_ckt) result=svsim.run(qobj).result() #statevector=result.data()["statevector"] statevector=result.get_statevector() statevector=np.array(statevector) #statevector.dtype statevector.shape print(statevector) statevector=statevector[:2**n] statevector.shape #print(np.array([i for i in range(2**n)])) #statevector = statevector(dims=[i for i in range(2**n)]) marked=[1,0,1,1] ket_a=np.zeros(2**n) ket_a[13]=1 ket_e=(np.ones(2**n)-ket_a)/np.sqrt(2**n-1) ket_a ket_e def get_projection(psi,e,a): proj=[np.real(np.vdot(e,psi)),np.real(np.vdot(a,psi))] return proj def plt_vector(proj,axes=[0.0,1.0,0.0,1.0]): x_pos=0 y_pos=0 x_direct=proj[0] y_direct=proj[1] fig,ax =plt.subplots() ax.quiver(x_pos,y_pos,x_direct,y_direct,scale=1.0) ax.axis(axes) plt.show() proj =get_projection(statevector,ket_e,ket_a) plt_vector(proj) apply_oracle(4,marked,grover_ckt) grover_ckt.barrier() grover_ckt.draw() reflect_uniform(grover_ckt,n) grover_ckt.barrier() grover_ckt.draw() svsim= Aer.get_backend('statevector_simulator') qobj=assemble(grover_ckt) result=svsim.run(qobj).result() #statevector=result.data()["statevector"] statevector=result.get_statevector() statevector=np.array(statevector) statevector=statevector[:2**n] proj =get_projection(statevector,ket_e,ket_a) plt_vector(proj) apply_oracle(4,marked,grover_ckt) grover_ckt.barrier() reflect_uniform(grover_ckt,n) grover_ckt.barrier() grover_ckt.draw() svsim= Aer.get_backend('statevector_simulator') qobj=assemble(grover_ckt) result=svsim.run(qobj).result() #statevector=result.data()["statevector"] statevector=result.get_statevector() statevector=np.array(statevector) statevector=statevector[:2**n] proj =get_projection(statevector,ket_e,ket_a) plt_vector(proj) apply_oracle(4,marked,grover_ckt) grover_ckt.barrier() reflect_uniform(grover_ckt,n) grover_ckt.barrier() grover_ckt.draw() svsim= Aer.get_backend('statevector_simulator') qobj=assemble(grover_ckt) result=svsim.run(qobj).result() #statevector=result.data()["statevector"] statevector=result.get_statevector() statevector=np.array(statevector) statevector=statevector[:2**n] proj =get_projection(statevector,ket_e,ket_a) plt_vector(proj,axes=[-1.0,1.0,-1.0,1.0]) import math thetaO=math.asin(1/math.sqrt(2**n)) print(thetaO) T=0 angle=thetaO print(angle) while(angle+(2*thetaO)<=(math.pi/2)and angle>=0): T+=1 angle=angle+(2*thetaO) print(angle) #print(T) n=4 grover_ckt=QuantumCircuit(n+1,n) marked=[1,0,1,1]#1101 marked =13 grover_ckt.x(n) grover_ckt.barrier() grover_ckt.h(list(range(n+1))) grover_ckt.barrier() for _ in range(int(np.floor(T))): apply_oracle(4,marked,grover_ckt) grover_ckt.barrier() reflect_uniform(grover_ckt,n) grover_ckt.barrier() for j in range(n): grover_ckt.measure(j,j) grover_ckt.draw() sim=Aer.get_backend("qasm_simulator") qobj=assemble(grover_ckt) result=sim.run(qobj).result() result counts=result.get_counts(grover_ckt) plot_histogram(counts)
https://github.com/qclib/qclib
qclib
# Copyright 2021 qclib project. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for the bergholm state preparation """ from unittest import TestCase import numpy as np from qiskit import QuantumCircuit from qclib.state_preparation import UCGInitialize from qclib.util import get_state class TestUCGInitialize(TestCase): """Test UCGInitialize""" def _test_ucg(self, n_qubits): state = np.random.rand(2 ** n_qubits) + np.random.rand(2 ** n_qubits) * 1j state = state / np.linalg.norm(state) for target_state in range(2 ** n_qubits): gate = UCGInitialize(state.tolist(), opt_params={ "target_state": target_state } ).definition circuit = QuantumCircuit(n_qubits) for j, bit in enumerate(f'{target_state:0{n_qubits}b}'[::-1]): if bit == '1': circuit.x(j) circuit.append(gate, circuit.qubits) output_state = get_state(circuit) self.assertTrue(np.allclose(state, output_state)) def _test_ucg_preserve(self, n_qubits): state = np.random.rand(2 ** n_qubits) + np.random.rand(2 ** n_qubits) * 1j for target_state in range(1, 2 ** n_qubits): state[target_state - 1] = 0 state = state / np.linalg.norm(state) gate = UCGInitialize(state.tolist(), opt_params={ "target_state": target_state, "preserve_previous": True } ).definition circuit = QuantumCircuit(n_qubits) for j, bit in enumerate(f'{target_state:0{n_qubits}b}'[::-1]): if bit == '1': circuit.x(j) circuit.append(gate, circuit.qubits) output_state = get_state(circuit) self.assertTrue(np.allclose(output_state, state)) def test_ucg(self): """Test UCGInitialize""" for n_qubits in range(3, 5): self._test_ucg(n_qubits) def test_ucg_preserve(self): """Test UCGInitialize with `preserve_previous`""" for n_qubits in range(3, 5): self._test_ucg_preserve(n_qubits) def test_real(self): """Test UCGInitialize with four qubits and index 10""" n_qubits = 4 state = np.random.rand(2 ** n_qubits) state[0] = 0 state[1] = 0 state = state / np.linalg.norm(state) initialize = UCGInitialize.initialize circuit = QuantumCircuit(n_qubits) circuit.x(1) circuit.x(3) initialize(circuit, state.tolist(), opt_params={"target_state": 10}) output_state = get_state(circuit) self.assertTrue(np.allclose(output_state, state))
https://github.com/ionq-samples/Ion-Q-Thruster
ionq-samples
%%capture %pip install qiskit %pip install qiskit_ibm_provider %pip install qiskit-aer # Importing standard Qiskit libraries from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, QuantumCircuit, transpile, Aer from qiskit_ibm_provider import IBMProvider from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.circuit.library import C3XGate # Importing matplotlib import matplotlib.pyplot as plt # Importing Numpy, Cmath and math import numpy as np import os, math, cmath from numpy import pi # Other imports from IPython.display import display, Math, Latex # Specify the path to your env file env_file_path = 'config.env' # Load environment variables from the file os.environ.update(line.strip().split('=', 1) for line in open(env_file_path) if '=' in line and not line.startswith('#')) # Load IBM Provider API KEY IBMP_API_KEY = os.environ.get('IBMP_API_KEY') # Loading your IBM Quantum account(s) IBMProvider.save_account(IBMP_API_KEY, overwrite=True) # Run the quantum circuit on a statevector simulator backend backend = Aer.get_backend('statevector_simulator') qc_b1 = QuantumCircuit(2, 2) qc_b1.h(0) qc_b1.cx(0, 1) qc_b1.draw(output='mpl', style="iqp") sv = backend.run(qc_b1).result().get_statevector() sv.draw(output='latex', prefix = "|\Phi^+\\rangle = ") qc_b2 = QuantumCircuit(2, 2) qc_b2.x(0) qc_b2.h(0) qc_b2.cx(0, 1) qc_b2.draw(output='mpl', style="iqp") sv = backend.run(qc_b2).result().get_statevector() sv.draw(output='latex', prefix = "|\Phi^-\\rangle = ") qc_b2 = QuantumCircuit(2, 2) qc_b2.h(0) qc_b2.cx(0, 1) qc_b2.z(0) qc_b2.draw(output='mpl', style="iqp") sv = backend.run(qc_b2).result().get_statevector() sv.draw(output='latex', prefix = "|\Phi^-\\rangle = ") qc_b3 = QuantumCircuit(2, 2) qc_b3.x(1) qc_b3.h(0) qc_b3.cx(0, 1) qc_b3.draw(output='mpl', style="iqp") sv = backend.run(qc_b3).result().get_statevector() sv.draw(output='latex', prefix = "|\Psi^+\\rangle = ") qc_b3 = QuantumCircuit(2, 2) qc_b3.h(0) qc_b3.cx(0, 1) qc_b3.x(0) qc_b3.draw(output='mpl', style="iqp") sv = backend.run(qc_b3).result().get_statevector() sv.draw(output='latex', prefix = "|\Psi^+\\rangle = ") qc_b4 = QuantumCircuit(2, 2) qc_b4.x(0) qc_b4.h(0) qc_b4.x(1) qc_b4.cx(0, 1) qc_b4.draw(output='mpl', style="iqp") sv = backend.run(qc_b4).result().get_statevector() sv.draw(output='latex', prefix = "|\Psi^-\\rangle = ") qc_b4 = QuantumCircuit(2, 2) qc_b4.h(0) qc_b4.cx(0, 1) qc_b4.x(0) qc_b4.z(1) qc_b4.draw(output='mpl', style="iqp") sv = backend.run(qc_b4).result().get_statevector() sv.draw(output='latex', prefix = "|\Psi^-\\rangle = ") def sv_latex_from_qc(qc, backend): sv = backend.run(qc).result().get_statevector() return sv.draw(output='latex') qc_ej2 = QuantumCircuit(4, 4) qc_ej2.x(0) sv_latex_from_qc(qc_ej2, backend) qc_ej2 = QuantumCircuit(4, 4) qc_ej2.x(1) sv_latex_from_qc(qc_ej2, backend) qc_ej2 = QuantumCircuit(4, 4) qc_ej2.x(0) qc_ej2.x(1) sv_latex_from_qc(qc_ej2, backend) qc_ej2 = QuantumCircuit(4, 4) qc_ej2.x(2) sv_latex_from_qc(qc_ej2, backend) qc_ej2 = QuantumCircuit(4, 4) qc_ej2.x(0) qc_ej2.x(2) sv_latex_from_qc(qc_ej2, backend) qc_ej2 = QuantumCircuit(4, 4) qc_ej2.x(0) qc_ej2.x(2) sv_latex_from_qc(qc_ej2, backend) qc_ej2 = QuantumCircuit(4, 4) qc_ej2.x(0) qc_ej2.x(1) qc_ej2.x(2) sv_latex_from_qc(qc_ej2, backend) qc_ej2 = QuantumCircuit(4, 4) qc_ej2.x(3) sv_latex_from_qc(qc_ej2, backend) def circuit_adder (num): if num<1 or num>8: raise ValueError("Out of range") ## El enunciado limita el sumador a los valores entre 1 y 8. Quitar esta restricción sería directo. # Definición del circuito base que vamos a construir qreg_q = QuantumRegister(4, 'q') creg_c = ClassicalRegister(1, 'c') circuit = QuantumCircuit(qreg_q, creg_c) qbit_position = 0 for element in reversed(np.binary_repr(num)): if (element=='1'): circuit.barrier() match qbit_position: case 0: # +1 circuit.append(C3XGate(), [qreg_q[0], qreg_q[1], qreg_q[2], qreg_q[3]]) circuit.ccx(qreg_q[0], qreg_q[1], qreg_q[2]) circuit.cx(qreg_q[0], qreg_q[1]) circuit.x(qreg_q[0]) case 1: # +2 circuit.ccx(qreg_q[1], qreg_q[2], qreg_q[3]) circuit.cx(qreg_q[1], qreg_q[2]) circuit.x(qreg_q[1]) case 2: # +4 circuit.cx(qreg_q[2], qreg_q[3]) circuit.x(qreg_q[2]) case 3: # +8 circuit.x(qreg_q[3]) qbit_position+=1 return circuit add_3 = circuit_adder(3) add_3.draw(output='mpl', style="iqp") qc_test_2 = QuantumCircuit(4, 4) qc_test_2.x(1) qc_test_2_plus_3 = qc_test_2.compose(add_3) qc_test_2_plus_3.draw(output='mpl', style="iqp") sv_latex_from_qc(qc_test_2_plus_3, backend) qc_test_7 = QuantumCircuit(4, 4) qc_test_7.x(0) qc_test_7.x(1) qc_test_7.x(2) qc_test_7_plus_8 = qc_test_7.compose(circuit_adder(8)) sv_latex_from_qc(qc_test_7_plus_8, backend) #qc_test_7_plus_8.draw() theta = 6.544985 phi = 2.338741 lmbda = 0 alice_1 = 0 alice_2 = 1 bob_1 = 2 qr_alice = QuantumRegister(2, 'Alice') qr_bob = QuantumRegister(1, 'Bob') cr = ClassicalRegister(3, 'c') qc_ej3 = QuantumCircuit(qr_alice, qr_bob, cr) qc_ej3.barrier(label='1') qc_ej3.u(theta, phi, lmbda, alice_1); qc_ej3.barrier(label='2') qc_ej3.h(alice_2) qc_ej3.cx(alice_2, bob_1); qc_ej3.barrier(label='3') qc_ej3.cx(alice_1, alice_2) qc_ej3.h(alice_1); qc_ej3.barrier(label='4') qc_ej3.measure([alice_1, alice_2], [alice_1, alice_2]); qc_ej3.barrier(label='5') qc_ej3.x(bob_1).c_if(alice_2, 1) qc_ej3.z(bob_1).c_if(alice_1, 1) qc_ej3.measure(bob_1, bob_1); qc_ej3.draw(output='mpl', style="iqp") result = backend.run(qc_ej3, shots=1024).result() counts = result.get_counts() plot_histogram(counts) sv_0 = np.array([1, 0]) sv_1 = np.array([0, 1]) def find_symbolic_representation(value, symbolic_constants={1/np.sqrt(2): '1/√2'}, tolerance=1e-10): """ Check if the given numerical value corresponds to a symbolic constant within a specified tolerance. Parameters: - value (float): The numerical value to check. - symbolic_constants (dict): A dictionary mapping numerical values to their symbolic representations. Defaults to {1/np.sqrt(2): '1/√2'}. - tolerance (float): Tolerance for comparing values with symbolic constants. Defaults to 1e-10. Returns: str or float: If a match is found, returns the symbolic representation as a string (prefixed with '-' if the value is negative); otherwise, returns the original value. """ for constant, symbol in symbolic_constants.items(): if np.isclose(abs(value), constant, atol=tolerance): return symbol if value >= 0 else '-' + symbol return value def array_to_dirac_notation(array, tolerance=1e-10): """ Convert a complex-valued array representing a quantum state in superposition to Dirac notation. Parameters: - array (numpy.ndarray): The complex-valued array representing the quantum state in superposition. - tolerance (float): Tolerance for considering amplitudes as negligible. Returns: str: The Dirac notation representation of the quantum state. """ # Ensure the statevector is normalized array = array / np.linalg.norm(array) # Get the number of qubits num_qubits = int(np.log2(len(array))) # Find indices where amplitude is not negligible non_zero_indices = np.where(np.abs(array) > tolerance)[0] # Generate Dirac notation terms terms = [ (find_symbolic_representation(array[i]), format(i, f"0{num_qubits}b")) for i in non_zero_indices ] # Format Dirac notation dirac_notation = " + ".join([f"{amplitude}|{binary_rep}⟩" for amplitude, binary_rep in terms]) return dirac_notation def array_to_matrix_representation(array): """ Convert a one-dimensional array to a column matrix representation. Parameters: - array (numpy.ndarray): The one-dimensional array to be converted. Returns: numpy.ndarray: The column matrix representation of the input array. """ # Replace symbolic constants with their representations matrix_representation = np.array([find_symbolic_representation(value) or value for value in array]) # Return the column matrix representation return matrix_representation.reshape((len(matrix_representation), 1)) def array_to_dirac_and_matrix_latex(array): """ Generate LaTeX code for displaying both the matrix representation and Dirac notation of a quantum state. Parameters: - array (numpy.ndarray): The complex-valued array representing the quantum state. Returns: Latex: A Latex object containing LaTeX code for displaying both representations. """ matrix_representation = array_to_matrix_representation(array) latex = "Matrix representation\n\\begin{bmatrix}\n" + \ "\\\\\n".join(map(str, matrix_representation.flatten())) + \ "\n\\end{bmatrix}\n" latex += f'Dirac Notation:\n{array_to_dirac_notation(array)}' return Latex(latex) sv_b1 = np.kron(sv_0, sv_0) array_to_dirac_and_matrix_latex(sv_b1) sv_b1 = (np.kron(sv_0, sv_0) + np.kron(sv_0, sv_1)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b1) sv_b1 = (np.kron(sv_0, sv_0) + np.kron(sv_1, sv_1)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b1) sv_b2 = np.kron(sv_0, sv_0) array_to_dirac_and_matrix_latex(sv_b2) sv_b2 = (np.kron(sv_0, sv_0) + np.kron(sv_0, sv_1)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b2) sv_b2 = (np.kron(sv_0, sv_0) + np.kron(sv_1, sv_1)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b2) sv_b2 = (np.kron(sv_0, sv_0) - np.kron(sv_1, sv_1)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b2) sv_b3 = np.kron(sv_0, sv_0) array_to_dirac_and_matrix_latex(sv_b3) sv_b3 = np.kron(sv_0, sv_1) array_to_dirac_and_matrix_latex(sv_b3) sv_b3 = (np.kron(sv_0, sv_0) - np.kron(sv_0, sv_1)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b3) sv_b3 = (np.kron(sv_0, sv_1) - np.kron(sv_1, sv_0)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b3) sv_b3 = (np.kron(sv_0, sv_1) + np.kron(sv_1, sv_0)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b3) sv_b4 = np.kron(sv_0, sv_0) array_to_dirac_and_matrix_latex(sv_b4) sv_b4 = np.kron(sv_0, sv_1) array_to_dirac_and_matrix_latex(sv_b4) sv_b4 = (np.kron(sv_0, sv_0) - np.kron(sv_0, sv_1)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b4) sv_b4 = (np.kron(sv_0, sv_1) - np.kron(sv_1, sv_0)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b4)
https://github.com/harshagarine/QISKIT_INDIA_CHALLENGE
harshagarine
### WRITE YOUR CODE BETWEEN THESE LINES - START # import libraries that are used in the functions below. from qiskit import QuantumCircuit import numpy as np ### WRITE YOUR CODE BETWEEN THESE LINES - END def init_circuit(): # create a quantum circuit on two qubits qc = QuantumCircuit(2) # initializing the circuit qc.h(0) qc.x(1) return qc # The initial state has been defined above. # You'll now have to apply necessary gates in the build_state() function to convert the state as asked in the question. def build_state(): ### WRITE YOUR CODE BETWEEN THESE LINES - START # the initialized circuit circuit = init_circuit() # apply a single cu3 gate circuit.cu3(0, -np.pi/2, 0, 0, 1) ### WRITE YOUR CODE BETWEEN THESE LINES - END return circuit
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.utils import algorithm_globals algorithm_globals.random_seed = 42 from qiskit.circuit import Parameter from qiskit import QuantumCircuit params1 = [Parameter("input1"), Parameter("weight1")] qc1 = QuantumCircuit(1) qc1.h(0) qc1.ry(params1[0], 0) qc1.rx(params1[1], 0) qc1.draw("mpl") from qiskit.quantum_info import SparsePauliOp observable1 = SparsePauliOp.from_list([("Y" * qc1.num_qubits, 1)]) from qiskit_machine_learning.neural_networks import EstimatorQNN estimator_qnn = EstimatorQNN( circuit=qc1, observables=observable1, input_params=[params1[0]], weight_params=[params1[1]] ) estimator_qnn from qiskit.circuit import ParameterVector inputs2 = ParameterVector("input", 2) weights2 = ParameterVector("weight", 4) print(f"input parameters: {[str(item) for item in inputs2.params]}") print(f"weight parameters: {[str(item) for item in weights2.params]}") qc2 = QuantumCircuit(2) qc2.ry(inputs2[0], 0) qc2.ry(inputs2[1], 1) qc2.cx(0, 1) qc2.ry(weights2[0], 0) qc2.ry(weights2[1], 1) qc2.cx(0, 1) qc2.ry(weights2[2], 0) qc2.ry(weights2[3], 1) qc2.draw(output="mpl") from qiskit_machine_learning.neural_networks import SamplerQNN sampler_qnn = SamplerQNN(circuit=qc2, input_params=inputs2, weight_params=weights2) sampler_qnn estimator_qnn_input = algorithm_globals.random.random(estimator_qnn.num_inputs) estimator_qnn_weights = algorithm_globals.random.random(estimator_qnn.num_weights) print( f"Number of input features for EstimatorQNN: {estimator_qnn.num_inputs} \nInput: {estimator_qnn_input}" ) print( f"Number of trainable weights for EstimatorQNN: {estimator_qnn.num_weights} \nWeights: {estimator_qnn_weights}" ) sampler_qnn_input = algorithm_globals.random.random(sampler_qnn.num_inputs) sampler_qnn_weights = algorithm_globals.random.random(sampler_qnn.num_weights) print( f"Number of input features for SamplerQNN: {sampler_qnn.num_inputs} \nInput: {sampler_qnn_input}" ) print( f"Number of trainable weights for SamplerQNN: {sampler_qnn.num_weights} \nWeights: {sampler_qnn_weights}" ) estimator_qnn_forward = estimator_qnn.forward(estimator_qnn_input, estimator_qnn_weights) print( f"Forward pass result for EstimatorQNN: {estimator_qnn_forward}. \nShape: {estimator_qnn_forward.shape}" ) sampler_qnn_forward = sampler_qnn.forward(sampler_qnn_input, sampler_qnn_weights) print( f"Forward pass result for SamplerQNN: {sampler_qnn_forward}. \nShape: {sampler_qnn_forward.shape}" ) estimator_qnn_forward_batched = estimator_qnn.forward( [estimator_qnn_input, estimator_qnn_input], estimator_qnn_weights ) print( f"Forward pass result for EstimatorQNN: {estimator_qnn_forward_batched}. \nShape: {estimator_qnn_forward_batched.shape}" ) sampler_qnn_forward_batched = sampler_qnn.forward( [sampler_qnn_input, sampler_qnn_input], sampler_qnn_weights ) print( f"Forward pass result for SamplerQNN: {sampler_qnn_forward_batched}. \nShape: {sampler_qnn_forward_batched.shape}" ) estimator_qnn_input_grad, estimator_qnn_weight_grad = estimator_qnn.backward( estimator_qnn_input, estimator_qnn_weights ) print( f"Input gradients for EstimatorQNN: {estimator_qnn_input_grad}. \nShape: {estimator_qnn_input_grad}" ) print( f"Weight gradients for EstimatorQNN: {estimator_qnn_weight_grad}. \nShape: {estimator_qnn_weight_grad.shape}" ) sampler_qnn_input_grad, sampler_qnn_weight_grad = sampler_qnn.backward( sampler_qnn_input, sampler_qnn_weights ) print( f"Input gradients for SamplerQNN: {sampler_qnn_input_grad}. \nShape: {sampler_qnn_input_grad}" ) print( f"Weight gradients for SamplerQNN: {sampler_qnn_weight_grad}. \nShape: {sampler_qnn_weight_grad.shape}" ) estimator_qnn.input_gradients = True sampler_qnn.input_gradients = True estimator_qnn_input_grad, estimator_qnn_weight_grad = estimator_qnn.backward( estimator_qnn_input, estimator_qnn_weights ) print( f"Input gradients for EstimatorQNN: {estimator_qnn_input_grad}. \nShape: {estimator_qnn_input_grad.shape}" ) print( f"Weight gradients for EstimatorQNN: {estimator_qnn_weight_grad}. \nShape: {estimator_qnn_weight_grad.shape}" ) sampler_qnn_input_grad, sampler_qnn_weight_grad = sampler_qnn.backward( sampler_qnn_input, sampler_qnn_weights ) print( f"Input gradients for SamplerQNN: {sampler_qnn_input_grad}. \nShape: {sampler_qnn_input_grad.shape}" ) print( f"Weight gradients for SamplerQNN: {sampler_qnn_weight_grad}. \nShape: {sampler_qnn_weight_grad.shape}" ) observable2 = SparsePauliOp.from_list([("Z" * qc1.num_qubits, 1)]) estimator_qnn2 = EstimatorQNN( circuit=qc1, observables=[observable1, observable2], input_params=[params1[0]], weight_params=[params1[1]], ) estimator_qnn_forward2 = estimator_qnn2.forward(estimator_qnn_input, estimator_qnn_weights) estimator_qnn_input_grad2, estimator_qnn_weight_grad2 = estimator_qnn2.backward( estimator_qnn_input, estimator_qnn_weights ) print(f"Forward output for EstimatorQNN1: {estimator_qnn_forward.shape}") print(f"Forward output for EstimatorQNN2: {estimator_qnn_forward2.shape}") print(f"Backward output for EstimatorQNN1: {estimator_qnn_weight_grad.shape}") print(f"Backward output for EstimatorQNN2: {estimator_qnn_weight_grad2.shape}") parity = lambda x: "{:b}".format(x).count("1") % 2 output_shape = 2 # parity = 0, 1 sampler_qnn2 = SamplerQNN( circuit=qc2, input_params=inputs2, weight_params=weights2, interpret=parity, output_shape=output_shape, ) sampler_qnn_forward2 = sampler_qnn2.forward(sampler_qnn_input, sampler_qnn_weights) sampler_qnn_input_grad2, sampler_qnn_weight_grad2 = sampler_qnn2.backward( sampler_qnn_input, sampler_qnn_weights ) print(f"Forward output for SamplerQNN1: {sampler_qnn_forward.shape}") print(f"Forward output for SamplerQNN2: {sampler_qnn_forward2.shape}") print(f"Backward output for SamplerQNN1: {sampler_qnn_weight_grad.shape}") print(f"Backward output for SamplerQNN2: {sampler_qnn_weight_grad2.shape}") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/quantumyatra/quantum_computing
quantumyatra
from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') backend = provider.get_backend('ibmq_armonk') backend_config = backend.configuration() assert backend_config.open_pulse, "Backend doesn't support Pulse" dt = backend_config.dt print(f"Sampling time: {dt*1e9} ns") backend_defaults = backend.defaults() import numpy as np # unit conversion factors -> all backend properties returned in SI (Hz, sec, etc) GHz = 1.0e9 # Gigahertz MHz = 1.0e6 # Megahertz us = 1.0e-6 # Microseconds ns = 1.0e-9 # Nanoseconds # We will find the qubit frequency for the following qubit. qubit = 0 # The sweep will be centered around the estimated qubit frequency. # The default frequency is given in Hz # warning: this will change in a future release center_frequency_Hz = backend_defaults.qubit_freq_est[qubit] print(f"Qubit {qubit} has an estimated frequency of {center_frequency_Hz / GHz} GHz.") # scale factor to remove factors of 10 from the data scale_factor = 1e-14 # We will sweep 40 MHz around the estimated frequency frequency_span_Hz = 40 * MHz # in steps of 1 MHz. frequency_step_Hz = 1 * MHz # We will sweep 20 MHz above and 20 MHz below the estimated frequency frequency_min = center_frequency_Hz - frequency_span_Hz / 2 frequency_max = center_frequency_Hz + frequency_span_Hz / 2 # Construct an np array of the frequencies for our experiment frequencies_GHz = np.arange(frequency_min / GHz, frequency_max / GHz, frequency_step_Hz / GHz) print(f"The sweep will go from {frequency_min / GHz} GHz to {frequency_max / GHz} GHz \ in steps of {frequency_step_Hz / MHz} MHz.") # samples need to be multiples of 16 def get_closest_multiple_of_16(num): return int(num + 8 ) - (int(num + 8 ) % 16) from qiskit import pulse from qiskit.pulse import pulse_lib #from qiskit.pulse import library as pulse_lib from qiskit import pulse # This is where we access all of our Pulse features! #from qiskit.pulse import Play # This Pulse module helps us build sampled pulses for common pulse shapes #from qiskit.pulse import library as pulse_lib from qiskit.pulse import pulse_lib # Drive pulse parameters (us = microseconds) drive_sigma_us = 0.075 # This determines the actual width of the gaussian drive_samples_us = drive_sigma_us*8 # This is a truncating parameter, because gaussians don't have # a natural finite length drive_sigma = get_closest_multiple_of_16(drive_sigma_us * us /dt) # The width of the gaussian in units of dt drive_samples = get_closest_multiple_of_16(drive_samples_us * us /dt) # The truncating parameter in units of dt drive_amp = 0.05 # Drive pulse samples drive_pulse = pulse_lib.gaussian(duration=drive_samples, sigma=drive_sigma, amp=drive_amp, name='freq_sweep_excitation_pulse') # Find out which group of qubits need to be acquired with this qubit meas_map_idx = None for i, measure_group in enumerate(backend_config.meas_map): if qubit in measure_group: meas_map_idx = i break assert meas_map_idx is not None, f"Couldn't find qubit {qubit} in the meas_map!" inst_sched_map = backend_defaults.instruction_schedule_map measure = inst_sched_map.get('measure', qubits=backend_config.meas_map[meas_map_idx]) measure ### Collect the necessary channels drive_chan = pulse.DriveChannel(qubit) meas_chan = pulse.MeasureChannel(qubit) acq_chan = pulse.AcquireChannel(qubit) # Create the base schedule # Start with drive pulse acting on the drive channel schedule = pulse.Schedule(name='Frequency sweep') schedule += Play(drive_pulse, drive_chan) # The left shift `<<` is special syntax meaning to shift the start time of the schedule by some duration schedule += measure << schedule.duration # Create the frequency settings for the sweep (MUST BE IN HZ) frequencies_Hz = frequencies_GHz*GHz schedule_frequencies = [{drive_chan: freq} for freq in frequencies_Hz] schedule.draw(label=True) from qiskit import assemble num_shots_per_frequency = 1024 frequency_sweep_program = assemble(schedule, backend=backend, meas_level=1, meas_return='avg', shots=num_shots_per_frequency, schedule_los=schedule_frequencies) job = backend.run(frequency_sweep_program) # print(job.job_id()) from qiskit.tools.monitor import job_monitor job_monitor(job) frequency_sweep_results = job.result(timeout=120) # timeout parameter set to 120 seconds import matplotlib.pyplot as plt sweep_values = [] for i in range(len(frequency_sweep_results.results)): # Get the results from the ith experiment res = frequency_sweep_results.get_memory(i)*scale_factor # Get the results for `qubit` from this experiment sweep_values.append(res[qubit]) plt.scatter(frequencies_GHz, np.real(sweep_values), color='black') # plot real part of sweep values plt.xlim([min(frequencies_GHz), max(frequencies_GHz)]) plt.xlabel("Frequency [GHz]") plt.ylabel("Measured signal [a.u.]") plt.show() from scipy.optimize import curve_fit def fit_function(x_values, y_values, function, init_params): fitparams, conv = curve_fit(function, x_values, y_values, init_params) y_fit = function(x_values, *fitparams) return fitparams, y_fit fit_params, y_fit = fit_function(frequencies_GHz, np.real(sweep_values), lambda x, A, q_freq, B, C: (A / np.pi) * (B / ((x - q_freq)**2 + B**2)) + C, [-5, 4.975, 1, 5] # initial parameters for curve_fit ) plt.scatter(frequencies_GHz, np.real(sweep_values), color='black') plt.plot(frequencies_GHz, y_fit, color='red') plt.xlim([min(frequencies_GHz), max(frequencies_GHz)]) plt.xlabel("Frequency [GHz]") plt.ylabel("Measured Signal [a.u.]") plt.show()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumCircuit, transpile from qiskit.providers.fake_provider import FakeVigoV2 from qiskit.visualization import plot_circuit_layout from qiskit.tools.monitor import job_monitor from qiskit.providers.fake_provider import FakeVigoV2 import matplotlib.pyplot as plt ghz = QuantumCircuit(3, 3) ghz.h(0) for idx in range(1,3): ghz.cx(0,idx) ghz.measure(range(3), range(3)) backend = FakeVigoV2() new_circ_lv3 = transpile(ghz, backend=backend, optimization_level=3) plot_circuit_layout(new_circ_lv3, backend)
https://github.com/abbarreto/qiskit3
abbarreto
import sympy from sympy import * import numpy as np from numpy import random import math import scipy init_printing(use_unicode=True) from matplotlib import pyplot as plt %matplotlib inline from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum import TensorProduct as tp from mpmath import factorial as fact import io import base64 #from IPython.core.display import display, HTML, clear_output from IPython import * from ipywidgets import interactive, interact, fixed, interact_manual, widgets import csv import importlib import scipy.interpolate from mpl_toolkits.mplot3d import Axes3D, proj3d from itertools import product, combinations from matplotlib.patches import FancyArrowPatch from matplotlib import cm, colors from sympy.functions.special.tensor_functions import KroneckerDelta from scipy.linalg import polar, lapack import mpmath # constantes físicas e = 1.60217662*10**-19 # C (carga elementar) k = 8.9875517923*10**9 # Nm^2/C^2 (constante de Coulomb) eps0 = 8.8541878128*10**-12 #F/m (permissividade do vácuo) mu0 = 1.25663706212*10**-6 # N/A^2 (permeabilidade do vácuo) h = 6.626069*10**-34 # Js (constante de Planck) heV = h/e # em eV hb = h/(2*math.pi) # hbar hbeV = hb/e # em eV c = 2.99792458*10**8 # m/s (velocidade da luz no vácuo) G = 6.6742*10**-11 # Nm^2/kg^2 (constante gravitacional) kB = 1.38065*10**-23 # J/K (constante de Boltzmann) me = 9.109382*10**-31 # kg (massa do elétron) mp = 1.6726219*10**-27 # kg (massa do próton) mn = 1.67492749804*10**-27 # kg (massa do nêutron) mT = 5.9722*10**24 # kg (massa da Terra) mS = 1.98847*10**30 # kg (massa do Sol) u = 1.660538921*10**-27 # kg (unidade de massa atômica) dTS = 1.496*10**11 # m (distância Terra-Sol) rT = 6.3781*10**6 # m (raio da Terra) sSB = 5.670374419*10**-8 # W⋅m−2⋅K−4 (constante de Stefan-Boltzmann) Ri = 10973734.848575922 # m^-1 (constante de Rydberg) al = (k*e**2)/(hb*c) # ~1/137.035999084 (constante de estrutura fina) a0=(hb**2)/(me*k*e**2) # ~ 0.52917710^-10 m (raio de Bohr) ge = 2 # (fator giromagnetico do eletron) gp = 5.58 # (fator giromagnetico do proton) def id(n): '''retorna a matriz identidade nxn''' id = zeros(n,n) for j in range(0,n): id[j,j] = 1 return id #id(2) def pauli(j): '''retorna as matrizes de Pauli''' if j == 1: return Matrix([[0,1],[1,0]]) elif j == 2: return Matrix([[0,-1j],[1j,0]]) elif j == 3: return Matrix([[1,0],[0,-1]]) #pauli(1), pauli(2), pauli(3) def tr(A): '''retorna o traço de uma matriz''' d = A.shape[0] tr = 0 for j in range(0,d): tr += A[j,j] return tr #tr(pauli(1)) def comm(A,B): '''retorna a função comutador''' return A*B-B*A #comm(pauli(1),pauli(2)) def acomm(A,B): '''retorna a função anti-comutador''' return A*B+B*A #acomm(pauli(1),pauli(2)) def cb(n,j): '''retorna um vetor da base padrão de C^n''' vec = zeros(n,1) vec[j] = 1 return vec #cb(2,0) def proj(psi): '''retorna o projeto no vetor psi''' d = psi.shape[0] P = zeros(d,d) for j in range(0,d): for k in range(0,d): P[j,k] = psi[j]*conjugate(psi[k]) return P #proj(cb(2,0)) def bell(j,k): if j == 0 and k == 0: return (1/sqrt(2))*(tp(cb(2,0),cb(2,0))+tp(cb(2,1),cb(2,1))) elif j == 0 and k == 1: return (1/sqrt(2))*(tp(cb(2,0),cb(2,1))+tp(cb(2,1),cb(2,0))) elif j == 1 and k == 0: return (1/sqrt(2))*(tp(cb(2,0),cb(2,1))-tp(cb(2,1),cb(2,0))) elif j == 1 and k == 1: return (1/sqrt(2))*(tp(cb(2,0),cb(2,0))-tp(cb(2,1),cb(2,1))) #bell(0,0), bell(0,1), bell(1,0), bell(1,1) def inner_product(v,w): d = len(v); ip = 0 for j in range(0,d): ip += conjugate(v[j])*w[j] return ip #a,b,c,d = symbols("a b c d"); v = [b,a]; w = [c,d]; inner_product(v,w) def norm(v): d = len(v) return sqrt(inner_product(v,v)) #v = [2,2]; norm(v) def tp(x,y): return tensorproduct(x,y) A = tp(pauli(3),pauli(1)); A
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.utils import algorithm_globals algorithm_globals.random_seed = 123456 from sklearn.datasets import make_blobs features, labels = make_blobs( n_samples=20, centers=2, center_box=(-1, 1), cluster_std=0.1, random_state=algorithm_globals.random_seed, ) from qiskit import BasicAer from qiskit.utils import QuantumInstance sv_qi = QuantumInstance( BasicAer.get_backend("statevector_simulator"), seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ) from qiskit.circuit.library import ZZFeatureMap from qiskit_machine_learning.kernels import QuantumKernel feature_map = ZZFeatureMap(2) previous_kernel = QuantumKernel(feature_map=feature_map, quantum_instance=sv_qi) from qiskit_machine_learning.algorithms import QSVC qsvc = QSVC(quantum_kernel=previous_kernel) qsvc.fit(features, labels) qsvc.score(features, labels) from qiskit.algorithms.state_fidelities import ComputeUncompute from qiskit.primitives import Sampler fidelity = ComputeUncompute(sampler=Sampler()) from qiskit_machine_learning.kernels import FidelityQuantumKernel feature_map = ZZFeatureMap(2) new_kernel = FidelityQuantumKernel(feature_map=feature_map, fidelity=fidelity) from qiskit_machine_learning.algorithms import QSVC qsvc = QSVC(quantum_kernel=new_kernel) qsvc.fit(features, labels) qsvc.score(features, labels) from qiskit import QuantumCircuit from qiskit.circuit.library import RealAmplitudes num_inputs = 2 feature_map = ZZFeatureMap(num_inputs) ansatz = RealAmplitudes(num_inputs, reps=1) circuit = QuantumCircuit(num_inputs) circuit.compose(feature_map, inplace=True) circuit.compose(ansatz, inplace=True) def parity(x): return "{:b}".format(x).count("1") % 2 initial_point = algorithm_globals.random.random(ansatz.num_parameters) from qiskit_machine_learning.neural_networks import CircuitQNN circuit_qnn = CircuitQNN( circuit=circuit, input_params=feature_map.parameters, weight_params=ansatz.parameters, interpret=parity, output_shape=2, quantum_instance=sv_qi, ) from qiskit.algorithms.optimizers import COBYLA from qiskit_machine_learning.algorithms import NeuralNetworkClassifier classifier = NeuralNetworkClassifier( neural_network=circuit_qnn, loss="cross_entropy", one_hot=True, optimizer=COBYLA(maxiter=40), initial_point=initial_point, ) classifier.fit(features, labels) classifier.score(features, labels) from qiskit.primitives import Sampler sampler = Sampler() from qiskit_machine_learning.neural_networks import SamplerQNN sampler_qnn = SamplerQNN( circuit=circuit, input_params=feature_map.parameters, weight_params=ansatz.parameters, interpret=parity, output_shape=2, sampler=sampler, ) classifier = NeuralNetworkClassifier( neural_network=sampler_qnn, loss="cross_entropy", one_hot=True, optimizer=COBYLA(maxiter=40), initial_point=initial_point, ) classifier.fit(features, labels) classifier.score(features, labels) import numpy as np num_samples = 20 eps = 0.2 lb, ub = -np.pi, np.pi features = (ub - lb) * np.random.rand(num_samples, 1) + lb labels = np.sin(features[:, 0]) + eps * (2 * np.random.rand(num_samples) - 1) from qiskit.circuit import Parameter num_inputs = 1 feature_map = QuantumCircuit(1) feature_map.ry(Parameter("input"), 0) ansatz = QuantumCircuit(1) ansatz.ry(Parameter("weight"), 0) circuit = QuantumCircuit(num_inputs) circuit.compose(feature_map, inplace=True) circuit.compose(ansatz, inplace=True) initial_point = algorithm_globals.random.random(ansatz.num_parameters) from qiskit.opflow import PauliSumOp, StateFn from qiskit_machine_learning.neural_networks import OpflowQNN observable = PauliSumOp.from_list([("Z", 1)]) operator = StateFn(observable, is_measurement=True) @ StateFn(circuit) opflow_qnn = OpflowQNN( operator=operator, input_params=feature_map.parameters, weight_params=ansatz.parameters, quantum_instance=sv_qi, ) from qiskit.algorithms.optimizers import L_BFGS_B from qiskit_machine_learning.algorithms import NeuralNetworkRegressor regressor = NeuralNetworkRegressor( neural_network=opflow_qnn, optimizer=L_BFGS_B(maxiter=5), initial_point=initial_point, ) regressor.fit(features, labels) regressor.score(features, labels) from qiskit.primitives import Estimator estimator = Estimator() from qiskit_machine_learning.neural_networks import EstimatorQNN estimator_qnn = EstimatorQNN( circuit=circuit, input_params=feature_map.parameters, weight_params=ansatz.parameters, estimator=estimator, ) from qiskit.algorithms.optimizers import L_BFGS_B from qiskit_machine_learning.algorithms import VQR regressor = NeuralNetworkRegressor( neural_network=estimator_qnn, optimizer=L_BFGS_B(maxiter=5), initial_point=initial_point, ) regressor.fit(features, labels) regressor.score(features, labels) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
# import common packages import numpy as np from qiskit import Aer # lib from Qiskit Aqua from qiskit_aqua import Operator, QuantumInstance from qiskit_aqua.algorithms import VQE, ExactEigensolver from qiskit_aqua.components.optimizers import COBYLA # lib from Qiskit Aqua Chemistry from qiskit_chemistry import FermionicOperator from qiskit_chemistry.drivers import PySCFDriver, UnitsType from qiskit_chemistry.aqua_extensions.components.variational_forms import UCCSD from qiskit_chemistry.aqua_extensions.components.initial_states import HartreeFock # using driver to get fermionic Hamiltonian # PySCF example driver = PySCFDriver(atom='Li .0 .0 .0; H .0 .0 1.6', unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g') molecule = driver.run() # please be aware that the idx here with respective to original idx freeze_list = [0] remove_list = [-3, -2] # negative number denotes the reverse order map_type = 'parity' h1 = molecule.one_body_integrals h2 = molecule.two_body_integrals nuclear_repulsion_energy = molecule.nuclear_repulsion_energy num_particles = molecule.num_alpha + molecule.num_beta num_spin_orbitals = molecule.num_orbitals * 2 print("HF energy: {}".format(molecule.hf_energy - molecule.nuclear_repulsion_energy)) print("# of electrons: {}".format(num_particles)) print("# of spin orbitals: {}".format(num_spin_orbitals)) # prepare full idx of freeze_list and remove_list # convert all negative idx to positive remove_list = [x % molecule.num_orbitals for x in remove_list] freeze_list = [x % molecule.num_orbitals for x in freeze_list] # update the idx in remove_list of the idx after frozen, since the idx of orbitals are changed after freezing remove_list = [x - len(freeze_list) for x in remove_list] remove_list += [x + molecule.num_orbitals - len(freeze_list) for x in remove_list] freeze_list += [x + molecule.num_orbitals for x in freeze_list] # prepare fermionic hamiltonian with orbital freezing and eliminating, and then map to qubit hamiltonian # and if PARITY mapping is selected, reduction qubits energy_shift = 0.0 qubit_reduction = True if map_type == 'parity' else False ferOp = FermionicOperator(h1=h1, h2=h2) if len(freeze_list) > 0: ferOp, energy_shift = ferOp.fermion_mode_freezing(freeze_list) num_spin_orbitals -= len(freeze_list) num_particles -= len(freeze_list) if len(remove_list) > 0: ferOp = ferOp.fermion_mode_elimination(remove_list) num_spin_orbitals -= len(remove_list) qubitOp = ferOp.mapping(map_type=map_type, threshold=0.00000001) qubitOp = qubitOp.two_qubit_reduced_operator(num_particles) if qubit_reduction else qubitOp qubitOp.chop(10**-10) print(qubitOp.print_operators()) print(qubitOp) # Using exact eigensolver to get the smallest eigenvalue exact_eigensolver = ExactEigensolver(qubitOp, k=1) ret = exact_eigensolver.run() print('The computed energy is: {:.12f}'.format(ret['eigvals'][0].real)) print('The total ground state energy is: {:.12f}'.format(ret['eigvals'][0].real + energy_shift + nuclear_repulsion_energy)) # from qiskit import IBMQ # IBMQ.load_accounts() backend = Aer.get_backend('statevector_simulator') # setup COBYLA optimizer max_eval = 200 cobyla = COBYLA(maxiter=max_eval) # setup HartreeFock state HF_state = HartreeFock(qubitOp.num_qubits, num_spin_orbitals, num_particles, map_type, qubit_reduction) # setup UCCSD variational form var_form = UCCSD(qubitOp.num_qubits, depth=1, num_orbitals=num_spin_orbitals, num_particles=num_particles, active_occupied=[0], active_unoccupied=[0, 1], initial_state=HF_state, qubit_mapping=map_type, two_qubit_reduction=qubit_reduction, num_time_slices=1) # setup VQE vqe = VQE(qubitOp, var_form, cobyla, 'matrix') quantum_instance = QuantumInstance(backend=backend) results = vqe.run(quantum_instance) print('The computed ground state energy is: {:.12f}'.format(results['eigvals'][0])) print('The total ground state energy is: {:.12f}'.format(results['eigvals'][0] + energy_shift + nuclear_repulsion_energy)) print("Parameters: {}".format(results['opt_params']))
https://github.com/gustavomirapalheta/Quantum-Computing-with-Qiskit
gustavomirapalheta
# Setup básico !pip install qiskit -q !pip install qiskit[visualization] -q import qiskit as qk !pip install qiskit-aer -q import qiskit_aer as qk_aer import numpy as np np.set_printoptions(precision=3, suppress=True) from matplotlib import pyplot as plt %matplotlib inline import pandas as pd import sklearn as sk import qiskit as qk qc = qk.QuantumCircuit(3,3) qc.initialize(1,[0]) qc.barrier() qc.h(1) qc.cx(1,2) qc.barrier() qc.cx(0,1) qc.h(0) qc.barrier() qc.measure([0,1],[0,1]) display(qc.draw('mpl', style='clifford', scale=1)) import sympy as sp a, b = sp.symbols('a b') q0 = sp.Matrix([[a, b]]); display(q0); print(" ") q1 = sp.Matrix([[1, 0]]); display(q1); print(" ") q2 = sp.Matrix([[1, 0]]); display(q2); from sympy import kronecker_product as kron e0 = kron(q0, kron(q1,q2)); e0 I1 = sp.Matrix([[1,0], [0,1]]) H1 = sp.Matrix([[1, 1], [1,-1]]) IHI = kron(I1,kron(H1,I1)) CNOT12 = sp.Matrix([[1,0,0,0], [0,1,0,0], [0,0,0,1], [0,0,1,0]]) IC12 = kron(I1,CNOT12) e1 = e0*IHI*IC12; e1 e2 = e1*kron(CNOT12,I1)*kron(H1,kron(I1,I1)); e2
https://github.com/HQSquantumsimulations/qoqo-qiskit
HQSquantumsimulations
# Copyright 2022-2023 Ohad Lev. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0, # or in the root directory of this package("LICENSE.txt"). # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ `SATInterface` class. """ import os import json from typing import List, Tuple, Union, Optional, Dict, Any from sys import stdout from datetime import datetime from hashlib import sha256 from qiskit import transpile, QuantumCircuit, qpy from qiskit.result.counts import Counts from qiskit.visualization.circuit.text import TextDrawing from qiskit.providers.backend import Backend from qiskit.transpiler.passes import RemoveBarriers from IPython import display from matplotlib.figure import Figure from sat_circuits_engine.util import timer_dec, timestamp, flatten_circuit from sat_circuits_engine.util.settings import DATA_PATH, TRANSPILE_KWARGS from sat_circuits_engine.circuit import GroverConstraintsOperator, SATCircuit from sat_circuits_engine.constraints_parse import ParsedConstraints from sat_circuits_engine.interface.circuit_decomposition import decompose_operator from sat_circuits_engine.interface.counts_visualization import plot_histogram from sat_circuits_engine.interface.translator import ConstraintsTranslator from sat_circuits_engine.classical_processing import ( find_iterations_unknown, calc_iterations, ClassicalVerifier, ) from sat_circuits_engine.interface.interactive_inputs import ( interactive_operator_inputs, interactive_solutions_num_input, interactive_run_input, interactive_backend_input, interactive_shots_input, ) # Local globlas for visualization of charts and diagrams IFRAME_WIDTH = "100%" IFRAME_HEIGHT = "700" class SATInterface: """ An interface for building, running and mining data from n-SAT problems quantum circuits. There are 2 options to use this class: (1) Using an interactive interface (intuitive but somewhat limited) - for this just initiate a bare instance of this class: `SATInterface()`. (2) Using the API defined by this class, that includes the following methods: * The following descriptions are partial, for full annotations see the methods' docstrings. - `__init__`: an instance of `SATInterface must be initiated with exactly 1 combination: (a) (high_level_constraints_string + high_level_vars) - for constraints in a high-level format. (b) (num_input_qubits + constraints_string) - for constraints in a low-level foramt. * For formats annotations see `constriants_format.ipynb` in the main directory. - `obtain_grover_operator`: obtains the suitable grover operator for the constraints. - `save_display_grover_operator`: saves and displays data generated by the `obtain_grover_operator` method. - `obtain_overall_circuit`: obtains the suitable overall SAT circuit. - `save_display_overall_circuit: saves and displays data generated by the `obtain_overall_circuit` method. - `run_overall_circuit`: executes the overall SAT circuit. - `save_display_results`: saves and displays data generated by the `run_overall_circuit` method. It is very recommended to go through `demos.ipynb` that demonstrates the various optional uses of this class, in addition to reading `constraints_format.ipynb`, which is a must for using this package properly. Both notebooks are in ther main directory. """ def __init__( self, num_input_qubits: Optional[int] = None, constraints_string: Optional[str] = None, high_level_constraints_string: Optional[str] = None, high_level_vars: Optional[Dict[str, int]] = None, name: Optional[str] = None, save_data: Optional[bool] = True, ) -> None: """ Accepts the combination of paramters: (high_level_constraints_string + high_level_vars) or (num_input_qubits + constraints_string). Exactly one combination is accepted. In other cases either an iteractive user interface will be called to take user's inputs, or an exception will be raised due to misuse of the API. Args: num_input_qubits (Optional[int] = None): number of input qubits. constraints_string (Optional[str] = None): a string of constraints in a low-level format. high_level_constraints_string (Optional[str] = None): a string of constraints in a high-level format. high_level_vars (Optional[Dict[str, int]] = None): a dictionary that configures the high-level variables - keys are names and values are bits-lengths. name (Optional[str] = None): a name for this object, if None than the generic name "SAT" is given automatically. save_data (Optional[bool] = True): if True, saves all data and metadata generated by this class to a unique data folder (by using the `save_XXX` methods of this class). Raises: SyntaxError - if a forbidden combination of arguments has been provided. """ if name is None: name = "SAT" self.name = name # Creating a directory for data to be saved if save_data: self.time_created = timestamp(datetime.now()) self.dir_path = f"{DATA_PATH}{self.time_created}_{self.name}/" os.mkdir(self.dir_path) print(f"Data will be saved into '{self.dir_path}'.") # Initial metadata, more to be added by this class' `save_XXX` methods self.metadata = { "name": self.name, "datetime": self.time_created, "num_input_qubits": num_input_qubits, "constraints_string": constraints_string, "high_level_constraints_string": high_level_constraints_string, "high_level_vars": high_level_vars, } self.update_metadata() # Identifying user's platform, for visualization purposes self.identify_platform() # In the case of low-level constraints format, that is the default value self.high_to_low_map = None # Case A - interactive interface if (num_input_qubits is None or constraints_string is None) and ( high_level_constraints_string is None or high_level_vars is None ): self.interactive_interface() # Case B - API else: self.high_level_constraints_string = high_level_constraints_string self.high_level_vars = high_level_vars # Case B.1 - high-level format constraints inputs if num_input_qubits is None or constraints_string is None: self.num_input_qubits = sum(self.high_level_vars.values()) self.high_to_low_map, self.constraints_string = ConstraintsTranslator( self.high_level_constraints_string, self.high_level_vars ).translate() # Case B.2 - low-level format constraints inputs elif num_input_qubits is not None and constraints_string is not None: self.num_input_qubits = num_input_qubits self.constraints_string = constraints_string # Misuse else: raise SyntaxError( "SATInterface accepts the combination of paramters:" "(high_level_constraints_string + high_level_vars) or " "(num_input_qubits + constraints_string). " "Exactly one combination is accepted, not both." ) self.parsed_constraints = ParsedConstraints( self.constraints_string, self.high_level_constraints_string ) def update_metadata(self, update_metadata: Optional[Dict[str, Any]] = None) -> None: """ Updates the metadata file (in the unique data folder of a given `SATInterface` instance). Args: update_metadata (Optional[Dict[str, Any]] = None): - If None - just dumps `self.metadata` into the metadata JSON file. - If defined - updates the `self.metadata` attribute and then dumps it. """ if update_metadata is not None: self.metadata.update(update_metadata) with open(f"{self.dir_path}metadata.json", "w") as metadata_file: json.dump(self.metadata, metadata_file, indent=4) def identify_platform(self) -> None: """ Identifies user's platform. Writes True to `self.jupyter` for Jupyter notebook, False for terminal. """ # If True then the platform is a terminal/command line/shell if stdout.isatty(): self.jupyter = False # If False, we assume the platform is a Jupyter notebook else: self.jupyter = True def output_to_platform( self, *, title: str, output_terminal: Union[TextDrawing, str], output_jupyter: Union[Figure, str], display_both_on_jupyter: Optional[bool] = False, ) -> None: """ Displays output to user's platform. Args: title (str): a title for the output. output_terminal (Union[TextDrawing, str]): text to print for a terminal platform. output_jupyter: (Union[Figure, str]): objects to display for a Jupyter notebook platform. can handle `Figure` matplotlib objects or strings of paths to IFrame displayable file, e.g PDF files. display_both_on_jupyter (Optional[bool] = False): if True, displays both `output_terminal` and `output_jupyter` in a Jupyter notebook platform. Raises: TypeError - in the case of misusing the `output_jupyter` argument. """ print() print(title) if self.jupyter: if isinstance(output_jupyter, str): display.display(display.IFrame(output_jupyter, width=IFRAME_WIDTH, height=IFRAME_HEIGHT)) elif isinstance(output_jupyter, Figure): display.display(output_jupyter) else: raise TypeError("output_jupyter must be an str (path to image file) or a Figure object.") if display_both_on_jupyter: print(output_terminal) else: print(output_terminal) def interactive_interface(self) -> None: """ An interactive CLI that allows exploiting most (but not all) of the package's features. Uses functions of the form `interactive_XXX_inputs` from the `interactive_inputs.py` module. Divided into 3 main stages: 1. Obtaining Grover's operator for the SAT problem. 2. Obtaining the overall SAT cirucit. 3. Executing the circuit and parsing the results. The interface is built in a modular manner such that a user can halt at any stage. The defualt settings for the interactive user intreface are: 1. `name = "SAT"`. 2. `save_data = True`. 3. `display = True`. 4. `transpile_kwargs = {'basis_gates': ['u', 'cx'], 'optimization_level': 3}`. 5. Backends are limited to those defined in the global-constant-like function `BACKENDS`: - Those are the local `aer_simulator` and the remote `ibmq_qasm_simulator` for now. Due to these default settings the interactive CLI is somewhat restrictive, for full flexibility a user should use the API and not the CLI. """ # Handling operator part operator_inputs = interactive_operator_inputs() self.num_input_qubits = operator_inputs["num_input_qubits"] self.high_to_low_map = operator_inputs["high_to_low_map"] self.constraints_string = operator_inputs["constraints_string"] self.high_level_constraints_string = operator_inputs["high_level_constraints_string"] self.high_level_vars = operator_inputs["high_level_vars"] self.parsed_constraints = ParsedConstraints( self.constraints_string, self.high_level_constraints_string ) self.update_metadata( { "num_input_qubits": self.num_input_qubits, "constraints_string": self.constraints_string, "high_level_constraints_string": self.high_level_constraints_string, "high_level_vars": self.high_level_vars, } ) obtain_grover_operator_output = self.obtain_grover_operator() self.save_display_grover_operator(obtain_grover_operator_output) # Handling overall circuit part solutions_num = interactive_solutions_num_input() if solutions_num is not None: backend = None if solutions_num == -1: backend = interactive_backend_input() overall_circuit_data = self.obtain_overall_sat_circuit( obtain_grover_operator_output["operator"], solutions_num, backend ) self.save_display_overall_circuit(overall_circuit_data) # Handling circuit execution part if interactive_run_input(): if backend is None: backend = interactive_backend_input() shots = interactive_shots_input() counts_parsed = self.run_overall_sat_circuit( overall_circuit_data["circuit"], backend, shots ) self.save_display_results(counts_parsed) print() print(f"Done saving data into '{self.dir_path}'.") def obtain_grover_operator( self, transpile_kwargs: Optional[Dict[str, Any]] = None ) -> Dict[str, Union[GroverConstraintsOperator, QuantumCircuit]]: """ Obtains the suitable `GroverConstraintsOperator` object for the constraints, decomposes it using the `circuit_decomposition.py` module and transpiles it according to `transpile_kwargs`. Args: transpile_kwargs (Optional[Dict[str, Any]]): kwargs for Qiskit's transpile function. The defualt is set to the global constant `TRANSPILE_KWARGS`. Returns: (Dict[str, Union[GroverConstraintsOperator, QuantumCircuit, Dict[str, List[int]]]]): - 'operator' (GroverConstraintsOperator):the high-level blocks operator. - 'decomposed_operator' (QuantumCircuit): decomposed to building-blocks operator. * For annotations regarding the decomposition method see the `circuit_decomposition` module. - 'transpiled_operator' (QuantumCircuit): the transpiled operator. *** The high-level operator and the decomposed operator are generated with barriers between constraints as default for visualizations purposes. The barriers are stripped off before transpiling so the the transpiled operator object contains no barriers. *** - 'high_level_to_bit_indexes_map' (Optional[Dict[str, List[int]]] = None): A map of high-level variables with their allocated bit-indexes in the input register. """ print() print( "The system synthesizes and transpiles a Grover's " "operator for the given constraints. Please wait.." ) if transpile_kwargs is None: transpile_kwargs = TRANSPILE_KWARGS self.transpile_kwargs = transpile_kwargs operator = GroverConstraintsOperator( self.parsed_constraints, self.num_input_qubits, insert_barriers=True ) decomposed_operator = decompose_operator(operator) no_baerriers_operator = RemoveBarriers()(operator) transpiled_operator = transpile(no_baerriers_operator, **transpile_kwargs) print("Done.") return { "operator": operator, "decomposed_operator": decomposed_operator, "transpiled_operator": transpiled_operator, "high_level_to_bit_indexes_map": self.high_to_low_map, } def save_display_grover_operator( self, obtain_grover_operator_output: Dict[str, Union[GroverConstraintsOperator, QuantumCircuit]], display: Optional[bool] = True, ) -> None: """ Handles saving and displaying data generated by the `self.obtain_grover_operator` method. Args: obtain_grover_operator_output(Dict[str, Union[GroverConstraintsOperator, QuantumCircuit]]): the dictionary returned upon calling the `self.obtain_grover_operator` method. display (Optional[bool] = True) - If true, displays objects to user's platform. """ # Creating a directory to save operator's data operator_dir_path = f"{self.dir_path}grover_operator/" os.mkdir(operator_dir_path) # Titles for displaying objects, by order of `obtain_grover_operator_output` titles = [ "The operator diagram - high level blocks:", "The operator diagram - decomposed:", f"The transpiled operator diagram saved into '{operator_dir_path}'.\n" f"It's not presented here due to its complexity.\n" f"Please note that barriers appear in the high-level diagrams above only for convenient\n" f"visual separation between constraints.\n" f"Before transpilation all barriers are removed to avoid redundant inefficiencies.", ] for index, (op_name, op_obj) in enumerate(obtain_grover_operator_output.items()): # Generic path and name for files to be saved files_path = f"{operator_dir_path}{op_name}" # Generating a circuit diagrams figure figure_path = f"{files_path}.pdf" op_obj.draw("mpl", filename=figure_path, fold=-1) # Generating a QPY serialization file for the circuit object qpy_file_path = f"{files_path}.qpy" with open(qpy_file_path, "wb") as qpy_file: qpy.dump(op_obj, qpy_file) # Original high-level operator and decomposed operator if index < 2 and display: # Displaying to user self.output_to_platform( title=titles[index], output_terminal=op_obj.draw("text"), output_jupyter=figure_path ) # Transpiled operator elif index == 2: # Output to user, not including the circuit diagram print() print(titles[index]) print() print(f"The transpilation kwargs are: {self.transpile_kwargs}.") transpiled_operator_depth = op_obj.depth() transpiled_operator_gates_count = op_obj.count_ops() print(f"Transpiled operator depth: {transpiled_operator_depth}.") print(f"Transpiled operator gates count: {transpiled_operator_gates_count}.") print(f"Total number of qubits: {op_obj.num_qubits}.") # Generating QASM 2.0 file only for the (flattened = no registers) tranpsiled operator qasm_file_path = f"{files_path}.qasm" flatten_circuit(op_obj).qasm(filename=qasm_file_path) # Index 3 is 'high_level_to_bit_indexes_map' so it's time to break from the loop break # Mapping from high-level variables to bit-indexes will be displayed as well mapping = obtain_grover_operator_output["high_level_to_bit_indexes_map"] if mapping: print() print(f"The high-level variables mapping to bit-indexes:\n{mapping}") print() print( f"Saved into '{operator_dir_path}':\n", " Circuit diagrams for all levels.\n", " QPY serialization exports for all levels.\n", " QASM 2.0 export only for the transpiled level.", ) with open(f"{operator_dir_path}operator.qpy", "rb") as qpy_file: operator_qpy_sha256 = sha256(qpy_file.read()).hexdigest() self.update_metadata( { "high_level_to_bit_indexes_map": self.high_to_low_map, "transpile_kwargs": self.transpile_kwargs, "transpiled_operator_depth": transpiled_operator_depth, "transpiled_operator_gates_count": transpiled_operator_gates_count, "operator_qpy_sha256": operator_qpy_sha256, } ) def obtain_overall_sat_circuit( self, grover_operator: GroverConstraintsOperator, solutions_num: int, backend: Optional[Backend] = None, ) -> Dict[str, SATCircuit]: """ Obtains the suitable `SATCircuit` object (= the overall SAT circuit) for the SAT problem. Args: grover_operator (GroverConstraintsOperator): Grover's operator for the SAT problem. solutions_num (int): number of solutions for the SAT problem. In the case the number of solutions is unknown, specific negative values are accepted: * '-1' - for launching a classical iterative stochastic process that finds an adequate number of iterations - by calling the `find_iterations_unknown` function (see its docstrings for more information). * '-2' - for generating a dynamic circuit that iterates over Grover's iterator until a solution is obtained, using weak measurements. TODO - this feature isn't ready yet. backend (Optional[Backend] = None): in the case of a '-1' value given to `solutions_num`, a backend object to execute the depicted iterative prcess upon should be provided. Returns: (Dict[str, SATCircuit]): - 'circuit' key for the overall SAT circuit. - 'concise_circuit' key for the overall SAT circuit, with only 1 iteration over Grover's iterator (operator + diffuser). Useful for visualization purposes. *** The concise circuit is generated with barriers between segments as default for visualizations purposes. In the actual circuit there no barriers. *** """ # -1 = Unknown number of solutions - iterative stochastic process print() if solutions_num == -1: assert backend is not None, "Need to specify a backend if `solutions_num == -1`." print("Please wait while the system checks various solutions..") circuit, iterations = find_iterations_unknown( self.num_input_qubits, grover_operator, self.parsed_constraints, precision=10, backend=backend, ) print() print(f"An adequate number of iterations found = {iterations}.") # -2 = Unknown number of solutions - implement a dynamic circuit # TODO this feature isn't fully implemented yet elif solutions_num == -2: print("The system builds a dynamic circuit..") circuit = SATCircuit(self.num_input_qubits, grover_operator, iterations=None) circuit.add_input_reg_measurement() iterations = None # Known number of solutions else: print("The system builds the overall circuit..") iterations = calc_iterations(self.num_input_qubits, solutions_num) print(f"\nFor {solutions_num} solutions, {iterations} iterations needed.") circuit = SATCircuit( self.num_input_qubits, grover_operator, iterations, insert_barriers=False ) circuit.add_input_reg_measurement() self.iterations = iterations # Obtaining a SATCircuit object with one iteration for concise representation concise_circuit = SATCircuit( self.num_input_qubits, grover_operator, iterations=1, insert_barriers=True ) concise_circuit.add_input_reg_measurement() return {"circuit": circuit, "concise_circuit": concise_circuit} def save_display_overall_circuit( self, obtain_overall_sat_circuit_output: Dict[str, SATCircuit], display: Optional[bool] = True ) -> None: """ Handles saving and displaying data generated by the `self.obtain_overall_sat_circuit` method. Args: obtain_overall_sat_circuit_output(Dict[str, SATCircuit]): the dictionary returned upon calling the `self.obtain_overall_sat_circuit` method. display (Optional[bool] = True) - If true, displays objects to user's platform. """ circuit = obtain_overall_sat_circuit_output["circuit"] concise_circuit = obtain_overall_sat_circuit_output["concise_circuit"] # Creating a directory to save overall circuit's data overall_circuit_dir_path = f"{self.dir_path}overall_circuit/" os.mkdir(overall_circuit_dir_path) # Generating a figure of the overall SAT circuit with just 1 iteration (i.e "concise") concise_circuit_fig_path = f"{overall_circuit_dir_path}overall_circuit_1_iteration.pdf" concise_circuit.draw("mpl", filename=concise_circuit_fig_path, fold=-1) # Displaying the concise circuit to user if display: if self.iterations: self.output_to_platform( title=( f"The high level circuit contains {self.iterations}" f" iterations of the following form:" ), output_terminal=concise_circuit.draw("text"), output_jupyter=concise_circuit_fig_path, ) # Dynamic circuit case - TODO NOT FULLY IMPLEMENTED YET else: dynamic_circuit_fig_path = f"{overall_circuit_dir_path}overall_circuit_dynamic.pdf" circuit.draw("mpl", filename=dynamic_circuit_fig_path, fold=-1) self.output_to_platform( title="The dynamic circuit diagram:", output_terminal=circuit.draw("text"), output_jupyter=dynamic_circuit_fig_path, ) if self.iterations: transpiled_overall_circuit = transpile(flatten_circuit(circuit), **self.transpile_kwargs) print() print(f"The transpilation kwargs are: {self.transpile_kwargs}.") transpiled_overall_circuit_depth = transpiled_overall_circuit.depth() transpiled_overall_circuit_gates_count = transpiled_overall_circuit.count_ops() print(f"Transpiled overall-circuit depth: {transpiled_overall_circuit_depth}.") print(f"Transpiled overall-circuit gates count: {transpiled_overall_circuit_gates_count}.") print(f"Total number of qubits: {transpiled_overall_circuit.num_qubits}.") print() print("Exporting the full overall SAT circuit object..") export_files_path = f"{overall_circuit_dir_path}overall_circuit" with open(f"{export_files_path}.qpy", "wb") as qpy_file: qpy.dump(circuit, qpy_file) if self.iterations: transpiled_overall_circuit.qasm(filename=f"{export_files_path}.qasm") print() print( f"Saved into '{overall_circuit_dir_path}':\n", " A concised (1 iteration) circuit diagram of the high-level overall SAT circuit.\n", " QPY serialization export for the full overall SAT circuit object.", ) if self.iterations: print(" QASM 2.0 export for the transpiled full overall SAT circuit object.") metadata_update = { "num_total_qubits": circuit.num_qubits, "num_iterations": circuit.iterations, } if self.iterations: metadata_update["transpiled_overall_circuit_depth"] = (transpiled_overall_circuit_depth,) metadata_update[ "transpiled_overall_circuit_gates_count" ] = transpiled_overall_circuit_gates_count self.update_metadata(metadata_update) @timer_dec("Circuit simulation execution time = ") def run_overall_sat_circuit( self, circuit: QuantumCircuit, backend: Backend, shots: int ) -> Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]: """ Executes a `circuit` on `backend` transpiled w.r.t backend, `shots` times. Args: circuit (QuantumCircuit): `QuantumCircuit` object or child-object (a.k.a `SATCircuit`) to execute. backend (Backend): backend to execute `circuit` upon. shots (int): number of execution shots. Returns: (Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]): dict object returned by `self.parse_counts` - see this method's docstrings for annotations. """ # Defines also instance attributes to use in other methods self.backend = backend self.shots = shots print() print(f"The system is running the circuit {shots} times on {backend}, please wait..") print("This process might take a while.") job = backend.run(transpile(circuit, backend), shots=shots) counts = job.result().get_counts() print("Done.") parsed_counts = self.parse_counts(counts) return parsed_counts def parse_counts( self, counts: Counts ) -> Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]: """ Parses a `Counts` object into several desired datas (see 'Returns' section). Args: counts (Counts): the `Counts` object to parse. Returns: (Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]): 'counts' (Counts) - the original `Counts` object. 'counts_sorted' (List[Tuple[Union[str, int]]]) - results sorted in a descending order. 'distilled_solutions' (List[str]): list of solutions (bitstrings). 'high_level_vars_values' (List[Dict[str, int]]): list of solutions (each solution is a dictionary with variable-names as keys and their integer values as values). """ # Sorting results in an a descending order counts_sorted = sorted(counts.items(), key=lambda x: x[1], reverse=True) # Generating a set of distilled verified-only solutions verifier = ClassicalVerifier(self.parsed_constraints) distilled_solutions = set() for count_item in counts_sorted: if not verifier.verify(count_item[0]): break distilled_solutions.add(count_item[0]) # In the case of high-level format in use, translating `distilled_solutions` into integer values high_level_vars_values = None if self.high_level_constraints_string and self.high_level_vars: # Container for dictionaries with variables integer values high_level_vars_values = [] for solution in distilled_solutions: # Keys are variable-names and values are their integer values solution_vars = {} for var, bits_bundle in self.high_to_low_map.items(): reversed_solution = solution[::-1] var_bitstring = "" for bit_index in bits_bundle: var_bitstring += reversed_solution[bit_index] # Translating to integer value solution_vars[var] = int(var_bitstring, 2) high_level_vars_values.append(solution_vars) return { "counts": counts, "counts_sorted": counts_sorted, "distilled_solutions": distilled_solutions, "high_level_vars_values": high_level_vars_values, } def save_display_results( self, run_overall_sat_circuit_output: Dict[ str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]] ], display: Optional[bool] = True, ) -> None: """ Handles saving and displaying data generated by the `self.run_overall_sat_circuit` method. Args: run_overall_sat_circuit_output (Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]): the dictionary returned upon calling the `self.run_overall_sat_circuit` method. display (Optional[bool] = True) - If true, displays objects to user's platform. """ counts = run_overall_sat_circuit_output["counts"] counts_sorted = run_overall_sat_circuit_output["counts_sorted"] distilled_solutions = run_overall_sat_circuit_output["distilled_solutions"] high_level_vars_values = run_overall_sat_circuit_output["high_level_vars_values"] # Creating a directory to save results data results_dir_path = f"{self.dir_path}results/" os.mkdir(results_dir_path) # Defining custom dimensions for the custom `plot_histogram` of this package histogram_fig_width = max((len(counts) * self.num_input_qubits * (10 / 72)), 7) histogram_fig_height = 5 histogram_figsize = (histogram_fig_width, histogram_fig_height) histogram_path = f"{results_dir_path}histogram.pdf" plot_histogram(counts, figsize=histogram_figsize, sort="value_desc", filename=histogram_path) if display: # Basic output text output_text = ( f"All counts:\n{counts_sorted}\n" f"\nDistilled solutions ({len(distilled_solutions)} total):\n" f"{distilled_solutions}" ) # Additional outputs for a high-level constraints format if high_level_vars_values: # Mapping from high-level variables to bit-indexes will be displayed as well output_text += ( f"\n\nThe high-level variables mapping to bit-indexes:" f"\n{self.high_to_low_map}" ) # Actual integer solutions will be displayed as well additional_text = "" for solution_index, solution in enumerate(high_level_vars_values): additional_text += f"Solution {solution_index + 1}: " for var_index, (var, value) in enumerate(solution.items()): additional_text += f"{var} = {value}" if var_index != len(solution) - 1: additional_text += ", " else: additional_text += "\n" output_text += f"\n\nHigh-level format solutions: \n{additional_text}" self.output_to_platform( title=f"The results for {self.shots} shots are:", output_terminal=output_text, output_jupyter=histogram_path, display_both_on_jupyter=True, ) results_dict = { "high_level_to_bit_indexes_map": self.high_to_low_map, "solutions": list(distilled_solutions), "high_level_solutions": high_level_vars_values, "counts": counts_sorted, } with open(f"{results_dir_path}results.json", "w") as results_file: json.dump(results_dict, results_file, indent=4) self.update_metadata( { "num_solutions": len(distilled_solutions), "backend": str(self.backend), "shots": self.shots, } )
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1); tensored = bottom.tensor(top) tensored.draw('mpl')
https://github.com/MonitSharma/Learn-Quantum-Computing-with-Qiskit
MonitSharma
# Importing standard Qiskit libraries: from qiskit import * from qiskit.providers.ibmq import least_busy from qiskit.tools.jupyter import * from qiskit.visualization import * %matplotlib inline circuit = QuantumCircuit(7+1,7) circuit.draw("mpl") circuit.h([0,1,2,3,4,5,6]) circuit.x(7) circuit.h(7) circuit.barrier() circuit.draw("mpl") circuit.cx(6,7) circuit.cx(3,7) circuit.cx(2,7) circuit.cx(0,7) circuit.barrier() circuit.draw("mpl") circuit.h([0,1,2,3,4,5,6]) circuit.barrier() circuit.measure([0,1,2,3,4,5,6],[0,1,2,3,4,5,6]) circuit.draw("mpl") simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, backend = simulator, shots = 1).result() counts = result.get_counts() print(counts) plot_histogram(counts) secret_number = input("Input a Binary String of your choice ") ## Not more than 4 bits if you want to run on a real quantum device later on bv_circ = QuantumCircuit(len(secret_number)+1,len(secret_number)) bv_circ.h(range(len(secret_number))) bv_circ.x(len(secret_number)) bv_circ.h(len(secret_number)) bv_circ.barrier() bv_circ.draw("mpl") for digit, query in enumerate(reversed(secret_number)): if query == "1": bv_circ.cx(digit, len(secret_number)) bv_circ.barrier() bv_circ.draw("mpl") bv_circ.h(range(len(secret_number))) bv_circ.barrier() bv_circ.measure(range(len(secret_number)),range(len(secret_number))) bv_circ.draw("mpl") simulator = Aer.get_backend("qasm_simulator") result = execute(bv_circ, backend = simulator, shots = 1).result() counts = result.get_counts() print(counts) plot_histogram(counts) # Enabling our IBMQ accounts to get the least busy backend device with less than or equal to 5 qubits IBMQ.enable_account('IBM Q API Token') provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and x.configuration().n_qubits >= 2 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) exp = execute(bv_circ, backend, shots = 1024) result_exp = exp.result() counts_exp = result_exp.get_counts() plot_histogram([counts_exp,counts])
https://github.com/hrahman12/IBM-Variational-Algorithm-Design-Challenge
hrahman12
from qiskit.circuit.library import TwoLocal from qc_grader.challenges.algorithm_design import grade_problem_2a # Create a TwoLocal circuit with 3 qubits, using Y-rotations ("ry") and controlled-Z gates ("cz") reference_operator = TwoLocal(3, "ry", "cz", entanglement="linear", reps=1) # Define specific parameter values for the reference operator # We can choose any values we want, for example, [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] for the parameter list parameters = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] # Assign the specific parameter values to the reference_operator reference_operator = reference_operator.assign_parameters(parameters) # Grade the answer grade_problem_2a(reference_operator) from qiskit.circuit.library import TwoLocal from qc_grader.challenges.algorithm_design import grade_problem_2b # Use the reference operator from Problem 2a # Make sure you have defined and assigned the reference_operator as done in Problem 2a # Create a TwoLocal circuit with 3 qubits, using Y-rotations ("ry") and controlled-Z gates ("cz") reference_operator = TwoLocal(3, "ry", "cz", entanglement="linear", reps=1) # Define specific parameter values for the reference operator # We can choose any values we want, for example, [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] for the parameter list parameters = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] # Assign the specific parameter values to the reference_operator reference_operator = reference_operator.assign_parameters(parameters) # Define the provided variational_form variational_form = TwoLocal(3, rotation_blocks=["rx", "rz"], entanglement_blocks="cx") # Create the ansatz by composing the reference_operator with the variational_form ansatz = reference_operator.compose(variational_form) # Grade the answer grade_problem_2b(reference_operator, variational_form, ansatz)
https://github.com/alexandrepdumont/Quantum-Random-Number-Generator
alexandrepdumont
#!/usr/bin/env python # coding: utf-8 import numpy as np from qiskit import * get_ipython().run_line_magic('matplotlib', 'inline') num_of_bits = 64 recorded_response = np.zeros(num_of_bits) for i in range(num_of_bits): q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q[0]) qc.measure(q, c) backend = BasicAer.get_backend('statevector_simulator') job_sim = execute(qc, backend, shots=1) sim_result = job_sim.result() outputstate = sim_result.get_statevector(qc) recorded_response[i] = int(outputstate[0].real) print((recorded_response)) res = int("".join(str(int(x)) for x in recorded_response), 2) print(res)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumCircuit from qiskit.quantum_info import DensityMatrix from qiskit.visualization import plot_state_hinton qc = QuantumCircuit(2) qc.h([0, 1]) qc.cz(0,1) qc.ry(np.pi/3 , 0) qc.rx(np.pi/5, 1) state = DensityMatrix(qc) plot_state_hinton(state, title="New Hinton Plot")
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0, 1) qc.measure([0, 1], [0, 1]) qc.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import pulse d0 = pulse.DriveChannel(0) x90 = pulse.Gaussian(10, 0.1, 3) x180 = pulse.Gaussian(10, 0.2, 3) def udd10_pos(j): return np.sin(np.pi*j/(2*10 + 2))**2 with pulse.build() as udd_sched: pulse.play(x90, d0) with pulse.align_func(duration=300, func=udd10_pos): for _ in range(10): pulse.play(x180, d0) pulse.play(x90, d0) udd_sched.draw()
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for the converters.""" import math import unittest import numpy as np from qiskit.converters import circuit_to_instruction from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.circuit import Qubit, Clbit, Instruction from qiskit.circuit import Parameter from qiskit.quantum_info import Operator from qiskit.test import QiskitTestCase from qiskit.exceptions import QiskitError class TestCircuitToInstruction(QiskitTestCase): """Test Circuit to Instruction.""" def test_flatten_circuit_registers(self): """Check correct flattening""" qr1 = QuantumRegister(4, "qr1") qr2 = QuantumRegister(3, "qr2") qr3 = QuantumRegister(3, "qr3") cr1 = ClassicalRegister(4, "cr1") cr2 = ClassicalRegister(1, "cr2") circ = QuantumCircuit(qr1, qr2, qr3, cr1, cr2) circ.cx(qr1[1], qr2[2]) circ.measure(qr3[0], cr2[0]) inst = circuit_to_instruction(circ) q = QuantumRegister(10, "q") c = ClassicalRegister(5, "c") self.assertEqual(inst.definition[0].qubits, (q[1], q[6])) self.assertEqual(inst.definition[1].qubits, (q[7],)) self.assertEqual(inst.definition[1].clbits, (c[4],)) def test_flatten_registers_of_circuit_single_bit_cond(self): """Check correct mapping of registers gates conditioned on single classical bits.""" qr1 = QuantumRegister(2, "qr1") qr2 = QuantumRegister(3, "qr2") cr1 = ClassicalRegister(3, "cr1") cr2 = ClassicalRegister(3, "cr2") circ = QuantumCircuit(qr1, qr2, cr1, cr2) circ.h(qr1[0]).c_if(cr1[1], True) circ.h(qr2[1]).c_if(cr2[0], False) circ.cx(qr1[1], qr2[2]).c_if(cr2[2], True) circ.measure(qr2[2], cr2[0]) inst = circuit_to_instruction(circ) q = QuantumRegister(5, "q") c = ClassicalRegister(6, "c") self.assertEqual(inst.definition[0].qubits, (q[0],)) self.assertEqual(inst.definition[1].qubits, (q[3],)) self.assertEqual(inst.definition[2].qubits, (q[1], q[4])) self.assertEqual(inst.definition[0].operation.condition, (c[1], True)) self.assertEqual(inst.definition[1].operation.condition, (c[3], False)) self.assertEqual(inst.definition[2].operation.condition, (c[5], True)) def test_flatten_circuit_registerless(self): """Test that the conversion works when the given circuit has bits that are not contained in any register.""" qr1 = QuantumRegister(2) qubits = [Qubit(), Qubit(), Qubit()] qr2 = QuantumRegister(3) cr1 = ClassicalRegister(2) clbits = [Clbit(), Clbit(), Clbit()] cr2 = ClassicalRegister(3) circ = QuantumCircuit(qr1, qubits, qr2, cr1, clbits, cr2) circ.cx(3, 5) circ.measure(4, 4) inst = circuit_to_instruction(circ) self.assertEqual(inst.num_qubits, len(qr1) + len(qubits) + len(qr2)) self.assertEqual(inst.num_clbits, len(cr1) + len(clbits) + len(cr2)) inst_definition = inst.definition cx = inst_definition.data[0] measure = inst_definition.data[1] self.assertEqual(cx.qubits, (inst_definition.qubits[3], inst_definition.qubits[5])) self.assertEqual(cx.clbits, ()) self.assertEqual(measure.qubits, (inst_definition.qubits[4],)) self.assertEqual(measure.clbits, (inst_definition.clbits[4],)) def test_flatten_circuit_overlapping_registers(self): """Test that the conversion works when the given circuit has bits that are contained in more than one register.""" qubits = [Qubit() for _ in [None] * 10] qr1 = QuantumRegister(bits=qubits[:6]) qr2 = QuantumRegister(bits=qubits[4:]) clbits = [Clbit() for _ in [None] * 10] cr1 = ClassicalRegister(bits=clbits[:6]) cr2 = ClassicalRegister(bits=clbits[4:]) circ = QuantumCircuit(qubits, clbits, qr1, qr2, cr1, cr2) circ.cx(3, 5) circ.measure(4, 4) inst = circuit_to_instruction(circ) self.assertEqual(inst.num_qubits, len(qubits)) self.assertEqual(inst.num_clbits, len(clbits)) inst_definition = inst.definition cx = inst_definition.data[0] measure = inst_definition.data[1] self.assertEqual(cx.qubits, (inst_definition.qubits[3], inst_definition.qubits[5])) self.assertEqual(cx.clbits, ()) self.assertEqual(measure.qubits, (inst_definition.qubits[4],)) self.assertEqual(measure.clbits, (inst_definition.clbits[4],)) def test_flatten_parameters(self): """Verify parameters from circuit are moved to instruction.params""" qr = QuantumRegister(3, "qr") qc = QuantumCircuit(qr) theta = Parameter("theta") phi = Parameter("phi") sum_ = theta + phi qc.rz(theta, qr[0]) qc.rz(phi, qr[1]) qc.u(theta, phi, 0, qr[2]) qc.rz(sum_, qr[0]) inst = circuit_to_instruction(qc) self.assertEqual(inst.params, [phi, theta]) self.assertEqual(inst.definition[0].operation.params, [theta]) self.assertEqual(inst.definition[1].operation.params, [phi]) self.assertEqual(inst.definition[2].operation.params, [theta, phi, 0]) self.assertEqual(str(inst.definition[3].operation.params[0]), "phi + theta") def test_underspecified_parameter_map_raises(self): """Verify we raise if not all circuit parameters are present in parameter_map.""" qr = QuantumRegister(3, "qr") qc = QuantumCircuit(qr) theta = Parameter("theta") phi = Parameter("phi") sum_ = theta + phi gamma = Parameter("gamma") qc.rz(theta, qr[0]) qc.rz(phi, qr[1]) qc.u(theta, phi, 0, qr[2]) qc.rz(sum_, qr[0]) self.assertRaises(QiskitError, circuit_to_instruction, qc, {theta: gamma}) # Raise if provided more parameters than present in the circuit delta = Parameter("delta") self.assertRaises( QiskitError, circuit_to_instruction, qc, {theta: gamma, phi: phi, delta: delta} ) def test_parameter_map(self): """Verify alternate parameter specification""" qr = QuantumRegister(3, "qr") qc = QuantumCircuit(qr) theta = Parameter("theta") phi = Parameter("phi") sum_ = theta + phi gamma = Parameter("gamma") qc.rz(theta, qr[0]) qc.rz(phi, qr[1]) qc.u(theta, phi, 0, qr[2]) qc.rz(sum_, qr[0]) inst = circuit_to_instruction(qc, {theta: gamma, phi: phi}) self.assertEqual(inst.params, [gamma, phi]) self.assertEqual(inst.definition[0].operation.params, [gamma]) self.assertEqual(inst.definition[1].operation.params, [phi]) self.assertEqual(inst.definition[2].operation.params, [gamma, phi, 0]) self.assertEqual(str(inst.definition[3].operation.params[0]), "gamma + phi") def test_registerless_classical_bits(self): """Test that conditions on registerless classical bits can be handled during the conversion. Regression test of gh-7394.""" expected = QuantumCircuit([Qubit(), Clbit()]) expected.h(0).c_if(expected.clbits[0], 0) test = circuit_to_instruction(expected) self.assertIsInstance(test, Instruction) self.assertIsInstance(test.definition, QuantumCircuit) self.assertEqual(len(test.definition.data), 1) test_instruction = test.definition.data[0] expected_instruction = expected.data[0] self.assertIs(type(test_instruction.operation), type(expected_instruction.operation)) self.assertEqual(test_instruction.operation.condition, (test.definition.clbits[0], 0)) def test_zero_operands(self): """Test that an instruction can be created, even if it has zero operands.""" base = QuantumCircuit(global_phase=math.pi) instruction = base.to_instruction() self.assertEqual(instruction.num_qubits, 0) self.assertEqual(instruction.num_clbits, 0) self.assertEqual(instruction.definition, base) compound = QuantumCircuit(1) compound.append(instruction, [], []) np.testing.assert_allclose(-np.eye(2), Operator(compound), atol=1e-16) if __name__ == "__main__": unittest.main(verbosity=2)
https://github.com/sebasmos/QuantumVE
sebasmos
!pwd from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR from torch.utils.data import random_split from torch.utils.data import Subset, DataLoader, random_split from torchvision import datasets, transforms import torch.optim as optim from torch.optim.lr_scheduler import StepLR import matplotlib.pyplot as plt import os import numpy as np from sklearn.metrics import confusion_matrix, classification_report import pandas as pd # from MAE code from util.datasets import build_dataset import argparse import util.misc as misc import argparse import datetime import json import numpy as np import os import time from pathlib import Path import torch import torch.backends.cudnn as cudnn from torch.utils.tensorboard import SummaryWriter import timm assert timm.__version__ == "0.3.2" # version check from timm.models.layers import trunc_normal_ from timm.data.mixup import Mixup from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy import util.lr_decay as lrd import util.misc as misc from util.datasets import build_dataset from util.pos_embed import interpolate_pos_embed from util.misc import NativeScalerWithGradNormCount as NativeScaler import models_vit import sys import os import torch import numpy as np import matplotlib.pyplot as plt from PIL import Image import models_mae import torch; print(f'numpy version: {np.__version__}\nCUDA version: {torch.version.cuda} - Torch versteion: {torch.__version__} - device count: {torch.cuda.device_count()}') from engine_finetune import train_one_epoch, evaluate from timm.data import Mixup from timm.utils import accuracy from sklearn.metrics import confusion_matrix, classification_report import seaborn as sns from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt from itertools import cycle import numpy as np from sklearn.metrics import precision_score, recall_score, f1_score imagenet_mean = np.array([0.485, 0.456, 0.406]) imagenet_std = np.array([0.229, 0.224, 0.225]) def show_image(image, title=''): # image is [H, W, 3] assert image.shape[2] == 3 plt.imshow(torch.clip((image * imagenet_std + imagenet_mean) * 255, 0, 255).int()) plt.title(title, fontsize=16) plt.axis('off') return def prepare_model(chkpt_dir, arch='mae_vit_large_patch16'): # build model model = getattr(models_mae, arch)() # load model checkpoint = torch.load(chkpt_dir, map_location='cpu') msg = model.load_state_dict(checkpoint['model'], strict=False) print(msg) return model def run_one_image(img, model): x = torch.tensor(img) # make it a batch-like x = x.unsqueeze(dim=0) x = torch.einsum('nhwc->nchw', x) # run MAE loss, y, mask = model(x.float(), mask_ratio=0.75) y = model.unpatchify(y) y = torch.einsum('nchw->nhwc', y).detach().cpu() # visualize the mask mask = mask.detach() mask = mask.unsqueeze(-1).repeat(1, 1, model.patch_embed.patch_size[0]**2 *3) # (N, H*W, p*p*3) mask = model.unpatchify(mask) # 1 is removing, 0 is keeping mask = torch.einsum('nchw->nhwc', mask).detach().cpu() x = torch.einsum('nchw->nhwc', x) # masked image im_masked = x * (1 - mask) # MAE reconstruction pasted with visible patches im_paste = x * (1 - mask) + y * mask # make the plt figure larger plt.rcParams['figure.figsize'] = [24, 24] plt.subplot(1, 4, 1) show_image(x[0], "original") plt.subplot(1, 4, 2) show_image(im_masked[0], "masked") plt.subplot(1, 4, 3) show_image(y[0], "reconstruction") plt.subplot(1, 4, 4) show_image(im_paste[0], "reconstruction + visible") plt.show() # Set the seed for PyTorch torch.manual_seed(42) parser = argparse.ArgumentParser('MAE fine-tuning for image classification', add_help=False) parser.add_argument('--batch_size', default=1, type=int, help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus') parser.add_argument('--epochs', default=2, type=int) parser.add_argument('--accum_iter', default=4, type=int, help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)') # Model parameters parser.add_argument('--model', default='vit_base_patch16', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--input_size', default=224, type=int, help='images input size') parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') # Optimizer parameters parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)') parser.add_argument('--blr', type=float, default=5e-4, metavar='LR', help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') parser.add_argument('--layer_decay', type=float, default=0.65, help='layer-wise lr decay from ELECTRA/BEiT') parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0') parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', help='epochs to warmup LR') # Augmentation parameters parser.add_argument('--color_jitter', type=float, default=None, metavar='PCT', help='Color jitter factor (enabled only when not using Auto/RandAug)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'), parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') # * Random Erase params parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') # * Mixup params parser.add_argument('--mixup', type=float, default=0.8, help='mixup alpha, mixup enabled if > 0.') parser.add_argument('--cutmix', type=float, default=1.0, help='cutmix alpha, cutmix enabled if > 0.') parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup_prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup_switch_prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup_mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') # * Finetuning params parser.add_argument('--finetune', default='mae_pretrain_vit_base.pth', help='finetune from checkpoint') parser.add_argument('--global_pool', action='store_true') parser.set_defaults(global_pool=True) parser.add_argument('--cls_token', action='store_false', dest='global_pool', help='Use class token instead of global pool for classification') # Dataset parameters parser.add_argument('--data_path', default='/media/enc/vera1/sebastian/data/Datos_Entrenamiento/', type=str, help='dataset path') parser.add_argument('--nb_classes', default=7, type=int, help='number of the classification types') parser.add_argument('--output_dir', default='EXP_base_biggest_dataset', help='path where to save, empty for no saving') parser.add_argument('--log_dir', default='./output_dir', help='path where to tensorboard log') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval',default=True, action='store_true', help='Perform evaluation only') parser.add_argument('--dist_eval', action='store_true', default=False, help='Enabling distributed evaluation (recommended during training for faster monitor') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') args, unknown = parser.parse_known_args() misc.init_distributed_mode(args) print("{}".format(args).replace(', ', ',\n')) device = torch.device(args.device) # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # DeiT: https://github.com/facebookresearch/deit # -------------------------------------------------------- import os import PIL from torchvision import datasets, transforms from sklearn.model_selection import KFold from torch.utils.data import Subset from timm.data import create_transform from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD def build_transform(is_train, args): mean = IMAGENET_DEFAULT_MEAN std = IMAGENET_DEFAULT_STD # train transform if is_train: # this should always dispatch to transforms_imagenet_train transform = create_transform( input_size=args.input_size, is_training=True, color_jitter=args.color_jitter, auto_augment=args.aa, interpolation='bicubic', re_prob=args.reprob, re_mode=args.remode, re_count=args.recount, mean=mean, std=std, ) return transform # eval transform t = [] if args.input_size <= 224: crop_pct = 224 / 256 else: crop_pct = 1.0 size = int(args.input_size / crop_pct) t.append( transforms.Resize(size, interpolation=PIL.Image.BICUBIC), # to maintain same ratio w.r.t. 224 images ) t.append(transforms.CenterCrop(args.input_size)) t.append(transforms.ToTensor()) t.append(transforms.Normalize(mean, std)) return transforms.Compose(t) def build_dataset_full_dataset(is_train, args): transform = build_transform(is_train, args) # root = os.path.join(args.data_path, 'train' if is_train else 'val') root = args.data_path dataset = datasets.ImageFolder(root, transform=transform) print(dataset) return dataset misc.init_distributed_mode(args) # print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) print("{}".format(args).replace(', ', ',\n')) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + misc.get_rank() torch.manual_seed(seed) np.random.seed(seed) cudnn.benchmark = True # create dataset with all folders possible withoput splits training = False# false because we will resplit this dataset = build_dataset_full_dataset(training,args=args) num_splits = 2 train = True kf = KFold(n_splits=num_splits, shuffle=True, random_state=42) # Iterate over each fold for fold, (train_index, val_index) in enumerate(kf.split(dataset)): print(f"\nTraining on Fold {fold + 1}/{num_splits}:".center(60,"-")) # Create train and validation sets for this fold train_dataset_fold = Subset(dataset, train_index) val_dataset_fold = Subset(dataset, val_index) if True: # args.distributed: num_tasks = misc.get_world_size() global_rank = misc.get_rank() sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) print("Sampler_train = %s" % str(sampler_train)) if args.dist_eval: if len(dataset_val) % num_tasks != 0: print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True) # shuffle=True to reduce monitor bias else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) if global_rank == 0 and args.log_dir is not None and not args.eval: os.makedirs(args.log_dir, exist_ok=True) log_writer = SummaryWriter(log_dir=args.log_dir) else: log_writer = None data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False ) mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: print("Mixup is activated!") mixup_fn = Mixup( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.nb_classes) model = models_vit.__dict__[args.model]( num_classes=args.nb_classes, drop_path_rate=args.drop_path, global_pool=args.global_pool, ) if args.finetune and not args.eval: checkpoint = torch.load(args.finetune, map_location='cpu') print("Load pre-trained checkpoint from: %s" % args.finetune) checkpoint_model = checkpoint['model'] state_dict = model.state_dict() for k in ['head.weight', 'head.bias']: if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] # interpolate position embedding interpolate_pos_embed(model, checkpoint_model) # load pre-trained model msg = model.load_state_dict(checkpoint_model, strict=False) print(msg) if args.global_pool: assert set(msg.missing_keys) == {'head.weight', 'head.bias', 'fc_norm.weight', 'fc_norm.bias'} else: assert set(msg.missing_keys) == {'head.weight', 'head.bias'} # manually initialize fc layer trunc_normal_(model.head.weight, std=2e-5) model.to(device) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print('number of params (M): %.2f' % (n_parameters / 1.e6)) eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() if args.lr is None: # only base_lr is specified args.lr = args.blr * eff_batch_size / 256 print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) print("actual lr: %.2e" % args.lr) print("accumulate grad iterations: %d" % args.accum_iter) print("effective batch size: %d" % eff_batch_size) if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module # build optimizer with layer-wise lr decay (lrd) param_groups = lrd.param_groups_lrd(model_without_ddp, args.weight_decay, no_weight_decay_list=model_without_ddp.no_weight_decay(), layer_decay=args.layer_decay ) optimizer = torch.optim.AdamW(param_groups, lr=args.lr) loss_scaler = NativeScaler() if mixup_fn is not None: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif args.smoothing > 0.: criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing) else: criterion = torch.nn.CrossEntropyLoss() print("criterion = %s" % str(criterion)) misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) if args.eval: test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") if train: print(f"Start training for {args.epochs} epochs") start_time = time.time() max_accuracy = 0.0 for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, mixup_fn, log_writer=log_writer, args=args ) if args.output_dir: misc.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch) test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") max_accuracy = max(max_accuracy, test_stats["acc1"]) print(f'Max accuracy: {max_accuracy:.2f}%') if log_writer is not None: log_writer.add_scalar('perf/test_acc1', test_stats['acc1'], epoch) log_writer.add_scalar('perf/test_acc5', test_stats['acc5'], epoch) log_writer.add_scalar('perf/test_loss', test_stats['loss'], epoch) log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} if args.output_dir and misc.is_main_process(): if log_writer is not None: log_writer.flush() with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) evaluation_metrics = { "Acc1": test_stats['acc1'], # Add acc1 metric "Acc5": test_stats['acc5'], # Add acc5 metric "loss": test_stats['loss'], # Add acc5 metric } print(evaluation_metrics) break # if True: # args.distributed: # num_tasks = misc.get_world_size() # global_rank = misc.get_rank() # sampler_train = torch.utils.data.DistributedSampler( # dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True # ) # print("Sampler_train = %s" % str(sampler_train)) # if args.dist_eval: # if len(dataset_val) % num_tasks != 0: # print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' # 'This will slightly alter validation results as extra duplicate entries are added to achieve ' # 'equal num of samples per-process.') # sampler_val = torch.utils.data.DistributedSampler( # dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True) # shuffle=True to reduce monitor bias # else: # sampler_val = torch.utils.data.SequentialSampler(dataset_val) # else: # sampler_train = torch.utils.data.RandomSampler(dataset_train) # sampler_val = torch.utils.data.SequentialSampler(dataset_val) # if global_rank == 0 and args.log_dir is not None and not args.eval: # os.makedirs(args.log_dir, exist_ok=True) # log_writer = SummaryWriter(log_dir=args.log_dir) # else: # log_writer = None # data_loader_train = torch.utils.data.DataLoader( # dataset_train, sampler=sampler_train, # batch_size=args.batch_size, # num_workers=args.num_workers, # pin_memory=args.pin_mem, # drop_last=True, # ) # data_loader_val = torch.utils.data.DataLoader( # dataset_val, sampler=sampler_val, # batch_size=args.batch_size, # num_workers=args.num_workers, # pin_memory=args.pin_mem, # drop_last=False # ) # #Liberia Validacion cruzada # from sklearn.model_selection import KFold # # K-fold cross-validation # num_splits = 5 # ajusta el número de splits según tus necesidades # kf = KFold(n_splits=num_splits, shuffle=True, random_state=42) # for fold, (train_index, val_index) in enumerate(kf.split(dataset_train)): # print(f"\nTraining on Fold {fold + 1}/{num_splits}:") # # create train and validation sets for this fold # train_dataset_fold = Subset(dataset_train, train_index) # val_dataset_fold = Subset(dataset_train, val_index) # data_loader_train = torch.utils.data.DataLoader( # train_dataset_fold, sampler=torch.utils.data.RandomSampler(train_dataset_fold), # batch_size=args.batch_size, # num_workers=args.num_workers, # pin_memory=args.pin_mem, # drop_last=True, # ) # data_loader_val = torch.utils.data.DataLoader( # val_dataset_fold, sampler=torch.utils.data.SequentialSampler(val_dataset_fold), # batch_size=args.batch_size, # num_workers=args.num_workers, # pin_memory=args.pin_mem, # drop_last=False # ) # mixup_fn = None # mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None # if mixup_active: # print("Mixup is activated!") # mixup_fn = Mixup( # mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, # prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, # label_smoothing=args.smoothing, num_classes=args.nb_classes) # model = models_vit.__dict__[args.model]( # num_classes=args.nb_classes, # drop_path_rate=args.drop_path, # global_pool=args.global_pool, # ) # if args.finetune and not args.eval: # checkpoint = torch.load(args.finetune, map_location='cpu') # print("Load pre-trained checkpoint from: %s" % args.finetune) # checkpoint_model = checkpoint['model'] # state_dict = model.state_dict() # for k in ['head.weight', 'head.bias']: # if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: # print(f"Removing key {k} from pretrained checkpoint") # del checkpoint_model[k] # # interpolate position embedding # interpolate_pos_embed(model, checkpoint_model) # # load pre-trained model # msg = model.load_state_dict(checkpoint_model, strict=False) # print(msg) # if args.global_pool: # assert set(msg.missing_keys) == {'head.weight', 'head.bias', 'fc_norm.weight', 'fc_norm.bias'} # else: # assert set(msg.missing_keys) == {'head.weight', 'head.bias'} # # manually initialize fc layer # trunc_normal_(model.head.weight, std=2e-5) # model.to(device) # model_without_ddp = model # n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) # print("Model = %s" % str(model_without_ddp)) # print('number of params (M): %.2f' % (n_parameters / 1.e6)) # eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() # if args.lr is None: # only base_lr is specified # args.lr = args.blr * eff_batch_size / 256 # print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) # print("actual lr: %.2e" % args.lr) # print("accumulate grad iterations: %d" % args.accum_iter) # print("effective batch size: %d" % eff_batch_size) # if args.distributed: # model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) # model_without_ddp = model.module # # build optimizer with layer-wise lr decay (lrd) # param_groups = lrd.param_groups_lrd(model_without_ddp, args.weight_decay, # no_weight_decay_list=model_without_ddp.no_weight_decay(), # layer_decay=args.layer_decay # ) # optimizer = torch.optim.AdamW(param_groups, lr=args.lr) # loss_scaler = NativeScaler() # if mixup_fn is not None: # # smoothing is handled with mixup label transform # criterion = SoftTargetCrossEntropy() # elif args.smoothing > 0.: # criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing) # else: # criterion = torch.nn.CrossEntropyLoss() # print("criterion = %s" % str(criterion)) # misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) # if args.eval: # test_stats = evaluate(data_loader_val, model, device) # print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") # # exit(0) train = True if train: print(f"Start training for {args.epochs} epochs") start_time = time.time() max_accuracy = 0.0 for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, mixup_fn, log_writer=log_writer, args=args ) if args.output_dir: misc.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch) test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") max_accuracy = max(max_accuracy, test_stats["acc1"]) print(f'Max accuracy: {max_accuracy:.2f}%') if log_writer is not None: log_writer.add_scalar('perf/test_acc1', test_stats['acc1'], epoch) log_writer.add_scalar('perf/test_acc5', test_stats['acc5'], epoch) log_writer.add_scalar('perf/test_loss', test_stats['loss'], epoch) log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} if args.output_dir and misc.is_main_process(): if log_writer is not None: log_writer.flush() with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) EXPERIMENT_NAME = "eval_vit_base" saving_model = f"{EXPERIMENT_NAME}/models" os.makedirs(saving_model, exist_ok = True) os.makedirs(EXPERIMENT_NAME, exist_ok=True) if args.eval: test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") @torch.no_grad() def evaluate_test(data_loader, model, device): criterion = torch.nn.CrossEntropyLoss() metric_logger = misc.MetricLogger(delimiter=" ") header = 'Test:' # switch to evaluation mode model.eval() all_predictions = [] all_labels = [] for batch in metric_logger.log_every(data_loader, 10, header): images = batch[0] target = batch[-1] images = images.to(device, non_blocking=True) target = target.to(device, non_blocking=True) # compute output with torch.cuda.amp.autocast(): output = model(images) loss = criterion(output, target)# pred = output.argmax(dim=1) all_predictions.append(pred.cpu().numpy())# ADDED all_labels.append(target.cpu().numpy())# ADDED acc1, acc5 = accuracy(output, target, topk=(1, 5)) batch_size = images.shape[0] metric_logger.update(loss=loss.item()) metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) all_predictions = np.array(all_predictions)#.squeeze(0) all_labels = np.array(all_labels)#.squeeze(0) # gather the stats from all processes metric_logger.synchronize_between_processes() print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}' .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss)) # return return {k: meter.global_avg for k, meter in metric_logger.meters.items()}, np.concatenate(all_predictions, axis=0), np.concatenate(all_labels, axis=0) metrics, all_predictions, all_labels = evaluate_test(data_loader_val, model, device) # print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") metrics all_predictions unique_classes = np.unique(np.concatenate((all_labels, all_predictions))) unique_classes confusion_mat = confusion_matrix(all_labels, all_predictions, labels=unique_classes) conf_matrix = pd.DataFrame(confusion_mat, index=unique_classes, columns=unique_classes) conf_matrix unique_classes = np.unique(np.concatenate((all_labels, all_predictions))) confusion_mat = confusion_matrix(all_labels, all_predictions, labels=unique_classes) conf_matrix = pd.DataFrame(confusion_mat, index=unique_classes, columns=unique_classes) # Plot the confusion matrix using seaborn plt.figure(figsize=(5, 4)) ax = sns.heatmap(conf_matrix, annot=True, fmt='.1f', cmap=sns.cubehelix_palette(as_cmap=True), linewidths=0.1, cbar=True) # Set labels and ticks ax.set_xlabel('Predicted Labels') ax.set_ylabel('True Labels') # Set x and y ticks using the unique classes ax.set_xticks(range(len(unique_classes))) ax.set_yticks(range(len(unique_classes))) # Set x and y ticks at the center of the cells ax.set_xticks([i + 0.5 for i in range(len(unique_classes))]) ax.set_yticks([i + 0.5 for i in range(len(unique_classes))]) plt.show() def plot_multiclass_roc_curve(all_labels, all_predictions, EXPERIMENT_NAME="."): # Step 1: Label Binarization label_binarizer = LabelBinarizer() y_onehot = label_binarizer.fit_transform(all_labels) all_predictions_hot = label_binarizer.transform(all_predictions) # Step 2: Calculate ROC curves fpr = dict() tpr = dict() roc_auc = dict() unique_classes = range(y_onehot.shape[1]) for i in unique_classes: fpr[i], tpr[i], _ = roc_curve(y_onehot[:, i], all_predictions_hot[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Step 3: Plot ROC curves fig, ax = plt.subplots(figsize=(8, 8)) # Micro-average ROC curve fpr_micro, tpr_micro, _ = roc_curve(y_onehot.ravel(), all_predictions_hot.ravel()) roc_auc_micro = auc(fpr_micro, tpr_micro) plt.plot( fpr_micro, tpr_micro, label=f"micro-average ROC curve (AUC = {roc_auc_micro:.2f})", color="deeppink", linestyle=":", linewidth=4, ) # Macro-average ROC curve all_fpr = np.unique(np.concatenate([fpr[i] for i in unique_classes])) mean_tpr = np.zeros_like(all_fpr) for i in unique_classes: mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) mean_tpr /= len(unique_classes) fpr_macro = all_fpr tpr_macro = mean_tpr roc_auc_macro = auc(fpr_macro, tpr_macro) plt.plot( fpr_macro, tpr_macro, label=f"macro-average ROC curve (AUC = {roc_auc_macro:.2f})", color="navy", linestyle=":", linewidth=4, ) # Individual class ROC curves with unique colors colors = plt.cm.rainbow(np.linspace(0, 1, len(unique_classes))) for class_id, color in zip(unique_classes, colors): plt.plot( fpr[class_id], tpr[class_id], color=color, label=f"ROC curve for Class {class_id} (AUC = {roc_auc[class_id]:.2f})", linewidth=2, ) plt.plot([0, 1], [0, 1], color='gray', linestyle='--', linewidth=2) # Add diagonal line for reference plt.axis("equal") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Extension of Receiver Operating Characteristic\n to One-vs-Rest multiclass") plt.legend() plt.savefig(f'{EXPERIMENT_NAME}/roc_curve.png') plt.show() # Example usage: plot_multiclass_roc_curve(all_labels, all_predictions, EXPERIMENT_NAME) # def visualize_predictions(model, val_loader, device, type_label=None, dataset_type=1, unique_classes=np.array([0, 1, 2, 3, 4, 5, 6])): # criterion = torch.nn.CrossEntropyLoss() # metric_logger = misc.MetricLogger(delimiter=" ") # header = 'Test:' # # switch to evaluation mode # model.eval() # all_predictions = [] # all_labels = [] # for batch in metric_logger.log_every(val_loader, 10, header): # images = batch[0] # target = batch[-1] # images = images.to(device, non_blocking=True) # target = target.to(device, non_blocking=True) # # compute output # with torch.cuda.amp.autocast(): # output = model(images) # loss = criterion(output, target)# # pred = output.argmax(dim=1) # all_predictions.append(pred.cpu().numpy())# ADDED # all_labels.append(target.cpu().numpy())# ADDED # acc1, acc5 = accuracy(output, target, topk=(1, 5)) # batch_size = images.shape[0] # metric_logger.update(loss=loss.item()) # metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) # metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) # all_predictions = np.array(all_predictions)#.squeeze(0) # all_labels = np.array(all_labels)#.squeeze(0) # if type_label is None: # type_label = unique_classes # # Create a 4x4 grid for visualization # num_rows = 4 # num_cols = 4 # plt.figure(figsize=(12, 12)) # for i in range(num_rows * num_cols): # plt.subplot(num_rows, num_cols, i + 1) # idx = np.random.randint(len(all_labels)) # import pdb;pdb.set_trace() # plt.imshow(images[idx].cpu().numpy().squeeze(), cmap='gray') # # Use the class names instead of numeric labels for Fashion MNIST # if dataset_type == 1: # class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] # predicted_class = class_names[all_predictions[idx]] # actual_class = class_names[all_labels[idx]] # else: # predicted_class = all_predictions[idx] # actual_class = all_labels[idx] # plt.title(f'Pred: {predicted_class}\nActual: {actual_class}') # plt.axis('off') # plt.tight_layout() # plt.show() # visualize_predictions(model, data_loader_val, device, dataset_type=2, unique_classes=unique_classes) unique_classes report = classification_report(all_labels, all_predictions, target_names=unique_classes,output_dict=True)# Mostrar el informe de df = pd.DataFrame(report).transpose() df.to_csv(os.path.join(EXPERIMENT_NAME, "confusion_matrix.csv")) print(df) # Calculate precision, recall, and specificity (micro-averaged) precision = precision_score(all_labels, all_predictions, average='micro') recall = recall_score(all_labels, all_predictions, average='micro') # Calculate true negatives, false positives, and specificity (micro-averaged) tn = np.sum((all_labels != 1) & (all_predictions != 1)) fp = np.sum((all_labels != 1) & (all_predictions == 1)) specificity = tn / (tn + fp) # Calculate F1 score (weighted average) f1 = f1_score(all_labels, all_predictions, average='weighted') evaluation_metrics = { "Acc1": metrics['acc1'], # Add acc1 metric "Acc5": metrics['acc5'], # Add acc5 metric "loss": metrics['loss'], # Add acc5 metric "F1 Score": [f1], "Precision": [precision], "Recall": [recall], "Specificity": [specificity] } evaluation_metrics # Create a DataFrame from the dictionary df = pd.DataFrame(evaluation_metrics) # Save the DataFrame to a CSV file df.to_csv(f'{EXPERIMENT_NAME}/evaluation_metrics_for_table.csv', index=False)
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name """Tests for generator of timeline drawer.""" import qiskit from qiskit.test import QiskitTestCase from qiskit.visualization.timeline import generators, types, stylesheet from qiskit.circuit import library, Delay class TestGates(QiskitTestCase): """Tests for generator.gates.""" def setUp(self) -> None: """Setup.""" super().setUp() self.qubit = list(qiskit.QuantumRegister(1))[0] self.u1 = types.ScheduledGate( t0=100, operand=library.U1Gate(0), duration=0, bits=[self.qubit], bit_position=0 ) self.u3 = types.ScheduledGate( t0=100, operand=library.U3Gate(0, 0, 0), duration=20, bits=[self.qubit], bit_position=0 ) self.delay = types.ScheduledGate( t0=100, operand=Delay(20), duration=20, bits=[self.qubit], bit_position=0 ) style = stylesheet.QiskitTimelineStyle() self.formatter = style.formatter def test_gen_sched_gate_with_finite_duration(self): """Test test_gen_sched_gate generator with finite duration gate.""" drawing_obj = generators.gen_sched_gate(self.u3, self.formatter)[0] self.assertEqual(drawing_obj.data_type, str(types.BoxType.SCHED_GATE.value)) self.assertListEqual(list(drawing_obj.xvals), [100, 120]) self.assertListEqual( list(drawing_obj.yvals), [-0.5 * self.formatter["box_height.gate"], 0.5 * self.formatter["box_height.gate"]], ) self.assertListEqual(drawing_obj.bits, [self.qubit]) ref_meta = { "name": "u3", "label": "n/a", "bits": str(self.qubit.register.name), "t0": 100, "duration": 20, "unitary": "[[1.+0.j 0.-0.j]\n [0.+0.j 1.+0.j]]", "parameters": "0, 0, 0", } self.assertDictEqual(ref_meta, drawing_obj.meta) ref_styles = { "zorder": self.formatter["layer.gate"], "facecolor": self.formatter["color.gates"]["u3"], "alpha": self.formatter["alpha.gate"], "linewidth": self.formatter["line_width.gate"], } self.assertDictEqual(ref_styles, drawing_obj.styles) def test_gen_sched_gate_with_zero_duration(self): """Test test_gen_sched_gate generator with zero duration gate.""" drawing_obj = generators.gen_sched_gate(self.u1, self.formatter)[0] self.assertEqual(drawing_obj.data_type, str(types.SymbolType.FRAME.value)) self.assertListEqual(list(drawing_obj.xvals), [100]) self.assertListEqual(list(drawing_obj.yvals), [0]) self.assertListEqual(drawing_obj.bits, [self.qubit]) self.assertEqual(drawing_obj.text, self.formatter["unicode_symbol.frame_change"]) self.assertEqual(drawing_obj.latex, self.formatter["latex_symbol.frame_change"]) ref_styles = { "zorder": self.formatter["layer.frame_change"], "color": self.formatter["color.gates"]["u1"], "size": self.formatter["text_size.frame_change"], "va": "center", "ha": "center", } self.assertDictEqual(ref_styles, drawing_obj.styles) def test_gen_sched_gate_with_delay(self): """Test test_gen_sched_gate generator with delay.""" drawing_obj = generators.gen_sched_gate(self.delay, self.formatter)[0] self.assertEqual(drawing_obj.data_type, str(types.BoxType.DELAY.value)) def test_gen_full_gate_name_with_finite_duration(self): """Test gen_full_gate_name generator with finite duration gate.""" drawing_obj = generators.gen_full_gate_name(self.u3, self.formatter)[0] self.assertEqual(drawing_obj.data_type, str(types.LabelType.GATE_NAME.value)) self.assertListEqual(list(drawing_obj.xvals), [110.0]) self.assertListEqual(list(drawing_obj.yvals), [0.0]) self.assertListEqual(drawing_obj.bits, [self.qubit]) self.assertEqual(drawing_obj.text, "u3(0.00, 0.00, 0.00)[20]") ref_latex = "{name}(0.00, 0.00, 0.00)[20]".format( name=self.formatter["latex_symbol.gates"]["u3"] ) self.assertEqual(drawing_obj.latex, ref_latex) ref_styles = { "zorder": self.formatter["layer.gate_name"], "color": self.formatter["color.gate_name"], "size": self.formatter["text_size.gate_name"], "va": "center", "ha": "center", } self.assertDictEqual(ref_styles, drawing_obj.styles) def test_gen_full_gate_name_with_zero_duration(self): """Test gen_full_gate_name generator with zero duration gate.""" drawing_obj = generators.gen_full_gate_name(self.u1, self.formatter)[0] self.assertEqual(drawing_obj.data_type, str(types.LabelType.GATE_NAME.value)) self.assertListEqual(list(drawing_obj.xvals), [100.0]) self.assertListEqual(list(drawing_obj.yvals), [self.formatter["label_offset.frame_change"]]) self.assertListEqual(drawing_obj.bits, [self.qubit]) self.assertEqual(drawing_obj.text, "u1(0.00)") ref_latex = "{name}(0.00)".format(name=self.formatter["latex_symbol.gates"]["u1"]) self.assertEqual(drawing_obj.latex, ref_latex) ref_styles = { "zorder": self.formatter["layer.gate_name"], "color": self.formatter["color.gate_name"], "size": self.formatter["text_size.gate_name"], "va": "bottom", "ha": "center", } self.assertDictEqual(ref_styles, drawing_obj.styles) def test_gen_full_gate_name_with_delay(self): """Test gen_full_gate_name generator with delay.""" drawing_obj = generators.gen_full_gate_name(self.delay, self.formatter)[0] self.assertEqual(drawing_obj.data_type, str(types.LabelType.DELAY.value)) def test_gen_short_gate_name_with_finite_duration(self): """Test gen_short_gate_name generator with finite duration gate.""" drawing_obj = generators.gen_short_gate_name(self.u3, self.formatter)[0] self.assertEqual(drawing_obj.data_type, str(types.LabelType.GATE_NAME.value)) self.assertListEqual(list(drawing_obj.xvals), [110.0]) self.assertListEqual(list(drawing_obj.yvals), [0.0]) self.assertListEqual(drawing_obj.bits, [self.qubit]) self.assertEqual(drawing_obj.text, "u3") ref_latex = "{name}".format(name=self.formatter["latex_symbol.gates"]["u3"]) self.assertEqual(drawing_obj.latex, ref_latex) ref_styles = { "zorder": self.formatter["layer.gate_name"], "color": self.formatter["color.gate_name"], "size": self.formatter["text_size.gate_name"], "va": "center", "ha": "center", } self.assertDictEqual(ref_styles, drawing_obj.styles) def test_gen_short_gate_name_with_zero_duration(self): """Test gen_short_gate_name generator with zero duration gate.""" drawing_obj = generators.gen_short_gate_name(self.u1, self.formatter)[0] self.assertEqual(drawing_obj.data_type, str(types.LabelType.GATE_NAME.value)) self.assertListEqual(list(drawing_obj.xvals), [100.0]) self.assertListEqual(list(drawing_obj.yvals), [self.formatter["label_offset.frame_change"]]) self.assertListEqual(drawing_obj.bits, [self.qubit]) self.assertEqual(drawing_obj.text, "u1") ref_latex = "{name}".format(name=self.formatter["latex_symbol.gates"]["u1"]) self.assertEqual(drawing_obj.latex, ref_latex) ref_styles = { "zorder": self.formatter["layer.gate_name"], "color": self.formatter["color.gate_name"], "size": self.formatter["text_size.gate_name"], "va": "bottom", "ha": "center", } self.assertDictEqual(ref_styles, drawing_obj.styles) def test_gen_short_gate_name_with_delay(self): """Test gen_short_gate_name generator with delay.""" drawing_obj = generators.gen_short_gate_name(self.delay, self.formatter)[0] self.assertEqual(drawing_obj.data_type, str(types.LabelType.DELAY.value)) class TestTimeslot(QiskitTestCase): """Tests for generator.bits.""" def setUp(self) -> None: """Setup.""" super().setUp() self.qubit = list(qiskit.QuantumRegister(1))[0] style = stylesheet.QiskitTimelineStyle() self.formatter = style.formatter def test_gen_timeslot(self): """Test gen_timeslot generator.""" drawing_obj = generators.gen_timeslot(self.qubit, self.formatter)[0] self.assertEqual(drawing_obj.data_type, str(types.BoxType.TIMELINE.value)) self.assertListEqual( list(drawing_obj.xvals), [types.AbstractCoordinate.LEFT, types.AbstractCoordinate.RIGHT] ) self.assertListEqual( list(drawing_obj.yvals), [ -0.5 * self.formatter["box_height.timeslot"], 0.5 * self.formatter["box_height.timeslot"], ], ) self.assertListEqual(drawing_obj.bits, [self.qubit]) ref_styles = { "zorder": self.formatter["layer.timeslot"], "alpha": self.formatter["alpha.timeslot"], "linewidth": self.formatter["line_width.timeslot"], "facecolor": self.formatter["color.timeslot"], } self.assertDictEqual(ref_styles, drawing_obj.styles) def test_gen_bit_name(self): """Test gen_bit_name generator.""" drawing_obj = generators.gen_bit_name(self.qubit, self.formatter)[0] self.assertEqual(drawing_obj.data_type, str(types.LabelType.BIT_NAME.value)) self.assertListEqual(list(drawing_obj.xvals), [types.AbstractCoordinate.LEFT]) self.assertListEqual(list(drawing_obj.yvals), [0]) self.assertListEqual(drawing_obj.bits, [self.qubit]) self.assertEqual(drawing_obj.text, str(self.qubit.register.name)) ref_latex = r"{{\rm {register}}}_{{{index}}}".format( register=self.qubit.register.prefix, index=self.qubit.index ) self.assertEqual(drawing_obj.latex, ref_latex) ref_styles = { "zorder": self.formatter["layer.bit_name"], "color": self.formatter["color.bit_name"], "size": self.formatter["text_size.bit_name"], "va": "center", "ha": "right", } self.assertDictEqual(ref_styles, drawing_obj.styles) class TestBarrier(QiskitTestCase): """Tests for generator.barriers.""" def setUp(self) -> None: """Setup.""" super().setUp() self.qubits = list(qiskit.QuantumRegister(3)) self.barrier = types.Barrier(t0=100, bits=self.qubits, bit_position=1) style = stylesheet.QiskitTimelineStyle() self.formatter = style.formatter def test_gen_barrier(self): """Test gen_barrier generator.""" drawing_obj = generators.gen_barrier(self.barrier, self.formatter)[0] self.assertEqual(drawing_obj.data_type, str(types.LineType.BARRIER.value)) self.assertListEqual(list(drawing_obj.xvals), [100, 100]) self.assertListEqual(list(drawing_obj.yvals), [-0.5, 0.5]) self.assertListEqual(drawing_obj.bits, [self.qubits[1]]) ref_styles = { "alpha": self.formatter["alpha.barrier"], "zorder": self.formatter["layer.barrier"], "linewidth": self.formatter["line_width.barrier"], "linestyle": self.formatter["line_style.barrier"], "color": self.formatter["color.barrier"], } self.assertDictEqual(ref_styles, drawing_obj.styles) class TestGateLink(QiskitTestCase): """Tests for generator.gate_links.""" def setUp(self) -> None: """Setup.""" super().setUp() self.qubits = list(qiskit.QuantumRegister(2)) self.gate_link = types.GateLink(t0=100, opname="cx", bits=self.qubits) style = stylesheet.QiskitTimelineStyle() self.formatter = style.formatter def gen_bit_link(self): """Test gen_bit_link generator.""" drawing_obj = generators.gen_gate_link(self.gate_link, self.formatter)[0] self.assertEqual(drawing_obj.data_type, str(types.LineType.GATE_LINK.value)) self.assertListEqual(list(drawing_obj.xvals), [100]) self.assertListEqual(list(drawing_obj.yvals), [0]) self.assertListEqual(drawing_obj.bits, self.qubits) ref_styles = { "alpha": self.formatter["alpha.bit_link"], "zorder": self.formatter["layer.bit_link"], "linewidth": self.formatter["line_width.bit_link"], "linestyle": self.formatter["line_style.bit_link"], "color": self.formatter["color.gates"]["cx"], } self.assertDictEqual(ref_styles, drawing_obj.styles)
https://github.com/matteoacrossi/oqs-jupyterbook
matteoacrossi
from qiskit import QuantumRegister, QuantumCircuit from qiskit.circuit import Parameter ############################# # Pauli channel on IBMQX2 # ############################# # Quantum register q = QuantumRegister(3, name="q") # Quantum circuit pauli = QuantumCircuit(q) # Pauli channel acting on q_2 ## Qubit identification system = 0 a_0 = 1 a_1 = 2 # ## Define rotation angles theta_1 = Parameter('θ1') theta_2 = Parameter('θ2') theta_3 = Parameter('θ3') ## Construct circuit pauli.ry(theta_1, q[a_0]) pauli.cx(q[a_0], q[a_1]) pauli.ry(theta_2, q[a_0]) pauli.ry(theta_3, q[a_1]) pauli.cx(q[a_0], q[system]) pauli.cy(q[a_1], q[system]) # Draw circuit pauli.draw(output='mpl') def pauli_channel(q, p, system, pauli_ancillae): """ Apply the Pauli channel to system with probabilities p Args: q (QuantumRegister): the quantum register for the circuit system (int): index of the system qubit pauli_ancillae (list): list of indices of the ancillary qubits p (list): list of probabilities [p_1, p_2, p_3] for the Pauli channel Returns: A QuantumCircuit implementing the Pauli channel """ # Write code # Suggested imports... from qiskit.tools.qi.qi import entropy, partial_trace def conditional_entropy(state, qubit_a, qubit_b): """Conditional entropy S(A|B) = S(AB) - S(B) Args: state: a vector or density operator qubit_a: 0-based index of the qubit A qubit_b: 0-based index of the qubit B Returns: int: the conditional entropy """ # Write code here def extractable_work(state, system_qubit, memory_qubit): """Extractable work from a two-qubit state = Cfr. Eq. (4) Bylicka et al., Sci. Rep. 6, 27989 (2016) Args: qubit_a: 0-based index of the system qubit S qubit_b: 0-based index of the memory qubit M """ # Write code here
https://github.com/jayeshparashar/Bloch-sphere-
jayeshparashar
# in this step, we will generate a 2 dim random statevector using quantum_info random_statevector method from qiskit.quantum_info import random_statevector, Statevector rand_sv = random_statevector(2).data print(rand_sv) # print the vector components (complex amplitudes) associated with bais |0> and |1> from rand_sv #Lets plot the rand_sv using plot_bloch_multivector, before that import plot_bloch vector from qiskit.visualization from qiskit.visualization import plot_bloch_multivector plot_bloch_multivector(rand_sv) # once we will have the cartesian cordinates calculated we can use plot_bloch_vector from visualization as shown below from qiskit.visualization import plot_bloch_vector plot_bloch_vector([1,0,0]) # break down complex amplitudes α and β in real and imaginary parts to express same in polar form. import math import numpy as np print('The random statevector', rand_sv) alpha_real = rand_sv[0].real alpha_imag = rand_sv[0].imag alpha_theta = math.atan(alpha_imag/alpha_real) if alpha_real < 0 and alpha_imag > 0 : alpha_theta = math.atan(alpha_imag/alpha_real) + math.pi if alpha_real < 0 and alpha_imag < 0 : alpha_theta = math.atan(alpha_imag/alpha_real) + math.pi print ('alpha and alpha_theta ', np.around(alpha_real,8), np.around(alpha_imag,8), math.degrees(alpha_theta)) r_alpha = math.sqrt((alpha_real**2) + (alpha_imag**2)) beta_real = rand_sv[1].real beta_imag = rand_sv[1].imag beta_theta = math.atan(beta_imag/beta_real) if beta_real < 0 and beta_imag > 0 : beta_theta = math.atan(beta_imag/beta_real) + math.pi if beta_real < 0 and beta_imag < 0 : beta_theta = math.atan(beta_imag/beta_real) + math.pi print ('beta and beta_theta ', np.around(beta_real,8), np.around(beta_imag,8), math.degrees(beta_theta)) r_beta = math.sqrt((beta_real**2) + (beta_imag**2)) # use global phase to get a real only value for amplitude associated with state |0> on bloch sphere phi = beta_theta - alpha_theta print('r_alpha, r_beta, Phase differnce phi: ',phi) theta = 2 * np.arccos(r_alpha) print('Spherical Coordinates of Blochsphere are theta and phi : 1, ', theta, beta_theta - alpha_theta) x = math.sin(theta)*math.cos(phi) y = math.sin(theta)*math.sin(phi) z = math.cos(theta) print(x,y,z) plot_bloch_vector([x,y,z]) #plot_bloch_vector([1, theta, phi], coord_type='spherical') # also try it out with spherical coordinates #once agian we plot rand_sv state to check if that is same as what we have calculated above plot_bloch_multivector(rand_sv)
https://github.com/qclib/qclib
qclib
# Copyright 2021 qclib project. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Multicontrolled gate decompositions for unitaries in U(2) and SU(2)""" from qiskit import QuantumCircuit, QuantumRegister from qiskit.circuit import Gate from .ldmcu import Ldmcu from .ldmcsu import Ldmcsu from .util import check_u2, check_su2, u2_to_su2 # pylint: disable=maybe-no-member # pylint: disable=protected-access class Mcg(Gate): """ Selects the most cost-effective multicontrolled gate decomposition. """ def __init__( self, unitary, num_controls, ctrl_state: str=None, up_to_diagonal: bool=False ): check_u2(unitary) self.unitary = unitary self.controls = QuantumRegister(num_controls) self.target = QuantumRegister(1) self.num_qubits = num_controls + 1 self.ctrl_state = ctrl_state self.up_to_diagonal = up_to_diagonal super().__init__("mcg", self.num_qubits, [], "mcg") def _define(self): self.definition = QuantumCircuit(self.controls, self.target) num_ctrl = len(self.controls) if num_ctrl == 0: self.definition.unitary(self.unitary, [self.target]) elif num_ctrl == 1: u_gate = QuantumCircuit(1) u_gate.unitary(self.unitary, 0) self.definition.append( u_gate.control(num_ctrl, ctrl_state=self.ctrl_state), [*self.controls, self.target] ) else: if check_su2(self.unitary): Ldmcsu.ldmcsu( self.definition, self.unitary, self.controls, self.target, ctrl_state=self.ctrl_state ) else: if self.up_to_diagonal: su_2, _ = u2_to_su2(self.unitary) self.mcg(su_2, self.controls, self.target, self.ctrl_state) else: Ldmcu.ldmcu(self.definition, self.unitary, self.controls[:], self.target[0], self.ctrl_state) @staticmethod def mcg( circuit, unitary, controls, target, ctrl_state: str = None ): circuit.append( Mcg(unitary, len(controls), ctrl_state=ctrl_state), [*controls, target] )
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for SparsePauliOp class.""" import itertools as it import unittest from test import combine import numpy as np from ddt import ddt from qiskit import QiskitError from qiskit.circuit import ParameterExpression, Parameter, ParameterVector from qiskit.circuit.parametertable import ParameterView from qiskit.quantum_info.operators import Operator, Pauli, PauliList, PauliTable, SparsePauliOp from qiskit.test import QiskitTestCase def pauli_mat(label): """Return Pauli matrix from a Pauli label""" mat = np.eye(1, dtype=complex) for i in label: if i == "I": mat = np.kron(mat, np.eye(2, dtype=complex)) elif i == "X": mat = np.kron(mat, np.array([[0, 1], [1, 0]], dtype=complex)) elif i == "Y": mat = np.kron(mat, np.array([[0, -1j], [1j, 0]], dtype=complex)) elif i == "Z": mat = np.kron(mat, np.array([[1, 0], [0, -1]], dtype=complex)) else: raise QiskitError(f"Invalid Pauli string {i}") return mat class TestSparsePauliOpInit(QiskitTestCase): """Tests for SparsePauliOp initialization.""" def test_pauli_table_init(self): """Test PauliTable initialization.""" labels = ["I", "X", "Y", "Z"] table = PauliTable.from_labels(labels) paulis = PauliList(labels) with self.subTest(msg="no coeffs"): spp_op = SparsePauliOp(table) np.testing.assert_array_equal(spp_op.coeffs, np.ones(len(labels))) self.assertEqual(spp_op.paulis, paulis) with self.subTest(msg="no coeffs"): coeffs = [1, 2, 3, 4] spp_op = SparsePauliOp(table, coeffs) np.testing.assert_array_equal(spp_op.coeffs, coeffs) self.assertEqual(spp_op.paulis, paulis) def test_str_init(self): """Test str initialization.""" for label in ["IZ", "XI", "YX", "ZZ"]: pauli_list = PauliList(label) spp_op = SparsePauliOp(label) self.assertEqual(spp_op.paulis, pauli_list) np.testing.assert_array_equal(spp_op.coeffs, [1]) def test_pauli_list_init(self): """Test PauliList initialization.""" labels = ["I", "X", "Y", "-Z", "iZ", "-iX"] paulis = PauliList(labels) with self.subTest(msg="no coeffs"): spp_op = SparsePauliOp(paulis) np.testing.assert_array_equal(spp_op.coeffs, [1, 1, 1, -1, 1j, -1j]) paulis.phase = 0 self.assertEqual(spp_op.paulis, paulis) paulis = PauliList(labels) with self.subTest(msg="with coeffs"): coeffs = [1, 2, 3, 4, 5, 6] spp_op = SparsePauliOp(paulis, coeffs) np.testing.assert_array_equal(spp_op.coeffs, [1, 2, 3, -4, 5j, -6j]) paulis.phase = 0 self.assertEqual(spp_op.paulis, paulis) paulis = PauliList(labels) with self.subTest(msg="with Parameterized coeffs"): params = ParameterVector("params", 6) coeffs = np.array(params) spp_op = SparsePauliOp(paulis, coeffs) target = coeffs.copy() target[3] *= -1 target[4] *= 1j target[5] *= -1j np.testing.assert_array_equal(spp_op.coeffs, target) paulis.phase = 0 self.assertEqual(spp_op.paulis, paulis) def test_sparse_pauli_op_init(self): """Test SparsePauliOp initialization.""" labels = ["I", "X", "Y", "-Z", "iZ", "-iX"] with self.subTest(msg="make SparsePauliOp from SparsePauliOp"): op = SparsePauliOp(labels) ref_op = op.copy() spp_op = SparsePauliOp(op) self.assertEqual(spp_op, ref_op) np.testing.assert_array_equal(ref_op.paulis.phase, np.zeros(ref_op.size)) np.testing.assert_array_equal(spp_op.paulis.phase, np.zeros(spp_op.size)) # make sure the changes of `op` do not propagate through to `spp_op` op.paulis.z[:] = False op.coeffs *= 2 self.assertNotEqual(spp_op, op) self.assertEqual(spp_op, ref_op) with self.subTest(msg="make SparsePauliOp from SparsePauliOp and ndarray"): op = SparsePauliOp(labels) coeffs = np.array([1, 2, 3, 4, 5, 6]) spp_op = SparsePauliOp(op, coeffs) ref_op = SparsePauliOp(op.paulis.copy(), coeffs.copy()) self.assertEqual(spp_op, ref_op) np.testing.assert_array_equal(ref_op.paulis.phase, np.zeros(ref_op.size)) np.testing.assert_array_equal(spp_op.paulis.phase, np.zeros(spp_op.size)) # make sure the changes of `op` and `coeffs` do not propagate through to `spp_op` op.paulis.z[:] = False coeffs *= 2 self.assertNotEqual(spp_op, op) self.assertEqual(spp_op, ref_op) with self.subTest(msg="make SparsePauliOp from PauliList"): paulis = PauliList(labels) spp_op = SparsePauliOp(paulis) ref_op = SparsePauliOp(labels) self.assertEqual(spp_op, ref_op) np.testing.assert_array_equal(ref_op.paulis.phase, np.zeros(ref_op.size)) np.testing.assert_array_equal(spp_op.paulis.phase, np.zeros(spp_op.size)) # make sure the change of `paulis` does not propagate through to `spp_op` paulis.z[:] = False self.assertEqual(spp_op, ref_op) with self.subTest(msg="make SparsePauliOp from PauliList and ndarray"): paulis = PauliList(labels) coeffs = np.array([1, 2, 3, 4, 5, 6]) spp_op = SparsePauliOp(paulis, coeffs) ref_op = SparsePauliOp(labels, coeffs.copy()) self.assertEqual(spp_op, ref_op) np.testing.assert_array_equal(ref_op.paulis.phase, np.zeros(ref_op.size)) np.testing.assert_array_equal(spp_op.paulis.phase, np.zeros(spp_op.size)) # make sure the changes of `paulis` and `coeffs` do not propagate through to `spp_op` paulis.z[:] = False coeffs[:] = 0 self.assertEqual(spp_op, ref_op) class TestSparsePauliOpConversions(QiskitTestCase): """Tests SparsePauliOp representation conversions.""" def test_from_operator(self): """Test from_operator methods.""" for tup in it.product(["I", "X", "Y", "Z"], repeat=2): label = "".join(tup) with self.subTest(msg=label): spp_op = SparsePauliOp.from_operator(Operator(pauli_mat(label))) np.testing.assert_array_equal(spp_op.coeffs, [1]) self.assertEqual(spp_op.paulis, PauliList(label)) def test_from_list(self): """Test from_list method.""" labels = ["XXZ", "IXI", "YZZ", "III"] coeffs = [3.0, 5.5, -1j, 23.3333] spp_op = SparsePauliOp.from_list(zip(labels, coeffs)) np.testing.assert_array_equal(spp_op.coeffs, coeffs) self.assertEqual(spp_op.paulis, PauliList(labels)) def test_from_list_parameters(self): """Test from_list method with parameters.""" labels = ["XXZ", "IXI", "YZZ", "III"] coeffs = ParameterVector("a", 4) spp_op = SparsePauliOp.from_list(zip(labels, coeffs), dtype=object) np.testing.assert_array_equal(spp_op.coeffs, coeffs) self.assertEqual(spp_op.paulis, PauliList(labels)) def test_from_index_list(self): """Test from_list method specifying the Paulis via indices.""" expected_labels = ["XXZ", "IXI", "YIZ", "III"] paulis = ["XXZ", "X", "YZ", ""] indices = [[2, 1, 0], [1], [2, 0], []] coeffs = [3.0, 5.5, -1j, 23.3333] spp_op = SparsePauliOp.from_sparse_list(zip(paulis, indices, coeffs), num_qubits=3) np.testing.assert_array_equal(spp_op.coeffs, coeffs) self.assertEqual(spp_op.paulis, PauliList(expected_labels)) def test_from_index_list_parameters(self): """Test from_list method specifying the Paulis via indices with paramteres.""" expected_labels = ["XXZ", "IXI", "YIZ", "III"] paulis = ["XXZ", "X", "YZ", ""] indices = [[2, 1, 0], [1], [2, 0], []] coeffs = ParameterVector("a", 4) spp_op = SparsePauliOp.from_sparse_list( zip(paulis, indices, coeffs), num_qubits=3, dtype=object ) np.testing.assert_array_equal(spp_op.coeffs, coeffs) self.assertEqual(spp_op.paulis, PauliList(expected_labels)) def test_from_index_list_endianness(self): """Test the construction from index list has the right endianness.""" spp_op = SparsePauliOp.from_sparse_list([("ZX", [1, 4], 1)], num_qubits=5) expected = Pauli("XIIZI") self.assertEqual(spp_op.paulis[0], expected) def test_from_index_list_raises(self): """Test from_list via Pauli + indices raises correctly, if number of qubits invalid.""" with self.assertRaises(QiskitError): _ = SparsePauliOp.from_sparse_list([("Z", [2], 1)], 1) def test_from_index_list_same_index(self): """Test from_list via Pauli + number of qubits raises correctly, if indices duplicate.""" with self.assertRaises(QiskitError): _ = SparsePauliOp.from_sparse_list([("ZZ", [0, 0], 1)], 2) with self.assertRaises(QiskitError): _ = SparsePauliOp.from_sparse_list([("ZI", [0, 0], 1)], 2) with self.assertRaises(QiskitError): _ = SparsePauliOp.from_sparse_list([("IZ", [0, 0], 1)], 2) def test_from_zip(self): """Test from_list method for zipped input.""" labels = ["XXZ", "IXI", "YZZ", "III"] coeffs = [3.0, 5.5, -1j, 23.3333] spp_op = SparsePauliOp.from_list(zip(labels, coeffs)) np.testing.assert_array_equal(spp_op.coeffs, coeffs) self.assertEqual(spp_op.paulis, PauliList(labels)) def test_to_matrix(self): """Test to_matrix method.""" labels = ["XI", "YZ", "YY", "ZZ"] coeffs = [-3, 4.4j, 0.2 - 0.1j, 66.12] spp_op = SparsePauliOp(labels, coeffs) target = np.zeros((4, 4), dtype=complex) for coeff, label in zip(coeffs, labels): target += coeff * pauli_mat(label) np.testing.assert_array_equal(spp_op.to_matrix(), target) np.testing.assert_array_equal(spp_op.to_matrix(sparse=True).toarray(), target) def test_to_matrix_large(self): """Test to_matrix method with a large number of qubits.""" reps = 5 labels = ["XI" * reps, "YZ" * reps, "YY" * reps, "ZZ" * reps] coeffs = [-3, 4.4j, 0.2 - 0.1j, 66.12] spp_op = SparsePauliOp(labels, coeffs) size = 1 << 2 * reps target = np.zeros((size, size), dtype=complex) for coeff, label in zip(coeffs, labels): target += coeff * pauli_mat(label) np.testing.assert_array_equal(spp_op.to_matrix(), target) np.testing.assert_array_equal(spp_op.to_matrix(sparse=True).toarray(), target) def test_to_matrix_parameters(self): """Test to_matrix method for parameterized SparsePauliOp.""" labels = ["XI", "YZ", "YY", "ZZ"] coeffs = np.array(ParameterVector("a", 4)) spp_op = SparsePauliOp(labels, coeffs) target = np.zeros((4, 4), dtype=object) for coeff, label in zip(coeffs, labels): target += coeff * pauli_mat(label) np.testing.assert_array_equal(spp_op.to_matrix(), target) def test_to_operator(self): """Test to_operator method.""" labels = ["XI", "YZ", "YY", "ZZ"] coeffs = [-3, 4.4j, 0.2 - 0.1j, 66.12] spp_op = SparsePauliOp(labels, coeffs) target = Operator(np.zeros((4, 4), dtype=complex)) for coeff, label in zip(coeffs, labels): target = target + Operator(coeff * pauli_mat(label)) self.assertEqual(spp_op.to_operator(), target) def test_to_list(self): """Test to_operator method.""" labels = ["XI", "YZ", "YY", "ZZ"] coeffs = [-3, 4.4j, 0.2 - 0.1j, 66.12] op = SparsePauliOp(labels, coeffs) target = list(zip(labels, coeffs)) self.assertEqual(op.to_list(), target) def test_to_list_parameters(self): """Test to_operator method with paramters.""" labels = ["XI", "YZ", "YY", "ZZ"] coeffs = np.array(ParameterVector("a", 4)) op = SparsePauliOp(labels, coeffs) target = list(zip(labels, coeffs)) self.assertEqual(op.to_list(), target) class TestSparsePauliOpIteration(QiskitTestCase): """Tests for SparsePauliOp iterators class.""" def test_enumerate(self): """Test enumerate with SparsePauliOp.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array([1, 2, 3, 4, 5, 6]) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(op): self.assertEqual(i, SparsePauliOp(labels[idx], coeffs[[idx]])) def test_enumerate_parameters(self): """Test enumerate with SparsePauliOp with parameters.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array(ParameterVector("a", 6)) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(op): self.assertEqual(i, SparsePauliOp(labels[idx], coeffs[[idx]])) def test_iter(self): """Test iter with SparsePauliOp.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array([1, 2, 3, 4, 5, 6]) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(iter(op)): self.assertEqual(i, SparsePauliOp(labels[idx], coeffs[[idx]])) def test_iter_parameters(self): """Test iter with SparsePauliOp with parameters.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array(ParameterVector("a", 6)) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(iter(op)): self.assertEqual(i, SparsePauliOp(labels[idx], coeffs[[idx]])) def test_label_iter(self): """Test SparsePauliOp label_iter method.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array([1, 2, 3, 4, 5, 6]) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(op.label_iter()): self.assertEqual(i, (labels[idx], coeffs[idx])) def test_label_iter_parameters(self): """Test SparsePauliOp label_iter method with parameters.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array(ParameterVector("a", 6)) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(op.label_iter()): self.assertEqual(i, (labels[idx], coeffs[idx])) def test_matrix_iter(self): """Test SparsePauliOp dense matrix_iter method.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array([1, 2, 3, 4, 5, 6]) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(op.matrix_iter()): np.testing.assert_array_equal(i, coeffs[idx] * pauli_mat(labels[idx])) def test_matrix_iter_parameters(self): """Test SparsePauliOp dense matrix_iter method. with parameters""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array(ParameterVector("a", 6)) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(op.matrix_iter()): np.testing.assert_array_equal(i, coeffs[idx] * pauli_mat(labels[idx])) def test_matrix_iter_sparse(self): """Test SparsePauliOp sparse matrix_iter method.""" labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"] coeffs = np.array([1, 2, 3, 4, 5, 6]) op = SparsePauliOp(labels, coeffs) for idx, i in enumerate(op.matrix_iter(sparse=True)): np.testing.assert_array_equal(i.toarray(), coeffs[idx] * pauli_mat(labels[idx])) def bind_parameters_to_one(array): """Bind parameters to one. The purpose of using this method is to bind some value and use ``assert_allclose``, since it is impossible to verify equivalence in the case of numerical errors with parameters existing. """ def bind_one(a): parameters = a.parameters return complex(a.bind(dict(zip(parameters, [1] * len(parameters))))) return np.vectorize(bind_one, otypes=[complex])(array) @ddt class TestSparsePauliOpMethods(QiskitTestCase): """Tests for SparsePauliOp operator methods.""" RNG = np.random.default_rng(1994) def setUp(self): super().setUp() self.parameter_names = (f"param_{x}" for x in it.count()) def random_spp_op(self, num_qubits, num_terms, use_parameters=False): """Generate a pseudo-random SparsePauliOp""" if use_parameters: coeffs = np.array(ParameterVector(next(self.parameter_names), num_terms)) else: coeffs = self.RNG.uniform(-1, 1, size=num_terms) + 1j * self.RNG.uniform( -1, 1, size=num_terms ) labels = [ "".join(self.RNG.choice(["I", "X", "Y", "Z"], size=num_qubits)) for _ in range(num_terms) ] return SparsePauliOp(labels, coeffs) @combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False]) def test_conjugate(self, num_qubits, use_parameters): """Test conjugate method for {num_qubits}-qubits.""" spp_op = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) target = spp_op.to_matrix().conjugate() op = spp_op.conjugate() value = op.to_matrix() np.testing.assert_array_equal(value, target) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False]) def test_transpose(self, num_qubits, use_parameters): """Test transpose method for {num_qubits}-qubits.""" spp_op = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) target = spp_op.to_matrix().transpose() op = spp_op.transpose() value = op.to_matrix() np.testing.assert_array_equal(value, target) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False]) def test_adjoint(self, num_qubits, use_parameters): """Test adjoint method for {num_qubits}-qubits.""" spp_op = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) target = spp_op.to_matrix().transpose().conjugate() op = spp_op.adjoint() value = op.to_matrix() np.testing.assert_array_equal(value, target) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False]) def test_compose(self, num_qubits, use_parameters): """Test {num_qubits}-qubit compose methods.""" spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) target = spp_op2.to_matrix() @ spp_op1.to_matrix() op = spp_op1.compose(spp_op2) value = op.to_matrix() if use_parameters: value = bind_parameters_to_one(value) target = bind_parameters_to_one(target) np.testing.assert_allclose(value, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) op = spp_op1 & spp_op2 value = op.to_matrix() if use_parameters: value = bind_parameters_to_one(value) np.testing.assert_allclose(value, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False]) def test_dot(self, num_qubits, use_parameters): """Test {num_qubits}-qubit dot methods.""" spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) target = spp_op1.to_matrix() @ spp_op2.to_matrix() op = spp_op1.dot(spp_op2) value = op.to_matrix() if use_parameters: value = bind_parameters_to_one(value) target = bind_parameters_to_one(target) np.testing.assert_allclose(value, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) op = spp_op1 @ spp_op2 value = op.to_matrix() if use_parameters: value = bind_parameters_to_one(value) np.testing.assert_allclose(value, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3]) def test_qargs_compose(self, num_qubits): """Test 3-qubit compose method with {num_qubits}-qubit qargs.""" spp_op1 = self.random_spp_op(3, 2**3) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits) qargs = self.RNG.choice(3, size=num_qubits, replace=False).tolist() target = Operator(spp_op1).compose(Operator(spp_op2), qargs=qargs) op = spp_op1.compose(spp_op2, qargs=qargs) value = op.to_operator() self.assertEqual(value, target) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) op = spp_op1 & spp_op2(qargs) value = op.to_operator() self.assertEqual(value, target) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3]) def test_qargs_dot(self, num_qubits): """Test 3-qubit dot method with {num_qubits}-qubit qargs.""" spp_op1 = self.random_spp_op(3, 2**3) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits) qargs = self.RNG.choice(3, size=num_qubits, replace=False).tolist() target = Operator(spp_op1).dot(Operator(spp_op2), qargs=qargs) op = spp_op1.dot(spp_op2, qargs=qargs) value = op.to_operator() self.assertEqual(value, target) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits1=[1, 2, 3], num_qubits2=[1, 2, 3], use_parameters=[True, False]) def test_tensor(self, num_qubits1, num_qubits2, use_parameters): """Test tensor method for {num_qubits1} and {num_qubits2} qubits.""" spp_op1 = self.random_spp_op(num_qubits1, 2**num_qubits1, use_parameters) spp_op2 = self.random_spp_op(num_qubits2, 2**num_qubits2, use_parameters) target = np.kron(spp_op1.to_matrix(), spp_op2.to_matrix()) op = spp_op1.tensor(spp_op2) value = op.to_matrix() if use_parameters: value = bind_parameters_to_one(value) target = bind_parameters_to_one(target) np.testing.assert_allclose(value, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits1=[1, 2, 3], num_qubits2=[1, 2, 3], use_parameters=[True, False]) def test_expand(self, num_qubits1, num_qubits2, use_parameters): """Test expand method for {num_qubits1} and {num_qubits2} qubits.""" spp_op1 = self.random_spp_op(num_qubits1, 2**num_qubits1, use_parameters) spp_op2 = self.random_spp_op(num_qubits2, 2**num_qubits2, use_parameters) target = np.kron(spp_op2.to_matrix(), spp_op1.to_matrix()) op = spp_op1.expand(spp_op2) value = op.to_matrix() if use_parameters: value = bind_parameters_to_one(value) target = bind_parameters_to_one(target) np.testing.assert_allclose(value, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False]) def test_add(self, num_qubits, use_parameters): """Test + method for {num_qubits} qubits.""" spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) target = spp_op1.to_matrix() + spp_op2.to_matrix() op = spp_op1 + spp_op2 value = op.to_matrix() if use_parameters: value = bind_parameters_to_one(value) target = bind_parameters_to_one(target) np.testing.assert_allclose(value, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False]) def test_sub(self, num_qubits, use_parameters): """Test + method for {num_qubits} qubits.""" spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) target = spp_op1.to_matrix() - spp_op2.to_matrix() op = spp_op1 - spp_op2 value = op.to_matrix() if use_parameters: value = bind_parameters_to_one(value) target = bind_parameters_to_one(target) np.testing.assert_allclose(value, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3]) def test_add_qargs(self, num_qubits): """Test + method for 3 qubits with {num_qubits} qubit qargs.""" spp_op1 = self.random_spp_op(3, 2**3) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits) qargs = self.RNG.choice(3, size=num_qubits, replace=False).tolist() target = Operator(spp_op1) + Operator(spp_op2)(qargs) op = spp_op1 + spp_op2(qargs) value = op.to_operator() self.assertEqual(value, target) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3]) def test_sub_qargs(self, num_qubits): """Test - method for 3 qubits with {num_qubits} qubit qargs.""" spp_op1 = self.random_spp_op(3, 2**3) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits) qargs = self.RNG.choice(3, size=num_qubits, replace=False).tolist() target = Operator(spp_op1) - Operator(spp_op2)(qargs) op = spp_op1 - spp_op2(qargs) value = op.to_operator() self.assertEqual(value, target) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine( num_qubits=[1, 2, 3], value=[ 0, 1, 1j, -3 + 4.4j, np.int64(2), Parameter("x"), 0 * Parameter("x"), (-2 + 1.7j) * Parameter("x"), ], param=[None, "a"], ) def test_mul(self, num_qubits, value, param): """Test * method for {num_qubits} qubits and value {value}.""" spp_op = self.random_spp_op(num_qubits, 2**num_qubits, param) target = value * spp_op.to_matrix() op = value * spp_op value_mat = op.to_matrix() has_parameters = isinstance(value, ParameterExpression) or param is not None if value != 0 and has_parameters: value_mat = bind_parameters_to_one(value_mat) target = bind_parameters_to_one(target) if value == 0: np.testing.assert_array_equal(value_mat, target.astype(complex)) else: np.testing.assert_allclose(value_mat, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) target = spp_op.to_matrix() * value op = spp_op * value value_mat = op.to_matrix() if value != 0 and has_parameters: value_mat = bind_parameters_to_one(value_mat) target = bind_parameters_to_one(target) if value == 0: np.testing.assert_array_equal(value_mat, target.astype(complex)) else: np.testing.assert_allclose(value_mat, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) @combine(num_qubits=[1, 2, 3], value=[1, 1j, -3 + 4.4j], param=[None, "a"]) def test_div(self, num_qubits, value, param): """Test / method for {num_qubits} qubits and value {value}.""" spp_op = self.random_spp_op(num_qubits, 2**num_qubits, param) target = spp_op.to_matrix() / value op = spp_op / value value_mat = op.to_matrix() if param is not None: value_mat = bind_parameters_to_one(value_mat) target = bind_parameters_to_one(target) np.testing.assert_allclose(value_mat, target, atol=1e-8) np.testing.assert_array_equal(op.paulis.phase, np.zeros(op.size)) def test_simplify(self): """Test simplify method""" coeffs = [3 + 1j, -3 - 1j, 0, 4, -5, 2.2, -1.1j] labels = ["IXI", "IXI", "ZZZ", "III", "III", "XXX", "XXX"] spp_op = SparsePauliOp.from_list(zip(labels, coeffs)) simplified_op = spp_op.simplify() target_coeffs = [-1, 2.2 - 1.1j] target_labels = ["III", "XXX"] target_op = SparsePauliOp.from_list(zip(target_labels, target_coeffs)) self.assertEqual(simplified_op, target_op) np.testing.assert_array_equal(simplified_op.paulis.phase, np.zeros(simplified_op.size)) @combine(num_qubits=[1, 2, 3, 4], num_adds=[0, 1, 2, 3]) def test_simplify2(self, num_qubits, num_adds): """Test simplify method for {num_qubits} qubits with {num_adds} `add` calls.""" spp_op = self.random_spp_op(num_qubits, 2**num_qubits) for _ in range(num_adds): spp_op += spp_op simplified_op = spp_op.simplify() value = Operator(simplified_op) target = Operator(spp_op) self.assertEqual(value, target) np.testing.assert_array_equal(spp_op.paulis.phase, np.zeros(spp_op.size)) np.testing.assert_array_equal(simplified_op.paulis.phase, np.zeros(simplified_op.size)) @combine(num_qubits=[1, 2, 3, 4]) def test_simplify_zero(self, num_qubits): """Test simplify method for {num_qubits} qubits with zero operators.""" spp_op = self.random_spp_op(num_qubits, 2**num_qubits) zero_op = spp_op - spp_op simplified_op = zero_op.simplify() value = Operator(simplified_op) target = Operator(zero_op) self.assertEqual(value, target) np.testing.assert_array_equal(simplified_op.coeffs, [0]) np.testing.assert_array_equal(zero_op.paulis.phase, np.zeros(zero_op.size)) np.testing.assert_array_equal(simplified_op.paulis.phase, np.zeros(simplified_op.size)) def test_simplify_parameters(self): """Test simplify methods for parameterized SparsePauliOp.""" a = Parameter("a") coeffs = np.array([a, -a, 0, a, a, a, 2 * a]) labels = ["IXI", "IXI", "ZZZ", "III", "III", "XXX", "XXX"] spp_op = SparsePauliOp(labels, coeffs) simplified_op = spp_op.simplify() target_coeffs = np.array([2 * a, 3 * a]) target_labels = ["III", "XXX"] target_op = SparsePauliOp(target_labels, target_coeffs) self.assertEqual(simplified_op, target_op) np.testing.assert_array_equal(simplified_op.paulis.phase, np.zeros(simplified_op.size)) def test_sort(self): """Test sort method.""" with self.assertRaises(QiskitError): target = SparsePauliOp([], []) with self.subTest(msg="1 qubit real number"): target = SparsePauliOp( ["I", "I", "I", "I"], [-3.0 + 0.0j, 1.0 + 0.0j, 2.0 + 0.0j, 4.0 + 0.0j] ) value = SparsePauliOp(["I", "I", "I", "I"], [1, 2, -3, 4]).sort() self.assertEqual(target, value) with self.subTest(msg="1 qubit complex"): target = SparsePauliOp( ["I", "I", "I", "I"], [-1.0 + 0.0j, 0.0 - 1.0j, 0.0 + 1.0j, 1.0 + 0.0j] ) value = SparsePauliOp( ["I", "I", "I", "I"], [1.0 + 0.0j, 0.0 + 1.0j, 0.0 - 1.0j, -1.0 + 0.0j] ).sort() self.assertEqual(target, value) with self.subTest(msg="1 qubit Pauli I, X, Y, Z"): target = SparsePauliOp( ["I", "X", "Y", "Z"], [-1.0 + 2.0j, 1.0 + 0.0j, 2.0 + 0.0j, 3.0 - 4.0j] ) value = SparsePauliOp( ["Y", "X", "Z", "I"], [2.0 + 0.0j, 1.0 + 0.0j, 3.0 - 4.0j, -1.0 + 2.0j] ).sort() self.assertEqual(target, value) with self.subTest(msg="1 qubit weight order"): target = SparsePauliOp( ["I", "X", "Y", "Z"], [-1.0 + 2.0j, 1.0 + 0.0j, 2.0 + 0.0j, 3.0 - 4.0j] ) value = SparsePauliOp( ["Y", "X", "Z", "I"], [2.0 + 0.0j, 1.0 + 0.0j, 3.0 - 4.0j, -1.0 + 2.0j] ).sort(weight=True) self.assertEqual(target, value) with self.subTest(msg="1 qubit multi Pauli"): target = SparsePauliOp( ["I", "I", "I", "I", "X", "X", "Y", "Z"], [ -1.0 + 2.0j, 1.0 + 0.0j, 2.0 + 0.0j, 3.0 - 4.0j, -1.0 + 4.0j, -1.0 + 5.0j, -1.0 + 3.0j, -1.0 + 2.0j, ], ) value = SparsePauliOp( ["I", "I", "I", "I", "X", "Z", "Y", "X"], [ 2.0 + 0.0j, 1.0 + 0.0j, 3.0 - 4.0j, -1.0 + 2.0j, -1.0 + 5.0j, -1.0 + 2.0j, -1.0 + 3.0j, -1.0 + 4.0j, ], ).sort() self.assertEqual(target, value) with self.subTest(msg="2 qubit standard order"): target = SparsePauliOp( ["II", "XI", "XX", "XX", "XX", "XY", "XZ", "YI"], [ 4.0 + 0.0j, 7.0 + 0.0j, 2.0 + 1.0j, 2.0 + 2.0j, 3.0 + 0.0j, 6.0 + 0.0j, 5.0 + 0.0j, 3.0 + 0.0j, ], ) value = SparsePauliOp( ["XX", "XX", "XX", "YI", "II", "XZ", "XY", "XI"], [ 2.0 + 1.0j, 2.0 + 2.0j, 3.0 + 0.0j, 3.0 + 0.0j, 4.0 + 0.0j, 5.0 + 0.0j, 6.0 + 0.0j, 7.0 + 0.0j, ], ).sort() self.assertEqual(target, value) with self.subTest(msg="2 qubit weight order"): target = SparsePauliOp( ["II", "XI", "YI", "XX", "XX", "XX", "XY", "XZ"], [ 4.0 + 0.0j, 7.0 + 0.0j, 3.0 + 0.0j, 2.0 + 1.0j, 2.0 + 2.0j, 3.0 + 0.0j, 6.0 + 0.0j, 5.0 + 0.0j, ], ) value = SparsePauliOp( ["XX", "XX", "XX", "YI", "II", "XZ", "XY", "XI"], [ 2.0 + 1.0j, 2.0 + 2.0j, 3.0 + 0.0j, 3.0 + 0.0j, 4.0 + 0.0j, 5.0 + 0.0j, 6.0 + 0.0j, 7.0 + 0.0j, ], ).sort(weight=True) self.assertEqual(target, value) def test_chop(self): """Test chop, which individually truncates real and imaginary parts of the coeffs.""" eps = 1e-10 op = SparsePauliOp( ["XYZ", "ZII", "ZII", "YZY"], coeffs=[eps + 1j * eps, 1 + 1j * eps, eps + 1j, 1 + 1j] ) simplified = op.chop(tol=eps) expected_coeffs = [1, 1j, 1 + 1j] expected_paulis = ["ZII", "ZII", "YZY"] self.assertListEqual(simplified.coeffs.tolist(), expected_coeffs) self.assertListEqual(simplified.paulis.to_labels(), expected_paulis) def test_chop_all(self): """Test that chop returns an identity operator with coeff 0 if all coeffs are chopped.""" eps = 1e-10 op = SparsePauliOp(["X", "Z"], coeffs=[eps, eps]) simplified = op.chop(tol=eps) expected = SparsePauliOp(["I"], coeffs=[0.0]) self.assertEqual(simplified, expected) @combine(num_qubits=[1, 2, 3, 4], num_ops=[1, 2, 3, 4], param=[None, "a"]) def test_sum(self, num_qubits, num_ops, param): """Test sum method for {num_qubits} qubits with {num_ops} operators.""" ops = [ self.random_spp_op( num_qubits, 2**num_qubits, param if param is None else f"{param}_{i}" ) for i in range(num_ops) ] sum_op = SparsePauliOp.sum(ops) value = sum_op.to_matrix() target_operator = sum((op.to_matrix() for op in ops[1:]), ops[0].to_matrix()) if param is not None: value = bind_parameters_to_one(value) target_operator = bind_parameters_to_one(target_operator) np.testing.assert_allclose(value, target_operator, atol=1e-8) target_spp_op = sum((op for op in ops[1:]), ops[0]) self.assertEqual(sum_op, target_spp_op) np.testing.assert_array_equal(sum_op.paulis.phase, np.zeros(sum_op.size)) def test_sum_error(self): """Test sum method with invalid cases.""" with self.assertRaises(QiskitError): SparsePauliOp.sum([]) with self.assertRaises(QiskitError): ops = [self.random_spp_op(num_qubits, 2**num_qubits) for num_qubits in [1, 2]] SparsePauliOp.sum(ops) with self.assertRaises(QiskitError): SparsePauliOp.sum([1, 2]) @combine(num_qubits=[1, 2, 3, 4], use_parameters=[True, False]) def test_eq(self, num_qubits, use_parameters): """Test __eq__ method for {num_qubits} qubits.""" spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) spp_op3 = self.random_spp_op(num_qubits, 2**num_qubits, use_parameters) zero = spp_op3 - spp_op3 self.assertEqual(spp_op1, spp_op1) self.assertEqual(spp_op2, spp_op2) self.assertNotEqual(spp_op1, spp_op1 + zero) self.assertNotEqual(spp_op2, spp_op2 + zero) if spp_op1 != spp_op2: self.assertNotEqual(spp_op1 + spp_op2, spp_op2 + spp_op1) @combine(num_qubits=[1, 2, 3, 4]) def test_equiv(self, num_qubits): """Test equiv method for {num_qubits} qubits.""" spp_op1 = self.random_spp_op(num_qubits, 2**num_qubits) spp_op2 = self.random_spp_op(num_qubits, 2**num_qubits) spp_op3 = self.random_spp_op(num_qubits, 2**num_qubits) spp_op4 = self.random_spp_op(num_qubits, 2**num_qubits) zero = spp_op3 - spp_op3 zero2 = spp_op4 - spp_op4 self.assertTrue(spp_op1.equiv(spp_op1)) self.assertTrue(spp_op1.equiv(spp_op1 + zero)) self.assertTrue(spp_op2.equiv(spp_op2)) self.assertTrue(spp_op2.equiv(spp_op2 + zero)) self.assertTrue(zero.equiv(zero2)) self.assertTrue((zero + zero2).equiv(zero2 + zero)) self.assertTrue((zero2 + zero).equiv(zero + zero2)) self.assertTrue((spp_op1 + spp_op2).equiv(spp_op2 + spp_op1)) self.assertTrue((spp_op2 + spp_op1).equiv(spp_op1 + spp_op2)) self.assertTrue((spp_op1 - spp_op1).equiv(spp_op2 - spp_op2)) self.assertTrue((2 * spp_op1).equiv(spp_op1 + spp_op1)) self.assertTrue((2 * spp_op2).equiv(spp_op2 + spp_op2)) if not spp_op1.equiv(zero): self.assertFalse(spp_op1.equiv(spp_op1 + spp_op1)) if not spp_op2.equiv(zero): self.assertFalse(spp_op2.equiv(spp_op2 + spp_op2)) def test_equiv_atol(self): """Test equiv method with atol.""" op1 = SparsePauliOp.from_list([("X", 1), ("Y", 2)]) op2 = op1 + 1e-7 * SparsePauliOp.from_list([("I", 1)]) self.assertFalse(op1.equiv(op2)) self.assertTrue(op1.equiv(op2, atol=1e-7)) def test_eq_equiv(self): """Test __eq__ and equiv methods with some specific cases.""" with self.subTest("shuffled"): spp_op1 = SparsePauliOp.from_list([("X", 1), ("Y", 2)]) spp_op2 = SparsePauliOp.from_list([("Y", 2), ("X", 1)]) self.assertNotEqual(spp_op1, spp_op2) self.assertTrue(spp_op1.equiv(spp_op2)) with self.subTest("w/ zero"): spp_op1 = SparsePauliOp.from_list([("X", 1), ("Y", 1)]) spp_op2 = SparsePauliOp.from_list([("X", 1), ("Y", 1), ("Z", 0)]) self.assertNotEqual(spp_op1, spp_op2) self.assertTrue(spp_op1.equiv(spp_op2)) @combine(parameterized=[True, False], qubit_wise=[True, False]) def test_group_commuting(self, parameterized, qubit_wise): """Test general grouping commuting operators""" def commutes(left: Pauli, right: Pauli, qubit_wise: bool) -> bool: if len(left) != len(right): return False if not qubit_wise: return left.commutes(right) else: # qubit-wise commuting check vec_l = left.z + 2 * left.x vec_r = right.z + 2 * right.x qubit_wise_comparison = (vec_l * vec_r) * (vec_l - vec_r) return np.all(qubit_wise_comparison == 0) input_labels = ["IX", "IY", "IZ", "XX", "YY", "ZZ", "XY", "YX", "ZX", "ZY", "XZ", "YZ"] np.random.shuffle(input_labels) if parameterized: coeffs = np.array(ParameterVector("a", len(input_labels))) else: coeffs = np.random.random(len(input_labels)) + np.random.random(len(input_labels)) * 1j sparse_pauli_list = SparsePauliOp(input_labels, coeffs) groups = sparse_pauli_list.group_commuting(qubit_wise) # checking that every input Pauli in sparse_pauli_list is in a group in the ouput output_labels = [pauli.to_label() for group in groups for pauli in group.paulis] self.assertListEqual(sorted(output_labels), sorted(input_labels)) # checking that every coeffs are grouped according to sparse_pauli_list group paulis_coeff_dict = dict( sum([list(zip(group.paulis.to_labels(), group.coeffs)) for group in groups], []) ) self.assertDictEqual(dict(zip(input_labels, coeffs)), paulis_coeff_dict) # Within each group, every operator commutes with every other operator. for group in groups: self.assertTrue( all( commutes(pauli1, pauli2, qubit_wise) for pauli1, pauli2 in it.combinations(group.paulis, 2) ) ) # For every pair of groups, at least one element from one group does not commute with # at least one element of the other. for group1, group2 in it.combinations(groups, 2): self.assertFalse( all( commutes(group1_pauli, group2_pauli, qubit_wise) for group1_pauli, group2_pauli in it.product(group1.paulis, group2.paulis) ) ) def test_dot_real(self): """Test dot for real coefficiets.""" x = SparsePauliOp("X", np.array([1])) y = SparsePauliOp("Y", np.array([1])) iz = SparsePauliOp("Z", 1j) self.assertEqual(x.dot(y), iz) def test_get_parameters(self): """Test getting the parameters.""" x, y = Parameter("x"), Parameter("y") op = SparsePauliOp(["X", "Y", "Z"], coeffs=[1, x, x * y]) with self.subTest(msg="all parameters"): self.assertEqual(ParameterView([x, y]), op.parameters) op.assign_parameters({y: 2}, inplace=True) with self.subTest(msg="after partial binding"): self.assertEqual(ParameterView([x]), op.parameters) def test_assign_parameters(self): """Test assign parameters.""" x, y = Parameter("x"), Parameter("y") op = SparsePauliOp(["X", "Y", "Z"], coeffs=[1, x, x * y]) # partial binding inplace op.assign_parameters({y: 2}, inplace=True) with self.subTest(msg="partial binding"): self.assertListEqual(op.coeffs.tolist(), [1, x, 2 * x]) # bind via array bound = op.assign_parameters([3]) with self.subTest(msg="fully bound"): self.assertTrue(np.allclose(bound.coeffs.astype(complex), [1, 3, 6])) def test_paulis_setter_rejects_bad_inputs(self): """Test that the setter for `paulis` rejects different-sized inputs.""" op = SparsePauliOp(["XY", "ZX"], coeffs=[1, 1j]) with self.assertRaisesRegex(ValueError, "incorrect number of qubits"): op.paulis = PauliList([Pauli("X"), Pauli("Y")]) with self.assertRaisesRegex(ValueError, "incorrect number of operators"): op.paulis = PauliList([Pauli("XY"), Pauli("ZX"), Pauli("YZ")]) if __name__ == "__main__": unittest.main()
https://github.com/soultanis/Quantum-SAT-Solver
soultanis
import grover_test as gt # Simulator-Backend # output = gt.build_and_run(3, [1]) # IBMQ-Backend output = gt.build_and_run(2, [1], real=True, online=True) print(output)
https://github.com/qiskit-community/qiskit-dell-runtime
qiskit-community
from dell_runtime import DellRuntimeProvider RUNTIME_PROGRAM = """ import random from qiskit import transpile from qiskit.circuit.random import random_circuit def prepare_circuits(backend): circuit = random_circuit(num_qubits=5, depth=4, measure=True, seed=random.randint(0, 1000)) return transpile(circuit, backend) def main(backend, user_messenger, **kwargs): iterations = kwargs['iterations'] interim_results = kwargs.pop('interim_results', {}) final_result = kwargs.pop("final_result", {}) for it in range(iterations): qc = prepare_circuits(backend) user_messenger.publish({"iteration": it, "interim_results": interim_results}) backend.run(qc).result() user_messenger.publish(final_result, final=True) """ RUNTIME_PROGRAM_METADATA = { "max_execution_time": 600, "description": "Qiskit test program" } PROGRAM_PREFIX = 'qiskit-test' provider = DellRuntimeProvider() provider.runtime.programs() program_id = provider.runtime.upload_program(RUNTIME_PROGRAM, metadata=RUNTIME_PROGRAM_METADATA) provider.runtime.pprint_programs() runtime_program = provider.runtime.program(program_id) program_inputs = { "iterations": 10 } job = provider.runtime.run(program_id, options=None, inputs=program_inputs) job.status()
https://github.com/Qiskit-Extensions/circuit-knitting-toolbox
Qiskit-Extensions
import numpy as np from qiskit import QuantumCircuit from qiskit.quantum_info import SparsePauliOp from qiskit_aer.primitives import EstimatorV2, SamplerV2 from circuit_knitting.cutting import ( partition_problem, generate_cutting_experiments, reconstruct_expectation_values, ) from circuit_knitting.cutting.instructions import CutWire from circuit_knitting.cutting import cut_wires, expand_observables qc_0 = QuantumCircuit(7) for i in range(7): qc_0.rx(np.pi / 4, i) qc_0.cx(0, 3) qc_0.cx(1, 3) qc_0.cx(2, 3) qc_0.append(CutWire(), [3]) qc_0.cx(3, 4) qc_0.cx(3, 5) qc_0.cx(3, 6) qc_0.append(CutWire(), [3]) qc_0.cx(0, 3) qc_0.cx(1, 3) qc_0.cx(2, 3) qc_0.draw("mpl") qc_0.decompose("cut_wire").draw("mpl") observable = SparsePauliOp(["ZIIIIII", "IIIZIII", "IIIIIIZ"]) qc_1 = cut_wires(qc_0) qc_1.draw("mpl") observable_expanded_paulis = expand_observables(observable.paulis, qc_0, qc_1) observable_expanded_paulis partitioned_problem = partition_problem( circuit=qc_1, observables=observable_expanded_paulis ) subcircuits = partitioned_problem.subcircuits subobservables = partitioned_problem.subobservables subobservables subcircuits[0].draw("mpl") subcircuits[1].draw("mpl") subexperiments, coefficients = generate_cutting_experiments( circuits=subcircuits, observables=subobservables, num_samples=np.inf, ) sampler = SamplerV2() results = { label: sampler.run(subexperiment, shots=2**12).result() for label, subexperiment in subexperiments.items() } reconstructed_expvals = reconstruct_expectation_values( results, coefficients, subobservables, ) final_expval = np.dot(reconstructed_expvals, observable.coeffs) estimator = EstimatorV2() exact_expval = ( estimator.run([(qc_0.decompose("cut_wire"), observable)]).result()[0].data.evs ) print(f"Reconstructed expectation value: {np.real(np.round(final_expval, 8))}") print(f"Exact expectation value: {np.round(exact_expval, 8)}") print(f"Error in estimation: {np.real(np.round(final_expval-exact_expval, 8))}") print( f"Relative error in estimation: {np.real(np.round((final_expval-exact_expval) / exact_expval, 8))}" )
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse from qiskit.providers.fake_provider import FakeArmonk backend = FakeArmonk() with pulse.build(backend) as drive_sched: d0 = pulse.drive_channel(0) a0 = pulse.acquire_channel(0) pulse.play(pulse.library.Constant(10, 1.0), d0) pulse.delay(20, d0) pulse.shift_phase(3.14/2, d0) pulse.set_phase(3.14, d0) pulse.shift_frequency(1e7, d0) pulse.set_frequency(5e9, d0) with pulse.build() as temp_sched: pulse.play(pulse.library.Gaussian(20, 1.0, 3.0), d0) pulse.play(pulse.library.Gaussian(20, -1.0, 3.0), d0) pulse.call(temp_sched) pulse.acquire(30, a0, pulse.MemorySlot(0)) drive_sched.draw()
https://github.com/Glebegor/Quantum-programming-algorithms
Glebegor
import numpy as np import networkx as nx import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, assemble from qiskit.quantum_info import Statevector from qiskit.aqua.algorithms import NumPyEigensolver from qiskit.quantum_info import Pauli from qiskit.aqua.operators import op_converter from qiskit.aqua.operators import WeightedPauliOperator from qiskit.visualization import plot_histogram from qiskit.providers.aer.extensions.snapshot_statevector import * from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost from utils import mapeo_grafo from collections import defaultdict from operator import itemgetter from scipy.optimize import minimize import matplotlib.pyplot as plt LAMBDA = 10 SEED = 10 SHOTS = 10000 # returns the bit index for an alpha and j def bit(i_city, l_time, num_cities): return i_city * num_cities + l_time # e^(cZZ) def append_zz_term(qc, q_i, q_j, gamma, constant_term): qc.cx(q_i, q_j) qc.rz(2*gamma*constant_term,q_j) qc.cx(q_i, q_j) # e^(cZ) def append_z_term(qc, q_i, gamma, constant_term): qc.rz(2*gamma*constant_term, q_i) # e^(cX) def append_x_term(qc,qi,beta): qc.rx(-2*beta, qi) def get_not_edge_in(G): N = G.number_of_nodes() not_edge = [] for i in range(N): for j in range(N): if i != j: buffer_tupla = (i,j) in_edges = False for edge_i, edge_j in G.edges(): if ( buffer_tupla == (edge_i, edge_j) or buffer_tupla == (edge_j, edge_i)): in_edges = True if in_edges == False: not_edge.append((i, j)) return not_edge def get_classical_simplified_z_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # z term # z_classic_term = [0] * N**2 # first term for l in range(N): for i in range(N): z_il_index = bit(i, l, N) z_classic_term[z_il_index] += -1 * _lambda # second term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_jl z_jl_index = bit(j, l, N) z_classic_term[z_jl_index] += _lambda / 2 # third term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_ij z_ij_index = bit(i, j, N) z_classic_term[z_ij_index] += _lambda / 2 # fourth term not_edge = get_not_edge_in(G) # include order tuples ej = (1,0), (0,1) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 4 # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) z_classic_term[z_jlplus_index] += _lambda / 4 # fifthy term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) z_classic_term[z_il_index] += weight_ij / 4 # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) z_classic_term[z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) z_classic_term[z_il_index] += weight_ji / 4 # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) z_classic_term[z_jlplus_index] += weight_ji / 4 return z_classic_term def tsp_obj_2(x, G,_lambda): # obtenemos el valor evaluado en f(x_1, x_2,... x_n) not_edge = get_not_edge_in(G) N = G.number_of_nodes() tsp_cost=0 #Distancia weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # x_il x_il_index = bit(edge_i, l, N) # x_jlplus l_plus = (l+1) % N x_jlplus_index = bit(edge_j, l_plus, N) tsp_cost+= int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ij # add order term because G.edges() do not include order tuples # # x_i'l x_il_index = bit(edge_j, l, N) # x_j'lplus x_jlplus_index = bit(edge_i, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ji #Constraint 1 for l in range(N): penal1 = 1 for i in range(N): x_il_index = bit(i, l, N) penal1 -= int(x[x_il_index]) tsp_cost += _lambda * penal1**2 #Contstraint 2 for i in range(N): penal2 = 1 for l in range(N): x_il_index = bit(i, l, N) penal2 -= int(x[x_il_index]) tsp_cost += _lambda*penal2**2 #Constraint 3 for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # x_il x_il_index = bit(i, l, N) # x_j(l+1) l_plus = (l+1) % N x_jlplus_index = bit(j, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * _lambda return tsp_cost def get_classical_simplified_zz_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # zz term # zz_classic_term = [[0] * N**2 for i in range(N**2) ] # first term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) # z_jl z_jl_index = bit(j, l, N) zz_classic_term[z_il_index][z_jl_index] += _lambda / 2 # second term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) # z_ij z_ij_index = bit(i, j, N) zz_classic_term[z_il_index][z_ij_index] += _lambda / 2 # third term not_edge = get_not_edge_in(G) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += _lambda / 4 # fourth term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ji / 4 return zz_classic_term def get_classical_simplified_hamiltonian(G, _lambda): # z term # z_classic_term = get_classical_simplified_z_term(G, _lambda) # zz term # zz_classic_term = get_classical_simplified_zz_term(G, _lambda) return z_classic_term, zz_classic_term def get_cost_circuit(G, gamma, _lambda): N = G.number_of_nodes() N_square = N**2 qc = QuantumCircuit(N_square,N_square) z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _lambda) # z term for i in range(N_square): if z_classic_term[i] != 0: append_z_term(qc, i, gamma, z_classic_term[i]) # zz term for i in range(N_square): for j in range(N_square): if zz_classic_term[i][j] != 0: append_zz_term(qc, i, j, gamma, zz_classic_term[i][j]) return qc def get_mixer_operator(G,beta): N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) for n in range(N**2): append_x_term(qc, n, beta) return qc def get_QAOA_circuit(G, beta, gamma, _lambda): assert(len(beta)==len(gamma)) N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) # init min mix state qc.h(range(N**2)) p = len(beta) for i in range(p): qc = qc.compose(get_cost_circuit(G, gamma[i], _lambda)) qc = qc.compose(get_mixer_operator(G, beta[i])) qc.barrier(range(N**2)) qc.snapshot_statevector("final_state") qc.measure(range(N**2),range(N**2)) return qc def invert_counts(counts): return {k[::-1] :v for k,v in counts.items()} # Sample expectation value def compute_tsp_energy_2(counts, G): energy = 0 get_counts = 0 total_counts = 0 for meas, meas_count in counts.items(): obj_for_meas = tsp_obj_2(meas, G, LAMBDA) energy += obj_for_meas*meas_count total_counts += meas_count mean = energy/total_counts return mean def get_black_box_objective_2(G,p): backend = Aer.get_backend('qasm_simulator') sim = Aer.get_backend('aer_simulator') # function f costo def f(theta): beta = theta[:p] gamma = theta[p:] # Anzats qc = get_QAOA_circuit(G, beta, gamma, LAMBDA) result = execute(qc, backend, seed_simulator=SEED, shots= SHOTS).result() final_state_vector = result.data()["snapshots"]["statevector"]["final_state"][0] state_vector = Statevector(final_state_vector) probabilities = state_vector.probabilities() probabilities_states = invert_counts(state_vector.probabilities_dict()) expected_value = 0 for state,probability in probabilities_states.items(): cost = tsp_obj_2(state, G, LAMBDA) expected_value += cost*probability counts = result.get_counts() mean = compute_tsp_energy_2(invert_counts(counts),G) return mean return f def crear_grafo(cantidad_ciudades): pesos, conexiones = None, None mejor_camino = None while not mejor_camino: pesos, conexiones = rand_graph(cantidad_ciudades) mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False) G = mapeo_grafo(conexiones, pesos) return G, mejor_costo, mejor_camino def run_QAOA(p,ciudades, grafo): if grafo == None: G, mejor_costo, mejor_camino = crear_grafo(ciudades) print("Mejor Costo") print(mejor_costo) print("Mejor Camino") print(mejor_camino) print("Bordes del grafo") print(G.edges()) print("Nodos") print(G.nodes()) print("Pesos") labels = nx.get_edge_attributes(G,'weight') print(labels) else: G = grafo intial_random = [] # beta, mixer Hammiltonian for i in range(p): intial_random.append(np.random.uniform(0,np.pi)) # gamma, cost Hammiltonian for i in range(p): intial_random.append(np.random.uniform(0,2*np.pi)) init_point = np.array(intial_random) obj = get_black_box_objective_2(G,p) res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True}) print(res_sample) if __name__ == '__main__': # Run QAOA parametros: profundidad p, numero d ciudades, run_QAOA(5, 3, None)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumCircuit # Create a Quantum Circuit acting on a quantum register of three qubits circ = QuantumCircuit(3) # Add a H gate on qubit 0, putting this qubit in superposition. circ.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting # the qubits in a Bell state. circ.cx(0, 1) # Add a CX (CNOT) gate on control qubit 0 and target qubit 2, putting # the qubits in a GHZ state. circ.cx(0, 2) circ.draw('mpl') from qiskit.quantum_info import Statevector # Set the intial state of the simulator to the ground state using from_int state = Statevector.from_int(0, 2**3) # Evolve the state by the quantum circuit state = state.evolve(circ) #draw using latex state.draw('latex') from qiskit.visualization import array_to_latex #Alternative way of representing in latex array_to_latex(state) state.draw('qsphere') state.draw('hinton') from qiskit.quantum_info import Operator U = Operator(circ) # Show the results U.data # Create a Quantum Circuit meas = QuantumCircuit(3, 3) meas.barrier(range(3)) # map the quantum measurement to the classical bits meas.measure(range(3), range(3)) # The Qiskit circuit object supports composition. # Here the meas has to be first and front=True (putting it before) # as compose must put a smaller circuit into a larger one. qc = meas.compose(circ, range(3), front=True) #drawing the circuit qc.draw('mpl') # Adding the transpiler to reduce the circuit to QASM instructions # supported by the backend from qiskit import transpile # Use AerSimulator from qiskit_aer import AerSimulator backend = AerSimulator() # First we have to transpile the quantum circuit # to the low-level QASM instructions used by the # backend qc_compiled = transpile(qc, backend) # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is the default. job_sim = backend.run(qc_compiled, shots=1024) # Grab the results from the job. result_sim = job_sim.result() counts = result_sim.get_counts(qc_compiled) print(counts) from qiskit.visualization import plot_histogram plot_histogram(counts) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
import numpy as np import pylab from qiskit_chemistry import QiskitChemistry # Input dictionary to configure Qiskit Chemistry for the chemistry problem. qiskit_chemistry_dict = { 'problem': {'random_seed': 50}, 'driver': {'name': 'PYSCF'}, 'PYSCF': {'atom': 'H .0 .0 -0.3625; H .0 .0 0.3625', 'basis': 'sto3g'}, 'operator': {'name': 'hamiltonian', 'qubit_mapping': 'jordan_wigner', 'two_qubit_reduction': False}, 'algorithm': {'name': 'ExactEigensolver'}, 'optimizer': {'name': 'COBYLA', 'maxiter': 10000 }, 'variational_form': {'name': 'RYRZ', 'depth': 3, 'entanglement': 'full'}, 'initial_state': {'name': 'ZERO'} } var_forms = ['RYRZ', 'RY'] entanglements = ['full', 'linear'] depths = [x for x in range(3, 11)] energies = np.empty([len(var_forms), len(entanglements), len(depths)]) hf_energy = None energy = None eval_counts = np.empty([len(var_forms), len(entanglements), len(depths)]) solver = QiskitChemistry() result = solver.run(qiskit_chemistry_dict) hf_energy = result['hf_energy'] energy = result['energy'] print('Hartree-Fock energy:', hf_energy) print('FCI energy:', energy) qiskit_chemistry_dict['algorithm']['name'] = 'VQE' print('Processing step __', end='') for i, d in enumerate(depths): print('\b\b{:2d}'.format(i), end='', flush=True) qiskit_chemistry_dict['variational_form']['depth'] = d for j in range(len(entanglements)): qiskit_chemistry_dict['variational_form']['entanglement'] = entanglements[j] for k in range(len(var_forms)): qiskit_chemistry_dict['variational_form']['name'] = var_forms[k] solver = QiskitChemistry() result = solver.run(qiskit_chemistry_dict) energies[k][j][i] = result['energy'] eval_counts[k][j][i] = result['algorithm_retvals']['eval_count'] print(' --- complete') print('Depths: ', depths) print('Energies:', energies) print('Num evaluations:', eval_counts) for k in range(len(var_forms)): for j in range(len(entanglements)): pylab.plot(depths, energies[k][j]-energy, label=var_forms[k]+' + '+entanglements[j]) pylab.xlabel('Variational form depth') pylab.ylabel('Energy difference') pylab.yscale('log') pylab.title('H2 Ground State Energy Difference from Reference') pylab.legend(loc='upper right') for k in range(len(var_forms)): for j in range(len(entanglements)): pylab.plot(depths, eval_counts[k][j], '-o', label=var_forms[k]+' + '+entanglements[j]) pylab.xlabel('Variational form depth') pylab.ylabel('Evaluations') pylab.title('VQE number of evaluations') pylab.legend(loc='upper right')
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import qiskit from qiskit import QuantumCircuit # creating a quantum circuit qc = QuantumCircuit(3) qc.z(0) qc.s(1) qc.t(2) qc.cx(0,1) qc.h(2) qc.ccx(0, 1, 2) qc.draw() # inverse of the quantum circuit inverse_qc = qc.inverse() # to draw the quantum circuit inverse_qc.draw() # If we measure the quantum circuit's each qubit's states qc.measure() # to draw the quantum circuit qc.draw() # inverse of the measured quantum circuit's qubit is not possible inverse_qc = qc.inverse() qc.measure() # to draw the quantum circuit inverse_qc.draw() # creating a quantum circuit m_circuit = QuantumCircuit(3) m_circuit.h(2) m_circuit.ccx(0, 1, 2) m_circuit.cz(2, 1) # draw the circuit m_circuit.draw() m_gate = m_circuit.to_gate() type(m_gate) new_circuit = QuantumCircuit(5) new_circuit.append(m_gate, [1, 2, 4]) new_circuit.draw() #decompose the circuit new_circuit.decompose().draw() from qiskit import QuantumCircuit, transpile, Aer my_circuit = QuantumCircuit(3) my_circuit.t(1) my_circuit.h(0) my_circuit.ccx(2,1,0) my_circuit.s(2) my_circuit.t(0) my_circuit.draw() my_gate = my_circuit.to_gate() my_gate my_inv_gate = my_gate.inverse() my_inv_gate my_inv_gate.name = 'My Inverse Gate' new_circuit = QuantumCircuit(3) new_circuit.append(my_inv_gate, [0,1,2]) new_circuit.draw() new_circuit.decompose().draw() my_circuit = QuantumCircuit(2) my_circuit.cx(1,0) my_circuit.cx(0,1) my_circuit.cx(1,0) my_circuit.draw() my_gate = my_circuit.to_gate() my_gate.name = "My Gate" my_controlled_gate = my_gate.control() new_circuit = QuantumCircuit(3) new_circuit.append(my_controlled_gate, [0, 1, 2]) new_circuit.draw() new_circuit.decompose().draw() ## What is the qsphere ? ## What is the unitary simulator ? ## How can i convert a Unitary Matrix to a set of One and Two Qubit gates ? ## How can i change qiskit's defoult behaviour ? ## How do i use parameterization circuit in Qiskit ? ## Why does qiskit order it's qubit the way it does ? ## How i combine two quantum circuits ? ## What is the difference between gates and instructions ? ## How can i use a specific version of qiskit ? ## How can i implement a multi controlled Toffoli Gate ? ## How can i monitor a job send to IBM Quantum ? ## How can i convert a quantum circuit to QASM ? my_circuit = QuantumCircuit(3) my_circuit.t(1) my_circuit.h(0) my_circuit.ccx(2,1,0) my_circuit.s(2) my_circuit.t(0) my_circuit.draw('latex') my_circuit.draw('latex_source') print(my_circuit.draw('latex_source')) ## How can i bundle several circuit into a single job ? ## How can i save circuit Drawings to Different File Types ? ## How can i contruct a quantum volume circuit ? ## What trick can i do with draw methods ? ## How i can find reduced quantum states using qiskit ? ## In What different ways can i draw a quantum circuit ? ## How can i use a classical register for quantum compuation ? ## What is circuit depth and how can i calculate it ? ## How can i choose initial layout for the traspiler ? ## What are the Ancillary Qubits and how are they usefull ? ## What are registers ? ## How can i create a custom gate from matrix ? ## How can i find expectation value for an operator ? ## How can i measure the qubit midway through a quantum circuit ? ## How can i transpile a quantum circuit ? ## How can i make a noise model with qiskit ? ## How can i create a custome controlled gate ? ## How can i choose the best backend from a provider ? ## How can i perform state tomography ? ## How can i reset a qubit in a quantum circuit ## How do i perform a unitary projection in a quantum circuit ? ## How do i debuge an issue in transpiler ? ## How can i estimate Pi using a quantum computer ? ## How do i initialize a mixed states ? ## What is gate fidelity and how do i canculate it ? ## How do i check the state fedility with noisy simulator ? ## How do i change the fitter algorithm in a state tomography experiment ?
https://github.com/dimple12M/Qiskit-Certification-Guide
dimple12M
from qiskit.providers.aer import AerProvider from qiskit import Aer from qiskit import QuantumCircuit from qiskit.test.mock import FakeVigo Aer.backends() type(Aer.backends()[0]) Aer.backends() for name in (Aer.backends()): print(name) Aer.backends()[0].name() print(Aer.backends()[0]) print(Aer.backends()[-1]) Aer.backends()[0:8] Aer.backends()[8:-1] from qiskit.providers.aer import AerSimulator backend=AerSimulator() backend backend.name() qc=QuantumCircuit(2) qc.h(0) qc.cx(0,1) qc.measure_all() qc.draw(output="mpl") backend=AerSimulator() result= backend.run(qc).result() counts=result.get_counts() print(counts) backend=AerSimulator.from_backend(FakeVigo()) result= backend.run(qc).result() counts=result.get_counts() print(counts) provider=AerProvider() backend=provider.backends(name='aer_simulator') backend backend=provider.get_backend(name='aer_simulator') backend backend.name() backend=Aer.backends(name='aer_simulator') backend backend=Aer.get_backend(name='aer_simulator') backend backend.name() #from qiskit.providers.aer import AerSimulator backend=AerSimulator() # creates an object of class AerSimulator backend backend.name()
https://github.com/anpaschool/quantum-computing
anpaschool
from qiskit import * from math import pi import numpy as np from qiskit.visualization import * import matplotlib.pyplot as plt qc = QuantumCircuit(3) qc.ccx(0,1,2) qc.draw(output='mpl') backend = Aer.get_backend('unitary_simulator') job = execute(qc, backend) result = job.result() print(result.get_unitary(qc, decimals=3)) qc = QuantumCircuit(3) qc.cswap(0,1,2) qc.draw(output='mpl') backend = Aer.get_backend('unitary_simulator') job = execute(qc, backend) result = job.result() print(result.get_unitary(qc, decimals=3))
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # TODO: Remove after 0.7 and the deprecated methods are removed # pylint: disable=unused-argument """ Two quantum circuit drawers based on: 0. Ascii art 1. LaTeX 2. Matplotlib """ import errno import logging import os import subprocess import tempfile from PIL import Image from qiskit import user_config from qiskit.visualization import exceptions from qiskit.visualization import latex as _latex from qiskit.visualization import text as _text from qiskit.visualization import utils from qiskit.visualization import matplotlib as _matplotlib logger = logging.getLogger(__name__) def circuit_drawer(circuit, scale=0.7, filename=None, style=None, output=None, interactive=False, line_length=None, plot_barriers=True, reverse_bits=False, justify=None): """Draw a quantum circuit to different formats (set by output parameter): 0. text: ASCII art TextDrawing that can be printed in the console. 1. latex: high-quality images, but heavy external software dependencies 2. matplotlib: purely in Python with no external dependencies Args: circuit (QuantumCircuit): the quantum circuit to draw scale (float): scale of image to draw (shrink if < 1) filename (str): file path to save image to style (dict or str): dictionary of style or file name of style file. This option is only used by the `mpl`, `latex`, and `latex_source` output types. If a str is passed in that is the path to a json file which contains that will be open, parsed, and then used just as the input dict. output (str): Select the output method to use for drawing the circuit. Valid choices are `text`, `latex`, `latex_source`, `mpl`. By default the 'text' drawer is used unless a user config file has an alternative backend set as the default. If the output is passed in that backend will always be used. interactive (bool): when set true show the circuit in a new window (for `mpl` this depends on the matplotlib backend being used supporting this). Note when used with either the `text` or the `latex_source` output type this has no effect and will be silently ignored. line_length (int): Sets the length of the lines generated by `text` output type. This useful when the drawing does not fit in the console. If None (default), it will try to guess the console width using shutil.get_terminal_size(). However, if you're running in jupyter the default line length is set to 80 characters. If you don't want pagination at all, set `line_length=-1`. reverse_bits (bool): When set to True reverse the bit order inside registers for the output visualization. plot_barriers (bool): Enable/disable drawing barriers in the output circuit. Defaults to True. justify (string): Options are `left`, `right` or `none`, if anything else is supplied it defaults to left justified. It refers to where gates should be placed in the output circuit if there is an option. `none` results in each gate being placed in its own column. Currently only supported by text drawer. Returns: PIL.Image: (output `latex`) an in-memory representation of the image of the circuit diagram. matplotlib.figure: (output `mpl`) a matplotlib figure object for the circuit diagram. String: (output `latex_source`). The LaTeX source code. TextDrawing: (output `text`). A drawing that can be printed as ascii art Raises: VisualizationError: when an invalid output method is selected ImportError: when the output methods requieres non-installed libraries. .. _style-dict-doc: The style dict kwarg contains numerous options that define the style of the output circuit visualization. While the style dict is used by the `mpl`, `latex`, and `latex_source` outputs some options in that are only used by the `mpl` output. These options are defined below, if it is only used by the `mpl` output it is marked as such: textcolor (str): The color code to use for text. Defaults to `'#000000'` (`mpl` only) subtextcolor (str): The color code to use for subtext. Defaults to `'#000000'` (`mpl` only) linecolor (str): The color code to use for lines. Defaults to `'#000000'` (`mpl` only) creglinecolor (str): The color code to use for classical register lines `'#778899'`(`mpl` only) gatetextcolor (str): The color code to use for gate text `'#000000'` (`mpl` only) gatefacecolor (str): The color code to use for gates. Defaults to `'#ffffff'` (`mpl` only) barrierfacecolor (str): The color code to use for barriers. Defaults to `'#bdbdbd'` (`mpl` only) backgroundcolor (str): The color code to use for the background. Defaults to `'#ffffff'` (`mpl` only) fontsize (int): The font size to use for text. Defaults to 13 (`mpl` only) subfontsize (int): The font size to use for subtext. Defaults to 8 (`mpl` only) displaytext (dict): A dictionary of the text to use for each element type in the output visualization. The default values are: { 'id': 'id', 'u0': 'U_0', 'u1': 'U_1', 'u2': 'U_2', 'u3': 'U_3', 'x': 'X', 'y': 'Y', 'z': 'Z', 'h': 'H', 's': 'S', 'sdg': 'S^\\dagger', 't': 'T', 'tdg': 'T^\\dagger', 'rx': 'R_x', 'ry': 'R_y', 'rz': 'R_z', 'reset': '\\left|0\\right\\rangle' } You must specify all the necessary values if using this. There is no provision for passing an incomplete dict in. (`mpl` only) displaycolor (dict): The color codes to use for each circuit element. By default all values default to the value of `gatefacecolor` and the keys are the same as `displaytext`. Also, just like `displaytext` there is no provision for an incomplete dict passed in. (`mpl` only) latexdrawerstyle (bool): When set to True enable latex mode which will draw gates like the `latex` output modes. (`mpl` only) usepiformat (bool): When set to True use radians for output (`mpl` only) fold (int): The number of circuit elements to fold the circuit at. Defaults to 20 (`mpl` only) cregbundle (bool): If set True bundle classical registers (`mpl` only) showindex (bool): If set True draw an index. (`mpl` only) compress (bool): If set True draw a compressed circuit (`mpl` only) figwidth (int): The maximum width (in inches) for the output figure. (`mpl` only) dpi (int): The DPI to use for the output image. Defaults to 150 (`mpl` only) margin (list): `mpl` only creglinestyle (str): The style of line to use for classical registers. Choices are `'solid'`, `'doublet'`, or any valid matplotlib `linestyle` kwarg value. Defaults to `doublet`(`mpl` only) """ image = None config = user_config.get_config() # Get default from config file else use text default_output = 'text' if config: default_output = config.get('circuit_drawer', 'text') if output is None: output = default_output if output == 'text': return _text_circuit_drawer(circuit, filename=filename, line_length=line_length, reverse_bits=reverse_bits, plotbarriers=plot_barriers, justify=justify) elif output == 'latex': image = _latex_circuit_drawer(circuit, scale=scale, filename=filename, style=style, plot_barriers=plot_barriers, reverse_bits=reverse_bits, justify=justify) elif output == 'latex_source': return _generate_latex_source(circuit, filename=filename, scale=scale, style=style, plot_barriers=plot_barriers, reverse_bits=reverse_bits, justify=justify) elif output == 'mpl': image = _matplotlib_circuit_drawer(circuit, scale=scale, filename=filename, style=style, plot_barriers=plot_barriers, reverse_bits=reverse_bits, justify=justify) else: raise exceptions.VisualizationError( 'Invalid output type %s selected. The only valid choices ' 'are latex, latex_source, text, and mpl' % output) if image and interactive: image.show() return image # ----------------------------------------------------------------------------- # Plot style sheet option # ----------------------------------------------------------------------------- def qx_color_scheme(): """Return default style for matplotlib_circuit_drawer (IBM QX style).""" return { "comment": "Style file for matplotlib_circuit_drawer (IBM QX Composer style)", "textcolor": "#000000", "gatetextcolor": "#000000", "subtextcolor": "#000000", "linecolor": "#000000", "creglinecolor": "#b9b9b9", "gatefacecolor": "#ffffff", "barrierfacecolor": "#bdbdbd", "backgroundcolor": "#ffffff", "fold": 20, "fontsize": 13, "subfontsize": 8, "figwidth": -1, "dpi": 150, "displaytext": { "id": "id", "u0": "U_0", "u1": "U_1", "u2": "U_2", "u3": "U_3", "x": "X", "y": "Y", "z": "Z", "h": "H", "s": "S", "sdg": "S^\\dagger", "t": "T", "tdg": "T^\\dagger", "rx": "R_x", "ry": "R_y", "rz": "R_z", "reset": "\\left|0\\right\\rangle" }, "displaycolor": { "id": "#ffca64", "u0": "#f69458", "u1": "#f69458", "u2": "#f69458", "u3": "#f69458", "x": "#a6ce38", "y": "#a6ce38", "z": "#a6ce38", "h": "#00bff2", "s": "#00bff2", "sdg": "#00bff2", "t": "#ff6666", "tdg": "#ff6666", "rx": "#ffca64", "ry": "#ffca64", "rz": "#ffca64", "reset": "#d7ddda", "target": "#00bff2", "meas": "#f070aa" }, "latexdrawerstyle": True, "usepiformat": False, "cregbundle": False, "plotbarrier": False, "showindex": False, "compress": True, "margin": [2.0, 0.0, 0.0, 0.3], "creglinestyle": "solid", "reversebits": False } # ----------------------------------------------------------------------------- # _text_circuit_drawer # ----------------------------------------------------------------------------- def _text_circuit_drawer(circuit, filename=None, line_length=None, reverse_bits=False, plotbarriers=True, justify=None, vertically_compressed=True): """ Draws a circuit using ascii art. Args: circuit (QuantumCircuit): Input circuit filename (str): optional filename to write the result line_length (int): Optional. Breaks the circuit drawing to this length. This useful when the drawing does not fit in the console. If None (default), it will try to guess the console width using shutil.get_terminal_size(). If you don't want pagination at all, set line_length=-1. reverse_bits (bool): Rearrange the bits in reverse order. plotbarriers (bool): Draws the barriers when they are there. justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how the circuit should be justified. vertically_compressed (bool): Default is `True`. It merges the lines so the drawing will take less vertical room. Returns: TextDrawing: An instances that, when printed, draws the circuit in ascii art. """ qregs, cregs, ops = utils._get_layered_instructions(circuit, reverse_bits=reverse_bits, justify=justify) text_drawing = _text.TextDrawing(qregs, cregs, ops) text_drawing.plotbarriers = plotbarriers text_drawing.line_length = line_length text_drawing.vertically_compressed = vertically_compressed if filename: text_drawing.dump(filename) return text_drawing # ----------------------------------------------------------------------------- # latex_circuit_drawer # ----------------------------------------------------------------------------- def _latex_circuit_drawer(circuit, scale=0.7, filename=None, style=None, plot_barriers=True, reverse_bits=False, justify=None): """Draw a quantum circuit based on latex (Qcircuit package) Requires version >=2.6.0 of the qcircuit LaTeX package. Args: circuit (QuantumCircuit): a quantum circuit scale (float): scaling factor filename (str): file path to save image to style (dict or str): dictionary of style or file name of style file reverse_bits (bool): When set to True reverse the bit order inside registers for the output visualization. plot_barriers (bool): Enable/disable drawing barriers in the output circuit. Defaults to True. justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how the circuit should be justified. Returns: PIL.Image: an in-memory representation of the circuit diagram Raises: OSError: usually indicates that ```pdflatex``` or ```pdftocairo``` is missing. CalledProcessError: usually points errors during diagram creation. """ tmpfilename = 'circuit' with tempfile.TemporaryDirectory() as tmpdirname: tmppath = os.path.join(tmpdirname, tmpfilename + '.tex') _generate_latex_source(circuit, filename=tmppath, scale=scale, style=style, plot_barriers=plot_barriers, reverse_bits=reverse_bits, justify=justify) image = None try: subprocess.run(["pdflatex", "-halt-on-error", "-output-directory={}".format(tmpdirname), "{}".format(tmpfilename + '.tex')], stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, check=True) except OSError as ex: if ex.errno == errno.ENOENT: logger.warning('WARNING: Unable to compile latex. ' 'Is `pdflatex` installed? ' 'Skipping latex circuit drawing...') raise except subprocess.CalledProcessError as ex: with open('latex_error.log', 'wb') as error_file: error_file.write(ex.stdout) logger.warning('WARNING Unable to compile latex. ' 'The output from the pdflatex command can ' 'be found in latex_error.log') raise else: try: base = os.path.join(tmpdirname, tmpfilename) subprocess.run(["pdftocairo", "-singlefile", "-png", "-q", base + '.pdf', base]) image = Image.open(base + '.png') image = utils._trim(image) os.remove(base + '.png') if filename: image.save(filename, 'PNG') except OSError as ex: if ex.errno == errno.ENOENT: logger.warning('WARNING: Unable to convert pdf to image. ' 'Is `poppler` installed? ' 'Skipping circuit drawing...') raise return image def _generate_latex_source(circuit, filename=None, scale=0.7, style=None, reverse_bits=False, plot_barriers=True, justify=None): """Convert QuantumCircuit to LaTeX string. Args: circuit (QuantumCircuit): input circuit scale (float): image scaling filename (str): optional filename to write latex style (dict or str): dictionary of style or file name of style file reverse_bits (bool): When set to True reverse the bit order inside registers for the output visualization. plot_barriers (bool): Enable/disable drawing barriers in the output circuit. Defaults to True. justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how the circuit should be justified. Returns: str: Latex string appropriate for writing to file. """ qregs, cregs, ops = utils._get_layered_instructions(circuit, reverse_bits=reverse_bits, justify=justify) qcimg = _latex.QCircuitImage(qregs, cregs, ops, scale, style=style, plot_barriers=plot_barriers, reverse_bits=reverse_bits) latex = qcimg.latex() if filename: with open(filename, 'w') as latex_file: latex_file.write(latex) return latex # ----------------------------------------------------------------------------- # matplotlib_circuit_drawer # ----------------------------------------------------------------------------- def _matplotlib_circuit_drawer(circuit, scale=0.7, filename=None, style=None, plot_barriers=True, reverse_bits=False, justify=None): """Draw a quantum circuit based on matplotlib. If `%matplotlib inline` is invoked in a Jupyter notebook, it visualizes a circuit inline. We recommend `%config InlineBackend.figure_format = 'svg'` for the inline visualization. Args: circuit (QuantumCircuit): a quantum circuit scale (float): scaling factor filename (str): file path to save image to style (dict or str): dictionary of style or file name of style file reverse_bits (bool): When set to True reverse the bit order inside registers for the output visualization. plot_barriers (bool): Enable/disable drawing barriers in the output circuit. Defaults to True. justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how the circuit should be justified. Returns: matplotlib.figure: a matplotlib figure object for the circuit diagram """ qregs, cregs, ops = utils._get_layered_instructions(circuit, reverse_bits=reverse_bits, justify=justify) qcd = _matplotlib.MatplotlibDrawer(qregs, cregs, ops, scale=scale, style=style, plot_barriers=plot_barriers, reverse_bits=reverse_bits) return qcd.draw(filename)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumCircuit, transpile from qiskit.providers.fake_provider import FakeVigoV2 from qiskit.visualization import plot_circuit_layout from qiskit.tools.monitor import job_monitor from qiskit.providers.fake_provider import FakeVigoV2 import matplotlib.pyplot as plt ghz = QuantumCircuit(3, 3) ghz.h(0) for idx in range(1,3): ghz.cx(0,idx) ghz.measure(range(3), range(3)) backend = FakeVigoV2() new_circ_lv3 = transpile(ghz, backend=backend, optimization_level=3) plot_circuit_layout(new_circ_lv3, backend)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse d0 = pulse.DriveChannel(0) x90 = pulse.Gaussian(10, 0.1, 3) x180 = pulse.Gaussian(10, 0.2, 3) with pulse.build() as hahn_echo: with pulse.align_equispaced(duration=100): pulse.play(x90, d0) pulse.play(x180, d0) pulse.play(x90, d0) hahn_echo.draw()
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2021, 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """The Iterative Quantum Phase Estimation Algorithm.""" from __future__ import annotations import numpy import qiskit from qiskit.circuit import QuantumCircuit, QuantumRegister from qiskit.circuit.classicalregister import ClassicalRegister from qiskit.providers import Backend from qiskit.utils import QuantumInstance from qiskit.utils.deprecation import deprecate_arg from qiskit_algorithms.exceptions import AlgorithmError from .phase_estimator import PhaseEstimator from .phase_estimator import PhaseEstimatorResult from ...primitives import BaseSampler class IterativePhaseEstimation(PhaseEstimator): """Run the Iterative quantum phase estimation (QPE) algorithm. Given a unitary circuit and a circuit preparing an eigenstate, return the phase of the eigenvalue as a number in :math:`[0,1)` using the iterative phase estimation algorithm. [1]: Dobsicek et al. (2006), Arbitrary accuracy iterative phase estimation algorithm as a two qubit benchmark, `arxiv/quant-ph/0610214 <https://arxiv.org/abs/quant-ph/0610214>`_ """ @deprecate_arg( "quantum_instance", additional_msg=( "Instead, use the ``sampler`` argument. See https://qisk.it/algo_migration for a " "migration guide." ), since="0.24.0", ) def __init__( self, num_iterations: int, quantum_instance: QuantumInstance | Backend | None = None, sampler: BaseSampler | None = None, ) -> None: r""" Args: num_iterations: The number of iterations (rounds) of the phase estimation to run. quantum_instance: Deprecated: The quantum instance on which the circuit will be run. sampler: The sampler primitive on which the circuit will be sampled. Raises: ValueError: if num_iterations is not greater than zero. AlgorithmError: If neither sampler nor quantum instance is provided. """ if sampler is None and quantum_instance is None: raise AlgorithmError( "Neither a sampler nor a quantum instance was provided. Please provide one of them." ) if isinstance(quantum_instance, Backend): quantum_instance = QuantumInstance(quantum_instance) self._quantum_instance = quantum_instance if num_iterations <= 0: raise ValueError("`num_iterations` must be greater than zero.") self._num_iterations = num_iterations self._sampler = sampler def construct_circuit( self, unitary: QuantumCircuit, state_preparation: QuantumCircuit, k: int, omega: float = 0.0, measurement: bool = False, ) -> QuantumCircuit: """Construct the kth iteration Quantum Phase Estimation circuit. For details of parameters, see Fig. 2 in https://arxiv.org/pdf/quant-ph/0610214.pdf. Args: unitary: The circuit representing the unitary operator whose eigenvalue (via phase) will be measured. state_preparation: The circuit that prepares the state whose eigenphase will be measured. If this parameter is omitted, no preparation circuit will be run and input state will be the all-zero state in the computational basis. k: the iteration idx. omega: the feedback angle. measurement: Boolean flag to indicate if measurement should be included in the circuit. Returns: QuantumCircuit: the quantum circuit per iteration """ k = self._num_iterations if k is None else k # The auxiliary (phase measurement) qubit phase_register = QuantumRegister(1, name="a") eigenstate_register = QuantumRegister(unitary.num_qubits, name="q") qc = QuantumCircuit(eigenstate_register) qc.add_register(phase_register) if isinstance(state_preparation, QuantumCircuit): qc.append(state_preparation, eigenstate_register) elif state_preparation is not None: qc += state_preparation.construct_circuit("circuit", eigenstate_register) # hadamard on phase_register[0] qc.h(phase_register[0]) # controlled-U # TODO: We may want to allow flexibility in how the power is computed # For example, it may be desirable to compute the power via Trotterization, if # we are doing Trotterization anyway. unitary_power = unitary.power(2 ** (k - 1)).control() qc = qc.compose(unitary_power, [unitary.num_qubits] + list(range(0, unitary.num_qubits))) qc.p(omega, phase_register[0]) # hadamard on phase_register[0] qc.h(phase_register[0]) if measurement: c = ClassicalRegister(1, name="c") qc.add_register(c) qc.measure(phase_register, c) return qc def _estimate_phase_iteratively(self, unitary, state_preparation): """ Main loop of iterative phase estimation. """ omega_coef = 0 # k runs from the number of iterations back to 1 for k in range(self._num_iterations, 0, -1): omega_coef /= 2 if self._sampler is not None: qc = self.construct_circuit( unitary, state_preparation, k, -2 * numpy.pi * omega_coef, True ) try: sampler_job = self._sampler.run([qc]) result = sampler_job.result().quasi_dists[0] except Exception as exc: raise AlgorithmError("The primitive job failed!") from exc x = 1 if result.get(1, 0) > result.get(0, 0) else 0 elif self._quantum_instance.is_statevector: qc = self.construct_circuit( unitary, state_preparation, k, -2 * numpy.pi * omega_coef, measurement=False ) result = self._quantum_instance.execute(qc) complete_state_vec = result.get_statevector(qc) ancilla_density_mat = qiskit.quantum_info.partial_trace( complete_state_vec, range(unitary.num_qubits) ) ancilla_density_mat_diag = numpy.diag(ancilla_density_mat) max_amplitude = max( ancilla_density_mat_diag.min(), ancilla_density_mat_diag.max(), key=abs ) x = numpy.where(ancilla_density_mat_diag == max_amplitude)[0][0] else: qc = self.construct_circuit( unitary, state_preparation, k, -2 * numpy.pi * omega_coef, measurement=True ) measurements = self._quantum_instance.execute(qc).get_counts(qc) x = 1 if measurements.get("1", 0) > measurements.get("0", 0) else 0 omega_coef = omega_coef + x / 2 return omega_coef # pylint: disable=signature-differs def estimate( self, unitary: QuantumCircuit, state_preparation: QuantumCircuit ) -> "IterativePhaseEstimationResult": """ Estimate the eigenphase of the input unitary and initial-state pair. Args: unitary: The circuit representing the unitary operator whose eigenvalue (via phase) will be measured. state_preparation: The circuit that prepares the state whose eigenphase will be measured. If this parameter is omitted, no preparation circuit will be run and input state will be the all-zero state in the computational basis. Returns: Estimated phase in an IterativePhaseEstimationResult object. Raises: AlgorithmError: If neither sampler nor quantum instance is provided. """ phase = self._estimate_phase_iteratively(unitary, state_preparation) return IterativePhaseEstimationResult(self._num_iterations, phase) class IterativePhaseEstimationResult(PhaseEstimatorResult): """Phase Estimation Result.""" def __init__(self, num_iterations: int, phase: float) -> None: """ Args: num_iterations: number of iterations used in the phase estimation. phase: the estimated phase. """ self._num_iterations = num_iterations self._phase = phase @property def phase(self) -> float: r"""Return the estimated phase as a number in :math:`[0.0, 1.0)`. 1.0 corresponds to a phase of :math:`2\pi`. It is assumed that the input vector is an eigenvector of the unitary so that the peak of the probability density occurs at the bit string that most closely approximates the true phase. """ return self._phase @property def num_iterations(self) -> int: r"""Return the number of iterations used in the estimation algorithm.""" return self._num_iterations
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumCircuit, transpile from qiskit.providers.fake_provider import FakeVigoV2 from qiskit.visualization import plot_circuit_layout from qiskit.tools.monitor import job_monitor from qiskit.providers.fake_provider import FakeVigoV2 import matplotlib.pyplot as plt ghz = QuantumCircuit(3, 3) ghz.h(0) for idx in range(1,3): ghz.cx(0,idx) ghz.measure(range(3), range(3)) backend = FakeVigoV2() new_circ_lv3 = transpile(ghz, backend=backend, optimization_level=3) plot_circuit_layout(new_circ_lv3, backend)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, execute from qiskit.providers.fake_provider import FakeVigoV2 from qiskit.visualization import plot_gate_map backend = FakeVigoV2() plot_gate_map(backend)
https://github.com/iqm-finland/qiskit-on-iqm
iqm-finland
# Copyright 2024 Qiskit on IQM developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple extension of the QuantumCircuit class to allow the MOVE gate to be applied with a .move(qubit, resonator) shortcut.""" from qiskit import QuantumCircuit from iqm.qiskit_iqm.move_gate import MoveGate class IQMCircuit(QuantumCircuit): """Extends the QuantumCircuit class, adding a shortcut for applying the MOVE gate.""" def move(self, qubit: int, resonator: int): """Applies the MOVE gate to the circuit. Note: at this point the circuit layout is only guaranteed to work if the order of the qubit and the resonator is correct (qubit first, resonator second). Args: qubit: the logical index of the qubit resonator: the logical index of the resonator """ self.append(MoveGate(), [qubit, resonator])
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
#initialization import sys import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing the QISKit from qiskit import QuantumProgram try: sys.path.append("../../") # go to parent dir import Qconfig qx_config = { "APItoken": Qconfig.APItoken, "url": Qconfig.config['url']} except: qx_config = { "APItoken":"YOUR_TOKEN_HERE", "url":"https://quantumexperience.ng.bluemix.net/api"} # import basic plot tools from qiskit.tools.visualization import plot_histogram #set api from IBMQuantumExperience import IBMQuantumExperience api = IBMQuantumExperience(token=qx_config['APItoken'], config={'url': qx_config['url']}) #prepare backends from qiskit.backends import discover_local_backends, discover_remote_backends, get_backend_instance remote_backends = discover_remote_backends(api) #we have to call this to connect to remote backends local_backends = discover_local_backends() # Quantum program setup Q_program = QuantumProgram() #for plot with 16qubit import numpy as np from functools import reduce from scipy import linalg as la from collections import Counter import matplotlib.pyplot as plt def plot_histogram5(data, number_to_keep=False): """Plot a histogram of data. data is a dictionary of {'000': 5, '010': 113, ...} number_to_keep is the number of terms to plot and rest is made into a single bar called other values """ if number_to_keep is not False: data_temp = dict(Counter(data).most_common(number_to_keep)) data_temp["rest"] = sum(data.values()) - sum(data_temp.values()) data = data_temp labels = sorted(data) values = np.array([data[key] for key in labels], dtype=float) pvalues = values / sum(values) numelem = len(values) ind = np.arange(numelem) # the x locations for the groups width = 0.35 # the width of the bars fig, ax = plt.subplots() rects = ax.bar(ind, pvalues, width, color='seagreen') # add some text for labels, title, and axes ticks ax.set_ylabel('Probabilities', fontsize=12) ax.set_xticks(ind) ax.set_xticklabels(labels, fontsize=12, rotation=70) ax.set_ylim([0., min([1.2, max([1.2 * val for val in pvalues])])]) # attach some text labels for rect in rects: height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * height, '%f' % float(height), ha='center', va='bottom', fontsize=8) plt.show() q1_2 = Q_program.create_quantum_register("q1_2", 3) c1_2 = Q_program.create_classical_register("c1_2", 3) qw1_2 = Q_program.create_circuit("qw1_2", [q1_2], [c1_2]) t=8 #time qw1_2.x(q1_2[2]) qw1_2.u3(t, 0, 0, q1_2[1]) qw1_2.cx(q1_2[2], q1_2[1]) qw1_2.u3(t, 0, 0, q1_2[1]) qw1_2.cx(q1_2[2], q1_2[1]) qw1_2.measure(q1_2[0], c1_2[0]) qw1_2.measure(q1_2[1], c1_2[2]) qw1_2.measure(q1_2[2], c1_2[1]) print(qw1_2.qasm()) result = Q_program.execute(["qw1_2"], backend='local_qiskit_simulator', shots=1000) plot_histogram5(result.get_counts("qw1_2")) result = Q_program.execute(["qw1_2"], backend='ibmqx4', shots=1000, max_credits=3, wait=10, timeout=1024) plot_histogram5(result.get_counts("qw1_2")) q1 = Q_program.create_quantum_register("q1", 3) c1 = Q_program.create_classical_register("c1", 3) qw1 = Q_program.create_circuit("qw1", [q1], [c1]) t=8 #time qw1.x(q1[1]) qw1.cx(q1[2], q1[1]) qw1.u3(t, 0, 0, q1[2]) qw1.cx(q1[2], q1[0]) qw1.u3(t, 0, 0, q1[2]) qw1.cx(q1[2], q1[0]) qw1.cx(q1[2], q1[1]) qw1.u3(2*t, 0, 0, q1[2]) qw1.measure(q1[0], c1[0]) qw1.measure(q1[1], c1[1]) qw1.measure(q1[2], c1[2]) print(qw1.qasm()) result = Q_program.execute(["qw1"], backend='local_qiskit_simulator') plot_histogram5(result.get_counts("qw1")) result = Q_program.execute(["qw1"], backend='ibmqx4', shots=1000, max_credits=3, wait=10, timeout=600) plot_histogram5(result.get_counts("qw1"))
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import matplotlib.pyplot as plt import itertools from pprint import pprint import pickle import time import datetime # Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z) from qiskit.opflow import Zero, One, I, X, Y, Z from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter from qiskit.transpiler.passes import RemoveBarriers # Import QREM package from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter from qiskit.ignis.mitigation import expectation_value # Import mitiq for zne import mitiq # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits from qiskit.quantum_info import state_fidelity import sys import importlib sys.path.append("../utils/") import circuit_utils, zne_utils, tomography_utils, sgs_algorithm importlib.reload(circuit_utils) importlib.reload(zne_utils) importlib.reload(tomography_utils) importlib.reload(sgs_algorithm) from circuit_utils import * from zne_utils import * from tomography_utils import * from sgs_algorithm import * # Combine subcircuits into a single multiqubit gate representing a single trotter step num_qubits = 3 # The final time of the state evolution target_time = np.pi # Parameterize variable t to be evaluated at t=pi later dt = Parameter('t') # Convert custom quantum circuit into a gate trot_gate = trotter_gate(dt) # initial layout initial_layout = [5,3,1] # Number of trotter steps num_steps = 100 print("trotter step: ", num_steps) scale_factors = [1.0, 2.0, 3.0] # Initialize quantum circuit for 3 qubits qr = QuantumRegister(num_qubits, name="q") qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>) make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({dt: target_time / num_steps}) print("created qc") # Generate state tomography circuits to evaluate fidelity of simulation st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN === print("created st_qcs (length:", len(st_qcs), ")") # remove barriers st_qcs = [RemoveBarriers()(qc) for qc in st_qcs] print("removed barriers from st_qcs") # optimize circuit t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) print("created t3_st_qcs (length:", len(t3_st_qcs), ")") # zne wrapping zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = True) # Pauli Twirling print("created zne_qcs (length:", len(zne_qcs), ")") # optimization_level must be 0 # feed initial_layout here to see the picture of the circuits before casting the job t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout) print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")") t3_zne_qcs[-3].draw("mpl") from qiskit.test.mock import FakeJakarta backend = FakeJakarta() # backend = Aer.get_backend("qasm_simulator") # IBMQ.load_account() # provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') # print("provider:", provider) # backend = provider.get_backend("ibmq_jakarta") print(str(backend)) shots = 1 << 13 reps = 8 # unused jobs = [] for _ in range(reps): #! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0) print('Job ID', job.job_id()) jobs.append(job) # QREM qr = QuantumRegister(num_qubits, name="calq") meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') # we have to feed initial_layout to calibration matrix cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout) print('Job ID', cal_job.job_id()) meas_calibs[0].draw("mpl") dt_now = datetime.datetime.now() print(dt_now) filename = "job_ids_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl" print(filename) # with open("jobs_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: # pickle.dump({"jobs": jobs, "cal_job": cal_job}, f) # with open(filename, "wb") as f: # pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f) # with open("properties_" + str(backend) + "_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: # pickle.dump(backend.properties(), f) retrieved_jobs = jobs retrieved_cal_job = cal_job cal_results = retrieved_cal_job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!! fids = [] for job in retrieved_jobs: mit_results = meas_fitter.filter.apply(job.result()) zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors) rho = expvals_to_valid_rho(num_qubits, zne_expvals) fid = state_fidelity(rho, target_state) fids.append(fid) print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
https://github.com/matteoacrossi/oqs-jupyterbook
matteoacrossi
import numpy as np from bokeh.layouts import row, column from bokeh.models import ColumnDataSource, Slider, CustomJS, TextAnnotation from bokeh.plotting import Figure, show from bokeh.io import output_notebook # Define data x = [x*0.05 for x in range(0, 500)] trigonometric_functions = { '0': np.sin(x), '1': np.cos(x), '2': np.tan(x), '3': np.arctan(x)} initial_function = '0' # Wrap the data in two ColumnDataSources source_visible = ColumnDataSource(data=dict( x=x, y=trigonometric_functions[initial_function])) source_available = ColumnDataSource(data=trigonometric_functions) # Define plot elements plot = Figure(plot_width=400, plot_height=400) plot.line('x', 'y', source=source_visible, line_width=3, line_alpha=0.6) slider = Slider(title='Trigonometric function', value=int(initial_function), start=np.min([int(i) for i in trigonometric_functions.keys()]), end=np.max([int(i) for i in trigonometric_functions.keys()]), step=1) # Define CustomJS callback, which updates the plot based on selected function # by updating the source_visible ColumnDataSource. slider.callback = CustomJS( args=dict(source_visible=source_visible, source_available=source_available), code=""" var selected_function = cb_obj.value; // Get the data from the data sources var data_visible = source_visible.data; var data_available = source_available.data; // Change y-axis data according to the selected value data_visible.y = data_available[selected_function]; // Update the plot source_visible.change.emit(); """) layout = row(plot, slider) output_notebook() show(layout) def c1t(t, lam = 1., R = .25, c10 = 1.): expt = lam * t / 2 if R == .5: output = c10 * np.exp(-expt) * (1 + expt) elif R == 0: output = c10 * np.exp(-expt) elif R < .5: sqt = np.sqrt(1-2*R) output = c10 * np.exp(-expt) * (np.cosh(expt * sqt) + np.sinh(expt*sqt) / sqt) elif R > .5: sqt = np.sqrt(-1+2*R) output = c10 * np.exp(-expt) * (np.cos(expt * sqt) + np.sin(expt*sqt) / sqt) return output ts = [t*0.02 for t in range(0, 500)] Rmin = 0 Rmax = 10 Rstep = .2 Rrange = np.arange(Rmin, Rmax, Rstep) Rrange_str = [str(i) for i in range(len(Rrange))] #Rrange_str = ['{:.1f}'.format(i) for i in Rrange] # truncate to two decimals #Rrange_dict = {Rrange_str[i]:Rrange[i] for i,_ in enumerate(Rrange)} ys = {r_str:[c1t(t, R = Rrange[int(r_str)])**2 for t in ts] for r_str in Rrange_str} #ys = {r_str:[c1t(t, R = Rrange_dict[r_str])**2 for t in ts] for r_str in Rrange_str} initial_y = Rrange_str[1] # Wrap the data in two ColumnDataSources source_visible = ColumnDataSource(data=dict( x = ts, y = ys[initial_y])) source_available = ColumnDataSource(data=ys) # Define plot elements plot = Figure(plot_width=400, plot_height=400) plot.line('x', 'y', source=source_visible, line_width=3, line_alpha=0.6) slider = Slider(value=int(initial_function), start=np.min([int(i) for i in ys.keys()]), end=np.max([int(i) for i in ys.keys()]), step=1, show_value = False) #slider = Slider(title='R = ', # value=float(initial_function), # start=float(Rrange_str[0]), # end=float(Rrange_str[-1]), # step=Rstep) # Define CustomJS callback, which updates the plot based on selected function # by updating the source_visible ColumnDataSource. slider.callback = CustomJS( args=dict(source_visible=source_visible, source_available=source_available), code=""" var r_value = cb_obj.value; // Get the data from the data sources var data_visible = source_visible.data; var data_available = source_available.data; // Change y-axis data according to the selected value data_visible.y = data_available[r_value]; // Update the plot source_visible.change.emit(); """) layout = row(plot, slider) output_notebook() show(layout)
https://github.com/ShabaniLab/qiskit-hackaton-2019
ShabaniLab
import numpy as np from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister from ising_kitaev import initialize_chain, move_chain, rotate_to_measurement_basis, add_measurement zeeman_ferro = 0.01 zeeman_para = 10 initial_config = np.array([zeeman_ferro, zeeman_ferro, zeeman_ferro, zeeman_para]) final_config = np.array([zeeman_para, zeeman_ferro, zeeman_ferro, zeeman_ferro]) qreg = QuantumRegister(4) creg = ClassicalRegister(3) qcirc = QuantumCircuit(qreg, creg) initialize_chain(qcirc, qreg, initial_config, 'logical_one') qcirc.draw() move_chain(qcirc, qreg, initial_config, final_config, 0, 0.25, 0.25, 1, 5, method='single') qcirc.depth() rotate_to_measurement_basis(qcirc, qreg, [1, 2, 3]) add_measurement(qcirc, qreg, creg, [1, 2, 3]) from qiskit import Aer, execute backend = Aer.get_backend('qasm_simulator') job = execute(qcirc, backend, shots=2000) job.status() result = job.result() print(result.get_counts())
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.circuit.library import UCCSD ansatz = UCCSD() ansatz.num_spin_orbitals = 10 from qiskit_nature.second_q.circuit.library import UCCSD ansatz = UCCSD() ansatz.num_spatial_orbitals = 5 from qiskit_nature.circuit.library import UCC, UVCC ucc = UCC(qubit_converter=None, num_particles=None, num_spin_orbitals=None, excitations=None) uvcc = UVCC(qubit_converter=None, num_modals=None, excitations=None) from qiskit_nature.second_q.circuit.library import UCC, UVCC ucc = UCC(num_spatial_orbitals=None, num_particles=None, excitations=None, qubit_converter=None) uvcc = UVCC(num_modals=None, excitations=None, qubit_converter=None) from qiskit_nature.circuit.library import HartreeFock, VSCF from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import DirectMapper, JordanWignerMapper hf = HartreeFock( num_spin_orbitals=4, num_particles=(1, 1), qubit_converter=QubitConverter(JordanWignerMapper()) ) vscf = VSCF(num_modals=[2, 2]) from qiskit_nature.second_q.circuit.library import HartreeFock, VSCF from qiskit_nature.second_q.mappers import DirectMapper, JordanWignerMapper, QubitConverter hf = HartreeFock() hf.num_spatial_orbitals = 2 hf.num_particles = (1, 1) hf.qubit_converter = QubitConverter(JordanWignerMapper()) vscf = VSCF() vscf.num_modals = [2, 2] from qiskit.providers.basicaer import BasicAer from qiskit.utils import QuantumInstance from qiskit_nature.algorithms.ground_state_solvers import VQEUCCFactory quantum_instance = QuantumInstance(BasicAer.get_backend("statevector_simulator")) vqe_factory = VQEUCCFactory(quantum_instance=quantum_instance) from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import UCCSD from qiskit_nature.second_q.algorithms.ground_state_solvers import VQEUCCFactory estimator = Estimator() ansatz = UCCSD() optimizer = SLSQP() vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer) from qiskit_nature.algorithms.ground_state_solvers import GroundStateEigensolver, VQEUCCFactory from qiskit_nature.algorithms.excited_states_solvers import QEOM from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper vqe_factory = VQEUCCFactory() converter = QubitConverter(JordanWignerMapper()) ground_state_solver = GroundStateEigensolver(converter, vqe_factory) qeom = QEOM(ground_state_solver) from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import UCCSD from qiskit_nature.second_q.algorithms.ground_state_solvers import ( GroundStateEigensolver, VQEUCCFactory, ) from qiskit_nature.second_q.algorithms.excited_states_solvers import QEOM from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter estimator = Estimator() ansatz = UCCSD() optimizer = SLSQP() vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer) converter = QubitConverter(JordanWignerMapper()) ground_state_solver = GroundStateEigensolver(converter, vqe_factory) qeom = QEOM(ground_state_solver, estimator) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/GabrielPontolillo/QiskitPBT
GabrielPontolillo
import random import numpy as np from qiskit import QuantumCircuit from QiskitPBT.case_studies.grovers_algorithm.grovers_algorithm import grovers_algorithm from QiskitPBT.case_studies.grovers_algorithm.grovers_algorithm_helpers import RandomGroversOracleMarkedStatesPairGenerator from QiskitPBT.property import Property class GroversAlgorithmMostFrequentMarked(Property): # specify the inputs that are to be generated def get_input_generators(self): return [RandomGroversOracleMarkedStatesPairGenerator(4, 6)] # specify the preconditions for the test def preconditions(self, oracle_pair): oracle, marked_states = oracle_pair if len(marked_states) == 0 or len(marked_states) > 2**(oracle.num_qubits - 1) - 1: return False return True # specify the operations to be performed on the input def operations(self, oracle_pair): oracle, marked_states = oracle_pair # one qubit is workspace N = 2**(oracle.num_qubits-1) # number of marked states is used to identify the number of grover iterations to apply M = len(marked_states) binary_states = [] # marked states to binary strings to check for state in marked_states: binary = bin(state)[2:] binary = '0' * (oracle.num_qubits - 1 - len(binary)) + binary binary = binary[::-1] binary_states.append(binary) # src Nielsen and Chuang, quantum computation and quantum information n_iterations = int(np.floor((np.pi/4) * np.sqrt((N/M)))) circ = grovers_algorithm(oracle, n_iterations) # TODO: need to implement this assert most frequent, or something like it, all i know about the output state # is that the most frequent state should be from the list of marked, and (roughly) all should have the same distribution # but maybe testing that is not easy to implement with what we have self.statistical_analysis.assert_most_frequent(self, list(range(circ.num_qubits-1)), circ, binary_states, basis=["z"])
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import transpile from qiskit import QuantumCircuit from qiskit.providers.fake_provider import FakeVigoV2 backend = FakeVigoV2() qc = QuantumCircuit(2, 1) qc.h(0) qc.x(1) qc.cp(np.pi/4, 0, 1) qc.h(0) qc.measure([0], [0]) qc_basis = transpile(qc, backend) qc_basis.draw(output='mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.pulse_v2 import draw, IQXSimple from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.measure_all() qc = transpile(qc, FakeBoeblingen(), layout_method='trivial') sched = schedule(qc, FakeBoeblingen()) draw(sched, style=IQXSimple(), backend=FakeBoeblingen())
https://github.com/qiskit-community/qiskit-dell-runtime
qiskit-community
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # Copyright 2021 Dell (www.dell.com) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dell_runtime.emulator_runtime_job import EmulatorRuntimeJob import unittest from qiskit import QuantumCircuit, execute, transpile from qiskit.providers import JobStatus import unittest from urllib.parse import urljoin import os, requests import json # import pytest_mysql from server.orchestrator.models import DBService, Job, User, RuntimeProgram, Message, db_service import pytest from datetime import datetime from time import sleep SERVER_URL = os.getenv('SERVER_URL') RUNTIME_PROGRAM = """ from qiskit.compiler import transpile, schedule def main( backend, user_messenger, circuits, **kwargs, ): user_messenger.publish({'results': 'intermittently'}) circuits = transpile( circuits, ) if not isinstance(circuits, list): circuits = [circuits] # Compute raw results result = backend.run(circuits, **kwargs).result() user_messenger.publish({'results': 'finally'}) user_messenger.publish(result.to_dict(), final=True) print("job complete successfully") """ RUNTIME_PROGRAM_METADATA = { "max_execution_time": 600, "description": "Qiskit test program" } # mysql_proc = pytest_mysql.factories.mysql_proc(port=3307) def test_fetch_program_owner(): db_service = DBService() rp = RuntimeProgram() rp.program_id = "12" rp.user_id = 1 rp.name = "test program" rp.data = b'test program' rp.program_metadata = "meta" rp.status = 'Active' rp.data_type = "DIR" db_service.save_runtime_program(rp) assert(db_service.fetch_program_owner("12") == 1) def test_fetch_job_owner(): db_service = DBService() rp = RuntimeProgram() rp.program_id = "12" rp.user_id = 1 rp.name = "test program" rp.data = b'test program' rp.program_metadata = "meta" rp.status = 'Active' rp.data_type = "DIR" db_service.save_runtime_program(rp) jb = Job() jb.job_id = "123" jb.program_id = "12" jb.job_status = "Completed" jb.pod_name = "pod" jb.pod_status = "Running" jb.data_token = "USED" db_service.save_runtime_program(jb) assert(db_service.fetch_job_owner("123") == 1) def test_see_programs(): db_service = DBService() rp = RuntimeProgram() rp.program_id = "14" rp.user_id = 1 rp.name = "test program" rp.data = b'test program' rp.program_metadata = "meta" rp.status = 'Active' rp.data_type = "DIR" db_service.save_runtime_program(rp) rp = RuntimeProgram() rp.program_id = "13" rp.user_id = 1 rp.name = "test program" rp.data = b'test program' rp.program_metadata = "meta" rp.status = 'Active' rp.data_type = "DIR" db_service.save_runtime_program(rp) rp = RuntimeProgram() rp.program_id = "12" rp.user_id = 2 rp.name = "test program" rp.data = b'test program' rp.program_metadata = "meta" rp.status = 'Active' rp.data_type = "DIR" db_service.save_runtime_program(rp) assert(len(db_service.fetch_runtime_programs(1)) == 2) def test_use_job_token(): db_service = DBService() jb = Job() jb.job_id = "123" jb.program_id = "12" jb.job_status = "Completed" jb.pod_name = "pod" jb.pod_status = "Running" jb.data_token = "token" db_service.save_runtime_program(jb) db_service.use_job_token("123") assert(db_service.fetch_job_token("123") == "USED") def test_fetch_messages_timestamp(): db_service = DBService() db_service.save_message("123", "this message") msgs = db_service.fetch_messages("123", None) assert(len(msgs) == 1) ts = datetime.fromisoformat(msgs[0]["timestamp"]) sleep(2) db_service.save_message("123", "another message") newmsgs = db_service.fetch_messages("123", ts) assert(len(newmsgs) == 1)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.compiler import transpile from qiskit.transpiler import PassManager circ = QuantumCircuit(3) circ.ccx(0, 1, 2) circ.draw(output='mpl') from qiskit.transpiler.passes import Unroller pass_ = Unroller(['u1', 'u2', 'u3', 'cx']) pm = PassManager(pass_) new_circ = pm.run(circ) new_circ.draw(output='mpl') from qiskit.transpiler import passes [pass_ for pass_ in dir(passes) if pass_[0].isupper()] from qiskit.transpiler import CouplingMap, Layout from qiskit.transpiler.passes import BasicSwap, LookaheadSwap, StochasticSwap coupling = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]] circuit = QuantumCircuit(7) circuit.h(3) circuit.cx(0, 6) circuit.cx(6, 0) circuit.cx(0, 1) circuit.cx(3, 1) circuit.cx(3, 0) coupling_map = CouplingMap(couplinglist=coupling) bs = BasicSwap(coupling_map=coupling_map) pass_manager = PassManager(bs) basic_circ = pass_manager.run(circuit) ls = LookaheadSwap(coupling_map=coupling_map) pass_manager = PassManager(ls) lookahead_circ = pass_manager.run(circuit) ss = StochasticSwap(coupling_map=coupling_map) pass_manager = PassManager(ss) stochastic_circ = pass_manager.run(circuit) circuit.draw(output='mpl') basic_circ.draw(output='mpl') lookahead_circ.draw(output='mpl') stochastic_circ.draw(output='mpl') import math from qiskit.providers.fake_provider import FakeTokyo backend = FakeTokyo() # mimics the tokyo device in terms of coupling map and basis gates qc = QuantumCircuit(10) random_state = [ 1 / math.sqrt(4) * complex(0, 1), 1 / math.sqrt(8) * complex(1, 0), 0, 0, 0, 0, 0, 0, 1 / math.sqrt(8) * complex(1, 0), 1 / math.sqrt(8) * complex(0, 1), 0, 0, 0, 0, 1 / math.sqrt(4) * complex(1, 0), 1 / math.sqrt(8) * complex(1, 0)] qc.initialize(random_state, range(4)) qc.draw() optimized_0 = transpile(qc, backend=backend, seed_transpiler=11, optimization_level=0) print('gates = ', optimized_0.count_ops()) print('depth = ', optimized_0.depth()) optimized_1 = transpile(qc, backend=backend, seed_transpiler=11, optimization_level=1) print('gates = ', optimized_1.count_ops()) print('depth = ', optimized_1.depth()) optimized_2 = transpile(qc, backend=backend, seed_transpiler=11, optimization_level=2) print('gates = ', optimized_2.count_ops()) print('depth = ', optimized_2.depth()) optimized_3 = transpile(qc, backend=backend, seed_transpiler=11, optimization_level=3) print('gates = ', optimized_3.count_ops()) print('depth = ', optimized_3.depth()) from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.dagcircuit import DAGCircuit q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.measure(q[0], c[0]) circ.rz(0.5, q[1]).c_if(c, 2) circ.draw(output='mpl') from qiskit.converters import circuit_to_dag from qiskit.tools.visualization import dag_drawer dag = circuit_to_dag(circ) dag_drawer(dag) dag.op_nodes() node = dag.op_nodes()[3] print("node name: ", node.name) print("node op: ", node.op) print("node qargs: ", node.qargs) print("node cargs: ", node.cargs) print("node condition: ", node.op.condition) from qiskit.circuit.library import HGate dag.apply_operation_back(HGate(), qargs=[q[0]]) dag_drawer(dag) from qiskit.circuit.library import CCXGate dag.apply_operation_front(CCXGate(), qargs=[q[0], q[1], q[2]], cargs=[]) dag_drawer(dag) from qiskit.circuit.library import CHGate, U2Gate, CXGate mini_dag = DAGCircuit() p = QuantumRegister(2, "p") mini_dag.add_qreg(p) mini_dag.apply_operation_back(CHGate(), qargs=[p[1], p[0]]) mini_dag.apply_operation_back(U2Gate(0.1, 0.2), qargs=[p[1]]) # substitute the cx node with the above mini-dag cx_node = dag.op_nodes(op=CXGate).pop() dag.substitute_node_with_dag(node=cx_node, input_dag=mini_dag, wires=[p[0], p[1]]) dag_drawer(dag) from qiskit.converters import dag_to_circuit circuit = dag_to_circuit(dag) circuit.draw(output='mpl') from copy import copy from qiskit.transpiler.basepasses import TransformationPass from qiskit.transpiler import Layout from qiskit.circuit.library import SwapGate class BasicSwap(TransformationPass): """Maps (with minimum effort) a DAGCircuit onto a `coupling_map` adding swap gates.""" def __init__(self, coupling_map, initial_layout=None): """Maps a DAGCircuit onto a `coupling_map` using swap gates. Args: coupling_map (CouplingMap): Directed graph represented a coupling map. initial_layout (Layout): initial layout of qubits in mapping """ super().__init__() self.coupling_map = coupling_map self.initial_layout = initial_layout def run(self, dag): """Runs the BasicSwap pass on `dag`. Args: dag (DAGCircuit): DAG to map. Returns: DAGCircuit: A mapped DAG. Raises: TranspilerError: if the coupling map or the layout are not compatible with the DAG. """ new_dag = DAGCircuit() for qreg in dag.qregs.values(): new_dag.add_qreg(qreg) for creg in dag.cregs.values(): new_dag.add_creg(creg) if self.initial_layout is None: if self.property_set["layout"]: self.initial_layout = self.property_set["layout"] else: self.initial_layout = Layout.generate_trivial_layout(*dag.qregs.values()) if len(dag.qubits) != len(self.initial_layout): raise TranspilerError('The layout does not match the amount of qubits in the DAG') if len(self.coupling_map.physical_qubits) != len(self.initial_layout): raise TranspilerError( "Mappers require to have the layout to be the same size as the coupling map") canonical_register = dag.qregs['q'] trivial_layout = Layout.generate_trivial_layout(canonical_register) current_layout = trivial_layout.copy() for layer in dag.serial_layers(): subdag = layer['graph'] for gate in subdag.two_qubit_ops(): physical_q0 = current_layout[gate.qargs[0]] physical_q1 = current_layout[gate.qargs[1]] if self.coupling_map.distance(physical_q0, physical_q1) != 1: # Insert a new layer with the SWAP(s). swap_layer = DAGCircuit() swap_layer.add_qreg(canonical_register) path = self.coupling_map.shortest_undirected_path(physical_q0, physical_q1) for swap in range(len(path) - 2): connected_wire_1 = path[swap] connected_wire_2 = path[swap + 1] qubit_1 = current_layout[connected_wire_1] qubit_2 = current_layout[connected_wire_2] # create the swap operation swap_layer.apply_operation_back(SwapGate(), qargs=[qubit_1, qubit_2], cargs=[]) # layer insertion order = current_layout.reorder_bits(new_dag.qubits) new_dag.compose(swap_layer, qubits=order) # update current_layout for swap in range(len(path) - 2): current_layout.swap(path[swap], path[swap + 1]) order = current_layout.reorder_bits(new_dag.qubits) new_dag.compose(subdag, qubits=order) return new_dag q = QuantumRegister(7, 'q') in_circ = QuantumCircuit(q) in_circ.h(q[0]) in_circ.cx(q[0], q[4]) in_circ.cx(q[2], q[3]) in_circ.cx(q[6], q[1]) in_circ.cx(q[5], q[0]) in_circ.rz(0.1, q[2]) in_circ.cx(q[5], q[0]) from qiskit.transpiler import PassManager from qiskit.transpiler import CouplingMap from qiskit import BasicAer pm = PassManager() coupling = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]] coupling_map = CouplingMap(couplinglist=coupling) pm.append([BasicSwap(coupling_map)]) out_circ = pm.run(in_circ) in_circ.draw(output='mpl') out_circ.draw(output='mpl') import logging logging.basicConfig(level='DEBUG') from qiskit.providers.fake_provider import FakeTenerife log_circ = QuantumCircuit(2, 2) log_circ.h(0) log_circ.h(1) log_circ.h(1) log_circ.x(1) log_circ.cx(0, 1) log_circ.measure([0,1], [0,1]) backend = FakeTenerife() transpile(log_circ, backend); logging.getLogger('qiskit.transpiler').setLevel('INFO') transpile(log_circ, backend); # Change log level back to DEBUG logging.getLogger('qiskit.transpiler').setLevel('DEBUG') # Transpile multiple circuits circuits = [log_circ, log_circ] transpile(circuits, backend); formatter = logging.Formatter('%(name)s - %(processName)-10s - %(levelname)s: %(message)s') handler = logging.getLogger().handlers[0] handler.setFormatter(formatter) transpile(circuits, backend); import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/urwin419/QiskitChecker
urwin419
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) qc.cx(1, 0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": ### removed z gate ### pass return qc def decode_message(qc): ### removed cx gate ### qc.h(1) return qc
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
from qiskit import QuantumRegister, ClassicalRegister, BasicAer import numpy as np import matplotlib.pyplot as plt from qiskit import QuantumCircuit, execute,IBMQ from qiskit.tools.monitor import job_monitor from qiskit.circuit.library import NormalDistribution,UniformDistribution,LogNormalDistribution from kaleidoscope import qsphere, probability_distribution #provider = IBMQ.load_account() #backend = provider.get_backend('ibmq_qasm_simulator') backend = BasicAer.get_backend('qasm_simulator') qubits = 5 q = QuantumRegister(qubits,'q') c = ClassicalRegister(qubits,'c') print("\n Normal Distribution") print("-----------------") circuit = QuantumCircuit(q,c) normal = NormalDistribution(num_qubits = qubits, mu=0, sigma=0.1, bounds=([-1,1])) circuit.append(normal, list(range(qubits))) circuit.measure(q,c) job = execute(circuit, backend, shots=8192) job_monitor(job) counts = job.result().get_counts() print(counts) sortedcounts = [] sortedkeys = sorted(counts) for i in sortedkeys: for j in counts: if(i == j): sortedcounts.append(counts.get(j)) plt.suptitle('Normal Distribution') plt.plot(sortedcounts) plt.show() probability_distribution(counts) circuit.decompose().decompose().draw('mpl') print("\n Uniform Distribution") print("-----------------") circuit = QuantumCircuit(q,c) uniform = UniformDistribution(num_qubits = qubits) circuit.append(uniform, list(range(qubits))) circuit.measure(q,c) job = execute(circuit, backend, shots=8192) job_monitor(job) counts = job.result().get_counts() print(counts) sortedcounts = [] sortedkeys = sorted(counts) for i in sortedkeys: for j in counts: if(i == j): sortedcounts.append(counts.get(j)) plt.suptitle('Uniform Distribution') plt.plot(sortedcounts) plt.show() probability_distribution(counts) circuit.decompose().draw('mpl') print("\n Log-Normal Distribution") print("-----------------") circuit = QuantumCircuit(q,c) lognorm = LogNormalDistribution(num_qubits = qubits, mu=0.5, sigma=0.05, bounds=([0,4])) circuit.append(lognorm, list(range(qubits))) circuit.measure(q,c) job = execute(circuit, backend, shots=8192) job_monitor(job) counts = job.result().get_counts() print(counts) sortedcounts = [] sortedkeys = sorted(counts) for i in sortedkeys: for j in counts: if(i == j): sortedcounts.append(counts.get(j)) plt.suptitle('Log-Normal Distribution') plt.plot(sortedcounts) plt.show() probability_distribution(counts) from qiskit.finance.applications import GaussianConditionalIndependenceModel as GCI print("\n Gaussian Conditional Independence Distribution") print("-----------------") # set problem parameters n_z = qubits z_max = qubits #p_zeros = [0.15, 0.25, 0.09, 0.05, 0.01] #rhos = [0.1, 0.05, 0.04, 0.03, 0.01] p_zeros = [0.15, 0.25] rhos = [0.1, 0.05] circuit = GCI(n_z, z_max, p_zeros, rhos) circuit.measure_all() job = execute(circuit, backend, shots=8192) job_monitor(job) counts = job.result().get_counts() print(counts) sortedcounts = [] sortedkeys = sorted(counts) for i in sortedkeys: for j in counts: if(i == j): sortedcounts.append(counts.get(j)) plt.suptitle('Log-Normal Distribution') plt.plot(sortedcounts) plt.show() probability_distribution(counts) from qiskit.aqua.algorithms import AmplitudeEstimation estimation_qubits = 4 ae_lognormal = AmplitudeEstimation(estimation_qubits, state_preparation=lognorm) ae_uniform = AmplitudeEstimation(estimation_qubits, state_preparation=uniform) ae_normal = AmplitudeEstimation(estimation_qubits, state_preparation=normal) result_lognormal = ae_lognormal.run(quantum_instance=BasicAer.get_backend('qasm_simulator')) result_uniform = ae_uniform.run(quantum_instance=BasicAer.get_backend('qasm_simulator')) result_normal = ae_normal.run(quantum_instance=BasicAer.get_backend('qasm_simulator')) # plot estimated values plt.bar(result_uniform['mapped_a_samples'], result_uniform['probabilities'], width=0.5/len(result_uniform['probabilities'])) plt.bar(result_lognormal['mapped_a_samples'], result_lognormal['probabilities'], width=0.5/len(result_lognormal['probabilities'])) #plt.bar(result_normal['mapped_a_samples'], result_normal['probabilities'], width=0.5/len(result_normal['probabilities'])) plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15) plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15) plt.title('Estimated Values', size=15) plt.ylabel('Probability', size=15) plt.ylim((0,1)) plt.grid() plt.show() print(result_lognormal) print(result_uniform) print(result_normal) estimation_qubits = 7 ae_lognormal = AmplitudeEstimation(estimation_qubits, state_preparation=lognorm) result_lognormal = ae_lognormal.run(quantum_instance=BasicAer.get_backend('qasm_simulator')) plt.bar(result_lognormal['mapped_a_samples'], result_lognormal['probabilities'], width=0.5/len(result_lognormal['probabilities'])) plt.title('Estimated Values', size=15) plt.ylabel('Probability', size=15) plt.ylim((0,1)) plt.grid()
https://github.com/mnp-club/Quantum_Computing_Workshop_2020
mnp-club
from qiskit import * from qiskit.tools.jupyter import * from qiskit.visualization import * import matplotlib.pyplot as plotter import numpy as np from IPython.display import display, Math, Latex %matplotlib inline # Loading your IBM Q account(s) provider = IBMQ.load_account() def run_circuit(qc): backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend result = execute(qc, backend, shots = 200000).result() # we run the simulation counts = result.get_counts() # we get the counts return counts # qc1 was already initialised to |1>|1>. qc1.h(0) # qc1 => (|0>|1> + |1>|1>)/sqrt(2) qc1.cx(0,1) # qc1 => (|0>|1> + |1>|0>)/sqrt(2) #measure qc1.measure([0,1],[0,1]) counts = run_circuit(qc1) print(counts) plot_histogram(counts) qc_swap = QuantumCircuit(2,2) qc_swap.x(0) #initial state => |1>|0> # applying swap qc_swap.cx(0,1) qc_swap.cx(1,0) qc_swap.cx(0,1) #Following from the circuit diagram. # There is also qc_swap.swap(0,1) # measure qc_swap.measure([0,1],[0,1]) counts = run_circuit(qc_swap) print(counts) plot_histogram(counts) qc5 = QuantumCircuit(2,2) qc5.x(1) # initial state is |0>|1> SO THAT WE KNOW WHAT BOTH |0> AND |1> MAP TO. # A lot of people did a mistake here in not understanding why we are using |0> and |1> #apply HZH on both qubits. qc5.h([0,1]) qc5.z([0,1]) qc5.h([0,1]) # measure qc5.measure([0,1],[0,1]) counts = run_circuit(qc5) print(counts) plot_histogram(counts) # final state would be |1>|0> = X(|0>|1>) # Hence they are equal (Actually not. We can only conclude that they agree only upto a global phase. I think now you can appreciate this now.) qc6 = QuantumCircuit(3,3) qc6.x(0) # Set any one qubit of the 2 swapping qubits to '1' to see a noticable difference between input and output. qc6.initialize([1/np.sqrt(2), -complex(1,1)/2],2) # Optional. Initializing the 3rd qubit. # convert 3rd qubit into |1> qc6.tdg(2) qc6.h(2) # OR #qc6.t(2) #qc6.s(2) #qc6.h(2) #qc6.x(2) # You can check that they are equivalent. # As you know now, it's a Fredkin gate. qc6.toffoli(2,1,0) qc6.toffoli(2,0,1) qc6.toffoli(2,1,0) #reset the third qubit to its intial state qc6.h(2) qc6.t(2) # Measure qc6.measure([0,1,2],[0,1,2]) counts = run_circuit(qc6) print(counts) plot_histogram(counts)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1); tensored = bottom.tensor(top) tensored.draw('mpl')
https://github.com/Morcu/Qiskit_Hands-on-lab
Morcu
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() from qiskit.circuit.library.standard_gates import XGate, HGate from operator import * n = 3 N = 8 #2**n index_colour_table = {} colour_hash_map = {} index_colour_table = {'000':"yellow", '001':"red", '010':"blue", '011':"red", '100':"green", '101':"blue", '110':"orange", '111':"red"} colour_hash_map = {"yellow":'100', "red":'011', "blue":'000', "green":'001', "orange":'010'} def database_oracle(index_colour_table, colour_hash_map): circ_database = QuantumCircuit(n + n) for i in range(N): circ_data = QuantumCircuit(n) idx = bin(i)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) # qiskit maps the rightmost bit as the 0th qubit -> qn, ..., q0 # we therefore reverse the index string -> q0, ..., qn data_gate = circ_data.to_gate(label=colour).control(num_ctrl_qubits=n, ctrl_state=idx, label="index-"+colour) circ_database.append(data_gate, list(range(n+n))) return circ_database # drawing the database oracle circuit print("Database Encoding") database_oracle(index_colour_table, colour_hash_map).draw() circ_data = QuantumCircuit(n) m = 4 idx = bin(m)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) print("Internal colour encoding for the colour green (as an example)"); circ_data.draw() def oracle_grover(database, data_entry): circ_grover = QuantumCircuit(n + n + 1) circ_grover.append(database, list(range(n+n))) target_reflection_gate = XGate().control(num_ctrl_qubits=n, ctrl_state=colour_hash_map[data_entry], label="Reflection of " + "\"" + data_entry + "\" Target") # control() missing 1 required positional argument: 'self' .... if only 'XGate' used instead of 'XGate()' # The “missing 1 required positional argument: 'self'” error is raised when you do not instantiate an object of a class before calling a class method. This error is also raised when you incorrectly instantiate a class. circ_grover.append(target_reflection_gate, list(range(n, n+n+1))) circ_grover.append(database, list(range(n+n))) return circ_grover print("Grover Oracle (target example: orange)") oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), "orange").decompose().draw() def mcz_gate(num_qubits): num_controls = num_qubits - 1 mcz_gate = QuantumCircuit(num_qubits) target_mcz = QuantumCircuit(1) target_mcz.z(0) target_mcz = target_mcz.to_gate(label="Z_Gate").control(num_ctrl_qubits=num_controls, ctrl_state=None, label="MCZ") mcz_gate.append(target_mcz, list(range(num_qubits))) return mcz_gate.reverse_bits() print("Multi-controlled Z (MCZ) Gate") mcz_gate(n).decompose().draw() def diffusion_operator(num_qubits): circ_diffusion = QuantumCircuit(num_qubits) qubits_list = list(range(num_qubits)) # Layer of H^n gates circ_diffusion.h(qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of Multi-controlled Z (MCZ) Gate circ_diffusion = circ_diffusion.compose(mcz_gate(num_qubits), qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of H^n gates circ_diffusion.h(qubits_list) return circ_diffusion print("Diffusion Circuit") diffusion_operator(n).draw() # Putting it all together ... !!! item = "green" print("Searching for the index of the colour", item) circuit = QuantumCircuit(n + n + 1, n) circuit.x(n + n) circuit.barrier() circuit.h(list(range(n))) circuit.h(n+n) circuit.barrier() unitary_oracle = oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), item).to_gate(label="Oracle Operator") unitary_diffuser = diffusion_operator(n).to_gate(label="Diffusion Operator") M = countOf(index_colour_table.values(), item) Q = int(np.pi * np.sqrt(N/M) / 4) for i in range(Q): circuit.append(unitary_oracle, list(range(n + n + 1))) circuit.append(unitary_diffuser, list(range(n))) circuit.barrier() circuit.measure(list(range(n)), list(range(n))) circuit.draw() backend_sim = Aer.get_backend('qasm_simulator') job_sim = backend_sim.run(transpile(circuit, backend_sim), shots=1024) result_sim = job_sim.result() counts = result_sim.get_counts(circuit) if M==1: print("Index of the colour", item, "is the index with most probable outcome") else: print("Indices of the colour", item, "are the indices the most probable outcomes") from qiskit.visualization import plot_histogram plot_histogram(counts)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# External imports from pylab import cm from sklearn import metrics import numpy as np import matplotlib.pyplot as plt # Qiskit imports from qiskit import QuantumCircuit from qiskit.circuit import ParameterVector from qiskit.visualization import circuit_drawer from qiskit.algorithms.optimizers import SPSA from qiskit.circuit.library import ZZFeatureMap from qiskit_machine_learning.kernels import TrainableFidelityQuantumKernel from qiskit_machine_learning.kernels.algorithms import QuantumKernelTrainer from qiskit_machine_learning.algorithms import QSVC from qiskit_machine_learning.datasets import ad_hoc_data class QKTCallback: """Callback wrapper class.""" def __init__(self) -> None: self._data = [[] for i in range(5)] def callback(self, x0, x1=None, x2=None, x3=None, x4=None): """ Args: x0: number of function evaluations x1: the parameters x2: the function value x3: the stepsize x4: whether the step was accepted """ self._data[0].append(x0) self._data[1].append(x1) self._data[2].append(x2) self._data[3].append(x3) self._data[4].append(x4) def get_callback_data(self): return self._data def clear_callback_data(self): self._data = [[] for i in range(5)] adhoc_dimension = 2 X_train, y_train, X_test, y_test, adhoc_total = ad_hoc_data( training_size=20, test_size=5, n=adhoc_dimension, gap=0.3, plot_data=False, one_hot=False, include_sample_total=True, ) plt.figure(figsize=(5, 5)) plt.ylim(0, 2 * np.pi) plt.xlim(0, 2 * np.pi) plt.imshow( np.asmatrix(adhoc_total).T, interpolation="nearest", origin="lower", cmap="RdBu", extent=[0, 2 * np.pi, 0, 2 * np.pi], ) plt.scatter( X_train[np.where(y_train[:] == 0), 0], X_train[np.where(y_train[:] == 0), 1], marker="s", facecolors="w", edgecolors="b", label="A train", ) plt.scatter( X_train[np.where(y_train[:] == 1), 0], X_train[np.where(y_train[:] == 1), 1], marker="o", facecolors="w", edgecolors="r", label="B train", ) plt.scatter( X_test[np.where(y_test[:] == 0), 0], X_test[np.where(y_test[:] == 0), 1], marker="s", facecolors="b", edgecolors="w", label="A test", ) plt.scatter( X_test[np.where(y_test[:] == 1), 0], X_test[np.where(y_test[:] == 1), 1], marker="o", facecolors="r", edgecolors="w", label="B test", ) plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0) plt.title("Ad hoc dataset for classification") plt.show() # Create a rotational layer to train. We will rotate each qubit the same amount. training_params = ParameterVector("θ", 1) fm0 = QuantumCircuit(2) fm0.ry(training_params[0], 0) fm0.ry(training_params[0], 1) # Use ZZFeatureMap to represent input data fm1 = ZZFeatureMap(2) # Create the feature map, composed of our two circuits fm = fm0.compose(fm1) print(circuit_drawer(fm)) print(f"Trainable parameters: {training_params}") # Instantiate quantum kernel quant_kernel = TrainableFidelityQuantumKernel(feature_map=fm, training_parameters=training_params) # Set up the optimizer cb_qkt = QKTCallback() spsa_opt = SPSA(maxiter=10, callback=cb_qkt.callback, learning_rate=0.05, perturbation=0.05) # Instantiate a quantum kernel trainer. qkt = QuantumKernelTrainer( quantum_kernel=quant_kernel, loss="svc_loss", optimizer=spsa_opt, initial_point=[np.pi / 2] ) # Train the kernel using QKT directly qka_results = qkt.fit(X_train, y_train) optimized_kernel = qka_results.quantum_kernel print(qka_results) # Use QSVC for classification qsvc = QSVC(quantum_kernel=optimized_kernel) # Fit the QSVC qsvc.fit(X_train, y_train) # Predict the labels labels_test = qsvc.predict(X_test) # Evalaute the test accuracy accuracy_test = metrics.balanced_accuracy_score(y_true=y_test, y_pred=labels_test) print(f"accuracy test: {accuracy_test}") plot_data = cb_qkt.get_callback_data() # callback data K = optimized_kernel.evaluate(X_train) # kernel matrix evaluated on the training samples plt.rcParams["font.size"] = 20 fig, ax = plt.subplots(1, 2, figsize=(14, 5)) ax[0].plot([i + 1 for i in range(len(plot_data[0]))], np.array(plot_data[2]), c="k", marker="o") ax[0].set_xlabel("Iterations") ax[0].set_ylabel("Loss") ax[1].imshow(K, cmap=cm.get_cmap("bwr", 20)) fig.tight_layout() plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse dc = pulse.DriveChannel d0, d1, d2, d3, d4 = dc(0), dc(1), dc(2), dc(3), dc(4) with pulse.build(name='pulse_programming_in') as pulse_prog: pulse.play([1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1], d0) pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], d1) pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0], d2) pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], d3) pulse.play([1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0], d4) pulse_prog.draw()
https://github.com/Andres8bit/IBMQ-Quantum-Qiskit
Andres8bit
#in general we can transform a single CNOT inot a controlled #version of any rotaion around the Bloch sphere by an angle pi, #by simply preceding and following it with the correct rotations. %matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.circuit import Gate from math import pi # Loading your IBM Q account(s) provider = IBMQ.load_account() qc = QuantumCircuit(2) c =0 t =1 #built in controlled-Z #recall a Z-GATE converts a |+> qubit to a |-> and vive-versa qc.cz(c,t) qc.draw() #converting a CNOT into a CONTROLLED-Z qc = QuantumCircuit(2) qc.h(t) qc.cx(c,t) qc.h(t) qc.draw() #CONTROLLED-Y GATE. qc = QuantumCircuit(2) qc.sdg(t) qc.cx(c,t) qc.s(t) qc.draw() #CONTROLLED-H GATE qc = QuantumCircuit(2) qc.ry(pi/4,t) qc.cx(c,t) qc.ry(-pi/4,t) qc.draw() #SWAPPING QUBITS: #sometime we need to move information around in a quantum Computer. #one option is to move the state between two qubits. a = 0 b = 1 #swaps states oc qubits a and b qc = QuantumCircuit(2) qc.swap(a,b) qc.draw() # we will now develope a swap gate using he base gate. #first we will look at the |1> and |0> cases: #swaps 1 from a to b: # puts qubits b in state |1> and qubit a in state |0> qc = QuantumCircuit(2) qc.cx(a,b) #copies 1 from a to b qc.cx(b,a) #uses the 1 on b to rotate the state of a to 0 qc.draw() #swap back to original state qc.cx(b,a) qc.cx(a,b) qc.draw() #more general swap gate: # works for |00>,|01>,|10> and |11> #note you can change the order of the CNOT gates and get the same results qc = QuantumCircuit(2) qc.cx(b,a) qc.cx(a,b) qc.cx(b,a) qc.draw() #controlled Rotations: #this circuit rotates qubits about the Y-AXIS by theta/2 qc = QuantumCircuit(2) theta = pi # theta can be any value qc.ry(theta/2,t) qc.cx(c,t) qc.ry(-theta/2,t) qc.cx(c,t) qc.draw() # we can also create a controlled version of any single #qubit rotation U # We must first find three rotations A,B,and C, #and a phase alpha such that # ABC = I , e^(ialpha)AZBZC =U A = Gate('A',1,[]) B = Gate('B',1,[]) C = Gate('C',1,[]) alpha = 1 #arbitratily define alpha qc = QuantumCircuit(2) qc.append(C,[t]) qc.cz(c,t) qc.append(B,[t]) qc.cz(c,t) qc.append(A,[t]) qc.u1(alpha,c) qc.draw() #TOFFOLI: #The Toffoli is a 3-qubit gate with two control and one target. #It performs an X on the target only if both controls # are in state |1>. # the final state of target is then either the AND or NAND of the two controls, # depending on if the initial state of target was |0> or |1>. # the Toffoli can be thought of as a controlled-controoled-NOT: # note the Toffoli requires at least 6 CNOT gates. # but there are other ways to produce an AND effect using quantum operations. qc = QuantumCircuit(3) a = 0 b = 1 t = 2 #Toffoli with control a and b target t: qc.ccx(a,b,t) qc.draw() # before we built a Toffoli from base quibit operations # we will build a general controlled-controlled-U. #For any single-qubit rotation U. qc = QuantumCircuit(3) qc.cu1(theta,b,t) qc.cx(a,b) qc.cu1(-theta,b,t) qc.cx(a,b) qc.cu1(theta,a,t) qc.draw() #we can built an AND gate using a CONTROLLED-H GATE and CONTROLLED-Z GATES qc = QuantumCircuit(3) qc.ch(a,t) qc.cz(b,t) qc.ch(a,t) qc.draw()
https://github.com/derek-wang-ibm/coding-with-qiskit
derek-wang-ibm
from qiskit import QuantumCircuit from qiskit.circuit.library import YGate, UnitaryGate import numpy as np SYGate = UnitaryGate(YGate().power(1/2), label=r"$\sqrt{Y}$") SYdgGate = UnitaryGate(SYGate.inverse(), label=r"$\sqrt{Y}^\dag$") def generate_1d_tfim_circuit(num_qubits, num_trotter_steps, rx_angle, num_cl_bits=0, trotter_barriers = False, layer_barriers = False): if num_cl_bits == 0: qc = QuantumCircuit(num_qubits) else: qc = QuantumCircuit(num_qubits, num_cl_bits) for trotter_step in range(num_trotter_steps): add_1d_tfim_trotter_layer(qc, rx_angle, layer_barriers) if trotter_barriers: qc.barrier() return qc def add_1d_tfim_trotter_layer(qc, rx_angle, layer_barriers = False): # Adding Rzz in the even layers for i in range(0, qc.num_qubits-1, 2): qc.sdg([i, i+1]) qc.append(SYGate, [i+1]) qc.cx(i, i+1) qc.append(SYdgGate, [i+1]) if layer_barriers: qc.barrier() # Adding Rzz in the odd layers for i in range(1, qc.num_qubits-1, 2): qc.sdg([i, i+1]) qc.append(SYGate, [i+1]) qc.cx(i, i+1) qc.append(SYdgGate, [i+1]) if layer_barriers: qc.barrier() qc.rx(rx_angle, list(range(qc.num_qubits))) if layer_barriers: qc.barrier() num_qubits = 6 num_trotter_steps = 1 rx_angle = 0.5 * np.pi qc = generate_1d_tfim_circuit(num_qubits, num_trotter_steps, rx_angle, trotter_barriers=True, layer_barriers=True) qc.draw(output='mpl', fold=-1) def append_mirrored_1d_tfim_circuit(qc, num_qubits, num_trotter_steps, rx_angle, trotter_barriers = False, layer_barriers = False): for trotter_step in range(num_trotter_steps): add_mirrored_1d_tfim_trotter_layer(qc, rx_angle, layer_barriers) if trotter_barriers: qc.barrier() def add_mirrored_1d_tfim_trotter_layer(qc, rx_angle, layer_barriers = False): # Note after filming: # I constructed the inverse by hand here # But you could also use QuantumCircuit.inverse() to do this more efficiently qc.rx(-rx_angle, list(range(qc.num_qubits))) if layer_barriers: qc.barrier() # Adding Rzz in the odd layers for i in range(1, qc.num_qubits-1, 2): qc.append(SYGate, [i+1]) qc.cx(i, i+1) qc.append(SYdgGate, [i+1]) qc.s([i, i+1]) if layer_barriers: qc.barrier() # Adding Rzz in the even layers for i in range(0, qc.num_qubits-1, 2): qc.append(SYGate, [i+1]) qc.cx(i, i+1) qc.append(SYdgGate, [i+1]) qc.s([i, i+1]) if layer_barriers: qc.barrier() append_mirrored_1d_tfim_circuit(qc, num_qubits, num_trotter_steps, rx_angle, trotter_barriers=True, layer_barriers=True) qc.draw(output='mpl', fold=-1) max_trotter_steps = 10 num_qubits = 100 measured_qubits = [49, 50] qc_list = [] for trotter_step in range(max_trotter_steps): qc = generate_1d_tfim_circuit(num_qubits, trotter_steps, rx_angle, num_cl_bits=len(measured_qubits), trotter_barriers=True, layer_barriers=True) append_mirrored_1d_tfim_circuit(qc, num_qubits, trotter_steps, rx_angle, trotter_barriers=True, layer_barriers=True) qc.measure(measured_qubits, list(range(len(measured_qubits)))) qc_list.append(qc) from qiskit import transpile from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService() backend = service.backend(name='ibm_brisbane') print("Done getting the backend") # Note after filming: # `transpile` will be deprecated soon # so in the future, use `generate_preset_pass_manager` to achieve similar functionality qc_transpiled_list = transpile(qc_list, backend=backend, optimization_level=1) from qiskit_ibm_runtime import SamplerV2 as Sampler sampler = Sampler(backend=backend) sampler.options.dynamical_decoupling.enable = True sampler.options.dynamical_decoupling.sequence_type = "XY4" job = sampler.run(qc_transpiled_list) print(job.job_id()) job_id = "cqp5rvb417q0008yq3b0" job = service.job(job_id) survival_probability_list = [] for trotter_step in range(max_trotter_steps): try: data = job.result()[trotter_step].data survival_probability_list.append(data.c.get_counts()['0' * len(measured_qubits)] / data.c.num_shots) except: survival_probability_list.append(0) import matplotlib.pyplot as plt plt.plot(list(range(0, 4 * max_trotter_steps, 4)), survival_probability_list, '--o') plt.xlabel('2Q Gate Depth') plt.ylabel('Survival Probability of the all-0 bitstring') plt.xticks(np.arange(0, 44, 4)) plt.show() from qiskit.circuit import Parameter rx_angle = Parameter("rx_angle") trotter_steps = 2 qc = generate_1d_tfim_circuit(num_qubits, trotter_steps, rx_angle) from qiskit.quantum_info import SparsePauliOp middle_index = num_qubits // 2 observable = SparsePauliOp("I" * middle_index + "Z" + "I" * (middle_index-1)) from qiskit import transpile from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService() backend = service.backend(name='ibm_brisbane') # Note after filming: # `transpile` will be deprecated soon # so in the future, use `generate_preset_pass_manager` to achieve similar functionality qc_transpiled = transpile(qc, backend=backend, optimization_level=1) observable = observable.apply_layout(qc_transpiled.layout) from qiskit_ibm_runtime import EstimatorV2, EstimatorOptions min_rx_angle = 0 max_rx_angle = np.pi/2 num_rx_angle = 12 rx_angle_list = np.linspace(min_rx_angle, max_rx_angle, num_rx_angle) options = EstimatorOptions() options.resilience_level = 1 options.dynamical_decoupling.enable = True options.dynamical_decoupling.sequence_type = "XY4" estimator = EstimatorV2(backend=backend, options=options) job = estimator.run([(qc_transpiled, observable, rx_angle_list)]) print(job.job_id()) job_id = "cqp5xtq417q0008yq43g" job = service.job(job_id) exp_val_list = job.result()[0].data.evs plt.plot(rx_angle_list / np.pi, exp_val_list, '--o') plt.xlabel(r'Rx angle ($\pi$)') plt.ylabel(r'$\langle Z \rangle$ in the middle of the chain') plt.ylim(-0.1, 1.1)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.pulse_v2 import draw from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.measure_all() qc = transpile(qc, FakeBoeblingen(), layout_method='trivial') sched = schedule(qc, FakeBoeblingen()) draw(sched, backend=FakeBoeblingen())
https://github.com/C2QA/bosonic-qiskit
C2QA
# The C2QA pacakge is currently not published to PyPI. # To use the package locally, add the C2QA repository's root folder to the path prior to importing c2qa. import os import sys module_path = os.path.abspath(os.path.join("../..")) if module_path not in sys.path: sys.path.append(module_path) # Cheat to get MS Visual Studio Code Jupyter server to recognize Python venv module_path = os.path.abspath(os.path.join("../../venv/Lib/site-packages")) if module_path not in sys.path: sys.path.append(module_path) import c2qa import qiskit from qiskit import QuantumCircuit qmr0 = c2qa.QumodeRegister(num_qumodes=1, num_qubits_per_qumode=2) qr0 = qiskit.QuantumRegister(size=1) circuit0 = c2qa.CVCircuit(qmr0, qr0) # Initialize qubit circuit0.initialize([1,0], qr0[0]) # circuit0.initialize([0,1], qr0[0]) # Initialize the qumode to, for example, a Fock sate 1 circuit0.cv_initialize(1, qmr0[0]) # ... Your circuit here ... state0, _, _ = c2qa.util.simulate(circuit0) print(state0) # c2qa.util.trace_out_qumodes() performs a partial trace over the cavities, giving the reduced density matrix of the qubits print(c2qa.util.trace_out_qumodes(circuit0, state0)) # c2qa.util.trace_out_qubits() performs a partial trace over the qubits, giving the reduced density matrix of the cavities print(c2qa.util.trace_out_qubits(circuit0, state0))
https://github.com/abbarreto/qiskit3
abbarreto
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
import sys, os sys.path.append(os.path.dirname(os.path.realpath(__file__)) + '/../../') from composer.qs_circuit import QSCircuit from qiskit import execute, BasicAer from math import log2 SIZE_INPUT = 2 ** 1 SIZE_SELECTOR = int(log2(SIZE_INPUT)) for i in range(0, 2 ** SIZE_INPUT): a = format(i, '0' + str(SIZE_INPUT) + 'b') for j in range(0, 2 ** SIZE_SELECTOR): selectors = format(j, '0' + str(SIZE_SELECTOR) + 'b') a_indexes = list(range(0, SIZE_INPUT)) selectors_indexes = list(range(SIZE_INPUT, SIZE_INPUT + SIZE_SELECTOR)) flipped_selectors_indexes = list(range(SIZE_INPUT + SIZE_SELECTOR, SIZE_INPUT + 2 * SIZE_SELECTOR)) output_index = SIZE_INPUT + 2 * SIZE_SELECTOR aux_index = SIZE_INPUT + 2 * SIZE_SELECTOR + 1 CIRCUIT_SIZE = SIZE_INPUT + 2 * SIZE_SELECTOR + 2 qc = QSCircuit(CIRCUIT_SIZE) qc.set_reg(a[::-1], a_indexes) qc.set_reg(selectors[::-1], selectors_indexes) qc.multiplexer(a_indexes, selectors_indexes, flipped_selectors_indexes, output_index, aux_index) qc.measure(output_index, output_index) print(qc) backend = BasicAer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1) counts = job.result().get_counts(qc) print(a, '-', selectors, '-', list(counts.keys())[0][::-1][output_index])
https://github.com/ACDuriez/Ising-VQE
ACDuriez
import numpy as np import networkx as nx import matplotlib.pyplot as plt from tqdm import tqdm from scipy.optimize import minimize from dataclasses import dataclass from qiskit.providers.fake_provider import FakeManila,FakeQuito,FakeLima,FakeKolkata,FakeNairobi from qiskit.transpiler import CouplingMap from qiskit.circuit import QuantumCircuit,ParameterVector,Parameter from qiskit.circuit.library import EfficientSU2 from qiskit.quantum_info import SparsePauliOp #from qiskit.opflow import PauliSumOp from qiskit.primitives import Estimator,Sampler,BackendEstimator from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.algorithms.optimizers import SLSQP,COBYLA,L_BFGS_B,QNSPSA,SPSA from qiskit_aer.noise import NoiseModel from qiskit_ibm_runtime import Session,Options,QiskitRuntimeService from qiskit_ibm_runtime import Estimator as IBM_Estimator from qiskit_ibm_runtime import Sampler as IBM_Sampler from qiskit_aer.primitives import Estimator as AerEstimator J = 1 h = 0.5 n_qubits = 4 def get_line_graph(n_qubits): """This function creates a linear lattice with open boundary conditions for a given number of qubits""" graph_line = nx.Graph() graph_line.add_nodes_from(range(n_qubits)) edge_list = [] for i in graph_line.nodes: if i < n_qubits-1: edge_list.append((i,i+1)) # Generate graph from the list of edges graph_line.add_edges_from(edge_list) return graph_line graph = get_line_graph(n_qubits) nx.draw_networkx(graph) #plotting the graph def get_h_op(graph,J=1.,hx=0.5,hz=0.,ap=0.): """Creates a general Ising hamiltonian for given values of the coupling, transverse field, longitudinal field and antiparallel field Args: graph: networkx graph of the lattice J: uniform coupling between first neighbors hx: transverse field parameter hz: longitudinal field parameter ap: antiparallel field at the boundaries""" num_qubits = len(graph.nodes()) sparse_list = [] # Uniform Z and X fields for qubit in graph.nodes(): # X field coeff = ('X',[qubit],-1*hx) sparse_list.append(coeff) # Z field coeff = ('Z',[qubit],-1*hz) sparse_list.append(coeff) # Anti-paralel field at the borders coeff = ('Z',[0],ap) #this is the positive field (order reversed) sparse_list.append(coeff) coeff = ('Z',[num_qubits-1],-1*ap) sparse_list.append(coeff) #Interaction field (ZZ) for i,j in graph.edges(): coeff = ('ZZ',[i,j],-1*J) sparse_list.append(coeff) hamiltonian = SparsePauliOp.from_sparse_list(sparse_list,num_qubits=num_qubits).simplify() return hamiltonian def get_kk_op(graph): """Creates the number of kinks operator""" sparse_list = [] for i,j in graph.edges(): coeff = ('II',[i,j],0.5) sparse_list.append(coeff) coeff = ('ZZ',[i,j],-0.5) sparse_list.append(coeff) kk_op = SparsePauliOp.from_sparse_list(sparse_list,num_qubits=len(graph.nodes)) return kk_op # We show the Hamiltonian with the crittical boundary field as well as # the number of kinks print(get_h_op(graph,J,h,ap=np.sqrt(1-h))) print(get_kk_op(graph)) exact_steps = 70 g_i = 0. g_f = 1.6 exact_g_values = np.linspace(g_i,g_f,exact_steps) def get_numpy_results(graph,J,h,g_values): """Returns the exact values of the energy and number of kinks for a given lattice, coupling, transverse field and values of the boundary field""" n_qubits = len(graph.nodes()) numpy_solver = NumPyMinimumEigensolver() E_values = [] kk_values = [] kk_op = get_kk_op(graph) #getting the (g-independent) number of kinks operator for g in g_values: h_op = get_h_op(graph,J,h,ap=g) #getting the hamiltonian operator for each g value result = numpy_solver.compute_minimum_eigenvalue(operator=h_op,aux_operators=[kk_op]) E_values.append(result.eigenvalue) kk_values.append(np.real(result.aux_operators_evaluated[0][0])) return E_values,kk_values exact_E,exact_kk = get_numpy_results(graph,J,h,exact_g_values) # getting the exact energy and number of kinks #Plotting f,ax = plt.subplots() plt.plot(exact_g_values,exact_E) plt.xlabel('boundary field') plt.ylabel('groundstate energy') inset_ax = f.add_axes([0.25, 0.3, 0.27, 0.27])# [left, bottom, width, height] inset_ax.plot(exact_g_values,exact_kk) inset_ax.set_ylabel('$<N_k>$') inset_ax.set_xlabel('boundary field') inset_ax.axvline(x=np.sqrt(1-h), color='red', linestyle='dashed') #indicating the critical boundary field plt.show() #Initialize runtime service = QiskitRuntimeService( channel='ibm_quantum', instance='ibm-q/open/main', token='your_token' ) backend = service.backend("ibmq_qasm_simulator") shots = 2**14 # shots for noisy simulations def get_ansatz_hva(graph, theta_list): """Creates the hamiltonian variaitonal ansatz for a given lattice graph and list of parameters. The parameters list must have a lenght of 3*n_layers, and must have a form (coupling_i,transverse_i,boundary_i) Args: graph: lattice graph theta_list: list of parameters """ n_qubits = len(graph.nodes()) n_layers = len(theta_list)//3 qc = QuantumCircuit(n_qubits) even_edges = [edge for edge in graph.edges() if edge[0]%2==0] odd_edges = [edge for edge in graph.edges() if edge[0]%2!=0] # initial_state qc.h(range(n_qubits)) for layer_index in range(n_layers): # Coupling term for pair in even_edges: qc.rzz(2 * theta_list[3*layer_index],pair[0],pair[1]) for pair in odd_edges: qc.rzz(2 * theta_list[3*layer_index],pair[0],pair[1]) # boundary field term qc.rz(2 *theta_list[3*layer_index+2],0) qc.rz(-2 * theta_list[3*layer_index+2], n_qubits-1) # transverse field term qc.rx(2 * theta_list[3*layer_index+1], range(n_qubits)) return qc layers_hva = 4 theta_list_hva = ParameterVector('θ',3*layers_hva) ansatz_hva = get_ansatz_hva(graph,theta_list_hva) ansatz_hva.draw('mpl',style='iqx') def get_ansatz_hea(graph,theta_list): """Creates the hardware efficient ansatz for a given lattice graph and list of parameters. The parameters list must have a lenght of 2*n_qubits_n_layers Args: graph: lattice graph theta_list: list of parameters """ nqubits = len(graph.nodes()) n_layers = len(theta_list)//(2*nqubits) assert len(theta_list)==2*n_qubits*n_layers, "The list of parameters does not have the correct size" qc = QuantumCircuit(nqubits) even_edges = [edge for edge in graph.edges() if edge[0]%2==0] odd_edges = [edge for edge in graph.edges() if edge[0]%2!=0] reversed_edges = [edge for edge in graph.edges()][::-1] for layer_index in range(n_layers): for qubit in range(nqubits): qc.ry(theta_list[2*(nqubits)*layer_index+qubit], qubit) # for pair in reversed_edges: # qc.cnot(pair[0],pair[1]) for pair in even_edges: qc.cnot(pair[0],pair[1]) for pair in odd_edges: qc.cnot(pair[0],pair[1]) for qubit in range(nqubits): qc.ry(theta_list[nqubits+2*(nqubits)*layer_index+qubit], qubit) return qc def get_ansatz_hea_ZNE(graph,theta_list): """Creates the folded version of hardware efficient ansatz for a given lattice graph and list of parameters. The parameters list must have a lenght of 2*n_qubits_n_layers. Used in the ZNE error mitigation protocol Args: graph: lattice graph theta_list: list of parameters """ nqubits = len(graph.nodes()) n_layers = len(theta_list)//(2*nqubits) assert len(theta_list)==2*n_qubits*n_layers, "The list of parameters does not have the correct size" qc = QuantumCircuit(nqubits) even_edges = [edge for edge in graph.edges() if edge[0]%2==0] odd_edges = [edge for edge in graph.edges() if edge[0]%2!=0] reversed_edges = [edge for edge in graph.edges()][::-1] for layer_index in range(n_layers): for qubit in range(nqubits): qc.ry(theta_list[2*(nqubits)*layer_index+qubit], qubit) # for pair in reversed_edges: # qc.cnot(pair[0],pair[1]) #folding even edges for pair in even_edges: qc.cnot(pair[0],pair[1]) qc.barrier() for pair in even_edges: qc.cnot(pair[0],pair[1]) qc.barrier() for pair in even_edges: qc.cnot(pair[0],pair[1]) qc.barrier() #folding odd edges for pair in odd_edges: qc.cnot(pair[0],pair[1]) qc.barrier() for pair in odd_edges: qc.cnot(pair[0],pair[1]) qc.barrier() for pair in odd_edges: qc.cnot(pair[0],pair[1]) qc.barrier() for qubit in range(nqubits): qc.ry(theta_list[nqubits+2*(nqubits)*layer_index+qubit], qubit) return qc # Here we define and show the circuit for the HEA layers_hea = 1 theta_list = ParameterVector('t',2*n_qubits*layers_hea) # The list of parameters must ansatz_hea = get_ansatz_hea(graph,theta_list) ansatz_hea.draw('mpl', style="iqx") # Here is the folded version of the HEA ansatz for the ZNE ansatz_hea = get_ansatz_hea_ZNE(graph,theta_list) ansatz_hea.draw('mpl', style="iqx") def get_estimator(session, server='qasm', shots=2**14, device=FakeKolkata(), options_rtm=Options(), seed=170): """Defines an estimator. Set 'qasm' for noiseless, 'noisy' for backend estimator and 'rtm' for the runtime estimator""" if server =='qasm': estimator = Estimator(options={'shots':shots,'seed':seed}) elif server == 'noisy': estimator = BackendEstimator(device,options={'shots':shots,'seed':seed}) elif server == 'rtm': estimator = IBM_Estimator(session=session,options=options_rtm) return estimator def get_extrapolation(value_k1,value_k2,extrap='lin'): """Returns the exponential extrapolation given the values for k=1 and k=2 noise factors""" k_values = [1.,2.] if extrap =='lin': y_values = [value_k1,value_k2] # Fit a linear regression model (polynomial of degree 1) coefficients = np.polyfit(k_values, y_values, 1) # The coefficients represent the slope (m) and y-intercept (b) of the line slope, intercept = coefficients extrapolation = intercept if extrap == 'exp': y_values = [np.abs(value_k1/value_k2),1.] ln_y = np.log(y_values) # Fit a linear regression model (polynomial of degree 1) coefficients_exp = np.polyfit(k_values, ln_y, 1) # The coefficients represent the slope (m) and y-intercept (b) of the line slope_exp, intercept_exp = coefficients_exp extrapolation = np.exp(intercept_exp)*value_k2 return extrapolation def vqe_opt_scipy(graph, service, backend, g=0.7071067811865476, h=0.5, ansatz_str='hea', layers=1, optimizer='SLSQP', maxiter=50, ftol=0., reps=1, zne=False, extrap='exp', shots=None, server='qasm', device=FakeNairobi(), options=Options()): """Runs the vqe for the Ising model with boundary fields for a single value of the boundary field, using the scipy optimization function. It gives data for the convergence of the optimization, which is the logs for each sampling, the mean and standart deviation of these samplings, and also the number of function evaluations Args: graph: networkx lattice graph service: service for runtime backend: backend for runtime (can include quantum backends) g: value of the boundary field h: value of the transverse field ansatz_str: choice of ansatz, 'hea' for HEA and 'hva' for HVA layers: number of layers for the ansatz optimizer: optimization algorithm, as string for scipy maxiter: maximum iterations for the optimization ftol: tolerance for convergence, for scipy reps: (int) number of initial parameters samplings zne: (bool) zne option extrap: type of extrapolation shots: number of shots, set to None for statevector simulations server: 'qasm' for noiseless, 'noisy' for aer, 'rtm' for runtime device: noise model for noisy simulations options: Options() class for runtime """ n_qubits = len(graph.nodes()) if ansatz_str == 'hea': theta_list = ParameterVector('θ',2*n_qubits*layers) ansatz = get_ansatz_hea(graph,theta_list) ansatz_k2 = get_ansatz_hea_ZNE(graph,theta_list) elif ansatz_str == 'hva': theta_list = ParameterVector('θ',3*layers) ansatz = get_ansatz_hva(graph,theta_list) ansatz_k2 = get_ansatz_hva(graph,theta_list) cost_operator = get_h_op(graph,hx=h,ap=g) #Defining Hamiltonian # Now we set the cost function, with no mitigation, linear or exp extrapolation if zne == False: def cost_function_vqe(theta): job = estimator.run(ansatz, cost_operator, theta) values = job.result().values[0] return values if zne == True: def cost_function_vqe(theta): job = estimator.run([ansatz,ansatz_k2], 2*[cost_operator], 2*[theta]) value_k1 = job.result().values[0] value_k2 = job.result().values[1] extrapolation = get_extrapolation(value_k1=value_k1,value_k2=value_k2,extrap=extrap) return extrapolation log_list = [] nfev_list = [] with Session(service=service,backend=backend) as session: estimator = get_estimator(server=server, shots=shots, device=device, session=session, options_rtm=options) for i in tqdm(range(reps)): random_point = np.random.random(ansatz.num_parameters) iter_list = [] result_sample = minimize(cost_function_vqe, x0=random_point, method=optimizer, callback=lambda xk: iter_list.append(list(xk)), options={'maxiter':maxiter,'disp':False,'ftol':ftol}) iters = len(iter_list) energy_list = estimator.run(iters*[ansatz],iters*[cost_operator],iter_list).result().values nfev_list.append(int(result_sample.nfev)) log_list.append(list(energy_list)) session.close() max_length = max(len(sublist) for sublist in log_list) # Finding the length of the largest list for sublist in log_list: if len(sublist) < max_length: last_element = sublist[-1] # Extracting the last element sublist.extend([last_element] * (max_length - len(sublist))) # Filling with the last element mean_list = [] std_list = [] for i in range(len(log_list[0])): values_list = [l[i] for l in log_list] mean_list.append(np.mean(values_list)) std_list.append(np.std(values_list)) return log_list,mean_list,std_list,nfev_list g_mag = 0.2 g_knk = 1.2 E_mag = NumPyMinimumEigensolver().compute_minimum_eigenvalue(get_h_op(graph,ap=g_mag)).eigenvalue E_knk = NumPyMinimumEigensolver().compute_minimum_eigenvalue(get_h_op(graph,ap=g_knk)).eigenvalue reps = 5 # we define the number of initial parameters samplings logs_hva_mag,avgs_hva_mag,stds_hva_mag,nfevs_hva_mag = vqe_opt_scipy(graph=graph, service=service, backend=backend, server='qasm', g=g_mag, layers=layers_hva, ansatz_str='hva', reps=reps, maxiter=300, shots=None, ftol=1e-16) avgs_list = avgs_hva_mag stds_list = stds_hva_mag g_value = g_mag exact_energy = E_mag #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") plt.xlim((0,40)) x_lim = 60 # plt.xlim(0,60) plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -10, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() logs_hva_knk,avgs_hva_knk,stds_hva_knk,nfevs_hva_knk = vqe_opt_scipy(graph=graph, service=service, backend=backend, server='qasm', g=g_knk, layers=layers_hva, ansatz_str='hva', reps=reps, maxiter=300, shots=None, ftol=1e-16) avgs_list = avgs_hva_knk stds_list = stds_hva_knk g_value = g_knk exact_energy = E_knk #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") plt.xlim((0,40)) x_lim = 60 # plt.xlim(0,60) plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -10, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() # Here we define a different callback which is suited for the SPSA implementation of qiskit intermediate_info = { 'nfev': [], 'parameters': [], 'energy': [], 'step_size': [], 'step_sucesss': [] } def callback(nfev, parameters, energy, step_size,step_sucess): intermediate_info['nfev'].append(nfev) intermediate_info['parameters'].append(parameters) intermediate_info['energy'].append(energy) intermediate_info['step_size'].append(step_size) intermediate_info['step_sucess'].append(step_sucess) @dataclass class VQELog: values: list parameters: list def update(self, count, parameters, mean, step_size, step_sucess): self.values.append(mean) self.parameters.append(parameters) print(f"Running circuit {count}", end="\r", flush=True) # Here is the main function def vqe_critical_spsa(graph, service, backend, device=FakeKolkata(), g=0.7071067811865476, layers=1, server='qasm', learning_rate=0.07, perturbation=0.1, maxiter=200, hx=0.5, options=Options(), zne=False, extrap='exp', reps=1, shots=2**14, ansatz_str='hea'): """Runs the vqe for the Ising model with boundary fields for a single value of the boundary field, using the scipy optimization function. It gives data for the convergence of the optimization, which is the logs for each sampling, the mean and standart deviation of these samplings, and also the number of function evaluations Args: graph: networkx lattice graph service: service for runtime backend: backend for runtime (can include quantum backends) g: value of the boundary field h: value of the transverse field ansatz_str: choice of ansatz, 'hea' for HEA and 'hva' for HVA layers: number of layers for the ansatz maxiter: maximum iterations for the optimization learning_rate: learning rate for the SPSA optimizer perturbation: perturbation for the SPSA optimizer reps: (int) number of initial parameters samplings zne: (bool) zne option extrap: type of extrapolation shots: number of shots, set to None for statevector simulations server: 'qasm' for noiseless, 'noisy' for aer, 'rtm' for runtime device: noise model for noisy simulations options: Options() class for runtime """ n_qubits = len(graph.nodes()) if ansatz_str == 'hea': theta_list = ParameterVector('θ',2*n_qubits*layers) ansatz = get_ansatz_hea(graph,theta_list) ansatz_k2 = get_ansatz_hea_ZNE(graph,theta_list) elif ansatz_str == 'hva': theta_list = ParameterVector('θ',3*layers) ansatz = get_ansatz_hva(graph,theta_list) ansatz_k2 = get_ansatz_hva(graph,theta_list) cost_operator = get_h_op(graph,hx=hx,ap=g) #Defining Hamiltonian # Now we set the cost function, with no mitigation, linear or exp extrapolation if zne == False: def cost_function_vqe(theta): job = estimator.run(ansatz, cost_operator, theta) values = job.result().values[0] return values if zne == True: def cost_function_vqe(theta): job = estimator.run([ansatz,ansatz_k2], 2*[cost_operator], 2*[theta]) value_k1 = job.result().values[0] value_k2 = job.result().values[1] return get_extrapolation(value_k1=value_k1,value_k2=value_k2,extrap=extrap) log_list = [] nfev_list = [] with Session(service=service,backend=backend) as session: # estimator = BackendEstimator(FakeNairobiV2(),options={'shots':shots}) estimator = get_estimator(server=server, shots=shots, device=device, session=session, options_rtm=options) for i in tqdm(range(reps)): log = VQELog([], []) spsa = SPSA(maxiter=maxiter, trust_region=True, learning_rate=learning_rate, perturbation=perturbation, callback=log.update) random_point = np.random.random(ansatz.num_parameters) result_sample = spsa.minimize(cost_function_vqe,x0=random_point) log_list.append(log) nfev_list.append(result_sample.nfev) session.close() max_length = max(len(sublist.values) for sublist in log_list) # Finding the length of the largest list for sublist in log_list: if len(sublist.values) < max_length: last_element = sublist[-1] # Extracting the last element sublist = list(sublist)[:].extend([last_element] * (max_length - len(sublist))) # Filling with the last element mean_list = [] std_list = [] for i in range(len(log_list[0].values)): values_list = [log.values[i] for log in log_list] mean_list.append(np.mean(values_list)) std_list.append(np.std(values_list)) return log_list,mean_list,std_list,nfev_list logs_hea_noisy_mag,avgs_hea_noisy_mag,stds_hea_noisy_mag,nfevs_hea_noisy_mag = vqe_critical_spsa(graph=graph, service=service, backend=backend, device=FakeKolkata(), g=g_mag, server='noisy', layers=1, maxiter=170, ansatz_str='hea', reps=5, zne=False, shots = shots ) avgs_list = avgs_hea_noisy_mag stds_list = stds_hea_noisy_mag g_value = g_mag exact_energy = E_mag #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization noisy g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -3, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() reps = 3 logs_hea_zne_mag,avgs_hea_zne_mag,stds_hea_zne_mag,nfevs_hea_zne_mag = vqe_critical_spsa(graph=graph, service=service, backend=backend, device=FakeKolkata(), g=g_mag, server='noisy', layers=1, maxiter=170, ansatz_str='hea', reps=reps, zne=True, extrap='exp', shots=shots ) avgs_list = avgs_hea_zne_mag stds_list = stds_hea_zne_mag g_value = g_mag exact_energy = E_mag #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") x_lim = 60 # plt.xlim(0,60) plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization mitigated g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -3, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() logs_hea_noisy_knk,avgs_hea_noisy_knk,stds_hea_noisy_knk,nfevs_hea_noisy_knk = vqe_critical_spsa(graph=graph, service=service, backend=backend, device=FakeKolkata(), g=g_knk, server='noisy', layers=1, maxiter=170, ansatz_str='hea', reps=reps, zne=False, shots=shots ) avgs_list = avgs_hea_noisy_knk stds_list = stds_hea_noisy_knk g_value = g_knk exact_energy = E_knk #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") x_lim = 60 # plt.xlim(0,60) plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization noisy g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -3, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() reps = 3 logs_hea_zne_knk,avgs_hea_zne_knk,stds_hea_zne_knk,nfevs_hea_zne_knk = vqe_critical_spsa(graph=graph, service=service, backend=backend, device=FakeKolkata(), g=g_knk, server='noisy', layers=1, maxiter=170, ansatz_str='hea', reps=reps, zne=True, extrap='exp', shots=shots ) avgs_list = avgs_hea_zne_knk stds_list = stds_hea_zne_knk g_value = g_knk exact_energy = E_knk #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") # plt.xlim(0,60) plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization mitigated g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -3, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() def vqe_phase_diagram(graph, g_values, optimizer, init_optimizer, service, backend, server='qasm', device=FakeNairobi(), angles_dict = {}, layers=1, hx=0.5, options=Options(), zne=False, extrap='exp', init_reps=1, shots=2**14, ansatz_str='hea'): """Runs the vqe to simulate the antiparallel model in the hardware efficient ansatz for different values of the antiparallel field. Returns the list of energies as well as a dictionary with the optimal angles for each value of the boundary field. Args: graph: networkx lattice graph g_values: list of values for the boundary field angles_dict: dictionary of angles optimizer: qiskit optimizer class init_optimizer: optimizer for the first point layers: layers for the ansatz service: service for runtime backend: backend for runtime (can include quantum backends) h: value of the transverse field ansatz_str: choice of ansatz, 'hea' for HEA and 'hva' for HVA reps: number of initial parameters samplings for the first point zne: (bool) zne option extrap: type of extrapolation shots: number of shots, set to None for statevector simulations server: 'qasm' for noiseless, 'noisy' for aer, 'rtm' for runtime device: noise model for noisy simulations options: Options() class for runtime """ n_qubits = len(graph.nodes()) if ansatz_str == 'hea': theta_list = ParameterVector('θ',2*n_qubits*layers) ansatz = get_ansatz_hea(graph,theta_list) ansatz_k2 = get_ansatz_hea_ZNE(graph,theta_list) elif ansatz_str == 'hva': theta_list = ParameterVector('θ',3*layers) ansatz = get_ansatz_hva(graph,theta_list) ansatz_k2 = get_ansatz_hva(graph,theta_list) E_values = [] rev_g_values = g_values[::-1] for i,g in enumerate(tqdm(rev_g_values)): cost_operator = get_h_op(graph,hx=hx,ap=g) #Defining Hamiltonian # Now we set the cost function, with no mitigation, linear or exp extrapolation if zne == False: def cost_function_vqe(theta): job = estimator.run(ansatz, cost_operator, theta) values = job.result().values[0] return values if zne == True: def cost_function_vqe(theta): job = estimator.run([ansatz,ansatz_k2], 2*[cost_operator], 2*[theta]) value_k1 = job.result().values[0] value_k2 = job.result().values[1] return get_extrapolation(value_k1=value_k1,value_k2=value_k2,extrap=extrap) if i == 0: sample = 0. for j in range(init_reps): #Performs sampling of initial parameters for the first point initial_point = np.random.uniform(0., 2*np.pi, size=ansatz.num_parameters) with Session(service=service,backend=backend) as session: estimator = get_estimator(server=server, shots=shots, device=device, session=session, options_rtm=options) result_sample = init_optimizer.minimize(fun=cost_function_vqe, x0=initial_point) session.close() if result_sample.fun < sample: sample = result_sample.fun result = result_sample initial_point = result.x else: with Session(service=service,backend=backend) as session: estimator = get_estimator(server=server, shots=shots, device=device, session=session, options_rtm=options) result = optimizer.minimize(fun=cost_function_vqe, x0=initial_point) session.close() E_values.append(result.fun) #optimal angles storage angles = list(result.x) angles_dict[str(round(g,5))] = angles return E_values,angles_dict def vqe_optimal(graph, service, backend, angles_opt, server='qasm', device=FakeNairobi(), layers=1, hx=0.5, options=Options(), zne=False, extrap='lin', shots=2**14, ansatz_str='hea'): """ Receives the optimal parameters for each value of the boundary field and runs the circuits to compute the energy as well as the number of kinks Args: graph: networkx lattice graph g_values: list of values for the boundary field angles_opt: dictionary of optimal angles service: service for runtime backend: backend for runtime (can include quantum backends) h: value of the transverse field ansatz_str: choice of ansatz, 'hea' for HEA and 'hva' for HVA layers: layers for the ansatz reps: number of initial parameters samplings for the first point zne: (bool) zne option extrap: type of extrapolation shots: number of shots, set to None for statevector simulations server: 'qasm' for noiseless, 'noisy' for aer, 'rtm' for runtime device: noise model for noisy simulations options: Options() class for runtime Returns: The values of the energy, number of kinks, and the associated values of g to facilitate plotting """ n_qubits = len(graph.nodes()) g_values = [float(k) for k in angles_opt.keys()] n_points = len(g_values) # Setting the ansatz if ansatz_str == 'hea': theta_list = ParameterVector('θ',2*n_qubits*layers) ansatz = get_ansatz_hea(graph,theta_list) ansatz_k2 = get_ansatz_hea_ZNE(graph,theta_list) elif ansatz_str == 'hva': theta_list = ParameterVector('θ',3*layers) ansatz = get_ansatz_hva(graph,theta_list) ansatz_k2 = get_ansatz_hva(graph,theta_list) # Getting the list of angles and hamiltonians angles_list = [] h_list = [] g_list = [] kk_op = get_kk_op(graph) E_values = [] kk_values = [] for g_str,angles in angles_opt.items(): g = float(g_str) g_list.append(g) h_list.append(get_h_op(graph,hx=hx,ap=g)) angles_list.append(angles) with Session(service=service,backend=backend) as session: estimator = get_estimator(server=server, shots=shots, device=device, session=session, options_rtm=options) result_h = estimator.run(n_points*[ansatz],h_list,angles_list).result() result_kk = estimator.run(n_points*[ansatz],n_points*[kk_op],angles_list).result() if zne == False: E_values = list(result_h.values) kk_values = list(result_kk.values) else: result_h_k2 = estimator.run(n_points*[ansatz_k2],h_list,angles_list).result() result_kk_k2 = estimator.run(n_points*[ansatz_k2],n_points*[kk_op],angles_list).result() for i in range(n_points): E_values.append(get_extrapolation(result_h.values[i],result_h_k2.values[i],extrap)) kk_values.append(get_extrapolation(result_kk.values[i],result_kk_k2.values[i],extrap)) session.close() return E_values,kk_values,g_list # We define the range of values of g used for the VQE implentation g_values = np.linspace(g_i,g_f,25) init_reps = 5 slsqp = SLSQP(150) init_slsqp = SLSQP(150) # We consider more iterations for the first point E_hva,angles_hva = vqe_phase_diagram(graph=graph, g_values=g_values, ansatz_str='hva', backend=backend, layers=layers_hva, optimizer=slsqp, init_optimizer=init_slsqp, service=service, server='qasm', shots=None, init_reps=init_reps) # Now we run the circuits one last time with the optimal parameters E_hva,kk_hva,g_hva = vqe_optimal(graph=graph, service=service, server='qasm', angles_opt=angles_hva, ansatz_str='hva', layers=layers_hva, backend=backend) #Plotting f,ax = plt.subplots() #plt.plot(g_values,E_3,'ro') plt.plot(exact_g_values,exact_E,label='exact') plt.plot(g_hva,E_hva,'ro',label='VQE') plt.xlabel('boundary field') plt.ylabel('groundstate energy') plt.legend() inset_ax = f.add_axes([0.24, 0.22, 0.3, 0.3]) # [left, bottom, width, height] plt.plot(exact_g_values,exact_kk) plt.plot(g_hva,kk_hva,'ro',markersize=4) inset_ax.set_xlabel('boundary field') inset_ax.set_ylabel("$<N_k>$") plt.show() init_reps = 2 spsa = SPSA(maxiter=300,trust_region=True,learning_rate=0.07,perturbation=0.1) init_spsa = SPSA(maxiter=300,trust_region=True,learning_rate=0.07,perturbation=0.1) # We consider more iterations for the first point # To perform the whole optimization using ZNE, just set zne = True # This step took 207 minutes to run on my machine E_hea_noisy,angles_hea_noisy = vqe_phase_diagram(graph=graph, g_values=g_values, ansatz_str='hea', backend=backend, layers=layers_hea, optimizer=spsa, init_optimizer=init_spsa, service=service, server='noisy', device=FakeKolkata(), zne=False, shots=shots, init_reps=init_reps) # Now we run the circuits one last time with the optimal parameters E_opt_hea_noisy,kk_opt_hea_noisy,g_hea = vqe_optimal(graph=graph, service=service, server='noisy', angles_opt=angles_hea_noisy, device=FakeKolkata(), ansatz_str='hea', layers=layers_hea, zne=False, backend=backend, shots=shots) #Plotting f,ax = plt.subplots() #plt.plot(g_values,E_3,'ro') plt.plot(exact_g_values,exact_E,label='exact') plt.plot(g_hea,E_opt_hea_noisy,'o',label='noisy') plt.xlabel('boundary field') plt.ylabel('groundstate energy') plt.legend() inset_ax = f.add_axes([0.24, 0.22, 0.3, 0.3]) # [left, bottom, width, height] plt.plot(exact_g_values,exact_kk) plt.plot(g_hea,kk_opt_hea_noisy,'o',markersize=4) inset_ax.set_xlabel('boundary field') inset_ax.set_ylabel("$<N_k>$") plt.show() # Now we run the circuits now using ZNE E_opt_hea_mitigated,kk_opt_hea_mitigated,g_hea = vqe_optimal(graph=graph, service=service, server='noisy', angles_opt=angles_hea_noisy, device=FakeKolkata(), ansatz_str='hea', layers=layers_hea, zne=True, extrap='exp', backend=backend, shots=shots) #Plotting f,ax = plt.subplots() #plt.plot(g_values,E_3,'ro') plt.plot(exact_g_values,exact_E,label='exact') plt.plot(g_hea,E_opt_hea_noisy,'o',label='noisy') plt.plot(g_hea,E_opt_hea_mitigated,'o',label='mitigated') plt.xlabel('boundary field') plt.ylabel('groundstate energy') plt.legend() inset_ax = f.add_axes([0.24, 0.22, 0.3, 0.3]) # [left, bottom, width, height] plt.plot(exact_g_values,exact_kk) plt.plot(g_hea,kk_opt_hea_noisy,'o',markersize=4) plt.plot(g_hea,kk_opt_hea_mitigated,'o',markersize=4) inset_ax.set_xlabel('boundary field') inset_ax.set_ylabel("$<N_k>$") plt.show() # First we get the optimal parameters with statevector simulations E_hea_noiseless,angles_hea_noiseless = vqe_phase_diagram(graph=graph, g_values=g_values, ansatz_str='hea', backend=backend, layers=layers_hea, optimizer=spsa, init_optimizer=init_spsa, service=service, server='qasm', shots=None, init_reps=init_reps) # Setting options for runtime # Noisy options fake_device = FakeKolkata() noise_model = NoiseModel.from_backend(fake_device) options_noisy = Options() options_noisy.execution.shots = shots options_noisy.simulator = { "noise_model": noise_model, "basis_gates": fake_device.configuration().basis_gates, "coupling_map": fake_device.configuration().coupling_map, "seed_simulator": 42 } options_noisy.optimization_level = 3 # no optimization options_noisy.resilience_level = 0 # M3 for Sampler and T-REx for Estimator # Mitigated options options_mitigated = Options() options_mitigated.execution.shots = shots options_mitigated.simulator = { "noise_model": noise_model, "basis_gates": fake_device.configuration().basis_gates, "coupling_map": fake_device.configuration().coupling_map } # Set number of shots, optimization_level and resilience_level options_mitigated.optimization_level = 3 options_mitigated.resilience_level = 1 # setting T-REX # Now we run the circuits in runtime with the optimal parameters # To run on runtime we set server = 'rtm' # First we run the unmitigated results E_opt_hea_noisy_rtm,kk_opt_hea_noisy_rtm,g_hea = vqe_optimal(graph=graph, service=service, server='rtm', options = options_noisy, angles_opt=angles_hea_noiseless, ansatz_str='hea', layers=layers_hea, zne=False, extrap='exp', backend=backend, shots=shots) # Now we run using ZNE and ZNE+T-REX # ZNE E_opt_hea_mitigated1_rtm,kk_opt_hea_mitigated1_rtm,g_hea = vqe_optimal(graph=graph, service=service, server='rtm', options = options_noisy, angles_opt=angles_hea_noiseless, ansatz_str='hea', layers=layers_hea, zne=True, extrap='exp', backend=backend, shots=shots) # ZNE + T-REX E_opt_hea_mitigated2_rtm,kk_opt_hea_mitigated2_rtm,g_hea = vqe_optimal(graph=graph, service=service, server='rtm', options = options_mitigated, angles_opt=angles_hea_noiseless, ansatz_str='hea', layers=layers_hea, zne=True, extrap='exp', backend=backend, shots=shots) #Plotting f,ax = plt.subplots() #plt.plot(g_values,E_3,'ro') plt.plot(exact_g_values,exact_E,label='exact') plt.plot(g_hea,E_opt_hea_noisy_rtm,'o',label='noisy') plt.plot(g_hea,E_opt_hea_mitigated1_rtm,'o',label='ZNE') plt.plot(g_hea,E_opt_hea_mitigated2_rtm,'o',label='ZNE+T-REX') plt.xlabel('boundary field') plt.ylabel('groundstate energy') plt.legend() inset_ax = f.add_axes([0.24, 0.22, 0.3, 0.3]) # [left, bottom, width, height] plt.plot(exact_g_values,exact_kk) plt.plot(g_hea,kk_opt_hea_noisy_rtm,'o',markersize=4) plt.plot(g_hea,kk_opt_hea_mitigated1_rtm,'o',markersize=4) plt.plot(g_hea,kk_opt_hea_mitigated2_rtm,'o',markersize=4) inset_ax.set_xlabel('boundary field') inset_ax.set_ylabel("$<N_k>$") plt.show()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# You can make the bars more transparent to better see the ones that are behind # if they overlap. import numpy as np from qiskit.quantum_info import Statevector from qiskit.visualization import plot_state_city from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc = QuantumCircuit(2) qc.h([0, 1]) qc.cz(0,1) qc.ry(np.pi/3, 0) qc.rx(np.pi/5, 1) state = Statevector(qc) plot_state_city(state, alpha=0.6)
https://github.com/gatchan00/QPlex
gatchan00
%config IPCompleter.greedy=True # useful additional packages import matplotlib.pyplot as plt import matplotlib.axes as axes %matplotlib inline import numpy as np import networkx as nx from qiskit import BasicAer from qiskit.tools.visualization import plot_histogram from qiskit.aqua import Operator, run_algorithm from qiskit.aqua.input import EnergyInput from qiskit.aqua.translators.ising import max_cut, tsp from qiskit.aqua.algorithms import VQE, ExactEigensolver from qiskit.aqua.components.optimizers import SPSA from qiskit.aqua.components.variational_forms import RY from qiskit.aqua import QuantumInstance # setup aqua logging import logging from qiskit.aqua import set_qiskit_aqua_logging # set_qiskit_aqua_logging(logging.DEBUG) # choose INFO, DEBUG to see the log a = -5 b = -3 #xRaw = 4 #yRaw = 5 def getBit(number,precision,posicion): return int(format(number,'b').rjust(precision,'0')[precision-1-i]) n = 3 from docplex.mp.model import Model from qiskit.aqua.translators.ising import docplex # Create an instance of a model and variables. mdl = Model(name='max_cut') x = {i: mdl.binary_var(name='x_{0}'.format(i)) for i in range(n)} y = {i: mdl.binary_var(name='y_{0}'.format(i)) for i in range(n)} # Object function precision = 4 max_cut_func = mdl.sum(a*2**i*x[i]+b*2**i*y[i] for i in range(n)) mdl.maximize(max_cut_func) qubitOp_docplex, offset_docplex = docplex.get_qubitops(mdl) seed = 10598 spsa = SPSA(max_trials=300) ry = RY(qubitOp_docplex.num_qubits, depth=4, entanglement='linear') vqe = VQE(qubitOp_docplex, ry, spsa, 'matrix') backend = BasicAer.get_backend('statevector_simulator') quantum_instance = QuantumInstance(backend, seed=seed, seed_transpiler=seed) result = vqe.run(quantum_instance) x = max_cut.sample_most_likely(result['eigvecs'][0]) print('solution:', max_cut.get_graph_solution(x)) #print('solution objective:', max_cut.max_cut_value(x, w))
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
from qiskit import * from oracle_generation import generate_oracle get_bin = lambda x, n: format(x, 'b').zfill(n) def gen_circuits(min,max,size): circuits = [] secrets = [] ORACLE_SIZE = size for i in range(min,max+1): cur_str = get_bin(i,ORACLE_SIZE-1) (circuit, secret) = generate_oracle(ORACLE_SIZE,False,3,cur_str) circuits.append(circuit) secrets.append(secret) return (circuits, secrets)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import copy # Problem modelling imports from docplex.mp.model import Model # Qiskit imports from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit.utils.algorithm_globals import algorithm_globals from qiskit_optimization.algorithms import MinimumEigenOptimizer, CplexOptimizer from qiskit_optimization import QuadraticProgram from qiskit_optimization.problems.variable import VarType from qiskit_optimization.converters.quadratic_program_to_qubo import QuadraticProgramToQubo from qiskit_optimization.translators import from_docplex_mp def create_problem(mu: np.array, sigma: np.array, total: int = 3) -> QuadraticProgram: """Solve the quadratic program using docplex.""" mdl = Model() x = [mdl.binary_var("x%s" % i) for i in range(len(sigma))] objective = mdl.sum([mu[i] * x[i] for i in range(len(mu))]) objective -= 2 * mdl.sum( [sigma[i, j] * x[i] * x[j] for i in range(len(mu)) for j in range(len(mu))] ) mdl.maximize(objective) cost = mdl.sum(x) mdl.add_constraint(cost == total) qp = from_docplex_mp(mdl) return qp def relax_problem(problem) -> QuadraticProgram: """Change all variables to continuous.""" relaxed_problem = copy.deepcopy(problem) for variable in relaxed_problem.variables: variable.vartype = VarType.CONTINUOUS return relaxed_problem mu = np.array([3.418, 2.0913, 6.2415, 4.4436, 10.892, 3.4051]) sigma = np.array( [ [1.07978412, 0.00768914, 0.11227606, -0.06842969, -0.01016793, -0.00839765], [0.00768914, 0.10922887, -0.03043424, -0.0020045, 0.00670929, 0.0147937], [0.11227606, -0.03043424, 0.985353, 0.02307313, -0.05249785, 0.00904119], [-0.06842969, -0.0020045, 0.02307313, 0.6043817, 0.03740115, -0.00945322], [-0.01016793, 0.00670929, -0.05249785, 0.03740115, 0.79839634, 0.07616951], [-0.00839765, 0.0147937, 0.00904119, -0.00945322, 0.07616951, 1.08464544], ] ) qubo = create_problem(mu, sigma) print(qubo.prettyprint()) result = CplexOptimizer().solve(qubo) print(result.prettyprint()) qp = relax_problem(QuadraticProgramToQubo().convert(qubo)) print(qp.prettyprint()) sol = CplexOptimizer().solve(qp) print(sol.prettyprint()) c_stars = sol.samples[0].x print(c_stars) algorithm_globals.random_seed = 12345 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) from qiskit import QuantumCircuit thetas = [2 * np.arcsin(np.sqrt(c_star)) for c_star in c_stars] init_qc = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): init_qc.ry(theta, idx) init_qc.draw(output="mpl") from qiskit.circuit import Parameter beta = Parameter("β") ws_mixer = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): ws_mixer.ry(-theta, idx) ws_mixer.rz(-2 * beta, idx) ws_mixer.ry(theta, idx) ws_mixer.draw(output="mpl") ws_qaoa_mes = QAOA( sampler=Sampler(), optimizer=COBYLA(), initial_state=init_qc, mixer=ws_mixer, initial_point=[0.0, 1.0], ) ws_qaoa = MinimumEigenOptimizer(ws_qaoa_mes) ws_qaoa_result = ws_qaoa.solve(qubo) print(ws_qaoa_result.prettyprint()) def format_qaoa_samples(samples, max_len: int = 10): qaoa_res = [] for s in samples: if sum(s.x) == 3: qaoa_res.append(("".join([str(int(_)) for _ in s.x]), s.fval, s.probability)) res = sorted(qaoa_res, key=lambda x: -x[1])[0:max_len] return [(_[0] + f": value: {_[1]:.3f}, probability: {1e2*_[2]:.1f}%") for _ in res] format_qaoa_samples(qaoa_result.samples) format_qaoa_samples(ws_qaoa_result.samples) from qiskit_optimization.algorithms import WarmStartQAOAOptimizer qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) ws_qaoa = WarmStartQAOAOptimizer( pre_solver=CplexOptimizer(), relax_for_pre_solver=True, qaoa=qaoa_mes, epsilon=0.0 ) ws_result = ws_qaoa.solve(qubo) print(ws_result.prettyprint()) format_qaoa_samples(ws_result.samples) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# Useful additional packages import matplotlib.pyplot as plt import numpy as np from math import pi from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, transpile from qiskit.tools.visualization import circuit_drawer from qiskit.quantum_info import state_fidelity from qiskit import BasicAer backend = BasicAer.get_backend('unitary_simulator') q = QuantumRegister(1) qc = QuantumCircuit(q) qc.u(pi/2,pi/4,pi/8,q) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.p(pi/2,q) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.id(q) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.x(q) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.y(q) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.z(q) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.h(q) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.s(q) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.sdg(q) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.t(q) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.tdg(q) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.rx(pi/2,q) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.ry(pi/2,q) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.rz(pi/2,q) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) q = QuantumRegister(2) qc = QuantumCircuit(q) qc.cx(q[0],q[1]) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.cy(q[0],q[1]) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.cz(q[0],q[1]) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.ch(q[0],q[1]) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.crz(pi/2,q[0],q[1]) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.cp(pi/2,q[0], q[1]) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.cu(pi/2, pi/2, pi/2, 0, q[0], q[1]) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.swap(q[0], q[1]) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) q = QuantumRegister(3) qc = QuantumCircuit(q) qc.ccx(q[0], q[1], q[2]) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.cswap(q[0], q[1], q[2]) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_unitary(qc, decimals=3) q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.measure(q, c) qc.draw() backend = BasicAer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend)) job.result().get_counts(qc) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_counts(qc) qc = QuantumCircuit(q, c) qc.reset(q[0]) qc.measure(q, c) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_counts(qc) qc = QuantumCircuit(q, c) qc.h(q) qc.reset(q[0]) qc.measure(q, c) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_counts(qc) qc = QuantumCircuit(q, c) qc.x(q[0]).c_if(c, 0) qc.measure(q,c) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_counts(qc) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q,c) qc.x(q[0]).c_if(c, 0) qc.measure(q,c) qc.draw() job = backend.run(transpile(qc, backend)) job.result().get_counts(qc) # Initializing a three-qubit quantum state import math desired_vector = [ 1 / math.sqrt(16) * complex(0, 1), 1 / math.sqrt(8) * complex(1, 0), 1 / math.sqrt(16) * complex(1, 1), 0, 0, 1 / math.sqrt(8) * complex(1, 2), 1 / math.sqrt(16) * complex(1, 0), 0] q = QuantumRegister(3) qc = QuantumCircuit(q) qc.initialize(desired_vector, [q[0],q[1],q[2]]) qc.draw() backend = BasicAer.get_backend('statevector_simulator') job = backend.run(transpile(qc, backend)) qc_state = job.result().get_statevector(qc) qc_state state_fidelity(desired_vector,qc_state) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile from qiskit.visualization import plot_circuit_layout from qiskit.providers.fake_provider import FakeVigo backend = FakeVigo() ghz = QuantumCircuit(3, 3) ghz.h(0) ghz.cx(0,range(1,3)) ghz.barrier() ghz.measure(range(3), range(3)) new_circ_lv0 = transpile(ghz, backend=backend, optimization_level=0) plot_circuit_layout(new_circ_lv0, backend)
https://github.com/MonitSharma/Qiskit-Summer-School-and-Quantum-Challenges
MonitSharma
from qiskit import QuantumCircuit # Create a new circuit with a single qubit qc = QuantumCircuit(1) # Add a Not gate to qubit 0 qc.x(0) # Return a drawing of the circuit using MatPlotLib ("mpl"). This is the # last line of the cell, so the drawing appears in the cell output. qc.draw("mpl") ### CHECK QISKIT VERSION import qiskit qiskit.__version__ ### CHECK OTHER DEPENDENCIES %pip show pylatexenc matplotlib qc_grader #qc-grader should be 0.18.8 (or higher) ### Imports from qiskit import QuantumCircuit from qiskit.quantum_info import SparsePauliOp from qiskit_ibm_runtime import EstimatorV2 as Estimator from qiskit_aer import AerSimulator import matplotlib.pyplot as plt from qc_grader.challenges.iqc_2024 import grade_lab0_ex1 # Create a new circuit with two qubits qc = QuantumCircuit(2) # Add a Hadamard gate to qubit 0 qc.h(0) # Perform a CNOT gate on qubit 1, controlled by qubit 0 qc.cx(0, 1) # Return a drawing of the circuit using MatPlotLib ("mpl"). This is the # last line of the cell, so the drawing appears in the cell output. qc.draw("mpl") # The ZZ applies a Z operator on qubit 0, and a Z operator on qubit 1 ZZ = SparsePauliOp('ZZ') # The ZI applies a Z operator on qubit 0, and an Identity operator on qubit 1 ZI = SparsePauliOp('ZI') # The IX applies an Identity operator on qubit 0, and an X operator on qubit 1 IX = SparsePauliOp('IX') ### Write your code below here ### IZ = SparsePauliOp('IZ') XX = SparsePauliOp('XX') XI = SparsePauliOp('XI') ### Follow the same naming convention we used above ## Don't change any code past this line, but remember to run the cell. observables = [IZ, IX, ZI, XI, ZZ, XX] # Submit your answer using following code grade_lab0_ex1(observables) # Set up the Estimator estimator = Estimator(backend=AerSimulator()) # Submit the circuit to Estimator pub = (qc, observables) job = estimator.run(pubs=[pub]) # Collect the data data = ['IZ', 'IX', 'ZI', 'XI', 'ZZ', 'XX'] values = job.result()[0].data.evs # Set up our graph container = plt.plot(data, values, '-o') # Label each axis plt.xlabel('Observables') plt.ylabel('Values') # Draw the final graph plt.show() container = plt.bar(data, values, width=0.8) plt.xlabel('Observables') plt.ylabel('Values') plt.show()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel line = LineLattice(2) fermi = FermiHubbardModel.uniform_parameters(line, 2.0, 4.0, 3.0) print(fermi.second_q_ops()) # Note: the trailing `s` from qiskit_nature.second_q.hamiltonians.lattices import LineLattice from qiskit_nature.second_q.hamiltonians import FermiHubbardModel line = LineLattice(2) fermi = FermiHubbardModel(line.uniform_parameters(2.0, 4.0), 3.0) print(fermi.second_q_op()) # Note: NO trailing `s` import numpy as np from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) fermi = FermiHubbardModel.from_parameters(interaction, 3.0) print(fermi.second_q_ops()) # Note: the trailing `s` import numpy as np from qiskit_nature.second_q.hamiltonians.lattices import Lattice from qiskit_nature.second_q.hamiltonians import FermiHubbardModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) lattice = Lattice.from_adjacency_matrix(interaction) fermi = FermiHubbardModel(lattice, 3.0) print(fermi.second_q_op()) # Note: NO trailing `s` from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice from qiskit_nature.problems.second_quantization.lattice.models import IsingModel line = LineLattice(2) ising = IsingModel.uniform_parameters(line, 2.0, 4.0) print(ising.second_q_ops()) # Note: the trailing `s` from qiskit_nature.second_q.hamiltonians.lattices import LineLattice from qiskit_nature.second_q.hamiltonians import IsingModel line = LineLattice(2) ising = IsingModel(line.uniform_parameters(2.0, 4.0)) print(ising.second_q_op()) # Note: NO trailing `s` import numpy as np from qiskit_nature.problems.second_quantization.lattice.models import IsingModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) ising = IsingModel.from_parameters(interaction) print(ising.second_q_ops()) # Note: the trailing `s` import numpy as np from qiskit_nature.second_q.hamiltonians.lattices import Lattice from qiskit_nature.second_q.hamiltonians import IsingModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) lattice = Lattice.from_adjacency_matrix(interaction) ising = IsingModel(lattice) print(ising.second_q_op()) # Note: NO trailing `s` import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/dkp-quantum/Tutorials
dkp-quantum
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * import numpy as np # Create a quantum register with 2 qubits q = QuantumRegister(2,'q') # Form a quantum circuit # Note that the circuit name is optional qc = QuantumCircuit(q,name="first_qc") # Display the quantum circuit qc.draw() # Add a Hadamard gate on qubit 0, putting this in superposition. qc.h(0) # Add a CX (CNOT) gate on control qubit 0 # and target qubit 1 to create an entangled state. qc.cx(0, 1) qc.draw() # Create a classical register with 2 bits c = ClassicalRegister(2,'c') meas = QuantumCircuit(q,c,name="first_m") meas.barrier(q) meas.measure(q, c) meas.draw() # Quantum circuits can be added with + operations # Add two pre-defined circuits qc_all=qc+meas qc_all.draw() # Draw the quantum circuit in a different (slightly better) format qc_all.draw(output='mpl') # Create the quantum circuit with the measurement in one go. qc_all = QuantumCircuit(q,c,name="2q_all") qc_all.h(0) qc_all.cx(0,1) qc_all.barrier() qc_all.measure(0,0) qc_all.measure(1,1) qc_all.draw(output='mpl') # Use Aer's qasm_simulator backend_q = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. job_sim1 = execute(qc_all, backend_q, shots=4096) job_sim1.status() # Grab the results from the job. result_sim1 = job_sim1.result() result_sim1 result_sim1.get_counts(qc_all) plot_histogram(result_sim1.get_counts(qc_all)) # Use Aer's statevector_simulator backend_sv = Aer.get_backend('statevector_simulator') # Execute the circuit on the statevector simulator. # It is important to note that the measurement has been excluded job_sim2 = execute(qc, backend_sv) # Grab the results from the job. result_sim2 = job_sim2.result() # Output the entire result result_sim2 # See output state as a vector outputstate = result_sim2.get_statevector(qc, decimals=5) print(outputstate) # Visualize density matrix plot_state_city(outputstate) # Create the quantum circuit with the measurement in one go. qc_3 = QuantumCircuit(3,3,name="qc_bloch") qc_3.x(1) qc_3.h(2) qc_3.barrier() qc_3.draw(output='mpl') # Execute the circuit on the statevector simulator. # It is important to note that the measurement has been excluded job_sim_bloch = execute(qc_3, backend_sv) # Grab the results from the job. result_sim_bloch = job_sim_bloch.result() # See output state as a vector output_bloch = result_sim_bloch.get_statevector(qc_3, decimals=5) # Draw on the Bloch sphere plot_bloch_multivector(output_bloch) # Use Aer's unitary_simulator backend_u = Aer.get_backend('unitary_simulator') # Execute the circuit on the unitary simulator. job_usim = execute(qc, backend_u) # Grab the results from the job. result_usim = job_usim.result() result_usim # Output the unitary matrix unitary = result_usim.get_unitary(qc) print('%s\n' % unitary) # Create the quantum circuit with the measurement in one go. qc_ex1 = QuantumCircuit(q,c,name="ex1") # Put the first qubit in equal superposition qc_ex1.h(0) # Rest of the circuit qc_ex1.x(1) qc_ex1.cx(0,1) qc_ex1.barrier() qc_ex1.measure(0,0) qc_ex1.measure(1,1) qc_ex1.draw(output='mpl') # Execute the circuit on the qasm simulator. job_ex1 = execute(qc_ex1, backend_q, shots=4096) job_ex1.status() # Grab the results from the job. result_ex1 = job_ex1.result() result_ex1.get_counts(qc_ex1) plot_histogram(result_ex1.get_counts(qc_ex1)) # Or get the histogram in one go plot_histogram(job_ex1.result().get_counts(qc_ex1)) # Create a quantum register with 3 qubits q3 = QuantumRegister(3,'q') # Create a classical register with 3 qubits c3 = ClassicalRegister(3,'c') # Create the quantum circuit with the measurement in one go. qc_ex2 = QuantumCircuit(q3,c3,name="ex1") qc_ex2.ry(2*np.pi/3,0) qc_ex2.cx(0,1) qc_ex2.cx(1,2) qc_ex2.barrier() qc_ex2.measure(q3,c3) qc_ex2.draw(output='mpl') # Execute the circuit on the qasm simulator. job_ex2 = execute(qc_ex2, backend_q, shots=4096) # Grab the results from the job. result_ex2 = job_ex2.result() plot_histogram(result_ex2.get_counts(qc_ex2)) # Create a quantum register with 3 qubits q3 = QuantumRegister(3,'q') # Create a classical register with 3 qubits c3 = ClassicalRegister(3,'c') # Create the quantum circuit without a Toffoli gate qc_toff = QuantumCircuit(q3,c3,name="ex1") qc_toff.ry(2*np.pi/3,0) qc_toff.h(1) qc_toff.h(2) qc_toff.barrier() qc_toff.measure(q3,c3) qc_toff.draw(output='mpl') # Execute the circuit on the qasm simulator. job_toff = execute(qc_toff, backend_q, shots=4096) # Grab the results from the job. result_toff = job_toff.result() plot_histogram(result_toff.get_counts(qc_toff)) # Now, add a Toffoli gate qc_toff = QuantumCircuit(q3,c3,name="ex1") qc_toff.ry(2*np.pi/3,0) qc_toff.h(1) qc_toff.h(2) qc_toff.ccx(1,2,0) qc_toff.barrier() qc_toff.measure(q3,c3) qc_toff.draw(output='mpl') # Execute the circuit on the qasm simulator. job_toff = execute(qc_toff, backend_q, shots=4096) # Grab the results from the job. result_toff = job_toff.result() plot_histogram(result_toff.get_counts(qc_toff)) from qiskit import IBMQ # first save your Token to disk IBMQ.save_account('<Your Token>') #IBMQ.load_account() # Load account from disk from qiskit import IBMQ # first save your Token to disk # IBMQ.disable_account() IBMQ.enable_account('<Your Token>') IBMQ.providers() open_provider = IBMQ.get_provider(hub='ibm-q', group='open') # default_provider = IBMQ.get_provider(hub='ibm-q-kaist', group='internal', project='default') open_provider.backends() default_provider.backends() from qiskit.tools.monitor import backend_overview, backend_monitor backend_overview() # Open access backend = open_provider.get_backend('ibmq_ourense') # select a number of premium devices backend_manhattan = default_provider.get_backend('ibmq_manhattan') backend_toronto = default_provider.get_backend('ibmq_toronto') backend_casablanca = default_provider.get_backend('ibmq_casablanca') backend_monitor(default_provider.get_backend('ibmq_ourense')) from qiskit.tools.jupyter import * backend from qiskit import Aer, QuantumCircuit, QuantumRegister, ClassicalRegister, execute from qiskit.tools.visualization import plot_histogram # Load account #IBMQ.load_account() # Select a backend backend_local = Aer.get_backend('qasm_simulator') backend_real = open_provider.get_backend('ibmq_ourense') #Simulator print(backend_local) print(backend_real) # number of qubits n = 2 # Define the Quantum and Classical Registers q = QuantumRegister(n) c = ClassicalRegister(n) # Build the circuit generalcircuit = QuantumCircuit(q, c) generalcircuit.h(q[0]) generalcircuit.cx(q[0],q[1]) generalcircuit.measure(q, c) generalcircuit.draw(output='mpl') # Execute the circuit job_local = execute(generalcircuit, backend_local, shots=8192) job_local.status() result=job_local.result() print(result) # Print the result plot_histogram(result.get_counts()) # Execute the circuit job_real = execute(generalcircuit, backend_real, shots=8192) job_real.status() # Print the result plot_histogram(job_real.result().get_counts()) import numpy as np from numpy import pi # importing Qiskit from qiskit import * from qiskit.visualization import * from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor from qiskit.tools.visualization import plot_gate_map, plot_error_map qftc = QuantumCircuit(3) qftc.h(0) qftc.draw(output='mpl') qftc.cu1(2*pi/(2**2), 1, 0) # CROT from qubit 1 to qubit 0 qftc.draw(output='mpl') qftc.cu1(2*pi/(2**3), 2, 0) # CROT from qubit 1 to qubit 0 qftc.draw(output='mpl') qftc.h(1) qftc.cu1(2*pi/(2**2), 2, 1) # CROT from qubit 2 to qubit 1 qftc.h(2) qftc.draw(output='mpl') # Complete the QFT circuit by reordering qubits (by exchanging qubit 1 and 3) qftc.swap(0,2) qftc.draw(output='mpl') def qft_rotations(circuit, n): if n == 0: # Exit function if circuit is empty print("The number of qubits must be greater than 0") return circuit index = 0 circuit.h(index) # Apply the H-gate to the most significant qubit index += 1 n -= 1 for qubit in range(n): # Apply the controlled rotations conditioned on n-1 qubits # For each less significant qubit, we need to do a # smaller-angled controlled rotation: circuit.cu1(2*pi/2**(2+qubit), index + qubit, 0) qc = QuantumCircuit(4) qft_rotations(qc,4) qc.draw(output = 'mpl') def qft_rotations(circuit, n, start): if n == 0: # Exit function if circuit is empty return circuit circuit.h(start) # Apply the H-gate to the most significant qubit if start == n-1: return circuit for qubit in range(n-1-start): # Apply the controlled rotations conditioned on n-1 qubits # For each less significant qubit, we need to do a # smaller-angled controlled rotation: circuit.cu1(2*pi/2**(2+qubit), start + 1 + qubit, start) start += 1 circuit.barrier() # Apply QFT recursively qft_rotations(circuit, n, start) qc = QuantumCircuit(5) qft_rotations(qc,5,0) qc.draw(output = 'mpl') %matplotlib inline import numpy as np import matplotlib.pyplot as plt # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * from qiskit.circuit import Parameter # Simple example # Define two parameters, t1 and t2 theta1 = Parameter('t1') theta2 = Parameter('t2') # Build a 1-qubit circuit qc = QuantumCircuit(1, 1) # First parameter, t1, is used for a single qubit rotation of a controlled qubit qc.ry(theta1,0) qc.rz(theta2,0) qc.barrier() qc.measure(0, 0) qc.draw(output='mpl') theta1_range = np.linspace(0, 2 * np.pi, 20) theta2_range = np.linspace(0, np.pi, 2) circuits = [qc.bind_parameters({theta1: theta_val1, theta2: theta_val2}) for theta_val2 in theta2_range for theta_val1 in theta1_range ] # Visualize several circuits to check that correct circuits are generated correctly. display(circuits[0].draw(output='mpl')) display(circuits[1].draw(output='mpl')) display(circuits[20].draw(output='mpl')) # Execute multiple circuits job = execute(qc, backend=Aer.get_backend('qasm_simulator'), shots = 8192, parameter_binds=[{theta1: theta_val1, theta2: theta_val2} for theta_val2 in theta2_range for theta_val1 in theta1_range]) # Store all counts counts = [job.result().get_counts(i) for i in range(len(job.result().results))] # Plot to visualize the result plt.figure(figsize=(12,6)) plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts: (counts.get('0',0)-counts.get('1',1))/8192,counts))) plt.show() # IBMQ.disable_account() provider = IBMQ.enable_account('TOKEN') from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor from qiskit.tools.visualization import plot_gate_map, plot_error_map # Retrieve IBM Quantum device information backend_overview() # Execute multiple circuits job_exp = execute(qc, backend=provider.get_backend('ibmq_essex'), shots = 8192, parameter_binds=[{theta1: theta_val1, theta2: theta_val2} for theta_val2 in theta2_range for theta_val1 in theta1_range]) # Monitor job status job_monitor(job_exp) # Store all counts counts_exp = [job_exp.result().get_counts(i) for i in range(len(job_exp.result().results))] # Plot to visualize the result plt.figure(figsize=(12,6)) plt.rcParams.update({'font.size': 16}) plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts: (counts.get('0',0)-counts.get('1',1))/8192,counts)),'r',label='Simulation') plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts_exp: (counts_exp.get('0',0)-counts_exp.get('1',1))/8192,counts_exp)), 'b',label='Experiment') plt.legend(loc='best') plt.show() from qiskit.compiler import transpile from qiskit.transpiler import PassManager, Layout display(plot_error_map(provider.get_backend('ibmqx2'))) display(plot_error_map(provider.get_backend('ibmq_burlington'))) # Create a dummy circuit for default transpiler demonstration qc = QuantumCircuit(4) qc.h(0) qc.swap(0,1) qc.cx(1,0) qc.s(3) qc.x(3) qc.h(3) qc.h(0) qc.cx(0,2) qc.ccx(0,1,2) qc.h(0) print('Original circuit') display(qc.draw(output='mpl')) # Transpile the circuit to run on ibmqx2 qt_qx2 = transpile(qc,provider.get_backend('ibmqx2')) print('Transpiled circuit for ibmqx2') display(qt_qx2.draw(output='mpl')) # Transpile the circuit to run on ibmq_burlington qt_bu = transpile(qc,provider.get_backend('ibmq_burlington')) print('Transpiled circuit for ibmqx_Burlington') display(qt_bu.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations for ibmqx2 = %s" % qt_qx2.size()) print("Number of operations for ibmq_burlington = %s \n" % qt_bu.size()) # Circuit depth print("Circuit depth for ibmqx2 = %s" % qt_qx2.depth()) print("Circuit depth for ibmq_burlington = %s \n" % qt_bu.depth()) # Number of qubits print("Number of qubits for ibmqx2 = %s" % qt_qx2.width()) print("Number of qubits for ibmq_burlington = %s \n" % qt_bu.width()) # Breakdown of operations by type print("Operations for ibmqx2: %s" % qt_qx2.count_ops()) print("Operations for ibmq_burlington: %s \n" % qt_bu.count_ops()) # Number of unentangled subcircuits in this circuit. # In principle, each subcircuit can be executed on a different quantum device. print("Number of unentangled subcircuits for ibmqx2 = %s" % qt_qx2.num_tensor_factors()) print("Number of unentangled subcircuits for ibmq_burlington = %s" % qt_bu.num_tensor_factors()) qr = QuantumRegister(4,'q') cr = ClassicalRegister(4,'c') qc_test = QuantumCircuit(qr,cr) qc_test.h(0) for i in range(3): qc_test.cx(i,i+1) qc_test.barrier() qc_test.measure(qr,cr) qc_test.draw(output='mpl') qc_t = transpile(qc_test, backend = provider.get_backend('ibmq_london')) # Display transpiled circuit display(qc_t.draw(output='mpl')) # Display the qubit layout display(plot_error_map(provider.get_backend('ibmq_london'))) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_t.size()) # Circuit depth print("Circuit depth = %s" % qc_t.depth()) # Execute the circuit on the qasm simulator. job_test = execute(qc_test, provider.get_backend('ibmq_london'), shots=8192) job_monitor(job_test) # Customize the layout layout = Layout({qr[0]: 4, qr[1]: 3, qr[2]: 1, qr[3]:0}) # Map it onto 5 qubit backend ibmqx2 qc_test_new = transpile(qc_test, backend = provider.get_backend('ibmq_london'), initial_layout=layout, basis_gates=['u1','u2','u3','cx']) display(qc_test_new.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_test_new.size()) # Circuit depth print("Circuit depth = %s" % qc_test_new.depth()) # Execute the circuit on the qasm simulator. job_test_new = execute(qc_test_new, provider.get_backend('ibmq_london'), shots=8192) job_monitor(job_test_new) # Now, compare the two result_test = job_test.result() result_test_new = job_test_new.result() # Plot both experimental and ideal results plot_histogram([result_test.get_counts(qc_test),result_test_new.get_counts(qc_test_new)], color=['green','blue'],legend=['default','custom'],figsize = [20,8]) # Apply 4-qubit controlled x gate qr = QuantumRegister(5,'q') qc = QuantumCircuit(qr) qc.h(0) qc.h(1) qc.h(3) qc.ccx(0,1,2) qc.ccx(2,3,4) qc.ccx(0,1,2) display(qc.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s \n" % qc.size()) # Count different types of operations print("Operation counts = %s \n" % qc.count_ops()) # Circuit depth print("Circuit depth = %s" % qc.depth()) qc_t = transpile(qc, provider.get_backend('ibmq_valencia')) display(qc_t.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_t.size()) # Circuit depth print("Circuit depth = %s" % qc_t.depth()) # Transpile many times (20 times in this example) and pick the best one trial = 20 # Use ibmq_valencia for example backend_exp = provider.get_backend('ibmq_valencia') tcircs0 = transpile([qc]*trial, backend_exp, optimization_level=0) tcircs1 = transpile([qc]*trial, backend_exp, optimization_level=1) tcircs2 = transpile([qc]*trial, backend_exp, optimization_level=2) tcircs3 = transpile([qc]*trial, backend_exp, optimization_level=3) import matplotlib.pyplot as plt num_cx0 = [c.count_ops()['cx'] for c in tcircs0] num_cx1 = [c.count_ops()['cx'] for c in tcircs1] num_cx2 = [c.count_ops()['cx'] for c in tcircs2] num_cx3 = [c.count_ops()['cx'] for c in tcircs3] num_tot0 = [c.size() for c in tcircs0] num_tot1 = [c.size() for c in tcircs1] num_tot2 = [c.size() for c in tcircs2] num_tot3 = [c.size() for c in tcircs3] num_depth0 = [c.depth() for c in tcircs0] num_depth1 = [c.depth() for c in tcircs1] num_depth2 = [c.depth() for c in tcircs2] num_depth3 = [c.depth() for c in tcircs3] plt.rcParams.update({'font.size': 16}) # Plot the number of CNOT gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_cx0)),num_cx0,'r',label='level 0') plt.plot(range(len(num_cx1)),num_cx1,'b',label='level 1') plt.plot(range(len(num_cx2)),num_cx2,'g',label='level 2') plt.plot(range(len(num_cx3)),num_cx3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('# of cx gates') plt.show() # Plot total number of gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_tot0)),num_tot0,'r',label='level 0') plt.plot(range(len(num_tot1)),num_tot1,'b',label='level 1') plt.plot(range(len(num_tot2)),num_tot2,'g',label='level 2') plt.plot(range(len(num_tot3)),num_tot3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('# of total gates') plt.show() # Plot the number of CNOT gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_depth0)),num_depth0,'r',label='level 0') plt.plot(range(len(num_depth1)),num_depth1,'b',label='level 1') plt.plot(range(len(num_depth2)),num_depth2,'g',label='level 2') plt.plot(range(len(num_depth3)),num_depth3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('Circuit depth') plt.show() print('Opt0: Minimum # of cx gates = %s' % min(num_cx0)) print('Opt0: The best circuit is the circut %s \n' % num_cx0.index(min(num_cx0))) print('Opt1: Minimum # of cx gates = %s' % min(num_cx1)) print('Opt1: The best circuit is the circut %s \n' % num_cx1.index(min(num_cx1))) print('Opt2: Minimum # of cx gates = %s' % min(num_cx2)) print('Opt2: The best circuit is the circut %s \n' % num_cx2.index(min(num_cx2))) print('Opt3: Minimum # of cx gates = %s' % min(num_cx3)) print('Opt3: The best circuit is the circut %s' % num_cx3.index(min(num_cx3)))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import json import time import warnings import matplotlib.pyplot as plt import numpy as np from IPython.display import clear_output from qiskit import ClassicalRegister, QuantumRegister from qiskit import QuantumCircuit from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.quantum_info import Statevector from qiskit.utils import algorithm_globals from qiskit_machine_learning.circuit.library import RawFeatureVector from qiskit_machine_learning.neural_networks import SamplerQNN algorithm_globals.random_seed = 42 def ansatz(num_qubits): return RealAmplitudes(num_qubits, reps=5) num_qubits = 5 circ = ansatz(num_qubits) circ.decompose().draw("mpl") def auto_encoder_circuit(num_latent, num_trash): qr = QuantumRegister(num_latent + 2 * num_trash + 1, "q") cr = ClassicalRegister(1, "c") circuit = QuantumCircuit(qr, cr) circuit.compose(ansatz(num_latent + num_trash), range(0, num_latent + num_trash), inplace=True) circuit.barrier() auxiliary_qubit = num_latent + 2 * num_trash # swap test circuit.h(auxiliary_qubit) for i in range(num_trash): circuit.cswap(auxiliary_qubit, num_latent + i, num_latent + num_trash + i) circuit.h(auxiliary_qubit) circuit.measure(auxiliary_qubit, cr[0]) return circuit num_latent = 3 num_trash = 2 circuit = auto_encoder_circuit(num_latent, num_trash) circuit.draw("mpl") def domain_wall(circuit, a, b): # Here we place the Domain Wall to qubits a - b in our circuit for i in np.arange(int(b / 2), int(b)): circuit.x(i) return circuit domain_wall_circuit = domain_wall(QuantumCircuit(5), 0, 5) domain_wall_circuit.draw("mpl") ae = auto_encoder_circuit(num_latent, num_trash) qc = QuantumCircuit(num_latent + 2 * num_trash + 1, 1) qc = qc.compose(domain_wall_circuit, range(num_latent + num_trash)) qc = qc.compose(ae) qc.draw("mpl") # Here we define our interpret for our SamplerQNN def identity_interpret(x): return x qnn = SamplerQNN( circuit=qc, input_params=[], weight_params=ae.parameters, interpret=identity_interpret, output_shape=2, ) def cost_func_domain(params_values): probabilities = qnn.forward([], params_values) # we pick a probability of getting 1 as the output of the network cost = np.sum(probabilities[:, 1]) # plotting part clear_output(wait=True) objective_func_vals.append(cost) plt.title("Objective function value against iteration") plt.xlabel("Iteration") plt.ylabel("Objective function value") plt.plot(range(len(objective_func_vals)), objective_func_vals) plt.show() return cost opt = COBYLA(maxiter=150) initial_point = algorithm_globals.random.random(ae.num_parameters) objective_func_vals = [] # make the plot nicer plt.rcParams["figure.figsize"] = (12, 6) start = time.time() opt_result = opt.minimize(cost_func_domain, initial_point) elapsed = time.time() - start print(f"Fit in {elapsed:0.2f} seconds") test_qc = QuantumCircuit(num_latent + num_trash) test_qc = test_qc.compose(domain_wall_circuit) ansatz_qc = ansatz(num_latent + num_trash) test_qc = test_qc.compose(ansatz_qc) test_qc.barrier() test_qc.reset(4) test_qc.reset(3) test_qc.barrier() test_qc = test_qc.compose(ansatz_qc.inverse()) test_qc.draw("mpl") test_qc = test_qc.assign_parameters(opt_result.x) domain_wall_state = Statevector(domain_wall_circuit).data output_state = Statevector(test_qc).data fidelity = np.sqrt(np.dot(domain_wall_state.conj(), output_state) ** 2) print("Fidelity of our Output State with our Input State: ", fidelity.real) def zero_idx(j, i): # Index for zero pixels return [ [i, j], [i - 1, j - 1], [i - 1, j + 1], [i - 2, j - 1], [i - 2, j + 1], [i - 3, j - 1], [i - 3, j + 1], [i - 4, j - 1], [i - 4, j + 1], [i - 5, j], ] def one_idx(i, j): # Index for one pixels return [[i, j - 1], [i, j - 2], [i, j - 3], [i, j - 4], [i, j - 5], [i - 1, j - 4], [i, j]] def get_dataset_digits(num, draw=True): # Create Dataset containing zero and one train_images = [] train_labels = [] for i in range(int(num / 2)): # First we introduce background noise empty = np.array([algorithm_globals.random.uniform(0, 0.1) for i in range(32)]).reshape( 8, 4 ) # Now we insert the pixels for the one for i, j in one_idx(2, 6): empty[j][i] = algorithm_globals.random.uniform(0.9, 1) train_images.append(empty) train_labels.append(1) if draw: plt.title("This is a One") plt.imshow(train_images[-1]) plt.show() for i in range(int(num / 2)): empty = np.array([algorithm_globals.random.uniform(0, 0.1) for i in range(32)]).reshape( 8, 4 ) # Now we insert the pixels for the zero for k, j in zero_idx(2, 6): empty[k][j] = algorithm_globals.random.uniform(0.9, 1) train_images.append(empty) train_labels.append(0) if draw: plt.imshow(train_images[-1]) plt.title("This is a Zero") plt.show() train_images = np.array(train_images) train_images = train_images.reshape(len(train_images), 32) for i in range(len(train_images)): sum_sq = np.sum(train_images[i] ** 2) train_images[i] = train_images[i] / np.sqrt(sum_sq) return train_images, train_labels train_images, __ = get_dataset_digits(2) num_latent = 3 num_trash = 2 fm = RawFeatureVector(2 ** (num_latent + num_trash)) ae = auto_encoder_circuit(num_latent, num_trash) qc = QuantumCircuit(num_latent + 2 * num_trash + 1, 1) qc = qc.compose(fm, range(num_latent + num_trash)) qc = qc.compose(ae) qc.draw("mpl") def identity_interpret(x): return x qnn = SamplerQNN( circuit=qc, input_params=fm.parameters, weight_params=ae.parameters, interpret=identity_interpret, output_shape=2, ) def cost_func_digits(params_values): probabilities = qnn.forward(train_images, params_values) cost = np.sum(probabilities[:, 1]) / train_images.shape[0] # plotting part clear_output(wait=True) objective_func_vals.append(cost) plt.title("Objective function value against iteration") plt.xlabel("Iteration") plt.ylabel("Objective function value") plt.plot(range(len(objective_func_vals)), objective_func_vals) plt.show() return cost with open("12_qae_initial_point.json", "r") as f: initial_point = json.load(f) opt = COBYLA(maxiter=150) objective_func_vals = [] # make the plot nicer plt.rcParams["figure.figsize"] = (12, 6) start = time.time() opt_result = opt.minimize(fun=cost_func_digits, x0=initial_point) elapsed = time.time() - start print(f"Fit in {elapsed:0.2f} seconds") # Test test_qc = QuantumCircuit(num_latent + num_trash) test_qc = test_qc.compose(fm) ansatz_qc = ansatz(num_latent + num_trash) test_qc = test_qc.compose(ansatz_qc) test_qc.barrier() test_qc.reset(4) test_qc.reset(3) test_qc.barrier() test_qc = test_qc.compose(ansatz_qc.inverse()) # sample new images test_images, test_labels = get_dataset_digits(2, draw=False) for image, label in zip(test_images, test_labels): original_qc = fm.assign_parameters(image) original_sv = Statevector(original_qc).data original_sv = np.reshape(np.abs(original_sv) ** 2, (8, 4)) param_values = np.concatenate((image, opt_result.x)) output_qc = test_qc.assign_parameters(param_values) output_sv = Statevector(output_qc).data output_sv = np.reshape(np.abs(output_sv) ** 2, (8, 4)) fig, (ax1, ax2) = plt.subplots(1, 2) ax1.imshow(original_sv) ax1.set_title("Input Data") ax2.imshow(output_sv) ax2.set_title("Output Data") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qclib/qclib
qclib
# Copyright 2021 qclib project. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test blackbox state preparation """ from unittest import TestCase import numpy as np from qiskit import QuantumCircuit from qclib.state_preparation.blackbox import BlackBoxInitialize from qclib.util import get_state class TestBlackbox(TestCase): """ Test blackbox state preparation """ def test_blackbox(self): """ Run blackbox state preparation """ initialize = BlackBoxInitialize.initialize state = np.random.rand(16) - 0.5 + (np.random.rand(16) - 0.5) * 1j state = state / np.linalg.norm(state) q_circuit = QuantumCircuit(5) initialize(q_circuit, state.tolist()) out = get_state(q_circuit) out = out.reshape((len(out)//2, 2)) out = out[:, 0] self.assertTrue(np.allclose(state, out, atol=0.02))
https://github.com/BoschSamuel/QizGloria
BoschSamuel
# -- coding: utf-8 -- # This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import torch from torch.autograd import Function import torch.optim as optim from qiskit import QuantumRegister,QuantumCircuit,ClassicalRegister,execute from qiskit.circuit import Parameter from qiskit import Aer import numpy as np from tqdm import tqdm from matplotlib import pyplot as plt %matplotlib inline np.random.seed = 42 def to_numbers(tensor_list): num_list = [] for tensor in tensor_list: num_list += [tensor.item()] return num_list class QiskitCircuit(): def __init__(self,shots): self.theta = Parameter('Theta') self.phi = Parameter('Phi') self.lam = Parameter('Lambda') self.shots = shots def create_circuit(): qr = QuantumRegister(1,'q') cr = ClassicalRegister(1,'c') ckt = QuantumCircuit(qr,cr) ckt.h(qr[0]) ckt.barrier() ckt.u3(self.theta,self.phi,self.lam,qr[0]) ckt.barrier() ckt.measure(qr,cr) return ckt self.circuit = create_circuit() def N_qubit_expectation_Z(self,counts, shots, nr_qubits): expects = np.zeros(nr_qubits) for key in counts.keys(): perc = counts[key]/shots check = np.array([(float(key[i])-1/2)*2*perc for i in range(nr_qubits)]) expects += check return expects def bind(self, parameters): [self.theta,self.phi,self.lam] = to_numbers(parameters) self.circuit.data[2][0]._params = to_numbers(parameters) def run(self, i): self.bind(i) backend = Aer.get_backend('qasm_simulator') job_sim = execute(self.circuit,backend,shots=self.shots) result_sim = job_sim.result() counts = result_sim.get_counts(self.circuit) return self.N_qubit_expectation_Z(counts,self.shots,1) class TorchCircuit(Function): @staticmethod def forward(ctx, i): if not hasattr(ctx, 'QiskitCirc'): ctx.QiskitCirc = QiskitCircuit(shots=10000) exp_value = ctx.QiskitCirc.run(i[0]) result = torch.tensor([exp_value]) ctx.save_for_backward(result, i) return result @staticmethod def backward(ctx, grad_output): eps = 0.01 forward_tensor, i = ctx.saved_tensors input_numbers = to_numbers(i[0]) gradient = [0,0,0] for k in range(len(input_numbers)): input_eps = input_numbers input_eps[k] = input_numbers[k] + eps exp_value = ctx.QiskitCirc.run(torch.tensor(input_eps))[0] result_eps = torch.tensor([exp_value]) gradient_result = (exp_value - forward_tensor[0][0].item())#/eps gradient[k] = gradient_result # print(gradient) result = torch.tensor([gradient]) # print(result) return result.float() * grad_output.float() # x = torch.tensor([np.pi/4, np.pi/4, np.pi/4], requires_grad=True) x = torch.tensor([[0.0, 0.0, 0.0]], requires_grad=True) qc = TorchCircuit.apply y1 = qc(x) y1.backward() print(x.grad) qc = TorchCircuit.apply def cost(x): target = -1 expval = qc(x) return torch.abs(qc(x) - target) ** 2, expval x = torch.tensor([[np.pi/4, np.pi/4, np.pi/4]], requires_grad=True) opt = torch.optim.Adam([x], lr=0.1) num_epoch = 100 loss_list = [] expval_list = [] for i in tqdm(range(num_epoch)): # for i in range(num_epoch): opt.zero_grad() loss, expval = cost(x) loss.backward() opt.step() loss_list.append(loss.item()) expval_list.append(expval.item()) # print(loss.item()) plt.plot(loss_list) # print(circuit(phi, theta)) # print(cost(x)) import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import numpy as np import torchvision from torchvision import datasets, transforms batch_size_train = 1 batch_size_test = 1 learning_rate = 0.01 momentum = 0.5 log_interval = 10 torch.backends.cudnn.enabled = False transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor()]) mnist_trainset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) labels = mnist_trainset.targets #get labels labels = labels.numpy() idx1 = np.where(labels == 0) #search all zeros idx2 = np.where(labels == 1) # search all ones idx = np.concatenate((idx1[0][0:20],idx2[0][0:20])) # concatenate their indices mnist_trainset.targets = labels[idx] mnist_trainset.data = mnist_trainset.data[idx] print(mnist_trainset) train_loader = torch.utils.data.DataLoader(mnist_trainset, batch_size=batch_size_train, shuffle=True) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 3) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) # return F.softmax(x) x = np.pi*F.tanh(x) x = qc(x) # This is the q node x = (x+1)/2 # Translate expectation values [-1,1] to labels [0,1] x = torch.cat((x, 1-x), -1) return x network = Net() optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum) # optimizer = optim.Adam(network.parameters(), lr=learning_rate) epochs = 10 for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): # print(batch_idx) optimizer.zero_grad() output = network(data) loss = F.nll_loss(output, target) # loss = F.cross_entropy(output, target) # print(output) # print(output[0][1].item(), target.item()) loss.backward() optimizer.step() total_loss.append(loss.item()) print(loss.item()) accuracy = 0 number = 0 for batch_idx, (data, target) in enumerate(train_loader): number +=1 output = network(data) output = (output>0.5).float() accuracy += (output[0][1].item() == target[0].item())*1 print("Accuracy is: {}".format(accuracy/number))
https://github.com/fvarchon/qiskit-intros
fvarchon
# Your first Qiskit application from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit qr = QuantumRegister(2) # qubits indexed as qr[0], qr[1] and qr[2] cr = ClassicalRegister(2) # classical bits indexed as cr[0], cr[1] and cr[2] circuit = QuantumCircuit(qr, cr) circuit.h(qr[0]) circuit.cx(qr[0], qr[1]) circuit.measure(qr, cr) circuit.draw() circuit.draw(output='latex_source') print(circuit.qasm()) from qiskit import Aer, execute # pick a backend, in this case a simulator backend = Aer.get_backend('qasm_simulator') # start a simulation job on the backend job = execute(circuit, backend, shots=1000) # collect the job results and display them result = job.result() counts = result.get_counts(circuit) print(counts) from qiskit.tools.visualization import plot_histogram plot_histogram(counts) from qiskit import IBMQ IBMQ.load_accounts() IBMQ.backends() # OPTION 1: pick a specific backend backend = IBMQ.get_backend('ibmq_16_melbourne') # OPTION 2: pick the least busy backend from qiskit.providers.ibmq import least_busy backend = least_busy(IBMQ.backends(simulator=False)) # start a simulation job on the backend job = execute(circuit, backend, shots=1000) # collect the job results and display them result = job.result() counts = result.get_counts(circuit) print(counts) # OPTION 1: pick a specific backend backend = IBMQ.get_backend('ibmq_16_melbourne') # OPTION 2: pick the least busy backend from qiskit.providers.ibmq import least_busy backend = least_busy(IBMQ.backends(simulator=False)) # start a simulation job on the backend job = execute(circuit, backend, shots=1000) # monitor the job from qiskit.tools.monitor import job_monitor job_monitor(job) # collect the job results and display them result = job.result() counts = result.get_counts(circuit) print(counts) plot_histogram(counts) %qiskit_backend_monitor backend qr = QuantumRegister(7, 'q') qr = QuantumRegister(7, 'q') tpl_circuit = QuantumCircuit(qr) tpl_circuit.h(qr[3]) tpl_circuit.cx(qr[0], qr[6]) tpl_circuit.cx(qr[6], qr[0]) tpl_circuit.cx(qr[0], qr[1]) tpl_circuit.cx(qr[3], qr[1]) tpl_circuit.cx(qr[3], qr[0]) tpl_circuit.draw() from qiskit.transpiler import PassManager from qiskit.transpiler.passes import BasicSwap from qiskit.transpiler import transpile from qiskit.mapper import CouplingMap help(BasicSwap) coupling = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]] simulator = Aer.get_backend('qasm_simulator') coupling_map = CouplingMap(couplinglist=coupling) pass_manager = PassManager() pass_manager.append([BasicSwap(coupling_map=coupling_map)]) basic_circ = transpile(tpl_circuit, simulator, pass_manager=pass_manager) basic_circ.draw() IBMQ.backends() realdevice = IBMQ.get_backend('ibmq_16_melbourne') tpl_realdevice = transpile(tpl_circuit, backend = realdevice) tpl_realdevice.draw(line_length = 250)
https://github.com/daimurat/qiskit-implementation
daimurat
from qiskit import QuantumCircuit qc = QuantumCircuit(1) init_state = [0, 1] qc.initialize(init_state, 0) qc.draw() from qiskit import assemble, Aer backend = Aer.get_backend('statevector_simulator') ## optional ## # assemble a list of circuits and create Qobj qobj = assemble(qc) # A backwards compat (上位互換) alias for QasmQobj result = backend.run(qobj).result() result.get_statevector() from qiskit import execute result = execute(qc, backend).result() result.get_statevector()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from __future__ import annotations import numpy as np import networkx as nx num_nodes = 4 w = np.array([[0., 1., 1., 0.], [1., 0., 1., 1.], [1., 1., 0., 1.], [0., 1., 1., 0.]]) G = nx.from_numpy_array(w) layout = nx.random_layout(G, seed=10) colors = ['r', 'g', 'b', 'y'] nx.draw(G, layout, node_color=colors) labels = nx.get_edge_attributes(G, 'weight') nx.draw_networkx_edge_labels(G, pos=layout, edge_labels=labels); def objective_value(x: np.ndarray, w: np.ndarray) -> float: """Compute the value of a cut. Args: x: Binary string as numpy array. w: Adjacency matrix. Returns: Value of the cut. """ X = np.outer(x, (1 - x)) w_01 = np.where(w != 0, 1, 0) return np.sum(w_01 * X) def bitfield(n: int, L: int) -> list[int]: result = np.binary_repr(n, L) return [int(digit) for digit in result] # [2:] to chop off the "0b" part # use the brute-force way to generate the oracle L = num_nodes max = 2**L sol = np.inf for i in range(max): cur = bitfield(i, L) how_many_nonzero = np.count_nonzero(cur) if how_many_nonzero * 2 != L: # not balanced continue cur_v = objective_value(np.array(cur), w) if cur_v < sol: sol = cur_v print(f'Objective value computed by the brute-force method is {sol}') from qiskit.quantum_info import Pauli, SparsePauliOp def get_operator(weight_matrix: np.ndarray) -> tuple[SparsePauliOp, float]: r"""Generate Hamiltonian for the graph partitioning Notes: Goals: 1 Separate the vertices into two set of the same size. 2 Make sure the number of edges between the two set is minimized. Hamiltonian: H = H_A + H_B H_A = sum\_{(i,j)\in E}{(1-ZiZj)/2} H_B = (sum_{i}{Zi})^2 = sum_{i}{Zi^2}+sum_{i!=j}{ZiZj} H_A is for achieving goal 2 and H_B is for achieving goal 1. Args: weight_matrix: Adjacency matrix. Returns: Operator for the Hamiltonian A constant shift for the obj function. """ num_nodes = len(weight_matrix) pauli_list = [] coeffs = [] shift = 0 for i in range(num_nodes): for j in range(i): if weight_matrix[i, j] != 0: x_p = np.zeros(num_nodes, dtype=bool) z_p = np.zeros(num_nodes, dtype=bool) z_p[i] = True z_p[j] = True pauli_list.append(Pauli((z_p, x_p))) coeffs.append(-0.5) shift += 0.5 for i in range(num_nodes): for j in range(num_nodes): if i != j: x_p = np.zeros(num_nodes, dtype=bool) z_p = np.zeros(num_nodes, dtype=bool) z_p[i] = True z_p[j] = True pauli_list.append(Pauli((z_p, x_p))) coeffs.append(1.0) else: shift += 1 return SparsePauliOp(pauli_list, coeffs=coeffs), shift qubit_op, offset = get_operator(w) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import TwoLocal from qiskit.primitives import Sampler from qiskit.quantum_info import Pauli, Statevector from qiskit.result import QuasiDistribution from qiskit.utils import algorithm_globals sampler = Sampler() def sample_most_likely(state_vector: QuasiDistribution | Statevector) -> np.ndarray: """Compute the most likely binary string from state vector. Args: state_vector: State vector or quasi-distribution. Returns: Binary string as an array of ints. """ if isinstance(state_vector, QuasiDistribution): values = list(state_vector.values()) else: values = state_vector n = int(np.log2(len(values))) k = np.argmax(np.abs(values)) x = bitfield(k, n) x.reverse() return np.asarray(x) algorithm_globals.random_seed = 10598 optimizer = COBYLA() qaoa = QAOA(sampler, optimizer, reps=2) result = qaoa.compute_minimum_eigenvalue(qubit_op) x = sample_most_likely(result.eigenstate) print(x) print(f'Objective value computed by QAOA is {objective_value(x, w)}') from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.quantum_info import Operator npme = NumPyMinimumEigensolver() result = npme.compute_minimum_eigenvalue(Operator(qubit_op)) x = sample_most_likely(result.eigenstate) print(x) print(f'Objective value computed by the NumPyMinimumEigensolver is {objective_value(x, w)}') from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.circuit.library import TwoLocal from qiskit.utils import algorithm_globals algorithm_globals.random_seed = 10598 optimizer = COBYLA() ansatz = TwoLocal(qubit_op.num_qubits, "ry", "cz", reps=2, entanglement="linear") sampling_vqe = SamplingVQE(sampler, ansatz, optimizer) result = sampling_vqe.compute_minimum_eigenvalue(qubit_op) x = sample_most_likely(result.eigenstate) print(x) print(f"Objective value computed by VQE is {objective_value(x, w)}") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/tanjinadnanabir/qbosons-qiskit-hackathon
tanjinadnanabir
import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns from google.colab import drive drive.mount('/content/drive') import warnings warnings.filterwarnings('ignore') df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/iris/Iris.csv') df.head() # delete a column df = df.drop(columns = ['Id']) df.head() # to display stats about data df.describe() # to basic info about datatype df.info() # to display no. of samples on each class df['Species'].value_counts() # check for null values df.isnull().sum() # histograms df['SepalLengthCm'].hist() df['SepalWidthCm'].hist() df['PetalLengthCm'].hist() df['PetalWidthCm'].hist() # scatterplot colors = ['red', 'orange', 'blue'] species = ['Iris-virginica','Iris-versicolor','Iris-setosa'] for i in range(3): x = df[df['Species'] == species[i]] plt.scatter(x['SepalLengthCm'], x['SepalWidthCm'], c = colors[i], label=species[i]) plt.xlabel("Sepal Length") plt.ylabel("Sepal Width") plt.legend() for i in range(3): x = df[df['Species'] == species[i]] plt.scatter(x['PetalLengthCm'], x['PetalWidthCm'], c = colors[i], label=species[i]) plt.xlabel("Petal Length") plt.ylabel("Petal Width") plt.legend() for i in range(3): x = df[df['Species'] == species[i]] plt.scatter(x['SepalLengthCm'], x['PetalLengthCm'], c = colors[i], label=species[i]) plt.xlabel("Sepal Length") plt.ylabel("Petal Length") plt.legend() for i in range(3): x = df[df['Species'] == species[i]] plt.scatter(x['SepalWidthCm'], x['PetalWidthCm'], c = colors[i], label=species[i]) plt.xlabel("Sepal Width") plt.ylabel("Petal Width") plt.legend() df.corr() corr = df.corr() fig, ax = plt.subplots(figsize=(5,4)) sns.heatmap(corr, annot=True, ax=ax, cmap = 'coolwarm') # Feature correlation def featureCorrelation(s): import seaborn as sn import matplotlib.pyplot as plt sn.set(font_scale=1.3) sn.set_style("darkgrid") fig_dims = (10, 4) fig, ax = plt.subplots(figsize=fig_dims) sn.heatmap(s.corr(), annot=True, ax=ax) plt.show() featureCorrelation(df) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df['Species'] = le.fit_transform(df['Species']) df.head() featureCorrelation(df) # Splitting the dataset from sklearn.model_selection import train_test_split X = df.drop(columns=['Species']) Y = df['Species'] x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.30) # logistic regression from sklearn.linear_model import LogisticRegression model = LogisticRegression() # model training model.fit(x_train, y_train) # print metric to get performance print("Accuracy: ",model.score(x_test, y_test) * 100) # knn - k-nearest neighbours from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier() model.fit(x_train, y_train) # print metric to get performance print("Accuracy: ",model.score(x_test, y_test) * 100) # decision tree from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier() model.fit(x_train, y_train) # print metric to get performance print("Accuracy: ",model.score(x_test, y_test) * 100) from sklearn.svm import SVC model = SVC() model.fit(x_train, y_train) # print metric to get performance print("Accuracy: ",model.score(x_test, y_test) * 100) from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier() model.fit(x_train, y_train) # print metric to get performance print("Accuracy: ",model.score(x_test, y_test) * 100)
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import matplotlib.pyplot as plt import itertools from pprint import pprint import pickle import time import datetime # Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z) from qiskit.opflow import Zero, One, I, X, Y, Z from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter from qiskit.transpiler.passes import RemoveBarriers # Import QREM package from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter from qiskit.ignis.mitigation import expectation_value # Import mitiq for zne import mitiq # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits from qiskit.quantum_info import state_fidelity import sys import importlib sys.path.append("../utils/") import circuit_utils, zne_utils, tomography_utils, sgs_algorithm importlib.reload(circuit_utils) importlib.reload(zne_utils) importlib.reload(tomography_utils) importlib.reload(sgs_algorithm) from circuit_utils import * from zne_utils import * from tomography_utils import * from sgs_algorithm import * # Combine subcircuits into a single multiqubit gate representing a single trotter step num_qubits = 3 # The final time of the state evolution target_time = np.pi # Parameterize variable t to be evaluated at t=pi later dt = Parameter('t') # Convert custom quantum circuit into a gate trot_gate = trotter_gate(dt) # initial layout initial_layout = [5,3,1] # Number of trotter steps num_steps = 100 print("trotter step: ", num_steps) scale_factors = [1.0, 2.0, 3.0] # Initialize quantum circuit for 3 qubits qr = QuantumRegister(num_qubits, name="q") qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>) make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({dt: target_time / num_steps}) print("created qc") # Generate state tomography circuits to evaluate fidelity of simulation st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN === print("created st_qcs (length:", len(st_qcs), ")") # remove barriers st_qcs = [RemoveBarriers()(qc) for qc in st_qcs] print("removed barriers from st_qcs") # optimize circuit t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) print("created t3_st_qcs (length:", len(t3_st_qcs), ")") # zne wrapping zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = True) # Pauli Twirling print("created zne_qcs (length:", len(zne_qcs), ")") # optimization_level must be 0 # feed initial_layout here to see the picture of the circuits before casting the job t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout) print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")") t3_zne_qcs[-3].draw("mpl") # from qiskit.test.mock import FakeJakarta # backend = FakeJakarta() # backend = Aer.get_backend("qasm_simulator") IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') print("provider:", provider) backend = provider.get_backend("ibmq_jakarta") print(str(backend)) shots = 1 << 13 reps = 8 # unused jobs = [] for _ in range(reps): #! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0) print('Job ID', job.job_id()) jobs.append(job) # QREM qr = QuantumRegister(num_qubits, name="calq") meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') # we have to feed initial_layout to calibration matrix cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout) print('Job ID', cal_job.job_id()) meas_calibs[0].draw("mpl") dt_now = datetime.datetime.now() print(dt_now) filename = "job_ids_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl" print(filename) with open("jobs_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump({"jobs": jobs, "cal_job": cal_job}, f) with open(filename, "wb") as f: pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f) with open("properties_" + str(backend) + "_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump(backend.properties(), f) filename = "job_ids_ibmq_jakarta_100step_20220413_030821_.pkl" # change here with open(filename, "rb") as f: job_ids_dict = pickle.load(f) job_ids = job_ids_dict["job_ids"] cal_job_id = job_ids_dict["cal_job_id"] retrieved_jobs = [] for job_id in job_ids: retrieved_jobs.append(backend.retrieve_job(job_id)) retrieved_cal_job = backend.retrieve_job(cal_job_id) cal_results = retrieved_cal_job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!! fids = [] for job in retrieved_jobs: mit_results = meas_fitter.filter.apply(job.result()) zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors) rho = expvals_to_valid_rho(num_qubits, zne_expvals) fid = state_fidelity(rho, target_state) fids.append(fid) print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids))) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute, assemble, Aer from qiskit.tools.visualization import plot_histogram from math import pi import matplotlib.pyplot as plt q = QuantumRegister(1,'q') c = ClassicalRegister(1,'c') qc = QuantumCircuit(q, c) qc.h(0) qc.measure(0,0) qc.x(0).c_if(c, 0) qc.draw(output='mpl') q = QuantumRegister(3,'q') c = ClassicalRegister(3,'c') qc = QuantumCircuit(q, c) qc.h(q[0]) qc.h(q[1]) qc.h(q[2]) qc.barrier() qc.measure(q,c) qc.draw('mpl') print(bin(3)) print(bin(7)) q = QuantumRegister(3,'q') c = ClassicalRegister(3,'c') qc = QuantumCircuit(q, c) qc.h(0) qc.h(1) qc.h(2) qc.barrier() qc.measure(q,c) qc.x(2).c_if(c, 3) # for the 011 case qc.x(2).c_if(c, 7) # for the 111 case qc.draw(output='mpl') nq = 2 m = 2 q = QuantumRegister(nq,'q') c = ClassicalRegister(m,'c') qc_S = QuantumCircuit(q,c) qc_S.h(0) qc_S.x(1) qc_S.draw('mpl') cu_circ = QuantumCircuit(2) cu_circ.cp(pi/2,0,1) cu_circ.draw('mpl') for _ in range(2**(m-1)): qc_S.cp(pi/2,0,1) qc_S.draw('mpl') def x_measurement(qc, qubit, cbit): """Measure 'qubit' in the X-basis, and store the result in 'cbit'""" qc.h(qubit) qc.measure(qubit, cbit) x_measurement(qc_S, q[0], c[0]) qc_S.draw('mpl') qc_S.reset(0) qc_S.h(0) qc_S.draw('mpl') qc_S.p(-pi/2,0).c_if(c,1) qc_S.draw('mpl') ## 2^t c-U operations (with t=m-2) for _ in range(2**(m-2)): qc_S.cp(pi/2,0,1) x_measurement(qc_S, q[0], c[1]) qc_S.draw('mpl') sim = Aer.get_backend('qasm_simulator') count0 = execute(qc_S, sim).result().get_counts() key_new = [str(int(key,2)/2**m) for key in list(count0.keys())] count1 = dict(zip(key_new, count0.values())) fig, ax = plt.subplots(1,2) plot_histogram(count0, ax=ax[0]) plot_histogram(count1, ax=ax[1]) plt.tight_layout() nq = 3 # number of qubits m = 3 # number of classical bits q = QuantumRegister(nq,'q') c = ClassicalRegister(m,'c') qc = QuantumCircuit(q,c) qc.h(0) qc.x([1,2]) qc.draw('mpl') cu_circ = QuantumCircuit(nq) cu_circ.mcp(pi/4,[0,1],2) cu_circ.draw('mpl') for _ in range(2**(m-1)): qc.mcp(pi/4,[0,1],2) qc.draw('mpl') x_measurement(qc, q[0], c[0]) qc.draw('mpl') qc.reset(0) qc.h(0) qc.draw('mpl') qc.p(-pi/2,0).c_if(c,1) qc.draw('mpl') for _ in range(2**(m-2)): qc.mcp(pi/4,[0,1],2) x_measurement(qc, q[0], c[1]) qc.draw('mpl') # initialization of qubit q0 qc.reset(0) qc.h(0) # phase correction qc.p(-pi/4,0).c_if(c,1) qc.p(-pi/2,0).c_if(c,2) qc.p(-3*pi/4,0).c_if(c,3) # c-U operations for _ in range(2**(m-3)): qc.mcp(pi/4,[0,1],2) # X measurement qc.h(0) qc.measure(0,2) qc.draw('mpl') count0 = execute(qc, sim).result().get_counts() key_new = [str(int(key,2)/2**m) for key in list(count0.keys())] count1 = dict(zip(key_new, count0.values())) fig, ax = plt.subplots(1,2) plot_histogram(count0, ax=ax[0]) plot_histogram(count1, ax=ax[1]) fig.tight_layout() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright