repo
stringclasses 885
values | file
stringclasses 741
values | content
stringlengths 4
215k
|
---|---|---|
https://github.com/taalexander/IEEE-Quantum-Week-2021
|
taalexander
|
import os
from typing import Any, List, Dict, Union
import numpy as np
import matplotlib.pyplot as plt
from qiskit import IBMQ, QuantumCircuit, QuantumRegister, ClassicalRegister, quantum_info as qi
from qiskit.providers.ibmq import RunnerResult
from qiskit.result import marginal_counts
import qiskit.tools.jupyter
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
hub = 'ibm-q-community'
group = 'ieee-session'
project = 'event-2021'
backend_name = 'ibm_perth'
from qiskit import IBMQ
IBMQ.load_account()
provider = IBMQ.get_provider(hub=hub, group=group, project=project)
backend = provider.get_backend(backend_name)
import qiskit.tools.jupyter
backend
from qiskit import QuantumCircuit
# Fill in Readout test and draw
from qiskit import QuantumCircuit
qc_prep_excited = QuantumCircuit(1, 1)
qc_prep_excited.x(0)
qc_prep_excited.measure(0, 0)
qc_prep_excited.draw(output="mpl", idle_wires=False)
qubit = 3
shots = 1000
from qiskit import transpile
# Transpile for qubit and draw
from qiskit import transpile
qc_prep_excited_transpiled = transpile(qc_prep_excited, backend, initial_layout=[qubit])
qc_prep_excited_transpiled.draw(output="mpl", idle_wires=False)
from run_openqasm3 import run_openqasm3
# Run the circuit / QASM3
from run_openqasm3 import run_openqasm3
job = run_openqasm3(qc_prep_excited_transpiled, backend, verbose=True)
runtime_params = {
'circuits': [qc_prep_excited_transpiled],
}
options = {'backend_name': backend.name()}
from qiskit.providers.ibmq import RunnerResult
prep_excited_job = provider.runtime.run(
program_id="qasm3-runner",
options=options,
inputs=runtime_params,
image="qiskit-program-qasm3:latest",
result_decoder=RunnerResult,
)
prep_excited_result = prep_excited_job.result()
print(prep_excited_result.get_counts())
try:
from qiskit import qasm3
except ImportError:
print("You likely do not have the main branch of Qiskit installed. Please install it to run this code")
raise
basis_gates = backend.configuration().basis_gates
def dump_qasm3(circuit, backend=backend):
return qasm3.Exporter(includes=[], basis_gates=basis_gates).dumps(circuit)
excited_prep_source_string = dump_qasm3(qc_prep_excited_transpiled)
print(excited_prep_source_string)
runtime_params = {
'circuits': [excited_prep_source_string],
}
options = {'backend_name': backend.name()}
prep_excited_job_source_str = provider.runtime.run(
program_id="qasm3-runner",
options=options,
inputs=runtime_params,
image="qiskit-program-qasm3:latest",
result_decoder=RunnerResult,
)
print(prep_excited_job_source_str.result().get_counts())
qc_real_time = QuantumCircuit(1, 2)
# Program a builtin reset test circuit named job real time and draw
qc_real_time = QuantumCircuit(1, 2)
qc_real_time.x(0)
qc_real_time.measure(0, 0)
qc_real_time.reset(0)
qc_real_time.measure(0, 1)
qc_real_time.draw(output="mpl", idle_wires=False)
# Run the reset job and check the results
real_time_job = backend.run(transpile(qc_real_time, backend, initial_layout=[qubit]), shots=1000)
print(real_time_job.job_id())
print(f" Our reset counts were: {real_time_job.result().get_counts(0)}")
job_real_time = backend.run(qc_real_time)
print(f"Job id: {job_real_time.job_id()}")
result_real_time = job_real_time.result()
print(f"Reset results: {result_real_time.get_counts(0)}")
from qiskit import QuantumRegister, ClassicalRegister
qr = QuantumRegister(1)
crx = ClassicalRegister(1, name="xresult")
crm = ClassicalRegister(1, name="measureresult")
qc_reset = QuantumCircuit(qr, crx, crm, name="Reset")
# Program a reset directly using control flow and draw
from qiskit import QuantumRegister, ClassicalRegister
qr = QuantumRegister(1)
crx = ClassicalRegister(1, name="xresult")
crm = ClassicalRegister(1, name="measureresult")
qc_reset = QuantumCircuit(qr, crx, crm, name="Reset")
qc_reset.x(0)
qc_reset.measure(0, crx)
qc_reset.x(0).c_if(crx, 1)
qc_reset.measure(0, crm)
qc_reset = transpile(qc_reset, backend, initial_layout=[1])
qc_reset.draw(output="mpl", idle_wires=False)
print(dump_qasm3(qc_reset))
reset_job = run_openqasm3(qc_reset, backend, verbose=True)
from qiskit.result import marginal_counts
reset_result = reset_job.result()
reset_counts = reset_result.get_counts(0)
mitigated_reset_results = marginal_counts(reset_counts, indices=[1])
print(f"Full counts including reset: {reset_counts}")
print(f"Results from our reset - |0>s prepared {mitigated_reset_results.get('0')}, |1>s prepared {mitigated_reset_results['1']}"
)
# Program several rounds of reset using QASM3
#print(dump_qasm3(qc_reset))
qubit_init_qasm3 = """
"""
qubit_init_qasm3 = """
OPENQASM 3;
bit reset_result0;
bit reset_result1;
bit reset_result2;
bit[1] measureresult;
x $1;
reset_result0 = measure $1;
// three rounds of reset.
if (reset_result0 == 1) {
x $1;
}
reset_result1 = measure $1;
if (reset_result1 == 1) {
x $1;
}
reset_result2 = measure $1;
if (reset_result2 == 1) {
x $1;
}
// Final measurement
measureresult[0] = measure $1;
"""
init_job = run_openqasm3(qubit_init_qasm3, backend, verbose=False)
print(init_job.job_id())
better_reset_result_1s = sum(count for key, count in init_job.result().get_counts(0).items() if (len(key)==4))
print(f"Results from our better reset - |0>s prepared {shots-better_reset_result_1s}, |1>s prepared {better_reset_result_1s} ")
qr = QuantumRegister(3)
crz = ClassicalRegister(1, name="crz")
crx = ClassicalRegister(1, name="crx")
result = ClassicalRegister(1, name="result")
qc_teleport = QuantumCircuit(qr, crz, crx, result, name="Teleport")
# Apply teleportation circuit
qc_teleport.h(qr[1])
qc_teleport.cx(qr[1], qr[2])
#qc_teleport.barrier(qr)
qc_teleport.cx(qr[0], qr[1])
qc_teleport.h(qr[0])
qc_teleport.measure(qr[0], crz)
qc_teleport.measure(qr[1], crx)
qc_teleport.z(qr[2]).c_if(crz, 1)
qc_teleport.x(qr[2]).c_if(crx, 1)
qc_teleport.draw(output="mpl")
qc_state_prep = QuantumCircuit(1)
qc_state_prep.x(0)
print(qc_state_prep)
target_state_prep = qi.Statevector.from_instruction(qc_state_prep)
print(target_state_prep)
teleport_qubits = [0, 1, 2]
qc_teleport_state = QuantumCircuit(qr, crz, crx, result, name="Teleport Hadamard")
def init(qc, qr):
qc.barrier(qr)
qc.reset(qr)
qc.barrier(qr)
qc.reset(qr)
qc.barrier(qr)
qc.reset(qr)
qc.barrier(qr)
init(qc_teleport_state, qr)
# Prepare state to teleport
qc_teleport_state.compose(qc_state_prep, [qr[0]], inplace=True)
qc_teleport_state.barrier(qr)
# Compose with teleportation circuit
qc_teleport_state.compose(qc_teleport, inplace=True)
qc_teleport_state.draw(output="mpl")
qc_teleport_experiment = qc_teleport_state.copy()
qc_teleport_experiment.measure(qr[2], result)
qc_teleport_experiment = transpile(qc_teleport_experiment, backend, initial_layout=teleport_qubits, optimization_level=3)
qc_teleport_experiment.draw(output="mpl")
teleport_job = run_openqasm3(qc_teleport_experiment, backend, verbose=False)
print(teleport_job.job_id())
teleport_result = teleport_job.result()
print(f"All teleportation reults: {teleport_result.get_counts(0)}")
marginal_teleport_counts = marginal_counts(teleport_result.get_counts(0), indices=[2])
print(f"Marginalized teleportation counts: {marginal_teleport_counts}")
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.visualization import plot_state_city, plot_state_paulivec
meas_calibs, state_labels = complete_meas_cal(qr=[qr[2]], circlabel='mcal')
meas_calibs = transpile(meas_calibs, backend, initial_layout={qr[2]: teleport_qubits[-1]})
meas_calibs[1].draw(idle_wires=False, output="mpl")
meas_calib_job = run_openqasm3(meas_calibs, backend, verbose=False)
print(f"Job id: {meas_calib_job.job_id()}")
meas_calib_result = meas_calib_job.result()
meas_fitter = CompleteMeasFitter(meas_calib_result, state_labels, circlabel='mcal')
meas_fitter.cal_matrix
meas_filter = meas_fitter.filter
mitigated_teleport_counts = meas_filter.apply(marginal_teleport_counts)
print(f"Unmitigated teleportation counts {marginal_teleport_counts}")
print(f"Mitigated teleportation counts {mitigated_teleport_counts}")
def build_state_tomo_circuits(qc_prep, qr, clbits, tomo_qubits, layout):
qst_tomography_circuits = state_tomography_circuits(QuantumCircuit(qr), tomo_qubits)
tomography_circuits = []
for tomo_circuit in qst_tomography_circuits:
tomo_circ = qc_prep.compose(tomo_circuit, clbits=clbits)
tomo_circ.name = tomo_circuit.name
tomography_circuits.append(tomo_circ)
return transpile(tomography_circuits, backend, initial_layout=layout)
qt_qst_tomography_circuits = build_state_tomo_circuits(qc_teleport_state, qr, [result[0]], [qr[2]], teleport_qubits)
teleport_qst_jobs = run_openqasm3(qt_qst_tomography_circuits, backend, verbose=False)
qt_qst_tomography_circuits[1].draw(output="mpl")
teleport_qst_result = teleport_qst_jobs.result()
marginal_teleport_qst_result = marginal_counts(teleport_qst_result, indices=[2])
mitigated_qst_results = meas_filter.apply(marginal_teleport_qst_result)
qt_qst_tomo_fitter = StateTomographyFitter(mitigated_qst_results, qt_qst_tomography_circuits)
qt_qst_rho_fit = qt_qst_tomo_fitter.fit(method='lstsq')
qt_qst_F = qi.state_fidelity(qt_qst_rho_fit, target_state_prep)
print('State Fidelity: F = {:.5f}'.format(qt_qst_F))
fig, axes = plt.subplots(1, 2, sharey=True)
plot_state_paulivec(qt_qst_rho_fit, ax=axes[0]);
plot_state_paulivec(qi.DensityMatrix.from_instruction(qc_state_prep), ax=axes[1])
axes[1].set_ylabel(None);
axes[0].set_title("Experiment")
axes[1].set_title("Ideal")
plt.tight_layout()
fig.set_size_inches(14, 6)
plot_state_city(qt_qst_rho_fit, title="Experiment");
plot_state_city(qi.DensityMatrix.from_instruction(qc_state_prep), title="Ideal");
|
https://github.com/mspronesti/qlearnkit
|
mspronesti
|
import numpy as np
from qiskit import QuantumCircuit, QuantumRegister
from .encoding_map import EncodingMap
from ..circuits.circuit_utils import to_basis_gates
"""Encoding classical data to quantum state via amplitude encoding."""
class AmplitudeEncoding(EncodingMap):
"""
Amplitude Encoding map
"""
def __init__(self, n_features: int = 2):
super().__init__(n_features)
n_qubits = np.log2(n_features)
if not n_qubits.is_integer():
# if number of qubits is not a positive
# power of 2, an extra qubit is needed
n_qubits = np.ceil(n_qubits)
elif n_qubits == 0:
# in this scenario, n_features = 1
# then we need 1 qubit
n_qubits = 1
self._num_qubits = int(n_qubits)
def construct_circuit(self, x) -> QuantumCircuit:
"""
Constructs circuit for amplitude encoding
Args:
x: 1D classical data vector to be encoded
must satisfy len(x) == num_features
"""
self._check_feature_vector(x)
if self.num_features % 2 != 0:
# Number of features should be
# a positive power of 2 for `initialize`,
# then we add some padding
x = np.pad(x, (0, (1 << self.num_qubits) - len(x)))
state_vector = self.state_vector(x)
q = QuantumRegister(self.num_qubits)
qc = QuantumCircuit(q)
qc.initialize(state_vector, [q[i] for i in range(self.num_qubits)])
# convert final circuit to basis gates
# to unwrap the "initialize" block
qc = to_basis_gates(qc)
# remove the reset gates the unroller added
qc.data = [d for d in qc.data if d[0].name != "reset"]
return qc
def state_vector(self, x):
r"""
The encoding of a state via amplitude encoding operates
as follows:
given a quantum state :math:`\psi`, it processes the data
such that
.. math::\langle\psi|\psi\rangle = 1,
Args:
x: the classical data
Returns:
(np.array) encoded quantum state
"""
if isinstance(x, list):
x = np.asarray(x)
norm = np.linalg.norm(x)
# retrieves the normalized vector
# if the norm is not zero
return x / norm if not norm == 0 else x
|
https://github.com/GabrielPontolillo/QiskitPBT
|
GabrielPontolillo
|
from qiskit import QuantumCircuit
def measure_y() -> QuantumCircuit:
circuit = QuantumCircuit(1, 1)
circuit.sdg(0)
circuit.h(0)
circuit.measure(0, 0)
return circuit
def measure_z() -> QuantumCircuit:
circuit = QuantumCircuit(1, 1)
circuit.measure(0, 0)
return circuit
def measure_x() -> QuantumCircuit:
circuit = QuantumCircuit(1, 1)
circuit.h(0)
circuit.measure(0, 0)
return circuit
def ry_then_measure(theta) -> QuantumCircuit:
circuit = QuantumCircuit(1, 1)
circuit.ry(theta, 0)
circuit.measure(0, 0)
return circuit
|
https://github.com/rickapocalypse/final_paper_qiskit_sat
|
rickapocalypse
|
import qiskit.quantum_info as qi
from qiskit.circuit.library import FourierChecking
from qiskit.visualization import plot_histogram
import matplotlib.pyplot as plt
f = [0,0,0,0]
g = [1,1,1,-1]
circuit = FourierChecking(f=f, g=g)
circuit.draw(output='mpl')
zero = qi.Statevector.from_label('00')
sv = zero.evolve(circuit)
probs = sv.probabilities_dict()
plot_histogram(probs)
plt.show()
|
https://github.com/UST-QuAntiL/nisq-analyzer-content
|
UST-QuAntiL
|
from typing import List
from qiskit import QuantumCircuit, transpile, QuantumRegister, ClassicalRegister
from qiskit import BasicAer,Aer,execute, IBMQ
from qiskit.providers.aer import QasmSimulator
from qiskit.circuit.library.arithmetic import DraperQFTAdder, RGQFTMultiplier
from qiskit.circuit.library import IntegerComparator
from qiskit.algorithms import IterativeAmplitudeEstimation, AmplitudeEstimation
from qiskit.algorithms import EstimationProblem
from qiskit.utils import QuantumInstance
from qiskit.providers.fake_provider import FakeMontreal
def encode_input(x: List[int]) -> "Gate":
num_qubits = len(x)
qc = QuantumCircuit(num_qubits, name="encoding")
for i in range(num_qubits):
if x[i] == 1:
qc.x(num_qubits - i - 1)
return qc
def encode_hadamard_copy(num_qubits: int) -> "Gate":
qc = QuantumCircuit(num_qubits * 2, name="extension")
for i in range(num_qubits):
qc.cx(i, i + num_qubits)
return qc
def encode_hadamard(num_qubits: int) -> "Gate":
qc = QuantumCircuit(num_qubits, name="encoding")
for i in range(num_qubits):
qc.h(i)
return qc
def classical(x: List[int], y: List[int]) -> int:
num1 = 0
for i in range(len(x)):
num1 += x[i] * 0.5 ** (i + 1)
num2 = 0
for i in range(len(y)):
num2 += x[i] * 0.5 ** (i + 1)
result = num1 ** 2 + num2 ** 2
if result < 1:
return 1
return 0
def operator(bits_per_input, x1, x2, useQAE):
num_bits_after_mult = 2 * bits_per_input
num_bits_comparer = num_bits_after_mult + 1
nQubits = 4 * bits_per_input + 2 * num_bits_after_mult + 1 + num_bits_comparer
nClassical = 1
input_register_1 = QuantumRegister(size=bits_per_input)
input_register_1_copy = QuantumRegister(size=bits_per_input)
input_register_2 = QuantumRegister(size=bits_per_input)
input_register_2_copy = QuantumRegister(size=bits_per_input)
if len(x1) == 0 and len(x2) == 0:
input_circuit_1 = encode_hadamard(bits_per_input)
input_circuit_1_copy = encode_hadamard_copy(bits_per_input)
input_circuit_2 = encode_hadamard(bits_per_input)
input_circuit_2_copy = encode_hadamard_copy(bits_per_input)
else:
input_circuit_1 = encode_input(x1)
input_circuit_1_copy = encode_input(x1)
input_circuit_2 = encode_input(x2)
input_circuit_2_copy = encode_input(x2)
carry_qubits_mult_1 = QuantumRegister(size=num_bits_after_mult)
carry_qubits_mult_2 = QuantumRegister(size=num_bits_after_mult)
carry_qubits_comparer = QuantumRegister(size=num_bits_comparer)
carry_qubit_addition = QuantumRegister(size=1) # 1 additional qubit for addition
if useQAE == False:
output_register = ClassicalRegister(size=nClassical)
circuit = QuantumCircuit(
input_register_1,
input_register_1_copy,
input_register_2,
input_register_2_copy,
carry_qubits_mult_1,
carry_qubits_mult_2,
carry_qubit_addition,
carry_qubits_comparer,
output_register
)
else:
circuit = QuantumCircuit(
input_register_1,
input_register_1_copy,
input_register_2,
input_register_2_copy,
carry_qubits_mult_1,
carry_qubits_mult_2,
carry_qubit_addition,
carry_qubits_comparer
)
# encoding
circuit.append(input_circuit_1, input_register_1[:])
if len(x1) == 0 and len(x2) == 0:
circuit.append(input_circuit_1_copy, input_register_1[:] + input_register_1_copy[:])
else:
circuit.append(input_circuit_1_copy, input_register_1_copy[:])
circuit.append(input_circuit_2, input_register_2[:])
if len(x1) == 0 and len(x2) == 0:
circuit.append(input_circuit_2_copy, input_register_2[:] + input_register_2_copy[:])
else:
circuit.append(input_circuit_2_copy, input_register_2_copy[:])
# multiplication
multiplicator = RGQFTMultiplier(num_state_qubits=bits_per_input)
circuit.append(multiplicator, input_register_1[:] + input_register_1_copy[:] + carry_qubits_mult_1[:])
circuit.append(multiplicator, input_register_2[:] + input_register_2_copy[:] + carry_qubits_mult_2[:])
# addition
adder = DraperQFTAdder(num_bits_after_mult, kind="half")
circuit.append(adder, carry_qubits_mult_1[:] + carry_qubits_mult_2[:] + carry_qubit_addition[:])
# inequality check if in circle
s = 2 ** (bits_per_input) - 1
comparer = IntegerComparator(num_bits_after_mult + 1, s * s + 1, False)
circuit.append(comparer, carry_qubits_mult_2[:] + carry_qubit_addition[:] + carry_qubits_comparer[:])
# readout
if useQAE == False:
circuit.measure(nQubits - num_bits_comparer, 0)
return circuit
def get_circuit(**kwargs):
bits_per_input =1 # num qubits per number
useQAE =True
circuit =operator(bits_per_input,[],[],useQAE)
#circuit.draw('mpl')
#backend = FakeMontreal()
#circuit_transpiled = transpile(circuit,backend)
#circuit_transpiled.draw('mpl')
#circuit_transpiled.depth()
backend =Aer.get_backend('qasm_simulator')
circuit_to_return = None
if useQAE == True:
quantum_instance = Aer.get_backend('qasm_simulator')
num_bits_after_mult = 2 * bits_per_input
num_bits_comparer =num_bits_after_mult+1
nQubits=4*bits_per_input + 2*num_bits_after_mult+1 +num_bits_comparer
problem = EstimationProblem(
state_preparation=circuit.decompose(), # A operator
objective_qubits=[nQubits-num_bits_comparer], # the "good" state Psi1 is identified as measuring |1> in qubit 0
)
print(f"Depth: ", circuit.depth())
print(f"Width: ", circuit.num_qubits)
ae = AmplitudeEstimation(
num_eval_qubits=3, # the number of evaluation qubits specifies circuit width and accuracy
quantum_instance=quantum_instance,
)
iae = IterativeAmplitudeEstimation(
epsilon_target=0.01, # target accuracy
alpha=0.05, # width of the confidence interval
quantum_instance=quantum_instance,
)
circuit_to_return = iae.construct_circuit(problem, measurement=True).decompose()
print(circuit_to_return)
result =iae.estimate(problem)
print(result)
else:
shots =1000
job= execute(circuit,backend=backend,shots=shots)
counts =job.result().get_counts()
print(counts)
#print(4 * counts['1'] /shots )
return circuit_to_return
|
https://github.com/googlercolin/Qiskit-Course
|
googlercolin
|
import numpy as np
# Importing standard Qiskit libraries
from qiskit import QuantumCircuit, transpile, assemble, Aer, IBMQ, execute
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_bloch_multivector, plot_histogram
from qiskit_textbook.problems import dj_problem_oracle
from qiskit.providers.ibmq import least_busy
from qiskit.tools.jupyter import *
provider = IBMQ.load_account()
def lab1_ex1():
qc = QuantumCircuit(1)
qc.x(0)
return qc
state = Statevector.from_instruction(lab1_ex1())
plot_bloch_multivector(state)
def lab1_ex2():
qc = QuantumCircuit(1)
qc.h(0)
return qc
state = Statevector.from_instruction(lab1_ex2())
plot_bloch_multivector(state)
def lab1_ex3():
qc = QuantumCircuit(1)
qc.x(0)
qc.h(0)
return qc
state = Statevector.from_instruction(lab1_ex3())
plot_bloch_multivector(state)
def lab1_ex4():
qc = QuantumCircuit(1)
qc.x(0)
qc.h(0)
qc.s(0)
return qc
state = Statevector.from_instruction(lab1_ex4())
plot_bloch_multivector(state)
def lab1_ex5():
qc = QuantumCircuit(2,2) # this time, we not only want two qubits, but also two classical bits for the measurement
qc.h(0)
qc.x(1)
qc.cx(0,1)
return qc
qc = lab1_ex5()
qc.draw() # we draw the circuit
qc.measure_all() # we measure all the qubits
backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend
counts = execute(qc, backend, shots = 1000).result().get_counts() # we run the simulation and get the counts
plot_histogram(counts) # let us plot a histogram to see the possible outcomes and corresponding probabilities
def lab1_ex6():
qc = QuantumCircuit(3,3)
qc.x(0)
qc.h(0)
qc.x(1)
qc.x(2)
qc.cx(0,1)
qc.cx(1,2)
return qc
qc = lab1_ex6()
qc.draw() # we draw the circuit
oraclenr = 2 # determines the oracle (can range from 1 to 5)
oracle = dj_problem_oracle(oraclenr) # gives one out of 5 oracles
oracle.name = "DJ-Oracle"
def dj_classical(n, input_str):
# build a quantum circuit with n qubits and 1 classical readout bit
dj_circuit = QuantumCircuit(n+1,1)
# Prepare the initial state corresponding to your input bit string
for i in range(n):
if input_str[i] == '1':
dj_circuit.x(i)
# append oracle
dj_circuit.append(oracle, range(n+1))
# measure the fourth qubit
dj_circuit.measure(n,0)
return dj_circuit
n = 4 # number of qubits
input_str = '1111'
dj_circuit = dj_classical(n, input_str)
dj_circuit.draw() # draw the circuit
input_str = '1011'
dj_circuit = dj_classical(n, input_str)
qasm_sim = Aer.get_backend('qasm_simulator')
transpiled_dj_circuit = transpile(dj_circuit, qasm_sim)
qobj = assemble(transpiled_dj_circuit, qasm_sim)
results = qasm_sim.run(qobj).result()
answer = results.get_counts()
plot_histogram(answer)
def lab1_ex7():
min_nr_inputs = 2 # put your answer here, then uncomment
max_nr_inputs = (2**n)/2 + 1 # put your answer here, then uncomment
return [min_nr_inputs, max_nr_inputs]
n=4
def psi_0(n):
qc = QuantumCircuit(n+1,n)
# Build the state (|00000> - |10000>)/sqrt(2)
qc.x(4)
qc.h(4)
qc.barrier()
return qc
dj_circuit = psi_0(n)
dj_circuit.draw()
def psi_1(n):
# obtain the |psi_0> = (|00000> - |10000>)/sqrt(2) state
qc = psi_0(n)
# create the superposition state |psi_1>
for i in range(4):
qc.h(i)
return qc
dj_circuit = psi_1(n)
dj_circuit.draw()
def psi_2(oracle,n):
# circuit to obtain psi_1
qc = psi_1(n)
# append the oracle
qc.append(oracle, range(n+1))
return qc
dj_circuit = psi_2(oracle, n)
dj_circuit.draw()
def lab1_ex8(oracle, n): # note that this exercise also depends on the code in the functions psi_0 (In [24]) and psi_1 (In [25])
qc = psi_2(oracle, n)
# apply n-fold hadamard gate
for i in range(n):
qc.h(i)
qc.barrier()
# add the measurement by connecting qubits to classical bits
for j in range(n):
qc.measure(j, j)
return qc
dj_circuit = lab1_ex8(oracle, n)
dj_circuit.draw()
qasm_sim = Aer.get_backend('qasm_simulator')
transpiled_dj_circuit = transpile(dj_circuit, qasm_sim)
qobj = assemble(transpiled_dj_circuit)
results = qasm_sim.run(qobj).result()
answer = results.get_counts()
plot_histogram(answer)
backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n+1) and not
x.configuration().simulator and x.status().operational==True))
print('least busy backend: ', backend)
%qiskit_job_watcher
job = execute(dj_circuit, backend=backend, shots=1024, optimization_level=3)
# Get results of computation
results = job.result()
answer = results.get_counts()
plot_histogram(answer)
# Jobs I ran before
backend = provider.get_backend('ibmq_quito')
old_job = backend.retrieve_job('61cbfe7be867009014a0362e')
results = old_job.result()
answer = results.get_counts()
plot_histogram(answer)
|
https://github.com/1chooo/Quantum-Oracle
|
1chooo
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import Statevector
qc = QuantumCircuit(2)
qc.x(1)
qc.draw("mpl")
state = Statevector.from_instruction(qc)
state.draw('bloch')
|
https://github.com/Pitt-JonesLab/mirror-gates
|
Pitt-JonesLab
|
from virtual_swap.deprecated.cns_sa import VSwapPass
from qiskit import QuantumCircuit
from qiskit.quantum_info import Operator
qc = QuantumCircuit(3)
qc.cx(0, 1)
qc.h(1)
qc.iswap(1, 2)
qc.y(2)
original_op = Operator(qc)
qc.draw("mpl")
from qiskit.converters import circuit_to_dag
dag = circuit_to_dag(qc)
dag.draw()
# manually select the first cx node
from qiskit.circuit.library.standard_gates import CXGate, iSwapGate
h_node = dag.op_nodes(iSwapGate)[0]
import numpy as np
# cx -> iswap
cx_replace = QuantumCircuit(2, 0)
cx_replace.h(1)
cx_replace.rz(-np.pi / 2, 0)
cx_replace.rz(-np.pi / 2, 1)
cx_replace.iswap(0, 1)
cx_replace.h(0)
cx_replace.draw("mpl")
# iswap -> cx
iswap_replace = QuantumCircuit(2, 0)
iswap_replace.rz(np.pi / 2, 0)
iswap_replace.rz(np.pi / 2, 1)
iswap_replace.h(1)
iswap_replace.cx(0, 1)
iswap_replace.h(1)
from qiskit.dagcircuit import DAGOpNode, DAGInNode, DAGOutNode, DAGCircuit
from qiskit.circuit.library import iSwapGate, SwapGate
def cns_transform(dag: DAGCircuit, h_node):
"""Alternative implementation, adds nodes into blank copy of dag"""
new_dag = dag.copy_empty_like()
flip_flag = False
swap_wires = {
qarg1: qarg2 for qarg1, qarg2 in zip(h_node.qargs, h_node.qargs[::-1])
}
for node in dag.topological_op_nodes():
if node == h_node:
if node.name == "cx":
new_dag.apply_operation_back(cx_replace.to_instruction(), node.qargs)
elif node.name == "iswap":
new_dag.apply_operation_back(iswap_replace.to_instruction(), node.qargs)
else:
raise ValueError("Unsupported operation")
flip_flag = True
else:
if flip_flag:
new_dag.apply_operation_back(
node.op, [swap_wires.get(qarg, qarg) for qarg in node.qargs]
)
else:
new_dag.apply_operation_back(node.op, node.qargs)
# fix with a swap
new_dag.apply_operation_back(SwapGate(), h_node.qargs)
return new_dag
def cns_transform_old(dag, h_node):
swap_wires = {
qarg1: qarg2 for qarg1, qarg2 in zip(h_node.qargs, h_node.qargs[::-1])
}
# NOTE, include the node itself, because we want to reference set of all outgoing edges
node_list = list(dag.descendants(h_node))
node_list.insert(0, h_node)
for source in node_list:
# first, update edge arguments
for target in dag.successors(source):
edge = dag._multi_graph.get_edge_data(source._node_id, target._node_id)
dag._multi_graph.update_edge(
source._node_id, target._node_id, swap_wires.get(edge, edge)
)
# second, update the node's qargs
if source == h_node:
# here replace the operation...
if source.name == "cx":
dag.substitute_node(source, cx_replace.to_instruction())
elif source.name == "iswap":
dag.substitute_node(source, iswap_replace.to_instruction())
else:
raise ValueError("Unsupported operation")
# third, update output nodes
elif isinstance(source, DAGOpNode):
source.qargs = [swap_wires.get(qarg, qarg) for qarg in source.qargs]
elif isinstance(source, DAGOutNode):
source.wire = swap_wires.get(source.wire, source.wire)
# add a swap a swap at end of circuit
# NOTE, preserves unitary for equivalence checks
# final SWAP gates can be removed by the optimizer
dag.apply_operation_back(SwapGate(), h_node.qargs)
dag = cns_transform(dag, h_node)
# cns_transform_old(dag, h_node)
dag.draw()
from qiskit.converters import dag_to_circuit
qc = dag_to_circuit(dag)
# transpile into iswap, cx, u basis
from qiskit.transpiler import PassManager
from qiskit.transpiler.passes import Unroller
pm = PassManager([Unroller(["swap", "iswap", "cx", "u"])])
qc = pm.run(qc)
qc.draw("mpl")
# verify circuits are equivalent
from qiskit.quantum_info import Operator
original_op.equiv(Operator(qc))
# get first cx node from qc
dag = circuit_to_dag(qc)
cx_node = dag.op_nodes(CXGate)
from virtual_swap.cns_transform import cns_transform
new_dag = cns_transform(dag, *cx_node, preserve_layout=True)
new_qc = dag_to_circuit(new_dag)
new_qc.draw("mpl")
|
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
|
PabloMartinezAngerosa
|
from tsp_qaoa import test_solution
from qiskit.visualization import plot_histogram
import networkx as nx
import numpy as np
job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution()
plot_histogram(job_2.result().get_counts(), color='midnightblue', title="New Histogram", figsize=(30, 5))
plot_histogram(job_2.result().get_counts(), color='midnightblue', title="New Histogram", figsize=(30, 5))
G
labels = nx.get_edge_attributes(G,'weight')
labels
import json
# Array of JSON Objects
products = [{"name": "HDD", "brand": "Samsung", "price": "$100"},
{"name": "Monitor", "brand": "Dell", "price": "$120"},
{"name": "Mouse", "brand": "Logitech", "price": "$10"}]
# Print the original data
print("The original JSON data:\n{0}".format(products))
# Sort the JSON data based on the value of the brand key
products.sort(key=lambda x: x["price"])
# Print the sorted JSON data
print("The sorted JSON data based on the value of the brand:\n{0}".format(products))
_LAMBDA
UNIFORM_CONVERGENCE_SAMPLE
import json
# Array of JSON Objects
# Sort the JSON data based on the value of the brand key
UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"])
# Print the sorted JSON data
UNIFORM_CONVERGENCE_SAMPLE
np.max(UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"] - UNIFORM_CONVERGENCE_SAMPLE[220]["probabilities"])
# generamos las distancias entre para la convergencia uniforme
index = -1
for sample in UNIFORM_CONVERGENCE_SAMPLE:
mean = sample["mean"]
index += 1
distance_p_ground_state = np.max(np.abs(UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"] - sample["probabilities"]))
UNIFORM_CONVERGENCE_SAMPLE[index]["distance_pgs"] = distance_p_ground_state
UNIFORM_CONVERGENCE_SAMPLE
import csv
header = ['iteration', 'state', 'probability', 'mean']
header_q = ['iteration', 'distance']
with open('qaoa_cu.csv', 'w', encoding='UTF8') as f:
with open('qaoa_distance.csv', 'w', encoding='UTF8') as q:
writer = csv.writer(f)
writer_q = csv.writer(q)
# write the header
writer.writerow(header)
writer_q.writerow(header_q)
iteration = 0
for sample in UNIFORM_CONVERGENCE_SAMPLE:
iteration += 1
mean = sample["mean"]
distance = sample["distance_pgs"]
state = 0
for probability in sample["probabilities"]:
state += 1
# write the data
data = [iteration, state, probability, mean]
writer.writerow(data)
writer_q.writerow([iteration, distance])
#plot_histogram(job_2, color='midnightblue', title=str(mean), figsize=(30, 5)).savefig(str(contador) + "_2.png")
#print(sample["mean"])
plot_histogram(job_2, color='midnightblue', title="New Histogram", figsize=(30, 5)).savefig('out.png')
|
https://github.com/hugoecarl/TSP-Problem-Study
|
hugoecarl
|
import math
import matplotlib.pyplot as plt
%matplotlib inline
class TSP:
def __init__(self):
self.flat_mat = flat_mat
self.n = 0
self.melhor_dist = 1e11
self.pontos = []
self.melhores_pontos = []
def busca_exaustiva(self, flat_mat, n, ite):
if ite == n:
dist = 0
for j in range(1, n):
dist += flat_mat[self.pontos[j-1] * n + self.pontos[j]]
dist += flat_mat[self.pontos[n-1] * n + self.pontos[0]]
if dist < self.melhor_dist:
self.melhor_dist = dist
self.melhores_pontos = self.pontos[:]
return
for i in range(n):
if self.pontos[i] == -1:
self.pontos[i] = ite
self.busca_exaustiva(flat_mat, n, ite + 1)
self.pontos[i] = -1
def dist_mat(self):
x = []
y = []
flat_mat = [] #matriz 1 dimensao contendo todas as distancias possiveis entre os pontos para facilitar cálculo.
while True:
try:
temp = input("Digite a coordenada x y: ").split()
x.append(float(temp[0]))
y.append(float(temp[1]))
except:
break
for i in range(len(x)):
for j in range(len(y)):
flat_mat.append(math.sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2))
return flat_mat, x, y
def get_results(self):
self.flat_mat, x, _ = self.dist_mat()
self.n = len(x)
self.pontos = [-1]*self.n
self.pontos[0] = 0
self.busca_exaustiva(self.flat_mat, self.n, 1)
return self.melhor_dist, self.melhores_pontos
Tsp = TSP()
distancia, pontos = Tsp.get_results()
print("Melhor distancia encontrada: ", distancia)
print("Melhor caminho encontrado: ", pontos)
#plota gráfico
def connectpoints(x,y,p1,p2):
x1, x2 = x[p1], x[p2]
y1, y2 = y[p1], y[p2]
plt.plot([x1,x2],[y1,y2],'ro-')
for i in range(1, len(pontos)):
connectpoints(x,y,pontos[i-1],pontos[i])
connectpoints(x,y,pontos[len(x)-1],pontos[0])
plt.title("Percurso")
plt.show()
%%time
%%cmd
python TSP.py < in-1.txt
type out-1.txt
python TSP.py < in-2.txt
type out-2.txt
python TSP.py < in-3.txt
type out-3.txt
python TSP.py < in-4.txt
type out-4.txt
from qiskit import IBMQ
import numpy as np
#IBMQ.save_account('seu-tokenIBMQ-para-rodar-localmente')
IBMQ.load_account()
from qiskit import Aer
from qiskit.tools.visualization import plot_histogram
from qiskit.circuit.library import TwoLocal
from qiskit.optimization.applications.ising import max_cut, tsp
from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver
from qiskit.aqua.components.optimizers import SPSA
from qiskit.aqua import aqua_globals
from qiskit.aqua import QuantumInstance
from qiskit.optimization.applications.ising.common import sample_most_likely
from qiskit.optimization.algorithms import MinimumEigenOptimizer
from qiskit.optimization.problems import QuadraticProgram
import logging
from qiskit.aqua import set_qiskit_aqua_logging
#Preparando os dados segundo os imputs do usuario para serem resolvidos pelo qiskit max 4 pontos por limitação de qubits
coord = []
flat_mat, x, y = TSP().dist_mat()
dist_mat = np.array(flat_mat).reshape(len(x),len(x))
for i, j in zip(x, y):
coord.append([i,j])
ins = tsp.TspData('TSP_Q', dim=len(x), coord=np.array(coord), w=dist_mat)
qubitOp, offset = tsp.get_operator(ins)
print('Offset:', offset)
print('Ising Hamiltonian:')
print(qubitOp.print_details())
#Usando o numpyMinimumEigensolver como o solver do problema para resolver de forma quantica
ee = NumPyMinimumEigensolver(qubitOp)
result = ee.run()
print('energy:', result.eigenvalue.real)
print('tsp objective:', result.eigenvalue.real + offset)
x_Q = sample_most_likely(result.eigenstate)
print('feasible:', tsp.tsp_feasible(x_Q))
z = tsp.get_tsp_solution(x_Q)
print('solution:', z)
print('solution objective:', tsp.tsp_value(z, ins.w))
for i in range(1, len(z)):
connectpoints(x,y,z[i-1],z[i])
connectpoints(x,y,z[len(x)-1],z[0])
plt.title("Percurso")
plt.show()
#instanciando o simulador ou o computador real importante lembrar que nao ira funcionar para mais de 4 pontos pelo numero de qubits disponibilizados pela IBM que sao apenas 16 para o simulador qasm e 15 para a maquina quantica
provider = IBMQ.get_provider(hub = 'ibm-q')
device = provider.get_backend('ibmq_16_melbourne')
aqua_globals.random_seed = np.random.default_rng(123)
seed = 10598
backend = Aer.get_backend('qasm_simulator')
#descomentar essa linha caso queira rodar na maquina real
#backend = device
quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed)
#rodando no simulador quantico
spsa = SPSA(maxiter=10)
ry = TwoLocal(qubitOp.num_qubits, 'ry', 'cz', reps=5, entanglement='linear')
vqe = VQE(qubitOp, ry, spsa, quantum_instance=quantum_instance)
result = vqe.run(quantum_instance)
print('energy:', result.eigenvalue.real)
print('time:', result.optimizer_time)
x = sample_most_likely(result.eigenstate)
print('feasible:', tsp.tsp_feasible(x_Q))
z = tsp.get_tsp_solution(x_Q)
print('solution:', z)
print('solution objective:', tsp.tsp_value(z, ins.w))
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=wrong-import-order
"""Main Qiskit public functionality."""
import pkgutil
# First, check for required Python and API version
from . import util
# qiskit errors operator
from .exceptions import QiskitError
# The main qiskit operators
from qiskit.circuit import ClassicalRegister
from qiskit.circuit import QuantumRegister
from qiskit.circuit import QuantumCircuit
# pylint: disable=redefined-builtin
from qiskit.tools.compiler import compile # TODO remove after 0.8
from qiskit.execute import execute
# The qiskit.extensions.x imports needs to be placed here due to the
# mechanism for adding gates dynamically.
import qiskit.extensions
import qiskit.circuit.measure
import qiskit.circuit.reset
# Allow extending this namespace. Please note that currently this line needs
# to be placed *before* the wrapper imports or any non-import code AND *before*
# importing the package you want to allow extensions for (in this case `backends`).
__path__ = pkgutil.extend_path(__path__, __name__)
# Please note these are global instances, not modules.
from qiskit.providers.basicaer import BasicAer
# Try to import the Aer provider if installed.
try:
from qiskit.providers.aer import Aer
except ImportError:
pass
# Try to import the IBMQ provider if installed.
try:
from qiskit.providers.ibmq import IBMQ
except ImportError:
pass
from .version import __version__
from .version import __qiskit_version__
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""BasicAer Backends Test."""
from qiskit import BasicAer
from qiskit.providers.basicaer import BasicAerProvider
from qiskit.providers.exceptions import QiskitBackendNotFoundError
from qiskit.test import providers
class TestBasicAerBackends(providers.ProviderTestCase):
"""Qiskit BasicAer Backends (Object) Tests."""
provider_cls = BasicAerProvider
backend_name = "qasm_simulator"
def test_deprecated(self):
"""Test that deprecated names map the same backends as the new names."""
def _get_first_available_backend(provider, backend_names):
"""Gets the first available backend."""
if isinstance(backend_names, str):
backend_names = [backend_names]
for backend_name in backend_names:
try:
return provider.get_backend(backend_name).name()
except QiskitBackendNotFoundError:
pass
return None
deprecated_names = BasicAer._deprecated_backend_names()
for oldname, newname in deprecated_names.items():
expected = (
"WARNING:qiskit.providers.providerutils:Backend '%s' is deprecated. "
"Use '%s'." % (oldname, newname)
)
with self.subTest(oldname=oldname, newname=newname):
with self.assertLogs("qiskit.providers.providerutils", level="WARNING") as context:
resolved_newname = _get_first_available_backend(BasicAer, newname)
real_backend = BasicAer.get_backend(resolved_newname)
self.assertEqual(BasicAer.backends(oldname)[0], real_backend)
self.assertEqual(context.output, [expected])
def test_aliases_fail(self):
"""Test a failing backend lookup."""
self.assertRaises(QiskitBackendNotFoundError, BasicAer.get_backend, "bad_name")
def test_aliases_return_empty_list(self):
"""Test backends() return an empty list if name is unknown."""
self.assertEqual(BasicAer.backends("bad_name"), [])
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
import pickle
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="lq")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
t3_st_qcs = transpile(t3_st_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_st_qcs), ")")
t3_st_qcs[-1].draw("mpl") # only view trotter gates
# from qiskit.test.mock import FakeJakarta
# backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
print("provider:", provider)
backend = provider.get_backend("ibmq_jakarta")
shots = 8192
reps = 8
jobs = []
for _ in range(reps):
# execute
job = execute(t3_st_qcs, backend, shots=shots)
print('Job ID', job.job_id())
jobs.append(job)
# QREM
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout=initial_layout)
print('Job ID', cal_job.job_id())
dt_now = datetime.datetime.now()
print(dt_now)
with open("jobs_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
with open("job_ids_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
with open("properties_jakarta" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump(backend.properties(), f)
filename = "job_ids_jakarta_100step_20220412_171248_.pkl" # change here
with open(filename, "rb") as f:
job_ids_dict = pickle.load(f)
job_ids = job_ids_dict["job_ids"]
cal_job_id = job_ids_dict["cal_job_id"]
retrieved_jobs = []
for job_id in job_ids:
retrieved_jobs.append(backend.retrieve_job(job_id))
retrieved_cal_job = backend.retrieve_job(cal_job_id)
cal_results = retrieved_cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
# set the target state
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
fids = []
for job in retrieved_jobs:
# mit_results = meas_fitter.filter.apply(job.result()) # apply QREM
rho = StateTomographyFitter(job.result(), st_qcs).fit(method='lstsq')
fid = state_fidelity(rho, target_state)
fids.append(fid)
print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
import qiskit.tools.jupyter
%qiskit_version_table
|
https://github.com/pranavdurai10/quantum-gates
|
pranavdurai10
|
'''
///////////////////////////////////////////////////////////////////////////
Code written by Pranav Durai for Quantum Computer on 27.05.2023 @ 22:41:54
Component: Pauli-X-Gate (bit-flip-gate)
Framework: Qiskit 0.43.0
///////////////////////////////////////////////////////////////////////////
'''
# Import necessary libraries
from qiskit import QuantumCircuit, Aer, execute
# Create a quantum circuit with one qubit
circuit = QuantumCircuit(1)
# Apply Pauli-X gate to the qubit
circuit.x(0)
# Measure the qubit
circuit.measure_all()
# Simulate the circuit using the local Aer simulator
simulator = Aer.get_backend('qasm_simulator')
job = execute(circuit, simulator, shots=1)
# Get the result
result = job.result()
counts = result.get_counts(circuit)
# Print the measurement outcome
print("Measurement outcome:", list(counts.keys())[0])
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import re
import itertools
import numpy as np
import random
random.seed(42)
import mitiq
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.ignis.mitigation import expectation_value
# Pauli Twirling
def pauli_twirling(circ: QuantumCircuit) -> QuantumCircuit:
"""
[internal function]
This function takes a quantum circuit and return a new quantum circuit with Pauli Twirling around the CNOT gates.
Args:
circ: QuantumCircuit
Returns:
QuantumCircuit
"""
def apply_pauli(num: int, qb: int) -> str:
if (num == 0):
return f''
elif (num == 1):
return f'x q[{qb}];\n'
elif (num == 2):
return f'y q[{qb}];\n'
else:
return f'z q[{qb}];\n'
paulis = [(i,j) for i in range(0,4) for j in range(0,4)]
paulis.remove((0,0))
paulis_map = [(0, 1), (3, 2), (3, 3), (1, 1), (1, 0), (2, 3), (2, 2), (2, 1), (2, 0), (1, 3), (1, 2), (3, 0), (3, 1), (0, 2), (0, 3)]
new_circ = ''
ops = circ.qasm().splitlines(True) #! split the quantum circuit into qasm operators
for op in ops:
if (op[:2] == 'cx'): # add Pauli Twirling around the CNOT gate
num = random.randrange(len(paulis))
qbs = re.findall('q\[(.)\]', op)
new_circ += apply_pauli(paulis[num][0], qbs[0])
new_circ += apply_pauli(paulis[num][1], qbs[1])
new_circ += op
new_circ += apply_pauli(paulis_map[num][0], qbs[0])
new_circ += apply_pauli(paulis_map[num][1], qbs[1])
else:
new_circ += op
return QuantumCircuit.from_qasm_str(new_circ)
def zne_wrapper(qcs, scale_factors = [1.0, 2.0, 3.0], pt = False):
"""
This function outputs the circuit list for zero-noise extrapolation.
Args:
qcs: List[QuantumCircuit], the input quantum circuits.
scale_factors: List[float], to what extent the noise scales are investigated.
pt: bool, whether add Pauli Twirling or not.
Returns:
folded_qcs: List[QuantumCircuit]
"""
folded_qcs = [] #! ZNE用の回路
for qc in qcs:
folded_qcs.append([mitiq.zne.scaling.fold_gates_at_random(qc, scale) for scale in scale_factors]) #! ここでmitiqを使用
folded_qcs = list(itertools.chain(*folded_qcs)) #! folded_qcsを平坦化
if pt:
folded_qcs = [pauli_twirling(circ) for circ in folded_qcs]
return folded_qcs
def make_stf_basis(n, basis_elements = ["X","Y","Z"]):
"""
[internal function]
This function outputs all the combinations of length n string for given basis_elements.
When basis_elements is X, Y, and Z (default), the output becomes the n-qubit Pauli basis.
Args:
n: int
basis_elements: List[str]
Returns:
basis: List[str]
"""
if n == 1:
return basis_elements
basis = []
for i in basis_elements:
sub_basis = make_stf_basis(n - 1, basis_elements)
basis += [i + j for j in sub_basis]
return basis
def reduce_hist(hist, poses):
"""
[internal function]
This function returns the reduced histogram to the designated positions.
Args:
hist: Dict[str, float]
poses: List[int]
Returns:
ret_hist: Dict[str, float]
"""
n = len(poses)
ret_hist = {format(i, "0" + str(n) + "b"): 0 for i in range(1 << n)}
for k, v in hist.items():
pos = ""
for i in range(n):
pos += k[poses[i]]
ret_hist[pos] += v
return ret_hist
def make_stf_expvals(n, stf_hists):
"""
[internal function]
This function create the expectations under expanded basis, which are used to reconstruct the density matrix.
Args:
n: int, the size of classical register in the measurement results.
stf_hists: List[Dict[str, float]], the input State Tomography Fitter histograms.
Returns:
st_expvals: List[float], the output State Tomography expectation values.
"""
assert len(stf_hists) == 3 ** n
stf_basis = make_stf_basis(n, basis_elements=["X","Y","Z"])
st_basis = make_stf_basis(n, basis_elements=["I","X","Y","Z"])
stf_hists_dict = {basis: hist for basis, hist in zip(stf_basis, stf_hists)}
st_hists_dict = {basis: stf_hists_dict.get(basis, None) for basis in st_basis}
# remaining
for basis in sorted(set(st_basis) - set(stf_basis)):
if basis == "I" * n:
continue
reduction_poses = []
reduction_basis = ""
for i, b in enumerate(basis):
if b != "I":
reduction_poses.append(n - 1 - i) # big endian
reduction_basis += b # こっちはそのまま(なぜならラベルはlittle endianだから)
else:
reduction_basis += "Z"
st_hists_dict[basis] = reduce_hist(stf_hists_dict[reduction_basis], reduction_poses)
st_expvals = dict()
for basis, hist in st_hists_dict.items():
if basis == "I" * n:
st_expvals[basis] = 1.0
continue
st_expvals[basis], _ = expectation_value(hist)
return st_expvals
def zne_decoder(n, result, scale_factors=[1.0, 2.0, 3.0], fac_type="lin"):
"""
This function applies the zero-noise extrapolation to the measured results and output the mitigated zero-noise expectation values.
Args:
n: int, the size of classical register in the measurement results.
result: Result, the returned results from job.
scale_factors: List[float], this should be the same as the zne_wrapper.
fac_type: str, "lin" or "exp", whether to use LinFactory option or ExpFactory option in mitiq, to extrapolate the expectation values.
Returns:
zne_expvals: List[float], the mitigated zero-noise expectation values.
"""
hists = result.get_counts()
num_scale_factors = len(scale_factors)
assert len(hists) % num_scale_factors == 0
scale_wise_expvals = [] # num_scale_factors * 64
for i in range(num_scale_factors):
scale_wise_hists = [hists[3 * j + i] for j in range(len(hists) // num_scale_factors)]
st_expvals = make_stf_expvals(n, scale_wise_hists)
scale_wise_expvals.append( list(st_expvals.values()) )
scale_wise_expvals = np.array(scale_wise_expvals)
linfac = mitiq.zne.inference.LinearFactory(scale_factors)
expfac = mitiq.zne.ExpFactory(scale_factors)
zne_expvals = []
for i in range(4 ** n):
if fac_type == "lin":
zne_expvals.append( linfac.extrapolate(scale_factors, scale_wise_expvals[:, i]) )
else:
zne_expvals.append( expfac.extrapolate(scale_factors, scale_wise_expvals[:, i]) )
return zne_expvals
|
https://github.com/Z-928/Bugs4Q
|
Z-928
|
from qiskit import *
qc = QuantumCircuit(2)
qc.h(i)
qc.crz (PI/4, 0, 1)
|
https://github.com/SaashaJoshi/IBM-Qiskit-Summer-School-2020
|
SaashaJoshi
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
import json
from typing import Any, Callable, Optional, Tuple, Union
from urllib.parse import urljoin
from qiskit import QuantumCircuit, execute
from qiskit.providers import JobStatus
from qiskit.providers.ibmq.job import IBMQJob
from .api import get_server_endpoint, send_request, get_access_token, get_submission_endpoint
from .exercises import get_question_id
from .util import compute_cost, get_provider, get_job, circuit_to_json, get_job_urls, uses_multiqubit_gate
def _circuit_criteria(
circuit: QuantumCircuit,
max_qubits: Optional[int] = None,
min_cost: Optional[int] = None,
check_gates: Optional[bool] = False
) -> Tuple[Optional[int], Optional[int]]:
if max_qubits is not None and circuit.num_qubits > max_qubits:
print(f'Your circuit has {circuit.num_qubits} qubits, which exceeds the maximum allowed.')
print(f'Please reduce the number of qubits in your circuit to below {max_qubits}.')
return None, None
try:
if check_gates and not uses_multiqubit_gate(circuit):
print('Your circuit appears to not use any multi-quibit gates.')
print('Please review your circuit and try again.')
return None, None
cost = compute_cost(circuit)
if min_cost is not None and cost < min_cost:
print(f'Your circuit cost ({cost}) is too low. But if you are convinced that your circuit\n'
'is correct, please let us know in the `#ibm-quantum-challenge-2020` Slack channel.')
return None, None
return circuit.num_qubits, cost
except Exception as err:
print(f'Unable to compute cost: {err}')
return None, None
def _circuit_grading(
circuit: QuantumCircuit,
lab_id: str,
ex_id: str,
is_submit: Optional[bool] = False,
max_qubits: Optional[int] = None,
min_cost: Optional[int] = None,
check_gates: Optional[bool] = False
) -> Tuple[Optional[dict], Optional[str]]:
payload = None
server = None
if not isinstance(circuit, QuantumCircuit):
print(f'Expected a QuantumCircuit, but was given {type(circuit)}')
print(f'Please provide a circuit as your answer.')
return None, None
if not is_submit:
server = get_server_endpoint(lab_id, ex_id)
if not server:
print('Could not find a valid grading server or '
'the grading servers are down right now.')
return None, None
else:
server = None
_, cost = _circuit_criteria(
circuit,
max_qubits=max_qubits,
min_cost=min_cost,
check_gates=check_gates
)
if cost is not None:
payload = {
'answer': circuit_to_json(circuit)
}
if is_submit:
payload['questionNumber'] = get_question_id(lab_id, ex_id)
else:
payload['question_id'] = get_question_id(lab_id, ex_id)
return payload, server
def _job_grading(
job_or_id: Union[IBMQJob, str],
lab_id: str,
ex_id: str,
is_submit: Optional[bool] = False
) -> Tuple[Optional[dict], Optional[str]]:
if not isinstance(job_or_id, IBMQJob) and not isinstance(job_or_id, str):
print(f'Expected an IBMQJob or a job ID, but was given {type(job_or_id)}')
print(f'Please submit a job as your answer.')
return None, None
if not is_submit:
server = get_server_endpoint(lab_id, ex_id)
if not server:
print('Could not find a valid grading server or the grading '
'servers are down right now.')
return None, None
else:
server = None
job = get_job(job_or_id) if isinstance(job_or_id, str) else job_or_id
if not job:
print('An invalid or non-existent job was specified.')
return None, None
job_status = job.status()
if job_status in [JobStatus.CANCELLED, JobStatus.ERROR]:
print(f'Job did not successfully complete: {job_status.value}.')
return None, None
elif job_status is not JobStatus.DONE:
print(f'Job has not yet completed: {job_status.value}.')
print(f'Please wait for the job (id: {job.job_id()}) to complete then try again.')
return None, None
header = job.result().header.to_dict()
if 'qc_cost' not in header:
if is_submit:
print('An unprepared answer was specified. '
'Please prepare() and grade() answer before submitting.')
else:
print('An unprepared answer was specified. Please prepare() answer before grading.')
return None, None
download_url, result_url = get_job_urls(job)
if not download_url or not result_url:
print('Unable to obtain job URLs')
return None, None
payload = {
'answer': json.dumps({
'download_url': download_url,
'result_url': result_url
})
}
if is_submit:
payload['questionNumber'] = get_question_id(lab_id, ex_id)
else:
payload['question_id'] = get_question_id(lab_id, ex_id)
return payload, server
def _number_grading(
answer: int,
lab_id: str,
ex_id: str,
is_submit: Optional[bool] = False
) -> Tuple[Optional[dict], Optional[str]]:
if not isinstance(answer, int):
print(f'Expected a integer, but was given {type(answer)}')
print(f'Please provide a number as your answer.')
return None, None
if not is_submit:
server = get_server_endpoint(lab_id, ex_id)
if not server:
print('Could not find a valid grading server '
'or the grading servers are down right now.')
return None, None
else:
server = None
payload = {
'answer': str(answer)
}
if is_submit:
payload['questionNumber'] = get_question_id(lab_id, ex_id)
else:
payload['question_id'] = get_question_id(lab_id, ex_id)
return payload, server
def prepare_circuit(
circuit: QuantumCircuit,
max_qubits: Optional[int] = 28,
min_cost: Optional[int] = None,
check_gates: Optional[bool] = False,
**kwargs
) -> Optional[IBMQJob]:
job = None
if not isinstance(circuit, QuantumCircuit):
print(f'Expected a QuantumCircuit, but was given {type(circuit)}')
print(f'Please provide a circuit.')
return None
_, cost = _circuit_criteria(
circuit,
max_qubits=max_qubits,
min_cost=min_cost,
check_gates=check_gates
)
if cost is not None:
if 'backend' not in kwargs:
kwargs['backend'] = get_provider().get_backend('ibmq_qasm_simulator')
# execute experiments
print('Starting experiment. Please wait...')
job = execute(
circuit,
qobj_header={
'qc_cost': cost
},
**kwargs
)
print(f'You may monitor the job (id: {job.job_id()}) status '
'and proceed to grading when it successfully completes.')
return job
def prepare_solver(
solver_func: Callable,
lab_id: str,
ex_id: str,
problem_set: Optional[Any] = None,
max_qubits: Optional[int] = 28,
min_cost: Optional[int] = None,
check_gates: Optional[bool] = False,
**kwargs
) -> Optional[IBMQJob]:
job = None
if not callable(solver_func):
print(f'Expected a function, but was given {type(solver_func)}')
print(f'Please provide a function that returns a QuantumCircuit.')
return None
server = get_server_endpoint(lab_id, ex_id)
if not server:
print('Could not find a valid grading server or the grading servers are down right now.')
return
endpoint = server + 'problem-set'
index, value = get_problem_set(lab_id, ex_id, endpoint)
print(f'Running {solver_func.__name__}...')
qc_1 = solver_func(problem_set)
_, cost = _circuit_criteria(
qc_1,
max_qubits=max_qubits,
min_cost=min_cost,
check_gates=check_gates
)
if value and index is not None and index >= 0 and cost is not None:
qc_2 = solver_func(value)
if 'backend' not in kwargs:
kwargs['backend'] = get_provider().get_backend('ibmq_qasm_simulator')
# execute experiments
print('Starting experiments. Please wait...')
job = execute(
[qc_1, qc_2],
qobj_header={
'qc_index': [None, index],
'qc_cost': cost
},
**kwargs
)
print(f'You may monitor the job (id: {job.job_id()}) status '
'and proceed to grading when it successfully completes.')
return job
def grade_circuit(
circuit: QuantumCircuit,
lab_id: str,
ex_id: str,
max_qubits: Optional[int] = 28,
min_cost: Optional[int] = None
) -> bool:
payload, server = _circuit_grading(
circuit,
lab_id,
ex_id,
is_submit=False,
max_qubits=max_qubits,
min_cost=min_cost
)
if payload:
print('Grading your answer. Please wait...')
return grade_answer(
payload,
server + 'validate-answer'
)
return False
def grade_job(
job_or_id: Union[IBMQJob, str],
lab_id: str,
ex_id: str
) -> bool:
payload, server = _job_grading(job_or_id, lab_id, ex_id, is_submit=False)
if payload:
print('Grading your answer. Please wait...')
return grade_answer(
payload,
server + 'validate-answer'
)
return False
def grade_number(
answer: int,
lab_id: str,
ex_id: str
) -> bool:
payload, server = _number_grading(answer, lab_id, ex_id, is_submit=False)
if payload:
print('Grading your answer. Please wait...')
return grade_answer(
payload,
server + 'validate-answer'
)
return False
def submit_circuit(
circuit: QuantumCircuit,
lab_id: str,
ex_id: str,
max_qubits: Optional[int] = 28,
min_cost: Optional[int] = None
) -> bool:
payload, _ = _circuit_grading(
circuit,
lab_id,
ex_id,
is_submit=True,
max_qubits=max_qubits,
min_cost=min_cost
)
if payload:
print('Submitting your answer. Please wait...')
return submit_answer(payload)
return False
def submit_job(
job_or_id: IBMQJob,
lab_id: str,
ex_id: str,
) -> bool:
payload, _ = _job_grading(job_or_id, lab_id, ex_id, is_submit=True)
if payload:
print('Submitting your answer. Please wait...')
return submit_answer(payload)
return False
def submit_number(
answer: int,
lab_id: str,
ex_id: str
) -> bool:
payload, _ = _number_grading(answer, lab_id, ex_id, is_submit=True)
if payload:
print('Submitting your answer. Please wait...')
return submit_answer(payload)
return False
def get_problem_set(
lab_id: str, ex_id: str, endpoint: str
) -> Tuple[Optional[int], Optional[Any]]:
problem_set_response = None
try:
payload = {'question_id': get_question_id(lab_id, ex_id)}
problem_set_response = send_request(endpoint, query=payload, method='GET')
except Exception as err:
print('Unable to obtain the problem set')
if problem_set_response:
status = problem_set_response.get('status')
if status == 'valid':
try:
index = problem_set_response.get('index')
value = json.loads(problem_set_response.get('value'))
return index, value
except Exception as err:
print(f'Problem set could not be processed: {err}')
else:
cause = problem_set_response.get('cause')
print(f'Problem set failed: {cause}')
return None, None
def grade_answer(payload: dict, endpoint: str, cost: Optional[int] = None) -> bool:
try:
answer_response = send_request(endpoint, body=payload)
status = answer_response.get('status', None)
cause = answer_response.get('cause', None)
score = cost if cost else answer_response.get('score', None)
handle_grade_response(status, score=score, cause=cause)
return status == 'valid' or status is True
except Exception as err:
print(f'Failed: {err}')
return False
def submit_answer(payload: dict) -> bool:
try:
access_token = get_access_token()
baseurl = get_submission_endpoint()
endpoint = urljoin(baseurl, './challenges/answers')
submit_response = send_request(
endpoint,
body=payload,
query={'access_token': access_token}
)
status = submit_response.get('status', None)
if status is None:
status = submit_response.get('valid', None)
cause = submit_response.get('cause', None)
handle_submit_response(status, cause=cause)
return status == 'valid' or status is True
except Exception as err:
print(f'Failed: {err}')
return False
def handle_grade_response(
status: Optional[str], score: Optional[int] = None, cause: Optional[str] = None
) -> None:
if status == 'valid':
print('\nCongratulations 🎉! Your answer is correct.')
if score is not None:
print(f'Your score is {score}.')
elif status == 'invalid':
print(f'\nOops 😕! {cause}')
print('Please review your answer and try again.')
elif status == 'notFinished':
print(f'Job has not finished: {cause}')
print(f'Please wait for the job to complete then try again.')
else:
print(f'Failed: {cause}')
print('Unable to grade your answer.')
def handle_submit_response(
status: Union[str, bool], cause: Optional[str] = None
) -> None:
if status == 'valid' or status is True:
print('\nSuccess 🎉! Your answer has been submitted.')
elif status == 'invalid' or status is False:
print(f'\nOops 😕! {"Your answer is incorrect" if cause is None else cause}')
print('Make sure your answer is correct and successfully graded before submitting.')
elif status == 'notFinished':
print(f'Job has not finished: {cause}')
print(f'Please wait for the job to complete, grade it, and then try to submit again.')
else:
print(f'Failed: {cause}')
print('Unable to submit your answer at this time.')
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# consider the following list with 4 elements
L = [1,-2,0,5]
print(L)
# 3 * v
v = [1,-2,0,5]
print("v is",v)
# we use the same list for the result
for i in range(len(v)):
v[i] = 3 * v[i]
print("3v is",v)
# -0.6 * u
# reinitialize the list v
v = [1,-2,0,5]
for i in range(len(v)):
v[i] = -0.6 * v[i]
print("0.6v is",v)
u = [-3,-2,0,-1,4]
v = [-1,-1,2,-3,5]
result=[]
for i in range(len(u)):
result.append(u[i]+v[i])
print("u+v is",result)
# let's also print the result vector similarly to a column vector
print() # print an empty line
print("the elements of u+v are")
for j in range(len(result)):
print(result[j])
from random import randrange
#
# your solution is here
#
#r=randrange(-10,11) # randomly pick a number from the list {-10,-9,...,-1,0,1,...,9,10}
#
# your solution is here
#
v = [-1,-3,5,3,1,2]
length_square=0
for i in range(len(v)):
print(v[i],":square ->",v[i]**2) # let's print each entry and its square value
length_square = length_square + v[i]**2 # let's sum up the square of each entry
length = length_square ** 0.5 # let's take the square root of the summation of the squares of all entries
print("the summation is",length_square)
print("then the length is",length)
# for square root, we can also use built-in function math.sqrt
print() # print an empty line
from math import sqrt
print("the square root of",length_square,"is",sqrt(length_square))
#
# your solution is here
#
#
# your solution is here
#
|
https://github.com/abbarreto/qiskit4
|
abbarreto
| |
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_nature.second_q.drivers import PySCFDriver
driver = PySCFDriver()
problem = driver.run()
print(problem)
from qiskit_nature.second_q.problems import ElectronicBasis
driver.run_pyscf()
problem = driver.to_problem(basis=ElectronicBasis.MO, include_dipole=True)
print(problem.basis)
ao_problem = driver.to_problem(basis=ElectronicBasis.AO)
print(ao_problem.basis)
from qiskit_nature.second_q.formats.qcschema_translator import qcschema_to_problem
qcschema = driver.to_qcschema()
ao_problem = qcschema_to_problem(qcschema, basis=ElectronicBasis.AO)
from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema
basis_transformer = get_ao_to_mo_from_qcschema(qcschema)
mo_problem = basis_transformer.transform(ao_problem)
print(mo_problem.basis)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/WhenTheyCry96/qiskitHackathon2022
|
WhenTheyCry96
|
%load_ext autoreload
%autoreload 2
import os
import warnings
import qiskit_metal as metal
from numpy import pi
from scipy.constants import c, h, pi, hbar, e, mu_0, epsilon_0
from qiskit_metal import Dict
from qiskit_metal.analyses.quantization.lumped_capacitive import load_q3d_capacitance_matrix
from qiskit_metal.analyses.quantization.lom_core_analysis import CompositeSystem, Cell, Subsystem, QuantumSystemRegistry
ws_path = os.getcwd()
warnings.filterwarnings("ignore")
#constants:
phi0 = h/(2*e)
varphi0 = phi0/(2*pi)
#project parameters:
L_JJ = 10 # nH
C_JJ = 2 # fF
f_r = 8 # GHz
Z_r = 50 # Ohm
v_r = 0.404314 # relative velocity to c
#parameter extraction:
eps_eff = (1/v_r)**2 # effective eps_r
eps_r = 2*eps_eff-1 # approximation
I_JJ = varphi0/(L_JJ*1e-9)/1e-9 # nA
E_JJ = (varphi0)**2/(L_JJ*1e-9)/h/1e9 # GHz
#print
print(eps_r, I_JJ, E_JJ)
QuantumSystemRegistry.registry()
capfile = ws_path+"/Transmon_Readout_CapMatrix.txt"
t1_mat, _, _, _ = load_q3d_capacitance_matrix(capfile)
t1_mat
opt1 = dict(
cap_mat = t1_mat,
ind_dict = {('pad_top_Q1', 'pad_bot_Q1'): L_JJ}, # junction inductance in nH
jj_dict = {('pad_top_Q1', 'pad_bot_Q1'): 'j1'},
cj_dict = {('pad_top_Q1', 'pad_bot_Q1'): C_JJ}, # junction capacitance in fF
)
cell_1 = Cell(opt1)
transmon1 = Subsystem(name='transmon1', sys_type='TRANSMON', nodes=['j1'])
trans_read = Subsystem(name='readout1', sys_type='TL_RESONATOR', nodes=['readout_connector_pad_Q1'], q_opts=dict(f_res = f_r, Z0=Z_r, vp=v_r*c))
composite_sys = CompositeSystem(
subsystems=[transmon1, trans_read],
cells=[cell_1],
grd_node='ground_main_plane',
nodes_force_keep=['readout_connector_pad_Q1']
)
cg = composite_sys.circuitGraph()
print(cg)
hilbertspace = composite_sys.create_hilbertspace()
print(hilbertspace)
hilbertspace = composite_sys.add_interaction()
hilbertspace.hamiltonian()
hamiltonian_results = composite_sys.hamiltonian_results(hilbertspace, evals_count=30)
composite_sys.compute_gs()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
from qiskit import QuantumCircuit, transpile
from qiskit.providers.fake_provider import FakeAuckland
backend = FakeAuckland()
ghz = QuantumCircuit(15)
ghz.h(0)
ghz.cx(0, range(1, 15))
ghz.draw(output='mpl')
|
https://github.com/minnukota381/Quantum-Computing-Qiskit
|
minnukota381
|
import sys
print(sys.executable)
import qiskit
qiskit.__qiskit_version__
from qiskit import IBMQ
IBMQ.save_account('fb335ef56b1d6d43894ad997ae54daf329de8050cda1e2e7a795f9bcae2da2e84ad903bd320d6e1354214371bcf9af7a80c1ccc1e0a546947469913805528928')
IBMQ.load_account()
import qiskit as q
%matplotlib inline
circuit=q.QuantumCircuit(2,2)
circuit.h(0)
circuit.cx(0,1)
circuit.measure([0,1],[0,1])
circuit.draw()
circuit.draw(output="mpl")
from qiskit import IBMQ
provider=IBMQ.get_provider("ibm-q")
for backend in provider.backends():
try:
qubit_count=len(backend.properties().qubits)
except:
qubit_count="simulated"
print(f"{backend.name()}has{backend.status().pending_jobs}queued and␣{qubit_count}qubits")
from qiskit.tools.monitor import job_monitor
backend=provider.get_backend("ibmq_lima")
job=q.execute(circuit,backend=backend,shots=1024)
job_monitor(job)
from qiskit.visualization import plot_histogram
from matplotlib import style
style.use("dark_background")
result=job.result()
count=result.get_counts(circuit)
plot_histogram([count])
backend=provider.get_backend("ibmq_qasm_simulator")
circuit=q.QuantumCircuit(2,2)
circuit.h(0)
circuit.cx(0,1)
circuit.measure([0,1],[0,1])
circuit.draw()
job=q.execute(circuit,backend=backend,shots=1024)
job_monitor(job)
from qiskit.visualization import plot_histogram
from matplotlib import style
style.use("dark_background")
result=job.result()
count=result.get_counts(circuit)
plot_histogram([count])
from qiskit import Aer
sim_backend=Aer.get_backend("qasm_simulator")
for backend in Aer.backends():
print(backend)
job=q.execute(circuit,backend=sim_backend,shots=1024)
job_monitor(job)
from qiskit.visualization import plot_histogram
from matplotlib import style
style.use("dark_background")
result=job.result()
count=result.get_counts(circuit)
plot_histogram([count])
from qiskit import *
circuit=QuantumCircuit(3,3)
%matplotlib inline
from qiskit.tools.visualization import plot_histogram
from qiskit.tools.visualization import plot_bloch_multivector
from qiskit.tools.visualization import plot_state_qsphere
# QFT
# Initialize the 3-qubit quantum circuit
# Set the state '110'
s = '110'
num_qubits = len(s)
qc = QuantumCircuit(num_qubits)
# Set reverse ordering
s = s[::-1]
# Construct the state 110
for idx in range(num_qubits):
if s[idx] == '1':
qc.x(idx)
qc.barrier()
qc.draw()
circuit.draw(output='mpl')
# Import the value pi for our rotations
from numpy import pi
# Always start from the most significant qubit,
# in this case it's q2.
# Step 1, add a Hadamard gate
qc.h(2)
# Step 2, add CROT gates from most significant qubit
qc.cu1(pi/2,1,2)
# Step 3, add another CROT from 2 to the next qubit down,
# while doubling the phase denominator
qc.cu1(pi/4, 0, 2)
# Draw the circuit
qc.draw()
# Now that we finished from 2 down to 0
# We'll drop to the next least significant qubit and
# start again,
# Step 1, add a Hadamard gate
qc.h(1)
# Step 2, add Control Rotation (CROT) gates from most
# significant towards
# least significant starting a pi/2, and doubling the
# denominator
# as you go down each qubit.
qc.cu1(pi/2, 0, 1)
# Draw the circuit
qc.draw()
# Now that we finished from 1 down to 0
# We'll drop to the next least significant qubit and
# Start again
# Step 1, add a Hadamard gate
qc.h(0)
# Since we are at the least significant qubit, we are
# done!
# Draw the circuit
qc.draw()
# Define a function which will add the swap gates to the
# outer
# pair of qubits
def add_swap_gates(qc_swaps,qubits):
for qubit in range(qubits//2):
qc-swaps.swap(qubit, qubit-qubit-1)
return qc_swaps
qft_circuit=add_swap_gates(qc, num, qubits)
qft_circuit.draw()
# Get the state vector simulator to view our final QFT
# state
backend = Aer.get_backend("statevector_simulator")
# Execute the QFT circuit and visualize the results
statevector = execute(qft_circuit,backend=backend).result().get_statevector()
plot_bloch_multivector(statevector)
plot_state_qsphere(statevector)
|
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
|
shesha-raghunathan
|
#Import general libraries (needed for functions)
import numpy as np
import matplotlib.pyplot as plt
from IPython import display
#Import Qiskit classes classes
import qiskit
from qiskit.providers.aer.noise import NoiseModel
from qiskit.providers.aer.noise.errors.standard_errors import depolarizing_error, thermal_relaxation_error
#Import the RB Functions
import qiskit.ignis.verification.randomized_benchmarking as rb
#Generate RB circuits (2Q RB)
#number of qubits
nQ=2
rb_opts = {}
#Number of Cliffords in the sequence
rb_opts['length_vector'] = [1, 10, 20, 50, 75, 100, 125, 150, 175]
#Number of seeds (random sequences)
rb_opts['nseeds'] = 5
#Default pattern
rb_opts['rb_pattern'] = [[0,1]]
rb_circs, xdata = rb.randomized_benchmarking_seq(**rb_opts)
print(rb_circs[0][0])
# Create a new circuit without the measurement
qc = qiskit.QuantumCircuit(*rb_circs[0][-1].qregs,*rb_circs[0][-1].cregs)
for i in rb_circs[0][-1][0:-nQ]:
qc._attach(i)
# The Unitary is an identity (with a global phase)
backend = qiskit.Aer.get_backend('unitary_simulator')
basis_gates = ['u1','u2','u3','cx'] # use U,CX for now
basis_gates_str = ','.join(basis_gates)
job = qiskit.execute(qc, backend=backend, basis_gates=basis_gates_str)
print(np.around(job.result().get_unitary(),3))
# Run on a noisy simulator
noise_model = NoiseModel()
# Depolarizing_error
dp = 0.002
noise_model.add_all_qubit_quantum_error(depolarizing_error(dp, 1), ['u1', 'u2', 'u3'])
noise_model.add_all_qubit_quantum_error(depolarizing_error(dp, 2), 'cx')
backend = qiskit.Aer.get_backend('qasm_simulator')
qobj_list = []
# Create the RB fitter
rb_fit = rb.RBFitter(None, xdata, rb_opts['rb_pattern'])
for rb_seed,rb_circ_seed in enumerate(rb_circs):
qobj = qiskit.compile(rb_circ_seed,
backend=backend,
basis_gates=basis_gates_str)
job = backend.run(qobj, noise_model=noise_model)
qobj_list.append(qobj)
# Add data to the fitter
rb_fit.add_data(job.result())
print('After seed %d, alpha: %f, EPC: %f'%(rb_seed,rb_fit.fit[0]['params'][1], rb_fit.fit[0]['epc']))
plt.figure(figsize=(8, 6))
ax = plt.subplot(1, 1, 1)
# Plot the essence by calling plot_rb_data
rb_fit.plot_rb_data(0, ax=ax, add_label=True, show_plt=False)
# Add title and label
ax.set_title('%d Qubit RB'%(nQ), fontsize=18)
plt.show()
#Count the number of single and 2Q gates in the 2Q Cliffords
gates_per_cliff = rb.rb_utils.gates_per_clifford(qobj_list,xdata[0],basis_gates,rb_opts['rb_pattern'][0])
for i in range(len(basis_gates)):
print("Number of %s gates per Clifford: %f"%(basis_gates[i],
np.mean([gates_per_cliff[0][i],gates_per_cliff[0][i]])))
# Prepare lists of the number of qubits and the errors
ngates = np.zeros(7)
ngates[0:3] = gates_per_cliff[0][0:3]
ngates[3:6] = gates_per_cliff[1][0:3]
ngates[6] = gates_per_cliff[0][3]
gate_qubits = np.array([0,0,0,1,1,1,-1], dtype=int)
gate_errs = np.zeros(len(gate_qubits))
gate_errs[[1,4]] = dp/2 #convert from depolarizing error to epg (1Q)
gate_errs[[2,5]] = 2*dp/2 #convert from depolarizing error to epg (1Q)
gate_errs[6] = dp*3/4 #convert from depolarizing error to epg (2Q)
#Calculate the predicted epc
pred_epc = rb.rb_utils.twoQ_clifford_error(ngates,gate_qubits,gate_errs)
print("Predicted 2Q Error per Clifford: %e"%pred_epc)
|
https://github.com/anpaschool/quantum-computing
|
anpaschool
| |
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit.quantum_info import SparsePauliOp
H2_op = SparsePauliOp.from_list(
[
("II", -1.052373245772859),
("IZ", 0.39793742484318045),
("ZI", -0.39793742484318045),
("ZZ", -0.01128010425623538),
("XX", 0.18093119978423156),
]
)
from qiskit.primitives import Estimator
estimator = Estimator()
import numpy as np
from qiskit.algorithms.minimum_eigensolvers import VQE
from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B, SLSQP
from qiskit.circuit.library import TwoLocal
from qiskit.utils import algorithm_globals
# we will iterate over these different optimizers
optimizers = [COBYLA(maxiter=80), L_BFGS_B(maxiter=60), SLSQP(maxiter=60)]
converge_counts = np.empty([len(optimizers)], dtype=object)
converge_vals = np.empty([len(optimizers)], dtype=object)
for i, optimizer in enumerate(optimizers):
print("\rOptimizer: {} ".format(type(optimizer).__name__), end="")
algorithm_globals.random_seed = 50
ansatz = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz")
counts = []
values = []
def store_intermediate_result(eval_count, parameters, mean, std):
counts.append(eval_count)
values.append(mean)
vqe = VQE(estimator, ansatz, optimizer, callback=store_intermediate_result)
result = vqe.compute_minimum_eigenvalue(operator=H2_op)
converge_counts[i] = np.asarray(counts)
converge_vals[i] = np.asarray(values)
print("\rOptimization complete ");
import pylab
pylab.rcParams["figure.figsize"] = (12, 8)
for i, optimizer in enumerate(optimizers):
pylab.plot(converge_counts[i], converge_vals[i], label=type(optimizer).__name__)
pylab.xlabel("Eval count")
pylab.ylabel("Energy")
pylab.title("Energy convergence for various optimizers")
pylab.legend(loc="upper right");
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver
from qiskit.opflow import PauliSumOp
numpy_solver = NumPyMinimumEigensolver()
result = numpy_solver.compute_minimum_eigenvalue(operator=PauliSumOp(H2_op))
ref_value = result.eigenvalue.real
print(f"Reference value: {ref_value:.5f}")
pylab.rcParams["figure.figsize"] = (12, 8)
for i, optimizer in enumerate(optimizers):
pylab.plot(
converge_counts[i],
abs(ref_value - converge_vals[i]),
label=type(optimizer).__name__,
)
pylab.xlabel("Eval count")
pylab.ylabel("Energy difference from solution reference value")
pylab.title("Energy convergence for various optimizers")
pylab.yscale("log")
pylab.legend(loc="upper right");
from qiskit.algorithms.gradients import FiniteDiffEstimatorGradient
estimator = Estimator()
gradient = FiniteDiffEstimatorGradient(estimator, epsilon=0.01)
algorithm_globals.random_seed = 50
ansatz = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz")
optimizer = SLSQP(maxiter=100)
counts = []
values = []
def store_intermediate_result(eval_count, parameters, mean, std):
counts.append(eval_count)
values.append(mean)
vqe = VQE(
estimator, ansatz, optimizer, callback=store_intermediate_result, gradient=gradient
)
result = vqe.compute_minimum_eigenvalue(operator=H2_op)
print(f"Value using Gradient: {result.eigenvalue.real:.5f}")
pylab.rcParams["figure.figsize"] = (12, 8)
pylab.plot(counts, values, label=type(optimizer).__name__)
pylab.xlabel("Eval count")
pylab.ylabel("Energy")
pylab.title("Energy convergence using Gradient")
pylab.legend(loc="upper right");
print(result)
cost_function_evals = result.cost_function_evals
initial_pt = result.optimal_point
estimator1 = Estimator()
gradient1 = FiniteDiffEstimatorGradient(estimator, epsilon=0.01)
ansatz1 = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz")
optimizer1 = SLSQP(maxiter=1000)
vqe1 = VQE(
estimator1, ansatz1, optimizer1, gradient=gradient1, initial_point=initial_pt
)
result1 = vqe1.compute_minimum_eigenvalue(operator=H2_op)
print(result1)
cost_function_evals1 = result1.cost_function_evals
print()
print(
f"cost_function_evals is {cost_function_evals1} with initial point versus {cost_function_evals} without it."
)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/shaimayshah/Quantum-Global-Public-Goods-Game
|
shaimayshah
|
from qiskit import *
import numpy as np
from functools import partial
from qiskit.aqua.components.optimizers import COBYLA
from scipy.optimize import minimize, fmin_slsqp
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
theta = np.array([0.5, np.pi*2, 1.4, 1/3, np.pi/2, 1.3, 1.4, 0.22, 1.2, 0.99, 1.0, 0.23, 0.14, 0.90, np.pi])
def run_quantum_circ(n, theta):
'''
This creates a quantum circuit with n qubits.
'''
qr = QuantumRegister(n)
cr = ClassicalRegister(n)
circuit = QuantumCircuit(qr, cr)
#Applies Hadamard Gate to first
circuit.h(0)
#Entangles the qubits
for i in range(n-1):
circuit.cx(i, i+1)
# For ease of understanding
circuit.barrier()
# Applying U3 gates -- later
i = 0
for i in range(n):
circuit.u3(theta[3*i], theta[(3*i)+1], theta[(3*i)+2], i)
circuit.barrier()
# Unentangling qubits
for i in reversed(range(n)):
if i-1==-1:
break
else:
circuit.cx(i-1, i)
circuit.h(0)
circuit.barrier()
# Measuring the values
for i in range(n-1):
circuit.measure(i, i)
backend = Aer.get_backend('qasm_simulator')
result = execute(circuit, backend=backend, shots=10000).result()
return result.get_counts()
theta_c = np.array([np.pi*2, np.pi/2, 0.22, 1.0, 0.90])
def run_classical_circ(n, theta):
'''
This creates a quantum circuit with n qubits.
'''
qr = QuantumRegister(n)
cr = ClassicalRegister(n)
circuit = QuantumCircuit(qr, cr)
# For ease of understanding
circuit.barrier()
# Applying U3 gates -- later
i = 0
for i in range(n):
circuit.u2(theta[i], 0, i)
circuit.barrier()
# Measuring the values
for i in range(n-1):
circuit.measure(i, i)
backend = Aer.get_backend('qasm_simulator')
result = execute(circuit, backend=backend, shots=10000).result()
return result.get_counts()
# Translate from dictionary to sorted values.
def dic_to_vec(dic):
'''
Converts to dictionary outputted by the quantum/classical circuit to a 2^n dimensional (dim = 32) vector.
'''
scores = np.zeros(32)
num_shots = 10000
for key in dic.keys():
i = int(key,2)
scores[i] = dic[key]/num_shots
return scores
# The Payoff matrix -- made it here at random
v1 = np.random.rand(5,1)*np.random.rand(1)
v2 = np.random.rand(1,32)
payoff_mat = np.matmul(v1,v2)
def payoff_finder(result, payoff):
'''
Input: results from quantum/classical calc (32x1), payoff matrix.
Output: payoff matrix for that particular
'''
return np.matmul(payoff, result)
def quantum_cost_function(n, rand_payoff_mat, theta):
'''
Input: number of qubits, initial values of theta, the payoff matrix you've generated
Output: a singular number that represents how large the difference between the standard deviation
and L1 norm.
'''
# Runs the quantum circuit and returns a dictionary of values.
dic = run_quantum_circ(n, theta)
vec = dic_to_vec(dic)
payoff_vec = payoff_finder(vec, rand_payoff_mat)
val = np.linalg.norm(payoff_vec, ord = 1) - np.std(payoff_vec)
return -val
#quantum_cost_function(5,theta,payoff_mat)
def classical_cost_function(n, rand_payoff_mat, theta):
'''
Input: number of qubits, initial values of theta, the payoff matrix you've generated
Output: a singular number that represents how large the difference between the standard deviation
and L1 norm.
'''
dic = run_classical_circ(n, theta)
vec = dic_to_vec(dic)
payoff_vec = payoff_finder(vec, rand_payoff_mat)
val = np.linalg.norm(payoff_vec, ord = 1) - np.std(payoff_vec)
return -val
vals = []
def callback(res):
params.append(res)
def callback_classic(res):
params_c.append(res)
#backup_params = params
params = []
qcost = partial(quantum_cost_function, 5, payoff_mat)
results = minimize(qcost, theta, method='Nelder-Mead', callback = callback)#, tol=1e-9)
results
params_c = []
ccost = partial(classical_cost_function, 5, payoff_mat)
results_c = minimize(ccost, theta_c, method='Nelder-Mead', callback = callback_classic)
results_c
vals = []
for param in params:
vals.append(0-quantum_cost_function(5, payoff_mat, param))
vals_c = []
for param in params_c:
vals_c.append(0-classical_cost_function(5, payoff_mat, param))
max_c = np.asarray(vals_c).max()
max_q = np.asarray(vals).max()
with plt.xkcd():
plt.plot(list(range(len(vals))), vals, label="quantum strategy")
plt.plot(list(range(len(vals_c))), vals_c, color='r', label = "classical strategy")
#plt.axhline(max_c, color='r', ls='--', label = 'Maximum quantum value reached')
#plt.axhline(max_q, color='b', ls='--', label = 'Maximum classical value reached')
plt.xlabel('Iterations')
plt.ylabel('Maximization Function')
plt.legend()
|
https://github.com/rmlarose/qcbq
|
rmlarose
|
#!pip install qiskit
# Do the usual setup, but without classical registers or measurement
import numpy as np
from qiskit import QuantumCircuit, QuantumRegister, execute
qr = QuantumRegister(1)
circ = QuantumCircuit(qr)
# Place an Ry gate with a −3π/4 rotation
circ.ry(-3/4 * np.pi, qr[0])
# Draw the circuit
circ.draw(output='mpl')
# Use the BasicAer statevector_simulator backend
from qiskit import BasicAer
backend_sv_sim = BasicAer.get_backend('statevector_simulator')
job_sim = execute(circ, backend_sv_sim)
result_sim = job_sim.result()
quantum_state = result_sim.get_statevector(circ, decimals=3)
# Output the quantum state vector
quantum_state
# Plot the state vector on a Bloch sphere
from qiskit.tools.visualization import plot_bloch_multivector
plot_bloch_multivector(quantum_state)
# Do the usual setup, but without classical registers or measurement
import numpy as np
from qiskit import QuantumCircuit, QuantumRegister, execute
qr = QuantumRegister(1)
circ = QuantumCircuit(qr)
# Place gates that will achieve the desired state
# Draw the circuit
circ.draw(output='mpl')
# Use the BasicAer statevector_simulator backend
from qiskit import BasicAer
backend_sv_sim = BasicAer.get_backend('statevector_simulator')
job_sim = execute(circ, backend_sv_sim)
result_sim = job_sim.result()
quantum_state = result_sim.get_statevector(circ, decimals=3)
# Output the quantum state vector
quantum_state
# Plot the state vector on a Bloch sphere
from qiskit.tools.visualization import plot_bloch_multivector
plot_bloch_multivector(quantum_state)
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""DAGFixedPoint pass testing"""
import unittest
from qiskit.transpiler.passes import DAGLongestPath
from qiskit import QuantumRegister, QuantumCircuit
from qiskit.converters import circuit_to_dag
from qiskit.test import QiskitTestCase
class TestDAGLongestPathPass(QiskitTestCase):
"""Tests for PropertySet methods."""
def test_empty_dag_true(self):
"""Test the dag longest path of an empty dag."""
circuit = QuantumCircuit()
dag = circuit_to_dag(circuit)
pass_ = DAGLongestPath()
pass_.run(dag)
self.assertListEqual(pass_.property_set["dag_longest_path"], [])
def test_nonempty_dag_false(self):
"""Test the dag longest path non-empty dag.
path length = 11 = 9 ops + 2 qubits at start and end of path
"""
# ┌───┐┌───┐┌───┐
# q0_0: ──■──┤ X ├┤ Y ├┤ H ├──■───────────────────■──
# ┌─┴─┐└───┘└───┘└───┘┌─┴─┐┌───┐┌───┐┌───┐┌─┴─┐
# q0_1: ┤ X ├───────────────┤ X ├┤ X ├┤ Y ├┤ H ├┤ X ├
# └───┘ └───┘└───┘└───┘└───┘└───┘
qr = QuantumRegister(2)
circuit = QuantumCircuit(qr)
circuit.cx(qr[0], qr[1])
circuit.x(qr[0])
circuit.y(qr[0])
circuit.h(qr[0])
circuit.cx(qr[0], qr[1])
circuit.x(qr[1])
circuit.y(qr[1])
circuit.h(qr[1])
circuit.cx(qr[0], qr[1])
dag = circuit_to_dag(circuit)
pass_ = DAGLongestPath()
pass_.run(dag)
self.assertEqual(len(pass_.property_set["dag_longest_path"]), 11)
if __name__ == "__main__":
unittest.main()
|
https://github.com/SamperQuinto/QisKit
|
SamperQuinto
|
import numpy as np
from qiskit import QuantumCircuit,QuantumRegister,ClassicalRegister
from qiskit.quantum_info import *
# Creamos los registros del circuito de corrección de errores
qreg_state = QuantumRegister(1,'state')
qreg_sup = QuantumRegister(2,'ancila_sup')
qreg_inf = QuantumRegister(2,'ancila_inf')
creg= ClassicalRegister(4,'sindrome')
# Creamos el circuito cuántico para la codificación y decodificación
circ = QuantumCircuit(qreg_sup,qreg_state,qreg_inf,creg)
circ_state = QuantumCircuit(qreg_sup,qreg_state,qreg_inf,creg)
state = [1/np.sqrt(3), np.sqrt(2/3)]
#state = random_statevector(2)
# Inicializamos el circuito
circ_state.initialize(state, 2)
circ_state.barrier()
circ_state.draw()
from qiskit.circuit.library.standard_gates.z import ZGate
# Procedemos con la construcción del circuito cuántico asociado:
circ.h(0)
circ.h(1)
circ.h(3)
circ.cz(1,4)
circ.cz(2,4)
circ.cz(3,4)
circ.cz(1,4, ctrl_state=0)
circ.cz(2,4)
circ.cz(3,4, ctrl_state=0)
circ.cx(2,4)
circ.cx(0,2)
circ.cx(0,4)
circ.cx(3,2)
circ.cx(1,4)
circ.cz(2,3)
circ.cz(2,4)
# Introducimos el error
qreg_error = QuantumRegister(5)
circ_error = QuantumCircuit(qreg_error)
circ_error.barrier()
#circ_error.x(2)
circ_error.z(2)
#Fin del error
circ_error.barrier()
circ_con_state = circ_state.compose(circ)
circ_con_error = circ_con_state.compose(circ_error)
circ_inverse = circ.inverse()
circ = circ_con_error.compose(circ_inverse)
circ.barrier()
state_con_error = Statevector.from_instruction(circ)
circ.measure([0,1,3,4],[0,1,2,3])
circ.barrier()
circ.z(qreg_state[0]).c_if(creg,12)
circ.z(qreg_state[0]).c_if(creg,10)
circ.z(qreg_state[0]).c_if(creg,1)
circ.z(qreg_state[0]).c_if(creg,5)
circ.z(qreg_state[0]).c_if(creg,15)
circ.z(qreg_state[0]).c_if(creg,6)
circ.x(qreg_state[0]).c_if(creg,6)
circ.z(qreg_state[0]).c_if(creg,14)
circ.x(qreg_state[0]).c_if(creg,14)
circ.z(qreg_state[0]).c_if(creg,9)
circ.x(qreg_state[0]).c_if(creg,9)
circ.z(qreg_state[0]).c_if(creg,13)
circ.x(qreg_state[0]).c_if(creg,13)
circ.z(qreg_state[0]).c_if(creg,11)
circ.x(qreg_state[0]).c_if(creg,11)
circ.z(qreg_state[0]).c_if(creg,7)
circ.x(qreg_state[0]).c_if(creg,7)
circ.draw()
from qiskit import Aer, execute
from qiskit.providers.aer import QasmSimulator, StatevectorSimulator
from qiskit_textbook.tools import array_to_latex
from qiskit.visualization import *
import warnings
warnings.filterwarnings("ignore")
backend = Aer.get_backend('statevector_simulator')
job = execute(circ,backend ,shots = 1000)
resultado = job.result()
counts = resultado.get_counts(circ)
plot_histogram(counts, title = 'sindrome')
psi_error=list(filter(lambda x: x != 0, state_con_error))
resultado_sv = job.result().get_statevector()
resultado_psi=list(filter(lambda x: x != 0, resultado_sv))
psi_error=list(filter(lambda x: x != 0, state_con_error))
display(array_to_latex(state, prefix= 'Estado \; original \; |\\Psi \\rangle='))
display(array_to_latex(psi_error, prefix= 'Estado \; con \; error \; |\\Psi \\rangle='))
display(array_to_latex(resultado_psi, prefix = 'Estado \; corregido \; |\\Psi \\rangle='))
|
https://github.com/QForestCommunity/launchpad
|
QForestCommunity
|
from pyqubo import Spin, solve_ising
x1, x2, x3 = Spin("x1"), Spin("x2"), Spin("x3")
Quad_form = 2*(x1) + x2 - 3*(x3)
model = Quad_form.compile()
deg1, deg2, off = model.to_ising()
print('Degree1:',deg1,' Degree2:',deg2,' Offset:',off)
res = solve_ising(deg1,deg2)
print(res)
shots = 10 #variable used to specify number of times you want to solve the model
ans = []
for i in range(shots):
res = solve_ising(deg1, deg2)
ans.append(res)
result = ans[0]
maxim = 0
for i in ans:
freq = ans.count(i)
if freq>maxim:
maxim = freq
result = i
print(str(result))
|
https://github.com/Tojarieh97/VQE
|
Tojarieh97
|
%load_ext autoreload
%autoreload 2
import nbimporter
from typing import Dict, Tuple, List
import numpy as np
from tqdm import tqdm
QUBITS_NUM = 4
N = 16
K = 4
NUM_SHOTS = 1024
NUM_ITERATIONS = 50
w = 0.5
approximated_energies = []
from qiskit import IBMQ
provider = IBMQ.enable_account('4cd532424f249f20233857b3b211eb28dfc0e790386bd2ea14d3e0d03c867dfcfec4c2c968e4693f1c9caf7b3f6fad3f6a6393065fb45719692fd1a5177536cb')
real_backend = provider.get_backend('ibmq_belem')
from scipy.optimize import minimize
from utiles import *
input_states = get_first_k_eigenvectors_from_n_computational_basis(K, N)
from ansatz_circuit_item2 import get_full_variational_quantum_circuit
init_circuit_params = {
"thetas": np.random.uniform(low=0, high=2*np.pi, size=8),
"phis": np.random.uniform(low=0, high=2*np.pi, size=4),
"D1": 2,
"D2": 6
}
def prepare_circuit_params(thetas) -> Dict:
return {
"thetas": thetas[4:],
"phis": thetas[:4],
"D1": 2,
"D2": 6
}
def get_ansatz_state(circuit_params, input_state):
circuit_params_with_input_state = {**circuit_params, "input_state": input_state}
return get_full_variational_quantum_circuit(**circuit_params_with_input_state)
def transfrom_hamiltonian_into_pauli_strings(hamiltonian) -> List:
pauli_operators = hamiltonian.to_pauli_op().settings['oplist']
pauli_coeffs = list(map(lambda pauli_operator: pauli_operator.coeff, pauli_operators))
pauli_strings = list(map(lambda pauli_operator: pauli_operator.primitive, pauli_operators))
return pauli_coeffs, pauli_strings
from qiskit.circuit.library.standard_gates import HGate, SGate
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
reducing_to_pauli_z_mapping = {
'I': 'I',
'Z': 'Z',
'X': 'Z',
'Y': 'Z'
}
def reduce_pauli_matrixes_into_sigma_z(pauli_string) -> str:
reduced_pauli_string = ""
for matrix_index in range(QUBITS_NUM):
pauli_matrix = str(pauli_string[matrix_index])
reduced_pauli_matrix = reducing_to_pauli_z_mapping[pauli_matrix]
reduced_pauli_string = reduced_pauli_matrix + reduced_pauli_string
return reduced_pauli_string
def add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string, quantum_circuit):
quantum_registers = QuantumRegister(QUBITS_NUM, name="qubit")
additional_circuit_layer = QuantumCircuit(quantum_registers)
for quantum_register_index, pauli_matrix in enumerate(pauli_string):
if pauli_matrix == "X":
additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]])
if pauli_string == "Y":
additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]])
additional_circuit_layer.append(SGate(), [quantum_registers[quantum_register_index]])
extended_quantum_circuit = quantum_circuit.compose(additional_circuit_layer)
return extended_quantum_circuit
def get_probability_distribution(counts: Dict) -> Dict:
proba_distribution = {state: (count / NUM_SHOTS) for state, count in counts.items()}
return proba_distribution
def calculate_probabilities_of_measurments_in_computational_basis(quantum_state_circuit) -> Dict:
quantum_state_circuit.measure_all()
transpiled_quantum_state_circuit = transpile(quantum_state_circuit, real_backend)
Qobj = assemble(transpiled_quantum_state_circuit)
result = real_backend.run(Qobj).result()
counts = result.get_counts(quantum_state_circuit)
return get_probability_distribution(counts)
def sort_probas_dict_by_qubits_string_keys(proba_distribution: Dict) -> Dict:
return dict(sorted(proba_distribution.items()))
def reset_power_of_minus_1(power_of_minus_1):
power_of_minus_1 = 0
return power_of_minus_1
def convert_pauli_string_into_str(pauli_string) -> str:
return str(pauli_string)
def calculate_expectation_value_of_pauli_string_by_measurments_probas(pauli_string, ansatz_circuit):
pauli_string_expectation_value = 0
power_of_minus_1 = 0
pauli_string_str = convert_pauli_string_into_str(pauli_string)
extended_ansatz_circuit = add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string_str, ansatz_circuit)
probas_distribution = calculate_probabilities_of_measurments_in_computational_basis(extended_ansatz_circuit)
reduced_pauli_string = reduce_pauli_matrixes_into_sigma_z(pauli_string)
sorted_probas_distribuition = sort_probas_dict_by_qubits_string_keys(probas_distribution)
for qubits_string, proba in sorted_probas_distribuition.items():
for string_index in range(QUBITS_NUM):
if(str(qubits_string[string_index])=="1" and str(pauli_string[string_index])=="Z"):
power_of_minus_1 += 1
pauli_string_expectation_value += pow(-1, power_of_minus_1)*proba
power_of_minus_1 = reset_power_of_minus_1(power_of_minus_1)
return pauli_string_expectation_value
def get_expectation_value(ansatz_circuit, pauli_coeffs, pauli_strings):
total_expection_value = 0
for pauli_coeff, pauli_string in zip(pauli_coeffs, pauli_strings):
total_expection_value += pauli_coeff*calculate_expectation_value_of_pauli_string_by_measurments_probas(
pauli_string, ansatz_circuit)
return total_expection_value
from qiskit import assemble, transpile
def cost_function(thetas, hamiltonian):
circuit_params = prepare_circuit_params(thetas)
computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N)
pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian)
k_ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[K-1])
approximated_energey = get_expectation_value(k_ansatz_state, pauli_coeffs, pauli_strings)
insert_approximated_energy_to_list_of_all_approximated_energies(approximated_energey)
L_w = w*approximated_energey
for j in range(K-1):
ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[j])
L_w += get_expectation_value(ansatz_state, pauli_coeffs, pauli_strings)
return L_w
def get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian):
initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=12)
optimizer_result = minimize(cost_function,x0=initial_thetas,args=(hamiltonian),method="BFGS",options={"maxiter":NUM_ITERATIONS})
optimal_thetas = prepare_circuit_params(optimizer_result.x)
return optimal_thetas
def get_approximated_eigenvalue_of_hamiltonian(hamiltonian):
optimal_thetas = get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian)
print(optimal_thetas)
computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N)
optimal_ansatz_state = get_ansatz_state(optimal_thetas, computational_eigenvectors[K-1])
pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian)
approximated_eigenvalue = get_expectation_value(optimal_ansatz_state, pauli_coeffs, pauli_strings)
return approximated_eigenvalue
from numpy import linalg as LA
def get_approximation_error(exact_eigenvalue, approximated_eigenvalue):
return abs(abs(exact_eigenvalue)-abs(approximated_eigenvalue))/abs(exact_eigenvalue)
def get_k_exact_eigenvalue_of_hamiltonian(hamiltonian, k):
eigen_values = LA.eig(hamiltonian.to_matrix())[0]
print(sorted(eigen_values, reverse=True))
return sorted(eigen_values,reverse=True)[k-1]
def compare_exact_and_approximated_eigenvalue(hamiltonian, approximated_eigenvalue):
exact_eigenvalue = get_k_exact_eigenvalue_of_hamiltonian(hamiltonian, K)
print("Exact Eigenvalue:")
print(exact_eigenvalue)
print("Approximated K Eigenvalues:")
print(approximated_eigenvalue)
print("Approximation Error")
print(get_approximation_error(exact_eigenvalue, approximated_eigenvalue))
def insert_approximated_energy_to_list_of_all_approximated_energies(energy):
approximated_energies.append(energy)
import matplotlib.pyplot as plt
def plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin):
plt.title("convergence of optimization process to the exact eigenvalue")
plt.margins(0, margin)
plt.plot(approximated_energies)
plt.axhline(y = exact_eigenvalue, color = 'r', linestyle = '-')
plt.xlabel("# of iterations")
plt.ylabel("Energy")
def plot_fidelity():
plt.plot(LiH_approximated_energies)
plt.xlabel("# of iterations")
plt.ylabel("Energy")
from qiskit.opflow import X, Z, Y, I, H, S
LiH_molecule_4_qubits = -7.49894690201071*(I^I^I^I) + \
-0.0029329964409502266*(X^X^Y^Y) + \
0.0029329964409502266*(X^Y^Y^X) + \
0.01291078027311749*(X^Z^X^I) + \
-0.0013743761078958677*(X^Z^X^Z) + \
0.011536413200774975*(X^I^X^I) + \
0.0029329964409502266*(Y^X^X^Y) + \
-0.0029329964409502266*(Y^Y^X^X) + \
0.01291078027311749*(Y^Z^Y^I) + \
-0.0013743761078958677*(Y^Z^Y^Z) + \
0.011536413200774975*(Y^I^Y^I) + \
0.16199475388004184*(Z^I^I^I) + \
0.011536413200774975*(Z^X^Z^X) + \
0.011536413200774975*(Z^Y^Z^Y) + \
0.12444770133137588*(Z^Z^I^I) + \
0.054130445793298836*(Z^I^Z^I) + \
0.05706344223424907*(Z^I^I^Z) + \
0.012910780273117487*(I^X^Z^X) + \
-0.0013743761078958677*(I^X^I^X) + \
0.012910780273117487*(I^Y^Z^Y) + \
-0.0013743761078958677*(I^Y^I^Y) + \
0.16199475388004186*(I^Z^I^I) + \
0.05706344223424907*(I^Z^Z^I) + \
0.054130445793298836*(I^Z^I^Z) + \
-0.013243698330265966*(I^I^Z^I) + \
0.08479609543670981*(I^I^Z^Z) + \
-0.013243698330265952*(I^I^I^Z)
%%time
LiH_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(LiH_molecule_4_qubits)
compare_exact_and_approximated_eigenvalue(LiH_molecule_4_qubits, LiH_approximated_eigenvalue)
print(approximated_energies)
approximated_energies = []
LiH_approximated_energies = [-7.086471480342895, -7.100658534270067, -7.099715987203259, -7.104706322802394, -7.0881767422400515, -7.094941901238781, -7.101189782415803, -7.091782649949064, -7.095129380762572, -7.089782186084561, -7.103641494347653, -7.08770304365008, -7.097466178879243, -6.927386893001271, -6.918605722866235, -6.929889900623873, -6.929547677497744, -6.9144751585444, -6.92705204011207, -6.928594209576469, -6.918356322098606, -6.922146575259048, -6.928167910638778, -6.920735015129623, -6.934524032800371, -6.9240609972824645, -7.054992091903585, -7.056718682779798, -7.047680065570422, -7.057958949601671, -7.049809365284406, -7.04886498241836, -7.061382947330433, -7.047727314056423, -7.05595544969352, -7.0549833626221155, -7.064687065647647, -7.04480704575676, -7.053986384203245, -7.079305098939433, -7.08780253307097, -7.079683274206787, -7.082864577262481, -7.074313240029014, -7.076075827379148, -7.094328957871822, -7.08496554875689, -7.08017425919163, -7.080091087607597, -7.091782059567345, -7.091247992689509, -7.070866930379006, -7.090286264563848, -7.104283776653907, -7.105507768659804, -7.082013868585181, -7.089272262553638, -7.093947194681023, -7.074106629342778, -7.098394252872861, -7.0959686725785405, -7.07952225336062, -7.095513342542343, -7.09416071736501, -7.096369979461571, -7.099848242069214, -7.084955688773306, -7.100455873892028, -7.093183696883554, -7.0975872306150345, -7.088097397700704, -7.106647897103562, -7.093977686069661, -7.087712543786841, -7.111504280126781, -7.1022363547755125, -7.087493749330183, -7.086287626873361, -7.093369560806178, -7.078161435586905, -7.09441449134148, -7.089607689893512, -7.0932238396900935, -7.111989359310854, -7.104929885548429, -7.091436536609016, -7.08666585935681, -7.082934757346767, -7.101100532138134, -7.088104163062988, -7.096424567809472, -7.099068194469176, -7.092174139685106, -7.093834778605302, -7.102211865551155, -7.093273952141729, -7.098925944110142, -7.094136827312879, -7.096515152172171, -7.106869073487611, -7.105025480517323, -7.08291256775595, -7.090057760157153, -7.101077914837238, -7.098981572929163, -7.103243624466709, -7.081271774215078, -7.113017035519717, -7.081225379146937, -7.116834711504442, -7.095492739824888, -7.092682578748099, -7.101013785481937, -7.1014895178629045, -7.089392729188864, -7.107015846039383, -7.098163688087048, -7.111610506727951, -7.107437432724649, -7.104541043920935, -7.104814557146702, -7.088507490097296, -7.091868681777208, -7.092327160052328, -7.110303366341896, -7.084971369187621, -7.106279269575924, -7.08748298127782, -7.1068551105826145, -7.091008955160712, -7.096443978916333, -7.084657042850862, -7.091138219995237, -7.0998677627359195, -7.0888015973421545, -7.077323969498798, -7.090075437365467, -7.103938600828348, -7.085513121721133, -7.093846377275633, -7.100739101641138, -7.092065649168193, -7.094889058778457, -7.092173541005391, -7.101259881230652, -7.093329510244533, -7.105936945903171, -7.087603313944616, -7.097873442997792, -7.101002397868193, -7.085514640470669, -7.104346225751653, -7.108225666766319, -7.111418621976149, -7.092840805395079, -7.0997679722989115, -7.103255616021782, -7.1174210275723695, -7.102934036335791, -7.094670120993602, -7.0951047953871305, -7.089065125835845, -7.09840645780722, -7.105211057511607, -7.089083299917603, -7.093536455196501, -7.089028853201778, -7.085106562924485, -7.094025566715013, -7.093679961728104, -7.097635614184673, -7.097876397476181, -7.094228767292644, -7.095176655148256, -7.098376263483634, -7.103892028959518, -7.086136465046034, -7.087496098005651, -7.116101776894849, -7.0836112045512705, -7.087318451256026, -7.089288193935741, -7.0990242642314785, -7.095138019651596, -7.098662991437872, -7.094562027567983, -7.099690770432304, -7.10097689047591, -7.103828491824173, -7.095403813862108, -7.092482494208955, -7.0961542900231755, -7.097735395547859, -7.101840243383003, -7.094728079435617, -7.089079166461775, -7.0918303529233695, -7.093445910102374, -7.0824677848419855, -7.088613823891637, -7.094448016211003, -7.102567463647013, -7.093674126629666, -7.107515891897475, -7.091175773435145, -7.099878612823926, -7.108888487835898, -7.0932901938871025, -7.100690499032453, -7.1027627009989205, -7.095985679639996, -7.103159134683138, -7.101594099093457, -7.09708690219646, -7.089839220984511, -7.110835783093937, -7.1106173669768005, -7.105706223928073, -7.101671068636789, -7.093043127308357, -7.107499275434534, -7.098620367705562, -7.101791302589503, -7.093974565602916, -7.100086270996543, -7.103967087697664, -7.096334501266853, -7.093197040678562, -7.090566503804324, -7.10777548347143, -7.0940663715743515, -7.079435919407288, -7.1045995778828575, -7.10782600555929, -7.095063062315657, -7.088283716422724, -7.083549548308807, -7.109182438307642, -7.0973139726115155, -7.091323880662006, -7.089267567957862, -7.093801064885492, -7.096478431968507, -7.096450570087517, -7.0834951672860145, -7.105536970385327, -7.091694022844323, -7.0987246829979735, -7.105823728075208, -7.091466927556181, -7.087866391118642, -7.086779542808011, -7.082284206870279, -7.102748671032144, -7.094013649749645, -7.076280227170458, -7.09268421659322, -7.098730097915838, -7.095792848436216, -7.090464809457003, -7.098254342554415, -7.098030162423567, -7.0935066669889375, -7.086557591264656, -7.102526761243724, -7.098181739651888, -7.10872784155506, -7.097459195380401, -7.095191100812662, -7.102890507504376, -7.0923183296893795, -7.102156393269663, -7.09845792437554, -7.096080365452766, -7.10013103533166, -7.1005268316155945, -7.092915662727403, -7.095654857173873, -7.10922258172602, -7.099831667590216, -7.108845117487635, -7.082825083394153, -7.09107742992335, -7.077237571417883, -7.096191060913464, -7.0969085540182455, -7.114145172610189, -7.108437033980985, -7.105356395396853, -7.102301352541805, -7.103938890772344, -7.101405935547222, -7.1113452563763815, -7.0947122361413415, -7.099371225641347, -7.102428612231857, -7.080811315146189, -7.091175823108694, -7.1006602596540445, -7.085633248686943, -7.101715269263441, -7.0835485945728305, -7.0994928231977195, -7.09758387589104, -7.0795693729863505, -7.093444335523969, -7.102404867274401, -7.09942952825781, -7.092772226440181, -7.104709368820088, -7.098167881166478, -7.090812612388616, -7.104342211111905, -7.095634875814595, -7.092173851473915, -7.096806777226616, -7.104061399180975, -7.103310800731109, -7.083274172204216, -7.097915562847112, -7.077818214117743, -7.083628375959302, -7.093476904190158, -7.089513462892567, -7.090304705450007, -7.093392779706353, -7.10554680082769, -7.088962810558666, -7.091859039419992, -7.095055353625999, -7.095717126988325, -7.083592132581408, -7.100324224161871, -7.0785000809768714, -7.105908001716903, -7.093818438314592, -7.098883881335108, -7.104431926558294, -7.099627499021038, -7.092250021905359, -7.0907944678741535, -7.09293707780021, -7.091586685769627, -7.089190047620321, -7.1018597532027385, -7.100262126701205, -7.09131145193086, -7.09482991668717, -7.088031963725242, -7.09771658959787, -7.089270186131905, -7.096846356920972, -7.09686896582669, -7.092845267851078, -7.11130293906202, -7.091518158249563, -7.094435352643231, -7.097573980280066, -7.097401803322267, -7.09679214923423, -7.096140093891424, -7.105779785807971, -7.101284059739653]
plot_convergence_of_optimization_process(LiH_approximated_energies, exact_eigenvalue=-7.151525481896562,margin=1)
H2_molecule_Hamiltonian_4_qubits = -0.8105479805373279 * (I^I^I^I) \
+ 0.1721839326191554 * (I^I^I^Z) \
- 0.22575349222402372 * (I^I^Z^I) \
+ 0.17218393261915543 * (I^Z^I^I) \
- 0.2257534922240237 * (Z^I^I^I) \
+ 0.12091263261776627 * (I^I^Z^Z) \
+ 0.16892753870087907 * (I^Z^I^Z) \
+ 0.045232799946057826 * (Y^Y^Y^Y) \
+ 0.045232799946057826 * (X^X^Y^Y) \
+ 0.045232799946057826 * (Y^Y^X^X) \
+ 0.045232799946057826 * (X^X^X^X) \
+ 0.1661454325638241 * (Z^I^I^Z) \
+ 0.1661454325638241 * (I^Z^Z^I) \
+ 0.17464343068300453 * (Z^I^Z^I) \
+ 0.12091263261776627 * (Z^Z^I^I)
%%time
H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits)
compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_4_qubits, H2_approximated_eigenvalue)
print(approximated_energies)
approximated_energies = []
H2_approximated_energies = [-0.6479084750255486, -0.6276579569919597, -0.6079422008169065, -0.616731159779808, -0.6325842283091055, -0.6393897280901208, -0.6171807581727554, -0.632653791572579, -0.6213172282987715, -0.6295655663398093, -0.6289772030449229, -0.6186181091776035, -0.624022941533276, -0.5082839240612291, -0.48226570208794234, -0.4821361107003052, -0.4954020352078101, -0.4793435904590445, -0.49199670120300654, -0.49416478838441447, -0.502190052373643, -0.49599755978221166, -0.5020643548684793, -0.4889205213711024, -0.5018939914800866, -0.5099878400191491, -0.5856552068715944, -0.54923382599589, -0.5582306982767166, -0.5444314531693122, -0.5567710700669415, -0.5659113697818672, -0.552668511160273, -0.5735134318844516, -0.549852476753314, -0.5503189869962759, -0.5601864836520486, -0.5659896127460298, -0.5446950460298908, -0.615920984439197, -0.5928640404070656, -0.5879106801498322, -0.5935911543775607, -0.6075920247035514, -0.6201194518598445, -0.60623970115924, -0.6162790804378995, -0.6070899791213487, -0.6105620077787796, -0.604279338203177, -0.5953765787888684, -0.6176510100281449, -0.6121876903025966, -0.6221925707825862, -0.6167720694769763, -0.6138135616671906, -0.6141332165079305, -0.6280212409220817, -0.6360069982326235, -0.6007258601159454, -0.6251861183198779, -0.6230618384361196, -0.6294049945914133, -0.6233533946933156, -0.608497712991425, -0.6496414061454564, -0.6486467922145787, -0.6248046230879923, -0.6382435950247505, -0.6396933212611499, -0.6313975747684536, -0.6205882624714589, -0.6408121049037772, -0.6358325058878442, -0.6483418584555031, -0.6371649113759628, -0.6291839190391355, -0.6347573834032361, -0.6407098912056699, -0.6159176260854965, -0.6384554645835627, -0.6164080207309359, -0.625543079338974, -0.6382937503891668, -0.6264097132175528, -0.6420718561520969, -0.6267262725213436, -0.6374963711667498, -0.6193193504433864, -0.6078143278866533, -0.634472486357409, -0.6223512323012782, -0.6351163020561015, -0.634661177023637, -0.6327899211075433, -0.6336448686497769, -0.6193351633432258, -0.6281755978797693, -0.6264777231208046, -0.6414830476329384, -0.6307683399864691, -0.6307085701314388, -0.6206080402310008, -0.6348255969934301, -0.6396136598903551, -0.6119662685652434, -0.6416707355866279, -0.6413693107560723, -0.6177947197203094, -0.6298765228276698, -0.6523529064199631, -0.6449003109571184, -0.653383311719062, -0.6114270075961685, -0.6288547938898695, -0.618693644838608, -0.6474406100562011, -0.6311230491106903, -0.6116401562656182, -0.636431790506111, -0.6291838050229098, -0.6323232015973214, -0.6084567336875317, -0.6260410898582017, -0.6558980736383361, -0.6088478495140429, -0.6362772541154403, -0.6229687283270671, -0.6337477882049586, -0.6146890139542273, -0.6109822191193143, -0.6410668717503976, -0.6050360295204666, -0.6127109227117324, -0.613969481075047, -0.6330316470359499, -0.6336428860578563, -0.6579205656897767, -0.6226609914498723, -0.6308197002529959, -0.6592780043421462, -0.6286105470576249, -0.6142144474532307, -0.6308763800946607, -0.6313362339145869, -0.6587453552909762, -0.6439616021766039, -0.6342588475726809, -0.6348805630323535, -0.612208176680939, -0.6384209891698392, -0.6377259399102154, -0.6288355030414153, -0.6254287723561084, -0.6267028568621377, -0.633225553954038, -0.6266439989301029, -0.6219787315736918, -0.6444478946498267, -0.6078647889145464, -0.6169625336670495, -0.6228416937169068, -0.6055808453138738, -0.6349070986052844, -0.6233134657244299, -0.638807727216456, -0.6439324406558855, -0.6290682438485403, -0.6347278678305891, -0.6370807223116214, -0.6331202879928073, -0.6259391405710086, -0.6205239729014943, -0.6271330693467981, -0.6384914098927226, -0.6540996612097635, -0.6297277932870161, -0.6230026756130547, -0.6337458840743901, -0.6269616938156711, -0.6071713916280417, -0.6182364077263139, -0.6295847748388186, -0.6340000050667973, -0.662525648783056, -0.6268357485227919, -0.6383142008116837, -0.6356494637389134, -0.6334179386720562, -0.6368477711503842, -0.6258766827515051, -0.6250225216677815, -0.6402120922677865, -0.6215866553687236, -0.6300458164726813, -0.6349074242618946, -0.6281512038322912, -0.6106861518433435, -0.6257220729152266, -0.6264637065414248, -0.6413022282257185, -0.6287300650968061, -0.6415216331142828, -0.6177784438217981, -0.6235031629550336, -0.6522908854196745, -0.6433100700195024, -0.6467856500499529, -0.6383906423809346, -0.6353007399215785, -0.628267887248418, -0.6530534039557805, -0.6489154837903043, -0.6251303963665552, -0.606115215627397, -0.640564227336403, -0.6426262151446616, -0.6375465819155562, -0.6241657686495026, -0.6365874044036779, -0.6368987773426885, -0.6254336505997881, -0.6195698003196071, -0.6312797723656407, -0.6493745786523953, -0.6255032951930553, -0.6076271422511403, -0.6369485503847903, -0.633978893260772, -0.6247995690801257, -0.6181592078851024, -0.6413113581396256, -0.6357432503116383, -0.6413681655967249, -0.6349930744741815, -0.6553915345015394, -0.6333982709804692, -0.6323784240845362, -0.597462603561814, -0.6354799343741077, -0.6435513818689228, -0.6288306285283861, -0.6252986455639116, -0.6338258059332423, -0.6354797897494069, -0.6118871374772903]
plot_convergence_of_optimization_process(H2_approximated_energies, exact_eigenvalue=-0.353325104107155, margin=5)
transverse_ising_4_qubits = 0.0 * (I^I^I^I) \
+ 0.8398088405253477 * (X^I^I^I) \
+ 0.7989496312070936 * (I^X^I^I) \
+ 0.38189710487113193 * (Z^Z^I^I) \
+ 0.057753122422666725 * (I^I^X^I) \
+ 0.5633292636970458 * (Z^I^Z^I) \
+ 0.3152740621483513 * (I^Z^Z^I) \
+ 0.07209487981989715 * (I^I^I^X) \
+ 0.17892334004292654 * (Z^I^I^Z) \
+ 0.2273896497668042 * (I^Z^I^Z) \
+ 0.09762902934216211 * (I^I^Z^Z)
%%time
TI_approximated_eigen_value = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_4_qubits)
compare_exact_and_approximated_eigenvalue(transverse_ising_4_qubits, TI_approximated_eigenvalue)
print(approximated_energies)
approximated_energies = []
TI_approximated_energies = [1.8984375, 1.943359375, 1.9619140625, 1.978515625, 1.984375, 1.9873046875, 1.9931640625, 1.9248046875, 1.962890625, 1.9248046875, 1.9150390625, 1.9052734375, 1.9267578125, 1.802734375, 1.81640625, 1.86328125, 1.8623046875, 1.7939453125, 1.8623046875, 1.89453125, 1.880859375, 1.8388671875, 1.8720703125, 1.83984375, 1.8837890625, 1.8359375, 1.701171875, 1.7470703125, 1.69140625, 1.73828125, 1.833984375, 1.69921875, 1.7744140625, 1.7529296875, 1.7353515625, 1.7265625, 1.7666015625, 1.708984375, 1.7421875, 1.79296875, 1.8671875, 1.91015625, 1.8828125, 1.884765625, 1.875, 1.86328125, 1.85546875, 1.8134765625, 1.84375, 1.79296875, 1.865234375, 1.8916015625, 1.908203125, 1.900390625, 1.8837890625, 1.876953125, 1.896484375, 1.9921875, 1.9208984375, 1.94921875, 1.96875, 1.8466796875, 1.92578125, 1.8740234375, 1.9716796875, 1.9130859375, 1.939453125, 1.9599609375, 1.9716796875, 1.9150390625, 1.98828125, 1.865234375, 1.9248046875, 1.890625, 2.0146484375, 1.9560546875, 1.947265625, 1.9619140625, 1.955078125, 1.9208984375, 1.955078125, 1.9384765625, 1.96484375, 1.9150390625, 1.923828125, 1.9580078125, 1.958984375, 2.013671875, 1.935546875, 1.9443359375, 2.0546875, 2.001953125, 1.958984375, 1.98828125, 1.962890625, 2.0205078125, 2.0029296875, 1.93359375, 1.91015625, 1.9765625, 1.9365234375, 1.8984375, 1.9072265625, 1.939453125, 1.9033203125, 2.0556640625, 1.947265625, 1.9267578125, 1.9541015625, 1.962890625, 1.9287109375, 1.9072265625, 1.962890625, 1.966796875, 1.9560546875, 1.970703125, 1.9580078125, 1.9833984375, 2.013671875, 1.966796875, 1.9599609375, 1.943359375, 1.974609375, 1.9619140625, 1.9462890625, 1.974609375, 1.9482421875, 1.943359375, 1.9697265625, 1.9033203125, 1.9794921875, 1.98828125, 1.94140625, 1.9658203125, 2.0078125, 1.9912109375, 1.916015625, 1.916015625, 2.0068359375, 1.9130859375, 1.9267578125, 1.90234375, 1.921875, 1.943359375, 1.9755859375, 1.90234375, 1.95703125, 1.9482421875, 1.97265625, 1.9658203125, 1.990234375, 1.9384765625, 1.935546875, 1.916015625, 1.91796875, 1.99609375, 1.87109375, 1.9599609375, 1.919921875, 1.951171875, 1.9521484375, 1.9716796875, 1.9736328125, 1.9794921875, 1.99609375, 1.9765625, 1.9228515625, 1.9482421875, 1.9462890625, 1.986328125, 1.927734375, 1.9482421875, 2.0771484375, 2.0009765625, 1.9267578125, 1.9638671875, 1.904296875, 1.9365234375, 1.962890625, 1.958984375, 1.96875, 1.9521484375, 1.8935546875, 1.916015625, 1.939453125, 1.98046875, 1.9560546875, 1.9541015625, 1.955078125, 1.9228515625, 1.9951171875, 1.93359375, 1.9736328125, 1.9443359375, 1.96484375, 1.984375, 1.8681640625, 1.923828125, 1.947265625, 1.96484375, 1.94140625, 1.9375, 1.96875, 1.94921875, 1.943359375, 1.8935546875, 1.9638671875, 1.912109375, 2.0, 1.921875, 2.064453125, 1.95703125, 1.9287109375, 1.951171875, 1.982421875, 1.8955078125, 1.9482421875, 1.9970703125, 1.9423828125, 1.9697265625, 1.90625, 1.9306640625, 1.9716796875, 1.92578125, 1.98046875, 1.9521484375, 1.9072265625, 1.962890625, 1.9365234375, 1.9609375, 1.9560546875, 1.9462890625, 2.0166015625, 1.9609375, 1.9287109375, 1.962890625, 1.9677734375, 1.9169921875, 1.876953125, 1.9443359375, 1.984375, 1.9697265625, 1.978515625, 1.958984375, 1.9677734375, 2.0341796875, 1.9697265625, 1.93359375, 1.966796875, 1.9482421875, 1.9345703125, 1.9453125, 1.9912109375, 1.986328125, 1.955078125, 1.927734375, 2.03125, 1.921875, 1.951171875, 1.9990234375, 1.8955078125, 1.9794921875, 2.0078125, 1.9580078125, 1.986328125, 1.9287109375, 1.9853515625, 1.9990234375, 1.9365234375, 2.0048828125, 1.9462890625, 1.9580078125, 1.970703125, 1.951171875, 1.91015625, 1.8662109375, 1.9013671875, 1.9267578125, 1.943359375, 1.9814453125, 1.927734375, 1.99609375, 1.9580078125, 1.904296875, 1.912109375, 1.978515625, 1.9453125, 1.990234375, 1.97265625, 1.9580078125, 1.93359375, 1.9599609375, 1.986328125, 1.970703125, 1.966796875, 1.947265625, 1.875, 1.953125, 1.966796875, 1.931640625, 1.9140625, 1.98828125, 1.919921875, 1.970703125, 1.8916015625, 2.0615234375, 2.015625, 1.8466796875, 1.916015625, 1.96875, 1.9697265625, 2.0029296875, 1.9326171875, 1.939453125, 1.873046875, 1.9345703125, 1.9501953125, 1.927734375, 1.9453125, 2.005859375, 1.96484375, 1.9384765625, 1.9609375, 1.990234375, 1.951171875, 1.951171875, 1.994140625, 2.015625, 1.9462890625, 1.94140625, 2.0439453125, 1.9755859375, 1.9326171875, 2.0224609375, 1.9248046875, 1.990234375, 2.0, 1.9091796875, 1.9267578125, 1.951171875, 1.95703125, 1.9521484375]
plot_convergence_of_optimization_process(TI_approximated_energies, exact_eigenvalue=1.6816520928402046, margin=3)
|
https://github.com/JessicaJohnBritto/Quantum-Computing-and-Information
|
JessicaJohnBritto
|
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ, BasicAer, assemble, transpile
from qiskit.visualization import plot_bloch_multivector,plot_bloch_vector, plot_histogram
from qiskit.quantum_info import Statevector
import numpy as np
import matplotlib
backend = BasicAer.get_backend('qasm_simulator')
shots = 1024
style = {'backgroundcolor': 'lightyellow'} # Style of the circuits
qreg = QuantumRegister(2)
creg = ClassicalRegister(1)
qc = QuantumCircuit(qreg, creg)
qc.x(1) # Applying X gate on qubit 2 to get |1>
qc.barrier()
qc.draw(output='mpl', style=style)
# Applying Hadamard Gate
for qubit in range(2):
qc.h(qubit)
qc.barrier()
qc.draw(output='mpl', style=style)
# Balanced Oracle
qc.cx(0,1)
qc.barrier()
for qubit in range(1):
qc.h(qubit)
qc.measure(0,0)
qc.draw(output='mpl', style=style)
transpiled_dj_circuit = transpile(qc, backend)
qobj = assemble(transpiled_dj_circuit)
results = backend.run(qobj).result()
answer = results.get_counts()
plot_histogram(answer)
## Re-initialising
qreg = QuantumRegister(2)
creg = ClassicalRegister(1)
qc = QuantumCircuit(qreg, creg)
qc.x(1) # Applying X gate on qubit 2 to get |1>
qc.barrier()
# qc.draw(output='mpl', style=style)
# Applying Hadamard Gate
for qubit in range(2):
qc.h(qubit)
qc.barrier()
# Constant Oracle
if qc[1]==1:
qc.x(1)
for qubit in range(1):
qc.h(qubit)
qc.measure(0,0)
qc.draw(output='mpl', style=style)
transpiled_dj_circuit = transpile(qc, backend)
qobj = assemble(transpiled_dj_circuit)
results = backend.run(qobj).result()
answer = results.get_counts()
plot_histogram(answer)
|
https://github.com/2lambda123/Qiskit-qiskit
|
2lambda123
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=wrong-import-order
"""Main Qiskit public functionality."""
import pkgutil
# First, check for required Python and API version
from . import util
# qiskit errors operator
from .exceptions import QiskitError
# The main qiskit operators
from qiskit.circuit import ClassicalRegister
from qiskit.circuit import QuantumRegister
from qiskit.circuit import QuantumCircuit
# pylint: disable=redefined-builtin
from qiskit.tools.compiler import compile # TODO remove after 0.8
from qiskit.execute import execute
# The qiskit.extensions.x imports needs to be placed here due to the
# mechanism for adding gates dynamically.
import qiskit.extensions
import qiskit.circuit.measure
import qiskit.circuit.reset
# Allow extending this namespace. Please note that currently this line needs
# to be placed *before* the wrapper imports or any non-import code AND *before*
# importing the package you want to allow extensions for (in this case `backends`).
__path__ = pkgutil.extend_path(__path__, __name__)
# Please note these are global instances, not modules.
from qiskit.providers.basicaer import BasicAer
# Try to import the Aer provider if installed.
try:
from qiskit.providers.aer import Aer
except ImportError:
pass
# Try to import the IBMQ provider if installed.
try:
from qiskit.providers.ibmq import IBMQ
except ImportError:
pass
from .version import __version__
from .version import __qiskit_version__
|
https://github.com/qiskit-community/qiskit-metriq
|
qiskit-community
|
import os
import json
import qiskit
import requests
from datetime import datetime
def get_installed_version():
try:
# Starting with qiskit v0.45, qiskit and qiskit-terra will have the same version
return qiskit.__version__
except ImportError:
return qiskit.__qiskit_version__["qiskit"]
def get_qiskit_releases_data(package_name: str) -> dict:
response = requests.get(f"https://pypi.org/pypi/{package_name}/json")
if response.status_code == 200:
data = response.json()
return data["releases"].items()
return None
def get_qiskit_versions_info() -> []:
data_items = get_qiskit_releases_data("qiskit")
# Filter releases starting from 2023-11
# Starting with qiskit 0.45, qiskit and qiskit-terra will have the same version
return filter_by_date(data_items, [2023,11], [])
def get_qiskit_terra_versions_info() -> []:
data_items = get_qiskit_releases_data("qiskit-terra")
# Filter releases from 2020-03 (terra v0.13.x) to 2023-10 (terra v.0.25.x)
return filter_by_date(data_items,[2020,3], [2023,10])
def get_qiskit_versions_list(package_name: str) -> []:
qiskit_versions_info = get_qiskit_terra_versions_info() if "terra" in package_name else get_qiskit_versions_info()
versions_only = []
for item in qiskit_versions_info:
for key, value in item.items():
if key == "version":
versions_only.append(value)
return versions_only
def find_latest_version(versions: []) -> str:
if not versions:
return ""
# Split each version string into a tuple of integers
version_tuples = [tuple(map(int, v.split("."))) for v in versions]
# Sort
sorted_versions = sorted(version_tuples, reverse=True)
# Convert the latest version tuple back to string
latest_version = ".".join(map(str, sorted_versions[0]))
return latest_version
# Compare versions in string format and return the highest
def compare_versions(version_1:str, version_2: str) -> str:
# Split version strings into lists of ints
# Split version strings into lists of ints
v1_parts = list(map(int, version_1.split(".")))
v2_parts = list(map(int, version_2.split(".")))
# Compare
for v1, v2 in zip(v1_parts, v2_parts):
if v1 > int(v2):
return version_1
elif v1 < int(v2):
return version_2
return version_1 # if they are the same
def same_minor(version_1: str, version_2: str) -> bool:
# Split version strings into lists of ints
v1 = list(map(int, version_1.split(".")))
v2 = list(map(int, version_2.split(".")))
return v1[:2] == v2[:2]
def filter_by_date(data_items: dict, min_date: [], max_date: []) -> []:
# Temporary control dictionary for package release info for version, date and python version
temp = {}
for release, release_info in data_items:
# Skip RCs and pre-releases
if "rc" in release or "b" in release:
print("Skipping version ", release)
continue
date_str = release_info[0]["upload_time"]
dt = datetime.strptime(date_str, "%Y-%m-%dT%H:%M:%S")
year = dt.year
month = dt.month
if max_date:
max_y, max_m = max_date
# Ignore above max_date
if (year == max_y and month > max_m) or year > max_y:
continue
min_y, min_m = min_date
# Ignore below min_date
if (year == min_y and month < min_m) or year < min_y:
continue
python_version = release_info[0]["requires_python"]
# Parse the release string of format "x.y.z" into a list of "x","y","z"
major_minor_patch_list = release.split(".")
major_minor = ".".join(major_minor_patch_list[:2])
# Get latest patch
patch_number = int(major_minor_patch_list[2])
temp_info = temp.get(major_minor)
previous_patch_number = -1 if not temp_info else temp_info[0]
if previous_patch_number < patch_number:
# Replace to latest patch version found
temp[major_minor] = (patch_number, {"version":release, "date": dt.strftime("%Y-%m-%d"), "python_version": python_version})
continue
filtered_releases = []
for _, value in temp.items():
filtered_releases.append(value[1])
return filtered_releases
def write_versions_to_file(versions: [], filename: str):
file_path = os.path.abspath(os.path.join( os.path.dirname( __file__ ),"..", "benchmarking", filename))
with open(file_path,"w") as file:
json.dump(versions, file, indent=4)
def get_version_date(package_name: str, input_version:str) -> str:
data_items = data_items = get_qiskit_releases_data(package_name)
for release, release_info in data_items:
if release == input_version:
# Remove time from date format "%Y-%m-%dT%H:%M:%S"
date_time= release_info[0]["upload_time"]
return date_time.split('T', 1)[0]
return "Invalid version"
###
# qiskit_info = get_qiskit_versions_info()
# print("qiskit versions:", sep='\n')
# print(*qiskit_info, sep='\n')
"""
qiskit versions:
{'version': '0.45.0', 'date': '2023-11-03', 'python_version': '>=3.8'}
"""
# qiskit_terra_info = get_qiskit_terra_versions_info()
# print("qiskit-terra versions:", sep='\n')
# print(*qiskit_terra_info, sep='\n')
"""
qiskit-terra versions:
{'version': '0.13.0', 'date': '2020-04-09', 'python_version': '>=3.5'}
{'version': '0.14.2', 'date': '2020-06-15', 'python_version': '>=3.5'}
{'version': '0.15.2', 'date': '2020-09-08', 'python_version': '>=3.5'}
{'version': '0.16.4', 'date': '2021-02-08', 'python_version': '>=3.6'}
{'version': '0.17.4', 'date': '2021-05-18', 'python_version': '>=3.6'}
{'version': '0.18.3', 'date': '2021-09-29', 'python_version': '>=3.6'}
{'version': '0.19.2', 'date': '2022-02-02', 'python_version': '>=3.6'}
{'version': '0.20.2', 'date': '2022-05-18', 'python_version': '>=3.7'}
{'version': '0.21.2', 'date': '2022-08-23', 'python_version': '>=3.7'}
{'version': '0.22.4', 'date': '2023-01-17', 'python_version': '>=3.7'}
{'version': '0.23.3', 'date': '2023-03-21', 'python_version': '>=3.7'}
{'version': '0.24.2', 'date': '2023-07-19', 'python_version': '>=3.7'}
{'version': '0.25.3', 'date': '2023-10-25', 'python_version': '>=3.8'}
"""
|
https://github.com/tomtuamnuq/compare-qiskit-ocean
|
tomtuamnuq
|
import dimod
import networkx as nx
import dwave_networkx as dnx
from dwave.embedding import pegasus
import neal, dwave.system
import numpy as np
A_int = np.array([[0,1,2,3,4,1],
[2,1,4,1,0,2],
[1,5,2,3,1,1]])
m, n = A_int.shape
vartype = dimod.Vartype.BINARY
c_int = np.array([1,2,1,-3,1,-1])
b = np.array([7,8,5])
print(A_int.dot(np.array([1,0,0,0,1,3])))
def get_binary_form(c,bits):
c_bin = []
for c_j in c:
c_bin += [c_j * 2**i for i in range(0,bits)]
return np.array(c_bin)
# represent each x_i as 3 bits to the power of 2
bits = 3
# Set Penalty for Constraints aprox solution
P = max(abs(c_int))*3
c = get_binary_form(c_int,bits)
print(c)
A = np.array([get_binary_form(A_int[i], bits) for i in range(0,m)])
print(A)
# Set up linear and quadratic coefficients
L = c.T - P * 2 * np.matmul(b.T,A)
Q = P * np.matmul(A.T,A)
offset = P * b.T.dot(b)
bqm = dimod.as_bqm(L, Q, offset, vartype)
def construct_x(sample, bits):
x=[]
for k in range(0,len(sample.keys()),bits):
x += [sum(sample[k+j]* 2**j for j in range(0,bits))]
return np.array(x)
def testSamples(sampleset, bits):
print("Minimum Energy Level found in:",sampleset.first)
X = []
for sample, energy, in sampleset.data(fields=['sample', 'energy']):
x = construct_x(sample,bits)
if all(A_int.dot(x)[i] == b[i] for i in range(0,m)) :
X += [(x,energy)]
return X
# Define target Pegasus Graph
M = 16 # Defines number of qubits in Pegasus graph : 24M(M-1)
P_M = dnx.pegasus_graph(M, data = True) # allow the use of pegasus indizes
# Define source complete graph
a = len(bqm.variables)
K_a = nx.complete_graph(a)
# Embedding K_a into P_M
embedding = pegasus.find_clique_embedding(K_a, target_graph=P_M)
sampler = dwave.system.FixedEmbeddingComposite(dwave.system.DWaveSampler(), embedding = embedding)
sampler.child.properties['num_qubits']
sampleset = sampler.sample(bqm,num_reads = 2000)
sampleset.to_pandas_dataframe()
solutions_real = testSamples(sampleset, bits)
solutions_unique = { str(x) : energy for x, energy in solutions_real}
for x in solutions_unique.keys() :
print("Found solution {} with Energy Level {}".format(x,solutions_unique[x]))
a = len(bqm.variables)
embedding = pegasus.find_clique_embedding(a,m = a)
sampler = dwave.system.FixedEmbeddingComposite(dwave.system.DWaveSampler(), embedding = embedding)
|
https://github.com/NirdevPaul/GroversAlgorithm
|
NirdevPaul
|
my_list = [1, 3, 5, 2, 4, 9, 5, 8, 0, 7, 6]
def the_oracle(my_input):
winner = 7
return my_input == winner
for index, trial_number in enumerate(my_list):
if the_oracle(trial_number):
print(f"Found the winner at index {index}!")
print(f"{index+1} calls made")
break
from qiskit import *
from qiskit.visualization import plot_histogram, array_to_latex
from qiskit.providers.ibmq import least_busy
import matplotlib.pyplot as plt
import numpy as np
grover_circuit = QuantumCircuit(2)
def init_state(qc, qubits):
for q in qubits:
qc.h(q)
return qc
grover_circuit = init_state(grover_circuit, [0, 1])
grover_circuit.draw("mpl")
#define the oracle circuit
def oracle(qc, qubits):
qc.cz(qubits[0], qubits[1])
qc = QuantumCircuit(2)
oracle(qc, [0, 1])
qc.draw("mpl")
usim = Aer.get_backend('aer_simulator')
qc.save_unitary()
qobj = assemble(qc)
unitary = usim.run(qobj).result().get_unitary()
array_to_latex(unitary, prefix="\\text{One can see that only the state }\ket{11}\\text{ has been flipped: }\n")
def diffusion(qc, qubits):
qc.h([0, 1])
qc.z([0, 1])
qc.cz(0, 1)
qc.h([0, 1])
grover_circuit.barrier()
oracle(grover_circuit, [0, 1])
grover_circuit.barrier()
diffusion(grover_circuit, [0, 1])
grover_circuit.measure_all()
grover_circuit.draw("mpl")
# Let's see if the final statevector matches our expectations
sv_sim = Aer.get_backend('statevector_simulator')
result = sv_sim.run(grover_circuit).result()
statevec = result.get_statevector()
statevec
aer_sim = Aer.get_backend('aer_simulator')
result = execute(grover_circuit, aer_sim, shots=1024).result()
result.get_counts()
# Load IBM Q account and get the least busy backend device
# Run the following line with your API token to use IBM's own quantum computers
#IBMQ.save_account('')
provider = IBMQ.load_account()
provider = IBMQ.get_provider("ibm-q")
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration().simulator and x.status().operational==True))
print("Running on current least busy device: ", device)
# Run our circuit on the least busy backend. Monitor the execution of the job in the queue
from qiskit.tools.monitor import job_monitor
transpiled_grover_circuit = transpile(grover_circuit, device, optimization_level=3)
job = device.run(transpiled_grover_circuit)
job_monitor(job, interval=2)
# Get the results from the computation
results = job.result()
answer = results.get_counts(grover_circuit)
plot_histogram(answer)
grover_circuit = QuantumCircuit(3)
grover_circuit = init_state(grover_circuit, [0, 1, 2])
grover_circuit.draw("mpl")
oracle_qc = QuantumCircuit(3)
oracle_qc.cz(0, 1)
oracle_qc.cz(0, 2)
oracle_gate = oracle_qc.to_gate()
oracle_gate.name = "U$_\omega$"
def diffuser(nqubits):
qc = QuantumCircuit(nqubits)
# Apply transformation |s> -> |00..0> -> |11..1>
for qubit in range(nqubits):
qc.h(qubit)
qc.x(qubit)
# When these are combined, they function as a multi-controlled Z gate
# A negative phase is added to |11..1> to flip the state
qc.h(nqubits-1)
qc.mct(list(range(nqubits-1)), nqubits-1) # multi-controlled-toffoli
qc.h(nqubits-1)
# Apply transformation |11..1> -> |00..0> -> |s>
for qubit in range(nqubits):
qc.x(qubit)
qc.h(qubit)
# We will return the diffuser as a gate
U_s = qc.to_gate()
U_s.name = "U$_s$"
return U_s
num_qubits = 3
grover_circuit = QuantumCircuit(num_qubits)
grover_circuit = init_state(grover_circuit, [0, 1, 2])
grover_circuit.barrier()
grover_circuit.append(oracle_gate, [0, 1, 2])
grover_circuit.barrier()
grover_circuit.append(diffuser(num_qubits), [0, 1, 2])
grover_circuit.measure_all()
grover_circuit.draw("mpl")
qasm_sim = Aer.get_backend('qasm_simulator')
transpiled_grover_circuit = transpile(grover_circuit, qasm_sim)
results = qasm_sim.run(transpiled_grover_circuit).result()
counts = results.get_counts()
plot_histogram(counts)
backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration().simulator and x.status().operational==True))
print("least busy backend: ", backend)
# Run our circuit on the least busy backend. Monitor the execution of the job in the queue
from qiskit.tools.monitor import job_monitor
transpiled_grover_circuit = transpile(grover_circuit, device, optimization_level=3)
job = device.run(transpiled_grover_circuit)
job_monitor(job, interval=2)
# Get the results from the computation
results = job.result()
answer = results.get_counts(grover_circuit)
plot_histogram(answer)
|
https://github.com/apcarrik/qiskit-dev
|
apcarrik
|
from qiskit import IBMQ, transpile
from qiskit import QuantumCircuit
from qiskit.providers.aer import AerSimulator
from qiskit.tools.visualization import plot_histogram
## Terra Mock Backends
from qiskit.test.mock import FakeVigo
device_backend = FakeVigo()
# Build test circuit
circ = QuantumCircuit(3,3)
circ.h(0)
circ.cx(0,1)
circ.cx(1,2)
circ.measure([0,1,2], [0,1,2])
sim_ideal = AerSimulator()
# Execute circuit and get counts
result = sim_ideal.run(transpile(circ,sim_ideal)).result()
counts = result.get_counts(0)
plot_histogram(counts, title="Ideal counts for 3-qubit GHZ state").show()
## Generate Simulator that Mimics Real Device
sim_vigo = AerSimulator.from_backend(device_backend)
# Run noisy simulation
tcirc = transpile(circ, sim_vigo)
result_noise = sim_vigo.run(tcirc).result()
counts_noise = result_noise.get_counts()
plot_histogram(counts_noise, title="Counts for 3-qubit GHZ state with noisy model").show()
|
https://github.com/1chooo/Quantum-Oracle
|
1chooo
|
#Below are examples of using print function
print('The name of the language is',"Python")
print("The radius of the circle is", 3, '\nIts area is', 3.14159*3**2)
#Below are examples of using print function
print('The name of the language is',"Python",end=". ")
print('Its version is',"3.x",sep="....")
print("The radius of the circle is", 3)
print("The area of the circle is", 3.14159*3**2)
r=input('Please enter the radius of the circle:')
print('The radius of the circle:', r)
r=input('Please enter the radius of the circle:')
ri=int(r)
rf=float(r)
print('The radius of the circle:', ri)
print("The area of the circle:", 3.14159*rf**2)
a=123;b=123.456;c=False;d=123+456j;e="123";f=[1,2,3];g=(1,2,3);h={1,2,3};i={1:'x',2:'y',3:'z'}
print(type(a),type(b),type(c),type(d),type(e),type(f),type(g),type(h),type(i))
a=3;b=8
print(a+b) #11
print(a-b) #-5
print(a*b) #24
print(a/b) #0.375
print(a//b) #0
print(a%b) #3
print(a**b) #6561
print(a+b//a**b) #3
print((a+b)//a**b) #0
a=3.0;b=8.0;c=8
print(a+b) #11.0
print(a-b) #-5.0
print(a*b) #24.0
print(a/b) #0.375
print(a//b) #0.0
print(a%b) #3.0
print(a**b) #6561.0
print(a+c) #11.0
print(a+b//a**b) #3.0
print((a+b)//a**b) #0.0
a=3.0;b=8.0;c=8
print(a==b) #False
print(a!=b) #True
print(a>b) #False
print(a<b) #True
print(a>=b) #False
print(a<=b) #True
print(not (a==b)) #True
print(a==b or a!=b and a>b) #False
print(a==b and a>b or a!=b) #True
print(a==b and a>b or not (a!=b)) #False
a=2+4j;b=3-8j
print(a+b) #(5-4j)
print(a-b) #(-1+12j)
print(a*b) #(38-4j)
print(a/b) #(-0.3561643835616438+0.3835616438356164j)
print(a+b/a) #(0.7+2.6j)
print((a+b)/a) #(-0.3-1.4j)
print(a.real) #2.0
print(a.imag) #4.0
print(a.conjugate()) #(2-4j)
print(abs(a)) #4.47213595499958
a={1,2,3};b={2,4,6}
print(a|b) #{1, 2, 3, 4, 6}
print(a.union(b)) #{1, 2, 3, 4, 6}
print(a&b) #{2}
print(a.intersection(b)) #{2}
print(a-b) #{1,3}
print(a.difference(b)) #{1,3}
print(a^b) #{1,3,4,6}
print(a.symmetric_difference(b)) #{1,3,4,6}
ex = {"a":1, "b":2, "c":3, 1: "integer", 2.3: "float", 4+5j: "complex", (6,7): "tuple"}
print(ex["a"],ex["b"],ex["c"],ex[1],ex[2.3],ex[4+5j],ex[(6,7)])
ex["a"]=100
print(ex["a"])
print(len(ex))
ex["d"]=4
print(ex.get("d"))
del ex["d"]
print(ex.get("d"))
print("e" in ex)
print("e" not in ex)
print(ex.keys())
print(ex.values())
a=5
a+=3 #a=a+3 (a=8)
a-=3 #a=a-3 (a=5)
a*=3 #a=a*3 (a=15)
a%=8 #a=a%8 (a=7)
a//=3 #a=a//3 (a=2)
a/=3 #a=a/3 (a=0.6666666666666666)
a**=3 #a=a**3 (a=0.2962962962962962)
print(a)
score=90
if score >=60:
print("PASS")
score=90
if score >=60:
print("PASS")
else:
print("FAIL")
score=90
if score >=90:
print("A")
elif score >= 80:
print("B")
elif score >= 70:
print("C")
elif score >= 60:
print("D")
else:
print("F")
i=0
while i<5:
i+=1
print(i,end="")
i=0
while i<5:
i+=1
print(i,end="")
else:
print("#")
for i in [1,2,3,4,5]:
print(i,end="")
for i in [1,2,3,4,5]:
print(i,end="")
else:
print("#")
print(list(range(5))) #range(5)會回傳0、1、2、3、4
print(list(range(2,5))) #range(2,5)會回傳2、3、4
print(list(range(0,5,2))) #range(0,2,5)會回傳0、2、4
print(list(range(5,0,-1))) #range(5,0,-1)會回傳5、4、3、2、1
print(list(range(5,0))) #range(5,0)是一個空序列
i=0
while i<5:
i+=1
if i==3:
break
print(i,end="")
for i in range(1,6):
if i==3:
break
print(i,end="")
i=0
while i<5:
i+=1
if i==3:
continue
print(i,end="")
for i in range(1,6):
if i==3:
continue
print(i,end="")
def odd_check(n):
"""Check if n is odd (return True) or not (return False)."""
if n%2==0:
return False
else:
return True
print(odd_check(5))
print(odd_check(10))
def test(aa,bb,cc=123,dd='abc'):
return aa,bb,cc,dd
print(test(1,2,3,4))
print(test(1,2,3))
print(test(1,2,dd='edf'))
print(test(1,2))
def adding(*num):
sum=0
for n in num:
sum+=n
return sum
print(adding(1,2,3,4,5))
adding = lambda x,y: x+y
print(adding(3,8)) #顯示11
print((lambda x,y: x+y)(3,8)) #顯示11
lista=[1,3,5,7,9]
#以下將lambda函數當作map函數的參數
listb=list(map(lambda x:x+8, lista))
print(listb)
class Rectangle:
length=0
width=0
def __init__(self,length,width):
self.length=length
self.width=width
def area(self):
return self.length*self.width
def perimeter(self):
return 2*(self.length+self.width)
rect1=Rectangle(3,8)
rect2=Rectangle(2,4)
print('rect1:',rect1.length,rect1.width,rect1.area(),rect1.perimeter())
print('rect2:',rect2.length,rect2.width,rect2.area(),rect2.perimeter())
class NamedRectangle(Rectangle):
name=''
def __init__(self,length,width,name):
super().__init__(length,width)
self.name=name
def show_name(self):
print(self.name)
rect1=NamedRectangle(3,8,'rectangle1')
rect2=NamedRectangle(2,4,'rectangle2')
print('rect1:',rect1.length,rect1.width,rect1.area(),rect1.perimeter())
print('rect2:',rect2.length,rect2.width,rect2.area(),rect2.perimeter())
rect1.show_name()
rect2.show_name()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.circuit.library.standard_gates import HGate
qc1 = QuantumCircuit(2)
qc1.x(0)
qc1.h(1)
custom = qc1.to_gate().control(2)
qc2 = QuantumCircuit(4)
qc2.append(custom, [0, 3, 1, 2])
qc2.draw('mpl')
|
https://github.com/Cryoris/gradient-reverse-mode
|
Cryoris
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
This trial wavefunction is a Unitary Coupled-Cluster Single and Double excitations
variational form.
For more information, see https://arxiv.org/abs/1805.04340
"""
import logging
import sys
import numpy as np
from qiskit import QuantumRegister, QuantumCircuit
from qiskit.tools import parallel_map
from qiskit.tools.events import TextProgressBar
from qiskit.aqua import Operator, aqua_globals
from qiskit.aqua.components.variational_forms import VariationalForm
from qiskit.chemistry.fermionic_operator import FermionicOperator
from qiskit.chemistry import MP2Info
from qiskit.chemistry import QMolecule as qm
logger = logging.getLogger(__name__)
class UCCSD(VariationalForm):
"""
This trial wavefunction is a Unitary Coupled-Cluster Single and Double excitations
variational form.
For more information, see https://arxiv.org/abs/1805.04340
"""
CONFIGURATION = {
'name': 'UCCSD',
'description': 'UCCSD Variational Form',
'input_schema': {
'$schema': 'http://json-schema.org/schema#',
'id': 'uccsd_schema',
'type': 'object',
'properties': {
'depth': {
'type': 'integer',
'default': 1,
'minimum': 1
},
'num_orbitals': {
'type': 'integer',
'default': 4,
'minimum': 1
},
'num_particles': {
'type': 'integer',
'default': 2,
'minimum': 1
},
'active_occupied': {
'type': ['array', 'null'],
'default': None
},
'active_unoccupied': {
'type': ['array', 'null'],
'default': None
},
'qubit_mapping': {
'type': 'string',
'default': 'parity',
'oneOf': [
{'enum': ['jordan_wigner', 'parity', 'bravyi_kitaev']}
]
},
'two_qubit_reduction': {
'type': 'boolean',
'default': False
},
'mp2_reduction': {
'type': 'boolean',
'default': False
},
'num_time_slices': {
'type': 'integer',
'default': 1,
'minimum': 1
},
},
'additionalProperties': False
},
'depends': [
{
'pluggable_type': 'initial_state',
'default': {
'name': 'HartreeFock',
}
},
],
}
def __init__(self, num_qubits, depth, num_orbitals, num_particles,
active_occupied=None, active_unoccupied=None, initial_state=None,
qubit_mapping='parity', two_qubit_reduction=False, mp2_reduction=False, num_time_slices=1,
cliffords=None, sq_list=None, tapering_values=None, symmetries=None,
shallow_circuit_concat=True):
"""Constructor.
Args:
num_orbitals (int): number of spin orbitals
depth (int): number of replica of basic module
num_particles (int): number of particles
active_occupied (list): list of occupied orbitals to consider as active space
active_unoccupied (list): list of unoccupied orbitals to consider as active space
initial_state (InitialState): An initial state object.
qubit_mapping (str): qubit mapping type.
two_qubit_reduction (bool): two qubit reduction is applied or not.
num_time_slices (int): parameters for dynamics.
cliffords ([Operator]): list of unitary Clifford transformation
sq_list ([int]): position of the single-qubit operators that anticommute
with the cliffords
tapering_values ([int]): array of +/- 1 used to select the subspace. Length
has to be equal to the length of cliffords and sq_list
symmetries ([Pauli]): represent the Z2 symmetries
shallow_circuit_concat (bool): indicate whether to use shallow (cheap) mode for circuit concatenation
"""
self.validate(locals())
super().__init__()
self._cliffords = cliffords
self._sq_list = sq_list
self._tapering_values = tapering_values
self._symmetries = symmetries
if self._cliffords is not None and self._sq_list is not None and \
self._tapering_values is not None and self._symmetries is not None:
self._qubit_tapering = True
else:
self._qubit_tapering = False
self._num_qubits = num_orbitals if not two_qubit_reduction else num_orbitals - 2
self._num_qubits = self._num_qubits if not self._qubit_tapering else self._num_qubits - len(sq_list)
if self._num_qubits != num_qubits:
raise ValueError('Computed num qubits {} does not match actual {}'
.format(self._num_qubits, num_qubits))
self._depth = depth
self._num_orbitals = num_orbitals
self._num_particles = num_particles
if self._num_particles > self._num_orbitals:
raise ValueError('# of particles must be less than or equal to # of orbitals.')
self._initial_state = initial_state
self._qubit_mapping = qubit_mapping
self._two_qubit_reduction = two_qubit_reduction
self._num_time_slices = num_time_slices
self._shallow_circuit_concat = shallow_circuit_concat
self._single_excitations, self._double_excitations = \
UCCSD.compute_excitation_lists(num_particles, num_orbitals,
active_occupied, active_unoccupied)
self._single_excitations = []
print('{} are the old doubles'.format(self._double_excitations))
print(mp2_reduction)
if mp2_reduction:
print('Getting new doubles')
self._double_excitations = get_mp2_doubles(self._single_excitations,self._double_excitations)
print('{} are the new doubles'.format(self._double_excitations))
self._hopping_ops, self._num_parameters = self._build_hopping_operators()
self._bounds = [(-np.pi, np.pi) for _ in range(self._num_parameters)]
self._logging_construct_circuit = True
def _build_hopping_operators(self):
from .uccsd import UCCSD
hopping_ops = []
if logger.isEnabledFor(logging.DEBUG):
TextProgressBar(sys.stderr)
results = parallel_map(UCCSD._build_hopping_operator, self._single_excitations + self._double_excitations,
task_args=(self._num_orbitals, self._num_particles,
self._qubit_mapping, self._two_qubit_reduction, self._qubit_tapering,
self._symmetries, self._cliffords, self._sq_list, self._tapering_values),
num_processes=aqua_globals.num_processes)
hopping_ops = [qubit_op for qubit_op in results if qubit_op is not None]
num_parameters = len(hopping_ops) * self._depth
return hopping_ops, num_parameters
@staticmethod
def _build_hopping_operator(index, num_orbitals, num_particles, qubit_mapping,
two_qubit_reduction, qubit_tapering, symmetries,
cliffords, sq_list, tapering_values):
def check_commutativity(op_1, op_2):
com = op_1 * op_2 - op_2 * op_1
com.zeros_coeff_elimination()
return True if com.is_empty() else False
h1 = np.zeros((num_orbitals, num_orbitals))
h2 = np.zeros((num_orbitals, num_orbitals, num_orbitals, num_orbitals))
if len(index) == 2:
i, j = index
h1[i, j] = 1.0
h1[j, i] = -1.0
elif len(index) == 4:
i, j, k, m = index
h2[i, j, k, m] = 1.0
h2[m, k, j, i] = -1.0
dummpy_fer_op = FermionicOperator(h1=h1, h2=h2)
qubit_op = dummpy_fer_op.mapping(qubit_mapping)
qubit_op = qubit_op.two_qubit_reduced_operator(num_particles) \
if two_qubit_reduction else qubit_op
if qubit_tapering:
for symmetry in symmetries:
symmetry_op = Operator(paulis=[[1.0, symmetry]])
symm_commuting = check_commutativity(symmetry_op, qubit_op)
if not symm_commuting:
break
if qubit_tapering:
if symm_commuting:
qubit_op = Operator.qubit_tapering(qubit_op, cliffords,
sq_list, tapering_values)
else:
qubit_op = None
if qubit_op is None:
logger.debug('Excitation ({}) is skipped since it is not commuted '
'with symmetries'.format(','.join([str(x) for x in index])))
return qubit_op
def construct_circuit(self, parameters, q=None):
"""
Construct the variational form, given its parameters.
Args:
parameters (numpy.ndarray): circuit parameters
q (QuantumRegister): Quantum Register for the circuit.
Returns:
QuantumCircuit: a quantum circuit with given `parameters`
Raises:
ValueError: the number of parameters is incorrect.
"""
from .uccsd import UCCSD
if len(parameters) != self._num_parameters:
raise ValueError('The number of parameters has to be {}'.format(self._num_parameters))
if q is None:
q = QuantumRegister(self._num_qubits, name='q')
if self._initial_state is not None:
circuit = self._initial_state.construct_circuit('circuit', q)
else:
circuit = QuantumCircuit(q)
if logger.isEnabledFor(logging.DEBUG) and self._logging_construct_circuit:
logger.debug("Evolving hopping operators:")
TextProgressBar(sys.stderr)
self._logging_construct_circuit = False
num_excitations = len(self._hopping_ops)
results = parallel_map(UCCSD._construct_circuit_for_one_excited_operator,
[(self._hopping_ops[index % num_excitations], parameters[index])
for index in range(self._depth * num_excitations)],
task_args=(q, self._num_time_slices),
num_processes=aqua_globals.num_processes)
for qc in results:
if self._shallow_circuit_concat:
circuit.data += qc.data
else:
circuit += qc
return circuit
@staticmethod
def _construct_circuit_for_one_excited_operator(qubit_op_and_param, qr, num_time_slices):
qubit_op, param = qubit_op_and_param
qc = qubit_op.evolve(None, param * -1j, 'circuit', num_time_slices, qr)
return qc
@property
def preferred_init_points(self):
"""Getter of preferred initial points based on the given initial state."""
if self._initial_state is None:
return None
else:
bitstr = self._initial_state.bitstr
if bitstr is not None:
return np.zeros(self._num_parameters, dtype=np.float)
else:
return None
@staticmethod
def compute_excitation_lists(num_particles, num_orbitals, active_occ_list=None,
active_unocc_list=None, same_spin_doubles=True):
"""
Computes single and double excitation lists
Args:
num_particles: Total number of particles
num_orbitals: Total number of spin orbitals
active_occ_list: List of occupied orbitals to include, indices are
0 to n where n is num particles // 2
active_unocc_list: List of unoccupied orbitals to include, indices are
0 to m where m is (num_orbitals - num particles) // 2
same_spin_doubles: True to include alpha,alpha and beta,beta double excitations
as well as alpha,beta pairings. False includes only alpha,beta
Returns:
Single and double excitation lists
"""
if num_particles < 2 or num_particles % 2 != 0:
raise ValueError('Invalid number of particles {}'.format(num_particles))
if num_orbitals < 4 or num_orbitals % 2 != 0:
raise ValueError('Invalid number of orbitals {}'.format(num_orbitals))
if num_orbitals <= num_particles:
raise ValueError('No unoccupied orbitals')
if active_occ_list is not None:
active_occ_list = [i if i >= 0 else i + num_particles // 2 for i in active_occ_list]
for i in active_occ_list:
if i >= num_particles // 2:
raise ValueError('Invalid index {} in active active_occ_list {}'
.format(i, active_occ_list))
if active_unocc_list is not None:
active_unocc_list = [i + num_particles // 2 if i >=
0 else i + num_orbitals // 2 for i in active_unocc_list]
for i in active_unocc_list:
if i < 0 or i >= num_orbitals // 2:
raise ValueError('Invalid index {} in active active_unocc_list {}'
.format(i, active_unocc_list))
if active_occ_list is None or len(active_occ_list) <= 0:
active_occ_list = [i for i in range(0, num_particles // 2)]
if active_unocc_list is None or len(active_unocc_list) <= 0:
active_unocc_list = [i for i in range(num_particles // 2, num_orbitals // 2)]
single_excitations = []
double_excitations = []
logger.debug('active_occ_list {}'.format(active_occ_list))
logger.debug('active_unocc_list {}'.format(active_unocc_list))
beta_idx = num_orbitals // 2
for occ_alpha in active_occ_list:
for unocc_alpha in active_unocc_list:
single_excitations.append([occ_alpha, unocc_alpha])
for occ_beta in [i + beta_idx for i in active_occ_list]:
for unocc_beta in [i + beta_idx for i in active_unocc_list]:
single_excitations.append([occ_beta, unocc_beta])
for occ_alpha in active_occ_list:
for unocc_alpha in active_unocc_list:
for occ_beta in [i + beta_idx for i in active_occ_list]:
for unocc_beta in [i + beta_idx for i in active_unocc_list]:
double_excitations.append([occ_alpha, unocc_alpha, occ_beta, unocc_beta])
if same_spin_doubles and len(active_occ_list) > 1 and len(active_unocc_list) > 1:
for i, occ_alpha in enumerate(active_occ_list[:-1]):
for j, unocc_alpha in enumerate(active_unocc_list[:-1]):
for occ_alpha_1 in active_occ_list[i + 1:]:
for unocc_alpha_1 in active_unocc_list[j + 1:]:
double_excitations.append([occ_alpha, unocc_alpha,
occ_alpha_1, unocc_alpha_1])
up_active_occ_list = [i + beta_idx for i in active_occ_list]
up_active_unocc_list = [i + beta_idx for i in active_unocc_list]
for i, occ_beta in enumerate(up_active_occ_list[:-1]):
for j, unocc_beta in enumerate(up_active_unocc_list[:-1]):
for occ_beta_1 in up_active_occ_list[i + 1:]:
for unocc_beta_1 in up_active_unocc_list[j + 1:]:
double_excitations.append([occ_beta, unocc_beta,
occ_beta_1, unocc_beta_1])
logger.debug('single_excitations ({}) {}'.format(len(single_excitations), single_excitations))
logger.debug('double_excitations ({}) {}'.format(len(double_excitations), double_excitations))
return single_excitations, double_excitations
def get_mp2_doubles(single_excitations, double_excitations):
print('Is the class still populated with the correct info: ', qm.nuclear_repulsion_energy)
mp2 = MP2Info(qm, single_excitations, double_excitations, threshold=1e-3)
mp2_doubles = mp2._mp2_doubles
return mp2_doubles
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import pulse
d0 = pulse.DriveChannel(0)
d1 = pulse.DriveChannel(1)
with pulse.build() as pulse_prog:
with pulse.align_right():
# this pulse will start at t=0
pulse.play(pulse.Constant(100, 1.0), d0)
# this pulse will start at t=80
pulse.play(pulse.Constant(20, 1.0), d1)
pulse_prog.draw()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit.quantum_info import SparsePauliOp
H2_op = SparsePauliOp.from_list(
[
("II", -1.052373245772859),
("IZ", 0.39793742484318045),
("ZI", -0.39793742484318045),
("ZZ", -0.01128010425623538),
("XX", 0.18093119978423156),
]
)
from qiskit.primitives import Estimator
estimator = Estimator()
import numpy as np
from qiskit.algorithms.minimum_eigensolvers import VQE
from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B, SLSQP
from qiskit.circuit.library import TwoLocal
from qiskit.utils import algorithm_globals
# we will iterate over these different optimizers
optimizers = [COBYLA(maxiter=80), L_BFGS_B(maxiter=60), SLSQP(maxiter=60)]
converge_counts = np.empty([len(optimizers)], dtype=object)
converge_vals = np.empty([len(optimizers)], dtype=object)
for i, optimizer in enumerate(optimizers):
print("\rOptimizer: {} ".format(type(optimizer).__name__), end="")
algorithm_globals.random_seed = 50
ansatz = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz")
counts = []
values = []
def store_intermediate_result(eval_count, parameters, mean, std):
counts.append(eval_count)
values.append(mean)
vqe = VQE(estimator, ansatz, optimizer, callback=store_intermediate_result)
result = vqe.compute_minimum_eigenvalue(operator=H2_op)
converge_counts[i] = np.asarray(counts)
converge_vals[i] = np.asarray(values)
print("\rOptimization complete ");
import pylab
pylab.rcParams["figure.figsize"] = (12, 8)
for i, optimizer in enumerate(optimizers):
pylab.plot(converge_counts[i], converge_vals[i], label=type(optimizer).__name__)
pylab.xlabel("Eval count")
pylab.ylabel("Energy")
pylab.title("Energy convergence for various optimizers")
pylab.legend(loc="upper right");
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver
from qiskit.opflow import PauliSumOp
numpy_solver = NumPyMinimumEigensolver()
result = numpy_solver.compute_minimum_eigenvalue(operator=PauliSumOp(H2_op))
ref_value = result.eigenvalue.real
print(f"Reference value: {ref_value:.5f}")
pylab.rcParams["figure.figsize"] = (12, 8)
for i, optimizer in enumerate(optimizers):
pylab.plot(
converge_counts[i],
abs(ref_value - converge_vals[i]),
label=type(optimizer).__name__,
)
pylab.xlabel("Eval count")
pylab.ylabel("Energy difference from solution reference value")
pylab.title("Energy convergence for various optimizers")
pylab.yscale("log")
pylab.legend(loc="upper right");
from qiskit.algorithms.gradients import FiniteDiffEstimatorGradient
estimator = Estimator()
gradient = FiniteDiffEstimatorGradient(estimator, epsilon=0.01)
algorithm_globals.random_seed = 50
ansatz = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz")
optimizer = SLSQP(maxiter=100)
counts = []
values = []
def store_intermediate_result(eval_count, parameters, mean, std):
counts.append(eval_count)
values.append(mean)
vqe = VQE(
estimator, ansatz, optimizer, callback=store_intermediate_result, gradient=gradient
)
result = vqe.compute_minimum_eigenvalue(operator=H2_op)
print(f"Value using Gradient: {result.eigenvalue.real:.5f}")
pylab.rcParams["figure.figsize"] = (12, 8)
pylab.plot(counts, values, label=type(optimizer).__name__)
pylab.xlabel("Eval count")
pylab.ylabel("Energy")
pylab.title("Energy convergence using Gradient")
pylab.legend(loc="upper right");
print(result)
cost_function_evals = result.cost_function_evals
initial_pt = result.optimal_point
estimator1 = Estimator()
gradient1 = FiniteDiffEstimatorGradient(estimator, epsilon=0.01)
ansatz1 = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz")
optimizer1 = SLSQP(maxiter=1000)
vqe1 = VQE(
estimator1, ansatz1, optimizer1, gradient=gradient1, initial_point=initial_pt
)
result1 = vqe1.compute_minimum_eigenvalue(operator=H2_op)
print(result1)
cost_function_evals1 = result1.cost_function_evals
print()
print(
f"cost_function_evals is {cost_function_evals1} with initial point versus {cost_function_evals} without it."
)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute, assemble, Aer
from qiskit.tools.visualization import plot_histogram
from math import pi
import matplotlib.pyplot as plt
q = QuantumRegister(1,'q')
c = ClassicalRegister(1,'c')
qc = QuantumCircuit(q, c)
qc.h(0)
qc.measure(0,0)
qc.x(0).c_if(c, 0)
qc.draw(output='mpl')
q = QuantumRegister(3,'q')
c = ClassicalRegister(3,'c')
qc = QuantumCircuit(q, c)
qc.h(q[0])
qc.h(q[1])
qc.h(q[2])
qc.barrier()
qc.measure(q,c)
qc.draw('mpl')
print(bin(3))
print(bin(7))
q = QuantumRegister(3,'q')
c = ClassicalRegister(3,'c')
qc = QuantumCircuit(q, c)
qc.h(0)
qc.h(1)
qc.h(2)
qc.barrier()
qc.measure(q,c)
qc.x(2).c_if(c, 3) # for the 011 case
qc.x(2).c_if(c, 7) # for the 111 case
qc.draw(output='mpl')
nq = 2
m = 2
q = QuantumRegister(nq,'q')
c = ClassicalRegister(m,'c')
qc_S = QuantumCircuit(q,c)
qc_S.h(0)
qc_S.x(1)
qc_S.draw('mpl')
cu_circ = QuantumCircuit(2)
cu_circ.cp(pi/2,0,1)
cu_circ.draw('mpl')
for _ in range(2**(m-1)):
qc_S.cp(pi/2,0,1)
qc_S.draw('mpl')
def x_measurement(qc, qubit, cbit):
"""Measure 'qubit' in the X-basis, and store the result in 'cbit'"""
qc.h(qubit)
qc.measure(qubit, cbit)
x_measurement(qc_S, q[0], c[0])
qc_S.draw('mpl')
qc_S.reset(0)
qc_S.h(0)
qc_S.draw('mpl')
qc_S.p(-pi/2,0).c_if(c,1)
qc_S.draw('mpl')
## 2^t c-U operations (with t=m-2)
for _ in range(2**(m-2)):
qc_S.cp(pi/2,0,1)
x_measurement(qc_S, q[0], c[1])
qc_S.draw('mpl')
sim = Aer.get_backend('qasm_simulator')
count0 = execute(qc_S, sim).result().get_counts()
key_new = [str(int(key,2)/2**m) for key in list(count0.keys())]
count1 = dict(zip(key_new, count0.values()))
fig, ax = plt.subplots(1,2)
plot_histogram(count0, ax=ax[0])
plot_histogram(count1, ax=ax[1])
plt.tight_layout()
nq = 3 # number of qubits
m = 3 # number of classical bits
q = QuantumRegister(nq,'q')
c = ClassicalRegister(m,'c')
qc = QuantumCircuit(q,c)
qc.h(0)
qc.x([1,2])
qc.draw('mpl')
cu_circ = QuantumCircuit(nq)
cu_circ.mcp(pi/4,[0,1],2)
cu_circ.draw('mpl')
for _ in range(2**(m-1)):
qc.mcp(pi/4,[0,1],2)
qc.draw('mpl')
x_measurement(qc, q[0], c[0])
qc.draw('mpl')
qc.reset(0)
qc.h(0)
qc.draw('mpl')
qc.p(-pi/2,0).c_if(c,1)
qc.draw('mpl')
for _ in range(2**(m-2)):
qc.mcp(pi/4,[0,1],2)
x_measurement(qc, q[0], c[1])
qc.draw('mpl')
# initialization of qubit q0
qc.reset(0)
qc.h(0)
# phase correction
qc.p(-pi/4,0).c_if(c,1)
qc.p(-pi/2,0).c_if(c,2)
qc.p(-3*pi/4,0).c_if(c,3)
# c-U operations
for _ in range(2**(m-3)):
qc.mcp(pi/4,[0,1],2)
# X measurement
qc.h(0)
qc.measure(0,2)
qc.draw('mpl')
count0 = execute(qc, sim).result().get_counts()
key_new = [str(int(key,2)/2**m) for key in list(count0.keys())]
count1 = dict(zip(key_new, count0.values()))
fig, ax = plt.subplots(1,2)
plot_histogram(count0, ax=ax[0])
plot_histogram(count1, ax=ax[1])
fig.tight_layout()
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/rodneyosodo/variational-quantum-classifier-on-heartattack
|
rodneyosodo
|
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pd.set_option('display.max_colwidth', -1)
df = pd.read_csv("../../Data/Processed/iriscost.csv")
df.columns = ['Spec', "CostValues"]
df.head(1)
df['Spec']
def check_lowest_cost(df):
"""
Checks the configs which attained the lowest sost
"""
cost = []
lowest_cost = []
for i in range(df.shape[0]):
data = [float(x.replace("[", "").replace("]", "")) for x in df['CostValues'][i].split(',')]
lowest_cost.append(data[len(data) - 1])
lowest_cost = sorted(lowest_cost)[:10]
for m in lowest_cost:
for i in range(df.shape[0]):
data = df['CostValues'][i].split(',')
data = [float(x.replace("[", "").replace("]", "")) for x in data]
if float(m) == float(data[len(data) - 1]):
print("{} : Cost: {}".format(df["Spec"][i], data[len(data) - 1]))
cost.append(data[len(data) - 1])
#df['CostValues'] = []
#df.to_excel("n.xlsx")
# print(df.head(80))
check_lowest_cost(df)
# Plotting all
for i in range(df.shape[0]):
fig = plt.figure()
data = df['CostValues'][i].split(',')
data = [float(x.replace("[", "").replace("]", "")) for x in data]
plt.plot(range(0, len(data), 1), data)
plt.xlabel('Steps')
plt.ylabel('Cost value')
plt.title(str(df['Spec'][i]))
plt.show()
path = '../../Output/Figures/{}.jpeg'.format(df['Spec'][i].replace("(", "").replace("FeatureMap", "").replace(")", "").replace(",", "").replace("=", "").replace(" ", "").replace("_", ""))
# fig.savefig(path)
def plot_individual_optimizers(Optimizers):
for opt in Optimizers:
max_iter = 0
fig = plt.figure(figsize=(20,20))
for i in range(df.shape[0]):
if df['Spec'][i].__contains__(opt):
data = [float(x.replace("[", "").replace("]", "")) for x in df['CostValues'][i].split(',')]
if len(data) >= max_iter:
max_iter = len(data)
for i in range(df.shape[0]):
if df['Spec'][i].__contains__(opt):
data = df['CostValues'][i].split(',')
data = [float(x.replace("[", "").replace("]", "")) for x in data]
if max_iter >= len(data):
temp = np.full((max_iter, ), data[len(data) -1])
temp[:len(data)] = data
data = temp
plt.plot(range(0, len(data), 1), data, label='{}'.format(df['Spec'][i].replace("(", "").replace("FeatureMap", "").replace(")", "").replace(",", "").replace("=", "").replace(" ", "").replace("_", "")))
plt.xlabel('Steps')
plt.ylabel('Cost value')
plt.title(opt)
plt.legend()
plt.show()
plot_individual_optimizers(["COBYLA", "SPSA", "ADAM"])
def plot_increase_vdepth(optimizer, featuremap, reps, checking):
points = []
for i in range(df.shape[0]):
title = str(df['Spec'][i])
if title.split("(")[0] == featuremap and str(title).__contains__(optimizer) and str(title).__contains__("reps={}".format(reps)):
points.append(float(df['CostValues'][i].split(',')[-1].replace("[", "").replace("]", "")))
fig = plt.figure()
plt.plot(range(0, len(points), 1), points)
plt.xlabel(checking)
plt.ylabel('Cost value')
plt.title("{} {} featuremap {} fdepth".format(optimizer, featuremap, reps))
plt.show()
def plot_increase_fdepth(optimizer, featuremap, fdepth, checking):
points = []
for i in range(df.shape[0]):
title = str(df['Spec'][i])
if title.split("(")[0] == featuremap and str(title).__contains__(optimizer) and str(title).__contains__("vdepth {}".format(fdepth)):
points.append(float(df['CostValues'][i].split(',')[-1].replace("[", "").replace("]", "")))
fig = plt.figure()
plt.plot(range(0, len(points), 1), points)
plt.xlabel(checking)
plt.ylabel('Cost value')
plt.title("{} {} featuremap {} vdepth".format(optimizer, featuremap, fdepth))
plt.show()
plot_increase_vdepth("SPSA", "PauliFeatureMap", 1, "fdepth")
plot_increase_fdepth("SPSA", "PauliFeatureMap", 1, "vdepth")
for opt in ['SPSA', "COBYLA", "ADAM"]:
for fmap in ['ZZFeatureMap', 'ZFeatureMap', "PauliFeatureMap"]:
for fdepth in [1, 2, 4]:
plot_increase_vdepth(opt, fmap, fdepth, "vdepth")
for opt in ['SPSA', "COBYLA", "ADAM"]:
for fmap in ['ZZFeatureMap', 'ZFeatureMap', "PauliFeatureMap"]:
for fdepth in [1, 3, 5]:
plot_increase_fdepth(opt, fmap, fdepth, "fdepth")
|
https://github.com/ColibrITD-SAS/mpqp
|
ColibrITD-SAS
|
"""Mathematical tools for linear algebra, functions generalized to more data
types, etc…"""
from __future__ import annotations
import math
from functools import reduce
from numbers import Complex, Real
from typing import TYPE_CHECKING, Optional
if TYPE_CHECKING:
from sympy import Expr
import sympy as sp
import numpy as np
import numpy.typing as npt
from scipy.linalg import inv, sqrtm
from typeguard import typechecked
from mpqp.tools.generics import Matrix
rtol = 1e-05
"""The relative tolerance parameter."""
atol = 1e-08
"""The absolute tolerance parameter."""
@typechecked
def normalize(v: npt.NDArray[np.complex64]) -> npt.NDArray[np.complex64]:
"""Normalizes an array representing the amplitudes of the state.
Args:
v: The vector to be normalized.
Returns:
The normalized vector.
Examples:
>>> vector = np.array([1,0,0,1])
>>> normalize(vector)
array([0.70710678, 0. , 0. , 0.70710678])
>>> vector = np.array([0,0,0,0])
>>> normalize(vector)
array([0, 0, 0, 0])
"""
norm = np.linalg.norm(v, ord=2)
return v if norm == 0 else v / norm
@typechecked
def matrix_eq(lhs: Matrix, rhs: Matrix, atol: float = atol, rtol: float = rtol) -> bool:
r"""Checks whether two matrix (including vectors) are element-wise equal, within a tolerance.
For respectively each elements `a` and `b` of both inputs, we check this
specific condition: `|a - b| \leq (atol + rtol * |b|)`.
Args:
lhs: Left-hand side matrix of the equality.
rhs: Right-hand side matrix of the equality.
Returns:
``True`` if the two matrix are equal (according to the definition above).
"""
from sympy import Expr
for elt in zip(np.ndarray.flatten(lhs), np.ndarray.flatten(rhs)):
if isinstance(elt[0], Expr) or isinstance(elt[1], Expr):
if elt[0] != elt[1]:
return False
else:
if abs(elt[0] - elt[1]) > (atol + rtol * abs(elt[1])):
return False
return True
@typechecked
def is_hermitian(matrix: Matrix) -> bool:
"""Checks whether the matrix in parameter is hermitian.
Args:
matrix: matrix for which we want to know if it is hermitian.
Returns:
``True`` if the matrix in parameter is Hermitian.
Examples:
>>> m1 = np.array([[1,2j,3j],[-2j,4,5j],[-3j,-5j,6]])
>>> is_hermitian(m1)
True
>>> m2 = np.diag([1,2,3,4])
>>> is_hermitian(m2)
True
>>> m3 = np.array([[1,2,3],[2,4,5],[3,5,6]])
>>> is_hermitian(m3)
True
>>> m4 = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> is_hermitian(m4)
False
>>> x = symbols("x", real=True)
>>> m5 = np.diag([1,x])
>>> is_hermitian(m5)
True
>>> m6 = np.array([[1,x],[-x,2]])
>>> is_hermitian(m6)
False
"""
return matrix_eq(np.array(matrix).transpose().conjugate(), matrix) # type: ignore
@typechecked
def is_unitary(matrix: Matrix) -> bool:
"""Checks whether the matrix in parameter is unitary.
Args:
matrix: Matrix for which we want to know if it is unitary.
Returns:
``True`` if the matrix in parameter is Unitary.
Example:
>>> a = np.array([[1,1],[1,-1]])
>>> is_unitary(a)
False
>>> is_unitary(a/np.sqrt(2))
True
"""
return matrix_eq(
np.eye(len(matrix), dtype=np.complex64),
matrix.transpose().conjugate().dot(matrix),
)
@typechecked
def cos(angle: Expr | Real) -> sp.Expr | float:
"""Generalization of the cosine function, to take as input either
``sympy``'s expressions or floating numbers.
Args:
angle: The angle considered.
Returns:
Cosine of the given ``angle``.
"""
if isinstance(angle, Real):
if TYPE_CHECKING:
assert isinstance(angle, float)
return np.cos(angle)
else:
import sympy as sp
from sympy import Expr
res = sp.cos(angle)
assert isinstance(res, Expr)
return res
@typechecked
def sin(angle: Expr | Real) -> sp.Expr | float:
"""Generalization of the sine function, to take as input either
``sympy``'s expressions or floating numbers.
Args:
angle: The angle considered.
Returns:
Sine of the given ``angle``.
"""
if isinstance(angle, Real):
if TYPE_CHECKING:
assert isinstance(angle, float)
return np.sin(angle)
else:
import sympy as sp
from sympy import Expr
res = sp.sin(angle)
assert isinstance(res, Expr)
return res
@typechecked
def exp(angle: Expr | Complex) -> sp.Expr | complex:
"""Generalization of the exponential function, to take as input either
``sympy``'s expressions or floating numbers.
Args:
angle: The angle considered.
Returns:
Exponential of the given ``angle``.
"""
if isinstance(angle, Complex):
if TYPE_CHECKING:
assert isinstance(angle, complex)
return np.exp(angle)
else:
import sympy as sp
from sympy import Expr
res = sp.exp(angle)
assert isinstance(res, Expr)
return res
def rand_orthogonal_matrix(
size: int, seed: Optional[int] = None
) -> npt.NDArray[np.complex64]:
"""Generate a random orthogonal matrix optionally with a given seed.
Args:
size: Size (number of columns) of the square matrix to generate.
seed: Seed used to control the random generation of the matrix.
Returns:
A random orthogonal matrix.
Examples:
>>> rand_orthogonal_matrix(3) # doctest: +SKIP
array([[ 0.94569439, 0.2903415 , 0.14616405],
[-0.32503798, 0.83976928, 0.43489984],
[ 0.0035254 , -0.45879121, 0.88853711]])
>>> rand_orthogonal_matrix(3, seed=42)
array([[ 0.21667149, 0.1867762 , 0.95821089],
[ 0.9608116 , 0.13303749, -0.24319148],
[-0.17290035, 0.9733528 , -0.15063131]])
"""
np.random.seed(seed)
m = np.random.rand(size, size)
return m.dot(inv(sqrtm(m.T.dot(m))))
def rand_clifford_matrix(nb_qubits: int) -> npt.NDArray[np.complex64]:
"""Generate a random Clifford matrix.
Args:
size: Size (number of columns) of the square matrix to generate.
Returns:
A random Clifford matrix.
Examples:
>>> rand_clifford_matrix(2) # doctest: +SKIP
array([[ 0.5+0.j, -0.5+0.j, 0.5+0.j, -0.5+0.j],
[-0.5+0.j, 0.5+0.j, 0.5+0.j, -0.5+0.j],
[ 0.5+0.j, 0.5+0.j, 0.5+0.j, 0.5+0.j],
[-0.5+0.j, -0.5+0.j, 0.5+0.j, 0.5+0.j]])
"""
from qiskit import quantum_info
return quantum_info.random_clifford(
nb_qubits
).to_matrix() # pyright: ignore[reportReturnType]
def rand_unitary_2x2_matrix() -> npt.NDArray[np.complex64]:
"""Generate a random one-qubit unitary matrix.
Args:
size: Size (number of columns) of the square matrix to generate.
Returns:
A random Clifford matrix.
Examples:
>>> rand_unitary_2x2_matrix() # doctest: +SKIP
array([[ 0.86889957+0.j , 0.44138577+0.22403602j],
[-0.44138577-0.22403602j, -0.72981565-0.47154594j]])
"""
theta, phi, gamma = np.random.rand(3) * 2 * math.pi
c, s, eg, ep = (
np.cos(theta / 2),
np.sin(theta / 2),
np.exp(gamma * 1j),
np.exp(phi * 1j),
)
return np.array([[c, -eg * s], [eg * s, eg * ep * c]])
def rand_product_local_unitaries(nb_qubits: int) -> npt.NDArray[np.complex64]:
"""Generate a pseudo random matrix, resulting from a tensor product of
random unitary matrices.
Args:
nb_qubits: Number of qubits on which the product of unitaries will act.
Returns:
A tensor product of random unitary matrices.
Example:
>>> rand_product_local_unitaries(2) # doctest: +SKIP
array([[-0.39648015+0.j , 0.49842218-0.16609181j,
0.39826454-0.21692223j, -0.40979321+0.43953607j],
[-0.49842218+0.16609181j, 0.14052896-0.37073997j,
0.40979321-0.43953607j, 0.06167784+0.44929471j],
[-0.39826454+0.21692223j, 0.40979321-0.43953607j,
0.16112375-0.36226461j, -0.05079312+0.52290651j],
[-0.40979321+0.43953607j, -0.06167784-0.44929471j,
0.05079312-0.52290651j, 0.28163685+0.27906487j]])
"""
return reduce(np.kron, [rand_unitary_2x2_matrix() for _ in range(nb_qubits - 1)])
def rand_hermitian_matrix(size: int) -> npt.NDArray[np.complex64]:
"""Generate a random Hermitian matrix.
Args:
size: Size (number of columns) of the square matrix to generate.
Returns:
A random Hermitian Matrix.
Example:
>>> rand_hermitian_matrix(2) # doctest: +SKIP
array([[1.4488624 +0.j, 0.20804943+0.j],
[0.20804943+0.j, 0.7826408 +0.j]], dtype=complex64)
"""
m = np.random.rand(size, size).astype(np.complex64)
return m + m.conjugate().transpose()
|
https://github.com/xin-0/QC-jupyter
|
xin-0
|
import numpy as np
from qiskit.tools.jupyter import *
from qiskit import IBMQ
# ibm account manager
# - communicate with online account
# - store/delete
# - enable/disenable
# - communicate with ibmq online devices, quantum computers
# - get actual quantum computers as backend
IBMQ.load_account()
provider = IBMQ.ibmq.get_provider(hub='ibm-q', group='open', project='main')
provider.backends()
backend = provider.get_backend('ibmq_bogota')
back_config = backend.configuration()
print("number of qubit: ", back_config.n_qubits)
print("support open pulse?: ", back_config.open_pulse)
print("basic gate set: ", back_config.basis_gates)
dt = back_config.dt
print(f"Sampling time: {dt*1e9} ns")
back_defualt = backend.defaults()
# frequncies for all the 5 qubits
back_defualt.qubit_freq_est
GHz = 1.0e9 # Gigahertz
MHz = 1.0e6 # Megahertz
us = 1.0e-6 # Microsecond
ns = 1.0e-9 # Nanosecond
# the index of the qubit in backend that we want to find frequency with
qubitIdx = 4
mem_slot = 0
# define the search range and get a list of frequencies
center_f_Hz = back_defualt.qubit_freq_est[qubitIdx]
f_span = 50 * MHz
f_step = 1 * MHz
f_min = center_f_Hz - f_span/2
f_max = center_f_Hz + f_span/2
frequencies_GHz = np.arange(f_min/GHz, f_max/GHz, f_step/GHz)
print(f"We'll measure the {qubitIdx}th qubit in {back_config.backend_name} \n")
print(f"sweep from {frequencies_GHz[0]} GHz to {frequencies_GHz[-1]} GHz with approximated frequncy {center_f_Hz/GHz} GHz")
# samples need to be multiples of 16
def get_closest_multiple_of_16(num):
return int(num + 8 ) - (int(num + 8 ) % 16)
from qiskit import pulse
from qiskit.circuit import Parameter
drive_sigma_sec = 0.075 * us
drive_duration_sec = 8 * drive_sigma_sec
drive_amp =0.05
freq = Parameter('freq')
with pulse.build(backend=backend, default_alignment='sequential', name='freq_sweep') as sweep_plan:
drive_duration = get_closest_multiple_of_16(pulse.seconds_to_samples(drive_duration_sec))
drive_sigma = pulse.seconds_to_samples(drive_sigma_sec)
drive_chan = pulse.drive_channel(qubitIdx)
pulse.set_frequency(freq, drive_chan)
pulse.play(pulse.Gaussian(
duration=drive_duration,
sigma=drive_sigma,
amp=drive_amp,
name='freq_sweep_excitation_pulse'
),channel=drive_chan)
pulse.measure(qubits=[qubitIdx], registers=[pulse.MemorySlot(mem_slot)])
frequencies_Hz = frequencies_GHz * GHz
schedules = [sweep_plan.assign_parameters({freq: f}, inplace=False) for f in frequencies_Hz]
schedules[0].draw(backend=backend)
|
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
|
Ilan-Bondarevsky
|
from Grover.grover_num_list_cirq import find_num, find_num_list
from qiskit.visualization import plot_histogram, plot_coupling_map
from backend_operation import run_simulator, get_transpiled_circuits_of_circuit, get_fake_backend_list,get_unitary, get_fake_backend, get_fake_backend_list
from qiskit import transpile
import qiskit.providers.fake_provider
from qiskit_ibm_provider import IBMProvider
from qiskit.transpiler.passes import RemoveBarriers
from qiskit_aer import AerSimulator, Aer
Aer.get_backend('aer_simulator')
x=AerSimulator()
AerSimulator.available_methods(x)
5
import qiskit_ibm_runtime.fake_provider
from qiskit import QuantumCircuit, QuantumRegister, AncillaRegister
from bit_functions import full_bitfield, get_qubit_list
dir(qiskit_ibm_runtime.fake_provider)
backend = qiskit_ibm_runtime.fake_provider.FakeAuckland()
# GenericBackendV2 = Aer ()
backend = qiskit.providers.fake_provider.GenericBackendV2(num_qubits=5)
circuit = QuantumCircuit(3)
circuit.h(0)
circuit.cx(0,1)
circuit.cx(0,2)
circuit.measure_all()
circuit.draw('mpl')
backend.coupling_map.draw()
circuit.data
# Transpile the ideal circuit to a circuit that can be directly executed by the backend
transpiled_circuit = transpile(circuit, backend, optimization_level=0)
transpiled_circuit.draw('mpl')
transpiled_circuit.data
# Run the transpiled circuit using the simulated backend
job = backend.run(transpiled_circuit)
counts = job.result().get_counts()
plot_histogram(counts)
dir(qiskit.providers.fake_provider)
import random
import timeit
import matplotlib.colors as mcolors
from itertools import combinations, permutations
block_diagram = False
qc_size = 4
fake_backed_name = 'FakeAuckland' #random.sample(get_fake_backend_list(min_qubit=len(experiments[0].qubits), max_qubit=len(experiments[0].qubits) + 10),1)[0][0]
num_qubits = 3
num_list = list(range(2**num_qubits))
final_expermient = []
for winner in num_list:
grover_num = find_num()
grover_num.build_iteration([winner],circuit_nqubits=num_qubits, block_diagram=block_diagram)
grover_num.create_grover(solutions = 1, block_diagram=block_diagram)
final_expermient.append(grover_num.measure_qc[0])
transpiled_circuit = [
get_transpiled_circuits_of_circuit(qc, ['Aer', fake_backed_name],
[None] + list(permutations(range(num_qubits))),
optimization_level_list=[0,3])
for qc in final_expermient
]
result_for_circuiut = [
[
run_simulator(qc,shots = 1024 * 4)
for qc in qc_value
]
for qc_value in transpiled_circuit
]
output = []
for value, circuits in enumerate(result_for_circuiut):
for index, run_circuit in enumerate(circuits):
result_dict= run_circuit.to_dict()
cirq_result = result_dict['results'][0]
cirq_counts = cirq_result['data']['counts']
cirq_time = cirq_result['time_taken']
cirq_name = cirq_result['header']['name']
cirq_depth = transpiled_circuit[value][index].depth()
output.append({'value' : value, 'name' : cirq_name, 'time_taken' :cirq_time, 'depth':cirq_depth, 'count':cirq_counts})
data = {
'Value' : [],
'Backend' : [],
'Qubit_Position' : [],
'Optimization_level' : [],
'Depth' : [],
'Time_Taken' : [],
'Counts' : []
}
for cur_data in output:
data['Value'].append(cur_data['value'])
data['Backend'].append(cur_data['name'].split('|')[0].replace(" ",""))
data['Qubit_Position'].append(cur_data['name'].split('|')[1].replace(" ",""))
data['Optimization_level'].append(cur_data['name'].split('|')[2].replace(" ",""))
data['Depth'].append(cur_data['depth'])
data['Time_Taken'].append(cur_data['time_taken'])
data['Counts'].append([cur_data['count'][f'0x{index}'] for index in range(len(cur_data['count']))])
for cur_data in output:
data['Value'].append(cur_data['value']) # Assuming value is stored at index 0 in each sublist
backend, qubit_position, optimization_level = cur_data['name'].split('|')
data['Backend'].append(backend.strip())
data['Qubit_Position'].append(qubit_position.strip())
data['Optimization_level'].append(optimization_level.strip())
data['Depth'].append(cur_data['depth']) # Assuming depth is stored at index 2 in each sublist
data['Time_Taken'].append(cur_data['time_taken']) # Assuming time_taken is stored at index 3 in each sublist
counts = [cur_data['count'][f'0x{index}'] for index in range(len(cur_data['count']))] # Assuming counts is stored at index 4 in each sublist
data['Counts'].append(counts)
import pandas as pd
data = pd.DataFrame(data)
data
output
min_value = 5
max_value = 15
win = random.sample(range(min_value, max_value),1)
print(win)
grover_find_value_win_size = find_num()
grover_find_value_win_size.build_iteration(win, block_diagram=block_diagram)
grover_find_value_win_size.create_grover(block_diagram=block_diagram, solutions=len(list(win)))
experiments = grover_find_value_win_size.measure_qc
experiments[0].draw('mpl')
fake_backed_name = 'FakeAuckland' #random.sample(get_fake_backend_list(min_qubit=len(experiments[0].qubits), max_qubit=len(experiments[0].qubits) + 10),1)[0][0]
get_fake_backend_list()
backend = get_fake_backend('FakeGuadalupeV2')
print(backend.coupling_map)
backend.coupling_map.draw()
transpiled_qc_list = get_transpiled_circuits_of_circuit(experiments[0], ['Aer', fake_backed_name],
[None, 'Full_Range'],
optimization_level_list=[0,3])
plot_histogram({
qc.name : qc.depth()
for qc in transpiled_qc_list
})
transpiled_qc_list[0].draw('mpl')
transpiled_qc_list[1].draw('mpl')
transpiled_qc_list[4].draw('mpl')
transpiled_qc_list[5].draw('mpl')
plot_histogram([run_simulator(qc,shots = 1024 * 4).get_counts() for qc in transpiled_qc_list],
legend=[qc.name for qc in transpiled_qc_list], color=list(random.choices(list(mcolors.get_named_colors_mapping().values()), k = len(transpiled_qc_list))),
title="Result transpilers")
num_list_num = 4
data_arr = list(range(num_list_num))
random.shuffle(data_arr)
win = random.sample(data_arr, 1)
print(f"Data array: {data_arr} , the winner: {win}")
st = timeit.default_timer()
sol = []
for i, val in enumerate(data_arr):
if val in win:
sol.append(i)
end = timeit.default_timer()
print(f"Time: {end - st} , solution : {sol}")
grover_find_value_list = find_num_list()
grover_find_value_list.build_iteration(win, block_diagram=block_diagram, num_array = data_arr)
grover_find_value_list.create_grover(block_diagram=block_diagram, num_solutions=len(list(win)))
experiments = grover_find_value_list.measure_qc
print(experiments)
experiments[0].draw('mpl')
x = find_num_list()
x.build_iteration(winner_list=[5],num_array = [0,5,3], block_diagram=False)
x.create_grover(num_solutions=1,block_diagram=False)
x.measure_qc[0].draw('mpl')
from Grover.transpiler import *
qc = remove_barriar_gate(x.measure_qc[0])
qc.draw('mpl')
qc, did_remove = remove_similiar_adjacent(qc)
qc.draw('mpl')
transpiled_qc_list = get_transpiled_circuits_of_circuit(experiments[0], ['Aer', fake_backed_name],
[None, 'Full_Range'],
optimization_level_list=[0,3])
plot_histogram({
qc.name : qc.depth()
for qc in transpiled_qc_list
})
qc_result = [run_simulator(qc, shots = 1024 * 4) for qc in transpiled_qc_list]
plot_histogram([qc.get_counts() for qc in qc_result],
legend=[qc.name for qc in transpiled_qc_list], color=list(random.choices(list(mcolors.get_named_colors_mapping().values()), k = len(transpiled_qc_list))),
title="Result transpilers")
[{qc.name : result.time_taken} for result, qc in zip(qc_result, transpiled_qc_list)]
for qc in transpiled_qc_list:
print(qc.qubits)
transpiled_qc_list[1].draw('mpl')
transpiled_qc_list[6].draw('mpl')
transpiled_qc_list[1].draw('mpl')
for gate in transpiled_qc_list[1].data:
print(gate)
transpiled_qc_list[5].draw('mpl')
|
https://github.com/Seanaventure/HighErrorRateRouting
|
Seanaventure
|
import matplotlib.pyplot as plt
import networkx as nx
import qiskit
import HERR
from qiskit.transpiler import CouplingMap
from qiskit.transpiler.passes.routing import BasicSwap
from qiskit import QuantumCircuit, execute, Aer, IBMQ
from qiskit.dagcircuit import DAGCircuit
from qiskit.converters import circuit_to_dag
from qiskit.converters import dag_to_circuit
from math import pi
from qiskit.compiler import transpile, assemble
from qiskit.providers.aer.noise import NoiseModel
import qiskit.providers.aer.noise as noise
from qiskit.tools.visualization import dag_drawer
import random
from qiskit.circuit.instruction import Instruction
def countTwoQubitGates(transpiledCircuit):
num = 0
for gate in transpiledCircuit.data:
# print(type(gate[0]))
if issubclass(type(gate[0]), Instruction):
if gate[0].name == "cx":
num += 1
return num
couplingList = list()
for i in range(3):
for j in range(3):
if i is not j:
couplingList.append([i, j])
squareCouplingList = list()
for i in range(4):
for j in range(4):
if i is not j:
if abs(i-j) == 1:
squareCouplingList.append([i, j])
squareCouplingList.append(([0, 3]))
squareCouplingList.append(([3, 0]))
provider = IBMQ.load_account()
backend = provider.get_backend('ibmq_lima')
basis_gates = backend.configuration().basis_gates
squareCouplingMap = CouplingMap(squareCouplingList)
couplingMap = CouplingMap(couplingList)
qcHERR = QuantumCircuit(4)
qcHERR.x(0)
qcHERR.x(1)
qcHERR.ccx(0, 1, 2)
qcHERR.measure_all()
qcHERR = qcHERR.decompose()
nonHERR = QuantumCircuit(4)
nonHERR.x(0)
nonHERR.x(1)
nonHERR.ccx(0, 1, 2)
nonHERR.measure_all()
circDag = circuit_to_dag(qcHERR)
transpiledBasic = transpile(qcHERR, Aer.get_backend('qasm_simulator'),
coupling_map=squareCouplingMap,
basis_gates=basis_gates,
routing_method='basic',
layout_method='trivial')
transpiledSabre = transpile(qcHERR, Aer.get_backend('qasm_simulator'),
coupling_map=squareCouplingMap,
basis_gates=basis_gates,
routing_method='sabre',
layout_method='trivial')
transpiledStochastic = transpile(qcHERR, Aer.get_backend('qasm_simulator'),
coupling_map=squareCouplingMap,
basis_gates=basis_gates,
routing_method='stochastic',
layout_method='trivial')
transpiledLookahead = transpile(qcHERR, Aer.get_backend('qasm_simulator'),
coupling_map=squareCouplingMap,
basis_gates=basis_gates,
routing_method='lookahead',
layout_method='trivial')
s = '0111'
for i in range(100):
# Create a noise model for the simulations
noise_model = noise.NoiseModel()
err1Rate, err2Rate, err3Rate, err4Rate = random.randrange(1, 20, 1)/100.0, random.randrange(1, 20, 1)/100.0, random.randrange(1, 20, 1)/100.0,\
random.randrange(1, 10, 1)/100.0
error_1 = noise.depolarizing_error(err1Rate, 2)
error_2 = noise.depolarizing_error(err2Rate, 2)
error_3 = noise.depolarizing_error(err3Rate, 2)
error_4 = noise.depolarizing_error(err4Rate, 2)
noise_model.add_quantum_error(error_1, ['cx'], [0, 1])
noise_model.add_quantum_error(error_2, ['cx'], [1, 2])
noise_model.add_quantum_error(error_3, ['cx'], [2, 3])
noise_model.add_quantum_error(error_4, ['cx'], [0, 3])
# Generate a noise graph to pass into HERR
noiseGraph = nx.Graph()
noiseGraph.add_nodes_from([0, 2])
noiseGraph.add_edge(0, 1, weight=1.0-err1Rate)
noiseGraph.add_edge(1, 2, weight=1.0-err2Rate)
noiseGraph.add_edge(2, 3, weight=1.0-err3Rate)
noiseGraph.add_edge(0, 3, weight=1.0-err4Rate)
herr = HERR.HERR(squareCouplingMap, noiseGraph)
basSwap = BasicSwap(squareCouplingMap)
#print(squareCouplingMap)
# Run HERR
HERRRes = herr.run(circDag)
updatedCirc = dag_to_circuit(HERRRes)
bSwapRes = basSwap.run(circDag)
bSwapCirc = dag_to_circuit(bSwapRes)
# Transpile HERR
transpiledHERR = transpile(updatedCirc, Aer.get_backend('qasm_simulator'),
coupling_map=squareCouplingMap,
basis_gates=basis_gates,
routing_method='basic',
layout_method='trivial')
# HERRCnotGateNum = countTwoQubitGates(transpiledHERR)
# normalCnotGateNum = countTwoQubitGates(transpiledNormal)
# print(str(HERRCnotGateNum) + " " + str(normalCnotGateNum))
sim = Aer.get_backend('qasm_simulator')
simResultHERR = sim.run(transpiledHERR, noise_model=noise_model).result()
simResultBasic = sim.run(transpiledBasic, noise_model=noise_model).result()
simResultSabre = sim.run(transpiledSabre, noise_model=noise_model).result()
simResultLookahead = sim.run(transpiledLookahead, noise_model=noise_model).result()
simResultStochastic = sim.run(transpiledStochastic, noise_model=noise_model).result()
# Output file and print results
fName = "HERRQFTCouplingOutputs/HERRCirc" + str(i) + ".png"
fName2 = "HERRQFTCouplingOutputs/NonCirc" + str(i) + ".png"
#updatedCirc.draw(output='mpl', filename=fName)
#bSwapCirc.draw(output='mpl', filename=fName2)
#if transpiledNormal != transpiledHERR:
#print("CIRCUIT CHANGED")
#updatedCirc.draw(output='mpl', filename=fName)
#bSwapCirc.draw(output='mpl', filename=fName2)
#print("Iter: " + str(i) + " ErrorRate of edges (0,1) (1, 2), (0, 2), (1, 3), (2, 3), (0, 3) counts for HERR/nonHERR:")
#print(str(err1Rate) + " " + str(err2Rate) + " " + str(err3Rate) + " " + str(err4Rate) + " " + str(err5Rate) + " " + str(err6Rate))
print(str(simResultHERR.get_counts()[s]/1024.0) + " " + str(simResultBasic.get_counts()[s]/1024.0) + " " + str(simResultSabre.get_counts()[s]/1024.0) + " " + str(simResultLookahead.get_counts()[s]/1024.0) + " " + str(simResultStochastic.get_counts()[s]/1024.0))
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
import numpy as np
from qiskit.circuit import ParameterVector
from qiskit.circuit.library import TwoLocal
from qiskit.quantum_info import Statevector
from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem
from qiskit_aer.primitives import Sampler
from qiskit_finance.applications.estimation import EuropeanCallPricing
from qiskit_finance.circuit.library import NormalDistribution
# Set upper and lower data values
bounds = np.array([0.0, 7.0])
# Set number of qubits used in the uncertainty model
num_qubits = 3
# Load the trained circuit parameters
g_params = [0.29399714, 0.38853322, 0.9557694, 0.07245791, 6.02626428, 0.13537225]
# Set an initial state for the generator circuit
init_dist = NormalDistribution(num_qubits, mu=1.0, sigma=1.0, bounds=bounds)
# construct the variational form
var_form = TwoLocal(num_qubits, "ry", "cz", entanglement="circular", reps=1)
# keep a list of the parameters so we can associate them to the list of numerical values
# (otherwise we need a dictionary)
theta = var_form.ordered_parameters
# compose the generator circuit, this is the circuit loading the uncertainty model
g_circuit = init_dist.compose(var_form)
# set the strike price (should be within the low and the high value of the uncertainty)
strike_price = 2
# set the approximation scaling for the payoff function
c_approx = 0.25
# Evaluate trained probability distribution
values = [
bounds[0] + (bounds[1] - bounds[0]) * x / (2**num_qubits - 1) for x in range(2**num_qubits)
]
uncertainty_model = g_circuit.assign_parameters(dict(zip(theta, g_params)))
amplitudes = Statevector.from_instruction(uncertainty_model).data
x = np.array(values)
y = np.abs(amplitudes) ** 2
# Sample from target probability distribution
N = 100000
log_normal = np.random.lognormal(mean=1, sigma=1, size=N)
log_normal = np.round(log_normal)
log_normal = log_normal[log_normal <= 7]
log_normal_samples = []
for i in range(8):
log_normal_samples += [np.sum(log_normal == i)]
log_normal_samples = np.array(log_normal_samples / sum(log_normal_samples))
# Plot distributions
plt.bar(x, y, width=0.2, label="trained distribution", color="royalblue")
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.grid()
plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15)
plt.ylabel("Probability ($\%$)", size=15)
plt.plot(
log_normal_samples,
"-o",
color="deepskyblue",
label="target distribution",
linewidth=4,
markersize=12,
)
plt.legend(loc="best")
plt.show()
# Evaluate payoff for different distributions
payoff = np.array([0, 0, 0, 1, 2, 3, 4, 5])
ep = np.dot(log_normal_samples, payoff)
print("Analytically calculated expected payoff w.r.t. the target distribution: %.4f" % ep)
ep_trained = np.dot(y, payoff)
print("Analytically calculated expected payoff w.r.t. the trained distribution: %.4f" % ep_trained)
# Plot exact payoff function (evaluated on the grid of the trained uncertainty model)
x = np.array(values)
y_strike = np.maximum(0, x - strike_price)
plt.plot(x, y_strike, "ro-")
plt.grid()
plt.title("Payoff Function", size=15)
plt.xlabel("Spot Price", size=15)
plt.ylabel("Payoff", size=15)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.show()
# construct circuit for payoff function
european_call_pricing = EuropeanCallPricing(
num_qubits,
strike_price=strike_price,
rescaling_factor=c_approx,
bounds=bounds,
uncertainty_model=uncertainty_model,
)
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = european_call_pricing.to_estimation_problem()
# construct amplitude estimation
ae = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result = ae.estimate(problem)
conf_int = np.array(result.confidence_interval_processed)
print("Exact value: \t%.4f" % ep_trained)
print("Estimated value: \t%.4f" % (result.estimation_processed))
print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int))
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/acfilok96/Quantum-Computation
|
acfilok96
|
import qiskit
from qiskit import *
print(qiskit.__version__)
%matplotlib inline
from qiskit.tools.visualization import plot_histogram
from qiskit.providers.aer import QasmSimulator
# use Aer's qasm_simulator
simulator = QasmSimulator()
# create quantum circute acting on the q register
circuit = QuantumCircuit(2,2)
# add a H gate on qubit 0
circuit.h(0)
# add a cx (CNOT) gate on control qubit 0 and target qubit 1
circuit.cx(0,1)
# map the quantum measurement to the classical bits
circuit.measure([0,1],[0,1])
# compile the circuit down to low-level QASM instructions
# supported by the backend (not needed for simple circuits)
compiled_circuit = transpile(circuit, simulator)
# execute the circuit on the qasm simulator
job = simulator.run(compiled_circuit, shots=1024)
# grad results from the job
result = job.result()
# return counts
counts = result.get_counts(compiled_circuit)
print('total count for 00 and 11 are: ',counts)
# draw circuit
circuit.draw(output='mpl')
# plot histogram
plot_histogram(counts)
from qiskit.circuit import QuantumCircuit, Parameter
from qiskit.providers.aer import AerSimulator
backend = AerSimulator()
circuit = QuantumCircuit(2)
theta = Parameter('theta')
circuit.rx(234, 0)
circuit.draw(output='mpl')
backend = AerSimulator()
circuit = QuantumCircuit(2)
# theta = Parameter('theta')
circuit.rx(20, 0)
circuit.x(0)
circuit.h(1)
result = execute(circuit, backend=backend, shots=1024).result()
# counts=result.get_counts()
# print(counts)
circuit.draw(output='mpl')
|
https://github.com/weiT1993/qiskit_helper_functions
|
weiT1993
|
from qiskit import QuantumCircuit
from qiskit.circuit.library import CPhaseGate, HGate, TGate, XGate, YGate, ZGate
from qiskit.converters import circuit_to_dag, dag_to_circuit
import random, itertools
class RandomCircuit(object):
def __init__(self, width, depth, connection_degree, num_hadamards, seed) -> None:
"""
Generate a random benchmark circuit
width: number of qubits
depth: depth of the random circuit
connection_degree: max number of direct contacts
num_hadamards: number of H gates in the encoding layer. Overall number of solutions = 2^num_H
"""
super().__init__()
random.seed(seed)
self.width = width
self.depth = depth
self.num_hadamards = num_hadamards
self.num_targets_ubs = []
for qubit in range(width):
max_num_targets = self.width - 1 - qubit
num_targets_ub = int(connection_degree * max_num_targets)
if qubit < width - 1:
num_targets_ub = max(num_targets_ub, 1)
self.num_targets_ubs.append(num_targets_ub)
# print('num_targets_ubs = {}'.format(self.num_targets_ubs))
def generate(self):
entangled_circuit, num_targets = self.generate_entangled()
""" Encode random solution states """
encoding_qubits = random.sample(range(self.width), self.num_hadamards)
quantum_states = [["0"] for qubit in range(self.width)]
for qubit in encoding_qubits:
entangled_circuit.append(instruction=HGate(), qargs=[qubit])
quantum_states[qubit] = ["0", "1"]
solution_states_strings = itertools.product(*quantum_states)
solution_states = []
for binary_state in solution_states_strings:
binary_state = "".join(binary_state[::-1])
state = int(binary_state, 2)
solution_states.append(state)
# print('%d 2q gates. %d tensor factors. %d depth.'%(
# entangled_circuit.num_nonlocal_gates(),
# entangled_circuit.num_unitary_factors(),
# entangled_circuit.depth()
# ))
# print('num_targets = {}'.format(num_targets))
return entangled_circuit, solution_states
def generate_entangled(self):
left_circuit = QuantumCircuit(self.width, name="q")
left_dag = circuit_to_dag(left_circuit)
right_circuit = QuantumCircuit(self.width, name="q")
right_dag = circuit_to_dag(right_circuit)
qubit_targets = {qubit: set() for qubit in range(self.width)}
while True:
"""
Apply a random two-qubit gate to either left_dag or right_dag
"""
random_control_qubit_idx = self.get_random_control(qubit_targets)
random_target_qubit_idx = self.get_random_target(
random_control_qubit_idx, qubit_targets
)
dag_to_apply = random.choice([left_dag, right_dag])
random_control_qubit = dag_to_apply.qubits[random_control_qubit_idx]
random_target_qubit = dag_to_apply.qubits[random_target_qubit_idx]
dag_to_apply.apply_operation_back(
op=CPhaseGate(theta=0.0),
qargs=[random_control_qubit, random_target_qubit],
cargs=[],
)
qubit_targets[random_control_qubit_idx].add(random_target_qubit_idx)
"""
Apply a random 1-q gate to left_dag
Apply its inverse to right_dag
"""
single_qubit_gate = random.choice(
[HGate(), TGate(), XGate(), YGate(), ZGate()]
)
random_qubit = left_dag.qubits[random.choice(range(self.width))]
left_dag.apply_operation_back(
op=single_qubit_gate, qargs=[random_qubit], cargs=[]
)
right_dag.apply_operation_front(
op=single_qubit_gate.inverse(), qargs=[random_qubit], cargs=[]
)
""" Terminate when there is enough depth """
if left_dag.depth() + right_dag.depth() >= self.depth:
break
entangled_dag = left_dag.compose(right_dag, inplace=False)
entangled_circuit = dag_to_circuit(entangled_dag)
num_targets = [len(qubit_targets[qubit]) for qubit in range(self.width)]
for qubit in range(self.width):
assert num_targets[qubit] <= self.num_targets_ubs[qubit]
return entangled_circuit, num_targets
def get_random_control(self, qubit_targets):
"""
Get a random control qubit
Prioritize the ones with spare targets
Else choose from qubits with #targets>0
"""
candidates = []
for qubit in qubit_targets:
if len(qubit_targets[qubit]) < self.num_targets_ubs[qubit]:
candidates.append(qubit)
if len(candidates) > 0:
return random.choice(candidates)
else:
candidates = []
for qubit, num_targets in enumerate(self.num_targets_ubs):
if num_targets > 0:
candidates.append(qubit)
return random.choice(candidates)
def get_random_target(self, control_qubit, qubit_targets):
"""
Get a random target qubit
If the control qubit has exhausted its #targets, choose from existing targets
Else prioritize the ones that have not been used
"""
if len(qubit_targets[control_qubit]) < self.num_targets_ubs[control_qubit]:
candidates = []
for qubit in range(control_qubit + 1, self.width):
if qubit not in qubit_targets[control_qubit]:
candidates.append(qubit)
return random.choice(candidates)
else:
return random.choice(list(qubit_targets[control_qubit]))
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import numpy as np
from qiskit import QuantumCircuit, transpile
from qiskit.providers.fake_provider import FakeVigoV2
from qiskit.visualization import plot_circuit_layout
from qiskit.tools.monitor import job_monitor
from qiskit.providers.fake_provider import FakeVigoV2
import matplotlib.pyplot as plt
ghz = QuantumCircuit(3, 3)
ghz.h(0)
for idx in range(1,3):
ghz.cx(0,idx)
ghz.measure(range(3), range(3))
backend = FakeVigoV2()
new_circ_lv3 = transpile(ghz, backend=backend, optimization_level=3)
plot_circuit_layout(new_circ_lv3, backend)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Tests for qiskit/tools/parallel"""
import os
import time
from unittest.mock import patch
from qiskit.tools.parallel import get_platform_parallel_default, parallel_map
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit.pulse import Schedule
from qiskit.test import QiskitTestCase
def _parfunc(x):
"""Function for testing parallel_map"""
time.sleep(1)
return x
def _build_simple_circuit(_):
qreg = QuantumRegister(2)
creg = ClassicalRegister(2)
qc = QuantumCircuit(qreg, creg)
return qc
def _build_simple_schedule(_):
return Schedule()
class TestGetPlatformParallelDefault(QiskitTestCase):
"""Tests get_parallel_default_for_platform."""
def test_windows_parallel_default(self):
"""Verifies the parallel default for Windows."""
with patch("sys.platform", "win32"):
parallel_default = get_platform_parallel_default()
self.assertEqual(parallel_default, False)
def test_mac_os_unsupported_version_parallel_default(self):
"""Verifies the parallel default for macOS."""
with patch("sys.platform", "darwin"):
with patch("sys.version_info", (3, 8, 0, "final", 0)):
parallel_default = get_platform_parallel_default()
self.assertEqual(parallel_default, False)
def test_other_os_parallel_default(self):
"""Verifies the parallel default for Linux and other OSes."""
with patch("sys.platform", "linux"):
parallel_default = get_platform_parallel_default()
self.assertEqual(parallel_default, True)
class TestParallel(QiskitTestCase):
"""A class for testing parallel_map functionality."""
def test_parallel_env_flag(self):
"""Verify parallel env flag is set"""
self.assertEqual(os.getenv("QISKIT_IN_PARALLEL", None), "FALSE")
def test_parallel(self):
"""Test parallel_map"""
ans = parallel_map(_parfunc, list(range(10)))
self.assertEqual(ans, list(range(10)))
def test_parallel_circuit_names(self):
"""Verify unique circuit names in parallel"""
out_circs = parallel_map(_build_simple_circuit, list(range(10)))
names = [circ.name for circ in out_circs]
self.assertEqual(len(names), len(set(names)))
def test_parallel_schedule_names(self):
"""Verify unique schedule names in parallel"""
out_schedules = parallel_map(_build_simple_schedule, list(range(10)))
names = [schedule.name for schedule in out_schedules]
self.assertEqual(len(names), len(set(names)))
|
https://github.com/carstenblank/dc-qiskit-qml
|
carstenblank
|
import qiskit
import numpy as np
X_train = np.asarray([[1.0, 1.0], [-1.0, 1.0], [-1.0, -1.0], [1.0, -1.0]])
y_train = [0, 1, 0, 1]
X_test = np.asarray([[0.2, 0.4], [0.4, -0.8]])
y_test = [0, 1]
from dc_qiskit_qml.encoding_maps import EncodingMap
import scipy.sparse as sparse
class MyEncodingMap(EncodingMap):
def map(self, input_vector: list) -> sparse.dok_matrix:
result = sparse.dok_matrix((4,1))
index = 0
if input_vector[0] > 0 and input_vector[1] > 0:
index = 0
if input_vector[0] < 0 < input_vector[1]:
index = 1
if input_vector[0] < 0 and input_vector[1] < 0:
index = 2
if input_vector[0] > 0 > input_vector[1]:
index = 3
result[index, 0] = 1.0
return result
encoding_map = MyEncodingMap()
import matplotlib.pyplot as plt
plt.scatter(
X_train[:,0], X_train[:,1],
color=['red' if yy == 0 else 'blue' for yy in y_train],
marker='x', s=200)
plt.scatter(
X_test[:,0], X_test[:,1],
color=['red' if yy == 0 else 'blue' for yy in y_test],
marker='o', s=200)
plt.hlines(0.0, -1.0, 1.0)
plt.vlines(0.0, -1.0, 1.0)
plt.show()
from qiskit_aer.backends.aerbackend import AerBackend
from dc_qiskit_qml.distance_based.hadamard import QmlHadamardNeighborClassifier
from dc_qiskit_qml.distance_based.hadamard.state import QmlBinaryDataStateCircuitBuilder
from dc_qiskit_qml.distance_based.hadamard.state.cnot import CCXToffoli
initial_state_builder = QmlBinaryDataStateCircuitBuilder(CCXToffoli(), do_optimizations=False)
execution_backend: AerBackend = qiskit.Aer.get_backend('qasm_simulator')
qml = QmlHadamardNeighborClassifier(backend=execution_backend,
shots=8192,
encoding_map=encoding_map,
classifier_circuit_factory=initial_state_builder)
qml.fit(X_train, y_train)
qml.predict(X_test), y_test
qml._last_predict_circuits[0].draw(output='mpl', fold=-1)
initial_state_builder = QmlBinaryDataStateCircuitBuilder(CCXToffoli(), do_optimizations=True)
execution_backend: AerBackend = qiskit.Aer.get_backend('qasm_simulator')
qml = QmlHadamardNeighborClassifier(backend=execution_backend,
shots=8192,
encoding_map=encoding_map,
classifier_circuit_factory=initial_state_builder)
qml.fit(X_train, y_train)
qml.predict(X_test), y_test
qml._last_predict_circuits[0].draw(output='mpl', fold=-1)
from qiskit_ibm_provider import IBMProvider, IBMBackend
provider : IBMProvider = IBMProvider()
ibm_brisbane: IBMBackend = provider.get_backend('ibm_brisbane')
transpiled_qc = qiskit.transpile(qml._last_predict_circuits[0], backend=ibm_brisbane)
qobj = qiskit.assemble(transpiled_qc, backend=ibm_brisbane)
print("Number of gates: {}.\n".format(len(transpiled_qc.data)))
|
https://github.com/2lambda123/Qiskit-qiskit
|
2lambda123
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2019, 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
CNOTDihedral operator class.
"""
from __future__ import annotations
import itertools
import numpy as np
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.operators.base_operator import BaseOperator
from qiskit.quantum_info.operators.operator import Operator
from qiskit.quantum_info.operators.symplectic.pauli import Pauli
from qiskit.quantum_info.operators.scalar_op import ScalarOp
from qiskit.quantum_info.operators.mixins import generate_apidocs, AdjointMixin
from qiskit.circuit import QuantumCircuit, Instruction
from .dihedral_circuits import _append_circuit
from .polynomial import SpecialPolynomial
class CNOTDihedral(BaseOperator, AdjointMixin):
"""An N-qubit operator from the CNOT-Dihedral group.
The CNOT-Dihedral group is generated by the quantum gates,
:class:`~qiskit.circuit.library.CXGate`, :class:`~qiskit.circuit.library.TGate`,
and :class:`~qiskit.circuit.library.XGate`.
**Representation**
An :math:`N`-qubit CNOT-Dihedral operator is stored as an affine function and a
phase polynomial, based on the convention in references [1, 2].
The affine function consists of an :math:`N \\times N` invertible binary matrix,
and an :math:`N` binary vector.
The phase polynomial is a polynomial of degree at most 3,
in :math:`N` variables, whose coefficients are in the ring Z_8 with 8 elements.
.. code-block::
from qiskit import QuantumCircuit
from qiskit.quantum_info import CNOTDihedral
circ = QuantumCircuit(3)
circ.cx(0, 1)
circ.x(2)
circ.t(1)
circ.t(1)
circ.t(1)
elem = CNOTDihedral(circ)
# Print the CNOTDihedral element
print(elem)
.. parsed-literal::
phase polynomial =
0 + 3*x_0 + 3*x_1 + 2*x_0*x_1
affine function =
(x_0,x_0 + x_1,x_2 + 1)
**Circuit Conversion**
CNOTDihedral operators can be initialized from circuits containing *only* the
following gates: :class:`~qiskit.circuit.library.IGate`,
:class:`~qiskit.circuit.library.XGate`, :class:`~qiskit.circuit.library.YGate`,
:class:`~qiskit.circuit.library.ZGate`,
:class:`~qiskit.circuit.library.TGate`, :class:`~qiskit.circuit.library.TdgGate`
:class:`~qiskit.circuit.library.SGate`, :class:`~qiskit.circuit.library.SdgGate`,
:class:`~qiskit.circuit.library.CXGate`, :class:`~qiskit.circuit.library.CZGate`,
:class:`~qiskit.circuit.library.CSGate`, :class:`~qiskit.circuit.library.CSdgGate`,
:class:`~qiskit.circuit.library.SwapGate`, :class:`~qiskit.circuit.library.CCZGate`.
They can be converted back into a :class:`~qiskit.circuit.QuantumCircuit`,
or :class:`~qiskit.circuit.Gate` object using the :meth:`~CNOTDihedral.to_circuit`
or :meth:`~CNOTDihderal.to_instruction` methods respectively. Note that this
decomposition is not necessarily optimal in terms of number of gates
if the number of qubits is more than two.
CNOTDihedral operators can also be converted to
:class:`~qiskit.quantum_info.Operator` objects using the
:meth:`to_operator` method. This is done via decomposing to a circuit,
and then simulating the circuit as a unitary operator.
References:
1. Shelly Garion and Andrew W. Cross, *Synthesis of CNOT-Dihedral circuits
with optimal number of two qubit gates*, `Quantum 4(369), 2020
<https://quantum-journal.org/papers/q-2020-12-07-369/>`_
2. Andrew W. Cross, Easwar Magesan, Lev S. Bishop, John A. Smolin and Jay M. Gambetta,
*Scalable randomised benchmarking of non-Clifford gates*,
npj Quantum Inf 2, 16012 (2016).
"""
def __init__(
self,
data: CNOTDihedral | QuantumCircuit | Instruction | None = None,
num_qubits: int | None = None,
validate: bool = True,
):
"""Initialize a CNOTDihedral operator object.
Args:
data (CNOTDihedral or QuantumCircuit or ~qiskit.circuit.Instruction):
Optional, operator to initialize.
num_qubits (int): Optional, initialize an empty CNOTDihedral operator.
validate (bool): if True, validates the CNOTDihedral element.
Raises:
QiskitError: if the type is invalid.
QiskitError: if validate=True and the CNOTDihedral element is invalid.
"""
if num_qubits:
# initialize n-qubit identity
self._num_qubits = num_qubits
# phase polynomial
self.poly = SpecialPolynomial(self._num_qubits)
# n x n invertible matrix over Z_2
self.linear = np.eye(self._num_qubits, dtype=np.int8)
# binary shift, n coefficients in Z_2
self.shift = np.zeros(self._num_qubits, dtype=np.int8)
# Initialize from another CNOTDihedral by sharing the underlying
# poly, linear and shift
elif isinstance(data, CNOTDihedral):
self.linear = data.linear
self.shift = data.shift
self.poly = data.poly
# Initialize from ScalarOp as N-qubit identity discarding any global phase
elif isinstance(data, ScalarOp):
if not data.is_unitary() or set(data._input_dims) != {2} or data.num_qubits is None:
raise QiskitError("Can only initialize from N-qubit identity ScalarOp.")
self._num_qubits = data.num_qubits
# phase polynomial
self.poly = SpecialPolynomial(self._num_qubits)
# n x n invertible matrix over Z_2
self.linear = np.eye(self._num_qubits, dtype=np.int8)
# binary shift, n coefficients in Z_2
self.shift = np.zeros(self._num_qubits, dtype=np.int8)
# Initialize from a QuantumCircuit or Instruction object
elif isinstance(data, (QuantumCircuit, Instruction)):
self._num_qubits = data.num_qubits
elem = self._from_circuit(data)
self.poly = elem.poly
self.linear = elem.linear
self.shift = elem.shift
elif isinstance(data, Pauli):
self._num_qubits = data.num_qubits
elem = self._from_circuit(data.to_instruction())
self.poly = elem.poly
self.linear = elem.linear
self.shift = elem.shift
else:
raise QiskitError("Invalid input type for CNOTDihedral class.")
# Initialize BaseOperator
super().__init__(num_qubits=self._num_qubits)
# Validate the CNOTDihedral element
if validate and not self._is_valid():
raise QiskitError("Invalid CNOTDihedral element.")
@property
def name(self):
"""Unique string identifier for operation type."""
return "cnotdihedral"
@property
def num_clbits(self):
"""Number of classical bits."""
return 0
def _z2matmul(self, left, right):
"""Compute product of two n x n z2 matrices."""
prod = np.mod(np.dot(left, right), 2)
return prod
def _z2matvecmul(self, mat, vec):
"""Compute mat*vec of n x n z2 matrix and vector."""
prod = np.mod(np.dot(mat, vec), 2)
return prod
def _dot(self, other):
"""Left multiplication self * other."""
if self.num_qubits != other.num_qubits:
raise QiskitError("Multiplication on different number of qubits.")
result = CNOTDihedral(num_qubits=self.num_qubits)
result.shift = [
(x[0] + x[1]) % 2 for x in zip(self._z2matvecmul(self.linear, other.shift), self.shift)
]
result.linear = self._z2matmul(self.linear, other.linear)
# Compute x' = B1*x + c1 using the p_j identity
new_vars = []
for i in range(self.num_qubits):
support = np.arange(self.num_qubits)[np.nonzero(other.linear[i])]
poly = SpecialPolynomial(self.num_qubits)
poly.set_pj(support)
if other.shift[i] == 1:
poly = -1 * poly
poly.weight_0 = (poly.weight_0 + 1) % 8
new_vars.append(poly)
# p' = p1 + p2(x')
result.poly = other.poly + self.poly.evaluate(new_vars)
return result
def _compose(self, other):
"""Right multiplication other * self."""
if self.num_qubits != other.num_qubits:
raise QiskitError("Multiplication on different number of qubits.")
result = CNOTDihedral(num_qubits=self.num_qubits)
result.shift = [
(x[0] + x[1]) % 2 for x in zip(self._z2matvecmul(other.linear, self.shift), other.shift)
]
result.linear = self._z2matmul(other.linear, self.linear)
# Compute x' = B1*x + c1 using the p_j identity
new_vars = []
for i in range(self.num_qubits):
support = np.arange(other.num_qubits)[np.nonzero(self.linear[i])]
poly = SpecialPolynomial(self.num_qubits)
poly.set_pj(support)
if self.shift[i] == 1:
poly = -1 * poly
poly.weight_0 = (poly.weight_0 + 1) % 8
new_vars.append(poly)
# p' = p1 + p2(x')
result.poly = self.poly + other.poly.evaluate(new_vars)
return result
def __eq__(self, other):
"""Test equality."""
return (
isinstance(other, CNOTDihedral)
and self.poly == other.poly
and (self.linear == other.linear).all()
and (self.shift == other.shift).all()
)
def _append_cx(self, i, j):
"""Apply a CX gate to this element.
Left multiply the element by CX(i, j).
"""
if not 0 <= i < self.num_qubits or not 0 <= j < self.num_qubits:
raise QiskitError("CX qubits are out of bounds.")
self.linear[j] = (self.linear[i] + self.linear[j]) % 2
self.shift[j] = (self.shift[i] + self.shift[j]) % 2
def _append_phase(self, k, i):
"""Apply an k-th power of T to this element.
Left multiply the element by T_i^k.
"""
if not 0 <= i < self.num_qubits:
raise QiskitError("phase qubit out of bounds.")
# If the kth bit is flipped, conjugate this gate
if self.shift[i] == 1:
k = (7 * k) % 8
# Take all subsets \alpha of the support of row i
# of weight up to 3 and add k*(-2)**(|\alpha| - 1) mod 8
# to the corresponding term.
support = np.arange(self.num_qubits)[np.nonzero(self.linear[i])]
subsets_2 = itertools.combinations(support, 2)
subsets_3 = itertools.combinations(support, 3)
for j in support:
value = self.poly.get_term([j])
self.poly.set_term([j], (value + k) % 8)
for j in subsets_2:
value = self.poly.get_term(list(j))
self.poly.set_term(list(j), (value + -2 * k) % 8)
for j in subsets_3:
value = self.poly.get_term(list(j))
self.poly.set_term(list(j), (value + 4 * k) % 8)
def _append_x(self, i):
"""Apply X to this element.
Left multiply the element by X(i).
"""
if not 0 <= i < self.num_qubits:
raise QiskitError("X qubit out of bounds.")
self.shift[i] = (self.shift[i] + 1) % 2
def __str__(self):
"""Return formatted string representation."""
out = "phase polynomial = \n"
out += str(self.poly)
out += "\naffine function = \n"
out += " ("
for row in range(self.num_qubits):
wrote = False
for col in range(self.num_qubits):
if self.linear[row][col] != 0:
if wrote:
out += " + x_" + str(col)
else:
out += "x_" + str(col)
wrote = True
if self.shift[row] != 0:
out += " + 1"
if row != self.num_qubits - 1:
out += ","
out += ")\n"
return out
def to_circuit(self):
"""Return a QuantumCircuit implementing the CNOT-Dihedral element.
Return:
QuantumCircuit: a circuit implementation of the CNOTDihedral object.
References:
1. Shelly Garion and Andrew W. Cross, *Synthesis of CNOT-Dihedral circuits
with optimal number of two qubit gates*, `Quantum 4(369), 2020
<https://quantum-journal.org/papers/q-2020-12-07-369/>`_
2. Andrew W. Cross, Easwar Magesan, Lev S. Bishop, John A. Smolin and Jay M. Gambetta,
*Scalable randomised benchmarking of non-Clifford gates*,
npj Quantum Inf 2, 16012 (2016).
"""
from qiskit.synthesis.cnotdihedral import synth_cnotdihedral_full
return synth_cnotdihedral_full(self)
def to_instruction(self):
"""Return a Gate instruction implementing the CNOTDihedral object."""
return self.to_circuit().to_gate()
def _from_circuit(self, circuit):
"""Initialize from a QuantumCircuit or Instruction.
Args:
circuit (QuantumCircuit or ~qiskit.circuit.Instruction):
instruction to initialize.
Returns:
CNOTDihedral: the CNOTDihedral object for the circuit.
Raises:
QiskitError: if the input instruction is not CNOTDihedral or contains
classical register instruction.
"""
if not isinstance(circuit, (QuantumCircuit, Instruction)):
raise QiskitError("Input must be a QuantumCircuit or Instruction")
# Initialize an identity CNOTDihedral object
elem = CNOTDihedral(num_qubits=self._num_qubits)
_append_circuit(elem, circuit)
return elem
def __array__(self, dtype=None):
if dtype:
return np.asarray(self.to_matrix(), dtype=dtype)
return self.to_matrix()
def to_matrix(self):
"""Convert operator to Numpy matrix."""
return self.to_operator().data
def to_operator(self) -> Operator:
"""Convert to an Operator object."""
return Operator(self.to_instruction())
def compose(
self, other: CNOTDihedral, qargs: list | None = None, front: bool = False
) -> CNOTDihedral:
if qargs is not None:
raise NotImplementedError("compose method does not support qargs.")
if self.num_qubits != other.num_qubits:
raise QiskitError("Incompatible dimension for composition")
if front:
other = self._dot(other)
else:
other = self._compose(other)
other.poly.weight_0 = 0 # set global phase
return other
def _tensor(self, other, reverse=False):
"""Returns the tensor product operator."""
if not isinstance(other, CNOTDihedral):
raise QiskitError("Tensored element is not a CNOTDihderal object.")
if reverse:
elem0 = self
elem1 = other
else:
elem0 = other
elem1 = self
result = CNOTDihedral(num_qubits=elem0.num_qubits + elem1.num_qubits)
linear = np.block(
[
[elem0.linear, np.zeros((elem0.num_qubits, elem1.num_qubits), dtype=np.int8)],
[np.zeros((elem1.num_qubits, elem0.num_qubits), dtype=np.int8), elem1.linear],
]
)
result.linear = linear
shift = np.block([elem0.shift, elem1.shift])
result.shift = shift
for i in range(elem0.num_qubits):
value = elem0.poly.get_term([i])
result.poly.set_term([i], value)
for j in range(i):
value = elem0.poly.get_term([j, i])
result.poly.set_term([j, i], value)
for k in range(j):
value = elem0.poly.get_term([k, j, i])
result.poly.set_term([k, j, i], value)
for i in range(elem1.num_qubits):
value = elem1.poly.get_term([i])
result.poly.set_term([i + elem0.num_qubits], value)
for j in range(i):
value = elem1.poly.get_term([j, i])
result.poly.set_term([j + elem0.num_qubits, i + elem0.num_qubits], value)
for k in range(j):
value = elem1.poly.get_term([k, j, i])
result.poly.set_term(
[k + elem0.num_qubits, j + elem0.num_qubits, i + elem0.num_qubits], value
)
return result
def tensor(self, other: CNOTDihedral) -> CNOTDihedral:
return self._tensor(other, reverse=True)
def expand(self, other: CNOTDihedral) -> CNOTDihedral:
return self._tensor(other, reverse=False)
def adjoint(self):
circ = self.to_instruction()
result = self._from_circuit(circ.inverse())
return result
def conjugate(self):
circ = self.to_instruction()
new_circ = QuantumCircuit(self.num_qubits)
bit_indices = {bit: index for index, bit in enumerate(circ.definition.qubits)}
for instruction in circ.definition:
new_qubits = [bit_indices[tup] for tup in instruction.qubits]
if instruction.operation.name == "p":
params = 2 * np.pi - instruction.operation.params[0]
instruction.operation.params[0] = params
new_circ.append(instruction.operation, new_qubits)
elif instruction.operation.name == "t":
instruction.operation.name = "tdg"
new_circ.append(instruction.operation, new_qubits)
elif instruction.operation.name == "tdg":
instruction.operation.name = "t"
new_circ.append(instruction.operation, new_qubits)
elif instruction.operation.name == "s":
instruction.operation.name = "sdg"
new_circ.append(instruction.operation, new_qubits)
elif instruction.operation.name == "sdg":
instruction.operation.name = "s"
new_circ.append(instruction.operation, new_qubits)
else:
new_circ.append(instruction.operation, new_qubits)
result = self._from_circuit(new_circ)
return result
def transpose(self):
circ = self.to_instruction()
result = self._from_circuit(circ.reverse_ops())
return result
def _is_valid(self):
"""Return True if input is a CNOTDihedral element."""
if (
self.poly.weight_0 != 0
or len(self.poly.weight_1) != self.num_qubits
or len(self.poly.weight_2) != int(self.num_qubits * (self.num_qubits - 1) / 2)
or len(self.poly.weight_3)
!= int(self.num_qubits * (self.num_qubits - 1) * (self.num_qubits - 2) / 6)
):
return False
if (
(self.linear).shape != (self.num_qubits, self.num_qubits)
or len(self.shift) != self.num_qubits
or not np.allclose((np.linalg.det(self.linear) % 2), 1)
):
return False
if (
not (set(self.poly.weight_1.flatten())).issubset({0, 1, 2, 3, 4, 5, 6, 7})
or not (set(self.poly.weight_2.flatten())).issubset({0, 2, 4, 6})
or not (set(self.poly.weight_3.flatten())).issubset({0, 4})
):
return False
if not (set(self.shift.flatten())).issubset({0, 1}) or not (
set(self.linear.flatten())
).issubset({0, 1}):
return False
return True
# Update docstrings for API docs
generate_apidocs(CNOTDihedral)
|
https://github.com/sam-pf/pf-qiskit
|
sam-pf
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
This module contains the definition of a base class for quantum fourier transforms.
"""
from abc import abstractmethod
from qiskit import QuantumRegister, QuantumCircuit
from qiskit.aqua import Pluggable, AquaError
class QFT(Pluggable):
"""Base class for QFT.
This method should initialize the module and its configuration, and
use an exception if a component of the module is
available.
Args:
configuration (dict): configuration dictionary
"""
@abstractmethod
def __init__(self, *args, **kwargs):
super().__init__()
@classmethod
def init_params(cls, params):
qft_params = params.get(Pluggable.SECTION_KEY_QFT)
kwargs = {k: v for k, v in qft_params.items() if k != 'name'}
return cls(**kwargs)
@abstractmethod
def _build_matrix(self):
raise NotImplementedError
@abstractmethod
def _build_circuit(self, qubits=None, circuit=None, do_swaps=True):
raise NotImplementedError
def construct_circuit(self, mode='circuit', qubits=None, circuit=None, do_swaps=True):
"""Construct the circuit.
Args:
mode (str): 'matrix' or 'circuit'
qubits (QuantumRegister or qubits): register or qubits to build the circuit on.
circuit (QuantumCircuit): circuit for construction.
do_swaps (bool): include the swaps.
Returns:
The matrix or circuit depending on the specified mode.
"""
if mode == 'circuit':
return self._build_circuit(qubits=qubits, circuit=circuit, do_swaps=do_swaps)
elif mode == 'matrix':
return self._build_matrix()
else:
raise AquaError('Unrecognized mode: {}.'.format(mode))
|
https://github.com/Marduk-42/Quantum-Algorithm-Tutorials
|
Marduk-42
|
from qiskit import *
import matplotlib.pyplot as plt
qreg = QuantumRegister(2)
creg = ClassicalRegister(2)
circuit = QuantumCircuit(qreg,creg)
circuit.reset(qreg[0])
circuit.reset(qreg[1])
circuit.h(qreg[0])
circuit.cx(qreg[0],qreg[1])
circuit.measure(qreg[0],creg[0])
circuit.measure(qreg[1],creg[1])
backend = Aer.get_backend('qasm_simulator')
job = execute(circuit, backend, shots=2048)
result = job.result()
circuit.draw("mpl")
visualization.plot_histogram(result.get_counts())
from qiskit.providers.ibmq import least_busy
provider = IBMQ.load_account() #If this throws an error, run IBMQ.save_account(YOUR_API_KEY). You will find your api key on https://quantum-computing.ibm.com/account
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration().simulator and x.status().operational==True))
job = execute(circuit, backend=device, shots=2048) #May take some time
results = job.result()
answer = results.get_counts(circuit)
visualization.plot_histogram(answer)
|
https://github.com/weiT1993/qiskit_helper_functions
|
weiT1993
|
"""
Teague Tomesh - 3/25/2019
Implementation of the UCCSD ansatz for use in the VQE algorithm.
Based on the description given in Whitfield et al.
(https://arxiv.org/abs/1001.3855?context=physics.chem-ph)
Adapted from a Scaffold implementation by Pranav Gokhale]
(https://github.com/epiqc/ScaffCC)
NOTE:
Qiskit orders their circuits increasing from top -> bottom
0 ---
1 ---
2 ---
Both Whitfield et al. and Barkoutsos et al. order increasing from bottom -> top
p 3 ---
q 2 ---
r 1 ---
s 0 ---
Not a problem. Qubit index is what matters. Set reverse_bits = True when
drawing Qiskit circuit.
"""
from qiskit import QuantumCircuit, QuantumRegister
import sys
import math
import numpy as np
class UCCSD:
"""
Class to implement the UCCSD ansatz as described in Whitfield et al.
(https://arxiv.org/abs/1001.3855?context=physics.chem-ph)
A UCCSD circuit can be generated for a given instance of the UCCSD class
by calling the gen_circuit() method.
Attributes
----------
width : int
number of qubits
parameters : str
choice of parameters [random, seeded]
seed : int
a number to seed the number generator with
barriers : bool
should barriers be included in the generated circuit
regname : str
optional string to name the quantum and classical registers. This
allows for the easy concatenation of multiple QuantumCircuits.
qr : QuantumRegister
Qiskit QuantumRegister holding all of the quantum bits
circ : QuantumCircuit
Qiskit QuantumCircuit that represents the uccsd circuit
"""
def __init__(
self, width, parameters="random", seed=None, barriers=False, regname=None
):
# number of qubits
self.nq = width
# set flags for circuit generation
self.parameters = parameters
self.seed = seed
self.barriers = barriers
# create a QuantumCircuit object
# We do not include a ClassicalRegister in this circuit because
# many different gates may need to be appended to this ansatz
# to measure all of the terms in the Hamiltonian for an instance
# VQE, but it is also easier for the circuit cutter to handle
# circuits without measurement/classical registers.
if regname is None:
self.qr = QuantumRegister(self.nq)
else:
self.qr = QuantumRegister(self.nq, name=regname)
self.circ = QuantumCircuit(self.qr)
def M_d(self, i, p, q, r, s, dagger=False):
"""
See Double Excitation Operator circuit in Table A1
of Whitfield et al 2010
Y in Table A1 of Whitfield et al 2010 really means Rx(-pi/2)
"""
if dagger:
angle = math.pi / 2
else:
angle = -math.pi / 2
qr = self.circ.qregs[0]
if i == 1:
self.circ.h(qr[p])
self.circ.h(qr[q])
self.circ.h(qr[r])
self.circ.h(qr[s])
elif i == 2:
self.circ.rx(angle, qr[p])
self.circ.rx(angle, qr[q])
self.circ.rx(angle, qr[r])
self.circ.rx(angle, qr[s])
elif i == 3:
self.circ.h(qr[p])
self.circ.rx(angle, qr[q])
self.circ.h(qr[r])
self.circ.rx(angle, qr[s])
elif i == 4:
self.circ.rx(angle, qr[p])
self.circ.h(qr[q])
self.circ.rx(angle, qr[r])
self.circ.h(qr[s])
elif i == 5:
self.circ.rx(angle, qr[p])
self.circ.rx(angle, qr[q])
self.circ.h(qr[r])
self.circ.h(qr[s])
elif i == 6:
self.circ.h(qr[p])
self.circ.h(qr[q])
self.circ.rx(angle, qr[r])
self.circ.rx(angle, qr[s])
elif i == 7:
self.circ.rx(angle, qr[p])
self.circ.h(qr[q])
self.circ.h(qr[r])
self.circ.rx(angle, qr[s])
elif i == 8:
self.circ.h(qr[p])
self.circ.rx(angle, qr[q])
self.circ.rx(angle, qr[r])
self.circ.h(qr[s])
def CNOTLadder(self, controlStartIndex, controlStopIndex):
"""
Applies a ladder of CNOTs, as in the dashed-CNOT notation at bottom of
Table A1 of Whitfield et al 2010
Qubit indices increase from bottom to top
"""
qr = self.circ.qregs[0]
if controlStopIndex > controlStartIndex:
delta = 1
index = controlStartIndex + 1
controlStopIndex += 1
else:
delta = -1
index = controlStartIndex
while index is not controlStopIndex:
self.circ.cx(qr[index], qr[index - 1])
index += delta
def DoubleExcitationOperator(self, theta, p, q, r, s):
"""
Prerequisite: p > q > r > s
"""
qr = self.circ.qregs[0]
for i in range(1, 9):
if self.barriers:
self.circ.barrier(qr)
self.M_d(i, p, q, r, s, dagger=False)
if self.barriers:
self.circ.barrier(qr)
self.CNOTLadder(p, q)
self.circ.cx(qr[q], qr[r])
self.CNOTLadder(r, s)
self.circ.rz(theta, qr[s]) # Rz(reg[s], Theta_p_q_r_s[p][q][r][s]);
self.CNOTLadder(s, r)
self.circ.cx(qr[q], qr[r])
self.CNOTLadder(q, p)
if self.barriers:
self.circ.barrier(qr)
self.M_d(i, p, q, r, s, dagger=True)
def SingleExcitationOperator(self, theta, p, q):
"""
Prerequisite: p > q
See Single Excitation Operator circuit in Table A1 of
Whitfield et al 2010
"""
qr = self.circ.qregs[0]
if self.barriers:
self.circ.barrier(qr)
self.circ.h(qr[p])
self.circ.h(qr[q])
self.CNOTLadder(p, q)
self.circ.rz(theta, qr[q]) # Rz(reg[q], Theta_p_q[p][q]);
self.CNOTLadder(q, p)
if self.barriers:
self.circ.barrier(qr)
self.circ.h(qr[p])
self.circ.h(qr[q])
self.circ.rx(-math.pi / 2, qr[p])
self.circ.rx(-math.pi / 2, qr[q])
self.CNOTLadder(p, q)
self.circ.rz(theta, qr[q]) # Rz(reg[q], Theta_p_q[p][q]);
self.CNOTLadder(q, p)
if self.barriers:
self.circ.barrier(qr)
self.circ.rx(-math.pi / 2, qr[p])
self.circ.rx(-math.pi / 2, qr[q])
def gen_circuit(self):
"""
Create a circuit implementing the UCCSD ansatz
Given the number of qubits and parameters, construct the
ansatz as given in Whitfield et al.
Returns
-------
QuantumCircuit
QuantumCircuit object of size nq with no ClassicalRegister and
no measurements
"""
# Ensure the # of parameters matches what is neede by the current value of
# Nq, then set a counter, p_i=0, when the circuit is first initialized, and
# every call to the single or double operator will take param[p_i] as its
# parameter and then increment the value of p_i
num_dbl = (self.nq**4 - 6 * self.nq**3 + 11 * self.nq**2 - 6 * self.nq) / 24
num_sgl = (self.nq**2 - self.nq) / 2
numparam = int(num_dbl + num_sgl)
if self.parameters == "random":
param = np.random.uniform(-np.pi, np.pi, numparam)
elif self.parameters == "seeded":
if self.seed is None:
raise Exception("A valid seed must be provided")
else:
np.random.seed(self.seed)
param = np.random.uniform(-np.pi, np.pi, numparam)
else:
raise Exception("Unknown parameter option")
p_i = 0
# enumerate all Nq > p > q > r > s >= 0 and apply Double Excitation Operator
for p in range(self.nq):
for q in range(p):
for r in range(q):
for s in range(r):
# print(p,q,r,s)
# For the 4 qubit case this function is called a single time
self.DoubleExcitationOperator(param[p_i], p, q, r, s)
p_i += 1
# enumerate all Nq > p > q >= 0 and apply Single Excitation Operator
for p in range(self.nq):
for q in range(p):
# print(p,q)
self.SingleExcitationOperator(param[p_i], p, q)
p_i += 1
return self.circ
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
# Necessary imports
import numpy as np
import matplotlib.pyplot as plt
from torch import Tensor
from torch.nn import Linear, CrossEntropyLoss, MSELoss
from torch.optim import LBFGS
from qiskit import QuantumCircuit
from qiskit.utils import algorithm_globals
from qiskit.circuit import Parameter
from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap
from qiskit_machine_learning.neural_networks import SamplerQNN, EstimatorQNN
from qiskit_machine_learning.connectors import TorchConnector
# Set seed for random generators
algorithm_globals.random_seed = 42
# Generate random dataset
# Select dataset dimension (num_inputs) and size (num_samples)
num_inputs = 2
num_samples = 20
# Generate random input coordinates (X) and binary labels (y)
X = 2 * algorithm_globals.random.random([num_samples, num_inputs]) - 1
y01 = 1 * (np.sum(X, axis=1) >= 0) # in { 0, 1}, y01 will be used for SamplerQNN example
y = 2 * y01 - 1 # in {-1, +1}, y will be used for EstimatorQNN example
# Convert to torch Tensors
X_ = Tensor(X)
y01_ = Tensor(y01).reshape(len(y)).long()
y_ = Tensor(y).reshape(len(y), 1)
# Plot dataset
for x, y_target in zip(X, y):
if y_target == 1:
plt.plot(x[0], x[1], "bo")
else:
plt.plot(x[0], x[1], "go")
plt.plot([-1, 1], [1, -1], "--", color="black")
plt.show()
# Set up a circuit
feature_map = ZZFeatureMap(num_inputs)
ansatz = RealAmplitudes(num_inputs)
qc = QuantumCircuit(num_inputs)
qc.compose(feature_map, inplace=True)
qc.compose(ansatz, inplace=True)
qc.draw("mpl")
# Setup QNN
qnn1 = EstimatorQNN(
circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters
)
# Set up PyTorch module
# Note: If we don't explicitly declare the initial weights
# they are chosen uniformly at random from [-1, 1].
initial_weights = 0.1 * (2 * algorithm_globals.random.random(qnn1.num_weights) - 1)
model1 = TorchConnector(qnn1, initial_weights=initial_weights)
print("Initial weights: ", initial_weights)
# Test with a single input
model1(X_[0, :])
# Define optimizer and loss
optimizer = LBFGS(model1.parameters())
f_loss = MSELoss(reduction="sum")
# Start training
model1.train() # set model to training mode
# Note from (https://pytorch.org/docs/stable/optim.html):
# Some optimization algorithms such as LBFGS need to
# reevaluate the function multiple times, so you have to
# pass in a closure that allows them to recompute your model.
# The closure should clear the gradients, compute the loss,
# and return it.
def closure():
optimizer.zero_grad() # Initialize/clear gradients
loss = f_loss(model1(X_), y_) # Evaluate loss function
loss.backward() # Backward pass
print(loss.item()) # Print loss
return loss
# Run optimizer step4
optimizer.step(closure)
# Evaluate model and compute accuracy
y_predict = []
for x, y_target in zip(X, y):
output = model1(Tensor(x))
y_predict += [np.sign(output.detach().numpy())[0]]
print("Accuracy:", sum(y_predict == y) / len(y))
# Plot results
# red == wrongly classified
for x, y_target, y_p in zip(X, y, y_predict):
if y_target == 1:
plt.plot(x[0], x[1], "bo")
else:
plt.plot(x[0], x[1], "go")
if y_target != y_p:
plt.scatter(x[0], x[1], s=200, facecolors="none", edgecolors="r", linewidths=2)
plt.plot([-1, 1], [1, -1], "--", color="black")
plt.show()
# Define feature map and ansatz
feature_map = ZZFeatureMap(num_inputs)
ansatz = RealAmplitudes(num_inputs, entanglement="linear", reps=1)
# Define quantum circuit of num_qubits = input dim
# Append feature map and ansatz
qc = QuantumCircuit(num_inputs)
qc.compose(feature_map, inplace=True)
qc.compose(ansatz, inplace=True)
# Define SamplerQNN and initial setup
parity = lambda x: "{:b}".format(x).count("1") % 2 # optional interpret function
output_shape = 2 # parity = 0, 1
qnn2 = SamplerQNN(
circuit=qc,
input_params=feature_map.parameters,
weight_params=ansatz.parameters,
interpret=parity,
output_shape=output_shape,
)
# Set up PyTorch module
# Reminder: If we don't explicitly declare the initial weights
# they are chosen uniformly at random from [-1, 1].
initial_weights = 0.1 * (2 * algorithm_globals.random.random(qnn2.num_weights) - 1)
print("Initial weights: ", initial_weights)
model2 = TorchConnector(qnn2, initial_weights)
# Define model, optimizer, and loss
optimizer = LBFGS(model2.parameters())
f_loss = CrossEntropyLoss() # Our output will be in the [0,1] range
# Start training
model2.train()
# Define LBFGS closure method (explained in previous section)
def closure():
optimizer.zero_grad(set_to_none=True) # Initialize gradient
loss = f_loss(model2(X_), y01_) # Calculate loss
loss.backward() # Backward pass
print(loss.item()) # Print loss
return loss
# Run optimizer (LBFGS requires closure)
optimizer.step(closure);
# Evaluate model and compute accuracy
y_predict = []
for x in X:
output = model2(Tensor(x))
y_predict += [np.argmax(output.detach().numpy())]
print("Accuracy:", sum(y_predict == y01) / len(y01))
# plot results
# red == wrongly classified
for x, y_target, y_ in zip(X, y01, y_predict):
if y_target == 1:
plt.plot(x[0], x[1], "bo")
else:
plt.plot(x[0], x[1], "go")
if y_target != y_:
plt.scatter(x[0], x[1], s=200, facecolors="none", edgecolors="r", linewidths=2)
plt.plot([-1, 1], [1, -1], "--", color="black")
plt.show()
# Generate random dataset
num_samples = 20
eps = 0.2
lb, ub = -np.pi, np.pi
f = lambda x: np.sin(x)
X = (ub - lb) * algorithm_globals.random.random([num_samples, 1]) + lb
y = f(X) + eps * (2 * algorithm_globals.random.random([num_samples, 1]) - 1)
plt.plot(np.linspace(lb, ub), f(np.linspace(lb, ub)), "r--")
plt.plot(X, y, "bo")
plt.show()
# Construct simple feature map
param_x = Parameter("x")
feature_map = QuantumCircuit(1, name="fm")
feature_map.ry(param_x, 0)
# Construct simple feature map
param_y = Parameter("y")
ansatz = QuantumCircuit(1, name="vf")
ansatz.ry(param_y, 0)
qc = QuantumCircuit(1)
qc.compose(feature_map, inplace=True)
qc.compose(ansatz, inplace=True)
# Construct QNN
qnn3 = EstimatorQNN(circuit=qc, input_params=[param_x], weight_params=[param_y])
# Set up PyTorch module
# Reminder: If we don't explicitly declare the initial weights
# they are chosen uniformly at random from [-1, 1].
initial_weights = 0.1 * (2 * algorithm_globals.random.random(qnn3.num_weights) - 1)
model3 = TorchConnector(qnn3, initial_weights)
# Define optimizer and loss function
optimizer = LBFGS(model3.parameters())
f_loss = MSELoss(reduction="sum")
# Start training
model3.train() # set model to training mode
# Define objective function
def closure():
optimizer.zero_grad(set_to_none=True) # Initialize gradient
loss = f_loss(model3(Tensor(X)), Tensor(y)) # Compute batch loss
loss.backward() # Backward pass
print(loss.item()) # Print loss
return loss
# Run optimizer
optimizer.step(closure)
# Plot target function
plt.plot(np.linspace(lb, ub), f(np.linspace(lb, ub)), "r--")
# Plot data
plt.plot(X, y, "bo")
# Plot fitted line
y_ = []
for x in np.linspace(lb, ub):
output = model3(Tensor([x]))
y_ += [output.detach().numpy()[0]]
plt.plot(np.linspace(lb, ub), y_, "g-")
plt.show()
# Additional torch-related imports
import torch
from torch import cat, no_grad, manual_seed
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import torch.optim as optim
from torch.nn import (
Module,
Conv2d,
Linear,
Dropout2d,
NLLLoss,
MaxPool2d,
Flatten,
Sequential,
ReLU,
)
import torch.nn.functional as F
# Train Dataset
# -------------
# Set train shuffle seed (for reproducibility)
manual_seed(42)
batch_size = 1
n_samples = 100 # We will concentrate on the first 100 samples
# Use pre-defined torchvision function to load MNIST train data
X_train = datasets.MNIST(
root="./data", train=True, download=True, transform=transforms.Compose([transforms.ToTensor()])
)
# Filter out labels (originally 0-9), leaving only labels 0 and 1
idx = np.append(
np.where(X_train.targets == 0)[0][:n_samples], np.where(X_train.targets == 1)[0][:n_samples]
)
X_train.data = X_train.data[idx]
X_train.targets = X_train.targets[idx]
# Define torch dataloader with filtered data
train_loader = DataLoader(X_train, batch_size=batch_size, shuffle=True)
n_samples_show = 6
data_iter = iter(train_loader)
fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3))
while n_samples_show > 0:
images, targets = data_iter.__next__()
axes[n_samples_show - 1].imshow(images[0, 0].numpy().squeeze(), cmap="gray")
axes[n_samples_show - 1].set_xticks([])
axes[n_samples_show - 1].set_yticks([])
axes[n_samples_show - 1].set_title("Labeled: {}".format(targets[0].item()))
n_samples_show -= 1
# Test Dataset
# -------------
# Set test shuffle seed (for reproducibility)
# manual_seed(5)
n_samples = 50
# Use pre-defined torchvision function to load MNIST test data
X_test = datasets.MNIST(
root="./data", train=False, download=True, transform=transforms.Compose([transforms.ToTensor()])
)
# Filter out labels (originally 0-9), leaving only labels 0 and 1
idx = np.append(
np.where(X_test.targets == 0)[0][:n_samples], np.where(X_test.targets == 1)[0][:n_samples]
)
X_test.data = X_test.data[idx]
X_test.targets = X_test.targets[idx]
# Define torch dataloader with filtered data
test_loader = DataLoader(X_test, batch_size=batch_size, shuffle=True)
# Define and create QNN
def create_qnn():
feature_map = ZZFeatureMap(2)
ansatz = RealAmplitudes(2, reps=1)
qc = QuantumCircuit(2)
qc.compose(feature_map, inplace=True)
qc.compose(ansatz, inplace=True)
# REMEMBER TO SET input_gradients=True FOR ENABLING HYBRID GRADIENT BACKPROP
qnn = EstimatorQNN(
circuit=qc,
input_params=feature_map.parameters,
weight_params=ansatz.parameters,
input_gradients=True,
)
return qnn
qnn4 = create_qnn()
# Define torch NN module
class Net(Module):
def __init__(self, qnn):
super().__init__()
self.conv1 = Conv2d(1, 2, kernel_size=5)
self.conv2 = Conv2d(2, 16, kernel_size=5)
self.dropout = Dropout2d()
self.fc1 = Linear(256, 64)
self.fc2 = Linear(64, 2) # 2-dimensional input to QNN
self.qnn = TorchConnector(qnn) # Apply torch connector, weights chosen
# uniformly at random from interval [-1,1].
self.fc3 = Linear(1, 1) # 1-dimensional output from QNN
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = self.dropout(x)
x = x.view(x.shape[0], -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
x = self.qnn(x) # apply QNN
x = self.fc3(x)
return cat((x, 1 - x), -1)
model4 = Net(qnn4)
# Define model, optimizer, and loss function
optimizer = optim.Adam(model4.parameters(), lr=0.001)
loss_func = NLLLoss()
# Start training
epochs = 10 # Set number of epochs
loss_list = [] # Store loss history
model4.train() # Set model to training mode
for epoch in range(epochs):
total_loss = []
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad(set_to_none=True) # Initialize gradient
output = model4(data) # Forward pass
loss = loss_func(output, target) # Calculate loss
loss.backward() # Backward pass
optimizer.step() # Optimize weights
total_loss.append(loss.item()) # Store loss
loss_list.append(sum(total_loss) / len(total_loss))
print("Training [{:.0f}%]\tLoss: {:.4f}".format(100.0 * (epoch + 1) / epochs, loss_list[-1]))
# Plot loss convergence
plt.plot(loss_list)
plt.title("Hybrid NN Training Convergence")
plt.xlabel("Training Iterations")
plt.ylabel("Neg. Log Likelihood Loss")
plt.show()
torch.save(model4.state_dict(), "model4.pt")
qnn5 = create_qnn()
model5 = Net(qnn5)
model5.load_state_dict(torch.load("model4.pt"))
model5.eval() # set model to evaluation mode
with no_grad():
correct = 0
for batch_idx, (data, target) in enumerate(test_loader):
output = model5(data)
if len(output.shape) == 1:
output = output.reshape(1, *output.shape)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
loss = loss_func(output, target)
total_loss.append(loss.item())
print(
"Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%".format(
sum(total_loss) / len(total_loss), correct / len(test_loader) / batch_size * 100
)
)
# Plot predicted labels
n_samples_show = 6
count = 0
fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3))
model5.eval()
with no_grad():
for batch_idx, (data, target) in enumerate(test_loader):
if count == n_samples_show:
break
output = model5(data[0:1])
if len(output.shape) == 1:
output = output.reshape(1, *output.shape)
pred = output.argmax(dim=1, keepdim=True)
axes[count].imshow(data[0].numpy().squeeze(), cmap="gray")
axes[count].set_xticks([])
axes[count].set_yticks([])
axes[count].set_title("Predicted {}".format(pred.item()))
count += 1
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/acfilok96/Quantum-Computation
|
acfilok96
|
import qiskit
from qiskit import *
# import matplotlib.pyplot as plt
%matplotlib inline
print(qiskit.__version__)
circuit = QuantumCircuit(2,2)
circuit.h(0)
circuit.cx(0,1)
circuit.measure([0,1],[0,1])
# circuit.measure_all()
circuit.barrier()
# circuit.draw(output='mpl')
circuit.draw(output='mpl')
simulator = Aer.get_backend('aer_simulator')
result = execute(circuit, backend=simulator, shots=1024).result()
count = result.get_counts()
print(count)
from qiskit.tools.visualization import plot_histogram
plot_histogram(count)
from qiskit import IBMQ
IBMQ.save_account("b32678329f7f6dd426b8cf18f20bea23c2cd056b0bee2b4bcf49744b612e598f20f7170a8da4bfd99b009b6fa59d596edea7a6926fd388be158843d8ef******", overwrite=True)
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main')
provider.backends()
from qiskit.providers.ibmq import least_busy
backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 2
and not x.configuration().simulator
and x.status().operational==True))
print("least busy backend: ", backend)
job = execute(circuit, backend=backend, shots=1024)
from qiskit.tools.monitor import job_monitor
job_monitor(job)
result = job.result()
count = result.get_counts()
print(count)
from qiskit.tools.visualization import plot_histogram
plot_histogram(count)
|
https://github.com/abbarreto/qiskit3
|
abbarreto
|
list_bin = []
for j in range(0,2**4):
b = "{:04b}".format(j)
list_bin.append(b)
print(list_bin)
list_int = []
for j in range(0,2**4):
list_int.append(int(list_bin[j],2))
print(list_int)
|
https://github.com/zhangx1923/QISKit_Deve_Challenge
|
zhangx1923
|
# Import your solution function
from challenge_submission import compiler_function
# Import submission evaluation and scoring functions
from challenge_evaluation import evaluate, score
# Possibly useful other helper function
from challenge_evaluation import qasm_to_dag_circuit, load_coupling, get_layout
# Select the simulation backend to calculate the quantum states resulting from the circuits
# On Windows platform the C++ Simulator is not yet available with pip install
backend = 'local_qiskit_simulator'
#backend = 'local_qasm_simulator' # uncomment this line if you are a Windows user
# Load example circuits and coupling maps
ex_nr = 1 # examples to add per qubit number. maximum is 10 with the provided circuits
test_circuit_filenames = {}
for i in range(ex_nr):
test_circuit_filenames['circuits/random%d_n5_d5.qasm' % i] = get_layout(5)
for i in range(ex_nr):
test_circuit_filenames['circuits/random%d_n16_d16.qasm' % i] = get_layout(16)
for i in range(ex_nr):
test_circuit_filenames['circuits/random%d_n20_d20.qasm' % i] = get_layout(20)
# store circuit, coupling map pairs in test_circuits. Circuits are in qasm form.
test_circuits = {}
for filename, cmap in test_circuit_filenames.items():
with open(filename, 'r') as infile:
qasm = infile.read()
test_circuits[filename] = {"qasm": qasm, "coupling_map": cmap}
result = evaluate(compiler_function, test_circuits, verbose=True, backend = backend)
result
test_circuits['circuits/random0_n5_d5.qasm'].keys()
myres = score(compiler_function, backend = backend)
print("Your compiler scored %6.5f x better \
and was %6.5f x faster than the QISKit reference compiler." % myres)
# import some coupling map generation functions
from gencoupling import *
# generate a square coupling map with 18 qubits and nearest neighbour connectivity
# then remove 4 random links
# also try linear, circle, rect, torus, ibmqx etc.
lr = rect(6,3,order = 0.5, defects = -4)
plot_layout(lr)
# save the coupling map in the layouts folder
lr["name"] = "random_rectangular_lattice_4_defects_q18"
save_coupling(lr)
# load the saved coupling by name
rr = load_coupling("random_rectangular_lattice_4_defects_q18")
rr["coupling_map"]
plot_layout(lr)
# if your working directory is the folder with this notebook you can also use
import os
mydir = os.curdir
os.chdir('circuits')
!python generator.py -n 17 -d 17
os.chdir(mydir)
with open('random0_n17_d17.qasm', 'r') as infile:
qasm = infile.read()
print(qasm)
|
https://github.com/xtophe388/QISKIT
|
xtophe388
|
# You may need to trust this notebook before the button below works
from IPython.display import HTML
HTML('''<script>
code_show=true;
function code_toggle() {
if (code_show){
$('div.input').hide();
} else {
$('div.input').show();
}
code_show = !code_show
}
$( document ).ready(code_toggle);
</script>
<form action="javascript:code_toggle()"><input type="submit" value="Click here to toggle on/off the raw code."></form>''')
def cplayer_output(strategy, inp):
if(strategy == 1):
return inp
elif(strategy == 2):
return abs(inp-1)
elif(strategy == 3):
return 1
elif(strategy == 4):
return 0
else:
print("INVALID choice")
return 100
# Pick Alice's classical strategy
A_st = int(input('select the classical strategy for Alice, input 1,2,3 or 4 to pick one of the strategies listed above '))
# Pick Bob's classical strategy
B_st = int(input('select the classical strategy for Bob, input 1,2,3 or 4 to pick one of the strategies listed above '))
# useful packages
import numpy as np
import random as rand
# fixes the numbers of games to be played
N=100
# initializes counters used to keep track of the numbers of games won and played by Alice an Bob
cont_win = 0 # counts games won
cont_tot = 0 # counts games played
# play the game N times
for i in range(N):
# generates two random input from the refree, x and y, to be given to Alice and Bob
random_num1 = rand.random() # first random number
random_num2 = rand.random() # second random number
if(random_num1 >= 1/2): # converts the first random number to 0 or 1
x = 0
else: x = 1
if(random_num2 >= 1/2): # converts the second random number to 0 or 1
y = 0
else: y = 1
# generates Alice's and Bob's output
a = cplayer_output(A_st, x) # Alice's output
b = cplayer_output(B_st, y) # Bob's output
# check if the condition for winning the game is met
if(x*y == a^b):
cont_win += 1 # increase thes won games' counter if the condition to win the game is met
cont_tot += 1 # increases the played games' counter
Prob_win = cont_win/cont_tot # winning probability
print('Alice and Bob won the game with probability: ', Prob_win*100, '%')
def qAlice_output(strategy, inp):
if(strategy == 1):
return 0
elif(strategy == 2):
return rand.uniform(0,2*np.pi)
elif(strategy == 3):
if(inp == 0):
return 0
elif(inp == 1):
return np.pi/2
else:
print("INVALID choice")
return 100
def qBob_output(strategy, inp):
if(strategy == 1):
return 0
elif(strategy == 2):
return rand.uniform(0,2*np.pi)
elif(strategy == 3):
if(inp == 0):
return np.pi/4
elif(inp == 1):
return -np.pi/4
else:
print("INVALID choice")
return 100
# Alice's strategy
qA_st = int(input('select the quantum strategy for Alice, input 1,2 or 3 to pick one of the strategies listed above: '))
# Bob's strategy
qB_st = int(input('select the quantum strategy for Bob, input 1,2 or 3 to pick one of the strategies listed above: '))
# import packages
from qiskit import *
import numpy as np
import random as rand
# set parameters of the quantum run of the game
shots = 1 # set how many times the circuit is run, accumulating statistics about the measurement outcomes
backend = 'local_qasm_simulator' # set the machine where the quantum circuit is to be run
#fixes the numbers of games to be played
N=100
# initializes counters used to keep track of the numbers of games won and played by Alice an Bob
cont_win = 0 # counts games won
cont_tot = 0 # counts games played
#play N games
for i in range(N):
#creates quantum program, which allows to specify the details of the circuit like the register and the gates used
Q_program = QuantumProgram()
# creates registers for qubits and bits
q = Q_program.create_quantum_register('q', 2) # creates a quantum register, it specifies the qubits which are going to be used for the program
c = Q_program.create_classical_register('c', 2) # creates a classical register, the results of the measurement of the qubits are stored here
# creates quantum circuit, to write a quantum algorithm we will add gates to the circuit
game = Q_program.create_circuit('game', [q], [c])
# These gates prepare the entangled Bell pair to be shared by Alice and Bob as part of their quantum strategy
# Alice will have qubit 0 and Bob will have qubit 1
game.h(q[0]) # Hadamard gate on qubit 0
game.cx(q[0],q[1]) # CNOT gate on qubit 1 controlled by qubit 0
# generates two random input from the refree, x and y, to be given to Alice and Bob
random_num1 = rand.random() # first random number
random_num2 = rand.random() # second random number
if(random_num1 >= 1/2): # converts the first random number to 0 or 1
x = 0
else: x = 1
if(random_num2 >= 1/2): # converts the second random number to 0 or 1
y = 0
else: y = 1
# The main part of Alice and Bob quantum strategy is to fix different rotation angles for their qubit according to the input x,y
theta = qAlice_output(qA_st, x) # fixes Alice's rotation for her qubit
phi = qBob_output(qB_st, y) # fixes Bob's rotation for his qubit
# The following gates rotate Alice's qubit and Bob's qubit
game.ry(theta,q[0]) #rotates Alice's qubit of an angle theta
game.ry(phi,q[1]) ##rotates Bob's qubit of an angle phi
# These gates are used to measure the value of the qubits
game.measure(q[0], c[0]) # measure Alice's qubit and stores the result in a classical bit
game.measure(q[1], c[1]) # measure Bob's qubit and stores the result in a classical bit
# Assemble the gates in the circuit
circuits = ['game'] # assemble circuit
# executes circuit and store the output of the measurements
result = Q_program.execute(circuits, backend=backend, shots=shots, wait=10, timeout=240)
data = result.get_counts('game') # extract the outcomes and their statistics from the result of the execution
# reads the result of the measurements of the quantum system
for outcomes in data.keys():
out = outcomes
# converts the result of the measurements contained in the classical register as string '00', '01', '10', '11',
# which are the answers of Alice(a) and Bob (b), from a 'string' type to 'integer' type
if(out == '00'):
a = 0
b = 0
if(out == '01'):
a = 1
b = 0
if(out == '10'):
a = 0
b = 1
if(out == '11'):
a = 1
b = 1
# check if the condition for winning the game is met
if(x*y == a^b):
cont_win += 1 # increase thes won games' counter if the condition to win the game is met
cont_tot += 1 # increases the played games' counter
qProb_win = cont_win/cont_tot
print('Alice and Bob won the game with probability: ', qProb_win*100, '%')
if Prob_win > qProb_win :
print("The classical strategy gave Alice and Bob higher chances of winning")
else:
print("The quantum strategy gave Alice and Bob higher chances of winning")
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Tests for qiskit.quantum_info.analysis"""
import unittest
import qiskit
from qiskit import BasicAer
from qiskit.quantum_info.analysis.average import average_data
from qiskit.quantum_info.analysis.make_observable import make_dict_observable
from qiskit.quantum_info.analysis import hellinger_fidelity
from qiskit.test import QiskitTestCase
class TestAnalyzation(QiskitTestCase):
"""Test qiskit.Result API"""
def test_average_data_dict_observable(self):
"""Test average_data for dictionary observable input"""
qr = qiskit.QuantumRegister(2)
cr = qiskit.ClassicalRegister(2)
qc = qiskit.QuantumCircuit(qr, cr, name="qc")
qc.h(qr[0])
qc.cx(qr[0], qr[1])
qc.measure(qr[0], cr[0])
qc.measure(qr[1], cr[1])
shots = 10000
backend = BasicAer.get_backend("qasm_simulator")
result = qiskit.execute(qc, backend, shots=shots).result()
counts = result.get_counts(qc)
observable = {"00": 1, "11": 1, "01": -1, "10": -1}
mean_zz = average_data(counts=counts, observable=observable)
observable = {"00": 1, "11": -1, "01": 1, "10": -1}
mean_zi = average_data(counts, observable)
observable = {"00": 1, "11": -1, "01": -1, "10": 1}
mean_iz = average_data(counts, observable)
self.assertAlmostEqual(mean_zz, 1, places=1)
self.assertAlmostEqual(mean_zi, 0, places=1)
self.assertAlmostEqual(mean_iz, 0, places=1)
def test_average_data_list_observable(self):
"""Test average_data for list observable input."""
qr = qiskit.QuantumRegister(3)
cr = qiskit.ClassicalRegister(3)
qc = qiskit.QuantumCircuit(qr, cr, name="qc")
qc.h(qr[0])
qc.cx(qr[0], qr[1])
qc.cx(qr[0], qr[2])
qc.measure(qr[0], cr[0])
qc.measure(qr[1], cr[1])
qc.measure(qr[2], cr[2])
shots = 10000
backend = BasicAer.get_backend("qasm_simulator")
result = qiskit.execute(qc, backend, shots=shots).result()
counts = result.get_counts(qc)
observable = [1, -1, -1, 1, -1, 1, 1, -1]
mean_zzz = average_data(counts=counts, observable=observable)
observable = [1, 1, 1, 1, -1, -1, -1, -1]
mean_zii = average_data(counts, observable)
observable = [1, 1, -1, -1, 1, 1, -1, -1]
mean_izi = average_data(counts, observable)
observable = [1, 1, -1, -1, -1, -1, 1, 1]
mean_zzi = average_data(counts, observable)
self.assertAlmostEqual(mean_zzz, 0, places=1)
self.assertAlmostEqual(mean_zii, 0, places=1)
self.assertAlmostEqual(mean_izi, 0, places=1)
self.assertAlmostEqual(mean_zzi, 1, places=1)
def test_average_data_matrix_observable(self):
"""Test average_data for matrix observable input."""
qr = qiskit.QuantumRegister(2)
cr = qiskit.ClassicalRegister(2)
qc = qiskit.QuantumCircuit(qr, cr, name="qc")
qc.h(qr[0])
qc.cx(qr[0], qr[1])
qc.measure(qr[0], cr[0])
qc.measure(qr[1], cr[1])
shots = 10000
backend = BasicAer.get_backend("qasm_simulator")
result = qiskit.execute(qc, backend, shots=shots).result()
counts = result.get_counts(qc)
observable = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]
mean_zz = average_data(counts=counts, observable=observable)
observable = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]
mean_zi = average_data(counts, observable)
observable = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]]
mean_iz = average_data(counts, observable)
self.assertAlmostEqual(mean_zz, 1, places=1)
self.assertAlmostEqual(mean_zi, 0, places=1)
self.assertAlmostEqual(mean_iz, 0, places=1)
def test_make_dict_observable(self):
"""Test make_dict_observable."""
list_in = [1, 1, -1, -1]
list_out = make_dict_observable(list_in)
list_expected = {"00": 1, "01": 1, "10": -1, "11": -1}
matrix_in = [[4, 0, 0, 0], [0, -3, 0, 0], [0, 0, 2, 0], [0, 0, 0, -1]]
matrix_out = make_dict_observable(matrix_in)
matrix_expected = {"00": 4, "01": -3, "10": 2, "11": -1}
long_list_in = [1, 1, -1, -1, -1, -1, 1, 1]
long_list_out = make_dict_observable(long_list_in)
long_list_expected = {
"000": 1,
"001": 1,
"010": -1,
"011": -1,
"100": -1,
"101": -1,
"110": 1,
"111": 1,
}
self.assertEqual(list_out, list_expected)
self.assertEqual(matrix_out, matrix_expected)
self.assertEqual(long_list_out, long_list_expected)
def test_hellinger_fidelity_same(self):
"""Test hellinger fidelity is one for same dist."""
qc = qiskit.QuantumCircuit(5, 5)
qc.h(2)
qc.cx(2, 1)
qc.cx(2, 3)
qc.cx(3, 4)
qc.cx(1, 0)
qc.measure(range(5), range(5))
sim = BasicAer.get_backend("qasm_simulator")
res = qiskit.execute(qc, sim).result()
ans = hellinger_fidelity(res.get_counts(), res.get_counts())
self.assertEqual(ans, 1.0)
def test_hellinger_fidelity_no_overlap(self):
"""Test hellinger fidelity is zero for no overlap."""
# ┌───┐ ┌─┐
# q_0: ──────────┤ X ├─────┤M├────────────
# ┌───┐└─┬─┘ └╥┘┌─┐
# q_1: ─────┤ X ├──■────────╫─┤M├─────────
# ┌───┐└─┬─┘ ║ └╥┘┌─┐
# q_2: ┤ H ├──■────■────────╫──╫─┤M├──────
# └───┘ ┌─┴─┐ ║ ║ └╥┘┌─┐
# q_3: ──────────┤ X ├──■───╫──╫──╫─┤M├───
# └───┘┌─┴─┐ ║ ║ ║ └╥┘┌─┐
# q_4: ───────────────┤ X ├─╫──╫──╫──╫─┤M├
# └───┘ ║ ║ ║ ║ └╥┘
# c: 5/═════════════════════╩══╩══╩══╩══╩═
# 0 1 2 3 4
qc = qiskit.QuantumCircuit(5, 5)
qc.h(2)
qc.cx(2, 1)
qc.cx(2, 3)
qc.cx(3, 4)
qc.cx(1, 0)
qc.measure(range(5), range(5))
# ┌───┐ ┌─┐
# q_0: ──────────┤ X ├─────┤M├─────────
# ┌───┐└─┬─┘ └╥┘┌─┐
# q_1: ─────┤ X ├──■────────╫─┤M├──────
# ┌───┐└─┬─┘┌───┐ ║ └╥┘┌─┐
# q_2: ┤ H ├──■──┤ Y ├──■───╫──╫─┤M├───
# └───┘ └───┘┌─┴─┐ ║ ║ └╥┘┌─┐
# q_3: ───────────────┤ X ├─╫──╫──╫─┤M├
# ┌─┐ └───┘ ║ ║ ║ └╥┘
# q_4: ─┤M├─────────────────╫──╫──╫──╫─
# └╥┘ ║ ║ ║ ║
# c: 5/══╩══════════════════╩══╩══╩══╩═
# 4 0 1 2 3
qc2 = qiskit.QuantumCircuit(5, 5)
qc2.h(2)
qc2.cx(2, 1)
qc2.y(2)
qc2.cx(2, 3)
qc2.cx(1, 0)
qc2.measure(range(5), range(5))
sim = BasicAer.get_backend("qasm_simulator")
res1 = qiskit.execute(qc, sim).result()
res2 = qiskit.execute(qc2, sim).result()
ans = hellinger_fidelity(res1.get_counts(), res2.get_counts())
self.assertEqual(ans, 0.0)
if __name__ == "__main__":
unittest.main(verbosity=2)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import BasicAer, transpile, QuantumRegister, ClassicalRegister, QuantumCircuit
qr = QuantumRegister(1)
cr = ClassicalRegister(1)
qc = QuantumCircuit(qr, cr)
qc.h(0)
qc.measure(0, 0)
qc.draw('mpl')
|
https://github.com/nahumsa/Introduction-to-IBM_Qiskit
|
nahumsa
|
%matplotlib inline
# Importing standard Qiskit libraries and configuring account
from qiskit import QuantumCircuit, execute, Aer, IBMQ
from qiskit.compiler import transpile, assemble
from qiskit.tools.jupyter import *
from qiskit.visualization import *
# Loading your IBM Q account(s)
provider = IBMQ.load_account()
from qiskit.aqua.operators import OperatorBase, ListOp, PrimitiveOp, PauliOp
from qiskit.quantum_info import Pauli
from qiskit.aqua.algorithms import VQE, NumPyEigensolver
from qiskit.circuit.library import TwoLocal
from qiskit.aqua.components.optimizers import COBYLA, SPSA, SLSQP
import numpy as np
ansatz = TwoLocal(num_qubits=2,
rotation_blocks=['rx','rz'],
entanglement_blocks='cx',
entanglement='full',
reps=1)
ansatz.draw()
optimizer = SLSQP(maxiter=100)
Op = PauliOp(Pauli(label='II'), 0.5) - PauliOp(Pauli(label='XX'), 0.5) - 0.5*PauliOp(Pauli(label='YY')) + 0.5*PauliOp(Pauli(label='ZZ'))
# Op = PrimitiveOp(primitive=[[1,0],[0,1]], coeff=2.)
# xx = Pauli(label='XX')
# yy = Pauli(label='YY')
# zz = Pauli(label='ZZ')
# ii = Pauli(label='II')
# Op = ListOp([zz,yy,xx, ii], coeff=[0.5,-0.5,-0.5,0.5])
vqe = VQE(Op, ansatz, optimizer)
backend = Aer.get_backend("statevector_simulator")
vqe_result = np.real(vqe.run(backend)['eigenvalue'] )
vqe_result
np.min(np.linalg.eig(Op.to_matrix())[0])
Op.to_matrix()
|
https://github.com/renatawong/quantum-protein-structure-prediction
|
renatawong
|
'''
(C) Copyright Renata Wong 2023.
This code is licensed under the Apache License, Version 2.0. You may obtain a copy of this license
at http://www.apache.org/licenses/LICENSE-2.0.
Any modifications or derivative works of this code must retain this copyright notice, and modified files
need to carry a notice indicating that they have been altered from the originals.
This is the accompanying Qiskit code for the paper
'Fast Quantum Algorithm for Protein Structure Prediction in Hydrophobic-Hydrophilic Model' (DOI: 10.1016/j.jpdc.2022.03.011)
The code works for amino acid sequences of length > 4.
NOTE: This code assumes the sequence 01001 for testing pursposes. Other sequences may require adjustments of variables
num_solutions and j.
'''
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
import numpy as np
import math
'''
Taking in user input of the amino acid sequence.
Bit 0 stands for a hydrophilic amino acid, while bit 1 stands for a hydrophobic amino acid
'''
sequence_input = list(input('Enter a sequence of length at least 5 encoded as a string of 0s and 1s:' ))
length = len(sequence_input)
'''
Quantum register holding the sequence encoding
'''
sequence = QuantumRegister(length,'s')
'''
Quantum registers for each of the three coordinates x, y, and z.
Coordinate order within each register: x0, x1, x2, etc., where x0 is the
x-coordinate of the 1st amino acid, x1 is the x-coordinate of the 2nd amino acid, etc.
Each register holds 2(length - 1) + 1 values.
Each value can therefore be repserented with a minimum of ceil(log2(2*length - 1)) bits.
There are a 'length' number of amino acids in a sequence.
'''
register_length = int(math.ceil(np.log2(2*length-1)))
coord_reg_length = length * register_length
x_coord = QuantumRegister(coord_reg_length, 'x')
y_coord = QuantumRegister(coord_reg_length, 'y')
'''
Quantum register holding the controls w0, w1, etc.
Each w is of length 2.
Amino acid at position (0, 0, 0) is fixed.
Hence, length - 1 amino acids in a sequence require directional information encoded in w.
'''
w = QuantumRegister(2*(length-1), 'w')
'''
Quantum register holding the binary 1, and the two's complement of 1 (= -1).
The two's complement of 1 can be obtained by negating all the qubits in binary one but the last.
NOTE: Encoding coordinates in two's complement notation allows one to treat subtraction as addition
with the same ripple carry circuit.
'''
one_reg_length = int(math.ceil(np.log2(2*length-1)))
binary_one = QuantumRegister(one_reg_length,'one')
'''
Quantum register holding the carry bit for ripple-carry adder
'''
carry = QuantumRegister(1, 'c')
'''
Register holding the Grover auxialliary qubit
'''
g = QuantumRegister(1, 'g')
'''
Classical register holding the output of the quantum computation
'''
output = ClassicalRegister(length+2*(length-1), 'out')#(length + 2*(length-1) + 2*coord_reg_length,'out')
'''
The ancilla register of 3 qubits in needed for the multiplexer (controlled Toffoli gates) in the ripple-carry quantum adder.
'''
ancilla = QuantumRegister(3, 'anc')
'''
Registers for the section FINDING ENERGY VALUES
'''
k_range = length-3
j_range = int((k_range * (k_range+1))/2)
x_star = QuantumRegister(4*j_range*register_length, 'x_st')
y_star = QuantumRegister(4*j_range*register_length, 'y_st')
r_reg = QuantumRegister(4*j_range*(2*register_length + 1), 'r')
delta = QuantumRegister(4*2*j_range, 'delta')
psi = QuantumRegister(4*j_range, 'psi')
'''
Registers for section SUMMING UP ENERGY VALUES.
We create 4 index matrices that hold registers for each of 0 <= p <= 3 in the z_reg to obtain the value for kj in register z.
'''
p0_matrix = [ [ 0 for m in range(4 * (length-4) + 2) ] for n in range(length-2) ]
kj = 0
for k in range(1, length-2):
for j in range(4 * (k-1) + 2):
p0_matrix[k][j] = kj
kj += 1
p1_matrix = [ [ 0 for m in range(4 * (length-4) + 3) ] for n in range(length-2) ]
for k in range(1, length-2):
for j in range(4 * (k-1) + 3):
p1_matrix[k][j] = kj
kj += 1
p2_matrix = [ [ 0 for m in range(4 * (length-4) + 4) ] for n in range(length-2) ]
for k in range(1, length-2):
for j in range(4 * (k-1) + 4):
p2_matrix[k][j] = kj
kj += 1
p3_matrix = [ [ 0 for m in range(4 * (length-4) + 5) ] for n in range(length-2) ]
for k in range(1, length-2):
for j in range(4 * (k-1) + 5):
p3_matrix[k][j] = kj
kj += 1
z = QuantumRegister(kj, 'z') #((4 * length - 12) * (4 * length - 11) / 2, 'z') this value is too low
z_or = QuantumRegister(1, 'z_or') # ancilla qubit for the multiplexer in Fig. 4
z_and = QuantumRegister(1, 'z_and') # ancilla to hold the results of the AND operation
'''
Defining a quantum circuit consisting of the above quantum and classical registers
'''
qc = QuantumCircuit(g, sequence, x_coord, y_coord, w, binary_one, carry, ancilla, x_star, y_star, r_reg, delta, psi,
z, z_or, z_and, output)
'''
SECTION: PREPARING A UNIFORM SUPERPOSITION STATE
Initialisation of sequence values based on user input
'''
for index, bit in enumerate(sequence_input):
if bit == '1':
qc.x(sequence[index])
'''
Initialising binary one and the two's complement of one
'''
qc.x(binary_one[one_reg_length-1])
'''
Setting the quantum state in a uniform superposition wrt. w
'''
qc.h(w[0:2*(length-1)])
'''
Initialization of r_reg
'''
multiplier = int(len(r_reg)/(4*j_range))
for i in range(4*j_range):
qc.x(r_reg[i*multiplier])
'''
Initialize z_or to |1> for cascading OR gates implemented with mcx gate.
'''
qc.x(z_or)
'''
Setting the Grover qubit into the |-> state
'''
qc.x(g)
qc.h(g)
'''
SECTION: CALCULATING COORDINATES
Requires a doubly-controlled ripple-carry adder as a subroutine sc
The adder below is for amino acid sequences of length > 4.
'''
summand_register_length = int(math.ceil(np.log2(2*length-1)))
sw = QuantumRegister(2,'sw') # control qubits (w)
sa = QuantumRegister(3,'sa') # ancilla qubits
ss = QuantumRegister(1,'ss') # carry
sx = QuantumRegister(summand_register_length,'sx') # summand x
sy = QuantumRegister(summand_register_length,'sy') # summand y
sc = QuantumCircuit(sw, sa, ss, sx, sy, name='ccrca')
sc.ccx(sw[0],sw[1],sa[0])
for i in range(1, summand_register_length):
sc.ccx(sa[0],sx[i],sa[1])
sc.cx(sa[1],sy[i])
sc.ccx(sa[0],sx[i],sa[1])
sc.ccx(sa[0],sx[1],sa[1])
sc.cx(sa[1],ss[0])
sc.ccx(sa[0],sx[1],sa[1])
sc.ccx(sa[0],sx[0],sa[1])
sc.ccx(sa[1],sy[0],sa[2])
sc.cx(sa[2],ss[0])
sc.ccx(sa[1],sy[0],sa[2])
sc.ccx(sa[0],sx[0],sa[1])
sc.ccx(sa[0],sx[2],sa[1])
sc.cx(sa[1],sx[1])
sc.ccx(sa[0],sx[2],sa[1])
sc.ccx(sa[0],ss[0],sa[1])
sc.ccx(sa[1],sy[1],sa[2])
sc.cx(sa[2],sx[1])
sc.ccx(sa[1],sy[1],sa[2])
sc.ccx(sa[0],ss[0],sa[1])
sc.ccx(sa[0],sx[3],sa[1])
sc.cx(sa[1],sx[2])
sc.ccx(sa[0],sx[3],sa[1])
for i in range(2, summand_register_length-2):
sc.ccx(sa[0],sy[i],sa[1])
sc.ccx(sa[1],sx[i-1],sa[2])
sc.cx(sa[2],sx[i])
sc.ccx(sa[1],sx[i-1],sa[2])
sc.ccx(sa[0],sy[i],sa[1])
sc.ccx(sa[0],sx[i+2],sa[1])
sc.cx(sa[1],sx[i+1])
sc.ccx(sa[0],sx[i+2],sa[1])
sc.ccx(sa[0],sy[summand_register_length-2],sa[1])
sc.ccx(sa[1],sx[summand_register_length-3],sa[2])
sc.cx(sa[2],sx[summand_register_length-2])
sc.ccx(sa[1],sx[summand_register_length-3],sa[2])
sc.ccx(sa[0],sy[summand_register_length-2],sa[1])
for i in range(1, summand_register_length-1):
sc.cx(sa[0],sy[i])
sc.ccx(sa[0],ss[0],sa[1])
sc.cx(sa[1],sy[1])
sc.ccx(sa[0],ss[0],sa[1])
for i in range(2, summand_register_length):
sc.ccx(sa[0],sx[i-1],sa[1])
sc.cx(sa[1],sy[i])
sc.ccx(sa[0],sx[i-1],sa[1])
sc.ccx(sa[0],sx[summand_register_length-3],sa[1])
sc.ccx(sa[1],sy[summand_register_length-2],sa[2])
sc.cx(sa[2],sx[summand_register_length-2])
sc.ccx(sa[1],sy[summand_register_length-2],sa[2])
sc.ccx(sa[0],sx[summand_register_length-3],sa[1])
for i in range(summand_register_length-3, 1, -1):
sc.ccx(sa[0],sx[i-1],sa[1])
sc.ccx(sa[1],sy[i],sa[2])
sc.cx(sa[2],sx[i])
sc.ccx(sa[1],sy[i],sa[2])
sc.ccx(sa[0],sx[i-1],sa[1])
sc.ccx(sa[0],sx[i+2],sa[1])
sc.cx(sa[1],sx[i+1])
sc.ccx(sa[0],sx[i+2],sa[1])
sc.cx(sa[0],sy[i+1])
sc.ccx(sa[0],ss[0],sa[1])
sc.ccx(sa[1],sy[1],sa[2])
sc.cx(sa[2],sx[1])
sc.ccx(sa[1],sy[1],sa[2])
sc.ccx(sa[0],ss[0],sa[1])
sc.ccx(sa[0],sx[3],sa[1])
sc.cx(sa[1],sx[2])
sc.ccx(sa[0],sx[3],sa[1])
sc.cx(sa[0],sy[2])
sc.ccx(sa[0],sx[0],sa[1])
sc.ccx(sa[1],sy[0],sa[2])
sc.cx(sa[2],ss[0])
sc.ccx(sa[1],sy[0],sa[2])
sc.ccx(sa[0],sx[0],sa[1])
sc.ccx(sa[0],sx[2],sa[1])
sc.cx(sa[1],sx[1])
sc.ccx(sa[0],sx[2],sa[1])
sc.cx(sa[0],sy[1])
sc.ccx(sa[0],sx[1],sa[1])
sc.cx(sa[1],ss[0])
sc.ccx(sa[0],sx[1],sa[1])
for i in range(summand_register_length):
sc.ccx(sa[0],sx[i],sa[1])
sc.cx(sa[1],sy[i])
sc.ccx(sa[0],sx[i],sa[1])
sc.ccx(sw[0],sw[1],sa[0])
subinst = sc.to_instruction()
'''
Ripple-carry adder without control qubits |w>
'''
ssr = QuantumRegister(1,'ssr') # carry
sxr = QuantumRegister(summand_register_length,'sxr') # summand x
syr = QuantumRegister(summand_register_length,'syr') # summand y
rca = QuantumCircuit(ssr, sxr, syr, name='rca')
for i in range(1, summand_register_length):
rca.cx(sxr[1],syr[i])
rca.cx(sxr[1],ssr[0])
rca.ccx(sxr[0],syr[0],ssr[0])
rca.cx(sxr[2],sxr[1])
rca.ccx(ssr[0],syr[1],sxr[1])
rca.cx(sxr[3],sxr[2])
for i in range(2, summand_register_length-2):
rca.ccx(syr[i],sxr[i-1],sxr[i])
rca.cx(sxr[i+2],sxr[i+1])
rca.ccx(syr[summand_register_length-2],sxr[summand_register_length-3],sxr[summand_register_length-2])
for i in range(1, summand_register_length-1):
rca.x(syr[i])
rca.cx(ssr[0],syr[1])
for i in range(2, summand_register_length):
rca.cx(sxr[i-1],syr[i])
rca.ccx(sxr[summand_register_length-3],syr[summand_register_length-2],sxr[summand_register_length-2])
for i in range(summand_register_length-3, 1, -1):
rca.ccx(sxr[i-1],syr[i],sxr[i])
rca.cx(sxr[i+2],sxr[i+1])
rca.cx(sxr[i+2],syr[i+1])
rca.ccx(ssr[0],syr[1],sxr[1])
rca.cx(sxr[3],sxr[2])
rca.x(syr[2])
rca.ccx(sxr[0],syr[0],ssr[0])
rca.cx(sxr[2],sxr[1])
rca.x(syr[1])
rca.cx(sxr[1],ssr[0])
for i in range(summand_register_length):
rca.cx(sxr[i],syr[i])
subinst_rca = rca.to_instruction()
'''
AMPLITUDE AMPLIFICATION PROCEDURE:
Calculation of coordinates using the ripple-carry adder
b is a global variable used to navigate among the values of vector w.
d stands for the position of an amino acid in a sequence.
MODIFY NUMBER OF SOLUTIONS num_solutions FOR DIFFERENT SEQUENCES.
'''
num_solutions = 8
num_iter = int(math.ceil(np.pi*(np.sqrt(2**(2*(length-1)/num_solutions)))/4)) # Number of iterations
def calculate_neighbour(register, b, d):
arglist = []
arglist.append(w[b])
arglist.append(w[b+1])
for i in range(len(ancilla)):
arglist.append(ancilla[i])
arglist.append(carry[0])
for i in range(summand_register_length-1, -1, -1): # digit order reversed for adder
arglist.append(binary_one[i])
for i in range(d*summand_register_length-1, (d-1)*summand_register_length-1, -1): # digit order reversed for adder
arglist.append(register[i])
return arglist
def update_coordinates(register_1, register_2):
arglist = []
arglist.append(carry[0])
for i in range(summand_register_length-1, -1, -1): # digit order reversed for adder
arglist.append(register_1[i])
reg = len(register_2)
for i in reversed(range(reg)): # digit order reversed for adder
arglist.append(register_2[i])
return arglist
'''
THIS IS THE MAIN PART OF THE CODE.
'''
for grover_iteration in range(num_iter):
b = 0
# Subroutine 1: Generating conformational space by calculating coordinates
# This part has been tested and performs correctly
for d in range(2, length+1):
for q in range(summand_register_length):
qc.cx(x_coord[(d-2)*summand_register_length+q],x_coord[(d-1)*summand_register_length+q])
qc.cx(y_coord[(d-2)*summand_register_length+q],y_coord[(d-1)*summand_register_length+q])
'''
Calculating the western neighbour of site d-1 (this is the case when |w> = |11>)
'''
for i in range(summand_register_length-1):
qc.x(binary_one[i])
neighbour_west = calculate_neighbour(x_coord, b, d)
qc.append(subinst, neighbour_west)
for i in range(summand_register_length-1):
qc.x(binary_one[i])
'''
Calculating the eastern neighbour of site d-1 (this is the case when |w> = |01>)
'''
qc.x(w[b])
neighbour_east = calculate_neighbour(x_coord, b, d)
qc.append(subinst, neighbour_east)
qc.x(w[b])
'''
Calculating the northern neighbour of site d-1 (this is the case when |w> = |00>)
'''
qc.x(w[b])
qc.x(w[b+1])
neighbour_north = calculate_neighbour(y_coord, b, d)
qc.append(subinst, neighbour_north)
qc.x(w[b])
qc.x(w[b+1])
'''
Calculating the southern neighbour of site d-1 (this is the case when |w> = |10>)
'''
qc.x(w[b+1])
for i in range(summand_register_length-1):
qc.x(binary_one[i])
neighbour_south = calculate_neighbour(x_coord, b, d)
qc.append(subinst, neighbour_south)
for i in range(summand_register_length-1):
qc.x(binary_one[i])
qc.x(w[b+1])
b = b+2
'''
SECTION: FINDING ENERGY VALUES
For the conformation that corresponds to the ground energy of the protein, the energy value will be e = 1,
while e = 0 for all other confornations.
The energy is calculated based on the number of hydrophobic-hydrophobic contacts in the lattice.
For each such contact, a 1 is added to the energy value for the given conformation.
New registers for calculating energy values based on the coordinates x and y: |x_star> and |y_star>.
Register r_reg stores the result of coordinate comparison between sites k and j.
Register delta stores the information as to whether the k-th and j-th lattice sites are both hydrophobic and form a
loose contact (i.e., are adjacent in the lattice but not in the sequence).
At the end of the computation, vector psi contains all the information about hydrophobic-hydrophobic contacts:
psi(k, j, p) = |1> iff amino acid k and amino acid j, where j is p-neighbour of k, are both hydrophobic and have
a contact in the lattice but not in the sequence.
'''
# star_matrix: 3D array to hold the |x_star> and y_star indices
# r_matrix: 3D array to hold the indices for r_reg
# delta_matrix: 3D array to hold pairs of delta indices
# psi_matrix: 3D array to hold psi indices.
# All indexed in the coding convention, i.e. from 0 to n-1 instead of from 1 to n.
star_matrix = [[[0 for k in range(length)] for j in range(length)] for p in range(4)]
r_matrix = [[[0 for k in range(length)] for j in range(length)] for p in range(4)]
delta_matrix = [[[0 for k in range(length)] for j in range(length)] for p in range(4)]
psi_matrix = [[[0 for k in range(length)] for j in range(length)] for p in range(4)]
star_index, r_index, delta_index, psi_index = 0, 0, 0, 0
for k in range(length-3):
for j in range(k+3, length):
for p in range(4):
star_matrix[k][j][p] = [m for m in range(star_index, star_index + register_length)]
star_index += register_length
r_matrix[k][j][p] = [m for m in range(r_index, r_index + 2*register_length + 1)]
r_index += 2 * register_length + 1
delta_matrix[k][j][p] = (delta_index, delta_index+1)
delta_index += 2
psi_matrix[k][j][p] = psi_index
psi_index += 1
#The code below has not been tested within the algorithm but the indices are assigned correctly and so it should work
for k in range(length-3):
for j in range(k+3, length):
for p in range(4):
for r in range(register_length):
qc.cx(x_coord[k+r], x_star[star_matrix[k][j][p][r]])
qc.cx(y_coord[k+r], y_star[star_matrix[k][j][p][r]])
if p == 0:
neighbour_north = update_coordinates(binary_one, [y_star[star_matrix[k][j][p][r]]
for r in range(register_length)])
qc.append(subinst_rca, neighbour_north)
if p == 1:
neighbour_east = update_coordinates(binary_one, [x_star[star_matrix[k][j][p][r]]
for r in range(register_length)])
qc.append(subinst_rca, neighbour_east)
if p == 2:
for i in range(summand_register_length-1):
qc.x(binary_one[i])
neighbour_south = update_coordinates(binary_one, [y_star[star_matrix[k][j][p][r]]
for r in range(register_length)])
qc.append(subinst_rca, neighbour_south)
for i in range(summand_register_length-1):
qc.x(binary_one[i])
if p == 3:
for i in range(summand_register_length-1):
qc.x(binary_one[i])
neighbour_west = update_coordinates(binary_one, [x_star[star_matrix[k][j][p][r]]
for r in range(register_length)])
qc.append(subinst_rca, neighbour_west)
for i in range(summand_register_length-1):
qc.x(binary_one[i])
for r in range(register_length):
qc.cx(x_coord[j+r], x_star[star_matrix[k][j][p][r]])
qc.cx(y_coord[j+r], y_star[star_matrix[k][j][p][r]])
# rows 13 to 19
for r in range(register_length):
qc.x(y_star[star_matrix[k][j][p][r]])
qc.x(x_star[star_matrix[k][j][p][r]])
qc.ccx(y_star[star_matrix[k][j][p][0]], r_reg[r_matrix[k][j][p][0]], r_reg[r_matrix[k][j][p][1]])
for r in reversed(range(1, register_length)):
qc.ccx(y_star[star_matrix[k][j][p][r]], r_reg[r_matrix[k][j][p][r]], r_reg[r_matrix[k][j][p][r+1]])
for r in reversed(range(register_length, 2*register_length)):
qc.ccx(x_star[star_matrix[k][j][p][r-register_length]], r_reg[r_matrix[k][j][p][r]],
r_reg[r_matrix[k][j][p][r+1]])
for r in range(register_length):
qc.x(y_star[star_matrix[k][j][p][r]])
qc.x(x_star[star_matrix[k][j][p][r]])
# row 20 onwards
qc.ccx(sequence[k], r_reg[r_matrix[k][j][p][2*register_length]], delta[delta_matrix[k][j][p][0]])
qc.ccx(sequence[j], delta[delta_matrix[k][j][p][0]], delta[delta_matrix[k][j][p][1]])
qc.cx(delta[delta_matrix[k][j][p][1]], psi[psi_matrix[k][j][p]])
'''
Uncomputing calculation of H-H contacts (stored in vector psi) to free up qubits
'''
#This part has not been tested due to running out of memory. But should be correct.
for k in reversed(range(length-3)):
for j in reversed(range(k+3, length)):
for p in reversed(range(3)):
qc.ccx(sequence[j], delta[delta_matrix[k][j][p][0]], delta[delta_matrix[k][j][p][1]])
qc.ccx(sequence[k], r_reg[r_matrix[k][j][p][2*register_length]], delta[delta_matrix[k][j][p][0]])
for r in range(register_length):
qc.x(y_star[star_matrix[k][j][p][r]])
qc.x(x_star[star_matrix[k][j][p][r]])
for r in range(register_length, 2*register_length):
qc.ccx(x_star[star_matrix[k][j][p][r-register_length]], r_reg[r_matrix[k][j][p][r]],
r_reg[r_matrix[k][j][p][r+1]])
for r in range(1, register_length):
qc.ccx(y_star[star_matrix[k][j][p][r]], r_reg[r_matrix[k][j][p][r]], r_reg[r_matrix[k][j][p][r+1]])
qc.ccx(y_star[star_matrix[k][j][p][0]], r_reg[r_matrix[k][j][p][0]], r_reg[r_matrix[k][j][p][1]])
for r in range(register_length):
qc.x(y_star[star_matrix[k][j][p][r]])
qc.x(x_star[star_matrix[k][j][p][r]])
for r in reversed(range(register_length)):
qc.cx(x_coord[j+r], x_star[star_matrix[k][j][p][r]])
qc.cx(y_coord[j+r], y_star[star_matrix[k][j][p][r]])
if p == 0:
neighbour_north = update_coordinates(binary_one, [y_star[star_matrix[k][j][p][r]]
for r in range(register_length)])
qc.append(subinst_rca, neighbour_north)
if p == 1:
neighbour_east = update_coordinates(binary_one, [x_star[star_matrix[k][j][p][r]]
for r in range(register_length)])
qc.append(subinst_rca, neighbour_east)
if p == 2:
for i in range(summand_register_length-1):
qc.x(binary_one[i])
neighbour_south = update_coordinates(binary_one, [y_star[star_matrix[k][j][p][r]]
for r in range(register_length)])
qc.append(subinst_rca, neighbour_south)
for i in range(summand_register_length-1):
qc.x(binary_one[i])
if p == 3:
for i in range(summand_register_length-1):
qc.x(binary_one[i])
neighbour_west = update_coordinates(binary_one, [x_star[star_matrix[k][j][p][r]]
for r in range(register_length)])
qc.append(subinst_rca, neighbour_west)
for i in range(summand_register_length-1):
qc.x(binary_one[i])
for r in reversed(range(register_length)):
qc.cx(x_coord[k+r], x_star[star_matrix[k][j][p][r]])
qc.cx(y_coord[k+r], y_star[star_matrix[k][j][p][r]])
# This part has been tested and performs correctly
'''
# Reversing coordinate calculation
'''
b = b-2
for d in range (length, 1, -1):
# Uncomputing the western neighbour of site d-1 (|w> = |11>)
for i in range(summand_register_length-1):
qc.x(binary_one[i])
neighbour_west = calculate_neighbour(x_coord, b, d)
qc.append(subinst.inverse(), neighbour_west)
for i in range(summand_register_length-1):
qc.x(binary_one[i])
# Uncomputing the eastern neighbour of site d-1 (|w> = |01>)
qc.x(w[b])
neighbour_east = calculate_neighbour(x_coord, b, d)
qc.append(subinst.inverse(), neighbour_east)
qc.x(w[b])
# Uncomputing the northern neighbour of site d-1 (|w> = |00>)
qc.x(w[b])
qc.x(w[b+1])
neighbour_north = calculate_neighbour(y_coord, b, d)
qc.append(subinst.inverse(), neighbour_north)
qc.x(w[b])
qc.x(w[b+1])
# Uncomputing the southern neighbour of site d-1 (|w> = |10>)
qc.x(w[b+1])
for i in range(summand_register_length-1):
qc.x(binary_one[i])
neighbour_south = calculate_neighbour(x_coord, b, d)
qc.append(subinst.inverse(), neighbour_south)
for i in range(summand_register_length-1):
qc.x(binary_one[i])
qc.x(w[b+1])
b = b-2
for q in range(summand_register_length-1, -1, -1):
qc.cx(x_coord[(d-2)*summand_register_length+q],x_coord[(d-1)*summand_register_length+q])
qc.cx(y_coord[(d-2)*summand_register_length+q],y_coord[(d-1)*summand_register_length+q])
'''
SUMMING UP ENERGY VALUES IN PSI = THIS IS THE CRUCIAL ORACLE PART
STORING THE SUM OF ENERGIES IN VECTOR Z_{length-3, 3, j}
FLIPPING THE BIT ON GROVER QUBIT g FOR THE LARGEST ENERGY VALUE
p0_matrix = [ [ 0 for m in range(4 * (length-4) + 2) ] for n in range(length-2) ]
kj = 0
for k in range(1, length-2):
for j in range(4 * (k-1) + 2):
p0_matrix[k][j] = kj
kj += 1
p1_matrix = [ [ 0 for m in range(4 * (length-4) + 3) ] for n in range(length-2) ]
for k in range(1, length-2):
for j in range(4 * (k-1) + 3):
p1_matrix[k][j] = kj
kj += 1
p2_matrix = [ [ 0 for m in range(4 * (length-4) + 4) ] for n in range(length-2) ]
for k in range(1, length-2):
for j in range(4 * (k-1) + 4):
p2_matrix[k][j] = kj
kj += 1
p3_matrix = [ [ 0 for m in range(4 * (length-4) + 5) ] for n in range(length-2) ]
for k in range(1, length-2):
for j in range(4 * (k-1) + 5):
p3_matrix[k][j] = kj
kj += 1
'''
# Adding up the energies.
# The energies for each conformation are stored in qubits z_{length-3, 3, j}.
# If j = 0, there are no HH contacts and the energy is 0.
# If j = 1, there is 1 HH contact and, hence, the energy is 1. And so on.
for k in range(length-3):
for p in range(4):
multiplexer = [psi[psi_matrix[k][i][p]] for i in range(k+3, length)]
for j in reversed(range(4*k + p + 1)):
if p == 0:
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
qc.mcx(multiplexer, z_or)
qc.ccx(z_or, z[p3_matrix[k][3]], z_and)
qc.cx(z_and, z[p0_matrix[k+1][j+1]])
# uncomputing to reuse the z_or and z_and ancillas
qc.ccx(z_or, z[p3_matrix[k][3]], z_and)
qc.mcx(multiplexer, z_or)
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
qc.mcx(multiplexer, z_or)
qc.x(z_or)
qc.ccx(z_or, z[p3_matrix[k][3]], z_and)
qc.cx(z_and, z[p0_matrix[k+1][j]])
qc.ccx(z_or, z[p3_matrix[k][3]], z_and)
qc.x(z_or)
qc.mcx(multiplexer, z_or)
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
elif p == 1:
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
qc.mcx(multiplexer, z_or)
qc.ccx(z_or, z[p0_matrix[k+1][j]], z_and)
qc.cx(z_and, z[p1_matrix[k+1][j+1]])
qc.ccx(z_or, z[p0_matrix[k+1][j]], z_and)
qc.mcx(multiplexer, z_or)
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
qc.mcx(multiplexer, z_or)
qc.x(z_or)
qc.ccx(z_or, z[p0_matrix[k+1][j]], z_and)
qc.cx(z_and, z[p1_matrix[k+1][j]])
qc.ccx(z_or, z[p0_matrix[k+1][j]], z_and)
qc.x(z_or)
qc.mcx(multiplexer, z_or)
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
elif p == 2:
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
qc.mcx(multiplexer, z_or)
qc.ccx(z_or, z[p1_matrix[k+1][j]], z_and)
qc.cx(z_and, z[p2_matrix[k+1][j+1]])
qc.ccx(z_or, z[p1_matrix[k+1][j]], z_and)
qc.mcx(multiplexer, z_or)
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
qc.mcx(multiplexer, z_or)
qc.x(z_or)
qc.ccx(z_or, z[p1_matrix[k+1][j]], z_and)
qc.cx(z_and, z[p2_matrix[k+1][j]])
qc.ccx(z_or, z[p1_matrix[k+1][j]], z_and)
qc.x(z_or)
qc.mcx(multiplexer, z_or)
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
elif p == 3:
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
qc.mcx(multiplexer, z_or)
qc.ccx(z_or, z[p2_matrix[k+1][j]], z_and)
qc.cx(z_and, z[p3_matrix[k+1][j+1]])
qc.ccx(z_or, z[p2_matrix[k+1][j]], z_and)
qc.mcx(multiplexer, z_or)
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
qc.mcx(multiplexer, z_or)
qc.x(z_or)
qc.ccx(z_or, z[p2_matrix[k+1][j]], z_and)
qc.cx(z_and, z[p3_matrix[k+1][j]])
qc.ccx(z_or, z[p2_matrix[k+1][j]], z_and)
qc.x(z_or)
qc.mcx(multiplexer, z_or)
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
# This is the crucial part of the oracle
# WE ASSUME j = 1 SINCE WE ASSUME THAT OUR SEQUENCE IS 01001,
# i.e. second and fifth amino acids are hydrophobic, first, third and fourth are hydrophilic.
# PARAMETER j IS ADJUSTABLE.
j = 1
qc.cx(z[p3_matrix[length-3][j]], g)
# Uncomputing the summation of energy
for k in reversed(range(length-3)):
for p in reversed(range(4)):
multiplexer = [psi[psi_matrix[k][i][p]] for i in range(k+3, length)]
for j in range(4*k + p + 1):
if p == 0:
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
qc.mcx(multiplexer, z_or)
qc.ccx(z_or, z[p3_matrix[k][3]], z_and)
qc.cx(z_and, z[p0_matrix[k+1][j+1]])
# uncomputing to reuse the z_or and z_and ancillas
qc.ccx(z_or, z[p3_matrix[k][3]], z_and)
qc.mcx(multiplexer, z_or)
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
qc.mcx(multiplexer, z_or)
qc.x(z_or)
qc.ccx(z_or, z[p3_matrix[k][3]], z_and)
qc.cx(z_and, z[p0_matrix[k+1][j]])
qc.ccx(z_or, z[p3_matrix[k][3]], z_and)
qc.x(z_or)
qc.mcx(multiplexer, z_or)
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
elif p == 1:
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
qc.mcx(multiplexer, z_or)
qc.ccx(z_or, z[p0_matrix[k+1][j]], z_and)
qc.cx(z_and, z[p1_matrix[k+1][j+1]])
qc.ccx(z_or, z[p0_matrix[k+1][j]], z_and)
qc.mcx(multiplexer, z_or)
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
qc.mcx(multiplexer, z_or)
qc.x(z_or)
qc.ccx(z_or, z[p0_matrix[k+1][j]], z_and)
qc.cx(z_and, z[p1_matrix[k+1][j]])
qc.ccx(z_or, z[p0_matrix[k+1][j]], z_and)
qc.x(z_or)
qc.mcx(multiplexer, z_or)
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
elif p == 2:
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
qc.mcx(multiplexer, z_or)
qc.ccx(z_or, z[p1_matrix[k+1][j]], z_and)
qc.cx(z_and, z[p2_matrix[k+1][j+1]])
qc.ccx(z_or, z[p1_matrix[k+1][j]], z_and)
qc.mcx(multiplexer, z_or)
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
qc.mcx(multiplexer, z_or)
qc.x(z_or)
qc.ccx(z_or, z[p1_matrix[k+1][j]], z_and)
qc.cx(z_and, z[p2_matrix[k+1][j]])
qc.ccx(z_or, z[p1_matrix[k+1][j]], z_and)
qc.x(z_or)
qc.mcx(multiplexer, z_or)
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
elif p == 3:
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
qc.mcx(multiplexer, z_or)
qc.ccx(z_or, z[p2_matrix[k+1][j]], z_and)
qc.cx(z_and, z[p3_matrix[k+1][j+1]])
qc.ccx(z_or, z[p2_matrix[k+1][j]], z_and)
qc.mcx(multiplexer, z_or)
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
qc.mcx(multiplexer, z_or)
qc.x(z_or)
qc.ccx(z_or, z[p2_matrix[k+1][j]], z_and)
qc.cx(z_and, z[p3_matrix[k+1][j]])
qc.ccx(z_or, z[p2_matrix[k+1][j]], z_and)
qc.x(z_or)
qc.mcx(multiplexer, z_or)
for index, qubit in enumerate(multiplexer):
qc.x(multiplexer[index])
'''
SECTION: IDENTIFYING THE CONFORMATION WITH THE MINIMAL ENERGY
Using Grover's diffusion operation on register w
'''
for i in range(len(w)):
qc.h(w[i])
qc.x(w[i])
multiplexer = [w[i] for i in range(len(w) - 1)]
qc.h(w[len(w) - 1])
qc.mcx(multiplexer, w[len(w) - 1])
qc.h(w[len(w) - 1])
for i in range(len(w)):
qc.x(w[i])
qc.h(w[i])
'''
MEASUREMENT.
WE ASSUME THAT THE AMINO ACID SEQUENCE IS PHPPH = 01001.
HENCE, WE ARE EXPECTING TO SEE THE FOLLOWING VALUES IN THE CHART:
01011011
01101111
00000110
00001110
11111001
11110001
10100100
10101100
'''
conformations = []
for i in range(length):
conformations.append(sequence[i])
for i in range(2*(length-1)):
conformations.append(w[i])
# Reverse the order in which the output is shown so that it can be read from left to right.
conformations.reverse()
qc.measure(conformations, output)
from qiskit import Aer, execute
#from qiskit.providers.aer import QasmSimulator, StatevectorSimulator
simulator = Aer.get_backend('qasm_simulator')
result = execute(qc, backend = simulator, shots = 10).result()
counts = result.get_counts()
#statevector = result.get_statevector(qc)
#print(statevector)
#from qiskit.tools.visualization import plot_histogram
#plot_histogram(counts)
print(counts, sep='\n')
qc.draw('mpl')
|
https://github.com/mvicenzi/grover-qiskit
|
mvicenzi
|
import numpy as np
# Importing standard Qiskit libraries
from qiskit import QuantumCircuit, transpile, Aer, IBMQ
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from ibm_quantum_widgets import *
from qiskit.providers.aer import QasmSimulator
# Loading your IBM Quantum account(s)
provider = IBMQ.load_account()
from qiskit.circuit.library.standard_gates import XGate, HGate
from operator import *
n = 3
N = 8 #2**n
index_colour_table = {}
colour_hash_map = {}
index_colour_table = {'000':"yellow", '001':"red", '010':"blue", '011':"red", '100':"green", '101':"blue", '110':"orange", '111':"red"}
colour_hash_map = {"yellow":'100', "red":'011', "blue":'000', "green":'001', "orange":'010'}
def database_oracle(index_colour_table, colour_hash_map):
circ_database = QuantumCircuit(n + n)
for i in range(N):
circ_data = QuantumCircuit(n)
idx = bin(i)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion
colour = index_colour_table[idx]
colour_hash = colour_hash_map[colour][::-1]
for j in range(n):
if colour_hash[j] == '1':
circ_data.x(j)
# qiskit maps the rightmost bit as the 0th qubit -> qn, ..., q0
# we therefore reverse the index string -> q0, ..., qn
data_gate = circ_data.to_gate(label=colour).control(num_ctrl_qubits=n, ctrl_state=idx, label="index-"+colour)
circ_database.append(data_gate, list(range(n+n)))
return circ_database
# drawing the database oracle circuit
print("Database Encoding")
database_oracle(index_colour_table, colour_hash_map).draw()
circ_data = QuantumCircuit(n)
m = 4
idx = bin(m)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion
colour = index_colour_table[idx]
colour_hash = colour_hash_map[colour][::-1]
for j in range(n):
if colour_hash[j] == '1':
circ_data.x(j)
print("Internal colour encoding for the colour green (as an example)");
circ_data.draw()
def oracle_grover(database, data_entry):
circ_grover = QuantumCircuit(n + n + 1)
circ_grover.append(database, list(range(n+n)))
target_reflection_gate = XGate().control(num_ctrl_qubits=n, ctrl_state=colour_hash_map[data_entry], label="Reflection of " + "\"" + data_entry + "\" Target")
# control() missing 1 required positional argument: 'self' .... if only 'XGate' used instead of 'XGate()'
# The “missing 1 required positional argument: 'self'” error is raised when you do not instantiate an object of a class before calling a class method. This error is also raised when you incorrectly instantiate a class.
circ_grover.append(target_reflection_gate, list(range(n, n+n+1)))
circ_grover.append(database, list(range(n+n)))
return circ_grover
print("Grover Oracle (target example: orange)")
oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), "orange").decompose().draw()
def mcz_gate(num_qubits):
num_controls = num_qubits - 1
mcz_gate = QuantumCircuit(num_qubits)
target_mcz = QuantumCircuit(1)
target_mcz.z(0)
target_mcz = target_mcz.to_gate(label="Z_Gate").control(num_ctrl_qubits=num_controls, ctrl_state=None, label="MCZ")
mcz_gate.append(target_mcz, list(range(num_qubits)))
return mcz_gate.reverse_bits()
print("Multi-controlled Z (MCZ) Gate")
mcz_gate(n).decompose().draw()
def diffusion_operator(num_qubits):
circ_diffusion = QuantumCircuit(num_qubits)
qubits_list = list(range(num_qubits))
# Layer of H^n gates
circ_diffusion.h(qubits_list)
# Layer of X^n gates
circ_diffusion.x(qubits_list)
# Layer of Multi-controlled Z (MCZ) Gate
circ_diffusion = circ_diffusion.compose(mcz_gate(num_qubits), qubits_list)
# Layer of X^n gates
circ_diffusion.x(qubits_list)
# Layer of H^n gates
circ_diffusion.h(qubits_list)
return circ_diffusion
print("Diffusion Circuit")
diffusion_operator(n).draw()
# Putting it all together ... !!!
item = "green"
print("Searching for the index of the colour", item)
circuit = QuantumCircuit(n + n + 1, n)
circuit.x(n + n)
circuit.barrier()
circuit.h(list(range(n)))
circuit.h(n+n)
circuit.barrier()
unitary_oracle = oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), item).to_gate(label="Oracle Operator")
unitary_diffuser = diffusion_operator(n).to_gate(label="Diffusion Operator")
M = countOf(index_colour_table.values(), item)
Q = int(np.pi * np.sqrt(N/M) / 4)
for i in range(Q):
circuit.append(unitary_oracle, list(range(n + n + 1)))
circuit.append(unitary_diffuser, list(range(n)))
circuit.barrier()
circuit.measure(list(range(n)), list(range(n)))
circuit.draw()
backend_sim = Aer.get_backend('qasm_simulator')
job_sim = backend_sim.run(transpile(circuit, backend_sim), shots=1024)
result_sim = job_sim.result()
counts = result_sim.get_counts(circuit)
if M==1:
print("Index of the colour", item, "is the index with most probable outcome")
else:
print("Indices of the colour", item, "are the indices the most probable outcomes")
from qiskit.visualization import plot_histogram
plot_histogram(counts)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
# Create a circuit with a register of three qubits
circ = QuantumCircuit(3)
# H gate on qubit 0, putting this qubit in a superposition of |0> + |1>.
circ.h(0)
# A CX (CNOT) gate on control qubit 0 and target qubit 1 generating a Bell state.
circ.cx(0, 1)
# CX (CNOT) gate on control qubit 0 and target qubit 2 resulting in a GHZ state.
circ.cx(0, 2)
# Draw the circuit
circ.draw('mpl')
|
https://github.com/liyaochong/quantum-algorithm-learning-and-implementation
|
liyaochong
|
# 导入相应的运算库
import numpy as np
from math import pi
from qiskit import BasicAer, execute
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute
from qiskit.tools.visualization import circuit_drawer
# 定义相应的量子寄存器,并添加至电路当中去
# q0寄存器表示地址寄存器
q0 = QuantumRegister(2,'q0')
c0 = ClassicalRegister(2,'c0')
# q1寄存器表示数据寄存器,寄存器的位数表示计算的精度,这里设置为3,最后误差在0.125以内
q1 = QuantumRegister(4,'q1')
c1 = ClassicalRegister(4,'c1')
# q2寄存器表示执行量子算数的的目标寄存器,位数一般与q1寄存器相同
q2 = QuantumRegister(4,'q2')
c2 = ClassicalRegister(4,'c2')
# q3寄存器用来做辅助量子比特,执行系列的受控旋转操作
q3 = QuantumRegister(1,'q3')
c3 = ClassicalRegister(1,'c3')
# 定义一个量子电路对象
Circuit = QuantumCircuit()
# 往寄存器中添加4个量子寄存器
Circuit.add_register(q0,c0)
Circuit.add_register(q1,c1)
Circuit.add_register(q2,c2)
Circuit.add_register(q3,c3)
# 添加量子门操作,注意这里的命名方式为最低有效位
# 执行H门操作,将地址寄存器q0张开,分叉存储,由于两个数据只需要用1个量子比特进行表示
Circuit.h(q0[0])
Circuit.h(q0[1])
# 写入数据至q1寄存器,更为通用的采用的是QRAM算法,或者其他数据制备算法,注意这里的数据用基态表示,本质上以经典的形式出现
Circuit.barrier()
Circuit.cx(q0[0],q1[0])
Circuit.x(q1[1])
Circuit.x(q0[0])
Circuit.ccx(q0[0],q0[1],q1[2])
Circuit.x(q0[0])
Circuit.cx(q0[1],q1[3])
# 这里执行的量子算数运算,进行的是类似一个函数的运算过程
Circuit.barrier()
Circuit.x(q1[0])
Circuit.cx(q1[0],q2[0])
Circuit.x(q1[0])
Circuit.x(q1[2])
Circuit.ccx(q1[1],q1[2],q2[1])
Circuit.x(q1[2])
Circuit.x(q2[2])
Circuit.x(q1[0])
Circuit.x(q1[2])
Circuit.ccx(q1[0],q1[2],q2[2])
Circuit.x(q1[0])
Circuit.x(q1[2])
Circuit.x(q2[3])
Circuit.x(q1[2])
Circuit.ccx(q1[2],q1[3],q2[3])
Circuit.x(q1[2])
# 执行受控旋转操作,将数据从函数运算的输出,加载到概率幅度上
Circuit.barrier()
Circuit.cu3(pi/2, 0, 0, q2[0], q3)
Circuit.cu3(pi/4, 0, 0, q2[1], q3)
Circuit.cu3(pi/8, 0, 0, q2[2], q3)
Circuit.cu3(pi/16, 0, 0, q2[3], q3)
# 执行量子算数运算的解运算过程
Circuit.barrier()
Circuit.x(q1[2])
Circuit.ccx(q1[2],q1[3],q2[3])
Circuit.x(q1[2])
Circuit.x(q2[3])
Circuit.x(q1[2])
Circuit.x(q1[0])
Circuit.ccx(q1[0],q1[2],q2[2])
Circuit.x(q1[2])
Circuit.x(q1[0])
Circuit.x(q2[2])
Circuit.x(q1[2])
Circuit.ccx(q1[1],q1[2],q2[1])
Circuit.x(q1[2])
Circuit.x(q1[0])
Circuit.cx(q1[0],q2[0])
Circuit.x(q1[0])
# 执行数据的量子制备过程的逆变换(IQRAM),完成解运算
Circuit.barrier()
Circuit.cx(q0[1],q1[3])
Circuit.x(q0[0])
Circuit.ccx(q0[0],q0[1],q1[2])
Circuit.x(q0[0])
Circuit.x(q1[1])
Circuit.cx(q0[0],q1[0])
#Circuit.h(q0[0])
#Circuit.h(q0[1])
# 添加测量操作,量子寄存器关联相应的经典寄存器
Circuit.barrier()
Circuit.measure(q0,c0)
Circuit.measure(q1,c1)
Circuit.measure(q2,c2)
Circuit.measure(q3,c3)
# 绘制整个量子电路图
Circuit.draw(output='mpl')
# 使用 Aer's qasm_simulator
backend_sim = BasicAer.get_backend('qasm_simulator')
# 执行量子仿真器
job_sim = execute(Circuit, backend_sim, shots=8096)
# 获得结果
result_sim = job_sim.result()
counts = result_sim.get_counts(Circuit)
# 打印结果输出
print(counts)
|
https://github.com/CodeJP97/QHT-2022-WoQ
|
CodeJP97
|
import numpy as np
# Importing standard Qiskit libraries
from qiskit.quantum_info import Statevector
from qiskit import QuantumCircuit, transpile, Aer, IBMQ, assemble
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from ibm_quantum_widgets import *
# Loading your IBM Quantum account(s)
provider = IBMQ.load_account()
## X-gate
# FILL IN YOUR CODE HERE
# Keep theta<=np.pi
theta = np.pi
phi = 0
lam = np.pi
#ex1_validation([theta, phi,lam])
## Z-gate
# FILL IN YOUR CODE HERE
theta = 0
phi = np.pi
lam = 0
#ex2_validation([theta, phi,lam])
## Y-gate
# FILL IN YOUR CODE HERE
theta = np.pi
phi = np.pi/2
lam = np.pi/2
#ex3_validation([theta, phi,lam])
## Hadamard
# FILL IN YOUR CODE HERE
theta = np.pi/2
phi = 0
lam = np.pi
#ex4_validation([theta, phi, lam])
## Which rotation corresponds to the gate set H-Y-S-T ?
#Circuit:
qc=QuantumCircuit(1)
qc.h(0)
qc.y(0)
qc.s(0)
qc.t(0)
##FILL IN YOUR ANSWER HERE
theta = np.pi/2
phi = 7*np.pi/4
lam = np.pi
#Check the result with the u3 rotation gate (arbitrary single qubit rotations)
qc2=QuantumCircuit(1)
qc2.u3(theta,phi,lam,0)
#ex5_validation(qc2)
state = Statevector.from_instruction(qc)
plot_bloch_multivector(state)
state2 = Statevector.from_instruction(qc2)
plot_bloch_multivector(state2)
|
https://github.com/swe-train/qiskit__qiskit
|
swe-train
|
from qiskit import *
from qiskit.tools.visualization import plot_bloch_multivector
import matplotlib.pyplot as plt
from qiskit.visualization.gate_map import plot_coupling_map, plot_gate_map
from qiskit.visualization.state_visualization import plot_bloch_vector, plot_state_city, plot_state_paulivec
circuit = QuantumCircuit(1,1)
circuit.x(0)
simulator = Aer.get_backend('statevector_simulator')
result = execute(circuit, backend = simulator).result()
statevector = result.get_statevector()
print(statevector)
simulator2 = Aer.get_backend('unitary_simulator')
result = execute(circuit, backend= simulator2).result()
unitary = result.get_unitary()
print(unitary)
|
https://github.com/Dpbm/scientific-research-1-quantum-oracles
|
Dpbm
|
from qiskit import QuantumCircuit, transpile, QuantumRegister, ClassicalRegister, AncillaRegister
from qiskit_aer import AerSimulator
from qiskit.circuit.library import MCMT, GroverOperator
from qiskit.quantum_info import Statevector
from math import pi
from qiskit.visualization import plot_histogram, plot_bloch_multivector, array_to_latex
from qiskit.circuit import Parameter
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from utils import get_image_path
import seaborn as sns
from qutip import Bloch, Qobj
from itertools import combinations, product
def get_diffuser(total_qubits):
mct = MCMT('x', total_qubits-1, 1)
qc = QuantumCircuit(total_qubits)
qc.h(range(total_qubits))
qc.x(range(total_qubits))
qc.h(-1)
qc.compose(mct, range(total_qubits), inplace=True)
qc.h(-1)
qc.x(range(total_qubits))
qc.h(range(total_qubits))
return qc
def classical_grover(oracle):
total_qubits = oracle.num_qubits
qc = QuantumCircuit(total_qubits)
grover = GroverOperator(oracle).decompose()
qc.h(range(total_qubits))
qc.compose(grover, range(total_qubits), inplace=True)
return qc
def phase_oracle(states):
total_qubits = len(states[0])
mct = MCMT('z', total_qubits-1, 1)
qc = QuantumCircuit(total_qubits, name="oracle")
for state in states:
zeros = [i for i, bit in enumerate(state[::-1]) if bit == '0']
if(zeros): qc.x(zeros)
qc.compose(mct,range(total_qubits),inplace=True)
if(zeros): qc.x(zeros)
return qc
oracle = phase_oracle(['100'])
oracle.draw('mpl')
classical_grover(oracle).draw('mpl')
def get_counts(qc, sim=AerSimulator(), shots=1000):
qc_c = qc.copy()
qc_c.measure_all()
transpiled = transpile(qc_c, sim)
return sim.run(transpiled, shots=shots).result().get_counts()
def new_grover(oracle):
theta = Parameter('theta')
total_qubits = oracle.num_qubits
qc = QuantumCircuit(total_qubits)
qc.ry(theta, range(total_qubits))
qc.barrier()
qc.append(oracle, range(total_qubits))
qc.barrier()
qc.compose(get_diffuser(total_qubits), range(total_qubits), inplace=True)
return qc, theta
n_grover,theta = new_grover(oracle)
n_grover.draw('mpl')
def find_best_angle(theta, qc, values_space, target_bit_string, debug=False):
best_angle = 0
best_total = 0
for angle in values_space:
bc = qc.assign_parameters({theta:angle})
counts = get_counts(bc)
value = 0
if(counts.get(target_bit_string)):
value = counts[target_bit_string]
if(value > best_total):
best_total = value
best_angle = angle
if(debug):
print(angle, value)
return best_angle, best_total
best_angle, best_total = find_best_angle(theta, n_grover, np.linspace(0, pi, num=1000), '001', debug=True)
best_angle, best_total
BIT_STRINGS_3 = ['000', '001', '010', '011', '100', '101', '110', '111']
def compare_old_new_1_bit_string(bit_strings, values_space, debug=False):
old = {}
new = {}
angles = {}
for bit_string in bit_strings:
oracle = phase_oracle([bit_string])
old_ = classical_grover(oracle.copy())
if(debug):
display(old_.draw('mpl'))
old_counts = get_counts(old_)
old_total = 0
if(old_counts.get(bit_string)):
old[bit_string] = old_counts[bit_string]
new_, theta = new_grover(oracle.copy())
angle, max_ = find_best_angle(theta, new_, values_space, bit_string)
new[bit_string] = max_
angles[bit_string] = angle
data = {"old":old, "new":new, "angles":angles}
return pd.DataFrame(data, columns=("old", "new", "angles"), index=bit_strings)
results_1 = compare_old_new_1_bit_string(BIT_STRINGS_3, np.linspace(0, pi, num=500))
results_1
plt.plot(results_1.index.tolist(), results_1['new'], label="new")
plt.plot(results_1.index.tolist(), results_1['old'], label="old")
plt.title('old vs new Grover improvement (range [0, $\pi$])')
plt.xlabel("bit string")
plt.ylabel("counts")
plt.legend(loc="upper right")
plt.savefig(get_image_path("superposition-improvement-grover-algorithm-range-0-to-pi.png"))
plt.show()
results_2 = compare_old_new_1_bit_string(BIT_STRINGS_3, np.linspace(0, 2*pi, num=500))
results_2
plt.plot(results_2.index.tolist(), results_2['new'], label="new")
plt.plot(results_2.index.tolist(), results_2['old'], label="old")
plt.title('old vs new Grover improvement (range [0, $2\pi$])')
plt.xlabel("bit string")
plt.ylabel("counts")
plt.legend(loc="upper right")
plt.savefig(get_image_path("superposition-improvement-grover-algorithm-range-0-to-2pi.png"))
plt.show()
plt.plot(BIT_STRINGS_3, results_1['angles'], label="first")
plt.plot(BIT_STRINGS_3, results_2['angles'], label="second")
plt.title('angles comparation ([0, $\pi$] vs [0, $2\pi$])')
plt.xlabel("bit string")
plt.ylabel("angle")
plt.legend(loc="upper right")
plt.savefig(get_image_path("improvement-grover-algorithm-angles-comparation-0-pi-and-2pi.png"))
plt.show()
results_3 = compare_old_new_1_bit_string([bin(i)[2:].zfill(4) for i in range(2**4)], np.linspace(0, 2*pi, num=500))
results_3
plt.plot(results_3.index.tolist(), results_3['new'], label="new")
plt.plot(results_3.index.tolist(), results_3['old'], label="old")
plt.title('old vs new Grover improvement (range [0, $2\pi$])')
plt.xlabel("bit string")
plt.ylabel("counts")
plt.xticks(rotation = 45)
plt.legend(loc="upper right")
plt.savefig(get_image_path("improvement-grover-algorithm-4bits-0-to-2pi.png"))
plt.show()
pi/2
mid_values = results_3["angles"].drop(["0000", "1111"])
mid_values
mid_values.describe()
mid_values.mean(), pi/2
bloch_data = results_3
bloch_data['alfa'] = np.cos(bloch_data["angles"]/2)
bloch_data['beta'] = np.sin(bloch_data["angles"]/2)
bloch_data
def show_bloch(states):
bloch = Bloch()
bloch.make_sphere()
bloch.add_states(states)
display(bloch.show())
for i in bloch_data.index.tolist():
print(i, i.count('0'))
states = []
for i in range(len(bloch_data)):
row = bloch_data.iloc[i]
alfa,beta = row['alfa'], row['beta']
states.append(Qobj([[alfa], [beta]]))
show_bloch(states)
states = []
for i in range(len(bloch_data)):
row = bloch_data.iloc[i]
if(row.name.count('0') >= 3):
alfa,beta = row['alfa'], row['beta']
states.append(Qobj([[alfa], [beta]]))
show_bloch(states)
states = []
for i in range(len(bloch_data)):
row = bloch_data.iloc[i]
if(row.name.count('0') == 2):
alfa,beta = row['alfa'], row['beta']
states.append(Qobj([[alfa], [beta]]))
show_bloch(states)
states = []
for i in range(len(bloch_data)):
row = bloch_data.iloc[i]
if(row.name.count('0') <= 1):
alfa,beta = row['alfa'], row['beta']
states.append(Qobj([[alfa], [beta]]))
show_bloch(states)
def show_unitary(qc, sim=AerSimulator()):
qc_c = qc.copy()
qc_c.save_unitary()
transpiled = transpile(qc_c, sim)
u = sim.run(transpiled, shots=1000).result().get_unitary()
display(array_to_latex(u, max_size=100000))
d = pd.DataFrame(columns=("a", "b", "c"))
d["a"] =
BIT_STRINGS_2 = ['00', '01', '10', '11']
def test_angle_with_multiple_bit_strings(bit_strings):
df = pd.DataFrame(columns=("angle", *bit_strings, "default"), index=bit_strings)
for string in bit_strings:
oracle = phase_oracle([string])
n_grover,theta = new_grover(oracle.copy())
best_angle, best_total = find_best_angle(theta, n_grover, np.linspace(0, pi, num=1000), string, debug=False)
df.loc[string]['angle'] = best_angle
df.loc[string][string] = best_total
default = classical_grover(oracle.copy())
default_counts = get_counts(default)
default_total = 0
if(default_counts.get(string)):
default_total = default_counts[string]
df.loc[string]['default'] = default_total
for string2 in set(bit_strings)-{string}:
oracle = phase_oracle([string2])
n_grover_2,theta_2 = new_grover(oracle.copy())
bc = n_grover_2.assign_parameters({theta_2: best_angle})
counts = get_counts(bc)
total = 0
if(counts.get(string2)):
total = counts[string2]
df.loc[string2][string] = total
return df
df = test_angle_with_multiple_bit_strings(BIT_STRINGS_2)
df
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
ax1.plot(BIT_STRINGS_2, df['00'])
ax2.plot(BIT_STRINGS_2, df['01'])
ax3.plot(BIT_STRINGS_2, df['10'])
ax4.plot(BIT_STRINGS_2, df['11'])
plt.show()
df = test_angle_with_multiple_bit_strings(BIT_STRINGS_3)
df
plt.figure(figsize=(13, 7))
sns.set_palette("Blues")
for string in BIT_STRINGS_3:
sns.lineplot(data=df, x=BIT_STRINGS_3, y=string, label=f"{string} angle")
sns.lineplot(data=df, x=BIT_STRINGS_3, y="default", label="classical Grover", color="red")
plt.xlabel("bit strings")
plt.ylabel("counts")
plt.legend(loc="upper right")
plt.show()
df.describe()
df.std()
angles = df['angle'][1:-2]
angles = angles.reset_index()
angles = angles.drop(columns=['index'])
angles.loc[5] = pi/2
angles
angles.std()
data = pd.DataFrame(columns=("+", "=", "-"), index=BIT_STRINGS_3)
default_theta = pi/2
deviation = angles.std()['angle']
for index, t_value in (('-', default_theta-deviation), ('=', default_theta), ('+', default_theta+deviation)):
for bit_string in BIT_STRINGS_3:
oracle = phase_oracle([bit_string])
ng, theta = new_grover(oracle)
bc = ng.assign_parameters({theta:t_value})
counts = get_counts(bc)
total = 0
if(counts.get(bit_string)):
total = counts[bit_string]
data.loc[bit_string][index] = total
data
data.describe()
data.std()
sns.set_palette("flare")
sns.lineplot(data=data, x=BIT_STRINGS_3, y='-', label="-deviation")
sns.lineplot(data=data, x=BIT_STRINGS_3, y='=', label="=")
sns.lineplot(data=data, x=BIT_STRINGS_3, y='+', label="+deviation")
plt.xlabel("bit strings")
plt.ylabel("counts")
plt.legend(loc="upper right")
plt.show()
oracle = phase_oracle(['010', '110'])
oracle.draw('mpl')
ng, theta = new_grover(oracle)
ng.draw('mpl')
def find_best_angle_multiple_bs(theta, qc, values_space, target_bit_strings, debug=False):
best_angle = 0
best_total = 0
for angle in values_space:
bc = qc.assign_parameters({theta:angle})
counts = get_counts(bc)
value = 0
for bit_string in target_bit_strings:
if(counts.get(bit_string)):
value += counts[bit_string]
if(value > best_total):
best_total = value
best_angle = angle
if(debug):
print(angle, value)
return best_angle, best_total
angle, max_ = find_best_angle_multiple_bs(theta, ng, np.linspace(0, pi, num=1000), ['010', '110'])
angle,max_
ng, theta = new_grover(oracle)
bc = ng.assign_parameters({theta:angle})
bc.draw('mpl')
plot_histogram(get_counts(bc))
c = classical_grover(oracle)
plot_histogram(get_counts(c))
df = pd.DataFrame(columns=("bs_1", "bs_2", "bs_3", "angle","max_new", "max_old"))
for i, comb in enumerate(combinations(BIT_STRINGS_3, 3)):
oracle = phase_oracle(comb)
old_ = classical_grover(oracle.copy())
new_,theta = new_grover(oracle.copy())
#get old
old_counts = get_counts(old_)
total_old = 0
for c in comb:
if(old_counts.get(c)):
total_old += old_counts[c]
#get new
angle, max_ = find_best_angle_multiple_bs(theta, new_, np.linspace(0, pi, num=200), comb)
df.loc[i] = (comb[0], comb[1], comb[2], angle, max_, total_old)
df
data = df
data["data"] = df["bs_1"] + " " + df["bs_2"] + " " + df["bs_3"]
data
plt.figure(figsize=(20,7))
sns.lineplot(data=data, x="data", y="max_old", label="grover")
sns.lineplot(data=data, x="data", y="max_new", label="new grover")
plt.xlabel("")
plt.ylabel("counts")
plt.xticks(rotation=90)
plt.legend(loc="upper right")
plt.savefig(get_image_path("multiple_strings_new_grover_best_angles.png"))
plt.show()
data['alfa'] = np.cos(data["angle"]/2)
data['beta'] = np.sin(data["angle"]/2)
data
states = []
for i in range(len(data)):
row = data.loc[i]
alfa,beta = row['alfa'], row['beta']
states.append(Qobj([[alfa], [beta]]))
show_bloch(states)
plt.figure(figsize=(20, 7))
sns.lineplot(data=data, x="data", y="alfa")
sns.lineplot(data=data, x="data", y="beta")
plt.xticks(rotation=90)
plt.show()
data["t_zeros"] = data["data"].str.count('0')
data
more_zeros = data[data['t_zeros'] >= 5]
more_zeros
more_zeros[['alfa', 'beta', 't_zeros']].describe()
more_zeros['alfa'].mean()
#alfa = cos(theta/2)
#cos^-1(alfa) = theta/2
#(cos^-1(alfa))*2 = theta
theta = np.arccos(more_zeros['alfa'].mean())*2
theta, np.degrees(theta)
melted = pd.melt(more_zeros, id_vars=['t_zeros'], value_vars=['alfa', 'beta'], var_name="amplitude")
melted
sns.barplot(data=melted, x="t_zeros", y="value", hue="amplitude")
plt.legend(loc="lower right")
plt.show()
data_2 = data
data_2 = data_2[['t_zeros', 'alfa', 'beta']]
data_2
melted_entire = pd.melt(data_2, id_vars=['t_zeros'], value_vars=['alfa', 'beta'], var_name="amplitude")
melted_entire
sns.barplot(data=melted_entire, x="t_zeros", y="value", hue="amplitude")
plt.legend(loc="lower right")
plt.ylabel("amplitude")
plt.savefig(get_image_path("amplitudes_based_on_total_zeros_new_grover.png"))
plt.show()
df = compare_old_new_1_bit_string(BIT_STRINGS_3, np.linspace(0, pi, num=200))
df
df['alfa'] = np.cos(df['angles']/2)
df['beta'] = np.sin(df['angles']/2)
df
df['t_zeros'] = df.index.str.count('0')
df
melted_entire_2 = pd.melt(df, id_vars=['t_zeros'], value_vars=['alfa', 'beta'], var_name="amplitude")
melted_entire_2
sns.barplot(data=melted_entire_2, x="t_zeros", y="value", hue="amplitude")
plt.legend(loc="lower right")
plt.ylabel("amplitude")
plt.savefig(get_image_path("amplitudes_based_on_total_zeros_new_grover_one_bit_string.png"))
plt.show()
q = QuantumCircuit(2)
q.ry(1.957575,0)
q.ry(1.294526,1)
plot_bloch_multivector(q)
np.degrees((3*pi)/4)
def create_grover(strings):
total_zeros = sum([ string.count('0') for string in strings ])
n_qubits = len(strings[0])
N = 2**n_qubits
t = N/2
if(n_qubits == 2):
angle = pi/2
if(total_zeros == n_qubits):
angle = 0.963001
elif(total_zeros == 0):
angle = 2.099657
else:
angle = 1.657624
oracle = phase_oracle(strings)
ng, theta = new_grover(oracle)
bc = ng.assign_parameters({theta:angle})
return bc
g = create_grover(['111'])
plot_histogram(get_counts(g))
o = phase_oracle(['000'])
c = classical_grover(o)
plot_histogram(get_counts(c))
plot_histogram(get_counts(create_grover(['100','111', '000'])))
o = phase_oracle(['100','111', '000'])
c = classical_grover(o)
plot_histogram(get_counts(c))
def run_for_2(bit_strings):
df = pd.DataFrame(columns=("bs_1", "bs_2", "angle","max_new", "max_old"))
for i, comb in enumerate(combinations(bit_strings, 2)):
oracle = phase_oracle(comb)
old_ = classical_grover(oracle.copy())
new_,theta = new_grover(oracle.copy())
#get old
old_counts = get_counts(old_)
total_old = 0
for c in comb:
if(old_counts.get(c)):
total_old += old_counts[c]
#get new
angle, max_ = find_best_angle_multiple_bs(theta, new_, np.linspace(0, pi, num=200), comb)
df.loc[i] = (comb[0], comb[1], angle, max_, total_old)
return df
df = run_for_2(BIT_STRINGS_3)
df.head()
# all angles get around pi/2
df['angle'].unique()
data = df
data["data"] = df["bs_1"] + " " + df["bs_2"]
data.head()
sns.lineplot(data=data, x="data", y="max_new")
sns.lineplot(data=data, x="data", y="max_old")
plt.xticks(rotation=90)
plt.xlabel("bit strings")
plt.ylabel("counts")
plt.savefig(get_image_path("2_bit_strings_l3_new_grover.png"))
plt.show()
plt.plot(df['angle'])
plt.show()
df = run_for_2(BIT_STRINGS_2)
df.head()
data = df
data["data"] = df["bs_1"] + " " + df["bs_2"]
data.head()
sns.lineplot(data=data, x="data", y="max_new", label="new")
sns.lineplot(data=data, x="data", y="max_old", label="old")
plt.xticks(rotation=90)
plt.xlabel("bit strings")
plt.ylabel("counts")
plt.legend(loc="upper right")
plt.savefig(get_image_path("2_bit_strings_l2_new_grover.png"))
plt.show()
plt.plot(df['angle'])
plt.show()
BIT_STRINGS_4 = [''.join(i) for i in product('01', repeat=4)]
BIT_STRINGS_4
df = run_for_2(BIT_STRINGS_4)
df.head()
data = df
data["data"] = df["bs_1"] + " " + df["bs_2"]
data.head()
plt.figure(figsize=(20, 7))
sns.lineplot(data=data, x="data", y="max_new", label="new")
sns.lineplot(data=data, x="data", y="max_old", label="old")
plt.xticks(rotation=90)
plt.xlabel("bit strings")
plt.ylabel("counts")
plt.legend(loc="upper right")
plt.savefig(get_image_path("2_bit_strings_l4_new_grover.png"))
plt.show()
def get_statistics_for_bit_strings(bit_strings_l):
for bs in bit_strings_l:
oracle = phase_oracle(bs)
ng, theta = new_grover(oracle.copy())
angle, max_ = find_best_angle_multiple_bs(theta, ng, np.linspace(0, pi, num=200), bs)
total_bit_strings = len(bs)
l = len(bs[0])
bc = ng.assign_parameters({theta:angle})
print(f"----{total_bit_strings} bit strings with length {l}----")
display(bc.draw('mpl', filename=get_image_path(f"new_grover_rotation_for_{total_bit_strings}_bit_strings_l{l}.png")))
plot_histogram(get_counts(bc), filename=get_image_path(f"new_grover_for_{total_bit_strings}_bit_strings_l{l}_outcomes.png"))
display(plot_histogram(get_counts(bc)))
c = classical_grover(oracle.copy())
display(c.draw('mpl', filename=get_image_path(f"classical_grover_for_{total_bit_strings}_bit_strings_l{l}.png")))
plot_histogram(get_counts(c), filename=get_image_path(f"classical_grover_for_{total_bit_strings}_bit_strings_l{l}_outcomes.png"))
display(plot_histogram(get_counts(c)))
get_statistics_for_bit_strings([
['01'],
['01', '10'],
['01', '10', '00'],
['010'],
['010', '101'],
['010', '101', '110'],
['0101'],
['0101', '1101'],
['0101', '1101', '1001'],
['01011'],
['01011', '01101'],
['01011', '01101', '10111'],
])
|
https://github.com/rochisha0/quantum-ugly-duckling
|
rochisha0
|
import math
import statistics
import matplotlib.pyplot as plt
import numpy as np
from qiskit import execute, QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.providers.aer import QasmSimulator
# Import from Qiskit Aer noise module
from qiskit.providers.aer.noise import NoiseModel
from qiskit.providers.aer.noise import QuantumError, ReadoutError
from qiskit.providers.aer.noise import pauli_error
def runsTest(l, l_median):
'''
Returns Z; If Z>1.96 then numbers are not random
'''
runs, n1, n2 = 0, 0, 0
# Checking for start of new run
for i in range(len(l)):
# no. of runs
if (l[i] >= l_median and l[i-1] < l_median) or (l[i] < l_median and l[i-1] >= l_median):
runs += 1
# no. of positive values
if(l[i]) >= l_median:
n1 += 1
# no. of negative values
else:
n2 += 1
runs_exp = ((2*n1*n2)/(n1+n2))+1
stan_dev = math.sqrt((2*n1*n2*(2*n1*n2-n1-n2))/ (((n1+n2)**2)*(n1+n2-1)))
z = (runs-runs_exp)/stan_dev
return z
def get_noise():
'''
It returns the the noise model that uses bit flip error noise model.
When applying a single qubit gate, flip the state of the qubit with probability p_gate1.
When applying a 2-qubit gate apply single-qubit errors to each qubit.
When resetting a qubit reset to 1 instead of 0 with probability p_reset.
When measuring a qubit, flip the state of the qubit with probability p_meas.
'''
p_reset = 0.03
p_meas = 0.1
p_gate1 = 0.05
# QuantumError objects
error_reset = pauli_error([('X', p_reset), ('I', 1 - p_reset)])
error_meas = pauli_error([('X',p_meas), ('I', 1 - p_meas)])
error_gate1 = pauli_error([('X',p_gate1), ('I', 1 - p_gate1)])
error_gate2 = error_gate1.tensor(error_gate1)
# Add errors to noise model
noise_bit_flip = NoiseModel()
noise_bit_flip.add_all_qubit_quantum_error(error_reset, "reset")
noise_bit_flip.add_all_qubit_quantum_error(error_meas, "measure")
noise_bit_flip.add_all_qubit_quantum_error(error_gate1, ["u1", "u2", "u3"])
noise_bit_flip.add_all_qubit_quantum_error(error_gate2, ["cx"])
return noise_bit_flip
def random_number():
'''
Returns random numbers between 0 to 15
'''
circ = QuantumCircuit(4)
simulator = QasmSimulator()
#NQRNS Circuit
for i in range(200):
circ.u3(0,0,0,0)
circ.u3(0,0,0,1)
circ.u3(0,0,0,2)
circ.u3(0,0,0,3)
circ.cx(0,1)
circ.cx(1,2)
circ.cx(0,2)
circ.cx(0,3)
circ.cx(1,3)
circ.cx(2,3)
circ.barrier()
circ.measure_all()
noise_bit_flip = get_noise()
#get output
job = execute(circ, simulator,
basis_gates=noise_bit_flip.basis_gates,
noise_model=noise_bit_flip, shots= 1)
result_bit_flip = job.result()
counts_bit_flip = result_bit_flip.get_counts(0)
num=list(counts_bit_flip.keys())[0]
num = int(num, 2)
return num
l= []
for i in range(100):
l.append(random_number())
l_median= statistics.median(l)
Z = abs(runsTest(l, l_median))
print('Z-statistic= ', Z)
dt = .1 #some time
n = 1000 #n-number of datapoints
for i in range(1000):
l.append(random_number())
fhat=np.fft.fft(l,n) #f-data ,n-number of datapoints per set
freq=(1/(dt*n))*np.arange(n)
PSD2=np.log(np.abs(np.fft.fftshift(fhat))**2)
plt.plot(freq.real,PSD2.real)
plt.xlabel('frequency')
plt.ylabel('number of occurence')
plt.show()
|
https://github.com/unitaryfund/mitiq
|
unitaryfund
|
# Copyright (C) Unitary Fund
#
# This source code is licensed under the GPL license (v3) found in the
# LICENSE file in the root directory of this source tree.
import cirq
import numpy as np
import pyquil
import pytest
import qiskit
from cirq import Circuit
from mitiq.pec.types import NoisyBasis, NoisyOperation, OperationRepresentation
from mitiq.utils import _equal
icirq = Circuit(cirq.I(cirq.LineQubit(0)))
xcirq = Circuit(cirq.X(cirq.LineQubit(0)))
ycirq = Circuit(cirq.Y(cirq.LineQubit(0)))
zcirq = Circuit(cirq.Z(cirq.LineQubit(0)))
hcirq = Circuit(cirq.H(cirq.LineQubit(0)))
cnotcirq = Circuit(cirq.CNOT(cirq.LineQubit(0), cirq.LineQubit(1)))
def test_init_with_cirq_circuit():
real = np.zeros(shape=(4, 4))
noisy_op = NoisyOperation(zcirq, real)
assert isinstance(noisy_op._circuit, cirq.Circuit)
assert noisy_op.qubits == (cirq.LineQubit(0),)
assert np.allclose(noisy_op.channel_matrix, real)
assert noisy_op.channel_matrix is not real
assert noisy_op._native_type == "cirq"
assert _equal(zcirq, noisy_op.circuit)
assert _equal(noisy_op._native_circuit, noisy_op.circuit)
@pytest.mark.parametrize(
"qubit",
(cirq.LineQubit(0), cirq.GridQubit(1, 2), cirq.NamedQubit("Qubit")),
)
def test_init_with_different_qubits(qubit):
ideal_op = Circuit(cirq.H.on(qubit))
real = np.zeros(shape=(4, 4))
noisy_op = NoisyOperation(ideal_op, real)
assert isinstance(noisy_op._circuit, cirq.Circuit)
assert _equal(
noisy_op.circuit,
cirq.Circuit(ideal_op),
require_qubit_equality=True,
)
assert noisy_op.qubits == (qubit,)
assert np.allclose(noisy_op.channel_matrix, real)
assert noisy_op.channel_matrix is not real
assert noisy_op._native_type == "cirq"
assert _equal(cirq.Circuit(ideal_op), noisy_op.circuit)
assert _equal(noisy_op._native_circuit, noisy_op.circuit)
def test_init_with_cirq_input():
qreg = cirq.LineQubit.range(2)
circ = cirq.Circuit(cirq.H.on(qreg[0]), cirq.CNOT.on(*qreg))
real = np.zeros(shape=(16, 16))
noisy_op = NoisyOperation(circ, real)
assert isinstance(noisy_op._circuit, cirq.Circuit)
assert _equal(noisy_op.circuit, circ, require_qubit_equality=True)
assert set(noisy_op.qubits) == set(qreg)
assert np.allclose(noisy_op.channel_matrix, real)
assert noisy_op.channel_matrix is not real
def test_init_with_qiskit_circuit():
qreg = qiskit.QuantumRegister(2)
circ = qiskit.QuantumCircuit(qreg)
_ = circ.h(qreg[0])
_ = circ.cx(*qreg)
cirq_qreg = cirq.LineQubit.range(2)
cirq_circ = cirq.Circuit(cirq.H.on(cirq_qreg[0]), cirq.CNOT.on(*cirq_qreg))
real = np.zeros(shape=(16, 16))
noisy_op = NoisyOperation(circ, real)
assert isinstance(noisy_op._circuit, cirq.Circuit)
assert _equal(noisy_op._circuit, cirq_circ)
assert _equal(noisy_op.circuit, cirq_circ)
assert noisy_op.native_circuit == circ
assert noisy_op._native_circuit == circ
assert noisy_op._native_type == "qiskit"
assert np.allclose(noisy_op.channel_matrix, real)
assert noisy_op.channel_matrix is not real
@pytest.mark.parametrize(
"gate",
(
cirq.H,
cirq.H(cirq.LineQubit(0)),
qiskit.circuit.library.HGate,
qiskit.circuit.library.CHGate,
pyquil.gates.H,
),
)
def test_init_with_gates_raises_error(gate):
rng = np.random.RandomState(seed=1)
with pytest.raises(TypeError, match="Failed to convert to an internal"):
NoisyOperation(circuit=gate, channel_matrix=rng.rand(4, 4))
def test_init_with_pyquil_program():
circ = pyquil.Program(pyquil.gates.H(0), pyquil.gates.CNOT(0, 1))
cirq_qreg = cirq.LineQubit.range(2)
cirq_circ = cirq.Circuit(cirq.H.on(cirq_qreg[0]), cirq.CNOT.on(*cirq_qreg))
real = np.zeros(shape=(16, 16))
noisy_op = NoisyOperation(circ, real)
assert isinstance(noisy_op._circuit, cirq.Circuit)
assert _equal(noisy_op._circuit, cirq_circ)
assert _equal(noisy_op.circuit, cirq_circ)
assert noisy_op.native_circuit == circ
assert noisy_op._native_circuit == circ
assert noisy_op._native_type == "pyquil"
assert np.allclose(noisy_op.channel_matrix, real)
assert noisy_op.channel_matrix is not real
def test_init_dimension_mismatch_error():
ideal = cirq.Circuit(cirq.H.on(cirq.LineQubit(0)))
real = np.zeros(shape=(3, 3))
with pytest.raises(ValueError, match="has shape"):
NoisyOperation(ideal, real)
def test_unknown_channel_matrix():
qreg = qiskit.QuantumRegister(2)
circ = qiskit.QuantumCircuit(qreg)
_ = circ.h(qreg[0])
_ = circ.cx(*qreg)
cirq_qreg = cirq.LineQubit.range(2)
cirq_circ = cirq.Circuit(cirq.H.on(cirq_qreg[0]), cirq.CNOT.on(*cirq_qreg))
noisy_op = NoisyOperation(circ)
assert isinstance(noisy_op._circuit, cirq.Circuit)
assert _equal(noisy_op._circuit, cirq_circ)
assert _equal(noisy_op.circuit, cirq_circ)
assert noisy_op.native_circuit == circ
assert noisy_op._native_circuit == circ
assert noisy_op._native_type == "qiskit"
with pytest.raises(ValueError, match="The channel matrix is unknown."):
_ = noisy_op.channel_matrix
def test_add_simple():
circuit1 = cirq.Circuit([cirq.X.on(cirq.NamedQubit("Q"))])
circuit2 = cirq.Circuit([cirq.Y.on(cirq.NamedQubit("Q"))])
super_op1 = np.random.rand(4, 4)
super_op2 = np.random.rand(4, 4)
noisy_op1 = NoisyOperation(circuit1, super_op1)
noisy_op2 = NoisyOperation(circuit2, super_op2)
noisy_op = noisy_op1 + noisy_op2
correct = cirq.Circuit(
[cirq.X.on(cirq.NamedQubit("Q")), cirq.Y.on(cirq.NamedQubit("Q"))],
)
assert _equal(noisy_op._circuit, correct, require_qubit_equality=True)
assert np.allclose(noisy_op.channel_matrix, super_op2 @ super_op1)
def test_add_pyquil_noisy_operations():
ideal = pyquil.Program(pyquil.gates.X(0))
real = np.random.rand(4, 4)
noisy_op1 = NoisyOperation(ideal, real)
noisy_op2 = NoisyOperation(ideal, real)
noisy_op = noisy_op1 + noisy_op2
correct = cirq.Circuit([cirq.X.on(cirq.NamedQubit("Q"))] * 2)
assert _equal(noisy_op._circuit, correct, require_qubit_equality=False)
assert np.allclose(noisy_op.channel_matrix, real @ real)
def test_add_qiskit_noisy_operations():
qreg = qiskit.QuantumRegister(1)
ideal = qiskit.QuantumCircuit(qreg)
_ = ideal.x(qreg)
real = np.random.rand(4, 4)
noisy_op1 = NoisyOperation(ideal, real)
noisy_op2 = NoisyOperation(ideal, real)
noisy_op = noisy_op1 + noisy_op2
correct = cirq.Circuit([cirq.X.on(cirq.NamedQubit("Q"))] * 2)
assert _equal(noisy_op._circuit, correct, require_qubit_equality=False)
assert np.allclose(noisy_op.channel_matrix, real @ real)
def test_add_bad_type():
ideal = cirq.Circuit([cirq.X.on(cirq.NamedQubit("Q"))])
real = np.random.rand(4, 4)
noisy_op = NoisyOperation(ideal, real)
with pytest.raises(ValueError, match="must be a NoisyOperation"):
noisy_op + ideal
def test_add_noisy_operation_no_channel_matrix():
noisy_op1 = NoisyOperation(cirq.Circuit([cirq.X.on(cirq.NamedQubit("Q"))]))
noisy_op2 = NoisyOperation(
cirq.Circuit([cirq.X.on(cirq.NamedQubit("Q"))]),
channel_matrix=np.random.rand(4, 4),
)
with pytest.raises(ValueError):
(noisy_op1 + noisy_op2).channel_matrix
def test_noisy_operation_str():
noisy_op = NoisyOperation(circuit=icirq, channel_matrix=np.identity(4))
assert isinstance(noisy_op.__str__(), str)
def test_noisy_basis_deprecation_error():
with pytest.raises(NotImplementedError, match="NoisyBasis"):
NoisyBasis()
with pytest.raises(NotImplementedError, match="NoisyBasis"):
NoisyBasis(zcirq, xcirq)
def get_test_representation():
ideal = cirq.Circuit(cirq.H(cirq.LineQubit(0)))
noisy_xop = NoisyOperation(
circuit=xcirq, channel_matrix=np.zeros(shape=(4, 4))
)
noisy_zop = NoisyOperation(
circuit=zcirq, channel_matrix=np.zeros(shape=(4, 4))
)
decomp = OperationRepresentation(
ideal,
[noisy_xop, noisy_zop],
[0.5, -0.5],
)
return ideal, noisy_xop, noisy_zop, decomp
def test_representation_simple():
ideal, noisy_xop, noisy_zop, decomp = get_test_representation()
assert _equal(decomp.ideal, ideal)
assert decomp.coeffs == [0.5, -0.5]
assert np.allclose(decomp.distribution, np.array([0.5, 0.5]))
assert np.isclose(decomp.norm, 1.0)
assert isinstance(decomp.basis_expansion[0][0], float)
assert set(decomp.noisy_operations) == {noisy_xop, noisy_zop}
def test_representation_bad_type():
ideal = cirq.Circuit(cirq.H(cirq.LineQubit(0)))
noisy_xop = NoisyOperation(
circuit=xcirq, channel_matrix=np.zeros(shape=(4, 4))
)
with pytest.raises(TypeError, match="All elements of `noisy_operations`"):
OperationRepresentation(
ideal=ideal,
noisy_operations=[0.1],
coeffs=[0.1],
)
with pytest.raises(TypeError, match="All elements of `coeffs` must"):
OperationRepresentation(
ideal=ideal,
noisy_operations=[noisy_xop],
coeffs=["x"],
)
def test_representation_sample():
_, noisy_xop, noisy_zop, decomp = get_test_representation()
for _ in range(10):
noisy_op, sign, coeff = decomp.sample()
assert sign in (-1, 1)
assert coeff in (-0.5, 0.5)
assert noisy_op in (noisy_xop, noisy_zop)
case_one = noisy_op == noisy_xop and coeff == 0.5
case_two = noisy_op == noisy_zop and coeff == -0.5
assert case_one or case_two
def test_representation_sample_seed():
_, noisy_xop, noisy_zop, decomp = get_test_representation()
seed1 = np.random.RandomState(seed=1)
seed2 = np.random.RandomState(seed=1)
for _ in range(10):
_, sign1, coeff1 = decomp.sample(random_state=seed1)
_, sign2, coeff2 = decomp.sample(random_state=seed2)
assert sign1 == sign2
assert np.isclose(coeff1, coeff2)
def test_representation_sample_bad_seed_type():
_, _, _, decomp = get_test_representation()
with pytest.raises(TypeError, match="should be of type"):
decomp.sample(random_state="8")
def test_representation_sample_zero_coefficient():
ideal = cirq.Circuit(cirq.H(cirq.LineQubit(0)))
noisy_xop = NoisyOperation(
circuit=xcirq, channel_matrix=np.zeros(shape=(4, 4))
)
noisy_zop = NoisyOperation(
circuit=zcirq, channel_matrix=np.zeros(shape=(4, 4))
)
decomp = OperationRepresentation(
ideal=ideal,
noisy_operations=[noisy_xop, noisy_zop],
coeffs=[0.5, 0.0], # 0 term should never be sampled.
)
random_state = np.random.RandomState(seed=1)
for _ in range(500):
noisy_op, sign, coeff = decomp.sample(random_state=random_state)
assert sign == 1
assert coeff == 0.5
assert np.allclose(
cirq.unitary(noisy_op.circuit),
cirq.unitary(cirq.X),
)
def test_print_cirq_operation_representation():
ideal = cirq.Circuit(cirq.H(cirq.LineQubit(0)))
noisy_xop = NoisyOperation(
circuit=xcirq, channel_matrix=np.zeros(shape=(4, 4))
)
noisy_zop = NoisyOperation(
circuit=zcirq, channel_matrix=np.zeros(shape=(4, 4))
)
# Positive first coefficient
decomp = OperationRepresentation(
ideal=ideal,
noisy_operations=[noisy_xop, noisy_zop],
coeffs=[0.5, 0.5],
)
expected = r"0: ───H─── = 0.500*(0: ───X───)+0.500*(0: ───Z───)"
assert str(decomp) == expected
# Negative first coefficient
decomp = OperationRepresentation(
ideal=ideal,
noisy_operations=[noisy_xop, noisy_zop],
coeffs=[-0.5, 1.5],
)
expected = r"0: ───H─── = -0.500*(0: ───X───)+1.500*(0: ───Z───)"
assert str(decomp) == expected
# Empty representation
decomp = OperationRepresentation(ideal, [], [])
expected = r"0: ───H─── = 0.000"
assert str(decomp) == expected
# Small coefficient approximation
decomp = OperationRepresentation(
ideal=ideal,
noisy_operations=[noisy_xop, noisy_zop],
coeffs=[1.00001, 0.00001],
)
expected = r"0: ───H─── = 1.000*(0: ───X───)"
assert str(decomp) == expected
# Small coefficient approximation different position
decomp = OperationRepresentation(
ideal=ideal,
noisy_operations=[noisy_xop, noisy_zop],
coeffs=[0.00001, 1.00001],
)
expected = r"0: ───H─── = 1.000*(0: ───Z───)"
# Small coefficient approximation different position
decomp = OperationRepresentation(
ideal=ideal,
noisy_operations=[noisy_xop],
coeffs=[0.00001],
)
expected = r"0: ───H─── = 0.000"
assert str(decomp) == expected
def test_print_operation_representation_two_qubits():
qreg = cirq.LineQubit.range(2)
ideal = cirq.Circuit(cirq.CNOT(*qreg))
noisy_a = NoisyOperation(
circuit=cirq.Circuit(
cirq.H.on_each(qreg), cirq.CNOT(*qreg), cirq.H.on_each(qreg)
)
)
noisy_b = NoisyOperation(
circuit=cirq.Circuit(
cirq.Z.on_each(qreg),
cirq.CNOT(*qreg),
cirq.Z.on_each(qreg),
)
)
decomp = OperationRepresentation(
ideal=ideal,
noisy_operations=[noisy_a, noisy_b],
coeffs=[0.5, 0.5],
)
expected = f"""
0: ───@───
│
1: ───X─── ={" "}
0.500
0: ───H───@───H───
│
1: ───H───X───H───
+0.500
0: ───Z───@───Z───
│
1: ───Z───X───Z───"""
# Remove initial newline
expected = expected[1:]
assert str(decomp) == expected
def test_print_operation_representation_two_qubits_neg():
qreg = cirq.LineQubit.range(2)
ideal = cirq.Circuit(cirq.CNOT(*qreg))
noisy_a = NoisyOperation(
circuit=cirq.Circuit(
cirq.H.on_each(qreg[0]), cirq.CNOT(*qreg), cirq.H.on_each(qreg[1])
)
)
noisy_b = NoisyOperation(circuit=cirq.Circuit(cirq.Z.on_each(*qreg)))
decomp = OperationRepresentation(
ideal=ideal,
noisy_operations=[noisy_a, noisy_b],
coeffs=[-0.5, 1.5],
)
expected = f"""
0: ───@───
│
1: ───X─── ={" "}
-0.500
0: ───H───@───────
│
1: ───────X───H───
+1.500
0: ───Z───
1: ───Z───"""
# Remove initial newline
expected = expected[1:]
assert str(decomp) == expected
def test_equal_method_of_representations():
q = cirq.LineQubit(0)
ideal = cirq.Circuit(cirq.H(q))
noisy_xop_a = NoisyOperation(
circuit=cirq.Circuit(cirq.X(q)),
channel_matrix=np.zeros(shape=(4, 4)),
)
noisy_zop_a = NoisyOperation(
circuit=cirq.Circuit(cirq.Z(q)),
channel_matrix=np.zeros(shape=(4, 4)),
)
rep_a = OperationRepresentation(
ideal=ideal,
noisy_operations=[noisy_xop_a, noisy_zop_a],
coeffs=[0.5, 0.5],
)
noisy_xop_b = NoisyOperation(
circuit=cirq.Circuit(cirq.X(q)),
channel_matrix=np.ones(shape=(4, 4)),
)
noisy_zop_b = NoisyOperation(
circuit=cirq.Circuit(cirq.Z(q)),
channel_matrix=np.ones(shape=(4, 4)),
)
rep_b = OperationRepresentation(
ideal=ideal,
noisy_operations=[noisy_xop_b, noisy_zop_b],
coeffs=[0.5, 0.5],
)
# Equal representation up to real superoperators
assert rep_a == rep_b
# Different ideal
ideal_b = cirq.Circuit(cirq.X(q))
rep_b = OperationRepresentation(
ideal=ideal_b,
noisy_operations=[noisy_xop_b, noisy_zop_b],
coeffs=[0.5, 0.5],
)
assert rep_a != rep_b
# Different type
q_b = qiskit.QuantumRegister(1)
ideal_b = qiskit.QuantumCircuit(q_b)
ideal_b.x(q_b)
noisy_opx = NoisyOperation(ideal_b)
rep_b = OperationRepresentation(
ideal=ideal_b,
noisy_operations=[noisy_opx, noisy_opx],
coeffs=[0.5, 0.5],
)
assert rep_a != rep_b
# Different length
rep_b = OperationRepresentation(
ideal=ideal,
noisy_operations=[noisy_xop_b],
coeffs=[0.5],
)
assert rep_a != rep_b
# Different operations
noisy_diff = NoisyOperation(circuit=cirq.Circuit(cirq.H(q)))
rep_b = OperationRepresentation(
ideal=ideal,
noisy_operations=[noisy_xop_b, noisy_diff],
coeffs=[0.5, 0.5],
)
assert rep_a != rep_b
# Different coefficients
rep_b = OperationRepresentation(
ideal=ideal,
noisy_operations=[noisy_xop_b, noisy_zop_b],
coeffs=[0.7, 0.5],
)
assert rep_a != rep_b
# Different value of is_qubit_dependent
rep_b = OperationRepresentation(
ideal=ideal,
noisy_operations=[noisy_xop_a, noisy_zop_a],
coeffs=[0.5, 0.5],
is_qubit_dependent=False,
)
assert rep_a != rep_b
def test_operation_representation_warnings():
with pytest.warns(UserWarning, match="different from 1"):
OperationRepresentation(
ideal=xcirq,
noisy_operations=[NoisyOperation(xcirq), NoisyOperation(zcirq)],
coeffs=[0.5, 0.1],
)
def test_different_qubits_error():
"""Ideal operation and noisy operations must have equal qubits."""
with pytest.raises(ValueError, match="must act on the same qubits"):
OperationRepresentation(
ideal=cirq.Circuit(cirq.X(cirq.NamedQubit("a"))),
noisy_operations=[NoisyOperation(xcirq), NoisyOperation(zcirq)],
coeffs=[0.5, 0.5],
)
def test_different_length_error():
"""The number of coefficients must be equal to the number of noisy
operations.
"""
with pytest.raises(ValueError, match="must have equal length"):
OperationRepresentation(
ideal=cirq.Circuit(cirq.X(cirq.LineQubit(0))),
noisy_operations=[NoisyOperation(xcirq), NoisyOperation(zcirq)],
coeffs=[0.5, 0.5, 0.4],
)
|
https://github.com/CynthiaRios/quantum_orchestra
|
CynthiaRios
|
!(./jupyter_images/header.png "Header") #Will redo on quentin's computer tomorrow (today)
pip install ipywidgets
#conda install -c conda-forge ipywidgets
from IPython.display import clear_output
pip install music21
pip install pydub
pip install RISE
from shutil import copyfile
from qiskit.visualization import plot_histogram
from qiskit import Aer, QuantumCircuit, execute
from qiskit import IBMQ
import qiskit.tools.jupyter
import os
%qiskit_job_watcher
from IPython.display import Audio
import wave
import numpy as np
## Button Display Imports (Needs installations mentioned above)
from IPython.display import display, Markdown, clear_output
# widget packages
import ipywidgets as widgets
from pydub import AudioSegment
from music21 import *
 #Will redo on quentin's computer tomorrow (today)
piano_input = [None] * 5
piano = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
piano2 = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
piano3 = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
piano4 = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
piano5 = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
box = widgets.VBox([piano, piano2, piano3, piano4, piano5])
box
guitar_input = [None] * 5
guitar = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
guitar2 = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
guitar3 = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
guitar4 = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
guitar5 = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
box = widgets.VBox([guitar, guitar2, guitar3, guitar4, guitar5])
box
trumpet_input = [None] * 5
trumpet = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
trumpet2 = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
trumpet3 = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
trumpet4 = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
trumpet5 = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
box = widgets.VBox([trumpet, trumpet2, trumpet3, trumpet4, trumpet5])
box
bass_input = [None] * 5
bass = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
bass2 = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
bass3 = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
bass4 = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
bass5 = widgets.Dropdown(
options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'],
value='No Gate',
description='Insert a :')
box = widgets.VBox([bass, bass2, bass3, bass4, bass5])
box
def GetGates(piano_input, guitar_input, bass_input, trumpet_input):
if (piano.value == 'No Gate'):
piano_input[0] = 'n'
if (piano.value == 'X-Gate'):
piano_input[0] = 'x'
if (piano.value == 'Y-Gate'):
piano_input[0] = 'y'
if (piano.value == 'Z-Gate'):
piano_input[0] = 'z'
if (piano2.value == 'No Gate'):
piano_input[1] = 'n'
if (piano2.value == 'X-Gate'):
piano_input[1] = 'x'
if (piano2.value == 'Y-Gate'):
piano_input[1] = 'y'
if (piano2.value == 'Z-Gate'):
piano_input[1] = 'z'
if (piano3.value == 'No Gate'):
piano_input[2] = 'n'
if (piano3.value == 'X-Gate'):
piano_input[2] = 'x'
if (piano3.value == 'Y-Gate'):
piano_input[2] = 'y'
if (piano3.value == 'Z-Gate'):
piano_input[2] = 'z'
if (piano4.value == 'No Gate'):
piano_input[3] = 'n'
if (piano4.value == 'X-Gate'):
piano_input[3] = 'x'
if (piano4.value == 'Y-Gate'):
piano_input[3] = 'y'
if (piano4.value == 'Z-Gate'):
piano_input[3] = 'z'
if (piano5.value == 'No Gate'):
piano_input[4] = 'n'
if (piano5.value == 'X-Gate'):
piano_input[4] = 'x'
if (piano5.value == 'Y-Gate'):
piano_input[4] = 'y'
if (piano5.value == 'Z-Gate'):
piano_input[4] = 'z'
if (guitar.value == 'No Gate'):
guitar_input[0] = 'n'
if (guitar.value == 'X-Gate'):
guitar_input[0] = 'x'
if (guitar.value == 'Y-Gate'):
guitar_input[0] = 'y'
if (guitar.value == 'Z-Gate'):
guitar_input[0] = 'z'
if (guitar2.value == 'No Gate'):
guitar_input[1] = 'n'
if (guitar2.value == 'X-Gate'):
guitar_input[1] = 'x'
if (guitar2.value == 'Y-Gate'):
guitar_input[1] = 'y'
if (guitar2.value == 'Z-Gate'):
guitar_input[1] = 'z'
if (guitar3.value == 'No Gate'):
guitar_input[2] = 'n'
if (guitar3.value == 'X-Gate'):
guitar_input[2] = 'x'
if (guitar3.value == 'Y-Gate'):
guitar_input[2] = 'y'
if (guitar3.value == 'Z-Gate'):
guitar_input[2] = 'z'
if (guitar4.value == 'No Gate'):
guitar_input[3] = 'n'
if (guitar4.value == 'X-Gate'):
guitar_input[3] = 'x'
if (guitar4.value == 'Y-Gate'):
guitar_input[3] = 'y'
if (guitar4.value == 'Z-Gate'):
guitar_input[3] = 'z'
if (guitar5.value == 'No Gate'):
guitar_input[4] = 'n'
if (guitar5.value == 'X-Gate'):
guitar_input[4] = 'x'
if (guitar5.value == 'Y-Gate'):
guitar_input[4] = 'y'
if (guitar5.value == 'Z-Gate'):
guitar_input[4] = 'z'
if (bass.value == 'No Gate'):
bass_input[0] = 'n'
if (bass.value == 'X-Gate'):
bass_input[0] = 'x'
if (bass.value == 'Y-Gate'):
bass_input[0] = 'y'
if (bass.value == 'Z-Gate'):
bass_input[0] = 'z'
if (bass2.value == 'No Gate'):
bass_input[1] = 'n'
if (bass2.value == 'X-Gate'):
bass_input[1] = 'x'
if (bass2.value == 'Y-Gate'):
bass_input[1] = 'y'
if (bass2.value == 'Z-Gate'):
bass_input[1] = 'z'
if (bass3.value == 'No Gate'):
bass_input[2] = 'n'
if (bass3.value == 'X-Gate'):
bass_input[2] = 'x'
if (bass3.value == 'Y-Gate'):
bass_input[2] = 'y'
if (bass3.value == 'Z-Gate'):
bass_input[2] = 'z'
if (bass4.value == 'No Gate'):
bass_input[3] = 'n'
if (bass4.value == 'X-Gate'):
bass_input[3] = 'x'
if (bass4.value == 'Y-Gate'):
bass_input[3] = 'y'
if (bass4.value == 'Z-Gate'):
bass_input[3] = 'z'
if (bass5.value == 'No Gate'):
bass_input[4] = 'n'
if (bass5.value == 'X-Gate'):
bass_input[4] = 'x'
if (bass5.value == 'Y-Gate'):
bass_input[4] = 'y'
if (bass5.value == 'Z-Gate'):
bass_input[4] = 'z'
if (trumpet.value == 'No Gate'):
trumpet_input[0] = 'n'
if (trumpet.value == 'X-Gate'):
trumpet_input[0] = 'x'
if (trumpet.value == 'Y-Gate'):
trumpet_input[0] = 'y'
if (trumpet.value == 'Z-Gate'):
trumpet_input[0] = 'z'
if (trumpet2.value == 'No Gate'):
trumpet_input[1] = 'n'
if (trumpet2.value == 'X-Gate'):
trumpet_input[1] = 'x'
if (trumpet2.value == 'Y-Gate'):
trumpet_input[1] = 'y'
if (trumpet2.value == 'Z-Gate'):
trumpet_input[1] = 'z'
if (trumpet3.value == 'No Gate'):
trumpet_input[2] = 'n'
if (trumpet3.value == 'X-Gate'):
trumpet_input[2] = 'x'
if (trumpet3.value == 'Y-Gate'):
trumpet_input[2] = 'y'
if (trumpet3.value == 'Z-Gate'):
trumpet_input[2] = 'z'
if (trumpet4.value == 'No Gate'):
trumpet_input[3] = 'n'
if (trumpet4.value == 'X-Gate'):
trumpet_input[3] = 'x'
if (trumpet4.value == 'Y-Gate'):
trumpet_input[3] = 'y'
if (trumpet4.value == 'Z-Gate'):
trumpet_input[3] = 'z'
if (trumpet5.value == 'No Gate'):
trumpet_input[4] = 'n'
if (trumpet5.value == 'X-Gate'):
trumpet_input[4] = 'x'
if (trumpet5.value == 'Y-Gate'):
trumpet_input[4] = 'y'
if (trumpet5.value == 'Z-Gate'):
trumpet_input[4] = 'z'
return (piano_input, guitar_input, bass_input, trumpet_input)
piano_input, guitar_input, bass_input, trumpet_input = GetGates(piano_input, guitar_input, bass_input, trumpet_input)
from qiskit.test.mock import FakeVigo
fake_vigo = FakeVigo()
#minimum user input will just be for them to fill out the create quantum circuit function inthe backend
n = 5 #number of gates
s = 1024
piano_states = []
guitar_states = []
bass_states = []
trumpet_states = []
def CreateQuantumCircuit(piano_input, guitar_input, bass_input, trumpet_input):
cct1 = QuantumCircuit(1,1)
cct2 = QuantumCircuit(1,1)
cct3 = QuantumCircuit(1,1)
cct4 = QuantumCircuit(1,1)
piano_states = []
guitar_states = []
bass_states = []
trumpet_states = []
for i in range(n):
cct1.h(0)
cct1.barrier()
if piano_input[i-1] == 'x':
cct1.x(0)
if piano_input[i-1] == 'y':
cct1.y(0)
if piano_input[i-1] == 'z':
cct1.z(0)
cct1.barrier()
cct1.measure(0,0)
#plot_histogram(c1)
cct2.h(0)
cct2.barrier()
if guitar_input[i-1] == 'x':
cct2.x(0)
if guitar_input[i-1] == 'y':
cct2.y(0)
if guitar_input[i-1] == 'z':
cct2.z(0)
cct2.barrier()
cct2.measure(0,0)
#plot_histogram(c2)
cct3.h(0)
cct3.barrier()
if bass_input[i-1] == 'x':
cct3.x(0)
if bass_input[i-1] == 'y':
cct3.y(0)
if bass_input[i-1] == 'z':
cct3.z(0)
cct3.barrier()
cct3.measure(0,0)
#plot_histogram(c3)
cct4.h(0)
cct4.barrier()
if trumpet_input[i-1] == 'x':
cct4.x(0)
if trumpet_input[i-1] == 'y':
cct4.y(0)
if trumpet_input[i-1] == 'z':
cct4.z(0)
cct4.barrier()
cct4.measure(0,0)
c1 = execute(cct1, fake_vigo, shots=s).result().get_counts()
piano_states.append(c1)
c2 = execute(cct2, fake_vigo, shots=s).result().get_counts()
guitar_states.append(c2)
c3 = execute(cct3, fake_vigo, shots=s).result().get_counts()
bass_states.append(c3)
c4 = execute(cct4, fake_vigo, shots=s).result().get_counts()
trumpet_states.append(c4)
return c1,c2,c3,c4,piano_states, guitar_states, bass_states, trumpet_states, cct1, cct2, cct3, cct4
c1,c2,c3,c4,piano_states, guitar_states, bass_states, trumpet_states, cct1, cct2,cct3,cct4 = CreateQuantumCircuit(piano_input, guitar_input, bass_input, trumpet_input)
print(trumpet_states)
def ins(states,s):
res = []
for key in states[0].keys():
res.append(states[0][key]/s)
return res
s = 1024
piano_prob = ins(piano_states,s)
guitar_prob = ins(guitar_states,s)
bass_prob = ins(bass_states,s)
trumpet_prob = ins(trumpet_states,s)
print(trumpet_prob)
def MusicalTransformation(probs):
tune_array=[]
for i in range(n+1):
if((probs[0] > 0.4 and probs[0] < 0.5) and (probs[1] > 0.4 and probs[1] < 0.45)):
tune_array.append('c')
tune_array.append('g')
tune_array.append('e')
if((probs[0] > 0.4 and probs[0] < 0.5) and (probs[1] > 0.45 and probs[1] < 0.5)):
tune_array.append('c')
tune_array.append('f')
tune_array.append('g')
if((probs[0] > 0.4 and probs[0] < 0.5) and (probs[1] > 0.5 and probs[1] < 0.55)):
tune_array.append('d')
tune_array.append('f')
tune_array.append('a')
if((probs[0] > 0.4 and probs[0] < 0.5) and (probs[1] > 0.55 and probs[1] < 0.6)):
tune_array.append('f')
tune_array.append('a')
tune_array.append('c')
if((probs[0] > 0.5 and probs[0] < 0.6) and (probs[1] > 0.4 and probs[1] < 0.45)):
tune_array.append('g')
tune_array.append('b')
tune_array.append('d')
if((probs[0] > 0.5 and probs[0] < 0.6) and (probs[1] > 0.45 and probs[1] < 0.5)):
tune_array.append('d')
tune_array.append('f')
tune_array.append('a')
if((probs[0] > 0.5 and probs[0] < 0.6) and (probs[1] > 0.5 and probs[1] < 0.55)):
tune_array.append('e')
tune_array.append('g')
tune_array.append('b')
if((probs[0] > 0.5 and probs[0] < 0.6) and (probs[1] > 0.55 and probs[1] < 0.6)):
tune_array.append('a')
tune_array.append('c')
tune_array.append('b')
if(probs[0] < 0.4 or probs[0] > 0.6 or probs[1] < 0.4 or probs[1] > 0.6):
tune_array.append('n')
tune_array.append('n')
tune_array.append('n')
return tune_array
tune_array_piano = MusicalTransformation(piano_prob)
tune_array_guitar = MusicalTransformation(guitar_prob)
tune_array_bass = MusicalTransformation(bass_prob)
tune_array_trumpet = MusicalTransformation(trumpet_prob)
def PlayPianoTune(character, songs):
if character == 'a':
sound_file = "./Audio/Piano/1.wav"
songs.append(sound_file)
if character == 'b':
sound_file = "./Audio/Piano/2.wav"
songs.append(sound_file)
if character == 'c':
sound_file = "./Audio/Piano/3.wav"
songs.append(sound_file)
if character == 'd':
sound_file = "./Audio/Piano/4.wav"
songs.append(sound_file)
if character == 'e':
sound_file = "./Audio/Piano/5.wav"
songs.append(sound_file)
if character == 'f':
sound_file = "./Audio/Piano/6.wav"
songs.append(sound_file)
if character == 'g':
sound_file = "./Audio/Piano/7.wav"
songs.append(sound_file)
if character == 'n':
sound_file = "./Audio/blank.wav"
songs.append(sound_file)
return songs
def PlayGuitarTune(character, songs):
if character == 'a':
sound_file = "./Audio/Guitar/1.wav"
songs.append(sound_file)
if character == 'b':
sound_file = "./Audio/Guitar/2.wav"
songs.append(sound_file)
if character == 'c':
sound_file = "./Audio/Guitar/3.wav"
songs.append(sound_file)
if character == 'd':
sound_file = "./Audio/Guitar/4.wav"
songs.append(sound_file)
if character == 'e':
sound_file = "./Audio/Guitar/5.wav"
songs.append(sound_file)
if character == 'f':
sound_file = "./Audio/Guitar/6.wav"
songs.append(sound_file)
if character == 'g':
sound_file = "./Audio/Guitar/7.wav"
songs.append(sound_file)
if character == 'n':
sound_file = "./Audio/blank.wav"
songs.append(sound_file)
return songs
def PlayBassTune(character, songs):
if character == 'a':
sound_file = "./Audio/Bass/1.wav"
songs.append(sound_file)
if character == 'b':
sound_file = "./Audio/Bass/2.wav"
songs.append(sound_file)
if character == 'c':
sound_file = "./Audio/Bass/3.wav"
songs.append(sound_file)
if character == 'd':
sound_file = "./Audio/Bass/4.wav"
songs.append(sound_file)
if character == 'e':
sound_file = "./Audio/Bass/5.wav"
songs.append(sound_file)
if character == 'f':
sound_file = "./Audio/Bass/6.wav"
songs.append(sound_file)
if character == 'g':
sound_file = "./Audio/Bass/7.wav"
songs.append(sound_file)
if character == 'n':
sound_file = "./Audio/blank.wav"
songs.append(sound_file)
return songs
def PlayTrumpetTune(character, songs):
if character == 'a':
sound_file = "./Audio/Trumpet/1.wav"
songs.append(sound_file)
if character == 'b':
sound_file = "./Audio/Trumpet/2.wav"
songs.append(sound_file)
if character == 'c':
sound_file = "./Audio/Trumpet/3.wav"
songs.append(sound_file)
if character == 'd':
sound_file = "./Audio/Trumpet/4.wav"
songs.append(sound_file)
if character == 'e':
sound_file = "./Audio/Trumpet/5.wav"
songs.append(sound_file)
if character == 'f':
sound_file = "./Audio/Trumpet/6.wav"
songs.append(sound_file)
if character == 'g':
sound_file = "./Audio/Trumpet/7.wav"
songs.append(sound_file)
if character == 'n':
sound_file = "./Audio/blank.wav"
songs.append(sound_file)
return songs
piano_song = []
for i in range(len(tune_array_piano)):
character = tune_array_piano[i-1]
piano_song = PlayPianoTune(character, piano_song)
os.remove("./pianosounds.wav")
copyfile('./Audio/blank.wav','./pianosounds.wav')
for i in range(len(tune_array_piano)):
infiles = [piano_song[i-1], "pianosounds.wav"]
outfile = "pianosounds.wav"
data= []
for infile in infiles:
w = wave.open(infile, 'rb')
data.append( [w.getparams(), w.readframes(w.getnframes())] )
w.close()
output = wave.open(outfile, 'wb')
output.setparams(data[0][0])
for i in range(len(data)):
output.writeframes(data[i][1])
output.close()
guitar_song = []
for i in range(len(tune_array_guitar)):
character = tune_array_piano[i-1]
guitar_song = PlayGuitarTune(character, guitar_song)
os.remove("./guitarsounds.wav")
copyfile('./Audio/blank.wav','./guitarsounds.wav')
for i in range(len(tune_array_guitar)):
infiles = [guitar_song[i-1], "guitarsounds.wav"]
outfile = "guitarsounds.wav"
data= []
for infile in infiles:
w = wave.open(infile, 'rb')
data.append( [w.getparams(), w.readframes(w.getnframes())] )
w.close()
output = wave.open(outfile, 'wb')
output.setparams(data[0][0])
for i in range(len(data)):
output.writeframes(data[i][1])
output.close()
bass_song = []
for i in range(len(tune_array_bass)):
character = tune_array_bass[i-1]
bass_song = PlayBassTune(character, bass_song)
os.remove("./basssounds.wav")
copyfile('./Audio/blank.wav','./basssounds.wav')
for i in range(len(tune_array_bass)):
infiles = [bass_song[i-1], "basssounds.wav"]
outfile = "basssounds.wav"
data= []
for infile in infiles:
w = wave.open(infile, 'rb')
data.append( [w.getparams(), w.readframes(w.getnframes())] )
w.close()
output = wave.open(outfile, 'wb')
output.setparams(data[0][0])
for i in range(len(data)):
output.writeframes(data[i][1])
output.close()
trumpet_song = []
for i in range(len(tune_array_trumpet)):
character = tune_array_trumpet[i-1]
trumpet_song = PlayTrumpetTune(character, trumpet_song)
os.remove("./trumpetsounds.wav")
copyfile('./Audio/blank.wav','./trumpetsounds.wav')
for i in range(len(tune_array_trumpet)):
infiles = [trumpet_song[i-1], "trumpetsounds.wav"]
outfile = "trumpetsounds.wav"
data= []
for infile in infiles:
w = wave.open(infile, 'rb')
data.append( [w.getparams(), w.readframes(w.getnframes())] )
w.close()
output = wave.open(outfile, 'wb')
output.setparams(data[0][0])
for i in range(len(data)):
output.writeframes(data[i][1])
output.close()
sound1 = AudioSegment.from_file("./trumpetsounds.wav")
sound2 = AudioSegment.from_file("./basssounds.wav")
combined = sound1.overlay(sound2)
combined.export("./combined.wav", format='wav')
sound3 = AudioSegment.from_file("./guitarsounds.wav")
sound4 = AudioSegment.from_file("./pianosounds.wav")
combined2 = sound3.overlay(sound4)
combined2.export("./combined2.wav", format='wav')
sound5 = AudioSegment.from_file("./combined.wav")
sound6 = AudioSegment.from_file("./combined2.wav")
output_song = sound5.overlay(sound6)
output_song.export("./output_song.wav", format='wav')
sound_file = "./output_song.wav"
Audio(sound_file, autoplay=True)
print(tune_array_piano)
a = 64
b = 65
c = 66
d = 67
e = 68
f = 69
g = 70
print(tune_array_piano[0])
streamPiano = stream.Stream()
instrumentPiano = []
for i in range(18):
instrumentPiano.append(note.Note(tune_array_piano[i]))
streamPiano.append(instrumentPiano)
streamPiano.show()
a = 57
b = 58
c = 59
d = 60
e = 61
f = 62
g = 63
print(tune_array_guitar)
streamGuitar = stream.Stream()
instrumentGuitar = []
for i in range(18):
instrumentGuitar.append(note.Note(tune_array_guitar[i]))
streamGuitar.append(instrumentGuitar)
streamGuitar.show()
a = 50
b = 51
c = 52
d = 53
e = 54
f = 55
g = 56
print(tune_array_trumpet)
streamTrumpet = stream.Stream()
streamBass = stream.Stream()
instrumentTrumpet = []
for i in range(18):
instrumentTrumpet.append(note.Note(tune_array_trumpet[i]))
streamTrumpet.append(instrumentTrumpet)
streamTrumpet.show()
a = 43
b = 44
c = 45
d = 46
e = 47
f = 48
g = 49
print(tune_array_bass)
streamBass = stream.Stream()
instrumentBass = []
for i in range(18):
instrumentBass.append(note.Note(tune_array_bass[i]))
streamBass.append(instrumentBass)
streamBass.show()
excerpt = streamPiano.measures(1, 4)
excerpt.show()
streamPiano.getElementsByClass('Measure').insert(0.0, instrument.Piano())
streamGuitar.getElementsByClass('Measure').insert(1.0, instrument.Guitar())
streamTrumpet.getElementsByClass('Measure').insert(2.0, instrument.Trumpet())
streamBass.getElementsByClass('Measure').insert(3.0, instrument.Bass())
s = stream.Score()
s.insert(0, streamPiano)
s.insert(0, streamGuitar)
s.insert(0, streamTrumpet)
s.insert(0, streamBass)
s.show()
s.show('musicxml') #this show on musescore
|
https://github.com/qiskit-community/qiskit-cold-atom
|
qiskit-community
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Spin circuit solver tests"""
import numpy as np
from qiskit import QuantumCircuit
from qiskit.test import QiskitTestCase
from qiskit_nature.second_q.operators import FermionicOp, SpinOp
from qiskit_cold_atom.spins.spin_circuit_solver import SpinCircuitSolver
from qiskit_cold_atom.exceptions import QiskitColdAtomError
class TestSpinCircuitSolver(QiskitTestCase):
"""class to test the SpinCircuitSolver class."""
def setUp(self):
super().setUp()
# Set up the simulator
self.solver = SpinCircuitSolver(spin=3 / 2)
def test_spin_solver_initialization(self):
"""test constructor of SpinCircuitSolver"""
with self.assertRaises(QiskitColdAtomError):
SpinCircuitSolver(spin=2 / 3)
def test_get_initial_state(self):
"""test initialization of the state for the simulation"""
circ = QuantumCircuit(1)
init_state = self.solver.get_initial_state(circ)
target = np.array([1, 0, 0, 0])
self.assertTrue(np.all(init_state.toarray().T == target))
def test_embed_operator(self):
"""test embedding of an operator"""
fer_op = FermionicOp({"+_0 -_1": 1}, num_spin_orbitals=2)
# define a spin operator that has terms with different prefactors, support and power
spin_op = SpinOp(
{"X_0 X_1": 1, "Y_0 X_1": 1j, "X_0 Y_1": -1j, "Y_0 Y_1": 1}, num_spins=2
) + 2 * SpinOp({"X_0^2": 1}, num_spins=2)
num_wires = 4
qargs = [1, 3]
qargs_wrong = [0, 1, 3]
with self.subTest("check operator type"):
with self.assertRaises(QiskitColdAtomError):
self.solver._embed_operator(fer_op, num_wires, qargs)
with self.subTest("check operator wiring"):
with self.assertRaises(QiskitColdAtomError):
self.solver._embed_operator(spin_op, num_wires, qargs_wrong)
with self.subTest("operator embedding"):
embedded_op = self.solver._embed_operator(spin_op, num_wires, qargs)
target_op = SpinOp(
{"X_1 X_3": 1, "Y_1 X_3": 1j, "X_1 Y_3": -1j, "Y_1 Y_3": 1, "X_1^2": 2.0},
spin=3 / 2,
num_spins=4,
)
self.assertTrue(
np.allclose(embedded_op.simplify().to_matrix(), target_op.simplify().to_matrix())
)
def test_preprocess_circuit(self):
"""test whether preprocessing of the circuit correctly sets the dimension"""
circ = QuantumCircuit(2)
self.solver.preprocess_circuit(circ)
self.assertEqual(self.solver.dim, 4**2)
def test_draw_shots(self):
"""test drawing of the shots from a measurement distribution"""
n_spins = 5
circ = QuantumCircuit(n_spins)
circ.rly(np.pi / 2, [3])
self.solver.preprocess_circuit(circ)
dim = int((2 * self.solver.spin + 1) ** n_spins)
with self.subTest("check missing shot number"):
# error because the number of shots is not specified
with self.assertRaises(QiskitColdAtomError):
self.solver.draw_shots(np.ones(dim) / dim)
self.solver.shots = 3
with self.subTest("check match of dimensions"):
# error because there is a mismatch in the dimension
with self.assertRaises(QiskitColdAtomError):
self.solver.draw_shots(np.ones(dim - 1) / (dim - 1))
with self.subTest("formatting of measurement outcomes"):
meas_distr = np.abs(self.solver(circ)["statevector"]) ** 2
self.solver.seed = 45
outcomes = self.solver.draw_shots(meas_distr)
# Note the second index changing with the gate being applied to wire [3] of 5
self.assertEqual(outcomes, ["0 3 0 0 0", "0 2 0 0 0", "0 1 0 0 0"])
def test_to_operators(self):
"""test the to_operators method inherited form BaseCircuitSolver"""
test_circ = QuantumCircuit(2)
test_circ.rlx(0.5, [0, 1])
test_circ.rlz2(0.25, 1)
test_circ.measure_all()
with self.subTest("test ignore barriers"):
self.solver.ignore_barriers = False
with self.assertRaises(NotImplementedError):
self.solver.to_operators(test_circ)
self.solver.ignore_barriers = True
with self.subTest("check for gate generators"):
qubit_circ = QuantumCircuit(1)
qubit_circ.h(0)
with self.assertRaises(QiskitColdAtomError):
self.solver.to_operators(qubit_circ)
with self.subTest("gate after previous measurement instruction"):
meas_circ = QuantumCircuit(2)
meas_circ.measure_all()
meas_circ.rlx(0.5, 0)
with self.assertRaises(QiskitColdAtomError):
self.solver.to_operators(meas_circ)
with self.subTest("check returned operators"):
operators = self.solver.to_operators(test_circ)
target = [
SpinOp({"X_0": (0.5 + 0j)}, spin=3 / 2, num_spins=2),
SpinOp({"X_1": (0.5 + 0j)}, spin=3 / 2, num_spins=2),
SpinOp({"Z_1^2": (0.25 + 0j)}, spin=3 / 2, num_spins=2),
]
for i, op in enumerate(operators):
self.assertTrue(
np.allclose(op.simplify().to_matrix(), target[i].simplify().to_matrix())
)
def test_call_method(self):
"""test the call method inherited from BaseCircuitSolver that simulates a circuit"""
test_circ = QuantumCircuit(1)
test_circ.rlx(np.pi / 2, 0)
test_circ.measure_all()
with self.subTest("running the circuit"):
self.solver.shots = 5
self.solver.seed = 45
simulation = self.solver(test_circ)
self.assertEqual(simulation["memory"], ["3", "2", "1", "0", "1"])
self.assertEqual(simulation["counts"], {"0": 1, "1": 2, "2": 1, "3": 1})
self.assertTrue(
np.allclose(
simulation["statevector"],
np.array(
[
np.sqrt(1 / 8),
-1j * np.sqrt(3 / 8),
-np.sqrt(3 / 8),
1j * np.sqrt(1 / 8),
]
),
)
)
self.assertTrue(
np.allclose(
simulation["unitary"],
np.array(
[
[
np.sqrt(1 / 8),
-1j * np.sqrt(3 / 8),
-np.sqrt(3 / 8),
1j * np.sqrt(1 / 8),
],
[
-1j * np.sqrt(3 / 8),
-np.sqrt(1 / 8),
-1j * np.sqrt(1 / 8),
-np.sqrt(3 / 8),
],
[
-np.sqrt(3 / 8),
-1j * np.sqrt(1 / 8),
-np.sqrt(1 / 8),
-1j * np.sqrt(3 / 8),
],
[
1j * np.sqrt(1 / 8),
-np.sqrt(3 / 8),
-1j * np.sqrt(3 / 8),
np.sqrt(1 / 8),
],
]
),
)
)
with self.subTest("check for maximum dimension"):
self.solver.max_dimension = 3
with self.assertRaises(QiskitColdAtomError):
self.solver(test_circ)
self.solver.max_dimension = 100
with self.subTest("check if shots are specified"):
self.solver.shots = None
simulation = self.solver(test_circ)
self.assertEqual(simulation["memory"], [])
self.assertEqual(simulation["counts"], {})
self.solver.shots = 5
multiple_wire_circ = QuantumCircuit(2)
multiple_wire_circ.rlx(np.pi / 2, [0])
multiple_wire_circ.rlz(-np.pi / 2, [0, 1])
with self.subTest("formatting of multiple wires"):
self.solver.seed = 45
simulation = self.solver(multiple_wire_circ)
self.assertTrue(simulation["memory"], ["0 3", "0 2", "0 1", "0 0", "0 1"])
self.assertTrue(simulation["counts"], {"0 2": 1, "0 0": 1, "0 3": 1, "0 1": 2})
with self.subTest("check equivalence to qubits for spin-1/2"):
from qiskit_aer import AerSimulator
qubit_circ = QuantumCircuit(2)
qubit_circ.rx(np.pi / 2, [0])
qubit_circ.rz(-np.pi / 2, [0, 1])
qubit_circ.save_unitary()
qubit_backend = AerSimulator()
job = qubit_backend.run(qubit_circ)
qubit_unitary = job.result().get_unitary()
spin_half_solver = SpinCircuitSolver(spin=1 / 2)
simulation = spin_half_solver(multiple_wire_circ)
spin_unitary = simulation["unitary"]
# Switch some axes in the spin simulator unitary because the basis of qiskit_nature.SpinOp
# uses an ordering of the states (00, 10, 01, 11) that is different from qiskit Aer which
# uses (00, 01, 10, 11)
spin_unitary[[1, 2]] = spin_unitary[[2, 1]]
spin_unitary[:, [1, 2]] = spin_unitary[:, [2, 1]]
self.assertTrue(np.allclose(qubit_unitary, spin_unitary))
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_nature.circuit.library import UCCSD
ansatz = UCCSD()
ansatz.num_spin_orbitals = 10
from qiskit_nature.second_q.circuit.library import UCCSD
ansatz = UCCSD()
ansatz.num_spatial_orbitals = 5
from qiskit_nature.circuit.library import UCC, UVCC
ucc = UCC(qubit_converter=None, num_particles=None, num_spin_orbitals=None, excitations=None)
uvcc = UVCC(qubit_converter=None, num_modals=None, excitations=None)
from qiskit_nature.second_q.circuit.library import UCC, UVCC
ucc = UCC(num_spatial_orbitals=None, num_particles=None, excitations=None, qubit_converter=None)
uvcc = UVCC(num_modals=None, excitations=None, qubit_converter=None)
from qiskit_nature.circuit.library import HartreeFock, VSCF
from qiskit_nature.converters.second_quantization import QubitConverter
from qiskit_nature.mappers.second_quantization import DirectMapper, JordanWignerMapper
hf = HartreeFock(
num_spin_orbitals=4, num_particles=(1, 1), qubit_converter=QubitConverter(JordanWignerMapper())
)
vscf = VSCF(num_modals=[2, 2])
from qiskit_nature.second_q.circuit.library import HartreeFock, VSCF
from qiskit_nature.second_q.mappers import DirectMapper, JordanWignerMapper, QubitConverter
hf = HartreeFock()
hf.num_spatial_orbitals = 2
hf.num_particles = (1, 1)
hf.qubit_converter = QubitConverter(JordanWignerMapper())
vscf = VSCF()
vscf.num_modals = [2, 2]
from qiskit.providers.basicaer import BasicAer
from qiskit.utils import QuantumInstance
from qiskit_nature.algorithms.ground_state_solvers import VQEUCCFactory
quantum_instance = QuantumInstance(BasicAer.get_backend("statevector_simulator"))
vqe_factory = VQEUCCFactory(quantum_instance=quantum_instance)
from qiskit.algorithms.optimizers import SLSQP
from qiskit.primitives import Estimator
from qiskit_nature.second_q.circuit.library import UCCSD
from qiskit_nature.second_q.algorithms.ground_state_solvers import VQEUCCFactory
estimator = Estimator()
ansatz = UCCSD()
optimizer = SLSQP()
vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer)
from qiskit_nature.algorithms.ground_state_solvers import GroundStateEigensolver, VQEUCCFactory
from qiskit_nature.algorithms.excited_states_solvers import QEOM
from qiskit_nature.converters.second_quantization import QubitConverter
from qiskit_nature.mappers.second_quantization import JordanWignerMapper
vqe_factory = VQEUCCFactory()
converter = QubitConverter(JordanWignerMapper())
ground_state_solver = GroundStateEigensolver(converter, vqe_factory)
qeom = QEOM(ground_state_solver)
from qiskit.algorithms.optimizers import SLSQP
from qiskit.primitives import Estimator
from qiskit_nature.second_q.circuit.library import UCCSD
from qiskit_nature.second_q.algorithms.ground_state_solvers import (
GroundStateEigensolver,
VQEUCCFactory,
)
from qiskit_nature.second_q.algorithms.excited_states_solvers import QEOM
from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter
estimator = Estimator()
ansatz = UCCSD()
optimizer = SLSQP()
vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer)
converter = QubitConverter(JordanWignerMapper())
ground_state_solver = GroundStateEigensolver(converter, vqe_factory)
qeom = QEOM(ground_state_solver, estimator)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_bloch_multivector
qc = QuantumCircuit(2)
qc.h(0)
qc.x(1)
# You can reverse the order of the qubits.
from qiskit.quantum_info import DensityMatrix
qc = QuantumCircuit(2)
qc.h([0, 1])
qc.t(1)
qc.s(0)
qc.cx(0,1)
matrix = DensityMatrix(qc)
plot_bloch_multivector(matrix, title='My Bloch Spheres', reverse_bits=True)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import pulse
d0 = pulse.DriveChannel(0)
x90 = pulse.Gaussian(10, 0.1, 3)
x180 = pulse.Gaussian(10, 0.2, 3)
with pulse.build() as hahn_echo:
with pulse.align_equispaced(duration=100):
pulse.play(x90, d0)
pulse.play(x180, d0)
pulse.play(x90, d0)
hahn_echo.draw()
|
https://github.com/rodneyosodo/variational-quantum-classifier-on-heartattack
|
rodneyosodo
|
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas_profiling as pp
from sklearn.datasets import load_wine, load_iris
%matplotlib inline
# Constants
CLEAN_DATA_PATH = "../../Data/Processed/iris_csv.csv"
raw_data = load_iris()
features = pd.DataFrame(data=raw_data['data'],columns=raw_data['feature_names'])
data = features
data['target']=raw_data['target']
data['class']=data['target'].map(lambda ind: raw_data['target_names'][ind])
data.head()
data.shape
data.columns
print(raw_data['DESCR'])
data.info()
data.describe()
def check_unique(df):
""""
Checks the unique value in each column
:param df: The dataframe
"""
for col in df.columns:
unique = df[col].unique()
print("Column: {} has {} unique values\n".format(col, unique))
check_unique(data)
fig = plt.figure()
sns.countplot(x="target", data=data, palette="gist_rainbow_r")
plt.xlabel("Classes(0 = setosa, 1 = versicolor, 2 = verginica)")
plt.title("Target distribution")
plt.show()
data = data[data['class'] != 'virginica']
data.duplicated().sum()
data.drop_duplicates(inplace=True)
data.drop('target', axis=1).corrwith(data['target']).plot(kind='bar', grid=True, figsize=(12, 8), title="Correlation with target")
pp.ProfileReport(df=data, dark_mode=True, explorative=True)
data
data = data[['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)', 'target']]
data.to_csv(CLEAN_DATA_PATH, index=False)
|
https://github.com/daimurat/qiskit-implementation
|
daimurat
|
from qiskit import Aer
from qiskit.circuit.library import QFT
from qiskit.aqua import QuantumInstance, aqua_globals
from qiskit.quantum_info import state_fidelity
from qiskit.aqua.algorithms import HHL, NumPyLSsolver
from qiskit.aqua.components.eigs import EigsQPE
from qiskit.aqua.components.reciprocals import LookupRotation
from qiskit.aqua.operators import MatrixOperator
from qiskit.aqua.components.initial_states import Custom
import numpy as np
def create_eigs(matrix, num_ancillae, num_time_slices, negative_evals):
ne_qfts = [None, None]
if negative_evals:
num_ancillae += 1
# The QFT and IQFT circuits for handling negative eigenvalues
ne_qfts = [QFT(num_ancillae - 1), QFT(num_ancillae - 1).inverse()]
"""
Specifically, this class is based on PhaseEstimationCircuit with no measurements
and has additional handling of negative eigenvalues
"""
return EigsQPE(MatrixOperator(matrix=matrix),
QFT(num_ancillae).inverse(),
num_time_slices=num_time_slices,
num_ancillae=num_ancillae,
expansion_mode='suzuki',
expansion_order=2,
evo_time=None, # This is t, can set to: np.pi*3/4
negative_evals=negative_evals,
ne_qfts=ne_qfts)
# 信頼度
def fidelity(hhl, ref):
solution_hhl_normed = hhl / np.linalg.norm(hhl)
solution_ref_normed = ref / np.linalg.norm(ref)
fidelity = state_fidelity(solution_hhl_normed, solution_ref_normed)
print("Fidelity:\t\t %f" % fidelity)
matrix = [[1, -1/3], [-1/3, 1]]
vector = [1, 0]
orig_size = len(vector)
# 行列Aがハミルトニアンでない場合はtrancate_hermitian利用
matrix, vector, truncate_powerdim, truncate_hermitian = HHL.matrix_resize(matrix, vector)
# Initialize eigenvalue finding module
eigs = create_eigs(matrix, 3, 50, False)
num_q, num_a = eigs.get_register_sizes()
# Initialize initial state module
init_state = Custom(num_q, state_vector=vector)
# Initialize reciprocal rotation module
reci = LookupRotation(negative_evals=eigs._negative_evals, evo_time=eigs._evo_time)
"""
Args:
matrix: The input matrix of linear system of equations
vector: The input vector of linear system of equations
truncate_powerdim: Flag indicating expansion to 2**n matrix to be truncated
truncate_hermitian: Flag indicating expansion to hermitian matrix to be truncated
eigs: The eigenvalue estimation instance
init_state: The initial quantum state preparation
reciprocal: The eigenvalue reciprocal and controlled rotation instance
num_q: Number of qubits required for the matrix Operator instance
num_a: Number of ancillary qubits for Eigenvalues instance
orig_size: The original dimension of the problem (if truncate_powerdim)
quantum_instance: Quantum Instance or Backend
"""
algo = HHL(matrix, vector, truncate_powerdim, truncate_hermitian, eigs,
init_state, reci, num_q, num_a, orig_size)
result = algo.run(QuantumInstance(Aer.get_backend('statevector_simulator')))
print("Solution:\t\t", np.round(result['solution'], 5))
result_ref = NumPyLSsolver(matrix, vector).run()
print("Classical Solution:\t", np.round(result_ref['solution'], 5))
print("Probability:\t\t %f" % result['probability_result'])
fidelity(result['solution'], result_ref['solution'])
algo = HHL(matrix, vector)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.circuit.library.standard_gates import HGate
qc1 = QuantumCircuit(2)
qc1.x(0)
qc1.h(1)
custom = qc1.to_gate().control(2)
qc2 = QuantumCircuit(4)
qc2.append(custom, [0, 3, 1, 2])
qc2.draw('mpl')
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit, transpile
from qiskit.visualization import plot_circuit_layout
from qiskit.providers.fake_provider import FakeVigo
backend = FakeVigo()
ghz = QuantumCircuit(3, 3)
ghz.h(0)
ghz.cx(0,range(1,3))
ghz.barrier()
ghz.measure(range(3), range(3))
ghz.draw(output='mpl')
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Utils for reading a user preference config files."""
import configparser
import os
from qiskit import exceptions
DEFAULT_FILENAME = os.path.join(os.path.expanduser("~"),
'.qiskit', 'settings.conf')
class UserConfig:
"""Class representing a user config file
The config file format should look like:
[default]
circuit_drawer = mpl
"""
def __init__(self, filename=None):
"""Create a UserConfig
Args:
filename (str): The path to the user config file. If one isn't
specified ~/.qiskit/settings.conf is used.
"""
if filename is None:
self.filename = DEFAULT_FILENAME
else:
self.filename = filename
self.settings = {}
self.config_parser = configparser.ConfigParser()
def read_config_file(self):
"""Read config file and parse the contents into the settings attr."""
if not os.path.isfile(self.filename):
return
self.config_parser.read(self.filename)
if 'default' in self.config_parser.sections():
circuit_drawer = self.config_parser.get('default',
'circuit_drawer')
if circuit_drawer:
if circuit_drawer not in ['text', 'mpl', 'latex',
'latex_source']:
raise exceptions.QiskitUserConfigError(
"%s is not a valid circuit drawer backend. Must be "
"either 'text', 'mpl', 'latex', or 'latex_source'"
% circuit_drawer)
self.settings['circuit_drawer'] = circuit_drawer
def get_config():
"""Read the config file from the default location or env var
It will read a config file at either the default location
~/.qiskit/settings.conf or if set the value of the QISKIT_SETTINGS env var.
It will return the parsed settings dict from the parsed config file.
Returns:
dict: The settings dict from the parsed config file.
"""
filename = os.getenv('QISKIT_SETTINGS', DEFAULT_FILENAME)
if not os.path.isfile(filename):
return {}
user_config = UserConfig(filename)
user_config.read_config_file()
return user_config.settings
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import DensityMatrix
from qiskit.visualization import plot_state_city
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
# plot using a DensityMatrix
state = DensityMatrix(qc)
plot_state_city(state)
|
https://github.com/alpine-quantum-technologies/qiskit-aqt-provider-rc
|
alpine-quantum-technologies
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2019, Alpine Quantum Technologies GmbH 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
import json
import math
import uuid
from unittest import mock
import httpx
import pydantic as pdt
import pytest
from polyfactory.factories.pydantic_factory import ModelFactory
from pytest_httpx import HTTPXMock
from qiskit import QuantumCircuit
from qiskit.providers.exceptions import JobTimeoutError
from qiskit_aqt_provider import api_models
from qiskit_aqt_provider.aqt_job import AQTJob
from qiskit_aqt_provider.aqt_options import AQTOptions
from qiskit_aqt_provider.aqt_resource import AQTResource
from qiskit_aqt_provider.test.circuits import assert_circuits_equal, empty_circuit
from qiskit_aqt_provider.test.fixtures import MockSimulator
from qiskit_aqt_provider.test.resources import DummyResource, TestResource
from qiskit_aqt_provider.versions import USER_AGENT
class OptionsFactory(ModelFactory[AQTOptions]):
__model__ = AQTOptions
query_timeout_seconds = 10.0
def test_options_set_query_timeout(offline_simulator_no_noise: AQTResource) -> None:
"""Set the query timeout for job status queries with different values."""
backend = offline_simulator_no_noise
# doesn't work with str
with pytest.raises(pdt.ValidationError):
backend.options.update_options(query_timeout_seconds="abc")
# works with integers
backend.options.update_options(query_timeout_seconds=123)
assert backend.options.query_timeout_seconds == 123
# works with floats
backend.options.update_options(query_timeout_seconds=123.45)
assert backend.options.query_timeout_seconds == 123.45
# works with None (no timeout)
backend.options.update_options(query_timeout_seconds=None)
assert backend.options.query_timeout_seconds is None
def test_options_set_query_period(offline_simulator_no_noise: AQTResource) -> None:
"""Set the query period for job status queries with different values."""
backend = offline_simulator_no_noise
# works with integers
backend.options.update_options(query_period_seconds=123)
assert backend.options.query_period_seconds == 123
# works with floats
backend.options.update_options(query_period_seconds=123.45)
assert backend.options.query_period_seconds == 123.45
# doesn't work with None
with pytest.raises(pdt.ValidationError):
backend.options.update_options(query_period_seconds=None)
# doesn't work with str
with pytest.raises(pdt.ValidationError):
backend.options.update_options(query_period_seconds="abc")
def test_query_timeout_propagation() -> None:
"""Check that the query timeout is properly propagated from the backend options to
the job result polling loop.
Acquire a resource with 10s processing time, but set the job result timeout to 1s.
Check that calling `result()` on the job handle fails with a timeout error.
"""
response_delay = 10.0
timeout = 1.0
assert timeout < response_delay
backend = TestResource(min_running_duration=response_delay)
backend.options.update_options(query_timeout_seconds=timeout, query_period_seconds=0.5)
qc = QuantumCircuit(1)
qc.rx(3.14, 0)
job = backend.run(qc)
with pytest.raises(JobTimeoutError):
job.result()
def test_query_period_propagation() -> None:
"""Check that the query wait duration is properly propagated from the backend options
to the job result polling loop.
Set the polling period (much) shorter than the backend's processing time. Check that
the backend is polled the calculated number of times.
"""
response_delay = 2.0
period_seconds = 0.5
timeout_seconds = 3.0
assert timeout_seconds > response_delay # won't time out
backend = TestResource(min_running_duration=response_delay)
backend.options.update_options(
query_timeout_seconds=timeout_seconds, query_period_seconds=period_seconds
)
qc = QuantumCircuit(1)
qc.rx(3.14, 0)
qc.measure_all()
job = backend.run(qc)
with mock.patch.object(AQTJob, "status", wraps=job.status) as mocked_status:
job.result()
lower_bound = math.floor(response_delay / period_seconds)
upper_bound = math.ceil(response_delay / period_seconds) + 1
assert lower_bound <= mocked_status.call_count <= upper_bound
def test_run_options_propagation(offline_simulator_no_noise: MockSimulator) -> None:
"""Check that options passed to AQTResource.run are propagated to the corresponding job."""
default = offline_simulator_no_noise.options.copy()
while True:
overrides = OptionsFactory.build()
if overrides != default:
break
qc = QuantumCircuit(1)
qc.measure_all()
# don't submit the circuit to the simulator
with mock.patch.object(AQTJob, "submit") as mocked_submit:
job = offline_simulator_no_noise.run(qc, **overrides.dict())
assert job.options == overrides
mocked_submit.assert_called_once()
def test_run_options_unknown(offline_simulator_no_noise: MockSimulator) -> None:
"""Check that AQTResource.run accepts but warns about unknown options."""
default = offline_simulator_no_noise.options.copy()
overrides = {"shots": 123, "unknown_option": True}
assert set(overrides) - set(default) == {"unknown_option"}
qc = QuantumCircuit(1)
qc.measure_all()
with mock.patch.object(AQTJob, "submit") as mocked_submit:
with pytest.warns(UserWarning, match="not used"):
job = offline_simulator_no_noise.run(qc, **overrides)
assert job.options.shots == 123
mocked_submit.assert_called_once()
def test_run_options_invalid(offline_simulator_no_noise: MockSimulator) -> None:
"""Check that AQTResource.run reject valid option names with invalid values."""
qc = QuantumCircuit(1)
qc.measure_all()
with pytest.raises(pdt.ValidationError, match="shots"):
offline_simulator_no_noise.run(qc, shots=-123)
def test_double_job_submission(offline_simulator_no_noise: MockSimulator) -> None:
"""Check that attempting to re-submit a job raises a RuntimeError."""
qc = QuantumCircuit(1)
qc.r(3.14, 0.0, 0)
qc.measure_all()
# AQTResource.run submits the job
job = offline_simulator_no_noise.run(qc)
with pytest.raises(RuntimeError, match=f"{job.job_id()}"):
job.submit()
# Check that the job was actually submitted
((submitted_circuit,),) = offline_simulator_no_noise.submitted_circuits
assert_circuits_equal(submitted_circuit, qc)
def test_offline_simulator_invalid_job_id(offline_simulator_no_noise: MockSimulator) -> None:
"""Check that the offline simulator raises UnknownJobError if the job id passed
to `result()` is invalid.
"""
qc = QuantumCircuit(1)
qc.measure_all()
job = offline_simulator_no_noise.run([qc], shots=1)
job_id = uuid.UUID(hex=job.job_id())
invalid_job_id = uuid.uuid4()
assert invalid_job_id != job_id
with pytest.raises(api_models.UnknownJobError, match=str(invalid_job_id)):
offline_simulator_no_noise.result(invalid_job_id)
# querying the actual job is successful
result = offline_simulator_no_noise.result(job_id)
assert result.job.job_id == job_id
def test_submit_valid_response(httpx_mock: HTTPXMock) -> None:
"""Check that AQTResource.submit passes the authorization token and
extracts the correct job_id when the response payload is valid.
"""
token = str(uuid.uuid4())
backend = DummyResource(token)
expected_job_id = uuid.uuid4()
def handle_submit(request: httpx.Request) -> httpx.Response:
assert request.headers["user-agent"] == USER_AGENT
assert request.headers["authorization"] == f"Bearer {token}"
return httpx.Response(
status_code=httpx.codes.OK,
json=json.loads(
api_models.Response.queued(
job_id=expected_job_id,
resource_id=backend.resource_id,
workspace_id=backend.workspace_id,
).json()
),
)
httpx_mock.add_callback(handle_submit, method="POST")
job_id = backend.submit([empty_circuit(2)], shots=10)
assert job_id == expected_job_id
def test_submit_bad_request(httpx_mock: HTTPXMock) -> None:
"""Check that AQTResource.submit raises an HTTPError if the request
is flagged invalid by the server.
"""
backend = DummyResource("")
httpx_mock.add_response(status_code=httpx.codes.BAD_REQUEST)
with pytest.raises(httpx.HTTPError):
backend.submit([empty_circuit(2)], shots=10)
def test_result_valid_response(httpx_mock: HTTPXMock) -> None:
"""Check that AQTResource.result passes the authorization token
and returns the raw response payload.
"""
token = str(uuid.uuid4())
backend = DummyResource(token)
job_id = uuid.uuid4()
payload = api_models.Response.cancelled(
job_id=job_id, resource_id=backend.resource_id, workspace_id=backend.workspace_id
)
def handle_result(request: httpx.Request) -> httpx.Response:
assert request.headers["user-agent"] == USER_AGENT
assert request.headers["authorization"] == f"Bearer {token}"
return httpx.Response(status_code=httpx.codes.OK, json=json.loads(payload.json()))
httpx_mock.add_callback(handle_result, method="GET")
response = backend.result(job_id)
assert response == payload
def test_result_bad_request(httpx_mock: HTTPXMock) -> None:
"""Check that AQTResource.result raises an HTTPError if the request
is flagged invalid by the server.
"""
backend = DummyResource("")
httpx_mock.add_response(status_code=httpx.codes.BAD_REQUEST)
with pytest.raises(httpx.HTTPError):
backend.result(uuid.uuid4())
def test_result_unknown_job(httpx_mock: HTTPXMock) -> None:
"""Check that AQTResource.result raises UnknownJobError if the API
responds with an UnknownJob payload.
"""
backend = DummyResource("")
job_id = uuid.uuid4()
httpx_mock.add_response(json=json.loads(api_models.Response.unknown_job(job_id=job_id).json()))
with pytest.raises(api_models.UnknownJobError, match=str(job_id)):
backend.result(job_id)
def test_resource_fixture_detect_invalid_circuits(
offline_simulator_no_noise: MockSimulator,
) -> None:
"""Pass a circuit that cannot be converted to the AQT API to the mock simulator.
This must fail.
"""
qc = QuantumCircuit(2)
qc.h(0)
qc.cnot(0, 1)
qc.measure_all()
with pytest.raises(ValueError, match="^Circuit cannot be converted"):
offline_simulator_no_noise.run(qc)
|
https://github.com/qiskit-community/qiskit-dell-runtime
|
qiskit-community
|
from dell_runtime import DellRuntimeProvider
from dell_runtime import BackendProvider
provider = BackendProvider()
provider.backends()
backend = provider.get_backend(name="emulator")
backend_config = backend.configuration()
backend_config.backend_name
from qiskit import QuantumCircuit, execute
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])
job = backend.run(qc, shots=1024)
result = job.result()
counts = result.get_counts(qc)
from qiskit.tools.visualization import plot_histogram, plot_state_city
plot_histogram(counts, title='Bell-State counts')
|
https://github.com/qclib/qclib
|
qclib
|
# Copyright 2021 qclib project.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
n-qubit controlled gate
"""
from collections import namedtuple
import numpy as np
import qiskit
from qiskit.circuit import Gate
from qiskit import QuantumCircuit, QuantumRegister
from qclib.gates.util import check_u2, apply_ctrl_state
from qclib.gates.multitargetmcsu2 import MultiTargetMCSU2
from qclib.gates.ldmcu import Ldmcu
# pylint: disable=protected-access
class MCU(Gate):
"""
Approximated Multi-Controlled Unitary Gate
https://arxiv.org/abs/2310.14974
-----------------------------------------
Implements gate decomposition of a multi-controlled operator in U(2)
"""
def __init__(self, unitary, num_controls, error=0, ctrl_state: str = None):
"""
Parameters
----------
unitary: U(2) gate
num_controls (int): Number of controls
error (float): max_error
ctrl_state (str or int): Control state in decimal or as a bitstring
"""
check_u2(unitary)
self.unitary = unitary
self.error = error
if num_controls > 0:
self.control_qubits = QuantumRegister(num_controls)
else:
self.control_qubits = []
self.target_qubit = QuantumRegister(1)
self.n_ctrl_base = self._get_num_base_ctrl_qubits(self.unitary, self.error)
if self.n_ctrl_base == 0:
raise ValueError("The number of base qubits is 0")
if self.n_ctrl_base > num_controls:
raise ValueError("The number of control qubits is too low")
self.ctrl_state = ctrl_state
super().__init__("McuApprox", num_controls + 1, [], "McuApprox")
def _define(self):
if len(self.control_qubits) > 0:
self.definition = QuantumCircuit(self.control_qubits, self.target_qubit)
self._apply_ctrl_state()
gate_circuit = qiskit.QuantumCircuit(self.num_qubits, name="T" + str(0))
self._c1c2(self.num_qubits, gate_circuit)
self._c1c2(self.num_qubits, gate_circuit, step=-1)
self._c1c2(self.num_qubits - 1, gate_circuit, False)
self._c1c2(self.num_qubits - 1, gate_circuit, False, -1)
self.definition.append(
gate_circuit, [*self.control_qubits, self.target_qubit]
)
self._apply_ctrl_state()
else:
self.definition = QuantumCircuit(self.target_qubit)
self.definition.unitary(self.unitary, 0)
@staticmethod
def _get_num_base_ctrl_qubits(unitary, error):
"""
Get the baseline number of control qubits for the approximation
given an error
args:
unitary: Unitary to be approximated
error: Error of the approximation
"""
eig_vals, _ = np.linalg.eig(unitary)
angles = np.angle(eig_vals)
if (1 - np.cos(angles[0])) >= (1 - np.cos(angles[1])):
angle = angles[0]
else:
angle = angles[1]
quotient = angle / np.arccos(1 - error**2 / 2)
return int(np.ceil(np.log2(quotient))) + 1
def get_n_base(self, unitary, error):
return self._get_num_base_ctrl_qubits(unitary, error)
def _c1c2(self, n_qubits, gate_circ, first=True, step=1):
extra_q, n_qubits_base = self._calc_extra_qubits(first, n_qubits)
qubit_pairs = self._compute_qubit_pairs(n_qubits_base, step)
unitary_list = []
targets = []
for pair in qubit_pairs:
param = self._compute_param(pair)
signal = -1 if (pair.control == 0 and not first) else 1
signal = step * signal
# Perform a translation of the qubits by extra_q qubits in all cases
# When target == last qubit and first==true apply the U gates, except
# when control==0, in which case we don't do anything
if pair.target == n_qubits_base - 1 and first:
if pair.control != 0:
csqgate = MCU._gate_u(self.unitary, param, signal)
gate_circ.compose(
csqgate,
qubits=[pair.control + extra_q, pair.target + extra_q],
inplace=True,
)
# For the controlled rotations, when control==0, apply a multi-controlled
# rotation with the extra control qubits
else:
if pair.control == 0 and extra_q >= 1:
# Apply a multi-controlled Rx gate with the additional control qubits
control_list = np.array(range(0, extra_q + 1))
unitary_list.append(self._compute_rx_matrix(param, signal))
targets.append(pair.target + extra_q)
if pair.target == 1:
MultiTargetMCSU2.multi_target_mcsu2(
gate_circ, unitary_list, control_list, targets
)
else:
gate_circ.crx(
signal * np.pi / param,
pair.control + extra_q,
pair.target + extra_q,
)
def _calc_extra_qubits(self, first, n_qubits):
if first:
n_qubits_base = self.n_ctrl_base + 1
else:
n_qubits_base = self.n_ctrl_base
extra_q = n_qubits - n_qubits_base
return extra_q, n_qubits_base
@staticmethod
def _compute_param(pair):
exponent = pair.target - pair.control
if pair.control == 0:
exponent = exponent - 1
param = 2**exponent
return param
@staticmethod
def _compute_rx_matrix(param, signal):
theta = signal * np.pi / param
rx_matrix = np.array(
[
[np.cos(theta / 2), (-1j) * np.sin(theta / 2)],
[(-1j) * np.sin(theta / 2), np.cos(theta / 2)],
]
)
return rx_matrix
@staticmethod
def _compute_qubit_pairs(n_qubits_base, step):
pairs = namedtuple("pairs", ["control", "target"])
if step == 1:
start = 0
reverse = True
else:
start = 1
reverse = False
qubit_pairs = [
pairs(control, target)
for target in range(n_qubits_base)
for control in range(start, target)
]
qubit_pairs.sort(key=lambda e: e.control + e.target, reverse=reverse)
return qubit_pairs
@staticmethod
def _gate_u(a_gate, coefficient, signal):
param = 1 / np.abs(coefficient)
values, vectors = np.linalg.eig(a_gate)
gate = (
np.power(values[0] + 0j, param) * vectors[:, [0]] @ vectors[:, [0]].conj().T
)
gate = (
gate
+ np.power(values[1] + 0j, param)
* vectors[:, [1]]
@ vectors[:, [1]].conj().T
)
if signal < 0:
gate = np.linalg.inv(gate)
s_q_gate = QuantumCircuit(1, name="U^1/" + str(coefficient))
s_q_gate.unitary(gate, 0) # pylint: disable=maybe-no-member
c_s_q_gate = s_q_gate.control(1)
return c_s_q_gate
@staticmethod
def mcu(circuit, unitary, controls, target, error, ctrl_state=None):
"""
Approximated Multi-Controlled Unitary Gate
https://arxiv.org/abs/2310.14974
"""
if error == 0:
circuit.append(
Ldmcu(unitary, len(controls), ctrl_state=ctrl_state),
[*controls, target]
)
else:
circuit.append(
MCU(unitary, len(controls), error, ctrl_state=ctrl_state),
[*controls, target],
)
MCU._apply_ctrl_state = apply_ctrl_state
|
https://github.com/hephaex/Quantum-Computing-Awesome-List
|
hephaex
|
import numpy as np
import cirq
def main():
circuit = make_bell_test_circuit()
print("Circuit:")
print(circuit)
#Run Simulation
sim = cirq.Simulator()
repetitions = 1000
print("Simulating {} repetitions".format(repetitions))
result = sim.run(program=circuit, repetitions=repetitions)
## Collect Results
a = np.array(result.measurements['a'] [:, 0])
b = np.array(result.measurements['b'] [:, 0])
x = np.array(result.measurements['x'] [:, 0])
y = np.array(result.measurements['y'] [:, 0])
outcomes = a ^ b == x & y
win_percent = len([e for e in outcomes if e]) * 100/repetitions
print()
print('Results')
print('a:', bitstring(a))
print('b:', bitstring(b))
print('x:', bitstring(x))
print('y:', bitstring(y))
print('(a XOR b) == (x AND y): \n', bitstring(outcomes))
print('Win rate: {}%' .format(win_percent))
def make_bell_test_circuit():
alice = cirq.GridQubit(0, 0)
bob = cirq.GridQubit(1, 0)
alice_referee = cirq.GridQubit(0, 1)
bob_referee = cirq.GridQubit(1,1)
circuit = cirq.Circuit()
## Prepare shared entanglement
circuit.append([cirq.H(alice),
cirq.CNOT(alice, bob),
cirq.X(alice)**-0.25,])
## Referee flip coins
circuit.append([cirq.H(alice_referee),
cirq.H(bob_referee),
])
## Players do oa sqrt based on their referee coin
circuit.append([cirq.CNOT(alice_referee, alice)**0.5,
cirq.CNOT(bob_referee, bob)**0.5,
])
circuit.append([
cirq.measure(alice, key = 'a'),
cirq.measure(bob, key = 'b'),
cirq.measure(alice_referee, key = 'x'),
cirq.measure(bob_referee, key = 'y'),
])
return circuit
def bitstring(bits):
return ''.join('1' if e else '_' for e in bits)
if __name__ == '__main__':
main()
|
https://github.com/theflyingrahul/qiskitsummerschool2020
|
theflyingrahul
|
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_bloch_multivector
excited = Statevector.from_int(1, 2)
plot_bloch_multivector(excited.data)
from qiskit.tools.jupyter import *
from qiskit import IBMQ
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main')
backend = provider.get_backend('ibmq_armonk')
backend_config = backend.configuration()
assert backend_config.open_pulse, "Backend doesn't support Pulse"
dt = backend_config.dt
print(f"Sampling time: {dt*1e9} ns")
backend_defaults = backend.defaults()
import numpy as np
# unit conversion factors -> all backend properties returned in SI (Hz, sec, etc)
GHz = 1.0e9 # Gigahertz
MHz = 1.0e6 # Megahertz
us = 1.0e-6 # Microseconds
ns = 1.0e-9 # Nanoseconds
# We will find the qubit frequency for the following qubit.
qubit = 0
# The Rabi sweep will be at the given qubit frequency.
center_frequency_Hz = backend_defaults.qubit_freq_est[qubit] # The default frequency is given in Hz
# warning: this will change in a future release
print(f"Qubit {qubit} has an estimated frequency of {center_frequency_Hz / GHz} GHz.")
from qiskit import pulse, assemble # This is where we access all of our Pulse features!
from qiskit.pulse import Play
from qiskit.pulse import pulse_lib # This Pulse module helps us build sampled pulses for common pulse shapes
### Collect the necessary channels
drive_chan = pulse.DriveChannel(qubit)
meas_chan = pulse.MeasureChannel(qubit)
acq_chan = pulse.AcquireChannel(qubit)
inst_sched_map = backend_defaults.instruction_schedule_map
measure = inst_sched_map.get('measure', qubits=[0])
# Rabi experiment parameters
# Drive amplitude values to iterate over: 50 amplitudes evenly spaced from 0 to 0.75
num_rabi_points = 50
drive_amp_min = 0
drive_amp_max = 0.75
drive_amps = np.linspace(drive_amp_min, drive_amp_max, num_rabi_points)
# drive waveforms mush be in units of 16
drive_sigma = 80 # in dt
drive_samples = 8*drive_sigma # in dt
# Build the Rabi experiments:
# A drive pulse at the qubit frequency, followed by a measurement,
# where we vary the drive amplitude each time.
rabi_schedules = []
for drive_amp in drive_amps:
rabi_pulse = pulse_lib.gaussian(duration=drive_samples, amp=drive_amp,
sigma=drive_sigma, name=f"Rabi drive amplitude = {drive_amp}")
this_schedule = pulse.Schedule(name=f"Rabi drive amplitude = {drive_amp}")
this_schedule += Play(rabi_pulse, drive_chan)
# The left shift `<<` is special syntax meaning to shift the start time of the schedule by some duration
this_schedule += measure << this_schedule.duration
rabi_schedules.append(this_schedule)
rabi_schedules[-1].draw(label=True, scaling=1.0)
# assemble the schedules into a Qobj
num_shots_per_point = 1024
rabi_experiment_program = assemble(rabi_schedules,
backend=backend,
meas_level=1,
meas_return='avg',
shots=num_shots_per_point,
schedule_los=[{drive_chan: center_frequency_Hz}]
* num_rabi_points)
# RUN the job on a real device
#job = backend.run(rabi_experiment_program)
#print(job.job_id())
#from qiskit.tools.monitor import job_monitor
#job_monitor(job)
# OR retreive result from previous run
job = backend.retrieve_job("5ef3bf17dc3044001186c011")
rabi_results = job.result()
import matplotlib.pyplot as plt
plt.style.use('dark_background')
scale_factor = 1e-14
# center data around 0
def baseline_remove(values):
return np.array(values) - np.mean(values)
rabi_values = []
for i in range(num_rabi_points):
# Get the results for `qubit` from the ith experiment
rabi_values.append(rabi_results.get_memory(i)[qubit]*scale_factor)
rabi_values = np.real(baseline_remove(rabi_values))
plt.xlabel("Drive amp [a.u.]")
plt.ylabel("Measured signal [a.u.]")
plt.scatter(drive_amps, rabi_values, color='white') # plot real part of Rabi values
plt.show()
from scipy.optimize import curve_fit
def fit_function(x_values, y_values, function, init_params):
fitparams, conv = curve_fit(function, x_values, y_values, init_params)
y_fit = function(x_values, *fitparams)
return fitparams, y_fit
fit_params, y_fit = fit_function(drive_amps,
rabi_values,
lambda x, A, B, drive_period, phi: (A*np.cos(2*np.pi*x/drive_period - phi) + B),
[10, 0.1, 0.6, 0])
plt.scatter(drive_amps, rabi_values, color='white')
plt.plot(drive_amps, y_fit, color='red')
drive_period = fit_params[2] # get period of rabi oscillation
plt.axvline(drive_period/2, color='red', linestyle='--')
plt.axvline(drive_period, color='red', linestyle='--')
plt.annotate("", xy=(drive_period, 0), xytext=(drive_period/2,0), arrowprops=dict(arrowstyle="<->", color='red'))
plt.xlabel("Drive amp [a.u.]", fontsize=15)
plt.ylabel("Measured signal [a.u.]", fontsize=15)
plt.show()
pi_amp = abs(drive_period / 2)
print(f"Pi Amplitude = {pi_amp}")
# Drive parameters
# The drive amplitude for pi/2 is simply half the amplitude of the pi pulse
drive_amp = pi_amp / 2
# x_90 is a concise way to say pi_over_2; i.e., an X rotation of 90 degrees
x90_pulse = pulse_lib.gaussian(duration=drive_samples,
amp=drive_amp,
sigma=drive_sigma,
name='x90_pulse')
# Ramsey experiment parameters
time_max_us = 1.8
time_step_us = 0.025
times_us = np.arange(0.1, time_max_us, time_step_us)
# Convert to units of dt
delay_times_dt = times_us * us / dt
# create schedules for Ramsey experiment
ramsey_schedules = []
for delay in delay_times_dt:
this_schedule = pulse.Schedule(name=f"Ramsey delay = {delay * dt / us} us")
this_schedule += Play(x90_pulse, drive_chan)
this_schedule += Play(x90_pulse, drive_chan) << this_schedule.duration + int(delay)
this_schedule += measure << this_schedule.duration
ramsey_schedules.append(this_schedule)
ramsey_schedules[-1].draw(label=True, scaling=1.0)
# Execution settings
num_shots = 256
detuning_MHz = 2
ramsey_frequency = round(center_frequency_Hz + detuning_MHz * MHz, 6) # need ramsey freq in Hz
ramsey_program = assemble(ramsey_schedules,
backend=backend,
meas_level=1,
meas_return='avg',
shots=num_shots,
schedule_los=[{drive_chan: ramsey_frequency}]*len(ramsey_schedules)
)
# RUN the job on a real device
#job = backend.run(ramsey_experiment_program)
#print(job.job_id())
#from qiskit.tools.monitor import job_monitor
#job_monitor(job)
# OR retreive job from previous run
job = backend.retrieve_job('5ef3ed3a84b1b70012374317')
ramsey_results = job.result()
ramsey_values = []
for i in range(len(times_us)):
ramsey_values.append(ramsey_results.get_memory(i)[qubit]*scale_factor)
fit_params, y_fit = fit_function(times_us, np.real(ramsey_values),
lambda x, A, del_f_MHz, C, B: (
A * np.cos(2*np.pi*del_f_MHz*x - C) + B
),
[5, 1./0.4, 0, 0.25]
)
# Off-resonance component
_, del_f_MHz, _, _, = fit_params # freq is MHz since times in us
plt.scatter(times_us, np.real(ramsey_values), color='white')
plt.plot(times_us, y_fit, color='red', label=f"df = {del_f_MHz:.2f} MHz")
plt.xlim(0, np.max(times_us))
plt.xlabel('Delay between X90 pulses [$\mu$s]', fontsize=15)
plt.ylabel('Measured Signal [a.u.]', fontsize=15)
plt.title('Ramsey Experiment', fontsize=15)
plt.legend()
plt.show()
|
https://github.com/Seanaventure/HighErrorRateRouting
|
Seanaventure
|
import matplotlib.pyplot as plt
import networkx as nx
import qiskit
import HERR
from qiskit.transpiler import CouplingMap
from qiskit.transpiler.passes.routing import BasicSwap
from qiskit import QuantumCircuit, execute, Aer, IBMQ
from qiskit.dagcircuit import DAGCircuit
from qiskit.converters import circuit_to_dag
from qiskit.converters import dag_to_circuit
from math import pi
from qiskit.compiler import transpile, assemble
from qiskit.providers.aer.noise import NoiseModel
import qiskit.providers.aer.noise as noise
from qiskit.tools.visualization import dag_drawer
import random
from qiskit.circuit.instruction import Instruction
couplingList = list()
for i in range(4):
for j in range(4):
if i is not j:
couplingList.append([i, j])
provider = IBMQ.load_account()
backend = provider.get_backend('ibmq_lima')
basis_gates = backend.configuration().basis_gates
couplingMap = CouplingMap(couplingList)
squareCouplingList = list()
for i in range(4):
for j in range(4):
if i is not j:
if abs(i-j) == 1:
squareCouplingList.append([i, j])
squareCouplingList.append(([0, 3]))
squareCouplingList.append(([3, 0]))
squareCouplingMap = CouplingMap(squareCouplingList)
gridCouplingList = list()
for i in range(4):
for j in range(4):
if i is not j:
if abs(i-j) == 1:
gridCouplingList.append([i, j])
for i in range(4,8):
for j in range(4,8):
if i is not j:
if abs(i-j) == 1:
gridCouplingList.append([i, j])
gridCouplingList.append(([0, 4]))
gridCouplingList.append(([4, 0]))
gridCouplingList.append(([1, 5]))
gridCouplingList.append(([5, 1]))
gridCouplingList.append(([2, 6]))
gridCouplingList.append(([6, 2]))
gridCouplingList.append(([3, 7]))
gridCouplingList.append(([7, 3]))
gridCouplingMap = CouplingMap(gridCouplingList)
jakatraCouplingList = [[0, 1], [1, 0], [1, 2], [2, 1], [1, 3], [3, 1], [3,5], [5,3], [4,5], [5,4], [6,5], [5,6]]
jakatraCouplingMap = CouplingMap(jakatraCouplingList)
def qft_rotations(circuit, n):
"""Performs qft on the first n qubits in circuit (without swaps)"""
if n == 0:
return circuit
n -= 1
circuit.h(n)
for qubit in range(n):
circuit.cp(pi/2**(n-qubit), qubit, n)
# At the end of our function, we call the same function again on
# the next qubits (we reduced n by one earlier in the function)
qft_rotations(circuit, n)
def swap_registers(circuit, n):
for qubit in range(n//2):
circuit.swap(qubit, n-qubit-1)
return circuit
def qft(circuit, n):
"""QFT on the first n qubits in circuit"""
qft_rotations(circuit, n)
swap_registers(circuit, n)
return circuit
def inverse_qft(circuit, n):
"""Does the inverse QFT on the first n qubits in circuit"""
# First we create a QFT circuit of the correct size:
qft_circ = qft(QuantumCircuit(n), n)
# Then we take the inverse of this circuit
invqft_circ = qft_circ.inverse()
# And add it to the first n qubits in our existing circuit
circuit.append(invqft_circ, circuit.qubits[:n])
return circuit.decompose() # .decompose() allows us to see the individual gates
def countTwoQubitGates(transpiledCircuit):
num = 0
for gate in transpiledCircuit.data:
# print(type(gate[0]))
if issubclass(type(gate[0]), Instruction):
if gate[0].name == "cx":
num += 1
return num
s = '1011011'
n = len(s)
# Let's see how it looks:
circuit = QuantumCircuit(n)
for ii, yesno in enumerate(reversed(s)):
if yesno == '1':
circuit.x(ii)
qft(circuit, n)
circuit = inverse_qft(circuit, n)
circuit.measure_all()
circDag = circuit_to_dag(circuit)
targetCouplingMap = jakatraCouplingMap
# Transpile non HERR
transpiledBasic = transpile(circuit, Aer.get_backend('qasm_simulator'),
coupling_map=targetCouplingMap,
basis_gates=basis_gates,
routing_method='basic',
layout_method='trivial')
transpiledSabre = transpile(circuit, Aer.get_backend('qasm_simulator'),
coupling_map=targetCouplingMap,
basis_gates=basis_gates,
routing_method='sabre',
layout_method='trivial')
transpiledStochastic = transpile(circuit, Aer.get_backend('qasm_simulator'),
coupling_map=targetCouplingMap,
basis_gates=basis_gates,
routing_method='stochastic',
layout_method='trivial')
transpiledLookahead = transpile(circuit, Aer.get_backend('qasm_simulator'),
coupling_map=targetCouplingMap,
basis_gates=basis_gates,
routing_method='lookahead',
layout_method='trivial')
for i in range(200):
# Create a noise model for the simulations
noise_model = noise.NoiseModel()
errorRates = list()
qiskitErrors = list()
for i in range(len(jakatraCouplingList)//2):
errorRates.append(random.randrange(1, 10, 1)/100.0)
qiskitErrors.append(noise.depolarizing_error(errorRates[i], 2))
edges = targetCouplingMap.get_edges()
uniqueEdges = set()
for edge in edges:
uniqueEdges.add(tuple(sorted(edge)))
noiseGraph = nx.Graph()
noiseGraph.add_nodes_from([0, 7])
errorIdex = 0
for edge in uniqueEdges:
noise_model.add_quantum_error(qiskitErrors[errorIdex], ['cx'], edge)
noiseGraph.add_edge(edge[0], edge[1], weight=errorRates[errorIdex])
errorIdex += 1
herr = HERR.HERR(targetCouplingMap, noiseGraph)
basSwap = BasicSwap(targetCouplingMap)
#print(gridCouplingMap)
# Run HERR
HERRRes = herr.run(circDag)
updatedCirc = dag_to_circuit(HERRRes)
bSwapRes = basSwap.run(circDag)
bSwapCirc = dag_to_circuit(bSwapRes)
# Transpile HERR
transpiledHERR = transpile(updatedCirc, Aer.get_backend('qasm_simulator'),
coupling_map=targetCouplingMap,
basis_gates=basis_gates,
routing_method='basic',
layout_method='trivial')
# if transpiledNormal != transpiledHERR:
# fName = "HERRQFTCouplingOutputs/HERRCirc" + str(i) + ".png"
# fName2 = "HERRQFTCouplingOutputs/NonCirc" + str(i) + ".png"
# transpiledHERR.draw(output='mpl', filename=fName)
# transpiledNormal.draw(output='mpl', filename=fName2)
# break
# HERRCnotGateNum = countTwoQubitGates(transpiledHERR)
# normalCnotGateNum = countTwoQubitGates(transpiledNormal)
# print(str(HERRCnotGateNum) + " " + str(normalCnotGateNum))
sim = Aer.get_backend('qasm_simulator')
simResultHERR = sim.run(transpiledHERR, noise_model=noise_model).result()
simResultBasic = sim.run(transpiledBasic, noise_model=noise_model).result()
simResultSabre = sim.run(transpiledSabre, noise_model=noise_model).result()
simResultLookahead = sim.run(transpiledLookahead, noise_model=noise_model).result()
simResultStochastic = sim.run(transpiledStochastic, noise_model=noise_model).result()
# Output file and print results
fName = "HERRQFTCouplingOutputs/HERRCirc" + str(i) + ".png"
fName2 = "HERRQFTCouplingOutputs/NonCirc" + str(i) + ".png"
#updatedCirc.draw(output='mpl', filename=fName)
#bSwapCirc.draw(output='mpl', filename=fName2)
#if transpiledNormal != transpiledHERR:
#print("CIRCUIT CHANGED")
#updatedCirc.draw(output='mpl', filename=fName)
#bSwapCirc.draw(output='mpl', filename=fName2)
#print("Iter: " + str(i) + " ErrorRate of edges (0,1) (1, 2), (0, 2), (1, 3), (2, 3), (0, 3) counts for HERR/nonHERR:")
#print(str(err1Rate) + " " + str(err2Rate) + " " + str(err3Rate) + " " + str(err4Rate) + " " + str(err5Rate) + " " + str(err6Rate))
if s in simResultHERR.get_counts() and s in simResultBasic.get_counts() and s in simResultSabre.get_counts() and s in simResultLookahead.get_counts() and s in simResultStochastic.get_counts():
print(str(simResultHERR.get_counts()[s]/1024.0) + " " + str(simResultBasic.get_counts()[s]/1024.0) + " " + str(simResultSabre.get_counts()[s]/1024.0) + " " + str(simResultLookahead.get_counts()[s]/1024.0) + " " + str(simResultStochastic.get_counts()[s]/1024.0))
else:
print("Key error! Oops!")
#print("----------------------")
|
https://github.com/Qiskit/qiskit-neko
|
Qiskit
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Tests from circuit basics tutorial."""
import math
import ddt
from qiskit import QuantumCircuit, transpile
from qiskit_neko import decorators
from qiskit_neko.tests import base
@ddt.ddt
class TestCircuitBasics(base.BaseTestCase):
"""Tests adapted from circuit basics tutorial."""
def setUp(self):
super().setUp()
self.circ = QuantumCircuit(3)
self.circ.h(0)
self.circ.cx(0, 1)
self.circ.cx(0, 2)
@decorators.component_attr("terra", "backend")
@ddt.data(0, 1, 2, 3)
def test_ghz_circuit(self, opt_level):
"""Test execution of ghz circuit."""
self.circ.measure_all()
tqc = transpile(self.circ, self.backend, optimization_level=opt_level)
run_kwargs = {}
expected_value = None
if hasattr(self.backend.options, "shots"):
run_kwargs["shots"] = 1000
expected_value = 500
if hasattr(self.backend.options, "seed_simulator"):
run_kwargs["seed_simulator"] = 42
job = self.backend.run(tqc, **run_kwargs)
result = job.result()
counts = result.get_counts()
if expected_value is None:
expected_value = sum(counts.values()) / 2
expected = {"000": expected_value, "111": expected_value}
delta = 10 ** math.floor(math.log10(expected_value))
self.assertDictAlmostEqual(counts, expected, delta=delta)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
top = QuantumCircuit(1)
top.x(0);
bottom = QuantumCircuit(2)
bottom.cry(0.2, 0, 1);
tensored = bottom.tensor(top)
tensored.draw('mpl')
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit.tools.visualization import circuit_drawer
q = QuantumRegister(1)
c = ClassicalRegister(1)
qc = QuantumCircuit(q, c)
qc.h(q)
qc.measure(q, c)
circuit_drawer(qc, output='mpl', style={'backgroundcolor': '#EEEEEE'})
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import pulse
d0 = pulse.DriveChannel(0)
x90 = pulse.Gaussian(10, 0.1, 3)
x180 = pulse.Gaussian(10, 0.2, 3)
with pulse.build() as hahn_echo:
with pulse.align_equispaced(duration=100):
pulse.play(x90, d0)
pulse.play(x180, d0)
pulse.play(x90, d0)
hahn_echo.draw()
|
https://github.com/biswaroopmukherjee/Quantum-Waddle
|
biswaroopmukherjee
|
# Library for implementing XOR
import qiskit
import numpy as np
from qiskit import(
IBMQ, QuantumCircuit, ClassicalRegister, QuantumRegister, execute,
QuantumCircuit,
execute,
Aer)
from qiskit.visualization import plot_histogram, plot_state_city
if __name__ == "__main__":
pass
def binary_it(alpha):
''' binary_it:
returns a list that is indexed according to power,
binaried[0] = is LSB.
'''
binaried = [int(x) for x in bin(alpha)[2:]]
binaried.reverse()
return binaried
def invert(alpha):
return [ 1 - x for x in alpha]
def xor_gate_v_each(circuit, a,b,r, v,c,a0):
''' xor_gate_v_each:
See paper 'An Example of the Difference Between Quantum and Classical Random Walks'
args:
circuit -- the py object that holds the quantum circuit.
a -- q. reg. for the vertex.
b -- q. reg. for holding neighbor vertex.
r -- q. reg. for checking valid edge.
f(c, a0) -- function that returns the neighboring
-- vertex of a0 using label c for the vertex label.
c -- label of the edge
a0 -- label of the vertex
'''
#vc = v(c,a0);
vc = 1
#build in the not's for the a0 check.
binaried = binary_it(a0)
#match binaried
if len(binaried) > len(a):
binaried = binaried[:len(a)]
elif len(a) > len(binaried):
for i in range(len(a)-len(binaried)):
binaried.append(0)
notMask = invert(binaried)
for i in range(len(notMask)):
if notMask[i]:
circuit.x(a[i]);
#build in the cnots for xoring b
binaried = binary_it(vc)
#match binaried
if len(binaried) > len(a):
binaried = binaried[:len(a)]
elif len(a) > len(binaried):
for i in range(len(a)-len(binaried)):
binaried.append(0)
for i in range(len(binaried)):
if binaried[i]:
circuit.mct(a,b[i], None, mode='noancilla')
#build in the not's for the a0 return.
for i in range(len(notMask)):
if notMask[i]:
circuit.x(a[i]);
def xor_gate_f_each(circuit, a,b,r, v,c,a0):
''' xor_gate_v_each:
See paper 'An Example of the Difference Between Quantum and Classical Random Walks'
args:
circuit -- the py object that holds the quantum circuit.
a -- q. reg. for the vertex.
b -- q. reg. for holding neighbor vertex.
r -- q. reg. for checking valid edge.
f(c, a0) -- function that returns the neighboring
-- vertex of a0 using label c for the vertex label.
c -- label of the edge
a0 -- label of the vertex
'''
#fc = f(c,a0);
fc = 1
#build in the not's for the a0 check.
binaried = binary_it(a0)
#match binaried
if len(binaried) > len(a):
binaried = binaried[:len(a)]
elif len(a) > len(binaried):
for i in range(len(a)-len(binaried)):
binaried.append(0)
notMask = invert(binaried)
for i in range(len(notMask)):
if notMask[i]:
circuit.x(a[i]);
#build in the cnots for xoring b
binaried = binary_it(fc)
#match binaried
if len(binaried) > len(r):
binaried = binaried[:len(r)]
elif len(r) > len(binaried):
for i in range(len(r)-len(binaried)):
binaried.append(0)
for i in range(len(binaried)):
if binaried[i]:
circuit.mct(a,r[i], None, mode='noancilla')
#build in the not's for the a0 return.
for i in range(len(notMask)):
if notMask[i]:
circuit.x(a[i]);
n = 2
simulator = Aer.get_backend('qasm_simulator')
a = QuantumRegister(n, 'a')
b = QuantumRegister(n, 'b')
r = QuantumRegister(1, 'r')
circuit = QuantumCircuit(a, b, r)
a0 = 1
xor_gate_v_each(circuit, a,b,r, 0,0,a0)
circuit.barrier()
a0 = 2
xor_gate_f_each(circuit, a,b,r, 0,0,a0)
circuit.draw()
|
https://github.com/Andres8bit/IBMQ-Quantum-Qiskit
|
Andres8bit
|
# Deutsch-Josza:
# first example of a quantum algorithm that performs better than the best classical algorithm.
# Problem: given a string of bits and a hidden boolean function f, which returns either 0 || 1
# The function is guaranteed to either be balanced or constant:
# balance -> return's 0 or 1 with exactly 50/50 probability.
# constant -> return's all 0's or all 1's for any input.
# determine whether the functionc is balanced or constant.
#
# Classical Approach:
# The classical approach requires two queries per bit.
# If the two are the same we have a constant function, otherwise it must be balanced.
# Quantum Approach:
# Using a quantum circuit we can solve this problem with a single query.
# We can express the probability that the function is constatn as a function of k inputs as:
# P(k) = 1- 1/2^(k-1), for k <= 2^(n-1)
# Steps:
# 1. Prepare two quantum registers:
# The first is n-qubit register initialised to |0>.
# The second is a 1-qubit register initialised to |1>\
# 2. Apply a Hadamard gate to each qubit:
# after this step the input register is in an equal superposition of all states.
# When the oracle is balanced, phase kick back adds a negative phase to 1/2 of the states.
# 3. Apply the wuantym oracle |x>|y> to |x|y NOT f(x)>
# 4. Apply a Hadamard gate to each qubit in the first register:
# we reverse step 2 to obtain the init. quantum state of the first register.
# 5. Measure the first register
%matplotlib inline
import numpy as np
# Importing standard Qiskit libraries and configuring account
from qiskit import QuantumCircuit, execute, Aer, IBMQ, BasicAer
from qiskit.providers.ibmq import least_busy
from qiskit.compiler import transpile, assemble
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from qiskit.tools.monitor import job_monitor
# Loading your IBM Q account(s)
provider = IBMQ.load_account()
# import basic plot tools
from qiskit.visualization import plot_histogram
# n = 3
# const_oracle = QuantumCircuit(n+1)
# output = np.random.randint(2)
# if output == 1:
# const_oracle.x(n)
# balanced_oracle = QuantumCircuit(n+1)
# b_str = "101"
# # Place X-gates
# for qubit in range(len(b_str)):
# if b_str[qubit] == '1':
# balanced_oracle.x(qubit)
# # Use barrier as divider
# balanced_oracle.barrier()
# Controlled-NOT gates
# for qubit in range(n):
# balanced_oracle.cx(qubit, n)
# balanced_oracle.barrier()
# # Place X-gates
# for qubit in range(len(b_str)):
# if b_str[qubit] == '1':
# balanced_oracle.x(qubit)
# # Show oracle
# balanced_oracle.draw()
def dj_oracle(case, n):
# We need to make a QuantumCircuit object to return
# This circuit has n+1 qubits: the size of the input,
# plus one output qubit
oracle_qc = QuantumCircuit(n+1)
# First, let's deal with the case in which oracle is balanced
if case == "balanced":
# First generate a random number that tells us which CNOTs to
# wrap in X-gates:
b = np.random.randint(1,2**n)
# Next, format 'b' as a binary string of length 'n', padded with zeros:
b_str = format(b, '0'+str(n)+'b')
# Next, we place the first X-gates. Each digit in our binary string
# corresponds to a qubit, if the digit is 0, we do nothing, if it's 1
# we apply an X-gate to that qubit:
for qubit in range(len(b_str)):
if b_str[qubit] == '1':
oracle_qc.x(qubit)
# Do the controlled-NOT gates for each qubit, using the output qubit
# as the target:
for qubit in range(n):
oracle_qc.cx(qubit, n)
# Next, place the final X-gates
for qubit in range(len(b_str)):
if b_str[qubit] == '1':
oracle_qc.x(qubit)
# Case in which oracle is constant
if case == "constant":
# First decide what the fixed output of the oracle will be
# (either always 0 or always 1)
output = np.random.randint(2)
if output == 1:
oracle_qc.x(n)
oracle_gate = oracle_qc.to_gate()
oracle_gate.name = "Oracle" # To show when we display the circuit
return oracle_gate
def dj_algorithm(oracle, n):
dj_circuit = QuantumCircuit(n+1, n)
# Set up the output qubit:
dj_circuit.x(n)
dj_circuit.h(n)
# And set up the input register:
for qubit in range(n):
dj_circuit.h(qubit)
# Let's append the oracle gate to our circuit:
dj_circuit.append(oracle, range(n+1))
# Finally, perform the H-gates again and measure:
for qubit in range(n):
dj_circuit.h(qubit)
for i in range(n):
dj_circuit.measure(i, i)
return dj_circuit
n = 4
oracle_gate = dj_oracle('balanced', n)
dj_circuit = dj_algorithm(oracle_gate, n)
dj_circuit.draw()
backend = BasicAer.get_backend('qasm_simulator')
shots = 1024
results = execute(dj_circuit, backend=backend, shots=shots).result()
answer = results.get_counts()
plot_histogram(answer)
# Using a real Quantum Device:
provider = IBMQ.get_provider(hub='ibm-q')
backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n+1) and
not x.configuration().simulator and x.status().operational==True))
print("least busy backend: ", backend)
shots = 1024
job = execute(dj_circuit, backend=backend, shots=shots, optimization_level=3)
job_monitor(job, interval = 2)
results = job.result()
answer = results.get_counts()
plot_histogram(answer)
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2023
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=no-member,invalid-name,missing-docstring,no-name-in-module
# pylint: disable=attribute-defined-outside-init,unsubscriptable-object
import os
from qiskit.compiler import transpile
from qiskit import QuantumCircuit
from qiskit.transpiler import InstructionDurations
from qiskit.providers.fake_provider import FakeMelbourne
from .utils import build_qv_model_circuit
class TranspilerLevelBenchmarks:
params = [0, 1, 2, 3]
param_names = ["transpiler optimization level"]
timeout = 600
def setup(self, _):
self.rochester_coupling_map = [
[0, 5],
[0, 1],
[1, 2],
[1, 0],
[2, 3],
[2, 1],
[3, 4],
[3, 2],
[4, 6],
[4, 3],
[5, 9],
[5, 0],
[6, 13],
[6, 4],
[7, 16],
[7, 8],
[8, 9],
[8, 7],
[9, 10],
[9, 8],
[9, 5],
[10, 11],
[10, 9],
[11, 17],
[11, 12],
[11, 10],
[12, 13],
[12, 11],
[13, 14],
[13, 12],
[13, 6],
[14, 15],
[14, 13],
[15, 18],
[15, 14],
[16, 19],
[16, 7],
[17, 23],
[17, 11],
[18, 27],
[18, 15],
[19, 20],
[19, 16],
[20, 21],
[20, 19],
[21, 28],
[21, 22],
[21, 20],
[22, 23],
[22, 21],
[23, 24],
[23, 22],
[23, 17],
[24, 25],
[24, 23],
[25, 29],
[25, 26],
[25, 24],
[26, 27],
[26, 25],
[27, 26],
[27, 18],
[28, 32],
[28, 21],
[29, 36],
[29, 25],
[30, 39],
[30, 31],
[31, 32],
[31, 30],
[32, 33],
[32, 31],
[32, 28],
[33, 34],
[33, 32],
[34, 40],
[34, 35],
[34, 33],
[35, 36],
[35, 34],
[36, 37],
[36, 35],
[36, 29],
[37, 38],
[37, 36],
[38, 41],
[38, 37],
[39, 42],
[39, 30],
[40, 46],
[40, 34],
[41, 50],
[41, 38],
[42, 43],
[42, 39],
[43, 44],
[43, 42],
[44, 51],
[44, 45],
[44, 43],
[45, 46],
[45, 44],
[46, 47],
[46, 45],
[46, 40],
[47, 48],
[47, 46],
[48, 52],
[48, 49],
[48, 47],
[49, 50],
[49, 48],
[50, 49],
[50, 41],
[51, 44],
[52, 48],
]
self.basis_gates = ["u1", "u2", "u3", "cx", "id"]
self.qv_50_x_20 = build_qv_model_circuit(50, 20, 0)
self.qv_14_x_14 = build_qv_model_circuit(14, 14, 0)
self.qasm_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "qasm"))
large_qasm_path = os.path.join(self.qasm_path, "test_eoh_qasm.qasm")
self.large_qasm = QuantumCircuit.from_qasm_file(large_qasm_path)
self.melbourne = FakeMelbourne()
self.durations = InstructionDurations(
[
("u1", None, 0),
("id", None, 160),
("u2", None, 160),
("u3", None, 320),
("cx", None, 800),
("measure", None, 3200),
],
dt=1e-9,
)
def time_quantum_volume_transpile_50_x_20(self, transpiler_level):
transpile(
self.qv_50_x_20,
basis_gates=self.basis_gates,
coupling_map=self.rochester_coupling_map,
seed_transpiler=0,
optimization_level=transpiler_level,
)
def track_depth_quantum_volume_transpile_50_x_20(self, transpiler_level):
return transpile(
self.qv_50_x_20,
basis_gates=self.basis_gates,
coupling_map=self.rochester_coupling_map,
seed_transpiler=0,
optimization_level=transpiler_level,
).depth()
def time_transpile_from_large_qasm(self, transpiler_level):
transpile(
self.large_qasm,
basis_gates=self.basis_gates,
coupling_map=self.rochester_coupling_map,
seed_transpiler=0,
optimization_level=transpiler_level,
)
def track_depth_transpile_from_large_qasm(self, transpiler_level):
return transpile(
self.large_qasm,
basis_gates=self.basis_gates,
coupling_map=self.rochester_coupling_map,
seed_transpiler=0,
optimization_level=transpiler_level,
).depth()
def time_transpile_from_large_qasm_backend_with_prop(self, transpiler_level):
transpile(
self.large_qasm, self.melbourne, seed_transpiler=0, optimization_level=transpiler_level
)
def track_depth_transpile_from_large_qasm_backend_with_prop(self, transpiler_level):
return transpile(
self.large_qasm, self.melbourne, seed_transpiler=0, optimization_level=transpiler_level
).depth()
def time_transpile_qv_14_x_14(self, transpiler_level):
transpile(
self.qv_14_x_14, self.melbourne, seed_transpiler=0, optimization_level=transpiler_level
)
def track_depth_transpile_qv_14_x_14(self, transpiler_level):
return transpile(
self.qv_14_x_14, self.melbourne, seed_transpiler=0, optimization_level=transpiler_level
).depth()
def time_schedule_qv_14_x_14(self, transpiler_level):
transpile(
self.qv_14_x_14,
self.melbourne,
seed_transpiler=0,
optimization_level=transpiler_level,
scheduling_method="alap",
instruction_durations=self.durations,
)
# limit optimization levels to reduce time
time_schedule_qv_14_x_14.params = [0, 1]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.