repo
stringclasses
885 values
file
stringclasses
741 values
content
stringlengths
4
215k
https://github.com/entropicalabs/OpenQAOA-Challenge---Qiskit-Fall-Fest-2022-Mexico
entropicalabs
%load_ext autoreload %autoreload 2 from IPython.display import clear_output import matplotlib.pyplot as plt import plotly.graph_objects as go import numpy as np import networkx as nx # Design the graph for the maxcut problem g = nx.Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 3) g.add_edge(1, 4) g.add_edge(2, 4) g.add_edge(3, 4) #import problem classes from OQ for easy problem creation from openqaoa.problems.problem import MaximumCut #import the QAOA workflow model from openqaoa.workflows.optimizer import QAOA #import method to specify the device from openqaoa.devices import create_device # Import the method to plot the graph from openqaoa.utilities import plot_graph plot_graph(g) #Use the MaximumCut class to instantiate the problem. maxcut_prob = MaximumCut(g) # The binary values can be access via the `asdict()` method. maxcut_qubo = maxcut_prob.get_qubo_problem() maxcut_qubo.asdict() # init the object QAOA for default the backend is vectorised q = QAOA() q.local_simulators, q.cloud_provider from openqaoa.devices import create_device sim = create_device(location='local', name='vectorized') q.set_device(sim) q.compile(maxcut_qubo) q.optimize() q.results.most_probable_states['solutions_bitstrings'] q.results.most_probable_states['bitstring_energy'] q.results.get_counts(q.results.optimized['optimized measurement outcomes']) q.results.plot_cost()
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
from qiskit import Aer, IBMQ, execute from qiskit import transpile, assemble from qiskit.tools.monitor import job_monitor from qiskit.tools.monitor import job_monitor import matplotlib.pyplot as plt from qiskit.visualization import plot_histogram, plot_state_city """ Qiskit backends to execute the quantum circuit """ def simulator(qc): """ Run on local simulator :param qc: quantum circuit :return: """ backend = Aer.get_backend("qasm_simulator") shots = 2048 tqc = transpile(qc, backend) qobj = assemble(tqc, shots=shots) job_sim = backend.run(qobj) qc_results = job_sim.result() return qc_results, shots def simulator_state_vector(qc): """ Select the StatevectorSimulator from the Aer provider :param qc: quantum circuit :return: statevector """ simulator = Aer.get_backend('statevector_simulator') # Execute and get counts result = execute(qc, simulator).result() state_vector = result.get_statevector(qc) return state_vector def real_quantum_device(qc): """ Use the IBMQ essex device :param qc: quantum circuit :return: """ provider = IBMQ.load_account() backend = provider.get_backend('ibmq_santiago') shots = 2048 TQC = transpile(qc, backend) qobj = assemble(TQC, shots=shots) job_exp = backend.run(qobj) job_monitor(job_exp) QC_results = job_exp.result() return QC_results, shots def counts(qc_results): """ Get counts representing the wave-function amplitudes :param qc_results: :return: dict keys are bit_strings and their counting values """ return qc_results.get_counts() def plot_results(qc_results): """ Visualizing wave-function amplitudes in a histogram :param qc_results: quantum circuit :return: """ plt.show(plot_histogram(qc_results.get_counts(), figsize=(8, 6), bar_labels=False)) def plot_state_vector(state_vector): """Visualizing state vector in the density matrix representation""" plt.show(plot_state_city(state_vector))
https://github.com/quantum-tokyo/qiskit-handson
quantum-tokyo
# Qiskitライブラリーを導入 from qiskit import * # 描画のためのライブラリーを導入 import matplotlib.pyplot as plt %matplotlib inline # 数値計算モジュールを導入 import numpy as np # Qiskitバージョンの確認 qiskit.__qiskit_version__ # 3量子ビット回路を用意 qr = QuantumRegister(3) a_0 = ClassicalRegister(1) a_1 = ClassicalRegister(1) b_0 = ClassicalRegister(1) qc = QuantumCircuit(qr,a_0,a_1,b_0) # Aliceのもつ未知の量子状態ψをRyで作ります。角度はπ/5にしました。 qc.ry(np.pi/5,0) qc.barrier() #回路を見やすくするために入れます # EveがEPRペアを作ってq1をAliceにq2をBobに渡します qc.h(1) qc.cx(1, 2) qc.barrier() # AliceがCNOTとHでψと自分のEPRペアをエンタングルさせ測定します。 qc.cx(0, 1) qc.h(0) qc.barrier() qc.measure(0, a_0) qc.measure(1, a_1) #Aliceが測定結果をBobに送り、Bobが結果に合わせて操作します qc.z(2).c_if(a_0, 1) qc.x(2).c_if(a_1, 1) # 回路を描画 qc.draw(output="mpl") # 3量子ビット回路を用意 qr = QuantumRegister(3) a_0 = ClassicalRegister(1) a_1 = ClassicalRegister(1) b_0 = ClassicalRegister(1) qc = QuantumCircuit(qr,a_0,a_1,b_0) # Aliceのもつ未知の量子状態ψをRyで作ります。角度はπ/5にしました。 qc.ry(np.pi/5,0) qc.barrier() #回路を見やすくするために入れます # EveがEPRペアを作ってq1をAliceにq2をBobに渡します qc.h(1) qc.cx(1, 2) qc.barrier() # AliceがCNOTとHでψと自分のEPRペアをエンタングルさせ測定します。 qc.cx(0, 1) qc.h(0) qc.barrier() qc.measure(0, a_0) qc.measure(1, a_1) #Aliceが測定結果をBobに送り、Bobが結果に合わせて操作します qc.z(2).c_if(a_0, 1) qc.x(2).c_if(a_1, 1) # 未知の量子状態ψの逆ゲートをかけて0が測定できるか確かめます qc.ry(-np.pi/5, 2) qc.measure(2, b_0) qc.draw(output="mpl") # qasm_simulatorで実行して確認します backend = BasicAer.get_backend('qasm_simulator') counts = execute(qc, backend).result().get_counts() print(counts) from qiskit.visualization import plot_histogram plot_histogram(counts) # 3量子ビット、1古典ビットの回路を用意 qc = QuantumCircuit(3,1) # Aliceのもつ未知の量子状態ψをRyで作ります。角度はπ/5にしました。 qc.ry(np.pi/5,0) qc.barrier() #回路を見やすくするために入れます # EveがEPRペアを作ってq1をAliceにq2をBobに渡します qc.h(1) qc.cx(1, 2) qc.barrier() # AliceがCNOTとHでψと自分のEPRペアをエンタングルさせます。 qc.cx(0, 1) qc.h(0) qc.barrier() # Aliceの状態に合わせてBobが操作します(ここを変えています!) qc.cz(0,2) qc.cx(1,2) # 未知の量子状態ψの逆ゲートをかけて0が測定できるか確かめます qc.ry(-np.pi/5, 2) qc.measure(2, 0) qc.draw(output="mpl") # 先にシミュレーターでコードが合っているか確認します backend = BasicAer.get_backend('qasm_simulator') counts = execute(qc, backend).result().get_counts() print(counts) plot_histogram(counts) # 初めて実デバイスで実行する人はこちらを実行 from qiskit import IBMQ IBMQ.save_account('MY_API_TOKEN') # ご自分のトークンを入れてください # アカウント情報をロードして、使える量子デバイスを確認します IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() # 最もすいているバックエンドを選びます from qiskit.providers.ibmq import least_busy large_enough_devices = IBMQ.get_provider().backends(filters=lambda x: x.configuration().n_qubits > 3 and not x.configuration().simulator) print(large_enough_devices) real_backend = least_busy(large_enough_devices) print("ベストなバックエンドは " + real_backend.name()) # 上記のバックエンドで実行します job = execute(qc,real_backend) # ジョブの実行状態を確認します from qiskit.tools.monitor import job_monitor job_monitor(job) # 結果を確認します real_result= job.result() print(real_result.get_counts(qc)) plot_histogram(real_result.get_counts(qc))
https://github.com/hotstaff/qc
hotstaff
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Quantum Calculator - libqc Author: Hideto Manjo Licence: Apache License 2.0 ''' import sys import re from datetime import datetime from qiskit import QuantumProgram, QISKitError, RegisterSizeError class QC(): ''' class QC ''' # pylint: disable=too-many-instance-attributes def __init__(self, backend='local_qasm_simulator', remote=False, qubits=3): # private member # __qp self.__qp = None # calc phase self.phase = [ ['0', 'initialized.'] ] # config self.backend = backend self.remote = remote self.qubits = qubits # circuits variable self.shots = 2 # async self.wait = False self.last = ['init', 'None'] self.load() def load(self, api_info=True): ''' load ''' self.__qp = QuantumProgram() if self.remote: try: import Qconfig self.__qp.set_api(Qconfig.APItoken, Qconfig.config["url"], hub=Qconfig.config["hub"], group=Qconfig.config["group"], project=Qconfig.config["project"]) except ImportError as ex: msg = 'Error in loading Qconfig.py!. Error = {}\n'.format(ex) sys.stdout.write(msg) sys.stdout.flush() return False if api_info is True: api = self.__qp.get_api() sys.stdout.write('<IBM Quantum Experience API information>\n') sys.stdout.flush() sys.stdout.write('Version: {0}\n'.format(api.api_version())) sys.stdout.write('User jobs (last 5):\n') jobs = api.get_jobs(limit=500) def format_date(job_item): ''' format ''' return datetime.strptime(job_item['creationDate'], '%Y-%m-%dT%H:%M:%S.%fZ') sortedjobs = sorted(jobs, key=format_date) sys.stdout.write(' {0:<32} {1:<24} {2:<9} {3}\n' .format('id', 'creationDate', 'status', 'backend')) sys.stdout.write('{:-^94}\n'.format("")) for job in sortedjobs[-5:]: sys.stdout.write(' {0:<32} {1:<24} {2:<9} {3}\n' .format(job['id'], job['creationDate'], job['status'], job['backend']['name'])) sys.stdout.write('There are {0} jobs on the server\n' .format(len(jobs))) sys.stdout.write('Credits: {0}\n' .format(api.get_my_credits())) sys.stdout.flush() self.backends = self.__qp.available_backends() status = self.__qp.get_backend_status(self.backend) if 'available' in status: if status['available'] is False: return False return True def set_config(self, config=None): ''' set config ''' if config is None: config = {} if 'backend' in config: self.backend = str(config['backend']) if 'local_' in self.backend: self.remote = False else: self.remote = True if 'remote' in config: self.remote = config['remote'] if 'qubits' in config: self.qubits = int(config['qubits']) return True def _progress(self, phasename, text): self.phase.append([str(phasename), str(text)]) text = "Phase {0}: {1}".format(phasename, text) sys.stdout.write("{}\n".format(text)) sys.stdout.flush() def _init_circuit(self): self._progress('1', 'Initialize quantum registers and circuit') qubits = self.qubits quantum_registers = [ {"name": "cin", "size": 1}, {"name": "qa", "size": qubits}, {"name": "qb", "size": qubits}, {"name": "cout", "size": 1} ] classical_registers = [ {"name": "ans", "size": qubits + 1} ] if 'cin' in self.__qp.get_quantum_register_names(): self.__qp.destroy_quantum_registers(quantum_registers) self.__qp.destroy_classical_registers(classical_registers) q_r = self.__qp.create_quantum_registers(quantum_registers) c_r = self.__qp.create_classical_registers(classical_registers) self.__qp.create_circuit("qcirc", q_r, c_r) def _create_circuit_qadd(self): # quantum ripple-carry adder from Cuccaro et al, quant-ph/0410184 def majority(circuit, q_a, q_b, q_c): ''' majority ''' circuit.cx(q_c, q_b) circuit.cx(q_c, q_a) circuit.ccx(q_a, q_b, q_c) def unmaj(circuit, q_a, q_b, q_c): ''' unmajority ''' circuit.ccx(q_a, q_b, q_c) circuit.cx(q_c, q_a) circuit.cx(q_a, q_b) def adder(circuit, c_in, q_a, q_b, c_out, qubits): ''' adder ''' # pylint: disable=too-many-arguments majority(circuit, c_in[0], q_b[0], q_a[0]) for i in range(qubits - 1): majority(circuit, q_a[i], q_b[i + 1], q_a[i + 1]) circuit.cx(q_a[qubits - 1], c_out[0]) for i in range(qubits - 1)[::-1]: unmaj(circuit, q_a[i], q_b[i + 1], q_a[i + 1]) unmaj(circuit, c_in[0], q_b[0], q_a[0]) if 'add' not in self.__qp.get_circuit_names(): [c_in, q_a, q_b, c_out] = map(self.__qp.get_quantum_register, ["cin", "qa", "qb", "cout"]) ans = self.__qp.get_classical_register('ans') qadder = self.__qp.create_circuit("qadd", [c_in, q_a, q_b, c_out], [ans]) adder(qadder, c_in, q_a, q_b, c_out, self.qubits) return 'add' in self.__qp.get_circuit_names() def _create_circuit_qsub(self): circuit_names = self.__qp.get_circuit_names() if 'qsub' not in circuit_names: if 'qadd' not in circuit_names: self._create_circuit_qadd() # subtractor circuit self.__qp.add_circuit('qsub', self.__qp.get_circuit('qadd')) qsubtractor = self.__qp.get_circuit('qsub') qsubtractor.reverse() return 'qsub' in self.__qp.get_circuit_names() def _qadd(self, input_a, input_b=None, subtract=False, observe=False): # pylint: disable=too-many-locals def measure(circuit, q_b, c_out, ans): ''' measure ''' circuit.barrier() for i in range(self.qubits): circuit.measure(q_b[i], ans[i]) circuit.measure(c_out[0], ans[self.qubits]) def char2q(circuit, cbit, qbit): ''' char2q ''' if cbit == '1': circuit.x(qbit) elif cbit == 'H': circuit.h(qbit) self.shots = 5 * (2**self.qubits) def input_state(circuit, input_a, input_b=None): ''' input state ''' input_a = input_a[::-1] for i in range(self.qubits): char2q(circuit, input_a[i], q_a[i]) if input_b is not None: input_b = input_b[::-1] for i in range(self.qubits): char2q(circuit, input_b[i], q_b[i]) def reset_input(circuit, c_in, q_a, c_out): ''' reset input ''' circuit.reset(c_in) circuit.reset(c_out) for i in range(self.qubits): circuit.reset(q_a[i]) # get registers [c_in, q_a, q_b, c_out] = map(self.__qp.get_quantum_register, ["cin", "qa", "qb", "cout"]) ans = self.__qp.get_classical_register('ans') qcirc = self.__qp.get_circuit('qcirc') self._progress('2', 'Define input state ({})' .format('QADD' if subtract is False else 'QSUB')) if input_b is not None: if subtract is True: # subtract input_state(qcirc, input_b, input_a) else: # add input_state(qcirc, input_a, input_b) else: reset_input(qcirc, c_in, q_a, c_out) input_state(qcirc, input_a) self._progress('3', 'Define quantum circuit ({})' .format('QADD' if subtract is False else 'QSUB')) if subtract is True: self._create_circuit_qsub() qcirc.extend(self.__qp.get_circuit('qsub')) else: self._create_circuit_qadd() qcirc.extend(self.__qp.get_circuit('qadd')) if observe is True: measure(qcirc, q_b, c_out, ans) def _qsub(self, input_a, input_b=None, observe=False): self._qadd(input_a, input_b, subtract=True, observe=observe) def _qope(self, input_a, operator, input_b=None, observe=False): if operator == '+': return self._qadd(input_a, input_b, observe=observe) elif operator == '-': return self._qsub(input_a, input_b, observe=observe) return None def _compile(self, name, cross_backend=None, print_qasm=False): self._progress('4', 'Compile quantum circuit') coupling_map = None if cross_backend is not None: backend_conf = self.__qp.get_backend_configuration(cross_backend) coupling_map = backend_conf.get('coupling_map', None) if coupling_map is None: sys.stdout.write('backend: {} coupling_map not found' .format(cross_backend)) qobj = self.__qp.compile([name], backend=self.backend, shots=self.shots, seed=1, coupling_map=coupling_map) if print_qasm is True: sys.stdout.write(self.__qp.get_compiled_qasm(qobj, 'qcirc')) sys.stdout.flush() return qobj def _run(self, qobj): self._progress('5', 'Run quantum circuit (wait for answer)') result = self.__qp.run(qobj, wait=5, timeout=100000) return result def _run_async(self, qobj): ''' _run_async ''' self._progress('5', 'Run quantum circuit') self.wait = True def async_result(result): ''' async call back ''' self.wait = False self.last = self.result_parse(result) self.__qp.run_async(qobj, wait=5, timeout=100000, callback=async_result) def _is_regular_number(self, numstring, base): ''' returns input binary format string or None. ''' if base == 'bin': binstring = numstring elif base == 'dec': if numstring == 'H': binstring = 'H'*self.qubits else: binstring = format(int(numstring), "0{}b".format(self.qubits)) if len(binstring) != self.qubits: return None return binstring def get_seq(self, text, base='dec'): ''' convert seq and check it if text is invalid, return the list of length 0. ''' operators = u'(\\+|\\-)' seq = re.split(operators, text) # length check if len(seq) % 2 == 0 or len(seq) == 1: return [] # regex if base == 'bin': regex = re.compile(r'[01H]+') else: regex = re.compile(r'(^(?!.H)[0-9]+|H)') for i in range(0, len(seq), 2): match = regex.match(seq[i]) if match is None: return [] num = match.group(0) seq[i] = self._is_regular_number(num, base) if seq[i] is None: return [] return seq def result_parse(self, result): ''' result_parse ''' data = result.get_data("qcirc") sys.stdout.write("job id: {0}\n".format(result.get_job_id())) sys.stdout.write("raw result: {0}\n".format(data)) sys.stdout.write("{:=^40}\n".format("answer")) counts = data['counts'] sortedcounts = sorted(counts.items(), key=lambda x: -x[1]) sortedans = [] for count in sortedcounts: if count[0][0] == '1': ans = 'OR' else: ans = str(int(count[0][-self.qubits:], 2)) sortedans.append(ans) sys.stdout.write('Dec: {0:>2} Bin: {1} Count: {2} \n' .format(ans, str(count[0]), str(count[1]))) sys.stdout.write('{0:d} answer{1}\n' .format(len(sortedans), '' if len(sortedans) == 1 else 's')) sys.stdout.write("{:=^40}\n".format("")) if 'time' in data: sys.stdout.write("time: {0:<3} sec\n".format(data['time'])) sys.stdout.write("All process done.\n") sys.stdout.flush() uniqanswer = sorted(set(sortedans), key=sortedans.index) ans = ",".join(uniqanswer) return [str(result), ans] def exec_calc(self, text, base='dec', wait_result=False): ''' exec_calc ''' seq = self.get_seq(text, base) print('QC seq:', seq) if seq == []: return ["Syntax error", None] # fail message fail_msg = None try: self._init_circuit() numbers = seq[0::2] # slice even index i = 1 observe = False for oper in seq[1::2]: # slice odd index if i == len(numbers) - 1: observe = True if i == 1: self._qope(numbers[0], oper, numbers[1], observe=observe) else: self._qope(numbers[i], oper, observe=observe) i = i + 1 qobj = self._compile('qcirc') if wait_result is True: [status, ans] = self.result_parse(self._run(qobj)) else: self._run_async(qobj) [status, ans] = [ 'Wait. Calculating on {0}'.format(self.backend), '...' ] except QISKitError as ex: fail_msg = ('There was an error in the circuit!. Error = {}\n' .format(ex)) except RegisterSizeError as ex: fail_msg = ('Error in the number of registers!. Error = {}\n' .format(ex)) if fail_msg is not None: sys.stdout.write(fail_msg) sys.stdout.flush() return ["FAIL", None] return [status, ans]
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test the Layout Score pass""" import unittest from qiskit import QuantumRegister, QuantumCircuit from qiskit.circuit.library import CXGate from qiskit.transpiler.passes import Layout2qDistance from qiskit.transpiler import CouplingMap, Layout from qiskit.converters import circuit_to_dag from qiskit.transpiler.target import Target from qiskit.test import QiskitTestCase class TestLayoutScoreError(QiskitTestCase): """Test error-ish of Layout Score""" def test_no_layout(self): """No Layout. Empty Circuit CouplingMap map: None. Result: None""" qr = QuantumRegister(3, "qr") circuit = QuantumCircuit(qr) coupling = CouplingMap() layout = None dag = circuit_to_dag(circuit) pass_ = Layout2qDistance(coupling) pass_.property_set["layout"] = layout pass_.run(dag) self.assertIsNone(pass_.property_set["layout_score"]) class TestTrivialLayoutScore(QiskitTestCase): """Trivial layout scenarios""" def test_no_cx(self): """Empty Circuit CouplingMap map: None. Result: 0""" qr = QuantumRegister(3, "qr") circuit = QuantumCircuit(qr) coupling = CouplingMap() layout = Layout().generate_trivial_layout(qr) dag = circuit_to_dag(circuit) pass_ = Layout2qDistance(coupling) pass_.property_set["layout"] = layout pass_.run(dag) self.assertEqual(pass_.property_set["layout_score"], 0) def test_swap_mapped_true(self): """Mapped circuit. Good Layout qr0 (0):--(+)---(+)- | | qr1 (1):---.-----|-- | qr2 (2):---------.-- CouplingMap map: [1]--[0]--[2] """ qr = QuantumRegister(3, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) circuit.cx(qr[0], qr[2]) coupling = CouplingMap([[0, 1], [0, 2]]) layout = Layout().generate_trivial_layout(qr) dag = circuit_to_dag(circuit) pass_ = Layout2qDistance(coupling) pass_.property_set["layout"] = layout pass_.run(dag) self.assertEqual(pass_.property_set["layout_score"], 0) def test_swap_mapped_false(self): """Needs [0]-[1] in a [0]--[2]--[1] Result:1 qr0:--(+)-- | qr1:---.--- CouplingMap map: [0]--[2]--[1] """ qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) coupling = CouplingMap([[0, 2], [2, 1]]) layout = Layout().generate_trivial_layout(qr) dag = circuit_to_dag(circuit) pass_ = Layout2qDistance(coupling) pass_.property_set["layout"] = layout pass_.run(dag) self.assertEqual(pass_.property_set["layout_score"], 1) def test_swap_mapped_true_target(self): """Mapped circuit. Good Layout qr0 (0):--(+)---(+)- | | qr1 (1):---.-----|-- | qr2 (2):---------.-- CouplingMap map: [1]--[0]--[2] """ qr = QuantumRegister(3, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) circuit.cx(qr[0], qr[2]) target = Target() target.add_instruction(CXGate(), {(0, 1): None, (0, 2): None}) layout = Layout().generate_trivial_layout(qr) dag = circuit_to_dag(circuit) pass_ = Layout2qDistance(target) pass_.property_set["layout"] = layout pass_.run(dag) self.assertEqual(pass_.property_set["layout_score"], 0) def test_swap_mapped_false_target(self): """Needs [0]-[1] in a [0]--[2]--[1] Result:1 qr0:--(+)-- | qr1:---.--- CouplingMap map: [0]--[2]--[1] """ qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.cx(qr[0], qr[1]) target = Target() target.add_instruction(CXGate(), {(0, 2): None, (2, 1): None}) layout = Layout().generate_trivial_layout(qr) dag = circuit_to_dag(circuit) pass_ = Layout2qDistance(target) pass_.property_set["layout"] = layout pass_.run(dag) self.assertEqual(pass_.property_set["layout_score"], 1) if __name__ == "__main__": unittest.main()
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) qc.cx(1, 0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) ### added x gate ### qc.x(qubit) return qc def decode_message(qc): qc.cx(1, 0) ### added z gate ### qc.z(1) qc.h(1) return qc
https://github.com/quantastica/quantum-circuit
quantastica
from qiskit import QuantumCircuit, execute, Aer from qiskit.visualization import plot_histogram, plot_state_qsphere # We create a quantum circuit with 2 qubits and 2 classical bits qc1 = QuantumCircuit(2, 2) # We apply the Hadamard gate to the first qubit qc1.h(0) # We apply the CNOT gate to the first and second qubits qc1.cx(0, 1) # We draw the circuit qc1.draw(output='mpl') # We execute the quantum circuit on a statevector simulator backend backend = Aer.get_backend('statevector_simulator') result = execute(qc1, backend).result() statevector = result.get_statevector() # We plot the results plot_state_qsphere(statevector) # We create a quantum circuit with 2 qubits and 2 classical bits qc2 = QuantumCircuit(2, 2) # We initialize the input state to |01> qc2.x(0) qc2.barrier() # We apply the Hadamard gate to the first qubit qc2.h(0) # We apply the CNOT gate to the first and second qubits qc2.cx(0, 1) qc2.barrier() # We draw the circuit qc2.draw(output='mpl') # We execute the quantum circuit on a statevector simulator backend backend = Aer.get_backend('statevector_simulator') result = execute(qc2, backend).result() statevector = result.get_statevector() # We plot the results plot_state_qsphere(statevector) # We create a quantum circuit with 2 qubits and 2 classical bits qc3 = QuantumCircuit(2, 2) # We initialize the input state to |10> qc3.x(1) qc3.barrier() # We apply the Hadamard gate to the first qubit qc3.h(0) # We apply the CNOT gate to the first and second qubits qc3.cx(0, 1) qc3.barrier() # We draw the circuit qc3.draw(output='mpl') # We execute the quantum circuit on a statevector simulator backend backend = Aer.get_backend('statevector_simulator') result = execute(qc3, backend).result() statevector = result.get_statevector() # We plot the results plot_state_qsphere(statevector) # We create a quantum circuit with 2 qubits and 2 classical bits qc4 = QuantumCircuit(2, 2) # We initialize the input state to |11> qc4.x(0) qc4.x(1) qc4.barrier() # We apply the Hadamard gate to the first qubit qc4.h(0) # We apply the CNOT gate to the first and second qubits qc4.cx(0, 1) qc4.barrier() # We draw the circuit qc4.draw(output='mpl') # We execute the quantum circuit on a statevector simulator backend backend = Aer.get_backend('statevector_simulator') result = execute(qc4, backend).result() statevector = result.get_statevector() # We plot the results plot_state_qsphere(statevector)
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
import numpy as np from qiskit import QuantumCircuit, execute, Aer, IBMQ, QuantumRegister, ClassicalRegister from qiskit import IBMQ, BasicAer from IPython.core.display import Image, display simulator = Aer.get_backend('qasm_simulator') # Alice prepares the qubits input_register = QuantumRegister(1, "x") output_register = QuantumRegister(1, "f(x)") classical_register = ClassicalRegister(1, "c") circuit_Deutsch = QuantumCircuit(input_register, output_register, classical_register) # Prepare the qubit in the output register in the |1> state circuit_Deutsch.x(output_register[0]) # Hadamard gates applied on input and output registers circuit_Deutsch.h(input_register[0]) circuit_Deutsch.h(output_register[0]) # Add a barrier circuit_Deutsch.barrier() # Draw the circuit circuit_Deutsch.draw(output="mpl") # Bob's four functions/circuits # The first option: constant f(0) = f(1) = 0 circuit_Bob1 = QuantumCircuit(input_register, output_register) circuit_Bob1.barrier() # The second option: constant f(0) = f(1) = 1 circuit_Bob2 = QuantumCircuit(input_register, output_register) circuit_Bob2.cx(input_register[0], output_register) circuit_Bob2.x(input_register[0]) circuit_Bob2.cx(input_register[0], output_register) circuit_Bob2.x(input_register[0]) circuit_Bob2.barrier() # The third option: balanced f(0) = 0 & f(1) = 1 circuit_Bob3 = QuantumCircuit(input_register, output_register) circuit_Bob3.cx(input_register[0], output_register) circuit_Bob3.barrier() # The fourth option: balanced f(0) = 1 & f(1) = 0 circuit_Bob4 = QuantumCircuit(input_register, output_register) circuit_Bob4.x(input_register[0]) circuit_Bob4.cx(input_register[0], output_register) circuit_Bob4.x(input_register[0]) circuit_Bob4.barrier() import random list_options_Bob = [circuit_Bob2,circuit_Bob2, circuit_Bob3, circuit_Bob4] circuit_Bob_choice = random.choice(list_options_Bob) # Add the chosen circuit to the main circuit circuit_Deutsch += circuit_Bob_choice # Draw the circuit print("The circuit with Bob's chosen function") circuit_Deutsch.draw(output="mpl") # Alice's final operations circuit_Deutsch.h(input_register[0]) circuit_Deutsch.measure(input_register[0], classical_register[0]) # Draw the final version of the circuit print("The final version of the circuit") circuit_Deutsch.draw(output="mpl") # The execution of the circuit counts = execute(circuit_Deutsch, simulator, shots=1).result().get_counts() # Finding the only key/measurement outcome measurement_result = list(counts.keys())[0] print("The results of the measurements: {}".format(counts)) print("The final result is: {}".format(measurement_result)) # From the final measurement result, Alice understands if # the Bob's chosen function balanced or constant if measurement_result == '0': print("Bob's chosen function was constant") elif measurement_result == '1': print("Bob's chosen function was balanced") # Alice: qubit preparation input_register = QuantumRegister(3, "x") output_register = QuantumRegister(1, "f(x)") classical_register = ClassicalRegister(3, "c") circuit_Deutsch_Jozsa = QuantumCircuit(input_register, output_register, classical_register) # Prepare the qubit in the output register in the |1> state circuit_Deutsch_Jozsa.x(output_register[0]) # Hadamard gates on both input and output registers circuit_Deutsch_Jozsa.h(input_register) # Hadamard gate is applied to all qubits in the input_register circuit_Deutsch_Jozsa.h(output_register[0]) # Add a barrier circuit_Deutsch_Jozsa.barrier() circuit_Deutsch_Jozsa.draw('mpl') # Circuit for the constant function circtuit_Deutsch_Jozsa_constant = QuantumCircuit(input_register, output_register, classical_register) circtuit_Deutsch_Jozsa_constant += circuit_Deutsch_Jozsa # Implementing the f(x) = 1 constant function circtuit_Deutsch_Jozsa_constant.x(output_register[0]) # Add a barrier circtuit_Deutsch_Jozsa_constant.barrier() # Final Hadamard gates applied on all qubits in the input register circtuit_Deutsch_Jozsa_constant.h(input_register) # Measurements executed for all qubits in the input register circtuit_Deutsch_Jozsa_constant.measure(input_register, classical_register) # Draw the circuit circtuit_Deutsch_Jozsa_constant.draw(output="mpl") # A function that will help Alice to define if # the chosen function was balanced or constant def is_balanced_or_constant(circuit, bakend): # The execution of the circuit counts = execute(circuit, bakend, shots=1).result().get_counts() # Finding the only key/measurement outcome measurement_result = list(counts.keys())[0] print("The results of the measurements: {}".format(counts)) print("The final result is: {}".format(measurement_result)) # Alice checks if Bob's function was constant or balanced if '000' in counts: print("Bob's chosen function was constant") else: print("Bob's chosen function was balanced") # Alice uses is_balanced_or_constant() function is_balanced_or_constant(circtuit_Deutsch_Jozsa_constant, simulator) # Circuit for the balanced case circtuit_Deutsch_Jozsa_balanced = QuantumCircuit(input_register, output_register, classical_register) circtuit_Deutsch_Jozsa_balanced += circuit_Deutsch_Jozsa # implementing the balanced function circtuit_Deutsch_Jozsa_balanced.cx(input_register[0], output_register[0]) circtuit_Deutsch_Jozsa_balanced.cx(input_register[1], output_register[0]) circtuit_Deutsch_Jozsa_balanced.cx(input_register[2], output_register[0]) # add a barrier circtuit_Deutsch_Jozsa_balanced.barrier() # final Hadamard gates applied on all qubits in the input register circtuit_Deutsch_Jozsa_balanced.h(input_register) # measurements executed for all qubits in the input register circtuit_Deutsch_Jozsa_balanced.measure(input_register, classical_register) # draw the circuit circtuit_Deutsch_Jozsa_balanced.draw(output="mpl") # Alice uses is_balanced_or_constant() function simulator = Aer.get_backend('qasm_simulator') is_balanced_or_constant(circtuit_Deutsch_Jozsa_balanced, simulator)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.compiler import transpile from qiskit.transpiler import PassManager circ = QuantumCircuit(3) circ.ccx(0, 1, 2) circ.draw(output='mpl') from qiskit.transpiler.passes import Unroller pass_ = Unroller(['u1', 'u2', 'u3', 'cx']) pm = PassManager(pass_) new_circ = pm.run(circ) new_circ.draw(output='mpl') from qiskit.transpiler import passes [pass_ for pass_ in dir(passes) if pass_[0].isupper()] from qiskit.transpiler import CouplingMap, Layout from qiskit.transpiler.passes import BasicSwap, LookaheadSwap, StochasticSwap coupling = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]] circuit = QuantumCircuit(7) circuit.h(3) circuit.cx(0, 6) circuit.cx(6, 0) circuit.cx(0, 1) circuit.cx(3, 1) circuit.cx(3, 0) coupling_map = CouplingMap(couplinglist=coupling) bs = BasicSwap(coupling_map=coupling_map) pass_manager = PassManager(bs) basic_circ = pass_manager.run(circuit) ls = LookaheadSwap(coupling_map=coupling_map) pass_manager = PassManager(ls) lookahead_circ = pass_manager.run(circuit) ss = StochasticSwap(coupling_map=coupling_map) pass_manager = PassManager(ss) stochastic_circ = pass_manager.run(circuit) circuit.draw(output='mpl') basic_circ.draw(output='mpl') lookahead_circ.draw(output='mpl') stochastic_circ.draw(output='mpl') import math from qiskit.providers.fake_provider import FakeTokyo backend = FakeTokyo() # mimics the tokyo device in terms of coupling map and basis gates qc = QuantumCircuit(10) random_state = [ 1 / math.sqrt(4) * complex(0, 1), 1 / math.sqrt(8) * complex(1, 0), 0, 0, 0, 0, 0, 0, 1 / math.sqrt(8) * complex(1, 0), 1 / math.sqrt(8) * complex(0, 1), 0, 0, 0, 0, 1 / math.sqrt(4) * complex(1, 0), 1 / math.sqrt(8) * complex(1, 0)] qc.initialize(random_state, range(4)) qc.draw() optimized_0 = transpile(qc, backend=backend, seed_transpiler=11, optimization_level=0) print('gates = ', optimized_0.count_ops()) print('depth = ', optimized_0.depth()) optimized_1 = transpile(qc, backend=backend, seed_transpiler=11, optimization_level=1) print('gates = ', optimized_1.count_ops()) print('depth = ', optimized_1.depth()) optimized_2 = transpile(qc, backend=backend, seed_transpiler=11, optimization_level=2) print('gates = ', optimized_2.count_ops()) print('depth = ', optimized_2.depth()) optimized_3 = transpile(qc, backend=backend, seed_transpiler=11, optimization_level=3) print('gates = ', optimized_3.count_ops()) print('depth = ', optimized_3.depth()) from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.dagcircuit import DAGCircuit q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.measure(q[0], c[0]) circ.rz(0.5, q[1]).c_if(c, 2) circ.draw(output='mpl') from qiskit.converters import circuit_to_dag from qiskit.tools.visualization import dag_drawer dag = circuit_to_dag(circ) dag_drawer(dag) dag.op_nodes() node = dag.op_nodes()[3] print("node name: ", node.name) print("node op: ", node.op) print("node qargs: ", node.qargs) print("node cargs: ", node.cargs) print("node condition: ", node.op.condition) from qiskit.circuit.library import HGate dag.apply_operation_back(HGate(), qargs=[q[0]]) dag_drawer(dag) from qiskit.circuit.library import CCXGate dag.apply_operation_front(CCXGate(), qargs=[q[0], q[1], q[2]], cargs=[]) dag_drawer(dag) from qiskit.circuit.library import CHGate, U2Gate, CXGate mini_dag = DAGCircuit() p = QuantumRegister(2, "p") mini_dag.add_qreg(p) mini_dag.apply_operation_back(CHGate(), qargs=[p[1], p[0]]) mini_dag.apply_operation_back(U2Gate(0.1, 0.2), qargs=[p[1]]) # substitute the cx node with the above mini-dag cx_node = dag.op_nodes(op=CXGate).pop() dag.substitute_node_with_dag(node=cx_node, input_dag=mini_dag, wires=[p[0], p[1]]) dag_drawer(dag) from qiskit.converters import dag_to_circuit circuit = dag_to_circuit(dag) circuit.draw(output='mpl') from copy import copy from qiskit.transpiler.basepasses import TransformationPass from qiskit.transpiler import Layout from qiskit.circuit.library import SwapGate class BasicSwap(TransformationPass): """Maps (with minimum effort) a DAGCircuit onto a `coupling_map` adding swap gates.""" def __init__(self, coupling_map, initial_layout=None): """Maps a DAGCircuit onto a `coupling_map` using swap gates. Args: coupling_map (CouplingMap): Directed graph represented a coupling map. initial_layout (Layout): initial layout of qubits in mapping """ super().__init__() self.coupling_map = coupling_map self.initial_layout = initial_layout def run(self, dag): """Runs the BasicSwap pass on `dag`. Args: dag (DAGCircuit): DAG to map. Returns: DAGCircuit: A mapped DAG. Raises: TranspilerError: if the coupling map or the layout are not compatible with the DAG. """ new_dag = DAGCircuit() for qreg in dag.qregs.values(): new_dag.add_qreg(qreg) for creg in dag.cregs.values(): new_dag.add_creg(creg) if self.initial_layout is None: if self.property_set["layout"]: self.initial_layout = self.property_set["layout"] else: self.initial_layout = Layout.generate_trivial_layout(*dag.qregs.values()) if len(dag.qubits) != len(self.initial_layout): raise TranspilerError('The layout does not match the amount of qubits in the DAG') if len(self.coupling_map.physical_qubits) != len(self.initial_layout): raise TranspilerError( "Mappers require to have the layout to be the same size as the coupling map") canonical_register = dag.qregs['q'] trivial_layout = Layout.generate_trivial_layout(canonical_register) current_layout = trivial_layout.copy() for layer in dag.serial_layers(): subdag = layer['graph'] for gate in subdag.two_qubit_ops(): physical_q0 = current_layout[gate.qargs[0]] physical_q1 = current_layout[gate.qargs[1]] if self.coupling_map.distance(physical_q0, physical_q1) != 1: # Insert a new layer with the SWAP(s). swap_layer = DAGCircuit() swap_layer.add_qreg(canonical_register) path = self.coupling_map.shortest_undirected_path(physical_q0, physical_q1) for swap in range(len(path) - 2): connected_wire_1 = path[swap] connected_wire_2 = path[swap + 1] qubit_1 = current_layout[connected_wire_1] qubit_2 = current_layout[connected_wire_2] # create the swap operation swap_layer.apply_operation_back(SwapGate(), qargs=[qubit_1, qubit_2], cargs=[]) # layer insertion order = current_layout.reorder_bits(new_dag.qubits) new_dag.compose(swap_layer, qubits=order) # update current_layout for swap in range(len(path) - 2): current_layout.swap(path[swap], path[swap + 1]) order = current_layout.reorder_bits(new_dag.qubits) new_dag.compose(subdag, qubits=order) return new_dag q = QuantumRegister(7, 'q') in_circ = QuantumCircuit(q) in_circ.h(q[0]) in_circ.cx(q[0], q[4]) in_circ.cx(q[2], q[3]) in_circ.cx(q[6], q[1]) in_circ.cx(q[5], q[0]) in_circ.rz(0.1, q[2]) in_circ.cx(q[5], q[0]) from qiskit.transpiler import PassManager from qiskit.transpiler import CouplingMap from qiskit import BasicAer pm = PassManager() coupling = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]] coupling_map = CouplingMap(couplinglist=coupling) pm.append([BasicSwap(coupling_map)]) out_circ = pm.run(in_circ) in_circ.draw(output='mpl') out_circ.draw(output='mpl') import logging logging.basicConfig(level='DEBUG') from qiskit.providers.fake_provider import FakeTenerife log_circ = QuantumCircuit(2, 2) log_circ.h(0) log_circ.h(1) log_circ.h(1) log_circ.x(1) log_circ.cx(0, 1) log_circ.measure([0,1], [0,1]) backend = FakeTenerife() transpile(log_circ, backend); logging.getLogger('qiskit.transpiler').setLevel('INFO') transpile(log_circ, backend); # Change log level back to DEBUG logging.getLogger('qiskit.transpiler').setLevel('DEBUG') # Transpile multiple circuits circuits = [log_circ, log_circ] transpile(circuits, backend); formatter = logging.Formatter('%(name)s - %(processName)-10s - %(levelname)s: %(message)s') handler = logging.getLogger().handlers[0] handler.setFormatter(formatter) transpile(circuits, backend); import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# If you introduce a list with less colors than bars, the color of the bars will # alternate following the sequence from the list. import numpy as np from qiskit.quantum_info import DensityMatrix from qiskit import QuantumCircuit from qiskit.visualization import plot_state_paulivec qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc = QuantumCircuit(2) qc.h([0, 1]) qc.cz(0, 1) qc.ry(np.pi/3, 0) qc.rx(np.pi/5, 1) matrix = DensityMatrix(qc) plot_state_paulivec(matrix, color=['crimson', 'midnightblue', 'seagreen'])
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel line = LineLattice(2) fermi = FermiHubbardModel.uniform_parameters(line, 2.0, 4.0, 3.0) print(fermi.second_q_ops()) # Note: the trailing `s` from qiskit_nature.second_q.hamiltonians.lattices import LineLattice from qiskit_nature.second_q.hamiltonians import FermiHubbardModel line = LineLattice(2) fermi = FermiHubbardModel(line.uniform_parameters(2.0, 4.0), 3.0) print(fermi.second_q_op()) # Note: NO trailing `s` import numpy as np from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) fermi = FermiHubbardModel.from_parameters(interaction, 3.0) print(fermi.second_q_ops()) # Note: the trailing `s` import numpy as np from qiskit_nature.second_q.hamiltonians.lattices import Lattice from qiskit_nature.second_q.hamiltonians import FermiHubbardModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) lattice = Lattice.from_adjacency_matrix(interaction) fermi = FermiHubbardModel(lattice, 3.0) print(fermi.second_q_op()) # Note: NO trailing `s` from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice from qiskit_nature.problems.second_quantization.lattice.models import IsingModel line = LineLattice(2) ising = IsingModel.uniform_parameters(line, 2.0, 4.0) print(ising.second_q_ops()) # Note: the trailing `s` from qiskit_nature.second_q.hamiltonians.lattices import LineLattice from qiskit_nature.second_q.hamiltonians import IsingModel line = LineLattice(2) ising = IsingModel(line.uniform_parameters(2.0, 4.0)) print(ising.second_q_op()) # Note: NO trailing `s` import numpy as np from qiskit_nature.problems.second_quantization.lattice.models import IsingModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) ising = IsingModel.from_parameters(interaction) print(ising.second_q_ops()) # Note: the trailing `s` import numpy as np from qiskit_nature.second_q.hamiltonians.lattices import Lattice from qiskit_nature.second_q.hamiltonians import IsingModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) lattice = Lattice.from_adjacency_matrix(interaction) ising = IsingModel(lattice) print(ising.second_q_op()) # Note: NO trailing `s` import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, QuantumRegister from qiskit.circuit.library.standard_gates import HGate qc1 = QuantumCircuit(2) qc1.x(0) qc1.h(1) custom = qc1.to_gate().control(2) qc2 = QuantumCircuit(4) qc2.append(custom, [0, 3, 1, 2]) qc2.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.quantum_info import SparsePauliOp H2_op = SparsePauliOp.from_list( [ ("II", -1.052373245772859), ("IZ", 0.39793742484318045), ("ZI", -0.39793742484318045), ("ZZ", -0.01128010425623538), ("XX", 0.18093119978423156), ] ) print(f"Number of qubits: {H2_op.num_qubits}") from qiskit.algorithms import NumPyMinimumEigensolver from qiskit.opflow import PauliSumOp numpy_solver = NumPyMinimumEigensolver() result = numpy_solver.compute_minimum_eigenvalue(operator=PauliSumOp(H2_op)) ref_value = result.eigenvalue.real print(f"Reference value: {ref_value:.5f}") # define ansatz and optimizer from qiskit.circuit.library import TwoLocal from qiskit.algorithms.optimizers import SPSA iterations = 125 ansatz = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz") spsa = SPSA(maxiter=iterations) # define callback # note: Re-run this cell to restart lists before training counts = [] values = [] def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) # define Aer Estimator for noiseless statevector simulation from qiskit.utils import algorithm_globals from qiskit_aer.primitives import Estimator as AerEstimator seed = 170 algorithm_globals.random_seed = seed noiseless_estimator = AerEstimator( run_options={"seed": seed, "shots": 1024}, transpile_options={"seed_transpiler": seed}, ) # instantiate and run VQE from qiskit.algorithms.minimum_eigensolvers import VQE vqe = VQE( noiseless_estimator, ansatz, optimizer=spsa, callback=store_intermediate_result ) result = vqe.compute_minimum_eigenvalue(operator=H2_op) print(f"VQE on Aer qasm simulator (no noise): {result.eigenvalue.real:.5f}") print( f"Delta from reference energy value is {(result.eigenvalue.real - ref_value):.5f}" ) import pylab pylab.rcParams["figure.figsize"] = (12, 4) pylab.plot(counts, values) pylab.xlabel("Eval count") pylab.ylabel("Energy") pylab.title("Convergence with no noise") from qiskit_aer.noise import NoiseModel from qiskit.providers.fake_provider import FakeVigo # fake providers contain data from real IBM Quantum devices stored in Qiskit Terra, # and are useful for extracting realistic noise models. device = FakeVigo() coupling_map = device.configuration().coupling_map noise_model = NoiseModel.from_backend(device) print(noise_model) noisy_estimator = AerEstimator( backend_options={ "method": "density_matrix", "coupling_map": coupling_map, "noise_model": noise_model, }, run_options={"seed": seed, "shots": 1024}, transpile_options={"seed_transpiler": seed}, ) # re-start callback variables counts = [] values = [] vqe.estimator = noisy_estimator result1 = vqe.compute_minimum_eigenvalue(operator=H2_op) print(f"VQE on Aer qasm simulator (with noise): {result1.eigenvalue.real:.5f}") print( f"Delta from reference energy value is {(result1.eigenvalue.real - ref_value):.5f}" ) if counts or values: pylab.rcParams["figure.figsize"] = (12, 4) pylab.plot(counts, values) pylab.xlabel("Eval count") pylab.ylabel("Energy") pylab.title("Convergence with noise") print(f"Reference value: {ref_value:.5f}") print(f"VQE on Aer qasm simulator (no noise): {result.eigenvalue.real:.5f}") print(f"VQE on Aer qasm simulator (with noise): {result1.eigenvalue.real:.5f}") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_state_city qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) # plot using a Statevector state = Statevector(qc) plot_state_city(state)
https://github.com/iqm-finland/qiskit-on-iqm
iqm-finland
# Copyright 2022-2023 Qiskit on IQM developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing IQM backend. """ from typing import Optional import pytest from qiskit import QuantumCircuit from qiskit.compiler import transpile from qiskit.providers import Options from iqm.qiskit_iqm.iqm_backend import IQMBackendBase class DummyIQMBackend(IQMBackendBase): """Dummy implementation for abstract methods of IQMBacked, so that instances can be created and the rest of functionality tested.""" @classmethod def _default_options(cls) -> Options: return Options() @property def max_circuits(self) -> Optional[int]: return None def run(self, run_input, **options): ... @pytest.fixture def backend(linear_architecture_3q): return DummyIQMBackend(linear_architecture_3q) def test_qubit_name_to_index_to_qubit_name(adonis_architecture_shuffled_names): backend = DummyIQMBackend(adonis_architecture_shuffled_names) correct_idx_name_associations = set(enumerate(['QB1', 'QB2', 'QB3', 'QB4', 'QB5'])) assert all(backend.index_to_qubit_name(idx) == name for idx, name in correct_idx_name_associations) assert all(backend.qubit_name_to_index(name) == idx for idx, name in correct_idx_name_associations) assert backend.index_to_qubit_name(7) is None assert backend.qubit_name_to_index('Alice') is None def test_transpile(backend): circuit = QuantumCircuit(3, 3) circuit.h(0) circuit.cx(0, 1) circuit.cx(1, 2) circuit.cx(2, 0) circuit_transpiled = transpile(circuit, backend=backend) cmap = backend.coupling_map.get_edges() for instruction, qubits, _ in circuit_transpiled.data: assert instruction.name in ('r', 'cz') if instruction.name == 'cz': idx1 = circuit_transpiled.find_bit(qubits[0]).index idx2 = circuit_transpiled.find_bit(qubits[1]).index assert ((idx1, idx2) in cmap) or ((idx2, idx1) in cmap) def test_validate_compatible_architecture( adonis_architecture, adonis_architecture_shuffled_names, linear_architecture_3q ): backend = DummyIQMBackend(adonis_architecture) assert backend.validate_compatible_architecture(adonis_architecture) is True assert backend.validate_compatible_architecture(adonis_architecture_shuffled_names) is True assert backend.validate_compatible_architecture(linear_architecture_3q) is False
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/vandnaChaturvedi/Qauntum_algorithms_Qiskit
vandnaChaturvedi
from qiskit import QuantumCircuit, Aer, execute, IBMQ from qiskit.utils import QuantumInstance import numpy as np from qiskit.algorithms import Shor IBMQ.enable_account('ENTER API TOKEN HERE') # Enter your API token here provider = IBMQ.get_provider(hub='ibm-q') backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1000) my_shor = Shor(quantum_instance) result_dict = my_shor.factor(15) print(result_dict)
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test commutation checker class .""" import unittest import numpy as np from qiskit import ClassicalRegister from qiskit.test import QiskitTestCase from qiskit.circuit import QuantumRegister, Parameter, Qubit from qiskit.circuit import CommutationChecker from qiskit.circuit.library import ( ZGate, XGate, CXGate, CCXGate, MCXGate, RZGate, Measure, Barrier, Reset, LinearFunction, ) class TestCommutationChecker(QiskitTestCase): """Test CommutationChecker class.""" def test_simple_gates(self): """Check simple commutation relations between gates, experimenting with different orders of gates, different orders of qubits, different sets of qubits over which gates are defined, and so on.""" comm_checker = CommutationChecker() # should commute res = comm_checker.commute(ZGate(), [0], [], CXGate(), [0, 1], []) self.assertTrue(res) # should not commute res = comm_checker.commute(ZGate(), [1], [], CXGate(), [0, 1], []) self.assertFalse(res) # should not commute res = comm_checker.commute(XGate(), [0], [], CXGate(), [0, 1], []) self.assertFalse(res) # should commute res = comm_checker.commute(XGate(), [1], [], CXGate(), [0, 1], []) self.assertTrue(res) # should not commute res = comm_checker.commute(XGate(), [1], [], CXGate(), [1, 0], []) self.assertFalse(res) # should commute res = comm_checker.commute(XGate(), [0], [], CXGate(), [1, 0], []) self.assertTrue(res) # should commute res = comm_checker.commute(CXGate(), [1, 0], [], XGate(), [0], []) self.assertTrue(res) # should not commute res = comm_checker.commute(CXGate(), [1, 0], [], XGate(), [1], []) self.assertFalse(res) # should commute res = comm_checker.commute( CXGate(), [1, 0], [], CXGate(), [1, 0], [], ) self.assertTrue(res) # should not commute res = comm_checker.commute( CXGate(), [1, 0], [], CXGate(), [0, 1], [], ) self.assertFalse(res) # should commute res = comm_checker.commute( CXGate(), [1, 0], [], CXGate(), [1, 2], [], ) self.assertTrue(res) # should not commute res = comm_checker.commute( CXGate(), [1, 0], [], CXGate(), [2, 1], [], ) self.assertFalse(res) # should commute res = comm_checker.commute( CXGate(), [1, 0], [], CXGate(), [2, 3], [], ) self.assertTrue(res) res = comm_checker.commute(XGate(), [2], [], CCXGate(), [0, 1, 2], []) self.assertTrue(res) res = comm_checker.commute(CCXGate(), [0, 1, 2], [], CCXGate(), [0, 2, 1], []) self.assertFalse(res) def test_passing_quantum_registers(self): """Check that passing QuantumRegisters works correctly.""" comm_checker = CommutationChecker() qr = QuantumRegister(4) # should commute res = comm_checker.commute(CXGate(), [qr[1], qr[0]], [], CXGate(), [qr[1], qr[2]], []) self.assertTrue(res) # should not commute res = comm_checker.commute(CXGate(), [qr[0], qr[1]], [], CXGate(), [qr[1], qr[2]], []) self.assertFalse(res) def test_caching_positive_results(self): """Check that hashing positive results in commutativity checker works as expected.""" comm_checker = CommutationChecker() res = comm_checker.commute(ZGate(), [0], [], CXGate(), [0, 1], []) self.assertTrue(res) self.assertGreater(len(comm_checker.cache), 0) def test_caching_negative_results(self): """Check that hashing negative results in commutativity checker works as expected.""" comm_checker = CommutationChecker() res = comm_checker.commute(XGate(), [0], [], CXGate(), [0, 1], []) self.assertFalse(res) self.assertGreater(len(comm_checker.cache), 0) def test_caching_different_qubit_sets(self): """Check that hashing same commutativity results over different qubit sets works as expected.""" comm_checker = CommutationChecker() # All the following should be cached in the same way # though each relation gets cached twice: (A, B) and (B, A) comm_checker.commute(XGate(), [0], [], CXGate(), [0, 1], []) comm_checker.commute(XGate(), [10], [], CXGate(), [10, 20], []) comm_checker.commute(XGate(), [10], [], CXGate(), [10, 5], []) comm_checker.commute(XGate(), [5], [], CXGate(), [5, 7], []) self.assertEqual(len(comm_checker.cache), 2) def test_gates_with_parameters(self): """Check commutativity between (non-parameterized) gates with parameters.""" comm_checker = CommutationChecker() res = comm_checker.commute(RZGate(0), [0], [], XGate(), [0], []) self.assertTrue(res) res = comm_checker.commute(RZGate(np.pi / 2), [0], [], XGate(), [0], []) self.assertFalse(res) res = comm_checker.commute(RZGate(np.pi / 2), [0], [], RZGate(0), [0], []) self.assertTrue(res) def test_parameterized_gates(self): """Check commutativity between parameterized gates, both with free and with bound parameters.""" comm_checker = CommutationChecker() # gate that has parameters but is not considered parameterized rz_gate = RZGate(np.pi / 2) self.assertEqual(len(rz_gate.params), 1) self.assertFalse(rz_gate.is_parameterized()) # gate that has parameters and is considered parameterized rz_gate_theta = RZGate(Parameter("Theta")) rz_gate_phi = RZGate(Parameter("Phi")) self.assertEqual(len(rz_gate_theta.params), 1) self.assertTrue(rz_gate_theta.is_parameterized()) # gate that has no parameters and is not considered parameterized cx_gate = CXGate() self.assertEqual(len(cx_gate.params), 0) self.assertFalse(cx_gate.is_parameterized()) # We should detect that these gates commute res = comm_checker.commute(rz_gate, [0], [], cx_gate, [0, 1], []) self.assertTrue(res) # We should detect that these gates commute res = comm_checker.commute(rz_gate, [0], [], rz_gate, [0], []) self.assertTrue(res) # We should detect that parameterized gates over disjoint qubit subsets commute res = comm_checker.commute(rz_gate_theta, [0], [], rz_gate_theta, [1], []) self.assertTrue(res) # We should detect that parameterized gates over disjoint qubit subsets commute res = comm_checker.commute(rz_gate_theta, [0], [], rz_gate_phi, [1], []) self.assertTrue(res) # We should detect that parameterized gates over disjoint qubit subsets commute res = comm_checker.commute(rz_gate_theta, [2], [], cx_gate, [1, 3], []) self.assertTrue(res) # However, for now commutativity checker should return False when checking # commutativity between a parameterized gate and some other gate, when # the two gates are over intersecting qubit subsets. # This check should be changed if commutativity checker is extended to # handle parameterized gates better. res = comm_checker.commute(rz_gate_theta, [0], [], cx_gate, [0, 1], []) self.assertFalse(res) res = comm_checker.commute(rz_gate_theta, [0], [], rz_gate, [0], []) self.assertFalse(res) def test_measure(self): """Check commutativity involving measures.""" comm_checker = CommutationChecker() # Measure is over qubit 0, while gate is over a disjoint subset of qubits # We should be able to swap these. res = comm_checker.commute(Measure(), [0], [0], CXGate(), [1, 2], []) self.assertTrue(res) # Measure and gate have intersecting set of qubits # We should not be able to swap these. res = comm_checker.commute(Measure(), [0], [0], CXGate(), [0, 2], []) self.assertFalse(res) # Measures over different qubits and clbits res = comm_checker.commute(Measure(), [0], [0], Measure(), [1], [1]) self.assertTrue(res) # Measures over different qubits but same classical bit # We should not be able to swap these. res = comm_checker.commute(Measure(), [0], [0], Measure(), [1], [0]) self.assertFalse(res) # Measures over same qubits but different classical bit # ToDo: can we swap these? # Currently checker takes the safe approach and returns False. res = comm_checker.commute(Measure(), [0], [0], Measure(), [0], [1]) self.assertFalse(res) def test_barrier(self): """Check commutativity involving barriers.""" comm_checker = CommutationChecker() # A gate should not commute with a barrier # (at least if these are over intersecting qubit sets). res = comm_checker.commute(Barrier(4), [0, 1, 2, 3], [], CXGate(), [1, 2], []) self.assertFalse(res) # Does it even make sense to have a barrier over a subset of qubits? # Though in this case, it probably makes sense to say that barrier and gate can be swapped. res = comm_checker.commute(Barrier(4), [0, 1, 2, 3], [], CXGate(), [5, 6], []) self.assertTrue(res) def test_reset(self): """Check commutativity involving resets.""" comm_checker = CommutationChecker() # A gate should not commute with reset when the qubits intersect. res = comm_checker.commute(Reset(), [0], [], CXGate(), [0, 2], []) self.assertFalse(res) # A gate should commute with reset when the qubits are disjoint. res = comm_checker.commute(Reset(), [0], [], CXGate(), [1, 2], []) self.assertTrue(res) def test_conditional_gates(self): """Check commutativity involving conditional gates.""" comm_checker = CommutationChecker() qr = QuantumRegister(3) cr = ClassicalRegister(2) # Currently, in all cases commutativity checker should returns False. # This is definitely suboptimal. res = comm_checker.commute( CXGate().c_if(cr[0], 0), [qr[0], qr[1]], [], XGate(), [qr[2]], [] ) self.assertFalse(res) res = comm_checker.commute( CXGate().c_if(cr[0], 0), [qr[0], qr[1]], [], XGate(), [qr[1]], [] ) self.assertFalse(res) res = comm_checker.commute( CXGate().c_if(cr[0], 0), [qr[0], qr[1]], [], CXGate().c_if(cr[0], 0), [qr[0], qr[1]], [] ) self.assertFalse(res) res = comm_checker.commute( XGate().c_if(cr[0], 0), [qr[0]], [], XGate().c_if(cr[0], 1), [qr[0]], [] ) self.assertFalse(res) res = comm_checker.commute(XGate().c_if(cr[0], 0), [qr[0]], [], XGate(), [qr[0]], []) self.assertFalse(res) def test_complex_gates(self): """Check commutativity involving more complex gates.""" comm_checker = CommutationChecker() lf1 = LinearFunction([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) lf2 = LinearFunction([[1, 0, 0], [0, 0, 1], [0, 1, 0]]) # lf1 is equivalent to swap(0, 1), and lf2 to swap(1, 2). # These do not commute. res = comm_checker.commute(lf1, [0, 1, 2], [], lf2, [0, 1, 2], []) self.assertFalse(res) lf3 = LinearFunction([[0, 1, 0], [0, 0, 1], [1, 0, 0]]) lf4 = LinearFunction([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) # lf3 is permutation 1->2, 2->3, 3->1. # lf3 is the inverse permutation 1->3, 2->1, 3->2. # These commute. res = comm_checker.commute(lf3, [0, 1, 2], [], lf4, [0, 1, 2], []) self.assertTrue(res) def test_c7x_gate(self): """Test wide gate works correctly.""" qargs = [Qubit() for _ in [None] * 8] res = CommutationChecker().commute(XGate(), qargs[:1], [], XGate().control(7), qargs, []) self.assertFalse(res) def test_wide_gates_over_nondisjoint_qubits(self): """Test that checking wide gates does not lead to memory problems.""" res = CommutationChecker().commute(MCXGate(29), list(range(30)), [], XGate(), [0], []) self.assertFalse(res) res = CommutationChecker().commute(XGate(), [0], [], MCXGate(29), list(range(30)), []) self.assertFalse(res) def test_wide_gates_over_disjoint_qubits(self): """Test that wide gates still commute when they are over disjoint sets of qubits.""" res = CommutationChecker().commute(MCXGate(29), list(range(30)), [], XGate(), [30], []) self.assertTrue(res) res = CommutationChecker().commute(XGate(), [30], [], MCXGate(29), list(range(30)), []) self.assertTrue(res) if __name__ == "__main__": unittest.main()
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
from qiskit.aqua.algorithms import NumPyMinimumEigensolver from qiskit.optimization.algorithms import GroverOptimizer, MinimumEigenOptimizer from qiskit.optimization.problems import QuadraticProgram from qiskit import BasicAer from docplex.mp.model import Model backend = BasicAer.get_backend('statevector_simulator') model = Model() x0 = model.binary_var(name='x0') x1 = model.binary_var(name='x1') x2 = model.binary_var(name='x2') model.minimize(-x0+2*x1-3*x2-2*x0*x2-1*x1*x2) qp = QuadraticProgram() qp.from_docplex(model) print(qp.export_as_lp_string()) grover_optimizer = GroverOptimizer(6, num_iterations=10, quantum_instance=backend) results = grover_optimizer.solve(qp) print("x={}".format(results.x)) print("fval={}".format(results.fval)) import matplotlib.pyplot as plt import matplotlib.axes as axes %matplotlib inline import numpy as np import networkx as nx from qiskit.aqua import QuantumInstance from qiskit.optimization.applications.ising import max_cut, tsp from qiskit.optimization.converters import IsingToQuadraticProgram n = 4 num_qubits = n ** 2 ins = tsp.random_tsp(n, seed=123) G = nx.Graph() G.add_nodes_from(np.arange(0, n, 1)) colors = ['r' for node in G.nodes()] pos = {k: v for k, v in enumerate(ins.coord)} default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos) print('distance\n', ins.w) qubitOp, offset = tsp.get_operator(ins) print('Offset:', offset) print('Ising Hamiltonian:') print(qubitOp.print_details()) qp = QuadraticProgram() qp.from_ising(qubitOp, offset, linear=True) qp.to_docplex().prettyprint() grover_optimizer = GroverOptimizer(6, num_iterations=10, quantum_instance=backend) results = grover_optimizer.solve(qp) print("x={}".format(results.x)) print("fval={}".format(results.fval)) # Test with classical EigenOptimizer from qiskit.aqua.algorithms import NumPyMinimumEigensolver from qiskit.optimization.algorithms import MinimumEigenOptimizer exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qp)` print("x={}".format(exact_result.x)) print("fval={}".format(exact_result.fval))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile, schedule from qiskit.visualization.timeline import draw, IQXSimple from qiskit.providers.fake_provider import FakeBoeblingen qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) qc = transpile(qc, FakeBoeblingen(), scheduling_method='alap', layout_method='trivial') draw(qc, style=IQXSimple())
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name """ Quantum Tomography Module Description: This module contains functions for performing quantum state and quantum process tomography. This includes: - Functions for generating a set of circuits to extract tomographically complete sets of measurement data. - Functions for generating a tomography data set from the results after the circuits have been executed on a backend. - Functions for reconstructing a quantum state, or quantum process (Choi-matrix) from tomography data sets. Reconstruction Methods: Currently implemented reconstruction methods are - Linear inversion by weighted least-squares fitting. - Fast maximum likelihood reconstruction using ref [1]. References: [1] J Smolin, JM Gambetta, G Smith, Phys. Rev. Lett. 108, 070502 (2012). Open access: arXiv:1106.5458 [quant-ph]. Workflow: The basic functions for performing state and tomography experiments are: - `tomography_set`, `state_tomography_set`, and `process_tomography_set` all generates data structures for tomography experiments. - `create_tomography_circuits` generates the quantum circuits specified in a `tomography_set` for performing state tomography of the output - `tomography_data` extracts the results after executing the tomography circuits and returns it in a data structure used by fitters for state reconstruction. - `fit_tomography_data` reconstructs a density matrix or Choi-matrix from the a set of tomography data. """ import logging from functools import reduce from itertools import product from re import match import numpy as np from qiskit import QuantumCircuit from qiskit.exceptions import QiskitError from qiskit.tools.qi.qi import vectorize, devectorize, outer logger = logging.getLogger(__name__) ############################################################################### # Tomography Bases ############################################################################### class TomographyBasis(dict): """ Dictionary subsclass that includes methods for adding gates to circuits. A TomographyBasis is a dictionary where the keys index a measurement and the values are a list of projectors associated to that measurement. It also includes two optional methods `prep_gate` and `meas_gate`: - `prep_gate` adds gates to a circuit to prepare the corresponding basis projector from an initial ground state. - `meas_gate` adds gates to a circuit to transform the default Z-measurement into a measurement in the basis. With the exception of built in bases, these functions do nothing unless they are specified by the user. They may be set by the data members `prep_fun` and `meas_fun`. We illustrate this with an example. Example: A measurement in the Pauli-X basis has two outcomes corresponding to the projectors: `Xp = [[0.5, 0.5], [0.5, 0.5]]` `Xm = [[0.5, -0.5], [-0.5, 0.5]]` We can express this as a basis by `BX = TomographyBasis( {'X': [Xp, Xm]} )` To specifiy the gates to prepare and measure in this basis we : ``` def BX_prep_fun(circuit, qreg, op): bas, proj = op if bas == "X": if proj == 0: circuit.u2(0., np.pi, qreg) # apply H else: # proj == 1 circuit.u2(np.pi, np.pi, qreg) # apply H.X def BX_prep_fun(circuit, qreg, op): if op == "X": circuit.u2(0., np.pi, qreg) # apply H ``` We can then attach these functions to the basis using: `BX.prep_fun = BX_prep_fun` `BX.meas_fun = BX_meas_fun`. Generating function: A generating function `tomography_basis` exists to create bases in a single step. Using the above example this can be done by: ``` BX = tomography_basis({'X': [Xp, Xm]}, prep_fun=BX_prep_fun, meas_fun=BX_meas_fun) ``` """ prep_fun = None meas_fun = None def prep_gate(self, circuit, qreg, op): """ Add state preparation gates to a circuit. Args: circuit (QuantumCircuit): circuit to add a preparation to. qreg (tuple(QuantumRegister,int)): quantum register to apply preparation to. op (tuple(str, int)): the basis label and index for the preparation op. """ if self.prep_fun is None: pass else: self.prep_fun(circuit, qreg, op) def meas_gate(self, circuit, qreg, op): """ Add measurement gates to a circuit. Args: circuit (QuantumCircuit): circuit to add measurement to. qreg (tuple(QuantumRegister,int)): quantum register being measured. op (str): the basis label for the measurement. """ if self.meas_fun is None: pass else: self.meas_fun(circuit, qreg, op) def tomography_basis(basis, prep_fun=None, meas_fun=None): """ Generate a TomographyBasis object. See TomographyBasis for further details.abs Args: prep_fun (callable) optional: the function which adds preparation gates to a circuit. meas_fun (callable) optional: the function which adds measurement gates to a circuit. Returns: TomographyBasis: A tomography basis. """ ret = TomographyBasis(basis) ret.prep_fun = prep_fun ret.meas_fun = meas_fun return ret # PAULI BASIS # This corresponds to measurements in the X, Y, Z basis where # Outcomes 0,1 are the +1,-1 eigenstates respectively. # State preparation is also done in the +1 and -1 eigenstates. def __pauli_prep_gates(circuit, qreg, op): """ Add state preparation gates to a circuit. """ bas, proj = op if bas not in ['X', 'Y', 'Z']: raise QiskitError("There's no X, Y or Z basis for this Pauli " "preparation") if bas == "X": if proj == 1: circuit.u2(np.pi, np.pi, qreg) # H.X else: circuit.u2(0., np.pi, qreg) # H elif bas == "Y": if proj == 1: circuit.u2(-0.5 * np.pi, np.pi, qreg) # S.H.X else: circuit.u2(0.5 * np.pi, np.pi, qreg) # S.H elif bas == "Z" and proj == 1: circuit.u3(np.pi, 0., np.pi, qreg) # X def __pauli_meas_gates(circuit, qreg, op): """ Add state measurement gates to a circuit. """ if op not in ['X', 'Y', 'Z']: raise QiskitError("There's no X, Y or Z basis for this Pauli " "measurement") if op == "X": circuit.u2(0., np.pi, qreg) # H elif op == "Y": circuit.u2(0., 0.5 * np.pi, qreg) # H.S^* __PAULI_BASIS_OPS = { 'X': [np.array([[0.5, 0.5], [0.5, 0.5]]), np.array([[0.5, -0.5], [-0.5, 0.5]])], 'Y': [ np.array([[0.5, -0.5j], [0.5j, 0.5]]), np.array([[0.5, 0.5j], [-0.5j, 0.5]]) ], 'Z': [np.array([[1, 0], [0, 0]]), np.array([[0, 0], [0, 1]])] } # Create the actual basis PAULI_BASIS = tomography_basis( __PAULI_BASIS_OPS, prep_fun=__pauli_prep_gates, meas_fun=__pauli_meas_gates) # SIC-POVM BASIS def __sic_prep_gates(circuit, qreg, op): """ Add state preparation gates to a circuit. """ bas, proj = op if bas != 'S': raise QiskitError('Not in SIC basis!') theta = -2 * np.arctan(np.sqrt(2)) if proj == 1: circuit.u3(theta, np.pi, 0.0, qreg) elif proj == 2: circuit.u3(theta, np.pi / 3, 0.0, qreg) elif proj == 3: circuit.u3(theta, -np.pi / 3, 0.0, qreg) __SIC_BASIS_OPS = { 'S': [ np.array([[1, 0], [0, 0]]), np.array([[1, np.sqrt(2)], [np.sqrt(2), 2]]) / 3, np.array([[1, np.exp(np.pi * 2j / 3) * np.sqrt(2)], [np.exp(-np.pi * 2j / 3) * np.sqrt(2), 2]]) / 3, np.array([[1, np.exp(-np.pi * 2j / 3) * np.sqrt(2)], [np.exp(np.pi * 2j / 3) * np.sqrt(2), 2]]) / 3 ] } SIC_BASIS = tomography_basis(__SIC_BASIS_OPS, prep_fun=__sic_prep_gates) ############################################################################### # Tomography Set and labels ############################################################################### def tomography_set(meas_qubits, meas_basis='Pauli', prep_qubits=None, prep_basis=None): """ Generate a dictionary of tomography experiment configurations. This returns a data structure that is used by other tomography functions to generate state and process tomography circuits, and extract tomography data from results after execution on a backend. Quantum State Tomography: Be default it will return a set for performing Quantum State Tomography where individual qubits are measured in the Pauli basis. A custom measurement basis may also be used by defining a user `tomography_basis` and passing this in for the `meas_basis` argument. Quantum Process Tomography: A quantum process tomography set is created by specifying a preparation basis along with a measurement basis. The preparation basis may be a user defined `tomography_basis`, or one of the two built in basis 'SIC' or 'Pauli'. - SIC: Is a minimal symmetric informationally complete preparation basis for 4 states for each qubit (4 ^ number of qubits total preparation states). These correspond to the |0> state and the 3 other vertices of a tetrahedron on the Bloch-sphere. - Pauli: Is a tomographically overcomplete preparation basis of the six eigenstates of the 3 Pauli operators (6 ^ number of qubits total preparation states). Args: meas_qubits (list): The qubits being measured. meas_basis (tomography_basis or str): The qubit measurement basis. The default value is 'Pauli'. prep_qubits (list or None): The qubits being prepared. If None then meas_qubits will be used for process tomography experiments. prep_basis (tomography_basis or None): The optional qubit preparation basis. If no basis is specified state tomography will be performed instead of process tomography. A built in basis may be specified by 'SIC' or 'Pauli' (SIC basis recommended for > 2 qubits). Returns: dict: A dict of tomography configurations that can be parsed by `create_tomography_circuits` and `tomography_data` functions for implementing quantum tomography experiments. This output contains fields "qubits", "meas_basis", "circuits". It may also optionally contain a field "prep_basis" for process tomography experiments. ``` { 'qubits': qubits (list[ints]), 'meas_basis': meas_basis (tomography_basis), 'circuit_labels': (list[string]), 'circuits': (list[dict]) # prep and meas configurations # optionally for process tomography experiments: 'prep_basis': prep_basis (tomography_basis) } ``` Raises: QiskitError: if the Qubits argument is not a list. """ if not isinstance(meas_qubits, list): raise QiskitError('Qubits argument must be a list') num_of_qubits = len(meas_qubits) if prep_qubits is None: prep_qubits = meas_qubits if not isinstance(prep_qubits, list): raise QiskitError('prep_qubits argument must be a list') if len(prep_qubits) != len(meas_qubits): raise QiskitError('meas_qubits and prep_qubitsare different length') if isinstance(meas_basis, str): if meas_basis.lower() == 'pauli': meas_basis = PAULI_BASIS if isinstance(prep_basis, str): if prep_basis.lower() == 'pauli': prep_basis = PAULI_BASIS elif prep_basis.lower() == 'sic': prep_basis = SIC_BASIS circuits = [] circuit_labels = [] # add meas basis configs if prep_basis is None: # State Tomography for meas_product in product(meas_basis.keys(), repeat=num_of_qubits): meas = dict(zip(meas_qubits, meas_product)) circuits.append({'meas': meas}) # Make label label = '_meas_' for qubit, op in meas.items(): label += '%s(%d)' % (op[0], qubit) circuit_labels.append(label) return {'qubits': meas_qubits, 'circuits': circuits, 'circuit_labels': circuit_labels, 'meas_basis': meas_basis} # Process Tomography num_of_s = len(list(prep_basis.values())[0]) plst_single = [(b, s) for b in prep_basis.keys() for s in range(num_of_s)] for plst_product in product(plst_single, repeat=num_of_qubits): for meas_product in product(meas_basis.keys(), repeat=num_of_qubits): prep = dict(zip(prep_qubits, plst_product)) meas = dict(zip(meas_qubits, meas_product)) circuits.append({'prep': prep, 'meas': meas}) # Make label label = '_prep_' for qubit, op in prep.items(): label += '%s%d(%d)' % (op[0], op[1], qubit) label += '_meas_' for qubit, op in meas.items(): label += '%s(%d)' % (op[0], qubit) circuit_labels.append(label) return {'qubits': meas_qubits, 'circuits': circuits, 'circuit_labels': circuit_labels, 'prep_basis': prep_basis, 'meas_basis': meas_basis} def state_tomography_set(qubits, meas_basis='Pauli'): """ Generate a dictionary of state tomography experiment configurations. This returns a data structure that is used by other tomography functions to generate state and process tomography circuits, and extract tomography data from results after execution on a backend. Quantum State Tomography: Be default it will return a set for performing Quantum State Tomography where individual qubits are measured in the Pauli basis. A custom measurement basis may also be used by defining a user `tomography_basis` and passing this in for the `meas_basis` argument. Quantum Process Tomography: A quantum process tomography set is created by specifying a preparation basis along with a measurement basis. The preparation basis may be a user defined `tomography_basis`, or one of the two built in basis 'SIC' or 'Pauli'. - SIC: Is a minimal symmetric informationally complete preparation basis for 4 states for each qubit (4 ^ number of qubits total preparation states). These correspond to the |0> state and the 3 other vertices of a tetrahedron on the Bloch-sphere. - Pauli: Is a tomographically overcomplete preparation basis of the six eigenstates of the 3 Pauli operators (6 ^ number of qubits total preparation states). Args: qubits (list): The qubits being measured. meas_basis (tomography_basis or str): The qubit measurement basis. The default value is 'Pauli'. Returns: dict: A dict of tomography configurations that can be parsed by `create_tomography_circuits` and `tomography_data` functions for implementing quantum tomography experiments. This output contains fields "qubits", "meas_basis", "circuits". ``` { 'qubits': qubits (list[ints]), 'meas_basis': meas_basis (tomography_basis), 'circuit_labels': (list[string]), 'circuits': (list[dict]) # prep and meas configurations } ``` """ return tomography_set(qubits, meas_basis=meas_basis) def process_tomography_set(meas_qubits, meas_basis='Pauli', prep_qubits=None, prep_basis='SIC'): """ Generate a dictionary of process tomography experiment configurations. This returns a data structure that is used by other tomography functions to generate state and process tomography circuits, and extract tomography data from results after execution on a backend. A quantum process tomography set is created by specifying a preparation basis along with a measurement basis. The preparation basis may be a user defined `tomography_basis`, or one of the two built in basis 'SIC' or 'Pauli'. - SIC: Is a minimal symmetric informationally complete preparation basis for 4 states for each qubit (4 ^ number of qubits total preparation states). These correspond to the |0> state and the 3 other vertices of a tetrahedron on the Bloch-sphere. - Pauli: Is a tomographically overcomplete preparation basis of the six eigenstates of the 3 Pauli operators (6 ^ number of qubits total preparation states). Args: meas_qubits (list): The qubits being measured. meas_basis (tomography_basis or str): The qubit measurement basis. The default value is 'Pauli'. prep_qubits (list or None): The qubits being prepared. If None then meas_qubits will be used for process tomography experiments. prep_basis (tomography_basis or str): The qubit preparation basis. The default value is 'SIC'. Returns: dict: A dict of tomography configurations that can be parsed by `create_tomography_circuits` and `tomography_data` functions for implementing quantum tomography experiments. This output contains fields "qubits", "meas_basis", "prep_basus", circuits". ``` { 'qubits': qubits (list[ints]), 'meas_basis': meas_basis (tomography_basis), 'prep_basis': prep_basis (tomography_basis), 'circuit_labels': (list[string]), 'circuits': (list[dict]) # prep and meas configurations } ``` """ return tomography_set(meas_qubits, meas_basis=meas_basis, prep_qubits=prep_qubits, prep_basis=prep_basis) def tomography_circuit_names(tomo_set, name=''): """ Return a list of tomography circuit names. The returned list is the same as the one returned by `create_tomography_circuits` and can be used by a QuantumProgram to execute tomography circuits and extract measurement results. Args: tomo_set (tomography_set): a tomography set generated by `tomography_set`. name (str): the name of the base QuantumCircuit used by the tomography experiment. Returns: list: A list of circuit names. """ return [name + l for l in tomo_set['circuit_labels']] ############################################################################### # Tomography circuit generation ############################################################################### def create_tomography_circuits(circuit, qreg, creg, tomoset): """ Add tomography measurement circuits to a QuantumProgram. The quantum program must contain a circuit 'name', which is treated as a state preparation circuit for state tomography, or as teh circuit being measured for process tomography. This function then appends the circuit with a set of measurements specified by the input `tomography_set`, optionally it also prepends the circuit with state preparation circuits if they are specified in the `tomography_set`. For n-qubit tomography with a tomographically complete set of preparations and measurements this results in $4^n 3^n$ circuits being added to the quantum program. Args: circuit (QuantumCircuit): The circuit to be appended with tomography state preparation and/or measurements. qreg (QuantumRegister): the quantum register containing qubits to be measured. creg (ClassicalRegister): the classical register containing bits to store measurement outcomes. tomoset (tomography_set): the dict of tomography configurations. Returns: list: A list of quantum tomography circuits for the input circuit. Raises: QiskitError: if circuit is not a valid QuantumCircuit Example: For a tomography set specifying state tomography of qubit-0 prepared by a circuit 'circ' this would return: ``` ['circ_meas_X(0)', 'circ_meas_Y(0)', 'circ_meas_Z(0)'] ``` For process tomography of the same circuit with preparation in the SIC-POVM basis it would return: ``` [ 'circ_prep_S0(0)_meas_X(0)', 'circ_prep_S0(0)_meas_Y(0)', 'circ_prep_S0(0)_meas_Z(0)', 'circ_prep_S1(0)_meas_X(0)', 'circ_prep_S1(0)_meas_Y(0)', 'circ_prep_S1(0)_meas_Z(0)', 'circ_prep_S2(0)_meas_X(0)', 'circ_prep_S2(0)_meas_Y(0)', 'circ_prep_S2(0)_meas_Z(0)', 'circ_prep_S3(0)_meas_X(0)', 'circ_prep_S3(0)_meas_Y(0)', 'circ_prep_S3(0)_meas_Z(0)' ] ``` """ if not isinstance(circuit, QuantumCircuit): raise QiskitError('Input circuit must be a QuantumCircuit object') dics = tomoset['circuits'] labels = tomography_circuit_names(tomoset, circuit.name) tomography_circuits = [] for label, conf in zip(labels, dics): tmp = circuit # Add prep circuits if 'prep' in conf: prep = QuantumCircuit(qreg, creg, name='tmp_prep') for qubit, op in conf['prep'].items(): tomoset['prep_basis'].prep_gate(prep, qreg[qubit], op) prep.barrier(qreg[qubit]) tmp = prep + tmp # Add measurement circuits meas = QuantumCircuit(qreg, creg, name='tmp_meas') for qubit, op in conf['meas'].items(): meas.barrier(qreg[qubit]) tomoset['meas_basis'].meas_gate(meas, qreg[qubit], op) meas.measure(qreg[qubit], creg[qubit]) tmp = tmp + meas # Add label to the circuit tmp.name = label tomography_circuits.append(tmp) logger.info('>> created tomography circuits for "%s"', circuit.name) return tomography_circuits ############################################################################### # Get results data ############################################################################### def tomography_data(results, name, tomoset): """ Return a results dict for a state or process tomography experiment. Args: results (Result): Results from execution of a process tomography circuits on a backend. name (string): The name of the circuit being reconstructed. tomoset (tomography_set): the dict of tomography configurations. Returns: list: A list of dicts for the outcome of each process tomography measurement circuit. """ labels = tomography_circuit_names(tomoset, name) circuits = tomoset['circuits'] data = [] prep = None for j, _ in enumerate(labels): counts = marginal_counts(results.get_counts(labels[j]), tomoset['qubits']) shots = sum(counts.values()) meas = circuits[j]['meas'] prep = circuits[j].get('prep', None) meas_qubits = sorted(meas.keys()) if prep: prep_qubits = sorted(prep.keys()) circuit = {} for c in counts.keys(): circuit[c] = {} circuit[c]['meas'] = [(meas[meas_qubits[k]], int(c[-1 - k])) for k in range(len(meas_qubits))] if prep: circuit[c]['prep'] = [prep[prep_qubits[k]] for k in range(len(prep_qubits))] data.append({'counts': counts, 'shots': shots, 'circuit': circuit}) ret = {'data': data, 'meas_basis': tomoset['meas_basis']} if prep: ret['prep_basis'] = tomoset['prep_basis'] return ret def marginal_counts(counts, meas_qubits): """ Compute the marginal counts for a subset of measured qubits. Args: counts (dict): the counts returned from a backend ({str: int}). meas_qubits (list[int]): the qubits to return the marginal counts distribution for. Returns: dict: A counts dict for the meas_qubits.abs Example: if `counts = {'00': 10, '01': 5}` `marginal_counts(counts, [0])` returns `{'0': 15, '1': 0}`. `marginal_counts(counts, [0])` returns `{'0': 10, '1': 5}`. """ # pylint: disable=cell-var-from-loop # Extract total number of qubits from count keys num_of_qubits = len(list(counts.keys())[0]) # keys for measured qubits only qs = sorted(meas_qubits, reverse=True) meas_keys = count_keys(len(qs)) # get regex match strings for summing outcomes of other qubits rgx = [ reduce(lambda x, y: (key[qs.index(y)] if y in qs else '\\d') + x, range(num_of_qubits), '') for key in meas_keys ] # build the return list meas_counts = [] for m in rgx: c = 0 for key, val in counts.items(): if match(m, key): c += val meas_counts.append(c) # return as counts dict on measured qubits only return dict(zip(meas_keys, meas_counts)) def count_keys(n): """Generate outcome bitstrings for n-qubits. Args: n (int): the number of qubits. Returns: list: A list of bitstrings ordered as follows: Example: n=2 returns ['00', '01', '10', '11']. """ return [bin(j)[2:].zfill(n) for j in range(2**n)] ############################################################################### # Tomographic Reconstruction functions. ############################################################################### def fit_tomography_data(tomo_data, method='wizard', options=None): """ Reconstruct a density matrix or process-matrix from tomography data. If the input data is state_tomography_data the returned operator will be a density matrix. If the input data is process_tomography_data the returned operator will be a Choi-matrix in the column-vectorization convention. Args: tomo_data (dict): process tomography measurement data. method (str): the fitting method to use. Available methods: - 'wizard' (default) - 'leastsq' options (dict or None): additional options for fitting method. Returns: numpy.array: The fitted operator. Available methods: - 'wizard' (Default): The returned operator will be constrained to be positive-semidefinite. Options: - 'trace': the trace of the returned operator. The default value is 1. - 'beta': hedging parameter for computing frequencies from zero-count data. The default value is 0.50922. - 'epsilon: threshold for truncating small eigenvalues to zero. The default value is 0 - 'leastsq': Fitting without positive-semidefinite constraint. Options: - 'trace': Same as for 'wizard' method. - 'beta': Same as for 'wizard' method. Raises: Exception: if the `method` parameter is not valid. """ if isinstance(method, str) and method.lower() in ['wizard', 'leastsq']: # get options trace = __get_option('trace', options) beta = __get_option('beta', options) # fit state rho = __leastsq_fit(tomo_data, trace=trace, beta=beta) if method == 'wizard': # Use wizard method to constrain positivity epsilon = __get_option('epsilon', options) rho = __wizard(rho, epsilon=epsilon) return rho else: raise Exception('Invalid reconstruction method "%s"' % method) def __get_option(opt, options): """ Return an optional value or None if not found. """ if options is not None: if opt in options: return options[opt] return None ############################################################################### # Fit Method: Linear Inversion ############################################################################### def __leastsq_fit(tomo_data, weights=None, trace=None, beta=None): """ Reconstruct a state from unconstrained least-squares fitting. Args: tomo_data (list[dict]): state or process tomography data. weights (list or array or None): weights to use for least squares fitting. The default is standard deviation from a binomial distribution. trace (float or None): trace of returned operator. The default is 1. beta (float or None): hedge parameter (>=0) for computing frequencies from zero-count data. The default value is 0.50922. Returns: numpy.array: A numpy array of the reconstructed operator. """ if trace is None: trace = 1. # default to unit trace data = tomo_data['data'] keys = data[0]['circuit'].keys() # Get counts and shots counts = [] shots = [] ops = [] for dat in data: for key in keys: counts.append(dat['counts'][key]) shots.append(dat['shots']) projectors = dat['circuit'][key] op = __projector(projectors['meas'], tomo_data['meas_basis']) if 'prep' in projectors: op_prep = __projector(projectors['prep'], tomo_data['prep_basis']) op = np.kron(op_prep.conj(), op) ops.append(op) # Convert counts to frequencies counts = np.array(counts) shots = np.array(shots) freqs = counts / shots # Use hedged frequencies to calculate least squares fitting weights if weights is None: if beta is None: beta = 0.50922 K = len(keys) freqs_hedged = (counts + beta) / (shots + K * beta) weights = np.sqrt(shots / (freqs_hedged * (1 - freqs_hedged))) return __tomo_linear_inv(freqs, ops, weights, trace=trace) def __projector(op_list, basis): """Returns a projectors. """ ret = 1 # list is from qubit 0 to 1 for op in op_list: label, eigenstate = op ret = np.kron(basis[label][eigenstate], ret) return ret def __tomo_linear_inv(freqs, ops, weights=None, trace=None): """ Reconstruct a matrix through linear inversion. Args: freqs (list[float]): list of observed frequences. ops (list[np.array]): list of corresponding projectors. weights (list[float] or array_like): weights to be used for weighted fitting. trace (float or None): trace of returned operator. Returns: numpy.array: A numpy array of the reconstructed operator. """ # get weights matrix if weights is not None: W = np.array(weights) if W.ndim == 1: W = np.diag(W) # Get basis S matrix S = np.array([vectorize(m).conj() for m in ops]).reshape(len(ops), ops[0].size) if weights is not None: S = np.dot(W, S) # W.S # get frequencies vec v = np.array(freqs) # |f> if weights is not None: v = np.dot(W, freqs) # W.|f> Sdg = S.T.conj() # S^*.W^* inv = np.linalg.pinv(np.dot(Sdg, S)) # (S^*.W^*.W.S)^-1 # linear inversion of freqs ret = devectorize(np.dot(inv, np.dot(Sdg, v))) # renormalize to input trace value if trace is not None: ret = trace * ret / np.trace(ret) return ret ############################################################################### # Fit Method: Wizard ############################################################################### def __wizard(rho, epsilon=None): """ Returns the nearest positive semidefinite operator to an operator. This method is based on reference [1]. It constrains positivity by setting negative eigenvalues to zero and rescaling the positive eigenvalues. Args: rho (array_like): the input operator. epsilon(float or None): threshold (>=0) for truncating small eigenvalues values to zero. Returns: numpy.array: A positive semidefinite numpy array. """ if epsilon is None: epsilon = 0. # default value dim = len(rho) rho_wizard = np.zeros([dim, dim]) v, w = np.linalg.eigh(rho) # v eigenvecrors v[0] < v[1] <... for j in range(dim): if v[j] < epsilon: tmp = v[j] v[j] = 0. # redistribute loop x = 0. for k in range(j + 1, dim): x += tmp / (dim - (j + 1)) v[k] = v[k] + tmp / (dim - (j + 1)) for j in range(dim): rho_wizard = rho_wizard + v[j] * outer(w[:, j]) return rho_wizard ############################################################### # Wigner function tomography ############################################################### def build_wigner_circuits(circuit, phis, thetas, qubits, qreg, creg): """Create the circuits to rotate to points in phase space Args: circuit (QuantumCircuit): The circuit to be appended with tomography state preparation and/or measurements. phis (np.matrix[[complex]]): phis thetas (np.matrix[[complex]]): thetas qubits (list[int]): a list of the qubit indexes of qreg to be measured. qreg (QuantumRegister): the quantum register containing qubits to be measured. creg (ClassicalRegister): the classical register containing bits to store measurement outcomes. Returns: list: A list of names of the added wigner function circuits. Raises: QiskitError: if circuit is not a valid QuantumCircuit. """ if not isinstance(circuit, QuantumCircuit): raise QiskitError('Input circuit must be a QuantumCircuit object') tomography_circuits = [] points = len(phis[0]) for point in range(points): label = '_wigner_phase_point' label += str(point) tmp_circ = QuantumCircuit(qreg, creg, name=label) for qubit, _ in enumerate(qubits): tmp_circ.u3(thetas[qubit][point], 0, phis[qubit][point], qreg[qubits[qubit]]) tmp_circ.measure(qreg[qubits[qubit]], creg[qubits[qubit]]) # Add to original circuit tmp_circ = circuit + tmp_circ tmp_circ.name = circuit.name + label tomography_circuits.append(tmp_circ) logger.info('>> Created Wigner function circuits for "%s"', circuit.name) return tomography_circuits def wigner_data(q_result, meas_qubits, labels, shots=None): """Get the value of the Wigner function from measurement results. Args: q_result (Result): Results from execution of a state tomography circuits on a backend. meas_qubits (list[int]): a list of the qubit indexes measured. labels (list[str]): a list of names of the circuits shots (int): number of shots Returns: list: The values of the Wigner function at measured points in phase space """ num = len(meas_qubits) dim = 2**num p = [0.5 + 0.5 * np.sqrt(3), 0.5 - 0.5 * np.sqrt(3)] parity = 1 for i in range(num): parity = np.kron(parity, p) w = [0] * len(labels) wpt = 0 counts = [marginal_counts(q_result.get_counts(circ), meas_qubits) for circ in labels] for entry in counts: x = [0] * dim for i in range(dim): if bin(i)[2:].zfill(num) in entry: x[i] = float(entry[bin(i)[2:].zfill(num)]) if shots is None: shots = np.sum(x) for i in range(dim): w[wpt] = w[wpt] + (x[i] / shots) * parity[i] wpt += 1 return w
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Example use of the initialize gate to prepare arbitrary pure states. """ import math from qiskit import QuantumCircuit, execute, BasicAer ############################################################### # Make a quantum circuit for state initialization. ############################################################### circuit = QuantumCircuit(4, 4, name="initializer_circ") desired_vector = [ 1 / math.sqrt(4) * complex(0, 1), 1 / math.sqrt(8) * complex(1, 0), 0, 0, 0, 0, 0, 0, 1 / math.sqrt(8) * complex(1, 0), 1 / math.sqrt(8) * complex(0, 1), 0, 0, 0, 0, 1 / math.sqrt(4) * complex(1, 0), 1 / math.sqrt(8) * complex(1, 0), ] circuit.initialize(desired_vector, [0, 1, 2, 3]) circuit.measure([0, 1, 2, 3], [0, 1, 2, 3]) print(circuit) ############################################################### # Execute on a simulator backend. ############################################################### shots = 10000 # Desired vector print("Desired probabilities: ") print([format(abs(x * x), ".3f") for x in desired_vector]) # Initialize on local simulator sim_backend = BasicAer.get_backend("qasm_simulator") job = execute(circuit, sim_backend, shots=shots) result = job.result() counts = result.get_counts(circuit) qubit_strings = [format(i, "04b") for i in range(2**4)] print("Probabilities from simulator: ") print([format(counts.get(s, 0) / shots, ".3f") for s in qubit_strings])
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Controlled unitary gate.""" from __future__ import annotations import copy from typing import Optional, Union from qiskit.circuit.exceptions import CircuitError # pylint: disable=cyclic-import from .quantumcircuit import QuantumCircuit from .gate import Gate from .quantumregister import QuantumRegister from ._utils import _ctrl_state_to_int class ControlledGate(Gate): """Controlled unitary gate.""" def __init__( self, name: str, num_qubits: int, params: list, label: Optional[str] = None, num_ctrl_qubits: Optional[int] = 1, definition: Optional["QuantumCircuit"] = None, ctrl_state: Optional[Union[int, str]] = None, base_gate: Optional[Gate] = None, ): """Create a new ControlledGate. In the new gate the first ``num_ctrl_qubits`` of the gate are the controls. Args: name: The name of the gate. num_qubits: The number of qubits the gate acts on. params: A list of parameters for the gate. label: An optional label for the gate. num_ctrl_qubits: Number of control qubits. definition: A list of gate rules for implementing this gate. The elements of the list are tuples of (:meth:`~qiskit.circuit.Gate`, [qubit_list], [clbit_list]). ctrl_state: The control state in decimal or as a bitstring (e.g. '111'). If specified as a bitstring the length must equal num_ctrl_qubits, MSB on left. If None, use 2**num_ctrl_qubits-1. base_gate: Gate object to be controlled. Raises: CircuitError: If ``num_ctrl_qubits`` >= ``num_qubits``. CircuitError: ctrl_state < 0 or ctrl_state > 2**num_ctrl_qubits. Examples: Create a controlled standard gate and apply it to a circuit. .. plot:: :include-source: from qiskit import QuantumCircuit, QuantumRegister from qiskit.circuit.library.standard_gates import HGate qr = QuantumRegister(3) qc = QuantumCircuit(qr) c3h_gate = HGate().control(2) qc.append(c3h_gate, qr) qc.draw('mpl') Create a controlled custom gate and apply it to a circuit. .. plot:: :include-source: from qiskit import QuantumCircuit, QuantumRegister from qiskit.circuit.library.standard_gates import HGate qc1 = QuantumCircuit(2) qc1.x(0) qc1.h(1) custom = qc1.to_gate().control(2) qc2 = QuantumCircuit(4) qc2.append(custom, [0, 3, 1, 2]) qc2.draw('mpl') """ self.base_gate = None if base_gate is None else base_gate.copy() super().__init__(name, num_qubits, params, label=label) self._num_ctrl_qubits = 1 self.num_ctrl_qubits = num_ctrl_qubits self.definition = copy.deepcopy(definition) self._ctrl_state = None self.ctrl_state = ctrl_state self._name = name @property def definition(self) -> QuantumCircuit: """Return definition in terms of other basic gates. If the gate has open controls, as determined from `self.ctrl_state`, the returned definition is conjugated with X without changing the internal `_definition`. """ if self._open_ctrl: closed_gate = self.copy() closed_gate.ctrl_state = None bit_ctrl_state = bin(self.ctrl_state)[2:].zfill(self.num_ctrl_qubits) qreg = QuantumRegister(self.num_qubits, "q") qc_open_ctrl = QuantumCircuit(qreg) for qind, val in enumerate(bit_ctrl_state[::-1]): if val == "0": qc_open_ctrl.x(qind) qc_open_ctrl.append(closed_gate, qargs=qreg[:]) for qind, val in enumerate(bit_ctrl_state[::-1]): if val == "0": qc_open_ctrl.x(qind) return qc_open_ctrl else: return super().definition @definition.setter def definition(self, excited_def: "QuantumCircuit"): """Set controlled gate definition with closed controls. Args: excited_def: The circuit with all closed controls. """ self._definition = excited_def @property def name(self) -> str: """Get name of gate. If the gate has open controls the gate name will become: <original_name_o<ctrl_state> where <original_name> is the gate name for the default case of closed control qubits and <ctrl_state> is the integer value of the control state for the gate. """ if self._open_ctrl: return f"{self._name}_o{self.ctrl_state}" else: return self._name @name.setter def name(self, name_str): """Set the name of the gate. Note the reported name may differ from the set name if the gate has open controls. """ self._name = name_str @property def num_ctrl_qubits(self): """Get number of control qubits. Returns: int: The number of control qubits for the gate. """ return self._num_ctrl_qubits @num_ctrl_qubits.setter def num_ctrl_qubits(self, num_ctrl_qubits): """Set the number of control qubits. Args: num_ctrl_qubits (int): The number of control qubits. Raises: CircuitError: ``num_ctrl_qubits`` is not an integer in ``[1, num_qubits]``. """ if num_ctrl_qubits != int(num_ctrl_qubits): raise CircuitError("The number of control qubits must be an integer.") num_ctrl_qubits = int(num_ctrl_qubits) # This is a range rather than an equality limit because some controlled gates represent a # controlled version of the base gate whose definition also uses auxiliary qubits. upper_limit = self.num_qubits - getattr(self.base_gate, "num_qubits", 0) if num_ctrl_qubits < 1 or num_ctrl_qubits > upper_limit: limit = "num_qubits" if self.base_gate is None else "num_qubits - base_gate.num_qubits" raise CircuitError(f"The number of control qubits must be in `[1, {limit}]`.") self._num_ctrl_qubits = num_ctrl_qubits @property def ctrl_state(self) -> int: """Return the control state of the gate as a decimal integer.""" return self._ctrl_state @ctrl_state.setter def ctrl_state(self, ctrl_state: Union[int, str, None]): """Set the control state of this gate. Args: ctrl_state: The control state of the gate. Raises: CircuitError: ctrl_state is invalid. """ self._ctrl_state = _ctrl_state_to_int(ctrl_state, self.num_ctrl_qubits) @property def params(self): """Get parameters from base_gate. Returns: list: List of gate parameters. Raises: CircuitError: Controlled gate does not define a base gate """ if self.base_gate: return self.base_gate.params else: raise CircuitError("Controlled gate does not define base gate for extracting params") @params.setter def params(self, parameters): """Set base gate parameters. Args: parameters (list): The list of parameters to set. Raises: CircuitError: If controlled gate does not define a base gate. """ if self.base_gate: self.base_gate.params = parameters else: raise CircuitError("Controlled gate does not define base gate for extracting params") def __deepcopy__(self, _memo=None): cpy = copy.copy(self) cpy.base_gate = self.base_gate.copy() if self._definition: cpy._definition = copy.deepcopy(self._definition, _memo) return cpy @property def _open_ctrl(self) -> bool: """Return whether gate has any open controls""" return self.ctrl_state < 2**self.num_ctrl_qubits - 1 def __eq__(self, other) -> bool: return ( isinstance(other, ControlledGate) and self.num_ctrl_qubits == other.num_ctrl_qubits and self.ctrl_state == other.ctrl_state and self.base_gate == other.base_gate and self.num_qubits == other.num_qubits and self.num_clbits == other.num_clbits and self.definition == other.definition ) def inverse(self) -> "ControlledGate": """Invert this gate by calling inverse on the base gate.""" return self.base_gate.inverse().control(self.num_ctrl_qubits, ctrl_state=self.ctrl_state)
https://github.com/hkhetawat/QArithmetic
hkhetawat
# Import the Qiskit SDK from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute, Aer from QArithmetic import cadd # Input N N = 4 a = QuantumRegister(N) b = QuantumRegister(N+1) c = QuantumRegister(1) ca = ClassicalRegister(N) cb = ClassicalRegister(N+1) cc = ClassicalRegister(1) qc = QuantumCircuit(a, b, c, ca, cb, cc) # Input Superposition # a = 01110 qc.x(a[1]) qc.x(a[2]) qc.x(a[3]) # b = 01011 qc.x(b[0]) qc.x(b[1]) qc.x(b[3]) # c = 0 # qc.x(c) cadd(qc, c, a, b, N) qc.measure(a, ca) qc.measure(b, cb) qc.measure(c, cc) backend_sim = Aer.get_backend('qasm_simulator') job_sim = execute(qc, backend_sim) result_sim = job_sim.result() print(result_sim.get_counts(qc))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit qr = QuantumRegister(3, 'q') anc = QuantumRegister(1, 'ancilla') cr = ClassicalRegister(3, 'c') qc = QuantumCircuit(qr, anc, cr) qc.x(anc[0]) qc.h(anc[0]) qc.h(qr[0:3]) qc.cx(qr[0:3], anc[0]) qc.h(qr[0:3]) qc.barrier(qr) qc.measure(qr, cr) qc.draw('mpl')
https://github.com/wyqian1027/Qiskit-Fall-Fest-USC-2022
wyqian1027
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/abhishekchak52/quantum-computing-course
abhishekchak52
%matplotlib inline import hashlib import numpy as np import matplotlib.pyplot as plt # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute from qiskit.circuit import Parameter from qiskit.providers.aer import QasmSimulator, StatevectorSimulator from qiskit.visualization import * from qiskit.quantum_info import * from qiskit.circuit.library import HGate success_msg = 'Your answer is correct and has been saved. Please continue to the next section.' fail_msg = 'Your answer is not correct. Please try again.' qc1 = QuantumCircuit(1) # Insert gates below to create the state qc1.rx(-np.pi/2,0) # Insert the necessary gates to change to the Hadamard basis below qc1.h(0) # Do not change below this line qc1.measure_all() qc1.draw('mpl') basis_gates = ['id', 'x', 'y', 'z', 's', 't', 'sdg', 'tdg', 'h', 'p', 'sx' ,'r', 'rx', 'ry', 'rz', 'u', 'u1', 'u2', 'u3', 'barrier', 'measure'] assert list(qc1.count_ops()) != [], "Circuit cannot be empty" assert set(qc1.count_ops().keys()).difference(basis_gates) == set(), "Only basic gates are allowed" job = execute(qc1, backend=QasmSimulator(), shots=1024, seed_simulator=0) counts = job.result().get_counts() sv_check = Statevector.from_instruction(qc1.remove_final_measurements(inplace=False)).evolve(HGate()).equiv(Statevector.from_label('r')) op_check_dict = qc1.count_ops() _ = op_check_dict.pop('measure', None) _ = op_check_dict.pop('barrier', None) op_check = len(op_check_dict) > 1 print(success_msg if (sv_check and op_check) else fail_msg) answer1 = hashlib.sha256((str(counts)+str(sv_check and op_check)).encode()).hexdigest() plot_histogram(counts) from IPython.display import YouTubeVideo, display polariser_exp = YouTubeVideo('6N3bJ7Uxpp0', end=93, height=405, width=720, modestbranding=1) display(polariser_exp) beta = Parameter('β') qc2 = QuantumCircuit(1) # Enter your code below this line qc2.ry(-2*beta, 0) qc2.measure_all() # Do not change below this line qc2.draw(output='mpl') def theoretical_prob(beta): ''' Definition of theoretical transmission probability. The expression for transmitted probability between two polarisers with a relative angle `beta` given in radians ''' # Fill in the correct expression for this probability and assign it to the variable tp below # You may use numpy function like so: np.func_name() tp = np.cos(-beta)**2 return tp beta_range = np.linspace(0, np.pi, 50) num_shots = 1024 basis_gates = ['id', 'x', 'y', 'z', 's', 't', 'sdg', 'tdg', 'h', 'p', 'sx' ,'r', 'rx', 'ry', 'rz', 'u', 'u1', 'u2', 'u3', 'barrier', 'measure'] assert set(qc1.count_ops().keys()).difference(basis_gates) == set(), "Only basic gates are allowed" job = execute(qc2, backend=QasmSimulator(), shots = num_shots, parameter_binds=[{beta: beta_val} for beta_val in beta_range], seed_simulator=0) # For consistent results counts = job.result().get_counts() # Calculating the probability of photons passing through probabilities = list(map(lambda c: c.get('0', 0)/num_shots, counts)) pol_checks = [Statevector.from_instruction(qc2.bind_parameters({beta: beta_val}) .remove_final_measurements(inplace=False)) .equiv(Statevector([np.cos(-beta_val), np.sin(-beta_val)])) for beta_val in beta_range] print(success_msg if all(pol_checks) else fail_msg) answer2 = hashlib.sha256((str(probabilities)+str(pol_checks)).encode()).hexdigest() fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(111) ax.plot(beta_range, probabilities, 'o', label='Experimental') ax.plot(beta_range, theoretical_prob(beta_range), '-', label='Theoretical') ax.set_xticks([i * np.pi / 4 for i in range(5)]) ax.set_xticklabels(['β', r'$\frac{\pi}{4}$', r'$\frac{\pi}{2}$', r'$\frac{3\pi}{4}$', r'$\pi$'], fontsize=14) ax.set_xlabel('β', fontsize=14) ax.set_ylabel('Probability of Transmission', fontsize=14) ax.legend(fontsize=14)
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test pulse builder with backendV2 context utilities.""" import numpy as np from qiskit import circuit, pulse from qiskit.pulse import builder, macros from qiskit.pulse.instructions import directives from qiskit.pulse.transforms import target_qobj_transform from qiskit.providers.fake_provider import FakeMumbaiV2 from qiskit.pulse import instructions from qiskit.test import QiskitTestCase class TestBuilderV2(QiskitTestCase): """Test the pulse builder context with backendV2.""" def setUp(self): super().setUp() self.backend = FakeMumbaiV2() def assertScheduleEqual(self, program, target): """Assert an error when two pulse programs are not equal. .. note:: Two programs are converted into standard execution format then compared. """ self.assertEqual(target_qobj_transform(program), target_qobj_transform(target)) class TestContextsV2(TestBuilderV2): """Test builder contexts.""" def test_transpiler_settings(self): """Test the transpiler settings context. Tests that two cx gates are optimized away with higher optimization level. """ twice_cx_qc = circuit.QuantumCircuit(2) twice_cx_qc.cx(0, 1) twice_cx_qc.cx(0, 1) with pulse.build(self.backend) as schedule: with pulse.transpiler_settings(optimization_level=0): builder.call(twice_cx_qc) self.assertNotEqual(len(schedule.instructions), 0) with pulse.build(self.backend) as schedule: with pulse.transpiler_settings(optimization_level=3): builder.call(twice_cx_qc) self.assertEqual(len(schedule.instructions), 0) def test_scheduler_settings(self): """Test the circuit scheduler settings context.""" inst_map = pulse.InstructionScheduleMap() d0 = pulse.DriveChannel(0) test_x_sched = pulse.Schedule() test_x_sched += instructions.Delay(10, d0) inst_map.add("x", (0,), test_x_sched) ref_sched = pulse.Schedule() ref_sched += pulse.instructions.Call(test_x_sched) x_qc = circuit.QuantumCircuit(2) x_qc.x(0) with pulse.build(backend=self.backend) as schedule: with pulse.transpiler_settings(basis_gates=["x"]): with pulse.circuit_scheduler_settings(inst_map=inst_map): builder.call(x_qc) self.assertScheduleEqual(schedule, ref_sched) def test_phase_compensated_frequency_offset(self): """Test that the phase offset context properly compensates for phase accumulation with backendV2.""" d0 = pulse.DriveChannel(0) with pulse.build(self.backend) as schedule: with pulse.frequency_offset(1e9, d0, compensate_phase=True): pulse.delay(10, d0) reference = pulse.Schedule() reference += instructions.ShiftFrequency(1e9, d0) reference += instructions.Delay(10, d0) reference += instructions.ShiftPhase( -2 * np.pi * ((1e9 * 10 * self.backend.target.dt) % 1), d0 ) reference += instructions.ShiftFrequency(-1e9, d0) self.assertScheduleEqual(schedule, reference) class TestChannelsV2(TestBuilderV2): """Test builder channels.""" def test_drive_channel(self): """Text context builder drive channel.""" with pulse.build(self.backend): self.assertEqual(pulse.drive_channel(0), pulse.DriveChannel(0)) def test_measure_channel(self): """Text context builder measure channel.""" with pulse.build(self.backend): self.assertEqual(pulse.measure_channel(0), pulse.MeasureChannel(0)) def test_acquire_channel(self): """Text context builder acquire channel.""" with pulse.build(self.backend): self.assertEqual(pulse.acquire_channel(0), pulse.AcquireChannel(0)) def test_control_channel(self): """Text context builder control channel.""" with pulse.build(self.backend): self.assertEqual(pulse.control_channels(0, 1)[0], pulse.ControlChannel(0)) class TestDirectivesV2(TestBuilderV2): """Test builder directives.""" def test_barrier_on_qubits(self): """Test barrier directive on qubits with backendV2. A part of qubits map of Mumbai 0 -- 1 -- 4 -- | | 2 """ with pulse.build(self.backend) as schedule: pulse.barrier(0, 1) reference = pulse.ScheduleBlock() reference += directives.RelativeBarrier( pulse.DriveChannel(0), pulse.DriveChannel(1), pulse.MeasureChannel(0), pulse.MeasureChannel(1), pulse.ControlChannel(0), pulse.ControlChannel(1), pulse.ControlChannel(2), pulse.ControlChannel(3), pulse.ControlChannel(4), pulse.ControlChannel(8), pulse.AcquireChannel(0), pulse.AcquireChannel(1), ) self.assertEqual(schedule, reference) class TestUtilitiesV2(TestBuilderV2): """Test builder utilities.""" def test_active_backend(self): """Test getting active builder backend.""" with pulse.build(self.backend): self.assertEqual(pulse.active_backend(), self.backend) def test_qubit_channels(self): """Test getting the qubit channels of the active builder's backend.""" with pulse.build(self.backend): qubit_channels = pulse.qubit_channels(0) self.assertEqual( qubit_channels, { pulse.DriveChannel(0), pulse.MeasureChannel(0), pulse.AcquireChannel(0), pulse.ControlChannel(0), pulse.ControlChannel(1), }, ) def test_active_transpiler_settings(self): """Test setting settings of active builder's transpiler.""" with pulse.build(self.backend): self.assertFalse(pulse.active_transpiler_settings()) with pulse.transpiler_settings(test_setting=1): self.assertEqual(pulse.active_transpiler_settings()["test_setting"], 1) def test_active_circuit_scheduler_settings(self): """Test setting settings of active builder's circuit scheduler.""" with pulse.build(self.backend): self.assertFalse(pulse.active_circuit_scheduler_settings()) with pulse.circuit_scheduler_settings(test_setting=1): self.assertEqual(pulse.active_circuit_scheduler_settings()["test_setting"], 1) def test_num_qubits(self): """Test builder utility to get number of qubits with backendV2.""" with pulse.build(self.backend): self.assertEqual(pulse.num_qubits(), 27) def test_samples_to_seconds(self): """Test samples to time with backendV2""" target = self.backend.target target.dt = 0.1 with pulse.build(self.backend): time = pulse.samples_to_seconds(100) self.assertTrue(isinstance(time, float)) self.assertEqual(pulse.samples_to_seconds(100), 10) def test_samples_to_seconds_array(self): """Test samples to time (array format) with backendV2.""" target = self.backend.target target.dt = 0.1 with pulse.build(self.backend): samples = np.array([100, 200, 300]) times = pulse.samples_to_seconds(samples) self.assertTrue(np.issubdtype(times.dtype, np.floating)) np.testing.assert_allclose(times, np.array([10, 20, 30])) def test_seconds_to_samples(self): """Test time to samples with backendV2""" target = self.backend.target target.dt = 0.1 with pulse.build(self.backend): samples = pulse.seconds_to_samples(10) self.assertTrue(isinstance(samples, int)) self.assertEqual(pulse.seconds_to_samples(10), 100) def test_seconds_to_samples_array(self): """Test time to samples (array format) with backendV2.""" target = self.backend.target target.dt = 0.1 with pulse.build(self.backend): times = np.array([10, 20, 30]) samples = pulse.seconds_to_samples(times) self.assertTrue(np.issubdtype(samples.dtype, np.integer)) np.testing.assert_allclose(pulse.seconds_to_samples(times), np.array([100, 200, 300])) class TestMacrosV2(TestBuilderV2): """Test builder macros with backendV2.""" def test_macro(self): """Test builder macro decorator.""" @pulse.macro def nested(a): pulse.play(pulse.Gaussian(100, a, 20), pulse.drive_channel(0)) return a * 2 @pulse.macro def test(): pulse.play(pulse.Constant(100, 1.0), pulse.drive_channel(0)) output = nested(0.5) return output with pulse.build(self.backend) as schedule: output = test() self.assertEqual(output, 0.5 * 2) reference = pulse.Schedule() reference += pulse.Play(pulse.Constant(100, 1.0), pulse.DriveChannel(0)) reference += pulse.Play(pulse.Gaussian(100, 0.5, 20), pulse.DriveChannel(0)) self.assertScheduleEqual(schedule, reference) def test_measure(self): """Test utility function - measure with backendV2.""" with pulse.build(self.backend) as schedule: reg = pulse.measure(0) self.assertEqual(reg, pulse.MemorySlot(0)) reference = macros.measure(qubits=[0], backend=self.backend, meas_map=self.backend.meas_map) self.assertScheduleEqual(schedule, reference) def test_measure_multi_qubits(self): """Test utility function - measure with multi qubits with backendV2.""" with pulse.build(self.backend) as schedule: regs = pulse.measure([0, 1]) self.assertListEqual(regs, [pulse.MemorySlot(0), pulse.MemorySlot(1)]) reference = macros.measure( qubits=[0, 1], backend=self.backend, meas_map=self.backend.meas_map ) self.assertScheduleEqual(schedule, reference) def test_measure_all(self): """Test utility function - measure with backendV2..""" with pulse.build(self.backend) as schedule: regs = pulse.measure_all() self.assertEqual(regs, [pulse.MemorySlot(i) for i in range(self.backend.num_qubits)]) reference = macros.measure_all(self.backend) self.assertScheduleEqual(schedule, reference) def test_delay_qubit(self): """Test delaying on a qubit macro.""" with pulse.build(self.backend) as schedule: pulse.delay_qubits(10, 0) d0 = pulse.DriveChannel(0) m0 = pulse.MeasureChannel(0) a0 = pulse.AcquireChannel(0) u0 = pulse.ControlChannel(0) u1 = pulse.ControlChannel(1) reference = pulse.Schedule() reference += instructions.Delay(10, d0) reference += instructions.Delay(10, m0) reference += instructions.Delay(10, a0) reference += instructions.Delay(10, u0) reference += instructions.Delay(10, u1) self.assertScheduleEqual(schedule, reference) def test_delay_qubits(self): """Test delaying on multiple qubits with backendV2 to make sure we don't insert delays twice.""" with pulse.build(self.backend) as schedule: pulse.delay_qubits(10, 0, 1) d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) m0 = pulse.MeasureChannel(0) m1 = pulse.MeasureChannel(1) a0 = pulse.AcquireChannel(0) a1 = pulse.AcquireChannel(1) u0 = pulse.ControlChannel(0) u1 = pulse.ControlChannel(1) u2 = pulse.ControlChannel(2) u3 = pulse.ControlChannel(3) u4 = pulse.ControlChannel(4) u8 = pulse.ControlChannel(8) reference = pulse.Schedule() reference += instructions.Delay(10, d0) reference += instructions.Delay(10, d1) reference += instructions.Delay(10, m0) reference += instructions.Delay(10, m1) reference += instructions.Delay(10, a0) reference += instructions.Delay(10, a1) reference += instructions.Delay(10, u0) reference += instructions.Delay(10, u1) reference += instructions.Delay(10, u2) reference += instructions.Delay(10, u3) reference += instructions.Delay(10, u4) reference += instructions.Delay(10, u8) self.assertScheduleEqual(schedule, reference)
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * X = Matrix([[0,1],[1,0]]); Y = Matrix([[0,-1j],[1j,0]]); Z = Matrix([[1,0],[0,-1]]); I = Matrix([[1,0],[0,1]]) xa,ya,za,xb,yb,zb = symbols('x_a y_a z_a x_b y_b z_b') xx,xy,xz,yx,yy,yz,zx,zy,zz = symbols('xx xy xz yx yy yz zx zy zz') rho_ab = (1/4)*(tp(I,I) + xa*tp(X,I) + ya*tp(Y,I) + za*tp(Z,I) + xb*tp(I,X) + yb*tp(I,Y) + zb*tp(I,Z)) rho_ab += (1/4)*(xx*tp(X,X) + xy*tp(X,Y) + xz*tp(X,Z) + yx*tp(Y,X) + yy*tp(Y,Y) + yz*tp(Y,Z)) rho_ab += (1/4)*(zx*tp(Z,X) + xy*tp(Z,Y) + zz*tp(Z,Z)) rho_ab trace(rho_ab) def ptraceA(da, db, rho): rhoB = zeros(db,db) for j in range(0, db): for k in range(0, db): for l in range(0, da): rhoB[j,k] += rho[l*db+j,l*db+k] return rhoB def ptraceB(da, db, rho): rhoA = zeros(da,da) for j in range(0, da): for k in range(0, da): for l in range(0, db): rhoA[j,k] += rho[j*db+l,k*db+l] return rhoA rho_a = ptraceB(2, 2, rho_ab); rho_a rho_b = ptraceA(2, 2, rho_ab); rho_b # alguns resultados prontos que usare de init.ipynb cb(2,0), cb(2,1), id(2), pauli(1), proj(cb(2,0)), tp(cb(2,0),cb(2,0)) CX_ab = tp(proj(cb(2,0)),id(2)) + tp(proj(cb(2,1)),pauli(1)); CX_ab CX_ba = tp(id(2),proj(cb(2,0))) + tp(pauli(1),proj(cb(2,1))); CX_ba SWAP = CX_ab*CX_ba*CX_ab; SWAP SWAP = CX_ba*CX_ab*CX_ba; SWAP # aplica a troca ao estado de 2 qubits rho_ab_swap = SWAP*rho_ab*SWAP # pois a SWAP é hermitiana # verificação que a troca ocorreu rho_a_swap = ptraceB(2, 2, rho_ab_swap); rho_a_swap rho_b_swap = ptraceA(2, 2, rho_ab_swap); rho_b_swap def pTraceL_num(dl, dr, rhoLR): # Returns the left partial trace over the 'left' subsystem of rhoLR rhoR = np.zeros((dr, dr), dtype=complex) for j in range(0, dr): for k in range(j, dr): for l in range(0, dl): rhoR[j,k] += rhoLR[l*dr+j,l*dr+k] if j != k: rhoR[k,j] = np.conj(rhoR[j,k]) return rhoR def pTraceR_num(dl, dr, rhoLR): # Returns the right partial trace over the 'right' subsystem of rhoLR rhoL = np.zeros((dl, dl), dtype=complex) for j in range(0, dl): for k in range(j, dl): for l in range(0, dr): rhoL[j,k] += rhoLR[j*dr+l,k*dr+l] if j != k: rhoL[k,j] = np.conj(rhoL[j,k]) return rhoL qr = QuantumRegister(2); qc = QuantumCircuit(qr) qc.h(qr[1]); qc.s(qr[1]); qc.draw() from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter nshots = 8192 qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) # executa no simulador qstf = StateTomographyFitter(job.result(), qstc) # ajusta os dados rhoBA = qstf.fit(method='lstsq'); rhoBA # extrai o operador densidade rhoA = pTraceL_num(2, 2, rhoBA); rhoA rhoB = pTraceR_num(2, 2, rhoBA); rhoB qc.cx(qr[0],qr[1]); qc.cx(qr[0],qr[1]); qc.draw() # data contém todas as portas lógicas do cicuito quântico em uma lista (ou dicionário) data = qc.data; data # imprime uma componente de qc.data print( data[3] ) # deleta uma componente de data data.pop(3) data.pop(4) data.pop(3) # agora o circuit está como queremos qc.draw() qc.cx(qr[1],qr[0]); qc.draw() data = qc.data; data.pop(3) qc.cx(qr[0],qr[1]); qc.draw() qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) # executa no simulador qstf = StateTomographyFitter(job.result(), qstc) # ajusta os dados rhoBA = qstf.fit(method='lstsq'); # extrai o operador densidade rhoA = pTraceL_num(2, 2, rhoBA); rhoA rhoB = pTraceR_num(2, 2, rhoBA); rhoB qr = QuantumRegister(2); qc = QuantumCircuit(qr) qc.h(qr[1]); qc.s(qr[1]); qc.barrier(); qc.draw() qiskit.IBMQ.load_account(); provider = IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibmq_belem') from qiskit.tools.monitor import job_monitor qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) qstf = StateTomographyFitter(job.result(), qstc) # ajusta os dados rhoBA = qstf.fit(method='lstsq'); # extrai o operador densidade rhoA = pTraceL_num(2, 2, rhoBA); rhoA rhoB = pTraceR_num(2, 2, rhoBA); rhoB qc.cx(qr[0],qr[1]); qc.cx(qr[1],qr[0]); qc.cx(qr[0],qr[1]); data = qc.data; data.pop(5) qc.draw() qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) qstf = StateTomographyFitter(job.result(), qstc) # ajusta os dados rhoBA = qstf.fit(method='lstsq'); # extrai o operador densidade rhoA = pTraceL_num(2, 2, rhoBA); rhoA rhoB = pTraceR_num(2, 2, rhoBA); rhoB def psi(th): return cos(th/2)*cb(2,0) + sin(th/2)*cb(2,1) th, ph = symbols('theta phi'); psi(th) def Psi(th,ph): return CX_ab*tp(psi(th),psi(ph)) th, ph = symbols('theta phi'); Psi(th,ph) th, ph = math.pi/3, math.pi/4; Psi(th,ph) def rhoA(th,ph): return ptraceB(2, 2, proj(Psi(th,ph))) th, ph = symbols('theta phi'); simplify(rhoA(th,ph)) th, ph = math.pi/3, math.pi/4; simplify(rhoA(th,ph)) rhoa = rhoA(th,ph); rhoa.eigenvals() def rhoB(th,ph): return ptraceA(2, 2, proj(Psi(th,ph))) th, ph = symbols('theta phi'); simplify(rhoB(th,ph)) th, ph = math.pi/3, math.pi/4; simplify(rhoB(th,ph)) rhob = rhoB(th,ph); rhob.eigenvals() qr = QuantumRegister(2); qc = QuantumCircuit(qr) th = math.pi/3; ph = math.pi/4 qc.u(th,0,0,qr[0]); qc.u(ph,0,0,qr[1]); qc.cx(qr[0],qr[1]); qc.barrier(); qc.draw() data = qc.data; data.pop(1); qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) # executa no simulador qstf = StateTomographyFitter(job.result(), qstc) # ajusta os dados rhoBA = qstf.fit(method='lstsq'); # extrai o operador densidade rhoA = pTraceL_num(2, 2, rhoBA); rhoA rhoB = pTraceR_num(2, 2, rhoBA); rhoB qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) rhoA = pTraceL_num(2, 2, rhoBA); rhoA rhoB = pTraceR_num(2, 2, rhoBA); rhoB qc.cx(qr[1],qr[0]); qc.cx(qr[0],qr[1]); qc.cx(qr[1],qr[0]) qc.draw() qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) # executa no simulador qstf = StateTomographyFitter(job.result(), qstc) # ajusta os dados rhoBA = qstf.fit(method='lstsq'); # extrai o operador densidade rhoA = pTraceL_num(2, 2, rhoBA); rhoA rhoB = pTraceR_num(2, 2, rhoBA); rhoB qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) rhoA = pTraceL_num(2, 2, rhoBA); rhoA rhoB = pTraceR_num(2, 2, rhoBA); rhoB
https://github.com/EusseJhoan/DeutschJosza_algorithm
EusseJhoan
from qiskit import QuantumCircuit, transpile, Aer from qiskit.visualization import plot_histogram import numpy as np sim = Aer.get_backend('aer_simulator') def U_f1(qc): return qc def U_f2(qc): qc.x(1) #Compuerta X al segundo qubit return qc def U_f3(qc): qc.cx(0,1) #Compuerta CNOT entre primer y segundo quibit (el primero es el que controla) return qc def U_f4(qc): qc.cx(0,1) #Compuerta CNOT entre primer y segundo quibit (el primero es el que controla) qc.x(1) #Compuerta X al segundo qubit return qc def Deutsch(U_f): qc=QuantumCircuit(2,1) #Se crea un circuito cuántico con 2 bits cuánticos y 1 canal clásico qc.x(1) #Compuerta X al segundo qubit (inicializar estado |1>) qc.h(0) #Compuerta H al primer qubit qc.h(1) #Compuerta H al segundo qubit qc.barrier() #Barrera (empieza oráculo) qc = U_f(qc) #Agregamos el oráculo qc.barrier() #Barrera (termina oráculo) qc.h(0) #Compuerta H al primer qubit qc.measure(0,0) #Medimos el primer qubit y enviamos señal al canal clásico return qc qc=Deutsch(U_f1) # definición circuito con oráculo usando f_1(x) display(qc.draw()) # visualización del circuito counts = sim.run(qc).result().get_counts() #contando las medidas de simulador cuántico plot_histogram(counts) #histrograma de resultados qc=Deutsch(U_f2) #definición circuito con oráculo usando f_2(x) display(qc.draw()) # visualización del circuito counts = sim.run(qc).result().get_counts() #contando las medidas del simulador cuántico plot_histogram(counts) #histrograma de resultados qc=Deutsch(U_f3) #definición circuito con oráculo usando f_3(x) display(qc.draw()) # visualización del circuito counts = sim.run(qc).result().get_counts() #contando las medidas de simulador cuántico plot_histogram(counts) #histrograma de resultados qc=Deutsch(U_f4) #definición circuito con oráculo usando f_4(x) display(qc.draw()) # visualización del circuito counts = sim.run(qc).result().get_counts() #contando las medidas de simulador cuántico plot_histogram(counts) #histrograma de resultados #oráculo para f(x) constante para un número n de bits en el registro def constant(qc,n): ran=np.random.randint(2) #selección aleatoria de 0 ó 1 if ran == 1: qc.x(n) #si el número aleatorio es 1 se pone compuerta X en el objetivo (se induce fase global -1 al registro) return qc #oráculo para f(x) balanceado para un número n de bits en el registro def balanced(qc,n): for i in range(n): qc.cx(i,n) #se crea una CNOT entre cada qubit del registro y el objetivo (los qubits del registro controlan) ran=np.random.randint(2) #selección aleatoria de 0 ó 1 if ran == 1: qc.x(n) #si el número aleatorio es 1 se pone compuerta X en el objetivo (se induce fase global -1 al registro) return qc def D_J(U_f,n): qc=QuantumCircuit(n+1,n) #Se crea un circuito cuántico con n+1 quibits y n canales clásicos qc.x(n) #Compuerta X al bit del registro for i in range(n+1): qc.h(i) #Compuerta H a todos los bits qc.barrier() #Barrera (empieza oráculo) qc = U_f(qc,n) #Agregamos el oráculo qc.barrier() #Barrera (termina oráculo) for i in range(n): qc.h(i) #Compuerta H a los n bits del registro qc.measure(i,i) #Medición los n bits del registro return qc qc=D_J(constant,3) #definición circuito con oráculo constante y 3 bits en registro display(qc.draw()) #ver circuito counts = sim.run(qc).result().get_counts() #contando las medidas de simulador cuántico plot_histogram(counts) #histrograma de resultados qc=D_J(balanced,3) display(qc.draw()) counts = sim.run(qc).result().get_counts() plot_histogram(counts)
https://github.com/acfilok96/Quantum-Computation
acfilok96
import qiskit from qiskit import * print(qiskit.__version__) %matplotlib inline from qiskit.tools.visualization import plot_histogram from qiskit.providers.aer import QasmSimulator # use Aer's qasm_simulator simulator = QasmSimulator() # create quantum circute acting on the q register circuit = QuantumCircuit(2,2) # add a H gate on qubit 0 circuit.h(0) # add a cx (CNOT) gate on control qubit 0 and target qubit 1 circuit.cx(0,1) # map the quantum measurement to the classical bits circuit.measure([0,1],[0,1]) # compile the circuit down to low-level QASM instructions # supported by the backend (not needed for simple circuits) compiled_circuit = transpile(circuit, simulator) # execute the circuit on the qasm simulator job = simulator.run(compiled_circuit, shots=1024) # grad results from the job result = job.result() # return counts counts = result.get_counts(compiled_circuit) print('total count for 00 and 11 are: ',counts) # draw circuit circuit.draw(output='mpl') # plot histogram plot_histogram(counts) from qiskit.circuit import QuantumCircuit, Parameter from qiskit.providers.aer import AerSimulator backend = AerSimulator() circuit = QuantumCircuit(2) theta = Parameter('theta') circuit.rx(234, 0) circuit.draw(output='mpl') backend = AerSimulator() circuit = QuantumCircuit(2) # theta = Parameter('theta') circuit.rx(20, 0) circuit.x(0) circuit.h(1) result = execute(circuit, backend=backend, shots=1024).result() # counts=result.get_counts() # print(counts) circuit.draw(output='mpl')
https://github.com/rickapocalypse/final_paper_qiskit_sat
rickapocalypse
from qiskit import * from qiskit.tools.visualization import plot_bloch_multivector import matplotlib.pyplot as plt from qiskit.visualization.gate_map import plot_coupling_map, plot_gate_map from qiskit.visualization.state_visualization import plot_bloch_vector, plot_state_city, plot_state_paulivec circuit = QuantumCircuit(1,1) circuit.x(0) simulator = Aer.get_backend('statevector_simulator') result = execute(circuit, backend = simulator).result() statevector = result.get_statevector() print(statevector) simulator2 = Aer.get_backend('unitary_simulator') result = execute(circuit, backend= simulator2).result() unitary = result.get_unitary() print(unitary)
https://github.com/Ilan-Bondarevsky/qiskit_algorithm
Ilan-Bondarevsky
from qiskit import QuantumCircuit, QuantumRegister, AncillaRegister from itertools import combinations def and_gate(a = 0 , b = 0): '''Create an AND gate in qiskit\n The values of "a" and "b" are inisializing the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(2), AncillaRegister(1)) if a: qc.x(0) if b: qc.x(1) qc.mcx([0,1], qc.ancillas) return qc def nand_gate(a = 0 , b = 0): '''Create an NAND gate in qiskit\n The values of "a" and "b" are inisializing the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(2), AncillaRegister(1)) if a: qc.x(0) if b: qc.x(1) qc.mcx([0,1], qc.ancillas) qc.x(qc.ancillas) return qc def mand_gate(nqubits, values = []): '''Create an AND gate in qiskit with multiple qubits\n The values in the list are corresponding to the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(nqubits), AncillaRegister(1)) for i, val in enumerate(values): if val: qc.x(i) qc.mcx(list(range(nqubits)), qc.ancillas) return qc def xor_gate(a = 0 , b = 0): '''Create an XOR gate in qiskit\n The values of "a" and "b" are inisializing the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(2), AncillaRegister(1)) if a: qc.x(0) if b: qc.x(1) qc.cx(0, qc.ancillas) qc.cx(1, qc.ancillas) return qc def xnor_gate(a = 0 , b = 0): '''Create an XNOR gate in qiskit\n The values of "a" and "b" are inisializing the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(2), AncillaRegister(1)) if a: qc.x(0) if b: qc.x(1) qc.cx(0, qc.ancillas) qc.cx(1, qc.ancillas) qc.x(qc.ancillas) return qc def mxor_gate(nqubits, values = []): '''Create an XOR gate in qiskit with multiple qubits\n The values in the list are corresponding to the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(nqubits), AncillaRegister(1)) for i, val in enumerate(values): if val: qc.x(i) for i in range(nqubits): qc.cx(i, qc.ancillas) return qc def or_gate(a = 0 , b = 0): '''Create an OR gate in qiskit\n The values of "a" and "b" are inisializing the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(2), AncillaRegister(1)) if a: qc.x(0) if b: qc.x(1) qc.cx(0, qc.ancillas) qc.cx(1, qc.ancillas) qc.mcx([0,1], qc.ancillas) return qc def nor_gate(a = 0 , b = 0): '''Create an NOR gate in qiskit\n The values of "a" and "b" are inisializing the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(2), AncillaRegister(1)) if a: qc.x(0) if b: qc.x(1) qc.cx(0, qc.ancillas) qc.cx(1, qc.ancillas) qc.mcx([0,1], qc.ancillas) qc.x(qc.ancillas) return qc def mor_gate(nqubits, values = []): '''Create an OR gate in qiskit with multiple qubits\n The values in the list are corresponding to the qubits, the values (0/1)''' qc = QuantumCircuit(QuantumRegister(nqubits), AncillaRegister(1)) for i, val in enumerate(values): if val: qc.x(i) or_cirq = [] for i in range(1, nqubits + 1): or_cirq = or_cirq + list(combinations(list(range(nqubits)), i)) for circ in or_cirq: qc.mcx(list(circ), qc.ancillas) return qc
https://github.com/abhik-99/Qiskit-Summer-School
abhik-99
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Depth pass testing""" import unittest from qiskit import QuantumCircuit, QuantumRegister from qiskit.converters import circuit_to_dag from qiskit.transpiler.passes import CountOps from qiskit.test import QiskitTestCase class TestCountOpsPass(QiskitTestCase): """Tests for CountOps analysis methods.""" def test_empty_dag(self): """Empty DAG has empty counts.""" circuit = QuantumCircuit() dag = circuit_to_dag(circuit) pass_ = CountOps() _ = pass_.run(dag) self.assertDictEqual(pass_.property_set["count_ops"], {}) def test_just_qubits(self): """A dag with 8 operations (6 CXs and 2 Hs)""" # ┌───┐ ┌───┐┌───┐ # q0_0: ┤ H ├──■────■────■────■──┤ X ├┤ X ├ # ├───┤┌─┴─┐┌─┴─┐┌─┴─┐┌─┴─┐└─┬─┘└─┬─┘ # q0_1: ┤ H ├┤ X ├┤ X ├┤ X ├┤ X ├──■────■── # └───┘└───┘└───┘└───┘└───┘ qr = QuantumRegister(2) circuit = QuantumCircuit(qr) circuit.h(qr[0]) circuit.h(qr[1]) circuit.cx(qr[0], qr[1]) circuit.cx(qr[0], qr[1]) circuit.cx(qr[0], qr[1]) circuit.cx(qr[0], qr[1]) circuit.cx(qr[1], qr[0]) circuit.cx(qr[1], qr[0]) dag = circuit_to_dag(circuit) pass_ = CountOps() _ = pass_.run(dag) self.assertDictEqual(pass_.property_set["count_ops"], {"cx": 6, "h": 2}) if __name__ == "__main__": unittest.main()
https://github.com/zapatacomputing/qe-qiskit
zapatacomputing
################################################################################ # © Copyright 2021-2022 Zapata Computing Inc. ################################################################################ import hashlib from typing import Dict, Iterable, List, NamedTuple, Sequence, Tuple, Union import numpy as np import qiskit import sympy from orquestra.quantum.circuits import ( _builtin_gates, _circuit, _gates, _operations, _wavefunction_operations, ) from orquestra.quantum.circuits.symbolic.sympy_expressions import ( SYMPY_DIALECT, expression_from_sympy, ) from orquestra.quantum.circuits.symbolic.translations import translate_expression from ._qiskit_expressions import QISKIT_DIALECT, expression_from_qiskit QiskitTriplet = Tuple[ qiskit.circuit.Instruction, List[qiskit.circuit.Qubit], List[qiskit.circuit.Clbit] ] def _import_qiskit_qubit(qubit: qiskit.circuit.Qubit) -> int: return qubit._index def _qiskit_expr_from_orquestra(expr): intermediate = expression_from_sympy(expr) return translate_expression(intermediate, QISKIT_DIALECT) def _orquestra_expr_from_qiskit(expr): intermediate = expression_from_qiskit(expr) return translate_expression(intermediate, SYMPY_DIALECT) ORQUESTRA_QISKIT_GATE_MAP = { _builtin_gates.X: qiskit.circuit.library.XGate, _builtin_gates.Y: qiskit.circuit.library.YGate, _builtin_gates.Z: qiskit.circuit.library.ZGate, _builtin_gates.S: qiskit.circuit.library.SGate, _builtin_gates.SX: qiskit.circuit.library.SXGate, _builtin_gates.T: qiskit.circuit.library.TGate, _builtin_gates.H: qiskit.circuit.library.HGate, _builtin_gates.I: qiskit.circuit.library.IGate, _builtin_gates.CNOT: qiskit.circuit.library.CXGate, _builtin_gates.CZ: qiskit.circuit.library.CZGate, _builtin_gates.SWAP: qiskit.circuit.library.SwapGate, _builtin_gates.ISWAP: qiskit.circuit.library.iSwapGate, _builtin_gates.RX: qiskit.circuit.library.RXGate, _builtin_gates.RY: qiskit.circuit.library.RYGate, _builtin_gates.RZ: qiskit.circuit.library.RZGate, _builtin_gates.PHASE: qiskit.circuit.library.PhaseGate, _builtin_gates.CPHASE: qiskit.circuit.library.CPhaseGate, _builtin_gates.XX: qiskit.circuit.library.RXXGate, _builtin_gates.YY: qiskit.circuit.library.RYYGate, _builtin_gates.ZZ: qiskit.circuit.library.RZZGate, _builtin_gates.U3: qiskit.circuit.library.U3Gate, _builtin_gates.Delay: qiskit.circuit.Delay, } def _make_gate_instance(gate_ref, gate_params) -> _gates.Gate: """Returns a gate instance that's applicable to qubits. For non-parametric gate refs like X, returns just the `X` For parametric gate factories like `RX`, returns the produced gate, like `RX(0.2)` """ if _gates.gate_is_parametric(gate_ref, gate_params): return gate_ref(*gate_params) else: return gate_ref def _make_controlled_gate_prototype(wrapped_gate_ref, num_control_qubits=1): def _factory(*gate_params): return _gates.ControlledGate( _make_gate_instance(wrapped_gate_ref, gate_params), num_control_qubits ) return _factory QISKIT_ORQUESTRA_GATE_MAP = { **{q_cls: z_ref for z_ref, q_cls in ORQUESTRA_QISKIT_GATE_MAP.items()}, qiskit.extensions.SXdgGate: _builtin_gates.SX.dagger, qiskit.extensions.SdgGate: _builtin_gates.S.dagger, qiskit.extensions.TdgGate: _builtin_gates.T.dagger, qiskit.circuit.library.CSwapGate: _builtin_gates.SWAP.controlled(1), qiskit.circuit.library.CRXGate: _make_controlled_gate_prototype(_builtin_gates.RX), qiskit.circuit.library.CRYGate: _make_controlled_gate_prototype(_builtin_gates.RY), qiskit.circuit.library.CRZGate: _make_controlled_gate_prototype(_builtin_gates.RZ), } def export_to_qiskit(circuit: _circuit.Circuit) -> qiskit.QuantumCircuit: q_circuit = qiskit.QuantumCircuit(circuit.n_qubits) q_register = qiskit.circuit.QuantumRegister(circuit.n_qubits, "q") gate_op_only_circuit = _circuit.Circuit( [op for op in circuit.operations if isinstance(op, _gates.GateOperation)] ) custom_names = { gate_def.gate_name for gate_def in gate_op_only_circuit.collect_custom_gate_definitions() } q_triplets = [] for gate_op in circuit.operations: if isinstance(gate_op, _gates.GateOperation): q_triplet = _export_gate_to_qiskit( gate_op.gate, applied_qubit_indices=gate_op.qubit_indices, q_register=q_register, custom_names=custom_names, ) elif isinstance(gate_op, _wavefunction_operations.ResetOperation): q_triplet = ( qiskit.circuit.library.Reset(), [q_register[gate_op.qubit_indices[0]]], [], ) q_triplets.append(q_triplet) for q_gate, q_qubits, q_clbits in q_triplets: q_circuit.append(q_gate, q_qubits, q_clbits) return q_circuit def _export_gate_to_qiskit(gate, applied_qubit_indices, q_register, custom_names): try: return _export_gate_via_mapping( gate, applied_qubit_indices, q_register, custom_names ) except ValueError: pass try: return _export_dagger_gate( gate, applied_qubit_indices, q_register, custom_names ) except ValueError: pass try: return _export_controlled_gate( gate, applied_qubit_indices, q_register, custom_names ) except ValueError: pass try: return _export_custom_gate( gate, applied_qubit_indices, q_register, custom_names ) except ValueError: pass raise NotImplementedError(f"Exporting gate {gate} to Qiskit is unsupported") def _export_gate_via_mapping(gate, applied_qubit_indices, q_register, custom_names): try: qiskit_cls = ORQUESTRA_QISKIT_GATE_MAP[ _builtin_gates.builtin_gate_by_name(gate.name) ] except KeyError: raise ValueError(f"Can't export gate {gate} to Qiskit via mapping") qiskit_params = [_qiskit_expr_from_orquestra(param) for param in gate.params] qiskit_qubits = [q_register[index] for index in applied_qubit_indices] return qiskit_cls(*qiskit_params), qiskit_qubits, [] def _export_dagger_gate( gate: _gates.Dagger, applied_qubit_indices, q_register, custom_names, ): if not isinstance(gate, _gates.Dagger): # Raising an exception here is redundant to the type hint, but it allows us # to handle exporting all gates in the same way, regardless of type raise ValueError(f"Can't export gate {gate} as a dagger gate") target_gate, qiskit_qubits, qiskit_clbits = _export_gate_to_qiskit( gate.wrapped_gate, applied_qubit_indices=applied_qubit_indices, q_register=q_register, custom_names=custom_names, ) return target_gate.inverse(), qiskit_qubits, qiskit_clbits def _export_controlled_gate( gate: _gates.ControlledGate, applied_qubit_indices, q_register, custom_names, ): if not isinstance(gate, _gates.ControlledGate): # Raising an exception here is redundant to the type hint, but it allows us # to handle exporting all gates in the same way, regardless of type raise ValueError(f"Can't export gate {gate} as a controlled gate") target_indices = applied_qubit_indices[gate.num_control_qubits :] target_gate, _, _ = _export_gate_to_qiskit( gate.wrapped_gate, applied_qubit_indices=target_indices, q_register=q_register, custom_names=custom_names, ) controlled_gate = target_gate.control(gate.num_control_qubits) qiskit_qubits = [q_register[index] for index in applied_qubit_indices] return controlled_gate, qiskit_qubits, [] def _export_custom_gate( gate: _gates.MatrixFactoryGate, applied_qubit_indices, q_register, custom_names, ): if gate.name not in custom_names: raise ValueError( f"Can't export gate {gate} as a custom gate, the circuit is missing its " "definition" ) if gate.params: raise ValueError( f"Can't export parametrized gate {gate}, Qiskit doesn't support " "parametrized custom gates" ) # At that time of writing it Qiskit doesn't support parametrized gates defined with # a symbolic matrix. # See https://github.com/Qiskit/qiskit-terra/issues/4751 for more info. qiskit_qubits = [q_register[index] for index in applied_qubit_indices] qiskit_matrix = np.array(gate.matrix) return ( qiskit.extensions.UnitaryGate(qiskit_matrix, label=gate.name), qiskit_qubits, [], ) class AnonGateOperation(NamedTuple): gate_name: str matrix: sympy.Matrix qubit_indices: Tuple[int, ...] ImportedOperation = Union[_operations.Operation, AnonGateOperation] def _apply_custom_gate( anon_op: AnonGateOperation, custom_defs_map: Dict[str, _gates.CustomGateDefinition] ) -> _gates.GateOperation: gate_def = custom_defs_map[anon_op.gate_name] # Qiskit doesn't support custom gates with parametrized matrices # so we can assume empty params list. gate_params: Tuple[sympy.Symbol, ...] = tuple() gate = gate_def(*gate_params) return gate(*anon_op.qubit_indices) def import_from_qiskit(circuit: qiskit.QuantumCircuit) -> _circuit.Circuit: q_ops = [_import_qiskit_triplet(triplet) for triplet in circuit.data] anon_ops = [op for op in q_ops if isinstance(op, AnonGateOperation)] # Qiskit doesn't support custom gates with parametrized matrices # so we can assume empty params list. params_ordering: Tuple[sympy.Symbol, ...] = tuple() custom_defs = { anon_op.gate_name: _gates.CustomGateDefinition( gate_name=anon_op.gate_name, matrix=anon_op.matrix, params_ordering=params_ordering, ) for anon_op in anon_ops } imported_ops = [ _apply_custom_gate(op, custom_defs) if isinstance(op, AnonGateOperation) else op for op in q_ops ] return _circuit.Circuit( operations=imported_ops, n_qubits=circuit.num_qubits, ) def _import_qiskit_triplet(qiskit_triplet: QiskitTriplet) -> ImportedOperation: qiskit_op, qiskit_qubits, _ = qiskit_triplet return _import_qiskit_op(qiskit_op, qiskit_qubits) def _import_qiskit_op(qiskit_op, qiskit_qubits) -> ImportedOperation: # We always wanna try importing via mapping to handle complex gate structures # represented by a single class, like CNOT (Control + X) or CSwap (Control + Swap). try: return _import_qiskit_op_via_mapping(qiskit_op, qiskit_qubits) except ValueError: pass try: return _import_controlled_qiskit_op(qiskit_op, qiskit_qubits) except ValueError: pass try: return _import_custom_qiskit_gate(qiskit_op, qiskit_qubits) except AttributeError: raise ValueError(f"Conversion of {qiskit_op.name} from Qiskit is unsupported.") def _import_qiskit_op_via_mapping( qiskit_gate: qiskit.circuit.Instruction, qiskit_qubits: Iterable[qiskit.circuit.Qubit], ) -> _operations.Operation: qubit_indices = [_import_qiskit_qubit(qubit) for qubit in qiskit_qubits] if isinstance(qiskit_gate, qiskit.circuit.library.Reset): return _wavefunction_operations.ResetOperation(qubit_indices[0]) try: gate_ref = QISKIT_ORQUESTRA_GATE_MAP[type(qiskit_gate)] except KeyError: raise ValueError(f"Conversion of {qiskit_gate} from Qiskit is unsupported.") # values to consider: # - gate matrix parameters (only parametric gates) # - gate application indices (all gates) orquestra_params = [ _orquestra_expr_from_qiskit(param) for param in qiskit_gate.params ] gate = _make_gate_instance(gate_ref, orquestra_params) return _gates.GateOperation(gate=gate, qubit_indices=tuple(qubit_indices)) def _import_controlled_qiskit_op( qiskit_gate: qiskit.circuit.ControlledGate, qiskit_qubits: Sequence[qiskit.circuit.Qubit], ) -> _gates.GateOperation: if not isinstance(qiskit_gate, qiskit.circuit.ControlledGate): # Raising an exception here is redundant to the type hint, but it allows us # to handle exporting all gates in the same way, regardless of type raise ValueError(f"Can't import gate {qiskit_gate} as a controlled gate") wrapped_qubits = qiskit_qubits[qiskit_gate.num_ctrl_qubits :] wrapped_op = _import_qiskit_op(qiskit_gate.base_gate, wrapped_qubits) qubit_indices = map(_import_qiskit_qubit, qiskit_qubits) if isinstance(wrapped_op, _gates.GateOperation): return wrapped_op.gate.controlled(qiskit_gate.num_ctrl_qubits)(*qubit_indices) else: raise NotImplementedError( "Importing of controlled anonymous gates not yet supported." ) def _hash_hex(bytes_): return hashlib.sha256(bytes_).hexdigest() def _custom_qiskit_gate_name(gate_label: str, gate_name: str, matrix: np.ndarray): matrix_hash = _hash_hex(matrix.tobytes()) target_name = gate_label or gate_name return f"{target_name}.{matrix_hash}" def _import_custom_qiskit_gate( qiskit_op: qiskit.circuit.Gate, qiskit_qubits: Iterable[qiskit.circuit.Qubit] ) -> AnonGateOperation: value_matrix = qiskit_op.to_matrix() return AnonGateOperation( gate_name=_custom_qiskit_gate_name( qiskit_op.label, qiskit_op.name, value_matrix ), matrix=sympy.Matrix(value_matrix), qubit_indices=tuple(_import_qiskit_qubit(qubit) for qubit in qiskit_qubits), )
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb simplify(cos(pi/8)), simplify(sin(pi/8)) from qiskit.visualization import plot_bloch_vector th, ph = pi/4, 0 #plot_bloch_vector([[math.sin(th)*math.cos(ph), math.sin(th)*math.sin(ph), math.cos(th)]]) float(1+1/sqrt(2))/2 X = Matrix([[0,1],[1,0]]); Z = Matrix([[1,0],[0,-1]]); O = (X+Z)/sqrt(2); O.eigenvects() from qiskit import * nshots = 8192 qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') simulator = Aer.get_backend('qasm_simulator') device = provider.get_backend('ibmq_belem') from qiskit.tools.monitor import job_monitor from qiskit.tools.visualization import plot_histogram qc = QuantumCircuit(1, 1) qc.h(0) # preparação do estado qc.barrier() # medida de O=H th = math.pi/4; ph = 0; lb = math.pi - ph; qc.u(th, ph, lb, 0) qc.measure(0, 0) qc.draw() result = execute(qc, backend = simulator, shots = nshots).result() plot_histogram(result.get_counts(qc)) job = execute(qc, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc)) def qc_bb_cb(): qc = QuantumCircuit(2, name = 'BB->CB') qc.cx(0,1); qc.h(0)#; qc.measure([0,1],[0,1]) return qc qc_bb_cb_ = qc_bb_cb(); qc_bb_cb_.draw() qc = QuantumCircuit(2, 2) qc.x(1); qc.h([0,1]) # preparação do estado |+-> qc.barrier() qc_bb_cb_ = qc_bb_cb(); qc.append(qc_bb_cb_, [0,1]); qc.measure([0,1],[0,1]) qc.draw() result = execute(qc, backend = simulator, shots = nshots).result() plot_histogram(result.get_counts(qc)) job = execute(qc, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt import numpy as np from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler from qiskit.utils import algorithm_globals from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder, MinMaxScaler from qiskit_machine_learning.algorithms.classifiers import VQC from IPython.display import clear_output algorithm_globals.random_seed = 42 sampler1 = Sampler() sampler2 = Sampler() num_samples = 40 num_features = 2 features = 2 * algorithm_globals.random.random([num_samples, num_features]) - 1 labels = 1 * (np.sum(features, axis=1) >= 0) # in { 0, 1} features = MinMaxScaler().fit_transform(features) features.shape features[0:5, :] labels = OneHotEncoder(sparse=False).fit_transform(labels.reshape(-1, 1)) labels.shape labels[0:5, :] train_features, test_features, train_labels, test_labels = train_test_split( features, labels, train_size=30, random_state=algorithm_globals.random_seed ) train_features.shape def plot_dataset(): plt.scatter( train_features[np.where(train_labels[:, 0] == 0), 0], train_features[np.where(train_labels[:, 0] == 0), 1], marker="o", color="b", label="Label 0 train", ) plt.scatter( train_features[np.where(train_labels[:, 0] == 1), 0], train_features[np.where(train_labels[:, 0] == 1), 1], marker="o", color="g", label="Label 1 train", ) plt.scatter( test_features[np.where(test_labels[:, 0] == 0), 0], test_features[np.where(test_labels[:, 0] == 0), 1], marker="o", facecolors="w", edgecolors="b", label="Label 0 test", ) plt.scatter( test_features[np.where(test_labels[:, 0] == 1), 0], test_features[np.where(test_labels[:, 0] == 1), 1], marker="o", facecolors="w", edgecolors="g", label="Label 1 test", ) plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0) plt.plot([1, 0], [0, 1], "--", color="black") plot_dataset() plt.show() maxiter = 20 objective_values = [] # callback function that draws a live plot when the .fit() method is called def callback_graph(_, objective_value): clear_output(wait=True) objective_values.append(objective_value) plt.title("Objective function value against iteration") plt.xlabel("Iteration") plt.ylabel("Objective function value") stage1_len = np.min((len(objective_values), maxiter)) stage1_x = np.linspace(1, stage1_len, stage1_len) stage1_y = objective_values[:stage1_len] stage2_len = np.max((0, len(objective_values) - maxiter)) stage2_x = np.linspace(maxiter, maxiter + stage2_len - 1, stage2_len) stage2_y = objective_values[maxiter : maxiter + stage2_len] plt.plot(stage1_x, stage1_y, color="orange") plt.plot(stage2_x, stage2_y, color="purple") plt.show() plt.rcParams["figure.figsize"] = (12, 6) original_optimizer = COBYLA(maxiter=maxiter) ansatz = RealAmplitudes(num_features) initial_point = np.asarray([0.5] * ansatz.num_parameters) original_classifier = VQC( ansatz=ansatz, optimizer=original_optimizer, callback=callback_graph, sampler=sampler1 ) original_classifier.fit(train_features, train_labels) print("Train score", original_classifier.score(train_features, train_labels)) print("Test score ", original_classifier.score(test_features, test_labels)) original_classifier.save("vqc_classifier.model") loaded_classifier = VQC.load("vqc_classifier.model") loaded_classifier.warm_start = True loaded_classifier.neural_network.sampler = sampler2 loaded_classifier.optimizer = COBYLA(maxiter=80) loaded_classifier.fit(train_features, train_labels) print("Train score", loaded_classifier.score(train_features, train_labels)) print("Test score", loaded_classifier.score(test_features, test_labels)) train_predicts = loaded_classifier.predict(train_features) test_predicts = loaded_classifier.predict(test_features) # return plot to default figsize plt.rcParams["figure.figsize"] = (6, 4) plot_dataset() # plot misclassified data points plt.scatter( train_features[np.all(train_labels != train_predicts, axis=1), 0], train_features[np.all(train_labels != train_predicts, axis=1), 1], s=200, facecolors="none", edgecolors="r", linewidths=2, ) plt.scatter( test_features[np.all(test_labels != test_predicts, axis=1), 0], test_features[np.all(test_labels != test_predicts, axis=1), 1], s=200, facecolors="none", edgecolors="r", linewidths=2, ) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/rigetti/qiskit-rigetti
rigetti
############################################################################## # Copyright 2021 Rigetti Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## import warnings from collections import Counter from datetime import datetime from typing import Optional, Dict, Any, List, Union, Iterator, cast import numpy as np from dateutil.tz import tzutc from pyquil.api import QuantumComputer from pyquil.api._qpu import QPUExecuteResponse from pyquil.api._qvm import QVMExecuteResponse from qiskit import QuantumCircuit from qiskit.providers import JobStatus, JobV1, Backend from qiskit.providers.models import QasmBackendConfiguration from qiskit.qobj import QobjExperimentHeader from qiskit.result import Result from qiskit.result.models import ExperimentResult, ExperimentResultData from .hooks.pre_compilation import PreCompilationHook from .hooks.pre_execution import PreExecutionHook Response = Union[QVMExecuteResponse, QPUExecuteResponse] class RigettiQCSJob(JobV1): """ Class for representing execution jobs sent to Rigetti backends. """ def __init__( self, *, job_id: str, circuits: List[QuantumCircuit], options: Dict[str, Any], qc: QuantumComputer, backend: Backend, configuration: QasmBackendConfiguration, ) -> None: """ Args: job_id: Unique identifier for this job circuits: List of circuits to execute options: Execution options (e.g. "shots") qc: Quantum computer to run against backend: :class:`RigettiQCSBackend` that created this job configuration: Configuration from parent backend """ super().__init__(backend, job_id) self._status = JobStatus.INITIALIZING self._circuits = circuits self._options = options self._qc = qc self._configuration = configuration self._result: Optional[Result] = None self._responses: List[Response] = [] self._start() def submit(self) -> None: """ Raises: NotImplementedError: This class uses the asynchronous pattern, so this method should not be called. """ raise NotImplementedError("'submit' is not implemented as this class uses the asynchronous pattern") def _start(self) -> None: self._responses = [self._start_circuit(circuit) for circuit in self._circuits] self._status = JobStatus.RUNNING def _start_circuit(self, circuit: QuantumCircuit) -> Response: shots = self._options["shots"] qasm = circuit.qasm() qasm = self._handle_barriers(qasm, circuit.num_qubits) before_compile: List[PreCompilationHook] = self._options.get("before_compile", []) for fn in before_compile: qasm = fn(qasm) program = self._qc.compiler.transpile_qasm_2(qasm) program = program.wrap_in_numshots_loop(shots) before_execute: List[PreExecutionHook] = self._options.get("before_execute", []) for fn in before_execute: program = fn(program) if self._options.get("ensure_native_quil") and len(before_execute) > 0: program = self._qc.compiler.quil_to_native_quil(program) executable = self._qc.compiler.native_quil_to_executable(program) # typing: QuantumComputer's inner QAM is generic, so we set the expected type here return cast(Response, self._qc.qam.execute(executable)) @staticmethod def _handle_barriers(qasm: str, num_circuit_qubits: int) -> str: lines = [] for line in qasm.splitlines(): if line.startswith("barrier"): warnings.warn("barriers are currently omitted during execution on a RigettiQCSBackend") continue lines.append(line) return "\n".join(lines) def result(self) -> Result: """ Wait until the job is complete, then return a result. Raises: JobError: If there was a problem running the Job or retrieving the result """ if self._result is not None: return self._result now = datetime.now(tzutc()) results = [] success = True for r in self._get_experiment_results(): results.append(r) success &= r.success self._result = Result( backend_name=self._configuration.backend_name, backend_version=self._configuration.backend_version, qobj_id="", job_id=self.job_id(), success=success, results=results, date=now, execution_duration_microseconds=[r.execution_duration_microseconds for r in results], ) self._status = JobStatus.DONE if success else JobStatus.ERROR return self._result def _get_experiment_results(self) -> Iterator[ExperimentResult]: shots = self._options["shots"] for circuit_idx, response in enumerate(self._responses): execution_result = self._qc.qam.get_result(response) states = execution_result.readout_data["ro"] memory = list(map(_to_binary_str, np.array(states))) success = True status = "Completed successfully" circuit = self._circuits[circuit_idx] yield ExperimentResult( header=QobjExperimentHeader(name=circuit.name), shots=shots, success=success, status=status, data=ExperimentResultData(counts=Counter(memory), memory=memory), execution_duration_microseconds=execution_result.execution_duration_microseconds, ) def cancel(self) -> None: """ Raises: NotImplementedError: There is currently no way to cancel this job. """ raise NotImplementedError("Cancelling jobs is not supported") def status(self) -> JobStatus: """Get the current status of this Job If this job was RUNNING when you called it, this function will block until the job is complete. """ if self._status == JobStatus.RUNNING: # Wait for results _now_ to finish running, otherwise consuming code might wait forever. self.result() return self._status def _to_binary_str(state: List[int]) -> str: # NOTE: According to https://arxiv.org/pdf/1809.03452.pdf, this should be a hex string # but it results in missing leading zeros in the displayed output, and binary strings # seem to work too. Hex string could be accomplished with: # hex(int(binary_str, 2)) binary_str = "".join(map(str, state[::-1])) return binary_str
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse d0 = pulse.DriveChannel(0) x90 = pulse.Gaussian(10, 0.1, 3) x180 = pulse.Gaussian(10, 0.2, 3) with pulse.build() as hahn_echo: with pulse.align_equispaced(duration=100): pulse.play(x90, d0) pulse.play(x180, d0) pulse.play(x90, d0) hahn_echo.draw()
https://github.com/abbarreto/qiskit4
abbarreto
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2023 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-docstring,invalid-name,no-member # pylint: disable=attribute-defined-outside-init import os import qiskit class TranspilerBenchSuite: def _build_cx_circuit(self): cx_register = qiskit.QuantumRegister(2) cx_circuit = qiskit.QuantumCircuit(cx_register) cx_circuit.h(cx_register[0]) cx_circuit.h(cx_register[0]) cx_circuit.cx(cx_register[0], cx_register[1]) cx_circuit.cx(cx_register[0], cx_register[1]) cx_circuit.cx(cx_register[0], cx_register[1]) cx_circuit.cx(cx_register[0], cx_register[1]) return cx_circuit def _build_single_gate_circuit(self): single_register = qiskit.QuantumRegister(1) single_gate_circuit = qiskit.QuantumCircuit(single_register) single_gate_circuit.h(single_register[0]) return single_gate_circuit def setup(self): self.single_gate_circuit = self._build_single_gate_circuit() self.cx_circuit = self._build_cx_circuit() self.qasm_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "qasm")) large_qasm_path = os.path.join(self.qasm_path, "test_eoh_qasm.qasm") self.large_qasm = qiskit.QuantumCircuit.from_qasm_file(large_qasm_path) self.coupling_map = [ [0, 1], [1, 0], [1, 2], [1, 4], [2, 1], [2, 3], [3, 2], [3, 5], [4, 1], [4, 7], [5, 3], [5, 8], [6, 7], [7, 4], [7, 6], [7, 10], [8, 5], [8, 9], [8, 11], [9, 8], [10, 7], [10, 12], [11, 8], [11, 14], [12, 10], [12, 13], [12, 15], [13, 12], [13, 14], [14, 11], [14, 13], [14, 16], [15, 12], [15, 18], [16, 14], [16, 19], [17, 18], [18, 15], [18, 17], [18, 21], [19, 16], [19, 20], [19, 22], [20, 19], [21, 18], [21, 23], [22, 19], [22, 25], [23, 21], [23, 24], [24, 23], [24, 25], [25, 22], [25, 24], [25, 26], [26, 25], ] self.basis = ["id", "rz", "sx", "x", "cx", "reset"] def time_single_gate_compile(self): circ = qiskit.compiler.transpile( self.single_gate_circuit, coupling_map=self.coupling_map, basis_gates=self.basis, seed_transpiler=20220125, ) qiskit.compiler.assemble(circ) def time_cx_compile(self): circ = qiskit.compiler.transpile( self.cx_circuit, coupling_map=self.coupling_map, basis_gates=self.basis, seed_transpiler=20220125, ) qiskit.compiler.assemble(circ) def time_compile_from_large_qasm(self): circ = qiskit.compiler.transpile( self.large_qasm, coupling_map=self.coupling_map, basis_gates=self.basis, seed_transpiler=20220125, ) qiskit.compiler.assemble(circ)
https://github.com/DavidFitzharris/EmergingTechnologies
DavidFitzharris
import numpy as np from qiskit import QuantumCircuit # Building the circuit # Create a Quantum Circuit acting on a quantum register of three qubits circ = QuantumCircuit(3) # Add a H gate on qubit 0, putting this qubit in superposition. circ.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting # the qubits in a Bell state. circ.cx(0, 1) # Add a CX (CNOT) gate on control qubit 0 and target qubit 2, putting # the qubits in a GHZ state. circ.cx(0, 2) # We can visualise the circuit using QuantumCircuit.draw() circ.draw('mpl') from qiskit.quantum_info import Statevector # Set the initial state of the simulator to the ground state using from_int state = Statevector.from_int(0, 2**3) # Evolve the state by the quantum circuit state = state.evolve(circ) #draw using latex state.draw('latex') from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * # Build #------ # Create a Quantum Circuit acting on the q register circuit = QuantumCircuit(2, 2) # Add a H gate on qubit 0 circuit.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1 circuit.cx(0, 1) # Map the quantum measurement to the classical bits circuit.measure([0,1], [0,1]) # END # Execute #-------- # Use Aer's qasm_simulator simulator = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # Grab results from the job result = job.result() # Return counts counts = result.get_counts(circuit) print("\nTotal count for 00 and 11 are:",counts) # END # Visualize #---------- # Using QuantumCircuit.draw(), as in previous example circuit.draw('mpl') # Analyze #-------- # Plot a histogram plot_histogram(counts) # END <h3 style="color: rgb(0, 125, 65)"><i>References</i></h3> https://qiskit.org/documentation/tutorials.html https://www.youtube.com/watch?v=P5cGeDKOIP0 https://qiskit.org/documentation/tutorials/circuits/01_circuit_basics.html https://docs.quantum-computing.ibm.com/lab/first-circuit
https://github.com/Alice-Bob-SW/qiskit-alice-bob-provider
Alice-Bob-SW
############################################################################## # Copyright 2023 Alice & Bob # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## # pylint: disable=unused-argument from pathlib import Path from textwrap import dedent import pytest from qiskit import QiskitError, QuantumCircuit, execute, transpile from qiskit.providers import Options from qiskit.pulse.schedule import Schedule from qiskit.result import Result from qiskit.transpiler.exceptions import TranspilerError from requests_mock.mocker import Mocker from qiskit_alice_bob_provider.remote.api.client import AliceBobApiException from qiskit_alice_bob_provider.remote.backend import ( AliceBobRemoteBackend, _ab_input_params_from_options, _qiskit_to_qir, ) from qiskit_alice_bob_provider.remote.provider import AliceBobRemoteProvider def test_get_backend(mocked_targets) -> None: provider = AliceBobRemoteProvider(api_key='foo') backend = provider.get_backend('EMU:1Q:LESCANNE_2020') assert isinstance(backend, AliceBobRemoteBackend) assert backend.options['average_nb_photons'] == 4.0 # Default value. def test_get_backend_with_options(mocked_targets) -> None: provider = AliceBobRemoteProvider(api_key='foo') backend = provider.get_backend( 'EMU:1Q:LESCANNE_2020', average_nb_photons=6.0 ) assert isinstance(backend, AliceBobRemoteBackend) assert backend.options['average_nb_photons'] == 6.0 def test_get_backend_options_validation(mocked_targets) -> None: provider = AliceBobRemoteProvider(api_key='foo') with pytest.raises(ValueError): provider.get_backend('EMU:1Q:LESCANNE_2020', average_nb_photons=40) with pytest.raises(ValueError): provider.get_backend('EMU:1Q:LESCANNE_2020', average_nb_photons=-1) with pytest.raises(ValueError): provider.get_backend('EMU:1Q:LESCANNE_2020', shots=0) with pytest.raises(ValueError): provider.get_backend('EMU:1Q:LESCANNE_2020', shots=1e10) with pytest.raises(ValueError): provider.get_backend('EMU:1Q:LESCANNE_2020', bad_option=1) def test_execute_options_validation(mocked_targets) -> None: # We are permissive in our options sytem, allowing the user to both # define options when creating the backend and executing. # We therefore need to test both behaviors. c = QuantumCircuit(1, 1) provider = AliceBobRemoteProvider(api_key='foo') backend = provider.get_backend('EMU:1Q:LESCANNE_2020') with pytest.raises(ValueError): execute(c, backend, average_nb_photons=40) with pytest.raises(ValueError): execute(c, backend, average_nb_photons=-1) with pytest.raises(ValueError): execute(c, backend, bad_option=1) with pytest.raises(ValueError): execute(c, backend, shots=0) with pytest.raises(ValueError): execute(c, backend, shots=1e10) def test_too_many_qubits_clients_side(mocked_targets) -> None: c = QuantumCircuit(3, 1) provider = AliceBobRemoteProvider(api_key='foo') backend = provider.get_backend('EMU:1Q:LESCANNE_2020') with pytest.raises(TranspilerError): execute(c, backend) def test_input_not_quantum_circuit(mocked_targets) -> None: c1 = QuantumCircuit(1, 1) c2 = QuantumCircuit(1, 1) s1 = Schedule() s2 = Schedule() provider = AliceBobRemoteProvider(api_key='foo') backend = provider.get_backend('EMU:1Q:LESCANNE_2020') with pytest.raises(NotImplementedError): execute([c1, c2], backend) with pytest.raises(NotImplementedError): execute(s1, backend) with pytest.raises(NotImplementedError): execute([s1, s2], backend) def test_counts_ordering(successful_job: Mocker) -> None: c = QuantumCircuit(1, 2) c.initialize('+', 0) c.measure_x(0, 0) c.measure(0, 1) provider = AliceBobRemoteProvider(api_key='foo') backend = provider.get_backend('EMU:1Q:LESCANNE_2020') job = execute(c, backend) counts = job.result(wait=0).get_counts() expected = {'11': 12, '10': 474, '01': 6, '00': 508} assert counts == expected counts = job.result(wait=0).get_counts() # testing memoization assert counts == expected def test_failed_transpilation(failed_transpilation_job: Mocker) -> None: c = QuantumCircuit(1, 1) provider = AliceBobRemoteProvider(api_key='foo') backend = provider.get_backend('EMU:1Q:LESCANNE_2020') job = execute(c, backend) res: Result = job.result(wait=0) assert res.results[0].data.input_qir is not None assert res.results[0].data.transpiled_qir is None res = job.result(wait=0) # testing memoization assert res.results[0].data.input_qir is not None assert res.results[0].data.transpiled_qir is None with pytest.raises(QiskitError): res.get_counts() def test_failed_execution(failed_execution_job: Mocker) -> None: c = QuantumCircuit(1, 1) provider = AliceBobRemoteProvider(api_key='foo') backend = provider.get_backend('EMU:1Q:LESCANNE_2020') job = execute(c, backend) res: Result = job.result(wait=0) assert res.results[0].data.input_qir is not None assert res.results[0].data.transpiled_qir is not None with pytest.raises(QiskitError): res.get_counts() def test_cancel_job(cancellable_job: Mocker) -> None: c = QuantumCircuit(1, 1) provider = AliceBobRemoteProvider(api_key='foo') backend = provider.get_backend('EMU:1Q:LESCANNE_2020') job = execute(c, backend) job.cancel() res: Result = job.result(wait=0) assert res.results[0].data.input_qir is not None assert res.results[0].data.transpiled_qir is not None with pytest.raises(QiskitError): res.get_counts() def test_failed_server_side_validation(failed_validation_job: Mocker) -> None: c = QuantumCircuit(1, 1) provider = AliceBobRemoteProvider(api_key='foo') backend = provider.get_backend('EMU:1Q:LESCANNE_2020') with pytest.raises(AliceBobApiException): execute(c, backend) def test_delay_instruction_recognized() -> None: c = QuantumCircuit(1, 2) c.initialize('+', 0) c.measure_x(0, 0) c.delay(3000, 0, unit='ns') c.measure(0, 1) qir = _qiskit_to_qir(c) delay_call = ( 'call void @__quantum__qis__delay__body' '(double 3.000000e+00, %Qubit* null)' ) assert delay_call in qir def test_ab_input_params_from_options() -> None: options = Options(shots=43, average_nb_photons=3.2, foo_hey='bar') params = _ab_input_params_from_options(options) assert params == {'nbShots': 43, 'averageNbPhotons': 3.2, 'fooHey': 'bar'} def test_translation_plugin_and_qir(mocked_targets) -> None: provider = AliceBobRemoteProvider(api_key='foo') backend = provider.get_backend('ALL_INSTRUCTIONS') c = QuantumCircuit(4, 4) c.initialize('-01+') c.measure([0, 1], [2, 3]) c.x(2).c_if(2, 1) c.measure_x(2, 0) c.measure_x(3, 1) transpiled = transpile(c, backend) qir = _qiskit_to_qir(transpiled) assert ( dedent( Path( 'tests/resources/test_translation_plugin_and_qir.ll' ).read_text(encoding='utf-8') ) in qir ) def test_determine_translation_plugin(mocked_targets) -> None: p = AliceBobRemoteProvider(api_key='foo') # Rotations available assert ( p.get_backend('ALL_INSTRUCTIONS').get_translation_stage_plugin() == 'state_preparation' ) # H and T missing assert ( p.get_backend('EMU:1Q:LESCANNE_2020').get_translation_stage_plugin() == 'state_preparation' ) # T missing assert ( p.get_backend('H').get_translation_stage_plugin() == 'state_preparation' ) # ok assert ( p.get_backend('H_T').get_translation_stage_plugin() == 'sk_synthesis' )
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test dynamical decoupling insertion pass.""" import unittest import numpy as np from numpy import pi from ddt import ddt, data from qiskit.circuit import QuantumCircuit, Delay, Measure, Reset, Parameter from qiskit.circuit.library import XGate, YGate, RXGate, UGate, CXGate, HGate from qiskit.quantum_info import Operator from qiskit.transpiler.instruction_durations import InstructionDurations from qiskit.transpiler.passes import ( ASAPScheduleAnalysis, ALAPScheduleAnalysis, PadDynamicalDecoupling, ) from qiskit.transpiler.passmanager import PassManager from qiskit.transpiler.exceptions import TranspilerError from qiskit.transpiler.target import Target, InstructionProperties from qiskit import pulse from qiskit.test import QiskitTestCase @ddt class TestPadDynamicalDecoupling(QiskitTestCase): """Tests PadDynamicalDecoupling pass.""" def setUp(self): """Circuits to test DD on. ┌───┐ q_0: ┤ H ├──■──────────── └───┘┌─┴─┐ q_1: ─────┤ X ├──■─────── └───┘┌─┴─┐ q_2: ──────────┤ X ├──■── └───┘┌─┴─┐ q_3: ───────────────┤ X ├ └───┘ ┌──────────┐ q_0: ──■──┤ U(π,0,π) ├──────────■── ┌─┴─┐└──────────┘ ┌─┴─┐ q_1: ┤ X ├─────■───────────■──┤ X ├ └───┘ ┌─┴─┐ ┌─┐┌─┴─┐└───┘ q_2: ────────┤ X ├────┤M├┤ X ├───── └───┘ └╥┘└───┘ c: 1/══════════════════╩═══════════ 0 """ super().setUp() self.ghz4 = QuantumCircuit(4) self.ghz4.h(0) self.ghz4.cx(0, 1) self.ghz4.cx(1, 2) self.ghz4.cx(2, 3) self.midmeas = QuantumCircuit(3, 1) self.midmeas.cx(0, 1) self.midmeas.cx(1, 2) self.midmeas.u(pi, 0, pi, 0) self.midmeas.measure(2, 0) self.midmeas.cx(1, 2) self.midmeas.cx(0, 1) self.durations = InstructionDurations( [ ("h", 0, 50), ("cx", [0, 1], 700), ("cx", [1, 2], 200), ("cx", [2, 3], 300), ("x", None, 50), ("y", None, 50), ("u", None, 100), ("rx", None, 100), ("measure", None, 1000), ("reset", None, 1500), ] ) def test_insert_dd_ghz(self): """Test DD gates are inserted in correct spots. ┌───┐ ┌────────────────┐ ┌───┐ » q_0: ──────┤ H ├─────────■──┤ Delay(100[dt]) ├──────┤ X ├──────» ┌─────┴───┴─────┐ ┌─┴─┐└────────────────┘┌─────┴───┴─────┐» q_1: ┤ Delay(50[dt]) ├─┤ X ├────────■─────────┤ Delay(50[dt]) ├» ├───────────────┴┐└───┘ ┌─┴─┐ └───────────────┘» q_2: ┤ Delay(750[dt]) ├───────────┤ X ├───────────────■────────» ├────────────────┤ └───┘ ┌─┴─┐ » q_3: ┤ Delay(950[dt]) ├─────────────────────────────┤ X ├──────» └────────────────┘ └───┘ » « ┌────────────────┐ ┌───┐ ┌────────────────┐ «q_0: ┤ Delay(200[dt]) ├──────┤ X ├───────┤ Delay(100[dt]) ├───────────────── « └─────┬───┬──────┘┌─────┴───┴──────┐└─────┬───┬──────┘┌───────────────┐ «q_1: ──────┤ X ├───────┤ Delay(100[dt]) ├──────┤ X ├───────┤ Delay(50[dt]) ├ « └───┘ └────────────────┘ └───┘ └───────────────┘ «q_2: ─────────────────────────────────────────────────────────────────────── « «q_3: ─────────────────────────────────────────────────────────────────────── « """ dd_sequence = [XGate(), XGate()] pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence), ] ) ghz4_dd = pm.run(self.ghz4) expected = self.ghz4.copy() expected = expected.compose(Delay(50), [1], front=True) expected = expected.compose(Delay(750), [2], front=True) expected = expected.compose(Delay(950), [3], front=True) expected = expected.compose(Delay(100), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(200), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(100), [0]) expected = expected.compose(Delay(50), [1]) expected = expected.compose(XGate(), [1]) expected = expected.compose(Delay(100), [1]) expected = expected.compose(XGate(), [1]) expected = expected.compose(Delay(50), [1]) self.assertEqual(ghz4_dd, expected) def test_insert_dd_ghz_with_target(self): """Test DD gates are inserted in correct spots. ┌───┐ ┌────────────────┐ ┌───┐ » q_0: ──────┤ H ├─────────■──┤ Delay(100[dt]) ├──────┤ X ├──────» ┌─────┴───┴─────┐ ┌─┴─┐└────────────────┘┌─────┴───┴─────┐» q_1: ┤ Delay(50[dt]) ├─┤ X ├────────■─────────┤ Delay(50[dt]) ├» ├───────────────┴┐└───┘ ┌─┴─┐ └───────────────┘» q_2: ┤ Delay(750[dt]) ├───────────┤ X ├───────────────■────────» ├────────────────┤ └───┘ ┌─┴─┐ » q_3: ┤ Delay(950[dt]) ├─────────────────────────────┤ X ├──────» └────────────────┘ └───┘ » « ┌────────────────┐ ┌───┐ ┌────────────────┐ «q_0: ┤ Delay(200[dt]) ├──────┤ X ├───────┤ Delay(100[dt]) ├───────────────── « └─────┬───┬──────┘┌─────┴───┴──────┐└─────┬───┬──────┘┌───────────────┐ «q_1: ──────┤ X ├───────┤ Delay(100[dt]) ├──────┤ X ├───────┤ Delay(50[dt]) ├ « └───┘ └────────────────┘ └───┘ └───────────────┘ «q_2: ─────────────────────────────────────────────────────────────────────── « «q_3: ─────────────────────────────────────────────────────────────────────── « """ target = Target(num_qubits=4, dt=1) target.add_instruction(HGate(), {(0,): InstructionProperties(duration=50)}) target.add_instruction( CXGate(), { (0, 1): InstructionProperties(duration=700), (1, 2): InstructionProperties(duration=200), (2, 3): InstructionProperties(duration=300), }, ) target.add_instruction( XGate(), {(x,): InstructionProperties(duration=50) for x in range(4)} ) target.add_instruction( YGate(), {(x,): InstructionProperties(duration=50) for x in range(4)} ) target.add_instruction( UGate(Parameter("theta"), Parameter("phi"), Parameter("lambda")), {(x,): InstructionProperties(duration=100) for x in range(4)}, ) target.add_instruction( RXGate(Parameter("theta")), {(x,): InstructionProperties(duration=100) for x in range(4)}, ) target.add_instruction( Measure(), {(x,): InstructionProperties(duration=1000) for x in range(4)} ) target.add_instruction( Reset(), {(x,): InstructionProperties(duration=1500) for x in range(4)} ) target.add_instruction(Delay(Parameter("t")), {(x,): None for x in range(4)}) dd_sequence = [XGate(), XGate()] pm = PassManager( [ ALAPScheduleAnalysis(target=target), PadDynamicalDecoupling(target=target, dd_sequence=dd_sequence), ] ) ghz4_dd = pm.run(self.ghz4) expected = self.ghz4.copy() expected = expected.compose(Delay(50), [1], front=True) expected = expected.compose(Delay(750), [2], front=True) expected = expected.compose(Delay(950), [3], front=True) expected = expected.compose(Delay(100), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(200), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(100), [0]) expected = expected.compose(Delay(50), [1]) expected = expected.compose(XGate(), [1]) expected = expected.compose(Delay(100), [1]) expected = expected.compose(XGate(), [1]) expected = expected.compose(Delay(50), [1]) self.assertEqual(ghz4_dd, expected) def test_insert_dd_ghz_one_qubit(self): """Test DD gates are inserted on only one qubit. ┌───┐ ┌────────────────┐ ┌───┐ » q_0: ──────┤ H ├─────────■──┤ Delay(100[dt]) ├──────┤ X ├───────» ┌─────┴───┴─────┐ ┌─┴─┐└────────────────┘┌─────┴───┴──────┐» q_1: ┤ Delay(50[dt]) ├─┤ X ├────────■─────────┤ Delay(300[dt]) ├» ├───────────────┴┐└───┘ ┌─┴─┐ └────────────────┘» q_2: ┤ Delay(750[dt]) ├───────────┤ X ├───────────────■─────────» ├────────────────┤ └───┘ ┌─┴─┐ » q_3: ┤ Delay(950[dt]) ├─────────────────────────────┤ X ├───────» └────────────────┘ └───┘ » meas: 4/═══════════════════════════════════════════════════════════» » « ┌────────────────┐┌───┐┌────────────────┐ ░ ┌─┐ « q_0: ┤ Delay(200[dt]) ├┤ X ├┤ Delay(100[dt]) ├─░─┤M├───────── « └────────────────┘└───┘└────────────────┘ ░ └╥┘┌─┐ « q_1: ──────────────────────────────────────────░──╫─┤M├────── « ░ ║ └╥┘┌─┐ « q_2: ──────────────────────────────────────────░──╫──╫─┤M├─── « ░ ║ ║ └╥┘┌─┐ « q_3: ──────────────────────────────────────────░──╫──╫──╫─┤M├ « ░ ║ ║ ║ └╥┘ «meas: 4/═════════════════════════════════════════════╩══╩══╩══╩═ « 0 1 2 3 """ dd_sequence = [XGate(), XGate()] pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence, qubits=[0]), ] ) ghz4_dd = pm.run(self.ghz4.measure_all(inplace=False)) expected = self.ghz4.copy() expected = expected.compose(Delay(50), [1], front=True) expected = expected.compose(Delay(750), [2], front=True) expected = expected.compose(Delay(950), [3], front=True) expected = expected.compose(Delay(100), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(200), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(100), [0]) expected = expected.compose(Delay(300), [1]) expected.measure_all() self.assertEqual(ghz4_dd, expected) def test_insert_dd_ghz_everywhere(self): """Test DD gates even on initial idle spots. ┌───┐ ┌────────────────┐┌───┐┌────────────────┐┌───┐» q_0: ──────┤ H ├─────────■──┤ Delay(100[dt]) ├┤ Y ├┤ Delay(200[dt]) ├┤ Y ├» ┌─────┴───┴─────┐ ┌─┴─┐└────────────────┘└───┘└────────────────┘└───┘» q_1: ┤ Delay(50[dt]) ├─┤ X ├───────────────────────────────────────────■──» ├───────────────┴┐├───┤┌────────────────┐┌───┐┌────────────────┐┌─┴─┐» q_2: ┤ Delay(162[dt]) ├┤ Y ├┤ Delay(326[dt]) ├┤ Y ├┤ Delay(162[dt]) ├┤ X ├» ├────────────────┤├───┤├────────────────┤├───┤├────────────────┤└───┘» q_3: ┤ Delay(212[dt]) ├┤ Y ├┤ Delay(426[dt]) ├┤ Y ├┤ Delay(212[dt]) ├─────» └────────────────┘└───┘└────────────────┘└───┘└────────────────┘ » « ┌────────────────┐ «q_0: ┤ Delay(100[dt]) ├───────────────────────────────────────────── « ├───────────────┬┘┌───┐┌────────────────┐┌───┐┌───────────────┐ «q_1: ┤ Delay(50[dt]) ├─┤ Y ├┤ Delay(100[dt]) ├┤ Y ├┤ Delay(50[dt]) ├ « └───────────────┘ └───┘└────────────────┘└───┘└───────────────┘ «q_2: ────────■────────────────────────────────────────────────────── « ┌─┴─┐ «q_3: ──────┤ X ├──────────────────────────────────────────────────── « └───┘ """ dd_sequence = [YGate(), YGate()] pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence, skip_reset_qubits=False), ] ) ghz4_dd = pm.run(self.ghz4) expected = self.ghz4.copy() expected = expected.compose(Delay(50), [1], front=True) expected = expected.compose(Delay(162), [2], front=True) expected = expected.compose(YGate(), [2], front=True) expected = expected.compose(Delay(326), [2], front=True) expected = expected.compose(YGate(), [2], front=True) expected = expected.compose(Delay(162), [2], front=True) expected = expected.compose(Delay(212), [3], front=True) expected = expected.compose(YGate(), [3], front=True) expected = expected.compose(Delay(426), [3], front=True) expected = expected.compose(YGate(), [3], front=True) expected = expected.compose(Delay(212), [3], front=True) expected = expected.compose(Delay(100), [0]) expected = expected.compose(YGate(), [0]) expected = expected.compose(Delay(200), [0]) expected = expected.compose(YGate(), [0]) expected = expected.compose(Delay(100), [0]) expected = expected.compose(Delay(50), [1]) expected = expected.compose(YGate(), [1]) expected = expected.compose(Delay(100), [1]) expected = expected.compose(YGate(), [1]) expected = expected.compose(Delay(50), [1]) self.assertEqual(ghz4_dd, expected) def test_insert_dd_ghz_xy4(self): """Test XY4 sequence of DD gates. ┌───┐ ┌───────────────┐ ┌───┐ ┌───────────────┐» q_0: ──────┤ H ├─────────■──┤ Delay(37[dt]) ├──────┤ X ├──────┤ Delay(75[dt]) ├» ┌─────┴───┴─────┐ ┌─┴─┐└───────────────┘┌─────┴───┴─────┐└─────┬───┬─────┘» q_1: ┤ Delay(50[dt]) ├─┤ X ├────────■────────┤ Delay(12[dt]) ├──────┤ X ├──────» ├───────────────┴┐└───┘ ┌─┴─┐ └───────────────┘ └───┘ » q_2: ┤ Delay(750[dt]) ├───────────┤ X ├──────────────■─────────────────────────» ├────────────────┤ └───┘ ┌─┴─┐ » q_3: ┤ Delay(950[dt]) ├────────────────────────────┤ X ├───────────────────────» └────────────────┘ └───┘ » « ┌───┐ ┌───────────────┐ ┌───┐ ┌───────────────┐» «q_0: ──────┤ Y ├──────┤ Delay(76[dt]) ├──────┤ X ├──────┤ Delay(75[dt]) ├» « ┌─────┴───┴─────┐└─────┬───┬─────┘┌─────┴───┴─────┐└─────┬───┬─────┘» «q_1: ┤ Delay(25[dt]) ├──────┤ Y ├──────┤ Delay(26[dt]) ├──────┤ X ├──────» « └───────────────┘ └───┘ └───────────────┘ └───┘ » «q_2: ────────────────────────────────────────────────────────────────────» « » «q_3: ────────────────────────────────────────────────────────────────────» « » « ┌───┐ ┌───────────────┐ «q_0: ──────┤ Y ├──────┤ Delay(37[dt]) ├───────────────── « ┌─────┴───┴─────┐└─────┬───┬─────┘┌───────────────┐ «q_1: ┤ Delay(25[dt]) ├──────┤ Y ├──────┤ Delay(12[dt]) ├ « └───────────────┘ └───┘ └───────────────┘ «q_2: ─────────────────────────────────────────────────── « «q_3: ─────────────────────────────────────────────────── """ dd_sequence = [XGate(), YGate(), XGate(), YGate()] pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence), ] ) ghz4_dd = pm.run(self.ghz4) expected = self.ghz4.copy() expected = expected.compose(Delay(50), [1], front=True) expected = expected.compose(Delay(750), [2], front=True) expected = expected.compose(Delay(950), [3], front=True) expected = expected.compose(Delay(37), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(75), [0]) expected = expected.compose(YGate(), [0]) expected = expected.compose(Delay(76), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(75), [0]) expected = expected.compose(YGate(), [0]) expected = expected.compose(Delay(37), [0]) expected = expected.compose(Delay(12), [1]) expected = expected.compose(XGate(), [1]) expected = expected.compose(Delay(25), [1]) expected = expected.compose(YGate(), [1]) expected = expected.compose(Delay(26), [1]) expected = expected.compose(XGate(), [1]) expected = expected.compose(Delay(25), [1]) expected = expected.compose(YGate(), [1]) expected = expected.compose(Delay(12), [1]) self.assertEqual(ghz4_dd, expected) def test_insert_midmeas_hahn_alap(self): """Test a single X gate as Hahn echo can absorb in the downstream circuit. global phase: 3π/2 ┌────────────────┐ ┌───┐ ┌────────────────┐» q_0: ────────■─────────┤ Delay(625[dt]) ├───────┤ X ├───────┤ Delay(625[dt]) ├» ┌─┴─┐ └────────────────┘┌──────┴───┴──────┐└────────────────┘» q_1: ──────┤ X ├───────────────■─────────┤ Delay(1000[dt]) ├────────■─────────» ┌─────┴───┴──────┐ ┌─┴─┐ └───────┬─┬───────┘ ┌─┴─┐ » q_2: ┤ Delay(700[dt]) ├──────┤ X ├───────────────┤M├──────────────┤ X ├───────» └────────────────┘ └───┘ └╥┘ └───┘ » c: 1/═════════════════════════════════════════════╩═══════════════════════════» 0 » « ┌───────────────┐ «q_0: ┤ U(0,π/2,-π/2) ├───■── « └───────────────┘ ┌─┴─┐ «q_1: ──────────────────┤ X ├ « ┌────────────────┐└───┘ «q_2: ┤ Delay(700[dt]) ├───── « └────────────────┘ «c: 1/═══════════════════════ """ dd_sequence = [XGate()] pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence), ] ) midmeas_dd = pm.run(self.midmeas) combined_u = UGate(0, -pi / 2, pi / 2) expected = QuantumCircuit(3, 1) expected.cx(0, 1) expected.delay(625, 0) expected.x(0) expected.delay(625, 0) expected.compose(combined_u, [0], inplace=True) expected.delay(700, 2) expected.cx(1, 2) expected.delay(1000, 1) expected.measure(2, 0) expected.cx(1, 2) expected.cx(0, 1) expected.delay(700, 2) expected.global_phase = pi / 2 self.assertEqual(midmeas_dd, expected) # check the absorption into U was done correctly self.assertEqual(Operator(combined_u), Operator(XGate()) & Operator(XGate())) def test_insert_midmeas_hahn_asap(self): """Test a single X gate as Hahn echo can absorb in the upstream circuit. ┌──────────────────┐ ┌────────────────┐┌─────────┐» q_0: ────────■─────────┤ U(3π/4,-π/2,π/2) ├─┤ Delay(600[dt]) ├┤ Rx(π/4) ├» ┌─┴─┐ └──────────────────┘┌┴────────────────┤└─────────┘» q_1: ──────┤ X ├────────────────■──────────┤ Delay(1000[dt]) ├─────■─────» ┌─────┴───┴──────┐ ┌─┴─┐ └───────┬─┬───────┘ ┌─┴─┐ » q_2: ┤ Delay(700[dt]) ├───────┤ X ├────────────────┤M├───────────┤ X ├───» └────────────────┘ └───┘ └╥┘ └───┘ » c: 1/═══════════════════════════════════════════════╩════════════════════» 0 » « ┌────────────────┐ «q_0: ┤ Delay(600[dt]) ├──■── « └────────────────┘┌─┴─┐ «q_1: ──────────────────┤ X ├ « ┌────────────────┐└───┘ «q_2: ┤ Delay(700[dt]) ├───── « └────────────────┘ «c: 1/═══════════════════════ « """ dd_sequence = [RXGate(pi / 4)] pm = PassManager( [ ASAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence), ] ) midmeas_dd = pm.run(self.midmeas) combined_u = UGate(3 * pi / 4, -pi / 2, pi / 2) expected = QuantumCircuit(3, 1) expected.cx(0, 1) expected.compose(combined_u, [0], inplace=True) expected.delay(600, 0) expected.rx(pi / 4, 0) expected.delay(600, 0) expected.delay(700, 2) expected.cx(1, 2) expected.delay(1000, 1) expected.measure(2, 0) expected.cx(1, 2) expected.cx(0, 1) expected.delay(700, 2) self.assertEqual(midmeas_dd, expected) # check the absorption into U was done correctly self.assertTrue( Operator(XGate()).equiv( Operator(UGate(3 * pi / 4, -pi / 2, pi / 2)) & Operator(RXGate(pi / 4)) ) ) def test_insert_ghz_uhrig(self): """Test custom spacing (following Uhrig DD [1]). [1] Uhrig, G. "Keeping a quantum bit alive by optimized π-pulse sequences." Physical Review Letters 98.10 (2007): 100504. ┌───┐ ┌──────────────┐ ┌───┐ ┌──────────────┐┌───┐» q_0: ──────┤ H ├─────────■──┤ Delay(3[dt]) ├──────┤ X ├───────┤ Delay(8[dt]) ├┤ X ├» ┌─────┴───┴─────┐ ┌─┴─┐└──────────────┘┌─────┴───┴──────┐└──────────────┘└───┘» q_1: ┤ Delay(50[dt]) ├─┤ X ├───────■────────┤ Delay(300[dt]) ├─────────────────────» ├───────────────┴┐└───┘ ┌─┴─┐ └────────────────┘ » q_2: ┤ Delay(750[dt]) ├──────────┤ X ├──────────────■──────────────────────────────» ├────────────────┤ └───┘ ┌─┴─┐ » q_3: ┤ Delay(950[dt]) ├───────────────────────────┤ X ├────────────────────────────» └────────────────┘ └───┘ » « ┌───────────────┐┌───┐┌───────────────┐┌───┐┌───────────────┐┌───┐┌───────────────┐» «q_0: ┤ Delay(13[dt]) ├┤ X ├┤ Delay(16[dt]) ├┤ X ├┤ Delay(20[dt]) ├┤ X ├┤ Delay(16[dt]) ├» « └───────────────┘└───┘└───────────────┘└───┘└───────────────┘└───┘└───────────────┘» «q_1: ───────────────────────────────────────────────────────────────────────────────────» « » «q_2: ───────────────────────────────────────────────────────────────────────────────────» « » «q_3: ───────────────────────────────────────────────────────────────────────────────────» « » « ┌───┐┌───────────────┐┌───┐┌──────────────┐┌───┐┌──────────────┐ «q_0: ┤ X ├┤ Delay(13[dt]) ├┤ X ├┤ Delay(8[dt]) ├┤ X ├┤ Delay(3[dt]) ├ « └───┘└───────────────┘└───┘└──────────────┘└───┘└──────────────┘ «q_1: ──────────────────────────────────────────────────────────────── « «q_2: ──────────────────────────────────────────────────────────────── « «q_3: ──────────────────────────────────────────────────────────────── « """ n = 8 dd_sequence = [XGate()] * n # uhrig specifies the location of the k'th pulse def uhrig(k): return np.sin(np.pi * (k + 1) / (2 * n + 2)) ** 2 # convert that to spacing between pulses (whatever finite duration pulses have) spacing = [] for k in range(n): spacing.append(uhrig(k) - sum(spacing)) spacing.append(1 - sum(spacing)) pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence, qubits=[0], spacing=spacing), ] ) ghz4_dd = pm.run(self.ghz4) expected = self.ghz4.copy() expected = expected.compose(Delay(50), [1], front=True) expected = expected.compose(Delay(750), [2], front=True) expected = expected.compose(Delay(950), [3], front=True) expected = expected.compose(Delay(3), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(8), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(13), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(16), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(20), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(16), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(13), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(8), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(3), [0]) expected = expected.compose(Delay(300), [1]) self.assertEqual(ghz4_dd, expected) def test_asymmetric_xy4_in_t2(self): """Test insertion of XY4 sequence with unbalanced spacing. global phase: π ┌───┐┌───┐┌────────────────┐┌───┐┌────────────────┐┌───┐┌────────────────┐» q_0: ┤ H ├┤ X ├┤ Delay(450[dt]) ├┤ Y ├┤ Delay(450[dt]) ├┤ X ├┤ Delay(450[dt]) ├» └───┘└───┘└────────────────┘└───┘└────────────────┘└───┘└────────────────┘» « ┌───┐┌────────────────┐┌───┐ «q_0: ┤ Y ├┤ Delay(450[dt]) ├┤ H ├ « └───┘└────────────────┘└───┘ """ dd_sequence = [XGate(), YGate()] * 2 spacing = [0] + [1 / 4] * 4 pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence, spacing=spacing), ] ) t2 = QuantumCircuit(1) t2.h(0) t2.delay(2000, 0) t2.h(0) expected = QuantumCircuit(1) expected.h(0) expected.x(0) expected.delay(450, 0) expected.y(0) expected.delay(450, 0) expected.x(0) expected.delay(450, 0) expected.y(0) expected.delay(450, 0) expected.h(0) expected.global_phase = pi t2_dd = pm.run(t2) self.assertEqual(t2_dd, expected) # check global phase is correct self.assertEqual(Operator(t2), Operator(expected)) def test_dd_after_reset(self): """Test skip_reset_qubits option works. ┌─────────────────┐┌───┐┌────────────────┐┌───┐┌─────────────────┐» q_0: ─|0>─┤ Delay(1000[dt]) ├┤ H ├┤ Delay(190[dt]) ├┤ X ├┤ Delay(1710[dt]) ├» └─────────────────┘└───┘└────────────────┘└───┘└─────────────────┘» « ┌───┐┌───┐ «q_0: ┤ X ├┤ H ├ « └───┘└───┘ """ dd_sequence = [XGate(), XGate()] spacing = [0.1, 0.9] pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling( self.durations, dd_sequence, spacing=spacing, skip_reset_qubits=True ), ] ) t2 = QuantumCircuit(1) t2.reset(0) t2.delay(1000) t2.h(0) t2.delay(2000, 0) t2.h(0) expected = QuantumCircuit(1) expected.reset(0) expected.delay(1000) expected.h(0) expected.delay(190, 0) expected.x(0) expected.delay(1710, 0) expected.x(0) expected.h(0) t2_dd = pm.run(t2) self.assertEqual(t2_dd, expected) def test_insert_dd_bad_sequence(self): """Test DD raises when non-identity sequence is inserted.""" dd_sequence = [XGate(), YGate()] pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence), ] ) with self.assertRaises(TranspilerError): pm.run(self.ghz4) @data(0.5, 1.5) def test_dd_with_calibrations_with_parameters(self, param_value): """Check that calibrations in a circuit with parameters work fine.""" circ = QuantumCircuit(2) circ.x(0) circ.cx(0, 1) circ.rx(param_value, 1) rx_duration = int(param_value * 1000) with pulse.build() as rx: pulse.play(pulse.Gaussian(rx_duration, 0.1, rx_duration // 4), pulse.DriveChannel(1)) circ.add_calibration("rx", (1,), rx, params=[param_value]) durations = InstructionDurations([("x", None, 100), ("cx", None, 300)]) dd_sequence = [XGate(), XGate()] pm = PassManager( [ALAPScheduleAnalysis(durations), PadDynamicalDecoupling(durations, dd_sequence)] ) self.assertEqual(pm.run(circ).duration, rx_duration + 100 + 300) def test_insert_dd_ghz_xy4_with_alignment(self): """Test DD with pulse alignment constraints. ┌───┐ ┌───────────────┐ ┌───┐ ┌───────────────┐» q_0: ──────┤ H ├─────────■──┤ Delay(40[dt]) ├──────┤ X ├──────┤ Delay(70[dt]) ├» ┌─────┴───┴─────┐ ┌─┴─┐└───────────────┘┌─────┴───┴─────┐└─────┬───┬─────┘» q_1: ┤ Delay(50[dt]) ├─┤ X ├────────■────────┤ Delay(20[dt]) ├──────┤ X ├──────» ├───────────────┴┐└───┘ ┌─┴─┐ └───────────────┘ └───┘ » q_2: ┤ Delay(750[dt]) ├───────────┤ X ├──────────────■─────────────────────────» ├────────────────┤ └───┘ ┌─┴─┐ » q_3: ┤ Delay(950[dt]) ├────────────────────────────┤ X ├───────────────────────» └────────────────┘ └───┘ » « ┌───┐ ┌───────────────┐ ┌───┐ ┌───────────────┐» «q_0: ──────┤ Y ├──────┤ Delay(70[dt]) ├──────┤ X ├──────┤ Delay(70[dt]) ├» « ┌─────┴───┴─────┐└─────┬───┬─────┘┌─────┴───┴─────┐└─────┬───┬─────┘» «q_1: ┤ Delay(20[dt]) ├──────┤ Y ├──────┤ Delay(20[dt]) ├──────┤ X ├──────» « └───────────────┘ └───┘ └───────────────┘ └───┘ » «q_2: ────────────────────────────────────────────────────────────────────» « » «q_3: ────────────────────────────────────────────────────────────────────» « » « ┌───┐ ┌───────────────┐ «q_0: ──────┤ Y ├──────┤ Delay(50[dt]) ├───────────────── « ┌─────┴───┴─────┐└─────┬───┬─────┘┌───────────────┐ «q_1: ┤ Delay(20[dt]) ├──────┤ Y ├──────┤ Delay(20[dt]) ├ « └───────────────┘ └───┘ └───────────────┘ «q_2: ─────────────────────────────────────────────────── « «q_3: ─────────────────────────────────────────────────── « """ dd_sequence = [XGate(), YGate(), XGate(), YGate()] pm = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling( self.durations, dd_sequence, pulse_alignment=10, extra_slack_distribution="edges", ), ] ) ghz4_dd = pm.run(self.ghz4) expected = self.ghz4.copy() expected = expected.compose(Delay(50), [1], front=True) expected = expected.compose(Delay(750), [2], front=True) expected = expected.compose(Delay(950), [3], front=True) expected = expected.compose(Delay(40), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(70), [0]) expected = expected.compose(YGate(), [0]) expected = expected.compose(Delay(70), [0]) expected = expected.compose(XGate(), [0]) expected = expected.compose(Delay(70), [0]) expected = expected.compose(YGate(), [0]) expected = expected.compose(Delay(50), [0]) expected = expected.compose(Delay(20), [1]) expected = expected.compose(XGate(), [1]) expected = expected.compose(Delay(20), [1]) expected = expected.compose(YGate(), [1]) expected = expected.compose(Delay(20), [1]) expected = expected.compose(XGate(), [1]) expected = expected.compose(Delay(20), [1]) expected = expected.compose(YGate(), [1]) expected = expected.compose(Delay(20), [1]) self.assertEqual(ghz4_dd, expected) def test_dd_can_sequentially_called(self): """Test if sequentially called DD pass can output the same circuit. This test verifies: - if global phase is properly propagated from the previous padding node. - if node_start_time property is properly updated for new dag circuit. """ dd_sequence = [XGate(), YGate(), XGate(), YGate()] pm1 = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence, qubits=[0]), PadDynamicalDecoupling(self.durations, dd_sequence, qubits=[1]), ] ) circ1 = pm1.run(self.ghz4) pm2 = PassManager( [ ALAPScheduleAnalysis(self.durations), PadDynamicalDecoupling(self.durations, dd_sequence, qubits=[0, 1]), ] ) circ2 = pm2.run(self.ghz4) self.assertEqual(circ1, circ2) def test_respect_target_instruction_constraints(self): """Test if DD pass does not pad delays for qubits that do not support delay instructions and does not insert DD gates for qubits that do not support necessary gates. See: https://github.com/Qiskit/qiskit-terra/issues/9993 """ qc = QuantumCircuit(3) qc.cx(0, 1) qc.cx(1, 2) target = Target(dt=1) # Y is partially supported (not supported on qubit 2) target.add_instruction( XGate(), {(q,): InstructionProperties(duration=100) for q in range(2)} ) target.add_instruction( CXGate(), { (0, 1): InstructionProperties(duration=1000), (1, 2): InstructionProperties(duration=1000), }, ) # delays are not supported # No DD instructions nor delays are padded due to no delay support in the target pm_xx = PassManager( [ ALAPScheduleAnalysis(target=target), PadDynamicalDecoupling(dd_sequence=[XGate(), XGate()], target=target), ] ) scheduled = pm_xx.run(qc) self.assertEqual(qc, scheduled) # Fails since Y is not supported in the target with self.assertRaises(TranspilerError): PassManager( [ ALAPScheduleAnalysis(target=target), PadDynamicalDecoupling( dd_sequence=[XGate(), YGate(), XGate(), YGate()], target=target ), ] ) # Add delay support to the target target.add_instruction(Delay(Parameter("t")), {(q,): None for q in range(3)}) # No error but no DD on qubit 2 (just delay is padded) since X is not supported on it scheduled = pm_xx.run(qc) expected = QuantumCircuit(3) expected.delay(1000, [2]) expected.cx(0, 1) expected.cx(1, 2) expected.delay(200, [0]) expected.x([0]) expected.delay(400, [0]) expected.x([0]) expected.delay(200, [0]) self.assertEqual(expected, scheduled) if __name__ == "__main__": unittest.main()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.providers.fake_provider import FakeManilaV2 from qiskit import transpile from qiskit.tools.visualization import plot_histogram # Get a fake backend from the fake provider backend = FakeManilaV2() # Create a simple circuit circuit = QuantumCircuit(3) circuit.h(0) circuit.cx(0,1) circuit.cx(0,2) circuit.measure_all() circuit.draw('mpl') # Transpile the ideal circuit to a circuit that can be directly executed by the backend transpiled_circuit = transpile(circuit, backend) transpiled_circuit.draw('mpl') # Run the transpiled circuit using the simulated fake backend job = backend.run(transpiled_circuit) counts = job.result().get_counts() plot_histogram(counts)
https://github.com/qiskit-community/qiskit-alt
qiskit-community
import qiskit_alt qiskit_alt.project.ensure_init(calljulia="pyjulia", compile=False, depot=True) julia = qiskit_alt.project.julia julia.Main.zeros(10) from qiskit_nature.drivers import UnitsType, Molecule from qiskit_nature.drivers.second_quantization import ElectronicStructureDriverType, ElectronicStructureMoleculeDriver # Specify the geometry of the H_2 molecule geometry = [['H', [0., 0., 0.]], ['H', [0., 0., 0.735]]] basis = 'sto3g' molecule = Molecule(geometry=geometry, charge=0, multiplicity=1) driver = ElectronicStructureMoleculeDriver(molecule, basis=basis, driver_type=ElectronicStructureDriverType.PYSCF) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper es_problem = ElectronicStructureProblem(driver) second_q_op = es_problem.second_q_ops() fermionic_hamiltonian = second_q_op[0] qubit_converter = QubitConverter(mapper=JordanWignerMapper()) nature_qubit_op = qubit_converter.convert(fermionic_hamiltonian) nature_qubit_op.primitive import qiskit_alt.electronic_structure fermi_op = qiskit_alt.electronic_structure.fermionic_hamiltonian(geometry, basis) pauli_op = qiskit_alt.electronic_structure.jordan_wigner(fermi_op) pauli_op.simplify() # The Julia Pauli operators use a different sorting convention; we sort again for comparison. %run ../bench/jordan_wigner_nature_time.py nature_times %run ../bench/jordan_wigner_alt_time.py alt_times [t_nature / t_qk_alt for t_nature, t_qk_alt in zip(nature_times, alt_times)] %run ../bench/fermionic_nature_time.py nature_times %run ../bench/fermionic_alt_time.py alt_times [t_nature / t_qk_alt for t_nature, t_qk_alt in zip(nature_times, alt_times)] from qiskit_alt.pauli_operators import QuantumOps, PauliSum_to_SparsePauliOp import numpy as np m = np.random.rand(2**3, 2**3) # 3-qubit operator pauli_sum = QuantumOps.PauliSum(m) # This is a wrapped Julia object PauliSum_to_SparsePauliOp(pauli_sum) # Convert to qiskit.quantum_info.SparsePauliOp %run ../bench/from_matrix_quantum_info.py %run ../bench/from_matrix_alt.py [t_pyqk / t_qk_alt for t_pyqk, t_qk_alt in zip(pyqk_times, qk_alt_times)] %run ../bench/pauli_from_list_qinfo.py %run ../bench/pauli_from_list_alt.py [x / y for x,y in zip(quantum_info_times, qkalt_times)] %load_ext julia.magic %julia using Random: randstring %julia pauli_strings = [randstring("IXYZ", 10) for _ in 1:1000] None; %julia import Pkg; Pkg.add("BenchmarkTools") %julia using BenchmarkTools: @btime %julia @btime QuantumOps.PauliSum($pauli_strings) None; %julia pauli_sum = QuantumOps.PauliSum(pauli_strings); %julia println(length(pauli_sum)) %julia println(pauli_sum[1]) 6.9 * 2.29 / .343 # Ratio of time to construct PauliSum via qiskit_alt to time in pure Julia import qiskit.tools.jupyter d = qiskit.__qiskit_version__._version_dict d['qiskit_alt'] = qiskit_alt.__version__ %qiskit_version_table
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.dagcircuit import DAGCircuit from qiskit.converters import circuit_to_dag from qiskit.circuit.library.standard_gates import CHGate, U2Gate, CXGate from qiskit.converters import dag_to_circuit q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.measure(q[0], c[0]) circ.rz(0.5, q[1]).c_if(c, 2) dag = circuit_to_dag(circ) circuit = dag_to_circuit(dag) circuit.draw('mpl')
https://github.com/COFAlumni-USB/qiskit-fall-2022
COFAlumni-USB
import numpy as np import math import qiskit as qiskit from numpy import sqrt from random import randint from qiskit import * from qiskit import Aer, QuantumCircuit, IBMQ, execute, quantum_info, transpile from qiskit.visualization import plot_state_city, plot_bloch_multivector from qiskit.visualization import plot_histogram from qiskit.tools import job_monitor from qiskit.providers.fake_provider import FakeOpenPulse2Q, FakeOpenPulse3Q, FakeManila, FakeValencia, FakeHanoi from qiskit import pulse, transpile from qiskit.pulse.library import Gaussian #Compuertas personalizadas from qiskit.circuit import Gate from qiskit import QiskitError #informacion import qiskit.tools.jupyter provider = IBMQ.load_account() belem = provider.get_backend('ibmq_belem') print('se ha ejecutado correctamente') def SoQ_Grover_0(qc, x_qubit_0,x_qubit_1,y_qubit): qc.ccx(x_qubit_0,x_qubit_1,y_qubit) return qc def SoQ_Grover_1(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_0) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_0) return qc def SoQ_Grover_2(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_1) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_1) return qc def SoQ_Grover_3(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_0) qc.x(x_qubit_1) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_0) qc.x(x_qubit_1) return qc def random_oracle(qc, x_qubit_0,x_qubit_1,y_qubit): rand=randint(0,3) if rand==3: SoQ_Grover_0(qc, x_qubit_0,x_qubit_1,y_qubit) elif rand==2: SoQ_Grover_1(qc, x_qubit_0,x_qubit_1,y_qubit) elif rand==1: SoQ_Grover_2(qc, x_qubit_0,x_qubit_1,y_qubit) else: SoQ_Grover_3(qc, x_qubit_0,x_qubit_1,y_qubit) return qc def Grover_Iteration(qc, x_qubit_0,x_qubit_1): qc.h(range(2)) qc.x(range(2)) qc.h(x_qubit_1) qc.cx(x_qubit_0,x_qubit_1) qc.h(x_qubit_1) qc.x(range(2)) qc.h(range(2)) return qc print('se ha ejecutado correctamente') #Simulador de prueba FakeManila backend = FakeManila() x_register=2 y_register=1 measure_register=2 y_position=x_register+y_register-1 circ = QuantumCircuit(x_register+y_register,measure_register) circ.x(y_position) circ.barrier() circ.h(range(x_register+y_register)) circ.barrier() random_oracle(circ, 0,1,2) circ.barrier() Grover_Iteration(circ, 0,1) circ.measure(range(x_register),range(measure_register)) circ.draw('mpl') result = execute(circ, backend=FakeManila()).result(); job = backend.run(circ) counts = job.result().get_counts() plot_histogram(counts) backend = FakeManila(); with pulse.build(backend, name='hadamard') as h_q0: pulse.play(Gaussian(duration=100, amp=0.1, sigma=3), pulse.drive_channel(0)) h_q0.draw() backend = FakeManila(); with pulse.build(backend, name='hadamard') as h_q0: pulse.play(Gaussian(duration=100, amp=0.1, sigma=33.33), pulse.drive_channel(0)) h_q0.draw() circ.add_calibration( 'h', [0], h_q0) circ.add_calibration( 'x', [0], h_q0) circ.add_calibration( 'cx',[0], h_q0) circ.add_calibration( 'sx',[0], h_q0) circ.add_calibration( 'id',[0], h_q0) circ.add_calibration( 'rz',[0], h_q0) circ.add_calibration( 'reset',[0], h_q0) backend = FakeManila() circ1 = transpile(circ, backend) print(backend.configuration().basis_gates) circ1.draw('mpl', idle_wires=False) result = execute(circ1, backend=FakeManila()).result(); job = backend.run(circ1) counts = job.result().get_counts() plot_histogram(counts) def SoQ_Grover_0(qc, x_qubit_0,x_qubit_1,y_qubit): qc.ccx(x_qubit_0,x_qubit_1,y_qubit) return qc def SoQ_Grover_1(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_0) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_0) return qc def SoQ_Grover_2(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_1) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_1) return qc def SoQ_Grover_3(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_0) qc.x(x_qubit_1) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_0) qc.x(x_qubit_1) return qc def random_oracle(qc, x_qubit_0,x_qubit_1,y_qubit): rand=randint(0,3) if rand==3: SoQ_Grover_0(qc, x_qubit_0,x_qubit_1,y_qubit) elif rand==2: SoQ_Grover_1(qc, x_qubit_0,x_qubit_1,y_qubit) elif rand==1: SoQ_Grover_2(qc, x_qubit_0,x_qubit_1,y_qubit) else: SoQ_Grover_3(qc, x_qubit_0,x_qubit_1,y_qubit) return qc def Grover_Iteration(qc, x_qubit_0,x_qubit_1): qc.h(range(2)) qc.x(range(2)) qc.h(x_qubit_1) qc.cx(x_qubit_0,x_qubit_1) qc.h(x_qubit_1) qc.x(range(2)) qc.h(range(2)) return qc print('se ha ejecutado correctamente') #Simulador de prueba FakeOpenPulse3Q backend = FakeOpenPulse3Q() x_register=2 y_register=1 measure_register=2 y_position=x_register+y_register-1 circ = QuantumCircuit(x_register+y_register,measure_register) circ.x(y_position) circ.barrier() circ.h(range(x_register+y_register)) circ.barrier() random_oracle(circ, 0,1,2) circ.barrier() Grover_Iteration(circ, 0,1) circ.measure(range(x_register),range(measure_register)) circ.draw('mpl') result = execute(circ, backend=FakeOpenPulse3Q()).result(); job = backend.run(circ) counts = job.result().get_counts() plot_histogram(counts) backend = FakeOpenPulse3Q(); with pulse.build(backend, name='hadamard') as h_q1: pulse.play(Gaussian(duration=100, amp=0.1, sigma=3), pulse.drive_channel(0)) h_q1.draw() backend = FakeOpenPulse3Q(); with pulse.build(backend, name='hadamard') as h_q1: pulse.play(Gaussian(duration=100, amp=0.1, sigma=33.33), pulse.drive_channel(0)) h_q1.draw() circ.add_calibration( 'h', [0], h_q1) circ.add_calibration( 'x', [0], h_q1) circ.add_calibration( 'cx',[0], h_q1) circ.add_calibration( 'sx',[0], h_q1) circ.add_calibration( 'id',[0], h_q1) circ.add_calibration( 'rz',[0], h_q1) circ.add_calibration( 'reset',[0], h_q1) backend = FakeOpenPulse3Q() circ2 = transpile(circ, backend) print(backend.configuration().basis_gates) circ2.draw('mpl', idle_wires=False) result = execute(circ2, backend=FakeOpenPulse3Q()).result(); job = backend.run(circ2) counts = job.result().get_counts() plot_histogram(counts) def SoQ_Grover_0(qc, x_qubit_0,x_qubit_1,y_qubit): qc.ccx(x_qubit_0,x_qubit_1,y_qubit) return qc def SoQ_Grover_1(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_0) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_0) return qc def SoQ_Grover_2(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_1) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_1) return qc def SoQ_Grover_3(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_0) qc.x(x_qubit_1) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_0) qc.x(x_qubit_1) return qc def random_oracle(qc, x_qubit_0,x_qubit_1,y_qubit): rand=randint(0,3) if rand==3: SoQ_Grover_0(qc, x_qubit_0,x_qubit_1,y_qubit) elif rand==2: SoQ_Grover_1(qc, x_qubit_0,x_qubit_1,y_qubit) elif rand==1: SoQ_Grover_2(qc, x_qubit_0,x_qubit_1,y_qubit) else: SoQ_Grover_3(qc, x_qubit_0,x_qubit_1,y_qubit) return qc def Grover_Iteration(qc, x_qubit_0,x_qubit_1): qc.h(range(2)) qc.x(range(2)) qc.h(x_qubit_1) qc.cx(x_qubit_0,x_qubit_1) qc.h(x_qubit_1) qc.x(range(2)) qc.h(range(2)) return qc print('se ha ejecutado correctamente') #Simulador de prueba FakeManila backend = FakeManila() x_register=2 y_register=1 measure_register=2 y_position=x_register+y_register-1 circ = QuantumCircuit(x_register+y_register,measure_register) circ.x(y_position) circ.barrier() circ.h(range(x_register+y_register)) circ.barrier() random_oracle(circ, 0,1,2) circ.barrier() Grover_Iteration(circ, 0,1) circ.measure(range(x_register),range(measure_register)) circ.draw('mpl') result = execute(circ, backend=FakeManila()).result(); job = backend.run(circ) counts = job.result().get_counts() plot_histogram(counts) backend = FakeManila(); with pulse.build(backend, name='hadamard') as h_q0: pulse.play(Gaussian(duration=100, amp=0.1, sigma=3), pulse.drive_channel(0)) h_q0.draw() backend = FakeManila(); with pulse.build(backend, name='hadamard') as h_q0: pulse.play(Gaussian(duration=50, amp=0.1, sigma=16.66), pulse.drive_channel(0)) h_q0.draw() circ.add_calibration( 'h', [0], h_q0) circ.add_calibration( 'x', [0], h_q0) circ.add_calibration( 'cx',[0], h_q0) circ.add_calibration( 'sx',[0], h_q0) circ.add_calibration( 'id',[0], h_q0) circ.add_calibration( 'rz',[0], h_q0) circ.add_calibration( 'reset',[0], h_q0) backend = FakeManila() circ1 = transpile(circ, backend) print(backend.configuration().basis_gates) circ1.draw('mpl', idle_wires=False) result = execute(circ1, backend=FakeManila()).result(); job = backend.run(circ1) counts = job.result().get_counts() plot_histogram(counts) def SoQ_Grover_0(qc, x_qubit_0,x_qubit_1,y_qubit): qc.ccx(x_qubit_0,x_qubit_1,y_qubit) return qc def SoQ_Grover_1(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_0) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_0) return qc def SoQ_Grover_2(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_1) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_1) return qc def SoQ_Grover_3(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_0) qc.x(x_qubit_1) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_0) qc.x(x_qubit_1) return qc def random_oracle(qc, x_qubit_0,x_qubit_1,y_qubit): rand=randint(0,3) if rand==3: SoQ_Grover_0(qc, x_qubit_0,x_qubit_1,y_qubit) elif rand==2: SoQ_Grover_1(qc, x_qubit_0,x_qubit_1,y_qubit) elif rand==1: SoQ_Grover_2(qc, x_qubit_0,x_qubit_1,y_qubit) else: SoQ_Grover_3(qc, x_qubit_0,x_qubit_1,y_qubit) return qc def Grover_Iteration(qc, x_qubit_0,x_qubit_1): qc.h(range(2)) qc.x(range(2)) qc.h(x_qubit_1) qc.cx(x_qubit_0,x_qubit_1) qc.h(x_qubit_1) qc.x(range(2)) qc.h(range(2)) return qc print('se ha ejecutado correctamente') #Simulador de prueba FakeOpenPulse3Q backend = FakeOpenPulse3Q() x_register=2 y_register=1 measure_register=2 y_position=x_register+y_register-1 circ = QuantumCircuit(x_register+y_register,measure_register) circ.x(y_position) circ.barrier() circ.h(range(x_register+y_register)) circ.barrier() random_oracle(circ, 0,1,2) circ.barrier() Grover_Iteration(circ, 0,1) circ.measure(range(x_register),range(measure_register)) circ.draw('mpl') result = execute(circ, backend=FakeOpenPulse3Q()).result(); job = backend.run(circ) counts = job.result().get_counts() plot_histogram(counts) backend = FakeOpenPulse3Q(); with pulse.build(backend, name='hadamard') as h_q1: pulse.play(Gaussian(duration=100, amp=0.1, sigma=3), pulse.drive_channel(0)) h_q1.draw() backend = FakeOpenPulse3Q(); with pulse.build(backend, name='hadamard') as h_q1: pulse.play(Gaussian(duration=50, amp=0.1, sigma=16.66), pulse.drive_channel(0)) h_q1.draw() circ.add_calibration( 'h', [0], h_q1) circ.add_calibration( 'x', [0], h_q1) circ.add_calibration( 'cx',[0], h_q1) circ.add_calibration( 'sx',[0], h_q1) circ.add_calibration( 'id',[0], h_q1) circ.add_calibration( 'rz',[0], h_q1) circ.add_calibration( 'reset',[0], h_q1) backend = FakeOpenPulse3Q() circ2 = transpile(circ, backend) print(backend.configuration().basis_gates) circ2.draw('mpl', idle_wires=False) result = execute(circ2, backend=FakeOpenPulse3Q()).result(); job = backend.run(circ2) counts = job.result().get_counts() plot_histogram(counts) def SoQ_Grover_0(qc, x_qubit_0,x_qubit_1,y_qubit): qc.ccx(x_qubit_0,x_qubit_1,y_qubit) return qc def SoQ_Grover_1(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_0) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_0) return qc def SoQ_Grover_2(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_1) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_1) return qc def SoQ_Grover_3(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_0) qc.x(x_qubit_1) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_0) qc.x(x_qubit_1) return qc def random_oracle(qc, x_qubit_0,x_qubit_1,y_qubit): rand=randint(0,3) if rand==3: SoQ_Grover_0(qc, x_qubit_0,x_qubit_1,y_qubit) elif rand==2: SoQ_Grover_1(qc, x_qubit_0,x_qubit_1,y_qubit) elif rand==1: SoQ_Grover_2(qc, x_qubit_0,x_qubit_1,y_qubit) else: SoQ_Grover_3(qc, x_qubit_0,x_qubit_1,y_qubit) return qc def Grover_Iteration(qc, x_qubit_0,x_qubit_1): qc.h(range(2)) qc.x(range(2)) qc.h(x_qubit_1) qc.cx(x_qubit_0,x_qubit_1) qc.h(x_qubit_1) qc.x(range(2)) qc.h(range(2)) return qc print('se ha ejecutado correctamente') #Simulador de prueba FakeManila backend = FakeManila() x_register=2 y_register=1 measure_register=2 y_position=x_register+y_register-1 circ = QuantumCircuit(x_register+y_register,measure_register) circ.x(y_position) circ.barrier() circ.h(range(x_register+y_register)) circ.barrier() random_oracle(circ, 0,1,2) circ.barrier() Grover_Iteration(circ, 0,1) circ.measure(range(x_register),range(measure_register)) circ.draw('mpl') result = execute(circ, backend=FakeManila()).result(); job = backend.run(circ) counts = job.result().get_counts() plot_histogram(counts) backend = FakeManila(); with pulse.build(backend, name='hadamard') as h_q0: pulse.play(Gaussian(duration=100, amp=0.1, sigma=3), pulse.drive_channel(0)) h_q0.draw() backend = FakeManila(); with pulse.build(backend, name='hadamard') as h_q0: pulse.play(Gaussian(duration=10, amp=0.1, sigma=3.33), pulse.drive_channel(0)) h_q0.draw() circ.add_calibration( 'h', [0], h_q0) circ.add_calibration( 'x', [0], h_q0) circ.add_calibration( 'cx',[0], h_q0) circ.add_calibration( 'sx',[0], h_q0) circ.add_calibration( 'id',[0], h_q0) circ.add_calibration( 'rz',[0], h_q0) circ.add_calibration( 'reset',[0], h_q0) backend = FakeManila() circ1 = transpile(circ, backend) print(backend.configuration().basis_gates) circ1.draw('mpl', idle_wires=False) result = execute(circ1, backend=FakeManila()).result(); job = backend.run(circ1) counts = job.result().get_counts() plot_histogram(counts) def SoQ_Grover_0(qc, x_qubit_0,x_qubit_1,y_qubit): qc.ccx(x_qubit_0,x_qubit_1,y_qubit) return qc def SoQ_Grover_1(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_0) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_0) return qc def SoQ_Grover_2(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_1) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_1) return qc def SoQ_Grover_3(qc, x_qubit_0,x_qubit_1,y_qubit): qc.x(x_qubit_0) qc.x(x_qubit_1) qc.ccx(x_qubit_0,x_qubit_1,y_qubit) qc.x(x_qubit_0) qc.x(x_qubit_1) return qc def random_oracle(qc, x_qubit_0,x_qubit_1,y_qubit): rand=randint(0,3) if rand==3: SoQ_Grover_0(qc, x_qubit_0,x_qubit_1,y_qubit) elif rand==2: SoQ_Grover_1(qc, x_qubit_0,x_qubit_1,y_qubit) elif rand==1: SoQ_Grover_2(qc, x_qubit_0,x_qubit_1,y_qubit) else: SoQ_Grover_3(qc, x_qubit_0,x_qubit_1,y_qubit) return qc def Grover_Iteration(qc, x_qubit_0,x_qubit_1): qc.h(range(2)) qc.x(range(2)) qc.h(x_qubit_1) qc.cx(x_qubit_0,x_qubit_1) qc.h(x_qubit_1) qc.x(range(2)) qc.h(range(2)) return qc print('se ha ejecutado correctamente') #Simulador de prueba FakeOpenPulse3Q backend = FakeOpenPulse3Q() x_register=2 y_register=1 measure_register=2 y_position=x_register+y_register-1 circ = QuantumCircuit(x_register+y_register,measure_register) circ.x(y_position) circ.barrier() circ.h(range(x_register+y_register)) circ.barrier() random_oracle(circ, 0,1,2) circ.barrier() Grover_Iteration(circ, 0,1) circ.measure(range(x_register),range(measure_register)) circ.draw('mpl') result = execute(circ, backend=FakeOpenPulse3Q()).result(); job = backend.run(circ) counts = job.result().get_counts() plot_histogram(counts) backend = FakeOpenPulse3Q(); with pulse.build(backend, name='hadamard') as h_q1: pulse.play(Gaussian(duration=100, amp=0.1, sigma=3), pulse.drive_channel(0)) h_q1.draw() backend = FakeOpenPulse3Q(); with pulse.build(backend, name='hadamard') as h_q1: pulse.play(Gaussian(duration=10, amp=1, sigma=3.33), pulse.drive_channel(0)) h_q1.draw() circ.add_calibration( 'h', [0], h_q1) circ.add_calibration( 'x', [0], h_q1) circ.add_calibration( 'cx',[0], h_q1) circ.add_calibration( 'sx',[0], h_q1) circ.add_calibration( 'id',[0], h_q1) circ.add_calibration( 'rz',[0], h_q1) circ.add_calibration( 'reset',[0], h_q1) backend = FakeOpenPulse3Q() circ2 = transpile(circ, backend) print(backend.configuration().basis_gates) circ2.draw('mpl', idle_wires=False) result = execute(circ2, backend=FakeOpenPulse3Q()).result(); job = backend.run(circ2) counts = job.result().get_counts() plot_histogram(counts)
https://github.com/kaelynj/Qiskit-HubbardModel
kaelynj
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ, BasicAer, QuantumRegister, ClassicalRegister from qiskit.compiler import transpile, assemble from qiskit.quantum_info import Operator from qiskit.tools.monitor import job_monitor from qiskit.tools.jupyter import * from qiskit.visualization import * import random as rand import scipy.linalg as la provider = IBMQ.load_account() import matplotlib.pyplot as plt import matplotlib.colors as mcolors import numpy as np from matplotlib import rcParams rcParams['text.usetex'] = True def reverse_list(s): temp_list = list(s) temp_list.reverse() return ''.join(temp_list) #Useful tool for converting an integer to a binary bit string def get_bin(x, n=0): """ Get the binary representation of x. Parameters: x (int), n (int, number of digits)""" binry = format(x, 'b').zfill(n) sup = list( reversed( binry[0:int(len(binry)/2)] ) ) sdn = list( reversed( binry[int(len(binry)/2):len(binry)] ) ) return format(x, 'b').zfill(n) #return ''.join(sup)+''.join(sdn) '''The task here is now to define a function which will either update a given circuit with a time-step or return a single gate which contains all the necessary components of a time-step''' #==========Needed Functions=============# #Function to apply a full set of time evolution gates to a given circuit def qc_evolve(qc, numsite, time, hop, U, trotter_steps): #Compute angles for the onsite and hopping gates # based on the model parameters t, U, and dt theta = hop*time/(2*trotter_slices) phi = U*time/(trotter_slices) numq = 2*numsite y_hop = Operator([[np.cos(theta), 0, 0, -1j*np.sin(theta)], [0, np.cos(theta), 1j*np.sin(theta), 0], [0, 1j*np.sin(theta), np.cos(theta), 0], [-1j*np.sin(theta), 0, 0, np.cos(theta)]]) x_hop = Operator([[np.cos(theta), 0, 0, 1j*np.sin(theta)], [0, np.cos(theta), 1j*np.sin(theta), 0], [0, 1j*np.sin(theta), np.cos(theta), 0], [1j*np.sin(theta), 0, 0, np.cos(theta)]]) z_onsite = Operator([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, np.exp(1j*phi)]]) #Loop over each time step needed and apply onsite and hopping gates for trot in range(trotter_steps): #Onsite Terms for i in range(0, numsite): qc.unitary(z_onsite, [i,i+numsite], label="Z_Onsite") #Add barrier to separate onsite from hopping terms qc.barrier() #Hopping terms for i in range(0,numsite-1): #Spin-up chain qc.unitary(y_hop, [i,i+1], label="YHop") qc.unitary(x_hop, [i,i+1], label="Xhop") #Spin-down chain qc.unitary(y_hop, [i+numsite, i+1+numsite], label="Xhop") qc.unitary(x_hop, [i+numsite, i+1+numsite], label="Xhop") #Add barrier after finishing the time step qc.barrier() #Measure the circuit for i in range(numq): qc.measure(i, i) #Function to run the circuit and store the counts for an evolution with # num_steps number of time steps. def sys_evolve(nsites, excitations, total_time, dt, hop, U, trotter_steps): #Check for correct data types if not isinstance(nsites, int): raise TypeError("Number of sites should be int") if np.isscalar(excitations): raise TypeError("Initial state should be list or numpy array") if not np.isscalar(total_time): raise TypeError("Evolution time should be scalar") if not np.isscalar(dt): raise TypeError("Time step should be scalar") if not np.isscalar(hop): raise TypeError("Hopping term should be scalar") if not np.isscalar(U): raise TypeError("Repulsion term should be scalar") if not isinstance(trotter_steps, int): raise TypeError("Number of trotter slices should be int") numq = 2*nsites num_steps = int(total_time/dt) print('Num Steps: ',num_steps) print('Total Time: ', total_time) data = np.zeros((2**numq, num_steps)) for t_step in range(0, num_steps): #Create circuit with t_step number of steps q = QuantumRegister(numq) c = ClassicalRegister(numq) qcirc = QuantumCircuit(q,c) #=========USE THIS REGION TO SET YOUR INITIAL STATE============== #Initialize circuit by setting the occupation to # a spin up and down electron in the middle site #qcirc.x(int(nsites/2)) #qcirc.x(nsites+int(nsites/2)) for flip in excitations: qcirc.x(flip) #if nsites==3: #Half-filling #qcirc.x(1) # qcirc.x(4) # qcirc.x(0) # qcirc.x(2) #1 electron # qcirc.x(1) #=============================================================== qcirc.barrier() #Append circuit with Trotter steps needed qc_evolve(qcirc, nsites, t_step*dt, hop, U, trotter_steps) #Choose provider and backend provider = IBMQ.get_provider() #backend = Aer.get_backend('statevector_simulator') backend = Aer.get_backend('qasm_simulator') #backend = provider.get_backend('ibmq_qasm_simulator') #backend = provider.get_backend('ibmqx4') #backend = provider.get_backend('ibmqx2') #backend = provider.get_backend('ibmq_16_melbourne') shots = 8192 max_credits = 10 #Max number of credits to spend on execution job_exp = execute(qcirc, backend=backend, shots=shots, max_credits=max_credits) job_monitor(job_exp) result = job_exp.result() counts = result.get_counts(qcirc) print(result.get_counts(qcirc)) print("Job: ",t_step+1, " of ", num_steps," complete.") #Store results in data array and normalize them for i in range(2**numq): if counts.get(get_bin(i,numq)) is None: dat = 0 else: dat = counts.get(get_bin(i,numq)) data[i,t_step] = dat/shots return data #==========Set Parameters of the System=============# dt = 0.25 #Delta t T = 4.5 time_steps = int(T/dt) t = 1.0 #Hopping parameter U = 2. #On-Site repulsion #time_steps = 10 nsites = 3 trotter_slices = 5 initial_state = np.array([1,4]) #Run simulation run_results = sys_evolve(nsites, initial_state, T, dt, t, U, trotter_slices) #print(True if np.isscalar(initial_state) else False) #Process and plot data '''The procedure here is, for each fermionic mode, add the probability of every state containing that mode (at a given time step), and renormalize the data based on the total occupation of each mode. Afterwards, plot the data as a function of time step for each mode.''' proc_data = np.zeros((2*nsites, time_steps)) timesq = np.arange(0.,time_steps*dt, dt) #Sum over time steps for t in range(time_steps): #Sum over all possible states of computer for i in range(2**(2*nsites)): #num = get_bin(i, 2*nsite) num = ''.join( list( reversed(get_bin(i,2*nsites)) ) ) #For each state, check which mode(s) it contains and add them for mode in range(len(num)): if num[mode]=='1': proc_data[mode,t] += run_results[i,t] #Renormalize these sums so that the total occupation of the modes is 1 norm = 0.0 for mode in range(len(num)): norm += proc_data[mode,t] proc_data[:,t] = proc_data[:,t] / norm ''' At this point, proc_data is a 2d array containing the occupation of each mode, for every time step ''' #Create plots of the processed data fig2, ax2 = plt.subplots(figsize=(20,10)) colors = list(mcolors.TABLEAU_COLORS.keys()) for i in range(nsites): #Create string label strup = "Site "+str(i+1)+r'$\uparrow$' strdwn = "Site "+str(i+1)+r'$\downarrow$' ax2.plot(timesq, proc_data[i,:], marker="^", color=str(colors[i]), label=strup) ax2.plot(timesq, proc_data[i+nsites,:], marker="v", color=str(colors[i]), label=strdwn) #ax2.set_ylim(0, 0.55) ax2.set_xlim(0, time_steps*dt+dt/2.) #ax2.set_xticks(np.arange(0,time_steps*dt+dt, 0.2)) #ax2.set_yticks(np.arange(0,0.55, 0.05)) ax2.tick_params(labelsize=16) ax2.set_title('Time Evolution of 3 Site One Dimensional Chain', fontsize=22) ax2.set_xlabel('Time', fontsize=24) ax2.set_ylabel('Probability', fontsize=24) ax2.legend(fontsize=20) #Plot the raw data as a colormap xticks = np.arange(2**(nsite*2)) xlabels=[] print("Time Steps: ",time_steps, " Step Size: ",dt) for i in range(2**(nsite*2)): xlabels.append(get_bin(i,6)) fig, ax = plt.subplots(figsize=(10,20)) c = ax.pcolor(run_results, cmap='binary') ax.set_title('Time Evolution of 3 Site One Dimensional Chain', fontsize=22) plt.yticks(xticks, xlabels, size=18) ax.set_xlabel('Time Step', fontsize=22) ax.set_ylabel('State', fontsize=26) plt.show() #Try by constructing the matrix and finding the eigenvalues N = 3 Nup = 2 Ndwn = N - Nup t = 1.0 U = 2. #Check if two states are different by a single hop def hop(psii, psij): #Check spin down hopp = 0 if psii[0]==psij[0]: #Create array of indices with nonzero values indi = np.nonzero(psii[1])[0] indj = np.nonzero(psij[1])[0] for i in range(len(indi)): if abs(indi[i]-indj[i])==1: hopp = -t return hopp #Check spin up if psii[1]==psij[1]: indi = np.nonzero(psii[0])[0] indj = np.nonzero(psij[0])[0] for i in range(len(indi)): if abs(indi[i]-indj[i])==1: hopp = -t return hopp return hopp #On-site terms def repel(l,state): if state[0][l]==1 and state[1][l]==1: return state else: return [] #States for 3 electrons with net spin up ''' states = [ [[1,1,0],[1,0,0]], [[1,1,0],[0,1,0]], [[1,1,0], [0,0,1]], [[1,0,1],[1,0,0]], [[1,0,1],[0,1,0]], [[1,0,1], [0,0,1]], [[0,1,1],[1,0,0]], [[0,1,1],[0,1,0]], [[0,1,1], [0,0,1]] ] #States for 2 electrons in singlet state ''' states = [ [[1,0,0],[1,0,0]], [[1,0,0],[0,1,0]], [[1,0,0],[0,0,1]], [[0,1,0],[1,0,0]], [[0,1,0],[0,1,0]], [[0,1,0],[0,0,1]], [[0,0,1],[1,0,0]], [[0,0,1],[0,1,0]], [[0,0,1],[0,0,1]] ] #''' #States for a single electron #states = [ [[1,0,0],[0,0,0]], [[0,1,0],[0,0,0]], [[0,0,1],[0,0,0]] ] #''' H = np.zeros((len(states),len(states)) ) #Construct Hamiltonian matrix for i in range(len(states)): psi_i = states[i] for j in range(len(states)): psi_j = states[j] if j==i: for l in range(0,N): if psi_i == repel(l,psi_j): H[i,j] = U break else: H[i,j] = hop(psi_i, psi_j) print(H) results = la.eig(H) print() for i in range(len(results[0])): print('Eigenvalue: ',results[0][i]) print('Eigenvector: \n',results[1][i]) print() dens_ops = [] eigs = [] for vec in results[1]: dens_ops.append(np.outer(results[1][i],results[1][i])) eigs.append(results[0][i]) print(dens_ops) dt = 0.1 tsteps = 50 times = np.arange(0., tsteps*dt, dt) t_op = la.expm(-1j*H*dt) #print(np.subtract(np.identity(len(H)), dt*H*1j)) #print(t_op) #wfk = [0., 0., 0., 0., 1., 0., 0., 0., 0.] #Half-filling initial state wfk = [0., 0., 0., 0., 1.0, 0., 0., 0., 0.] #2 electron initial state #wfk = [0., 1., 0.] #1 electron initial state evolve = np.zeros([tsteps, len(wfk)]) mode_evolve = np.zeros([tsteps, 6]) evolve[0] = wfk #Figure out how to generalize this later #''' mode_evolve[0][0] = (evolve[0][0]+evolve[0][1]+evolve[0][2]) /2. mode_evolve[0][1] = (evolve[0][3]+evolve[0][4]+evolve[0][5]) /2. mode_evolve[0][2] = (evolve[0][6]+evolve[0][7]+evolve[0][8]) /2. mode_evolve[0][3] = (evolve[0][0]+evolve[0][3]+evolve[0][6]) /2. mode_evolve[0][4] = (evolve[0][1]+evolve[0][4]+evolve[0][7]) /2. mode_evolve[0][5] = (evolve[0][2]+evolve[0][5]+evolve[0][8]) /2. ''' mode_evolve[0][0] = (evolve[0][0]+evolve[0][1]+evolve[0][2]+evolve[0][3]+evolve[0][4]+evolve[0][5]) /3. mode_evolve[0][1] = (evolve[0][0]+evolve[0][1]+evolve[0][2]+evolve[0][6]+evolve[0][7]+evolve[0][8]) /3. mode_evolve[0][2] = (evolve[0][3]+evolve[0][4]+evolve[0][5]+evolve[0][6]+evolve[0][7]+evolve[0][8]) /3. mode_evolve[0][3] = (evolve[0][0]+evolve[0][3]+evolve[0][6]) /3. mode_evolve[0][4] = (evolve[0][1]+evolve[0][4]+evolve[0][7]) /3. mode_evolve[0][5] = (evolve[0][2]+evolve[0][5]+evolve[0][8]) /3. #''' print(mode_evolve[0]) #Define density matrices for t in range(1, tsteps): #t_op = la.expm(-1j*H*t) wfk = np.dot(t_op, wfk) evolve[t] = np.multiply(np.conj(wfk), wfk) norm = np.sum(evolve[t]) #print(evolve[t]) #Store data in modes rather than basis defined in 'states' variable #Procedure for two electrons mode_evolve[t][0] = (evolve[t][0]+evolve[t][1]+evolve[t][2]) / (2) mode_evolve[t][1] = (evolve[t][3]+evolve[t][4]+evolve[t][5]) / (2) mode_evolve[t][2] = (evolve[t][6]+evolve[t][7]+evolve[t][8]) / (2) mode_evolve[t][3] = (evolve[t][0]+evolve[t][3]+evolve[t][6]) / (2) mode_evolve[t][4] = (evolve[t][1]+evolve[t][4]+evolve[t][7]) / (2) mode_evolve[t][5] = (evolve[t][2]+evolve[t][5]+evolve[t][8]) / (2) ''' #Procedure for half-filling mode_evolve[t][0] = (evolve[t][0]+evolve[t][1]+evolve[t][2]+evolve[t][3]+evolve[t][4]+evolve[t][5]) /3. mode_evolve[t][1] = (evolve[t][0]+evolve[t][1]+evolve[t][2]+evolve[t][6]+evolve[t][7]+evolve[t][8]) /3. mode_evolve[t][2] = (evolve[t][3]+evolve[t][4]+evolve[t][5]+evolve[t][6]+evolve[t][7]+evolve[t][8]) /3. mode_evolve[t][3] = (evolve[t][0]+evolve[t][3]+evolve[t][6]) /3. mode_evolve[t][4] = (evolve[t][1]+evolve[t][4]+evolve[t][7]) /3. mode_evolve[t][5] = (evolve[t][2]+evolve[t][5]+evolve[t][8]) /3. #''' print(mode_evolve[t]) #print(np.linalg.norm(evolve[t])) #print(len(evolve[:,0]) ) #print(len(times)) #print(evolve[:,0]) #print(min(evolve[:,0])) #Create plots of the processed data fig2, ax2 = plt.subplots(figsize=(20,10)) colors = list(mcolors.TABLEAU_COLORS.keys()) sit1 = "Exact Site "+str(1)+r'$\uparrow$' sit2 = "Exact Site "+str(2)+r'$\uparrow$' sit3 = "Exact Site "+str(3)+r'$\uparrow$' #ax2.plot(times, evolve[:,0], linestyle='--', color=colors[0], linewidth=2.5, label=sit1) #ax2.plot(times, evolve[:,1], linestyle='--', color=str(colors[1]), linewidth=2.5, label=sit2) #ax2.plot(times, evolve[:,2], linestyle='--', color=str(colors[2]), linewidth=2., label=sit3) #ax2.plot(times, np.zeros(len(times))) for i in range(nsites): #Create string label strupq = "Quantum Site "+str(i+1)+r'$\uparrow$' strdwnq = "Quantum Site "+str(i+1)+r'$\downarrow$' strup = "Numerical Site "+str(i+1)+r'$\uparrow$' strdwn = "Numerical Site "+str(i+1)+r'$\downarrow$' ax2.scatter(timesq, proc_data[i,:], marker="*", color=str(colors[i]), label=strupq) #ax2.scatter(timesq, proc_data[i+nsite,:], marker="v", color=str(colors[i]), label=strdwnq) ax2.plot(times, mode_evolve[:,i], linestyle='-', color=str(colors[i]), linewidth=2, label=strup) ax2.plot(times, mode_evolve[:,i+3], linestyle='--', color=str(colors[i]), linewidth=2, label=strdwn) #ax2.plot(times, evolve[:,i], linestyle='-', color=str(colors[i]), linewidth=2, label=strup) #ax2.plot(times, evolve[:,i+3], linestyle='--', color=str(colors[i]), linewidth=2, label=strdwn) ax2.set_ylim(0, .51) ax2.set_xlim(0, tsteps*dt+dt/2.) #ax2.set_xticks(np.arange(0,tsteps*dt+dt, 2*dt)) #ax2.set_yticks(np.arange(0,0.5, 0.05)) ax2.tick_params(labelsize=16) ax2.set_title('Time Evolution of 2 Electrons in 3 Site Chain', fontsize=22) ax2.set_xlabel('Time', fontsize=24) ax2.set_ylabel('Probability', fontsize=24) #ax2.legend(fontsize=20)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub="ibm-q", group="open", project="main") program_id = "qaoa" qaoa_program = provider.runtime.program(program_id) print(f"Program name: {qaoa_program.name}, Program id: {qaoa_program.program_id}") print(qaoa_program.parameters()) import numpy as np from qiskit.tools import job_monitor from qiskit.opflow import PauliSumOp, Z, I from qiskit.algorithms.optimizers import SPSA # Define the cost operator to run. op = ( (Z ^ Z ^ I ^ I ^ I) - (I ^ I ^ Z ^ Z ^ I) + (I ^ I ^ Z ^ I ^ Z) - (Z ^ I ^ Z ^ I ^ I) - (I ^ Z ^ Z ^ I ^ I) + (I ^ Z ^ I ^ Z ^ I) + (I ^ I ^ I ^ Z ^ Z) ) # SPSA helps deal with noisy environments. optimizer = SPSA(maxiter=100) # We will run a depth two QAOA. reps = 2 # The initial point for the optimization, chosen at random. initial_point = np.random.random(2 * reps) # The backend that will run the programm. options = {"backend_name": "ibmq_qasm_simulator"} # The inputs of the program as described above. runtime_inputs = { "operator": op, "reps": reps, "optimizer": optimizer, "initial_point": initial_point, "shots": 2**13, # Set to True when running on real backends to reduce circuit # depth by leveraging swap strategies. If False the # given optimization_level (default is 1) will be used. "use_swap_strategies": False, # Set to True when optimizing sparse problems. "use_initial_mapping": False, # Set to true when using echoed-cross-resonance hardware. "use_pulse_efficient": False, } job = provider.runtime.run( program_id=program_id, options=options, inputs=runtime_inputs, ) job_monitor(job) print(f"Job id: {job.job_id()}") print(f"Job status: {job.status()}") result = job.result() from collections import defaultdict def op_adj_mat(op: PauliSumOp) -> np.array: """Extract the adjacency matrix from the op.""" adj_mat = np.zeros((op.num_qubits, op.num_qubits)) for pauli, coeff in op.primitive.to_list(): idx = tuple([i for i, c in enumerate(pauli[::-1]) if c == "Z"]) # index of Z adj_mat[idx[0], idx[1]], adj_mat[idx[1], idx[0]] = np.real(coeff), np.real(coeff) return adj_mat def get_cost(bit_str: str, adj_mat: np.array) -> float: """Return the cut value of the bit string.""" n, x = len(bit_str), [int(bit) for bit in bit_str[::-1]] cost = 0 for i in range(n): for j in range(n): cost += adj_mat[i, j] * x[i] * (1 - x[j]) return cost def get_cut_distribution(result) -> dict: """Extract the cut distribution from the result. Returns: A dict of cut value: probability. """ adj_mat = op_adj_mat(PauliSumOp.from_list(result["inputs"]["operator"])) state_results = [] for bit_str, amp in result["eigenstate"].items(): state_results.append((bit_str, get_cost(bit_str, adj_mat), amp**2 * 100)) vals = defaultdict(int) for res in state_results: vals[res[1]] += res[2] return dict(vals) import matplotlib.pyplot as plt cut_vals = get_cut_distribution(result) fig, axs = plt.subplots(1, 2, figsize=(14, 5)) axs[0].plot(result["optimizer_history"]["energy"]) axs[1].bar(list(cut_vals.keys()), list(cut_vals.values())) axs[0].set_xlabel("Energy evaluation number") axs[0].set_ylabel("Energy") axs[1].set_xlabel("Cut value") axs[1].set_ylabel("Probability") from qiskit_optimization.runtime import QAOAClient from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization import QuadraticProgram qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) qaoa_mes = QAOAClient( provider=provider, backend=provider.get_backend("ibmq_qasm_simulator"), reps=2, alpha=0.75 ) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(qubo) print(result.prettyprint()) from qiskit.transpiler import PassManager from qiskit.circuit.library.standard_gates.equivalence_library import ( StandardEquivalenceLibrary as std_eqlib, ) from qiskit.transpiler.passes import ( Collect2qBlocks, ConsolidateBlocks, UnrollCustomDefinitions, BasisTranslator, Optimize1qGatesDecomposition, ) from qiskit.transpiler.passes.calibration.builders import RZXCalibrationBuilderNoEcho from qiskit.transpiler.passes.optimization.echo_rzx_weyl_decomposition import ( EchoRZXWeylDecomposition, ) from qiskit.test.mock import FakeBelem backend = FakeBelem() inst_map = backend.defaults().instruction_schedule_map channel_map = backend.configuration().qubit_channel_mapping rzx_basis = ["rzx", "rz", "x", "sx"] pulse_efficient = PassManager( [ # Consolidate consecutive two-qubit operations. Collect2qBlocks(), ConsolidateBlocks(basis_gates=["rz", "sx", "x", "rxx"]), # Rewrite circuit in terms of Weyl-decomposed echoed RZX gates. EchoRZXWeylDecomposition(backend.defaults().instruction_schedule_map), # Attach scaled CR pulse schedules to the RZX gates. RZXCalibrationBuilderNoEcho( instruction_schedule_map=inst_map, qubit_channel_mapping=channel_map ), # Simplify single-qubit gates. UnrollCustomDefinitions(std_eqlib, rzx_basis), BasisTranslator(std_eqlib, rzx_basis), Optimize1qGatesDecomposition(rzx_basis), ] ) from qiskit import QuantumCircuit circ = QuantumCircuit(3) circ.h([0, 1, 2]) circ.rzx(0.5, 0, 1) circ.swap(0, 1) circ.cx(2, 1) circ.rz(0.4, 1) circ.cx(2, 1) circ.rx(1.23, 2) circ.cx(2, 1) circ.draw("mpl") pulse_efficient.run(circ).draw("mpl", fold=False) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/zeynepCankara/Introduction-Quantum-Programming
zeynepCankara
# import all necessary objects and methods for quantum circuits from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer # define a quantum register with one qubit qreg1 = QuantumRegister(1) # define a classical register with one bit # it stores the measurement result of the quantum part creg1 = ClassicalRegister(1) # define our quantum circuit mycircuit1 = QuantumCircuit(qreg1,creg1) # apply h-gate (Hadamard: quantum coin-flipping) to the first qubit mycircuit1.h(qreg1[0]) # measure the first qubit, and store the result in the first classical bit mycircuit1.measure(qreg1,creg1) print("Everything looks fine, let's continue ...") # draw the circuit by using ASCII art mycircuit1.draw() # draw the circuit by using matplotlib mycircuit1.draw(output='mpl',reverse_bits=True) # reexecute this cell if you DO NOT see the circuit diagram # execute the circuit 10000 times in the local simulator job = execute(mycircuit1,Aer.get_backend('qasm_simulator'),shots=10000) counts1 = job.result().get_counts(mycircuit1) print(counts1) # print the outcomes # import all necessary objects and methods for quantum circuits from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer # define a quantum register with one qubit qreg2 = QuantumRegister(1) # define a classical register with one bit # it stores the measurement result of the quantum part creg2 = ClassicalRegister(1) # define our quantum circuit mycircuit2 = QuantumCircuit(qreg2,creg2) # apply h-gate (Hadamard: quantum coin-flipping) to the first qubit mycircuit2.h(qreg2[0]) # apply h-gate (Hadamard: quantum coin-flipping) to the first qubit once more mycircuit2.h(qreg2[0]) # measure the first qubit, and store the result in the first classical bit mycircuit2.measure(qreg2,creg2) print("Everything looks fine, let's continue ...") # draw the circuit by using matplotlib mycircuit2.draw(output='mpl',reverse_bits=True) # reexecute me if you DO NOT see the circuit diagram # execute the circuit 10000 times in the local simulator job = execute(mycircuit2,Aer.get_backend('qasm_simulator'),shots=10000) counts2 = job.result().get_counts(mycircuit2) print(counts2) # # your solution is here # # start with 1 do the same experiment # define a quantum register with one qubit qreg1 = QuantumRegister(1) # define a classical register with one bit # it stores the measurement result of the quantum part creg1 = ClassicalRegister(1) # define our quantum circuit mycircuit1 = QuantumCircuit(qreg1,creg1) # reverse the bit mycircuit1.x(qreg1[0]) # apply h-gate (Hadamard: quantum coin-flipping) to the first qubit mycircuit1.h(qreg1[0]) # measure the first qubit, and store the result in the first classical bit mycircuit1.measure(qreg1,creg1) # get the numbers job = execute(mycircuit1,Aer.get_backend('qasm_simulator'),shots=10000) counts1 = job.result().get_counts(mycircuit1) print(counts1) # print the outcomes # draw the circuit by using ASCII art mycircuit1.draw() mycircuit1.draw(output='mpl',reverse_bits=True) # reexecute this cell if you DO NOT see the circuit diagram # 2nd experiment with the resersed bit # define a quantum register with one qubit qreg2 = QuantumRegister(1) # define a classical register with one bit # it stores the measurement result of the quantum part creg2 = ClassicalRegister(1) # define our quantum circuit mycircuit2 = QuantumCircuit(qreg2,creg2) # reverse the bit start with 1 mycircuit2.x(qreg2[0]) # apply h-gate (Hadamard: quantum coin-flipping) to the first qubit mycircuit2.h(qreg2[0]) # apply h-gate (Hadamard: quantum coin-flipping) to the first qubit once more mycircuit2.h(qreg2[0]) # measure the first qubit, and store the result in the first classical bit mycircuit2.measure(qreg2,creg2) job = execute(mycircuit2,Aer.get_backend('qasm_simulator'),shots=10000) counts2 = job.result().get_counts(mycircuit2) print(counts2) mycircuit2.draw(output='mpl',reverse_bits=True) # reexecute this cell if you DO NOT see the circuit diagram
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.problems import BaseProblem dummy_hamiltonian = None base_problem = BaseProblem(dummy_hamiltonian) print(base_problem.properties) from qiskit_nature.second_q.properties import AngularMomentum print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Adding AngularMomentum to problem.properties...") base_problem.properties.add(AngularMomentum(2)) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Discarding AngularMomentum from problem.properties...") base_problem.properties.discard(AngularMomentum) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) from qiskit_nature.second_q.drivers import PySCFDriver es_problem = PySCFDriver().run() print(es_problem.properties.particle_number) print(es_problem.properties.angular_momentum) print(es_problem.properties.magnetization) print(es_problem.properties.electronic_dipole_moment) print(es_problem.properties.electronic_density) from qiskit_nature.second_q.properties import ElectronicDensity density = ElectronicDensity.from_orbital_occupation( es_problem.orbital_occupations, es_problem.orbital_occupations_b, ) es_problem.properties.electronic_density = density import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import matplotlib.pyplot as plt import itertools from pprint import pprint import pickle import time import datetime # Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z) from qiskit.opflow import Zero, One, I, X, Y, Z from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter from qiskit.transpiler.passes import RemoveBarriers # Import QREM package from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter from qiskit.ignis.mitigation import expectation_value # Import mitiq for zne import mitiq # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits from qiskit.quantum_info import state_fidelity import sys import importlib sys.path.append("../utils/") import circuit_utils, zne_utils, tomography_utils, sgs_algorithm importlib.reload(circuit_utils) importlib.reload(zne_utils) importlib.reload(tomography_utils) importlib.reload(sgs_algorithm) from circuit_utils import * from zne_utils import * from tomography_utils import * from sgs_algorithm import * # Combine subcircuits into a single multiqubit gate representing a single trotter step num_qubits = 3 # The final time of the state evolution target_time = np.pi # Parameterize variable t to be evaluated at t=pi later dt = Parameter('t') # Convert custom quantum circuit into a gate trot_gate = trotter_gate(dt) # initial layout initial_layout = [5,3,1] # Number of trotter steps num_steps = 100 print("trotter step: ", num_steps) scale_factors = [1.0, 2.0, 3.0] # Initialize quantum circuit for 3 qubits qr = QuantumRegister(num_qubits, name="q") qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>) make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({dt: target_time / num_steps}) print("created qc") # Generate state tomography circuits to evaluate fidelity of simulation st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN === print("created st_qcs (length:", len(st_qcs), ")") # remove barriers st_qcs = [RemoveBarriers()(qc) for qc in st_qcs] print("removed barriers from st_qcs") # optimize circuit t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) print("created t3_st_qcs (length:", len(t3_st_qcs), ")") # zne wrapping zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = True) # Pauli Twirling print("created zne_qcs (length:", len(zne_qcs), ")") # optimization_level must be 0 # feed initial_layout here to see the picture of the circuits before casting the job t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout) print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")") t3_zne_qcs[-3].draw("mpl") from qiskit.test.mock import FakeJakarta backend = FakeJakarta() # backend = Aer.get_backend("qasm_simulator") # IBMQ.load_account() # provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') # print("provider:", provider) # backend = provider.get_backend("ibmq_jakarta") print(str(backend)) shots = 1 << 13 reps = 8 # unused jobs = [] for _ in range(reps): #! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0) print('Job ID', job.job_id()) jobs.append(job) # QREM qr = QuantumRegister(num_qubits, name="calq") meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') # we have to feed initial_layout to calibration matrix cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout) print('Job ID', cal_job.job_id()) meas_calibs[0].draw("mpl") dt_now = datetime.datetime.now() print(dt_now) filename = "job_ids_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl" print(filename) # with open("jobs_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: # pickle.dump({"jobs": jobs, "cal_job": cal_job}, f) # with open(filename, "wb") as f: # pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f) # with open("properties_" + str(backend) + "_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: # pickle.dump(backend.properties(), f) retrieved_jobs = jobs retrieved_cal_job = cal_job cal_results = retrieved_cal_job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!! fids = [] for job in retrieved_jobs: mit_results = meas_fitter.filter.apply(job.result()) zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors) rho = expvals_to_valid_rho(num_qubits, zne_expvals) fid = state_fidelity(rho, target_state) fids.append(fid) print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
https://github.com/abbarreto/qiskit3
abbarreto
https://github.com/ichen17/Learning-Qiskit
ichen17
# initialization import numpy as np import matplotlib # importing Qiskit from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ, BasicAer, assemble, transpile from qiskit.quantum_info import Statevector # import basic plot tools from qiskit.visualization import plot_bloch_multivector,plot_bloch_vector, plot_histogram style = {'backgroundcolor': 'lightyellow'} # Style of the circuits # set the length of the n-bit input string. n = 3 # set the length of the n-bit input string. n = 3 const_oracle = QuantumCircuit(n+1) output = np.random.randint(2) if output == 1: const_oracle.x(n) const_oracle.draw(output='mpl', style=style) balanced_oracle = QuantumCircuit(n+1) b_str = "101" balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) balanced_oracle.draw(output='mpl', style=style) balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() balanced_oracle.draw(output='mpl', style=style) balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Show oracle balanced_oracle.draw(output='mpl', style=style) dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) dj_circuit.draw(output='mpl', style=style) dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit += balanced_oracle dj_circuit.draw(output='mpl', style=style) dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit += balanced_oracle # Repeat H-gates for qubit in range(n): dj_circuit.h(qubit) dj_circuit.barrier() # Measure for i in range(n): dj_circuit.measure(i, i) # Display circuit dj_circuit.draw(output='mpl', style=style) # use local simulator aer_sim = Aer.get_backend('aer_simulator') qobj = assemble(dj_circuit, aer_sim) results = aer_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) def dj_oracle(case, n): # We need to make a QuantumCircuit object to return # This circuit has n+1 qubits: the size of the input, # plus one output qubit oracle_qc = QuantumCircuit(n+1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1,2**n) print(b) print(str(n)) b=7 # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, '0'+str(n)+'b') print(b_str) # Next, we place the first X-gates. Each digit in our binary string # corresponds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for qubit in range(n): oracle_qc.cx(qubit, n) # Next, place the final X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(n) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate def dj_algorithm(oracle, n): dj_circuit = QuantumCircuit(n+1, n) # Set up the output qubit: dj_circuit.x(n) dj_circuit.h(n) # And set up the input register: for qubit in range(n): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(n+1)) # Finally, perform the H-gates again and measure: for qubit in range(n): dj_circuit.h(qubit) for i in range(n): dj_circuit.measure(i, i) return dj_circuit n = 4 oracle_gate = dj_oracle('balanced', n) dj_circuit = dj_algorithm(oracle_gate, n) dj_circuit.draw(output='mpl', style=style) transpiled_dj_circuit = transpile(dj_circuit, aer_sim) qobj = assemble(transpiled_dj_circuit) results = aer_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.mappers import ParityMapper from qiskit_nature.second_q.properties import ParticleNumber from qiskit_nature.second_q.transformers import ActiveSpaceTransformer bond_distance = 2.5 # in Angstrom # specify driver driver = PySCFDriver( atom=f"Li 0 0 0; H 0 0 {bond_distance}", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() # specify active space transformation active_space_trafo = ActiveSpaceTransformer( num_electrons=problem.num_particles, num_spatial_orbitals=3 ) # transform the electronic structure problem problem = active_space_trafo.transform(problem) # construct the parity mapper with 2-qubit reduction qubit_mapper = ParityMapper(num_particles=problem.num_particles) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms.ground_state_solvers import GroundStateEigensolver np_solver = NumPyMinimumEigensolver() np_groundstate_solver = GroundStateEigensolver(qubit_mapper, np_solver) np_result = np_groundstate_solver.solve(problem) target_energy = np_result.total_energies[0] print(np_result) from qiskit.circuit.library import EfficientSU2 ansatz = EfficientSU2(num_qubits=4, reps=1, entanglement="linear", insert_barriers=True) ansatz.decompose().draw("mpl", style="iqx") import numpy as np from qiskit.utils import algorithm_globals # fix random seeds for reproducibility np.random.seed(5) algorithm_globals.random_seed = 5 from qiskit.algorithms.optimizers import SPSA optimizer = SPSA(maxiter=100) initial_point = np.random.random(ansatz.num_parameters) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.primitives import Estimator estimator = Estimator() local_vqe = VQE( estimator, ansatz, optimizer, initial_point=initial_point, ) local_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, local_vqe) local_vqe_result = local_vqe_groundstate_solver.solve(problem) print(local_vqe_result) from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(group="open") # replace by your runtime provider backend = provider.get_backend("ibmq_qasm_simulator") # select a backend that supports the runtime from qiskit_nature.runtime import VQEClient runtime_vqe = VQEClient( ansatz=ansatz, optimizer=optimizer, initial_point=initial_point, provider=provider, backend=backend, shots=1024, measurement_error_mitigation=True, ) # use a complete measurement fitter for error mitigation runtime_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, runtime_vqe) runtime_vqe_result = runtime_vqe_groundstate_solver.solve(problem) print(runtime_vqe_result) runtime_result = runtime_vqe_result.raw_result history = runtime_result.optimizer_history loss = history["energy"] import matplotlib.pyplot as plt plt.rcParams["font.size"] = 14 # plot loss and reference value plt.figure(figsize=(12, 6)) plt.plot(loss + runtime_vqe_result.nuclear_repulsion_energy, label="Runtime VQE") plt.axhline(y=target_energy + 0.2, color="tab:red", ls=":", label="Target + 200mH") plt.axhline(y=target_energy, color="tab:red", ls="--", label="Target") plt.legend(loc="best") plt.xlabel("Iteration") plt.ylabel("Energy [H]") plt.title("VQE energy"); import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit import transpile from qiskit.circuit.library import CZGate, iSwapGate from qiskit.quantum_info import Operator from qiskit import QuantumCircuit import numpy as np qc = QuantumCircuit(2) qc.cz(0, 1) qc.swap(0, 1) qc2 = QuantumCircuit(2) qc2.rz(-np.pi / 2, 0) qc2.rz(-np.pi / 2, 1) qc2.iswap(0, 1) Operator(qc).equiv(qc2) qc2.draw("mpl") from qiskit.circuit.library import QuantumVolume, EfficientSU2, TwoLocal, QFT from qiskit import QuantumCircuit from qiskit.circuit.library.standard_gates import iSwapGate, CXGate from qiskit import QuantumCircuit from qiskit.providers.fake_provider import FakeQuitoV2 from qiskit.transpiler.coupling import CouplingMap from qiskit.extensions import UnitaryGate from weylchamber import canonical_gate from mirror_gates.pass_managers import Mirage, QiskitLevel3 from transpile_benchy.metrics.gate_counts import ( DepthMetric, TotalMetric, TotalSwaps, ) from transpile_benchy.metrics.timer import TimeMetric from mirror_gates.fast_unitary import FastConsolidateBlocks from qiskit.transpiler.passes import ( Collect2qBlocks, Unroll3qOrMore, ConsolidateBlocks, ) from qiskit.transpiler import PassManager import numpy as np from mirror_gates.logging import transpile_benchy_logger N = 8 # coupling_map = FakeQuitoV2().target.build_coupling_map() # coupling_map = CouplingMap.from_grid(4,4) coupling_map = CouplingMap.from_line(N) # coupling_map = CouplingMap.from_heavy_hex(5) # coupling_map.draw() from transpile_benchy.interfaces.mqt_interface import MQTBench from transpile_benchy.interfaces.qasm_interface import QASMBench from transpile_benchy.library import CircuitLibrary lib = CircuitLibrary(circuit_list=[]) qc = lib.get_circuit("qft_n4") qc = qc.decompose() display(qc.draw("mpl")) # qc.remove_final_measurements() # qc.save_density_matrix() # qc.draw("mpl") # # Create an empty noise model # from qiskit_aer.noise import ( # NoiseModel, # QuantumError, # ReadoutError, # pauli_error, # depolarizing_error, # thermal_relaxation_error, # ) # # Error probabilities # prob_1 = 0.001 # 1-qubit gate # prob_2 = 0.01 # 2-qubit gate # # Depolarizing quantum errors # error_1 = depolarizing_error(prob_1, 1) # error_2 = depolarizing_error(prob_2, 2) # # Add errors to noise model # noise_model = NoiseModel() # noise_model.add_all_qubit_quantum_error(error_1, ["u1", "u2", "u3"]) # noise_model.add_all_qubit_quantum_error(error_2, ["cx"]) # print(noise_model) runner = Mirage( coupling_map, cx_basis=0, parallel=0, logger=transpile_benchy_logger, cost_function="depth", # cost_function="basic", anneal_routing=True, layout_trials=20, fb_iters=4, # layout_trials=20, # fb_iters=4, # fixed_aggression=0 # cost_function="basic", use_fast_settings=1, ) runner.seed = 0 metric = DepthMetric(consolidate=False) runner._append_metric_pass(metric) metric = TotalMetric(consolidate=False) runner._append_metric_pass(metric) metric = TotalSwaps(consolidate=False) runner._append_metric_pass(metric) # metric = TimeMetric() # runner._append_metric_pass(metric) transp = runner.run(qc) # print(runner.property_set["accepted_subs"]) print(runner.property_set["monodromy_depth"]) print(runner.property_set["monodromy_total"]) print(runner.property_set["total_swaps"]) display(runner.property_set["mid"].draw("mpl", fold=-1)) # display(runner.property_set["post0"].draw("mpl")) # display(transp.draw(output="mpl", fold=-1)) transpile(transp, basis_gates=["cx", "u"]).draw("mpl") from qiskit import transpile mirage_qc = transpile( qc, optimization_level=3, coupling_map=coupling_map, # basis_gates=["u", "xx_plus_yy", "id"], basis_gates=["u", "cx"], routing_method="mirage", layout_method="sabre_layout_v2", ) mirage_qc.draw(output="mpl") runner = QiskitLevel3(coupling_map, cx_basis=0) metric = DepthMetric(consolidate=False) runner._append_metric_pass(metric) metric = TotalSwaps(consolidate=False) runner._append_metric_pass(metric) transp = runner.run(qc) print(runner.property_set["monodromy_depth"]) print(runner.property_set["total_swaps"]) # print(runner.property_set["monodromy_total"]) display(transp.draw(output="mpl", fold=-1)) # display(runner.property_set["post0"].draw("mpl")) # from qiskit import Aer, transpile # from qiskit.quantum_info import state_fidelity # from qiskit_aer import AerSimulator # simulator = Aer.get_backend("aer_simulator") # circ = transpile(qc, simulator) # result = simulator.run(circ).result() # perfect_density_matrix = result.data()["density_matrix"]
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * nshots = 8192 IBMQ.load_account() provider= qiskit.IBMQ.get_provider(hub='ibm-q-research-2',group='federal-uni-sant-1',project='main') device = provider.get_backend('ibmq_bogota') simulator = Aer.get_backend('qasm_simulator') from qiskit.visualization import plot_histogram from qiskit.tools.monitor import job_monitor from qiskit.quantum_info import state_fidelity cos(pi/8), sin(pi/8) U = (1/sqrt(2))*Matrix([[1,1],[1,-1]]); V1 = Matrix([[1,0],[0,1]]); V2 = V1 D1 = Matrix([[cos(pi/8),0],[0,cos(pi/8)]]); D2 = Matrix([[sin(pi/8),0],[0,sin(pi/8)]]) U, U*U.T, D1, D2 M1 = V1*D1*U; M2 = V2*D2*U; M1, M2 M1*M1, M2*M2, M1*M1 + M2*M2 # não são projetores, mas são operadores de medida 2*float((1/4)*(1+1/sqrt(2))), 2*float((1/4)*(1-1/sqrt(2))) qr = QuantumRegister(2); cr = ClassicalRegister(1); qc = QuantumCircuit(qr, cr) qc.h(qr[0]); qc.x(qr[0]); qc.cry(math.pi/4, 0, 1); qc.x(qr[0]); qc.cry(math.pi/4, 0, 1) # V1=V2=I qc.measure(1,0) qc.draw(output = 'mpl') job_sim = execute(qc, backend = simulator, shots = nshots) job_exp = execute(qc, backend = device, shots = nshots) job_monitor(job_exp) plot_histogram([job_sim.result().get_counts(), job_exp.result().get_counts()], legend = ['sim', 'exp']) def U(xi, et, ga): return Matrix([[(cos(xi)+1j*sin(xi))*cos(ga), (cos(et)+1j*sin(et))*sin(ga)], [-(cos(et)-1j*sin(et))*sin(ga), (cos(xi)-1j*sin(xi))*cos(ga)]]) xi, et, ga = symbols('xi eta gamma'); U(xi, et, ga) def D1(th, ph): return Matrix([[cos(th/2),0],[0,cos(ph/2)]]) def D2(th, ph): return Matrix([[sin(th/2),0],[0,sin(ph/2)]]) th,ph = symbols('theta phi'); D1(th, ph), D2(th, ph) xi1,et1,ga1,xi2,et2,ga2,xi3,et3,ga3 = symbols('xi_1 eta_1 gamma_1 xi_2 eta_2 gamma_2 xi_3 eta_3 gamma_3') simplify(U(xi1,et1,ga1)*D1(th,ph)*U(xi2,et2,ga2) - (1/2)*sqrt(1+1/sqrt(2))*Matrix([[1,1],[1,-1]])) simplify(U(xi3,et3,ga3)*D2(th,ph)*U(xi2,et2,ga2) - (1/2)*sqrt(1+1/sqrt(2))*Matrix([[1,1],[1,-1]])) cos(pi/3), sin(pi/3), cos(2*pi/3), sin(2*pi/3) M1 = sqrt(2/3)*Matrix([[1,0],[0,0]]) M2 = (1/(4*sqrt(6)))*Matrix([[1,sqrt(3)],[sqrt(3),3]]) M3 = (1/(4*sqrt(6)))*Matrix([[1,-sqrt(3)],[-sqrt(3),3]]) M1,M2,M3 M1.T*M1 + M2.T*M2 + M3.T*M3 M1 = sqrt(2/3.)*Matrix([[1,0],[0,0]]); M2 = sqrt(2/3.)*(1/4)*Matrix([[1,sqrt(3.)],[sqrt(3.),3]]) M3 = sqrt(2/3.)*(1/4)*Matrix([[1,-sqrt(3.)],[-sqrt(3.),3]]) M1, M2, M3 M1.T*M1 + M2.T*M2 + M3.T*M3 2/3, 1/6, 2/3+2*(1/6) #th1 = acos(sqrt(2/3)); ph1 = pi; th2 = pi/2; ph2 = pi/2 D11 = Matrix([[sqrt(2/3),0],[0,0]]) D21 = Matrix([[sqrt(1/3),0],[0,1]]) D12 = Matrix([[1/sqrt(2),0],[0,1/sqrt(2)]]) D22 = Matrix([[1/sqrt(2),0],[0,1/sqrt(2)]]) U = Matrix([[1,0],[0,1]]) V11 = Matrix([[1,0],[0,1]]) V21 = (1/sqrt(2))*Matrix([[1,1],[-1,1]]) V12 = (1/2)*Matrix([[1,-sqrt(3)],[sqrt(3),1]]) V22 = -(1/2)*Matrix([[sqrt(3),-1],[1,sqrt(3)]]) M1 = V11*D11*U np.array(M1).astype(np.float64), np.array(Matrix([[sqrt(2/3),0],[0,0]])).astype(np.float64) M2 = V12*D12*V21*D21*U np.array(M2).astype(np.float64), np.array((1/4)*sqrt(2/3)*Matrix([[1,sqrt(3)],[sqrt(3),3]])).astype(np.float64) # não é o resultado que precisamos M3 = V22*D22*V21*D21*U np.array(M3).astype(np.float64), np.array((1/4)*sqrt(2/3)*Matrix([[1,-sqrt(3)],[-sqrt(3),3]])).astype(np.float64) # não é o resultado que precisamos np.array(M1.T*M1 + M2.T*M2 + M3.T*M3).astype(np.float64) # esta ok a relacao de completeza cos(pi/3), sin(pi/3), cos(pi/6) def qc_ry(th): qr = QuantumRegister(1); qc = QuantumCircuit(qr, name = 'RY') qc.ry(th, 0) return qc def qc_u(th,ph,lb): qr = QuantumRegister(1); qc = QuantumCircuit(qr, name = 'U') qc.u(th,ph,lb, 0) return qc qr = QuantumRegister(3); cr = ClassicalRegister(2); qc = QuantumCircuit(qr, cr) # U = I qc.x(qr[0]); qc.cry(math.acos(math.sqrt(2/3)), 0, 1); qc.x(qr[0]); qc.cry(math.pi/2, 0, 1) # V11 = I qc.cu(math.pi/2,math.pi,math.pi,0, 1,0) qc.barrier() qc_ry_ = qc_ry(0); ccry = qc_ry_.to_gate().control(2) # cria a ctrl-ctrl-RY qc.x(0); qc.append(ccry, [0,1,2]); qc.x(0) qc_ry_ = qc_ry(math.pi/2); ccry = qc_ry_.to_gate().control(2) qc.append(ccry, [0,1,2]) # os primeiros sao o controle, os ultimos sao o target qc.x(2) qc_u_ = qc_u(2*math.pi/3,0,0); ccu = qc_u_.to_gate().control(2) qc.append(ccu, [1,2,0]) qc.x(2) qc_u_ = qc_u(4*math.pi/3,0,0); ccu = qc_u_.to_gate().control(2) qc.append(ccu, [1,2,0]) qc.barrier() qc.measure(1,0); qc.measure(2,1) qc.draw(output = 'mpl') qc.decompose().draw(output = 'mpl') job_sim = execute(qc, backend = simulator, shots = nshots) job_exp = execute(qc, backend = device, shots = nshots) job_monitor(job_exp) plot_histogram([job_sim.result().get_counts(), job_exp.result().get_counts()], legend = ['sim', 'exp']) # sequencia: 000 001 010 011 100 101 110 111 = 0 1 2 3 4 5 6 7 Phi_ACD = [math.sqrt(2/3), (1/4)*math.sqrt(2/3), (1/4)*math.sqrt(2/3), 0, 0, (1/4)*math.sqrt(2), -(1/4)*math.sqrt(2), 0] qr = QuantumRegister(3); cr = ClassicalRegister(2); qc = QuantumCircuit(qr,cr) qc.initialize(Phi_ACD, [qr[2],qr[1],qr[0]]) qc.draw(output='mpl') backend = BasicAer.get_backend('statevector_simulator') job = backend.run(transpile(qc, backend)) qc_state = job.result().get_statevector(qc) qc_state sqrt(2/3), 0.25*sqrt(2/3), 0.25*sqrt(2.) state_fidelity(Phi_ACD,qc_state) qc.measure([1,2],[0,1]) qc.draw(output='mpl') job_sim = execute(qc, backend = simulator, shots = nshots) job_exp = execute(qc, backend = device, shots = nshots) job_monitor(job_exp) # tava dando errado o resultado. Me parece que na inicializacao a ordem dos qubits foi trocada plot_histogram([job_sim.result().get_counts(), job_exp.result().get_counts()], legend = ['sim', 'exp']) # sequencia: 000 001 010 011 100 101 110 111 = 0 1 2 3 4 5 6 7 Phi_ACD = [1/math.sqrt(2), 1/(2*math.sqrt(2)), 0, 1/(2*math.sqrt(2)), 0, 1/(2*math.sqrt(2)), 0, -1/(2*math.sqrt(2))] qr = QuantumRegister(3); cr = ClassicalRegister(2); qc = QuantumCircuit(qr,cr) qc.initialize(Phi_ACD, [qr[2],qr[1],qr[0]]) qc.measure([1,2],[0,1]) qc.draw(output='mpl') qc.decompose().decompose().decompose().decompose().decompose().draw(output='mpl') job_sim = execute(qc, backend = simulator, shots = nshots) job_exp = execute(qc, backend = device, shots = nshots) job_monitor(job_exp) plot_histogram([job_sim.result().get_counts(), job_exp.result().get_counts()], legend = ['sim', 'exp']) qr = QuantumRegister(4); cr = ClassicalRegister(3); qc = QuantumCircuit(qr, cr) # U = I qc.x(qr[0]); qc.cry(math.acos(math.sqrt(2/3)), 0, 1); qc.x(qr[0]); qc.cry(math.pi/2, 0, 1) # V11 = I qc.cu(math.pi/2,math.pi,math.pi,0, 1,0) qc.barrier() qc_ry_ = qc_ry(0); ccry = qc_ry_.to_gate().control(2) # cria a ctrl-ctrl-RY qc.x(0); qc.append(ccry, [0,1,2]); qc.x(0) qc_ry_ = qc_ry(math.pi/2); ccry = qc_ry_.to_gate().control(2) qc.append(ccry, [0,1,2]) # os primeiros sao o controle, os ultimos sao o target qc.x(2) qc_u_ = qc_u(2*math.pi/3,0,0); ccu = qc_u_.to_gate().control(2) qc.append(ccu, [1,2,0]) qc.x(2) qc_u_ = qc_u(4*math.pi/3,0,0); ccu = qc_u_.to_gate().control(2) qc.append(ccu, [1,2,0]) qc.barrier() qc_ry_ = qc_ry(math.pi); cccry = qc_ry_.to_gate().control(3) # cria a ctrl-ctrl-ctrl-RY qc.x(0); qc.append(cccry, [0,1,2,3]); qc.x(0) qc_ry_ = qc_ry(math.pi/2); cccry = qc_ry_.to_gate().control(3) qc.append(cccry, [0,1,2,3]) qc_u_ = qc_u(math.pi,0,0); cccu = qc_u_.to_gate().control(3) qc.x(3); qc.append(cccu, [3,2,1,0]); qc.x(3) qc.append(cccu, [3,2,1,0]) qc_u_ = qc_u(math.pi/3,0,0); cccu = qc_u_.to_gate().control(3) qc.barrier() qc.measure(1,0); qc.measure(2,1); qc.measure(3,2) qc.draw(output = 'mpl') qc.decompose().draw(output = 'mpl') %run init.ipynb # 2 element 1-qubit povm (Yordanov) M1 = (1/2)*Matrix([[1,0],[0,sqrt(3)]]); M2 = M1 M1, M2 M1.T*M1 + M2.T*M2 # 3 element 1-qubit povm (Yordanov) M1 = sqrt(2/3)*Matrix([[1,0],[0,0]]) M2 = (1/(4*sqrt(6)))*Matrix([[1,sqrt(3)],[sqrt(3),1]]) M3 = (1/(4*sqrt(6)))*Matrix([[1,-sqrt(3)],[-sqrt(3),1]]) M1,M2,M3 M1.T*M1 + M2.T*M2 + M3.T*M3 # 2-element 1-qubit POVM (Douglas) M1 = (1/(2*sqrt(2)))*Matrix([[1,0],[sqrt(3),2]]) M2 = (1/(2*sqrt(2)))*Matrix([[1,0],[-sqrt(3),2]]) M1,M2 M1.T*M1 + M2.T*M2
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, execute from qiskit.providers.fake_provider import FakeVigoV2 from qiskit.visualization import plot_gate_map backend = FakeVigoV2() plot_gate_map(backend)
https://github.com/abbarreto/qiskit3
abbarreto
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import math from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse3Q # TODO: This example should use a real mock backend. backend = FakeOpenPulse3Q() d2 = pulse.DriveChannel(2) with pulse.build(backend) as bell_prep: pulse.u2(0, math.pi, 0) pulse.cx(0, 1) with pulse.build(backend) as decoupled_bell_prep_and_measure: # We call our bell state preparation schedule constructed above. with pulse.align_right(): pulse.call(bell_prep) pulse.play(pulse.Constant(bell_prep.duration, 0.02), d2) pulse.barrier(0, 1, 2) registers = pulse.measure_all() decoupled_bell_prep_and_measure.draw()
https://github.com/DavidFitzharris/EmergingTechnologies
DavidFitzharris
# initialization import numpy as np # importing Qiskit from qiskit import IBMQ, Aer from qiskit import QuantumCircuit, transpile # import basic plot tools from qiskit.visualization import plot_histogram # set the length of the n-bit input string. n = 3 # Constant Oracle const_oracle = QuantumCircuit(n+1) # Random output output = np.random.randint(2) if output == 1: const_oracle.x(n) const_oracle.draw() # Balanced Oracle balanced_oracle = QuantumCircuit(n+1) # Binary string length b_str = "101" # For each qubit in our circuit # we place an X-gate if the corresponding digit in b_str is 1 # or do nothing if the digit is 0 balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) balanced_oracle.draw() # Creating the controlled-NOT gates # using each input qubit as a control # and the output as a target balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() # Wrapping the controls in X-gates # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Show oracle balanced_oracle.draw() dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit = dj_circuit.compose(balanced_oracle) # Repeat H-gates for qubit in range(n): dj_circuit.h(qubit) dj_circuit.barrier() # Measure for i in range(n): dj_circuit.measure(i, i) # Display circuit dj_circuit.draw() # Viewing the output # use local simulator aer_sim = Aer.get_backend('aer_simulator') results = aer_sim.run(dj_circuit).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/usamisaori/Grover
usamisaori
import qiskit from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram from qiskit.quantum_info import Operator import numpy as np from qiskit import execute, Aer simulator = Aer.get_backend('qasm_simulator') import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') def createYouneInitCircuit(): circuit = QuantumCircuit(3, 2) circuit.h(0) circuit.h(1) circuit.barrier() return circuit youneInitCircuit = createYouneInitCircuit() youneInitCircuit.draw(output='mpl') def createYouneOracle(): circuit = QuantumCircuit(3, 2) circuit.x(0) circuit.x(1) circuit.ccx(0, 1, 2) circuit.x(0) circuit.x(1) circuit.barrier() circuit.x(0) circuit.ccx(0, 1, 2) circuit.x(0) circuit.barrier() return circuit youneOracle = createYouneOracle() youneOracle.draw(output='mpl') def createYouneDiffuser(): circuit = QuantumCircuit(3, 2) circuit.h(0) circuit.h(1) circuit.barrier(2) circuit.x(2) circuit.x(0) circuit.x(1) circuit.h(2) circuit.ccx(0, 1, 2) circuit.barrier(0) circuit.barrier(1) circuit.h(2) circuit.x(2) circuit.x(0) circuit.x(1) circuit.h(0) circuit.h(1) # circuit.h(2) circuit.barrier() return circuit youneDiffuser = createYouneDiffuser() youneDiffuser.draw(output='mpl') youneGroverIteration = createYouneOracle().compose(createYouneDiffuser()) grover_youne = createYouneInitCircuit().compose(youneGroverIteration.copy()) grover_youne.draw(output='mpl') grover_youne.measure([0, 1], [0, 1]) job = execute(grover_youne, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_youne) print(counts) plot_histogram(counts, figsize=(4, 5), color="#0099CC", title="youne grover - find evens") def createYouneOracle2(): circuit = QuantumCircuit(3, 2) circuit.x(0) circuit.cx(0, 2) circuit.x(0) circuit.barrier() return circuit youneOracle2 = createYouneOracle2() youneOracle2.draw(output='mpl') # 0 => 4 2 => 6 Operator(youneOracle2).data youneGroverIteration2 = createYouneOracle2().compose(createYouneDiffuser()) grover_youne2 = createYouneInitCircuit().compose(youneGroverIteration2.copy()) grover_youne2.draw(output='mpl') grover_youne2.measure([0, 1], [0, 1]) job = execute(grover_youne2, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_youne2) print(counts) plot_histogram(counts, figsize=(4, 5), color="#66CCFF", title="youne grover(using another Oracle) - find evens")
https://github.com/CQCL/pytket-qiskit
CQCL
# Copyright 2020-2024 Quantinuum # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, List, Union, Any from qiskit.circuit.quantumcircuit import QuantumCircuit # type: ignore from qiskit.providers.backend import BackendV1 # type: ignore from qiskit.providers.models import QasmBackendConfiguration # type: ignore from qiskit.providers import Options # type: ignore from pytket.extensions.qiskit import AerStateBackend, AerUnitaryBackend from pytket.extensions.qiskit.qiskit_convert import qiskit_to_tk, _gate_str_2_optype_rev from pytket.extensions.qiskit.tket_job import TketJob, JobInfo from pytket.backends import Backend from pytket.passes import BasePass from pytket.predicates import ( NoClassicalControlPredicate, GateSetPredicate, CompilationUnit, ) from pytket.architecture import FullyConnected def _extract_basis_gates(backend: Backend) -> List[str]: for pred in backend.required_predicates: if type(pred) == GateSetPredicate: return [ _gate_str_2_optype_rev[optype] for optype in pred.gate_set if optype in _gate_str_2_optype_rev.keys() ] return [] class TketBackend(BackendV1): """Wraps a :py:class:`Backend` as a :py:class:`qiskit.providers.BaseBackend` for use within the Qiskit software stack. Each :py:class:`qiskit.circuit.quantumcircuit.QuantumCircuit` passed in will be converted to a :py:class:`Circuit` object. If a :py:class:`BasePass` is provided for ``comp_pass``, this is applied to the :py:class:`Circuit`. Then it is processed by the :py:class:`Backend`, wrapping the :py:class:`ResultHandle` s in a :py:class:`TketJob`, retrieving the results when called on the job object. The required predicates of the :py:class:`Backend` are presented to the Qiskit transpiler to enable it to perform the compilation in many cases. This may not always be possible due to unsupported gatesets or additional constraints that cannot be captured in Qiskit's transpiler, in which case a custom :py:class:`qiskit.transpiler.TranspilationPass` should be used to map into a tket- compatible gateset and set ``comp_pass`` to compile for the backend. To compile with tket only, set ``comp_pass`` and just use Qiskit to map into a tket-compatible gateset. In Qiskit Aqua, you should wrap the :py:class:`TketBackend` in a :py:class:`qiskit.aqua.QuantumInstance`, providing a custom :py:class:`qiskit.transpiler.PassManager` with a :py:class:`qiskit.transpiler.passes.Unroller`. For examples, see the `user manual <https://tket.quantinuum.com/user-manual/manual_backend.html#embedding-into- qiskit>`_ or the `Qiskit integration example <ht tps://github.com/CQCL/pytket/blob/main/examples/qiskit_integration. ipynb>`_. """ def __init__(self, backend: Backend, comp_pass: Optional[BasePass] = None): """Create a new :py:class:`TketBackend` from a :py:class:`Backend`. :param backend: The device or simulator to wrap up :type backend: Backend :param comp_pass: The (optional) tket compilation pass to apply to each circuit before submitting to the :py:class:`Backend`, defaults to None :type comp_pass: Optional[BasePass], optional """ arch = backend.backend_info.architecture if backend.backend_info else None coupling: Optional[List[List[Any]]] if isinstance(arch, FullyConnected): coupling = [ [n1.index[0], n2.index[0]] for n1 in arch.nodes for n2 in arch.nodes if n1 != n2 ] else: coupling = ( [[n.index[0], m.index[0]] for n, m in arch.coupling] if arch else None ) config = QasmBackendConfiguration( backend_name=("statevector_" if backend.supports_state else "") + "pytket/" + str(type(backend)), backend_version="0.0.1", n_qubits=len(arch.nodes) if arch and arch.nodes else 40, basis_gates=_extract_basis_gates(backend), gates=[], local=False, simulator=False, conditional=not any( ( type(pred) == NoClassicalControlPredicate for pred in backend.required_predicates ) ), open_pulse=False, memory=backend.supports_shots, max_shots=10000, coupling_map=coupling, max_experiments=10000, ) super().__init__(configuration=config, provider=None) self._backend = backend self._comp_pass = comp_pass @classmethod def _default_options(cls) -> Options: return Options(shots=None, memory=False) def run( self, run_input: Union[QuantumCircuit, List[QuantumCircuit]], **options: Any ) -> TketJob: if isinstance(run_input, QuantumCircuit): run_input = [run_input] n_shots = options.get("shots", None) circ_list = [] jobinfos = [] for qc in run_input: tk_circ = qiskit_to_tk(qc) if isinstance(self._backend, (AerStateBackend, AerUnitaryBackend)): tk_circ.remove_blank_wires() circ_list.append(tk_circ) jobinfos.append(JobInfo(qc.name, tk_circ.qubits, tk_circ.bits, n_shots)) if self._comp_pass: final_maps = [] compiled_list = [] for c in circ_list: cu = CompilationUnit(c) self._comp_pass.apply(cu) compiled_list.append(cu.circuit) final_maps.append(cu.final_map) circ_list = compiled_list else: final_maps = [None] * len(circ_list) # type: ignore handles = self._backend.process_circuits(circ_list, n_shots=n_shots) return TketJob(self, handles, jobinfos, final_maps)
https://github.com/Juan-Varela11/BNL_2020_Summer_Internship
Juan-Varela11
from qiskit.aqua.operators import WeightedPauliOperator from qiskit.aqua.components.initial_states import Zero from qiskit.aqua.components.variational_forms import RY from qiskit import BasicAer from qiskit.aqua.algorithms.classical import ExactEigensolver import matplotlib.pyplot as plt pauli_dict = { 'paulis': [{"coeff": {"imag": 0.0, "real": -1.052373245772859}, "label": "II"}, {"coeff": {"imag": 0.0, "real": 0.39793742484318045}, "label": "ZI"}, {"coeff": {"imag": 0.0, "real": -0.39793742484318045}, "label": "IZ"}, {"coeff": {"imag": 0.0, "real": -0.01128010425623538}, "label": "ZZ"}, {"coeff": {"imag": 0.0, "real": 0.18093119978423156}, "label": "XX"} ] } qubit_op = WeightedPauliOperator.from_dict(pauli_dict) num_qubits = qubit_op.num_qubits print('Number of qubits: {}'.format(num_qubits)) init_state = Zero(num_qubits) var_form = RY(num_qubits, initial_state=init_state) backend = BasicAer.get_backend('statevector_simulator') from qiskit.aqua.components.optimizers import COBYLA, L_BFGS_B, SLSQP import numpy as np from qiskit.aqua import QuantumInstance, aqua_globals from qiskit.aqua.algorithms.adaptive import VQE optimizers = [COBYLA, L_BFGS_B, SLSQP] converge_cnts = np.empty([len(optimizers)], dtype=object) converge_vals = np.empty([len(optimizers)], dtype=object) param_vals = np.empty([len(optimizers)], dtype=object) num_qubits = qubit_op.num_qubits for i in range(len(optimizers)): aqua_globals.random_seed = 250 optimizer = optimizers[i]() print('\rOptimizer: {} '.format(type(optimizer).__name__), end='') counts = [] values = [] params = [] def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) params.append(parameters) algo = VQE(qubit_op, var_form, optimizer, callback=store_intermediate_result) quantum_instance = QuantumInstance(backend=backend) algo_result = algo.run(quantum_instance) converge_cnts[i] = np.asarray(counts) converge_vals[i] = np.asarray(values) param_vals[i] = np.asarray(params) print('\rOptimization complete '); ee = ExactEigensolver(qubit_op) result = ee.run() ref = result['energy'] print('Reference value: {}'.format(ref)) plt.figure(figsize=(10,5)) for i in range(len(optimizers)): plt.plot(converge_cnts[i], abs(ref - converge_vals[i]), label=optimizers[i].__name__) plt.xlabel('Eval count') plt.ylabel('Energy difference from solution reference value') plt.title('Energy convergence for various optimizers') plt.yscale('log') plt.legend(loc='upper right')
https://github.com/xtophe388/QISKIT
xtophe388
# Checking the version of PYTHON; we only support > 3.5 import sys if sys.version_info < (3,5): raise Exception('Please use Python version 3.5 or greater.') from qiskit import QuantumProgram import math #import Qconfig #Define a QuantumProgram object Q_program = QuantumProgram() #Q_program.set_api(Qconfig.APItoken, Qconfig.config['url']) pi = math.pi def solve_linear_sys(): #Q_program.set_api(Qconfig.APItoken, Qconfig.config['url']) # create Quantum Register called "qr" with 4 qubits qr = Q_program.create_quantum_register("qr", 4) # create Quantum Register called "cr" with 4 qubits cr = Q_program.create_classical_register("cr", 4) # Creating Quantum Circuit called "qc" involving your Quantum Register "qr" # and your Classical Register "cr" qc = Q_program.create_circuit("solve_linear_sys", [qr], [cr]) # Initialize times that we get the result vector n0 = 0 n1 = 0 for i in range(10): #Set the input|b> state" qc.x(qr[2]) #Set the phase estimation circuit qc.h(qr[0]) qc.h(qr[1]) qc.u1(pi, qr[0]) qc.u1(pi/2, qr[1]) qc.cx(qr[1], qr[2]) #The quantum inverse Fourier transform qc.h(qr[0]) qc.cu1(-pi/2, qr[0], qr[1]) qc.h(qr[1]) #R(lamda^-1) Rotation qc.x(qr[1]) qc.cu3(pi/16, 0, 0, qr[0], qr[3]) qc.cu3(pi/8, 0, 0, qr[1], qr[3]) #Uncomputation qc.x(qr[1]) qc.h(qr[1]) qc.cu1(pi/2, qr[0], qr[1]) qc.h(qr[0]) qc.cx(qr[1], qr[2]) qc.u1(-pi/2, qr[1]) qc.u1(-pi, qr[0]) qc.h(qr[1]) qc.h(qr[0]) # To measure the whole quantum register qc.measure(qr[0], cr[0]) qc.measure(qr[1], cr[1]) qc.measure(qr[2], cr[2]) qc.measure(qr[3], cr[3]) result = Q_program.execute("solve_linear_sys", shots=8192, backend='local_qasm_simulator') # Get the sum og all results n0 = n0 + result.get_data("solve_linear_sys")['counts']['1000'] n1 = n1 + result.get_data("solve_linear_sys")['counts']['1100'] # print the result print(result) print(result.get_data("solve_linear_sys")) # Reset the circuit qc.reset(qr) # calculate the scale of the elements in result vectot and print it. p = n0/n1 print(n0) print(n1) print(p) # The test function if __name__ == "__main__": solve_linear_sys() %run "../version.ipynb"
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
#!pip install pylatexenc # para desenhar os circuitos quânticos from qiskit import QuantumCircuit qc = QuantumCircuit(1,1) qc.barrier() qc.measure(0,0) qc.draw('mpl') # Para medidas de Z # Para medidas de X qc = QuantumCircuit(1,1) qc.barrier() qc.h(0) qc.measure(0,0) qc.draw('mpl') # Para medidas de Y qc = QuantumCircuit(1,1) qc.barrier() qc.sdg(0) qc.h(0) qc.measure(0,0) qc.draw('mpl') # Calculo da inversa da matrix de Hadamard from sympy import Matrix H2 = Matrix([[1,1],[1,-1]]); H2 H2.inv() from qiskit_aer import AerSimulator from qiskit_ibm_runtime import SamplerV2 as Sampler import numpy as np def tomo_rho_1qb_sim(nqb, qbt, qct, nshots, backend): # qct = quantum circuit for tomography # nqb = number of qubits # qbt = qubit to be tomographed sampler = Sampler(backend=backend) avgs = [] for j in range(0,3): qc_list = [] qc = QuantumCircuit(nqb,1) qc.append(qct,list(range(nqb))) if j == 0: # medida de X qc.h(qbt) elif j == 1: # medida de Y qc.sdg(qbt) qc.h(qbt) qc.measure(qbt,0) qc_list.append(qc.decompose()) job = sampler.run(qc_list, shots=nshots) counts = job.result()[0].data.c.get_counts() if '0' in counts: avg = counts['0'] if '1' in counts: avg -= counts['1'] avg = avg/nshots avgs.append(avg) s0 = np.array([[1,0],[0,1]]); s1 = np.array([[0,1],[1,0]]) s2 = np.array([[0,-1j],[1j,0]]); s3 = np.array([[1,0],[0,-1]]) rho_1qb = 0.5*(s0 + avgs[0]*s1 + avgs[1]*s2 + avgs[2]*s3) return rho_1qb nqb = 2; qbt = 0 qct = QuantumCircuit(nqb) qct.h(0) qct.cx(0,1) nshots = 2**13 backend = AerSimulator() rho = tomo_rho_1qb(nqb, qbt, qct, nshots, backend) print(rho) from sympy.physics.quantum import TensorProduct as tp H4 = tp(H2,H2); H4 H4i = H4.inv(); H4i def hadarmard_inv(): return (1/4)*np.array([[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]]) #hadarmard_inv() def tomo_rho_2qb(nqb, qbt, qct, nshots, backend): # qct = quantum circuit for tomography # nqb = number of qubits # qbt = list with the 2 qubits to be tomographed sampler = Sampler(backend=backend) avgs = [] for j in range(1,4): for k in range(1,4): qc_list = [] qc = QuantumCircuit(nqb,2) qc.append(qct,list(range(nqb))) if j == 1: # medida de X_0 qc.h(qbt[0]) elif j == 2: # medida de Y_0 qc.sdg(qbt[0]) qc.h(qbt[0]) if k == 1: # medida de X_1 qc.h(qbt[1]) elif k == 2: # medida de Y_1 qc.sdg(qbt[1]) qc.h(qbt[1]) qc.measure(qbt,[0,1]) # medida de ZZ qc_list.append(qc.decompose()) job = sampler.run(qc_list, shots=nshots) counts = job.result()[0].data.c.get_counts() labels = ['00','01','10','11'] probs = np.zeros(4) for l in range(0,4): if labels[l] in counts: probs[l] = counts[labels[l]]/nshots print(probs) s0 = np.array([[1,0],[0,1]]); s1 = np.array([[0,1],[1,0]]) s2 = np.array([[0,-1j],[1j,0]]); s3 = np.array([[1,0],[0,-1]]) rho_2qb = 0.5*(s0 + avgs[0]*s1 + avgs[1]*s2 + avgs[2]*s3) return rho_2qb def tomo_2qb(avgs): # avgs e uma lista com 16 valores medios na seguinte ordem [II,IX,IY,IZ,XI,XX,XY,XZ,YI,YX,YY,YZ,ZI,ZX,ZY,ZZ] import numpy as np s0 = np.array([[1,0],[0,1]]); s1 = np.array([[0,1],[1,0]]) s2 = np.array([[0,-1j],[1j,0]]); s3 = np.array([[1,0],[0,-1]]) paulis = [s0,s1,s2,s3] # lista com as matrizes de Pauli rho = np.zeros([4,4],dtype=complex) l = 0 for j in range(0,3): for k in range(0,3): l += 1 rho += avgs[l]*tp(paulis[j],paulis[k]) return 0.25*rho nqb = 2; qbt = [0,1] qct = QuantumCircuit(nqb) qct.h(0) qct.cx(0,1) nshots = 2**13 backend = AerSimulator() rho = tomo_rho_2qb(nqb, qbt, qct, nshots, backend) print(rho) print(np.zeros(4)) def tomo_2qb(avgs): # avgs e uma lista com 16 valores medios na seguinte ordem [II,IX,IY,IZ,XI,XX,XY,XZ,YI,YX,YY,YZ,ZI,ZX,ZY,ZZ] import numpy as np s0 = np.array([[1,0],[0,1]]); s1 = np.array([[0,1],[1,0]]) s2 = np.array([[0,-1j],[1j,0]]); s3 = np.array([[1,0],[0,-1]]) paulis = [s0,s1,s2,s3] # lista com as matrizes de Pauli rho = np.zeros([4,4],dtype=complex) l = 0 for j in range(0,3): for k in range(0,3): l += 1 rho += avgs[l]*tp(paulis[j],paulis[k]) return 0.25*rho avgs = [1,0.1,0,0,0.1,0.3,0,0,0.3,0,0.2,0,0,0.1,0,0.5] #[II,IX,IY,IZ,XI,XX,XY,XZ,YI,YX,YY,YZ,ZI,ZX,ZY,ZZ] rho = tomo_2qb(avgs); rho # Inversa da matriz de Hadamard 4x4 (sem o multiplo 1/4) H4i = np.array([[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]]); H4i def qc_test_2qb(): from qiskit import QuantumCircuit qc = QuantumCircuit(2, name='qc2qb') qc.h(0); qc.cx(0,1) return qc def tomo_2qb(avgs): # avgs e uma lista com 64 valores medios na seguinte ordem [III,IIX,IIY,IIZ,IXI,IXX,IXY,IXZ,...] import numpy as np s0 = np.array([[1,0],[0,1]]); s1 = np.array([[0,1],[1,0]]) s2 = np.array([[0,-1j],[1j,0]]); s3 = np.array([[1,0],[0,-1]]) paulis = [s0,s1,s2,s3] rho = np.zeros([4,4],dtype=complex) m = 0 for j in range(0,4): for k in range(0,4): for l in range(0,4): rho += avgs[m]*np.kron(np.kron(paulis[j],paulis[k]),paulis[l]) m += 1 return 0.25*rho from qiskit import QuantumCircuit, execute from qiskit import Aer simulator = Aer.get_backend('qasm_simulator') nshots = 2**13 qct = qc_test_2qb() # circuito quantico principal # medida de XX qc = QuantumCircuit(2,2); qc.append(qct,[0,1]); qc.h([0,1]); qc.measure([0,1],[0,1]); qcxx = qc job = execute(qc, backend = simulator, shots = nshots); counts_xx = job.result().get_counts() pr_xx = np.zeros(4); cb2_labels = ['00','10','01','11'] for j in range(0,4): if cb2_labels[j] in counts_xx: pr_xx[j] = counts_xx[cb2_labels[j]]/nshots print('counts_xx=',counts_xx, pr_xx) XX_vec = np.matmul(H4i,pr_xx); print('XX_vec=',XX_vec) # =[II,IX,XI,XX] qcxx.draw('mpl') ss_vecs = [] # list with the averages of the observables obs = ['x','y','z'] for j in range(0,3): lo = obs[j] # left observable for k in range(0,3): ro = obs[k] # right observable qc = QuantumCircuit(2,2) qc.append(qct,[0,1]) # the quantum circuit for preparing psi if lo == 'x' and ro = 'x': qc.h([0,1]) elif lo == 'x' and ro = 'y': qc.sdg(1); qc.h([0,1]) elif lo == 'y' and ro = 'x': qc.sdg(0); qc.h([0,1]) elif lo == 'y' and ro = 'y': qc.sdg([0,1]); qc.h([0,1]) qc.measure([0,1],[0,1]) job = execute(qc, backend = simulator, shots = nshots) counts = job.result().get_counts() pr = np.zeros(4); cb2_labels = ['00','10','01','11'] for j in range(0,4): if cb2_labels[j] in counts_xx: pr_xx[j] = counts_xx[cb2_labels[j]]/nshots ss_vec = np.matmul(H4i,pr) ss_vecs.append(ss_vec) # matriz de Hadamard H8 = tp(H2,H4); H8 H8i = H8.inv(); H8i from sympy import symbols f000,f001,f010,f011,f100,f101,f110,f111 = symbols('f_{000},f_{001},f_{010},f_{011},f_{100},f_{101},f_{110},f_{111}') f = Matrix([[f000],[f001],[f010],[f011],[f100],[f101],[f110],[f111]]) f.T al = 8*H8i*f; al import numpy as np s0 = np.array([[1,0],[0,1]]); s1 = np.array([[0,1],[1,0]]); s2 = np.array([[0,-1j],[1j,0]]); s3 = np.array([[1,0],[0,-1]]) paulis = [s0,s1,s2,s3] # lista com as matrizes de Pauli list_avgs = [] m = 0 for j in range(0,4): for k in range(0,4): for l in range(0,4): list_avgs.append((j,k,l)) m += 1
https://github.com/BoschSamuel/QizGloria
BoschSamuel
# -- coding: utf-8 -- # This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import torch from torch.autograd import Function import torch.optim as optim from qiskit import QuantumRegister,QuantumCircuit,ClassicalRegister,execute from qiskit.circuit import Parameter from qiskit import Aer import numpy as np from tqdm import tqdm from matplotlib import pyplot as plt %matplotlib inline np.random.seed = 42 def to_numbers(tensor_list): num_list = [] for tensor in tensor_list: num_list += [tensor.item()] return num_list class QiskitCircuit(): def __init__(self,shots): self.theta = Parameter('Theta') self.phi = Parameter('Phi') self.lam = Parameter('Lambda') self.shots = shots def create_circuit(): qr = QuantumRegister(1,'q') cr = ClassicalRegister(1,'c') ckt = QuantumCircuit(qr,cr) ckt.h(qr[0]) ckt.barrier() ckt.u3(self.theta,self.phi,self.lam,qr[0]) ckt.barrier() ckt.measure(qr,cr) return ckt self.circuit = create_circuit() def N_qubit_expectation_Z(self,counts, shots, nr_qubits): expects = np.zeros(nr_qubits) for key in counts.keys(): perc = counts[key]/shots check = np.array([(float(key[i])-1/2)*2*perc for i in range(nr_qubits)]) expects += check return expects def bind(self, parameters): [self.theta,self.phi,self.lam] = to_numbers(parameters) self.circuit.data[2][0]._params = to_numbers(parameters) def run(self, i): self.bind(i) backend = Aer.get_backend('qasm_simulator') job_sim = execute(self.circuit,backend,shots=self.shots) result_sim = job_sim.result() counts = result_sim.get_counts(self.circuit) return self.N_qubit_expectation_Z(counts,self.shots,1) class TorchCircuit(Function): @staticmethod def forward(ctx, i): if not hasattr(ctx, 'QiskitCirc'): ctx.QiskitCirc = QiskitCircuit(shots=10000) exp_value = ctx.QiskitCirc.run(i[0]) result = torch.tensor([exp_value]) ctx.save_for_backward(result, i) return result @staticmethod def backward(ctx, grad_output): eps = 0.01 forward_tensor, i = ctx.saved_tensors input_numbers = to_numbers(i[0]) gradient = [0,0,0] for k in range(len(input_numbers)): input_eps = input_numbers input_eps[k] = input_numbers[k] + eps exp_value = ctx.QiskitCirc.run(torch.tensor(input_eps))[0] result_eps = torch.tensor([exp_value]) gradient_result = (exp_value - forward_tensor[0][0].item())/eps gradient[k] = gradient_result # print(gradient) result = torch.tensor([gradient]) # print(result) return result.float() * grad_output.float() torch.manual_seed(42) # x = torch.tensor([np.pi/4, np.pi/4, np.pi/4], requires_grad=True) x = torch.tensor([[0.0, 0.0, 0.0]], requires_grad=True) qc = TorchCircuit.apply y1 = qc(x) y1.backward() print(x.grad) qc = TorchCircuit.apply def cost(x): target = -1 expval = qc(x) return torch.abs(qc(x) - target) ** 2, expval x = torch.tensor([[np.pi/4, np.pi/4, np.pi/4]], requires_grad=True) opt = torch.optim.Adam([x], lr=0.1) num_epoch = 100 loss_list = [] expval_list = [] for i in tqdm(range(num_epoch)): # for i in range(num_epoch): opt.zero_grad() loss, expval = cost(x) loss.backward() opt.step() loss_list.append(loss.item()) expval_list.append(expval.item()) # print(loss.item()) plt.plot(loss_list) # print(circuit(phi, theta)) # print(cost(x)) import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import numpy as np import torchvision from torchvision import datasets, transforms batch_size_train = 1 batch_size_test = 1 learning_rate = 0.01 momentum = 0.5 log_interval = 10 torch.backends.cudnn.enabled = False transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor()]) mnist_trainset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) labels = mnist_trainset.targets #get labels labels = labels.numpy() idx1 = np.where(labels == 0) #search all zeros idx2 = np.where(labels == 1) # search all ones idx = np.concatenate((idx1[0][0:10],idx2[0][0:10])) # concatenate their indices mnist_trainset.targets = labels[idx] mnist_trainset.data = mnist_trainset.data[idx] print(mnist_trainset) train_loader = torch.utils.data.DataLoader(mnist_trainset, batch_size=batch_size_train, shuffle=True) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 3) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) # x = np.pi*F.tanh(x) print(x) x = qc(x) # print(x) x = (x+1)/2 x = torch.cat((x, 1-x), -1) return x # return F.softmax(x) network = Net() optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum) epochs = 100 for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): # print(batch_idx) optimizer.zero_grad() output = network(data) loss = F.nll_loss(output, target) # print(output) # print(output[0][1].item(), target.item()) loss.backward() optimizer.step() total_loss.append(loss.item()) print(sum(total_loss)/len(total_loss))
https://github.com/renatawong/classical-shadow-vqe
renatawong
''' (C) 2023 Renata Wong Electronic structure problem with classical shadows, as presented in https://arxiv.org/abs/2103.07510 This code uses Qiskit as platform. The shadow is constructed based on derandomized Hamiltonian. The molecules tested are: H2 (6-31s basis), LiH (sto3g basis), BeH2 (sto3g), H2O (sto3g), and NH3 (sto3g). The coordinates for NH3 were taken from 'Algorithms for Computer Detection of Symmetry Elementsin Molecular Systems'. ''' import time import numpy as np from collections import Counter import matplotlib.pyplot as plt from qiskit import QuantumCircuit, execute from qiskit_aer.primitives import Estimator as AerEstimator from qiskit_aer import QasmSimulator from qiskit.quantum_info import SparsePauliOp from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import BravyiKitaevMapper, JordanWignerMapper, ParityMapper from qiskit_nature.second_q.circuit.library import UCCSD, HartreeFock from qiskit_nature.second_q.algorithms import VQEUCCFactory from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP, COBYLA, SPSA # Estimator primitive is based on the Statevector construct = algebraic simulation from qiskit.primitives import Estimator from qiskit.utils import algorithm_globals from modified_derandomization import modified_derandomized_classical_shadow from predicting_quantum_properties.data_acquisition_shadow import derandomized_classical_shadow from predicting_quantum_properties.prediction_shadow import estimate_exp import qiskit_nature qiskit_nature.settings.use_pauli_sum_op = False import h5py H5PY_DEFAULT_READONLY=1 ''' DEFINING DRIVERS FOR THE MOLECULES ''' H2_driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="6-31g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) LiH_driver = PySCFDriver( atom="Li 0 0 0; H 0 0 1.599", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) BeH2_driver = PySCFDriver( atom="Be 0 0 0; H 0 0 1.3264; H 0 0 -1.3264", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) H2O_driver = PySCFDriver( atom="O 0.0 0.0 0.0; H 0.757 0.586 0.0; H -0.757 0.586 0.0", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) NH3_driver = PySCFDriver( atom="N 0 0 0; H 0 0 1.008000; H 0.950353 0 -0.336000; H -0.475176 -0.823029 -0.336000", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) ''' FORMATTING HAMILTONIAN ''' def process_hamiltonian(hamiltonian, derandomize = False): hamiltonian_observables = [] hamiltonian_coefficients = [] for observable in hamiltonian.paulis: op_list = [] for op_index, pauli_op in enumerate(observable): pauli_op = str(pauli_op) if pauli_op == 'I' or pauli_op == 'X' or pauli_op == 'Y' or pauli_op == 'Z': op_list.append((pauli_op, op_index)) hamiltonian_observables.append(op_list) hamiltonian_coefficients = hamiltonian.coeffs.real system_size = len(hamiltonian_observables[0]) # removing all occurrences of Pauli-I, for all-Pauli-I there is an empty list left # these observables are needed for estimate_exp() observables_xyze = [] for observable in hamiltonian_observables: XYZE = [] for pauli in observable: if pauli[0] != 'I': XYZE.append(pauli) observables_xyze.append(XYZE) # derandomisation procedure requires that coefficients are non-negative if derandomize == True: absolute_coefficients = [abs(coeffcient) for coeffcient in hamiltonian_coefficients] # removing the empty list as well # these observables are needed for derandomisation procedure observables_xyz = [] for idx, observable in enumerate(observables_xyze): if observable: observables_xyz.append(observable) else: absolute_coefficients.pop(idx) return system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients return system_size, observables_xyze, hamiltonian_coefficients ''' COST FUNCTION AND HELPER FUNCTIONS ''' def basis_change_circuit(pauli_op): # Generating circuit with just the basis change operators # # pauli_op: n-qubit Pauli operator basis_change = QuantumCircuit(ansatz.num_qubits, ansatz.num_qubits) for idx, op in enumerate(pauli_op): if op == 'X': basis_change.h(idx) if op == 'Y': basis_change.h(idx) basis_change.p(-np.pi/2, idx) return basis_change def ground_state_energy_from_shadow(operators, params): backend = QasmSimulator(method='statevector', shots=1) pauli_op_dict = Counter(tuple(x) for x in operators) shadow = [] for pauli_op in pauli_op_dict: qc = ansatz.bind_parameters(params) qc = qc.compose(basis_change_circuit(pauli_op)) qc.measure(reversed(range(system_size)), range(system_size)) result = execute(qc, backend, shots=pauli_op_dict[pauli_op]).result() counts = result.get_counts() # given in order q0 q1 ... qn-1 after register reversal in qc.measure for count in counts: for _ in range(counts[count]): # number of repeated measurement values output_str = list(count) output = [int(i) for i in output_str] eigenvals = [x+1 if x == 0 else x-2 for x in output] snapshot = [(op, eigenval) for op, eigenval in zip(pauli_op, eigenvals)] shadow.append(snapshot) expectation_value = 0.0 for term, weight in zip(observables_xyze, hamiltonian_coefficients): sum_product, match_count = estimate_exp(shadow, term) if match_count != 0: expectation_value += (weight * sum_product / match_count) return expectation_value ''' EXPERIMENTS ''' start_time = time.time() all_molecules_rmse_errors = [] # CALCULATING FERMIONIC HAMILTONIAN AND CONVERTING TO QUBIT HAMILTONIAN MOLECULES = ['H2'] for molecule in MOLECULES: rmse_errors = [] if molecule == 'H2': problem = H2_driver.run() if molecule == 'LiH': problem = LiH_driver.run() if molecule == 'BeH2': problem = BeH2_driver.run() if molecule == 'H2O': problem = H2O_driver.run() if molecule == 'NH3': problem = NH3_driver.run() hamiltonian = problem.hamiltonian second_q_op = hamiltonian.second_q_op() bk_mapper = BravyiKitaevMapper() #(num_particles=problem.num_particles) #BravyiKitaevMapper() bkencoded_hamiltonian = bk_mapper.map(second_q_op) #print('Qubit Hamiltonian in Bravyi-Kitaev encoding', bkencoded_hamiltonian) # process the Hamiltonian to obtain properly formatted data hamiltonian_data = process_hamiltonian(bkencoded_hamiltonian, derandomize = True) system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients = hamiltonian_data ''' VARIATIONAL ANSATZ ''' ansatz = UCCSD( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, initial_state=HartreeFock( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, ), ) ''' Running VQE on the Hamiltonian obtained from PySCFDriver using Statevector simulator (Estimator primitive) ''' #estimator = Estimator() # If shots = None, it calculates the exact expectation values. Otherwise, it samples from normal distributions # with standard errors as standard deviations using normal distribution approximation. #estimator.set_options(shots = None) #estimator = AerEstimator() #estimator.set_options(approximation=False, shots=None) #vqe_solver = VQE(estimator, ansatz, SLSQP()) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = np.zeros(ansatz.num_parameters) calc = GroundStateEigensolver(bk_mapper, vqe_solver) result = calc.solve(problem) print(result.raw_result) #print('NUMBER OF OPERATORS | DERANDOMISED OPERATORS | AVERAGE RMSE ERROR\n') measurement_range = [50, 250, 500, 750, 1000, 1250, 1500, 1750] for num_operators in measurement_range: derandomized_hamiltonian = derandomized_classical_shadow(observables_xyz, 50, system_size, weight=absolute_coefficients) tuples = (tuple(pauli) for pauli in derandomized_hamiltonian) counts = Counter(tuples) print('Original derandomized Hamiltonian', counts) # derandomized classical shadow will usually either undergenerate or overgenerate derandomized operators # adjusting for this issue: while sum(counts.values()) != num_operators: for key, value in zip(counts.keys(), counts.values()): sum_counts = sum(counts.values()) if sum_counts == num_operators: break if sum_counts < num_operators: # generate additional operators from the existing ones by increasing the number of counts counts[key] += 1 if sum_counts > num_operators: # remove the element with highest count max_element_key = [k for k, v in counts.items() if v == max(counts.values())][0] counts[max_element_key] -= 1 print('Size-adjusted derandomized Hamiltonian', counts) # translate the Counter to a set of derandomized operators new_derandomized_hamiltonian = [] for key, value in counts.items(): for _ in range(value): new_derandomized_hamiltonian.append(list(key)) #print('Size-adjusted derandomized Hamiltonian', new_derandomized_hamiltonian) expectation_values = [] num_experiments = 10 for iteration in range(num_experiments): expectation_value = ground_state_energy_from_shadow(new_derandomized_hamiltonian, result.raw_result.optimal_point) expectation_values.append(expectation_value) print("EXPERIMENT {}: GROUND STATE ENERGY FOUND = {}".format(iteration, expectation_value)) rmse_derandomised_cs = np.sqrt(np.sum([(expectation_values[i] - result.raw_result.optimal_value)**2 for i in range(num_experiments)])/num_experiments) rmse_errors.append(rmse_derandomised_cs) print('{} | {} | {}'.format(num_operators, counts, rmse_derandomised_cs)) all_molecules_rmse_errors.append(rmse_errors) elapsed_time = time.time() - start_time print("Execution time = ", time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) import matplotlib.pyplot as plt points = [50, 250, 500, 750, 1000, 1250, 1500, 1750] num_points = len(points) rmse_errors = [0.1069869635064184, 0.07725001066018326, 0.05225116371481676, 0.042165636875291464, 0.051653435360326294, 0.03145057406737202, 0.03650841505283894, 0.03864886899799828] plt.plot([i for i in points], [rmse_errors[i] for i in range(num_points)], 'r', label='derandomized classical shadow') plt.xlabel('Number of measurements') plt.ylabel('Average RMSE error') plt.legend(loc=1)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.quantum_info import Operator from qiskit.transpiler.passes import UnitarySynthesis circuit = QuantumCircuit(1) circuit.rx(0.8, 0) unitary = Operator(circuit).data unitary_circ = QuantumCircuit(1) unitary_circ.unitary(unitary, [0]) synth = UnitarySynthesis(basis_gates=["h", "s"], method="sk") out = synth(unitary_circ) out.draw('mpl')
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2024. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test ObservablesArray""" import itertools as it import ddt import numpy as np import qiskit.quantum_info as qi from qiskit.primitives.containers.observables_array import ObservablesArray from test import QiskitTestCase # pylint: disable=wrong-import-order @ddt.ddt class ObservablesArrayTestCase(QiskitTestCase): """Test the ObservablesArray class""" @ddt.data(0, 1, 2) def test_coerce_observable_str(self, num_qubits): """Test coerce_observable for allowed basis str input""" for chars in it.permutations(ObservablesArray.ALLOWED_BASIS, num_qubits): label = "".join(chars) obs = ObservablesArray.coerce_observable(label) self.assertEqual(obs, {label: 1}) def test_coerce_observable_custom_basis(self): """Test coerce_observable for custom al flowed basis""" class PauliArray(ObservablesArray): """Custom array allowing only Paulis, not projectors""" ALLOWED_BASIS = "IXYZ" with self.assertRaises(ValueError): PauliArray.coerce_observable("0101") for p in qi.pauli_basis(1): obs = PauliArray.coerce_observable(p) self.assertEqual(obs, {p.to_label(): 1}) @ddt.data("iXX", "012", "+/-") def test_coerce_observable_invalid_str(self, basis): """Test coerce_observable for Pauli input""" with self.assertRaises(ValueError): ObservablesArray.coerce_observable(basis) @ddt.data(1, 2, 3) def test_coerce_observable_pauli(self, num_qubits): """Test coerce_observable for Pauli input""" for p in qi.pauli_basis(num_qubits): obs = ObservablesArray.coerce_observable(p) self.assertEqual(obs, {p.to_label(): 1}) @ddt.data(0, 1, 2, 3) def test_coerce_observable_phased_pauli(self, phase): """Test coerce_observable for phased Pauli input""" pauli = qi.Pauli("IXYZ") pauli.phase = phase coeff = (-1j) ** phase if phase % 2: with self.assertRaises(ValueError): ObservablesArray.coerce_observable(pauli) else: obs = ObservablesArray.coerce_observable(pauli) self.assertIsInstance(obs, dict) self.assertEqual(list(obs.keys()), ["IXYZ"]) np.testing.assert_allclose( list(obs.values()), [coeff], err_msg=f"Wrong value for Pauli {pauli}" ) @ddt.data("+IXYZ", "-IXYZ", "iIXYZ", "+iIXYZ", "-IXYZ") def test_coerce_observable_phased_pauli_str(self, pauli): """Test coerce_observable for phased Pauli input""" pauli = qi.Pauli(pauli) coeff = (-1j) ** pauli.phase if pauli.phase % 2: with self.assertRaises(ValueError): ObservablesArray.coerce_observable(pauli) else: obs = ObservablesArray.coerce_observable(pauli) self.assertIsInstance(obs, dict) self.assertEqual(list(obs.keys()), ["IXYZ"]) np.testing.assert_allclose( list(obs.values()), [coeff], err_msg=f"Wrong value for Pauli {pauli}" ) def test_coerce_observable_signed_sparse_pauli_op(self): """Test coerce_observable for SparsePauliOp input with phase paulis""" op = qi.SparsePauliOp(["+I", "-X", "Y", "-Z"], [1, 2, 3, 4]) obs = ObservablesArray.coerce_observable(op) self.assertIsInstance(obs, dict) self.assertEqual(len(obs), 4) self.assertEqual(sorted(obs.keys()), sorted(["I", "X", "Y", "Z"])) np.testing.assert_allclose([obs[i] for i in ["I", "X", "Y", "Z"]], [1, -2, 3, -4]) def test_coerce_observable_zero_sparse_pauli_op(self): """Test coerce_observable for SparsePauliOp input with zero val coeffs""" op = qi.SparsePauliOp(["I", "X", "Y", "Z"], [0, 0, 0, 1]) obs = ObservablesArray.coerce_observable(op) self.assertIsInstance(obs, dict) self.assertEqual(len(obs), 1) self.assertEqual(sorted(obs.keys()), ["Z"]) self.assertEqual(obs["Z"], 1) def test_coerce_observable_duplicate_sparse_pauli_op(self): """Test coerce_observable for SparsePauliOp wiht duplicate paulis""" op = qi.SparsePauliOp(["XX", "-XX", "XX", "-XX"], [2, 1, 3, 2]) obs = ObservablesArray.coerce_observable(op) self.assertIsInstance(obs, dict) self.assertEqual(len(obs), 1) self.assertEqual(list(obs.keys()), ["XX"]) self.assertEqual(obs["XX"], 2) def test_coerce_observable_pauli_mapping(self): """Test coerce_observable for pauli-keyed Mapping input""" mapping = dict(zip(qi.pauli_basis(1), range(1, 5))) obs = ObservablesArray.coerce_observable(mapping) target = {key.to_label(): val for key, val in mapping.items()} self.assertEqual(obs, target) def test_coerce_0d(self): """Test the coerce() method with 0-d input.""" obs = ObservablesArray.coerce("X") self.assertEqual(obs.shape, ()) self.assertDictAlmostEqual(obs[()], {"X": 1}) obs = ObservablesArray.coerce({"I": 2}) self.assertEqual(obs.shape, ()) self.assertDictAlmostEqual(obs[()], {"I": 2}) obs = ObservablesArray.coerce(qi.SparsePauliOp(["X", "Y"], [1, 3])) self.assertEqual(obs.shape, ()) self.assertDictAlmostEqual(obs[()], {"X": 1, "Y": 3}) def test_format_invalid_mapping_qubits(self): """Test an error is raised when different qubits in mapping keys""" mapping = {"IX": 1, "XXX": 2} with self.assertRaises(ValueError): ObservablesArray.coerce_observable(mapping) def test_format_invalid_mapping_basis(self): """Test an error is raised when keys contain invalid characters""" mapping = {"XX": 1, "0Z": 2, "02": 3} with self.assertRaises(ValueError): ObservablesArray.coerce_observable(mapping) def test_init_nested_list_str(self): """Test init with nested lists of str""" obj = [["X", "Y", "Z"], ["0", "1", "+"]] obs = ObservablesArray(obj) self.assertEqual(obs.size, 6) self.assertEqual(obs.shape, (2, 3)) def test_init_nested_list_sparse_pauli_op(self): """Test init with nested lists of SparsePauliOp""" obj = [ [qi.SparsePauliOp(qi.random_pauli_list(2, 3, phase=False)) for _ in range(3)] for _ in range(5) ] obs = ObservablesArray(obj) self.assertEqual(obs.size, 15) self.assertEqual(obs.shape, (5, 3)) def test_init_single_sparse_pauli_op(self): """Test init with single SparsePauliOps""" obj = qi.SparsePauliOp(qi.random_pauli_list(2, 3, phase=False)) obs = ObservablesArray(obj) self.assertEqual(obs.size, 1) self.assertEqual(obs.shape, ()) def test_init_pauli_list(self): """Test init with PauliList""" obs = ObservablesArray(qi.pauli_basis(2)) self.assertEqual(obs.size, 16) self.assertEqual(obs.shape, (16,)) def test_init_nested_pauli_list(self): """Test init with nested PauliList""" obj = [qi.random_pauli_list(2, 3, phase=False) for _ in range(5)] obs = ObservablesArray(obj) self.assertEqual(obs.size, 15) self.assertEqual(obs.shape, (5, 3)) def test_init_ragged_array(self): """Test init with ragged input""" obj = [["X", "Y"], ["X", "Y", "Z"]] with self.assertRaises(ValueError): ObservablesArray(obj) def test_init_validate_false(self): """Test init validate kwarg""" obj = [["A", "B", "C"], ["D", "E", "F"]] obs = ObservablesArray(obj, validate=False) self.assertEqual(obs.shape, (2, 3)) self.assertEqual(obs.size, 6) for i in range(2): for j in range(3): self.assertEqual(obs[i, j], obj[i][j]) def test_init_validate_true(self): """Test init validate kwarg""" obj = [["A", "B", "C"], ["D", "E", "F"]] with self.assertRaises(ValueError): ObservablesArray(obj, validate=True) @ddt.data(0, 1, 2, 3) def test_size_and_shape_single(self, ndim): """Test size and shape method for size=1 array""" obs = {"XX": 1} for _ in range(ndim): obs = [obs] arr = ObservablesArray(obs, validate=False) self.assertEqual(arr.size, 1, msg="Incorrect ObservablesArray.size") self.assertEqual(arr.shape, (1,) * ndim, msg="Incorrect ObservablesArray.shape") @ddt.data(0, 1, 2, 3) def test_tolist_single(self, ndim): """Test tolist method for size=1 array""" obs = {"XX": 1} for _ in range(ndim): obs = [obs] arr = ObservablesArray(obs, validate=False) ls = arr.tolist() self.assertEqual(ls, obs) @ddt.data(0, 1, 2, 3) def test_array_single(self, ndim): """Test __array__ method for size=1 array""" obs = {"XX": 1} for _ in range(ndim): obs = [obs] arr = ObservablesArray(obs, validate=False) nparr = np.array(arr) self.assertEqual(nparr.dtype, object) self.assertEqual(nparr.shape, arr.shape) self.assertEqual(nparr.size, arr.size) self.assertTrue(np.all(nparr == np.array(obs))) @ddt.data(0, 1, 2, 3) def test_getitem_single(self, ndim): """Test __getitem__ method for size=1 array""" base_obs = {"XX": 1} obs = base_obs for _ in range(ndim): obs = [obs] arr = ObservablesArray(obs, validate=False) idx = ndim * (0,) item = arr[idx] self.assertEqual(item, base_obs) def test_tolist_1d(self): """Test tolist method""" obj = ["A", "B", "C", "D"] obs = ObservablesArray(obj, validate=False) self.assertEqual(obs.tolist(), obj) def test_tolist_2d(self): """Test tolist method""" obj = [["A", "B", "C"], ["D", "E", "F"]] obs = ObservablesArray(obj, validate=False) self.assertEqual(obs.tolist(), obj) def test_array_1d(self): """Test __array__ dunder method""" obj = np.array(["A", "B", "C", "D"], dtype=object) obs = ObservablesArray(obj, validate=False) self.assertTrue(np.all(np.array(obs) == obj)) def test_array_2d(self): """Test __array__ dunder method""" obj = np.array([["A", "B", "C"], ["D", "E", "F"]], dtype=object) obs = ObservablesArray(obj, validate=False) self.assertTrue(np.all(np.array(obs) == obj)) def test_getitem_1d(self): """Test __getitem__ for 1D array""" obj = np.array(["A", "B", "C", "D"], dtype=object) obs = ObservablesArray(obj, validate=False) for i in range(obj.size): self.assertEqual(obs[i], obj[i]) def test_getitem_2d(self): """Test __getitem__ for 2D array""" obj = np.array([["A", "B", "C"], ["D", "E", "F"]], dtype=object) obs = ObservablesArray(obj, validate=False) for i in range(obj.shape[0]): row = obs[i] self.assertIsInstance(row, ObservablesArray) self.assertEqual(row.shape, (3,)) self.assertTrue(np.all(np.array(row) == obj[i])) def test_ravel(self): """Test ravel method""" bases_flat = qi.pauli_basis(2).to_labels() bases = [bases_flat[4 * i : 4 * (i + 1)] for i in range(4)] obs = ObservablesArray(bases) flat = obs.ravel() self.assertEqual(flat.ndim, 1) self.assertEqual(flat.shape, (16,)) self.assertEqual(flat.size, 16) for ( i, label, ) in enumerate(bases_flat): self.assertEqual(flat[i], {label: 1}) def test_reshape(self): """Test reshape method""" bases = qi.pauli_basis(2) labels = np.array(bases.to_labels(), dtype=object) obs = ObservablesArray(qi.pauli_basis(2)) def various_formats(shape): # call reshape with a single argument yield [shape] yield [(-1,) + shape[1:]] yield [np.array(shape)] yield [list(shape)] yield [list(map(np.int64, shape))] yield [tuple(map(np.int64, shape))] # call reshape with multiple arguments yield shape yield np.array(shape) yield list(shape) yield list(map(np.int64, shape)) yield tuple(map(np.int64, shape)) for shape in [(16,), (4, 4), (2, 4, 2), (2, 2, 2, 2), (1, 8, 1, 2)]: with self.subTest(shape): for input_shape in various_formats(shape): obs_rs = obs.reshape(*input_shape) self.assertEqual(obs_rs.shape, shape) labels_rs = labels.reshape(shape) for idx in np.ndindex(shape): self.assertEqual( obs_rs[idx], {labels_rs[idx]: 1}, msg=f"failed for shape {shape} with input format {input_shape}", ) def test_validate(self): """Test the validate method""" ObservablesArray({"XX": 1}).validate() ObservablesArray([{"XX": 1}] * 5).validate() ObservablesArray([{"XX": 1}] * 15).reshape((3, 5)).validate() obs = ObservablesArray([{"XX": 1}, {"XYZ": 1}], validate=False) with self.assertRaisesRegex(ValueError, "number of qubits must be the same"): obs.validate()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.utils import algorithm_globals algorithm_globals.random_seed = 12345 from qiskit_machine_learning.datasets import ad_hoc_data adhoc_dimension = 2 train_features, train_labels, test_features, test_labels, adhoc_total = ad_hoc_data( training_size=20, test_size=5, n=adhoc_dimension, gap=0.3, plot_data=False, one_hot=False, include_sample_total=True, ) import matplotlib.pyplot as plt import numpy as np def plot_features(ax, features, labels, class_label, marker, face, edge, label): # A train plot ax.scatter( # x coordinate of labels where class is class_label features[np.where(labels[:] == class_label), 0], # y coordinate of labels where class is class_label features[np.where(labels[:] == class_label), 1], marker=marker, facecolors=face, edgecolors=edge, label=label, ) def plot_dataset(train_features, train_labels, test_features, test_labels, adhoc_total): plt.figure(figsize=(5, 5)) plt.ylim(0, 2 * np.pi) plt.xlim(0, 2 * np.pi) plt.imshow( np.asmatrix(adhoc_total).T, interpolation="nearest", origin="lower", cmap="RdBu", extent=[0, 2 * np.pi, 0, 2 * np.pi], ) # A train plot plot_features(plt, train_features, train_labels, 0, "s", "w", "b", "A train") # B train plot plot_features(plt, train_features, train_labels, 1, "o", "w", "r", "B train") # A test plot plot_features(plt, test_features, test_labels, 0, "s", "b", "w", "A test") # B test plot plot_features(plt, test_features, test_labels, 1, "o", "r", "w", "B test") plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0) plt.title("Ad hoc dataset") plt.show() plot_dataset(train_features, train_labels, test_features, test_labels, adhoc_total) from qiskit.circuit.library import ZZFeatureMap from qiskit.primitives import Sampler from qiskit.algorithms.state_fidelities import ComputeUncompute from qiskit_machine_learning.kernels import FidelityQuantumKernel adhoc_feature_map = ZZFeatureMap(feature_dimension=adhoc_dimension, reps=2, entanglement="linear") sampler = Sampler() fidelity = ComputeUncompute(sampler=sampler) adhoc_kernel = FidelityQuantumKernel(fidelity=fidelity, feature_map=adhoc_feature_map) from sklearn.svm import SVC adhoc_svc = SVC(kernel=adhoc_kernel.evaluate) adhoc_svc.fit(train_features, train_labels) adhoc_score_callable_function = adhoc_svc.score(test_features, test_labels) print(f"Callable kernel classification test score: {adhoc_score_callable_function}") adhoc_matrix_train = adhoc_kernel.evaluate(x_vec=train_features) adhoc_matrix_test = adhoc_kernel.evaluate(x_vec=test_features, y_vec=train_features) fig, axs = plt.subplots(1, 2, figsize=(10, 5)) axs[0].imshow( np.asmatrix(adhoc_matrix_train), interpolation="nearest", origin="upper", cmap="Blues" ) axs[0].set_title("Ad hoc training kernel matrix") axs[1].imshow(np.asmatrix(adhoc_matrix_test), interpolation="nearest", origin="upper", cmap="Reds") axs[1].set_title("Ad hoc testing kernel matrix") plt.show() adhoc_svc = SVC(kernel="precomputed") adhoc_svc.fit(adhoc_matrix_train, train_labels) adhoc_score_precomputed_kernel = adhoc_svc.score(adhoc_matrix_test, test_labels) print(f"Precomputed kernel classification test score: {adhoc_score_precomputed_kernel}") from qiskit_machine_learning.algorithms import QSVC qsvc = QSVC(quantum_kernel=adhoc_kernel) qsvc.fit(train_features, train_labels) qsvc_score = qsvc.score(test_features, test_labels) print(f"QSVC classification test score: {qsvc_score}") print(f"Classification Model | Accuracy Score") print(f"---------------------------------------------------------") print(f"SVC using kernel as a callable function | {adhoc_score_callable_function:10.2f}") print(f"SVC using precomputed kernel matrix | {adhoc_score_precomputed_kernel:10.2f}") print(f"QSVC | {qsvc_score:10.2f}") adhoc_dimension = 2 train_features, train_labels, test_features, test_labels, adhoc_total = ad_hoc_data( training_size=25, test_size=0, n=adhoc_dimension, gap=0.6, plot_data=False, one_hot=False, include_sample_total=True, ) plt.figure(figsize=(5, 5)) plt.ylim(0, 2 * np.pi) plt.xlim(0, 2 * np.pi) plt.imshow( np.asmatrix(adhoc_total).T, interpolation="nearest", origin="lower", cmap="RdBu", extent=[0, 2 * np.pi, 0, 2 * np.pi], ) # A label plot plot_features(plt, train_features, train_labels, 0, "s", "w", "b", "B") # B label plot plot_features(plt, train_features, train_labels, 1, "o", "w", "r", "B") plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0) plt.title("Ad hoc dataset for clustering") plt.show() adhoc_feature_map = ZZFeatureMap(feature_dimension=adhoc_dimension, reps=2, entanglement="linear") adhoc_kernel = FidelityQuantumKernel(feature_map=adhoc_feature_map) adhoc_matrix = adhoc_kernel.evaluate(x_vec=train_features) plt.figure(figsize=(5, 5)) plt.imshow(np.asmatrix(adhoc_matrix), interpolation="nearest", origin="upper", cmap="Greens") plt.title("Ad hoc clustering kernel matrix") plt.show() from sklearn.cluster import SpectralClustering from sklearn.metrics import normalized_mutual_info_score adhoc_spectral = SpectralClustering(2, affinity="precomputed") cluster_labels = adhoc_spectral.fit_predict(adhoc_matrix) cluster_score = normalized_mutual_info_score(cluster_labels, train_labels) print(f"Clustering score: {cluster_score}") adhoc_dimension = 2 train_features, train_labels, test_features, test_labels, adhoc_total = ad_hoc_data( training_size=25, test_size=10, n=adhoc_dimension, gap=0.6, plot_data=False, one_hot=False, include_sample_total=True, ) plot_dataset(train_features, train_labels, test_features, test_labels, adhoc_total) feature_map = ZZFeatureMap(feature_dimension=2, reps=2, entanglement="linear") qpca_kernel = FidelityQuantumKernel(fidelity=fidelity, feature_map=feature_map) matrix_train = qpca_kernel.evaluate(x_vec=train_features) matrix_test = qpca_kernel.evaluate(x_vec=test_features, y_vec=test_features) from sklearn.decomposition import KernelPCA kernel_pca_rbf = KernelPCA(n_components=2, kernel="rbf") kernel_pca_rbf.fit(train_features) train_features_rbf = kernel_pca_rbf.transform(train_features) test_features_rbf = kernel_pca_rbf.transform(test_features) kernel_pca_q = KernelPCA(n_components=2, kernel="precomputed") train_features_q = kernel_pca_q.fit_transform(matrix_train) test_features_q = kernel_pca_q.fit_transform(matrix_test) from sklearn.linear_model import LogisticRegression logistic_regression = LogisticRegression() logistic_regression.fit(train_features_q, train_labels) logistic_score = logistic_regression.score(test_features_q, test_labels) print(f"Logistic regression score: {logistic_score}") fig, (q_ax, rbf_ax) = plt.subplots(1, 2, figsize=(10, 5)) plot_features(q_ax, train_features_q, train_labels, 0, "s", "w", "b", "A train") plot_features(q_ax, train_features_q, train_labels, 1, "o", "w", "r", "B train") plot_features(q_ax, test_features_q, test_labels, 0, "s", "b", "w", "A test") plot_features(q_ax, test_features_q, test_labels, 1, "o", "r", "w", "A test") q_ax.set_ylabel("Principal component #1") q_ax.set_xlabel("Principal component #0") q_ax.set_title("Projection of training and test data\n using KPCA with Quantum Kernel") # Plotting the linear separation h = 0.01 # step size in the mesh # create a mesh to plot in x_min, x_max = train_features_q[:, 0].min() - 1, train_features_q[:, 0].max() + 1 y_min, y_max = train_features_q[:, 1].min() - 1, train_features_q[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) predictions = logistic_regression.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot predictions = predictions.reshape(xx.shape) q_ax.contourf(xx, yy, predictions, cmap=plt.cm.RdBu, alpha=0.2) plot_features(rbf_ax, train_features_rbf, train_labels, 0, "s", "w", "b", "A train") plot_features(rbf_ax, train_features_rbf, train_labels, 1, "o", "w", "r", "B train") plot_features(rbf_ax, test_features_rbf, test_labels, 0, "s", "b", "w", "A test") plot_features(rbf_ax, test_features_rbf, test_labels, 1, "o", "r", "w", "A test") rbf_ax.set_ylabel("Principal component #1") rbf_ax.set_xlabel("Principal component #0") rbf_ax.set_title("Projection of training data\n using KernelPCA") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/TheGupta2012/QPE-Algorithms
TheGupta2012
from qiskit import IBMQ from qiskit import QuantumCircuit, execute, transpile, Aer from qiskit.extensions import UnitaryGate, Initialize from qiskit.quantum_info import Statevector from qiskit.compiler import assemble from qiskit.circuit.random import random_circuit from qiskit.tools.visualization import plot_bloch_vector from qiskit.tools.visualization import plot_histogram, plot_bloch_multivector import numpy as np from time import sleep import sys import os from scipy.stats import unitary_group import matplotlib.pyplot as plt %matplotlib inline IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-education') simulator = Aer.get_backend('qasm_simulator') athens = provider.get_backend('ibmq_athens') class SPEA(): def __init__(self, unitary, resolution=50, error=3, max_iters=20): # handle resolution if not isinstance(resolution, int): raise TypeError( "Please enter the number of intervals as an integer value") if resolution < 10 or resolution > 1e6: raise ValueError( "Resolution needs to be atleast 0.1 and greater than 0.000001") self.resolution = resolution # handle unitary if not isinstance(unitary, np.ndarray) and not isinstance(unitary, QuantumCircuit)\ and not isinstance(unitary, UnitaryGate): raise TypeError( "A numpy array or Quantum Circuit or UnitaryGate needs to be passed as the unitary matrix") # convert circuit to numpy array for uniformity if isinstance(unitary, UnitaryGate): U = unitary.to_matrix() else: # both QC and ndarray type U = unitary # note - the unitary here is not just a single qubit unitary if isinstance(U, np.ndarray): self.dims = U.shape[0] else: self.dims = 2**(U.num_qubits) if isinstance(U, np.ndarray): self.c_unitary_gate = UnitaryGate(data=U).control( num_ctrl_qubits=1, label='CU', ctrl_state='1') else: self.c_unitary_gate = U.control( num_ctrl_qubits=1, label='CU', ctrl_state='1') # handle error if not isinstance(error, int): raise TypeError( "The allowable error should be provided as an int. Interpreted as 10**(-error)") if error <= 0: raise ValueError( "The error threshold must be finite and greater than 0.") self.error = error # handle max_iters if not isinstance(max_iters, int): raise TypeError("Max iterations must be of integer type") if max_iters <= 0 and max_iters > 1e5: raise ValueError( "Max iterations should be atleast 1 and less than 1e5") self.iterations = max_iters self.basis = [] def get_basis_vectors(self, randomize=True): # get the d dimensional basis for the unitary provided if randomize == True: UR = unitary_group.rvs(self.dims) else: UR = np.identity(self.dims) basis = [] for k in UR: basis.append(np.array(k, dtype=complex)) return basis def get_unitary_circuit(self, backend): '''Return the pretranspiled circuit ''' if backend is None: backend = Aer.get_backend('qasm_simulator') qc = QuantumCircuit(1 + int(np.log2(self.dims))) # make the circuit qc.h(0) qc = qc.compose(self.c_unitary_gate, qubits=range( 1+int(np.log2(self.dims)))) qc.barrier() qc = transpile(qc,backend=backend,optimization_level = 3) return qc def get_circuit(self, state, backend, angle=None): '''Given an initial state , return the circuit that is generated with inverse rotation ''' # all theta values are iterated over for the same state phi = Initialize(state) shots = 512 qc1 = QuantumCircuit(1 + int(np.log2(self.dims)), 1) # initialize the circuit qc1 = qc1.compose(phi, qubits=list( range(1, int(np.log2(self.dims))+1))) qc1 = transpile(qc1, backend=backend,optimization_level=1) # get the circuit2 qc2 = self.unitary_circuit qc3 = QuantumCircuit(1 + int(np.log2(self.dims)), 1) if angle is not None: # add inverse rotation on the first qubit qc3.p(-2*np.pi*angle, 0) # add hadamard qc3.h(0) qc3 = transpile(qc3, backend=backend,optimization_level=1) # make final circuit qc = qc1 + qc2 + qc3 # measure qc.measure([0], [0]) return qc def get_standard_cost(self, angles, state, backend,shots): '''Given an initial state and a set of angles, return the best cost and the associated angle state is a normalized state in ndarray form''' result = {'cost': -1, 'theta': -1} # all theta values are iterated over for the same state phi = Initialize(state) circuits = [] for theta in angles: qc = self.get_circuit(state,backend,theta) circuits.append(qc) circuits = assemble(circuits) # execute only once... counts = backend.run(circuits, shots=shots).result().get_counts() # get the cost for this theta for k, theta in zip(counts, angles): # for all experiments you ran try: C_val = (k['0'])/shots except: C_val = 0 if C_val > result['cost']: # means this is a better theta value result['theta'] = theta result['cost'] = C_val return result def get_alternate_cost(self, angles, state, backend,shots): '''Given an initial state and a set of angles, return the best cost and the associated angle state is a normalized state in ndarray form''' result = {'cost': -1, 'theta': -1} # all theta values are iterated over for the same state phi = Initialize(state) qc = self.get_circuit(state,backend) qc = assemble(qc) # execute only once... counts = backend.run(qc, shots=shots).result().get_counts() # generate experimental probabilities try: p0 = counts['0']/shots except: p0 = 0 try: p1 = counts['1']/shots except: p1 = 0 # now, find the best theta as specified by the # alternate method classically min_s = 1e5 for theta in angles: # generate theoretical probabilities c0 = (np.cos(np.pi*theta))**2 c1 = (np.sin(np.pi*theta))**2 # generate s value s = (p0-c0)**2 + (p1-c1)**2 if s < min_s: result['theta'] = theta min_s = s # now , we have the best theta stored in phi # run circuit once again to get the value of C* qc = self.get_circuit(state, backend, result['theta']) qc = assemble(qc) counts = backend.run(qc, shots=shots).result().get_counts() try: result['cost'] = counts['0']/shots except: result['cost'] = 0 # no 0 counts presenta # return the result return result def get_eigen_pair(self, backend, algo='alternate', progress=False, randomize=True, target_cost=None , basis = None, basis_ind = None,shots=512): '''Finding the eigenstate pair for the unitary''' # handle algorithm... self.unitary_circuit = self.get_unitary_circuit(backend) if not isinstance(algo, str): raise TypeError( "Algorithm must be mentioned as a string from the values {alternate,standard}") elif algo not in ['alternate', 'standard']: raise ValueError( "Algorithm must be specified as 'alternate' or 'standard' ") if not isinstance(progress, bool): raise TypeError("Progress must be a boolean variable") if not isinstance(randomize, bool): raise Exception("Randomize must be a boolean variable") if target_cost is not None: if not isinstance(target_cost, float): raise TypeError("Target cost must be a float") if (target_cost <= 0 or target_cost >= 1): raise ValueError( "Target cost must be a float value between 0 and 1") results = dict() # first initialize the state phi if basis is None: self.basis = self.get_basis_vectors(randomize) else: # is basis is specified, given as array of vectors... self.basis = basis # choose a random index if basis_ind is None: ind = np.random.choice(self.dims) else: # choose the index given in that basis ind = basis_ind phi = self.basis[ind] # doing the method 1 of our algorithm # define resolution of angles and precision if target_cost == None: precision = 1/10**self.error else: precision = 1 - target_cost samples = self.resolution # initialization of range left, right = 0, 1 # generate the angles angles = np.linspace(left, right, samples) # iterate once if algo == 'alternate': result = self.get_alternate_cost(angles, phi, backend,shots) else: result = self.get_standard_cost(angles, phi, backend,shots) # get initial estimates cost = result['cost'] theta_max = result['theta'] # the range upto which theta extends iin each iteration angle_range = 0.5 # a parameter a = 1 # start algorithm iters = 0 best_phi = phi found = True while 1 - cost >= precision: # get angles, note if theta didn't change, then we need to # again generate the same range again right = min(1, theta_max + angle_range/2) left = max(0, theta_max - angle_range/2) if progress: print("Right :", right) print("Left :", left) # generate the angles only if the theta has been updated if found == True: angles = np.linspace(left, right, samples) found = False # for this iteration if progress: print("ITERATION NUMBER", iters+1, "...") for i in range((2*self.dims)): # everyone is supplied with the same range of theta in one iteration # define z if i < self.dims: z = 1 else: z = 1j # alter and normalise phi curr_phi = best_phi + z*a*(1 - cost)*self.basis[i % self.dims] curr_phi = curr_phi / np.linalg.norm(curr_phi) # iterate (angles would be same until theta is changed) if algo == 'alternate': res = self.get_alternate_cost(angles, curr_phi, backend,shots) else: res = self.get_standard_cost(angles, curr_phi, backend,shots) curr_cost = res['cost'] curr_theta = res['theta'] # at this point I have the best Cost for the state PHI and the # # print(curr_phi) if curr_cost > cost: theta_max = float(curr_theta) cost = float(curr_cost) best_phi = curr_phi found = True if progress: sys.stdout.write('\r') sys.stdout.write("%f %%completed" % (100*(i+1)/(2*self.dims))) sys.stdout.flush() sleep(0.2) # iteration completes if found == False: # phi was not updated , change a a = a/2 if progress: print("\nNo change, updating a...") else: angle_range /= 2 # updated phi and thus theta too -> refine theta range iters += 1 if progress: print("\nCOST :", cost) print("THETA :", theta_max) if iters >= self.iterations: print( "Maximum iterations reached for the estimation.\nTerminating algorithm...") break # add the warning that iters maxed out # add cost, eigenvector and theta to the dict results['cost'] = cost results['theta'] = theta_max results['state'] = best_phi return results simulator = Aer.get_backend('qasm_simulator') U = random_circuit(num_qubits=4,depth=1) U.draw('mpl') spe = SPEA(U, resolution=40, error=3, max_iters=13) result = spe.get_eigen_pair( progress=False, algo='alternate', backend=athens,shots=512) result U = QuantumCircuit(4) U.cp(2*np.pi*(1/2), 1, 2) display(U.draw('mpl')) errors = [] eigvals = np.array([0.0, 0.5, 1.0]) for resolution in range(10, 80, 10): spe = SPEA(U, resolution=resolution, error=4, max_iters=15) res = spe.get_eigen_pair(backend=simulator, algo='alternate') theta = res['theta'] min_error = 1e5 # get percentage error for e in eigvals: error = abs(e-theta) if error < min_error: min_error = error if e != 0: perc_error = (error/e)*100 else: perc_error = error*100 errors.append(perc_error) plt.title( "Eigenphase estimation for theta = 1/2, 0, 1 (4-qubit unitary)", fontsize=15) plt.grid() plt.plot(list(range(10, 80, 10)), errors, marker='o', color='brown', label='Estimates', alpha=0.7) # plt.plot([10,80],[0.25,0.25],color='black',label = "True") # plt.plot([10,80],[0,0],color='black',label = "True") # plt.plot([10,80],[1,1],color='black',label = "True") plt.legend() plt.xlabel("Resolution of theta ") plt.ylabel("Percentage errors from closest eigenvalues") plt.savefig("Alternate_SPE_PLOT_original_algo.jpg", dpi=200) U = QuantumCircuit(2) U.cp(2*np.pi*(1/6), 0, 1) U.draw('mpl') eigvals = np.array([0.0, 1/6, 1.0]) errors = [] for resolution in range(10, 80, 10): spe = SPEA(U, resolution=resolution, error=3, max_iters=12) # run 5 experiments of this p_errors = [] for exp in range(4): res = spe.get_eigen_pair( progress=False, algo='alternate', backend=simulator) theta = res['theta'] min_error = 1e5 min_val = -1 # get min error for e in eigvals: error = abs(e-theta) if error < min_error: min_error = error min_val = e # percent error in this experiment if min_val != 0: p_errors.append((min_error/min_val)*100) else: p_errors.append((min_error)*100) print("Percentage Errors in current iteration:", p_errors) errors.append(np.average(p_errors)) print("Errors :", errors) plt.title( "Eigenphase estimation for theta = 1/6, 0, 1 (2-qubit unitary)", fontsize=15) plt.grid() plt.plot(list(range(10, 80, 10)), errors, marker='o', color='magenta', label='Estimates', alpha=0.6) # plt.plot([10,80],[0.25,0.25],color='black',label = "True") # plt.plot([10,80],[0,0],color='black',label = "True") # plt.plot([10,80],[1,1],color='black',label = "True") plt.legend() plt.xlabel("Resolution of theta ") plt.ylabel("Percentage Errors from closest eigenvalues") plt.savefig("Alternate_SPE_PLOT_2_original_algo.jpg", dpi=200)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile from qiskit.providers.fake_provider import FakeBoeblingen backend = FakeBoeblingen() ghz = QuantumCircuit(5) ghz.h(0) ghz.cx(0,range(1,5)) circ = transpile(ghz, backend, scheduling_method="asap") circ.draw(output='mpl')
https://github.com/KathrinKoenig/QuantumTopologicalDataAnalysis
KathrinKoenig
import numpy as np import qtda_module as qtda from qiskit.visualization import plot_histogram from qiskit import IBMQ from qiskit import execute, QuantumRegister, QuantumCircuit, ClassicalRegister, Aer from qiskit.compiler import transpile provider = IBMQ.load_account() accountProvider = IBMQ.get_provider(hub='ibm-q-fraunhofer',group = 'fhg-all',project = 'ticket') backend = accountProvider.get_backend('ibmq_brooklyn') n_vertices = 3 # number of vertices num_eval_qubits = 3 # number of evaluation qubits S0 = [(0,0,1),(0,1,0), (1,0,0)] # points S1 = [(1,0,1),(0,1,1),(1,1,0)] # lines S2 = [] state_dict = {0: S0, 1: S1, 2: S2} k = 1 # order of the combinatorial Laplacian qc = qtda.QTDAalgorithm(num_eval_qubits, k, state_dict) qc.add_register(ClassicalRegister(num_eval_qubits)) # adding a classical register for measuring for q in qc.eval_qubits: # measure all evaluation qubits qc.measure(q,q) qc.draw('mpl') qcc = transpile(qc, basis_gates=['id', 'rz', 'sx', 'x', 'cx'], layout_method='sabre',optimization_level=3) qa = transpile(qc, backend=backend, basis_gates=['id', 'rz', 'sx', 'x', 'cx'],layout_method='sabre',optimization_level=3) qa.depth() # depth of ibmq_brooklyn qcc.depth() # depth of an arbitrary backend shots = 8192 job = execute(qa, backend, shots=shots) counts = job.result().get_counts(qa) dim = len(state_dict[1]) # dimension of 1-simplex space prob = counts.get("0"*num_eval_qubits)/shots # probability of eigenvalue 0 print('The number of 1-holes is', dim * prob) plot_histogram(counts) import qiskit qiskit.__qiskit_version__
https://github.com/levchCode/RSA-breaker
levchCode
# # This is a toy RSA encryption breaker using Shor's algorithm (params: a = 2, N = 85) # To use your custom alphabet, please change alphabet var # from qiskit import QuantumProgram from fractions import gcd from math import pi qp = QuantumProgram() qr = qp.create_quantum_register('qr', 8) cr = qp.create_classical_register('cr', 4) qc = qp.create_circuit('Shor',[qr],[cr]) def Oracle(): qc.cx(qr[2], qr[6]) qc.cx(qr[3], qr[7]) def findPQ(a, N): qc.h(qr[0]) qc.h(qr[1]) qc.h(qr[2]) qc.h(qr[3]) Oracle() qc.h(qr[0]) qc.cu1(pi/2, qr[0], qr[1]) qc.h(qr[1]) qc.cu1(pi/4, qr[0], qr[2]) qc.cu1(pi/2, qr[1], qr[2]) qc.h(qr[2]) qc.cu1(pi/8, qr[0], qr[3]) qc.cu1(pi/4, qr[1], qr[3]) qc.cu1(pi/2, qr[2], qr[3]) qc.h(qr[3]) qc.measure(qr[0], cr[0]) qc.measure(qr[1], cr[1]) qc.measure(qr[2], cr[2]) qc.measure(qr[3], cr[3]) result = qp.execute(['Shor'])#, backend='ibmqx_qasm_simulator', shots=1024, wait=5, timeout=1200) res = result.get_counts('Shor') mult_list = [] for k in res.keys(): p = int(k, 2) if p % 2 == 0: k1 = a**(p/2) - 1 k2 = a**(p/2) + 1 mult_list.append((gcd(k1, N), gcd(k2, N))) else: print("Period is odd, skipping") print("mult_list: {}".format(mult_list)) return mult_list def decrypt(public_key, message): m_list = findPQ(2, public_key[1]) #alphabet84 = " !(),-./0123456789:?АБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдежзийклмнопрстуфхцчшщъыьэюя" #alphabet50 = " !(),-.0123456789:?АБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ" alphabet = " !(),-./0123456789:?АБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдежзийклмнопрстуфхцчшщъыьэюя" message = [alphabet.find(i) for i in message] for m in m_list: fi = (m[0]-1)*(m[1]-1) if(fi == 0): print("N = N * 1, skipping") else: d = 0 while True: rem = (d*public_key[0]) % fi if rem == 1: break else: d = d + 1 text = '' for i in message: text += alphabet[i**d % public_key[1]] print("The message is: {}".format(text)) if __name__ == '__main__': decrypt((11, 85), "Ы97 3хД7УЙ НЖ3 Жл2Ж, Н9ще7 НЖ?32Ж Дхнх9лЖ,д")
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# Copyright 2019 Cambridge Quantum Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Engine for the Quantum Subspace Expansion algorithm """ import time import logging import itertools from typing import List import numpy as np from multiprocessing import Pool, cpu_count from _pickle import PicklingError from qiskit import QuantumCircuit, ClassicalRegister from pytket.chemistry.aqua.qse_subs import QseMatrices from qiskit.aqua import QuantumAlgorithm, AquaError, Operator from qiskit.aqua.components.variational_forms import VariationalForm logger = logging.getLogger(__name__) logger = logging.getLogger('qiskit.aqua') class QSE(QuantumAlgorithm): """ :py:class:`qiskit.aqua.QuantumAlgorithm` implementation for Quantum Subspace Expansion (QSE) [See Phys. Rev. A 95, 042308 (2017)]. """ CONFIGURATION = { 'name': 'QSE', 'description': 'QSE Algorithm', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'qse_schema', 'type': 'object', 'properties': { 'operator_mode': { 'type': 'string', 'default': 'matrix', 'oneOf': [ {'enum': ['matrix', 'paulis', 'grouped_paulis']} ] }, 'initial_point': { 'type': ['array', 'null'], "items": { "type": "number" }, 'default': None } }, 'additionalProperties': False }, 'problems': ['energy', 'ising'], 'depends': ['variational_form', 'initial_state'], 'defaults': { 'variational_form': { 'name': 'UCCSD' }, 'initial_state': { 'name': 'ZERO' } } } def __init__(self, qse_operators:QseMatrices, operator_mode:str, var_form:VariationalForm, opt_init_point:np.ndarray=None, aux_operators:List[Operator]=[]): """ :param qse_operators: Qubit operator generator :param operator_mode: Operator mode to be used for evaluation of the operator :param var_form: Parametrized variational form :param opt_init_point: Initial point for the optimisation :param aux_operators: Auxiliary operators to be evaluated at each eigenvalue """ super().__init__() self._qse_operators = qse_operators self._operator = None self._operator_mode = operator_mode self._var_form = var_form self.opt_var_params = opt_init_point self._aux_operators = aux_operators self._ret = {} self._eval_count = 0 self._eval_time = 0 if opt_init_point is None: self.opt_var_params = var_form.preferred_init_points else: self.opt_circuit = self._var_form.construct_circuit(self.opt_var_params) self._quantum_state = None @property def setting(self): ret = "Algorithm: {}\n".format(self._configuration['name']) params = "" for key, value in self.__dict__.items(): if key != "_configuration" and key[0] == "_": if "opt_init_point" in key and value is None: params += "-- {}: {}\n".format(key[1:], "Random seed") else: params += "-- {}: {}\n".format(key[1:], value) ret += "{}".format(params) return ret def print_setting(self) -> str: """ Presents the QSE settings as a string. :return: The formatted settings of the QSE instance """ ret = "\n" ret += "==================== Setting of {} ============================\n".format(self.configuration['name']) ret += "{}".format(self.setting) ret += "===============================================================\n" ret += "{}".format(self._var_form.setting) ret += "===============================================================\n" return ret def _energy_evaluation(self, operator): """ Evaluate the energy of the current input circuit with respect to the given operator. :param operator: Hamiltonian of the system :return: Energy of the Hamiltonian """ if self._quantum_state is not None: input_circuit = self._quantum_state else: input_circuit = [self.opt_circuit] if operator._paulis: mean_energy, std_energy = operator.evaluate_with_result(self._operator_mode, input_circuit, self._quantum_instance.backend, self.ret) else: mean_energy = 0.0 std_energy = 0.0 operator.disable_summarize_circuits() logger.debug('Energy evaluation {} returned {}'.format(self._eval_count, np.real(mean_energy))) return np.real(mean_energy), np.real(std_energy) def _h_qse_finder(self, pair): i, j = pair term = self._qse_operators.hamiltonian_term(i, j) term.chop(1e-10) result, std_ij = self._energy_evaluation(term) return result #Measure elements of the overlap matrix def _s_qse_finder(self, pair): i, j = pair term = self._qse_operators.overlap_term(i, j) result, std_ij = self._energy_evaluation(term) return result def _linear_compute(self, terms, _n_qubits): matrix = np.zeros((_n_qubits**2, _n_qubits**2), dtype=np.float) pairs = filter(lambda x: x[1]>=x[0], itertools.product(range(_n_qubits**2), repeat=2)) completed = 0 total = _n_qubits**4 for pair, term in zip(pairs, terms): i, j = pair result, std = self._energy_evaluation(term) matrix[[i,j], [j,i]] = result completed += 2 if completed % 1 ==0: logger.info("Matrix Filled: {0:.2%}".format(completed/total)) return matrix def _parallel_compute(self, terms, _n_qubits): matrix = np.zeros((_n_qubits**2, _n_qubits**2), dtype=np.float) N_CORES = cpu_count() pairs = filter(lambda x: x[1]>=x[0], itertools.product(range(_n_qubits**2), repeat=2)) n_calcs = N_CORES*5 next_terms = list(itertools.islice(terms, n_calcs)) next_pairs = list(itertools.islice(pairs, n_calcs)) completed = 0 total = _n_qubits**4 with Pool(N_CORES) as p: while next_terms: start = time.time() results, stdev = zip(*p.map(self._energy_evaluation, next_terms)) i_s, j_s = zip(*next_pairs) results = np.array(list(results)) matrix[i_s, j_s] = results matrix[j_s, i_s] = results next_terms = list(itertools.islice(terms, n_calcs)) next_pairs = list(itertools.islice(pairs, n_calcs)) completed += n_calcs*2 logger.debug("{} calculations in {}".format(n_calcs, time.time() - start)) logger.info("Matrix Filled: {0:.2%}".format(completed/total)) return matrix def _generate_terms(self): n_qubits = self._qse_operators.n_qubits pairs = list(filter(lambda x: x[1]>=x[0], itertools.product(range(n_qubits**2), repeat=2))) def chop(term): term.chop(1e-10) return term h_terms = (chop(term) for term in(self._qse_operators.hamiltonian_term(i, j) for i, j in pairs)) s_terms = (self._qse_operators.overlap_term(i, j) for i, j in pairs) return h_terms, s_terms def _solve(self, parallel=True): h_terms, s_terms = self._generate_terms() n_qubits = self._qse_operators.n_qubits if parallel: h_qse_matrix = self._parallel_compute(h_terms, n_qubits) s_qse_matrix = self._parallel_compute(s_terms, n_qubits) else: h_qse_matrix = self._linear_compute(h_terms, n_qubits) s_qse_matrix = self._linear_compute(s_terms, n_qubits) eigvals, vectors = np.linalg.eig(np.matmul(np.linalg.pinv(s_qse_matrix),h_qse_matrix)) eigvals = np.real(eigvals) eigvals.sort() self._ret['eigvals'] = eigvals def _eval_aux_ops(self, threshold=1e-12): wavefn_circuit = self._var_form.construct_circuit(self._ret['opt_params']) values = [] for operator in self._aux_operators: mean, std = 0.0, 0.0 if not operator.is_empty(): mean, std = operator.eval(self._operator_mode, wavefn_circuit, self._backend, self._execute_config, self._qjob_config) mean = mean.real if abs(mean.real) > threshold else 0.0 std = std.real if abs(std.real) > threshold else 0.0 values.append((mean, std)) if len(values) > 0: aux_op_vals = np.empty([1, len(self._aux_operators), 2]) aux_op_vals[0, :] = np.asarray(values) self._ret['aux_ops'] = aux_op_vals def _run(self) -> dict: """ Runs the QSE algorithm to compute the eigenvalues of the Hamiltonian. :return: Dictionary of results """ if not self._quantum_instance.is_statevector: raise AquaError("Can only calculate state for QSE with statevector backends") ret = self._quantum_instance.execute(self.opt_circuit) self.ret = ret self._eval_count = 0 self._solve() self._ret['eval_count'] = self._eval_count self._ret['eval_time'] = self._eval_time return self._ret
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1); tensored = bottom.tensor(top) tensored.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) with pulse.build() as pulse_prog: with pulse.align_right(): # this pulse will start at t=0 pulse.play(pulse.Constant(100, 1.0), d0) # this pulse will start at t=80 pulse.play(pulse.Constant(20, 1.0), d1) pulse_prog.draw()
https://github.com/MonitSharma/Qiskit-Summer-School-and-Quantum-Challenges
MonitSharma
# Importing standard Qiskit libraries from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import Aer, assemble from qiskit.visualization import plot_histogram, plot_bloch_multivector, plot_state_qsphere, plot_state_city, plot_state_paulivec, plot_state_hinton # Ignore warnings import warnings warnings.filterwarnings('ignore') # Define backend sim = Aer.get_backend('aer_simulator') def createBellStates(inp1, inp2): qc = QuantumCircuit(2) qc.reset(range(2)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() qc.h(0) qc.cx(0,1) qc.save_statevector() qobj = assemble(qc) result = sim.run(qobj).result() state = result.get_statevector() return qc, state, result print('Note: Since these qubits are in entangled state, their state cannot be written as two separate qubit states. This also means that we lose information when we try to plot our state on separate Bloch spheres as seen below.\n') inp1 = 0 inp2 = 1 qc, state, result = createBellStates(inp1, inp2) display(plot_bloch_multivector(state)) # Uncomment below code in order to explore other states #for inp2 in ['0', '1']: #for inp1 in ['0', '1']: #qc, state, result = createBellStates(inp1, inp2) #print('For inputs',inp2,inp1,'Representation of Entangled States are:') # Uncomment any of the below functions to visualize the resulting quantum states # Draw the quantum circuit #display(qc.draw()) # Plot states on QSphere #display(plot_state_qsphere(state)) # Plot states on Bloch Multivector #display(plot_bloch_multivector(state)) # Plot histogram #display(plot_histogram(result.get_counts())) # Plot state matrix like a city #display(plot_state_city(state)) # Represent state matix using Pauli operators as the basis #display(plot_state_paulivec(state)) # Plot state matrix as Hinton representation #display(plot_state_hinton(state)) #print('\n')''' from qiskit import IBMQ, execute from qiskit.providers.ibmq import least_busy from qiskit.tools import job_monitor # Loading your IBM Quantum account(s) provider = IBMQ.load_account() backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 2 and not x.configuration().simulator and x.status().operational==True)) def createBSRealDevice(inp1, inp2): qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) qc.reset(range(2)) if inp1 == 1: qc.x(0) if inp2 == 1: qc.x(1) qc.barrier() qc.h(0) qc.cx(0,1) qc.measure(qr, cr) job = execute(qc, backend=backend, shots=100) job_monitor(job) result = job.result() return qc, result inp1 = 0 inp2 = 0 print('For inputs',inp2,inp1,'Representation of Entangled States are,') #first results qc, first_result = createBSRealDevice(inp1, inp2) first_counts = first_result.get_counts() # Draw the quantum circuit display(qc.draw()) #second results qc, second_result = createBSRealDevice(inp1, inp2) second_counts = second_result.get_counts() # Plot results on histogram with legend legend = ['First execution', 'Second execution'] plot_histogram([first_counts, second_counts], legend=legend) def ghzCircuit(inp1, inp2, inp3): qc = QuantumCircuit(3) qc.reset(range(3)) if inp1 == 1: qc.x(0) if inp2 == 1: qc.x(1) if inp3 == 1: qc.x(2) qc.barrier() qc.h(0) qc.cx(0,1) qc.cx(0,2) qc.save_statevector() qobj = assemble(qc) result = sim.run(qobj).result() state = result.get_statevector() return qc, state, result print('Note: Since these qubits are in entangled state, their state cannot be written as two separate qubit states. This also means that we lose information when we try to plot our state on separate Bloch spheres as seen below.\n') inp1 = 0 inp2 = 1 inp3 = 1 qc, state, result = ghzCircuit(inp1, inp2, inp3) display(plot_bloch_multivector(state)) # Uncomment below code in order to explore other states #for inp3 in ['0','1']: #for inp2 in ['0','1']: #for inp1 in ['0','1']: #qc, state, result = ghzCircuit(inp1, inp2, inp3) #print('For inputs',inp3,inp2,inp1,'Representation of GHZ States are:') # Uncomment any of the below functions to visualize the resulting quantum states # Draw the quantum circuit #display(qc.draw()) # Plot states on QSphere #display(plot_state_qsphere(state)) # Plot states on Bloch Multivector #display(plot_bloch_multivector(state)) # Plot histogram #display(plot_histogram(result.get_counts())) # Plot state matrix like a city #display(plot_state_city(state)) # Represent state matix using Pauli operators as the basis #display(plot_state_paulivec(state)) # Plot state matrix as Hinton representation #display(plot_state_hinton(state)) #print('\n') def ghz5QCircuit(inp1, inp2, inp3, inp4, inp5): qc = QuantumCircuit(5) #qc.reset(range(5)) if inp1 == 1: qc.x(0) if inp2 == 1: qc.x(1) if inp3 == 1: qc.x(2) if inp4 == 1: qc.x(3) if inp5 == 1: qc.x(4) qc.barrier() qc.h(0) qc.cx(0,1) qc.cx(0,2) qc.cx(0,3) qc.cx(0,4) qc.save_statevector() qobj = assemble(qc) result = sim.run(qobj).result() state = result.get_statevector() return qc, state, result # Explore GHZ States for input 00010. Note: the input has been stated in little-endian format. inp1 = 0 inp2 = 1 inp3 = 0 inp4 = 0 inp5 = 0 qc, state, result = ghz5QCircuit(inp1, inp2, inp3, inp4, inp5) print('For inputs',inp5,inp4,inp3,inp2,inp1,'Representation of GHZ States are:') display(plot_state_qsphere(state)) print('\n') # Explore GHZ States for input 11001. Note: the input has been stated in little-endian format. inp1 = 1 inp2 = 0 inp3 = 0 inp4 = 1 inp5 = 1 qc, state, result = ghz5QCircuit(inp1, inp2, inp3, inp4, inp5) print('For inputs',inp5,inp4,inp3,inp2,inp1,'Representation of GHZ States are:') display(plot_state_qsphere(state)) print('\n') # Explore GHZ States for input 01010. Note: the input has been stated in little-endian format. inp1 = 0 inp2 = 1 inp3 = 0 inp4 = 1 inp5 = 0 qc, state, result = ghz5QCircuit(inp1, inp2, inp3, inp4, inp5) print('For inputs',inp5,inp4,inp3,inp2,inp1,'Representation of GHZ States are:') display(plot_state_qsphere(state)) print('\n') # Uncomment below code in order to explore other states #for inp5 in ['0','1']: #for inp4 in ['0','1']: #for inp3 in ['0','1']: #for inp2 in ['0','1']: #for inp1 in ['0','1']: #qc, state, result = ghz5QCircuit(inp1, inp2, inp3, inp4, inp5) #print('For inputs',inp5,inp4,inp3,inp2,inp1,'Representation of GHZ States are:') # Uncomment any of the below functions to visualize the resulting quantum states # Draw the quantum circuit #display(qc.draw()) # Plot states on QSphere #display(plot_state_qsphere(state)) # Plot states on Bloch Multivector #display(plot_bloch_multivector(state)) # Plot histogram #display(plot_histogram(result.get_counts())) # Plot state matrix like a city #display(plot_state_city(state)) # Represent state matix using Pauli operators as the basis #display(plot_state_paulivec(state)) # Plot state matrix as Hinton representation #display(plot_state_hinton(state)) #print('\n') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 5 and not x.configuration().simulator and x.status().operational==True)) def create5QGHZRealDevice(inp1, inp2, inp3, inp4, inp5): qr = QuantumRegister(5) cr = ClassicalRegister(5) qc = QuantumCircuit(qr, cr) qc.reset(range(5)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) if inp3=='1': qc.x(1) if inp4=='1': qc.x(1) if inp5=='1': qc.x(1) qc.barrier() qc.h(0) qc.cx(0,1) qc.cx(0,2) qc.cx(0,3) qc.cx(0,4) qc.measure(qr, cr) job = execute(qc, backend=backend, shots=1000) job_monitor(job) result = job.result() return qc, result inp1 = 0 inp2 = 0 inp3 = 0 inp4 = 0 inp5 = 0 #first results qc, first_result = create5QGHZRealDevice(inp1, inp2, inp3, inp4, inp5) first_counts = first_result.get_counts() # Draw the quantum circuit display(qc.draw()) #second results qc, second_result = create5QGHZRealDevice(inp1, inp2, inp3, inp4, inp5) second_counts = second_result.get_counts() print('For inputs',inp5,inp4,inp3,inp2,inp1,'Representation of GHZ circuit states are,') # Plot results on histogram with legend legend = ['First execution', 'Second execution'] plot_histogram([first_counts, second_counts], legend=legend) import qiskit qiskit.__qiskit_version__
https://github.com/SaashaJoshi/IBM-Qiskit-Summer-School-2020
SaashaJoshi
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Testing legacy instruction alignment pass.""" from qiskit import QuantumCircuit, pulse from qiskit.test import QiskitTestCase from qiskit.transpiler import InstructionDurations from qiskit.transpiler.exceptions import TranspilerError from qiskit.transpiler.passes import ( AlignMeasures, ValidatePulseGates, ALAPSchedule, TimeUnitConversion, ) class TestAlignMeasures(QiskitTestCase): """A test for measurement alignment pass.""" def setUp(self): super().setUp() instruction_durations = InstructionDurations() instruction_durations.update( [ ("rz", (0,), 0), ("rz", (1,), 0), ("x", (0,), 160), ("x", (1,), 160), ("sx", (0,), 160), ("sx", (1,), 160), ("cx", (0, 1), 800), ("cx", (1, 0), 800), ("measure", None, 1600), ] ) self.time_conversion_pass = TimeUnitConversion(inst_durations=instruction_durations) # reproduce old behavior of 0.20.0 before #7655 # currently default write latency is 0 self.scheduling_pass = ALAPSchedule( durations=instruction_durations, clbit_write_latency=1600, conditional_latency=0, ) self.align_measure_pass = AlignMeasures(alignment=16) def test_t1_experiment_type(self): """Test T1 experiment type circuit. (input) ┌───┐┌────────────────┐┌─┐ q_0: ┤ X ├┤ Delay(100[dt]) ├┤M├ └───┘└────────────────┘└╥┘ c: 1/════════════════════════╩═ 0 (aligned) ┌───┐┌────────────────┐┌─┐ q_0: ┤ X ├┤ Delay(112[dt]) ├┤M├ └───┘└────────────────┘└╥┘ c: 1/════════════════════════╩═ 0 This type of experiment slightly changes delay duration of interest. However the quantization error should be less than alignment * dt. """ circuit = QuantumCircuit(1, 1) circuit.x(0) circuit.delay(100, 0, unit="dt") circuit.measure(0, 0) timed_circuit = self.time_conversion_pass(circuit) scheduled_circuit = self.scheduling_pass(timed_circuit, property_set={"time_unit": "dt"}) aligned_circuit = self.align_measure_pass( scheduled_circuit, property_set={"time_unit": "dt"} ) ref_circuit = QuantumCircuit(1, 1) ref_circuit.x(0) ref_circuit.delay(112, 0, unit="dt") ref_circuit.measure(0, 0) self.assertEqual(aligned_circuit, ref_circuit) def test_hanh_echo_experiment_type(self): """Test Hahn echo experiment type circuit. (input) ┌────┐┌────────────────┐┌───┐┌────────────────┐┌────┐┌─┐ q_0: ┤ √X ├┤ Delay(100[dt]) ├┤ X ├┤ Delay(100[dt]) ├┤ √X ├┤M├ └────┘└────────────────┘└───┘└────────────────┘└────┘└╥┘ c: 1/══════════════════════════════════════════════════════╩═ 0 (output) ┌────┐┌────────────────┐┌───┐┌────────────────┐┌────┐┌──────────────┐┌─┐ q_0: ┤ √X ├┤ Delay(100[dt]) ├┤ X ├┤ Delay(100[dt]) ├┤ √X ├┤ Delay(8[dt]) ├┤M├ └────┘└────────────────┘└───┘└────────────────┘└────┘└──────────────┘└╥┘ c: 1/══════════════════════════════════════════════════════════════════════╩═ 0 This type of experiment doesn't change duration of interest (two in the middle). However induces slight delay less than alignment * dt before measurement. This might induce extra amplitude damping error. """ circuit = QuantumCircuit(1, 1) circuit.sx(0) circuit.delay(100, 0, unit="dt") circuit.x(0) circuit.delay(100, 0, unit="dt") circuit.sx(0) circuit.measure(0, 0) timed_circuit = self.time_conversion_pass(circuit) scheduled_circuit = self.scheduling_pass(timed_circuit, property_set={"time_unit": "dt"}) aligned_circuit = self.align_measure_pass( scheduled_circuit, property_set={"time_unit": "dt"} ) ref_circuit = QuantumCircuit(1, 1) ref_circuit.sx(0) ref_circuit.delay(100, 0, unit="dt") ref_circuit.x(0) ref_circuit.delay(100, 0, unit="dt") ref_circuit.sx(0) ref_circuit.delay(8, 0, unit="dt") ref_circuit.measure(0, 0) self.assertEqual(aligned_circuit, ref_circuit) def test_mid_circuit_measure(self): """Test circuit with mid circuit measurement. (input) ┌───┐┌────────────────┐┌─┐┌───────────────┐┌───┐┌────────────────┐┌─┐ q_0: ┤ X ├┤ Delay(100[dt]) ├┤M├┤ Delay(10[dt]) ├┤ X ├┤ Delay(120[dt]) ├┤M├ └───┘└────────────────┘└╥┘└───────────────┘└───┘└────────────────┘└╥┘ c: 2/════════════════════════╩══════════════════════════════════════════╩═ 0 1 (output) ┌───┐┌────────────────┐┌─┐┌───────────────┐┌───┐┌────────────────┐┌─┐ q_0: ┤ X ├┤ Delay(112[dt]) ├┤M├┤ Delay(10[dt]) ├┤ X ├┤ Delay(134[dt]) ├┤M├ └───┘└────────────────┘└╥┘└───────────────┘└───┘└────────────────┘└╥┘ c: 2/════════════════════════╩══════════════════════════════════════════╩═ 0 1 Extra delay is always added to the existing delay right before the measurement. Delay after measurement is unchanged. """ circuit = QuantumCircuit(1, 2) circuit.x(0) circuit.delay(100, 0, unit="dt") circuit.measure(0, 0) circuit.delay(10, 0, unit="dt") circuit.x(0) circuit.delay(120, 0, unit="dt") circuit.measure(0, 1) timed_circuit = self.time_conversion_pass(circuit) scheduled_circuit = self.scheduling_pass(timed_circuit, property_set={"time_unit": "dt"}) aligned_circuit = self.align_measure_pass( scheduled_circuit, property_set={"time_unit": "dt"} ) ref_circuit = QuantumCircuit(1, 2) ref_circuit.x(0) ref_circuit.delay(112, 0, unit="dt") ref_circuit.measure(0, 0) ref_circuit.delay(10, 0, unit="dt") ref_circuit.x(0) ref_circuit.delay(134, 0, unit="dt") ref_circuit.measure(0, 1) self.assertEqual(aligned_circuit, ref_circuit) def test_mid_circuit_multiq_gates(self): """Test circuit with mid circuit measurement and multi qubit gates. (input) ┌───┐┌────────────────┐┌─┐ ┌─┐ q_0: ┤ X ├┤ Delay(100[dt]) ├┤M├──■───────■──┤M├ └───┘└────────────────┘└╥┘┌─┴─┐┌─┐┌─┴─┐└╥┘ q_1: ────────────────────────╫─┤ X ├┤M├┤ X ├─╫─ ║ └───┘└╥┘└───┘ ║ c: 2/════════════════════════╩═══════╩═══════╩═ 0 1 0 (output) ┌───┐ ┌────────────────┐┌─┐ ┌─────────────────┐ ┌─┐» q_0: ───────┤ X ├───────┤ Delay(112[dt]) ├┤M├──■──┤ Delay(1600[dt]) ├──■──┤M├» ┌──────┴───┴──────┐└────────────────┘└╥┘┌─┴─┐└───────┬─┬───────┘┌─┴─┐└╥┘» q_1: ┤ Delay(1872[dt]) ├───────────────────╫─┤ X ├────────┤M├────────┤ X ├─╫─» └─────────────────┘ ║ └───┘ └╥┘ └───┘ ║ » c: 2/══════════════════════════════════════╩═══════════════╩═══════════════╩═» 0 1 0 » « «q_0: ─────────────────── « ┌─────────────────┐ «q_1: ┤ Delay(1600[dt]) ├ « └─────────────────┘ «c: 2/═══════════════════ « Delay for the other channel paired by multi-qubit instruction is also scheduled. Delay (1872dt) = X (160dt) + Delay (100dt + extra 12dt) + Measure (1600dt). """ circuit = QuantumCircuit(2, 2) circuit.x(0) circuit.delay(100, 0, unit="dt") circuit.measure(0, 0) circuit.cx(0, 1) circuit.measure(1, 1) circuit.cx(0, 1) circuit.measure(0, 0) timed_circuit = self.time_conversion_pass(circuit) scheduled_circuit = self.scheduling_pass(timed_circuit, property_set={"time_unit": "dt"}) aligned_circuit = self.align_measure_pass( scheduled_circuit, property_set={"time_unit": "dt"} ) ref_circuit = QuantumCircuit(2, 2) ref_circuit.x(0) ref_circuit.delay(112, 0, unit="dt") ref_circuit.measure(0, 0) ref_circuit.delay(160 + 112 + 1600, 1, unit="dt") ref_circuit.cx(0, 1) ref_circuit.delay(1600, 0, unit="dt") ref_circuit.measure(1, 1) ref_circuit.cx(0, 1) ref_circuit.delay(1600, 1, unit="dt") ref_circuit.measure(0, 0) self.assertEqual(aligned_circuit, ref_circuit) def test_alignment_is_not_processed(self): """Test avoid pass processing if delay is aligned.""" circuit = QuantumCircuit(2, 2) circuit.x(0) circuit.delay(160, 0, unit="dt") circuit.measure(0, 0) circuit.cx(0, 1) circuit.measure(1, 1) circuit.cx(0, 1) circuit.measure(0, 0) # pre scheduling is not necessary because alignment is skipped # this is to minimize breaking changes to existing code. transpiled = self.align_measure_pass(circuit, property_set={"time_unit": "dt"}) self.assertEqual(transpiled, circuit) def test_circuit_using_clbit(self): """Test a circuit with instructions using a common clbit. (input) ┌───┐┌────────────────┐┌─┐ q_0: ┤ X ├┤ Delay(100[dt]) ├┤M├────────────── └───┘└────────────────┘└╥┘ ┌───┐ q_1: ────────────────────────╫────┤ X ├────── ║ └─╥─┘ ┌─┐ q_2: ────────────────────────╫──────╫─────┤M├ ║ ┌────╨────┐└╥┘ c: 1/════════════════════════╩═╡ c_0 = T ╞═╩═ 0 └─────────┘ 0 (aligned) ┌───┐ ┌────────────────┐┌─┐┌────────────────┐ q_0: ───────┤ X ├───────┤ Delay(112[dt]) ├┤M├┤ Delay(160[dt]) ├─── ┌──────┴───┴──────┐└────────────────┘└╥┘└─────┬───┬──────┘ q_1: ┤ Delay(1872[dt]) ├───────────────────╫───────┤ X ├────────── └┬────────────────┤ ║ └─╥─┘ ┌─┐ q_2: ─┤ Delay(432[dt]) ├───────────────────╫─────────╫─────────┤M├ └────────────────┘ ║ ┌────╨────┐ └╥┘ c: 1/══════════════════════════════════════╩════╡ c_0 = T ╞═════╩═ 0 └─────────┘ 0 Looking at the q_0, the total schedule length T becomes 160 (x) + 112 (aligned delay) + 1600 (measure) + 160 (delay) = 2032. The last delay comes from ALAP scheduling called before the AlignMeasure pass, which aligns stop times as late as possible, so the start time of x(1).c_if(0) and the stop time of measure(0, 0) become T - 160. """ circuit = QuantumCircuit(3, 1) circuit.x(0) circuit.delay(100, 0, unit="dt") circuit.measure(0, 0) circuit.x(1).c_if(0, 1) circuit.measure(2, 0) timed_circuit = self.time_conversion_pass(circuit) scheduled_circuit = self.scheduling_pass(timed_circuit, property_set={"time_unit": "dt"}) aligned_circuit = self.align_measure_pass( scheduled_circuit, property_set={"time_unit": "dt"} ) self.assertEqual(aligned_circuit.duration, 2032) ref_circuit = QuantumCircuit(3, 1) ref_circuit.x(0) ref_circuit.delay(112, 0, unit="dt") ref_circuit.delay(1872, 1, unit="dt") # 2032 - 160 ref_circuit.delay(432, 2, unit="dt") # 2032 - 1600 ref_circuit.measure(0, 0) ref_circuit.x(1).c_if(0, 1) ref_circuit.delay(160, 0, unit="dt") ref_circuit.measure(2, 0) self.assertEqual(aligned_circuit, ref_circuit) class TestPulseGateValidation(QiskitTestCase): """A test for pulse gate validation pass.""" def setUp(self): super().setUp() self.pulse_gate_validation_pass = ValidatePulseGates(granularity=16, min_length=64) def test_invalid_pulse_duration(self): """Kill pass manager if invalid pulse gate is found.""" # this is invalid duration pulse # this will cause backend error since this doesn't fit with waveform memory chunk. custom_gate = pulse.Schedule(name="custom_x_gate") custom_gate.insert( 0, pulse.Play(pulse.Constant(100, 0.1), pulse.DriveChannel(0)), inplace=True ) circuit = QuantumCircuit(1) circuit.x(0) circuit.add_calibration("x", qubits=(0,), schedule=custom_gate) with self.assertRaises(TranspilerError): self.pulse_gate_validation_pass(circuit) def test_short_pulse_duration(self): """Kill pass manager if invalid pulse gate is found.""" # this is invalid duration pulse # this will cause backend error since this doesn't fit with waveform memory chunk. custom_gate = pulse.Schedule(name="custom_x_gate") custom_gate.insert( 0, pulse.Play(pulse.Constant(32, 0.1), pulse.DriveChannel(0)), inplace=True ) circuit = QuantumCircuit(1) circuit.x(0) circuit.add_calibration("x", qubits=(0,), schedule=custom_gate) with self.assertRaises(TranspilerError): self.pulse_gate_validation_pass(circuit) def test_short_pulse_duration_multiple_pulse(self): """Kill pass manager if invalid pulse gate is found.""" # this is invalid duration pulse # however total gate schedule length is 64, which accidentally satisfies the constraints # this should fail in the validation custom_gate = pulse.Schedule(name="custom_x_gate") custom_gate.insert( 0, pulse.Play(pulse.Constant(32, 0.1), pulse.DriveChannel(0)), inplace=True ) custom_gate.insert( 32, pulse.Play(pulse.Constant(32, 0.1), pulse.DriveChannel(0)), inplace=True ) circuit = QuantumCircuit(1) circuit.x(0) circuit.add_calibration("x", qubits=(0,), schedule=custom_gate) with self.assertRaises(TranspilerError): self.pulse_gate_validation_pass(circuit) def test_valid_pulse_duration(self): """No error raises if valid calibration is provided.""" # this is valid duration pulse custom_gate = pulse.Schedule(name="custom_x_gate") custom_gate.insert( 0, pulse.Play(pulse.Constant(160, 0.1), pulse.DriveChannel(0)), inplace=True ) circuit = QuantumCircuit(1) circuit.x(0) circuit.add_calibration("x", qubits=(0,), schedule=custom_gate) # just not raise an error self.pulse_gate_validation_pass(circuit) def test_no_calibration(self): """No error raises if no calibration is addedd.""" circuit = QuantumCircuit(1) circuit.x(0) # just not raise an error self.pulse_gate_validation_pass(circuit)
https://github.com/ElePT/qiskit-algorithms-test
ElePT
# This code is part of Qiskit. # # (C) Copyright IBM 2022, 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test the QAOA algorithm with opflow.""" import unittest from test.python.algorithms import QiskitAlgorithmsTestCase from functools import partial import numpy as np from scipy.optimize import minimize as scipy_minimize from ddt import ddt, idata, unpack import rustworkx as rx from qiskit import QuantumCircuit from qiskit_algorithms.minimum_eigensolvers import QAOA from qiskit_algorithms.optimizers import COBYLA, NELDER_MEAD from qiskit.circuit import Parameter from qiskit.opflow import PauliSumOp from qiskit.quantum_info import Pauli from qiskit.result import QuasiDistribution from qiskit.primitives import Sampler from qiskit.utils import algorithm_globals I = PauliSumOp.from_list([("I", 1)]) X = PauliSumOp.from_list([("X", 1)]) W1 = np.array([[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 0]]) P1 = 1 M1 = (I ^ I ^ I ^ X) + (I ^ I ^ X ^ I) + (I ^ X ^ I ^ I) + (X ^ I ^ I ^ I) S1 = {"0101", "1010"} W2 = np.array( [ [0.0, 8.0, -9.0, 0.0], [8.0, 0.0, 7.0, 9.0], [-9.0, 7.0, 0.0, -8.0], [0.0, 9.0, -8.0, 0.0], ] ) P2 = 1 M2 = None S2 = {"1011", "0100"} CUSTOM_SUPERPOSITION = [1 / np.sqrt(15)] * 15 + [0] @ddt class TestQAOA(QiskitAlgorithmsTestCase): """Test QAOA with MaxCut.""" def setUp(self): super().setUp() self.seed = 10598 algorithm_globals.random_seed = self.seed self.sampler = Sampler() @idata( [ [W1, P1, M1, S1], [W2, P2, M2, S2], ] ) @unpack def test_qaoa(self, w, reps, mixer, solutions): """QAOA test""" self.log.debug("Testing %s-step QAOA with MaxCut on graph\n%s", reps, w) qubit_op, _ = self._get_operator(w) qaoa = QAOA(self.sampler, COBYLA(), reps=reps, mixer=mixer) with self.assertWarns(DeprecationWarning): result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) x = self._sample_most_likely(result.eigenstate) graph_solution = self._get_graph_solution(x) self.assertIn(graph_solution, solutions) @idata( [ [W1, P1, S1], [W2, P2, S2], ] ) @unpack def test_qaoa_qc_mixer(self, w, prob, solutions): """QAOA test with a mixer as a parameterized circuit""" self.log.debug( "Testing %s-step QAOA with MaxCut on graph with a mixer as a parameterized circuit\n%s", prob, w, ) optimizer = COBYLA() qubit_op, _ = self._get_operator(w) num_qubits = qubit_op.num_qubits mixer = QuantumCircuit(num_qubits) theta = Parameter("θ") mixer.rx(theta, range(num_qubits)) qaoa = QAOA(self.sampler, optimizer, reps=prob, mixer=mixer) with self.assertWarns(DeprecationWarning): result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) x = self._sample_most_likely(result.eigenstate) graph_solution = self._get_graph_solution(x) self.assertIn(graph_solution, solutions) def test_qaoa_qc_mixer_many_parameters(self): """QAOA test with a mixer as a parameterized circuit with the num of parameters > 1.""" optimizer = COBYLA() qubit_op, _ = self._get_operator(W1) num_qubits = qubit_op.num_qubits mixer = QuantumCircuit(num_qubits) for i in range(num_qubits): theta = Parameter("θ" + str(i)) mixer.rx(theta, range(num_qubits)) qaoa = QAOA(self.sampler, optimizer, reps=2, mixer=mixer) with self.assertWarns(DeprecationWarning): result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) x = self._sample_most_likely(result.eigenstate) self.log.debug(x) graph_solution = self._get_graph_solution(x) self.assertIn(graph_solution, S1) def test_qaoa_qc_mixer_no_parameters(self): """QAOA test with a mixer as a parameterized circuit with zero parameters.""" qubit_op, _ = self._get_operator(W1) num_qubits = qubit_op.num_qubits mixer = QuantumCircuit(num_qubits) # just arbitrary circuit mixer.rx(np.pi / 2, range(num_qubits)) qaoa = QAOA(self.sampler, COBYLA(), reps=1, mixer=mixer) with self.assertWarns(DeprecationWarning): result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) # we just assert that we get a result, it is not meaningful. self.assertIsNotNone(result.eigenstate) def test_change_operator_size(self): """QAOA change operator size test""" qubit_op, _ = self._get_operator( np.array([[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 0]]) ) qaoa = QAOA(self.sampler, COBYLA(), reps=1) with self.assertWarns(DeprecationWarning): result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) x = self._sample_most_likely(result.eigenstate) graph_solution = self._get_graph_solution(x) with self.subTest(msg="QAOA 4x4"): self.assertIn(graph_solution, {"0101", "1010"}) qubit_op, _ = self._get_operator( np.array( [ [0, 1, 0, 1, 0, 1], [1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1], [1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1], [1, 0, 1, 0, 1, 0], ] ) ) with self.assertWarns(DeprecationWarning): result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) x = self._sample_most_likely(result.eigenstate) graph_solution = self._get_graph_solution(x) with self.subTest(msg="QAOA 6x6"): self.assertIn(graph_solution, {"010101", "101010"}) @idata([[W2, S2, None], [W2, S2, [0.0, 0.0]], [W2, S2, [1.0, 0.8]]]) @unpack def test_qaoa_initial_point(self, w, solutions, init_pt): """Check first parameter value used is initial point as expected""" qubit_op, _ = self._get_operator(w) first_pt = [] def cb_callback(eval_count, parameters, mean, metadata): nonlocal first_pt if eval_count == 1: first_pt = list(parameters) qaoa = QAOA( self.sampler, COBYLA(), initial_point=init_pt, callback=cb_callback, ) with self.assertWarns(DeprecationWarning): result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) x = self._sample_most_likely(result.eigenstate) graph_solution = self._get_graph_solution(x) with self.subTest("Initial Point"): # If None the preferred random initial point of QAOA variational form if init_pt is None: self.assertLess(result.eigenvalue, -0.97) else: self.assertListEqual(init_pt, first_pt) with self.subTest("Solution"): self.assertIn(graph_solution, solutions) def test_qaoa_random_initial_point(self): """QAOA random initial point""" w = rx.adjacency_matrix( rx.undirected_gnp_random_graph(5, 0.5, seed=algorithm_globals.random_seed) ) qubit_op, _ = self._get_operator(w) qaoa = QAOA(self.sampler, NELDER_MEAD(disp=True), reps=2) with self.assertWarns(DeprecationWarning): result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) self.assertLess(result.eigenvalue, -0.97) def test_optimizer_scipy_callable(self): """Test passing a SciPy optimizer directly as callable.""" w = rx.adjacency_matrix( rx.undirected_gnp_random_graph(5, 0.5, seed=algorithm_globals.random_seed) ) qubit_op, _ = self._get_operator(w) qaoa = QAOA( self.sampler, partial(scipy_minimize, method="Nelder-Mead", options={"maxiter": 2}), ) with self.assertWarns(DeprecationWarning): result = qaoa.compute_minimum_eigenvalue(qubit_op) self.assertEqual(result.cost_function_evals, 5) def _get_operator(self, weight_matrix): """Generate Hamiltonian for the max-cut problem of a graph. Args: weight_matrix (numpy.ndarray) : adjacency matrix. Returns: PauliSumOp: operator for the Hamiltonian float: a constant shift for the obj function. """ num_nodes = weight_matrix.shape[0] pauli_list = [] shift = 0 for i in range(num_nodes): for j in range(i): if weight_matrix[i, j] != 0: x_p = np.zeros(num_nodes, dtype=bool) z_p = np.zeros(num_nodes, dtype=bool) z_p[i] = True z_p[j] = True pauli_list.append([0.5 * weight_matrix[i, j], Pauli((z_p, x_p))]) shift -= 0.5 * weight_matrix[i, j] opflow_list = [(pauli[1].to_label(), pauli[0]) for pauli in pauli_list] with self.assertWarns(DeprecationWarning): return PauliSumOp.from_list(opflow_list), shift def _get_graph_solution(self, x: np.ndarray) -> str: """Get graph solution from binary string. Args: x : binary string as numpy array. Returns: a graph solution as string. """ return "".join([str(int(i)) for i in 1 - x]) def _sample_most_likely(self, state_vector: QuasiDistribution) -> np.ndarray: """Compute the most likely binary string from state vector. Args: state_vector: Quasi-distribution. Returns: Binary string as numpy.ndarray of ints. """ values = list(state_vector.values()) n = int(np.log2(len(values))) k = np.argmax(np.abs(values)) x = np.zeros(n) for i in range(n): x[i] = k % 2 k >>= 1 return x if __name__ == "__main__": unittest.main()
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import logging import time from qiskit import __version__ as terra_version from qiskit.assembler.run_config import RunConfig from qiskit.transpiler import Layout from .utils import (run_qobjs, compile_circuits, CircuitCache, get_measured_qubits_from_qobj, build_measurement_error_mitigation_fitter, mitigate_measurement_error) from .utils.backend_utils import (is_aer_provider, is_ibmq_provider, is_statevector_backend, is_simulator_backend, is_local_backend) logger = logging.getLogger(__name__) class QuantumInstance: """Quantum Backend including execution setting.""" BACKEND_CONFIG = ['basis_gates', 'coupling_map'] COMPILE_CONFIG = ['pass_manager', 'initial_layout', 'seed_transpiler'] RUN_CONFIG = ['shots', 'max_credits', 'memory', 'seed'] QJOB_CONFIG = ['timeout', 'wait'] NOISE_CONFIG = ['noise_model'] # https://github.com/Qiskit/qiskit-aer/blob/master/qiskit/providers/aer/backends/qasm_simulator.py BACKEND_OPTIONS_QASM_ONLY = ["statevector_sample_measure_opt", "max_parallel_shots"] BACKEND_OPTIONS = ["initial_statevector", "chop_threshold", "max_parallel_threads", "max_parallel_experiments", "statevector_parallel_threshold", "statevector_hpc_gate_opt"] + BACKEND_OPTIONS_QASM_ONLY def __init__(self, backend, shots=1024, seed=None, max_credits=10, basis_gates=None, coupling_map=None, initial_layout=None, pass_manager=None, seed_transpiler=None, backend_options=None, noise_model=None, timeout=None, wait=5, circuit_caching=True, cache_file=None, skip_qobj_deepcopy=True, skip_qobj_validation=True, measurement_error_mitigation_cls=None, cals_matrix_refresh_period=30): """Constructor. Args: backend (BaseBackend): instance of selected backend shots (int, optional): number of repetitions of each circuit, for sampling seed (int, optional): random seed for simulators max_credits (int, optional): maximum credits to use basis_gates (list[str], optional): list of basis gate names supported by the target. Default: ['u1','u2','u3','cx','id'] coupling_map (list[list]): coupling map (perhaps custom) to target in mapping initial_layout (dict, optional): initial layout of qubits in mapping pass_manager (PassManager, optional): pass manager to handle how to compile the circuits seed_transpiler (int, optional): the random seed for circuit mapper backend_options (dict, optional): all running options for backend, please refer to the provider. noise_model (qiskit.provider.aer.noise.noise_model.NoiseModel, optional): noise model for simulator timeout (float, optional): seconds to wait for job. If None, wait indefinitely. wait (float, optional): seconds between queries to result circuit_caching (bool, optional): USe CircuitCache when calling compile_and_run_circuits cache_file(str, optional): filename into which to store the cache as a pickle file skip_qobj_deepcopy (bool, optional): Reuses the same qobj object over and over to avoid deepcopying skip_qobj_validation (bool, optional): Bypass Qobj validation to decrease submission time measurement_error_mitigation_cls (callable, optional): the approach to mitigate measurement error, CompleteMeasFitter or TensoredMeasFitter cals_matrix_refresh_period (int): how long to refresh the calibration matrix in measurement mitigation, unit in minutes """ self._backend = backend # setup run config run_config = RunConfig(shots=shots, max_credits=max_credits) if seed: run_config.seed = seed if getattr(run_config, 'shots', None) is not None: if self.is_statevector and run_config.shots != 1: logger.info("statevector backend only works with shot=1, change " "shots from {} to 1.".format(run_config.shots)) run_config.shots = 1 self._run_config = run_config # setup backend config basis_gates = basis_gates or backend.configuration().basis_gates coupling_map = coupling_map or getattr(backend.configuration(), 'coupling_map', None) self._backend_config = { 'basis_gates': basis_gates, 'coupling_map': coupling_map } # setup noise config noise_config = None if noise_model is not None: if is_aer_provider(self._backend): if not self.is_statevector: noise_config = noise_model else: logger.info("The noise model can be only used with Aer qasm simulator. " "Change it to None.") else: logger.info("The noise model can be only used with Qiskit Aer. " "Please install it.") self._noise_config = {} if noise_config is None else {'noise_model': noise_config} # setup compile config if initial_layout is not None and not isinstance(initial_layout, Layout): initial_layout = Layout(initial_layout) self._compile_config = { 'pass_manager': pass_manager, 'initial_layout': initial_layout, 'seed_transpiler': seed_transpiler } # setup job config self._qjob_config = {'timeout': timeout} if self.is_local \ else {'timeout': timeout, 'wait': wait} # setup backend options for run self._backend_options = {} if is_ibmq_provider(self._backend): logger.info("backend_options can not used with the backends in IBMQ provider.") else: self._backend_options = {} if backend_options is None \ else {'backend_options': backend_options} self._shared_circuits = False self._circuit_summary = False self._circuit_cache = CircuitCache(skip_qobj_deepcopy=skip_qobj_deepcopy, cache_file=cache_file) if circuit_caching else None self._skip_qobj_validation = skip_qobj_validation self._measurement_error_mitigation_cls = None if self.is_statevector: if measurement_error_mitigation_cls is not None: logger.info("Measurement error mitigation does not work with statevector simulation, disable it.") else: self._measurement_error_mitigation_cls = measurement_error_mitigation_cls self._measurement_error_mitigation_fitter = None self._measurement_error_mitigation_method = 'least_squares' self._cals_matrix_refresh_period = cals_matrix_refresh_period self._prev_timestamp = 0 if self._measurement_error_mitigation_cls is not None: logger.info("The measurement error mitigation is enable. " "It will automatically submit an additional job to help calibrate the result of other jobs. " "The current approach will submit a job with 2^N circuits to build the calibration matrix, " "where N is the number of measured qubits. " "Furthermore, Aqua will re-use the calibration matrix for {} minutes " "and re-build it after that.".format(self._cals_matrix_refresh_period)) logger.info(self) def __str__(self): """Overload string. Returns: str: the info of the object. """ info = "\nQiskit Terra version: {}\n".format(terra_version) info += "Backend: '{} ({})', with following setting:\n{}\n{}\n{}\n{}\n{}\n{}".format( self.backend_name, self._backend.provider(), self._backend_config, self._compile_config, self._run_config, self._qjob_config, self._backend_options, self._noise_config) info += "\nMeasurement mitigation: {}".format(self._measurement_error_mitigation_cls) return info def execute(self, circuits, **kwargs): """ A wrapper to interface with quantum backend. Args: circuits (QuantumCircuit or list[QuantumCircuit]): circuits to execute Returns: Result: Result object """ qobjs = compile_circuits(circuits, self._backend, self._backend_config, self._compile_config, self._run_config, show_circuit_summary=self._circuit_summary, circuit_cache=self._circuit_cache, **kwargs) if self._measurement_error_mitigation_cls is not None: if self.maybe_refresh_cals_matrix(): logger.info("Building calibration matrix for measurement error mitigation.") qubit_list = get_measured_qubits_from_qobj(qobjs) self._measurement_error_mitigation_fitter = build_measurement_error_mitigation_fitter(qubit_list, self._measurement_error_mitigation_cls, self._backend, self._backend_config, self._compile_config, self._run_config, self._qjob_config, self._backend_options, self._noise_config) result = run_qobjs(qobjs, self._backend, self._qjob_config, self._backend_options, self._noise_config, self._skip_qobj_validation) if self._measurement_error_mitigation_fitter is not None: result = mitigate_measurement_error(result, self._measurement_error_mitigation_fitter, self._measurement_error_mitigation_method) if self._circuit_summary: self._circuit_summary = False return result def set_config(self, **kwargs): """Set configurations for the quantum instance.""" for k, v in kwargs.items(): if k in QuantumInstance.RUN_CONFIG: setattr(self._run_config, k, v) elif k in QuantumInstance.QJOB_CONFIG: self._qjob_config[k] = v elif k in QuantumInstance.COMPILE_CONFIG: self._compile_config[k] = v elif k in QuantumInstance.BACKEND_CONFIG: self._backend_config[k] = v elif k in QuantumInstance.BACKEND_OPTIONS: if is_ibmq_provider(self._backend): logger.info("backend_options can not used with the backends in IBMQ provider.") else: if k in QuantumInstance.BACKEND_OPTIONS_QASM_ONLY and self.is_statevector: logger.info("'{}' is only applicable for qasm simulator but " "statevector simulator is used. Skip the setting.") else: if 'backend_options' not in self._backend_options: self._backend_options['backend_options'] = {} self._backend_options['backend_options'][k] = v elif k in QuantumInstance.NOISE_CONFIG: self._noise_config[k] = v else: raise ValueError("unknown setting for the key ({}).".format(k)) @property def qjob_config(self): """Getter of qjob_config.""" return self._qjob_config @property def backend_config(self): """Getter of backend_config.""" return self._backend_config @property def compile_config(self): """Getter of compile_config.""" return self._compile_config @property def run_config(self): """Getter of run_config.""" return self._run_config @property def noise_config(self): """Getter of noise_config.""" return self._noise_config @property def backend_options(self): """Getter of backend_options.""" return self._backend_options @property def shared_circuits(self): """Getter of shared_circuits.""" return self._shared_circuits @shared_circuits.setter def shared_circuits(self, new_value): self._shared_circuits = new_value @property def circuit_summary(self): """Getter of circuit summary.""" return self._circuit_summary @circuit_summary.setter def circuit_summary(self, new_value): self._circuit_summary = new_value @property def backend(self): """Return BaseBackend backend object.""" return self._backend @property def backend_name(self): """Return backend name.""" return self._backend.name() @property def is_statevector(self): """Return True if backend is a statevector-type simulator.""" return is_statevector_backend(self._backend) @property def is_simulator(self): """Return True if backend is a simulator.""" return is_simulator_backend(self._backend) @property def is_local(self): """Return True if backend is a local backend.""" return is_local_backend(self._backend) @property def circuit_cache(self): return self._circuit_cache @property def has_circuit_caching(self): return self._circuit_cache is not None @property def skip_qobj_validation(self): return self._skip_qobj_validation @skip_qobj_validation.setter def skip_qobj_validation(self, new_value): self._skip_qobj_validation = new_value def maybe_refresh_cals_matrix(self): """ Calculate the time difference from the query of last time. Returns: bool: whether or not refresh the cals_matrix """ ret = False curr_timestamp = time.time() difference = int(curr_timestamp - self._prev_timestamp) / 60.0 if difference > self._cals_matrix_refresh_period: self._prev_timestamp = curr_timestamp ret = True return ret @property def cals_matrix(self): cals_matrix = None if self._measurement_error_mitigation_fitter is not None: cals_matrix = self._measurement_error_mitigation_fitter.cal_matrix return cals_matrix
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from qiskit import QuantumCircuit, transpile from qiskit.providers.fake_provider import FakeAuckland backend = FakeAuckland() ghz = QuantumCircuit(15) ghz.h(0) ghz.cx(0, range(1, 15)) ghz.draw(output='mpl')
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2019, 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test Skip Qobj Validation""" import unittest from test.python.algorithms import QiskitAlgorithmsTestCase from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer from qiskit.utils import QuantumInstance from qiskit.exceptions import QiskitError def _compare_dict(dict1, dict2): equal = True for key1, value1 in dict1.items(): if key1 not in dict2: equal = False break if value1 != dict2[key1]: equal = False break return equal class TestSkipQobjValidation(QiskitAlgorithmsTestCase): """Test Skip Qobj Validation""" def setUp(self): super().setUp() self.random_seed = 10598 # ┌───┐ ░ ┌─┐ ░ # q0_0: ┤ H ├──■───░─┤M├─░──── # └───┘┌─┴─┐ ░ └╥┘ ░ ┌─┐ # q0_1: ─────┤ X ├─░──╫──░─┤M├ # └───┘ ░ ║ ░ └╥┘ # c0: 2/══════════════╩═════╩═ # 0 1 qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) qc.h(qr[0]) qc.cx(qr[0], qr[1]) # Ensure qubit 0 is measured before qubit 1 qc.barrier(qr) qc.measure(qr[0], cr[0]) qc.barrier(qr) qc.measure(qr[1], cr[1]) self.qc = qc self.backend = BasicAer.get_backend("qasm_simulator") def test_wo_backend_options(self): """without backend options test""" with self.assertWarns(DeprecationWarning): quantum_instance = QuantumInstance( self.backend, seed_transpiler=self.random_seed, seed_simulator=self.random_seed, shots=1024, ) # run without backend_options and without noise res_wo_bo = quantum_instance.execute(self.qc).get_counts(self.qc) self.assertGreaterEqual(quantum_instance.time_taken, 0.0) quantum_instance.reset_execution_results() quantum_instance.skip_qobj_validation = True res_wo_bo_skip_validation = quantum_instance.execute(self.qc).get_counts(self.qc) self.assertGreaterEqual(quantum_instance.time_taken, 0.0) quantum_instance.reset_execution_results() self.assertTrue(_compare_dict(res_wo_bo, res_wo_bo_skip_validation)) def test_w_backend_options(self): """with backend options test""" # run with backend_options with self.assertWarns(DeprecationWarning): quantum_instance = QuantumInstance( self.backend, seed_transpiler=self.random_seed, seed_simulator=self.random_seed, shots=1024, backend_options={"initial_statevector": [0.5, 0.5, 0.5, 0.5]}, ) res_w_bo = quantum_instance.execute(self.qc).get_counts(self.qc) self.assertGreaterEqual(quantum_instance.time_taken, 0.0) quantum_instance.reset_execution_results() quantum_instance.skip_qobj_validation = True res_w_bo_skip_validation = quantum_instance.execute(self.qc).get_counts(self.qc) self.assertGreaterEqual(quantum_instance.time_taken, 0.0) quantum_instance.reset_execution_results() self.assertTrue(_compare_dict(res_w_bo, res_w_bo_skip_validation)) def test_w_noise(self): """with noise test""" # build noise model # Asymmetric readout error on qubit-0 only try: from qiskit.providers.aer.noise import NoiseModel from qiskit import Aer self.backend = Aer.get_backend("qasm_simulator") except ImportError as ex: self.skipTest(f"Aer doesn't appear to be installed. Error: '{str(ex)}'") return probs_given0 = [0.9, 0.1] probs_given1 = [0.3, 0.7] noise_model = NoiseModel() noise_model.add_readout_error([probs_given0, probs_given1], [0]) with self.assertWarns(DeprecationWarning): quantum_instance = QuantumInstance( self.backend, seed_transpiler=self.random_seed, seed_simulator=self.random_seed, shots=1024, noise_model=noise_model, ) res_w_noise = quantum_instance.execute(self.qc).get_counts(self.qc) quantum_instance.skip_qobj_validation = True res_w_noise_skip_validation = quantum_instance.execute(self.qc).get_counts(self.qc) self.assertTrue(_compare_dict(res_w_noise, res_w_noise_skip_validation)) with self.assertWarns(DeprecationWarning): # BasicAer should fail: with self.assertRaises(QiskitError): _ = QuantumInstance(BasicAer.get_backend("qasm_simulator"), noise_model=noise_model) with self.assertRaises(QiskitError): quantum_instance = QuantumInstance(BasicAer.get_backend("qasm_simulator")) quantum_instance.set_config(noise_model=noise_model) if __name__ == "__main__": unittest.main()
https://github.com/suvoooo/Qubits-Qiskit
suvoooo
# !pip install qiskit import math import matplotlib.pyplot as plt import numpy as np import qiskit as q from qiskit.visualization import plot_bloch_vector, plot_state_city from google.colab import drive drive.mount('/content/drive') path = '/content/drive/My Drive/Colab Notebooks/Quantum_Compute/' coords = [1, math.pi/2, math.pi] plot_bloch_vector(coords, coord_type='spherical', figsize=(6, 6), ) ## check density matrix from state vector initial_state1 = [0.j + 1./np.sqrt(2), 0, 0, 1/np.sqrt(2) + 0.j] initial_state2 = [0.j + 1./2., 0, 0, 0.j + np.sqrt(3)/2.] m1 = q.quantum_info.Statevector(initial_state1) print ('check the first statevector: ', m1) m2 = q.quantum_info.Statevector(initial_state2) print ('check the first statevector: ', m2) rho_1 = q.quantum_info.DensityMatrix(m1, dims=4) print ('check the density matrix corresponding to 1st statevector: ', '\n', rho_1) rho_2 = q.quantum_info.DensityMatrix(m2, dims=4) print ('check the density matrix corresponding to 2nd statevector: ', '\n', rho_2) rho_1.draw('latex', prefix='\\rho_{1} = ') plot_state_city(rho_1.data, title=r'Density Matrix for StateVector: $\frac{1}{\sqrt{2}}\left(|0\rangle + |1\rangle\right)$', color=['magenta', 'purple'], alpha=0.7, figsize=(11, 7), ) rho_2.draw('latex', prefix='\\rho_{2} = ') plot_state_city(rho_2.data, title=r'Density Matrix for StateVector: $\left(\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle\right)$', color=['magenta', 'purple'], alpha=0.7, figsize=(11, 7), ) rho_H_matrix = np.array([[9/20, 0, 0, np.sqrt(3)/20 + 8/20], [0, 0, 0, 0], [0, 0, 0, 0], [np.sqrt(3)/20 + 8/20, 0, 0, 11/20]]) rho_H = q.quantum_info.DensityMatrix(rho_H_matrix) rho_H.draw('latex', prefix='\\rho_{mix} = ') final_density_matrix = 0.8*rho_1 + 0.2*rho_2 check_rho_H = q.quantum_info.DensityMatrix(final_density_matrix) check_rho_H.draw('latex', prefix='\\rho_{mix} = ') ### check the first property rho_H_matrix_square = np.matmul(rho_H_matrix, rho_H_matrix) rho_H_square = q.quantum_info.DensityMatrix(rho_H_matrix_square) rho_H_matrix_square_Trace = np.trace(rho_H_matrix_square) print ('Trace of the square of the density matrix: ', rho_H_matrix_square_Trace) rho_H_square.draw('latex', prefix='\\rho_{mix}^2 = ') ### check the second property rho_H_matrix_eigenvals = np.linalg.eigvals(rho_H_matrix) print ('check the eigenvalues of the density matrix', rho_H_matrix_eigenvals[0], rho_H_matrix_eigenvals[1]) print ('check sum of the eigenvalues of the density matrix: ', np.sum(rho_H_matrix_eigenvals)) plot_state_city(check_rho_H.data, title=r'Density Matrix for Mixed State: $0.8\times\frac{1}{\sqrt{2}}\left(|0\rangle + |1\rangle\right) + 0.2\times \left(\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle\right)$', color=['crimson', 'purple'], alpha=0.4, figsize=(11, 7), ) reduced_density_matrix = np.array([[9/20, np.sqrt(3)/20 + 8/20], [np.sqrt(3)/20 + 8/20, 11/20]]) red_rho_H = q.quantum_info.DensityMatrix(reduced_density_matrix) red_rho_H.draw('latex', prefix='\\rho_{mix} = ') from qiskit.visualization import plot_bloch_multivector plot_bloch_multivector(state=red_rho_H.data, figsize=(6, 6), )
https://github.com/thyung/qiskit_factorization
thyung
N = 37 * 31 a = 29 print(N) import math math.gcd(a, N) import matplotlib.pyplot as plt z = range(N) y = [a**z0 % N for z0 in z] plt.plot(z, y) plt.xlabel('z') plt.ylabel('{}^z mod {}'.format(a, N)) plt.show() r = y[1:].index(1)+1 print(r) if r%2 == 0: x = (a**(r//2)) % N print('x = {}'.format(x)) if ((x+1)%N) != 0: print(math.gcd(int(x)+1, N), math.gcd(int(x)-1, N)) else: print('x+1 % N = 0') else: print('r = {} is odd'.format(r))
https://github.com/grossiM/Qiskit_workshop1019
grossiM
from hide_toggle import hide_toggle #usage: #1 create a cell with: hide_toggle(for_next=True) #2 put the commented solution in the next cell import qiskit as qk import numpy as np from scipy.linalg import expm import matplotlib.pyplot as plt import math # definition of single qubit operators sx = np.array([[0.0, 1.0],[1.0, 0.0]]) sy = np.array([[0.0, -1.0*1j],[1.0*1j, 0.0]]) sz = np.array([[1.0, 0.0],[0.0, -1.0]]) idt = np.array([[1.0, 0.0],[0.0, 1.0]]) psi0 = np.array([1.0, 0.0]) thetas = np.linspace(0,4*math.pi,200) avg_sx_tot = np.zeros(len(thetas)) for i in range(len(thetas)): psi_theta = expm(-1j*0.5*thetas[i]*(sx+sz)/math.sqrt(2)).dot(psi0) avg_sx_tot[i] = np.real(psi_theta.conjugate().transpose().dot(sx.dot(psi_theta))) plt.plot(thetas,avg_sx_tot) plt.xlabel(r'$\theta$') plt.ylabel(r'$\langle\sigma_x\rangle_\theta$') plt.show() #solution hide_toggle(for_next=True) #avg_sx_zx = np.zeros(len(thetas)) #avg_sx_xz = np.zeros(len(thetas)) #for i in range(len(thetas)): # psi_theta_zx = expm(-1j*0.5*thetas[i]*(sz)/math.sqrt(2)).dot(expm(-1j*0.5*thetas[i]*(sx)/math.sqrt(2)).dot(psi0)) # psi_theta_xz = expm(-1j*0.5*thetas[i]*(sx)/math.sqrt(2)).dot(expm(-1j*0.5*thetas[i]*(sz)/math.sqrt(2)).dot(psi0)) # avg_sx_zx[i] = np.real(psi_theta_zx.conjugate().transpose().dot(sx.dot(psi_theta_zx))) #avg_sx_xz[i] = np.real(psi_theta_xz.conjugate().transpose().dot(sx.dot(psi_theta_xz))) #plt.plot(thetas,avg_sx_tot) #plt.plot(thetas,avg_sx_zx) #plt.plot(thetas,avg_sx_xz) #plt.xlabel(r'$\theta$') #plt.ylabel(r'$\langle\sigma_x\rangle_\theta$') #plt.legend(['Around x = z', 'x first', 'z first'],loc=1) #plt.show() # Try this with e.g. ntrot = 1, 5, 10, 50. # You can also try to do sx and sz slices in the reverse order: both choices will become good approximations for large n ntrot = 10 avg_sx_n = np.zeros(len(thetas)) for i in range(len(thetas)): rot = expm(-1j*0.5*thetas[i]*(sx)/(ntrot*math.sqrt(2))).dot(expm(-1j*0.5*thetas[i]*(sz)/(ntrot*math.sqrt(2)))) for j in range(ntrot-1): rot = expm(-1j*0.5*thetas[i]*(sx)/(ntrot*math.sqrt(2))).dot(expm(-1j*0.5*thetas[i]*(sz)/(ntrot*math.sqrt(2)))).dot(rot) psi_theta_n = rot.dot(psi0) avg_sx_n[i] = np.real(psi_theta_n.conjugate().transpose().dot(sx.dot(psi_theta_n))) plt.plot(thetas,avg_sx_tot) plt.plot(thetas,avg_sx_n,'--') plt.xlabel(r'$\theta$') plt.ylabel(r'$\langle\sigma_x\rangle_\theta$') plt.legend(['Exact', 'ntrot = ' + str(ntrot)],loc=1) plt.show() #solution hide_toggle(for_next=True) # commutation function #def comm_check(a,b): # aa = np.dot(a,a) # bb = np.dot(b,b) # return (np.dot(aa,bb) - np.dot(bb,aa)) #comm_check(sx,sy) delta = 0.1 qr = qk.QuantumRegister(2,name='qr') zz_example = qk.QuantumCircuit(qr) zz_example.cx(qr[0],qr[1]) zz_example.u1(2*delta,qr[1]) zz_example.cx(qr[0],qr[1]) zz_example.draw(output='mpl') #solution J = 1 c_times = np.linspace(0,0.5*math.pi/abs(J),1000) q_times = np.linspace(0,0.5*math.pi/abs(J),10) ### Classical simulation of the Heisenberg dimer model psi0 = np.kron( np.array([0,1]), np.array([1,0]) ) H = J * ( np.kron(sx,sx) + np.kron(sy,sy) + np.kron(sz,sz) ) sz1_t = np.zeros(len(c_times)) sz2_t = np.zeros(len(c_times)) sz1 = np.kron(sz,idt) sz2 = np.kron(idt,sz) for i in range(len(c_times)): t = c_times[i] psi_t = expm(-1j*H*t).dot(psi0) sz1_t[i] = np.real(psi_t.conjugate().transpose().dot(sz1.dot(psi_t))) sz2_t[i] = np.real(psi_t.conjugate().transpose().dot(sz2.dot(psi_t))) ### Digital quantum simulation of the Heisenberg dimer model using qiskit nshots = 1024 sz1q_t = np.zeros(len(q_times)) sz2q_t = np.zeros(len(q_times)) #Solution: try to write the circuit and the quantum evolution, #hints: start with: #for k in range(len(q_times)): #delta = #define QuantumRegister, ClassicalRegister and QuantumCircuit (Heis2) #define initial state #define each part of the circuit: ZZ, YY, XX #measurement # Post processing of outcomes to get sz expectation values #sz1q = 0 #sz2q = 0 #for key,value in counts.items(): #if key == '00': #sz1q += value #sz2q += value #elif key == '01': #sz1q -= value #sz2q += value #elif key == '10': #sz1q += value #sz2q -= value #elif key == '11': #sz1q -= value #sz2q -= value #sz1q_t[k] = sz1q/nshots #sz2q_t[k] = sz2q/nshots # Run the quantum algorithm and colect the result, counts hide_toggle(for_next=True) #for k in range(len(q_times)): #delta = J*q_times[k] #qr = qk.QuantumRegister(2,name='qr') #cr = qk.ClassicalRegister(2,name='cr') #Heis2 = qk.QuantumCircuit(qr,cr) # Initial state preparation #Heis2.x(qr[0]) # ZZ #Heis2.cx(qr[0],qr[1]) #Heis2.u1(-2*delta,qr[1]) #Heis2.cx(qr[0],qr[1]) # YY #Heis2.u3(math.pi/2, -math.pi/2, math.pi/2, qr[0]) #Heis2.u3(math.pi/2, -math.pi/2, math.pi/2, qr[1]) #Heis2.cx(qr[0],qr[1]) #Heis2.u1(-2*delta,qr[1]) #Heis2.cx(qr[0],qr[1]) #Heis2.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[0]) #Heis2.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[1]) # XX #Heis2.u3(-math.pi/2, 0.0, 0.0, qr[0]) #Heis2.u3(-math.pi/2, 0.0, 0.0, qr[1]) #Heis2.cx(qr[0],qr[1]) #Heis2.u1(-2*delta,qr[1]) #Heis2.cx(qr[0],qr[1]) #Heis2.u3(math.pi/2, 0.0, 0.0, qr[0]) #Heis2.u3(math.pi/2, 0.0, 0.0, qr[1]) # measure #Heis2.measure(qr,cr) # Post processing of outcomes to get sz expectation values #sz1q = 0 #sz2q = 0 #for key,value in counts.items(): #if key == '00': #sz1q += value #sz2q += value #elif key == '01': #sz1q -= value #sz2q += value #elif key == '10': #sz1q += value #sz2q -= value #elif key == '11': #sz1q -= value #sz2q -= value #sz1q_t[k] = sz1q/nshots #sz2q_t[k] = sz2q/nshots # Run the quantum algorithm #backend = qk.BasicAer.get_backend('qasm_simulator') #job = qk.execute(Heis2, backend, shots=nshots) #result = job.result() #counts = result.get_counts() plt.plot(abs(J)*c_times,0.5*sz1_t,'b--') plt.plot(abs(J)*c_times,0.5*sz2_t,'c') plt.plot(abs(J)*q_times,0.5*sz1q_t,'rd') plt.plot(abs(J)*q_times,0.5*sz2q_t,'ko') plt.legend(['sz1','sz2','sz1q','sz2q']) plt.xlabel(r'$\delta = |J|t$') plt.show() # WARNING: all these cells can take a few minutes to run! ntrotter = 5 J12 = 1 J23 = 1 c_times = np.linspace(0,math.pi/abs(J12),1000) q_times = np.linspace(0,math.pi/abs(J12),20) ### Classical simulation of the Heisenberg trimer model psi0 = np.kron( np.kron( np.array([0,1]), np.array([1,0]) ) , np.array([1,0]) ) # SOLUTION: #sxsx12 = np.kron(sx, np.kron(sx,idt)) #sysy12 = #szsz12 = #sxsx23 = #sysy23 = #szsz23 = #H12 = J12 * ( sxsx12 + sysy12 + szsz12 ) #H23 = #H = H12 + H23 hide_toggle(for_next=True) #sxsx12 = np.kron(sx, np.kron(sx,idt)) #sysy12 = np.kron(sy, np.kron(sy,idt)) #szsz12 = np.kron(sz, np.kron(sz,idt)) #sxsx23 = np.kron(idt, np.kron(sx,sx)) #sysy23 = np.kron(idt, np.kron(sy,sy)) #szsz23 = np.kron(idt, np.kron(sz,sz)) #H12 = J12 * ( sxsx12 + sysy12 + szsz12 ) #H23 = J23 * ( sxsx23 + sysy23 + szsz23 ) #H = H12 + H23 sz1_t = np.zeros(len(c_times)) sz2_t = np.zeros(len(c_times)) sz3_t = np.zeros(len(c_times)) sz1 = np.kron(sz, np.kron(idt,idt)) sz2 = np.kron(idt, np.kron(sz,idt)) sz3 = np.kron(idt, np.kron(idt,sz)) #SOLUTION: #for i in range(len(c_times)): #t = c_times[i] #psi_t = #sz1_t[i] = #sz2_t[i] = #sz3_t[i] = hide_toggle(for_next=True) #for i in range(len(c_times)): #t = c_times[i] #psi_t = expm(-1j*H*t).dot(psi0) #sz1_t[i] = np.real(psi_t.conjugate().transpose().dot(sz1.dot(psi_t))) #sz2_t[i] = np.real(psi_t.conjugate().transpose().dot(sz2.dot(psi_t))) #sz3_t[i] = np.real(psi_t.conjugate().transpose().dot(sz3.dot(psi_t))) ### Classical simulation of the Heisenberg trimer model WITH SUZUKI TROTTER DIGITALIZATION sz1st_t = np.zeros(len(c_times)) sz2st_t = np.zeros(len(c_times)) sz3st_t = np.zeros(len(c_times)) for i in range(len(c_times)): t = c_times[i] Ust = expm(-1j*H23*t/ntrotter).dot(expm(-1j*H12*t/ntrotter)) for j in range(ntrotter-1): Ust = expm(-1j*H23*t/ntrotter).dot(expm(-1j*H12*t/ntrotter)).dot(Ust) psi_t = Ust.dot(psi0) sz1st_t[i] = np.real(psi_t.conjugate().transpose().dot(sz1.dot(psi_t))) sz2st_t[i] = np.real(psi_t.conjugate().transpose().dot(sz2.dot(psi_t))) sz3st_t[i] = np.real(psi_t.conjugate().transpose().dot(sz3.dot(psi_t))) ### Digital quantum simulation of the Heisenberg model using qiskit hide_toggle(for_next=True) ### Digital quantum simulation of the Heisenberg model using qiskit nshots = 1024 sz1q_t = np.zeros(len(q_times)) sz2q_t = np.zeros(len(q_times)) sz3q_t = np.zeros(len(q_times)) for k in range(len(q_times)): delta12n = J12*q_times[k]/ntrotter delta23n = J23*q_times[k]/ntrotter qr = qk.QuantumRegister(3,name='qr') cr = qk.ClassicalRegister(3,name='cr') Heis3 = qk.QuantumCircuit(qr,cr) # Initial state preparation Heis3.x(qr[0]) for n in range(ntrotter): # 1-2 bond mapped on qubits 0 and 1 in the quantum register # ZZ Heis3.cx(qr[0],qr[1]) Heis3.u1(-2*delta12n,qr[1]) Heis3.cx(qr[0],qr[1]) # YY Heis3.u3(math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis3.u3(math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis3.cx(qr[0],qr[1]) Heis3.u1(-2*delta12n,qr[1]) Heis3.cx(qr[0],qr[1]) Heis3.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis3.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[1]) # XX Heis3.u3(-math.pi/2, 0.0, 0.0, qr[0]) Heis3.u3(-math.pi/2, 0.0, 0.0, qr[1]) Heis3.cx(qr[0],qr[1]) Heis3.u1(-2*delta12n,qr[1]) Heis3.cx(qr[0],qr[1]) Heis3.u3(math.pi/2, 0.0, 0.0, qr[0]) Heis3.u3(math.pi/2, 0.0, 0.0, qr[1]) # 2-3 bond mapped on qubits 1 and 2 in the quantum register # ZZ Heis3.cx(qr[1],qr[2]) Heis3.u1(-2*delta12n,qr[2]) Heis3.cx(qr[1],qr[2]) # YY Heis3.u3(math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis3.u3(math.pi/2, -math.pi/2, math.pi/2, qr[2]) Heis3.cx(qr[1],qr[2]) Heis3.u1(-2*delta12n,qr[2]) Heis3.cx(qr[1],qr[2]) Heis3.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis3.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[2]) # XX Heis3.u3(-math.pi/2, 0.0, 0.0, qr[1]) Heis3.u3(-math.pi/2, 0.0, 0.0, qr[2]) Heis3.cx(qr[1],qr[2]) Heis3.u1(-2*delta12n,qr[2]) Heis3.cx(qr[1],qr[2]) Heis3.u3(math.pi/2, 0.0, 0.0, qr[1]) Heis3.u3(math.pi/2, 0.0, 0.0, qr[2]) # measure Heis3.measure(qr,cr) # Run the quantum algorithm backend = qk.BasicAer.get_backend('qasm_simulator') job = qk.execute(Heis3, backend, shots=nshots) result = job.result() counts = result.get_counts() # Post processing of outcomes to get sz expectation values sz1q = 0 sz2q = 0 sz3q = 0 for key,value in counts.items(): if key == '000': sz1q += value sz2q += value sz3q += value elif key == '001': sz1q -= value sz2q += value sz3q += value elif key == '010': sz1q += value sz2q -= value sz3q += value elif key == '011': sz1q -= value sz2q -= value sz3q += value elif key == '100': sz1q += value sz2q += value sz3q -= value elif key == '101': sz1q -= value sz2q += value sz3q -= value elif key == '110': sz1q += value sz2q -= value sz3q -= value elif key == '111': sz1q -= value sz2q -= value sz3q -= value sz1q_t[k] = sz1q/nshots sz2q_t[k] = sz2q/nshots sz3q_t[k] = sz3q/nshots fig = plt.figure() ax = plt.subplot(111) ax.plot(abs(J12)*c_times,0.5*sz1_t,'b', label='sz1 full') ax.plot(abs(J12)*c_times,0.5*sz2_t,'r', label='sz2 full') ax.plot(abs(J12)*c_times,0.5*sz3_t,'g', label='sz3 full') ax.plot(abs(J12)*c_times,0.5*sz1st_t,'b--',label='sz1 n = ' + str(ntrotter) + ' (classical)') ax.plot(abs(J12)*c_times,0.5*sz2st_t,'r--', label='sz2 n = ' + str(ntrotter) + ' (classical)') ax.plot(abs(J12)*c_times,0.5*sz3st_t,'g--', label='sz3 n = ' + str(ntrotter) + ' (classical)') ax.plot(abs(J12)*q_times,0.5*sz1q_t,'b*',label='sz1 n = ' + str(ntrotter) + ' (quantum)') ax.plot(abs(J12)*q_times,0.5*sz2q_t,'ro', label='sz2 n = ' + str(ntrotter) + ' (quantum)') ax.plot(abs(J12)*q_times,0.5*sz3q_t,'gd', label='sz3 n = ' + str(ntrotter) + ' (quantum)') chartBox = ax.get_position() ax.set_position([chartBox.x0, chartBox.y0, chartBox.width*1, chartBox.height]) ax.legend(loc='upper center', bbox_to_anchor=(1.3, 0.8), shadow=True, ncol=1) plt.xlabel(r'$\delta_{12} = |J_{12}|t$') plt.show() import Qconfig from qiskit.tools.monitor import job_monitor qk.IBMQ.enable_account(Qconfig.APItoken, **Qconfig.config) delta = 0.5*math.pi qr = qk.QuantumRegister(2,name='qr') cr = qk.ClassicalRegister(2,name='cr') Heis2 = qk.QuantumCircuit(qr,cr) # Initial state preparation Heis2.x(qr[0]) # ZZ Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) # YY Heis2.u3(math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis2.u3(math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis2.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[1]) # XX Heis2.u3(-math.pi/2, 0.0, 0.0, qr[0]) Heis2.u3(-math.pi/2, 0.0, 0.0, qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u3(math.pi/2, 0.0, 0.0, qr[0]) Heis2.u3(math.pi/2, 0.0, 0.0, qr[1]) # measure Heis2.measure(qr,cr) my_backend = qk.IBMQ.get_backend('ibmqx4') job = qk.execute(Heis2, backend=my_backend, shots=1024) job_monitor(job, interval=5) result = job.result() counts = result.get_counts() print(counts) plot_histogram(counts) my_backend.configuration().coupling_map # In the output, the first entry in a pair [a,b] is a control, second is the # corresponding target for a CNOT
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
# Imports import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute from qiskit.tools.visualization import plot_histogram from qiskit.tools.monitor import job_monitor from qiskit.quantum_info.analyzation.average import average_data from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy IBMQ.load_accounts() # use simulator to learn more about entangled quantum states where possible sim_backend = BasicAer.get_backend('qasm_simulator') sim_shots = 8192 # use device to test entanglement device_shots = 1024 device_backend = least_busy(IBMQ.backends(operational=True, simulator=False)) print("the best backend is " + device_backend.name()) # Creating registers q = QuantumRegister(2) c = ClassicalRegister(2) # quantum circuit to make an entangled bell state bell = QuantumCircuit(q, c) bell.h(q[0]) bell.cx(q[0], q[1]) # quantum circuit to measure q in the standard basis measureZZ = QuantumCircuit(q, c) measureZZ.measure(q[0], c[0]) measureZZ.measure(q[1], c[1]) bellZZ = bell+measureZZ # quantum circuit to measure q in the superposition basis measureXX = QuantumCircuit(q, c) measureXX.h(q[0]) measureXX.h(q[1]) measureXX.measure(q[0], c[0]) measureXX.measure(q[1], c[1]) bellXX = bell+measureXX # quantum circuit to measure ZX measureZX = QuantumCircuit(q, c) measureZX.h(q[0]) measureZX.measure(q[0], c[0]) measureZX.measure(q[1], c[1]) bellZX = bell+measureZX # quantum circuit to measure XZ measureXZ = QuantumCircuit(q, c) measureXZ.h(q[1]) measureXZ.measure(q[0], c[0]) measureXZ.measure(q[1], c[1]) bellXZ = bell+measureXZ circuits = [bellZZ,bellXX,bellZX,bellXZ] bellZZ.draw(output='mpl') bellXX.draw(output='mpl') bellZX.draw(output='mpl') bellXZ.draw(output='mpl') job = execute(circuits, backend=device_backend, shots=device_shots) job_monitor(job) result = job.result() observable_first ={'00': 1, '01': -1, '10': 1, '11': -1} observable_second ={'00': 1, '01': 1, '10': -1, '11': -1} observable_correlated ={'00': 1, '01': -1, '10': -1, '11': 1} print('IZ = ' + str(average_data(result.get_counts(bellZZ),observable_first))) print('ZI = ' + str(average_data(result.get_counts(bellZZ),observable_second))) print('ZZ = ' + str(average_data(result.get_counts(bellZZ),observable_correlated))) print('IX = ' + str(average_data(result.get_counts(bellXX),observable_first))) print('XI = ' + str(average_data(result.get_counts(bellXX),observable_second))) print('XX = ' + str(average_data(result.get_counts(bellXX),observable_correlated))) print('ZX = ' + str(average_data(result.get_counts(bellZX),observable_correlated))) print('XZ = ' + str(average_data(result.get_counts(bellXZ),observable_correlated))) CHSH = lambda x : x[0]+x[1]+x[2]-x[3] measure = [measureZZ, measureZX, measureXX, measureXZ] # Theory sim_chsh_circuits = [] sim_x = [] sim_steps = 30 for step in range(sim_steps): theta = 2.0*np.pi*step/30 bell_middle = QuantumCircuit(q,c) bell_middle.ry(theta,q[0]) for m in measure: sim_chsh_circuits.append(bell+bell_middle+m) sim_x.append(theta) job = execute(sim_chsh_circuits, backend=sim_backend, shots=sim_shots) result = job.result() sim_chsh = [] circ = 0 for x in range(len(sim_x)): temp_chsh = [] for m in range(len(measure)): temp_chsh.append(average_data(result.get_counts(sim_chsh_circuits[circ].name),observable_correlated)) circ += 1 sim_chsh.append(CHSH(temp_chsh)) # Experiment real_chsh_circuits = [] real_x = [] real_steps = 10 for step in range(real_steps): theta = 2.0*np.pi*step/10 bell_middle = QuantumCircuit(q,c) bell_middle.ry(theta,q[0]) for m in measure: real_chsh_circuits.append(bell+bell_middle+m) real_x.append(theta) job = execute(real_chsh_circuits, backend=device_backend, shots=device_shots) job_monitor(job) result = job.result() real_chsh = [] circ = 0 for x in range(len(real_x)): temp_chsh = [] for m in range(len(measure)): temp_chsh.append(average_data(result.get_counts(real_chsh_circuits[circ].name),observable_correlated)) circ += 1 real_chsh.append(CHSH(temp_chsh)) plt.plot(sim_x, sim_chsh, 'r-', real_x, real_chsh, 'bo') plt.plot([0, 2*np.pi], [2, 2], 'b-') plt.plot([0, 2*np.pi], [-2, -2], 'b-') plt.grid() plt.ylabel('CHSH', fontsize=20) plt.xlabel(r'$Y(\theta)$', fontsize=20) plt.show() print(real_chsh) # 2 - qubits # quantum circuit to make GHZ state q2 = QuantumRegister(2) c2 = ClassicalRegister(2) ghz = QuantumCircuit(q2, c2) ghz.h(q2[0]) ghz.cx(q2[0],q2[1]) # quantum circuit to measure q in standard basis measureZZ = QuantumCircuit(q2, c2) measureZZ.measure(q2[0], c2[0]) measureZZ.measure(q2[1], c2[1]) ghzZZ = ghz+measureZZ measureXX = QuantumCircuit(q2, c2) measureXX.h(q2[0]) measureXX.h(q2[1]) measureXX.measure(q2[0], c2[0]) measureXX.measure(q2[1], c2[1]) ghzXX = ghz+measureXX circuits2 = [ghzZZ, ghzXX] ghzZZ.draw(output='mpl') ghzXX.draw(output='mpl') job2 = execute(circuits2, backend=sim_backend, shots=sim_shots) result2 = job2.result() plot_histogram(result2.get_counts(ghzZZ)) plot_histogram(result2.get_counts(ghzXX)) # 3 - qubits # quantum circuit to make GHZ state q3 = QuantumRegister(3) c3 = ClassicalRegister(3) ghz3 = QuantumCircuit(q3, c3) ghz3.h(q3[0]) ghz3.cx(q3[0],q3[1]) ghz3.cx(q3[1],q3[2]) # quantum circuit to measure q in standard basis measureZZZ = QuantumCircuit(q3, c3) measureZZZ.measure(q3[0], c3[0]) measureZZZ.measure(q3[1], c3[1]) measureZZZ.measure(q3[2], c3[2]) ghzZZZ = ghz3+measureZZZ measureXXX = QuantumCircuit(q3, c3) measureXXX.h(q3[0]) measureXXX.h(q3[1]) measureXXX.h(q3[2]) measureXXX.measure(q3[0], c3[0]) measureXXX.measure(q3[1], c3[1]) measureXXX.measure(q3[2], c3[2]) ghzXXX = ghz3+measureXXX circuits3 = [ghzZZZ, ghzXXX] ghzZZZ.draw(output='mpl') ghzXXX.draw(output='mpl') job3 = execute(circuits3, backend=sim_backend, shots=sim_shots) result3 = job3.result() plot_histogram(result3.get_counts(ghzZZZ)) plot_histogram(result3.get_counts(ghzXXX)) # 4 - qubits # quantum circuit to make GHZ state q4 = QuantumRegister(4) c4 = ClassicalRegister(4) ghz4 = QuantumCircuit(q4, c4) ghz4.h(q4[0]) ghz4.cx(q4[0],q4[1]) ghz4.cx(q4[1],q4[2]) ghz4.h(q4[3]) ghz4.h(q4[2]) ghz4.cx(q4[3],q4[2]) ghz4.h(q4[3]) ghz4.h(q4[2]) # quantum circuit to measure q in standard basis measureZZZZ = QuantumCircuit(q4, c4) measureZZZZ.measure(q4[0], c4[0]) measureZZZZ.measure(q4[1], c4[1]) measureZZZZ.measure(q4[2], c4[2]) measureZZZZ.measure(q4[3], c4[3]) ghzZZZZ = ghz4+measureZZZZ measureXXXX = QuantumCircuit(q4, c4) measureXXXX.h(q4[0]) measureXXXX.h(q4[1]) measureXXXX.h(q4[2]) measureXXXX.h(q4[3]) measureXXXX.measure(q4[0], c4[0]) measureXXXX.measure(q4[1], c4[1]) measureXXXX.measure(q4[2], c4[2]) measureXXXX.measure(q4[3], c4[3]) ghzXXXX = ghz4+measureXXXX circuits4 = [ghzZZZZ, ghzXXXX] ghzZZZZ.draw(output='mpl') ghzXXXX.draw(output='mpl') job4 = execute(circuits4, backend=sim_backend, shots=sim_shots) result4 = job4.result() plot_histogram(result4.get_counts(ghzZZZZ)) plot_histogram(result4.get_counts(ghzXXXX)) # quantum circuit to make GHZ state q3 = QuantumRegister(3) c3 = ClassicalRegister(3) ghz3 = QuantumCircuit(q3, c3) ghz3.h(q3[0]) ghz3.cx(q3[0],q3[1]) ghz3.cx(q3[0],q3[2]) # quantum circuit to measure q in standard basis measureZZZ = QuantumCircuit(q3, c3) measureZZZ.measure(q3[0], c3[0]) measureZZZ.measure(q3[1], c3[1]) measureZZZ.measure(q3[2], c3[2]) ghzZZZ = ghz3+measureZZZ circuits5 = [ghzZZZ] ghzZZZ.draw(output='mpl') job5 = execute(circuits5, backend=sim_backend, shots=sim_shots) result5 = job5.result() plot_histogram(result5.get_counts(ghzZZZ)) MerminM = lambda x : x[0]*x[1]*x[2]*x[3] observable ={'000': 1, '001': -1, '010': -1, '011': 1, '100': -1, '101': 1, '110': 1, '111': -1} # quantum circuit to measure q XXX measureXXX = QuantumCircuit(q3, c3) measureXXX.h(q3[0]) measureXXX.h(q3[1]) measureXXX.h(q3[2]) measureXXX.measure(q3[0], c3[0]) measureXXX.measure(q3[1], c3[1]) measureXXX.measure(q3[2], c3[2]) ghzXXX = ghz3+measureXXX # quantum circuit to measure q XYY measureXYY = QuantumCircuit(q3, c3) measureXYY.s(q3[1]).inverse() measureXYY.s(q3[2]).inverse() measureXYY.h(q3[0]) measureXYY.h(q3[1]) measureXYY.h(q3[2]) measureXYY.measure(q3[0], c3[0]) measureXYY.measure(q3[1], c3[1]) measureXYY.measure(q3[2], c3[2]) ghzXYY = ghz3+measureXYY # quantum circuit to measure q YXY measureYXY = QuantumCircuit(q3, c3) measureYXY.s(q3[0]).inverse() measureYXY.s(q3[2]).inverse() measureYXY.h(q3[0]) measureYXY.h(q3[1]) measureYXY.h(q3[2]) measureYXY.measure(q3[0], c3[0]) measureYXY.measure(q3[1], c3[1]) measureYXY.measure(q3[2], c3[2]) ghzYXY = ghz3+measureYXY # quantum circuit to measure q YYX measureYYX = QuantumCircuit(q3, c3) measureYYX.s(q3[0]).inverse() measureYYX.s(q3[1]).inverse() measureYYX.h(q3[0]) measureYYX.h(q3[1]) measureYYX.h(q3[2]) measureYYX.measure(q3[0], c3[0]) measureYYX.measure(q3[1], c3[1]) measureYYX.measure(q3[2], c3[2]) ghzYYX = ghz3+measureYYX circuits6 = [ghzXXX, ghzYYX, ghzYXY, ghzXYY] ghzXXX.draw(output='mpl') ghzYYX.draw(output='mpl') ghzYXY.draw(output='mpl') ghzXYY.draw(output='mpl') job6 = execute(circuits6, backend=device_backend, shots=device_shots) job_monitor(job6) result6 = job6.result() temp=[] temp.append(average_data(result6.get_counts(ghzXXX),observable)) temp.append(average_data(result6.get_counts(ghzYYX),observable)) temp.append(average_data(result6.get_counts(ghzYXY),observable)) temp.append(average_data(result6.get_counts(ghzXYY),observable)) print(MerminM(temp))
https://github.com/CynthiaRios/quantum_orchestra
CynthiaRios
![header](./jupyter_images/header.png "Header") ## General Imports from qiskit import QuantumCircuit, execute from qiskit import Aer from shutil import copyfile from qiskit.visualization import plot_histogram from qiskit import IBMQ import qiskit.tools.jupyter import os %qiskit_job_watcher from IPython.display import Audio import wave import numpy as np ## Button Display Imports (Needs installations mentioned above) from IPython.display import display, Markdown, clear_output # widget packages import ipywidgets as widgets from pydub import AudioSegment ![QuantumGates](./jupyter_images/quantumgates.png "Quantum Gates") #Will redo on quentin's computer tomorrow (today) piano_input = [None] * 5 piano = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') piano2 = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') piano3 = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') piano4 = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') piano5 = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') box = widgets.VBox([piano, piano2, piano3, piano4, piano5]) box guitar_input = [None] * 5 guitar = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') guitar2 = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') guitar3 = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') guitar4 = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') guitar5 = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') box = widgets.VBox([guitar, guitar2, guitar3, guitar4, guitar5]) box bass_input = [None] * 5 bass = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') bass2 = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') bass3 = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') bass4 = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') bass5 = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') box = widgets.VBox([bass, bass2, bass3, bass4, bass5]) box trumpet_input = [None] * 5 trumpet = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') trumpet2 = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') trumpet3 = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') trumpet4 = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') trumpet5 = widgets.Dropdown( options=['No Gate', 'X-Gate', 'Y-Gate', 'Z-Gate'], value='No Gate', description='Insert a :') box = widgets.VBox([trumpet, trumpet2, trumpet3, trumpet4, trumpet5]) box def GetGates(piano_input, guitar_input, bass_input, trumpet_input): if (piano.value == 'No Gate'): piano_input[0] = 'n' if (piano.value == 'X-Gate'): piano_input[0] = 'x' if (piano.value == 'Y-Gate'): piano_input[0] = 'y' if (piano.value == 'Z-Gate'): piano_input[0] = 'z' if (piano2.value == 'No Gate'): piano_input[1] = 'n' if (piano2.value == 'X-Gate'): piano_input[1] = 'x' if (piano2.value == 'Y-Gate'): piano_input[1] = 'y' if (piano2.value == 'Z-Gate'): piano_input[1] = 'z' if (piano3.value == 'No Gate'): piano_input[2] = 'n' if (piano3.value == 'X-Gate'): piano_input[2] = 'x' if (piano3.value == 'Y-Gate'): piano_input[2] = 'y' if (piano3.value == 'Z-Gate'): piano_input[2] = 'z' if (piano4.value == 'No Gate'): piano_input[3] = 'n' if (piano4.value == 'X-Gate'): piano_input[3] = 'x' if (piano4.value == 'Y-Gate'): piano_input[3] = 'y' if (piano4.value == 'Z-Gate'): piano_input[3] = 'z' if (piano5.value == 'No Gate'): piano_input[4] = 'n' if (piano5.value == 'X-Gate'): piano_input[4] = 'x' if (piano5.value == 'Y-Gate'): piano_input[4] = 'y' if (piano5.value == 'Z-Gate'): piano_input[4] = 'z' if (guitar.value == 'No Gate'): guitar_input[0] = 'n' if (guitar.value == 'X-Gate'): guitar_input[0] = 'x' if (guitar.value == 'Y-Gate'): guitar_input[0] = 'y' if (guitar.value == 'Z-Gate'): guitar_input[0] = 'z' if (guitar2.value == 'No Gate'): guitar_input[1] = 'n' if (guitar2.value == 'X-Gate'): guitar_input[1] = 'x' if (guitar2.value == 'Y-Gate'): guitar_input[1] = 'y' if (guitar2.value == 'Z-Gate'): guitar_input[1] = 'z' if (guitar3.value == 'No Gate'): guitar_input[2] = 'n' if (guitar3.value == 'X-Gate'): guitar_input[2] = 'x' if (guitar3.value == 'Y-Gate'): guitar_input[2] = 'y' if (guitar3.value == 'Z-Gate'): guitar_input[2] = 'z' if (guitar4.value == 'No Gate'): guitar_input[3] = 'n' if (guitar4.value == 'X-Gate'): guitar_input[3] = 'x' if (guitar4.value == 'Y-Gate'): guitar_input[3] = 'y' if (guitar4.value == 'Z-Gate'): guitar_input[3] = 'z' if (guitar5.value == 'No Gate'): guitar_input[4] = 'n' if (guitar5.value == 'X-Gate'): guitar_input[4] = 'x' if (guitar5.value == 'Y-Gate'): guitar_input[4] = 'y' if (guitar5.value == 'Z-Gate'): guitar_input[4] = 'z' if (bass.value == 'No Gate'): bass_input[0] = 'n' if (bass.value == 'X-Gate'): bass_input[0] = 'x' if (bass.value == 'Y-Gate'): bass_input[0] = 'y' if (bass.value == 'Z-Gate'): bass_input[0] = 'z' if (bass2.value == 'No Gate'): bass_input[1] = 'n' if (bass2.value == 'X-Gate'): bass_input[1] = 'x' if (bass2.value == 'Y-Gate'): bass_input[1] = 'y' if (bass2.value == 'Z-Gate'): bass_input[1] = 'z' if (bass3.value == 'No Gate'): bass_input[2] = 'n' if (bass3.value == 'X-Gate'): bass_input[2] = 'x' if (bass3.value == 'Y-Gate'): bass_input[2] = 'y' if (bass3.value == 'Z-Gate'): bass_input[2] = 'z' if (bass4.value == 'No Gate'): bass_input[3] = 'n' if (bass4.value == 'X-Gate'): bass_input[3] = 'x' if (bass4.value == 'Y-Gate'): bass_input[3] = 'y' if (bass4.value == 'Z-Gate'): bass_input[3] = 'z' if (bass5.value == 'No Gate'): bass_input[4] = 'n' if (bass5.value == 'X-Gate'): bass_input[4] = 'x' if (bass5.value == 'Y-Gate'): bass_input[4] = 'y' if (bass5.value == 'Z-Gate'): bass_input[4] = 'z' if (trumpet.value == 'No Gate'): trumpet_input[0] = 'n' if (trumpet.value == 'X-Gate'): trumpet_input[0] = 'x' if (trumpet.value == 'Y-Gate'): trumpet_input[0] = 'y' if (trumpet.value == 'Z-Gate'): trumpet_input[0] = 'z' if (trumpet2.value == 'No Gate'): trumpet_input[1] = 'n' if (trumpet2.value == 'X-Gate'): trumpet_input[1] = 'x' if (trumpet2.value == 'Y-Gate'): trumpet_input[1] = 'y' if (trumpet2.value == 'Z-Gate'): trumpet_input[1] = 'z' if (trumpet3.value == 'No Gate'): trumpet_input[2] = 'n' if (trumpet3.value == 'X-Gate'): trumpet_input[2] = 'x' if (trumpet3.value == 'Y-Gate'): trumpet_input[2] = 'y' if (trumpet3.value == 'Z-Gate'): trumpet_input[2] = 'z' if (trumpet4.value == 'No Gate'): trumpet_input[3] = 'n' if (trumpet4.value == 'X-Gate'): trumpet_input[3] = 'x' if (trumpet4.value == 'Y-Gate'): trumpet_input[3] = 'y' if (trumpet4.value == 'Z-Gate'): trumpet_input[3] = 'z' if (trumpet5.value == 'No Gate'): trumpet_input[4] = 'n' if (trumpet5.value == 'X-Gate'): trumpet_input[4] = 'x' if (trumpet5.value == 'Y-Gate'): trumpet_input[4] = 'y' if (trumpet5.value == 'Z-Gate'): trumpet_input[4] = 'z' return (piano_input, guitar_input, bass_input, trumpet_input) piano_input, guitar_input, bass_input, trumpet_input = GetGates(piano_input, guitar_input, bass_input, trumpet_input) #minimum user input will just be for them to fill out the create quantum circuit function inthe backend n = 5 #number of gates backend = Aer.get_backend('statevector_simulator') piano_states = [] guitar_states = [] bass_states = [] trumpet_states = [] def CreateQuantumCircuit(piano_input, guitar_input, bass_input, trumpet_input): cct = QuantumCircuit(4,1) piano_states = [] guitar_states = [] bass_states = [] trumpet_states = [] for i in range(n-1): cct.h(i-1) cct.barrier() for i in range(n): if piano_input[i-1] == 'x': cct.x(0) if piano_input[i-1] == 'y': cct.y(0) if piano_input[i-1] == 'z': cct.z(0) piano_states.append(execute(cct, backend).result().get_statevector()) if guitar_input[i-1] == 'x': cct.x(1) if guitar_input[i-1] == 'y': cct.y(1) if guitar_input[i-1] == 'z': cct.z(1) guitar_states.append(execute(cct, backend).result().get_statevector()) if bass_input[i-1] == 'x': cct.x(2) if bass_input[i-1] == 'y': cct.y(2) if bass_input[i-1] == 'z': cct.z(2) bass_states.append(execute(cct, backend).result().get_statevector()) if trumpet_input[i-1] == 'x': cct.x(3) if trumpet_input[i-1] == 'y': cct.y(3) if trumpet_input[i-1] == 'z': cct.z(3) trumpet_states.append(execute(cct, backend).result().get_statevector()) cct.barrier() cct.draw('mpl') return piano_states, guitar_states, bass_states, trumpet_states, cct piano_states, guitar_states, bass_states, trumpet_states, cct = CreateQuantumCircuit(piano_input, guitar_input, bass_input, trumpet_input) cct.draw(output="mpl") def SeperateArrays(states, vals_real, vals_imaginary): vals = [] for i in range(n+1): vals.append(states[i-1][0]) for i in range(n+1): vals_real.append((states[i-1][0].real)) vals_imaginary.append((states[i-1][0]).imag) return vals_real, vals_imaginary piano_real = [] piano_imaginary = [] piano_vals = [] guitar_real = [] guitar_imaginary = [] guitar_vals = [] bass_real = [] bass_imaginary = [] bass_vals = [] trumpet_real = [] trumpet_imaginary = [] trumpet_vals = [] piano_real, piano_imaginary = SeperateArrays(piano_states, piano_real, piano_imaginary) guitar_real, guitar_imaginary = SeperateArrays(guitar_states, guitar_real, guitar_imaginary) bass_real, bass_imaginary = SeperateArrays(bass_states, bass_real, bass_imaginary) trumpet_real, trumpet_imaginary = SeperateArrays(trumpet_states, trumpet_real, trumpet_imaginary) def MusicalTransformation(real, imaginary): tune_array=[] for i in range(n+1): if(real[i-1] < 0 and imaginary[i-1] > 0): tune_array.append('c') tune_array.append('g') tune_array.append('e') if(real[i-1] < 0 and imaginary[i-1] <= 0): tune_array.append('c') tune_array.append('f') tune_array.append('g') if(real[i-1] < 0 and imaginary[i-1] > 0): tune_array.append('d') tune_array.append('f') tune_array.append('a') if(real[i-1] < 0 and imaginary[i-1] <= 0): tune_array.append('f') tune_array.append('a') tune_array.append('c') if(real[i-1] > 0 and imaginary[i-1] > 0): tune_array.append('g') tune_array.append('b') tune_array.append('d') if(real[i-1] > 0 and imaginary[i-1] < 0): tune_array.append('d') tune_array.append('f') tune_array.append('a') if(real[i-1] > 0 and imaginary[i-1] >= 0): tune_array.append('e') tune_array.append('g') tune_array.append('b') if(real[i-1] > 0 and imaginary[i-1] < 0): tune_array.append('a') tune_array.append('c') tune_array.append('b') if(real[i-1] == 0 and imaginary[i-1] == 0): tune_array.append('n') tune_array.append('n') tune_array.append('n') return tune_array tune_array_piano = MusicalTransformation(piano_real, piano_imaginary) tune_array_guitar = MusicalTransformation(guitar_real, guitar_imaginary) tune_array_bass = MusicalTransformation(bass_real, bass_imaginary) tune_array_trumpet = MusicalTransformation(trumpet_real, trumpet_imaginary) def PlayPianoTune(character, songs): if character == 'a': sound_file = "./Audio/Piano/1.wav" songs.append(sound_file) if character == 'b': sound_file = "./Audio/Piano/2.wav" songs.append(sound_file) if character == 'c': sound_file = "./Audio/Piano/3.wav" songs.append(sound_file) if character == 'd': sound_file = "./Audio/Piano/4.wav" songs.append(sound_file) if character == 'e': sound_file = "./Audio/Piano/5.wav" songs.append(sound_file) if character == 'f': sound_file = "./Audio/Piano/6.wav" songs.append(sound_file) if character == 'g': sound_file = "./Audio/Piano/7.wav" songs.append(sound_file) if character == 'n': sound_file = "./Audio/blank.wav" songs.append(sound_file) return songs def PlayGuitarTune(character, songs): if character == 'a': sound_file = "./Audio/Guitar/1.wav" songs.append(sound_file) if character == 'b': sound_file = "./Audio/Guitar/2.wav" songs.append(sound_file) if character == 'c': sound_file = "./Audio/Guitar/3.wav" songs.append(sound_file) if character == 'd': sound_file = "./Audio/Guitar/4.wav" songs.append(sound_file) if character == 'e': sound_file = "./Audio/Guitar/5.wav" songs.append(sound_file) if character == 'f': sound_file = "./Audio/Guitar/6.wav" songs.append(sound_file) if character == 'g': sound_file = "./Audio/Guitar/7.wav" songs.append(sound_file) if character == 'n': sound_file = "./Audio/blank.wav" songs.append(sound_file) return songs def PlayBassTune(character, songs): if character == 'a': sound_file = "./Audio/Bass/1.wav" songs.append(sound_file) if character == 'b': sound_file = "./Audio/Bass/2.wav" songs.append(sound_file) if character == 'c': sound_file = "./Audio/Bass/3.wav" songs.append(sound_file) if character == 'd': sound_file = "./Audio/Bass/4.wav" songs.append(sound_file) if character == 'e': sound_file = "./Audio/Bass/5.wav" songs.append(sound_file) if character == 'f': sound_file = "./Audio/Bass/6.wav" songs.append(sound_file) if character == 'g': sound_file = "./Audio/Bass/7.wav" songs.append(sound_file) if character == 'n': sound_file = "./Audio/blank.wav" songs.append(sound_file) return songs def PlayTrumpetTune(character, songs): if character == 'a': sound_file = "./Audio/Trumpet/1.wav" songs.append(sound_file) if character == 'b': sound_file = "./Audio/Trumpet/2.wav" songs.append(sound_file) if character == 'c': sound_file = "./Audio/Trumpet/3.wav" songs.append(sound_file) if character == 'd': sound_file = "./Audio/Trumpet/4.wav" songs.append(sound_file) if character == 'e': sound_file = "./Audio/Trumpet/5.wav" songs.append(sound_file) if character == 'f': sound_file = "./Audio/Trumpet/6.wav" songs.append(sound_file) if character == 'g': sound_file = "./Audio/Trumpet/7.wav" songs.append(sound_file) if character == 'n': sound_file = "./Audio/blank.wav" songs.append(sound_file) return songs piano_song = [] for i in range(len(tune_array_piano)): character = tune_array_piano[i-1] piano_song = PlayPianoTune(character, piano_song) os.remove("./pianosounds.wav") copyfile('./Audio/blank.wav','./pianosounds.wav') for i in range(len(tune_array_piano)): infiles = [piano_song[i-1], "pianosounds.wav"] outfile = "pianosounds.wav" data= [] for infile in infiles: w = wave.open(infile, 'rb') data.append( [w.getparams(), w.readframes(w.getnframes())] ) w.close() output = wave.open(outfile, 'wb') output.setparams(data[0][0]) for i in range(len(data)): output.writeframes(data[i][1]) output.close() guitar_song = [] for i in range(len(tune_array_guitar)): character = tune_array_piano[i-1] guitar_song = PlayGuitarTune(character, guitar_song) os.remove("./guitarsounds.wav") copyfile('./Audio/blank.wav','./guitarsounds.wav') for i in range(len(tune_array_guitar)): infiles = [guitar_song[i-1], "guitarsounds.wav"] outfile = "guitarsounds.wav" data= [] for infile in infiles: w = wave.open(infile, 'rb') data.append( [w.getparams(), w.readframes(w.getnframes())] ) w.close() output = wave.open(outfile, 'wb') output.setparams(data[0][0]) for i in range(len(data)): output.writeframes(data[i][1]) output.close() bass_song = [] for i in range(len(tune_array_bass)): character = tune_array_bass[i-1] bass_song = PlayBassTune(character, bass_song) os.remove("./basssounds.wav") copyfile('./Audio/blank.wav','./basssounds.wav') for i in range(len(tune_array_bass)): infiles = [bass_song[i-1], "basssounds.wav"] outfile = "basssounds.wav" data= [] for infile in infiles: w = wave.open(infile, 'rb') data.append( [w.getparams(), w.readframes(w.getnframes())] ) w.close() output = wave.open(outfile, 'wb') output.setparams(data[0][0]) for i in range(len(data)): output.writeframes(data[i][1]) output.close() trumpet_song = [] for i in range(len(tune_array_trumpet)): character = tune_array_trumpet[i-1] trumpet_song = PlayTrumpetTune(character, trumpet_song) os.remove("./trumpetsounds.wav") copyfile('./Audio/blank.wav','./trumpetsounds.wav') for i in range(len(tune_array_trumpet)): infiles = [trumpet_song[i-1], "trumpetsounds.wav"] outfile = "trumpetsounds.wav" data= [] for infile in infiles: w = wave.open(infile, 'rb') data.append( [w.getparams(), w.readframes(w.getnframes())] ) w.close() output = wave.open(outfile, 'wb') output.setparams(data[0][0]) for i in range(len(data)): output.writeframes(data[i][1]) output.close() os.remove("./combined.wav") copyfile('./Audio/blank.wav','./combined.wav') os.remove("./combined2.wav") copyfile('./Audio/blank.wav','./combined2.wav') copyfile('./Audio/blank.wav','./output_song.wav') sound1 = AudioSegment.from_file("./trumpetsounds.wav") sound2 = AudioSegment.from_file("./basssounds.wav") combined = sound1.overlay(sound2) combined.export("./combined.wav", format='wav') sound3 = AudioSegment.from_file("./guitarsounds.wav") sound4 = AudioSegment.from_file("./pianosounds.wav") combined2 = sound3.overlay(sound4) combined2.export("./combined2.wav", format='wav') sound5 = AudioSegment.from_file("./combined.wav") sound6 = AudioSegment.from_file("./combined2.wav") output_song = sound5.overlay(sound6) output_song.export("./outputsong.wav", format='wav') sound_file = "./outputsong.wav" Audio(sound_file, autoplay=True) #https://musescore.org/en/download/musescore.msi !pip install music21 !pip install RISE from music21 import * #for Windows OS error #us = environment.UserSettings() #C:\Program Files\MuseScore 3\bin\MuseScore3.exe #us['musicxmlPath'] = "C:\\Program Files\\MuseScore 3\\bin\\MuseScore3.exe" #us['musescoreDirectPNGPath'] = "C:\\Program Files\\MuseScore 3\\bin\\MuseScore3.exe" piano_stream = stream.Stream() guitar_stream = stream.Stream() bass_stream = stream.Stream() trumpet_stream = stream.Stream() note1 = note.Note("A") note2 = note.Note("B") note3 = note.Note("C") note4 = note.Note("D") note5 = note.Note("E") note6 = note.Note("F") note7 = note.Note("G") note8 = note.Rest() def append_stream(array, stream): for i in range(n+1): if array[i-1] == 'a': stream.append(note1) if array[i-1] == 'b': stream.append(note2) if array[i-1] == 'c': stream.append(note3) if array[i-1] == 'd': stream.append(note4) if array[i-1] == 'e': stream.append(note5) if array[i-1] == 'f': stream.append(note6) if array[i-1] == 'g': stream.append(note7) if array[i-1] == 'n': stream.append(note8) return stream piano_stream=append_stream(tune_array_piano, piano_stream) guitar_stream=append_stream(tune_array_guitar, guitar_stream) bass_stream=append_stream(tune_array_bass, bass_stream) trumpet_stream=append_stream(tune_array_trumpet, trumpet_stream) print("Piano") piano_stream.show() print("Guitar") guitar_stream.show() print("Bass") bass_stream.show() print("Trumpet") trumpet_stream.show()
https://github.com/minnukota381/Quantum-Computing-Qiskit
minnukota381
from qiskit import * from qiskit.visualization import plot_bloch_multivector, visualize_transition, plot_histogram from math import sqrt # Create a quantum circuit with a single qubit # The default initial state of qubit will be |0> or [1,0] qc = QuantumCircuit(1) # declare the intial sate as [0,1] or |1> initial_state = [1/sqrt(2),1j/sqrt(2)] qc.initialize(initial_state,0) qc.x(0) qc.measure_all() #Draw the circuit # qc.draw() qc.draw('mpl') backend = Aer.get_backend('statevector_simulator') out = execute(qc,backend).result().get_statevector() print(out) plot_bloch_multivector(out) # visualize the output as an animation # visualize_transition(qc) #execute the circuit and get the plain result out = execute(qc,backend).result() counts = out.get_counts() plot_histogram(counts)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from sklearn.datasets import make_blobs # example dataset features, labels = make_blobs(n_samples=20, n_features=2, centers=2, random_state=3, shuffle=True) import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler features = MinMaxScaler(feature_range=(0, np.pi)).fit_transform(features) train_features, test_features, train_labels, test_labels = train_test_split( features, labels, train_size=15, shuffle=False ) # number of qubits is equal to the number of features num_qubits = 2 # number of steps performed during the training procedure tau = 100 # regularization parameter C = 1000 from qiskit import BasicAer from qiskit.circuit.library import ZFeatureMap from qiskit.utils import algorithm_globals from qiskit_machine_learning.kernels import FidelityQuantumKernel algorithm_globals.random_seed = 12345 feature_map = ZFeatureMap(feature_dimension=num_qubits, reps=1) qkernel = FidelityQuantumKernel(feature_map=feature_map) from qiskit_machine_learning.algorithms import PegasosQSVC pegasos_qsvc = PegasosQSVC(quantum_kernel=qkernel, C=C, num_steps=tau) # training pegasos_qsvc.fit(train_features, train_labels) # testing pegasos_score = pegasos_qsvc.score(test_features, test_labels) print(f"PegasosQSVC classification test score: {pegasos_score}") grid_step = 0.2 margin = 0.2 grid_x, grid_y = np.meshgrid( np.arange(-margin, np.pi + margin, grid_step), np.arange(-margin, np.pi + margin, grid_step) ) meshgrid_features = np.column_stack((grid_x.ravel(), grid_y.ravel())) meshgrid_colors = pegasos_qsvc.predict(meshgrid_features) import matplotlib.pyplot as plt plt.figure(figsize=(5, 5)) meshgrid_colors = meshgrid_colors.reshape(grid_x.shape) plt.pcolormesh(grid_x, grid_y, meshgrid_colors, cmap="RdBu", shading="auto") plt.scatter( train_features[:, 0][train_labels == 0], train_features[:, 1][train_labels == 0], marker="s", facecolors="w", edgecolors="r", label="A train", ) plt.scatter( train_features[:, 0][train_labels == 1], train_features[:, 1][train_labels == 1], marker="o", facecolors="w", edgecolors="b", label="B train", ) plt.scatter( test_features[:, 0][test_labels == 0], test_features[:, 1][test_labels == 0], marker="s", facecolors="r", edgecolors="r", label="A test", ) plt.scatter( test_features[:, 0][test_labels == 1], test_features[:, 1][test_labels == 1], marker="o", facecolors="b", edgecolors="b", label="B test", ) plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0) plt.title("Pegasos Classification") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.72" # Two Hydrogen atoms, 0.72 Angstrom apart ) molecule = driver.run() from qiskit_nature.second_q.mappers import QubitConverter, ParityMapper qubit_converter = QubitConverter(ParityMapper()) hamiltonian = qubit_converter.convert(molecule.second_q_ops()[0]) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver sol = NumPyMinimumEigensolver().compute_minimum_eigenvalue(hamiltonian) real_solution = molecule.interpret(sol) real_solution.groundenergy from qiskit_ibm_runtime import QiskitRuntimeService, Estimator, Session, Options service = QiskitRuntimeService() backend = "ibmq_qasm_simulator" from qiskit.algorithms.minimum_eigensolvers import VQE # Use RealAmplitudes circuit to create trial states from qiskit.circuit.library import RealAmplitudes ansatz = RealAmplitudes(num_qubits=2, reps=2) # Search for better states using SPSA algorithm from qiskit.algorithms.optimizers import SPSA optimizer = SPSA(150) # Set a starting point for reproduceability import numpy as np np.random.seed(6) initial_point = np.random.uniform(-np.pi, np.pi, 12) # Create an object to store intermediate results from dataclasses import dataclass @dataclass class VQELog: values: list parameters: list def update(self, count, parameters, mean, _metadata): self.values.append(mean) self.parameters.append(parameters) print(f"Running circuit {count} of ~350", end="\r", flush=True) log = VQELog([],[]) # Main calculation with Session(service=service, backend=backend) as session: options = Options() options.optimization_level = 3 vqe = VQE(Estimator(session=session, options=options), ansatz, optimizer, callback=log.update, initial_point=initial_point) result = vqe.compute_minimum_eigenvalue(hamiltonian) print("Experiment complete.".ljust(30)) print(f"Raw result: {result.optimal_value}") if 'simulator' not in backend: # Run once with ZNE error mitigation options.resilience_level = 2 vqe = VQE(Estimator(session=session, options=options), ansatz, SPSA(1), initial_point=result.optimal_point) result = vqe.compute_minimum_eigenvalue(hamiltonian) print(f"Mitigated result: {result.optimal_value}") import matplotlib.pyplot as plt plt.rcParams["font.size"] = 14 # Plot energy and reference value plt.figure(figsize=(12, 6)) plt.plot(log.values, label="Estimator VQE") plt.axhline(y=real_solution.groundenergy, color="tab:red", ls="--", label="Target") plt.legend(loc="best") plt.xlabel("Iteration") plt.ylabel("Energy [H]") plt.title("VQE energy") plt.show() import qiskit_ibm_runtime qiskit_ibm_runtime.version.get_version_info() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
from qiskit import QuantumCircuit, IBMQ, Aer def qc_ezz(t): qc = QuantumCircuit(2, name = 'e^(-itZZ)') qc.cx(0, 1); qc.rz(2*t, 1); qc.cx(0, 1) return qc def qc_exx(t): qc = QuantumCircuit(2, name = 'e^(-itXX)') qc.h([0,1]); qc.cx(0, 1); qc.rz(2*t, 1); qc.cx(0, 1); qc.h([0,1]) return qc def qc_eyy(t): qc = QuantumCircuit(2, name = 'e^(-itYY)') qc.sdg([0,1]); qc.h([0,1]); qc.cx(0, 1); qc.rz(2*t, 1); qc.cx(0, 1); qc.h([0,1]); qc.s([0,1]) return qc def qc_Bj(t): qc = QuantumCircuit(3, name = 'B_j') qc_ezz_ = qc_ezz(t); qc_eyy_ = qc_eyy(t); qc_exx_ = qc_exx(t) qc.append(qc_ezz_, [1, 2]); qc.append(qc_eyy_, [1, 2]); qc.append(qc_exx_, [1, 2]) qc.append(qc_ezz_, [0, 1]); qc.append(qc_eyy_, [0, 1]); qc.append(qc_exx_, [0, 1]) return qc import math qc_Bj_ = qc_Bj(math.pi) qc_Bj_.draw(output = 'mpl') qc_Bj_.decompose().draw(output = 'mpl') nshots = 8192 IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') #provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibmq_jakarta') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.tools.monitor import backend_overview, backend_monitor def qc_psi0(): qc = QuantumCircuit(3, name = 'psi0') qc.x([0,1]) return qc import numpy as np ket0 = np.array([[1],[0]]); ket1 = np.array([[0],[1]]); #ket0, ket1 psi0_ = np.kron(ket1, np.kron(ket1, ket0)); psi0__ = np.kron(ket0, np.kron(ket1, ket1)) # para calcular a fidelidade com o estado da tomografia psi0_.T, psi0__.T import scipy I = np.array([[1,0],[0,1]]); X = np.array([[0,1],[1,0]]); Y = np.array([[0,-1j],[1j,0]]); Z = np.array([[1,0],[0,-1]]) H2 = np.kron(X, X) + np.kron(Y, Y) + np.kron(Z, Z) def UHxxx12_num(t): H = np.kron(H2, I) return scipy.linalg.expm(-1j*t*H) def UHxxx23_num(t): H = np.kron(I, H2) return scipy.linalg.expm(-1j*t*H) #U = UHxxx23_num(math.pi); print(U.shape[0]) from qiskit import quantum_info, execute from qiskit.tools.monitor import job_monitor from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter t = math.pi for j in range(0, 8): # muda o No. de passos de Trotter # teórico U12 = UHxxx12_num(t/(j+1)); U23 = UHxxx23_num(t/(j+1)) B = np.dot(U12, U23); U = np.linalg.matrix_power(B, j+1); psit = np.dot(U, psi0_) F_teo = quantum_info.state_fidelity(psi0_, psit) # circuit q qc = QuantumCircuit(7) qc.x([5, 3]) # initial state qc_Bj_ = qc_Bj(t/(j+1)) for k in range(0, j+1): qc.append(qc_Bj_, [5, 3, 1]) qstc = state_tomography_circuits(qc, [5, 3, 1]) # simulação job_sim = execute(qstc, backend = simulator, shots = nshots) qstf_sim = StateTomographyFitter(job_sim.result(), qstc) rho_sim = qstf_sim.fit(method = 'lstsq') F_sim = quantum_info.state_fidelity(psi0__, rho_sim) # experimento job_exp = execute(qstc, backend = device, shots = nshots) job_monitor(job_exp) qstf_exp = StateTomographyFitter(job_exp.result(), qstc) rho_exp = qstf_exp.fit(method = 'lstsq') F_exp = quantum_info.state_fidelity(psi0__, rho_exp) print('No. passos=', j+1, ',F_teo=', F_teo, ',F_sim=', F_sim, ',F_exp=', F_exp) qc.draw(output = 'mpl') npt = 7 dt = math.pi/16; t = np.arange(0, math.pi+dt, dt); d = len(t) F_teo = np.zeros(d); F_sim = np.zeros(d); F_exp = np.zeros(d) for j in range(0, d): # teórico U12 = UHxxx12_num(t[j]/npt); U23 = UHxxx23_num(t[j]/npt) B = np.dot(U12, U23); U = np.linalg.matrix_power(B, npt); psit = np.dot(U, psi0_) F_teo[j] = qiskit.quantum_info.state_fidelity(psi0_, psit) # circuito quântico qc = QuantumCircuit(7); qc.x([5, 3]) # initial state qc_Bj_ = qc_Bj(t[j]/npt) for k in range(0, npt): qc.append(qc_Bj_, [5, 3, 1]) qstc = state_tomography_circuits(qc, [5, 3, 1]) # simulação job_sim = execute(qstc, backend = simulator, shots = nshots) qstf_sim = StateTomographyFitter(job_sim.result(), qstc) rho_sim = qstf_sim.fit(method = 'lstsq') F_sim[j] = quantum_info.state_fidelity(psi0__, rho_sim) # experimento job_exp = execute(qstc, backend = device, shots = nshots) job_monitor(job_exp) qstf_exp = StateTomographyFitter(job_exp.result(), qstc) rho_exp = qstf_exp.fit(method = 'lstsq') F_exp[j] = quantum_info.state_fidelity(psi0__, rho_exp) qc.draw(output = 'mpl') print('t = ', t[j], 'F_exp = ', F_exp[j]) %run init.ipynb plt.figure(figsize = (8,5), dpi = 100) plt.plot(t, F_teo, '-.', label = r'$F_{teo}$'); plt.plot(t, F_sim, '-.', label = r'$F_{sim}$') plt.plot(t, F_exp, '-.', label = r'$F_{exp}$') plt.xlabel(r'$t$'); plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') plt.grid(); plt.show()
https://github.com/rohitgit1/Quantum-Computing-Summer-School
rohitgit1
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/QuSTaR/kaleidoscope
QuSTaR
# -*- coding: utf-8 -*- # This code is part of Kaleidoscope. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for Bloch routines""" import pytest from qiskit import QuantumCircuit from qiskit. quantum_info import DensityMatrix, partial_trace from kaleidoscope import qsphere from kaleidoscope.errors import KaleidoscopeError def test_qsphere_bad_dm_input(): """Tests the qsphere raises when passed impure dm""" qc = QuantumCircuit(3) qc.h(0) qc.cx(0, 1) qc.cx(1, 2) dm = DensityMatrix.from_instruction(qc) pdm = partial_trace(dm, [0, 1]) with pytest.raises(KaleidoscopeError): assert qsphere(pdm)