Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Chinese
Size:
1K<n<10K
License:
File size: 5,247 Bytes
b519b31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import datasets
_DESCRIPTION = """\
Tags: PER(人名), LOC(地点名), GPE(行政区名), ORG(机构名)
Label Tag Meaning
PER PER.NAM 名字(张三)
PER.NOM 代称、类别名(穷人)
LOC LOC.NAM 特指名称(紫玉山庄)
LOC.NOM 泛称(大峡谷、宾馆)
GPE GPE.NAM 行政区的名称(北京)
ORG ORG.NAM 特定机构名称(通惠医院)
ORG.NOM 泛指名称、统称(文艺公司)
"""
_HOMEPAGE_URL = "https://github.com/OYE93/Chinese-NLP-Corpus/tree/master/NER/Weibo"
_CITATION = None
_TRAIN_URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/Weibo/weiboNER_2nd_conll.train"
_TEST_URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/Weibo/weiboNER_2nd_conll.test"
_VALID_URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/Weibo/weiboNER_2nd_conll.dev"
class WeiboNERCorpus(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"B-GPE.NAM",
"B-GPE.NOM",
"B-LOC.NAM",
"B-LOC.NOM",
"B-ORG.NAM",
"B-ORG.NOM",
"B-PER.NAM",
"B-PER.NOM",
"I-GPE.NAM",
"I-GPE.NOM",
"I-LOC.NAM",
"I-LOC.NOM",
"I-ORG.NAM",
"I-ORG.NOM",
"I-PER.NAM",
"I-PER.NOM",
"O",
]
)
),
},
),
supervised_keys=None,
homepage=_HOMEPAGE_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_path = dl_manager.download_and_extract(_TRAIN_URL)
valid_path = dl_manager.download_and_extract(_VALID_URL)
test_path = dl_manager.download_and_extract(_TEST_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data_path": train_path},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"data_path": valid_path},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"data_path": test_path},
),
]
def _generate_examples(self, data_path):
sentence_counter = 0
with open(data_path, encoding="utf-8") as f:
current_words = []
current_labels = []
for row in f:
row = row.rstrip()
row_split = row.split("\t")
if len(row_split) == 2:
token, label = row_split
current_words.append(token)
current_labels.append(label)
else:
if not current_words:
continue
assert len(current_words) == len(current_labels), "word len doesnt match label length"
sentence = (
sentence_counter,
{
"id": str(sentence_counter),
"tokens": current_words,
"ner_tags": current_labels,
},
)
sentence_counter += 1
current_words = []
current_labels = []
yield sentence
# if something remains:
if current_words:
sentence = (
sentence_counter,
{
"id": str(sentence_counter),
"tokens": current_words,
"ner_tags": current_labels,
},
)
yield sentence
|