Datasets:

Languages:
Chinese
License:
File size: 5,247 Bytes
b519b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
import datasets


_DESCRIPTION = """\
Tags: PER(人名), LOC(地点名), GPE(行政区名), ORG(机构名)
Label	Tag	Meaning
PER	PER.NAM	名字(张三)
PER.NOM	代称、类别名(穷人)
LOC	LOC.NAM	特指名称(紫玉山庄)
LOC.NOM	泛称(大峡谷、宾馆)
GPE	GPE.NAM	行政区的名称(北京)
ORG	ORG.NAM	特定机构名称(通惠医院)
ORG.NOM	泛指名称、统称(文艺公司)
"""
_HOMEPAGE_URL = "https://github.com/OYE93/Chinese-NLP-Corpus/tree/master/NER/Weibo"
_CITATION = None
_TRAIN_URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/Weibo/weiboNER_2nd_conll.train"
_TEST_URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/Weibo/weiboNER_2nd_conll.test"
_VALID_URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/Weibo/weiboNER_2nd_conll.dev"


class WeiboNERCorpus(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "B-GPE.NAM",
                                "B-GPE.NOM",
                                "B-LOC.NAM",
                                "B-LOC.NOM",
                                "B-ORG.NAM",
                                "B-ORG.NOM",
                                "B-PER.NAM",
                                "B-PER.NOM",
                                "I-GPE.NAM",
                                "I-GPE.NOM",
                                "I-LOC.NAM",
                                "I-LOC.NOM",
                                "I-ORG.NAM",
                                "I-ORG.NOM",
                                "I-PER.NAM",
                                "I-PER.NOM",
                                "O",
                            ]
                        )
                    ),
                },
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        train_path = dl_manager.download_and_extract(_TRAIN_URL)
        valid_path = dl_manager.download_and_extract(_VALID_URL)
        test_path = dl_manager.download_and_extract(_TEST_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"data_path": train_path},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"data_path": valid_path},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"data_path": test_path},
            ),
        ]

    def _generate_examples(self, data_path):
        sentence_counter = 0
        with open(data_path, encoding="utf-8") as f:
            current_words = []
            current_labels = []
            for row in f:
                row = row.rstrip()
                row_split = row.split("\t")
                if len(row_split) == 2:
                    token, label = row_split
                    current_words.append(token)
                    current_labels.append(label)
                else:
                    if not current_words:
                        continue
                    assert len(current_words) == len(current_labels), "word len doesnt match label length"
                    sentence = (
                        sentence_counter,
                        {
                            "id": str(sentence_counter),
                            "tokens": current_words,
                            "ner_tags": current_labels,
                        },
                    )
                    sentence_counter += 1
                    current_words = []
                    current_labels = []
                    yield sentence

            # if something remains:
            if current_words:
                sentence = (
                    sentence_counter,
                    {
                        "id": str(sentence_counter),
                        "tokens": current_words,
                        "ner_tags": current_labels,
                    },
                )
                yield sentence