ID
stringlengths 3
7
| City
stringlengths 2
12
| Continent
stringclasses 7
values | Country
stringclasses 149
values | Language
stringclasses 147
values | Latitude
stringclasses 119
values | Longitude
stringclasses 290
values | Timezone
stringclasses 239
values | URL
stringlengths 33
88
|
---|---|---|---|---|---|---|---|---|
1-0 | Aarau | Europe | Switzerland | German | 47 | 8 | Europe/Zurich | https://en.wikipedia.org/wiki/Aarau |
4-0 | Abadan | Asia | Iran | Persian | 30 | 48 | Asia/Tehran | https://en.wikipedia.org/wiki/Abadan%2C%20Iran |
10-0 | Abha | Asia | Saudi Arabia | Arabic | 18 | 43 | Asia/Riyadh | https://en.wikipedia.org/wiki/Abha |
11-0 | Abidjan | Africa | Ivory Coast | French | 5 | -4 | Africa/Abidjan | https://en.wikipedia.org/wiki/Abidjan |
12-0 | Abilene | North America | United States | English | 38 | -97 | America/Chicago | https://en.wikipedia.org/wiki/Abilene%2C%20Kansas |
12-1 | Abilene | North America | United States | English | 32 | -99 | America/Chicago | https://en.wikipedia.org/wiki/Abilene%2C%20Texas |
13-0 | Abohar | Asia | India | Punjabi | 30 | 74 | Asia/Kolkata | https://en.wikipedia.org/wiki/Abohar |
15-0 | Abuja | Africa | Nigeria | English | 9 | 8 | Africa/Lagos | https://en.wikipedia.org/wiki/Abuja |
16-0 | Abuna | South America | Brazil | Portuguese | -10 | -65 | America/Porto_Velho | https://en.wikipedia.org/wiki/Abun%C3%A3 |
17-0 | Acarau | South America | Brazil | Portuguese | -3 | -40 | America/Fortaleza | https://en.wikipedia.org/wiki/Acara%C3%BA |
18-0 | Acarigua | South America | Venezuela | Goajiro,Spanish,Warrau | 10 | -69 | America/Caracas | https://en.wikipedia.org/wiki/Acarigua |
20-0 | Accra | Africa | Ghana | English | 6 | 0 | Africa/Accra | https://en.wikipedia.org/wiki/Accra |
27-0 | Adrar | Africa | Algeria | Arabic,Berberi | 28 | 0 | Africa/Algiers | https://en.wikipedia.org/wiki/Adrar%2C%20Algeria |
28-0 | Agadez | Africa | Niger | French | 17 | 8 | Africa/Niamey | https://en.wikipedia.org/wiki/Agadez |
31-0 | Agdam | Asia | Azerbaijan | Azerbaijani | 40 | 46 | Asia/Baku | https://en.wikipedia.org/wiki/Agdam |
33-0 | Agordat | Africa | Eritrea | Arabic | 16 | 38 | Africa/Asmara | https://en.wikipedia.org/wiki/Agordat |
35-0 | Agri | Asia | Turkey | Arabic,Kurdish,Turkish | 40 | 43 | Europe/Istanbul | https://en.wikipedia.org/wiki/A%C4%9Fr%C4%B1 |
37-0 | Ahmedabad | Asia | India | Gujarati | 23 | 73 | Asia/Kolkata | https://en.wikipedia.org/wiki/Ahmedabad |
38-0 | Ahvaz | Asia | Iran | Persian | 31 | 49 | Asia/Tehran | https://en.wikipedia.org/wiki/Ahvaz |
51-0 | Albury | Oceania | Australia | English | -36 | 147 | Australia/Sydney | https://en.wikipedia.org/wiki/Albury |
54-0 | Alenquer | South America | Brazil | Portuguese | -2 | -55 | America/Santarem | https://en.wikipedia.org/wiki/Alenquer,_Par%C3%A1 |
54-1 | Alenquer | Europe | Portugal | Portuguese | 39 | -9 | Europe/Lisbon | https://en.wikipedia.org/wiki/Alenquer,_Portugal |
55-0 | Aleppo | Asia | Syria | Arabic | 36 | 37 | Asia/Damascus | https://en.wikipedia.org/wiki/Aleppo |
56-0 | Alesund | Europe | Norway | Norwegian Nynorsk | 63 | 6 | Europe/Oslo | https://en.wikipedia.org/wiki/%C3%85lesund |
57-0 | Alexandria | Africa | Egypt | Arabic | 31 | 30 | Africa/Cairo | https://en.wikipedia.org/wiki/Alexandria |
57-1 | Alexandria | North America | United States | English | 45 | -95 | America/Chicago | https://en.wikipedia.org/wiki/Alexandria%2C%20Minnesota |
58-0 | Aleysk | Europe | Russia | Russian | 52 | 83 | Asia/Barnaul | https://en.wikipedia.org/wiki/Aleysk |
59-0 | Algiers | Africa | Algeria | Arabic | 37 | 3 | Africa/Algiers | https://en.wikipedia.org/wiki/Algiers |
61-0 | Alice | North America | United States | English | 46 | -97 | America/Chicago | https://en.wikipedia.org/wiki/Alice%2C%20North%20Dakota |
61-1 | Alice | North America | United States | English | 27 | -98 | America/Chicago | https://en.wikipedia.org/wiki/Alice%2C%20Texas |
62-0 | Allende | North America | Mexico | Spanish | 28 | -100 | America/Matamoros | https://en.wikipedia.org/wiki/Allende%2C%20Coahuila |
63-0 | Allentown | North America | United States | English | 32 | -83 | America/New_York | https://en.wikipedia.org/wiki/Allentown%2C%20Georgia |
63-1 | Allentown | North America | United States | English | 40 | -74 | America/New_York | https://en.wikipedia.org/wiki/Allentown%2C%20New%20Jersey |
63-2 | Allentown | North America | United States | English | 40 | -75 | America/New_York | https://en.wikipedia.org/wiki/Allentown%2C%20Pennsylvania |
64-0 | Alliance | North America | United States | English | 42 | -103 | America/Denver | https://en.wikipedia.org/wiki/Alliance,_Nebraska |
64-1 | Alliance | North America | United States | English | 41 | -81 | America/New_York | https://en.wikipedia.org/wiki/Alliance,_Ohio |
65-0 | Almaty | Asia | Kazakhstan | Kazakh | 43 | 77 | Asia/Almaty | https://en.wikipedia.org/wiki/Almaty |
66-0 | Almenara | South America | Brazil | Portuguese | -16 | -41 | America/Sao_Paulo | https://en.wikipedia.org/wiki/Almenara,_Minas_Gerais |
66-1 | Almenara | Europe | Spain | Spanish | 40 | 0 | Europe/Madrid | https://en.wikipedia.org/wiki/Almenara,_Castell%C3%B3n |
68-0 | Almirante | North America | Panama | Spanish | 9 | -82 | America/Panama | https://en.wikipedia.org/wiki/Almirante%2C%20Bocas%20del%20Toro |
70-0 | Alpena | North America | United States | English | 45 | -83 | America/Detroit | https://en.wikipedia.org/wiki/Alpena%2C%20Michigan |
71-0 | Alpine | North America | United States | English | 30 | -104 | America/Chicago | https://en.wikipedia.org/wiki/Alpine,_Texas |
71-1 | Alpine | North America | United States | English | 40 | -111 | America/Denver | https://en.wikipedia.org/wiki/Alpine,_Utah |
74-0 | Altata | North America | Mexico | Spanish | 25 | -108 | America/Mazatlan | https://en.wikipedia.org/wiki/Altata |
79-0 | Alvorada | South America | Brazil | Portuguese | -30 | -51 | America/Araguaina | https://en.wikipedia.org/wiki/Alvorada |
79-1 | Alvorada | South America | Brazil | Portuguese | -12 | -49 | America/Araguaina | https://en.wikipedia.org/wiki/Alvorada%2C%20Tocantins |
85-0 | Ambala | Asia | India | Hindi | 30 | 77 | Asia/Kolkata | https://en.wikipedia.org/wiki/Ambala |
89-0 | Ambon | Asia | Indonesia | Indonesian | -4 | 128 | Asia/Jayapura | https://en.wikipedia.org/wiki/Ambon%2C%20Maluku |
90-0 | Ambriz | Africa | Angola | Portuguese | -8 | 13 | Africa/Luanda | https://en.wikipedia.org/wiki/Ambriz |
91-0 | Amderma | Europe | Russia | Russian | 70 | 62 | Europe/Moscow | https://en.wikipedia.org/wiki/Amderma |
92-0 | Americana | South America | Brazil | Portuguese | -23 | -47 | America/Sao_Paulo | https://en.wikipedia.org/wiki/Americana%2C%20S%C3%A3o%20Paulo |
94-0 | Amherst | North America | Canada | English | 46 | -64 | America/Halifax | https://en.wikipedia.org/wiki/Amherst,_Nova_Scotia |
94-1 | Amherst | North America | United States | English | 42 | -72 | America/New_York | https://en.wikipedia.org/wiki/Amherst,_Massachusetts |
96-0 | Amol | Asia | Iran | Persian | 36 | 52 | Asia/Tehran | https://en.wikipedia.org/wiki/Amol |
98-0 | Amravati | Asia | India | Marathi | 21 | 78 | Asia/Kolkata | https://en.wikipedia.org/wiki/Amravati |
99-0 | Amsterdam | Europe | Netherlands | Dutch | 52 | 5 | Europe/Amsterdam | https://en.wikipedia.org/wiki/Amsterdam |
99-1 | Amsterdam | North America | United States | English | 43 | -74 | America/New_York | https://en.wikipedia.org/wiki/Amsterdam_(city),_New_York |
99-2 | Amsterdam | North America | United States | English | 38 | -95 | America/Chicago | https://en.wikipedia.org/wiki/Amsterdam,_Missouri |
100-0 | Amursk | Europe | Russia | Russian | 50 | 137 | Asia/Vladivostok | https://en.wikipedia.org/wiki/Amursk |
101-0 | Anaco | South America | Venezuela | Spanish | 9 | -64 | America/Caracas | https://en.wikipedia.org/wiki/Anaco%2C%20Venezuela |
102-0 | Anapolis | South America | Brazil | Portuguese | -16 | -49 | America/Sao_Paulo | https://en.wikipedia.org/wiki/An%C3%A1polis |
104-0 | Anchorage | North America | United States | English | 38 | -86 | America/New_York | https://en.wikipedia.org/wiki/Anchorage,_Kentucky |
104-1 | Anchorage | North America | United States | English | 61 | -150 | America/Anchorage | https://en.wikipedia.org/wiki/Anchorage,_Alaska |
110-0 | Andoany | Africa | Madagascar | French,Malagasy | -13 | 48 | Indian/Antananarivo | https://en.wikipedia.org/wiki/Andoany |
112-0 | Andong | Asia | South Korea | Chinese,Korean | 37 | 129 | Asia/Seoul | https://en.wikipedia.org/wiki/Andong |
116-0 | Angers | Europe | France | French | 47 | -1 | Europe/Paris | https://en.wikipedia.org/wiki/Angers |
118-0 | Angol | South America | Chile | Spanish | -38 | -73 | America/Santiago | https://en.wikipedia.org/wiki/Angol |
119-0 | Angren | Asia | Uzbekistan | Russian | 41 | 70 | Asia/Tashkent | https://en.wikipedia.org/wiki/Angren%2C%20Uzbekistan |
120-0 | Aniak | North America | United States | English | 62 | -160 | America/Anchorage | https://en.wikipedia.org/wiki/Aniak%2C%20Alaska |
121-0 | Ankang | Asia | China | Chinese | 33 | 109 | Asia/Chongqing | https://en.wikipedia.org/wiki/Ankang |
122-0 | Ankara | Asia | Turkey | Turkish | 40 | 33 | Europe/Istanbul | https://en.wikipedia.org/wiki/Ankara |
125-0 | Annapolis | North America | United States | English | 39 | -76 | America/New_York | https://en.wikipedia.org/wiki/Annapolis%2C%20Maryland |
125-1 | Annapolis | North America | United States | English | 37 | -90 | America/New_York | https://en.wikipedia.org/wiki/Annapolis%2C%20Missouri |
127-0 | Anqing | Asia | China | Chinese | 30 | 117 | Asia/Shanghai | https://en.wikipedia.org/wiki/Anqing |
128-0 | Ansan | Asia | South Korea | Chinese,Korean | 37 | 127 | Asia/Seoul | https://en.wikipedia.org/wiki/Ansan |
129-0 | Anshan | Asia | China | Chinese | 41 | 123 | Asia/Shanghai | https://en.wikipedia.org/wiki/Anshan |
132-0 | Antalya | Asia | Turkey | Arabic,Kurdish,Turkish | 37 | 31 | Europe/Istanbul | https://en.wikipedia.org/wiki/Antalya |
133-0 | Antioch | Asia | Turkey | Arabic,Kurdish,Turkish | 36 | 36 | Europe/Istanbul | https://en.wikipedia.org/wiki/Antioch |
134-0 | Anyang | Asia | China | Chinese | 36 | 114 | Asia/Shanghai | https://en.wikipedia.org/wiki/Anyang |
136-0 | Aosta | Europe | Italy | Italian | 46 | 7 | Europe/Rome | https://en.wikipedia.org/wiki/Aosta |
137-0 | Apatity | Europe | Russia | Russian | 68 | 33 | Europe/Moscow | https://en.wikipedia.org/wiki/Apatity |
140-0 | Appenzell | Europe | Switzerland | German | 47 | 9 | Europe/Zurich | https://en.wikipedia.org/wiki/Appenzell%20District |
142-0 | Aracaju | South America | Brazil | Portuguese | -11 | -37 | America/Maceio | https://en.wikipedia.org/wiki/Aracaju |
143-0 | Aracati | South America | Brazil | Portuguese | -5 | -38 | America/Fortaleza | https://en.wikipedia.org/wiki/Aracati |
144-0 | Arad | Asia | Iran | Persian | 28 | 53 | Asia/Tehran | https://en.wikipedia.org/wiki/Arad,_Iran |
144-1 | Arad | Asia | Israel | Hebrew | 31 | 34 | Asia/Jerusalem | https://en.wikipedia.org/wiki/Arad,_Israel |
144-2 | Arad | Europe | Romania | Romanian | 46 | 21 | Europe/Bucharest | https://en.wikipedia.org/wiki/Arad,_Romania |
146-0 | Aral | Asia | Kazakhstan | Kazakh | 47 | 62 | Asia/Qyzylorda | https://en.wikipedia.org/wiki/Aral%2C%20Kazakhstan |
150-0 | Arawa | Oceania | Papua New Guinea | Malenasian Languages,Papuan Languages | -6 | 156 | Pacific/Bougainville | https://en.wikipedia.org/wiki/Arawa%2C%20Bougainville |
152-0 | Arcata | North America | United States | English | 41 | -124 | America/Los_Angeles | https://en.wikipedia.org/wiki/Arcata%2C%20California |
153-0 | Arcoverde | South America | Brazil | Portuguese | -8 | -37 | America/Recife | https://en.wikipedia.org/wiki/Arcoverde |
157-0 | Arequipa | South America | Peru | Aimar√°,Ket¬öua,Spanish | -16 | -72 | America/Lima | https://en.wikipedia.org/wiki/Arequipa |
158-0 | Arezzo | Europe | Italy | Italian | 43 | 12 | Europe/Rome | https://en.wikipedia.org/wiki/Arezzo |
159-0 | Argentia | North America | Canada | English | 47 | -54 | America/St_Johns | https://en.wikipedia.org/wiki/Argentia |
161-0 | Arjona | South America | Colombia | Spanish | 10 | -75 | America/Bogota | https://en.wikipedia.org/wiki/Arjona%2C%20Bol%C3%ADvar |
165-0 | Armenia | South America | Colombia | Spanish | 5 | -76 | America/Bogota | https://en.wikipedia.org/wiki/Armenia,_Colombia |
168-0 | Arras | Europe | France | French | 50 | 3 | Europe/Paris | https://en.wikipedia.org/wiki/Arras |
169-0 | Artashat | Asia | Armenia | Armenian,Azerbaijani | 40 | 45 | Asia/Yerevan | https://en.wikipedia.org/wiki/Artashat%2C%20Armenia |
171-0 | Artigas | South America | Uruguay | Spanish | -30 | -56 | America/Montevideo | https://en.wikipedia.org/wiki/Artigas%2C%20Uruguay |
172-0 | Arua | Africa | Uganda | English | 3 | 31 | Africa/Kampala | https://en.wikipedia.org/wiki/Arua |
Dataset Card for RAVEL
A large-scale entity-attribute dataset covering factual, linguistic, and commonsense knowledge.
To load the dataset:
from datasets import load_dataset
dataset = load_dataset("hij/ravel")
Dataset Details
Dataset Description
The RAVEL dataset contains five types of entities, each with at least 500 instances, at least 4 attributes, and at least 50 prompt templates, as shown in the table below.
Entity Type | Attributes | #Entities | #Prompt Templates |
---|---|---|---|
City | Country, Language, Latitude, Longitude,Timezone, Continent | 3552 | 150 |
Nobel Laureate | Award Year, Birth Year, Country of Birth, Field, Gender | 928 | 100 |
Verb | Definition, Past Tense, Pronunciation, Singular | 986 | 60 |
Physical Object | Biological Category, Color, Size, Texture | 563 | 60 |
Occupation | Duty, Gender Bias, Industry, Work Location | 799 | 50 |
Compared with existing entity-attribute/relation datasets, such as CounterFact, RAVEL offers two unique features:
- Multiple attributes per entity to evaluate how well interpretability methods isolate individual concepts
- x10 more entities per entity type to evaluate how well interpretability methods generalize
Dataset Sources
- Repository: https://github.com/explanare/ravel
- Paper: RAVEL: Evaluating Interpretability Methods on Disentangling Language Model Representations
Uses
The dataset is primarily designed for interpretability research.
Dataset Structure
Each entity type is associated with two subsets: entities and prompt templates. Both the entities and the prompts are split into train, val, and test.
Entity
For the entity subset, each example is structured as a dictionary containing the entitiy and attributes. An additional ID
field is used to disambiguate entities.
For example, the entity type city
is structured as follows:
DatasetDict({
train: Dataset({
features: ['ID', 'City', 'Continent', 'Country', 'Language', 'Latitude', 'Longitude', 'Timezone', 'URL'],
num_rows: 2041
})
validation: Dataset({
features: ['ID', 'City', 'Continent', 'Country', 'Language', 'Latitude', 'Longitude', 'Timezone', 'URL'],
num_rows: 970
})
test: Dataset({
features: ['ID', 'City', 'Continent', 'Country', 'Language', 'Latitude', 'Longitude', 'Timezone', 'URL'],
num_rows: 1126
})
})
Each example, i.e., an entity, is structured as follows:
{
"ID": "2498-0",
"City": "Seattle",
"Continent": "North America",
"Country": "United States",
"Language": "English",
"Latitude": "48",
"Longitude": "-122",
"Timezone": "America/Los_Angeles",
"URL": "https://en.wikipedia.org/wiki/Seattle"
}
Prompt
The prompt subset contains the prompt templates, which attribute the template is querying, whether this template comes from RAVEL or Wikipedia, and which entities can be used for this template.
An empty string in the Attribute
field means this prompt is not querying for a specific attribute.
An empty string in the Entity
field means this prompt can be used with all the entities of the given type.
For example, the prompt templates for city
are structured as follows:
DatasetDict({
train: Dataset({
features: ['Template', 'Attribute', 'Source', 'Entity'],
num_rows: 442
})
val: Dataset({
features: ['Template', 'Attribute', 'Source', 'Entity'],
num_rows: 397
})
test: Dataset({
features: ['Template', 'Attribute', 'Source', 'Entity'],
num_rows: 372
})
})
Each example, i.e., a prompt template, is structured as follows:
{
'Template': '%s is a city in the country of',
'Attribute': 'Country',
'Source': 'RAVEL',
'Entity': ''
}
Citation
BibTeX:
@inproceedings{huang-etal-2024-ravel,
title = "{RAVEL}: Evaluating Interpretability Methods on Disentangling Language Model Representations",
author = "Huang, Jing and Wu, Zhengxuan and Potts, Christopher and Geva, Mor and Geiger, Atticus",
editor = "Ku, Lun-Wei and Martins, Andre and Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-long.470",
pages = "8669--8687",
}
- Downloads last month
- 218