Dataset Viewer
Auto-converted to Parquet
ID
stringlengths
3
7
City
stringlengths
2
12
Continent
stringclasses
7 values
Country
stringclasses
149 values
Language
stringclasses
147 values
Latitude
stringclasses
119 values
Longitude
stringclasses
290 values
Timezone
stringclasses
239 values
URL
stringlengths
33
88
1-0
Aarau
Europe
Switzerland
German
47
8
Europe/Zurich
https://en.wikipedia.org/wiki/Aarau
4-0
Abadan
Asia
Iran
Persian
30
48
Asia/Tehran
https://en.wikipedia.org/wiki/Abadan%2C%20Iran
10-0
Abha
Asia
Saudi Arabia
Arabic
18
43
Asia/Riyadh
https://en.wikipedia.org/wiki/Abha
11-0
Abidjan
Africa
Ivory Coast
French
5
-4
Africa/Abidjan
https://en.wikipedia.org/wiki/Abidjan
12-0
Abilene
North America
United States
English
38
-97
America/Chicago
https://en.wikipedia.org/wiki/Abilene%2C%20Kansas
12-1
Abilene
North America
United States
English
32
-99
America/Chicago
https://en.wikipedia.org/wiki/Abilene%2C%20Texas
13-0
Abohar
Asia
India
Punjabi
30
74
Asia/Kolkata
https://en.wikipedia.org/wiki/Abohar
15-0
Abuja
Africa
Nigeria
English
9
8
Africa/Lagos
https://en.wikipedia.org/wiki/Abuja
16-0
Abuna
South America
Brazil
Portuguese
-10
-65
America/Porto_Velho
https://en.wikipedia.org/wiki/Abun%C3%A3
17-0
Acarau
South America
Brazil
Portuguese
-3
-40
America/Fortaleza
https://en.wikipedia.org/wiki/Acara%C3%BA
18-0
Acarigua
South America
Venezuela
Goajiro,Spanish,Warrau
10
-69
America/Caracas
https://en.wikipedia.org/wiki/Acarigua
20-0
Accra
Africa
Ghana
English
6
0
Africa/Accra
https://en.wikipedia.org/wiki/Accra
27-0
Adrar
Africa
Algeria
Arabic,Berberi
28
0
Africa/Algiers
https://en.wikipedia.org/wiki/Adrar%2C%20Algeria
28-0
Agadez
Africa
Niger
French
17
8
Africa/Niamey
https://en.wikipedia.org/wiki/Agadez
31-0
Agdam
Asia
Azerbaijan
Azerbaijani
40
46
Asia/Baku
https://en.wikipedia.org/wiki/Agdam
33-0
Agordat
Africa
Eritrea
Arabic
16
38
Africa/Asmara
https://en.wikipedia.org/wiki/Agordat
35-0
Agri
Asia
Turkey
Arabic,Kurdish,Turkish
40
43
Europe/Istanbul
https://en.wikipedia.org/wiki/A%C4%9Fr%C4%B1
37-0
Ahmedabad
Asia
India
Gujarati
23
73
Asia/Kolkata
https://en.wikipedia.org/wiki/Ahmedabad
38-0
Ahvaz
Asia
Iran
Persian
31
49
Asia/Tehran
https://en.wikipedia.org/wiki/Ahvaz
51-0
Albury
Oceania
Australia
English
-36
147
Australia/Sydney
https://en.wikipedia.org/wiki/Albury
54-0
Alenquer
South America
Brazil
Portuguese
-2
-55
America/Santarem
https://en.wikipedia.org/wiki/Alenquer,_Par%C3%A1
54-1
Alenquer
Europe
Portugal
Portuguese
39
-9
Europe/Lisbon
https://en.wikipedia.org/wiki/Alenquer,_Portugal
55-0
Aleppo
Asia
Syria
Arabic
36
37
Asia/Damascus
https://en.wikipedia.org/wiki/Aleppo
56-0
Alesund
Europe
Norway
Norwegian Nynorsk
63
6
Europe/Oslo
https://en.wikipedia.org/wiki/%C3%85lesund
57-0
Alexandria
Africa
Egypt
Arabic
31
30
Africa/Cairo
https://en.wikipedia.org/wiki/Alexandria
57-1
Alexandria
North America
United States
English
45
-95
America/Chicago
https://en.wikipedia.org/wiki/Alexandria%2C%20Minnesota
58-0
Aleysk
Europe
Russia
Russian
52
83
Asia/Barnaul
https://en.wikipedia.org/wiki/Aleysk
59-0
Algiers
Africa
Algeria
Arabic
37
3
Africa/Algiers
https://en.wikipedia.org/wiki/Algiers
61-0
Alice
North America
United States
English
46
-97
America/Chicago
https://en.wikipedia.org/wiki/Alice%2C%20North%20Dakota
61-1
Alice
North America
United States
English
27
-98
America/Chicago
https://en.wikipedia.org/wiki/Alice%2C%20Texas
62-0
Allende
North America
Mexico
Spanish
28
-100
America/Matamoros
https://en.wikipedia.org/wiki/Allende%2C%20Coahuila
63-0
Allentown
North America
United States
English
32
-83
America/New_York
https://en.wikipedia.org/wiki/Allentown%2C%20Georgia
63-1
Allentown
North America
United States
English
40
-74
America/New_York
https://en.wikipedia.org/wiki/Allentown%2C%20New%20Jersey
63-2
Allentown
North America
United States
English
40
-75
America/New_York
https://en.wikipedia.org/wiki/Allentown%2C%20Pennsylvania
64-0
Alliance
North America
United States
English
42
-103
America/Denver
https://en.wikipedia.org/wiki/Alliance,_Nebraska
64-1
Alliance
North America
United States
English
41
-81
America/New_York
https://en.wikipedia.org/wiki/Alliance,_Ohio
65-0
Almaty
Asia
Kazakhstan
Kazakh
43
77
Asia/Almaty
https://en.wikipedia.org/wiki/Almaty
66-0
Almenara
South America
Brazil
Portuguese
-16
-41
America/Sao_Paulo
https://en.wikipedia.org/wiki/Almenara,_Minas_Gerais
66-1
Almenara
Europe
Spain
Spanish
40
0
Europe/Madrid
https://en.wikipedia.org/wiki/Almenara,_Castell%C3%B3n
68-0
Almirante
North America
Panama
Spanish
9
-82
America/Panama
https://en.wikipedia.org/wiki/Almirante%2C%20Bocas%20del%20Toro
70-0
Alpena
North America
United States
English
45
-83
America/Detroit
https://en.wikipedia.org/wiki/Alpena%2C%20Michigan
71-0
Alpine
North America
United States
English
30
-104
America/Chicago
https://en.wikipedia.org/wiki/Alpine,_Texas
71-1
Alpine
North America
United States
English
40
-111
America/Denver
https://en.wikipedia.org/wiki/Alpine,_Utah
74-0
Altata
North America
Mexico
Spanish
25
-108
America/Mazatlan
https://en.wikipedia.org/wiki/Altata
79-0
Alvorada
South America
Brazil
Portuguese
-30
-51
America/Araguaina
https://en.wikipedia.org/wiki/Alvorada
79-1
Alvorada
South America
Brazil
Portuguese
-12
-49
America/Araguaina
https://en.wikipedia.org/wiki/Alvorada%2C%20Tocantins
85-0
Ambala
Asia
India
Hindi
30
77
Asia/Kolkata
https://en.wikipedia.org/wiki/Ambala
89-0
Ambon
Asia
Indonesia
Indonesian
-4
128
Asia/Jayapura
https://en.wikipedia.org/wiki/Ambon%2C%20Maluku
90-0
Ambriz
Africa
Angola
Portuguese
-8
13
Africa/Luanda
https://en.wikipedia.org/wiki/Ambriz
91-0
Amderma
Europe
Russia
Russian
70
62
Europe/Moscow
https://en.wikipedia.org/wiki/Amderma
92-0
Americana
South America
Brazil
Portuguese
-23
-47
America/Sao_Paulo
https://en.wikipedia.org/wiki/Americana%2C%20S%C3%A3o%20Paulo
94-0
Amherst
North America
Canada
English
46
-64
America/Halifax
https://en.wikipedia.org/wiki/Amherst,_Nova_Scotia
94-1
Amherst
North America
United States
English
42
-72
America/New_York
https://en.wikipedia.org/wiki/Amherst,_Massachusetts
96-0
Amol
Asia
Iran
Persian
36
52
Asia/Tehran
https://en.wikipedia.org/wiki/Amol
98-0
Amravati
Asia
India
Marathi
21
78
Asia/Kolkata
https://en.wikipedia.org/wiki/Amravati
99-0
Amsterdam
Europe
Netherlands
Dutch
52
5
Europe/Amsterdam
https://en.wikipedia.org/wiki/Amsterdam
99-1
Amsterdam
North America
United States
English
43
-74
America/New_York
https://en.wikipedia.org/wiki/Amsterdam_(city),_New_York
99-2
Amsterdam
North America
United States
English
38
-95
America/Chicago
https://en.wikipedia.org/wiki/Amsterdam,_Missouri
100-0
Amursk
Europe
Russia
Russian
50
137
Asia/Vladivostok
https://en.wikipedia.org/wiki/Amursk
101-0
Anaco
South America
Venezuela
Spanish
9
-64
America/Caracas
https://en.wikipedia.org/wiki/Anaco%2C%20Venezuela
102-0
Anapolis
South America
Brazil
Portuguese
-16
-49
America/Sao_Paulo
https://en.wikipedia.org/wiki/An%C3%A1polis
104-0
Anchorage
North America
United States
English
38
-86
America/New_York
https://en.wikipedia.org/wiki/Anchorage,_Kentucky
104-1
Anchorage
North America
United States
English
61
-150
America/Anchorage
https://en.wikipedia.org/wiki/Anchorage,_Alaska
110-0
Andoany
Africa
Madagascar
French,Malagasy
-13
48
Indian/Antananarivo
https://en.wikipedia.org/wiki/Andoany
112-0
Andong
Asia
South Korea
Chinese,Korean
37
129
Asia/Seoul
https://en.wikipedia.org/wiki/Andong
116-0
Angers
Europe
France
French
47
-1
Europe/Paris
https://en.wikipedia.org/wiki/Angers
118-0
Angol
South America
Chile
Spanish
-38
-73
America/Santiago
https://en.wikipedia.org/wiki/Angol
119-0
Angren
Asia
Uzbekistan
Russian
41
70
Asia/Tashkent
https://en.wikipedia.org/wiki/Angren%2C%20Uzbekistan
120-0
Aniak
North America
United States
English
62
-160
America/Anchorage
https://en.wikipedia.org/wiki/Aniak%2C%20Alaska
121-0
Ankang
Asia
China
Chinese
33
109
Asia/Chongqing
https://en.wikipedia.org/wiki/Ankang
122-0
Ankara
Asia
Turkey
Turkish
40
33
Europe/Istanbul
https://en.wikipedia.org/wiki/Ankara
125-0
Annapolis
North America
United States
English
39
-76
America/New_York
https://en.wikipedia.org/wiki/Annapolis%2C%20Maryland
125-1
Annapolis
North America
United States
English
37
-90
America/New_York
https://en.wikipedia.org/wiki/Annapolis%2C%20Missouri
127-0
Anqing
Asia
China
Chinese
30
117
Asia/Shanghai
https://en.wikipedia.org/wiki/Anqing
128-0
Ansan
Asia
South Korea
Chinese,Korean
37
127
Asia/Seoul
https://en.wikipedia.org/wiki/Ansan
129-0
Anshan
Asia
China
Chinese
41
123
Asia/Shanghai
https://en.wikipedia.org/wiki/Anshan
132-0
Antalya
Asia
Turkey
Arabic,Kurdish,Turkish
37
31
Europe/Istanbul
https://en.wikipedia.org/wiki/Antalya
133-0
Antioch
Asia
Turkey
Arabic,Kurdish,Turkish
36
36
Europe/Istanbul
https://en.wikipedia.org/wiki/Antioch
134-0
Anyang
Asia
China
Chinese
36
114
Asia/Shanghai
https://en.wikipedia.org/wiki/Anyang
136-0
Aosta
Europe
Italy
Italian
46
7
Europe/Rome
https://en.wikipedia.org/wiki/Aosta
137-0
Apatity
Europe
Russia
Russian
68
33
Europe/Moscow
https://en.wikipedia.org/wiki/Apatity
140-0
Appenzell
Europe
Switzerland
German
47
9
Europe/Zurich
https://en.wikipedia.org/wiki/Appenzell%20District
142-0
Aracaju
South America
Brazil
Portuguese
-11
-37
America/Maceio
https://en.wikipedia.org/wiki/Aracaju
143-0
Aracati
South America
Brazil
Portuguese
-5
-38
America/Fortaleza
https://en.wikipedia.org/wiki/Aracati
144-0
Arad
Asia
Iran
Persian
28
53
Asia/Tehran
https://en.wikipedia.org/wiki/Arad,_Iran
144-1
Arad
Asia
Israel
Hebrew
31
34
Asia/Jerusalem
https://en.wikipedia.org/wiki/Arad,_Israel
144-2
Arad
Europe
Romania
Romanian
46
21
Europe/Bucharest
https://en.wikipedia.org/wiki/Arad,_Romania
146-0
Aral
Asia
Kazakhstan
Kazakh
47
62
Asia/Qyzylorda
https://en.wikipedia.org/wiki/Aral%2C%20Kazakhstan
150-0
Arawa
Oceania
Papua New Guinea
Malenasian Languages,Papuan Languages
-6
156
Pacific/Bougainville
https://en.wikipedia.org/wiki/Arawa%2C%20Bougainville
152-0
Arcata
North America
United States
English
41
-124
America/Los_Angeles
https://en.wikipedia.org/wiki/Arcata%2C%20California
153-0
Arcoverde
South America
Brazil
Portuguese
-8
-37
America/Recife
https://en.wikipedia.org/wiki/Arcoverde
157-0
Arequipa
South America
Peru
Aimar√°,Ket¬öua,Spanish
-16
-72
America/Lima
https://en.wikipedia.org/wiki/Arequipa
158-0
Arezzo
Europe
Italy
Italian
43
12
Europe/Rome
https://en.wikipedia.org/wiki/Arezzo
159-0
Argentia
North America
Canada
English
47
-54
America/St_Johns
https://en.wikipedia.org/wiki/Argentia
161-0
Arjona
South America
Colombia
Spanish
10
-75
America/Bogota
https://en.wikipedia.org/wiki/Arjona%2C%20Bol%C3%ADvar
165-0
Armenia
South America
Colombia
Spanish
5
-76
America/Bogota
https://en.wikipedia.org/wiki/Armenia,_Colombia
168-0
Arras
Europe
France
French
50
3
Europe/Paris
https://en.wikipedia.org/wiki/Arras
169-0
Artashat
Asia
Armenia
Armenian,Azerbaijani
40
45
Asia/Yerevan
https://en.wikipedia.org/wiki/Artashat%2C%20Armenia
171-0
Artigas
South America
Uruguay
Spanish
-30
-56
America/Montevideo
https://en.wikipedia.org/wiki/Artigas%2C%20Uruguay
172-0
Arua
Africa
Uganda
English
3
31
Africa/Kampala
https://en.wikipedia.org/wiki/Arua
End of preview. Expand in Data Studio

Dataset Card for RAVEL

A large-scale entity-attribute dataset covering factual, linguistic, and commonsense knowledge.

To load the dataset:

from datasets import load_dataset

dataset = load_dataset("hij/ravel")

Dataset Details

Dataset Description

The RAVEL dataset contains five types of entities, each with at least 500 instances, at least 4 attributes, and at least 50 prompt templates, as shown in the table below.

Entity Type Attributes #Entities #Prompt Templates
City Country, Language, Latitude, Longitude,Timezone, Continent 3552 150
Nobel Laureate Award Year, Birth Year, Country of Birth, Field, Gender 928 100
Verb Definition, Past Tense, Pronunciation, Singular 986 60
Physical Object Biological Category, Color, Size, Texture 563 60
Occupation Duty, Gender Bias, Industry, Work Location 799 50

Compared with existing entity-attribute/relation datasets, such as CounterFact, RAVEL offers two unique features:

  • Multiple attributes per entity to evaluate how well interpretability methods isolate individual concepts
  • x10 more entities per entity type to evaluate how well interpretability methods generalize

Dataset Sources

Uses

The dataset is primarily designed for interpretability research.

Dataset Structure

Each entity type is associated with two subsets: entities and prompt templates. Both the entities and the prompts are split into train, val, and test.

Entity

For the entity subset, each example is structured as a dictionary containing the entitiy and attributes. An additional ID field is used to disambiguate entities.

For example, the entity type city is structured as follows:

DatasetDict({
    train: Dataset({
        features: ['ID', 'City', 'Continent', 'Country', 'Language', 'Latitude', 'Longitude', 'Timezone', 'URL'],
        num_rows: 2041
    })
    validation: Dataset({
        features: ['ID', 'City', 'Continent', 'Country', 'Language', 'Latitude', 'Longitude', 'Timezone', 'URL'],
        num_rows: 970
    })
    test: Dataset({
        features: ['ID', 'City', 'Continent', 'Country', 'Language', 'Latitude', 'Longitude', 'Timezone', 'URL'],
        num_rows: 1126
    })
})

Each example, i.e., an entity, is structured as follows:

{
  "ID": "2498-0",
  "City": "Seattle",
  "Continent": "North America",
  "Country": "United States",
  "Language": "English",
  "Latitude": "48",
  "Longitude": "-122",
  "Timezone": "America/Los_Angeles",
  "URL": "https://en.wikipedia.org/wiki/Seattle"
}

Prompt

The prompt subset contains the prompt templates, which attribute the template is querying, whether this template comes from RAVEL or Wikipedia, and which entities can be used for this template.

An empty string in the Attribute field means this prompt is not querying for a specific attribute.

An empty string in the Entity field means this prompt can be used with all the entities of the given type.

For example, the prompt templates for city are structured as follows:

DatasetDict({
    train: Dataset({
        features: ['Template', 'Attribute', 'Source', 'Entity'],
        num_rows: 442
    })
    val: Dataset({
        features: ['Template', 'Attribute', 'Source', 'Entity'],
        num_rows: 397
    })
    test: Dataset({
        features: ['Template', 'Attribute', 'Source', 'Entity'],
        num_rows: 372
    })
})

Each example, i.e., a prompt template, is structured as follows:

{
  'Template': '%s is a city in the country of',
  'Attribute': 'Country',
  'Source': 'RAVEL',
  'Entity': ''
}

Citation

BibTeX:

@inproceedings{huang-etal-2024-ravel,
    title = "{RAVEL}: Evaluating Interpretability Methods on Disentangling Language Model Representations",
    author = "Huang, Jing and Wu, Zhengxuan and Potts, Christopher and Geva, Mor and Geiger, Atticus",
    editor = "Ku, Lun-Wei and Martins, Andre and Srikumar, Vivek",
    booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = aug,
    year = "2024",
    address = "Bangkok, Thailand",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.acl-long.470",
    pages = "8669--8687",
}
Downloads last month
218