The dataset viewer should be available soon. Please retry later.
Dataset Card for RAVEL
A large-scale entity-attribute dataset covering factual, linguistic, and commonsense knowledge.
To load the dataset:
from datasets import load_dataset
dataset = load_dataset("hij/ravel")
Dataset Details
Dataset Description
The RAVEL dataset contains five types of entities, each with at least 500 instances, at least 4 attributes, and at least 50 prompt templates, as shown in the table below.
Entity Type | Attributes | #Entities | #Prompt Templates |
---|---|---|---|
City | Country, Language, Latitude, Longitude,Timezone, Continent | 3552 | 150 |
Nobel Laureate | Award Year, Birth Year, Country of Birth, Field, Gender | 928 | 100 |
Verb | Definition, Past Tense, Pronunciation, Singular | 986 | 60 |
Physical Object | Biological Category, Color, Size, Texture | 563 | 60 |
Occupation | Duty, Gender Bias, Industry, Work Location | 799 | 50 |
Compared with existing entity-attribute/relation datasets, such as CounterFact, RAVEL offers two unique features:
- Multiple attributes per entity to evaluate how well interpretability methods isolate individual concepts
- x10 more entities per entity type to evaluate how well interpretability methods generalize
Dataset Sources
- Repository: https://github.com/explanare/ravel
- Paper: RAVEL: Evaluating Interpretability Methods on Disentangling Language Model Representations
Uses
The dataset is primarily designed for interpretability research.
Dataset Structure
Each entity type is split into train, val, and test sets. Each example is structured as a dictionary containing the entitiy and attributes.
For example, the entity type city
is structured as follows:
DatasetDict({
train: Dataset({
features: ['ID', 'City', 'Continent', 'Country', 'Language', 'Latitude', 'Longitude', 'Timezone', 'URL'],
num_rows: 2041
})
validation: Dataset({
features: ['ID', 'City', 'Continent', 'Country', 'Language', 'Latitude', 'Longitude', 'Timezone', 'URL'],
num_rows: 970
})
test: Dataset({
features: ['ID', 'City', 'Continent', 'Country', 'Language', 'Latitude', 'Longitude', 'Timezone', 'URL'],
num_rows: 1126
})
})
Where each example, i.e., an entity, is structured as follows:
{
"ID": "2498-0",
"City": "Seattle",
"Continent": "North America",
"Country": "United States",
"Language": "English",
"Latitude": "48",
"Longitude": "-122",
"Timezone": "America/Los_Angeles",
"URL": "https://en.wikipedia.org/wiki/Seattle"
}
Citation
BibTeX:
@inproceedings{huang-etal-2024-ravel,
title = "{RAVEL}: Evaluating Interpretability Methods on Disentangling Language Model Representations",
author = "Huang, Jing and Wu, Zhengxuan and Potts, Christopher and Geva, Mor and Geiger, Atticus",
editor = "Ku, Lun-Wei and Martins, Andre and Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-long.470",
pages = "8669--8687",
}
- Downloads last month
- 1