File size: 4,808 Bytes
64fede2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Wikipedia dataset containing cleaned articles of all languages."""
import json
import datasets
import pyarrow.parquet as pq
from .lang_def import WIKIPEDIA_LANGUAGES
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@ONLINE {wikidump,
author = {Wikimedia Foundation},
title = {Wikimedia Downloads},
url = {https://dumps.wikimedia.org}
}
"""
_DESCRIPTION = """\
Wikipedia dataset containing cleaned articles of all languages.
The datasets are built from the Wikipedia dump
(https://dumps.wikimedia.org/) with one split per language. Each example
contains the content of one full Wikipedia article with cleaning to strip
markdown and unwanted sections (references, etc.).
"""
_LICENSE = (
"This work is licensed under the Creative Commons Attribution-ShareAlike "
"3.0 Unported License. To view a copy of this license, visit "
"http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to "
"Creative Commons, PO Box 1866, Mountain View, CA 94042, USA."
)
_BASE_URL_TMPL = "data/{date}/{lang}"
_VERSION = datasets.Version("1.0.0", "")
class WikipediaConfig(datasets.BuilderConfig):
"""BuilderConfig for Wikipedia."""
def __init__(self, language=None, date=None, version=_VERSION, **kwargs):
"""BuilderConfig for Wikipedia.
Args:
language: string, the language code for the Wikipedia dump to use.
date: string, date of the Wikipedia dump in YYYYMMDD format. A list of
available dates can be found at https://dumps.wikimedia.org/enwiki/.
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(
name=f"{date}.{language}",
description=f"Wikipedia dataset for {language}, parsed from {date} dump.",
version=version,
**kwargs,
)
self.date = date
self.language = language
class Wikipedia(datasets.ArrowBasedBuilder):
"""Wikipedia dataset."""
# Use mirror (your.org) to avoid download caps.
BUILDER_CONFIG_CLASS = WikipediaConfig
BUILDER_CONFIGS = [
WikipediaConfig(
language=lang,
date=date,
) # pylint:disable=g-complex-comprehension
for date in WIKIPEDIA_LANGUAGES.keys()
for lang in WIKIPEDIA_LANGUAGES[date]
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"url": datasets.Value("string"),
"title": datasets.Value("string"),
"text": datasets.Value("string"),
}
),
# No default supervised_keys.
supervised_keys=None,
homepage="https://dumps.wikimedia.org",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
def _base_url(lang):
return _BASE_URL_TMPL.format(lang=lang, date=self.config.date)
lang = self.config.language
info_file_url = _base_url(lang) + "/info.json"
downloaded_info_file = dl_manager.download_and_extract({"info": info_file_url})
with open(downloaded_info_file["info"], "r") as f:
info = json.load(f)
shard_urls = [
_base_url(lang) + "/" + shard_name for shard_name in info["shards"]
]
downloaded_files = dl_manager.download({"train": shard_urls})
logger.info("downloaded_files = %s", downloaded_files)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepaths": downloaded_files["train"]},
),
]
def _generate_tables(self, filepaths):
"""This function returns the examples in the raw (text) form."""
for filepath in filepaths:
with open(filepath, "rb") as f:
pf = pq.ParquetFile(f)
for group_i in range(pf.num_row_groups):
tbl = pf.read_row_group(group_i)
yield group_i, tbl
|