File size: 6,000 Bytes
5fa1ba0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d02841
5fa1ba0
 
 
 
 
9d02841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fa1ba0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd016e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
annotations_creators:
- machine-generated
language_creators:
- found
languages:
- en
licenses:
- unknown
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- other
task_ids:
- other-other-sentence-compression
paperswithcode_id: sentence-compression
---

# Dataset Card for Google Sentence Compression

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:[https://github.com/google-research-datasets/sentence-compression](https://github.com/google-research-datasets/sentence-compression)**
- **Repository:[https://github.com/google-research-datasets/sentence-compression](https://github.com/google-research-datasets/sentence-compression)**
- **Paper:[https://www.aclweb.org/anthology/D13-1155/](https://www.aclweb.org/anthology/D13-1155/)**
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

A major challenge in supervised sentence compression is making use of rich feature representations because of very scarce parallel data. We address this problem and present a method to automatically build a compression corpus with hundreds of thousands of instances on which deletion-based algorithms can be trained. In our corpus, the syntactic trees of the compressions are subtrees of their uncompressed counterparts, and hence supervised systems which require a structural alignment between the input and output can be successfully trained. We also extend an existing unsupervised compression method with a learning module. The new system uses structured prediction to learn from lexical, syntactic and other features. An evaluation with human raters shows that the presented data harvesting method indeed produces a parallel corpus of high quality. Also, the supervised system trained on this corpus gets high scores both from human raters and in an automatic evaluation setting, significantly outperforming a strong baseline.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

English

## Dataset Structure

### Data Instances

Each data instance should contains the information about the original sentence in `instance["graph"]["sentence"]` as well as the compressed sentence in `instance["compression"]["text"]`. As this dataset was created by pruning dependency connections, the author also includes the dependency tree and transformed graph of the original sentence and compressed sentence.

### Data Fields

Each instance should contains these information:

- `graph` (`Dict`): the transformation graph/tree for extracting compression (a modified version of a dependency tree).
  - This will have features similar to a dependency tree (listed bellow)
- `compression` (`Dict`)
  - `text` (`str`)
  - `edge` (`List`)
- `headline` (`str`): the headline of the original news page.
- `compression_ratio` (`float`): the ratio between compressed sentence vs original sentence.
- `doc_id` (`str`): url of the original news page.
- `source_tree` (`Dict`): the original dependency tree (features listed bellow).
- `compression_untransformed` (`Dict`)
  - `text` (`str`)
  - `edge` (`List`)

Dependency tree features:

- `id` (`str`)
- `sentence` (`str`)
- `node` (`List`): list of nodes, each node represent a word/word phrase in the tree.
  - `form` (`string`)
  - `type` (`string`): the enity type of a node. Defaults to `""` if it's not an entity.
  - `mid` (`string`)
  - `word` (`List`): list of words the node contains.
    - `id` (`int`)
    - `form` (`str`): the word from the sentence.
    - `stem` (`str`): the stemmed/lemmatized version of the word.
    - `tag` (`str`): dependency tag of the word.
  - `gender` (`int`)
  - `head_word_index` (`int`)
- `edge`: list of the dependency connections between words.
  - `parent_id` (`int`)
  - `child_id` (`int`)
  - `label` (`str`)
- `entity_mention` list of the entities in the sentence.
  - `start` (`int`)
  - `end` (`int`)
  - `head` (`str`)
  - `name` (`str`)
  - `type` (`str`)
  - `mid` (`str`)
  - `is_proper_name_entity` (`bool`)
  - `gender` (`int`)

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

[More Information Needed]

### Contributions

Thanks to [@mattbui](https://github.com/mattbui) for adding this dataset.