Commit
•
5fa1ba0
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +186 -0
- dataset_infos.json +1 -0
- dummy/0.0.0/dummy_data.zip +3 -0
- sent_comp.py +155 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- machine-generated
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
licenses:
|
9 |
+
- unknown
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 100K<n<1M
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- other
|
18 |
+
task_ids:
|
19 |
+
- other-other-sentence-compression
|
20 |
+
---
|
21 |
+
|
22 |
+
# Dataset Card for Google Sentence Compression
|
23 |
+
|
24 |
+
## Table of Contents
|
25 |
+
|
26 |
+
- [Dataset Card for Google Sentence Compression](#dataset-card-for-google-sentence-compression)
|
27 |
+
- [Table of Contents](#table-of-contents)
|
28 |
+
- [Dataset Description](#dataset-description)
|
29 |
+
- [Dataset Summary](#dataset-summary)
|
30 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
31 |
+
- [Languages](#languages)
|
32 |
+
- [Dataset Structure](#dataset-structure)
|
33 |
+
- [Data Instances](#data-instances)
|
34 |
+
- [Data Fields](#data-fields)
|
35 |
+
- [Data Splits](#data-splits)
|
36 |
+
- [Dataset Creation](#dataset-creation)
|
37 |
+
- [Curation Rationale](#curation-rationale)
|
38 |
+
- [Source Data](#source-data)
|
39 |
+
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
|
40 |
+
- [Who are the source language producers?](#who-are-the-source-language-producers)
|
41 |
+
- [Annotations](#annotations)
|
42 |
+
- [Annotation process](#annotation-process)
|
43 |
+
- [Who are the annotators?](#who-are-the-annotators)
|
44 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
45 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
46 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
47 |
+
- [Discussion of Biases](#discussion-of-biases)
|
48 |
+
- [Other Known Limitations](#other-known-limitations)
|
49 |
+
- [Additional Information](#additional-information)
|
50 |
+
- [Dataset Curators](#dataset-curators)
|
51 |
+
- [Licensing Information](#licensing-information)
|
52 |
+
- [Citation Information](#citation-information)
|
53 |
+
|
54 |
+
## Dataset Description
|
55 |
+
|
56 |
+
- **Homepage:[https://github.com/google-research-datasets/sentence-compression](https://github.com/google-research-datasets/sentence-compression)**
|
57 |
+
- **Repository:[https://github.com/google-research-datasets/sentence-compression](https://github.com/google-research-datasets/sentence-compression)**
|
58 |
+
- **Paper:[https://www.aclweb.org/anthology/D13-1155/](https://www.aclweb.org/anthology/D13-1155/)**
|
59 |
+
- **Leaderboard:**
|
60 |
+
- **Point of Contact:**
|
61 |
+
|
62 |
+
### Dataset Summary
|
63 |
+
|
64 |
+
A major challenge in supervised sentence compression is making use of rich feature representations because of very scarce parallel data. We address this problem and present a method to automatically build a compression corpus with hundreds of thousands of instances on which deletion-based algorithms can be trained. In our corpus, the syntactic trees of the compressions are subtrees of their uncompressed counterparts, and hence supervised systems which require a structural alignment between the input and output can be successfully trained. We also extend an existing unsupervised compression method with a learning module. The new system uses structured prediction to learn from lexical, syntactic and other features. An evaluation with human raters shows that the presented data harvesting method indeed produces a parallel corpus of high quality. Also, the supervised system trained on this corpus gets high scores both from human raters and in an automatic evaluation setting, significantly outperforming a strong baseline.
|
65 |
+
|
66 |
+
### Supported Tasks and Leaderboards
|
67 |
+
|
68 |
+
[More Information Needed]
|
69 |
+
|
70 |
+
### Languages
|
71 |
+
|
72 |
+
English
|
73 |
+
|
74 |
+
## Dataset Structure
|
75 |
+
|
76 |
+
### Data Instances
|
77 |
+
|
78 |
+
Each data instance should contains the information about the original sentence in `instance["graph"]["sentence"]` as well as the compressed sentence in `instance["compression"]["text"]`. As this dataset was created by pruning dependency connections, the author also includes the dependency tree and transformed graph of the original sentence and compressed sentence.
|
79 |
+
|
80 |
+
### Data Fields
|
81 |
+
|
82 |
+
Each instance should contains these information:
|
83 |
+
|
84 |
+
- `graph` (`Dict`): the transformation graph/tree for extracting compression (a modified version of a dependency tree).
|
85 |
+
- This will have features similar to a dependency tree (listed bellow)
|
86 |
+
- `compression` (`Dict`)
|
87 |
+
- `text` (`str`)
|
88 |
+
- `edge` (`List`)
|
89 |
+
- `headline` (`str`): the headline of the original news page.
|
90 |
+
- `compression_ratio` (`float`): the ratio between compressed sentence vs original sentence.
|
91 |
+
- `doc_id` (`str`): url of the original news page.
|
92 |
+
- `source_tree` (`Dict`): the original dependency tree (features listed bellow).
|
93 |
+
- `compression_untransformed` (`Dict`)
|
94 |
+
- `text` (`str`)
|
95 |
+
- `edge` (`List`)
|
96 |
+
|
97 |
+
Dependency tree features:
|
98 |
+
|
99 |
+
- `id` (`str`)
|
100 |
+
- `sentence` (`str`)
|
101 |
+
- `node` (`List`): list of nodes, each node represent a word/word phrase in the tree.
|
102 |
+
- `form` (`string`)
|
103 |
+
- `type` (`string`): the enity type of a node. Defaults to `""` if it's not an entity.
|
104 |
+
- `mid` (`string`)
|
105 |
+
- `word` (`List`): list of words the node contains.
|
106 |
+
- `id` (`int`)
|
107 |
+
- `form` (`str`): the word from the sentence.
|
108 |
+
- `stem` (`str`): the stemmed/lemmatized version of the word.
|
109 |
+
- `tag` (`str`): dependency tag of the word.
|
110 |
+
- `gender` (`int`)
|
111 |
+
- `head_word_index` (`int`)
|
112 |
+
- `edge`: list of the dependency connections between words.
|
113 |
+
- `parent_id` (`int`)
|
114 |
+
- `child_id` (`int`)
|
115 |
+
- `label` (`str`)
|
116 |
+
- `entity_mention` list of the entities in the sentence.
|
117 |
+
- `start` (`int`)
|
118 |
+
- `end` (`int`)
|
119 |
+
- `head` (`str`)
|
120 |
+
- `name` (`str`)
|
121 |
+
- `type` (`str`)
|
122 |
+
- `mid` (`str`)
|
123 |
+
- `is_proper_name_entity` (`bool`)
|
124 |
+
- `gender` (`int`)
|
125 |
+
|
126 |
+
### Data Splits
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
## Dataset Creation
|
131 |
+
|
132 |
+
### Curation Rationale
|
133 |
+
|
134 |
+
[More Information Needed]
|
135 |
+
|
136 |
+
### Source Data
|
137 |
+
|
138 |
+
#### Initial Data Collection and Normalization
|
139 |
+
|
140 |
+
[More Information Needed]
|
141 |
+
|
142 |
+
#### Who are the source language producers?
|
143 |
+
|
144 |
+
[More Information Needed]
|
145 |
+
|
146 |
+
### Annotations
|
147 |
+
|
148 |
+
#### Annotation process
|
149 |
+
|
150 |
+
[More Information Needed]
|
151 |
+
|
152 |
+
#### Who are the annotators?
|
153 |
+
|
154 |
+
[More Information Needed]
|
155 |
+
|
156 |
+
### Personal and Sensitive Information
|
157 |
+
|
158 |
+
[More Information Needed]
|
159 |
+
|
160 |
+
## Considerations for Using the Data
|
161 |
+
|
162 |
+
### Social Impact of Dataset
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
### Discussion of Biases
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
### Other Known Limitations
|
171 |
+
|
172 |
+
[More Information Needed]
|
173 |
+
|
174 |
+
## Additional Information
|
175 |
+
|
176 |
+
### Dataset Curators
|
177 |
+
|
178 |
+
[More Information Needed]
|
179 |
+
|
180 |
+
### Licensing Information
|
181 |
+
|
182 |
+
[More Information Needed]
|
183 |
+
|
184 |
+
### Citation Information
|
185 |
+
|
186 |
+
[More Information Needed]
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "Large corpus of uncompressed and compressed sentences from news articles.\n", "citation": "@inproceedings{filippova-altun-2013-overcoming,\n title = \"Overcoming the Lack of Parallel Data in Sentence Compression\",\n author = \"Filippova, Katja and\n Altun, Yasemin\",\n booktitle = \"Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing\",\n month = oct,\n year = \"2013\",\n address = \"Seattle, Washington, USA\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D13-1155\",\n pages = \"1481--1491\",\n}\n", "homepage": "https://github.com/google-research-datasets/sentence-compression", "license": "", "features": {"graph": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "node": {"feature": {"form": {"dtype": "string", "id": null, "_type": "Value"}, "type": {"dtype": "string", "id": null, "_type": "Value"}, "mid": {"dtype": "string", "id": null, "_type": "Value"}, "word": {"feature": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "form": {"dtype": "string", "id": null, "_type": "Value"}, "stem": {"dtype": "string", "id": null, "_type": "Value"}, "tag": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "gender": {"dtype": "int32", "id": null, "_type": "Value"}, "head_word_index": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "edge": {"feature": {"parent_id": {"dtype": "int32", "id": null, "_type": "Value"}, "child_id": {"dtype": "int32", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "entity_mention": {"feature": {"start": {"dtype": "int32", "id": null, "_type": "Value"}, "end": {"dtype": "int32", "id": null, "_type": "Value"}, "head": {"dtype": "int32", "id": null, "_type": "Value"}, "name": {"dtype": "string", "id": null, "_type": "Value"}, "type": {"dtype": "string", "id": null, "_type": "Value"}, "mid": {"dtype": "string", "id": null, "_type": "Value"}, "is_proper_name_entity": {"dtype": "bool", "id": null, "_type": "Value"}, "gender": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "compression": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "edge": {"feature": {"parent_id": {"dtype": "int32", "id": null, "_type": "Value"}, "child_id": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "headline": {"dtype": "string", "id": null, "_type": "Value"}, "compression_ratio": {"dtype": "float32", "id": null, "_type": "Value"}, "doc_id": {"dtype": "string", "id": null, "_type": "Value"}, "source_tree": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "node": {"feature": {"form": {"dtype": "string", "id": null, "_type": "Value"}, "type": {"dtype": "string", "id": null, "_type": "Value"}, "mid": {"dtype": "string", "id": null, "_type": "Value"}, "word": {"feature": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "form": {"dtype": "string", "id": null, "_type": "Value"}, "stem": {"dtype": "string", "id": null, "_type": "Value"}, "tag": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "gender": {"dtype": "int32", "id": null, "_type": "Value"}, "head_word_index": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "edge": {"feature": {"parent_id": {"dtype": "int32", "id": null, "_type": "Value"}, "child_id": {"dtype": "int32", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "entity_mention": {"feature": {"start": {"dtype": "int32", "id": null, "_type": "Value"}, "end": {"dtype": "int32", "id": null, "_type": "Value"}, "head": {"dtype": "int32", "id": null, "_type": "Value"}, "name": {"dtype": "string", "id": null, "_type": "Value"}, "type": {"dtype": "string", "id": null, "_type": "Value"}, "mid": {"dtype": "string", "id": null, "_type": "Value"}, "is_proper_name_entity": {"dtype": "bool", "id": null, "_type": "Value"}, "gender": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "compression_untransformed": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "edge": {"feature": {"parent_id": {"dtype": "int32", "id": null, "_type": "Value"}, "child_id": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}}, "post_processed": null, "supervised_keys": null, "builder_name": "sent_comp", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 55823979, "num_examples": 10000, "dataset_name": "sent_comp"}, "train": {"name": "train", "num_bytes": 1135684803, "num_examples": 200000, "dataset_name": "sent_comp"}}, "download_checksums": {"https://github.com/google-research-datasets/sentence-compression/raw/master/data/comp-data.eval.json.gz": {"num_bytes": 12183133, "checksum": "a8d01880fb889a95ab3918b1036b4056da760fb173bfbe9c9a68707d0a44196f"}, "https://github.com/google-research-datasets/sentence-compression/raw/master/data/sent-comp.train01.json.gz": {"num_bytes": 24661983, "checksum": "248095421694290bb92a2c28e05ffdb7e5e6bd7afcf8838b1167cea6006d5e33"}, "https://github.com/google-research-datasets/sentence-compression/raw/master/data/sent-comp.train02.json.gz": {"num_bytes": 24775828, "checksum": "2bd1785627feb5425a6c45fc2730f2be09bf38aceff6fd30bbb59f83a8f68f90"}, "https://github.com/google-research-datasets/sentence-compression/raw/master/data/sent-comp.train03.json.gz": {"num_bytes": 24726758, "checksum": "d7c673d5de5488384dda8e6bf93f304646f876bed803f757106b1dbb7d036684"}, "https://github.com/google-research-datasets/sentence-compression/raw/master/data/sent-comp.train04.json.gz": {"num_bytes": 24721492, "checksum": "7f8c47ce6a8d635f4af1f9900187fa9122baf4a0fa7294a3042b8980031c8920"}, "https://github.com/google-research-datasets/sentence-compression/raw/master/data/sent-comp.train05.json.gz": {"num_bytes": 24752435, "checksum": "35b6ab7d8643960bd274ae101d4bfabefbe60f7457a4befb2640c5ae97c690b4"}, "https://github.com/google-research-datasets/sentence-compression/raw/master/data/sent-comp.train06.json.gz": {"num_bytes": 24704732, "checksum": "109a9a081f08a36abefb1e9c52ab69236d450e6715ecba2b97d08ec7d687e54c"}, "https://github.com/google-research-datasets/sentence-compression/raw/master/data/sent-comp.train07.json.gz": {"num_bytes": 24832103, "checksum": "5e92b30b2c4689ef672d950bef57ef1af32a1d4e1a57b7024978fefd0d3f0149"}, "https://github.com/google-research-datasets/sentence-compression/raw/master/data/sent-comp.train08.json.gz": {"num_bytes": 24793936, "checksum": "052e21b8a0ae3a12fc01d7a7463762e316bacc17ebdff4406ed1f7675d16daf8"}, "https://github.com/google-research-datasets/sentence-compression/raw/master/data/sent-comp.train09.json.gz": {"num_bytes": 24749008, "checksum": "63722d8501736c50a72bb8e4449a738bff9f7103f35112879685df38c715c5ec"}, "https://github.com/google-research-datasets/sentence-compression/raw/master/data/sent-comp.train10.json.gz": {"num_bytes": 24751152, "checksum": "a13dc4fb356db0080795facc5ef8e944f4b31bdd79899b439e55a7cfea3b40ef"}}, "download_size": 259652560, "post_processing_size": null, "dataset_size": 1191508782, "size_in_bytes": 1451161342}}
|
dummy/0.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:783e0810f87fb1975f87dd2bcac93b4b72ab1a9c5512f85a4bc1186e0178f1b8
|
3 |
+
size 6103
|
sent_comp.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Google Sentence Compression dataset"""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import gzip
|
20 |
+
import json
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@inproceedings{filippova-altun-2013-overcoming,
|
27 |
+
title = "Overcoming the Lack of Parallel Data in Sentence Compression",
|
28 |
+
author = "Filippova, Katja and
|
29 |
+
Altun, Yasemin",
|
30 |
+
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
|
31 |
+
month = oct,
|
32 |
+
year = "2013",
|
33 |
+
address = "Seattle, Washington, USA",
|
34 |
+
publisher = "Association for Computational Linguistics",
|
35 |
+
url = "https://www.aclweb.org/anthology/D13-1155",
|
36 |
+
pages = "1481--1491",
|
37 |
+
}
|
38 |
+
"""
|
39 |
+
|
40 |
+
_DESCRIPTION = """\
|
41 |
+
Large corpus of uncompressed and compressed sentences from news articles.
|
42 |
+
"""
|
43 |
+
|
44 |
+
_HOMEPAGE = "https://github.com/google-research-datasets/sentence-compression"
|
45 |
+
|
46 |
+
|
47 |
+
_URLs = {
|
48 |
+
datasets.Split.VALIDATION: [
|
49 |
+
"https://github.com/google-research-datasets/sentence-compression/raw/master/data/comp-data.eval.json.gz"
|
50 |
+
],
|
51 |
+
datasets.Split.TRAIN: [
|
52 |
+
f"https://github.com/google-research-datasets/sentence-compression/raw/master/data/sent-comp.train{str(i).zfill(2)}.json.gz"
|
53 |
+
for i in range(1, 11)
|
54 |
+
],
|
55 |
+
}
|
56 |
+
|
57 |
+
|
58 |
+
class SentComp(datasets.GeneratorBasedBuilder):
|
59 |
+
"""Google Setence Compression dataset"""
|
60 |
+
|
61 |
+
def _info(self):
|
62 |
+
node_features = {
|
63 |
+
"form": datasets.Value("string"),
|
64 |
+
"type": datasets.Value("string"),
|
65 |
+
"mid": datasets.Value("string"),
|
66 |
+
"word": datasets.features.Sequence(
|
67 |
+
{
|
68 |
+
"id": datasets.Value("int32"),
|
69 |
+
"form": datasets.Value("string"),
|
70 |
+
"stem": datasets.Value("string"),
|
71 |
+
"tag": datasets.Value("string"),
|
72 |
+
}
|
73 |
+
),
|
74 |
+
"gender": datasets.Value("int32"),
|
75 |
+
"head_word_index": datasets.Value("int32"),
|
76 |
+
}
|
77 |
+
compression_edge_features = {
|
78 |
+
"parent_id": datasets.Value("int32"),
|
79 |
+
"child_id": datasets.Value("int32"),
|
80 |
+
}
|
81 |
+
edge_features = {**compression_edge_features, "label": datasets.Value("string")}
|
82 |
+
entity_features = {
|
83 |
+
"start": datasets.Value("int32"),
|
84 |
+
"end": datasets.Value("int32"),
|
85 |
+
"head": datasets.Value("int32"),
|
86 |
+
"name": datasets.Value("string"),
|
87 |
+
"type": datasets.Value("string"),
|
88 |
+
"mid": datasets.Value("string"),
|
89 |
+
"is_proper_name_entity": datasets.Value("bool"),
|
90 |
+
"gender": datasets.Value("int32"),
|
91 |
+
}
|
92 |
+
tree_features = {
|
93 |
+
"id": datasets.Value("string"),
|
94 |
+
"sentence": datasets.Value("string"),
|
95 |
+
"node": datasets.features.Sequence(node_features),
|
96 |
+
"edge": datasets.features.Sequence(edge_features),
|
97 |
+
"entity_mention": datasets.features.Sequence(entity_features),
|
98 |
+
}
|
99 |
+
compression_features = {
|
100 |
+
"text": datasets.Value("string"),
|
101 |
+
"edge": datasets.features.Sequence(compression_edge_features),
|
102 |
+
}
|
103 |
+
|
104 |
+
return datasets.DatasetInfo(
|
105 |
+
description=_DESCRIPTION,
|
106 |
+
features=datasets.Features(
|
107 |
+
{
|
108 |
+
"graph": tree_features,
|
109 |
+
"compression": compression_features,
|
110 |
+
"headline": datasets.Value("string"),
|
111 |
+
"compression_ratio": datasets.Value("float"),
|
112 |
+
"doc_id": datasets.Value("string"),
|
113 |
+
"source_tree": tree_features,
|
114 |
+
"compression_untransformed": compression_features,
|
115 |
+
}
|
116 |
+
),
|
117 |
+
supervised_keys=None,
|
118 |
+
homepage=_HOMEPAGE,
|
119 |
+
citation=_CITATION,
|
120 |
+
)
|
121 |
+
|
122 |
+
def _split_generators(self, dl_manager):
|
123 |
+
"""Returns SplitGenerators."""
|
124 |
+
return [
|
125 |
+
datasets.SplitGenerator(
|
126 |
+
name=split,
|
127 |
+
# These kwargs will be passed to _generate_examples
|
128 |
+
gen_kwargs={"filepaths": dl_manager.download(_URLs[split])},
|
129 |
+
)
|
130 |
+
for split in _URLs
|
131 |
+
]
|
132 |
+
|
133 |
+
def _generate_examples(self, filepaths):
|
134 |
+
""" Yields examples. """
|
135 |
+
id_ = -1
|
136 |
+
for ix, filepath in enumerate(filepaths):
|
137 |
+
with gzip.open(filepath, mode="rt", encoding="utf-8") as f:
|
138 |
+
all_text = f.read()
|
139 |
+
|
140 |
+
# in the data file, it's in the form of JSON objects, separated with '\n\n' characters
|
141 |
+
# we'll format the file to be able to read with json package
|
142 |
+
all_text = "[" + all_text + "]"
|
143 |
+
all_text = all_text.replace("}\n\n{", "},\n{")
|
144 |
+
|
145 |
+
samples = json.loads(all_text)
|
146 |
+
for sample in samples:
|
147 |
+
# add some default values
|
148 |
+
for node in sample["graph"]["node"] + sample["source_tree"]["node"]:
|
149 |
+
if "type" not in node:
|
150 |
+
node["type"] = ""
|
151 |
+
if "mid" not in node:
|
152 |
+
node["mid"] = ""
|
153 |
+
|
154 |
+
id_ += 1
|
155 |
+
yield id_, sample
|