|
|
|
import numpy as np |
|
|
|
import librosa |
|
import librosa.display |
|
import argparse |
|
import os |
|
from PIL import Image |
|
from PIL import PngImagePlugin |
|
import json |
|
import math |
|
|
|
|
|
FLAGS = None |
|
|
|
|
|
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
parser.add_argument('mode', type=str, help='Choices: folder | single. folder mode for wav files in directory structure, single mode for single files', default='folder') |
|
parser.add_argument('--filename', type=str, help='For single mode, enter filename', default=None) |
|
parser.add_argument('--rootdir', type=str, help='Roots folder where class folders containing audio files are kept', default='./') |
|
parser.add_argument('--outdir', type=str, help='Output directory', default='./output') |
|
parser.add_argument('--sr', type=int, help='Samplerate', default=None) |
|
parser.add_argument('--fftsize', type=int, help='Size of fft window in samples', default=1024) |
|
parser.add_argument('--hopsize', type=int, help='Size of frame hop through sample file', default=256) |
|
parser.add_argument('--dur', type=int, help='Make files this duration in sec. If unspecified keep original duration', default=None) |
|
|
|
FLAGS, unparsed = parser.parse_known_args() |
|
print('\n FLAGS parsed : {0}'.format(FLAGS)) |
|
|
|
|
|
|
|
def get_subdirs(a_dir): |
|
""" Returns a list of sub directory names in a_dir """ |
|
return [name for name in os.listdir(a_dir) |
|
if (os.path.isdir(os.path.join(a_dir, name)) and not (name.startswith('.')))] |
|
|
|
|
|
def listDirectory(directory, fileExtList): |
|
"""Returns a list of file info objects in directory that extension in the list fileExtList - include the . in your extension string""" |
|
fnameList = [os.path.normcase(f) |
|
for f in os.listdir(directory) |
|
if (not(f.startswith('.')))] |
|
fileList = [os.path.join(directory, f) |
|
for f in fnameList |
|
if os.path.splitext(f)[1] in fileExtList] |
|
return fileList , fnameList |
|
|
|
|
|
def wav2stft(fname, srate, fftSize, fftHop, dur) : |
|
try: |
|
audiodata, samplerate = librosa.load(fname, sr=srate, mono=True, duration=dur) |
|
|
|
|
|
|
|
except: |
|
print('can not read ' + fname) |
|
return |
|
|
|
if srate == None: |
|
print('Using native samplerate of ' + str(samplerate)) |
|
S = np.abs(librosa.stft(audiodata, n_fft=fftSize, hop_length=fftHop, win_length=fftSize, center=True)) |
|
|
|
|
|
return S |
|
|
|
|
|
def log_scale(x): |
|
output = np.log1p(x) |
|
return output |
|
|
|
|
|
def findMinMax(img): |
|
return np.amin(img),np.amax(img) |
|
|
|
|
|
def logSpect2PNG(outimg, fname, lwinfo=None) : |
|
|
|
info = PngImagePlugin.PngInfo() |
|
lwinfo = lwinfo or {} |
|
lwinfo['fileMin'] = str(np.amin(outimg)) |
|
lwinfo['fileMax'] = str(np.amax(outimg)) |
|
info.add_text('meta',json.dumps(lwinfo)) |
|
|
|
shift = int(lwinfo['scaleMax']) - int(lwinfo['scaleMin']) |
|
SC2 = 255*(outimg-int(lwinfo['scaleMin']))/shift |
|
savimg = Image.fromarray(np.flipud(SC2)) |
|
|
|
pngimg = savimg.convert('L') |
|
pngimg.save(fname,pnginfo=info) |
|
|
|
|
|
def checkScaling(topdir, outdir, srate, fftSize, fftHop, dur): |
|
""" |
|
Returns the max and min values of the log magnitude after STFT in the whole dataset. |
|
This is to provide a known and standardized mapping from [min,max] -> [0,255] when saving as a png image. |
|
|
|
Parameters |
|
topdir - the dir containing class folders containing wav files. |
|
outdir - the top level directory to write wave files to (written in to class subfolders) |
|
dur - (in seconds) all files will be truncated or zeropadded to have this duration given the srate |
|
srate - input files will be resampled to srate as they are read in before being saved as wav files |
|
""" |
|
print("Now determining maximum log magnitude value in dataset for scaling to png...") |
|
subdirs = get_subdirs(topdir) |
|
max_mag = 0 |
|
min_mag = 0 |
|
for subdir in subdirs: |
|
|
|
fullpaths, _ = listDirectory(topdir + '/' + subdir, '.wav') |
|
|
|
for idx in range(len(fullpaths)) : |
|
fname = os.path.basename(fullpaths[idx]) |
|
|
|
D = wav2stft(fullpaths[idx], srate, fftSize, fftHop, dur) |
|
D = log_scale(D) |
|
minM,maxM = findMinMax(D) |
|
if minM > min_mag: |
|
min_mag = minM |
|
if maxM > max_mag: |
|
max_mag = maxM |
|
|
|
print("Dataset: min magnitude=",min_mag,"max magnitude=",max_mag) |
|
minScale = int(math.floor(min_mag)) |
|
maxScale = int(math.ceil(max_mag)) |
|
|
|
print("Using [{0},{1}] -> [0,255] for png conversion".format(minScale,maxScale)) |
|
pnginfo = {} |
|
pnginfo['datasetMin'] = str(min_mag) |
|
pnginfo['datasetMax'] = str(max_mag) |
|
pnginfo['scaleMin'] = str(minScale) |
|
pnginfo['scaleMax'] = str(maxScale) |
|
return pnginfo |
|
|
|
|
|
def wav2Spect(topdir, outdir, srate, fftSize, fftHop, dur, pnginfo) : |
|
""" |
|
Creates spectrograms for subfolder-labeled wavfiles. |
|
Creates class folders for the spectrogram files in outdir with the same structure found in topdir. |
|
|
|
Parameters |
|
topdir - the dir containing class folders containing wav files. |
|
outdir - the top level directory to write wave files to (written in to class subfolders) |
|
dur - (in seconds) all files will be truncated or zeropadded to have this duration given the srate |
|
srate - input files will be resampled to srate as they are read in before being saved as wav files |
|
""" |
|
|
|
subdirs = get_subdirs(topdir) |
|
count = 0 |
|
for subdir in subdirs: |
|
|
|
fullpaths, _ = listDirectory(topdir + '/' + subdir, '.wav') |
|
|
|
for idx in range(len(fullpaths)) : |
|
fname = os.path.basename(fullpaths[idx]) |
|
D = wav2stft(fullpaths[idx], srate, fftSize, fftHop, dur) |
|
D = log_scale(D) |
|
|
|
try: |
|
os.stat(outdir + '/' + subdir) |
|
except: |
|
os.makedirs(outdir + '/' + subdir) |
|
|
|
print(str(count) + ': ' + subdir + '/' + os.path.splitext(fname)[0]) |
|
|
|
logSpect2PNG(D, outdir+'/'+subdir+'/'+os.path.splitext(fname)[0]+'.png', lwinfo=pnginfo) |
|
|
|
count +=1 |
|
print("COMPLETE") |
|
|
|
|
|
def wav2Spect_single(filename, srate, fftSize, fftHop, dur) : |
|
""" |
|
Creates spectrograms from single wavfiles. |
|
""" |
|
D = wav2stft(filename, srate, fftSize, fftHop, dur) |
|
D = log_scale(D) |
|
minM,maxM = findMinMax(D) |
|
|
|
print("Dataset: min magnitude=",minM,"max magnitude=",maxM) |
|
minScale = int(math.floor(minM)) |
|
maxScale = int(math.ceil(maxM)) |
|
print("Using [{0},{1}] -> [0,255] for png conversion".format(minScale,maxScale)) |
|
pnginfo = {} |
|
pnginfo['datasetMin'] = str(minM) |
|
pnginfo['datasetMax'] = str(maxM) |
|
pnginfo['scaleMin'] = str(minScale) |
|
pnginfo['scaleMax'] = str(maxScale) |
|
|
|
print(str(0) + ': ' + os.path.splitext(filename)[0]) |
|
logSpect2PNG(D, os.path.splitext(filename)[0] +'.png',pnginfo) |
|
|
|
print("COMPLETE") |
|
|
|
|
|
if FLAGS.mode == 'folder': |
|
pnginfo = checkScaling(FLAGS.rootdir,FLAGS.outdir,FLAGS.sr,FLAGS.fftsize,FLAGS.hopsize,FLAGS.dur) |
|
wav2Spect(FLAGS.rootdir,FLAGS.outdir,FLAGS.sr,FLAGS.fftsize,FLAGS.hopsize,FLAGS.dur,pnginfo) |
|
elif FLAGS.mode == 'single': |
|
wav2Spect_single(FLAGS.filename,FLAGS.sr,FLAGS.fftsize,FLAGS.hopsize,FLAGS.dur) |
|
else: |
|
raise ValueError("Not an acceptable mode! Choices: folder | single. folder mode for wav files in directory structure, single mode for single files") |
|
|
|
|