Datasets:
https://github.com/muhdhuz/audio2spec
Browse files- audio2spec-master/README.md +49 -0
- audio2spec-master/cqtconv.py +219 -0
- audio2spec-master/png2wav.py +95 -0
- audio2spec-master/spsi.py +97 -0
- audio2spec-master/wav2png.py +202 -0
audio2spec-master/README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## wav2png
|
2 |
+
|
3 |
+
Run this script to convert wav files to spectrograms, which are saved as png files.
|
4 |
+
Is able to run on a folder structure with class labels:
|
5 |
+
|
6 |
+
root/dog/0001.wav
|
7 |
+
root/dog/0002.wav
|
8 |
+
|
9 |
+
root/cat/0001.wav
|
10 |
+
root/cat/0002.wav etc.
|
11 |
+
Or otherwise on single files.
|
12 |
+
|
13 |
+
Example use:
|
14 |
+
|
15 |
+
**For class folder structure**
|
16 |
+
```bash
|
17 |
+
python ./wav2png.py folder --rootdir [rootdir]
|
18 |
+
```
|
19 |
+
**For single files**
|
20 |
+
```bash
|
21 |
+
python ./wav2png.py single --filename [filename.wav]
|
22 |
+
```
|
23 |
+
Scaling is done on the STFT output to be compatible with 8-bit png format. The script searches the dataset for the maximum and minimum values, rounds up and down to the nearest integer respectively then scales to [0,255].
|
24 |
+
|
25 |
+
## png2wav
|
26 |
+
|
27 |
+
Run to convert individual png spectrograms back to wav. Script assumes (and inverts) similar scaling as in wav2png. Griffin-Lim algortihm is initialized with [SPSI](http://ieeexplore.ieee.org/abstract/document/7251907/). SPSI code originally from [here](https://github.com/lonce/SPSI_Python).
|
28 |
+
|
29 |
+
Example use:
|
30 |
+
|
31 |
+
**For single png spectrogram**
|
32 |
+
```bash
|
33 |
+
python ./png2wav.py [filename.png]
|
34 |
+
```
|
35 |
+
|
36 |
+
## cqtconv
|
37 |
+
|
38 |
+
This script is to transform a linear frequency scaled spectrogram image (like the ones generated by wav2png) to a pseudo constant-Q (CQT) scaled spectrogram. Algorithm is adapted from [Matlab code written by Dan Ellis](http://www.ee.columbia.edu/ln/rosa/matlab/sgram/).
|
39 |
+
|
40 |
+
Example use:
|
41 |
+
|
42 |
+
**For linear to cqt**
|
43 |
+
```bash
|
44 |
+
python ./cqtconv.py --rootdir [rootdir] --outdir [outdir] --conversion spec2cqt
|
45 |
+
```
|
46 |
+
**For cqt to linear**
|
47 |
+
```bash
|
48 |
+
python ./cqtconv.py --rootdir [rootdir] --outdir [outdir] --conversion cqt2spec
|
49 |
+
```
|
audio2spec-master/cqtconv.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
import numpy as np
|
3 |
+
# https://github.com/librosa/librosa
|
4 |
+
import librosa
|
5 |
+
import librosa.display
|
6 |
+
import argparse
|
7 |
+
import os
|
8 |
+
from PIL import Image
|
9 |
+
from PIL import PngImagePlugin
|
10 |
+
import json
|
11 |
+
import scipy
|
12 |
+
|
13 |
+
|
14 |
+
FLAGS = None
|
15 |
+
# ------------------------------------------------------
|
16 |
+
# get any args provided on the command line
|
17 |
+
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
18 |
+
parser.add_argument('--conversion', type=str, choices=['spec2cqt','cqt2spec'], help='direction of conversion', default='spec2cqt')
|
19 |
+
parser.add_argument('--filename', type=str, help='For single mode, enter filename', default=None)
|
20 |
+
parser.add_argument('--rootdir', type=str, help='Roots folder where class folders containing audio files are kept', default='./')
|
21 |
+
parser.add_argument('--outdir', type=str, help='Output directory', default='./output')
|
22 |
+
#parser.add_argument('--sr', type=int, help='Samplerate', default=None)
|
23 |
+
parser.add_argument('--fftsize', type=int, help='Size of fft window in samples', default=1024)
|
24 |
+
#parser.add_argument('--hopsize', type=int, help='Size of frame hop through sample file', default=256)
|
25 |
+
|
26 |
+
FLAGS, unparsed = parser.parse_known_args()
|
27 |
+
print('\n FLAGS parsed : {0}'.format(FLAGS))
|
28 |
+
|
29 |
+
#filetypes = ['.wav','.mp3'] not yet implimented. manually change fileExtList in listDirectory
|
30 |
+
|
31 |
+
def get_subdirs(a_dir):
|
32 |
+
""" Returns a list of sub directory names in a_dir """
|
33 |
+
return [name for name in os.listdir(a_dir)
|
34 |
+
if (os.path.isdir(os.path.join(a_dir, name)) and not (name.startswith('.')))]
|
35 |
+
|
36 |
+
|
37 |
+
def listDirectory(directory, fileExtList):
|
38 |
+
"""Returns a list of file info objects in directory that extension in the list fileExtList - include the . in your extension string"""
|
39 |
+
fnameList = [os.path.normcase(f)
|
40 |
+
for f in os.listdir(directory)
|
41 |
+
if (not(f.startswith('.')))]
|
42 |
+
fileList = [os.path.join(directory, f)
|
43 |
+
for f in fnameList
|
44 |
+
if os.path.splitext(f)[1] in fileExtList]
|
45 |
+
return fileList , fnameList
|
46 |
+
|
47 |
+
|
48 |
+
def logSpect2PNG(outimg, fname, lwinfo=None) :
|
49 |
+
|
50 |
+
info = PngImagePlugin.PngInfo()
|
51 |
+
lwinfo = lwinfo or {}
|
52 |
+
lwinfo['fileMin'] = str(np.amin(outimg))
|
53 |
+
lwinfo['fileMax'] = str(np.amax(outimg))
|
54 |
+
info.add_text('meta',json.dumps(lwinfo)) #info required to reverse scaling
|
55 |
+
|
56 |
+
shift = int(lwinfo['scaleMax']) - int(lwinfo['scaleMin'])
|
57 |
+
SC2 = 255*(outimg-int(lwinfo['scaleMin']))/shift
|
58 |
+
savimg = Image.fromarray(np.flipud(SC2))
|
59 |
+
|
60 |
+
pngimg = savimg.convert('L')
|
61 |
+
pngimg.save(fname,pnginfo=info)
|
62 |
+
|
63 |
+
|
64 |
+
def PNG2LogSpect(fname,scalemin,scalemax):
|
65 |
+
|
66 |
+
"""
|
67 |
+
Read png spectrograms, expand to original scale and return numpy array.
|
68 |
+
If not stored in one of png metadata, the values needed to undo previous scaling are required to be specified.
|
69 |
+
"""
|
70 |
+
img = Image.open(fname)
|
71 |
+
#info = PngImagePlugin.PngInfo()
|
72 |
+
|
73 |
+
try:
|
74 |
+
img.text = img.text
|
75 |
+
lwinfo = json.loads(img.text['meta'])
|
76 |
+
except:
|
77 |
+
print('PNG2LogSpect: no img.text, using user specified values!')
|
78 |
+
lwinfo = {}
|
79 |
+
lwinfo['scaleMin'] = scalemin #require to pass in
|
80 |
+
lwinfo['scaleMax'] = scalemax
|
81 |
+
#info.add_text('meta',json.dumps(lwinfo))
|
82 |
+
|
83 |
+
minx, maxx = float(lwinfo['scaleMin']), float(lwinfo['scaleMax'])
|
84 |
+
#minx, maxx = float(lwinfo['oldmin']), float(lwinfo['oldmax'])
|
85 |
+
|
86 |
+
img = img.convert('L')
|
87 |
+
outimg = np.asarray(img, dtype=np.float32)
|
88 |
+
outimg = (outimg - 0)/(255-0)*(maxx-minx) + minx
|
89 |
+
|
90 |
+
return np.flipud(outimg), lwinfo
|
91 |
+
|
92 |
+
|
93 |
+
def logfmap(I, L, H) :
|
94 |
+
"""
|
95 |
+
% [M,N] = logfmap(I,L,H)
|
96 |
+
I - number of rows in the original spectrogram
|
97 |
+
L - low bin to preserve
|
98 |
+
H - high bin to preserve
|
99 |
+
|
100 |
+
% Return a maxtrix for premultiplying spectrograms to map
|
101 |
+
% the rows into a log frequency space.
|
102 |
+
% Output map covers bins L to H of input
|
103 |
+
% L must be larger than 1, since the lowest bin of the FFT
|
104 |
+
% (corresponding to 0 Hz) cannot be represented on a
|
105 |
+
% log frequency axis. Including bins close to 1 makes
|
106 |
+
% the number of output rows exponentially larger.
|
107 |
+
% N returns the recovery matrix such that N*M is approximately I
|
108 |
+
% (for dimensions L to H).
|
109 |
+
%
|
110 |
+
% Ported from MATLAB code written by Dan Ellis:
|
111 |
+
% 2004-05-21 dpwe@ee.columbia.edu
|
112 |
+
"""
|
113 |
+
ratio = (H-1)/H;
|
114 |
+
opr = np.int(np.round(np.log(L/H)/np.log(ratio))) #number of frequency bins in log rep + 1
|
115 |
+
print('opr is ' + str(opr))
|
116 |
+
ibin = L*np.exp(list(range(0,opr)*-np.log(ratio))) #fractional bin numbers (len(ibin) = opr-1)
|
117 |
+
|
118 |
+
M = np.zeros((opr,I))
|
119 |
+
eps=np.finfo(float).eps
|
120 |
+
|
121 |
+
for i in range(0, opr) :
|
122 |
+
# Where do we sample this output bin?
|
123 |
+
# Idea is to make them 1:1 at top, and progressively denser below
|
124 |
+
# i.e. i = max -> bin = topbin, i = max-1 -> bin = topbin-1,
|
125 |
+
# but general form is bin = A exp (i/B)
|
126 |
+
|
127 |
+
tt = np.multiply(np.pi, (list(range(0,I))-ibin[i]))
|
128 |
+
M[i,:] = np.divide((np.sin(tt)+eps) , (tt+eps));
|
129 |
+
|
130 |
+
# Normalize rows, but only if they are boosted by the operation
|
131 |
+
G = np.ones((I));
|
132 |
+
print ('H is ' + str(H))
|
133 |
+
G[0:H] = np.divide(list(range(0,H)), H)
|
134 |
+
|
135 |
+
N = np.transpose(np.multiply(M,np.matlib.repmat(G,opr,1)))
|
136 |
+
|
137 |
+
return M,N
|
138 |
+
|
139 |
+
def spect2CQT(topdir, outdir, fftSize, lowRow=1):
|
140 |
+
"""
|
141 |
+
Creates psuedo constant-Q spectrograms from linear frequency spectrograms.
|
142 |
+
Creates class folders in outdir with the same structure found in topdir.
|
143 |
+
|
144 |
+
Parameters
|
145 |
+
topdir - the dir containing class folders containing png (log magnitude) spectrogram files.
|
146 |
+
outdir - the top level directory to write psuedo constantQ files to (written in to class subfolders)
|
147 |
+
lowRow is the lowest row in the FFT that you want to include in the psuedo constant Q spectrogram
|
148 |
+
"""
|
149 |
+
|
150 |
+
# First lets get the logf map we want
|
151 |
+
LIN_FREQ_BINS = int(fftSize/2+1) #number of bins in original linear frequency mag spectrogram
|
152 |
+
LOW_ROW = lowRow
|
153 |
+
LOG_FREQ_BINS = int(fftSize/2+1) #resample the lgfmapped psuedo consantQ matrix to have this many frequency bins
|
154 |
+
M,N = logfmap(LIN_FREQ_BINS,LOW_ROW,LOG_FREQ_BINS)
|
155 |
+
|
156 |
+
|
157 |
+
subdirs = get_subdirs(topdir)
|
158 |
+
count = 0
|
159 |
+
for subdir in subdirs:
|
160 |
+
|
161 |
+
fullpaths, _ = listDirectory(topdir + '/' + subdir, '.png')
|
162 |
+
|
163 |
+
for idx in range(len(fullpaths)) :
|
164 |
+
fname = os.path.basename(fullpaths[idx])
|
165 |
+
D, pnginfo = PNG2LogSpect(fullpaths[idx],None,None)
|
166 |
+
|
167 |
+
# Here's the beef
|
168 |
+
MD = np.dot(M,D)
|
169 |
+
MD = scipy.signal.resample(MD, LIN_FREQ_BINS) #downsample to something reasonable
|
170 |
+
|
171 |
+
#save
|
172 |
+
#info={}
|
173 |
+
pnginfo["linFreqBins"] = LIN_FREQ_BINS
|
174 |
+
pnginfo["lowRow"] = LOW_ROW
|
175 |
+
pnginfo["logFreqBins"] = LOG_FREQ_BINS
|
176 |
+
|
177 |
+
try:
|
178 |
+
os.stat(outdir + '/' + subdir) # test for existence
|
179 |
+
except:
|
180 |
+
os.makedirs(outdir + '/' + subdir) # create if necessary
|
181 |
+
|
182 |
+
print(str(count) + ': ' + subdir + '/' + os.path.splitext(fname)[0])
|
183 |
+
logSpect2PNG(MD, outdir+'/'+subdir+'/'+os.path.splitext(fname)[0]+'.png',lwinfo=pnginfo)
|
184 |
+
|
185 |
+
count +=1
|
186 |
+
print("COMPLETE")
|
187 |
+
|
188 |
+
def CQT2spec(topdir,outdir):
|
189 |
+
|
190 |
+
subdirs = get_subdirs(topdir)
|
191 |
+
count = 0
|
192 |
+
for subdir in subdirs:
|
193 |
+
|
194 |
+
fullpaths, _ = listDirectory(topdir + '/' + subdir, '.png')
|
195 |
+
|
196 |
+
for idx in range(len(fullpaths)) :
|
197 |
+
fname = os.path.basename(fullpaths[idx])
|
198 |
+
D, pnginfo = PNG2LogSpect(fullpaths[idx],None,None)
|
199 |
+
M,N = logfmap(pnginfo["linFreqBins"],pnginfo["lowRow"],pnginfo["logFreqBins"])
|
200 |
+
resampledD = scipy.signal.resample(D, M.shape[0]) #upsample
|
201 |
+
|
202 |
+
# Here's the beef
|
203 |
+
ND = np.dot(N,resampledD)
|
204 |
+
|
205 |
+
try:
|
206 |
+
os.stat(outdir + '/' + subdir) # test for existence
|
207 |
+
except:
|
208 |
+
os.makedirs(outdir + '/' + subdir) # create if necessary
|
209 |
+
|
210 |
+
print(str(count) + ': ' + subdir + '/' + os.path.splitext(fname)[0])
|
211 |
+
logSpect2PNG(ND, outdir+'/'+subdir+'/'+os.path.splitext(fname)[0]+'.png',lwinfo=pnginfo)
|
212 |
+
|
213 |
+
count +=1
|
214 |
+
print("COMPLETE")
|
215 |
+
|
216 |
+
if FLAGS.conversion == 'spec2cqt':
|
217 |
+
spect2CQT(FLAGS.rootdir,FLAGS.outdir,FLAGS.fftsize,lowRow=10)
|
218 |
+
elif FLAGS.conversion == 'cqt2spec':
|
219 |
+
CQT2spec(FLAGS.rootdir,FLAGS.outdir)
|
audio2spec-master/png2wav.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
import numpy as np
|
3 |
+
# https://github.com/librosa/librosa
|
4 |
+
import librosa
|
5 |
+
import librosa.display
|
6 |
+
import argparse
|
7 |
+
import os
|
8 |
+
from PIL import Image
|
9 |
+
from PIL import PngImagePlugin
|
10 |
+
import json
|
11 |
+
|
12 |
+
from spsi import spsi
|
13 |
+
|
14 |
+
FLAGS = None
|
15 |
+
# ------------------------------------------------------
|
16 |
+
# get any args provided on the command line
|
17 |
+
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
18 |
+
parser.add_argument('filename', type=str, help='Name of log mag spectrogram. Include extension')
|
19 |
+
parser.add_argument('--outdir', type=str, help='Output directory', default='./output')
|
20 |
+
parser.add_argument('--scalemax', type=int, help='Value to use as the max when scaling from png [0,255] to original [min,max]', default=None)
|
21 |
+
parser.add_argument('--scalemin', type=int, help='Value to use as the min when scaling from png [0,255] to original [min,max]', default=None)
|
22 |
+
parser.add_argument('--sr', type=int, help='Samplerate', default=22050)
|
23 |
+
parser.add_argument('--hopsize', type=int, help='Size of frame hop through sample file', default=256)
|
24 |
+
parser.add_argument('--glsteps', type=int, help='Number of Griffin&Lim iterations following SPSI', default=50 )
|
25 |
+
parser.add_argument('--wavfile', type=str, help='Optional name for output audio file. Unspecified means use the png filename', default=None)
|
26 |
+
|
27 |
+
FLAGS, unparsed = parser.parse_known_args()
|
28 |
+
print('\n FLAGS parsed : {0}'.format(FLAGS))
|
29 |
+
|
30 |
+
|
31 |
+
def inv_log(img):
|
32 |
+
img = np.exp(img) - 1.
|
33 |
+
return img
|
34 |
+
|
35 |
+
|
36 |
+
def PNG2LogSpect(fname,scalemin,scalemax):
|
37 |
+
|
38 |
+
"""
|
39 |
+
Read png spectrograms, expand to original scale and return numpy array.
|
40 |
+
If not stored in one of png metadata, the values needed to undo previous scaling are required to be specified.
|
41 |
+
"""
|
42 |
+
img = Image.open(fname)
|
43 |
+
#info = PngImagePlugin.PngInfo()
|
44 |
+
|
45 |
+
try:
|
46 |
+
img.text = img.text
|
47 |
+
lwinfo = json.loads(img.text['meta'])
|
48 |
+
except:
|
49 |
+
print('PNG2LogSpect: no img.text, using user specified values!')
|
50 |
+
lwinfo = {}
|
51 |
+
lwinfo['scaleMin'] = scalemin #require to pass in
|
52 |
+
lwinfo['scaleMax'] = scalemax
|
53 |
+
#info.add_text('meta',json.dumps(lwinfo))
|
54 |
+
|
55 |
+
minx, maxx = float(lwinfo['scaleMin']), float(lwinfo['scaleMax'])
|
56 |
+
#minx, maxx = float(lwinfo['oldmin']), float(lwinfo['oldmax'])
|
57 |
+
|
58 |
+
img = img.convert('L')
|
59 |
+
outimg = np.asarray(img, dtype=np.float32)
|
60 |
+
outimg = (outimg - 0)/(255-0)*(maxx-minx) + minx
|
61 |
+
|
62 |
+
return np.flipud(outimg), lwinfo
|
63 |
+
|
64 |
+
|
65 |
+
D,_ = PNG2LogSpect(FLAGS.filename,FLAGS.scalemin,FLAGS.scalemax)
|
66 |
+
Dsize, _ = D.shape
|
67 |
+
fftsize = 2*(Dsize-1) #infer fftsize from no. of fft bins i.e. height of image
|
68 |
+
|
69 |
+
magD = inv_log(D)
|
70 |
+
y_out = spsi(magD, fftsize=fftsize, hop_length=FLAGS.hopsize)
|
71 |
+
#print(magD.shape)
|
72 |
+
#print(y_out.shape)
|
73 |
+
|
74 |
+
if FLAGS.glsteps != 0 : #use spsi result for initial phase
|
75 |
+
x = librosa.stft(y_out, fftsize, FLAGS.hopsize, center=False)
|
76 |
+
p = np.angle(x)
|
77 |
+
#print(x.shape)
|
78 |
+
for i in range(FLAGS.glsteps):
|
79 |
+
S = magD * np.exp(1j*p)
|
80 |
+
y_out = librosa.istft(S, FLAGS.hopsize, center=True) # Griffin Lim, assumes hann window, librosa only does one iteration?
|
81 |
+
p = np.angle(librosa.stft(y_out, fftsize, FLAGS.hopsize, center=True))
|
82 |
+
|
83 |
+
scalefactor = np.amax(np.abs(y_out))
|
84 |
+
#print(np.amin(np.abs(y_out)))
|
85 |
+
#print(y_out[50:70])
|
86 |
+
print('scaling peak sample, ' + str(scalefactor) + ' to 1')
|
87 |
+
#y_out/=scalefactor
|
88 |
+
|
89 |
+
if FLAGS.wavfile == None:
|
90 |
+
librosa.output.write_wav(os.path.splitext(FLAGS.filename)[0]+'.wav', y_out, FLAGS.sr)
|
91 |
+
else:
|
92 |
+
librosa.output.write_wav(FLAGS.wavfile, y_out, FLAGS.sr)
|
93 |
+
|
94 |
+
|
95 |
+
|
audio2spec-master/spsi.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import scipy
|
3 |
+
|
4 |
+
|
5 |
+
def spsi(msgram, fftsize, hop_length) :
|
6 |
+
"""
|
7 |
+
Takes a 2D spectrogram ([freqs,frames]), the fft length (= window length) and the hope size (both in units of samples).
|
8 |
+
Returns an audio signal.
|
9 |
+
"""
|
10 |
+
|
11 |
+
numBins, numFrames = msgram.shape
|
12 |
+
y_out=np.zeros(numFrames*hop_length+fftsize-hop_length)
|
13 |
+
#np.zeros(numFrames*hop_length+fftsize-hop_length)
|
14 |
+
|
15 |
+
m_phase=np.zeros(numBins);
|
16 |
+
m_win=scipy.signal.hanning(fftsize, sym=True) # assumption here that hann was used to create the frames of the spectrogram
|
17 |
+
|
18 |
+
#processes one frame of audio at a time
|
19 |
+
for i in range(numFrames) :
|
20 |
+
m_mag=msgram[:, i]
|
21 |
+
for j in range(1,numBins-1) :
|
22 |
+
if(m_mag[j]>m_mag[j-1] and m_mag[j]>m_mag[j+1]) : #if j is a peak
|
23 |
+
alpha=m_mag[j-1];
|
24 |
+
beta=m_mag[j];
|
25 |
+
gamma=m_mag[j+1];
|
26 |
+
denom=alpha-2*beta+gamma;
|
27 |
+
|
28 |
+
if(denom!=0) :
|
29 |
+
p=0.5*(alpha-gamma)/denom;
|
30 |
+
else :
|
31 |
+
p=0;
|
32 |
+
|
33 |
+
phaseRate=2*np.pi*(j+p)/fftsize; #adjusted phase rate
|
34 |
+
m_phase[j]= m_phase[j] + hop_length*phaseRate; #phase accumulator for this peak bin
|
35 |
+
peakPhase=m_phase[j];
|
36 |
+
|
37 |
+
# If actual peak is to the right of the bin freq
|
38 |
+
if (p>0) :
|
39 |
+
# First bin to right has pi shift
|
40 |
+
bin=j+1;
|
41 |
+
m_phase[bin]=peakPhase+np.pi;
|
42 |
+
|
43 |
+
# Bins to left have shift of pi
|
44 |
+
bin=j-1;
|
45 |
+
while((bin>1) and (m_mag[bin]<m_mag[bin+1])) : # until you reach the trough
|
46 |
+
m_phase[bin]=peakPhase+np.pi;
|
47 |
+
bin=bin-1;
|
48 |
+
|
49 |
+
#Bins to the right (beyond the first) have 0 shift
|
50 |
+
bin=j+2;
|
51 |
+
while((bin<(numBins)) and (m_mag[bin]<m_mag[bin-1])) :
|
52 |
+
m_phase[bin]=peakPhase;
|
53 |
+
bin=bin+1;
|
54 |
+
|
55 |
+
#if actual peak is to the left of the bin frequency
|
56 |
+
if(p<0) :
|
57 |
+
# First bin to left has pi shift
|
58 |
+
bin=j-1;
|
59 |
+
m_phase[bin]=peakPhase+np.pi;
|
60 |
+
|
61 |
+
# and bins to the right of me - here I am stuck in the middle with you
|
62 |
+
bin=j+1;
|
63 |
+
while((bin<(numBins)) and (m_mag[bin]<m_mag[bin-1])) :
|
64 |
+
m_phase[bin]=peakPhase+np.pi;
|
65 |
+
bin=bin+1;
|
66 |
+
|
67 |
+
# and further to the left have zero shift
|
68 |
+
bin=j-2;
|
69 |
+
while((bin>1) and (m_mag[bin]<m_mag[bin+1])) : # until trough
|
70 |
+
m_phase[bin]=peakPhase;
|
71 |
+
bin=bin-1;
|
72 |
+
|
73 |
+
#end ops for peaks
|
74 |
+
#end loop over fft bins with
|
75 |
+
|
76 |
+
magphase=m_mag*np.exp(1j*m_phase) #reconstruct with new phase (elementwise mult)
|
77 |
+
magphase[0]=0; magphase[numBins-1] = 0 #remove dc and nyquist
|
78 |
+
m_recon=np.concatenate([magphase,np.flip(np.conjugate(magphase[1:numBins-1]), 0)])
|
79 |
+
|
80 |
+
#overlap and add
|
81 |
+
m_recon=np.real(np.fft.ifft(m_recon))*m_win
|
82 |
+
y_out[i*hop_length:i*hop_length+fftsize]+=m_recon
|
83 |
+
|
84 |
+
return y_out
|
85 |
+
|
86 |
+
|
87 |
+
def magspect2audio(msgram, fftsize, hop_length) :
|
88 |
+
return spsi(msgram, fftsize, hop_length)
|
89 |
+
|
90 |
+
def logspect2audio(lsgram, fftsize, hop_length) :
|
91 |
+
return spsi(np.power(10, lsgram/20), fftsize, hop_length)
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
audio2spec-master/wav2png.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
import numpy as np
|
3 |
+
# https://github.com/librosa/librosa
|
4 |
+
import librosa
|
5 |
+
import librosa.display
|
6 |
+
import argparse
|
7 |
+
import os
|
8 |
+
from PIL import Image
|
9 |
+
from PIL import PngImagePlugin
|
10 |
+
import json
|
11 |
+
import math
|
12 |
+
|
13 |
+
|
14 |
+
FLAGS = None
|
15 |
+
# ------------------------------------------------------
|
16 |
+
# get any args provided on the command line
|
17 |
+
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
18 |
+
parser.add_argument('mode', type=str, help='Choices: folder | single. folder mode for wav files in directory structure, single mode for single files', default='folder')
|
19 |
+
parser.add_argument('--filename', type=str, help='For single mode, enter filename', default=None)
|
20 |
+
parser.add_argument('--rootdir', type=str, help='Roots folder where class folders containing audio files are kept', default='./')
|
21 |
+
parser.add_argument('--outdir', type=str, help='Output directory', default='./output')
|
22 |
+
parser.add_argument('--sr', type=int, help='Samplerate', default=None)
|
23 |
+
parser.add_argument('--fftsize', type=int, help='Size of fft window in samples', default=1024)
|
24 |
+
parser.add_argument('--hopsize', type=int, help='Size of frame hop through sample file', default=256)
|
25 |
+
parser.add_argument('--dur', type=int, help='Make files this duration in sec. If unspecified keep original duration', default=None)
|
26 |
+
|
27 |
+
FLAGS, unparsed = parser.parse_known_args()
|
28 |
+
print('\n FLAGS parsed : {0}'.format(FLAGS))
|
29 |
+
|
30 |
+
#filetypes = ['.wav','.mp3'] not yet implimented. manually change fileExtList in listDirectory
|
31 |
+
|
32 |
+
def get_subdirs(a_dir):
|
33 |
+
""" Returns a list of sub directory names in a_dir """
|
34 |
+
return [name for name in os.listdir(a_dir)
|
35 |
+
if (os.path.isdir(os.path.join(a_dir, name)) and not (name.startswith('.')))]
|
36 |
+
|
37 |
+
|
38 |
+
def listDirectory(directory, fileExtList):
|
39 |
+
"""Returns a list of file info objects in directory that extension in the list fileExtList - include the . in your extension string"""
|
40 |
+
fnameList = [os.path.normcase(f)
|
41 |
+
for f in os.listdir(directory)
|
42 |
+
if (not(f.startswith('.')))]
|
43 |
+
fileList = [os.path.join(directory, f)
|
44 |
+
for f in fnameList
|
45 |
+
if os.path.splitext(f)[1] in fileExtList]
|
46 |
+
return fileList , fnameList
|
47 |
+
|
48 |
+
|
49 |
+
def wav2stft(fname, srate, fftSize, fftHop, dur) :
|
50 |
+
try:
|
51 |
+
audiodata, samplerate = librosa.load(fname, sr=srate, mono=True, duration=dur)
|
52 |
+
#print(np.amax(np.abs(audiodata)))
|
53 |
+
#print(np.amin(np.abs(audiodata)))
|
54 |
+
#print(audiodata[50:70])
|
55 |
+
except:
|
56 |
+
print('can not read ' + fname)
|
57 |
+
return
|
58 |
+
|
59 |
+
if srate == None:
|
60 |
+
print('Using native samplerate of ' + str(samplerate))
|
61 |
+
S = np.abs(librosa.stft(audiodata, n_fft=fftSize, hop_length=fftHop, win_length=fftSize, center=True))
|
62 |
+
#print(audiodata.shape)
|
63 |
+
#print(S.shape)
|
64 |
+
return S
|
65 |
+
|
66 |
+
|
67 |
+
def log_scale(x):
|
68 |
+
output = np.log1p(x)
|
69 |
+
return output
|
70 |
+
|
71 |
+
|
72 |
+
def findMinMax(img):
|
73 |
+
return np.amin(img),np.amax(img)
|
74 |
+
|
75 |
+
|
76 |
+
def logSpect2PNG(outimg, fname, lwinfo=None) :
|
77 |
+
|
78 |
+
info = PngImagePlugin.PngInfo()
|
79 |
+
lwinfo = lwinfo or {}
|
80 |
+
lwinfo['fileMin'] = str(np.amin(outimg))
|
81 |
+
lwinfo['fileMax'] = str(np.amax(outimg))
|
82 |
+
info.add_text('meta',json.dumps(lwinfo)) #info required to reverse scaling
|
83 |
+
|
84 |
+
shift = int(lwinfo['scaleMax']) - int(lwinfo['scaleMin'])
|
85 |
+
SC2 = 255*(outimg-int(lwinfo['scaleMin']))/shift
|
86 |
+
savimg = Image.fromarray(np.flipud(SC2))
|
87 |
+
|
88 |
+
pngimg = savimg.convert('L')
|
89 |
+
pngimg.save(fname,pnginfo=info)
|
90 |
+
|
91 |
+
|
92 |
+
def checkScaling(topdir, outdir, srate, fftSize, fftHop, dur):
|
93 |
+
"""
|
94 |
+
Returns the max and min values of the log magnitude after STFT in the whole dataset.
|
95 |
+
This is to provide a known and standardized mapping from [min,max] -> [0,255] when saving as a png image.
|
96 |
+
|
97 |
+
Parameters
|
98 |
+
topdir - the dir containing class folders containing wav files.
|
99 |
+
outdir - the top level directory to write wave files to (written in to class subfolders)
|
100 |
+
dur - (in seconds) all files will be truncated or zeropadded to have this duration given the srate
|
101 |
+
srate - input files will be resampled to srate as they are read in before being saved as wav files
|
102 |
+
"""
|
103 |
+
print("Now determining maximum log magnitude value in dataset for scaling to png...")
|
104 |
+
subdirs = get_subdirs(topdir)
|
105 |
+
max_mag = 0
|
106 |
+
min_mag = 0
|
107 |
+
for subdir in subdirs:
|
108 |
+
|
109 |
+
fullpaths, _ = listDirectory(topdir + '/' + subdir, '.wav')
|
110 |
+
|
111 |
+
for idx in range(len(fullpaths)) :
|
112 |
+
fname = os.path.basename(fullpaths[idx])
|
113 |
+
|
114 |
+
D = wav2stft(fullpaths[idx], srate, fftSize, fftHop, dur)
|
115 |
+
D = log_scale(D)
|
116 |
+
minM,maxM = findMinMax(D)
|
117 |
+
if minM > min_mag:
|
118 |
+
min_mag = minM
|
119 |
+
if maxM > max_mag:
|
120 |
+
max_mag = maxM
|
121 |
+
|
122 |
+
print("Dataset: min magnitude=",min_mag,"max magnitude=",max_mag)
|
123 |
+
minScale = int(math.floor(min_mag))
|
124 |
+
maxScale = int(math.ceil(max_mag))
|
125 |
+
#print("New scale: min magnitude=",minScale,"max magnitude=",maxScale)
|
126 |
+
print("Using [{0},{1}] -> [0,255] for png conversion".format(minScale,maxScale))
|
127 |
+
pnginfo = {}
|
128 |
+
pnginfo['datasetMin'] = str(min_mag)
|
129 |
+
pnginfo['datasetMax'] = str(max_mag)
|
130 |
+
pnginfo['scaleMin'] = str(minScale)
|
131 |
+
pnginfo['scaleMax'] = str(maxScale)
|
132 |
+
return pnginfo
|
133 |
+
|
134 |
+
|
135 |
+
def wav2Spect(topdir, outdir, srate, fftSize, fftHop, dur, pnginfo) :
|
136 |
+
"""
|
137 |
+
Creates spectrograms for subfolder-labeled wavfiles.
|
138 |
+
Creates class folders for the spectrogram files in outdir with the same structure found in topdir.
|
139 |
+
|
140 |
+
Parameters
|
141 |
+
topdir - the dir containing class folders containing wav files.
|
142 |
+
outdir - the top level directory to write wave files to (written in to class subfolders)
|
143 |
+
dur - (in seconds) all files will be truncated or zeropadded to have this duration given the srate
|
144 |
+
srate - input files will be resampled to srate as they are read in before being saved as wav files
|
145 |
+
"""
|
146 |
+
|
147 |
+
subdirs = get_subdirs(topdir)
|
148 |
+
count = 0
|
149 |
+
for subdir in subdirs:
|
150 |
+
|
151 |
+
fullpaths, _ = listDirectory(topdir + '/' + subdir, '.wav')
|
152 |
+
|
153 |
+
for idx in range(len(fullpaths)) :
|
154 |
+
fname = os.path.basename(fullpaths[idx])
|
155 |
+
D = wav2stft(fullpaths[idx], srate, fftSize, fftHop, dur)
|
156 |
+
D = log_scale(D)
|
157 |
+
|
158 |
+
try:
|
159 |
+
os.stat(outdir + '/' + subdir) # test for existence
|
160 |
+
except:
|
161 |
+
os.makedirs(outdir + '/' + subdir) # create if necessary
|
162 |
+
|
163 |
+
print(str(count) + ': ' + subdir + '/' + os.path.splitext(fname)[0])
|
164 |
+
|
165 |
+
logSpect2PNG(D, outdir+'/'+subdir+'/'+os.path.splitext(fname)[0]+'.png', lwinfo=pnginfo)
|
166 |
+
|
167 |
+
count +=1
|
168 |
+
print("COMPLETE")
|
169 |
+
|
170 |
+
|
171 |
+
def wav2Spect_single(filename, srate, fftSize, fftHop, dur) :
|
172 |
+
"""
|
173 |
+
Creates spectrograms from single wavfiles.
|
174 |
+
"""
|
175 |
+
D = wav2stft(filename, srate, fftSize, fftHop, dur)
|
176 |
+
D = log_scale(D)
|
177 |
+
minM,maxM = findMinMax(D)
|
178 |
+
|
179 |
+
print("Dataset: min magnitude=",minM,"max magnitude=",maxM)
|
180 |
+
minScale = int(math.floor(minM))
|
181 |
+
maxScale = int(math.ceil(maxM))
|
182 |
+
print("Using [{0},{1}] -> [0,255] for png conversion".format(minScale,maxScale))
|
183 |
+
pnginfo = {}
|
184 |
+
pnginfo['datasetMin'] = str(minM)
|
185 |
+
pnginfo['datasetMax'] = str(maxM)
|
186 |
+
pnginfo['scaleMin'] = str(minScale)
|
187 |
+
pnginfo['scaleMax'] = str(maxScale)
|
188 |
+
|
189 |
+
print(str(0) + ': ' + os.path.splitext(filename)[0])
|
190 |
+
logSpect2PNG(D, os.path.splitext(filename)[0] +'.png',pnginfo)
|
191 |
+
|
192 |
+
print("COMPLETE")
|
193 |
+
|
194 |
+
|
195 |
+
if FLAGS.mode == 'folder':
|
196 |
+
pnginfo = checkScaling(FLAGS.rootdir,FLAGS.outdir,FLAGS.sr,FLAGS.fftsize,FLAGS.hopsize,FLAGS.dur)
|
197 |
+
wav2Spect(FLAGS.rootdir,FLAGS.outdir,FLAGS.sr,FLAGS.fftsize,FLAGS.hopsize,FLAGS.dur,pnginfo)
|
198 |
+
elif FLAGS.mode == 'single':
|
199 |
+
wav2Spect_single(FLAGS.filename,FLAGS.sr,FLAGS.fftsize,FLAGS.hopsize,FLAGS.dur)
|
200 |
+
else:
|
201 |
+
raise ValueError("Not an acceptable mode! Choices: folder | single. folder mode for wav files in directory structure, single mode for single files")
|
202 |
+
|