gfbati's picture
https://github.com/muhdhuz/audio2spec
b03e08e
#!/usr/bin/env python
import numpy as np
# https://github.com/librosa/librosa
import librosa
import librosa.display
import argparse
import os
from PIL import Image
from PIL import PngImagePlugin
import json
from spsi import spsi
FLAGS = None
# ------------------------------------------------------
# get any args provided on the command line
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('filename', type=str, help='Name of log mag spectrogram. Include extension')
parser.add_argument('--outdir', type=str, help='Output directory', default='./output')
parser.add_argument('--scalemax', type=int, help='Value to use as the max when scaling from png [0,255] to original [min,max]', default=None)
parser.add_argument('--scalemin', type=int, help='Value to use as the min when scaling from png [0,255] to original [min,max]', default=None)
parser.add_argument('--sr', type=int, help='Samplerate', default=22050)
parser.add_argument('--hopsize', type=int, help='Size of frame hop through sample file', default=256)
parser.add_argument('--glsteps', type=int, help='Number of Griffin&Lim iterations following SPSI', default=50 )
parser.add_argument('--wavfile', type=str, help='Optional name for output audio file. Unspecified means use the png filename', default=None)
FLAGS, unparsed = parser.parse_known_args()
print('\n FLAGS parsed : {0}'.format(FLAGS))
def inv_log(img):
img = np.exp(img) - 1.
return img
def PNG2LogSpect(fname,scalemin,scalemax):
"""
Read png spectrograms, expand to original scale and return numpy array.
If not stored in one of png metadata, the values needed to undo previous scaling are required to be specified.
"""
img = Image.open(fname)
#info = PngImagePlugin.PngInfo()
try:
img.text = img.text
lwinfo = json.loads(img.text['meta'])
except:
print('PNG2LogSpect: no img.text, using user specified values!')
lwinfo = {}
lwinfo['scaleMin'] = scalemin #require to pass in
lwinfo['scaleMax'] = scalemax
#info.add_text('meta',json.dumps(lwinfo))
minx, maxx = float(lwinfo['scaleMin']), float(lwinfo['scaleMax'])
#minx, maxx = float(lwinfo['oldmin']), float(lwinfo['oldmax'])
img = img.convert('L')
outimg = np.asarray(img, dtype=np.float32)
outimg = (outimg - 0)/(255-0)*(maxx-minx) + minx
return np.flipud(outimg), lwinfo
D,_ = PNG2LogSpect(FLAGS.filename,FLAGS.scalemin,FLAGS.scalemax)
Dsize, _ = D.shape
fftsize = 2*(Dsize-1) #infer fftsize from no. of fft bins i.e. height of image
magD = inv_log(D)
y_out = spsi(magD, fftsize=fftsize, hop_length=FLAGS.hopsize)
#print(magD.shape)
#print(y_out.shape)
if FLAGS.glsteps != 0 : #use spsi result for initial phase
x = librosa.stft(y_out, fftsize, FLAGS.hopsize, center=False)
p = np.angle(x)
#print(x.shape)
for i in range(FLAGS.glsteps):
S = magD * np.exp(1j*p)
y_out = librosa.istft(S, FLAGS.hopsize, center=True) # Griffin Lim, assumes hann window, librosa only does one iteration?
p = np.angle(librosa.stft(y_out, fftsize, FLAGS.hopsize, center=True))
scalefactor = np.amax(np.abs(y_out))
#print(np.amin(np.abs(y_out)))
#print(y_out[50:70])
print('scaling peak sample, ' + str(scalefactor) + ' to 1')
#y_out/=scalefactor
if FLAGS.wavfile == None:
librosa.output.write_wav(os.path.splitext(FLAGS.filename)[0]+'.wav', y_out, FLAGS.sr)
else:
librosa.output.write_wav(FLAGS.wavfile, y_out, FLAGS.sr)