|
--- |
|
dataset_info: |
|
- config_name: clean |
|
features: |
|
- name: audio |
|
dtype: |
|
audio: |
|
sampling_rate: 16000 |
|
- name: text |
|
dtype: string |
|
- name: id |
|
dtype: string |
|
- name: session_id |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 2807175314.0 |
|
num_examples: 39989 |
|
- name: validation |
|
num_bytes: 256038049.0 |
|
num_examples: 4161 |
|
- name: test |
|
num_bytes: 253226827.0 |
|
num_examples: 3813 |
|
download_size: 3311132741 |
|
dataset_size: 3316440190.0 |
|
- config_name: default |
|
features: |
|
- name: audio |
|
dtype: |
|
audio: |
|
sampling_rate: 16000 |
|
- name: text |
|
dtype: string |
|
- name: id |
|
dtype: string |
|
- name: session_id |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 3341105554.6299996 |
|
num_examples: 46583 |
|
download_size: 3346820592 |
|
dataset_size: 3341105554.6299996 |
|
configs: |
|
- config_name: clean |
|
data_files: |
|
- split: train |
|
path: clean/train-* |
|
- split: validation |
|
path: clean/validation-* |
|
- split: test |
|
path: clean/test-* |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
--- |
|
|
|
# Dataset Card for code-switching yodas |
|
|
|
<!-- Provide a quick summary of the dataset. --> |
|
|
|
This dataset is derived from espnet/yodas, more details can be found here: https://huggingface.co/datasets/espnet/yodas |
|
|
|
This is a subset of the zh000 subset of espnet/yodas dataset, which selects videos with Mandarin-English code-switching phenomenon. |
|
|
|
Note that code-switching is only gauranteed per video rather than per utterance. Therefore, not every utterance in the dataset contains code-switching. |
|
|
|
## Dataset Details |
|
|
|
### Dataset Usage |
|
The `default` config does not modify any text of the selected samples. |
|
```python |
|
from datasets import load_dataset |
|
cs_yodas = load_dataset("georgechang8/code_switch_yodas_zh") |
|
``` |
|
The `clean` config cleanses the text of the selected samples (as in the processing). |
|
```python |
|
from datasets import load_dataset |
|
cs_yodas_clean = load_dataset("georgechang8/code_switch_yodas_zh", "clean") |
|
``` |
|
```python |
|
{'audio': {'path': 'GaUSbuZm5Ec-00207-00083809-00084143.wav', |
|
'array': array([-0.09082031, 0.01898193, 0.02850342, ..., 0.01419067, |
|
0.01391602, 0.01513672]), |
|
'sampling_rate': 16000}, |
|
'text': '項明生,訂Agoda的項明生', |
|
'id': 'GaUSbuZm5Ec-00207-00083809-00084143', |
|
'session_id': 'GaUSbuZm5Ec'} |
|
``` |
|
|
|
### Dataset Description |
|
|
|
<!-- Provide a longer summary of what this dataset is. --> |
|
|
|
- **Language(s):** Chinese, English |
|
- **License:** CC-BY-3.0 |
|
|
|
### Dataset Sources [optional] |
|
|
|
<!-- Provide the basic links for the dataset. --> |
|
|
|
- **Repository:** https://huggingface.co/datasets/espnet/yodas |
|
|
|
## Dataset Creation |
|
|
|
#### Data Collection and Processing |
|
|
|
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> |
|
|
|
1. Read the text content of clips of espnet/yodas |
|
```python |
|
import glob |
|
import re |
|
import pandas as pd |
|
from pathlib import Path |
|
from tqdm.auto import tqdm |
|
from collections import defaultdict |
|
from dataclasses import dataclass, asdict |
|
|
|
@dataclass |
|
class Video: |
|
name: str = "" |
|
shard: str = "" |
|
duration: float = 0 |
|
content: str = "" |
|
|
|
data = defaultdict(Video) |
|
trange = tqdm(glob.glob("yodas/data/zh000/text/*.txt")) |
|
for file in trange: |
|
shard = Path(file).stem |
|
with open(file, "r", encoding="utf8") as f: |
|
for m in re.finditer(r"(.{11})-\d{5}-\d{8}-(\d{8})\s+(.*)", f.read()): |
|
name = m.group(1) |
|
assert data[name].shard in ["", shard] |
|
data[name].shard = shard |
|
data[name].name = name |
|
data[name].duration = int(m.group(2)) / 100 |
|
data[name].content += " " + m.group(3) |
|
trange.set_postfix(vids=len(data)) |
|
|
|
data_df = pd.DataFrame(map(asdict, data.values())) |
|
``` |
|
2. Retain videos with chinese symbols |
|
```python |
|
import re |
|
cjk_pattern = re.compile( |
|
# puncs \uff00-\uffef \u3000-\u303f |
|
r"[\u3400-\u4db5\u4e00-\u9fa5\u9fa6-\u9fbb\uf900-\ufa2d\ufa30-\ufa6a\ufa70-\ufad9\u2e80-\u2eff\u31c0-\u31ef\u2f00-\u2fdf\u2ff0-\u2fff\u3100-\u312f\u31a0-\u31bf\ufe10-\ufe1f\ufe30-\ufe4f\u2600-\u26ff\u2700-\u27bf\u3200-\u32ff\u3300-\u33ff]" |
|
) |
|
chinese_df = data_df[data_df['content'].apply(lambda x: cjk_pattern.search(x) is not None)] |
|
``` |
|
3. Filter out videos with Pingyin's |
|
```python |
|
pinyin_pattern = re.compile( |
|
r'[üÜāáǎàōóǒòēéěèīíǐìūúǔùǖǘǚǜ]' |
|
) |
|
chinese_pin_df = chinese_df[chinese_df['content'].apply(lambda x: pinyin_pattern.search(x) is None)] |
|
``` |
|
4. Retain videos with latin scripts |
|
```python |
|
az_pattern = re.compile( |
|
r"[a-zA-Z]+" |
|
) |
|
mixed_df = chinese_pin_df[chinese_pin_df['content'].apply(lambda x: az_pattern.search(x) is not None)] |
|
``` |
|
5. Retain videos with punctuations |
|
```python |
|
punc_pattern = re.compile( |
|
r'[!?。,、·.,?!]' |
|
) |
|
mixed_punc_df = mixed_df[mixed_df['content'].apply(lambda x: punc_pattern.search(x) is not None)] |
|
``` |
|
6. Sort by increasing proportion of chinese characters |
|
```python |
|
def func(x): |
|
return x.apply(lambda z: len(cjk_pattern.findall(z)) / len(z)) |
|
mixed_punc_df = mixed_punc_df.sort_values(by='content', key=func) |
|
``` |
|
> This gives around 1000 videos left. |
|
|
|
7. Save to csv to for manual inspection |
|
```python |
|
mixed_punc_df.to_csv('sanity.csv') |
|
``` |
|
8. Manually inspect 0-500 |
|
- NwRTR8mY-7A: mostly english |
|
- ASL3yEYC1IE, etc.: contains English translation for each line |
|
- Recurring creators whose content is not good code-switching: "天天開心","日向蓝子","笑花兒","关于麻将的职人","大濕:","朋友sisi","please my hero","金玲老師" |
|
- Manually pick exceptions to previous rule to add to accepted list |
|
- Recurring creators whose content is good code-switching: "我是小夫","久德電子","GL_TECH" |
|
- Most videos about: "U.S. stock market", "tech reviews" are accepted. |
|
|
|
9. Quickly skim through 501-1000 (only 10 were picked) |
|
|
|
> A total of 176 videos were picked in step 8 & 9 |
|
|
|
10. Extract selected video clips' audio |
|
```python |
|
from tqdm.auto import tqdm |
|
from pathlib import path |
|
import tarfile |
|
|
|
with open("codeswitch.txt", "r") as f: # list of 176 picked video_ids |
|
codeswitch = set(map(str.strip, f.readlines())) |
|
code_switch_data = data_df[data_df['name'].apply(lambda x: x in codeswitch)] |
|
|
|
shard_names = {} |
|
for name, shard in zip( |
|
code_switch_data['name'].tolist(), |
|
code_switch_data['shard'].tolist() |
|
): |
|
if shard not in shard_names: |
|
shard_names[shard] = set() |
|
shard_names[shard].add(name) |
|
|
|
def extract_wav_files(shard, output_dir): |
|
# Create the output directory if it doesn't exist |
|
tar_file_path = f"yodas/data/zh000/audio/{shard}.tar.gz" |
|
names = shard_names[shard] |
|
|
|
# Open the tar.gz file |
|
with tarfile.open(tar_file_path, 'r:gz') as tar: |
|
# Iterate through the contents of the tar file |
|
for member in tar.getmembers(): |
|
# Check if the member is a WAV file |
|
video_id = re.search(r"(.{11})-\d{5}-\d{8}-\d{8}", member.name) |
|
if video_id and video_id.group(1) in names: |
|
# Extract the WAV file contents into the output directory |
|
output_path = Path(output_dir, Path(member.name).name) |
|
with open(output_path, 'wb') as output_file: |
|
output_file.write(tar.extractfile(member).read()) |
|
|
|
output_dir = "./code_switch_yodas" |
|
Path(output_dir).mkdir(exist_ok=True, parents=True) |
|
for shard in tqdm(shard_names): |
|
extract_wav_files(shard, output_dir) |
|
``` |
|
11. Publish the subset |
|
```python |
|
import datasets |
|
from datasets import Dataset |
|
|
|
audio_dataset = Dataset.from_dict({ |
|
"audio": [ |
|
f"{output_dir}/{clip_id}.wav" |
|
for clip_id in clip_ids |
|
], |
|
"text": texts, |
|
"id": clip_ids, |
|
"session_id": [x[:11] for x in clip_ids] |
|
}) |
|
audio_dataset = audio_dataset.cast_column("audio", datasets.features.Audio(sampling_rate=16000)) |
|
audio_dataset = audio_dataset.sort("id") |
|
audio_dataset.push_to_hub( |
|
"georgechang8/code_switch_yodas_zh", |
|
commit_message="Initial commit", |
|
embed_external_files=True |
|
) |
|
``` |
|
#### Extra (without punctuations) |
|
Doing step 1-10, but reverse step 5 to look for ones without punctuations, this yields a small extra set: |
|
```python |
|
extra_set = { |
|
"37s5xmYYSM8", |
|
"3ZVVBEugui4", |
|
"-zHxyIuEw-8", |
|
"Dngt6Ca8-3u", |
|
"zJcle9SO98Q", |
|
"murJVhx5dd0", |
|
"6hCLoOVtM5Y", # test |
|
"U-1tallz0hM", |
|
"wfCUHCYJgIU", |
|
"GrKoml8qb78", |
|
"YMTMTFpV7_M", |
|
"GJV0ZRzAARy", |
|
"BtMii9364Fg", |
|
"apK8JYOq6gI", |
|
"IF-GnMzu7y8", |
|
"0qJ61eujIVo", |
|
"Okq02I_jTcA", |
|
"hCnZlSbTht8", |
|
"rMk21JBTisE", # validation |
|
"s9qzwyIM3JI", |
|
"NBf6Z9R1r7I", |
|
"jIbc2Jzfa0g", |
|
} |
|
``` |
|
``` |
|
train: |
|
20 videos |
|
validation: |
|
1 video |
|
test: |
|
1 video |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['audio', 'text', 'id', 'session_id'], |
|
num_rows: 5990 |
|
}) |
|
validation: Dataset({ |
|
features: ['audio', 'text', 'id', 'session_id'], |
|
num_rows: 397 |
|
}) |
|
test: Dataset({ |
|
features: ['audio', 'text', 'id', 'session_id'], |
|
num_rows: 282 |
|
}) |
|
}) |
|
``` |
|
|
|
#### Data Cleaning |
|
1. The video `Pew9CK74axu` is manually cleaned |
|
```python |
|
def filter_fn(batch): |
|
return (z == 'Pew9CK74axu' for z in batch['session_id']) |
|
|
|
special_care = audio_dataset.filter(filter_fn, num_proc=8, batched=True) |
|
with open("manual_edit.txt", "w", encoding="utf8") as f: |
|
for l in special_care['text']: |
|
f.write(l + "\n") |
|
# manual cleaning ... |
|
with open("manual_edit_finish.txt", "r", encoding="utf8") as f: |
|
lines = list(map(str.strip, f.readlines())) |
|
replace_dict = { |
|
a: b |
|
for a, b in zip(special_care['id'], lines) |
|
} |
|
def manual_edit(batch): |
|
texts = [] |
|
for sid, orig in zip(batch['id'], batch['text']): |
|
texts += [replace_dict.get(sid, orig)] |
|
return {'text': texts} |
|
|
|
audio_dataset_manual = audio_dataset.map(manual_edit, batched=True, num_proc=8) |
|
``` |
|
2. Low log-prob filtering |
|
Using whisper-medium to compute the logprob, then filter by a handpicked threshold `-3.5` |
|
```python |
|
# Get rid of low-prob videos |
|
low_prob_set = { |
|
'9lQs7INyYBQ', |
|
'HezOD6XPr_M', |
|
'HfeLdctBVGY', |
|
'IzfrgOUd2Uc', |
|
'UFklIGGKWN0', |
|
'_x8LwaPRtCE', |
|
'eK9m6uCNN6Q', |
|
'erbZNpDMHN0', |
|
'l9BjfWr1_Pg', |
|
'nSStWkJtbR4', |
|
'wrEY_EzQEsy', |
|
'3Zed0NHrmxo', |
|
'r29FW7K4iok', |
|
'MgdQuY0-abI', |
|
'yHh4rM2KX5Q' |
|
} |
|
audio_dataset_manual = audio_dataset_manual.filter(lambda batch: [s not in low_prob_set for s in batch['session_id']], num_proc=2, batched=True) |
|
# 176 - 14 = 161 videos |
|
``` |
|
3. train/dev/test split |
|
```python |
|
from datasets import DatasetDict |
|
|
|
validation_set = { |
|
"AyPua3Mi9FU", |
|
"r29FW7K4iok", # low prob |
|
"GaUSbuZm5Ec", |
|
"AKW9vmSy8lQ", |
|
"3Zed0NHrmxo", # low prob |
|
"ZHPFLOuT48u", |
|
"RiCN24FLVLk", |
|
"zrV_ZNWo8PQ", |
|
# "rMk21JBTisE", # new (no punc) ==> not in 'default' config |
|
} |
|
test_set = { |
|
"lH7bZ-8hF1o", |
|
"WF4ovtdi6wu", |
|
"MgdQuY0-abI", # low prob |
|
"yHh4rM2KX5Q", # low prob |
|
"e_cxHBDSqsM", |
|
"NO6985Bf_Ro", |
|
# "6hCLoOVtM5Y", # new (no punc) ==> not in 'default' config |
|
} |
|
|
|
def train_fn(batch): |
|
return (z not in (validation_set|test_set) for z in batch['session_id']) |
|
def validation_fn(batch): |
|
return (z in validation_set for z in batch['session_id']) |
|
def test_fn(batch): |
|
return (z in test_set for z in batch['session_id']) |
|
|
|
audio_dataset_manual = DatasetDict( |
|
train=audio_dataset_manual.filter(train_fn, num_proc=2, batched=True), |
|
validation=audio_dataset_manual.filter(validation_fn, num_proc=2, batched=True), |
|
test=audio_dataset_manual.filter(test_fn, num_proc=2, batched=True) |
|
) |
|
``` |
|
Don't forget to merge with extra set |
|
```python |
|
from datasets import concatenate_datasets |
|
ds_extra = load_dataset("georgechang8/code_switch_yodas_zh", "clean_extra") # no longer available |
|
audio_dataset_manual = DatasetDict({ |
|
split: concatenate_datasets([audio_dataset_manual[split], ds_extra[split]]) |
|
for split in audio_dataset_manual |
|
}) |
|
``` |
|
Do sanity check |
|
```python |
|
ds_full = audio_dataset_manual |
|
for split in ds_full: |
|
print(split, len(set(ds_full[split]['id']))) |
|
assert len(set(ds_full['train']['id']) & set(ds_full['validation']['id'])) == 0 |
|
assert len(set(ds_full['train']['id']) & set(ds_full['test']['id'])) == 0 |
|
assert len(set(ds_full['test']['id']) & set(ds_full['validation']['id'])) == 0 |
|
``` |
|
|
|
4. General cleansing pipeline |
|
```python |
|
import re |
|
import html |
|
|
|
def remove_emojies(text): |
|
# Ref: https://gist.github.com/Alex-Just/e86110836f3f93fe7932290526529cd1#gistcomment-3208085 |
|
# Ref: https://en.wikipedia.org/wiki/Unicode_block |
|
EMOJI_PATTERN = re.compile( |
|
"[" |
|
"\U0001F1E0-\U0001F1FF" # flags (iOS) |
|
"\U0001F300-\U0001F5FF" # symbols & pictographs |
|
"\U0001F600-\U0001F64F" # emoticons |
|
"\U0001F680-\U0001F6FF" # transport & map symbols |
|
"\U0001F700-\U0001F77F" # alchemical symbols |
|
"\U0001F780-\U0001F7FF" # Geometric Shapes Extended |
|
"\U0001F800-\U0001F8FF" # Supplemental Arrows-C |
|
"\U0001F900-\U0001F9FF" # Supplemental Symbols and Pictographs |
|
"\U0001FA00-\U0001FA6F" # Chess Symbols |
|
"\U0001FA70-\U0001FAFF" # Symbols and Pictographs Extended-A |
|
"\U00002702-\U000027B0" # Dingbats |
|
"]" |
|
) |
|
text = re.sub(EMOJI_PATTERN, r' ', text) |
|
return text |
|
|
|
def clean_transcripts(x): |
|
cjk = "[\u3400-\u4db5\u4e00-\u9fa5\u9fa6-\u9fbb\uf900-\ufa2d\ufa30-\ufa6a\ufa70-\ufad9\uff00-\uffef\u2e80-\u2eff\u3000-\u303f\u31c0-\u31ef\u2f00-\u2fdf\u2ff0-\u2fff\u3100-\u312f\u31a0-\u31bf\ufe10-\ufe1f\ufe30-\ufe4f\u2600-\u26ff\u2700-\u27bf\u3200-\u32ff\u3300-\u33ff]" |
|
x = html.unescape(x) |
|
x = remove_emojies(x) |
|
x = re.sub(r'\.{3,}', ' ', x) |
|
x = re.sub(r'…+', ' ', x) |
|
x = re.sub(r'\s+|^|$', ' ', x) # expanding space allows matching " uh uh" case |
|
x = re.sub(rf"({cjk}|\s)([Uu][mh]|U[MH])({cjk}|\s)", r"\1 \3", x) # uh/um surrounded by cjk or space |
|
x = re.sub(r"([HhEe]mm+|[HE]MM+)", " ", x) # hmm emm |
|
x = re.sub(fr"\*+({cjk}+|[A-Za-z]+)\*+", " ", x) # *叹气* |
|
x = re.sub(r'[呃嗯]+', ' ', x) # 呃嗯 |
|
def replace_except(pattern, repl, z, excs): |
|
for e, t in excs: |
|
z = z.replace(e, t) |
|
z = re.sub(pattern, repl, z) |
|
for e, t in excs: |
|
z = z.replace(t, e) |
|
return z |
|
# remove 恩 except for 恩桥 感恩 恩怨 |
|
x = replace_except("恩", ' ', x, excs=[("感恩", "呃"),("恩桥", "嗯"),("恩怨", "emm")]) |
|
x = re.sub(r'([^()]*)', ' ', x) # remove (...) |
|
x = re.sub(r'[()]+', ' ', x) # remove isolated() |
|
x = re.sub(r"\s+", " ", x) |
|
# remove (...) except for 'Program Files (x86)' |
|
x = replace_except(r'\([^()]*\)', ' ', x, excs=[("Program Files (x86)", "呃")]) |
|
x = re.sub(r'[()]+', ' ', x) # remove isolated () |
|
puncs = r'[,?!。:;~?!,.:;~]' |
|
x = re.sub(rf'({puncs})(?:\s*\1)+', r'\1', x) # ??? -> ? |
|
x = re.sub(rf"\s+({puncs})", r'\1', x) # text , -> text, |
|
sp_puncs = r'[?!,.;]' # puncs with spaces |
|
x = re.sub(rf"({puncs}*{sp_puncs})([^\d])", r'\1 \2', x) # text!?cont -> text!? cont |
|
x = re.sub(rf"^[\s]*{puncs}+", "", x) # leading puncs |
|
x = re.sub(r"\s+", " ", x) # excess spaces |
|
return x.strip() |
|
|
|
def clean_batch(batch): |
|
return {'text': [clean_transcripts(x) for x in batch['text']]} |
|
|
|
audio_dataset_manual_clean = audio_dataset_manual.map(clean_batch, batched=True, num_proc=8) |
|
``` |
|
4. Publish |
|
```python |
|
audio_dataset_manual_clean.push_to_hub( |
|
"georgechang8/code_switch_yodas_zh", |
|
config_name="clean", |
|
set_default=False, |
|
commit_message="Clean transcript", |
|
max_shard_size="1GB", |
|
embed_external_files=True, |
|
) |
|
``` |
|
|
|
## Limitations |
|
|
|
<!-- This section is meant to convey both technical and sociotechnical limitations. --> |
|
|
|
1. The filtering & hand-picking process might left out useful videos. |
|
2. The transcriptions is not processed in any way, so might need further cleansing. |
|
|
|
## Dataset Card Contact |
|
|
|
Original dataset: https://huggingface.co/datasets/espnet/yodas |
|
CS processing: Chih-Chiang Chang (cc.chang0828@gmail.com) |