File size: 16,017 Bytes
bdcf4c1 a5ea7e4 2fc82b5 a5ea7e4 2fc82b5 a5ea7e4 2fc82b5 079dae1 bdcf4c1 2588ac7 a5ea7e4 079dae1 bdcf4c1 92ac101 7215e45 92ac101 7215e45 92ac101 6def75d 7215e45 6def75d 7215e45 6def75d 7215e45 6def75d 7215e45 6def75d 7215e45 6def75d 7215e45 6def75d 7215e45 6def75d 7215e45 6def75d 7215e45 92ac101 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
---
dataset_info:
- config_name: clean
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: text
dtype: string
- name: id
dtype: string
- name: session_id
dtype: string
splits:
- name: train
num_bytes: 2807175314.0
num_examples: 39989
- name: validation
num_bytes: 256038049.0
num_examples: 4161
- name: test
num_bytes: 253226827.0
num_examples: 3813
download_size: 3311132741
dataset_size: 3316440190.0
- config_name: default
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: text
dtype: string
- name: id
dtype: string
- name: session_id
dtype: string
splits:
- name: train
num_bytes: 3341105554.6299996
num_examples: 46583
download_size: 3346820592
dataset_size: 3341105554.6299996
configs:
- config_name: clean
data_files:
- split: train
path: clean/train-*
- split: validation
path: clean/validation-*
- split: test
path: clean/test-*
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for code-switching yodas
<!-- Provide a quick summary of the dataset. -->
This dataset is derived from espnet/yodas, more details can be found here: https://huggingface.co/datasets/espnet/yodas
This is a subset of the zh000 subset of espnet/yodas dataset, which selects videos with Mandarin-English code-switching phenomenon.
Note that code-switching is only gauranteed per video rather than per utterance. Therefore, not every utterance in the dataset contains code-switching.
## Dataset Details
### Dataset Usage
The `default` config does not modify any text of the selected samples.
```python
from datasets import load_dataset
cs_yodas = load_dataset("georgechang8/code_switch_yodas_zh")
```
The `clean` config cleanses the text of the selected samples (as in the processing).
```python
from datasets import load_dataset
cs_yodas_clean = load_dataset("georgechang8/code_switch_yodas_zh", "clean")
```
```python
{'audio': {'path': 'GaUSbuZm5Ec-00207-00083809-00084143.wav',
'array': array([-0.09082031, 0.01898193, 0.02850342, ..., 0.01419067,
0.01391602, 0.01513672]),
'sampling_rate': 16000},
'text': '項明生,訂Agoda的項明生',
'id': 'GaUSbuZm5Ec-00207-00083809-00084143',
'session_id': 'GaUSbuZm5Ec'}
```
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Language(s):** Chinese, English
- **License:** CC-BY-3.0
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** https://huggingface.co/datasets/espnet/yodas
## Dataset Creation
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
1. Read the text content of clips of espnet/yodas
```python
import glob
import re
import pandas as pd
from pathlib import Path
from tqdm.auto import tqdm
from collections import defaultdict
from dataclasses import dataclass, asdict
@dataclass
class Video:
name: str = ""
shard: str = ""
duration: float = 0
content: str = ""
data = defaultdict(Video)
trange = tqdm(glob.glob("yodas/data/zh000/text/*.txt"))
for file in trange:
shard = Path(file).stem
with open(file, "r", encoding="utf8") as f:
for m in re.finditer(r"(.{11})-\d{5}-\d{8}-(\d{8})\s+(.*)", f.read()):
name = m.group(1)
assert data[name].shard in ["", shard]
data[name].shard = shard
data[name].name = name
data[name].duration = int(m.group(2)) / 100
data[name].content += " " + m.group(3)
trange.set_postfix(vids=len(data))
data_df = pd.DataFrame(map(asdict, data.values()))
```
2. Retain videos with chinese symbols
```python
import re
cjk_pattern = re.compile(
# puncs \uff00-\uffef \u3000-\u303f
r"[\u3400-\u4db5\u4e00-\u9fa5\u9fa6-\u9fbb\uf900-\ufa2d\ufa30-\ufa6a\ufa70-\ufad9\u2e80-\u2eff\u31c0-\u31ef\u2f00-\u2fdf\u2ff0-\u2fff\u3100-\u312f\u31a0-\u31bf\ufe10-\ufe1f\ufe30-\ufe4f\u2600-\u26ff\u2700-\u27bf\u3200-\u32ff\u3300-\u33ff]"
)
chinese_df = data_df[data_df['content'].apply(lambda x: cjk_pattern.search(x) is not None)]
```
3. Filter out videos with Pingyin's
```python
pinyin_pattern = re.compile(
r'[üÜāáǎàōóǒòēéěèīíǐìūúǔùǖǘǚǜ]'
)
chinese_pin_df = chinese_df[chinese_df['content'].apply(lambda x: pinyin_pattern.search(x) is None)]
```
4. Retain videos with latin scripts
```python
az_pattern = re.compile(
r"[a-zA-Z]+"
)
mixed_df = chinese_pin_df[chinese_pin_df['content'].apply(lambda x: az_pattern.search(x) is not None)]
```
5. Retain videos with punctuations
```python
punc_pattern = re.compile(
r'[!?。,、·.,?!]'
)
mixed_punc_df = mixed_df[mixed_df['content'].apply(lambda x: punc_pattern.search(x) is not None)]
```
6. Sort by increasing proportion of chinese characters
```python
def func(x):
return x.apply(lambda z: len(cjk_pattern.findall(z)) / len(z))
mixed_punc_df = mixed_punc_df.sort_values(by='content', key=func)
```
> This gives around 1000 videos left.
7. Save to csv to for manual inspection
```python
mixed_punc_df.to_csv('sanity.csv')
```
8. Manually inspect 0-500
- NwRTR8mY-7A: mostly english
- ASL3yEYC1IE, etc.: contains English translation for each line
- Recurring creators whose content is not good code-switching: "天天開心","日向蓝子","笑花兒","关于麻将的职人","大濕:","朋友sisi","please my hero","金玲老師"
- Manually pick exceptions to previous rule to add to accepted list
- Recurring creators whose content is good code-switching: "我是小夫","久德電子","GL_TECH"
- Most videos about: "U.S. stock market", "tech reviews" are accepted.
9. Quickly skim through 501-1000 (only 10 were picked)
> A total of 176 videos were picked in step 8 & 9
10. Extract selected video clips' audio
```python
from tqdm.auto import tqdm
from pathlib import path
import tarfile
with open("codeswitch.txt", "r") as f: # list of 176 picked video_ids
codeswitch = set(map(str.strip, f.readlines()))
code_switch_data = data_df[data_df['name'].apply(lambda x: x in codeswitch)]
shard_names = {}
for name, shard in zip(
code_switch_data['name'].tolist(),
code_switch_data['shard'].tolist()
):
if shard not in shard_names:
shard_names[shard] = set()
shard_names[shard].add(name)
def extract_wav_files(shard, output_dir):
# Create the output directory if it doesn't exist
tar_file_path = f"yodas/data/zh000/audio/{shard}.tar.gz"
names = shard_names[shard]
# Open the tar.gz file
with tarfile.open(tar_file_path, 'r:gz') as tar:
# Iterate through the contents of the tar file
for member in tar.getmembers():
# Check if the member is a WAV file
video_id = re.search(r"(.{11})-\d{5}-\d{8}-\d{8}", member.name)
if video_id and video_id.group(1) in names:
# Extract the WAV file contents into the output directory
output_path = Path(output_dir, Path(member.name).name)
with open(output_path, 'wb') as output_file:
output_file.write(tar.extractfile(member).read())
output_dir = "./code_switch_yodas"
Path(output_dir).mkdir(exist_ok=True, parents=True)
for shard in tqdm(shard_names):
extract_wav_files(shard, output_dir)
```
11. Publish the subset
```python
import datasets
from datasets import Dataset
audio_dataset = Dataset.from_dict({
"audio": [
f"{output_dir}/{clip_id}.wav"
for clip_id in clip_ids
],
"text": texts,
"id": clip_ids,
"session_id": [x[:11] for x in clip_ids]
})
audio_dataset = audio_dataset.cast_column("audio", datasets.features.Audio(sampling_rate=16000))
audio_dataset = audio_dataset.sort("id")
audio_dataset.push_to_hub(
"georgechang8/code_switch_yodas_zh",
commit_message="Initial commit",
embed_external_files=True
)
```
#### Extra (without punctuations)
Doing step 1-10, but reverse step 5 to look for ones without punctuations, this yields a small extra set:
```python
extra_set = {
"37s5xmYYSM8",
"3ZVVBEugui4",
"-zHxyIuEw-8",
"Dngt6Ca8-3u",
"zJcle9SO98Q",
"murJVhx5dd0",
"6hCLoOVtM5Y", # test
"U-1tallz0hM",
"wfCUHCYJgIU",
"GrKoml8qb78",
"YMTMTFpV7_M",
"GJV0ZRzAARy",
"BtMii9364Fg",
"apK8JYOq6gI",
"IF-GnMzu7y8",
"0qJ61eujIVo",
"Okq02I_jTcA",
"hCnZlSbTht8",
"rMk21JBTisE", # validation
"s9qzwyIM3JI",
"NBf6Z9R1r7I",
"jIbc2Jzfa0g",
}
```
```
train:
20 videos
validation:
1 video
test:
1 video
DatasetDict({
train: Dataset({
features: ['audio', 'text', 'id', 'session_id'],
num_rows: 5990
})
validation: Dataset({
features: ['audio', 'text', 'id', 'session_id'],
num_rows: 397
})
test: Dataset({
features: ['audio', 'text', 'id', 'session_id'],
num_rows: 282
})
})
```
#### Data Cleaning
1. The video `Pew9CK74axu` is manually cleaned
```python
def filter_fn(batch):
return (z == 'Pew9CK74axu' for z in batch['session_id'])
special_care = audio_dataset.filter(filter_fn, num_proc=8, batched=True)
with open("manual_edit.txt", "w", encoding="utf8") as f:
for l in special_care['text']:
f.write(l + "\n")
# manual cleaning ...
with open("manual_edit_finish.txt", "r", encoding="utf8") as f:
lines = list(map(str.strip, f.readlines()))
replace_dict = {
a: b
for a, b in zip(special_care['id'], lines)
}
def manual_edit(batch):
texts = []
for sid, orig in zip(batch['id'], batch['text']):
texts += [replace_dict.get(sid, orig)]
return {'text': texts}
audio_dataset_manual = audio_dataset.map(manual_edit, batched=True, num_proc=8)
```
2. Low log-prob filtering
Using whisper-medium to compute the logprob, then filter by a handpicked threshold `-3.5`
```python
# Get rid of low-prob videos
low_prob_set = {
'9lQs7INyYBQ',
'HezOD6XPr_M',
'HfeLdctBVGY',
'IzfrgOUd2Uc',
'UFklIGGKWN0',
'_x8LwaPRtCE',
'eK9m6uCNN6Q',
'erbZNpDMHN0',
'l9BjfWr1_Pg',
'nSStWkJtbR4',
'wrEY_EzQEsy',
'3Zed0NHrmxo',
'r29FW7K4iok',
'MgdQuY0-abI',
'yHh4rM2KX5Q'
}
audio_dataset_manual = audio_dataset_manual.filter(lambda batch: [s not in low_prob_set for s in batch['session_id']], num_proc=2, batched=True)
# 176 - 14 = 161 videos
```
3. train/dev/test split
```python
from datasets import DatasetDict
validation_set = {
"AyPua3Mi9FU",
"r29FW7K4iok", # low prob
"GaUSbuZm5Ec",
"AKW9vmSy8lQ",
"3Zed0NHrmxo", # low prob
"ZHPFLOuT48u",
"RiCN24FLVLk",
"zrV_ZNWo8PQ",
# "rMk21JBTisE", # new (no punc) ==> not in 'default' config
}
test_set = {
"lH7bZ-8hF1o",
"WF4ovtdi6wu",
"MgdQuY0-abI", # low prob
"yHh4rM2KX5Q", # low prob
"e_cxHBDSqsM",
"NO6985Bf_Ro",
# "6hCLoOVtM5Y", # new (no punc) ==> not in 'default' config
}
def train_fn(batch):
return (z not in (validation_set|test_set) for z in batch['session_id'])
def validation_fn(batch):
return (z in validation_set for z in batch['session_id'])
def test_fn(batch):
return (z in test_set for z in batch['session_id'])
audio_dataset_manual = DatasetDict(
train=audio_dataset_manual.filter(train_fn, num_proc=2, batched=True),
validation=audio_dataset_manual.filter(validation_fn, num_proc=2, batched=True),
test=audio_dataset_manual.filter(test_fn, num_proc=2, batched=True)
)
```
Don't forget to merge with extra set
```python
from datasets import concatenate_datasets
ds_extra = load_dataset("georgechang8/code_switch_yodas_zh", "clean_extra") # no longer available
audio_dataset_manual = DatasetDict({
split: concatenate_datasets([audio_dataset_manual[split], ds_extra[split]])
for split in audio_dataset_manual
})
```
Do sanity check
```python
ds_full = audio_dataset_manual
for split in ds_full:
print(split, len(set(ds_full[split]['id'])))
assert len(set(ds_full['train']['id']) & set(ds_full['validation']['id'])) == 0
assert len(set(ds_full['train']['id']) & set(ds_full['test']['id'])) == 0
assert len(set(ds_full['test']['id']) & set(ds_full['validation']['id'])) == 0
```
4. General cleansing pipeline
```python
import re
import html
def remove_emojies(text):
# Ref: https://gist.github.com/Alex-Just/e86110836f3f93fe7932290526529cd1#gistcomment-3208085
# Ref: https://en.wikipedia.org/wiki/Unicode_block
EMOJI_PATTERN = re.compile(
"["
"\U0001F1E0-\U0001F1FF" # flags (iOS)
"\U0001F300-\U0001F5FF" # symbols & pictographs
"\U0001F600-\U0001F64F" # emoticons
"\U0001F680-\U0001F6FF" # transport & map symbols
"\U0001F700-\U0001F77F" # alchemical symbols
"\U0001F780-\U0001F7FF" # Geometric Shapes Extended
"\U0001F800-\U0001F8FF" # Supplemental Arrows-C
"\U0001F900-\U0001F9FF" # Supplemental Symbols and Pictographs
"\U0001FA00-\U0001FA6F" # Chess Symbols
"\U0001FA70-\U0001FAFF" # Symbols and Pictographs Extended-A
"\U00002702-\U000027B0" # Dingbats
"]"
)
text = re.sub(EMOJI_PATTERN, r' ', text)
return text
def clean_transcripts(x):
cjk = "[\u3400-\u4db5\u4e00-\u9fa5\u9fa6-\u9fbb\uf900-\ufa2d\ufa30-\ufa6a\ufa70-\ufad9\uff00-\uffef\u2e80-\u2eff\u3000-\u303f\u31c0-\u31ef\u2f00-\u2fdf\u2ff0-\u2fff\u3100-\u312f\u31a0-\u31bf\ufe10-\ufe1f\ufe30-\ufe4f\u2600-\u26ff\u2700-\u27bf\u3200-\u32ff\u3300-\u33ff]"
x = html.unescape(x)
x = remove_emojies(x)
x = re.sub(r'\.{3,}', ' ', x)
x = re.sub(r'…+', ' ', x)
x = re.sub(r'\s+|^|$', ' ', x) # expanding space allows matching " uh uh" case
x = re.sub(rf"({cjk}|\s)([Uu][mh]|U[MH])({cjk}|\s)", r"\1 \3", x) # uh/um surrounded by cjk or space
x = re.sub(r"([HhEe]mm+|[HE]MM+)", " ", x) # hmm emm
x = re.sub(fr"\*+({cjk}+|[A-Za-z]+)\*+", " ", x) # *叹气*
x = re.sub(r'[呃嗯]+', ' ', x) # 呃嗯
def replace_except(pattern, repl, z, excs):
for e, t in excs:
z = z.replace(e, t)
z = re.sub(pattern, repl, z)
for e, t in excs:
z = z.replace(t, e)
return z
# remove 恩 except for 恩桥 感恩 恩怨
x = replace_except("恩", ' ', x, excs=[("感恩", "呃"),("恩桥", "嗯"),("恩怨", "emm")])
x = re.sub(r'([^()]*)', ' ', x) # remove (...)
x = re.sub(r'[()]+', ' ', x) # remove isolated()
x = re.sub(r"\s+", " ", x)
# remove (...) except for 'Program Files (x86)'
x = replace_except(r'\([^()]*\)', ' ', x, excs=[("Program Files (x86)", "呃")])
x = re.sub(r'[()]+', ' ', x) # remove isolated ()
puncs = r'[,?!。:;~?!,.:;~]'
x = re.sub(rf'({puncs})(?:\s*\1)+', r'\1', x) # ??? -> ?
x = re.sub(rf"\s+({puncs})", r'\1', x) # text , -> text,
sp_puncs = r'[?!,.;]' # puncs with spaces
x = re.sub(rf"({puncs}*{sp_puncs})([^\d])", r'\1 \2', x) # text!?cont -> text!? cont
x = re.sub(rf"^[\s]*{puncs}+", "", x) # leading puncs
x = re.sub(r"\s+", " ", x) # excess spaces
return x.strip()
def clean_batch(batch):
return {'text': [clean_transcripts(x) for x in batch['text']]}
audio_dataset_manual_clean = audio_dataset_manual.map(clean_batch, batched=True, num_proc=8)
```
4. Publish
```python
audio_dataset_manual_clean.push_to_hub(
"georgechang8/code_switch_yodas_zh",
config_name="clean",
set_default=False,
commit_message="Clean transcript",
max_shard_size="1GB",
embed_external_files=True,
)
```
## Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
1. The filtering & hand-picking process might left out useful videos.
2. The transcriptions is not processed in any way, so might need further cleansing.
## Dataset Card Contact
Original dataset: https://huggingface.co/datasets/espnet/yodas
CS processing: Chih-Chiang Chang (cc.chang0828@gmail.com) |