Datasets:
File size: 7,229 Bytes
2fa5982 48d12fa 2fa5982 2290db0 2fa5982 5c31aa4 2fa5982 5c31aa4 2fa5982 5c31aa4 2fa5982 2290db0 2fa5982 d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b d2f15aa d0c725b 5a290c3 d0c725b 5a290c3 d2f15aa d0c725b 5a290c3 d2f15aa d0c725b d2f15aa d0c725b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
---
language:
- en
- zh
license: cc-by-sa-4.0
size_categories:
- 10K<n<100K
dataset_info:
- config_name: 30s
features:
- name: id
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: transcription
dtype: string
- name: condition_on_prev
dtype: string
splits:
- name: train
num_bytes: 1117823922.576
num_examples: 1308
- name: validation
num_bytes: 115050795.0
num_examples: 135
- name: test
num_bytes: 117961106.0
num_examples: 138
download_size: 1207395166
dataset_size: 1350835823.576
- config_name: default
features:
- name: id
dtype: string
- name: path
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: transcription
dtype: string
- name: duration
dtype: float32
- name: language
dtype: string
- name: original_speaker_id
dtype: int64
- name: session_id
dtype: int64
- name: topic
dtype: string
splits:
- name: train
num_bytes: 1014558975.36
num_examples: 9869
- name: test
num_bytes: 106170264.135
num_examples: 1315
- name: validation
num_bytes: 106771606.91
num_examples: 1130
download_size: 1223500329
dataset_size: 1227500846.4050002
configs:
- config_name: 30s
data_files:
- split: train
path: 30s/train-*
- split: validation
path: 30s/validation-*
- split: test
path: 30s/test-*
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: validation
path: data/validation-*
---
# Dataset Card for Dataset Name
This dataset is derived from CAiRE/ASCEND. More information is available at https://huggingface.co/datasets/CAiRE/ASCEND.
- Removed 嗯 呃 um uh
- Resolved [UNK]'s using whisper-medium
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Language(s):** English, Simplified Chinese, Mixed
- **License:** Creative Common Attribution Share-Alike 4.0 International (CC-BY-SA 4.0)
## Dataset Creation
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
https://huggingface.co/datasets/CAiRE/ASCEND
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
1. Load from source
```python
from datasets import load_dataset, Audio as DSAudio
data_raw = load_dataset("CAiRE/ASCEND")
data_raw = data_raw.cast_column("audio", DSAudio(sampling_rate=16000))
```
2. Clean stop words
```python
import re
def clean_transcripts(x):
cjk = "[\u3400-\u4db5\u4e00-\u9fa5\u9fa6-\u9fbb\uf900-\ufa2d\ufa30-\ufa6a\ufa70-\ufad9\uff00-\uffef\u2e80-\u2eff\u3000-\u303f\u31c0-\u31ef\u2f00-\u2fdf\u2ff0-\u2fff\u3100-\u312f\u31a0-\u31bf\ufe10-\ufe1f\ufe30-\ufe4f\u2600-\u26ff\u2700-\u27bf\u3200-\u32ff\u3300-\u33ff]"
x = re.sub(r'\.\.\.|\s|^|$', ' ', x) # expanding space allows matching " uh uh" case
x = re.sub(rf"({cjk}|\s)([Uu][mh]|U[MH])({cjk}|\s)", r"\1 \3", x) # replace any uh surrounded by cjk or space
x = x.replace('嗯', ' ')
x = x.replace('呃', ' ')
x = re.sub(r"\s+", " ", x)
return x.strip()
data = data_raw.map(lambda x: {"transcription": clean_transcripts(x['transcription'])})
data = data.filter(lambda x: x["transcription"] != "")
```
3. Isolate samples with UNKs
```python
unks = data.filter(lambda x: "[UNK]" in x["transcription"])
unks.shape
```
> {'train': (402, 9), 'test': (36, 9), 'validation': (63, 9)}
4. Load whisper model. For Chinese, medium performs best.
```python
from stable_whisper import load_faster_whisper
model = load_faster_whisper(
"medium",
device="cuda",
compute_type="float16",
)
```
5. Resolve UNKs with whisper-medium
```python
from sacrebleu.tokenizers.tokenizer_zh import TokenizerZh
from whisper_normalizer.basic import BasicTextNormalizer
import cn2an
import json
import jiwer
from tqdm.auto import tqdm
sacretok = TokenizerZh()
whisper_norm = BasicTextNormalizer()
def compute_mer(hyp, ref):
def norm(x):
return sacretok(cn2an.transform(whisper_norm(x), "an2cn"))
return jiwer.process_words(norm(hyp), norm(ref)).wer * 100
adjusted = {split:dict() for split in data}
double_check = {split:dict() for split in data}
UNK = "[UNK]"
for split in data:
trange = tqdm(unks[split], desc=split)
for i,sample in enumerate(trange):
transcription = sample['transcription']
texts = transcription.split(UNK)
words = []
for sent in texts[1:]:
for w in sacretok(sent).split():
if w not in words:
words += [w]
keyword = "关键词"
header = "字幕"
prompt = f"{keyword} \"{'/'.join(words)}\" {header} "
result = model.transcribe_stable(
audio=sample['audio']['array'],
initial_prompt=prompt, # encourage reuse of words
prefix=texts[0], # forcing start to follow real start
language=sample['language'].replace('mixed', 'zh'),
regroup=False,
verbose=None,
no_speech_threshold=1.0,
suppress_silence=False,
word_timestamps=True # though unused, timestamps reduce hallucination
).merge_all_segments()
adjustment = clean_transcripts(
result.text
.replace(keyword, " ")
.replace(header, " ")
)
mer=compute_mer(transcription, adjustment)
adjusted[split][sample['id']] = adjustment
trange.set_postfix(mer=f"{mer:.2f}", dc=len(double_check[split]))
if mer > 30:
double_check[split][sample['id']] = mer
print(transcription, "||", adjustment)
if i % 5 == 0 or i == len(unks[split]) - 1:
with open(f"checkpoint_{split}.json", "w") as f:
json.dump(adjusted[split], f)
```
6. Replace UNK utterances with resolved ones
```python
import json
adjusted_transcripts = {}
for split in data_raw:
with open(f"checkpoint_{split}.json", "r", encoding="utf8") as f:
adjusted_transcripts[split] = json.load(f)
UNK = "[UNK]"
def fix_unk(sample):
def bad(orig, new):
return sacretok(new) in sacretok(orig)
transcription = clean_transcripts(sample['transcription'].replace(UNK, ""))
sid = sample['id']
adjustment = adjusted_transcripts[split].get(sid, transcription)
if bad(transcription, adjustment):
# adjustment worse than just removing UNK
# print("skipped:", transcription, "||", adjustment)
adjustment = transcription
return adjustment
data = data_raw.map(lambda x: {"transcription": fix_unk(x)})
data = data.filter(lambda x: x["transcription"] != "")
data = data.sort(["session_id","id"])
for split in data:
for line in data[split]['transcription']:
assert UNK not in line
```
> train adjusted 402 samples, 75 of which just removes UNKs.
> test adjusted 36 samples, 9 of which just removes UNKs.
> validation adjusted 63 samples, 7 of which just removes UNKs. |