File size: 8,933 Bytes
de67fbe
5b9b89c
8c69647
5f11f49
 
 
 
8408a6e
bbf1c97
d99b0ef
bbf1c97
d99b0ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbf1c97
d99b0ef
bbf1c97
 
 
 
 
 
 
 
cdd802f
 
 
 
 
 
 
 
 
 
 
09666a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de67fbe
 
 
 
 
 
 
8936988
de67fbe
 
 
 
8936988
de67fbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647639f
de67fbe
 
 
 
 
af0bf8c
 
 
de67fbe
647639f
de67fbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8936988
de67fbe
 
 
647639f
de67fbe
 
 
647639f
de67fbe
647639f
de67fbe
 
 
af0bf8c
 
 
de67fbe
 
 
 
 
 
 
 
 
 
 
647639f
de67fbe
 
 
 
 
 
 
8936988
de67fbe
 
 
 
 
647639f
de67fbe
647639f
de67fbe
 
 
647639f
de67fbe
8936988
 
 
 
 
 
de67fbe
 
647639f
de67fbe
8936988
 
 
 
 
 
de67fbe
 
647639f
de67fbe
 
 
647639f
de67fbe
647639f
de67fbe
 
 
647639f
de67fbe
 
 
647639f
de67fbe
 
 
647639f
de67fbe
647639f
de67fbe
 
 
647639f
de67fbe
 
 
647639f
de67fbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09666a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
---
language:
- en
task_categories:
- text-classification
task_ids:
- sentiment-classification
paperswithcode_id: yelp-review-polarity
pretty_name: YelpPolarity
dataset_info:
  config_name: plain_text
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': '1'
          '1': '2'
  splits:
  - name: train
    num_bytes: 413558837
    num_examples: 560000
  - name: test
    num_bytes: 27962097
    num_examples: 38000
  download_size: 273803261
  dataset_size: 441520934
configs:
- config_name: plain_text
  data_files:
  - split: train
    path: plain_text/train-*
  - split: test
    path: plain_text/test-*
  default: true
train-eval-index:
- config: plain_text
  task: text-classification
  task_id: binary_classification
  splits:
    train_split: train
    eval_split: test
  col_mapping:
    text: text
    label: target
  metrics:
  - type: accuracy
    name: Accuracy
  - type: f1
    name: F1 binary
    args:
      average: binary
  - type: precision
    name: Precision macro
    args:
      average: macro
  - type: precision
    name: Precision micro
    args:
      average: micro
  - type: precision
    name: Precision weighted
    args:
      average: weighted
  - type: recall
    name: Recall macro
    args:
      average: macro
  - type: recall
    name: Recall micro
    args:
      average: micro
  - type: recall
    name: Recall weighted
    args:
      average: weighted
---

# Dataset Card for "yelp_polarity"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://course.fast.ai/datasets](https://course.fast.ai/datasets)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 166.38 MB
- **Size of the generated dataset:** 441.74 MB
- **Total amount of disk used:** 608.12 MB

### Dataset Summary

Large Yelp Review Dataset.
This is a dataset for binary sentiment classification. We provide a set of 560,000 highly polar yelp reviews for training, and 38,000 for testing.
ORIGIN
The Yelp reviews dataset consists of reviews from Yelp. It is extracted
from the Yelp Dataset Challenge 2015 data. For more information, please
refer to http://www.yelp.com/dataset_challenge

The Yelp reviews polarity dataset is constructed by
Xiang Zhang (xiang.zhang@nyu.edu) from the above dataset.
It is first used as a text classification benchmark in the following paper:
Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks
for Text Classification. Advances in Neural Information Processing Systems 28
(NIPS 2015).

DESCRIPTION

The Yelp reviews polarity dataset is constructed by considering stars 1 and 2
negative, and 3 and 4 positive. For each polarity 280,000 training samples and
19,000 testing samples are take randomly. In total there are 560,000 trainig
samples and 38,000 testing samples. Negative polarity is class 1,
and positive class 2.

The files train.csv and test.csv contain all the training samples as
comma-sparated values. There are 2 columns in them, corresponding to class
index (1 and 2) and review text. The review texts are escaped using double
quotes ("), and any internal double quote is escaped by 2 double quotes ("").
New lines are escaped by a backslash followed with an "n" character,
that is "
".

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Dataset Structure

### Data Instances

#### plain_text

- **Size of downloaded dataset files:** 166.38 MB
- **Size of the generated dataset:** 441.74 MB
- **Total amount of disk used:** 608.12 MB

An example of 'train' looks as follows.
```
This example was too long and was cropped:

{
    "label": 0,
    "text": "\"Unfortunately, the frustration of being Dr. Goldberg's patient is a repeat of the experience I've had with so many other doctor..."
}
```

### Data Fields

The data fields are the same among all splits.

#### plain_text
- `text`: a `string` feature.
- `label`: a classification label, with possible values including `1` (0), `2` (1).

### Data Splits

|   name   |train |test |
|----------|-----:|----:|
|plain_text|560000|38000|

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information

```
@article{zhangCharacterlevelConvolutionalNetworks2015,
  archivePrefix = {arXiv},
  eprinttype = {arxiv},
  eprint = {1509.01626},
  primaryClass = {cs},
  title = {Character-Level {{Convolutional Networks}} for {{Text Classification}}},
  abstract = {This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.},
  journal = {arXiv:1509.01626 [cs]},
  author = {Zhang, Xiang and Zhao, Junbo and LeCun, Yann},
  month = sep,
  year = {2015},
}

```


### Contributions

Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun), [@mariamabarham](https://github.com/mariamabarham), [@thomwolf](https://github.com/thomwolf), [@julien-c](https://github.com/julien-c) for adding this dataset.