ylacombe's picture
Update README.md
326dcbd verified
|
raw
history blame
18.1 kB
metadata
annotations_creators:
  - expert-generated
language_creators:
  - crowdsourced
  - expert-generated
language:
  - de
  - nl
  - fr
  - it
  - es
  - pt
  - pl
  - en
license:
  - cc-by-4.0
multilinguality:
  - multilingual
size_categories:
  - 100K<n<1M
source_datasets:
  - original
task_categories:
  - automatic-speech-recognition
  - text-to-speech
  - text-to-audio
paperswithcode_id: multilingual-librispeech
pretty_name: MultiLingual LibriSpeech
dataset_info:
  - config_name: dutch
    features:
      - name: audio
        dtype: audio
      - name: original_path
        dtype: string
      - name: begin_time
        dtype: float64
      - name: end_time
        dtype: float64
      - name: transcript
        dtype: string
      - name: audio_duration
        dtype: float64
      - name: speaker_id
        dtype: string
      - name: chapter_id
        dtype: string
      - name: file
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: dev
        num_bytes: 199959986
        num_examples: 3095
      - name: test
        num_bytes: 199298575
        num_examples: 3075
      - name: train
        num_bytes: 23931679031
        num_examples: 374287
      - name: 9_hours
        num_bytes: 139884664.668
        num_examples: 2153
      - name: 1_hours
        num_bytes: 15462181
        num_examples: 234
    download_size: 24376256629
    dataset_size: 24486284437.668
  - config_name: french
    features:
      - name: audio
        dtype: audio
      - name: original_path
        dtype: string
      - name: begin_time
        dtype: float64
      - name: end_time
        dtype: float64
      - name: transcript
        dtype: string
      - name: audio_duration
        dtype: float64
      - name: speaker_id
        dtype: string
      - name: chapter_id
        dtype: string
      - name: file
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: dev
        num_bytes: 157923970.696
        num_examples: 2416
      - name: test
        num_bytes: 158352158.582
        num_examples: 2426
      - name: train
        num_bytes: 16984935842.04
        num_examples: 258213
      - name: 9_hours
        num_bytes: 142796680.609
        num_examples: 2167
      - name: 1_hours
        num_bytes: 15675831
        num_examples: 241
    download_size: 17381581776
    dataset_size: 17459684482.927002
  - config_name: german
    features:
      - name: audio
        dtype: audio
      - name: original_path
        dtype: string
      - name: begin_time
        dtype: float64
      - name: end_time
        dtype: float64
      - name: transcript
        dtype: string
      - name: audio_duration
        dtype: float64
      - name: speaker_id
        dtype: string
      - name: chapter_id
        dtype: string
      - name: file
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: dev
        num_bytes: 224293581.302
        num_examples: 3469
      - name: test
        num_bytes: 225756069.096
        num_examples: 3394
      - name: train
        num_bytes: 31050881388
        num_examples: 469942
      - name: 9_hours
        num_bytes: 142777983.118
        num_examples: 2194
      - name: 1_hours
        num_bytes: 15714704
        num_examples: 241
    download_size: 31526161821
    dataset_size: 31659423725.516
  - config_name: italian
    features:
      - name: audio
        dtype: audio
      - name: original_path
        dtype: string
      - name: begin_time
        dtype: float64
      - name: end_time
        dtype: float64
      - name: transcript
        dtype: string
      - name: audio_duration
        dtype: float64
      - name: speaker_id
        dtype: string
      - name: chapter_id
        dtype: string
      - name: file
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: dev
        num_bytes: 81607596.048
        num_examples: 1248
      - name: test
        num_bytes: 83216752.046
        num_examples: 1262
      - name: train
        num_bytes: 3896742625
        num_examples: 59623
      - name: 9_hours
        num_bytes: 141671904.428
        num_examples: 2173
      - name: 1_hours
        num_bytes: 15560398
        num_examples: 240
    download_size: 4200633596
    dataset_size: 4218799275.522
  - config_name: polish
    features:
      - name: audio
        dtype: audio
      - name: original_path
        dtype: string
      - name: begin_time
        dtype: float64
      - name: end_time
        dtype: float64
      - name: transcript
        dtype: string
      - name: audio_duration
        dtype: float64
      - name: speaker_id
        dtype: string
      - name: chapter_id
        dtype: string
      - name: file
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: dev
        num_bytes: 32746725
        num_examples: 512
      - name: test
        num_bytes: 33735044
        num_examples: 520
      - name: train
        num_bytes: 1638889846
        num_examples: 25043
      - name: 9_hours
        num_bytes: 142005461
        num_examples: 2173
      - name: 1_hours
        num_bytes: 15681216
        num_examples: 238
    download_size: 1855342312
    dataset_size: 1863058292
  - config_name: portuguese
    features:
      - name: audio
        dtype: audio
      - name: original_path
        dtype: string
      - name: begin_time
        dtype: float64
      - name: end_time
        dtype: float64
      - name: transcript
        dtype: string
      - name: audio_duration
        dtype: float64
      - name: speaker_id
        dtype: string
      - name: chapter_id
        dtype: string
      - name: file
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: dev
        num_bytes: 57533473
        num_examples: 826
      - name: test
        num_bytes: 59141979
        num_examples: 871
      - name: train
        num_bytes: 2518553713.946
        num_examples: 37533
      - name: 9_hours
        num_bytes: 141641902.42
        num_examples: 2116
      - name: 1_hours
        num_bytes: 15697139
        num_examples: 236
    download_size: 2780836500
    dataset_size: 2792568207.366
  - config_name: spanish
    features:
      - name: audio
        dtype: audio
      - name: original_path
        dtype: string
      - name: begin_time
        dtype: float64
      - name: end_time
        dtype: float64
      - name: transcript
        dtype: string
      - name: audio_duration
        dtype: float64
      - name: speaker_id
        dtype: string
      - name: chapter_id
        dtype: string
      - name: file
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: dev
        num_bytes: 157804903.144
        num_examples: 2408
      - name: test
        num_bytes: 158526899.32
        num_examples: 2385
      - name: train
        num_bytes: 14562584188
        num_examples: 220701
      - name: 9_hours
        num_bytes: 142473624.48
        num_examples: 2110
      - name: 1_hours
        num_bytes: 15702048
        num_examples: 233
    download_size: 14971394533
    dataset_size: 15037091662.944
configs:
  - config_name: dutch
    data_files:
      - split: dev
        path: dutch/dev-*
      - split: test
        path: dutch/test-*
      - split: train
        path: dutch/train-*
      - split: 9_hours
        path: dutch/9_hours-*
      - split: 1_hours
        path: dutch/1_hours-*
  - config_name: french
    data_files:
      - split: dev
        path: french/dev-*
      - split: test
        path: french/test-*
      - split: train
        path: french/train-*
      - split: 9_hours
        path: french/9_hours-*
      - split: 1_hours
        path: french/1_hours-*
  - config_name: german
    data_files:
      - split: dev
        path: german/dev-*
      - split: test
        path: german/test-*
      - split: train
        path: german/train-*
      - split: 9_hours
        path: german/9_hours-*
      - split: 1_hours
        path: german/1_hours-*
  - config_name: italian
    data_files:
      - split: dev
        path: italian/dev-*
      - split: test
        path: italian/test-*
      - split: train
        path: italian/train-*
      - split: 9_hours
        path: italian/9_hours-*
      - split: 1_hours
        path: italian/1_hours-*
  - config_name: polish
    data_files:
      - split: dev
        path: polish/dev-*
      - split: test
        path: polish/test-*
      - split: train
        path: polish/train-*
      - split: 9_hours
        path: polish/9_hours-*
      - split: 1_hours
        path: polish/1_hours-*
  - config_name: portuguese
    data_files:
      - split: dev
        path: portuguese/dev-*
      - split: test
        path: portuguese/test-*
      - split: train
        path: portuguese/train-*
      - split: 9_hours
        path: portuguese/9_hours-*
      - split: 1_hours
        path: portuguese/1_hours-*
  - config_name: spanish
    data_files:
      - split: dev
        path: spanish/dev-*
      - split: test
        path: spanish/test-*
      - split: train
        path: spanish/train-*
      - split: 9_hours
        path: spanish/9_hours-*
      - split: 1_hours
        path: spanish/1_hours-*

Dataset Card for MultiLingual LibriSpeech

Table of Contents

Dataset Description

Dataset Summary

This is a streamable version of the Multilingual LibriSpeech (MLS) dataset. The data archives were restructured from the original ones from OpenSLR to make it easier to stream.

MLS dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish. It includes about 44.5K hours of English and a total of about 6K hours for other languages.

Supported Tasks and Leaderboards

  • automatic-speech-recognition, speaker-identification: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). The task has an active leaderboard which can be found at https://paperswithcode.com/dataset/multilingual-librispeech and ranks models based on their WER.
  • text-to-speech, text-to-audio: The dataset can also be used to train a model for Text-To-Speech (TTS).

Languages

The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish

How to use

The datasets library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the load_dataset function.

For example, to download the German config, simply specify the corresponding language config name (i.e., "german" for German):

from datasets import load_dataset
mls = load_dataset("facebook/multilingual_librispeech", "german", split="train")

Using the datasets library, you can also stream the dataset on-the-fly by adding a streaming=True argument to the load_dataset function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.

from datasets import load_dataset
mls = load_dataset("facebook/multilingual_librispeech", "german", split="train", streaming=True)
print(next(iter(mls)))

Bonus: create a PyTorch dataloader directly with your own datasets (local/streamed).

Local:

from datasets import load_dataset
from torch.utils.data.sampler import BatchSampler, RandomSampler
mls = load_dataset("facebook/multilingual_librispeech", "german", split="train")
batch_sampler = BatchSampler(RandomSampler(mls), batch_size=32, drop_last=False)
dataloader = DataLoader(mls, batch_sampler=batch_sampler)

Streaming:

from datasets import load_dataset
from torch.utils.data import DataLoader
mls = load_dataset("facebook/multilingual_librispeech", "german", split="train", streaming=True)
dataloader = DataLoader(mls, batch_size=32)

To find out more about loading and preparing audio datasets, head over to hf.co/blog/audio-datasets.

Example scripts

Train your own CTC or Seq2Seq Automatic Speech Recognition models on MultiLingual Librispeech with transformers - here.

Dataset Structure

Data Instances

A typical data point comprises the path to the audio file, usually called file and its transcription, called text. Some additional information about the speaker and the passage which contains the transcription is provided.

{'file': '10900_6473_000030.flac',
 'audio': {'path': '10900_6473_000030.flac',
  'array': array([-1.52587891e-04,  6.10351562e-05,  0.00000000e+00, ...,
          4.27246094e-04,  5.49316406e-04,  4.57763672e-04]),
  'sampling_rate': 16000},
 'text': 'więc czego chcecie odemnie spytałem wysłuchawszy tego zadziwiającego opowiadania broń nas stary człowieku broń zakrzyknęli równocześnie obaj posłowie\n',
 'speaker_id': 10900,
 'chapter_id': 6473,
 'id': '10900_6473_000030'}

Data Fields

  • file: A filename .flac format.

  • audio: A dictionary containing the audio filename, the decoded audio array, and the sampling rate. Note that when accessing the audio column: dataset[0]["audio"] the audio file is automatically decoded and resampled to dataset.features["audio"].sampling_rate. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the "audio" column, i.e. dataset[0]["audio"] should always be preferred over dataset["audio"][0].

  • text: the transcription of the audio file.

  • id: unique id of the data sample.

  • speaker_id: unique id of the speaker. The same speaker id can be found for multiple data samples.

  • chapter_id: id of the audiobook chapter which includes the transcription.

Data Splits

Number of samples Train Train.9h Train.1h Dev Test
german 469942 2194 241 3469 3394
dutch 374287 2153 234 3095 3075
french 258213 2167 241 2416 2426
spanish 220701 2110 233 2408 2385
italian 59623 2173 240 1248 1262
portuguese 37533 2116 236 826 871
polish 25043 2173 238 512 520

Dataset Creation

Curation Rationale

[Needs More Information]

Source Data

Initial Data Collection and Normalization

[Needs More Information]

Who are the source language producers?

[Needs More Information]

Annotations

Annotation process

[Needs More Information]

Who are the annotators?

[Needs More Information]

Personal and Sensitive Information

The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset.

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[Needs More Information]

Additional Information

Dataset Curators

[Needs More Information]

Licensing Information

Public Domain, Creative Commons Attribution 4.0 International Public License (CC-BY-4.0)

Citation Information

@article{Pratap2020MLSAL,
  title={MLS: A Large-Scale Multilingual Dataset for Speech Research},
  author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},
  journal={ArXiv},
  year={2020},
  volume={abs/2012.03411}
}

Data Statistics

Duration (h) Train Dev Test
English 44,659.74 15.75 15.55
German 1,966.51 14.28 14.29
Dutch 1,554.24 12.76 12.76
French 1,076.58 10.07 10.07
Spanish 917.68 9.99 10
Italian 247.38 5.18 5.27
Portuguese 160.96 3.64 3.74
Polish 103.65 2.08 2.14
# Speakers Train Dev Test
Gender M F M F M F
English 2742 2748 21 21 21 21
German 81 95 15 15 15 15
Dutch 9 31 3 3 3 3
French 62 80 9 9 9 9
Spanish 36 50 10 10 10 10
Italian 22 43 5 5 5 5
Portuguese 26 16 5 5 5 5
Polish 6 5 2 2 2 2
# Hours / Gender Dev Test
Gender M F M F
English 7.76 7.99 7.62 7.93
German 7.06 7.22 7 7.29
Dutch 6.44 6.32 6.72 6.04
French 5.13 4.94 5.04 5.02
Spanish 4.91 5.08 4.78 5.23
Italian 2.5 2.68 2.38 2.9
Portuguese 1.84 1.81 1.83 1.9
Polish 1.12 0.95 1.09 1.05

Contributions

Thanks to @patrickvonplaten and @polinaeterna for adding this dataset.