Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 1,786 Bytes
8a732e6
 
9800f98
 
 
 
 
 
 
 
2caeaaa
2d3f9da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2caeaaa
 
 
 
 
54d2e3e
 
72c75c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
task_categories:
- token-classification
language:
- en
tags:
- finance
pretty_name: buster
size_categories:
- 10K<n<100K
dataset_info:
  config_name: BUSTER
  features:
  - name: document_id
    dtype: string
  - name: tokens
    sequence: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': O
          '1': B-Parties.BUYING_COMPANY
          '2': I-Parties.BUYING_COMPANY
          '3': B-Parties.SELLING_COMPANY
          '4': I-Parties.SELLING_COMPANY
          '5': B-Parties.ACQUIRED_COMPANY
          '6': I-Parties.ACQUIRED_COMPANY
          '7': B-Advisors.LEGAL_CONSULTING_COMPANY
          '8': I-Advisors.LEGAL_CONSULTING_COMPANY
          '9': B-Advisors.GENERIC_CONSULTING_COMPANY
          '10': I-Advisors.GENERIC_CONSULTING_COMPANY
          '11': B-Generic_Info.ANNUAL_REVENUES
          '12': I-Generic_Info.ANNUAL_REVENUES
  splits:
  - name: FOLD_1
    num_bytes: 11508541
    num_examples: 753
  - name: FOLD_2
    num_bytes: 11409488
    num_examples: 759
  - name: FOLD_3
    num_bytes: 11524994
    num_examples: 758
  - name: FOLD_4
    num_bytes: 11714536
    num_examples: 755
  - name: FOLD_5
    num_bytes: 11543314
    num_examples: 754
  - name: SILVER
    num_bytes: 94702584
    num_examples: 6196
  download_size: 20824877
  dataset_size: 152403457
---



# Dataset Card for BUSTER
BUSiness Transaction Entity Recognition dataset. 

BUSTER is an Entity Recognition (ER) benchmark for entities related to business transactions. It consists of a gold corpus of 
3779 manually annotated documents on financial transactions that were randomly divided into 5 folds,
plus an additional silver corpus of 6196 automatically annotated documents that were created by the model-optimized RoBERTa system.