File size: 22,727 Bytes
a7f79c1
 
 
 
 
315c194
a7f79c1
315c194
a32ffe4
a7f79c1
 
 
a32ffe4
 
 
a7f79c1
 
 
e86ed2f
 
a7f79c1
 
a32ffe4
 
 
 
 
572b5c9
b0e9490
a32ffe4
 
 
 
 
 
 
 
 
 
 
546137d
 
 
db1f9af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d218e
 
 
db1f9af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d218e
 
 
db1f9af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d218e
 
 
db1f9af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d218e
 
 
db1f9af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d218e
 
 
db1f9af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d218e
 
 
db1f9af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d218e
 
 
db1f9af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d218e
 
 
db1f9af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d218e
 
 
db1f9af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d218e
 
 
db1f9af
 
a7f79c1
 
 
 
 
 
 
572b5c9
a7f79c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e9490
a7f79c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
- 10K<n<100K
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
- text-classification
task_ids:
- dialogue-modeling
- language-modeling
- masked-language-modeling
- sentiment-classification
- text-scoring
paperswithcode_id: null
pretty_name: SILICONE Benchmark
configs:
- dyda_da
- dyda_e
- iemocap
- maptask
- meld_e
- meld_s
- mrda
- oasis
- sem
- swda
tags:
- emotion-classification
- dialogue-act-classification
dataset_info:
- config_name: dyda_da
  features:
  - name: Utterance
    dtype: string
  - name: Dialogue_Act
    dtype: string
  - name: Dialogue_ID
    dtype: string
  - name: Label
    dtype:
      class_label:
        names:
          0: commissive
          1: directive
          2: inform
          3: question
  - name: Idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 8346638
    num_examples: 87170
  - name: validation
    num_bytes: 764277
    num_examples: 8069
  - name: test
    num_bytes: 740226
    num_examples: 7740
  download_size: 8874925
  dataset_size: 9851141
- config_name: dyda_e
  features:
  - name: Utterance
    dtype: string
  - name: Emotion
    dtype: string
  - name: Dialogue_ID
    dtype: string
  - name: Label
    dtype:
      class_label:
        names:
          0: anger
          1: disgust
          2: fear
          3: happiness
          4: no emotion
          5: sadness
          6: surprise
  - name: Idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 8547111
    num_examples: 87170
  - name: validation
    num_bytes: 781445
    num_examples: 8069
  - name: test
    num_bytes: 757670
    num_examples: 7740
  download_size: 8874925
  dataset_size: 10086226
- config_name: iemocap
  features:
  - name: Dialogue_ID
    dtype: string
  - name: Utterance_ID
    dtype: string
  - name: Utterance
    dtype: string
  - name: Emotion
    dtype: string
  - name: Label
    dtype:
      class_label:
        names:
          0: ang
          1: dis
          2: exc
          3: fea
          4: fru
          5: hap
          6: neu
          7: oth
          8: sad
          9: sur
          10: xxx
  - name: Idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 908180
    num_examples: 7213
  - name: validation
    num_bytes: 100969
    num_examples: 805
  - name: test
    num_bytes: 254248
    num_examples: 2021
  download_size: 1158778
  dataset_size: 1263397
- config_name: maptask
  features:
  - name: Speaker
    dtype: string
  - name: Utterance
    dtype: string
  - name: Dialogue_Act
    dtype: string
  - name: Label
    dtype:
      class_label:
        names:
          0: acknowledge
          1: align
          2: check
          3: clarify
          4: explain
          5: instruct
          6: query_w
          7: query_yn
          8: ready
          9: reply_n
          10: reply_w
          11: reply_y
  - name: Idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 1260413
    num_examples: 20905
  - name: validation
    num_bytes: 178184
    num_examples: 2963
  - name: test
    num_bytes: 171806
    num_examples: 2894
  download_size: 1048357
  dataset_size: 1610403
- config_name: meld_e
  features:
  - name: Utterance
    dtype: string
  - name: Speaker
    dtype: string
  - name: Emotion
    dtype: string
  - name: Dialogue_ID
    dtype: string
  - name: Utterance_ID
    dtype: string
  - name: Label
    dtype:
      class_label:
        names:
          0: anger
          1: disgust
          2: fear
          3: joy
          4: neutral
          5: sadness
          6: surprise
  - name: Idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 916337
    num_examples: 9989
  - name: validation
    num_bytes: 100234
    num_examples: 1109
  - name: test
    num_bytes: 242352
    num_examples: 2610
  download_size: 1553014
  dataset_size: 1258923
- config_name: meld_s
  features:
  - name: Utterance
    dtype: string
  - name: Speaker
    dtype: string
  - name: Sentiment
    dtype: string
  - name: Dialogue_ID
    dtype: string
  - name: Utterance_ID
    dtype: string
  - name: Label
    dtype:
      class_label:
        names:
          0: negative
          1: neutral
          2: positive
  - name: Idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 930405
    num_examples: 9989
  - name: validation
    num_bytes: 101801
    num_examples: 1109
  - name: test
    num_bytes: 245873
    num_examples: 2610
  download_size: 1553014
  dataset_size: 1278079
- config_name: mrda
  features:
  - name: Utterance_ID
    dtype: string
  - name: Dialogue_Act
    dtype: string
  - name: Channel_ID
    dtype: string
  - name: Speaker
    dtype: string
  - name: Dialogue_ID
    dtype: string
  - name: Utterance
    dtype: string
  - name: Label
    dtype:
      class_label:
        names:
          0: s
          1: d
          2: b
          3: f
          4: q
  - name: Idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 9998857
    num_examples: 83943
  - name: validation
    num_bytes: 1143286
    num_examples: 9815
  - name: test
    num_bytes: 1807462
    num_examples: 15470
  download_size: 10305848
  dataset_size: 12949605
- config_name: oasis
  features:
  - name: Speaker
    dtype: string
  - name: Utterance
    dtype: string
  - name: Dialogue_Act
    dtype: string
  - name: Label
    dtype:
      class_label:
        names:
          0: accept
          1: ackn
          2: answ
          3: answElab
          4: appreciate
          5: backch
          6: bye
          7: complete
          8: confirm
          9: correct
          10: direct
          11: directElab
          12: echo
          13: exclaim
          14: expressOpinion
          15: expressPossibility
          16: expressRegret
          17: expressWish
          18: greet
          19: hold
          20: identifySelf
          21: inform
          22: informCont
          23: informDisc
          24: informIntent
          25: init
          26: negate
          27: offer
          28: pardon
          29: raiseIssue
          30: refer
          31: refuse
          32: reqDirect
          33: reqInfo
          34: reqModal
          35: selfTalk
          36: suggest
          37: thank
          38: informIntent-hold
          39: correctSelf
          40: expressRegret-inform
          41: thank-identifySelf
  - name: Idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 887018
    num_examples: 12076
  - name: validation
    num_bytes: 112185
    num_examples: 1513
  - name: test
    num_bytes: 119254
    num_examples: 1478
  download_size: 802002
  dataset_size: 1118457
- config_name: sem
  features:
  - name: Utterance
    dtype: string
  - name: NbPairInSession
    dtype: string
  - name: Dialogue_ID
    dtype: string
  - name: SpeechTurn
    dtype: string
  - name: Speaker
    dtype: string
  - name: Sentiment
    dtype: string
  - name: Label
    dtype:
      class_label:
        names:
          0: Negative
          1: Neutral
          2: Positive
  - name: Idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 496168
    num_examples: 4264
  - name: validation
    num_bytes: 57896
    num_examples: 485
  - name: test
    num_bytes: 100072
    num_examples: 878
  download_size: 513689
  dataset_size: 654136
- config_name: swda
  features:
  - name: Utterance
    dtype: string
  - name: Dialogue_Act
    dtype: string
  - name: From_Caller
    dtype: string
  - name: To_Caller
    dtype: string
  - name: Topic
    dtype: string
  - name: Dialogue_ID
    dtype: string
  - name: Conv_ID
    dtype: string
  - name: Label
    dtype:
      class_label:
        names:
          0: sd
          1: b
          2: sv
          3: '%'
          4: aa
          5: ba
          6: fc
          7: qw
          8: nn
          9: bk
          10: h
          11: qy^d
          12: bh
          13: ^q
          14: bf
          15: fo_o_fw_"_by_bc
          16: fo_o_fw_by_bc_"
          17: na
          18: ad
          19: ^2
          20: b^m
          21: qo
          22: qh
          23: ^h
          24: ar
          25: ng
          26: br
          27: 'no'
          28: fp
          29: qrr
          30: arp_nd
          31: t3
          32: oo_co_cc
          33: aap_am
          34: t1
          35: bd
          36: ^g
          37: qw^d
          38: fa
          39: ft
          40: +
          41: x
          42: ny
          43: sv_fx
          44: qy_qr
          45: ba_fe
  - name: Idx
    dtype: int32
  splits:
  - name: train
    num_bytes: 20499788
    num_examples: 190709
  - name: validation
    num_bytes: 2265898
    num_examples: 21203
  - name: test
    num_bytes: 291471
    num_examples: 2714
  download_size: 16227500
  dataset_size: 23057157
---

# Dataset Card for SILICONE Benchmark

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [N/A]
- **Repository:** https://github.com/eusip/SILICONE-benchmark
- **Paper:** https://arxiv.org/abs/2009.11152
- **Leaderboard:** [N/A]
- **Point of Contact:** [Ebenge Usip](ebenge.usip@telecom-paris.fr)

### Dataset Summary

The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark is a collection of resources for training, evaluating, and analyzing natural language understanding systems specifically designed for spoken language. All datasets are in the English language and covers a variety of domains including daily life, scripted scenarios, joint task completion, phone call conversations, and televsion dialogue. Some datasets additionally include emotion and/or sentimant labels.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

English.

## Dataset Structure

### Data Instances

#### DailyDialog Act Corpus (Dialogue Act)
For the `dyda_da` configuration one example from the dataset is:
```
{
  'Utterance': "the taxi drivers are on strike again .",
  'Dialogue_Act': 2, # "inform"
  'Dialogue_ID': "2"
}
```

#### DailyDialog Act Corpus (Emotion)
For the `dyda_e` configuration one example from the dataset is:
```
{
  'Utterance': "'oh , breaktime flies .'",
  'Emotion': 5, # "sadness"
  'Dialogue_ID': "997"
}
```

#### Interactive Emotional Dyadic Motion Capture (IEMOCAP) database
For the `iemocap` configuration one example from the dataset is:
```
{
  'Dialogue_ID': "Ses04F_script03_2",
  'Utterance_ID': "Ses04F_script03_2_F025",
  'Utterance': "You're quite insufferable.  I expect it's because you're drunk.",
  'Emotion': 0, # "ang"
}
```

#### HCRC MapTask Corpus
For the `maptask` configuration one example from the dataset is:
```
{
  'Speaker': "f",
  'Utterance': "i think that would bring me over the crevasse",
  'Dialogue_Act': 4, # "explain"
}
```


#### Multimodal EmotionLines Dataset (Emotion)
For the `meld_e` configuration one example from the dataset is:
```
{
  'Utterance': "'Push 'em out , push 'em out , harder , harder .'",
  'Speaker': "Joey",
  'Emotion': 3, # "joy"
  'Dialogue_ID': "1",
  'Utterance_ID': "2"
}
```

#### Multimodal EmotionLines Dataset (Sentiment)
For the `meld_s` configuration one example from the dataset is:
```
{
  'Utterance': "'Okay , y'know what ? There is no more left , left !'",
  'Speaker': "Rachel",
  'Sentiment': 0, # "negative"
  'Dialogue_ID': "2",
  'Utterance_ID': "4"
}
```

#### ICSI MRDA Corpus
For the `mrda` configuration one example from the dataset is:
```
{
  'Utterance_ID': "Bed006-c2_0073656_0076706",
  'Dialogue_Act': 0, # "s"
  'Channel_ID': "Bed006-c2",
  'Speaker': "mn015",
  'Dialogue_ID': "Bed006",
  'Utterance': "keith is not technically one of us yet ."
}
```

#### BT OASIS Corpus
For the `oasis` configuration one example from the dataset is:
```
{
  'Speaker': "b",
  'Utterance': "when i rang up um when i rang to find out why she said oh well your card's been declined",
  'Dialogue_Act': 21, # "inform"
}
```

#### SEMAINE database
For the `sem` configuration one example from the dataset is:
```
{
  'Utterance': "can you think of somebody who is like that ?",
  'NbPairInSession': "11",
  'Dialogue_ID': "59",
  'SpeechTurn': "674",
  'Speaker': "Agent",
  'Sentiment': 1, # "Neutral"
}
```

#### Switchboard Dialog Act (SwDA) Corpus
For the `swda` configuration one example from the dataset is:
```
{
  'Utterance': "but i 'd probably say that 's roughly right .",
  'Dialogue_Act': 33, # "aap_am"
  'From_Caller': "1255",
  'To_Caller': "1087",
  'Topic': "CRIME",
  'Dialogue_ID': "818",
  'Conv_ID': "sw2836",
}
```

### Data Fields

For the `dyda_da` configuration, the different fields are:
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of "commissive" (0), "directive" (1), "inform" (2) or "question" (3).
- `Dialogue_ID`: identifier of the dialogue as a string.

For the `dyda_e` configuration, the different fields are:
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of "anger" (0), "disgust" (1), "fear" (2), "happiness" (3), "no emotion" (4), "sadness" (5) or "surprise" (6).
- `Dialogue_ID`: identifier of the dialogue as a string.

For the `iemocap` configuration, the different fields are:
- `Dialogue_ID`: identifier of the dialogue as a string.
- `Utterance_ID`: identifier of the utterance as a string.
- `Utterance`: Utterance as a string.
- `Emotion`: Emotion label of the utterance. It can be one of "Anger" (0), "Disgust" (1), "Excitement" (2), "Fear" (3), "Frustration" (4), "Happiness" (5), "Neutral" (6), "Other" (7), "Sadness" (8), "Surprise" (9) or "Unknown" (10).

For the `maptask` configuration, the different fields are:
- `Speaker`: identifier of the speaker as a string.
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of "acknowledge" (0), "align" (1), "check" (2), "clarify" (3), "explain" (4), "instruct" (5), "query_w" (6), "query_yn" (7), "ready" (8), "reply_n" (9), "reply_w" (10) or "reply_y" (11).

For the `meld_e` configuration, the different fields are:
- `Utterance`: Utterance as a string.
- `Speaker`: Speaker as a string.
- `Emotion`: Emotion label of the utterance. It can be one of "anger" (0), "disgust" (1), "fear" (2), "joy" (3), "neutral" (4), "sadness" (5) or "surprise" (6).
- `Dialogue_ID`: identifier of the dialogue as a string.
- `Utterance_ID`: identifier of the utterance as a string.

For the `meld_s` configuration, the different fields are:
- `Utterance`: Utterance as a string.
- `Speaker`: Speaker as a string.
- `Sentiment`: Sentiment label of the utterance. It can be one of "negative" (0), "neutral" (1) or "positive" (2).
- `Dialogue_ID`: identifier of the dialogue as a string.
- `Utterance_ID`: identifier of the utterance as a string.

For the `mrda` configuration, the different fields are:
- `Utterance_ID`: identifier of the utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of "s" (0) [Statement/Subjective Statement], "d" (1) [Declarative Question], "b" (2) [Backchannel], "f" (3) [Follow-me] or "q" (4) [Question].
- `Channel_ID`: identifier of the channel as a string.
- `Speaker`: identifier of the speaker as a string.
- `Dialogue_ID`: identifier of the channel as a string.
- `Utterance`: Utterance as a string.

For the `oasis` configuration, the different fields are:
- `Speaker`: identifier of the speaker as a string.
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of "accept" (0), "ackn" (1), "answ" (2), "answElab" (3), "appreciate" (4), "backch" (5), "bye" (6), "complete" (7), "confirm" (8), "correct" (9), "direct" (10), "directElab" (11), "echo" (12), "exclaim" (13), "expressOpinion"(14), "expressPossibility" (15), "expressRegret" (16), "expressWish" (17), "greet" (18), "hold" (19),
"identifySelf" (20), "inform" (21), "informCont" (22), "informDisc" (23), "informIntent" (24), "init" (25), "negate" (26), "offer" (27), "pardon" (28), "raiseIssue" (29), "refer" (30), "refuse" (31), "reqDirect" (32), "reqInfo" (33), "reqModal" (34), "selfTalk" (35), "suggest" (36), "thank" (37), "informIntent-hold" (38), "correctSelf" (39), "expressRegret-inform" (40) or "thank-identifySelf" (41).

For the `sem` configuration, the different fields are:
- `Utterance`: Utterance as a string.
- `NbPairInSession`: number of utterance pairs in a dialogue.
- `Dialogue_ID`: identifier of the dialogue as a string.
- `SpeechTurn`: SpeakerTurn as a string.
- `Speaker`: Speaker as a string.
- `Sentiment`: Sentiment label of the utterance. It can be "Negative", "Neutral" or "Positive".

For the `swda` configuration, the different fields are:
`Utterance`: Utterance as a string.
`Dialogue_Act`: Dialogue act label of the utterance. It can be "sd" (0) [Statement-non-opinion], "b" (1) [Acknowledge (Backchannel)], "sv" (2) [Statement-opinion], "%" (3) [Uninterpretable], "aa" (4) [Agree/Accept], "ba" (5) [Appreciation], "fc" (6) [Conventional-closing], "qw" (7) [Wh-Question], "nn" (8) [No Answers], "bk" (9) [Response Acknowledgement], "h" (10) [Hedge], "qy^d" (11) [Declarative Yes-No-Question], "bh" (12) [Backchannel in Question Form], "^q" (13) [Quotation], "bf" (14) [Summarize/Reformulate], 'fo_o_fw_"_by_bc' (15) [Other], 'fo_o_fw_by_bc_"' (16) [Other], "na" (17) [Affirmative Non-yes Answers], "ad" (18) [Action-directive], "^2" (19) [Collaborative Completion], "b^m" (20) [Repeat-phrase], "qo" (21) [Open-Question], "qh" (22) [Rhetorical-Question], "^h" (23) [Hold Before Answer/Agreement], "ar" (24) [Reject], "ng" (25) [Negative Non-no Answers], "br" (26) [Signal-non-understanding], "no" (27) [Other Answers], "fp" (28) [Conventional-opening], "qrr" (29) [Or-Clause], "arp_nd" (30) [Dispreferred Answers], "t3" (31) [3rd-party-talk], "oo_co_cc" (32) [Offers, Options Commits], "aap_am" (33) [Maybe/Accept-part], "t1" (34) [Downplayer], "bd" (35) [Self-talk], "^g" (36) [Tag-Question], "qw^d" (37) [Declarative Wh-Question], "fa" (38) [Apology], "ft" (39) [Thanking], "+" (40) [Unknown], "x" (41) [Unknown], "ny" (42) [Unknown], "sv_fx" (43) [Unknown], "qy_qr" (44) [Unknown] or "ba_fe" (45) [Unknown].
`From_Caller`: identifier of the from caller as a string.
`To_Caller`: identifier of the to caller as a string.
`Topic`: Topic as a string.
`Dialogue_ID`: identifier of the dialogue as a string.
`Conv_ID`: identifier of the conversation as a string.

### Data Splits

| Dataset name | Train  | Valid | Test  |
| ------------ | -----  | ----- | ----  |
| dyda_da      | 87170  | 8069  | 7740  |
| dyda_e       | 87170  | 8069  | 7740  |
| iemocap      | 7213   | 805   | 2021  |
| maptask      | 20905  | 2963  | 2894  |
| meld_e       | 9989   | 1109  | 2610  |
| meld_s       | 9989   | 1109  | 2610  |
| mrda         | 83944  | 9815  | 15470 |
| oasis        | 12076  | 1513  | 1478  |
| sem          | 4264   | 485   | 878   |
| swda         | 190709 | 21203 | 2714  |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Benchmark Curators

Emile Chapuis, Pierre Colombo, Ebenge Usip.

### Licensing Information

This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License](https://creativecommons.org/licenses/by-sa/4.0/).

### Citation Information

```
@inproceedings{chapuis-etal-2020-hierarchical,
    title = "Hierarchical Pre-training for Sequence Labelling in Spoken Dialog",
    author = "Chapuis, Emile  and
      Colombo, Pierre  and
      Manica, Matteo  and
      Labeau, Matthieu  and
      Clavel, Chlo{\'e}",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.findings-emnlp.239",
    doi = "10.18653/v1/2020.findings-emnlp.239",
    pages = "2636--2648",
    abstract = "Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a key component of spoken dialog systems. In this work, we propose a new approach to learn generic representations adapted to spoken dialog, which we evaluate on a new benchmark we call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE). SILICONE is model-agnostic and contains 10 different datasets of various sizes. We obtain our representations with a hierarchical encoder based on transformer architectures, for which we extend two well-known pre-training objectives. Pre-training is performed on OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We demonstrate how hierarchical encoders achieve competitive results with consistently fewer parameters compared to state-of-the-art models and we show their importance for both pre-training and fine-tuning.",
}
```

### Contributions

Thanks to [@eusip](https://github.com/eusip) and [@lhoestq](https://github.com/lhoestq) for adding this dataset.