File size: 22,727 Bytes
a7f79c1 315c194 a7f79c1 315c194 a32ffe4 a7f79c1 a32ffe4 a7f79c1 e86ed2f a7f79c1 a32ffe4 572b5c9 b0e9490 a32ffe4 546137d db1f9af b4d218e db1f9af b4d218e db1f9af b4d218e db1f9af b4d218e db1f9af b4d218e db1f9af b4d218e db1f9af b4d218e db1f9af b4d218e db1f9af b4d218e db1f9af b4d218e db1f9af a7f79c1 572b5c9 a7f79c1 b0e9490 a7f79c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
- 10K<n<100K
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
- text-classification
task_ids:
- dialogue-modeling
- language-modeling
- masked-language-modeling
- sentiment-classification
- text-scoring
paperswithcode_id: null
pretty_name: SILICONE Benchmark
configs:
- dyda_da
- dyda_e
- iemocap
- maptask
- meld_e
- meld_s
- mrda
- oasis
- sem
- swda
tags:
- emotion-classification
- dialogue-act-classification
dataset_info:
- config_name: dyda_da
features:
- name: Utterance
dtype: string
- name: Dialogue_Act
dtype: string
- name: Dialogue_ID
dtype: string
- name: Label
dtype:
class_label:
names:
0: commissive
1: directive
2: inform
3: question
- name: Idx
dtype: int32
splits:
- name: train
num_bytes: 8346638
num_examples: 87170
- name: validation
num_bytes: 764277
num_examples: 8069
- name: test
num_bytes: 740226
num_examples: 7740
download_size: 8874925
dataset_size: 9851141
- config_name: dyda_e
features:
- name: Utterance
dtype: string
- name: Emotion
dtype: string
- name: Dialogue_ID
dtype: string
- name: Label
dtype:
class_label:
names:
0: anger
1: disgust
2: fear
3: happiness
4: no emotion
5: sadness
6: surprise
- name: Idx
dtype: int32
splits:
- name: train
num_bytes: 8547111
num_examples: 87170
- name: validation
num_bytes: 781445
num_examples: 8069
- name: test
num_bytes: 757670
num_examples: 7740
download_size: 8874925
dataset_size: 10086226
- config_name: iemocap
features:
- name: Dialogue_ID
dtype: string
- name: Utterance_ID
dtype: string
- name: Utterance
dtype: string
- name: Emotion
dtype: string
- name: Label
dtype:
class_label:
names:
0: ang
1: dis
2: exc
3: fea
4: fru
5: hap
6: neu
7: oth
8: sad
9: sur
10: xxx
- name: Idx
dtype: int32
splits:
- name: train
num_bytes: 908180
num_examples: 7213
- name: validation
num_bytes: 100969
num_examples: 805
- name: test
num_bytes: 254248
num_examples: 2021
download_size: 1158778
dataset_size: 1263397
- config_name: maptask
features:
- name: Speaker
dtype: string
- name: Utterance
dtype: string
- name: Dialogue_Act
dtype: string
- name: Label
dtype:
class_label:
names:
0: acknowledge
1: align
2: check
3: clarify
4: explain
5: instruct
6: query_w
7: query_yn
8: ready
9: reply_n
10: reply_w
11: reply_y
- name: Idx
dtype: int32
splits:
- name: train
num_bytes: 1260413
num_examples: 20905
- name: validation
num_bytes: 178184
num_examples: 2963
- name: test
num_bytes: 171806
num_examples: 2894
download_size: 1048357
dataset_size: 1610403
- config_name: meld_e
features:
- name: Utterance
dtype: string
- name: Speaker
dtype: string
- name: Emotion
dtype: string
- name: Dialogue_ID
dtype: string
- name: Utterance_ID
dtype: string
- name: Label
dtype:
class_label:
names:
0: anger
1: disgust
2: fear
3: joy
4: neutral
5: sadness
6: surprise
- name: Idx
dtype: int32
splits:
- name: train
num_bytes: 916337
num_examples: 9989
- name: validation
num_bytes: 100234
num_examples: 1109
- name: test
num_bytes: 242352
num_examples: 2610
download_size: 1553014
dataset_size: 1258923
- config_name: meld_s
features:
- name: Utterance
dtype: string
- name: Speaker
dtype: string
- name: Sentiment
dtype: string
- name: Dialogue_ID
dtype: string
- name: Utterance_ID
dtype: string
- name: Label
dtype:
class_label:
names:
0: negative
1: neutral
2: positive
- name: Idx
dtype: int32
splits:
- name: train
num_bytes: 930405
num_examples: 9989
- name: validation
num_bytes: 101801
num_examples: 1109
- name: test
num_bytes: 245873
num_examples: 2610
download_size: 1553014
dataset_size: 1278079
- config_name: mrda
features:
- name: Utterance_ID
dtype: string
- name: Dialogue_Act
dtype: string
- name: Channel_ID
dtype: string
- name: Speaker
dtype: string
- name: Dialogue_ID
dtype: string
- name: Utterance
dtype: string
- name: Label
dtype:
class_label:
names:
0: s
1: d
2: b
3: f
4: q
- name: Idx
dtype: int32
splits:
- name: train
num_bytes: 9998857
num_examples: 83943
- name: validation
num_bytes: 1143286
num_examples: 9815
- name: test
num_bytes: 1807462
num_examples: 15470
download_size: 10305848
dataset_size: 12949605
- config_name: oasis
features:
- name: Speaker
dtype: string
- name: Utterance
dtype: string
- name: Dialogue_Act
dtype: string
- name: Label
dtype:
class_label:
names:
0: accept
1: ackn
2: answ
3: answElab
4: appreciate
5: backch
6: bye
7: complete
8: confirm
9: correct
10: direct
11: directElab
12: echo
13: exclaim
14: expressOpinion
15: expressPossibility
16: expressRegret
17: expressWish
18: greet
19: hold
20: identifySelf
21: inform
22: informCont
23: informDisc
24: informIntent
25: init
26: negate
27: offer
28: pardon
29: raiseIssue
30: refer
31: refuse
32: reqDirect
33: reqInfo
34: reqModal
35: selfTalk
36: suggest
37: thank
38: informIntent-hold
39: correctSelf
40: expressRegret-inform
41: thank-identifySelf
- name: Idx
dtype: int32
splits:
- name: train
num_bytes: 887018
num_examples: 12076
- name: validation
num_bytes: 112185
num_examples: 1513
- name: test
num_bytes: 119254
num_examples: 1478
download_size: 802002
dataset_size: 1118457
- config_name: sem
features:
- name: Utterance
dtype: string
- name: NbPairInSession
dtype: string
- name: Dialogue_ID
dtype: string
- name: SpeechTurn
dtype: string
- name: Speaker
dtype: string
- name: Sentiment
dtype: string
- name: Label
dtype:
class_label:
names:
0: Negative
1: Neutral
2: Positive
- name: Idx
dtype: int32
splits:
- name: train
num_bytes: 496168
num_examples: 4264
- name: validation
num_bytes: 57896
num_examples: 485
- name: test
num_bytes: 100072
num_examples: 878
download_size: 513689
dataset_size: 654136
- config_name: swda
features:
- name: Utterance
dtype: string
- name: Dialogue_Act
dtype: string
- name: From_Caller
dtype: string
- name: To_Caller
dtype: string
- name: Topic
dtype: string
- name: Dialogue_ID
dtype: string
- name: Conv_ID
dtype: string
- name: Label
dtype:
class_label:
names:
0: sd
1: b
2: sv
3: '%'
4: aa
5: ba
6: fc
7: qw
8: nn
9: bk
10: h
11: qy^d
12: bh
13: ^q
14: bf
15: fo_o_fw_"_by_bc
16: fo_o_fw_by_bc_"
17: na
18: ad
19: ^2
20: b^m
21: qo
22: qh
23: ^h
24: ar
25: ng
26: br
27: 'no'
28: fp
29: qrr
30: arp_nd
31: t3
32: oo_co_cc
33: aap_am
34: t1
35: bd
36: ^g
37: qw^d
38: fa
39: ft
40: +
41: x
42: ny
43: sv_fx
44: qy_qr
45: ba_fe
- name: Idx
dtype: int32
splits:
- name: train
num_bytes: 20499788
num_examples: 190709
- name: validation
num_bytes: 2265898
num_examples: 21203
- name: test
num_bytes: 291471
num_examples: 2714
download_size: 16227500
dataset_size: 23057157
---
# Dataset Card for SILICONE Benchmark
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [N/A]
- **Repository:** https://github.com/eusip/SILICONE-benchmark
- **Paper:** https://arxiv.org/abs/2009.11152
- **Leaderboard:** [N/A]
- **Point of Contact:** [Ebenge Usip](ebenge.usip@telecom-paris.fr)
### Dataset Summary
The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark is a collection of resources for training, evaluating, and analyzing natural language understanding systems specifically designed for spoken language. All datasets are in the English language and covers a variety of domains including daily life, scripted scenarios, joint task completion, phone call conversations, and televsion dialogue. Some datasets additionally include emotion and/or sentimant labels.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
English.
## Dataset Structure
### Data Instances
#### DailyDialog Act Corpus (Dialogue Act)
For the `dyda_da` configuration one example from the dataset is:
```
{
'Utterance': "the taxi drivers are on strike again .",
'Dialogue_Act': 2, # "inform"
'Dialogue_ID': "2"
}
```
#### DailyDialog Act Corpus (Emotion)
For the `dyda_e` configuration one example from the dataset is:
```
{
'Utterance': "'oh , breaktime flies .'",
'Emotion': 5, # "sadness"
'Dialogue_ID': "997"
}
```
#### Interactive Emotional Dyadic Motion Capture (IEMOCAP) database
For the `iemocap` configuration one example from the dataset is:
```
{
'Dialogue_ID': "Ses04F_script03_2",
'Utterance_ID': "Ses04F_script03_2_F025",
'Utterance': "You're quite insufferable. I expect it's because you're drunk.",
'Emotion': 0, # "ang"
}
```
#### HCRC MapTask Corpus
For the `maptask` configuration one example from the dataset is:
```
{
'Speaker': "f",
'Utterance': "i think that would bring me over the crevasse",
'Dialogue_Act': 4, # "explain"
}
```
#### Multimodal EmotionLines Dataset (Emotion)
For the `meld_e` configuration one example from the dataset is:
```
{
'Utterance': "'Push 'em out , push 'em out , harder , harder .'",
'Speaker': "Joey",
'Emotion': 3, # "joy"
'Dialogue_ID': "1",
'Utterance_ID': "2"
}
```
#### Multimodal EmotionLines Dataset (Sentiment)
For the `meld_s` configuration one example from the dataset is:
```
{
'Utterance': "'Okay , y'know what ? There is no more left , left !'",
'Speaker': "Rachel",
'Sentiment': 0, # "negative"
'Dialogue_ID': "2",
'Utterance_ID': "4"
}
```
#### ICSI MRDA Corpus
For the `mrda` configuration one example from the dataset is:
```
{
'Utterance_ID': "Bed006-c2_0073656_0076706",
'Dialogue_Act': 0, # "s"
'Channel_ID': "Bed006-c2",
'Speaker': "mn015",
'Dialogue_ID': "Bed006",
'Utterance': "keith is not technically one of us yet ."
}
```
#### BT OASIS Corpus
For the `oasis` configuration one example from the dataset is:
```
{
'Speaker': "b",
'Utterance': "when i rang up um when i rang to find out why she said oh well your card's been declined",
'Dialogue_Act': 21, # "inform"
}
```
#### SEMAINE database
For the `sem` configuration one example from the dataset is:
```
{
'Utterance': "can you think of somebody who is like that ?",
'NbPairInSession': "11",
'Dialogue_ID': "59",
'SpeechTurn': "674",
'Speaker': "Agent",
'Sentiment': 1, # "Neutral"
}
```
#### Switchboard Dialog Act (SwDA) Corpus
For the `swda` configuration one example from the dataset is:
```
{
'Utterance': "but i 'd probably say that 's roughly right .",
'Dialogue_Act': 33, # "aap_am"
'From_Caller': "1255",
'To_Caller': "1087",
'Topic': "CRIME",
'Dialogue_ID': "818",
'Conv_ID': "sw2836",
}
```
### Data Fields
For the `dyda_da` configuration, the different fields are:
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of "commissive" (0), "directive" (1), "inform" (2) or "question" (3).
- `Dialogue_ID`: identifier of the dialogue as a string.
For the `dyda_e` configuration, the different fields are:
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of "anger" (0), "disgust" (1), "fear" (2), "happiness" (3), "no emotion" (4), "sadness" (5) or "surprise" (6).
- `Dialogue_ID`: identifier of the dialogue as a string.
For the `iemocap` configuration, the different fields are:
- `Dialogue_ID`: identifier of the dialogue as a string.
- `Utterance_ID`: identifier of the utterance as a string.
- `Utterance`: Utterance as a string.
- `Emotion`: Emotion label of the utterance. It can be one of "Anger" (0), "Disgust" (1), "Excitement" (2), "Fear" (3), "Frustration" (4), "Happiness" (5), "Neutral" (6), "Other" (7), "Sadness" (8), "Surprise" (9) or "Unknown" (10).
For the `maptask` configuration, the different fields are:
- `Speaker`: identifier of the speaker as a string.
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of "acknowledge" (0), "align" (1), "check" (2), "clarify" (3), "explain" (4), "instruct" (5), "query_w" (6), "query_yn" (7), "ready" (8), "reply_n" (9), "reply_w" (10) or "reply_y" (11).
For the `meld_e` configuration, the different fields are:
- `Utterance`: Utterance as a string.
- `Speaker`: Speaker as a string.
- `Emotion`: Emotion label of the utterance. It can be one of "anger" (0), "disgust" (1), "fear" (2), "joy" (3), "neutral" (4), "sadness" (5) or "surprise" (6).
- `Dialogue_ID`: identifier of the dialogue as a string.
- `Utterance_ID`: identifier of the utterance as a string.
For the `meld_s` configuration, the different fields are:
- `Utterance`: Utterance as a string.
- `Speaker`: Speaker as a string.
- `Sentiment`: Sentiment label of the utterance. It can be one of "negative" (0), "neutral" (1) or "positive" (2).
- `Dialogue_ID`: identifier of the dialogue as a string.
- `Utterance_ID`: identifier of the utterance as a string.
For the `mrda` configuration, the different fields are:
- `Utterance_ID`: identifier of the utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of "s" (0) [Statement/Subjective Statement], "d" (1) [Declarative Question], "b" (2) [Backchannel], "f" (3) [Follow-me] or "q" (4) [Question].
- `Channel_ID`: identifier of the channel as a string.
- `Speaker`: identifier of the speaker as a string.
- `Dialogue_ID`: identifier of the channel as a string.
- `Utterance`: Utterance as a string.
For the `oasis` configuration, the different fields are:
- `Speaker`: identifier of the speaker as a string.
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of "accept" (0), "ackn" (1), "answ" (2), "answElab" (3), "appreciate" (4), "backch" (5), "bye" (6), "complete" (7), "confirm" (8), "correct" (9), "direct" (10), "directElab" (11), "echo" (12), "exclaim" (13), "expressOpinion"(14), "expressPossibility" (15), "expressRegret" (16), "expressWish" (17), "greet" (18), "hold" (19),
"identifySelf" (20), "inform" (21), "informCont" (22), "informDisc" (23), "informIntent" (24), "init" (25), "negate" (26), "offer" (27), "pardon" (28), "raiseIssue" (29), "refer" (30), "refuse" (31), "reqDirect" (32), "reqInfo" (33), "reqModal" (34), "selfTalk" (35), "suggest" (36), "thank" (37), "informIntent-hold" (38), "correctSelf" (39), "expressRegret-inform" (40) or "thank-identifySelf" (41).
For the `sem` configuration, the different fields are:
- `Utterance`: Utterance as a string.
- `NbPairInSession`: number of utterance pairs in a dialogue.
- `Dialogue_ID`: identifier of the dialogue as a string.
- `SpeechTurn`: SpeakerTurn as a string.
- `Speaker`: Speaker as a string.
- `Sentiment`: Sentiment label of the utterance. It can be "Negative", "Neutral" or "Positive".
For the `swda` configuration, the different fields are:
`Utterance`: Utterance as a string.
`Dialogue_Act`: Dialogue act label of the utterance. It can be "sd" (0) [Statement-non-opinion], "b" (1) [Acknowledge (Backchannel)], "sv" (2) [Statement-opinion], "%" (3) [Uninterpretable], "aa" (4) [Agree/Accept], "ba" (5) [Appreciation], "fc" (6) [Conventional-closing], "qw" (7) [Wh-Question], "nn" (8) [No Answers], "bk" (9) [Response Acknowledgement], "h" (10) [Hedge], "qy^d" (11) [Declarative Yes-No-Question], "bh" (12) [Backchannel in Question Form], "^q" (13) [Quotation], "bf" (14) [Summarize/Reformulate], 'fo_o_fw_"_by_bc' (15) [Other], 'fo_o_fw_by_bc_"' (16) [Other], "na" (17) [Affirmative Non-yes Answers], "ad" (18) [Action-directive], "^2" (19) [Collaborative Completion], "b^m" (20) [Repeat-phrase], "qo" (21) [Open-Question], "qh" (22) [Rhetorical-Question], "^h" (23) [Hold Before Answer/Agreement], "ar" (24) [Reject], "ng" (25) [Negative Non-no Answers], "br" (26) [Signal-non-understanding], "no" (27) [Other Answers], "fp" (28) [Conventional-opening], "qrr" (29) [Or-Clause], "arp_nd" (30) [Dispreferred Answers], "t3" (31) [3rd-party-talk], "oo_co_cc" (32) [Offers, Options Commits], "aap_am" (33) [Maybe/Accept-part], "t1" (34) [Downplayer], "bd" (35) [Self-talk], "^g" (36) [Tag-Question], "qw^d" (37) [Declarative Wh-Question], "fa" (38) [Apology], "ft" (39) [Thanking], "+" (40) [Unknown], "x" (41) [Unknown], "ny" (42) [Unknown], "sv_fx" (43) [Unknown], "qy_qr" (44) [Unknown] or "ba_fe" (45) [Unknown].
`From_Caller`: identifier of the from caller as a string.
`To_Caller`: identifier of the to caller as a string.
`Topic`: Topic as a string.
`Dialogue_ID`: identifier of the dialogue as a string.
`Conv_ID`: identifier of the conversation as a string.
### Data Splits
| Dataset name | Train | Valid | Test |
| ------------ | ----- | ----- | ---- |
| dyda_da | 87170 | 8069 | 7740 |
| dyda_e | 87170 | 8069 | 7740 |
| iemocap | 7213 | 805 | 2021 |
| maptask | 20905 | 2963 | 2894 |
| meld_e | 9989 | 1109 | 2610 |
| meld_s | 9989 | 1109 | 2610 |
| mrda | 83944 | 9815 | 15470 |
| oasis | 12076 | 1513 | 1478 |
| sem | 4264 | 485 | 878 |
| swda | 190709 | 21203 | 2714 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Benchmark Curators
Emile Chapuis, Pierre Colombo, Ebenge Usip.
### Licensing Information
This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License](https://creativecommons.org/licenses/by-sa/4.0/).
### Citation Information
```
@inproceedings{chapuis-etal-2020-hierarchical,
title = "Hierarchical Pre-training for Sequence Labelling in Spoken Dialog",
author = "Chapuis, Emile and
Colombo, Pierre and
Manica, Matteo and
Labeau, Matthieu and
Clavel, Chlo{\'e}",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.239",
doi = "10.18653/v1/2020.findings-emnlp.239",
pages = "2636--2648",
abstract = "Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a key component of spoken dialog systems. In this work, we propose a new approach to learn generic representations adapted to spoken dialog, which we evaluate on a new benchmark we call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE). SILICONE is model-agnostic and contains 10 different datasets of various sizes. We obtain our representations with a hierarchical encoder based on transformer architectures, for which we extend two well-known pre-training objectives. Pre-training is performed on OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We demonstrate how hierarchical encoders achieve competitive results with consistently fewer parameters compared to state-of-the-art models and we show their importance for both pre-training and fine-tuning.",
}
```
### Contributions
Thanks to [@eusip](https://github.com/eusip) and [@lhoestq](https://github.com/lhoestq) for adding this dataset. |