Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 5,668 Bytes
8e7f0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
700647c
8e7f0d8
 
700647c
8e7f0d8
 
 
 
 
 
700647c
 
 
 
 
 
 
 
 
 
 
 
 
 
8e7f0d8
 
 
 
 
700647c
8e7f0d8
 
 
 
 
 
 
 
 
700647c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e7f0d8
 
 
700647c
8e7f0d8
3009516
8e7f0d8
 
 
700647c
 
 
 
 
8e7f0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
700647c
8e7f0d8
 
 
 
 
700647c
8e7f0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
700647c
5c629fb
8e7f0d8
700647c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""WikiLingua."""


import json

import datasets


# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{ladhak-etal-2020-wikilingua,
    title = "{W}iki{L}ingua: A New Benchmark Dataset for Cross-Lingual Abstractive Summarization",
    author = "Ladhak, Faisal  and
      Durmus, Esin  and
      Cardie, Claire  and
      McKeown, Kathleen",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.findings-emnlp.360",
    doi = "10.18653/v1/2020.findings-emnlp.360",
    pages = "4034--4048",
}
"""

_DESCRIPTION = """\
WikiLingua is a large-scale multilingual dataset for the evaluation of
cross-lingual abstractive summarization systems. The dataset includes ~770k
article and summary pairs in 18 languages from WikiHow. The gold-standard
article-summary alignments across languages was done by aligning the images
that are used to describe each how-to step in an article.
"""

_HOMEPAGE = "https://github.com/esdurmus/Wikilingua"

_LICENSE = "CC BY-NC-SA 3.0"

# Download link
_URL = "data/{language}.jsonl.gz"
_LANGUAGES = [
    "arabic",
    "chinese",
    "czech",
    "dutch",
    "english",
    "french",
    "german",
    "hindi",
    "indonesian",
    "italian",
    "japanese",
    "korean",
    "portuguese",
    "russian",
    "spanish",
    "thai",
    "turkish",
    "vietnamese",
]


class WikiLingua(datasets.GeneratorBasedBuilder):
    """WikiLingua dataset."""

    VERSION = datasets.Version("1.1.1")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name=lang,
            version=datasets.Version("1.1.1"),
            description=f"A subset of article-summary in {lang.capitalize()}",
        )
        for lang in _LANGUAGES
    ]

    DEFAULT_CONFIG_NAME = "english"

    def _info(self):
        if self.config.name == "english":
            features = datasets.Features(
                {
                    "url": datasets.Value("string"),
                    "article": datasets.Sequence(
                        {
                            "section_name": datasets.Value("string"),
                            "document": datasets.Value("string"),
                            "summary": datasets.Value("string"),
                        }
                    ),
                }
            )
        else:
            features = datasets.Features(
                {
                    "url": datasets.Value("string"),
                    "article": datasets.Sequence(
                        {
                            "section_name": datasets.Value("string"),
                            "document": datasets.Value("string"),
                            "summary": datasets.Value("string"),
                            "english_url": datasets.Value("string"),
                            "english_section_name": datasets.Value("string"),
                        }
                    ),
                }
            )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        filepath = dl_manager.download_and_extract(_URL.format(language=self.config.name))
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": filepath,
                },
            ),
        ]

    def _process_article(self, article):
        """Parse the article and convert into list of dict"""
        processed_article = []
        for key, value in article.items():
            row = {"section_name": key, "document": value["document"], "summary": value["summary"]}

            if self.config.name != "english":
                row["english_url"] = value["english_url"]
                row["english_section_name"] = value["english_section_name"]
            processed_article.append(row)

        return processed_article

    def _generate_examples(self, filepath):
        """Yields examples."""
        with open(filepath, "rb") as f:
            for id_, line in enumerate(f):
                row = json.loads(line)
                yield id_, {"url": row["url"], "article": self._process_article(row["article"])}