File size: 12,330 Bytes
bb86c4d
 
 
 
 
86c7033
bb86c4d
86c7033
c9635d4
bb86c4d
 
 
 
 
 
 
5529d74
bb86c4d
 
331adb7
02929d1
9b32634
202f160
 
 
 
 
 
 
 
 
 
13c99cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202f160
 
 
 
13c99cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202f160
 
 
 
13c99cc
 
 
 
 
 
 
 
 
202f160
 
 
 
 
 
 
 
f4d9086
 
 
202f160
 
13c99cc
 
 
 
 
 
 
 
 
 
 
 
 
bb86c4d
 
 
 
 
 
 
02929d1
bb86c4d
 
 
 
02929d1
bb86c4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b128e
bb86c4d
 
 
 
 
01ad4ad
 
 
bb86c4d
05b128e
bb86c4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02929d1
bb86c4d
 
 
05b128e
bb86c4d
 
 
05b128e
bb86c4d
05b128e
bb86c4d
 
 
01ad4ad
 
 
bb86c4d
 
 
55fa4f6
bb86c4d
 
 
 
 
55fa4f6
bb86c4d
 
 
55fa4f6
 
 
05b128e
bb86c4d
 
 
 
 
 
9b32634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb86c4d
02929d1
bb86c4d
 
 
 
 
05b128e
bb86c4d
05b128e
bb86c4d
 
 
05b128e
bb86c4d
02929d1
 
 
 
 
 
bb86c4d
 
05b128e
bb86c4d
02929d1
 
 
 
 
 
bb86c4d
 
05b128e
bb86c4d
 
 
05b128e
bb86c4d
05b128e
bb86c4d
 
 
05b128e
bb86c4d
 
 
05b128e
bb86c4d
 
 
05b128e
bb86c4d
05b128e
bb86c4d
 
 
05b128e
bb86c4d
c9635d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb86c4d
05b128e
bb86c4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202f160
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-reuters-corpus
task_categories:
- token-classification
task_ids:
- named-entity-recognition
- part-of-speech
paperswithcode_id: conll-2003
pretty_name: CoNLL-2003
dataset_info:
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: pos_tags
    sequence:
      class_label:
        names:
          '0': '"'
          '1': ''''''
          '2': '#'
          '3': $
          '4': (
          '5': )
          '6': ','
          '7': .
          '8': ':'
          '9': '``'
          '10': CC
          '11': CD
          '12': DT
          '13': EX
          '14': FW
          '15': IN
          '16': JJ
          '17': JJR
          '18': JJS
          '19': LS
          '20': MD
          '21': NN
          '22': NNP
          '23': NNPS
          '24': NNS
          '25': NN|SYM
          '26': PDT
          '27': POS
          '28': PRP
          '29': PRP$
          '30': RB
          '31': RBR
          '32': RBS
          '33': RP
          '34': SYM
          '35': TO
          '36': UH
          '37': VB
          '38': VBD
          '39': VBG
          '40': VBN
          '41': VBP
          '42': VBZ
          '43': WDT
          '44': WP
          '45': WP$
          '46': WRB
  - name: chunk_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-ADJP
          '2': I-ADJP
          '3': B-ADVP
          '4': I-ADVP
          '5': B-CONJP
          '6': I-CONJP
          '7': B-INTJ
          '8': I-INTJ
          '9': B-LST
          '10': I-LST
          '11': B-NP
          '12': I-NP
          '13': B-PP
          '14': I-PP
          '15': B-PRT
          '16': I-PRT
          '17': B-SBAR
          '18': I-SBAR
          '19': B-UCP
          '20': I-UCP
          '21': B-VP
          '22': I-VP
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-PER
          '2': I-PER
          '3': B-ORG
          '4': I-ORG
          '5': B-LOC
          '6': I-LOC
          '7': B-MISC
          '8': I-MISC
  config_name: conll2003
  splits:
  - name: train
    num_bytes: 6931345
    num_examples: 14041
  - name: validation
    num_bytes: 1739223
    num_examples: 3250
  - name: test
    num_bytes: 1582054
    num_examples: 3453
  download_size: 982975
  dataset_size: 10252622
train-eval-index:
- config: conll2003
  task: token-classification
  task_id: entity_extraction
  splits:
    train_split: train
    eval_split: test
  col_mapping:
    tokens: tokens
    ner_tags: tags
  metrics:
  - type: seqeval
    name: seqeval
---

# Dataset Card for "conll2003"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://www.aclweb.org/anthology/W03-0419/](https://www.aclweb.org/anthology/W03-0419/)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 4.85 MB
- **Size of the generated dataset:** 10.26 MB
- **Total amount of disk used:** 15.11 MB

### Dataset Summary

The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on
four types of named entities: persons, locations, organizations and names of miscellaneous entities that do
not belong to the previous three groups.

The CoNLL-2003 shared task data files contain four columns separated by a single space. Each word has been put on
a separate line and there is an empty line after each sentence. The first item on each line is a word, the second
a part-of-speech (POS) tag, the third a syntactic chunk tag and the fourth the named entity tag. The chunk tags
and the named entity tags have the format I-TYPE which means that the word is inside a phrase of type TYPE. Only
if two phrases of the same type immediately follow each other, the first word of the second phrase will have tag
B-TYPE to show that it starts a new phrase. A word with tag O is not part of a phrase. Note the dataset uses IOB2
tagging scheme, whereas the original dataset uses IOB1.

For more details see https://www.clips.uantwerpen.be/conll2003/ner/ and https://www.aclweb.org/anthology/W03-0419

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Dataset Structure

### Data Instances

#### conll2003

- **Size of downloaded dataset files:** 4.85 MB
- **Size of the generated dataset:** 10.26 MB
- **Total amount of disk used:** 15.11 MB

An example of 'train' looks as follows.

```
{
    "chunk_tags": [11, 12, 12, 21, 13, 11, 11, 21, 13, 11, 12, 13, 11, 21, 22, 11, 12, 17, 11, 21, 17, 11, 12, 12, 21, 22, 22, 13, 11, 0],
    "id": "0",
    "ner_tags": [0, 3, 4, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    "pos_tags": [12, 22, 22, 38, 15, 22, 28, 38, 15, 16, 21, 35, 24, 35, 37, 16, 21, 15, 24, 41, 15, 16, 21, 21, 20, 37, 40, 35, 21, 7],
    "tokens": ["The", "European", "Commission", "said", "on", "Thursday", "it", "disagreed", "with", "German", "advice", "to", "consumers", "to", "shun", "British", "lamb", "until", "scientists", "determine", "whether", "mad", "cow", "disease", "can", "be", "transmitted", "to", "sheep", "."]
}
```

The original data files have `-DOCSTART-` lines used to separate documents, but these lines are removed here.
Indeed `-DOCSTART-` is a special line that acts as a boundary between two different documents, and it is filtered out in this implementation.

### Data Fields

The data fields are the same among all splits.

#### conll2003
- `id`: a `string` feature.
- `tokens`: a `list` of `string` features.
- `pos_tags`: a `list` of classification labels (`int`). Full tagset with indices:

```python
{'"': 0, "''": 1, '#': 2, '$': 3, '(': 4, ')': 5, ',': 6, '.': 7, ':': 8, '``': 9, 'CC': 10, 'CD': 11, 'DT': 12,
 'EX': 13, 'FW': 14, 'IN': 15, 'JJ': 16, 'JJR': 17, 'JJS': 18, 'LS': 19, 'MD': 20, 'NN': 21, 'NNP': 22, 'NNPS': 23,
 'NNS': 24, 'NN|SYM': 25, 'PDT': 26, 'POS': 27, 'PRP': 28, 'PRP$': 29, 'RB': 30, 'RBR': 31, 'RBS': 32, 'RP': 33,
 'SYM': 34, 'TO': 35, 'UH': 36, 'VB': 37, 'VBD': 38, 'VBG': 39, 'VBN': 40, 'VBP': 41, 'VBZ': 42, 'WDT': 43,
 'WP': 44, 'WP$': 45, 'WRB': 46}
```

- `chunk_tags`: a `list` of classification labels (`int`). Full tagset with indices:

```python
{'O': 0, 'B-ADJP': 1, 'I-ADJP': 2, 'B-ADVP': 3, 'I-ADVP': 4, 'B-CONJP': 5, 'I-CONJP': 6, 'B-INTJ': 7, 'I-INTJ': 8,
 'B-LST': 9, 'I-LST': 10, 'B-NP': 11, 'I-NP': 12, 'B-PP': 13, 'I-PP': 14, 'B-PRT': 15, 'I-PRT': 16, 'B-SBAR': 17,
 'I-SBAR': 18, 'B-UCP': 19, 'I-UCP': 20, 'B-VP': 21, 'I-VP': 22}
```

- `ner_tags`: a `list` of classification labels (`int`). Full tagset with indices:

```python
{'O': 0, 'B-PER': 1, 'I-PER': 2, 'B-ORG': 3, 'I-ORG': 4, 'B-LOC': 5, 'I-LOC': 6, 'B-MISC': 7, 'I-MISC': 8}
```

### Data Splits

|  name   |train|validation|test|
|---------|----:|---------:|---:|
|conll2003|14041|      3250|3453|

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

From the [CoNLL2003 shared task](https://www.clips.uantwerpen.be/conll2003/ner/) page:

> The English data is a collection of news wire articles from the Reuters Corpus. The annotation has been done by people of the University of Antwerp. Because of copyright reasons we only make available the annotations. In order to build the complete data sets you will need access to the Reuters Corpus. It can be obtained for research purposes without any charge from NIST.

The copyrights are defined below, from the [Reuters Corpus page](https://trec.nist.gov/data/reuters/reuters.html):

> The stories in the Reuters Corpus are under the copyright of Reuters Ltd and/or Thomson Reuters, and their use is governed by the following agreements:
>
> [Organizational agreement](https://trec.nist.gov/data/reuters/org_appl_reuters_v4.html)
>
> This agreement must be signed by the person responsible for the data at your organization, and sent to NIST.
>
> [Individual agreement](https://trec.nist.gov/data/reuters/ind_appl_reuters_v4.html)
>
> This agreement must be signed by all researchers using the Reuters Corpus at your organization, and kept on file at your organization.

### Citation Information

```
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,
    title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition",
    author = "Tjong Kim Sang, Erik F.  and
      De Meulder, Fien",
    booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003",
    year = "2003",
    url = "https://www.aclweb.org/anthology/W03-0419",
    pages = "142--147",
}

```


### Contributions

Thanks to [@jplu](https://github.com/jplu), [@vblagoje](https://github.com/vblagoje), [@lhoestq](https://github.com/lhoestq) for adding this dataset.