File size: 9,570 Bytes
cbb49c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9635d4
 
cbb49c7
 
 
05b128e
 
 
cbb49c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9635d4
cbb49c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334d6b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbb49c7
 
 
 
 
 
 
 
 
c9635d4
 
 
 
 
cbb49c7
 
 
c9635d4
 
 
cbb49c7
 
 
05b128e
cbb49c7
 
334d6b2
 
 
 
cbb49c7
 
334d6b2
 
 
 
 
 
 
 
cbb49c7
334d6b2
 
 
 
cbb49c7
 
 
334d6b2
 
 
 
cbb49c7
331adb7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""

import os

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,
    title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition",
    author = "Tjong Kim Sang, Erik F.  and
      De Meulder, Fien",
    booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003",
    year = "2003",
    url = "https://www.aclweb.org/anthology/W03-0419",
    pages = "142--147",
}
"""

_DESCRIPTION = """\
The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on
four types of named entities: persons, locations, organizations and names of miscellaneous entities that do
not belong to the previous three groups.

The CoNLL-2003 shared task data files contain four columns separated by a single space. Each word has been put on
a separate line and there is an empty line after each sentence. The first item on each line is a word, the second
a part-of-speech (POS) tag, the third a syntactic chunk tag and the fourth the named entity tag. The chunk tags
and the named entity tags have the format I-TYPE which means that the word is inside a phrase of type TYPE. Only
if two phrases of the same type immediately follow each other, the first word of the second phrase will have tag
B-TYPE to show that it starts a new phrase. A word with tag O is not part of a phrase. Note the dataset uses IOB2
tagging scheme, whereas the original dataset uses IOB1.

For more details see https://www.clips.uantwerpen.be/conll2003/ner/ and https://www.aclweb.org/anthology/W03-0419
"""

_URL = "https://data.deepai.org/conll2003.zip"
_TRAINING_FILE = "train.txt"
_DEV_FILE = "valid.txt"
_TEST_FILE = "test.txt"


class Conll2003Config(datasets.BuilderConfig):
    """BuilderConfig for Conll2003"""

    def __init__(self, **kwargs):
        """BuilderConfig forConll2003.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(Conll2003Config, self).__init__(**kwargs)


class Conll2003(datasets.GeneratorBasedBuilder):
    """Conll2003 dataset."""

    BUILDER_CONFIGS = [
        Conll2003Config(name="conll2003", version=datasets.Version("1.0.0"), description="Conll2003 dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "pos_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                '"',
                                "''",
                                "#",
                                "$",
                                "(",
                                ")",
                                ",",
                                ".",
                                ":",
                                "``",
                                "CC",
                                "CD",
                                "DT",
                                "EX",
                                "FW",
                                "IN",
                                "JJ",
                                "JJR",
                                "JJS",
                                "LS",
                                "MD",
                                "NN",
                                "NNP",
                                "NNPS",
                                "NNS",
                                "NN|SYM",
                                "PDT",
                                "POS",
                                "PRP",
                                "PRP$",
                                "RB",
                                "RBR",
                                "RBS",
                                "RP",
                                "SYM",
                                "TO",
                                "UH",
                                "VB",
                                "VBD",
                                "VBG",
                                "VBN",
                                "VBP",
                                "VBZ",
                                "WDT",
                                "WP",
                                "WP$",
                                "WRB",
                            ]
                        )
                    ),
                    "chunk_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-ADJP",
                                "I-ADJP",
                                "B-ADVP",
                                "I-ADVP",
                                "B-CONJP",
                                "I-CONJP",
                                "B-INTJ",
                                "I-INTJ",
                                "B-LST",
                                "I-LST",
                                "B-NP",
                                "I-NP",
                                "B-PP",
                                "I-PP",
                                "B-PRT",
                                "I-PRT",
                                "B-SBAR",
                                "I-SBAR",
                                "B-UCP",
                                "I-UCP",
                                "B-VP",
                                "I-VP",
                            ]
                        )
                    ),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-PER",
                                "I-PER",
                                "B-ORG",
                                "I-ORG",
                                "B-LOC",
                                "I-LOC",
                                "B-MISC",
                                "I-MISC",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://www.aclweb.org/anthology/W03-0419/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        downloaded_file = dl_manager.download_and_extract(_URL)
        data_files = {
            "train": os.path.join(downloaded_file, _TRAINING_FILE),
            "dev": os.path.join(downloaded_file, _DEV_FILE),
            "test": os.path.join(downloaded_file, _TEST_FILE),
        }

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            pos_tags = []
            chunk_tags = []
            ner_tags = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "pos_tags": pos_tags,
                            "chunk_tags": chunk_tags,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        pos_tags = []
                        chunk_tags = []
                        ner_tags = []
                else:
                    # conll2003 tokens are space separated
                    splits = line.split(" ")
                    tokens.append(splits[0])
                    pos_tags.append(splits[1])
                    chunk_tags.append(splits[2])
                    ner_tags.append(splits[3].rstrip())
            # last example
            if tokens:
                yield guid, {
                    "id": str(guid),
                    "tokens": tokens,
                    "pos_tags": pos_tags,
                    "chunk_tags": chunk_tags,
                    "ner_tags": ner_tags,
                }