File size: 6,453 Bytes
0211ef3
c35074d
0211ef3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4234207
0211ef3
 
 
 
c35074d
 
 
 
0211ef3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import warnings

import datasets


_DESCRIPTION = """\
"""
_HOMEPAGE_URL = "https://github.com/elenanereiss/Legal-Entity-Recognition"
_CITATION = """\
@inproceedings{leitner2019fine,
  author = {Elena Leitner and Georg Rehm and Julian Moreno-Schneider},
  title = {{Fine-grained Named Entity Recognition in Legal Documents}},
  booktitle = {Semantic Systems. The Power of AI and Knowledge
                  Graphs. Proceedings of the 15th International Conference
                  (SEMANTiCS 2019)},
  year = 2019,
  editor = {Maribel Acosta and Philippe Cudré-Mauroux and Maria
                  Maleshkova and Tassilo Pellegrini and Harald Sack and York
                  Sure-Vetter},
  keywords = {aip},
  publisher = {Springer},
  series = {Lecture Notes in Computer Science},
  number = {11702},
  address = {Karlsruhe, Germany},
  month = 9,
  note = {10/11 September 2019},
  pages = {272--287},
  pdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}}
"""
_DATA_URL = "https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/data/dataset_courts.zip"
_VERSION = "1.0.0"
_COURTS = ["bag", "bfh", "bgh", "bpatg", "bsg", "bverfg", "bverwg"]
_COURTS_FILEPATHS = {court: f"{court}.conll" for court in _COURTS}
_ALL = "all"


class GermanLegalEntityRecognitionConfig(datasets.BuilderConfig):
    def __init__(self, *args, courts=None, **kwargs):
        super().__init__(*args, version=datasets.Version(_VERSION, ""), **kwargs)
        self.courts = courts

    @property
    def filepaths(self):
        return [_COURTS_FILEPATHS[court] for court in self.courts]


class GermanLegalEntityRecognition(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        GermanLegalEntityRecognitionConfig(name=court, courts=[court], description=f"Court. {court}.")
        for court in _COURTS
    ] + [GermanLegalEntityRecognitionConfig(name=_ALL, courts=_COURTS, description="All courts included.")]
    BUILDER_CONFIG_CLASS = GermanLegalEntityRecognitionConfig
    DEFAULT_CONFIG_NAME = _ALL

    def _info(self):
        warnings.warn(
            "Dataset 'german_legal_entity_recognition' is deprecated and will be deleted. Use 'elenanereiss/german-ler' instead.",
            FutureWarning,
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "B-AN",
                                "B-EUN",
                                "B-GRT",
                                "B-GS",
                                "B-INN",
                                "B-LD",
                                "B-LDS",
                                "B-LIT",
                                "B-MRK",
                                "B-ORG",
                                "B-PER",
                                "B-RR",
                                "B-RS",
                                "B-ST",
                                "B-STR",
                                "B-UN",
                                "B-VO",
                                "B-VS",
                                "B-VT",
                                "I-AN",
                                "I-EUN",
                                "I-GRT",
                                "I-GS",
                                "I-INN",
                                "I-LD",
                                "I-LDS",
                                "I-LIT",
                                "I-MRK",
                                "I-ORG",
                                "I-PER",
                                "I-RR",
                                "I-RS",
                                "I-ST",
                                "I-STR",
                                "I-UN",
                                "I-VO",
                                "I-VS",
                                "I-VT",
                                "O",
                            ]
                        )
                    ),
                },
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        path = dl_manager.download_and_extract(_DATA_URL)
        return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"datapath": path})]

    def _generate_examples(self, datapath):
        sentence_counter = 0
        for filepath in self.config.filepaths:
            filepath = os.path.join(datapath, filepath)
            with open(filepath, encoding="utf-8") as f:
                current_words = []
                current_labels = []
                for row in f:
                    row = row.rstrip()
                    row_split = row.split()
                    if len(row_split) == 2:
                        token, label = row_split
                        current_words.append(token)
                        current_labels.append(label)
                    else:
                        if not current_words:
                            continue
                        assert len(current_words) == len(current_labels), "word len doesnt match label length"
                        sentence = (
                            sentence_counter,
                            {
                                "id": str(sentence_counter),
                                "tokens": current_words,
                                "ner_tags": current_labels,
                            },
                        )
                        sentence_counter += 1
                        current_words = []
                        current_labels = []
                        yield sentence

                # if something remains:
                if current_words:
                    sentence = (
                        sentence_counter,
                        {
                            "id": str(sentence_counter),
                            "tokens": current_words,
                            "ner_tags": current_labels,
                        },
                    )
                    yield sentence