Datasets:
File size: 5,803 Bytes
63c9df4 46e652e 3b46101 46e652e 3b46101 46e652e 3b46101 46e652e 3b46101 46e652e 3b46101 46e652e 3b46101 46e652e 3b46101 9deacee 3b46101 9deacee 46e652e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
---
annotations_creators: []
language:
- en
language_creators: []
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: AMI
size_categories: []
source_datasets: []
tags: []
task_categories:
- automatic-speech-recognition
task_ids: []
---
# Dataset Card for AMI
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
- [Terms of Usage](#terms-of-usage)
## Dataset Description
- **Homepage:** https://groups.inf.ed.ac.uk/ami/corpus/
- **Repository:** https://github.com/kaldi-asr/kaldi/tree/master/egs/ami/s5
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** [jonathan@ed.ac.uk](mailto:jonathan@ed.ac.uk)
## Dataset Description
The AMI Meeting Corpus consists of 100 hours of meeting recordings. The recordings use a range of signals
synchronized to a common timeline. These include close-talking and far-field microphones, individual and
room-view video cameras, and output from a slide projector and an electronic whiteboard. During the meetings,
the participants also have unsynchronized pens available to them that record what is written. The meetings
were recorded in English using three different rooms with different acoustic properties, and include mostly
non-native speakers.
**Note**: This dataset corresponds to the data-processing of [KALDI's AMI S5 recipe](https://github.com/kaldi-asr/kaldi/tree/master/egs/ami/s5).
This means text is normalized and the audio data is chunked according to the scripts above!
To make the user experience as simply as possible, we provide the already chunked data to the user here so that the following can be done:
### Example Usage
```python
from datasets import load_dataset
ds = load_dataset("edinburghcstr/ami", "ihm")
print(ds)
```
gives:
```
DatasetDict({
train: Dataset({
features: ['meeting_id', 'audio_id', 'text', 'audio', 'begin_time', 'end_time', 'microphone_id', 'speaker_id'],
num_rows: 108502
})
validation: Dataset({
features: ['meeting_id', 'audio_id', 'text', 'audio', 'begin_time', 'end_time', 'microphone_id', 'speaker_id'],
num_rows: 13098
})
test: Dataset({
features: ['meeting_id', 'audio_id', 'text', 'audio', 'begin_time', 'end_time', 'microphone_id', 'speaker_id'],
num_rows: 12643
})
})
```
```py
ds["train"][0]
```
automatically loads the audio into memory:
```
{'meeting_id': 'EN2001a',
'audio_id': 'AMI_EN2001a_H00_MEE068_0000557_0000594',
'text': 'OKAY',
'audio': {'path': '/cache/dir/path/downloads/extracted/2d75d5b3e8a91f44692e2973f08b4cac53698f92c2567bd43b41d19c313a5280/EN2001a/train_ami_en2001a_h00_mee068_0000557_0000594.wav',
'array': array([0. , 0. , 0. , ..., 0.00033569, 0.00030518,
0.00030518], dtype=float32),
'sampling_rate': 16000},
'begin_time': 5.570000171661377,
'end_time': 5.940000057220459,
'microphone_id': 'H00',
'speaker_id': 'MEE068'}
```
The dataset was tested for correctness by fine-tuning a Wav2Vec2-Large model on it, more explicitly [the `wav2vec2-large-lv60` checkpoint](https://huggingface.co/facebook/wav2vec2-large-lv60).
As can be seen in this experiments, training the model for less than 2 epochs gives
*Result (WER)*:
| "dev" | "eval" |
|---|---|
| 25.27 | 25.21 |
as can be seen [here](https://huggingface.co/patrickvonplaten/ami-wav2vec2-large-lv60).
The results are in-line with results of published papers:
- [*Hybrid acoustic models for distant and multichannel large vocabulary speech recognition*](https://www.researchgate.net/publication/258075865_Hybrid_acoustic_models_for_distant_and_multichannel_large_vocabulary_speech_recognition)
- [Multi-Span Acoustic Modelling using Raw Waveform Signals](https://arxiv.org/abs/1906.11047)
You can run [run.sh](https://huggingface.co/patrickvonplaten/ami-wav2vec2-large-lv60/blob/main/run.sh) to reproduce the result.
### Supported Tasks and Leaderboards
### Languages
## Dataset Structure
### Data Instances
### Data Fields
### Data Splits
#### Transcribed Subsets Size
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
### Citation Information
### Contributions
Thanks to [@sanchit-gandhi](https://github.com/sanchit-gandhi), [@patrickvonplaten](https://github.com/patrickvonplaten),
and [@polinaeterna](https://github.com/polinaeterna) for adding this dataset.
## Terms of Usage
|