Datasets:
File size: 12,325 Bytes
466f219 d3bb592 466f219 d3bb592 466f219 d3bb592 466f219 d3bb592 466f219 d3bb592 466f219 d3bb592 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
GigaSpeech is an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality
labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised
and unsupervised training. Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts
and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science,
sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable
for speech recognition training, and to filter out segments with low-quality transcription. For system training,
GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h.
For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage,
and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand,
are re-processed by professional human transcribers to ensure high transcription quality.
"""
import csv
import os
import datasets
_CITATION = """\
@article{DBLP:journals/corr/abs-2106-06909,
author = {Guoguo Chen and
Shuzhou Chai and
Guanbo Wang and
Jiayu Du and
Wei{-}Qiang Zhang and
Chao Weng and
Dan Su and
Daniel Povey and
Jan Trmal and
Junbo Zhang and
Mingjie Jin and
Sanjeev Khudanpur and
Shinji Watanabe and
Shuaijiang Zhao and
Wei Zou and
Xiangang Li and
Xuchen Yao and
Yongqing Wang and
Yujun Wang and
Zhao You and
Zhiyong Yan},
title = {GigaSpeech: An Evolving, Multi-domain {ASR} Corpus with 10, 000 Hours
of Transcribed Audio},
journal = {CoRR},
volume = {abs/2106.06909},
year = {2021},
url = {https://arxiv.org/abs/2106.06909},
eprinttype = {arXiv},
eprint = {2106.06909},
timestamp = {Wed, 29 Dec 2021 14:29:26 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2106-06909.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
GigaSpeech is an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality
labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised
and unsupervised training. Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts
and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science,
sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable
for speech recognition training, and to filter out segments with low-quality transcription. For system training,
GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h.
For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage,
and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand,
are re-processed by professional human transcribers to ensure high transcription quality.
"""
_HOMEPAGE = "https://groups.inf.ed.ac.uk/ami/corpus/"
_LICENSE = "CC BY 4.0"
_TRAIN_SAMPLE_IDS = [
"EN2001a",
"EN2001b",
"EN2001d",
"EN2001e",
"EN2003a",
"EN2004a",
"EN2005a",
"EN2006a",
"EN2006b",
"EN2009b",
"EN2009c",
"EN2009d",
"ES2002a",
"ES2002b",
"ES2002c",
"ES2002d",
"ES2003a",
"ES2003b",
"ES2003c",
"ES2003d",
"ES2005a",
"ES2005b",
"ES2005c",
"ES2005d",
"ES2006a",
"ES2006b",
"ES2006c",
"ES2006d",
"ES2007a",
"ES2007b",
"ES2007c",
"ES2007d",
"ES2008a",
"ES2008b",
"ES2008c",
"ES2008d",
"ES2009a",
"ES2009b",
"ES2009c",
"ES2009d",
"ES2010a",
"ES2010b",
"ES2010c",
"ES2010d",
"ES2012a",
"ES2012b",
"ES2012c",
"ES2012d",
"ES2013a",
"ES2013b",
"ES2013c",
"ES2013d",
"ES2014a",
"ES2014b",
"ES2014c",
"ES2014d",
"ES2015a",
"ES2015b",
"ES2015c",
"ES2015d",
"ES2016a",
"ES2016b",
"ES2016c",
"ES2016d",
"IB4005",
"IN1001",
"IN1002",
"IN1005",
"IN1007",
"IN1008",
"IN1009",
"IN1012",
"IN1013",
"IN1014",
"IN1016",
"IS1000a",
"IS1000b",
"IS1000c",
"IS1000d",
"IS1001a",
"IS1001b",
"IS1001c",
"IS1001d",
"IS1002b",
"IS1002c",
"IS1002d",
"IS1003a",
"IS1003b",
"IS1003c",
"IS1003d",
"IS1004a",
"IS1004b",
"IS1004c",
"IS1004d",
"IS1005a",
"IS1005b",
"IS1005c",
"IS1006a",
"IS1006b",
"IS1006c",
"IS1006d",
"IS1007a",
"IS1007b",
"IS1007c",
"IS1007d",
"TS3005a",
"TS3005b",
"TS3005c",
"TS3005d",
"TS3006a",
"TS3006b",
"TS3006c",
"TS3006d",
"TS3007a",
"TS3007b",
"TS3007c",
"TS3007d",
"TS3008a",
"TS3008b",
"TS3008c",
"TS3008d",
"TS3009a",
"TS3009b",
"TS3009c",
"TS3009d",
"TS3010a",
"TS3010b",
"TS3010c",
"TS3010d",
"TS3011a",
"TS3011b",
"TS3011c",
"TS3011d",
"TS3012a",
"TS3012b",
"TS3012c",
"TS3012d",
]
_VALIDATION_SAMPLE_IDS = [
"ES2011a",
"ES2011c",
"IB4001",
"IB4003",
"IB4010",
"IS1008a",
"IS1008c",
"TS3004a",
"TS3004c",
"ES2011b",
"ES2011d",
"IB4002",
"IB4004",
"IB4011",
"IS1008b",
"IS1008d",
"TS3004b",
"TS3004d",
]
_EVAL_SAMPLE_IDS = [
"EN2002a",
"EN2002b",
"EN2002c",
"EN2002d",
"ES2004a",
"ES2004b",
"ES2004c",
"ES2004d",
"IS1009a",
"IS1009b",
"IS1009c",
"IS1009d",
"TS3003a",
"TS3003b",
"TS3003c",
"TS3003d",
]
_SUBSETS = ("ihm",)
_BASE_DATA_URL = "https://huggingface.co/datasets/patrickvonplaten/ami-ihm-kaldi-chunked/resolve/main/"
_AUDIO_ARCHIVE_URL = _BASE_DATA_URL + "audio/{subset}/{split}/{_id}.tar.gz"
_ANNOTATIONS_ARCHIVE_URL = _BASE_DATA_URL + "annotations/{split}/text"
logger = datasets.utils.logging.get_logger(__name__)
class AMIConfig(datasets.BuilderConfig):
"""BuilderConfig for AMI."""
def __init__(self, name, *args, **kwargs):
"""BuilderConfig for AMI"""
super().__init__(name=name, *args, **kwargs)
class AMI(datasets.GeneratorBasedBuilder):
"""
GigaSpeech is an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality
labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised
and unsupervised training (this implementation contains only labelled data for now).
Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts
and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science,
sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable
for speech recognition training, and to filter out segments with low-quality transcription. For system training,
GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h.
For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage,
and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand,
are re-processed by professional human transcribers to ensure high transcription quality.
"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
AMIConfig(name=subset) for subset in _SUBSETS
]
DEFAULT_WRITER_BATCH_SIZE = 128
def _info(self):
features = datasets.Features(
{
"segment_id": datasets.Value("string"),
"audio_id": datasets.Value("string"),
"text": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"begin_time": datasets.Value("float32"),
"end_time": datasets.Value("float32"),
"microphone_id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_audio_files = {m: _AUDIO_ARCHIVE_URL.format(subset=self.config.name, split="train", _id=m) for m in _TRAIN_SAMPLE_IDS}
dev_audio_files = {m: _AUDIO_ARCHIVE_URL.format(subset=self.config.name, split="dev", _id=m) for m in _VALIDATION_SAMPLE_IDS}
eval_audio_files = {m: _AUDIO_ARCHIVE_URL.format(subset=self.config.name, split="eval", _id=m) for m in _EVAL_SAMPLE_IDS}
train_audio_archives = dl_manager.download_and_extract(train_audio_files)
dev_audio_archives = dl_manager.download_and_extract(dev_audio_files)
eval_audio_archives = dl_manager.download_and_extract(eval_audio_files)
train_annotation = dl_manager.download_and_extract(_ANNOTATIONS_ARCHIVE_URL.format(split="train"))
dev_annotation = dl_manager.download_and_extract(_ANNOTATIONS_ARCHIVE_URL.format(split="dev"))
eval_annotation = dl_manager.download_and_extract(_ANNOTATIONS_ARCHIVE_URL.format(split="eval"))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"audio": train_audio_archives, "annotation": train_annotation, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"audio": dev_audio_archives, "annotation": dev_annotation, "split": "dev"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"audio": eval_audio_archives, "annotation": eval_annotation, "split": "eval"},
),
]
def _generate_examples(self, audio, annotation, split):
# open annotation file
with open(annotation, "r", encoding="utf-8") as f:
transcriptions = {}
for line in f.readlines():
line_items = line.strip().split()
_id = line_items[0]
text = " ".join(line_items[1:])
_, segment_id, microphone_id, speaker_id, begin_time, end_time = _id.split("_")
transcriptions[_id] = {
"audio_id": _id,
"segment_id": segment_id,
"text": text,
"begin_time": int(begin_time) / 100,
"end_time": int(end_time) / 100,
"microphone_id": microphone_id,
"speaker_id": speaker_id,
}
for _audio_id, (transcription_id, result) in enumerate(transcriptions.items()):
folder_id = result["segment_id"]
file_name = "_".join([split, transcription_id.lower()]) + ".wav"
audio_file = os.path.join(audio[folder_id], folder_id, file_name)
result["audio"] = audio_file
yield _audio_id, result
|