File size: 2,560 Bytes
d77a28a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
<p align="center">
<h3 align="center"><strong>GEAL: Generalizable 3D Affordance Learning with Cross-Modal Consistency</strong></h3>
<p align="center">
<a href="https://dylanorange.github.io" target='_blank'>Dongyue Lu</a>
<a href="https://ldkong.com" target='_blank'>Lingdong Kong</a>
<a href="https://tianxinhuang.github.io/" target='_blank'>Tianxin Huang</a>
<a href="https://www.comp.nus.edu.sg/~leegh/">Gim Hee Lee</a>
</br>
National University of Singapore
</p>
</p>
<p align="center">
<a href="https://dylanorange.github.io/projects/geal/static/files/geal.pdf" target='_blank'>
<img src="https://img.shields.io/badge/Paper-%F0%9F%93%83-lightblue">
</a>
<a href="https://dylanorange.github.io/projects/geal" target='_blank'>
<img src="https://img.shields.io/badge/Project-%F0%9F%94%97-blue">
</a>
<a href="https://huggingface.co/datasets/dylanorange/geal" target="_blank">
<img src="https://img.shields.io/badge/Dataset-%20Hugging%20Face-yellow">
</a>
</p>
## About 🛠️
**GEAL** is a novel framework designed to enhance the generalization and robustness of 3D affordance learning by leveraging pre-trained 2D models.
To facilitate robust 3D affordance learning across diverse real-world scenarios, we establish two 3D affordance robustness benchmarks: **PIAD-C** and **LASO-C**, based on the test sets of the commonly used datasets PIAD and LASO. We apply seven types of corruptions:
- **Add Global**
- **Add Local**
- **Drop Global**
- **Drop Local**
- **Rotate**
- **Scale**
- **Jitter**
Each corruption is applied with five severity levels, resulting in a total of **4890 object-affordance pairings**, comprising **17 affordance categories** and **23 object categories** with **2047 distinct object shapes**.
<div style="text-align: center;">
<img src="supp_benchmark_1.jpg" alt="GEAL Performance GIF" style="max-width: 100%; height: auto; width: 1000px;">
<img src="supp_benchmark_2.jpg" alt="GEAL Performance GIF" style="max-width: 100%; height: auto; width: 1000px;">
</div>
## Updates 📰
- **[2024.12]** - We have released our **PIAD-C** and **LASO-C** datasets! 🎉📂
## Dataset and Code Release 🚀
We are excited to announce the release of our dataset and dataloader:
- **Dataset**: Available in the `PIAD-C` and `LASO-C` files 📜
- **Dataloader**: Available in the `dataset.py` file 📜
Stay tuned! Further evaluation code will be coming soon. 🔧✨
|