File size: 6,935 Bytes
3641763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import nibabel as nib
import os
import numpy as np

import datasets

import boto3


_DESCRIPTION = """\
fMIR dataset from openneuro.org
"""

class fMRIConfig(datasets.BuilderConfig):
    """Builder Config for fMRI"""
 
    def __init__(self, data_url, num_datasets=[10, 1, 1], num_frames=8, sampling_rate=1, **kwargs):
        """BuilderConfig for fMRI.
        Args:
          data_url: `string`, url to download the zip file from.
          **kwargs: keyword arguments forwarded to super.
        """
        super(fMRIConfig, self).__init__(**kwargs)
        self.data_url = data_url
        self.num_datasets = num_datasets
        self.num_frames = num_frames
        self.sampling_rate = sampling_rate

class fMRITest(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.0.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        fMRIConfig(name="test1", data_url="openneuro.org", version=VERSION, description="fMRI test dataset 1", ),
    ]

    DEFAULT_CONFIG_NAME = "test1"  # It's not mandatory to have a default configuration. Just use one if it make sense.


    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        if self.config.name == "test1":  # This is the name of the configuration selected in BUILDER_CONFIGS above
            # features = datasets.Features(
            #     {
            #         # "func": np.ndarray(shape=(65,77,65,self.config.duration)),
            #         "func": datasets.Array4D(shape=(None,None,None,self.config.duration), dtype='float32'),
            #     }
            # )
            features = None
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
        )

    def _split_generators(self, dl_manager):

        # Connect to S3
        s3 = boto3.client('s3')

        bucket_name = self.config.data_url
        
        response = s3.list_objects_v2(Bucket=bucket_name, Prefix='', Delimiter='/')

        folder_names = [x['Prefix'].split('/')[-2] for x in response.get('CommonPrefixes', [])]
        print(len(folder_names))

        ndatasets = self.config.num_datasets
        if isinstance(ndatasets, int):
            ndatasets = [ndatasets, 10, 10]

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "bucket_name": bucket_name,
                    "folder_names": folder_names[:ndatasets[0]],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "bucket_name": bucket_name,
                    "folder_names": folder_names[ndatasets[0]:ndatasets[0] + ndatasets[1]],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "bucket_name": bucket_name,
                    "folder_names": folder_names[ndatasets[0] + ndatasets[1]:ndatasets[0] + ndatasets[1] + ndatasets[2]],
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, bucket_name, folder_names):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        s3 = boto3.client('s3')
        tmp_dir = os.path.join('tmp', folder_names[0]) if len(folder_names) > 0 else 'tmp'
        if not os.path.exists(tmp_dir):
            os.makedirs(tmp_dir)
        anat_file = os.path.join(tmp_dir, 'T1w.nii.gz')
        func_file = os.path.join(tmp_dir, 'bold.nii.gz')
        
        duration = self.config.num_frames * self.config.sampling_rate

        for folder_name in folder_names:
            response = s3.list_objects_v2(Bucket=bucket_name, Prefix=folder_name)
            for obj in response.get('Contents', []):
                obj_key = obj['Key']
                if '_T1w.nii.gz' in obj_key: # Anatomical
                    # Store subject number to verify anat/func match
                    anat_subj = obj_key.split('/')[1]
                    
                    # Download the object to tmp location
                    s3.download_file(bucket_name, obj_key, anat_file)

                    # store the head of anat_subj
                    anat_header = nib.load(anat_file).header
                elif '_bold.nii.gz' in obj_key: # Functional
                    func_subj = obj_key.split('/')[1]
                    if func_subj == anat_subj:
                        s3.download_file(bucket_name, obj_key, func_file)
                        func = nib.load(func_file).get_fdata().astype('float16')
                        func = np.transpose(func, (3, 0, 1, 2)) # T, X, Y, Z
                        shape = func.shape
                        # print(f"{obj_key}", shape)
                        for i in range(0, shape[0] - duration + self.config.sampling_rate, duration):
                            func_slice = func[i:i+duration:self.config.sampling_rate, :, :, :]
                            # print(f"{obj_key}-{i}", func_slice.shape)
                            yield f"{obj_key}-{i}", {
                                "func": func_slice,
                            }